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Summary

This master’s thesis describes the development of a conceptual prototype of a smooth
actuation and control system of the eyes in a healthcare simulation mannequin with the aim
to achieve perceived human like eye movement and behavior. The chapters of this thesis
identifies, collects, judges and conceptualizes technologies to simulate the eye movement
and behavior. The project identifies and develops a system that achieves realistic human-
machine interactions, without a feeling of eeriness or unease, as is common with humanoid
simulations.

Prototypes are shown that tackle the problems of human-like movement and behavior.
The system prototype allows the operator to look through the eyes of the mannequin by
displaying the mannequin’s view to the operator in the head mounted device. The head
mounted device processes and captures the eye movement of the operator and mimics this
in mechanical actuation of the eyes of the mannequin. By letting the operator see the
environment around the mannequin, the operator is able to interact with medical personnel
through the mannequin.

Possibilities for automation of the behavior has been proposed, where the most promis-
ing is supervised learning in artificial neural networks. By using deep learning, it may be
possible to train an algorithm to mimic human behavior and thus removing the need for
operator control.

The system that has been proposed is an alpha prototype that has implemented critical
functions for operation and proof of concept. Implementation is dependent on further
work and optimization. The system has the potential to provide further dimensions of
simulations by introducing nonverbal communication and diagnostic tools that use the
eyes.
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Oppsummering

Denne masteroppgaven beskriver utviklingen av en konseptuell prototype av et system for
realistisk aktuering og kontroll av øyne i avanserte førstehjelpsdukker. Målet for oppgaven
er å kontrollere disse øynene på en måte som er realistisk både i form av bevegelse og
oppførsel. De forskjellige kapitlene i denne oppgaven identifiserer, samler, bedømmer og
konseptualiserer teknologier for å simulere øynenes bevegelser. Prosjektet identifiserer og
utvikler et system som oppnår realistisk menneske-maskin-interaksjoner, samtidig som at
det unngår følelser av ubehag eller avsky, som er vanlig ved interaksjon med humanoide
roboter.

Prototype-systemet lar en operatør se gjennom øynene til førstehjelpsdukken ved hjelp
av et headset. Headsettet viser operatøren det førstehjelpsdukken ser og fanger og pros-
esserer øyebevegelsen til operatøren mens de ser gjennom øynene til dukken. Mens op-
eratøren observerer omgivelsene, vil øynene til dukken bevege seg slik øynene til op-
eratøren beveger seg. Dette lar operatøren interagere med omgivelsene rundt dukken, på
en måte som kan hjelpe diagnosering og samhandling med medisinsk personell.

Det kan være muligheter for automatisering av styringen av øynene, basert på kunstig
intelligens. Det er lagt fram forslag for hvordan det er mulig å etterligne menneskelig
oppførsel basert på forskjellige input til systemet.

Systemet som er lagt fram er en alfa-prototype som har implementert kritiske funksjoner
for operasjon og beviser dermed konseptet. Implementering avhenger av videre utvikling
og optimalisering. Systemet har potensiale til å skape en ny dimensjon for medisinske
simuleringer ved å introdusere ikke-verbal kommunikasjon og diagnostiske verktøy som
avhenger av øynene.
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Preface
This thesis describes the development of a prototype system for actuation and control of
eyes in health care simulators, as requested by Lærdal Medical. It was written to fulfill the
requirements of the Product Development and Materials specialization at NTNUs Depart-
ment of Engineering Design and Materials. I was engaged in this project between January
and June 2017.

The task was created as a collaboration between my supervisor Martin Steinert, my sup-
porting coach Carlo Kriesi, representative from Lærdal Medical, Arild Eikefjord and me.
The project let me experience health care simulations and their complexity. With the help
of Medisinsk SimulatorSenter at St. Olav’s Hospital, I got valuable insights into the use of
mannequins in health care simulations.

The project has introduced me to the intricacies of biomimetic behavior control, and the
challenge has required me to obtain new knowledge of many subjects, such as computer
vision and Python programming.
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Chapter 1
Introduction

This thesis describes the development of a prototype system for actuation and control
of eyes in healthcare simulator mannequins and is based on the early stage development
and prototyping of the product as described in Appendix B (Nygaard, 2016). The thesis
is written in collaboration with Lærdal Medical (later referred to as Lærdal), who have
requested the development of eyes that can be utilized in medical simulations.

