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Abstract
This thesis is focused on modelling the complete polarization dependent optical response
resulting from reflection from periodic nanostructures with a two-dimensional lattice, us-
ing the commercial software COMSOL Multiphysics based on the finite element method.
An efficient model exploring the COMSOL wave optics module has been developed and
the results have been successfully compared to the experimentally recorded Mueller ma-
trices of plasmonic nanostructures previously manufactured in NTNU NanoLab. Three
different samples have been targeted, consisting of plasmonic hemispheroidal nanopar-
ticles in square or rectangular lattices on a SiO2 substrate. The size and shape of the
nanoparticles were different for each sample. Their rich optical response, including local-
ized surface plasmon resonances (LSPR), polarization coupling, and strong dependency
on Rayleigh anomalies, were reproduced by the COMSOL model. A similar model was
further used to simulate a sample of densely packed tilted GaSb cones for photon ener-
gies beyond its corresponding experimental work, revealing a strong polarization coupling
around 7.5 eV. Model efficiency was optimized to greatly reduce computation time and
memory requirements. Further optimization measures have been suggested that could
vastly improve performance, which in turn would open up possibilities of modeling more
complex and computationally demanding systems.
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Chapter 1
Introduction

1.1 Background

Recent years have seen an intense research into plasmonics and applications, therein the
development of the field of metamaterials and metasurfaces [60]. The main applications
of nanoplasmonics is a result of so-called plasmon resonances which enables the ability
to i) confine the electromagnetic field into subwavelength volumes, and to ii) enhance the
field. In such resonant structures, timevarying electric fields associated with light waves
exert a force on the gas of negatively charged electrons inside a metal and drive them into
a collective oscillation. At specific frequencies this oscillation is resonantly driven to pro-
duce a very strong charge displacement and associated (light) field concentration, known
as a localized surface plasmon resonance (LSPR). LSPRs and surface plasmon polaritons
(SPP) confine the field near a particle or interface, which has applications ranging from
sub-diffraction-limit imaging, through nanophotonics communications to photovoltaics.
The design go well beyond simple non-interacting nanoparticles to e.g. structures such as
plasmonic nano-antennas [60].

Further applications of this light manipulation can be found in photothermal cancer
treatment, in vivo bio-imaging, catalysis, thermal emitters, nonlinear optics, photodetec-
tors, and in engineering of radiative decay [34] [73]. In photovoltaics, plasmonic nanopar-
ticles have shown potential in producing highly efficient solar cells while offering low
materials and processing costs [73] [79] [75].

Plasmonics has also been a fundamental sub-unit in the design of the ”meta-atom” in
metamaterials, not only supplying the negative dielectric function through metallic rods,
but also supplying an effective negative permeability through e.g. split ring resonator
designs [69]. Metamaterials unfortunately suffer from large losses and are extremely
complicated to manufacture, but recently metasurfaces exploring a two-dimenional lat-
tice of resonator units has become a promising field of research [60]. On the other hand,
nanostructured surfaces made out of semiconducting materials are promising for appli-
cations within optical and optoelectronic applications such as highly absorbing solar cell
units [77]. Modelling of such nanostructures has traditionally been limited to exploring
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Chapter 1. Introduction

the generalized effective medium theory. However, since effective medium theory relies on
structures being much smaller than the wavelength of light (effectively in the quastistatic
approximation), this approach is expected to break down for larger structures [3].

Since the plasmon excitation is polarization dependent [54], ellipsometry is a natural
candidate for sample characterization as it exploits the polarization aspect of light. Spec-
troscopic ellipsometry is an established non-invasive method of retrieving valuable ampli-
tude and phase information from metal-dielectric interfaces of thin films, from which one
can determine the effective dielectric function and how it relates to the material nanostruc-
ture and define exactly the system’s plasmonic characteristics [68].

Traditionally, the optical response has been modelled by a stack of plane layers. Nanos-
tructured materials (with or without plasmonic nanoparticles) could be modelled in terms
of the generalized effective medium theory, whereas the optical response of the layer can
be modelled by an anisotropic layer [27]. The complexity of the structures, and that the
dimensions are not strictly subwavelength makes the latter approach insufficient. This
is where computational electromagnetics can help out. Furthermore, Mueller matrix el-
lipsometry covers the complete polarization response from such complex nanostructures.
The modelling of the full Mueller matrix from nanostructured samples is the topic of this
thesis.

There are several different methods in computational electromagnetics, each with their
own advantages and disadvantages depending on the problem at hand [79]. For exam-
ple, the discrete dipole approximation (DDA) computes electromagnetic scattering and
absorption by targets of arbitrary shape, but is limited by requiring a interdipole separation
small compared the structural lengths in the target and to the wavelength [19]. The finite
difference time domain (FDTD) method has been extensively used in plasmonics [79]. In
FDTD, the Maxwell’s equations in their differential form are discretized in space and time
and the time evolution of electromagnetic near-fields is calculated directly [76]. FDTD is
an attractive method due to being relatively easy to implement for specific problems, how-
ever, resolving curved and triangular geometries can be challenging. The finite element
method (FEM) is another full-wave differential equation solver, it discretizes the system
volume into smaller, simpler parts that are numerically easier to solve. These subsets are
then re-assembled into a larger system of equations that models the entire problem [42].
FEM is a mature method that is efficient and unconditionally stable1 [72], and solving
Maxwell’s equations in the frequency domain allows direct comparison with ellipsometric
characterization of experimental data. Another attractive feature is its ability to handle
complicated geometries with relative ease, making FEM the numerical method of choice
for this thesis.

1.2 Problem formulation
This thesis will investigate methods to simulate the optical properties of periodic metallic
nanostructures at oblique angle of incidence using COMSOL Multiphysics with the wave
optics module, a commercial finite element method software. There will be a focus on
replicating the optical response of structures that have previously been fabricated in the

1That is, if a wavelength step-size no matter how large can be used without resulting in the type of nonsense
results associated with a numerical instability.
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1.3 Thesis overview

NTNU NanoLab and characterized with angle-resolved spectroscopic Mueller matrix el-
lipsometry. If the model is verifiable through comparison with experimental data, it will
be applied to simulate other structures.

1.3 Thesis overview
In the following chapter, an introduction to electromagnetic theory will be given; the polar-
ization of light, Stokes-Mueller formalism, ellipsometry, and electromagnetic interaction
with matter including surface plasmons and diffraction grating, before finally introducing
the finite element method. Chapter 3 will present the various fabricated nanostructures
to be modeled as well as a brief summary of their experimental background. The com-
mercial FEM software COMSOL Multiphysics will be presented in chapter 4, beginning
with a general overview of the program before delving further into the wave optics module
used to simulate electromagnetic wave propagation. The results and discussion in chapter
5 will be divided into three main parts; a detailed explanation of the modeling process in
COMSOL will be given first; next, measures taken to optimize the model and their effects
on performance and accuracy are presented; lastly, the simulation results and analysis of
each of the four samples are given. Conclusions and recommendations for future work
will be given in chapter 6.
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Chapter 2
Background Theory

2.1 Polarized light

Light, in accordance with Maxwell’s equations, is described as a propagating electromag-
netic (EM) wave with fundamental properties such as wavelength, intensity and polariza-
tion.

The electric field of a monochromatic plane wave that is completely polarized light
and travelling in the ẑ direction can be described as a decomposition into two orthogonal
field components oscillating in the x̂ and ŷ directions,

E(z, t) = E0x cos(ωt− kz + δx)x̂ + E0y cos(ωt− kz + δy)ŷ (2.1)

where ω and k are the angular frequency and wave vector of the light, while δ and E0

are phase and amplitude in their respective directions. In complex notation the field is
described as

E(z, t) = E0xe
i(ωt−kz+δx)x̂ + E0ye

i(ωt−kz+δy)ŷ, (2.2)

where taking the real part of equation (2.2) results in the physical field. The magnetic
field can be described in a similar manner. However, since the magnetic susceptibility of
materials studied in this thesis is comparable to that of vacuum, it is usually sufficient to
only account for the electric field.

Polarization of light is described by the electric field amplitude E0x, E0y and phase
difference δ = δx − δy . If the two components in equation (2.2) have different phases, the
oscillating electric field will trace out an ellipse in the plane perpendicular to its direction of
propagation. If, for example, E0y = 0, the electric field will oscillate only in x̂-direction
and the light is said to be linearly horizontally polarized [29]. The time dependence in
equation (2.2), e(iωt), is chosen so that in the case of elliptical polarized light, right circular
polarization is defined as a clockwise rotation of the electric field when looking towards
the source [32].

The polarization of an electromagnetic wave may also be described in complex vector
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Chapter 2. Background Theory

notation by a so-called Jones vector,

E =

(
E0xe

iδx

E0ye
iδy

)
=

(
Ex
Ey

)
, (2.3)

where the propagator ωt − kz is usually suppressed when only polarization is of interest
[29]. Again, restoring the propagator and taking the real part of equation (2.3) will result
in the optical field. The total intensity of the optical field averaged over time is given by

I = ExE
∗
x + EyE

∗
y . (2.4)

When describing the change of polarization of light after interaction with an optical el-
ement, e.g. reflection from a thin film, a Jones Matrix formulation may be used when
assuming a linear relation between the components of the emerging beam and the incident
beam, (

Ex
Ey

)
out

=

(
j11 j12

j21 j22

)(
Ex
Ey

)
inc

(2.5)

where the 2x2 matrix is called the Jones Matrix and its elements jkl (k, l = 1, 2) are
complex reflection or transmission coefficients translating linear interactions of completely
polarized light. Reflectance or transmittance, which is the fraction of incident electromag-
netic power that is reflected or transmitted by the optical element, is given by Jkl = |jkl|2.

2.2 Stokes-Mueller formalism
The Jones formalism provides a description of completely polarized light. However, often
in nature and practical cases, light is not a perfectly monochromatic wave1. Sunlight, for
example, is unpolarized light, meaning that the beam’s polarization changes so quickly
and randomly that it cannot be determined for any practical purposes. Real-world mea-
surement systems and samples may cause a fraction of the light to become unpolarized.
This process where the light’s degree of polarization is reduced is called depolarization,
and describes the percentage of light that has become unpolarized [2]. Another limita-
tion of the Jones formalism regarding experimental work is that detectors measure light
intensities, not field amplitudes. There is thus a practical motivation for an alternative
representation of light in terms of intensities which also takes into account depolarization.

The Stokes-Mueller formalism may represent quasi-monochromatic light that is un-
polarized, partially polarized or completely polarized. A quasi-monochromatic wave will
have time-dependent phase factors δi(t) and amplitude Ei(t) that fluctuate slowly com-
pared to the rapid oscillations of the cosinusoids in equation (2.1) [29]. The Stokes vector
provide a full description of any polarization state [4],

S0

S1

S2

S3

 =


< E0x(t)2 > + < E0y(t)2 >
< E0x(t)2 > − < E0y(t)2 >

2 < E0x(t)E0y(t) cos[δy(t)− δx(t)] >
2 < E0x(t)E0y(t) sin[δy(t)− δx(t)] >

 =


Ix + Iy
Ix − Iy

I+45◦ − I−45◦

Ir − Il

 , (2.6)

1A wave is monochromatic if amplitude and phase factors are constant for all time, as in section 2.1.
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2.2 Stokes-Mueller formalism

where < ... > denotes the time-average, so that S0 represents the total intensity of the
light beam, S1 is the intensity difference between horizontally and vertically polarized
light, and S2 the difference between +45◦ and −45◦ polarized light. Finally S3 is the
difference between right handed and left handed circularly polarized light. Whereas the
Jones vector represent light with field amplitude and phase, the Stokes vector represent
light with field intensities.

The degree of polarization P is defined as the ratio between the intensity of completely
polarized light to the total intensity of the beam. In terms of Stokes parameters this is

P =

√
S2

1 + S2
2 + S2

3

S0
. (2.7)

The value P = 1 corresponds to completely polarized light, P = 0 corresponds to unpo-
larized light, and 0 < P < 1 corresponds to partially polarized light.

A change in polarization state, from one Stokes vector to another, due to interaction
with an optical element is expressed through the matrix equation Sout = MSinc, where
M is a 4x4 matrix called the Mueller matrix (MM) of the system. Written out in terms of
the elements, this becomes

S0

S1

S2

S3


out

=


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44



S0

S1

S2

S3


inc

, (2.8)

where the elements are real numbers that may take values Mij ∈ [−1, 1]. The MM de-
scribes the optical element, and contains all the information about what happens to the po-
larization state during the interaction. The polarization state may be changed by changing
the orthogonal field amplitudes unequally (diattenuation), changing the phase (retardance),
changing the direction of the orthogonal field components (rotation), or transferring en-
ergy from polarized states to unpolarized states (depolarization). Any system’s MM may
be deconstructed into a succession of optical components, each described by its own MM,
i.e. [2]

M = MNMN−1...M1, (2.9)

where light propagates from 1 to N .
If the optical system is non-depolarizing, the MM may be fully described by a Jones

matrix. For such a system described by the Jones matrix J, the corresponding Mueller
matrix is given by [2]

M = A(J⊗ J∗)A−1 (2.10)

where ⊗ is the Kronecker product and

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 . (2.11)

In the case of reflection from a non-depolarizing sample, in a coordinate system defined
by the beam’s plane of incidence (POI) where the electric field orthogonal components are
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Chapter 2. Background Theory

directed either parallel to POI (p-polarization) or perpendicular to the POI (s-polarization),
the general reflection Jones matrix is

r =

(
rpp rps
rsp rss

)
, (2.12)

see figure 2.1. The matrix elements in equation (2.12) are complex reflection coefficients.
The convention of subscript notation is here used such that rαβ indicates the portion of
the initially β-polarized wave that is converted to α-polarization after reflection. The
off-diagonal elements therefore describe conversion between the two polarization modes.
Conversion equations for the equivalent MM [32], found by inserting the reflection Jones
matrix (2.12) into equation (2.10), are listed below

M11 =
1

2
(|rpp|2 + |rps|2 + |rsp|2 + |rss|2) (2.13a)

M12 =
1

2
(|rpp|2 − |rps|2 + |rsp|2 − |rss|2) (2.13b)

M13 = Re[rppr
∗
ps + rspr

∗
ss] (2.13c)

M14 = Im[rppr
∗
ps + rspr

∗
ss] (2.13d)

M21 =
1

2
(|rpp|2 + |rps|2 − |rsp|2 − |rss|2) (2.13e)

M22 =
1

2
(|rpp|2 − |rps|2 − |rsp|2 + |rss|2) (2.13f)

M23 = Re[rppr
∗
ps − rspr∗ss] (2.13g)

M24 = Im[rppr
∗
ps − rspr∗ss] (2.13h)

M31 = Re[rppr
∗
sp + rpsr

∗
ss] (2.13i)

M32 = Re[rppr
∗
sp − rpsr∗ss] (2.13j)

M33 = Re[rppr
∗
ss + rpsr

∗
sp] (2.13k)

M34 = Im[rppr
∗
ss − rpsr∗sp] (2.13l)

M41 = −Im[rppr
∗
ps + rspr

∗
ss] (2.13m)

M42 = −Im[rppr
∗
ps − rspr∗ss] (2.13n)

M43 = −Im[rppr
∗
ss + rpsr

∗
sp] (2.13o)

M44 = Re[rppr
∗
ss − rpsr∗sp]. (2.13p)

(2.13q)

Note that there is a clear indication of polarization coupling induced by the sample if the
off-diagonal block elements are non-zero.

There are many necessary conditions that must be met for a MM to be physically
realizable [2] [51]. Here, however, the subject will only be briefly discussed. The question
is which conditions should be imposed on the elements of M in order for it to correspond
to a real physical system. Consider the optical system in figure 2.1. The emerging light, i.e.
the resulting Stokes vector Sout after the incident light Sinc is operated on by M, cannot
have a degree of polarization larger than one and its total intensity must be positive. In
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2.3 Ellipsometry

Figure 2.1: Light reflected at the interface between two media. Direction of electric field is defined
from the beam’s plane of incidence as p-polarization and s-polarization. Source [28].

other words, it must hold that S2
0 ≥ S2

1 +S2
2 +S2

3 and S0 ≥ 0. What are the conditions on
a given MM that will ensure that the output light is partially polarized for any polarization
of the input light, or equivalently, when will the degree of polarization P of the output
Stokes vector satisfy P ≤ 1 for any physical input Stokes vector? This is a non-trivial
matter and many constraints have been derived [51] [50]. The constraints may even be
used for calibration of polarimetric instruments, estimation of experimental errors, and
testing computational procedures.

2.3 Ellipsometry
Ellipsometry is an experimental technique for investigating optical properties of thin films
and surfaces. It is a form of polarimetry, which is to measure and interpret the polarization
state of light. The basic principle of ellipsometry is to measure the change in phase and
amplitude of two orthogonal electric field components after reflection or transmission at
the sample of interest, see figure 2.1. However, for most samples, an analytic inversion of
the ellipsometric equations (discussed in the next section) is not possible and thus the un-
known parameters cannot be obtained directly. Instead, a model can be created to calculate
a response which is compared to the experimental response. Using regression analysis, fit
parameters of the model are adjusted to find a minimum error function between the model
data and experimental data. If the results of the assumed model are not fully in agreement
with the experimental data, one may go back and redefine its properties e.g. by adding
a roughness layer, anisotropy or graded optical properties. This is repeated until a satis-
factory fit is found. The quality of the model can be quantified by a mean-square error or
another error function. Figure 2.2 presents an overview of this process [18].

9



Chapter 2. Background Theory

Figure 2.2: Overview of the fit procedure in ellipsometric data analysis. Source [18]

Thus, ellipsometry is an indirect method of retrieving optical properties from a sample,
such as its dielectric function or refractive index, thin film thickness, surface roughness and
layer composition.

2.3.1 Various forms of ellipsometry
There are mainly three types of ellipsometry; standard, generalized and Mueller-matrix
ellipsometry. While the methods are here explained in terms of reflection off a sample, the
principle and derivation are similar for transmission ellipsometry [78].

Standard ellipsometry

In standard ellipsometry, a single measurement of the sample-induced change in polariza-
tion is performed per wavelength, while assuming no coupling between p- and s-polarization.
The reflection Jones matrix, equation (2.12), is therefore diagonal, the sample reflection
properties entirely given by rss and rpp. For light reflected at the interface between two
isotropic media 0 and 1 as in figure 2.3, the complex reflection coefficients are the Fresnel
equations [4]

rpp =
N1 cos θ0 −N0 cos θ1

N1 cos θ0 +N0 cos θ1
(2.14a)

rss =
N0 cos θ0 −N1 cos θ1

N0 cos θ0 +N1 cos θ1
(2.14b)

with N0,1 being the complex indices of refraction of the two media, θ0 the polar angles
of the incident and reflected beams (which are equal as per the law of reflection), and θ1 is
the refracted angle of the transmitted wave (obeying Snell’s law) [31]. The basic quantity
measured with an ellipsometer is the ratio

ρ = χr/χi, (2.15)
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2.3 Ellipsometry

Figure 2.3: Light propagating in a medium with refractive index N0 is partially reflected and trans-
mitted when encountering a material with different indexN1. The transmitted wave is refracted at an
angle θ1, different from incident angle θ0, unlike the reflected angle. The polarization state of each
wave is defined by the amount of electric field which is p-polarized (parallel to page) and s-polarized
(out of page), i.e. in-plane and perpendicular to the plane of incidence, respectively.

where χr and χi are the complex-number representation of the polarization states of the
reflected and incident beams, respectively. Each polarization state is described by the ratio
of complex-valued electric fields in the orthogonal p- and s-directions χ = Ep/Es. As the
complex reflection coefficients are defined by the complex reflected and incident electric
fields, rpp = Epr/Epi and rss = Esr/Esi, we can rewrite equation (2.15) to be

ρ =
rpp
rss

= tan Ψei∆. (2.16)

The so-called ellipsometric angles Ψ and ∆ are the experimentally determined parameters
in standard ellipsometry. The angle Ψ describes the relative change in amplitude, while ∆
describes the phase shift.

Generalized ellipsometry

In the case of an anisotropic sample one must generally include polarization coupling, i.e.
the off-diagonal reflection Jones matrix elements rsp and rps will be non-zero. Because
of this, generalized ellipsometry requires at least three values of ρ measured at different
polarization states χi which results in three pairs of (Ψ,∆). The three complex-valued
generalized ellipsometer parameters are defined as

ρpp =
rpp
rss

= tan Ψppe
i∆pp (2.17a)

ρps =
rps
rpp

= tan Ψpse
i∆ps (2.17b)

ρsp =
rsp
rss

= tan Ψspe
i∆sp . (2.17c)

11



Chapter 2. Background Theory

If assuming a sharp interface between the two media, as in figure 2.3, one may combine
equation (2.16) with equations (2.14) and Snell’s law while applying N2 = ε to derive a
relation connecting the dielectric functions of the two media,

〈ε〉pp = sin2 θ0

[
ε0 +

(1− ρpp)2

(1 + ρpp)2
tan2 θ0

]
, (2.18)

known as the generalized pseudo-dielectric function [68]. If surface layers can be ne-
glected then 〈ε〉pp = ε1. Note that ε0 is the dielectric function of the upper (ambient)
media, not the vacuum permittivity.