Lærdal is an international company that develops advanced healthcare simulation man-
nequins intended to be used in training of medical personnel. The company has its origins
in Stavanger, and started out as a toy manufacturer, but transitioned into production and
development of mannequins with the purpose of advancing emergency care and resuscita-
tion.

Today, Lærdal manufactures healthcare simulation mannequins (later referred to as just
mannequins), which are advanced simulation machines that are able to exhibit complex
medical scenarios. The mannequins are used in all kinds of simulation scenarios, both
high and low stress. High stress simulations can be emergency care, cardiac arrests or
similar, while low stress simulations can be situations where the patient is awake, but
experiencing discomfort or symptoms that the simulation participants have to uncover.

Simulations are acted out scenarios that are intended to let medical personnel practice
treating conditions that are rare or dangerous to practice on real patients. Some simulations
are used to train students in interactions with patients before they are allowed to treat real
patients. Other simulations are stress tests for emergency response teams, such as cardiac
arrest response teams in hospitals. A simulation revolves around the mannequin, which is
an advanced machine that is able to simulate many of the symptoms that a human could
show. The mannequin has advanced communication systems, sensors and actuators, and
it is able to track its interactions with the medical personnel. It can measure such things
as if chest compressions are performed correctly, or if a defibrillation is done when it
is actually needed. The mannequin can display mechanical responses, such as pulse or
breathing, but also more advanced interactions can be found. The mannequin is able to
simulate heart conditions that can be read by an ECG, or the medical personnel can listen
to its breathing to discover symptoms affecting the lungs. In Figure 1.1, pictures of the
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mannequin supplied by Lærdal is shown with the following features:

1. RFID chips embedded in the skin of the mannequin can be seen as small circular
extrusions on the inside of the skin. These can be found with a tool that replicates
ultrasound equipment and displays images of internal organs as if they are observed
at that particular spot.

2. The green area is a patch for simulated defibrillation. To avoid destroying the man-
nequin, the medical personnel use a special defibrillator and the mannequin responds
as if it is a real defibrillator.

3. The rib cage contains microphones that can simulate heartbeat and lung sounds
when the medical personnel listen with a stethoscope. The rib cage can be com-
pressed when performing chest compressions.

Figure 1.1: Lærdal’s mannequin opened up

During simulations, an operator will control the situation and the events that occur.
The operator is in control of each scenario and can change if needed. The control comes
from the simulation software that is available. The simulation can be controlled from a
SimPad touch device (Figure 1.2) or from a computer with the correct software.

As described in Appendix B (Nygaard, 2016), a lack of emotional connection between
medical personnel and mannequin could be observed in some simulations. The medical
personnel did not display an empathetic behavior towards the mannequin, as you would
expect towards a human patient. Certain behaviors, such as eye contact when talking to
the patient, were uncommon. This could lead to behaviors that would not be expected in
a real life scenario. This created the basis for the prototypes developed in Appendix B
(Nygaard, 2016). Figure 1.3 shows two of the prototypes from this process.

This master’s thesis is sponsored by Lærdal Medical, and the scope is to develop, build,
and refine a conceptual prototype of a smooth actuation and control system of the eyes
in a healthcare simulation mannequin with the aim to achieve perceived human like eye
movement, behavior and interaction. The control system could further be used for training
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Figure 1.2: Lærdal’s SimPad with two of the interfaces available

an autonomous control system based on artificial intelligence. This master’s thesis is part
of NTNU’s mechanical engineering master’s programme with a specialization in product
development and materials, and gives 30 ECTS.

The thesis is written as a research project at TrollLABS at NTNU. TrollLABS is a
makerspace (section 2.2.3) and research lab that tries to uncover, understand and leverage
early stage engineering design paradigms and push the boundaries of Norwegian product
development, creating radical new solutions.
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(a) Confirming feasibility of pupil tracking

(b) Testing actuation based on pupil tracking

Figure 1.3: Prototypes from the Project Thesis in Appendix B
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Chapter 2
Background

2.1 Project thesis
This master’s thesis was preceded by a project thesis, also known as a premaster thesis,
with the same theme (Appendix B (Nygaard, 2016)). The project thesis was part of the
mechanical engineering master’s programme at NTNU, giving 15 ECTS, equivalent to half
of the ninth semester’s workload. The goal of the project thesis was to investigate tech-
nologies related to the eye’s of patient simulator mannequins. This investigation consisted
of the following tasks:

• Generating concepts

• Building prototypes

• Building test setups

• Testing and comparing alternatives

• Judging concepts

This was performed over 4 months in 2016, and the conclusions drawn from that work
was the basis for this master thesis. The most important conclusion of the project thesis
was that in healthcare simulations where a patient simulator mannequin is included, a lack
of empathy was observed. Medical personnel were observed to not interact with the man-
nequin in the same way that is expected when the patient is human. Most significantly,
the medical personnel did not look directly at the mannequin when talking to it, and the
interactions lacked empathy. Simulation participants reported that there is no observed dif-
ference in a mannequin that is awake and one that is dead. Some responses, such as pulse,
breath or vocalization where the mannequin is completely still are not easily relatable and
in a stressful situation they may be hard to recognize. One incident was reported where
medical personnel started CPR on a mannequin that was talking to them.
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The project thesis explored how the eyes of the mannequin could improve the interac-
tions between medical personnel and the mannequin and how the eyes could be actuated
in a way that supports this interaction. The thesis concluded with a need and technological
possibility for real time human control of the eyes of the mannequin.

2.2 Literature review
This section reviews the current standing of international academic research in the subjects
that this thesis investigates as well as the scientific basis for the development methodology
that this thesis utilizes for prototype development.

2.2.1 Development methodology
Smith and Reinertsen (1992) coined the phrase ”fuzzy front end” of product development
to describe how the early stages of prototyping are unclear, uncertain or ”fuzzy”. They
explained that the early stages of the development offer the best opportunities for large,
cheap changes to the product development scope.

The importance of investing in the fuzzy front end is further explained by Leifer and
Steinert (2011), who argues that later stage prototypes cost an order of magnitude more
in resources, both in time and money, than early prototypes. This difference is due to
prototyping materials and environment, and how much is invested in each prototype. Early
stage prototyping allow for experimenting with specific ideas or system interactions in
cheap materials. Testing simple interactions or critical functions do not need to be created
in high resolution in order to get feedback on the idea.

Edelman et al. (2009) explain that low resolution models afford paradigmic shifts,
while high resolution models afford parametric shifts. This is why the front end of the
development cycle should be inhabited by low resolution prototyping. Paradigmic shifts
come easier when when prototypes are created in cheap materials with little time invest-
ment. It is harder to discard a milled aluminium part than a clay model, even though they
represent the same shape, only with different resolution.

As explained by Leifer and Steinert (2011), prototypes are built to test a specific idea
and or system interaction. This means that in essence, a prototype is an experiment that
tries to uncover knowledge. As described by Smith (2007), an experiment allows prod-
uct developers to investigate new technology and testing its limits without committing to
how, or whether, they will use it. This means that prototypes can enable product develop-
ers to probe the feasibility of an idea, concept, interaction, simulation or similar to gain
knowledge while reducing risk.

When partaking in radical product development, the goal is often unclear. Unknown
unknows (Sutcliffe and Sawyer, 2013) will be uncovered at some point and change the
requirements and thus the course of the development. To avoid such paradigmic shifts late
in the process, gradually refining prototypes from low resolution to high resolution while
testing continuously, will decrease the investment before a potential unknown unknown
reveals the need for redesigning. Being aware that the prototype you are working on
may have to be thrown away is the basis of the wayfinding that design engineers do, as
described by Edelman et al. (2009). Steinert, Martin and Leifer, Larry J. (2012) described
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the Hunter-Gatherer Model to find one’s way when designing products, as opposed to
a linear, planning based development process. This model was further refined into the
Wayfaring Model (Gerstenberg et al., 2015), which explains that probing ideas is how the
unexpected discoveries of unknown uknowns are handled. By prototyping rapidly and
being ready to change often, a wider base of knowledge can be captured. This knowledge
will support the product into its final form by letting the product developers have wider
knowledge of the technical and sociological aspects of the product development challenge.
Each probed idea can be explained as an iteration where knowledge is created and tested,
and each probe is a tool to discover critical functionalities and subsequent requirements
(Kriesi et al., 2016).

The Wayfaring Model (Figure 2.1) describes one such iteration as a probe into a con-
cept, simulation, prototype, idea or similar. A probe creates knowledge in design-build-test
cycles, where each cycle consists in generating concepts and converging some of these
concepts into a testable prototype. To gain knowledge about the complex system that a
prototype often is, the only viable method of testing it, is to build the system (Baldwin
and Clark, 2000, p. 273). As knowledge grows about the prototype, it can be refined and
remade into higher resolution, culminating in an alpha and beta prototypes.