Mueller-matrix ellipsometry

So far we have assumed no depolarization in the sample. When depolarization occurs, the
Jones formalism is no longer valid and one should use the Mueller-matrix formalism in
describing how an electromagnetic wave interacts with the elements within an ellipsometer
(including the sample). Depolarization may be caused by effects such as thickness non-
uniformity, non-coherent reflection and backside reflections from a transparent substrate.
Furthermore, information such as s- and p-reflectance, and the isotropic and anisotropic
ellipsometry parameters may be extracted from the Mueller matrix. In transmission mode,
the MM may be useful to observe effects of s- and p-transmittance, optical rotation and
circular dichroism2.

The reflection MM of a non-depolarizing sample is readily available from equation
(2.13). An isotropic sample is fully described by ρ = tan Ψei∆ = rpp/rss as there is no
cross-polarization, rsp = rps = 0. It is then fairly straight forward to show that the MM
in equation (2.13) becomes block-diagonal as it reduces to

M =
|rpp|2 + |rss|2

2


1 −N 0 0
−N 1 0 0

0 0 C S
0 0 −S C

 (2.19)

where N , C and S are introduced as

N = cos 2Ψ (2.20a)
C = sin 2Ψ cos ∆ (2.20b)
S = sin 2Ψ sin ∆. (2.20c)

If the sample in addition is non-depolarizing, these parameters are related as

N2 + C2 + S2 = 1. (2.21)

Furthermore, the complex reflectance ratio can be expressed as [2]

ρ =
C + iS

1 +N
. (2.22)

2Dichroism is either when light splits up into distinct beams of different wavelengths, or when light rays ex-
perience a different absorption coefficient (diattenuation) depending on its polarization state. Circular dichroism
is dichroism involving circularly polarized light, i.e. the differential absorption of left- and right-handed light.
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2.4 Interaction between matter and light

In the Mueller matrix approach, an isotropic sample is thus described by three param-
eters N , C and S, which reduces to two independent parameters if the sample is non-
depolarizing.

Because the MM fully describes the polarization change due to a sample, it has been
proved that the additional (in principle redundant) information provided greatly reduces
the correlations observed between measured parameters compared to using standard spec-
troscopic ellipsometry. Examples of benefits gained by Mueller matrix formalism are
found when characterizing gratings and anisotropic samples [56].

2.4 Interaction between matter and light
The interaction between metals and EM waves can be firmly understood by classical elec-
trodynamics, and even metallic nanostructures of a few nanometers in size may be de-
scribed in the classical sense without resorting to quantum mechanics [54]. From every-
day experience we are well aware of the highly reflective and non-transmittive nature of
metals for frequencies up to the visible spectrum. For the lower-frequency regime of mi-
crowave and far-infrared (IR) radiation one can in most cases assume the approximation
that the metal is a perfect conductor to be valid, due to only a negligible part of the incident
radiation actually penetrating into the metal. In the near-IR and visible regime the field
penetration is more prominent and leads to increased dissipation. At ultraviolet (UV) fre-
quencies metals become dielectric in character and allow for electromagnetic propagation.
The attenuation of transmission will however depend on the electronic band structure of
the individual metal. Alkali metals exhibit an ultraviolet transparency, while noble met-
als such as gold and silver experience strong absorption in this regime due to transitions
between electronic bands.

In describing these interactions we first begin with Maxwell’s equations (ME) of macro-
scopic electromagnetism in time domain [31],

∇ ·D = ρext (2.23a)
∇ ·B = 0 (2.23b)

∇×E = −∂B
∂t

(2.23c)

∇×H =
∂D

∂t
+ Jext, (2.23d)

which links the four macroscopic fields, the dielectric displacement D, the electric field E,
the magnetic field H, and the magnetic induction B, with the external charge and current
densities ρext and Jext. Furthermore, for linear media, the electric displacement field D
is related to polarization P, which describes the dipole moment per unit volume in the
material, as [2]

D = ε0E + P (2.24)

with the constitutive relation in frequency domain

D = ε0εE. (2.25)
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Chapter 2. Background Theory

Here, ε0 is the permittivity of vacuum while ε is the relative permittivity of the medium,
which is an intrinsic property of the given material describing the frequency-dependent
relation between an applied electric field and the induced displacement field. It is also
known as the dielectric function, as it will be called in this thesis. The dielectric function
is in general complex for metals and other absorbing materials,

ε = εr + iεi (2.26)

and its relation to the complex refractive index is N =
√
ε.

2.4.1 The dielectric function of the free electron gas
The optical response of metals can, over a wide frequency range, be explained by a free
electron model. That is, a gas of electrons moving against a static background of positive
ions. The equation of motion for an electron in the plasma sea under the effect of an
external electric field E can be written as

mẍ +mγẋ = −eE (2.27)

with m being the effective optical mass of the electron and e the electron charge. The
electron will oscillate in response to the applied field and its motion is damped through
collisions described by the characteristic collision frequency γ. Assuming the driving
field has a harmonic time dependence, E(t) = E0e

−iωt, equation (2.27) has a solution
describing the electron oscillating as x(t) = x0e

−iωt. The complex amplitude x0 includes
any phase shifts between the driving field and response, and is given by [54]

x(ω) =
e

m(ω2 + iγω)
E(ω), (2.28)

where a Fourier transform has been performed. This displacement from its equilibrium due
to the applied electric field results in a polarization P = −nex, where n is the electron
number density. Inserting this into equation (2.28) gives us

P(ω) = − ne2

m(ω2 + iγω)
E(ω). (2.29)

From the relation (2.24) we see that

D(ω) = ε0(1−
ω2
p

ω2 + iγω
)E(ω) (2.30)

where ω2
p = ne2/mε0 is the frequency of the collective oscillation of the valence electrons

in the metal called the plasma frequency, defined as the frequency where the real part of ε is
zero [20]. Finally, from the constitutive relation (2.25) we arrive at the dielectric function

ε(ω) = 1−
ω2
p

ω2 + iγω
. (2.31)

The free electron gas is also known as the Drude model, and thus its dielectric function
(2.31) is often called the Drude response of such a metal.
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2.4 Interaction between matter and light

Figure 2.4: The dielectric function ε(ω) of the free-electron model (solid line) is plotted against
experimental values for gold (dots) found in [43]. Validity of the Drude model breaks down for
higher energies due to interband transitions. Figure taken from [54].

For noble metals this approach is limited to frequencies below the visual range where
interband transitions occur. For such metals an extension is needed in the region ω > ωp,
where free s-electrons dominates the response while the filled d-band near the Fermi sur-
face causes a highly polarized environment. This residual polarization caused by the pos-
itive ion background can be described by adding a term P∞ = ε0(ε∞ − 1)E to equation
(2.24) so that P in equation (2.29) now represents polarization due to free-electron dis-
placement [54]. This effect is described by ε∞ and we can rewrite the dielectric function
to be

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
. (2.32)

Figure 2.4 illustrates the validity of the free-electron model in the case of gold. Clearly,
the model breaks down at visible frequencies and higher as ε2 increases due to interband
transitions.

Lorentz oscillators

A method of overcoming these problems at higher frequencies is to add an oscillator term
to the equation of motion (2.27)

mẍ +mγẋ +mω2
0x = −eE (2.33)

so that interband transitions are represented by the classical picture of a bound electron
with resonance frequency ω0. The dielectric function can be found by the same proce-
dure as before, solving the equation of motion (2.33) and combining equations (2.29) and
(2.25), resulting in

ε(ω) = 1−
ω2
p

ω2 − ω2
0 + iωγ

. (2.34)

The plot in figure 2.5 shows the typical behaviour of a Lorentz oscillator.
There are shortcomings with this simple model as it neglects several types of forces

in the derivation [2]; one can more accurately describe the material as a sum of several

15



Chapter 2. Background Theory

Figure 2.5: Typical behaviour of a Lorentz oscillator. Dispersion of light interacting with the mate-
rial occurs when real part εr is non-constant. Absorption occurs when the imaginary part is non-zero,
εi 6= 0. A resonance is centered around ω0 with half-bandwidth γ. Figure taken from [36].

Lorentz oscillators, generalizing equation (2.34) as

ε(ω) = ε∞ − ω2
p

∑
j

fj
ω2 − ω2

j + iωγj
(2.35)

where fj is the oscillator strength with
∑
fj = 1. Again, it is convenient to summarize

all higher energy frequencies into the real-valued parameter ε∞, describing the relative
permittivity at infinite energy, often equating to unity. The Lorentz model is valid only for
energies (significantly) lower than the band gap energy.

2.4.2 Dielectric function of solids over a wide frequency range
The optical response function has a few general properties that are caused by causality,
i.e. its reaction is only dependent on past events and not future events. This leads to the
Kramers Kronig relations [2]. The Kramer Kronig relations are bidirectional mathematical
relations that connects real and imaginary parts of complex functions that are analytic in
the upper half-plane, thus applicable to response functions of linear systems where the
relationship between input and output is causal [1]. A consequence of Kramers Kronig
relations is that if one of the functions (real part ε1 or imaginary ε2) are determined for all
frequencies, then the other part can be calculated for all frequencies as well.

Consider equation (2.24), which solved for P is

P = (ε− 1)ε0E. (2.36)

It is clear that the term (ε− 1) represents the optical response as it relates the electric field
E to the polarization P, i.e. the term gives the relation between the cause E and effect
P. With basis in equation (2.24) and taking into account causality, that E must precede a
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Figure 2.6: Frequency variation of the dielectric function, showing various dielectric mechanisms:
ionic and dipolar relaxation, and resonances of vibrational and electric oscillators. Figure from [57].

response P implying that P should vanish for t < 0, as well as Cauchy’s residue theorem
for complex functions, it can be shown that the Kramer Kronig integrals are [20] [2]

ε1 − 1 =
2

π
P

∫ ∞
0

ε2(ω′)ω′

ω′2 − ω2
dω′ (2.37a)

ε2 = −2ω

π
P

∫ ∞
0

ε1(ω′)− 1

ω′2 − ω2
dω′ (2.37b)

where P denotes the principal part of the integral.
Both dispersion (described by ε1) and absorption (described by ε2) originate from the

same underlying process, excitation of dipoles in the material. If the dipoles can follow
the field instantaneously in a frequency region, there will be no absorption (ε2 = 0). For
the same reason there will be no dispersion, as ε1 is constant. In the frequency region
around a relaxation (see figure 2.5), the dipoles will still try to match the field but cannot
follow it completely. The dipoles will not move as much as at lower frequencies and
thus the polarization becomes smaller (ε1 decreases). At the same time absorption occurs
(ε2 6= 0) because energy is tapped from the electromagnetic field into the dipoles and then
subsequently into the material. No dispersion can occur if there is no absorption and vice
versa. This is the physical interpretation of the Kramer-Kronig relations, that absorption
and dispersion are coupled properties of the same phenomenon [2].

Figure 2.6 shows a dielectric function over a wide frequency range. One quickly ob-
serves that at each relaxation frequency of ε1 there is an associative peak in absorption ε2.
Starting at ω = 0, the dielectric function is composed of contributions from each polariza-
tion mechanism (permanent dipoles, vibrational oscillators and electronic oscillators), with
the lowest-frequency mechanism contributing the most. As the frequency increases, the
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permanent dipoles cannot respond and the real part ε1 drops to a value at a frequency low
compared to the characteristic vibrational frequency. As the frequency increases through
the vibrational region, ε1 oscillates and settles down at a low-frequency limit for electronic
modes. For frequencies far above all absorption bands ε1 approaches the free-space value
1; the frequencies are so high that none of the polarization mechanisms can respond, see
equation (2.37) [13].

2.4.3 Joule heating

Energy of the light incident on a material can be dissipated into heat. Resistive (or ohmic)
heating is a process by which an electric current passing through a conductor produces
heat. In microscopic terms, resistive heating is caused by interactions between the moving
particles of the electron plasma and the atomic ions of the material. The electrons are
accelerated by an electric field causing them to collide with the ions, resulting in random
scattered motion. These thermal fluctuations increases the temperature of the system.
Resistive heating defined as power input per unit volume due to electric current is [40]

dPresistive

dV
= J ·E. (2.38)

Here, J is the current density defined from the constitutive relation J = σE + Jext,
where σ is the conductivity of the electron plasma. Solving equation (2.38) with respect
to Presistive we get

Presistive =

∫
V

J ·EdV, (2.39)

which result in heat dissipation in the material of volume V .

2.4.4 Effective medium approximation

This section will give a rough introduction to effective medium theory, and specifically
the Bruggeman effective medium model. Effective medium approximations (EMA) refer
to analytical modeling that describe the macroscopic properties of composite materials. A
heterogeneous material with inhomogeneities of sizes sufficiently smaller than the wave-
length of light will appear as a homogeneous material, i.e. there will be no scattering from
the material and its optical properties may be summarized by an effective dielectric func-
tion εeff [2]. EMAs are often used to model nanostructured surfaces, metamaterials, surface
roughness, or mixed materials. They are convenient when used together with ellipsometric
measurements to characterize nanostructures of a sample.

An effective medium model assumes that the macroscopic optical response of a mi-
crostructure of heterogeneous multi-phase media may be estimated by a random unit cell
(an effective medium) that should not be detectable in an experiment using EM radiation
confined to a specified wavelength range. Put differently, the extinction of the random unit
cell should be the same as if it were replaced with a material with the effective dielectric
function. The Bruggeman effective medium model assumes the material has an aggregate
structure as shown in figure 2.7, which demands a random unit cell which guarantees the
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Figure 2.7: (left) An aggregate structure, where two materials are mixed on a random basis, (right)
the corresponding random unit cell used to derive the effective dielectric function for the Bruggeman
theory. Figure from [67].

structural equivalence of the two constituents. The cell is therefore a sphere whose di-
electric function is εA with probability fA, and εB with probability fB . The Bruggeman
effective medium expression is known as

0 = fA
εA − εeff

εA + 2εeff
+ fB

εB − εeff

εB + 2εeff
(2.40)

where fA is the volume fraction of material A and fB = 1− fA is the volume fraction of
material B [2].

2.5 Plasmonics
The field of plasmonics explores how electromagnetic fields may be confined and/or en-
hanced over sub-wavelength dimensions. It is based on the interaction between light and
the conduction electrons at a metallic interface or metallic nanoparticles, resulting in an en-
hanced electromagnetic field over dimensions smaller than the wavelength of light. There
are two types of surface plasmons. One is a dispersive electromagnetic wave coupled to
the electron plasma of a conducting material propagating along the interface between the
conductor and a dielectric. This is called a surface plasmon polariton resonance (SPPR),
or just SPP or SPR. The other type is a non-propagating excitation of the electron plasma
of metallic nanostructures coupled to an incident electromagnetic field called a localized
surface plasmon resonance (LSPR). This thesis will focus on describing the latter.

2.5.1 Localized surface plasmons
LSPRs occur naturally in the scattering of an oscillating electromagnetic field from a small,
sub-wavelength conductive nanoparticle. The surface curvature of the particle acts as an
effective restoring force on the driven electron-plasma so that a resonance arises, which
leads to field amplifications both inside and in the near-field zone outside the particle [54].
The spectral location of the LSPR is characteristic for the size, the shape, the material and
the surrounding medium of the nanoparticle.
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Figure 2.8: A metallic sphere with radius a and dielectric function ε(ω) placed in an ambient
medium with dielectric constant εm. The particle is subject to an external electrostatic field E0.
Figure taken from [54].

Normal modes

The interaction process between light and a sub-wavelength metal particle with diameter
d may be examined by using the quasi-static approximation, assuming d� λ. The phase
of the harmonically oscillating field is then considered to be practically constant over the
particle volume, i.e. the particle is assumed to be surrounded by an electrostatic field.
By ignoring spatial retardation effects over the particle the spatial field distribution can be
calculated, while the harmonic time dependence may be added to the solution afterwards.
This approximation has been shown to be reasonable for spherical and ellipsoidal particles
with dimensions below 100 nm when illuminated by visible or near-IR light [54].

We will from here on concider the example of a homogeneous, isotropic sphere of
radius a located at the origin in a uniform, static electric field E = E0ẑ. The surrounding
isotropic non-absorbing medium has dielectric constant εm while the dielectric response
of the sphere is ε(ω). See figure 2.8. The distribution of the electric field E = −∇Φ can
then be calculated from the solution of the Laplace equation ∇2Φ = 0 [31]. Since the
problem has azimuthal symmetry, the general solution is [40]

Φ(r, θ) =

∞∑
l=0

[Alr
l +Blr

−(l+1)]Pl(cos θ), (2.41)

with Legendre polynomials Pl(cos θ) of order l, and θ being the angle between z-axis
and the position vector r. The potentials must be finite at the origin, the solution for the
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potentials inside and outside the sphere may therefore be written as

Φin(r, θ) =

∞∑
l=0

Alr
lPl(cos θ) (2.42a)

Φout(r, θ) =

∞∑
l=0

[Blr
l + Clr

−(l+1)]Pl(cos θ). (2.42b)

The coefficients Al, Bl, Cl may be determined from the boundary conditions at r → ∞
and r = a. On the former limit it is required that Φout → −E0z = −E0r cos θ which
requires B1 = −E0 and Bl = 0 for l 6= 1. The remaining coefficients are found from the
latter limit on the particle surface, by equating tangential components of the electric field
outside and inside the sphere at r = a, and similarly by equating the normal components
of the displacement field. This leads to Al = Cl = 0 for l 6= 1, and by calculating the
remaining A1 and C1 the potentials end up as [40]

Φin = − 3εm
ε+ 2εm

E0r cos θ (2.43a)

Φout = −E0r cos θ +
ε− εm
ε+ 2εm

E0a
3 cos θ

r2
. (2.43b)

The last equation (2.43b) may be interpreted physically as Φout describing the superposi-
tion of the applied field and that of a dipole located at the particle center. It is therefore
interesting to rewrite Φout in terms of dipole moment p as

Φout = −E0r cos θ +
p · r

4πε0εmr3
(2.44a)

p = 4πε0εma
3 ε− εm
ε+ 2εm

E0. (2.44b)

Thus, the applied field induces a dipole moment inside the sphere proportional to the elec-
tric field. The radiation of this dipole leads to scattering of the plane wave by the sphere,
which can be represented as radiation by a point dipole as here. Introducing polarizability
α, defined as p = ε0εmαE0, results in 3

α = 4πa3 ε− εm
ε+ 2εm

. (2.45)

Polarizability describes a material’s ability to form instantaneous dipoles, or in other
words, the relative tendency of a charge distribution to have its charges displaced by an
external electric field. We see from (2.45) that the polarizability is proportional to the
particle radius cubed, and it is apparent that a resonant behaviour occurs when |ε + 2εm|
is at a minimum. In the case of a small or slowly varying Im[ε] this resonance condition
simplifies to

Re[ε(ω)] = −2εm. (2.46)

3For a particle in air, i.e. εm = 1, equation (2.45) is more famously known as the Clausius-Mossotti relation
when the particle is a sphere.
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This is known as the Frölich condition, and the associated mode is called the dipole surface
plasmon of the metal nanoparticle [54].

From equation (2.46) it is evident that the resonance frequency depends strongly on the
dielectric environment: for a Drude metal with a small Im[ε(ω)] the resonance red-shifts as
the dielectric constant of the surroundings εm increases. Metal nanoparticles are therefore
a very promising mean of optical sensing of changes in refractive index.

A consequence of a resonantly enhanced polarizability is an accompanying enhance-
ment in the metal nanoparticle’s ability to scatter and absorb light. From a Mie theory
approach for particles small compared with wavelength one can find the cross sections for
scattering and absorption [13],

Csca =
k4

6π
|α|2 =

8π

3
k3a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 (2.47a)

Cabs = kIm[α] = 4πka3Im
[
ε− εm
ε+ 2εm

]
(2.47b)

with k = 2π/λ. Equations (2.47) are valid for all spherical particles a� λ with different
material properties from its ambient, no metallic assumption is made in the derivation, and
the equations are therefore also valid for dielectric scatterers. Due to the rapid scaling
of Csca ∝ a6 it is very difficult to pick out small objects from a background of large
scatterers. Equations (2.47) also show that for metallic nanoparticles both absorption and
scattering (and thus extinction) is resonant at the dipole particle plasmon resonance when
the Frölich condition is met.

2.5.2 Particle size and shape effects
Two regimes can be considered when investigating how particle size affects the LSPR:
larger particles where retardation effects are non-neglible, and very small metal particles
with dimensions smaller than the mean free path of its oscillating electrons. The latter
regime regards particles of radius a < 10 nm [54], as this thesis does not consider particles
of such size we will focus our efforts on the former.