Alpha prototypes are the first functional prototypes that contain all the critical func-
tions, while not being ready for commercial testing. An alpha prototype may provide a
proof of concept while neglecting features that are out of the scope of the prototype. Beta
prototypes are ready to be tested on users.

2.2.2 Diverging and converging
Generating concepts is a process that can be structured, as discussed by Friesike and
Gassmann (2014), who shows different techniques for leveraging creativity in an inno-
vation setting. In a product development process, the generation of new ideas and then
choosing the right idea for next development iteration, is important.

There is a difference between generating concepts and converging them into a testable
prototype. Eris (2003, 2004) describes how questions contribute to the design process by
separating them into two categories. Generative Design Questions (GDQs) are questions
that are open to unknown answers where the questions diverge away from the facts, to the
possibilities that can be generated. Such questions enable divergent thinking by opening
up the solutions space; ”How many ways can we ... ?”, ”Why not ... ?”, ”Is there another
way to ...?”.

On the other side are Deep Reasoning Questions (DRQs), which are converging ques-
tions that reduce ambiguity, in order to make design decisions. DRQs are seeking a ra-
tional and truthful explanation to the question, to reduce the number of proposed design
concepts. The questions focus on deliverables and reiterating the goals of the design pro-
cess. ”Why is concept C1 better than concept C2 in terms of ...?”, ”How long does it take
to produce concept C3?”.

This thesis has been utilizing principles from the Wayfaring Model for generation of
concepts and development of prototypes. While the early stage prototyping, as described
in Nygaard (2016), was done with low resolution prototypes and a large amount paradig-
mic shifts, the development that this thesis considers has evolved into higher resolution
prototypes, culminating in an alpha prototype of the system.
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The prototypes described in this thesis and in Nygaard (2016) have been developed
by the knowledge that has been gathered from following users and probing into needs
and technological possibilities that have been found. Leifer and Steinert (2011) discusses
the importance of the user and their needs in a product development process. Finding
the actual users of the product, their needs and what requirements these needs imply, are
important for concept generation, but even more important for converging the concepts
into a prototype. The need finding of this thesis was performed mainly in the preceding
project thesis (Appendix B (Nygaard, 2016)).

2.2.3 Agile methods in enterprises
The word agile means to be able to move easily and change quickly, and was used by
software developers in the Agile Manifesto (Cohen et al., 2003) to explain how traditional,
linear development processes are creating more work, more cost and less effectiveness
than the agile methods that they proposed. Since then, agile methods have been adopted
into product development, and the methods for product development explain that embrac-
ing the uncertainty of the product development process is a major point in reducing the
cost of rework due to immature decisions (Smith, 2007; Leifer and Steinert, 2011). While
the classical way of handling uncertainty has been to improve forecasting of product re-
quirements, Thomke and Reinertsen (1998) show how a flexible management strategy that
tries to increase product development agility can outperform projects that use inflexible,
forecast-based methods. Wayfaring is one way of staying flexible in the product devel-
opment process, as agility in development is based on being ready to change and to act
rapidly, which are core values of the Wayfaring Model.

As explained by Smith (2007), the flexibility of set-based design principles emphasizes
exploring and keeping the design space open, so as not to lock into an option prematurely.
The idea of flexibility in the design process calls for making the decision in the last possible
moment. If there is no need to choose between two concepts, delay the choice and develop
both. If resources demand that the choice be made, choose the best one, based on the
current

Fixing requirements early may cause critical aspects to be discovered too late in the
process, as accurate information is not yet available. This can lead to high adaption costs to
overcome the aspect when it is discovered. Additionally, as product complexity increases,
the difficulty of forecasting requirements increases exponentially.

So why do managers choose to operate in a requirement driven product development
process? This is mainly thought to be about deliverables and measurability. It is easier
to report achievements, deviations and time usage when these can be quantified. When
a requirement is fixed, the achievement of this requirement can be easily documented
over time, as it will either be fulfilled, partially fulfilled or not fulfilled. Contrarily, the
agile product development process is more difficult to quantify, as goals, design paradigms
and knowledge about the challenge will change over time. As described by Heck et al.
(2016), the quantification of fuzzy front end projects is possible, although the literature
that supports this is sparse.

The uncertainty of fuzzy front end engineering makes it difficult to take the step away
from regular, easily quantifiable requirement driven product development. As described
by Kriesi et al. (2016), it might be beneficial to use the agility of the Wayfaring Model to
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overcome the uncertainty, and use the generated knowledge that comes from prototyping
iteratively, to establish requirements.

People factors in product development

Many companies try to manage early stage product development projects like other proj-
ects. This is not optimal, as product development in the fuzzy front end stage is different
from other processes where instruments like milestones, stage-gate elements and other
process control systems may be needed. While process leadership is important here as
well, the key capability in the fuzzy front end is to manage people. Smith (2007) shows
that people factors increase labor costs for early stage product development projects ten
times more than any other factor.

In the early stages of a product development project, the key capability for a good
team is to identify the creative potential of the individuals and give them meaningful work.
Teams that are motivated by challenging and interesting tasks are much more successful
than those who work for status or money alone (Gassmann and Schweitzer, 2014).

In general, teams benefit from being built up by both generalists and specialists, while
early stage product development projects may benefit most by generalists, as they may
be more capable of changing design paradigms. While specialists have deep knowledge
about one or a few topics, generalists have a general knowledge about many topics. This
makes specialists harder to utilize in product development tasks with a broad scope, such
as the fuzzy front end has. Still, some people can be categorized both as generalists and
specialists which is often described as ”T-shaped” people. They have broad knowledge
on top and deep knowledge in one or a few topics. T-shaped people are optimal for early
stage development teams, as they can contribute in most fields, and may provide insights
about their specialist topics that other team-members might not have (Smith, 2007).

The importance of makerspaces

As mentioned in the introduction, TrollLABS is a makerspace and a research lab. Aca-
demic makerspaces are education environments for students, with the goal of promoting
collaboration, design and manufacturing of prototypes (Wilczynski, 2015). Successful
makerspaces promote prototyping and creative confidence by providing access to ma-
chines, tools and space, but most importantly through collaboration and communication
with other users of the space. By having available educators, design and manufacturing
professionals, users can lean on others to gain confidence and ability and thereby prototype
more quickly and accurately.

2.3 Eyes and nonverbal communication
In human-human communication, a lot of information is transmitted through nonverbal
communication, and the eye region draws significantly more attention compared to any
other area of the face and there appears to be dedicated areas of the brain specialized
for processing eye information (Hall and Knapp, 2013). Gaze behavior is moderated by
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culture, age, gender, genetics and more. Still, eye contact and mutual gaze between pa-
tient and medical personnel has been found to impact patient-centeredness and medical
personnel’s awareness about the patient’s psychological distress and cognitive functioning
(D’Agostino and Bylund, 2014).

2.3.1 Uncanny valley
As human likeness in humanoid robots increases, there will be an increase in how familiar
the robot feels, until a certain point called the uncanny valley (Ishiguro, 2007). The un-
canny valley is the point where the robot looks and behaves very much like a human, but
not quite, which makes it feel strange and disconcerting. This is true for all aspects of the
humanoid, including the eyes. The minute details and the vaguely strange behaviors that
separate the humanoid from humans is what triggers a feeling of unease with the observer.
And the eyes are no exceptions, rather the opposite, as they gather a major part of the
attention when interacting with humans or humanoids.

2.3.2 The eye’s movements, and the tracking of these
Duchowski (2007) describes the theory and practices around eye tracking methodology.
Eyes have three major movement patterns, saccades (rapid shifts in gaze direction), ver-
gence (shifting focal point depth) and smooth pursuit. Identification of these movements
can be assumed to provide information of gaze and visual attention.

There are four categories for eye movement measurement, which can be broadly de-
fined as:

• Electro-Oculography - measuring the electropotential differences of the skin around
the eyes.

• Scleral contact lenses - contact lenses that mechanically or optically provide location
measurements.

• Video-based pupil/corneal reflection - Using infrared light, the reflection of the
cornea is measured relative to the center of the pupil.

• Video-Oculography - Video-based detection of the pupil and it’s position. This is
the techinique utilized in this thesis.

Duchowski (2007) goes in details to explain how it is possible transform the coordi-
nates of the detected pupil into 3D gaze coordinates or projected onto a 2D plane. The
coordinates of the detected pupil can be translated to parametric ray representation of the
gaze direction. The book shows several techniques for optimizing tracking of gaze in both
3D and 2D. As exlplained in section 5.2, this project does not require gaze tracking, as the
mechanical actuation can be extrapolated from observed pupil coordinates, either directly
or by transforming them. The transformations described in section 5.2 could improve
accuracy by accounting for the curvature of the eye ball.