For particles with larger dimensions the quasi-static approximation is no longer valid
as there will be significant phase-changes of the driving field over the particle volume.
A rigorous electrodynamic Mie theory approach is needed to find the polarizability for
such a spherical particle, the interested reader can find the equation and derivation in [33]
[59]. For such particles there is found to be an energy shift of the plasmon resonance due
to the retardation of the depolarization field4 inside the particle [59]. Figure 2.9 shows
the change in local field enhancement as particle size of silver spheres is increased. The
dipole resonance red-shifts and is strongly broadened along with a drastic decrease in
enhancement. The spectral shift of plasmon resonance to longer wavelengths suggests
that interband transitions (described by an increase in ε2) have less effect as the resonance
moves away from the band gap energy [54]. As the particle size increases the dipole
plasmon resonance is severely damped, mainly due to radiation damping [80]. Radiative

4In the case that the polarization of the dipoles is induced by an external field, the polarization field P opposes
the applied field E and is sometimes called a depolarization field.
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Figure 2.9: (a) Electric field enhancement on the surface of silver spheres of radius a. The radial
surface field ER is normalized by the incident field. Absolute maximum occurs at a = 12.5nm for
λmax = 357nm (electrostatic limit a = 0nm: λmax = 355nm). LSPR enhancement decreases
for larger particles, in addition it is shifted to longer wavelengths and broadened. The surface field
is dominated by dipolar contribution. The smaller resonance for a > 40nm is due to quadrupole
contribution. Figure taken from [59].

damping is the direct decay of a surface plasmon (the coherent electron oscillation on the
metal surface due to coupling with the external EM wave) into photons [49].

Particle shape effects will be briefly investigated by studying an ellipsoid, being the
most general smooth particle, in the electrostatics approximation. Consider an ellipsoid
with semiaxes a > b > c with a dipole moment induced by a uniform electrostatic field
parallel to one of its principal axes. The dipole moment, and hence the polarizability of
the ellipsoid, will vary depending on which of the three axes the applied field is parallel
to. Then, for an ellipsoid with dielectric function ε set in an ambient medium εm, the
polarizability is given by [13]

αi =
4πabc

3

ε− εm
εm + Li(ε− εm)

i = 1, 2, 3 (2.48)

when the electric field is directed along the ith axis of the ellipsoid corresponding to the
parameters a, b and c, respectively. Here, Li are the geometrical factors related to the
shape of the particle, where

∑
i Li = 1 and L1 ≤ L2 ≤ L3. For a sphere we have

L1 = L2 = L3 = 1/3, and (2.48) reduces to equation (2.45).
The resonance of the surface plasmon polariton may be tuned by changing the size

and shape of a metallic nanoparticle, as shown in figure 2.10. It is clear that changing the
aspect ratio of the particle has greater impact on the resonance position than changing its
diameter. The resonance intensity in 2.10b has a maximum for an aspect ratio between 0.3
and 0.4 [79] [7].
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Figure 2.10: Scattering cross section plotted against changes in (a) the diameter and (b) the aspect
ratio of a gold nanosphere in the spectrum around a surface plasmon polariton resonance. Figure
from [79].

2.5.3 Coupling between LSPRs
Until now we have regarded the LSPR in a single metallic nanoparticle, and the shift
in resonance frequency caused by changes in particle shape and size. One may expect
additional shifts in frequency when several such particles are brought together, due to
electromagnetic interaction between neighbouring localized modes.

The dipolar approximation may be assumed when the particle sizes are much smaller
than the interparticle distance, a� d, so that the particles may be treated as point dipoles.
For closely spaced particles, d � λ, the near-field interactions dominate with a distance
dependence of d−3 (see equation (2.44)) and the particle ensemble may be described as
an array of dipoles interacting with their near-field [54]. By considering the Coulomb
forces associated with the polarization of particles in an array of interacting point dipole
particles, one can intuitively see that interparticle coupling will lead to shifts in the LSPR
spectral position when compared to an isolated particle. Figure 2.11 illustrates how the
restoring force, acting on the oscillating electrons in each particle, is either increased or
decreased by the charge distribution of their neighbouring particles. The particle’s internal
dipole moment induced by the applied external field affects its neighbouring particle’s
induced dipole moment. This leads to a blueshift of the plasmon resonance for transversal
polarization of the exciting light, and a redshift for longitudinal polarization.

For larger particle seperations the external dipole fields become spherical in shape and
the far-field dipolar coupling dominates with a distance dependence of d−1 [54]. This
coupling via diffraction has been studied for two-dimensional arrays of gold nanoparticles
with various lattice constants [5]. Figure 2.12 shows that far-field coupling influences the
plasmon resonance both in terms of peak strength and spectral width. The spectral shift
and broadening of the plasmon resonances are attributed to the periodicity of a square
array. The dipolar fields of neighbouring particles are superimposed with their respective
phase shifts, which depend on the interparticle distance [5].

24



2.5 Plasmonics

Figure 2.11: Near-field coupling between metallic nanoparticles when light incident from the side
is s-polarized (top) and p-polarized (bottom). Thick arrows indicate each particle’s internal dipole
moment. Figure from [54].

Figure 2.12: Extinction spectra for square two-dimensional gratings of circular gold nanoparticles
(height 14 nm, diameter 150 nm) on an indium-tin-oxide coated glass substrate with grating constant
d. Figure from [5].
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Chapter 2. Background Theory

2.6 Diffraction anomalies in periodic nanostructures
Periodic metallic nanostructures are known to show certain intensity anomalies. In 1902
Wood discovered anomalies in his data when studying the spectrum of an optical metallic
diffraction grating, remarking that the anomalies were present only for p-polarized light,
i.e. when the magnetic field is parallel to the grating grooves [81]. It was later discoverd by
Fano that there could be distinguished two types of such anomalies [21]. The first type is
an abrupt change in reflectivity appearing at sharply defined wavelengths at a given angle
of incidence of the incoming light, known today as Rayleigh anomalies [58]. These are
independent of the metal on which the grating was ruled on, and are furthermore found
to also occur (albeit weakly) for incident light with the electric field polarized parallel
to the grooves, i.e. s-polarization, if the grooves are sufficiently deep [55]. The second
type is a diffuse anomaly, consisting generally of a minimum and a maximum of intensity,
associated with the excitation of a SPP due to both the geometry and the optical properties
of the metal grating [55] [21]. A thorough explanation and derivation of the latter type,
known as Wood anomaly, can be found in [58]. Both anomalies are strongly dependent
on the grating geometry, the presence of sharp edges in the profile of the grooves being
a necessary condition for their existence [21]. This section will focus on explaining the
Rayleigh anomalies.

It was first shown by Rayleigh that these anomalies occur at wavelengths where the
diffracted light of a given order disappears at grazing angles along the grating surface [70]
[71]. For regular periodic structures of nanoparticles on a transparent substrate, a diffracted
beam will disappear as it attempts to cross the boundary between the ambient (usually air)
and substrate media. The transition between air and substrate is prohibited due to different
dispersion relations for light in both media. The diffraction mode is said to be cut off at a
Rayleigh cutoff wavelength λR, resulting in a sudden change in reflection. There are two
types of Rayleigh cutoff wavelengths for every mode; one for the disappearance of an ”air”
diffraction mode, where the mode crosses the boundary from air to substrate; the other for
the disappearance of a ”substrate” diffraction mode, crossing the boundary from substrate
to air. When light with wavelength λR is incident on the array, one of the diffracted waves
will travel exactly along the substrate surface and subsequently will interact with other
nanoparticles. It is therefore interesting to note that if λR is close to the wavelength of
an individual nanoparticle’s LSPR, very sharp plasmon resonances may be obtained as
energy from the incident light is transferred into localized plasmon modes in the narrow
wavelength range near the Wood anomaly [52].

The remaining part of this section will derive an equation that can determine all Rayleigh
anomalies, i.e. the condition for a scattered or transmitted wave vector along the surface
of a diffraction grating.

Consider an array of scatterers where the position of each unit cell describing the
periodicity is given by the lattice vector

xl = l1a1 + l2a2 (2.49)

where a1,2 are two noncollinear primitive translation vectors and l = (l1, l2) with l1,2
being integers labeling the unit cells. The associated reciprocal lattice is given by

Gm
‖ = m1b1 +m2b2 (2.50a)
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2.6 Diffraction anomalies in periodic nanostructures

Figure 2.13: Schematic overview of the reciprocal lattice of a square array. Azimuthal angle of
incident wave is defined as φ0∠(G

(10)

‖ ,k‖). The boundary of the first three Brillouin zones are
indicated by dotted lines, accompanied by critical symmetry points. Figure taken from [15].

where m = (m1,m2) are integers, b1 and b2 denote the primitive translation vectors of
the reciprocal lattice defined by ai ·bj = 2πδij , i, j = 1, 2 5. In terms of polar coordinates
the reciprocal lattice vector becomes

Gm
‖ = Gm

‖ 〈cosφm, sinφm, 0〉 (2.50b)

where Gm
‖ is the length of the reciprocal lattice vector, which for a rectangular lattice

(b1 ⊥ b2) is

Gm
‖ = 2π

√
m2

1

a2
1

+
m2

2

a2
2

. (2.50c)

Figure 2.13 shows a schematic diagram of the reciprocal array in the case of a square lat-
tice, a1 = a2 = a. Azimuthal angle of the incident light is defined as the angle φ0 between
the vectors k‖ and G

(10)
‖ as shown in the figure, where k‖ = k sin θ0〈cosφ0, sinφ0, 0〉

is the component of incident wave vector parallel to the substrate surface. Similarly, the
angle φm of reciprocal lattice point m is the angle between G

(10)
‖ and Gm

‖ .
Let us now define the diffraction wave vector into the air or substrate, parallel to the

interface, as [53]
qm
‖ = k‖ + Gm

‖ . (2.51)

The dispersion of Rayleigh anomalies in a two-dimensional planar grating follows the
relation qm

‖ = qm, which suggests that

∣∣∣qm
‖

∣∣∣2 = n2
i k

2 (2.52)

5Kronecker delta, δij =

{
1, if i = j,

0, if i 6= j.
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Chapter 2. Background Theory

is the condition for a grazing diffracted wave, where ni is the refractive index of either am-
bient or substrate, depending on which side of the interface the light is approaching from.
By using equations (2.50)-(2.52) one may derive an equation determining all Rayleigh
anomalies, resulting in [15]

k2 −
2 sin θ0G

m
‖ cos(φm − φ0)

n2
i − sin2 θ0

k −
(Gm
‖ )2

n2
i − sin2 θ0

= 0, (2.53)

that is, solving equation (2.53) with respect to k = 2π/λR for a given angle of incidence
(θ0, φ0) tells us which wavelengths of incident light that will result in diffracted modes
propagating exactly along the air/substrate interface.

It is known that for a wave in a periodic medium whose wave vector terminates on
the boundary of a Brillouin zone (BZ), satisfy the condition of diffraction [48]. There-
fore, for a square lattice, inserting G1̄0

‖ , G1̄1̄
‖ , or G2̄0

‖ as Gm
‖ in equation (2.53) results

in the boundaries of the first, second or third Brillouin zones, respectively, when solved
over φ0 ∈ [0◦, 45◦] for a fixed polar angle of incidence θ0 and refractive index ni. The
boundaries of the 1st and 2nd BZ of a two-dimensional square lattice are shown in figure
2.13.

2.6.1 Decay length of normal component
It is of interest to note the decay length of evanescent waves associated with the cut-off
diffraction orders produced by periodic nanostructures, particularly the component normal
to the substrate surface. For the square array, the normal component of the longitudinal
wave vector of the first order, k(1)

z = [k2 − (2π/a + k‖)
2]1/2, is imaginary, where k and

k‖ are the magnitudes of the total and transverse wave numbers of the incident light. The
next order is k(2)

z = [k2 − (2π/a − k‖)2]1/2. The decay length δ of the evanescent field
is defined as the distance for which the field amplitude has decayed by a factor e−1, and is
here given by [30]

δ =
1

Im[k
(1)
z ]

=

[(
2π

a
− k‖

)2

− k2

]−1/2

. (2.54)

For sub-wavelength sized structures we have k � 2π/a, so that equation (2.54) reduces
to δ ≈ a/(2π) [30].

2.7 Finite element method
The finite element method (FEM) is a numerical method for finding approximate solutions
to boundary value problems for partial differential equations (PDEs). It is applicable to
many physical problems, such as finding the electric potential in an electrostatic environ-
ment where the potential is a solution of the Laplace equation (∇2φ = 0) and the boundary
conditions are the interface conditions of the electromagnetic fields. The main advantage
of the FEM lies in its ability to handle arbitrary geometries via unstructured meshes of the
domain of interest. For the vast majority of physical geometries and problems, their PDEs
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2.7 Finite element method

cannot be solved analytically. The FEM divides the model into smaller elements of geo-
metrically simpler shapes and solves these numerically easier subsets before assembling
them together in a larger system of equations that models the entire problem.

2.7.1 The general principle
The finite element method will here be formulated using the weighted residual method, al-
though it may also be described by the variational method [42]. A boundary value problem
can be defined by a governing differential equation in a domain Ω,

Lφ = f, (2.55)

where L is a differential operator, f is the excitation or force function, and φ is the un-
known quantity to be solved. In order to numerically solve the governing equation one
must first discretize it. Discretization implies looking for an approximate solution φh to
equation (2.55) in a finite-dimensional subspace to Hilbert space so that φ ≈ φh.6 This
suggests that the approximate solution may be expanded as a linear combination of a set
of basis functions vi that belong to the subspace, so that [39]

φh =

N∑
i=1

φivi (2.56)

where φi are the unknown expansion coefficients. The weighted residual method attempts
to determine φi by first inserting equation (2.56) into (2.55), then integrate with a weight-
ing function wj over the entire domain Ω, which results in [41]∫

Ω

wjL

(
N∑
i=1

φivi

)
dΩ =

∫
Ω

wjfdΩ. (2.57)

Finally, given a set of weighting functions and applying the boundary conditions of the
problem, equation (2.57) will define a set of linear algebra equations that can be solved for
φi. By Galerkin’s method [42] one chooses wj = vj , so that (2.57) becomes

N∑
i=1

φi

∫
Ω

vjL(vi)dΩ =

∫
Ω

vjfdΩ j = 1, 2, ...N (2.58)

or equivalently [41]
N∑
i=1

Ajiφi = bj j = 1, 2, ...N (2.59a)

where
Aji =

∫
Ω

vjL(vi)dΩ (2.59b)

6A Hilbert space is an infinite-dimensional function space, which in simplified terms can be viewed as a
collection of functions that can be conveniently manipulated in the same way as ordinary vectors in Euclidean
space.
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bj =

∫
Ω

vjfdΩ. (2.59c)

In matrix form, equation (2.59) becomes

A~φh = b (2.60)

where ~φh = {φ1, ..., φi, ..., φN} is the vector of unknowns, and A is a N × N matrix
known as the system matrix [39].

In short, FEM is a systematic way of first converting functions in an infinite dimen-
sional function space (Hilbert space) to functions in a finite dimensional function space,
and then to ordinary vectors (in a vector space) that are tractable with numerical methods.

2.7.2 Discretizing the domain
Classical methods for solving boundary-value problems such as the Ritz and Galerkin
methods require a trial function defined over the entire solution domain which must rep-
resent, at least approximately, the true solution of the problem [42]. This is very difficult,
often impossible, for two- or three dimensional problems having irregularly shaped solu-
tion domains. This can be overcome by dividing the entire domain into small subdomains
and employ test (basis) functions defined over each subdomain. These test functions tend
to be much simpler because of the small size of the subdomains, thus meaning that the vari-
ation of the unknown function to be solved (φ above) is less drastic over each subdomain.

(a) (b)

Figure 2.14: A one-dimensional domain is divided into segments (elements). The function φ is
approximated to φh (marked in dashed red line) by linear combinations of linear basis functions
vi (solid black lines). Nodes are marked as black dots. Figures (a) and (b) illustrates different
distributions of the elements. Modified figure from [39].

Equation (2.56) discretizes the original problem (2.55) intoN subdomains using linear
combinations of basis functions. Figure 2.14 illustrates this principle for a 1D problem.
The solution domain (0, L) is divided into small segments called finite elements, and the
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joints between them are known as nodes. An important feature of the basis functions is
that they are non-zero only within the nearest neighbours of its respective node. Here, the
basis function vi(x) has a value of 1 at node i, which decreases linearly to zero to the
neighbouring nodes. The goal is to make the elements small enough so that the unknown
solution over each element can be obtained by linear interpolation between the values of
φ(x) at the two ends of the element. In other words, the denser the mesh, the closer the
approximate solution will be to the physical solution.

Note that in figure 2.14a the elements are uniformly distributed over the domain. This
does not have to be the case, in figure 2.14b more elements are concentrated in the region
where the gradient of φ(x) is larger. An important advantage of FEM is that it offers
great freedom in the selection of discretization. It is also worth mentioning that other
interpolating functions may be chosen besides linear functions, depending on the problem
at hand.

2.7.3 Assembling the subdomains
The next step in a FEM procedure is to combine all the local equations for all elements
used for discretization. This process is known as assembly. One major advantage of
the FEM lies in its ability to define basis functions that are supported only over a small
geometrical region. This implies that the integral in the left-hand side of equation (2.58) is
zero everywhere except for the few regions where vi and vj overlap, and thus the system
matrix A becomes sparse. With a very sparse system matrix the linear system can be
generated and solved efficiently [41].

(a) (b)

Figure 2.15: A 2D domain discretized with triangular elements, basis functions v have a value of
1 at the corresponding node and zero on all other nodes. (a) Two neighbouring nodes that share an
element have overlapping basis functions. (b) Two basis functions that do not share elements and
thus have no basis function overlap, although they do have a common element vertex. Edited figure
from [39].

Such basis functions are visualized in figure 2.15 where a 2D domain is discretized into
a triangular mesh with linear basis functions with a value of 1 at their respective nodes and
zero on all other nodes. In figure 2.15a two neighbouring nodes i and j are depicted. Their
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respective basis functions share two triangular elements and will thus have a non-zero
contribution to the system matrix, as per equation (2.59b). If i = j there is a complete
overlap of the two basis functions. In figure 2.15b the nodes are further apart and share no
elements except having a common element vertex. When there is no overlap between vi
and vj their contribution Aij to the system matrix is zero. Hence, in each row of A there
will only be a few non-zero entries no matter how large the dimension of the matrix is. and
the memory required to store the system matrix is thus proportional to O(N) [41]. After
imposing boundary conditions to obtain the final form of the matrix equation (2.60), it can
be efficiently solved by linear solvers that exploit properties of sparse matrices [41]. FEM
is therefore very suitable for large-scale applications with a large number of unknowns.

2.7.4 Finite element analysis of vector fields

The formulation of the finite element method so far is applicable to scalar fields. How-
ever, as all electrodynamic problems in three dimensions deal with vector electromagnetic
fields, there is clear motivation to extend the formulation to include vector fields. This
section will not go into details, but will rather mention the most important steps. The
derivation is similar to section 2.7.1, but involves using vector basis functions which as-
signs degrees of freedom to the edges rather than to the nodes of the elements [42].

A typical electrodynamic problem involves finding the electric field E by solving
Maxwell’s equations (2.23) subject to certain boundary conditions. The problem may
be reduced to solving a single vector wave equation with well defined boundary condi-
tions. As before, instead of solving these equations directly, a weak form solution may be
sought by introducing vector weighting functions Wj and integrating over the entire do-
main Ω. Discretization is obtained by first dividing the domain into small finite elements,
typically triangular elements for a 2D domain and tetrahedral elements for a 3D domain.
Within each element, E is interpolated using a set of discrete values. However, using the
approach in section 2.7.1 — where the unknown field is assigned to a few points (nodes)
on the element and then interpolated elsewhere using a set of scalar interpolation functions
— turns out to be very problematic; a series of difficulties arise when applying boundary
conditions to the interpolated E-field [42] [41].

A better approach is to assign the tangential components of E along each edge of the
element, E is then interpolated elsewhere by using a set of vector basis functions. For
example, the field E(e) in a triangular element e can be interpolated as [41]

E(e)(x, y) = V
(e)
12 (x, y)E

(e)
12 + V

(e)
23 (x, y)E

(e)
23 + V

(e)
31 (x, y)E

(e)
31 (2.61)

where E(e)
lk denotes the tangential components of E at the edge that connects nodes l and

k of element e, and V
(e)
lk is the corresponding interpolation or basis function. Figure 2.16

illustrates the vector basis functions for element e. It is clear from the figures that the
vector basis functions only have tangential components along their associated edge. They
ensure tangential continuity of the interpolated field while allowing the normal component
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to be discontinuous7. Therefore, vector basis functions can be used to expand the vector
field E accurately.

(a) (b) (c)

Figure 2.16: Vector basis functions for a triangular element e with the nodes 1, 2 and 3. (a) V(e)
12 ,

(b) V(e)
23 , and (c) V(e)

31 are the vector basis functions assigned along their corresponding element
edges. Figure from [42].