10



2.4 Technology review
This section reviews what technologies are available to solve the needs that have appeared
during the product development process and explains why the specific technologies have
been chosen. Price and availability have been major decision points for most of the pur-
chases. A driving factor in product development is time, and delivery times are important
for prototype iterations. This means that some products may solve the challenges to a
lesser degree than other products, but have been chosen for their availability.

2.4.1 Single board computers
Single board computers (SBCs) are small computers that allow the user to perform tasks
that require processing or internet connection on a small form factor and with an operating
system. This makes them popular in prototyping Internet Of Things (IOT) applications.
The most commonly used SBC for low end prototyping is the Raspberry Pi, which offers
a low cost platform for development, with access to a large and active internet community.
There are other SBCs that have more processing power, more storage, better GPUs and
so on, but there are none that are as accessible in terms of community. There are thou-
sands of projects shared online that use a Raspberry Pi as the core computing unit, which
makes it easier to learn for people with less knowledge about computers. The form factor
and price of SBCs make them suitable for integration into prototypes and for small scale
development projects.

2.4.2 Programming languages
In this project, Python has been used as the main programming language. Python is a high
level programming language that was developed with simplicity in mind (Rossum, 1995).
The language uses indentation to separate blocks, as opposed to braces or keywords, to
improve readability. Python uses a syntax that allows users to solve tasks in fewer lines of
code than for example C++ or Java.

Python is an interpreted language with interpreters for many operating systems. The
operating system Raspbian Jessie, that runs on the Raspberry Pi, has preinstalled inter-
preters for both Python 2.7 and Python 3. This availability in combination with the sim-
plicity of the syntax, made Python easier to learn and implement as opposed to for example
C++, even though C++ is more efficient.

2.4.3 Microcontrollers
Arduino is a company that produces open source single board microcontrollers with soft-
ware. The Arduino Uno board provides digital and analog input/output (I/O) interfaces and
comes with an integrated development environment (IDE) for programming. The Arduino
single board microcontrollers are made to allow easy prototyping electrical connections,
and to make microcontrollers more accessible for those who have limited electronics ex-
perience.
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As with the Raspberry Pi, Arduino has a large and active online community with many
open source projects. This makes the technology easily available and prototyping becomes
easier.

2.4.4 Wireless communication
Some alternatives were considered for communication between the devices described in
section 4.3, although the solutions that were chosen were available in TrollLABS during
prototyping, and were chosen as a result. The camera that is used is a WIFI camera that
streams the video to a local web page. This camera was not in use in the lab, and suffi-
ciently solved the challenge of wireless video streaming. Other options for transmission
could be radio, as is commonly used for drones and other remotely operated vehicles.

The wireless communication from the Arduino to the actuators was investigated more
thoroughly. Arduino has some breakout boards for wireless communication, such as Blue-
tooth or WIFI, but they are not very easy to set up. In parallel to this project, one group
associated to TrollLABS was developing an Arduino library for simple radio frequency
communication between Arduino microcontrollers. This library is described in more de-
tail in section 4.4.3 and was chosen for its ease of implementation and available hardware.

2.4.5 Near eye displays
In virtual reality headsets, near eye displays (NEDs) are used along with lenses to display
images on a screen that is usually between 3-10 cm away from the eyes. To create a
comfortable viewing experience, these displays need to be high resolution and have a high
refresh rate. In this project, these factors were considered less important, as the price and
availability of small, high resolution screens with a high refresh rate is quite poor. In
addition, the Raspberry Pi lack the capability to process video streams with such a high
resolution and frame rate.

Display interfaces are not always compatible with the Raspberry Pi. This is true both
for the MIPI display serial interface and the HDMI that the SBC has. The display that
is used in this project, as detailed in section 4.3.1, was chosen for its short delivery time
and low price. The display also has a fairly high resolution and refresh rate, although it is
noticeable that it is not optimal. It is possible to see individual pixels while wearing the
head mounted device.
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(a) Wayfaring

(b) Probe

Figure 2.1: Wayfaring consists of probing ideas to uncover unknown unknowns.
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Chapter 3
Prototype Development

The development of the product described in chapter 4 is based on the prototypes devel-
oped in the project thesis (Nygaard, 2016). This chapter describes the prototyping direc-
tions that were explored as a result of the findings in the project thesis. The prototypes
were first developed in a low resolution before being refined and redesigned to perform
the desired functions. This chapter is structured in such a way as show major prototyping
milestones, the learnings and conclusions of these milestones, and how the work continued
based on this.

The prototypes developed here were developed by way of probing into certain features
or functions while trying not to distort the understanding of the whole system. This means
to separate aspects that are unimportant from the development probe, and to filter the
qualities that are explored (Lim et al., 2008). In effect, this means to make the system
architecture modular, where each part, for example the control system for the actuator rig,
is made independent and individually modifiable. Being able to transform aspects of the
system without having to redesign the whole system is somewhat inspired by set based
concurrent engineering of Toyota (Sobek et al., 1999) as described by Smith (2007). This
philosophy is based on delaying design decisions to avoid cross-discipline contradictions
in a late stage.

Modularity in the design process allows the developer to work with aspects of the sys-
tem individually, changing and testing these aspects as knowledge grows. The probing
that is described in section 2.2.1 can be performed on each module as long as the inter-
faces between each module allow for changes. In this thesis, the different modules can be
broadly defined as:

• Processing

• Displaying

• Capturing eye movement

• Actuation control
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• Actuation

These modules require interfaces that allow for modular changes. The interface be-
tween processing and actuation control was standardized early to be a linear control out-
put represented by byte values. The interface between actuation control and actuation was
similarly standardized. This allowed for change in actuators, communication protocols
or other inter-modular aspects, and the electromagnet actuator (section 3.2.1), the eye-
controlled robot (section 3.2.3), the camera inside the eye (section 3.2.4) and the actuator
rig (section 3.2.5) were all controlled with the same interface and only minor changes in
code.

The modular approach was also implemented in the code. The control signal output
was easier to simulate with a web-camera and a facial recognition algorithm and thus, a
conversion function that allowed for different input signals to generate output structured
in the same way, was created. This meant that the generation of actuation output could
be changed, but the output signal formatting stayed the same. The actuation could be
controlled with potentiometers (section 3.2.1), with face recognition or with eye control.

The modularity described here can be compared to the modularity described in Bald-
win and Clark (2000), which is describing modular development of computers and soft-
ware. This book discusses many aspects about modularity, and some of these can be used
to explain design methods in the early phase of complex systems. As explained in the
text, the essential aspect of modularity lies in the fact that subsets of the design are bro-
ken out at the beginning of the design process. Tasks within different modules can then
proceed independently, and the resulting designs can be combined in a variety of ways by
standardizing the interfaces between each module.

Highly modular systems may result in higher degrees of complexity. Given this com-
plexity, it simply is not possible for designers to know enough about the system to elimi-
nate all uncertainty. Thus each new design is fundamentally an experiment. Its outcome
may be guessed, but it cannot be known ahead of time. A different way to attack the prob-
lem is to design tests so that the best module can be selected at its own level. To evaluate
a module without embedding it in a prototype system requires detailed knowledge about
what the module contributes to the whole, as well as how different modules interact. In
particular, dysfunctional interactions (like one module transferring heat to its neighbor, or
a subroutine failing to return to the calling program) must be understood, so they can be
avoided (Baldwin and Clark, 2000).

This thesis has combined the module probes into major milestone prototypes, although
they were not developed as one prototype, but rather in module probes. This is done
primarily to apply structure to the presentation of the development process and to be able
to clearly define the evolution of the prototypes.
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3.1 Head mounted device
To be able to increase emotional connection between medical personnel and simulator
mannequin, a device that can track the eye of the operator while displaying the environ-
ment around the mannequin to the operator was investigated. During exploratory proto-
typing, a head mounted device was tested and managed to prove that it was possible to
create actuation based on where the operator was looking.

3.1.1 Prototype 0
Nygaard (2016) describes the development of a prototype that showed the possibility of
actuating servos with the control input being based on the movement of the operator’s eye.
This prototype was made from a cardboard casing that is designed to hold your phone
while you run a virtual reality app on it. A camera was connected via USB to a Raspberry
Pi that was attached to the casing. The Raspberry Pi translated the position of the user’s
pupil and sent it to an Arduino. The Arduino actuated two servos that moved in two axes,
letting a ball simulating an eye move in the same way that the user’s eye moved.