When the electric field is interpolated in each element using tangential values at the
element edges, the interpolated field E in the entire domain Ω can be expressed as

E =

Nedge∑
i=1

ViEi (2.62)

where Nedge is the total number of edges, Ei denotes the tangential component of E at the
ith edge, and Vi is the corresponding vector basis function. A system matrix equation,
a vector field equivalent to equation (2.60), can then be found in a similar manner as in
section 2.7.1; substituting equation (2.62) into the weak form solution of the wave equation
and imposing the boundary conditions [41].

This has been an attempt at a more simplified explanation of the finite element method,
focusing more on intuitive understanding rather than gritty mathematics (while at the same
time not ignoring it entirely). The assembly process to form the system of equations (2.60),
for example, is a much more intricate matter than presented, especially for vector fields.

2.7.5 Domain truncation methods

Electromagnetic problems often involve wave propagation in domains that extends to infin-
ity. In numerical models this is usually overcome by truncating the computational domain
to a finite domain, with external artificial boundaries that let waves pass through with-
out any reflection. The most commonly used truncation techniques are the artificial (or
absorbing) boundary conditions (ABC) and perfectly matched layers (PML). ABC tech-
niques are more general than PML, however, PML can provide orders of magnitude lower
reflections [64].

7At the interface between two different media the elecromagnetic field is in general discontinuous. Specif-
ically, the component of the displacement field D perpendicular to the boundary between media A and B is
discontinuous in the amountD⊥A −D⊥B = σf , while the parallel component of the electric field E is continuous

across the boundary, E‖A − E
‖
B = 0. [31]
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Scattering boundary condition

A form of ABC are is the scattering boundary condition (SBC), which is an approxima-
tion of the Sommerfeld radiation condition. The Sommerfeld condition is one of the first
transparent boundary conditions formulated for wave-type problems, and can be written
for 2D fields as

lim
r→∞

√
r

(
∂Ez
∂r

+ ikEz

)
= 0 (2.63)

when the EM wave is propagating in the xy-plane and the E-field is polarized in the z-
direction. This condition is exactly non-reflecting when the boundary lies infinitely far
away from the source. Obviously, the Sommefeld condition can not be applied exactly to
a finite modeling domain so an approximation of equation (2.63) must be made,

n · (∇Ez) + ikEz = 0 (2.64)

which is known as the first-order SBC [25].

Figure 2.17: Reflection of a plane wave incident at the first- and second-order SBC, and PML
boundaries with respect to angle of incidence. Figure from [25] where the data is from a FEM
simulation using COMSOL Multiphysics.

A significant limitation to SBC is that it is only perfectly transparent for scattered
(outgoing) waves at normal incidence to the boundary [37]. Second-order SBC is also
possible which reduces reflection uniformly, see figure 2.17. However, there is still 10%
reflection at an incidence angle of around 75◦.

Perfectly matched layers

Perfectly matched layers were first introduced in 1994 by Berenger [9] for use with Maxwell’s
equations. As the name suggests, PMLs are absorbing boundary layers in contrast to
absorbing boundary conditions of ABC. The layer is an artificial anisotropic absorbing
material placed adjacent to the edges of the grid, as depicted in figure 2.18. As a wave

34



2.7 Finite element method

propagates through the absorbing layer it is exponentially decayed. Even if it reflects off
the outer boundary, the returning wave will be exponentially tiny after one round trip.
PML is special in that it does not reflect at the interface between the physical domain and
the absorbing layer, whereas one would otherwise expect reflection in the transition from
one material to another [44].

Figure 2.18: (a) A typical wave-equation problem; a region of interest where relevant phenomena
are being investigated, from which some radiation escapes to infinity. (b) The same problem where
space has been truncated to a finite computational domain. Absorbing layers are placed adjacent to
the edges. A perfect layer should absorb the outgoing waves without reflection from the edge of the
absorber. Figure from [44].

The original formulation by Berenger [9] was based on splitting the EM wave solutions
into a sum of two artificial fields inside the PML region. Later, it was found that the PML
could be derived from a modified form of Maxwell’s equations based on stretched coordi-
nates [17]. This complex-coordinate approach is essentially based on analytic continuation
of Maxwell’s equations into complex spatial coordinates where the fields are exponentially
decaying [44]. In implementing PML to the finite element method, the preferred approach
is to consider the PML as an anisotropic medium, a derivation can be found in [41].

PML is perfectly reflectionless only when solving the exact wave equations. As soon
as the problem is discretized (as in FEM) to an approximate wave equation, the analytical
perfection of PML is no longer valid. The PML is still an absorbing material; the discrete
waves within the layer are still being attenuated. However, the boundary between the
PML and the regular medium is no longer reflectionless, but these reflections are small
as long as the discretization is a good approximation of the exact wave equation [44]. To
further minimize this reflection it is desirable to use a mesh in the PML that aligns with
the anisotropy in the material properties [25]. In figure 2.19 the appropriate PML meshes
are shown for 2D circular and 3D spherical domains, with 5 layers uniformly distributed.

In figure 2.17 a plane wave is incident on either a SBC or a PML boundary, modelled
in the FEM software COMSOL Multiphysics [25]. The PML reflects the least amount
across the widest range, however, there is still reflection when the incident wave is almost
parallel to the boundary. A major advantage of PML over ABC in general, is that their
absorbing performance can be improved systematically by simply increasing the number
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Figure 2.19: Appropriate meshes for 2D and 3D spherical PMLs. Figure from [25].

of layers [41]. The flexibility of FEM also permits the use of non-rectangular PMLs.
It is worth to note that PMLs do not absorb evanescent solutions to the wave equa-

tion [11] [12]. Numerical reflection observed in wave-structure interaction problems may
therefore be interpreted as the reflection of evanescent fields surrounding the structures
[12]. A simple fix is to make sure the computational domain large enough so that the
evanescent waves decay before hitting the boundary.
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This chapter will introduce the experimental samples that will be investigated by computa-
tional FEM models. Background information about their fabrication and characterization
processes will be given, as well as any special considerations that had to be taken into
account when implementing them into COMSOL that would differentiate them from their
experimental counterparts. A total of four nanostructures will be studied in this thesis,
three of them were created as part of the thesis work of Brakstad [14] and the final sample
was prepared as part of the doctorate dissertation of Aas [35].

3.1 Hemispheroidal gold particles on SiO2 substrate
In the thesis works of Brakstad [14], several 3-material nanostructures were manufactured
consisting of Au-nanoparticles on a flat SiO2 substrate in air. The substrates were cov-
ered with a thin gold film by an e-beam evaporator1 before the nanostructures were milled
out with focused ion beam (FIB) microscopy2. The nanostructures appeared as Au hemi-
spheroids distributed in a square or rectangular pattern on a glass surface, see figure 3.1.
Three chosen structures from this work will henceforth be discussed, known as sample 6,
sample 5A and sample 5B. The deposited Au film thickness before milling were 40nm
(samples 5A and 5B) and 20nm (sample 6). These samples were characterized by scan-
ning electron microscopy3 (SEM) images and MM ellipsometer measurements [14], while
samples 5A and 6 were further discussed in detail by M. Kildemo et al. [15] [47]. The
ellipsometric measurements done in [14] were performed with a RC2 ellipsometer pro-
vided by J.A. Woollam Co., with spectral range from 210 nm (5.9 eV) to 1700 nm (0.73

1Electron beam physical vapor deposition; a vacuum deposition method used to produce thin films and coat-
ings. An electron beam evaporates atoms from a target anode under high vacuum, causing everything in the
vacuum chamber to be coated with a thin layer of the anode material [61].

2FIB systems use a finely focused beam of ions (usually gallium) that can be operated at low beam currents
for sample imaging or high beam currents for surface manipulation of the sample via sputtering or milling [62].

3SEM is a type of electron microscope that produces images by scanning the surface of a sample with a
focused beam of electrons. The electrons interact with the atoms of the sample which produces signals that
contains information about the surface composition and topography.
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eV). In addition, full azimuthal rotational measurements (varying φ0) were done for three
polar angle of incidences, θ0, in order to identify symmetries caused by any anisotropic
geometries in the fabricated samples. For all samples there were found next to zero depo-
larization. They were also shown to exhibit rich optical responses supporting LSPRs [14].

(a) (b) (c)

Figure 3.1: SEM images of (a) sample 6 and (b) sample 5A. (c) Cross-section in xz-plane of the
unit cell setup of the gold hemispheroidal particles on a glass substrate.

An unintended effect of the milling process caused an over-etching into the substrate
of several nanometers, suggesting that each Au particle on all the samples lies on top of a
dielectric mound, as sketched in figure 3.1c (however, the exact shape of the mound can
only be speculated). This can also be observed by close inspection of figure 3.1b, where
a vague mound geometry can be made out surrounding each particle. The geometry of all
three samples are characterized by their lattice constants ax,y , Au particle radii Rx,y,z and
the thickness t of the SiO2 mound as depicted in figure 3.1c.

3.1.1 Sample 6

Sample 6 was originally made in an attempt to fabricate small dots operating within the
quasi-static approximation arranged in a square array, ideally with particle radius 20 nm
and lattice constant 125 nm [14]. However, after the milling, the particles were derived
from SEM images to be hemispheroids with lateral radius Rxy = 38nm and lattice con-
stant axy = 125nm, see figure 3.1c. A SEM image of the sample is shown in figure 3.1a.
Through a combination of atomic-force microscopy4 (AFM) and SEM images, the total
height of particle and mound were roughly estimated to be 40 nm. The relative contribu-
tions from the particle height Rz and mound height t to the total height were difficult to
estimate. The perpendicular radiusRz was initially assumed to be equal to the thickness of
the Au thin film of 20 nm. However, COMSOL simulations using 20 nm for both particle
and mound height resulted in a redshift of the LSPR compared to experimental data. Under
the assumption that the lateral parameter estimations were accurate, a parameter sweep of
Rz and t was performed in the COMSOL model of sample 6. The set of parameters with a
resulting LSPR resonance closest resembling that of the experimental results were chosen.
This concluded in Rz = 32 nm and t = 8 nm, where the particle height exceeds the initial

4AFM is a type of scanning probe microscopy. Information about the sample is gathered by probing the
surface with a mechanical cantilever with a sharp tip attached to its end. Forces between the tip and the sample
leads to a deflection of the cantilever which is measured by a detector [63].
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3.1 Hemispheroidal gold particles on SiO2 substrate

film thickness. However, the uncertainty associated with the profiling of the total height
must be emphasized.

3.1.2 Sample 5A
Sample 5A was originally created as one in a series of similar nanostructures to investigate
how the distance between the Au spheres influence the LSP resonance energy. Ideally, the
sample was designed to have radius 40 nm and lattice constant around 208 nm [14]. SEM
images after milling found the parameters to be 52 ± 7 nm and 210 ± 18 nm for radius
and lattice, respectively [14], see figure 3.1b. In an attempt to more accurately determine
the sample parameters, a Bedeaux-Vlieger formalism [8] was initially used by fitting the
experimental data sets with respect to the morphological parameters of the spheroidal lat-
tice (Rxy, Rz, axy) using the GranFilm software5 [47] [15]. Further research [6] using an
algorithm based on the reduced Rayleigh equation6 (RRE) [74] found the lattice to be rect-
angular and the Au particle slightly elliptic in the lateral direction. The mound thickness
was also adjusted [6]. The final sample 5A parameters used in the simulations are found
in table 3.1.

3.1.3 Sample 5B
Sample 5B is a biaxial anisotropic system due to the high eccentricity of the Au particles
and rectangular lattice, as seen in figure 3.2a, with ideal lattice constants a1 ≈ 312 nm
and a2 ≈ 454 nm. The ellipses were milled out of a 40 nm Au film. After milling,
SEM images (see figure 3.2b) found minimal Au redeposition on the sample, and with
parameters R1 ≈ 19 ± 19 nm, R2 ≈ 50 ± 8 nm and a ≈ 495 ± 26 nm [14]. The sample
was created for the purpose of observing how different dielectric functions in each of the
three spatial directions would present itself in the ellipsometric data.

The same RRE optimization process was done for sample 5B parameters as for sample
5A. A mound thickness of around 15 nm was found by studying the total height profile
from AFM images and subtracting particle height Rz found from the parameter fitting
procedure. An indication of a dielectric mound can also be observed around each Au
particle by close inspection of figure 3.2b. The sample was found to be computationally
demanding when implementing it into COMSOL, due to the extreme amount of finite
elements to solve in such a large unit cell system. In fact, the COMSOL model did not
yield a solution which converged for the lowest desirable wavelength (210 nm) for this
sample7. A compromise of sacrificing the dielectric mound had to be made in order to
solve the model for a satisfactory low wavelength (further explained in section 5.5.2),
since resolving the mesh in the curved mound geometry requires a significant amount of
elements for all wavelength iterations. In other words, sample 5B was simulated with a
flat substrate surface (no mound).

5http://web.phys.ntnu.no/˜ingves/Software/GranFilm/
6The reduced Rayleigh equation was combined with the angle-resolved spectroscopic Mueller matrix ellipso-

metric data to produce a numerically efficient and reliable method for reconstructing the geometrical parameters
of the 2D photonic crystal [6].

7The mesh resolution, or in other words the amount of elements, will depend on the size of the geometry
compared to the wavelength. See sections 4.2.2 and 5.1.3.
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(a) (b)

Figure 3.2: (a) Top view schematic of sample 5B. Azimuthal angle of the incident beam φ0 is
defined along positive x-direction. (b) Above: SEM image of sample 5B. Below: schematic side
view of the sample when neglecting the mound.

The geometric parameters that ended up being used in COMSOL simulations for the
three samples are summarized in table 3.1.

Table 3.1: Parameters (given in nanometers) for different samples of gold hemispheroidal particles
defined by the radii Rx, Ry and Rz over a SiO2 substrate, evenly distributed on a grid defined by
lattice constants ax and ay . Each particle lies on top of a SiO2 mound of height t, except sample 5B
which lies on a flat substrate.

Sample 6 Sample 5A Sample 5B
ax 125 207.2 315.4
ay 125 209.9 443.9
Rx 38 60.3 47.4
Ry 38 61.3 113.2
Rz 32 34.8 34.4
t 8 36.9 0

3.2 Tilted GaSb cones

Ion beam sputtering of flat surfaces can in some circumstances lead to spontaneous forma-
tion of nanoscale patterns, a phenomena which could open alternative ways of controlling
the surface roughness of functional materials [65]. A distinct type of pattern formation can
be found for sputtering on certain semiconductors, like GaSb. These materials form pillar
patterns, and GaSb is considered to be the most conspicuous example [65].

In the works of [35], densely packed GaSb nanocones are formed by sputtering a clean
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3.2 Tilted GaSb cones

Figure 3.3: Tilt angle θ of the GaSb nanocones, the height h, the bottom and top diameters D1 and
D2, the average distance to nearest neighbour d, and base angle β. Sketch taken from [35].

GaSb substrate by low energy Ar+ ions using ion beam sputtering (IBS)8. A misalignment
of the ion gun caused a slight tilt of the cones, which were originally intended to be directed
normal to the substrate surface [35]. A sketch visualizing the cone geometry is shown in
figure 3.3, defining the tilt angle θ, height h, nearest neighbour distance d, and the bottom
and top diameters D1 and D2.

Ellipsometric characterization of such structures are particularly interesting since shad-
owing effects can render atomic force microscopy ineffective [66]. The anisotropic elec-
tronic characteristics of the sample was determined by spectroscopic Mueller matrix el-
lipsometry, using a RC2 ellipsometer from J.A. Woollam Co., where Bruggeman effective
medium model was applied to model the spectroscopic data [35]. The anisotropic Brugge-
man model is essentially a generalization of equation (2.40) for ellipsoidal inclusion by
applying the polarizability of an ellipsoid (2.48). Through mathematical models, parame-
ters like the tilt of the cones θ, the relative diameters D1 and D2, and the average height
of the cones h were found [35]. Average cone separation d was found using another non-
destructive technique called Grazing-Incidence Small-Angle X-ray Scattering (GISAXS)
where surface sensitivity is obtained by using a grazing incident angle of X-rays [35].
AFM analysis found the cones to be distributed with six nearest neighbours, which al-
lows an assumption of a hexagonal lattice [35]. GISAXS was also used to confirm film
anisotropy induced by the nanopillar tilt [35]. These sample parameters are summarized
in table 3.2.

The main motivation of modeling these tilted GaSb cones is to attempt a continuation
of the COMSOL model for other periodic nanostructures than the gold hemispheroids
on glass substrate, which the model initially will be tailored for. The nanocones differ
greatly from the other samples in both size, shape, and material properties. The dense
cone distribution should not be represented by a square lattice, meaning that the model
must be expanded to include support for hexagonal lattices. The secondary objective is to

8IBS is a sputter deposition method in which the target is external to the ion source. An ion beam strikes and
sputters a target of material, which then coats the substrate tilted toward the target with the sputtered material.
The properties of the resulting film will depend on the target material properties and on the ion sputter beam
parameters (flux, energy, etc.) as well as the chamber ion source-target-substrate configuration.
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Table 3.2: Parameter values for tilted cones of GaSb as found in [35].

h 39 nm
θ 4.8◦

D1 d
D2 0.04d
d 40 nm
β 64◦

attempt a high energy simulation up to 24 eV to model the response the ellipsometer and
the anisotropic Bruggeman model9 is unable to capture.

9EMA models are limited to structures sufficiently smaller than the wavelength of light, i.e. the electric field
is assumed to be constant over an inclusion in the mixed material so that the phase of the wave is approximately
the same over the size of the inclusion. Models taking into account retardation effects must be applied for smaller
wavelengths.
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Chapter 4
COMSOL Multiphysics

4.1 Introduction to COMSOL
COMSOL Multiphysics is a commercial finite element analysis, solver, and simulation
software for desktop computers designed for various disciplines in physics and engineer-
ing, namely within electrical, mechanical, fluid and chemical applications. It supports
coupling phenomena, or multiphysics, where a simulation may treat multiple models or
multiple physical phenomena simultaneously. Typically this involves solving coupled sys-
tems of partial differential equations.

The main product is COMSOL Desktop, which supports a unified workflow for cross-
disciplinary model building. Several add-on products are available to the software, each
categorized according to application areas, namely Electrical, Structural & Acoustics,
Fluid & Heat, Chemical, Multipurpose and Interfacing. Examples of add-on modules
are the plasma module, semiconductor module, structural mechanics module, microfluids
module, corrosion module, and the particle tracing module, to name a few [37]. This thesis
will work solely on the wave optics module, which will be introduced in the next section.
The software has an integrated user-interface environment, as exemplified in figure 4.1,
where the way of operation of the software remains the same regardless of which applica-
tion module is installed. Using the built-in physics interface together with a vast support
for material properties, one may build models by defining physical quantities such as ge-
ometry, material properties, boundary conditions, sources and fluxes, rather than defining
the underlying equations. The software will internally compile a set of equations to repre-
sent the entire model. However, equation-based modeling is also supported [37].
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Figure 4.1: The user interface in COMSOL Desktop. (1) Model builder; overview of the model.
Right-clicking a node will access context-sensitive menus. (2) Settings window; clicking a node in
the model builder will display associated settings (3) Graphics window; presents interactive graphics
for the Geometry, Mesh and Results nodes. (4) Information window; will display vital information
during and after simulations such as solution time, simulation progress, mesh statistics and result
tables.

4.1.1 Model builder
A COMSOL model is controlled through the Model builder, seen in figure 4.1, which es-
sentially is a model tree containing the functionality and operations for building, solving,
and displaying the results of a model. It consists of the main nodes Global Definitions
(where global parameters and materials used throughout the model are defined), Compo-
nent (the fundamental part of the model containing the model geometry with its associated
physics, mesh and variables that are local to the component), Study (where study steps
are defined that form a solver configuration that computes the solution for the study) and
Results (contains tools for post-processing and analyzation of the results).

The Component node further consists of subnodes Definitions, Geometry, Materials,
one or several physics interfaces, and Mesh. Some of these are explained in more detail
below,

• The model geometry is defined by a sequence geometric objects and operations
under the Geometry node in the Model Builder. Geometries can be formed as a
combination of solid objects using Boolean operations like union, intersection, and
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difference. Furthermore, 3D objects can be formed by defining 2D solids and then
extruding or revolving these into 3D solids.

• In the Material node material properties are assigned to the geometric domains.
The materials may be chosen from an integrated materials library, or user-specified
materials defined under the Global Definitions node.

• The physics interface varies depending on which add-on module the user has chosen.
In the example figure 4.1, the physics interface is Electromagnetic Waves, Frequency
Domain (EWFD), which is part of the Wave Optics module.

• The Mesh node specifies how the geometry should be discretizied. The user may
customize their own mesh or automatically generate a physics-controlled mesh based
on the configurations set in the associated physics interface.

4.2 The wave optics module
The Wave Optics Module extends the functionality of COMSOL’s physics interface to in-
clude dedicated tools for electromagnetic wave propagation in linear and nonlinear optical
media. The module can be used to solve EM wave problems at optical frequencies (corre-
sponding to wavelengths in the nm to µm region) in either frequency- or time-domain in
optical structures. It supports inhomogeneous and anisotropic materials, media with gains
and losses, and complex-valued material properties.

4.2.1 S-parameters

Scattering parameters (S-parameters) are used to characterize the response in high-frequency
problems. In the Wave Optics module of COMSOL, electromagnetic waves can be excited
by ports, which is also where EM energy enters and exits the model. In 3D models, ports
are fictitious planes placed on the boundaries. To convert EM field patterns on a port to a
quantity describing its wave-like nature it is necessary to introduce these S-parameters. S-
parameters are complex-valued, frequency dependent matrices describing the transmission
and reflection of electromagnetic waves at different ports.

S-parameters originate from transmission-line theory and are defined in terms of trans-
mitted and reflected voltage waves. There is assumed to be no reflection directly at a port.
For a model with n ports, the S-parameters are [38]

S =


S11 S12 . . . S1n

S21 S22 . . . S2n

...
...

. . .
...

Sn1 Sn2 . . . Snn

 (4.1)

where S11 is the voltage reflection coefficient at port 1, S21 is the voltage transmission
coefficient from port 1 to port 2, and so on. The reflectance/transmittance coefficients are
obtained as |Sij |2.
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S-parameter calculations

The S-parameters are defined in terms of the electric field. Consider a model containing
several ports labeled 1, 2, 3, ... and that the electric field patterns E1, E2, E3, ... of the
fundamental modes on these ports are known. Assume that the fields are normalized with
respect to the integral of the power flow across each port cross section, respectively. Port
1 is excited using the fundamental eigenmode. The computed electric field Ec on port 1
then consists of the excited field plus the reflected field, which can be expanded in terms
of the mode fields as [42]

Ec = E1 +
∑
i=1

Si1Ei, (4.2)

whereas the computed field on all the other port boundaries are given by

Ec =
∑
i=1

Si1Ei. (4.3)

Note that in this case Sij = 0 for all j 6= 1 as there are no fields being excited on other
ports than port 1. The S-parameter for mode k is then given by multiplying the field
delivered to port k with the conjugate of field for mode k, and integrating over the port
boundary. The first three S-parameters are given by [38]

S11 =

∫
port1(Ec −E1) ·E∗1dA1∫

port1 E1 ·E∗1dA1
(4.4a)

S21 =

∫
port2 Ec ·E

∗
2dA2∫

port2 E2 ·E∗2dA2
(4.4b)

S31 =

∫
port3 Ec ·E

∗
2dA3∫

port3 E3 ·E∗2dA3
(4.4c)

To get S22 and S12 port 2 can be excited in the same way.

4.2.2 The Electromagnetic Waves, Frequency Domain interface
The Electromagnetic Waves, Frequency Domain (EWFD) interface in COMSOL’s Wave
Optics module is used to solve for time-harmonic electromagnetic field distributions. The
main governing equation in the interface is the time-harmonic wave equation for the elec-
tric field. The EWFD supports study types in wavelength and frequency domains (among
others [38]), used for source driven simulations for a single wavelength/frequency or a
sequence of wavelengths/frequencies.

For this physics interface, the maximum mesh element size should be limited to a frac-
tion of the wavelength. Thus, the domain size that can be simulated scales with the wave-
length and the amount of available computer memory. By default, COMSOL Multiphysics
uses second-order elements1 to discretize the governing equations [26], in contrast to the
first-order elements illustrated in figures 2.14 and 2.15 with linear basis functions. As a

1Element order refers to the type of basis function used.
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bare minimum, two elements per wavelength are then necessary to solve the problem2, but
such a coarse mesh would result in poor accuracy.

In order to properly resolve the wavelength, at least five second-order elements per
wavelength are typically used to resolve a wave propagating through a dielectric medium
[24]. Local material properties should also be taken into account. In other words, a physi-
cally reliable solution requires the mesh to have a maximum element size (MES) no larger
than

MES ≤ λ

5n
, (4.5)

where n is the refractive index of the given region. For discretization into first-order ele-
ments, at least 10 linear elements are required per wavelength [38].

Periodic structures

Periodic structures may be modelled by truncating the domain into a single cell with peri-
odic conditions on selected boundaries to set up a periodicity. A typical type of periodic
condition used for models involving plane waves interacting with periodic structures is
Floquet periodicity, which ensures a phase shift between the tangential components of the
wave. The phase shift is determined by a wave vector and the distance between the source
and destination [38].

When modelling periodic structures, periodic ports can be used to define wave direc-
tion and polarization of the wave that enters the model. Periodic ports also compute the
reflected and transmitted diffraction orders as a function of incident angles and wavelength,
in addition to the fundamental mode [23].

2The idea is fundamentally similar to the Nyquist sampling theorem in signal processing, which states that
in order to recover all Fourier components of a waveform, the sampling rate must be at least twice the highest
frequency of the signal.
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Chapter 5
Results and discussion

This chapter begins with a discussion surrounding the development of the COMSOL
model. First, a detailed explanation of how to set up the model is given in 5.1, followed
by measures taken to optimize its performance and accuracy in 5.2. In sections 5.3-5.6 the
results and analysis of each sample simulations will be given. The experimental data will
be briefly presented first before discussing the COMSOL results.

The entire simulation process, including set-up of model and calculations, were per-
formed on a desktop computer equipped with 32 GB RAM and an Intel Core i7-3930K
CPU with 6 physical cores (each with 2 logical cores) operating at clockspeed 3.20 GHz,
and running on a 64-bit Windows 7 operating system.

5.1 Implementation of samples into COMSOL
All samples presented in chapter 3 were implemented as a single cell with periodic con-
ditions simulating the infinite periodic 2D lattice. The protruding gold semispheres lies
in a square or rectangular lattice, while the densely packed distribution of the tilted GaSb
cones were modeled as a hexagonal lattice.

The model set-up is similar for all the structures, especially for the gold hemispheroidal
nanostructures, as they all have square or rectangular lattices and differ only by the numer-
ical values of their sample parameters. The GaSb cones model is in principle exactly the
same, differing only in particle geometry and lattice type. Samples 6, 5A and 5B were
exposed to light waves incident with polar angle θ0 = 55◦, while the GaSb cones were
excited by light with θ0 = 45◦.

5.1.1 Geometry and materials
Creating the geometries in COMSOL is a straightforward manner of combining solid
blocks and ellipsoids with Boolean operations as previously mentioned in section 4.1.1.
The mound region was created by first defining its cross-section, then sweeping it along
the rim of the base of the Au particle, as depicted in figure 5.1. The finished geometries for
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all the samples can be seen in figure 5.2, while figure 5.3 shows the entire computational
domain.

Figure 5.1: The creation of the dielectric mound. The mound cross-section is defined in a workspace
placed in the xz-plane, before being swept along the base of the Au particle creating a solid 3D
object.

(a) (b) (c) (d)

Figure 5.2: The physical geometries of the various periodic nanostructures implemented into COM-
SOL; (a) sample 6, (b) sample 5A, (c) sample 5B, and (d) tilted GaSb cones. Highlighted blue areas
in (a)-(c) marks Au domains. Air domains and PMLs are hidden for improved visibility.

The materials used in the models were defined by complex refractive indices of Au,
SiO2, and GaSb. The refractive indices were linearly interpolated imported data tables
identical to the ones used in the ellipsometric modelling of the experimental results. The
gold and glass dielectric functions were retrieved from the J.A. Woollam database, where
the Au dielectric function was found to be in good correspondence with that extracted
from the ellipsometric measurements done on the gold film [14]. The GaSb dielectric
function in the range 0.6−24 eV was determined using a combination of ellipsometry and
synchrotron-based vacuum-UV ellipsometry [46].

5.1.2 The EWFD interface
Two periodic ports were defined as entry and exit boundaries of the physical domain: one
on the top boundary of the physical air domain (port 1) and one on the bottom boundary of
the substrate domain (port 2), see figure 5.3a. Port 1 excites an EM wave with polar angle
of incidence (AOI) θ0 and azimuthal AOI φ0, while also absorbing outgoing (reflected)
waves. Port 2 is a listener node, absorbing outgoing (transmitted) waves polar incident at
an angle θ1 = arcsin[sin θ0nair/nsub(λ)] and azimuthal incidence φ1 = φ0. Each peri-
odic port is additionally equipped with diffraction ports absorbing specific modes. Most
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notably, port 3 (top) and port 4 (bottom) read waves of the fundamental mode polarized
orthogonal to the wave entering the model. The incident wave excited at port 1 is lin-
early polarized in either p- or s-polarization, with electric field amplitude 1 V/m. Floquet
periodicity is applied to boundaries shown in figures 5.3b and 5.3c

(a) (b) (c) (d) (e)

Figure 5.3: Setup of the EWFD interface; (a) top highlighted boundary: port 1 and port 3, bottom
highlighted boundary: port 2 and port 4; (b)-(c) periodic boundary conditions subject to Floquet
periodicity; (d) PML domains; (e) SBC boundaries. In addition, the heights of PML region hPML,
air domain hair, substrate domain hsub and mound thickness t are defined.

PML domains are shown in figure 5.3d, while the physical domain is considered to
be the volume between port 1 and 2. Because a PML region acts as an infinite open
domain, any boundary conditions and material properties must be carried over to the PML
region. Thus, the PML domain share the same Floquet periodicity as the physical domain
as figures 5.3b and 5.3c shows. The upper and lower PML domains also share the refractive
indices of the interior region they are adjacent to, i.e. air and substrate, respectively. First
order SBC were implemented in addition to PMLs to further reduce reflection at normal
incidence and were not expected to have noticeable influence on computation cost. These
boundaries are shown in figure 5.3e.

5.1.3 Meshing

Periodic boundaries must have compatible meshes. That is, boundary layers on opposing
sides must be equal in order to properly simulate the infinite structure. Using figure 5.3b
as an example, the meshed boundary of the highlighted walls must be exact copies of each
other, and similarly for the highlighted walls in figure 5.3c.

In choosing the maximum element size, a satisfactory compromise between accuracy
and computational memory usage was found to be

MES =
λ

6ni
, (5.1)
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where ni is the (real part) refractive index of either air, SiO2, Au, or GaSb. Convergence
tests were performed with mesh factors 1/5, 1/6 and 1/8, where all three gave reasonably
similar results (not shown) so that we could assume a convergence limit was within close
vicinity. Mesh factor 1/8 proved to be extremely costly in terms of computation time and
memory usage, while the (assumed1) increase in accuracy was marginal. A convergence
limit appeared to be approached already at factor 1/5, while the computations were com-
pleted six times faster than a similar simulation with 1/8 mesh factor. The difference in
solution time and memory usage was not merely as drastic between mesh factors 1/5 and
1/6 in terms of what the desktop computer could handle, so equation (5.1) was deemed to
be adequate.

5.1.4 Study steps

The models were solved with a parametric sweep over wavelength λwith stepsize ∆λ = 5
nm over a wide spectrum, typically 210 nm to 1600 nm which is approximately the same
as the detection range of the RC2 ellipsometer used in the experimental works. For each
wavelength, a full 360 degree sweep was performed for azimuthal AOI φ0 with stepsize
∆φ0 = 5◦ using a study extension called auxiliary sweep. Auxiliary sweep uses the solu-
tion from a previous parameter as a trial function for the current parameter, thus essentially
re-using a previously calculated system matrix (equation (2.60)). Being relieved the bur-
den of assembling the system matrix for every iteration of φ0 will in principle greatly
reduce the computation time compared to iterating through a regular parameter sweep
where COMSOL solves the problem for each parameter from scratch2.

COMSOL uses an internal convergence criterion where the iterations will be prema-
turely terminated if the relative tolerance exceeds the relative error computed [37]. These
models use the default relative tolerance of 0.01%.

5.1.5 S-parameter conversion

The model is limited to excite only one specified polarization during the computation
process. In order to derive a Mueller matrix response, two separate simulations must be
run; one where the incident wave is p-polarized, and the other s-polarized. However, two
instances of the COMSOL application may run simultaneously on the desktop computer
which in practice halves the computation time.

The complex reflection coefficients are found from waves absorbed at ports 1 and 3,
i.e. S-parameters S11 and S31, so that

rpp = S
(p)
11 e

iξ (5.2a)

rsp = S
(p)
31 e

iξ (5.2b)

rps = S
(s)
31 e

iξ (5.2c)

rss = S
(s)
11 e

iξ (5.2d)

1Converging result does not always mean correct result.
2Source: private communcations with COMSOL support team and online forums.
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where S(k)
i1 specifies a k-polarized wave excited from port 1 and absorbed on port i, and

ξ = 2kzd = 2kna cos θ0d where na is the refractive index of the ambient (air), θ0 is the
incident polar angle, and d is the distance from reflection point to the port. The exponential
factor accounts for the phase shifts induced between the ports and the virtual interface at
the top of the Au particles or GaSb cones. We remind the reader that the notation rαβ
indicates conversion from β-polarization to α-polarization after reflection. Similarly, one
may find the complex transmission coefficients from ports 2 and 4,

tpp = S
(p)
21 e

iγ (5.3a)

tsp = S
(p)
41 e

iγ (5.3b)

tps = S
(s)
41 e

iγ (5.3c)

tss = S
(s)
21 e

iγ (5.3d)

where γ accounts for phase shifts between the ports during transmission.
With the complex reflection and transmission coefficients readily available, one may

find the complete Mueller matrix by equations (2.13a) - (2.13q). While the common factor
eiξ must be included for the estimation of the complex rαβ , it can be neglected for the MM
calculation since the MM is an intensity representation. Ellipsometry angles in equations
(2.17a) - (2.17c) and the pseudo dielectric function from equation (2.18) may now also
be calculated. The COMSOL S-parameters were imported into MATLAB where these
quantities were calculated and plotted.

5.1.6 Joule heating
Energy of the incident light dissipated into a material as heat can be found from equation
(2.39) and integrating over the volume of the material of interest. COMSOL calculates
resistive heating with the integrated function

ewfd.Qrh =
1

2

∑
i

realdot(Ji, Ei) i = x, y, z (5.4)

given in SI units W/m3, where realdot(a, b) treat the complex numbers a and b as if
they were real-valued vectors of length 2 and return their dot product [37]. Equation (5.4)
resembles equation (2.38); heat dissipated over a volume Presistive is found by integrating
equation (5.4) over a selected region, for example the gold particles as marked in figures
5.2a-c.

5.1.7 Electric field norm
Integrated in COMSOL is the possibility to plot certain physical quantities as functions
of spatial placement in the computational domain, typically presented in cross-sections of
the geometry. The electric field norm is one such quantity which is useful to visualize the
distribution of the electric field. It is defined as

ewfd.normE =

[∑
i

realdot(Ei, Ei)

]1/2

i = x, y, z (5.5)
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and given in SI units V/m. It can in simplified terms be considered the amplitude of the

electric field, Enorm =
√
E2
x + E2

y + E2
z . We will use the notation Enorm when presenting

results of equation (5.5), for simplicity.

5.2 Optimization of model
A great amount of effort has been put into finding ways to improve computational per-
formance of the models, in order to reduce memory usage and thus solution time. While
FEM is an efficient simulation tool for full wave solutions of highly customizable geome-
tries, 3D models quickly places a high requirement on the computer’s hardware, specif-
ically random access memory (RAM) [22]. There are two main reasons for optimizing
the COMSOL model; the first one simply being that it’s practical not having to wait days
or even weeks for a simulation to complete; the other being that a more efficient model
leaves the user with the possibility to model more complex structures or define more de-
manding study steps. In fact, without the measures taken in this section, none of the results
presented later in the chapter would be possible to simulate. The thesis work began with
a simple model of sample 63 with a no mound geometry (flat substrate) or absorbing el-
ements such as PMLs or SBCs, working only for a single azimuthal angle of incidence.
COMSOL spent around 3 minutes per wavelength for either TE or TM polarization at this
point, while running out of memory when attempting to solve e.g. sample 5A. In compar-
ison, the optimizied model presented here use 10 seconds per wavelength at one incident
angle for sample 6, while furthermore including its mound geometry.

5.2.1 Effect of PML implementation

One of the major problems encountered during the development of the model, was its in-
ability to account for the onset of diffracted modes, resulting in nonsensical output for
energy regions where Rayleigh anomalies occur. This behaviour was likely due to un-
wanted numerical reflection of diffracted waves on the port boundaries. Inserting PMLs
on the backside of each port as shown in figure 5.3d immediately solved the problem. In
figure 5.4 we can see the effect of the PML implementation for sample 6. The model
is observed to be working for E > 4.2 eV, although the implementation brought with it
an artifact seen as a slight oscillation for energies 2.8 − 3.7 eV. The spectral shift and
dampening of the LSPR seen around 2.1 eV is not due to the PML, but is attributed to
the dielectric mound. The implementation of PMLs was also found to significantly reduce
computational requirements in terms of both memory usage and computation time, which
is supported by literature [9] [10]

The height of PML domain is supposedly not a critical factor, as the equations within
the PML are scaled with respect to the length of the PML. Dialog with COMSOL support
suggested a PML height equal to the wavelength, but seeing as the simulations are cal-
culated for a large spectrum of wavelengths, the height was more or less arbitrarily set to

3Sample 6 is considered to be the least computationally demanding sample due to its short lattice constants
causing a small volume unit cell domain that needs fewer finite elements to discretize compared to the other
samples.
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Figure 5.4: Mueller matrix element N = m12 of the experimental data (dotted line) of sample 6
at incidence angle (θ0 = 55◦, φ0 = 0◦), together with an early version COMSOL model without
PML or SiO2 mound (blue line) and the finalized model with both PML and mound implemented
(red line). The latter is also found in figure 5.10.

hPML = λmax/3, as seen in figures 5.5c and 5.5d.

5.2.2 Meshing improvements
Physics dependent mesh

Early models meshed the computational domain indiscriminately, resulting in an extremely
fine resolved mesh distributed equally throughout the volume and thus a very large amount
of finite elements. Later versions made the mesh dependent on the refractive index. In fig-
ure 5.5a one can see that the air domain has slightly coarser mesh than the glass substrate,
while the Au particle is even more detailed due to the higher refractive index of gold, but
also due to the curvature of the geometry.

At first, models with this element size configuration used the same mesh throughout the
simulation. The mesh would then be built with regards to the smallest wavelength, MES =
λmin/(6n), where in most cases λmin = 210 nm. The mesh would look like figure 5.5a for
all wavelengths, meaning that for the vast majority of iterations the simulation is computed
for an unnecessarily detailed mesh. A dynamic meshing system was introduced which
rebuilt the mesh every iteration of wavelength, so that longer wavelengths use coarser
mesh while still being able to properly resolve the wave. Figure 5.5b exemplifies this for
λ = 800 nm. This implementation has significant impact on computation time, see table
5.1 for the real-time computation of the meshes seen in figure 5.5.

The new setup also included the option of rebuilding the mesh less frequently, which is
useful in cases where generating a new mesh every wavelength iteration is computationally
demanding and time consuming.

Computation time for each wavelength iteration increases exponentially with decreas-
ing wavelength. This is best shown in the model of GaSb cones, as it is simulated for
wavelengths down to 90 nm. Figure 5.6 shows logarithmic plots of calculation time and
memory usage as a function of wavelength, as well as the number of elements the mesh
consists of at a given wavelength, illustrating how computation time is dependent on the
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(a) λ = 210 nm (b) λ = 800 nm (c) λ = 210 nm (d) λ = 800 nm

Figure 5.5: Distribution of mesh elements for different wavelengths and geometry parameters for
sample 5A. In (c)-(d) the distance from the top of the gold particle to PML (and, thus, also the port)
is reduced to be the same as the lattice constant. Meanwhile, the height of PML region is increased
to hPML = λmax/3. Number of mesh elements for each are shown in Table 5.1. Note from inspection
that the number of PML elements remain the same from (a) to (c), and from (b) to (d). Outer walls
of air domain are hidden for clarity.
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Figure 5.6: Computer performance in calculation of the tilted GaSb cones, where each iteration of
wavelength (stepsize 5 nm) includes an auxiliary parametric sweep of azimuthal rotation φ0 valued
from 0◦ to 355◦ (stepsize 5◦). (a) Calculation time (in minutes) as well as amount of physical
memory used (unit in gigabytes) at a given wavelength iteration. Incident wave is TE polarized. (b)
Number of elements at a given wavelength iteration.
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amount of finite elements to solve. Due to the simulation being computationally demand-
ing, it had to be split into smaller segments where each segment (run separately) calculated
their own region of wavelength. The sharp changes at 200 nm and 900 nm is where one
segment is finished and another begins. This is further explained in section 5.6. In the
GaSb cone model, the number of elements seem to stagnate around 700 nm, suggesting
that it is unnecessary to further update the mesh beyond this point, as it would not result
in fewer elements to solve in order to reduce computation time.

The exponentially decreasing computation time with increasing wavelength seen in
figure 5.6 is a trend common for all the samples simulated. It is clear that implementing
a physics dependent mesh has an extreme effect on the total computation time for each
simulation. With it, the TE simulation for the GaSb cones were completed in 2 days and 2
hours, whereas the same simulation running for a constant mesh configured for the lowest
wavelength would take almost 40 days to complete!

Reducing volume of computational domain

Throughout most of the thesis work the height of both air and substrate domains remained
a constant hair = hsub = 500 nm for most simulations as seen in figures 5.5a and 5.5b, so
that the distance from the point of reflection to ports were comparable to the wavelength.
Reducing the size of this domain without affecting accuracy of results would greatly im-
prove computational performance.

When using domain-backed ports as here4, the port locations does not matter and
should correctly extract the plane-wave component from the field regardless of distance5.
However, the distance to the PML domains does matter. PMLs do not dampen evanescent
diffraction orders, so that these must decay before reaching the PML [11] [12]. The de-
cay length of the evanescent waves are given by equation (2.54), and for sub-wavelength
nanostructures the criterion for neglecting evanescent wave-coupling with the PMLs be-
comes hair, sub � ax,y/(2π), where hair, sub is the height of the air or substrate domain
defined in figure 5.3e and ax,y = max(ax, ay) is whichever lattice constant is the largest
for the sample [30]. A more practical criterion for the minimum distance from reflection
point to PML is then

hair, sub >
ax,y

2
, (5.6)

for nanostructures with periodicity smaller than the wavelength [30]. In the thesis COM-
SOL models, the distance from the base of the Au or GaSb particles (z = 0) to the top
port (z = hair) was set to

hair = ax,y +Rz (5.7a)

for the gold hemispheroidal samples, and

hair = d+ h (5.7b)

for the tilted GaSb cones. The distance to the bottom port was set equal to hair, except for
the GaSb model where it was halved, hsub = hair/2, due to the absorptive nature of the
GaSb substrate.

4The ports are backed by the PML domains, see figures 5.3a and 5.3d.
5Source: private communication with COMSOL support team.
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As seen in figure 5.5 and table 5.1, reducing the volume of the physical domain dras-
tically reduce the amount of elements to solve and hence reduces the required amount
of RAM and computation time, particularly at lower wavelengths. Without this volume
reduction some of the sample results to be presented would not be possible to calculate,
considering that certain simulations pushed the limits of the desktop computer even after
reducing the computational domain (specifically the GaSb cones),

In conclusion, all the above-mentioned changes to the COMSOL model have greatly
decreased the computational cost on memory, and reduced computation time (particularly
when computing lower wavelengths). They have furthermore improved accuracy in the
results, especially in higher energy regions where diffracted modes occur.

Table 5.1: Performance differences when comparing size of computational volume and wavelengths
for sample 5A. Computation time and memory usage is tracked for a single wavelength TE wave at
one fixed angle of incidence φ0 = 0◦. Fixed volume: constant height for air and substrate domains
hair = hsub = 500 nm regardless of sample parameters, as well as fixed PML height of half the size
of air domain. Reduced volume: height of computational domain is equal equation (5.7a). From left
to right, each column correspond to figure 5.5a-d.

Fixed volume Reduced volume
@ 210 nm @ 800 nm @ 210 nm @ 800 nm

# domain elements 49 587 8 089 28 249 7 741
# boundary elements 6 028 2 197 4 432 2 055
# edge elements 602 356 522 328
Physical memory 9.94 GB 2.13 GB 6.26 GB 1.91 GB
Computation time 71 s 6 s 36s 6 s

5.3 Sample 6

5.3.1 Experimental data
The normalized Mueller matrix of the experimental data can be found in figure 5.7. The
elements are plotted as contour polar plots with the radius corresponding to photon energy
E and polar angle corresponding to incident azimuthal angle φ0. Below the MM a SEM
image of sample 6 is included together with the schematic of a square reciprocal lattice
defining φ0 as zero along Γ − X . A localized surface plasmon resonance is observed
for all angles at energy 2.1 eV. There is also a small amount of polarization coupling
observed at this energy in the block off-diagonal elements. A stronger conversion between
polarizations is observed between theX- andM -point at higher energies. This conversion
between s-polarization and p-polarization is also seen for the ellipsometric angles Ψsp and
Ψps in figure 5.8. Rayleigh anomalies have been superposed as white and black lines in
both figures, which will be more thoroughly explained in the next section.
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Figure 5.7: The experimental MM of sample 6, where the energy is plotted radially and the rotation
angle is the azimuthal angle φ0, and the polar AOI is θ0 = 55◦. Inner circle corresponds to 0.73 eV
while outer circle corresopnd to 5.9 eV. Rayleigh lines are superposed in elements m21, m13 and
m14. The two latter elements have additionally the LSPR highlighted as a white circle at 2.1 eV. A
scaling has been applied to m21 for improved visibility. Data from [14]. A SEM image of sample
6 next to a schematic of a square reciprocal lattice defining incidence angle φ0 has been included
below the MM.
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Figure 5.8: Contour plots of Ψsp (left) and Ψps (right) as functions of photon energy and azimuthal
angle of the incident light for experimental sample 6, fabricated in [14]. Rayleigh lines are super-
posed for SiO2 substrate (black lines) and air (white lines).

5.3.2 COMSOL simulation

Sample 6 was first simulated with a fixed height of the computational domain, similar to
figures 5.5a-b. At a polar AOI θ0 = 55◦ for the wavelengths λ = 210− 1200 nm and az-
imuthal AOI φ0 = 0◦−360◦, the total elapsed real-time it took to complete the COMSOL
simulation (also known as the wall time) was 312 hours and 35 minutes, including both TE
and TM simulations, when performed on the desktop computer with hardware as specified
in the introduction to this chapter. However, these two were running simultaneously on the
same computer, effectively reducing the actual time spent by half. By default, COMSOL
uses the total number of available physical CPU cores during calculations. Assuming that
the code is well balanced in that each core does approximately the same amount of work,
the CPU time using COMSOL can be estimated as the wall time multiplied by the number
of physical cores. In this case the CPU time becomes 78 days, 3 hours and 30 minutes!
At a later stage, the simulations were run again for a reduced height of the computational
domain similar to figures 5.5c-d, which reduced the wall time to approximately 82 hours
without affecting accuracy of the results. On average, this is about 10 seconds wall time
per wavelength per azimuthal angle.

The normalized MM of the COMSOL simulated data can be found in figure 5.9, and
can be compared to experimental results in figure 5.7. In figure 5.10 the experimental data
is compared to the COMSOL data in terms of the MM elements N = m12, C = m33,
and S = m34 for three selected angles. Despite minor numerical differences, the LSPR
is observed at the same spectral position, and also the peaks and dips associated with
Rayleigh anomalies (discussed below). The COMSOL simulation is found to be in good
correspondence with the experimental data. It is interesting, however, to note an additional
polarization coupling observed at around 3 eV in elements m31 and m32 in figure 5.9,
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Figure 5.9: Contour plots of MM elements for sample 6 as simulated in COMSOL for θ0 = 55◦,
where photon energy E and azimuthal angle φ0 of the incident light corresponds to the radius and
angle in each polar plot, respectively. The inner circle of the plots denote the lower limit photon
energy of 1.03 eV, while the outer circle corresponds to 5.9 eV. In elements m21 and m33 the
Rayleigh lines for BZ-1 in glass (black line) and air (white line) are shown, while element m23 in
addition includes the extended Rayleigh line for BZ-1 in glass.
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which is not observed in the experimental data. As already seen in figure 5.4, where N of
the experimental data is compared to two COMSOL models with and without the dielectric
mound, the presence of a dielectric mound beneath the Au particles causes a blueshift and
dampening of the plasmon resonance located at 2.1 eV.
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Figure 5.10: Sample 6 comparison between simulation (solid colored lines) and experimental data
(black dashed lines) of the MM elements m12, m33 and m34.

The expression for the Rayleigh anomaly condition, equation (2.53), is used to find for
which wavelength and incidence azimuthal angle a particular diffraction order is propa-
gating along the sample surface. These are superposed in figure 5.9 and hereby referred to
as Rayleigh lines. The black lines correspond to the onset of the first diffraction mode in
substrate (SiO2) while the white lines similarly correspond to the first diffraction mode in
the ambient (air). The dashed lines serves as extended Rayleigh lines, which are defined
as those lines calculated from equation (2.53) for e.g. φ0 ∈ [45◦, 90◦] using G1̄0

‖ . The
solid lines may be specified as reduced Rayleigh lines, if using a corresponding example,
they are the solutions of (2.53) in the same interval of azimuthal angles using G01̂

‖ .
One can observe that the MM is nearly block-diagonal, i.e. the MM is similar to equa-

tion (2.19) for non-depolarizing isotropic samples, for photon energies up till about 4 eV.
The LSPR is observed as a near-perfect circle around 2.1 eV in all block diagonal ele-
ments. Rayleigh lines corresponding to the boundary of the 1st BZ in air (white lines) and
substrate (black semi-square) are superposed in MM elements m21 and m33. In element
m23 the extended Rayleigh lines are additionally included. A slight polarization coupling
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5.3 Sample 6

is observed around the LSPR in the off-block-diagonal elements, while a stronger polar-
ization conversion is clearly observed in the regions surrounding the Rayleigh lines of the
same elements.
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Figure 5.11: Contour plots of simulated (a) Rpp (b) Rss (c) Im〈εpp〉 and (d) Ψpp as functions of
photon energy E and azimuthal angle ψ0 for sample 6. Rayleigh lines corresponding to the 1st BZ
are included as white and black lines for air and substrate, respectively. Extended Rayleigh lines are
also included as dashed lines. Due to the strong LSPR around 2.1 eV, separate colorbars are plotted
for energies above and below 2.5 eV.

Reflectance coefficients Rpp and Rss as functions of photon energy and incident az-
imuthal angle can be found in figures 5.11a and 5.11b, respectively. The LSPR can be
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seen at 2.1 eV, fluctuating slightly. In order to better visualize the features weaker than the
strong LSPR, a different colorbar is used for energies E > 2.5 eV. The optical response at
these energies are attributed to the Rayleigh anomalies related to grazing diffracted waves
just at the onset of diffracted orders [15]. In figures 5.11d and 5.11c the imaginary part
of the pseudo-dielectric function Im〈εpp〉 and the ellipsometric angle Ψpp are presented.
Note that m12 from figure 5.10 and Ψpp have similar profiles. Rayleigh lines for glass
corresponding to 1st BZ are seen to follow peaks in Ψpp, while for air they follow dips.
The same peaks and dips can also be seen in m12 of figure 5.10. The Rayleigh lines for
glass are observed at peaks in Rpp at the M -point, i.e. φ0 = 45◦ in figure 5.11a. In
Rss, the extended Rayleigh lines for glass are seen to act as boundaries of a region with
medium-sized peaks. It must be emphasized that reflection of p-polarized light Rpp is
observed to resonate only at the M -point for these energies. This is not immediately clear
from ellipsometric data or the MM.

As already seen in figure 5.11 a small dispersion of the LSPR is observed around 2.1
eV. In figure 5.12a the peak value of Ψpp at the LSPR is plotted as a function of the incident
azimuthal angle, together with the wavelength λLSPR at which Ψpp is at maximum. Ob-
viously, using a smaller stepsize for the wavelength would smoothen out the latter curve.
The peak resonance of the LSPR exhibit a small dependency on the azimuthal angle of
incidence. Given the uniformity of sample 6 (Rx = Ry and ax = ay) one might expect
a 45◦ symmetry, i.e. a folding can be done of the results at this angle. The figures of
Rpp and Rss seem to confirm this, however, there can be observed small anomalies to this
symmetry in the LSPR when comparing the azimuthal angles 45◦ and 135◦ in figure 5.12.
On the other hand, the numerical difference of the two peaks might be small enough to be
dismissed as numerical errors during the calculation. There is also a curious antisymme-
try observed at energies E > 4.5 eV for Rps in figure 5.13, whereas Rsp withholds the
45◦ symmetry. Regrettably, due to a glitched nonphysical behaviour at lower energies for
Rsp, one might question the validity of the accuracy of the TE simlation for all energies.
Furthermore, this antisymmetry is not observed for experimental Ψps in figure 5.8.

(a) (b)

Figure 5.12: (a) Peak values of Ψpp for sample 6 at LSPR wavelengths λLSPR, plotted together with
the wavelength at which the plasmon resonance peaks for a given φ0; (b) Azimuthal angle depen-
dency of reflectances for p-polarized and s-polarized light Rpp and Rss, respectively, at plasmon
resonance wavelengths shown in (a).
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Figure 5.13: Contour plots of (a) Rsp (b) Rps (c) Ψsp and (d) Ψps for sample 6. For reasons of
clarity, separate colorbars are implemented for energies E > 2.5 eV.

The polarization coupling observed in the MM is more visible in the contour plots of
Rsp, Rps, Ψsp and Ψps found in figure 5.13. The aforementioned artifact observed in
Rps (and thus Ψps) is seen to besmirch the data for E < 2.5 eV. Similar behaviour is
not observed in the results of the other samples and is therefore considered to be an error
specifically in the TE simulation of sample 6, although the exact cause is unknown.

Assuming the simulated Rps is accurate to a certain extent for energies above the
glitch, we note that Rps ≈ Rsp yet Ψps is overall different from Ψsp. This is be-
cause the ellipsometric amplitude angles are defined with different denominators, Ψps =
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arctan |rps/rpp| and Ψsp = arctan |rsp/rss|, see equation (2.15). With this in mind,
comparing the experimental and simulated polarization coupling shown in figures 5.8 and
5.13, respectively, suggests an approximately equal conversion between both polarizations
of the reflected light for the experimental sample as well, i.e. Rsp ≈ Rps, for energies
E > 2.5 eV.

The sample is observed to be pseudo-isotropic along the X- and M - points, i.e. φ0 =
0◦, 45◦, while conveying polarization conversion which resonates at φ0 = 22.5◦ around
the LSPR energy and at the meeting point between the extended Rayleigh line for glass
and reduced Rayleigh line for air. The strongest polarization coupling is observed to be
confined between the two Rayleigh lines. The miniscule polarization conversion around
2.1 eV in Ψsp (and Rsp) is much more well-defined than the experimental counterpart in
figure 5.8, where noise effects may make an appearance.

Figures 5.14 and 5.15 visualize the electric field norm Enorm in the 3D space surround-
ing the Au particle and mound area. Red isosurface correspond to the strongest field
(barely visible) while dark blue is weaker. The LSPR is seen to be dipolar in nature and
strongly concentrated along the bottom edge of the gold particle.

Resistive heating has been calculated from equation (5.4) and integrated over the Au
particle volume of sample 6. Figure 5.16 shows a contour plot of heat dissipation Presistive
into the gold particle as a function of the energy E and azimuthal angle φ0 of the incident
light. The reader is reminded that the incident electric field has amplitude 1 V/m. For
energies below 2.5 eV the heat loss is uniform for all azimuthal angles. It is observed
that peaks in Presistive follow Rayleigh lines of the substrate, while Rayleigh lines of the
ambient air are recognized by dips in Presistive. In other words, the sample suffer from
increased heat losses at the Rayleigh lines.

(a) (b) (c)

Figure 5.14: The electric field norm Enorm plotted for five layers of isosurface when incident wave
is TE polarized at wavelength λLSPR = 585 nm and azimuthal angle φ0 = 0◦, i.e. propagating along
x̂-direction at polar incidence θ0 = 55◦. (a) General view (b) x̂ is pointing out of paper (c) ẑ is
pointing out of paper.
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(a) (b) (c)

Figure 5.15: The electric field normEnorm plotted for five layers of isosurface when incident wave is
TM polarized at wavelength λLSPR = 585 nm and azimuthal angle φ0 = 0◦, i.e. propagating along
x̂-direction at polar incidence θ0 = 55◦. (a) General view (b) ŷ is pointing into the paper (c) ẑ is
pointing out of paper.
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Figure 5.16: Top: Contour plot of Presistive, resistive heat loss over the volume of the gold particles
in sample 6, with respect to photon energy and azimuthal angle of the incident light. Rayleigh
lines corresponding to the 1st BZ in air (white lines) and glass substrate (black lines) have been
superimposed. Bottom: Same plot but the full energy spectrum for a few chosen values of φ0,
illustrating isotropic behaviour below 2.5 eV.
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5.4 Sample 5A

5.4.1 Experimental data
The normalized MM elements of the experimental data [14] is found in figure 5.17, while
a SEM image of sample 5A next to a conceptual sketch of its reciprocal lattice is found in
figure 5.18. The MM reveal a rich optical response [15]. A plasmon resonance is observed
around 2.1 eV with associated polarization coupling in the block off-diagonal elements.
The response for energies above the LSPR is observed to follow the Rayleigh lines for
both air and SiO2 substrate.

Figure 5.17: Contour plots of the elements of the experimental normalized Mueller matrix for sam-
ple 5A with incident polar angle θ0 = 55◦, as found in [15]. The inner circle of each element
corresponds to 0.73 eV while the outer corresponds to 5.90 eV. In element m21, the Rayleigh
lines corresponding to 1st BZ and 2nd BZ in air (white lines) and glass substrate (black lines)
have been superimposed. In elements m13 and m14 the extended Rayleigh lines are additionally
superimposed, together with a white circle at around 2.1 eV highlighting the LSPR resonance.
A scaling has been applied for elements m21 and m22 for energies below 2.5 eV; in this range
m2j = sgn(m2j)|m2j |1/4, where j = 1, 2.
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Figure 5.18: SEM image of sample 5A next to a sketch of the reciprocal lattice.

5.4.2 COMSOL simulation
Due to the symmetry of the sample (see table 3.1), it was deemed sufficient to simulate
only for the first half of the azimuthal angles, then mirroring the results to gain the full
rotational optical response. The total wall time, including both TE and TM simulations,
each running for wavelengths λ = 210 − 1600 nm with stepsize ∆λ = 5 nm and an
auxiliary sweep of incident azimuthal angles φ0 = 0◦− 180◦ with stepsize ∆φ = 5◦, was
38 hours and 50 minutes. In practice the actual simulation run-time is halved as both TE
and TM simulations were running simultaneously. The approximate CPU time is 9 days
and 17 hours when assuming the workload was at all times evenly distributed among the
six CPU cores. Each of the two simulations used at most around 9.5 GB RAM during the
calculation, and spent 23 minutes solving λ = 210 nm for all the incident angles whereas
λ = 1600 nm for all angles was completed in 1 min 40 seconds, which corresponds to 37
seconds and 3 seconds per wavelength per azimuthal angle, respectively.

The reflectances Rss and Rpp from both TE and TM simulations with respect to the
energy and azimuthal angle of the incident beam can be found in figures 5.19a-b. One im-
mediately observes patterns forming in the higher energy region as well as a strong LSPR
resonance around 2 eV. Ellipsometric angle Ψpp and the imaginary part of the pseudo di-
electric function, Im〈ε〉pp, are presented in figures 5.19c-d. Here, Rayleigh lines have been
superposed revealing an optical response highly dependent on the diffracted modes along
the surface. The very same Rayleigh lines can be observed in the reflectances in figures
5.19a-b without the aid of the drawn lines. The Rayleigh lines correspond to the 1st and
the 2nd BZ in air (white lines) and substrate (black lines), as well as the 3rd BZ in substrate
(top black solid line). These lines are also overlaid in the contour plots of Rsp, Rps, Ψsp

and Ψps in figure 5.25, and in the normalized MM in figure 5.21.
The LSPR is seen to fluctuate with respect to the incident azimuthal angle, which is

further investigated in figure 5.20. In figure 5.20a, where the resonance is represented by
Ψpp, we see that the wavelength at which the LSPR is located (λLSPR) is also shifted as the
amplitude of the resonance fluctuates. Here we are reminded that the jagged lines are due
to the relatively large stepsize of wavelength when inspecting such a narrow region. On
average, the LSPR is located at λLSPR = 625 nm. Compared to the average LSPR position
of the experimental sample, λ(exp)

LSPR = 608 nm, it might suggest that the sample parameters
used in COMSOL are not entirely accurate. It is clear from these figures that sample 5A
does not hold a perfect 45 degree symmetry, or even a 90 degree symmetry. Why this is,
will be discussed in section 5.4.4.

The main features of the optical response for photon energies above the LSPR can be
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Figure 5.19: Simulation results of sample 5A represented by contour plots of (a) Rpp (b) Rss (c)
Ψpp and (d) Im〈ε〉pp, as functions of energy E and azimuthal angle φ0 of the incident beam. Due
to the strong LSP resonance around 2 eV, all plots have independent colorbars for energies above
and below 2.5 eV. In (c)-(d), Rayleigh lines for air (white) and substrate (black) are superposed,
including the extended Rayleigh lines (dashed lines). Sorted by increasing energy, the solid Rayleigh
lines correspond to BZ-1 (SiO2), BZ-1 (air), BZ-2 (SiO2), BZ-2 (air) and BZ-3 (SiO2).
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(a) (b)

Figure 5.20: (a) Peak values of Ψpp at LSPR wavelengths λLSPR for sample 5A, plotted together
with the wavelength at which the plasmon resonance peaks for a given φ0; (b) Azimuthal angle de-
pendency of reflectances for p-polarized and s-polarized lightRpp andRss, respectively, at plasmon
resonance wavelengths shown in (a).

described by estimating the Rayleigh line. Boundaries of 1st and 2nd BZ in air are clearly
visible in the block-diagonal elements of the MM contour plot in figure 5.21. For example,
in the m12 = m21 elements they are seen as sharp dips. Seeing as the MM to a certain
extent follows the block-diagonal form of equation (2.19), one can assume to observe a
similar dip in Ψpp, as is shown in figure 5.23. The strong dips in Rpp for BZ-1 in air tells
us that mainly p-polarized light is coupled into the grazing diffracted mode, as the reflected
light contains a reduced amount of p-polarized light at this Rayleigh line. In contrast, the
peaks in Rpp at BZ-1 in the SiO2 substrate shows an enhanced reflection of p-reflectance
of the reflected beam at the Rayleigh line condition.

The normalized MM of the experimental and simulated data can be found in figures
5.17 and 5.21, respectively, and comparisons between experimental and COMSOL data
of MM elements m12, m33 and m34 at three specific azimuthal angles are found in fig-
ure 5.22. The COMSOL model is found to be highly accurate in the LSPR region, and a
good qualitative correspondence with higher energies. Note, however, that the off-block-
diagonal elements have overall larger values in the simulated MM compared to the ex-
perimental MM, which suggest a stronger structure-induced anisotropy in the COMSOL
model. This implies that the modeled dielectric mound is not quite true to its experimen-
tal counterpart, differing in shape or size or both, in which case would suggest that the
estimated height profile is not as accurate as we thought. It is observed that the block-
diagonal MM approach of equation (2.19) can safely be assumed at angles φ0 = 0◦, 90◦

as polarization coupling only appears at other angles.
In figures 5.23 and 5.24, Ψpp and Im〈ε〉pp for angles φ0 = 0◦− 45◦ are stacked on top

of each other for COMSOL and experimental data, respectively. Rayleigh lines are hand
drawn into the plots, as well as the LSPR which shows a slight dispersion with respect to
φ0 for both experimental and simulated results. Due to the transparency of the substrate,
grazing diffracted beams inside the glass substrate are also observed. Enhanced peaks of
1st BZ of SiO2 substrate at the M point, i.e. φ0 = 45◦, for energies around EsubBZ−1 = 3.1
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Chapter 5. Results and discussion

Figure 5.21: Contour plots of MM elements of sample 5A simulated in COMSOL with respect to
photon energy E and azimuthal angle φ0 of the incident light. Rayleigh lines are shown for both
air (white lines) and glass substrate (black lines). Extended Rayleigh lines are included as dotted
lines in elements m13, m14 and m34. In m21, reduced Rayleigh lines (i.e. boundaries of BZ) are
superposed for the 1st BZ (innermost semi-square) and the 2nd BZ (tilted semi-square) can be seen
for both air and substrate, as well as the 3rd BZ for SiO2 (outermost black semi-square). The LSPR
resonance can be seen as circles around 2 eV. In order to more clearly observe nuances in m21 for
higher energies, a scaling has been applied for E < 2.5 eV, in this region |m12|1/6sign(m21) where
sign() indicates the signum function. The innermost thick-lined circle in the schematic, replacing
the trivial m11 element, corresponds to 0.78 eV while the outer circle corresponds to 5.9 eV.

eV. The same peak in the experimental data is found at 3.08 eV [15]. A weaker, but broader
peak is visible at the X point for the glass Rayleigh line at ESiO2

BZ−2 = 4.28 eV, or at 4.15
eV in the experimental data. These peaks are visible in figures 5.23 and 5.24, but also in
the contour plots in figures 5.19 and 5.21 when inspecting the 1st and 2nd Rayleigh lines
for the substrate at azimuthal angles φ0 = 45◦, 0◦, respectively.

The polarization coupling of the reflected light observed in figure 5.25 and in the block
off-diagonal elements of the MM in figure 5.21 is seen to be strongly dependent on the
Rayleigh lines in air. Looking at Rpp and Rss in particular, peaks of conversion are
observed along the reduced Rayleigh line for BZ-1 in air in the region surrounding the
M -point, while no conversion is observed at exactly φ0 = 45◦. There is also noted an
equal amount of conversion between both polarizations. Strong polarization conversion is
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Figure 5.22: Normalized MM elements m12, m33 and m34 compared with experimental data for
sample 5A.

also found around the LSPR energy, as already mentioned, observed at azimuthal angles
φ0 = 22.5◦, 67.5◦ etc. It is clear from observing the varying degree of coupling strength
at these conversion resonances in figure 5.25 that the sample has a 90◦ symmetry.

Joule heating in terms of Presistive integrated over the Au particle volume is found in
figure 5.26. Heat dissipation is found to be uniform up until about 2.5 eV, where it becomes
highly influenced by the Rayleigh lines.
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Figure 5.23: Ψpp (left) and Im〈εpp〉 (right) for COMSOL simulated sample 5A for azimuthal angles
φ0 = 0◦ − 45◦ in steps of ∆φ0 = 5◦. Approximate Rayleigh lines are hand drawn in both figures.
A slight dispersion of the LSPR can be seen around 2 eV. For reasons of clarity, Ψpp plots are offset
by 4◦κ and Im〈εpp〉 by 0.52κ, where κ = φ0/∆φ0.

Figure 5.24: Experimental data of sample 5A of Ψpp and Im〈εpp〉 for azimuthal angles of incidence
from φ0 = 0◦ to φ0 = 45◦ in steps of ∆φ0 = 5◦, as found in [15]. Three approximate Rayleigh
lines are hand drawn, while the location of BZ-2 in air is more unclear. Ψpp-curves are offset by
1.4◦κ and the Im〈εpp〉-curves by 0.2κ, where κ = φ0/∆φ0.
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Figure 5.25: Contour plots of (a) Rsp (b) Rps (c) Ψsp and (d) Ψps for sample 5A. Rayleigh lines
for air (white) and substrate (black) are shown in the same manner as figures 5.19c-d.
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Figure 5.26: Top: Contour plot of resistive heat loss in units Watts over the volume of the gold
particles in sample 5A, with respect to photon energy and azimuthal angle of the incident light.
Rayleigh lines are indicated by solid (reduced) and dashed (extended) lines for air (white) and sub-
strate (black). Bottom: Same plot but with the full energy spectrum for a few chosen values of
φ0.

5.4.3 Field distribution

This section is mainly focused on showcasing COMSOL’s capability to visualize the full
wave field amplitude inside the computational domain. The electric field norm Enorm is
presented here at certain wavelengths and azimuthal angles of incidence, see equation
(5.5).

In figure 5.27 the 3D field distribution of the LSPR resonance at 2 eV is visualized
as a set of isosurfaces, each layer representing an increasing field strength; dark blue is
a relatively weak field while the red isosurface (barely visible along the particle edge)
show the maximum field amplitude at this wavelength and incident angle. Figure 5.28
attemps to show the evolution of the LSPR as a function of wavelength, as it plots Enorm
for wavelengths surrounding the LSPR at φ0 = 0◦ at a cross-section in the xy-plane
located in the middle between the base of the Au particle (z = 0) and the bottom of the
mound (z = −t). As in sample 6, the LSPR is seen to be strongly concentrated around
the rim of base of the Au particle at z = 0. The response is observed to be mainly dipolar.
This may be applicable to detecting whether molecules that are sensitive to the plasmon
resonance are located next to the particles or on top of them.

Figure 5.29 attempts to show the field distribution in a short wavelength spectrum
where φ0 = 25◦, a region that has shown to exhibit polarization conversion. The motiva-
tion was to try to further understand the origin of the polarization coupling phenomenon
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observed both around the LSPR and around the Rayleigh lines, through direct inspection
of the field distribution. Figure 5.30 shows plots of Enorm in the xy-plane at z = 0 for
different azimuthal angles φ0 at a wavelength of relatively large polarization coupling,
λ = 350 nm (or 3.54 eV). Observe that the field distribution is symmetric with respect to
the plane of incidence at angles of no polarization coupling φ0 = 0◦, 45◦, 90◦, but that is
not the case for φ0 = 25◦, 65◦.

(a) TE (b) TM

Figure 5.27: The electric field normEnorm plotted for five layers of isosurface when incident wave is
(a) TE polarized and (b) TM polarized at wavelength λLSPR = 620 nm and azimuthal angle φ0 = 0◦,
i.e. propagating along x̂-direction at polar incidence θ0 = 55◦. Two viewpoints of each plot is given:
a general view for both (top), x̂ is pointing out of paper for TE (bottom left), and ŷ is pointing into
paper for TM (bottom right).
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(a) TE

(b) TM

Figure 5.28: Electric field norm Enorm at increasing wavelengths between 575-725 nm distributed
over sample 5A at a cross-section in xy-plane located at z = −t/2, as seen from the top of air domain
and down towards the gold particle and substrate. The inner black circle marks the edges of the
particle at z = 0, while the outer border-less circle indicate the mound cut right at the middle of its
height. (a) shows the electric field norm when the incident light is TE polarized with azimuthal angle
φ0 = 0◦, i.e. beam incident in +x-direction. Similar in (b) for TM-polarization. For both figures,
from top left to bottom right in (a) and (b), the electric field distribution is shown subsequentially
for wavelengths λ0 = 575nm, 600nm, 620nm, 640nm, 675nm, 725nm. Axis directions are marked
in the bottom left corner of each sub-figure. The colorbar marks the values for Enorm in units V/m.
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(a) TE

(b) TM

Figure 5.29: Electric field norm distribution of sample 5A at a cross section in the xy-plane located
at z = 0 (i.e. at bottom base of Au particle) at wavelengths λ0 = 230nm, 255nm, 300nm, 350nm,
400nm, 500nm and azimuthal incident angle φ0 = 25◦. Reflectance plots of the relevant spectrum
and φ0 is included below.
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(a) TE

(b) TM

Figure 5.30: Electric field norm of sample 5A at wavelength λ0 = 350 nm and azimuthal angles
of incidence φ0 = 0◦, 25◦, 45◦, 65◦, 90◦ when the incident beam is (a) TE- and (b) TM-polarized.
The cross-section is located at the base of the Au particle, z = 0.
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5.4.4 Comparing changes in lattice constants and particle ellipticity
This section will investigate the effect of sample 5A’s non-uniform lattice constants and
particle lateral parameters, in particular how they shape the LSPR resonance strength and
wavelength position. Three models with similar geometry to sample 5A have been sim-
ulated; a completely uniform structure with square lattice and circular base of the Au
particle; a structure with circular particle base but very rectangular lattice; lastly a struc-
ture with slightly elliptic Au particles and square lattice. The parameters for these are
summarized in table 5.2, where sample 5A parameters are repeated for convenience. The
models were simulated in COMSOL for wavelengths λ = 500 − 800 nm and incident
azimuthal angles φ0 = 0◦ − 180◦ in stepsizes of 5 nm and 5◦, respectively, and incident
polar angle was the usual θ0 = 55◦.

Table 5.2: All quantities are given in nanometers.

Uniform Rectangular lattice Ellipsoidal Au Sample 5A
ax 208.6 198.6 208.6 207.2
ay 208.6 218.6 208.6 209.9
Rx 60.8 60.8 60.3 60.3
Ry 60.8 60.8 61.3 61.3
Rz 34.8 34.8 34.8 34.8
t 36.9 36.9 36.9 36.9

The main results of these simulations are found in figure 5.31, where peak Ψpp and the
LSPR wavelength λLSPR is plotted with respect to incident azimuthal angle. The reader is
reminded that φ0 = 0◦ is defined along the x-axis. It is immediately observed that sample
5A follow closely the profile of the ellipsoidal particle. Sample 5A is seen to slightly shift
towards the rectangular lattice profile at the extreme points of Ψpp(λLSPR), suggesting that
its non-uniform lattice constants do have an effect, albeit small. In fact, in order for the
rectangular lattice model to have noticeable effect on the LSPR, the lattice constants ax,
ay had to be exaggerated compared to the estimated sample 5A parameters. Note that
none of the models display a perfect 90◦ symmetry, not even the uniform sample where
one might expect a 45◦ symmetry. Experimental data in figure 5.32 seem to inherit a
symmetry similar to that of the ellipsoidal particle in figures 5.31.

The plasmonic properties of elongated gold particles (or nanorods) have been studied
extensively the last decade [34] [16]. In particular the sensitive nature of plasmon reso-
nances to their shape and orientation [45]. Figure 5.33 shows how Ψpp evolves into two
separate LSPRs at φ0 = 0◦ and φ0 = 90◦ as the ellipticity of the Au particle increases.
The resonance peak at φ0 = 0◦ is blueshifted from 620 nm to a smaller peak at 580 nm
where reflected s-polarized light dominates, while the resonance at φ0 = 90◦ is redshifted
from 630 nm to a stronger peak at 665 nm where most of the light reflected from the
sample is p-polarized. This is in agreement with the intuition that light incident along the
x-axis would experience a wider particle and thus strongly resonate with the s-polarized
light, and similar for y-direction where light intuitively experiences a narrow but long Au
particle that resonate with the p-polarization.
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Figure 5.31: Plots comparing models of Sample 5A with slightly different unit cell parameters;
an exaggerated rectangular lattice with circular hemispheroidal gold particle; an ellipsoidal gold
particle with square lattice; and a uniform model with hemispheroidal particle and square lattice.
(a) Values of Ψpp at the peak LSPR resonance located at λLSPR, (b) shifts of λLSPR with respect to
incident azimuthal angle ψ0. Results of the original Sample 5A simulation, as in figure 5.20a, is also
plotted (dash-dotted black line).
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Figure 5.32: Experimental data of sample 5A revealing anisotropy of peak LSPR resonance with
regards to wavelength and azimuthal angle of the incident light.
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5.4 Sample 5A

Figure 5.33: Variations of sample 5A parameters with increasing ellipticity of the gold particle,
as marked in each subfigure. Common parameters for all four cases are the particle height Rz =
34.8nm, mound height t = 36.9nm, square lattice axy = 209nm and incident polar angle θ0 = 55◦.
Azimuthal angle φ0 = 0◦ is defined along x-axis, while φ0 = 90◦ corresponds to light incident in
positive y-direction.
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5.5 Sample 5B

5.5.1 Experimental data
In figure 5.35 a SEM image of the experimental sample 5B together with a schematic of the
reciprocal (square) lattice defining the azimuthal angle of incidence is repeated, for con-
venience. The reader is reminded of the sample being a rectangular lattice of anisotropic
gold particles on a SiO2 glass substrate, as discussed in section 3.1.3. The experimental
MM showing contour plots of the elements with respect to photon energy and incident az-
imuthal angle is found in figure 5.34, while contour plots of ellipsometric amplitde angles
Ψpp, Ψsp and Ψps are found in figure 5.36 where Rayleigh lines corresponding to the first
three BZ for air and glass are superposed. A plasmon resonance is observed in the energy
region 1− 1.5 eV centered around φ0 = 90◦, 270◦, with strong polarization coupling ob-
served around φ0 = 45◦, 135◦, etc. There is found a reduced symmetry in Ψsp and Ψps

compared to Ψpp, suggesting the sample has a 180◦ symmetry.
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5.5 Sample 5B

Figure 5.34: Contour plot of the MM elements of the experimental sample 5B measured at θ0 =
55◦. Inner circle correspond to 0.73 eV while the outer circle is 5.9 eV.

Figure 5.35: SEM image of sample 5B along with a definiton of incident azimuthal angle φ0 (left).
Conceptual sketch of a reciprocal square lattice (right).
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Figure 5.36: Contour plots of ellipsometric angles (a) Ψpp (b) Ψsp (c) Ψps for the experimental data
of sample 5B. To improve color contrast, each plot is plotted independently for energies above and
below 2.5 eV. Rayleigh lines corresponding to the 1st, 2nd, and 3rd Brillouin zones are superposed
for air (white lines) and substrate (black lines).
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5.5.2 COMSOL simulation

Sample 5B has large lattice constants (ax = 315.4 nm, ay = 443.9 nm) compared to
the spectrum of interest (λ = 210 − 1700 nm) thus creating a very large volume for the
computational domain. As previously stated in section 3.1.3, the dielectric mound (with
a height estimated at around 15 nm) was not included in the simulated geometry because
the considerable amount of finite elements required to resolve the mound curvature. Even
so, the desktop computer was not able to solve the model for the lower wavelengths due to
the large amount of mesh elements, as defined in equation (5.1). The lowest wavelength
resulting in a solvable mesh was 250 nm, i.e. the simulated region is λ = 250 − 1700
nm where each wavelength is swept for azimuthal angles φ0 = 0◦ − 180◦. TE and TM
simulations were not able to run simultaneously on the desktop computer due to the com-
putationally demanding calculations. The program used at most 23.4 GB RAM during full
wave calculation of the lowest wavelength, 250 nm, which was solved in 2 hours and 18
minutes in real-time. The solution time for each increasing wavelength decreased expo-
nentially thereafter, finally solving for 1700 nm in just under 2 minutes. The total wall
time, including both TE and TM simulations, was 94 hours and 59 minutes, where over
82% of this time was spent solving for wavelengths in the region 250 − 900 nm. Multi-
plying the wall time by the number of CPU cores gives us an approximate CPU time of 23
days 17 hours and 54 minutes. In hindsight, creating a mound of triangular shape would
not increase the amount of elements to the same degree as a curved mound, and could
possibly result in a solvable model for a similar wavelength spectrum.

Contour plots of the optical response of the reflected COMSOL sample are given in
figure 5.37 as Rpp, Rss and Ψpp. Figure 5.37b reveal a resonance in Rss around 1.4 eV
excited by the transverse mode incident along the x-axis, i.e. φ0 = 0◦, and a very small
resonance at φ0 = 90◦ around 2.1 eV. The longitudinal mode seen in figure 5.37a excites
two plasmon resonances along the y-axis: a weak resonance sharply defined at 1.9 eV and
a strong resonance between 1.20− 1.54 eV which is confined between the Rayleigh lines
corresponding to the 1st BZs of SiO2 and air. There is also observed a very weak resonance
along the x-axis around 2.1 eV. Intuitively, one may interpret the weaker resonances at 2.1
eV at φ0 = 0◦ and φ0 = 90◦ forRpp andRss, respectively, as weaker plasmon resonances
appearing at higher energies due to the plasma electrons being driven to oscillate across
the smaller width of the Au particles.

The field distributions for both modes at the strong LSPR located at photon energy
1.23 eV with φ0 = 90◦ can be found in figure 5.38. It is clear that this plasmon reso-
nance is mainly dipolar. Notice a factor 10 difference in field strength between TM and
TE polarizations, where values for Rpp and Rss at the same location is 0.20 and 0.128,
respectively, confirming an enhanced field when the incident light is polarized along the
semi-major axis of a particle with high aspect ratio. This is also observed for s-polarized
light incident with azimuthal angles centered around the x-axis, i.e. the strong resonance
around φ0 = 0◦, 180◦, in figure 5.37b. This resonance in reflected s-polarized light is not
as obviously present in Ψpp in either COMSOL data (5.37c) or experimental data (5.36a).
A disadvantage with reading data represented in ellipsometric amplitude angles such as
Ψpp is the ambiguity in interpreting e.g. a low numerical value as either absence of re-
flected p-polarized light or an enhancement of s-polarized reflection. One can only assure
with certainty a meaningful interpretation about their ratio, as Ψpp = arctan |rpp/rss|.
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Figure 5.37: Contour plots of (a) Rpp (b) Rss and (c) Ψpp for sample 5B. For reasons of improved
visibility, energies above 2.5 eV have independent colorbars. Rayleigh lines are shown correspond-
ing to the boundaries of BZ-1 (confined by G1̄0

‖ and G01̄
‖ ), BZ-2 (G1̄1̄

‖ ) and BZ-3 (G2̄0
‖ and G02̄

‖ )
for air (white) and glass substrate (black). In addition, extended Rayleigh lines are shown in dashed
lines. Brillouin zones with reciprocal lattice vectors G1̄1̄

‖ for air and substrate are recognized by
their 45◦ symmetry, while the others are symmetric around 90◦.
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5.5 Sample 5B

(a) TM (b) TE

Figure 5.38: Field concentration around the gold particles of sample 5B when the incident beam
has wavelength λ = 1010 nm (1.23 eV) and azimuthal angle φ0 = 90◦ polarized (a) longitudinal
and (b) transversal to the plane of incidence, where each plot is given at two different viewpoints
(top and bottom). The interface between air and substrate is seen as a horizontal line in the bottom
figures. The field amplitude Enorm is plotted for seven layers of isosurfaces given in SI units V/m.

Figure 5.37 reveal that 82% of light with photon energy 1.4 eV centered around the x-axis
is reflected (the rest being transmitted or dissipated into the particle as heat), moreover,
virtually all of it is reflected by s-polarized light.

The particle thickness in sample 5B is arguably similar to the Au particles of samples
5A and 6 (R5B

x = 47.4 nm, R5A
x = 60.3 nm, R6

x = 38 nm), whereas sample 5B, however,
is in comparison highly elongated with aspect ratio e = Ry/Rx = 2.4. In that regard, we
observe a redshift of the LSPR (acting as a dipole resonance in figure 5.38a) in the elon-
gated particle (5B) compared to the more circular particles (5A and 6) [45]. Furthermore,
whereas the strong resonances of both p- and s-polarized light around E = 1.4 eV are
dipolar, we suspect that the sharp resonance in Rpp at E = 1.9 eV might be a multipole as
a product of the oblong particle shape [45]. Indeed, figure 5.39 reveal a field concentration
around the Au particle at 1.9 eV that resembles a quadrupole. However, quadrupoles are
expected to be forbidden at this orientation due to symmetry constraints. We thus specu-
late a multipole of order three, as is observed in [45] for single gold particles of similar
thickness but higher aspect ratio (e = 6) excited by light polarized along the major particle
axis.

With sample 5B being a rectangular lattice, the Rayleigh lines become more compli-
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Chapter 5. Results and discussion

Figure 5.39: Six layers of isosurfaces showing Enorm (units V/m) when the incident field is p-
polarized with azimuthal incidence φ0 = 90◦ and photon energy 1.9 eV (λ = 655 nm), exposing
what might look like a multipole resonance. Two viewpoints: (left) general view and (right) ẑ
pointing out of paper.

cated to interpret. The lowest energy Rayleigh line for glass (black line) has an abrupt
change at φ0 = 22.5◦ where G01̄

‖ begin to appear at lower energies than G1̄0
‖ . The

Rayleigh line of glass calculated using G1̄0
‖ in equation (2.53) is still visible in the re-

gion φ0 = 22.5◦ − 157.5◦ as dashed black lines (i.e. as an extended Rayleigh line). The
same abrupt changes can be observed for the 3rd BZ Rayleigh line in glass at E = 3.5
eV for angles φ0 = 22.5◦, 157.5◦ due to G02̄

‖ appearing at lower energies than G2̄0
‖ in the

Rayleigh line equation. The lines corresponding to 2nd BZ boundary, i.e. with G1̄1̄
‖ , are

seen to have symmetry around φ0 = 45◦. The same patterns can be observed for Rayleigh
lines in air (white lines).

As a consequence of the large lattice constants the Rayleigh lines for the 1st BZ go
deep into the LSPR region of the particles. These are seen to sharply define the edges
of the resonance located around φ0 = 90◦ in Rpp, while the 1st BZ in glass also seem
to dampen the Rss resonance at the X-point. This effect has previously been studied
in [52].The extended Rayleigh line of G1̄0

‖ in air appear to dictate, to a certain degree, the
response of Rpp and Rss for E > 2.5 eV.

An attempt has been made to plot the peak values of Rpp and Rss in figure 5.40. It
is observed that the peak resonance of p-polarized reflected light around φ0 = 90◦ follow
the Rayleigh line for glass, and the strongest reflectance is actually at φ0 = 65◦, 115◦.
It is again emphasized that the majority of reflected light is s-polarized, suggesting that
mainly p-polarized light couples with the electron plasma. Heat dissipation is plotted in
figure 5.41 for both TE and TM modes. For TM, the Au particles are observed to undergo
heating at the major LSPR at φ0 = 65◦, 115◦, as well as the quadrupole and the secondary
LSPR at φ0 = 0◦. The majority of heat dissipation from the EM field into the Au particles
for TE mode is observed to happen at the secondary LSPR centered around φ0 = 90◦ at
2.1 eV. There is heating to a lesser extent at the LSPR at φ0 = 0◦ which is seen to be
exceedingly reflective of s-polarized light in figure 5.37b.

Seeing as the LSPR is consentrated along the rim base of the Au particles in direct con-
tact with the substrate, they may be subject to the dispersive SiO2 refractive index which
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Figure 5.40: Peak values of reflectances of p- and s-polarized light, max(Rpp) and max(Rss). An
attempt to distinguish the strong resonances observed around 1.4 eV from the weaker resonances
around 2 eV has been made by plotting peak values above and below 1.77 eV (λ = 700 nm)
separately.
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Figure 5.41: Energy from the incident light dissipated into the gold particle (given in SI units W) as
a function of energyE and azimuthal incident angle of the incoming beam. Resistive heating Presistive

of the gold particle when the incident light is (a) p-polarized (TM) and (b) when the incident light is
s-polarized (TE). For visual clarity in the color coding, both figures have independent colorbars for
energies above and below 2.7 eV. Rayleigh lines are superimposed corresponding to the borders of
BZ-1, BZ-2 and BZ-3 for the ambient air (white lines) and the glass substrate (black lines), as well
as their respective extended lines (dashed lines).
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varies from 1.514 to 1.446 in the simulated region. It has been shown that gold nanoparti-
cles with high aspect ratios are extremely sensitive to the ambient refractive index, where
the longitudinal LSPR peak redshifts as the refractive index increases and the shift am-
plitude inreases with the aspect ratio [16] [34]. Although the difference would likely be
minimal, it could be interesting to note the effect of the dispersive glass substrate by com-
paring the results with a similar simulation where the glass refractive index is constant,
which could be a source for future work.

The Mueller matrix of the simulated data can be found in figure 5.42. For energies
above 2.5 eV the sample is mostly isotropic, as the reflection MM resembles equation
(2.19) and the majority of light is either dissipated into the paricles as shown in figure
5.41 or transmitted through the glass (transmission results not shown). There is, however,
a weak polarization coupling present for E > 2.5 eV, as seen in figure 5.43, which to a
certain extent seem to follow the Rayleigh lines for air, particularly the extended lines for
G1̄0
‖ . This weak conversion of polarization is also visible in the upper block off-diagonal

elements in figure 5.42 where a scaling has been applied to improve visibility. The 180◦

symmetry of the experimental sample, as mentioned in section 5.5.1, share its symmetry
with Rps of the simulated data, whereas Rsp is 90◦ symmetric. The cause of this uneven
symmetry in polarization conversion is unknown. The conversion of s-polarized light to
p-polarized light and vice versa is observed to be equal in the lower energy LSPR region,
however, with peak resonance at φ0 = 50◦, 130◦.

The experimental MM is already found in figure 5.34. Note that the off-diagonal MM
elements of the experimental sample are overall larger than its COMSOL counterpart. This
suggest a structure-induced anisotropy caused by the dielectric mound, which has been
neglected in the simulation. Judging from their Mueller matrices, the COMSOL model
is found to be in good qualitative agreement with the experimental ellipsometric data.
By comparing their values side-by-side as in figure 5.44, however, we see a quantitative
disparity immediately following the resonances around 2 eV.
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5.5 Sample 5B

Figure 5.42: Contour plots of the normalized Mueller matrix elements for the simulated sample 5B.
Energy and azimuthal angle of the incident light are represented by radius and rotation angle in each
polar plot, respectively. Inner circle of the schematic in m11 corresponds to photon energy 0.73 eV
while the outermost circle corresponds to 4.96 eV. Scaling has been applied to a few elements, for
reasons of improved clarity in energy regions above 2.3 eV; Resonant values in the upper off-block
elements m13, m14, m23 and m24 were reduced by |mij |1/4sign(mij) and similar for m22, while
elementm21 = m12 has been set completely void for energies below 2.35 eV. Furthermore, inm44,
reduced Rayleigh lines are drawn for air (white lines) and glass substrate (black lines). For glass, the
first four Brillouin zones can be seen in this element, as well as parts of BZ-5 (G3̄0

‖ and G03̄
‖ ) . The

first BZ can be seen as the innermost upright rectangle, BZ-2 is the tilted semi-square, BZ-3 is again
an upright semi-rectangle but larger, while BZ-4 (G2̄2̄

‖ ) is the largest tilted semi-square, seen only
for glass. In elements m23 and m24, the extended Rayleigh lines (dotted lines) are also included for
air and substrate, respectively. Lastly, in element m21 all Rayleigh lines (excluding BZ-1) for both
air and substrate are superimposed.
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Figure 5.43: Contour plots of (a)Rsp (b)Rps (c) Ψsp and (d) Ψps for sample 5B. To improve color
contrast, each plot is plotted independently for energies above and below 2.5 eV.
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Figure 5.44: Normalized MM elements m12, m33 and m34 compared with experimental data for
sample 5B at three chosen angles of azimuthal incidence.
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5.6 Tilted GaSb cones

The COMSOL model for the tilted GaSb cones was created using the previous Au particle
model as a template. The geometry was changed to suit the sample, including a hexagonal
lattice where Floquet periodicity was applied to all six sides, similar to what was shown
for the square lattice in figure 5.3. A motivation for modelling these densely packed GaSb
cones was to retrieve a high energy optical response beyond what was achieved in [35], i.e.
up to 24 eV. This would not be possible without the model improvements on optimization
discussed in section 5.2. Even so, the desktop computer managed at most to compute the
model for 13.78 eV, or 90 nm wavelength, before running out of memory. Furthermore,
each TE and TM simulation had to be split into three parts running for different regions
of the wavelength spectrum, otherwise the computer would run into memory issues. The
elapsed real time (wall time) of these simulations are shown in table 5.3. Total wall time
for the entire process was 4 days, 4 hours and 1 minute, however, for wavelengths larger
than 195 nm it was possible to run both TE and TM simulations simultaneously. The total
CPU time, assuming the labour was at all times divided evenly among the 6 CPU cores,
was approximately 25 days and 6 minutes. Again, figure 5.6 reveals how the computation
time of each iteration depends on the wavelength.

Table 5.3: Elapsed real time for the calculation of the, in total, six simulations that had to be com-
puted in order to retrieve a full TE- and TM-wave optical response of the tilted GaSb cones in the
wavelength region 90 nm to 1600 nm. Total run time for the entire simulation process was 100hr
1min.

Spectrum [nm] TE TM
90-195 20hr 23min 20hr 29min
200-900 20hr 50min 20hr 35min
905-1600 8hr 52min 8hr 52min

In both the experimental sample and simulated model the cones are aligned so that their
tilts are pointing in the direction of the incident plane atψ0 = 0◦. Figure 5.45 includes both
the simulated and experimental MM plotted with respect to incident photon energy and az-
imuthal angle, for energies limited by the ellipsometer instrumentation. They are deemed
in good agreement with each other. However, it is clear that the simulated results does not
exhibit the rotational asymmetry in the off-diagonal elements m23,m24,m32,m42 to the
same extent as the ellipsometry results. This implies subtle differences in the cone geom-
etry of the model and experimental sample. The sample is observed to be pseudo isotropic
along φ0 = 0◦ as block off-diagonal elements are zero.

The full spectrum MM of the simulation can be seen in figure 5.46, revealing strong
polarization coupling around 6 − 10 eV as the incidence plane is rotated. Note that the
manifestations of polarization coupling seen in the block off-diagonal elements in figure
5.45 are too weak to be seen here, although they are considered to be the onset of polar-
ization conversion observed for the higher energies. The block off-diagonal elements have
two alternating maxima and minima. The coupling is also clearly observed in the cross-
polarized reflectance plots in figure 5.47, reporting an equal amount of conversion from
both polarizations with a slightly unequal sensitivity to the angle of incidence. We can
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Figure 5.45: MM contour plots of tilted GaSb cones simulated in COMSOL (top) compared to
experimental results (bottom) as found in [35], for incident polar angle θ0 = 45◦. Inner radius for
simulated and experimental plots corresponds to 0.775 eV and 0.73 eV, respectively, while outer
circle corresponds to 5.9 eV for both.
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Figure 5.46: Contour plots of the MM elements for the simulated GaSb tilted cones in the energy
range 0.775 eV (innermost circle in each element) to 13.78 eV (outer circle). The inner circles in the
schematic replacing the m11 element marks the radii at energies 4 eV, 8 eV and 12 eV.

98



5.6 Tilted GaSb cones
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Figure 5.47: Contour plots of (a) Rsp (b) Rps (c) Ψsp and (d) Ψps for inclined GaSb cones simu-
lated in COMSOL.

conclude a maximum sensitivity to the cones’ inclination at around 7.5 eV with incident
azimthual angle normal to the tilt angle.

It is likely possible to further optimize the model in order to simulate the tilted GaSb
cones for energies up to 24 eV without upgrading the computer hardware. One could at-
tempt to further reduced the height of the physical domain. However, we have seen that
the amount of elements increases exponentially with decreasing wavelength (figure 5.6),
while there is a linear relationship to the amount of elements with a change in height. An-
other solution, if feasible, is to exploit the 180◦ symmetry of the unit cell and only build
half the geometry. The other half could be simulated using symmetry boundary condi-
tions, e.g. a perfect electric conductor. If this fails, one could utilize COMSOL’s cluster
computing functionality to distribute the workload in parallel with other computers. For
example, parametric sweeps (here: wavelength iterations) can be distributed with individ-
ual parameter cases to each cluster node.
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Chapter 6
Conclusion and outlook

Conclusion
The primary goal of the work on this thesis - developing a functioning COMSOL model of
infinite periodic plasmonic surfaces and testing its validity against established experimen-
tal work - has been fulfilled. The simulation results were found in good correspondence
with the experimental data from three variations of hemispheroidal gold particles on glass
substrates. Their complete polarization dependent optical responses were reproduced, in-
cluding plasmon resonances, polarization coupling, and dependencies on Rayleigh anoma-
lies. Time would allow to test the model on only one additional system, a nanostructure of
densely packed tilted GaSb cones. There is confidence in the finished state of the COM-
SOL model, which can be used as a template for modeling the optical response of other
structures with 2D periodicity of both rectangular and hexagonal lattices. Minor adjust-
ments such as mesh setup will likely be necessary when implementing a new system,
depending on the structure geometry.

COMSOL is effective in computing the full-wave solution for single wavelengths,
however, solving for a large range of wavelengths was found to be very time consum-
ing. Efforts put into optimizing the model drastically reduced the computational costs.
For each increasing wavelength iteration, both the memory usage and computation time
were found to decrease exponentially. Computational cost is heavily dependent on the size
of the unit cell compared to the wavelength, which ultimately decides the amount of finite
elements the computer has to solve.

Results from these simulations can be represented as ellipsometry angles (both am-
plitude and phase differences), Mueller matrices, reflection coefficients, reflectance, heat
dissipation and field distributions. There is also confidence in the possibility to extract
phase shift information from S-parameters.

Outlook
We have shown that the COMSOL models work for a full 3D representation of each sample
unit cell. However, there are symmetries in the nanostructures that have not been exploited.
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For example, by building the geometry only to its symmetry point and simulating the
omitted geometry using symmetry boundary conditions, one may potentially reduce the
computational cost by a significant amount. The solution may even be more accurate as a
much denser mesh can be used. For sample 5B, this could mean a successful solution of
wavelengths much lower than 250 nm, while the tilted GaSb cones would come closer to its
24 eV goal. Furthermore, COMSOL’s support for cluster computing remains unexplored,
which could result in an extreme reduction in computation time.

The COMSOL model developed in this thesis may be used to study and optimize the
optical response of ordered nanostructures, notably applicable to structures with dimen-
sions beyond the limit of effective medium models. This can be useful both in terms of
designing new structures e.g. metasurfaces, and for parameter retrieval and characteriza-
tion of existing structures.
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Sönnichsen. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing.
Plasmonics, 5(2):161–167, 2010.

[8] Dick Bedeaux and Jan Vlieger. Optical Properties Of Surfaces (2nd Edition)., vol-
ume 2nd ed. Imperial College Press, 2004.

[9] Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromag-
netic waves. Journal of Computational Physics, 114:185–200, 1994.

[10] Jean-Pierre Berenger. Three-dimensional perfectly matched layer for the absorption
of electromagnetic waves. Journal of Computational Physics, 127(0181):363–379,
1996.

103



[11] Jean-Pierre Berenger. Numerical reflection of evanescent waves from perfectly
matched layers. In IEEE Antennas and Propagation Society International Sympo-
sium 1997. Digest, volume 3, pages 1888–1891 vol.3, July 1997.

[12] Jean-Pierre Berenger. Evanescent waves in pml’s: origin of the numerical reflec-
tion in wave-structure interaction problems. IEEE Transactions on Antennas and
Propagation, 47(10):1497–1503, Oct 1999.

[13] Craig F. Bohren and Donald R. Huffman. Absorption and Scattering of Light by
Small Particles. Wiley-VCH Verlag GmbH, Dec 2007.

[14] Thomas Brakstad. Spectroscopic mueller matrix analysis of plasmonic nanos-
tructures fabricated by focused ion beam. Master’s thesis, Norges teknisk-
naturvitenskapelige universitet, Fakultet for naturvitenskap og teknologi, Institutt for
fysikk, 2014.

[15] Thomas Brakstad, Morten Kildemo, Zahra Ghadyani, and Ingve Simonsen. Dis-
persion of polarization coupling, localized and collective plasmon modes in a
metallic photonic crystal mapped by mueller matrix ellipsometry. Opt. Express,
23(17):22800–22815, Aug 2015.

[16] Yong Chen and Hai Ming. Review of surface plasmon resonance and localized sur-
face plasmon resonance sensor. Photonic Sensors, 2(1):37–49, 2012.

[17] Weng Cho Chew and William H. Weedon. A 3d perfectly matched medium from
modified maxwell’s equations with stretched coordinates. Microwave and Optical
Technology Letters, 7(13):599–604, 1994.

[18] J.A. Woollam Co. Ellipsometry data analysis.
https://www.jawoollam.com/resources/ellipsometry-tutorial/ellipsometry-data-
analysis, 2017. Online; accessed July 2017.

[19] Bruce T. Draine and Piotr J. Flatau.

[20] M. S. Dresselhaus. Solid State Physics Part II, Optical Properties of Solids. MIT,
revised lecture notes edition, 2001. Online; accessed July 2017.

[21] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves
on metallic surfaces (sommerfeld’s waves).

[22] Walter Frei. How Much Memory Is Needed to Solve Large COMSOL Models? COM-
SOL Inc., Oct 2014. https://www.comsol.com/blogs/much-memory-needed-solve-
large-comsol-models/, Online; accessed August 2017.

[23] Walter Frei. Modeling Electromagnetic Waves and Periodic Structures. COMSOL
Inc., Jan 2014. https://www.comsol.com/blogs/modeling-electromagnetic-waves-
periodic-structures/, Online; accessed July 2017.

[24] Walter Frei. Simulation Tools for Solving Wave Electromagnetics Problems. COM-
SOL Inc., June 2015. https://www.comsol.com/blogs/simulation-tools-for-solving-
wave-electromagnetics-problems/, Online; accessed July 2017.

104



[25] Walter Frei. Using Perfectly Matched Layers and Scattering Bound-
ary Conditions for Wave Electromagnetics Problems. COMSOL Inc.,
Jan 2015. https://www.comsol.com/blogs/using-perfectly-matched-layers-and-
scattering-boundary-conditions-for-wave-electromagnetics-problems/, Online; ac-
cessed July 2017.

[26] Walter Frei. Keeping Track of Element Order in Multiphysics Models. COMSOL
Inc., Feb 2016. https://www.comsol.com/blogs/keeping-track-of-element-order-in-
multiphysics-models/, Online; accessed July 2017.

[27] Russell J. Gehr and Robert W. Boyd. Optical properties of nanostructured optical
materials. Chem. Mater., 8:1807–1819, 1996.

[28] Accurion GmbH. Principle of ellipsometry. http://www.accurion.com/spectroscopic-
ellipsometry, 2017. Online; accessed July 2017.

[29] Dennis Goldstein. Polarized Light. CRC Press, second edition, revised and expanded
edition, 2003.

[30] P. Grahn, A. Shevchenko, and M. Kaivola. Interferometric description of optical
metamaterials. New Journal of Physics, 13, Nov 2013.

[31] David J. Griffiths. Introduction to Electrodynamics. Pearson, third edition edition,
1999.

[32] P. S. Hauge, R. H. Muller, and C. G. Smith. Conventions and formulas for using the
mueller-stokes calculus in ellipsometry. Surface Science, 96:81–107, June 1980.

[33] M.-J. Hitoshi Kuwata, M.-J. Hiroharu Tamaru, M.-J. Kunio Esumi, and M.-J. Ken-
jiro Miyano. Resonant light scattering from metal nanoparticles: Practical analysis
beyond rayleigh approximation. Applied Physics Letters, 83(22):4625 – 4627, 2003.

[34] Qian Li Huanjun Chen, Lei Shao and Jianfang Wang. Gold nanorods and their plas-
monic properties. Chem. Soc. Rev., 42, 2013.

[35] Kristin Høydalsvik, Lars Martin S. Aas, Ellen Døli, Elin Søndergård, Morten
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