Figure 3.1: The prototype for the head mounted device from the project thesis. The ”eye” moves
based on the user’s eye movement.
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From this prototype the key learning was that it is possible to achieve actuation as
a response to input from the operator’s eyes. However, the actuation of the servos was
jerky, there was significant lag, and both the code and the mechanical construction were
unstable. Additionally, there was no display inside the casing to display the environment
to the operator.
There were several flaws with the prototype, and the tasks for the next prototype iteration
were:

• Get a better camera, compatible with the Raspberry Pi

• Find a small, high resolution display compatible with the Raspberry Pi

• Improve the mechanical structure, find a casing that can fit the components and
provide a good view of the near eye display.

• Separate the actuation and data gathering, as the actuation would be in the head of
the mannequin

3.1.2 Prototype 1

Figure 3.2: The first prototype for the head mounted device.

The first prototype (Figure 3.2) that was officially a part of this thesis was constructed
by using parts of a cheap virtual reality headset. The goal of this prototype was to refine
the technological aspects that had been uncovered in the project thesis, and to separate
actuation from capturing of data.

The plastic casing made for a sturdier build than the cardboard had offered, and the
built in lenses were possible to adjust and focus. A display and camera was purchased and
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installed in a laser cut casing that was connected to the headset. The laser cut casing also
had mounting holes for the Raspberry Pi and the signal boards for the display. Infrared
LEDs were installed in the headset to illuminate the left eye. The camera was a Picam
NoIR that has no infrared filter, that was mounted straight in front of the left eye of the
operator. The display was held in place by the laser cut case, and let the image be displayed
only on the right eye.

This prototype showed that it was possible to display an image to the operator and track
where the operator is looking. The tracking was still slow and unstable, and the laser cut
casing was not optimally designed. There was light leakage and the display was moving
around in the frame. The infrared LEDs were running on battery power, which was not
a permanent solution, and they did not illuminate the eye sufficiently in the position they
were in. The camera offered an accurate view of the eye, and the movement could be
tracked from the video stream provided by the camera.

The displayed environment as described in section 4.3.1 created the environment that
the operator reacted to. Capturing and processing how the operator reacted to this en-
vironment made it possible utilize a human for the control system input. The operator
automatically reacted to what they saw, and their gaze subconsciously scanned the envi-
ronment as it changed, making control output for both micro and macro movements that
could be actuated.

The next steps were to optimize the tracking algorithm, increase efficiency of the code
and to redesign the frame for the electrical components. The electronic circuit for the
infrared LEDs needed to be made permanent, and the positioning of the LEDs needed to
be optimized.

3.1.3 Prototype 2

Figure 3.3: The second prototype for the head mounted device.
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In the second iteration of the head mounted device, the goal was to remake the design from
prototype 1. The laser cut frame was improved and the electrical components were better
connected to the frame. The infrared LEDs were moved to the left of the users eye, which
illuminated the eye better. The LEDs were connected to the 3.3 volt output of the Arduino
to be able to run all the time.

In addition to this, threading was introduced to the coding. This means to separate
threads (functions calls, tasks) in such a way that the operations can be run in parallel. This
allows for the detection algorithm to run separately from the display operations, which
makes for a faster detection and displaying.

Further on, the detection algorithm was replaced. Where a Haar Cascade classifier
was used in the project thesis (Appendix B, Nygaard (2016)), a Hough Circle detection
algorithm made for a much more robust detection. While it was better than the Haar
Cascade classifier, the Hough Circle detection needed parameter tuning that would take a
lot of testing. The parameters are described in section 4.4.2.

The casing needed to facilitate cable management and to keep everything stable and
out of the way. The HDMI cable that was used was too long, and a shorter one was
ordered. The circuit boards would also need rearranging to accommodate different wires
and to facilitate interaction with the Raspberry Pi in terms of external connections such as
keyboard and mouse.

3.1.4 Prototype 3

Figure 3.4: The laser cut case was too close fitting. Power cable and 40 pin LVDS from the display
are interacting.

The third prototype had a goal to encapsulate all components in a case, hidden from view.
The prototype enclosed the electronics fully in a laser cut case that was attached to the
plastic headset. The infrared LEDs were embedded in the virtual reality headset.

Key learnings of this prototype were that the cable arrangement was sub-optimal.
There were cables that interacted mechanically when using the device. The 40 pin LVDS
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cable was being tugged by the power chord when moving the headset around, as seen in
Figure 3.4, which might damage it long term.

Due to the close fit of the laser cut parts, there was some heat build-up, and not all
cables fit perfectly. In addition to this, the Raspberry Pi had a tendency to short out due to
the lack of insulation between it and the backside of the display, which is made in metal.
This was the result of removing one layer of laser cut MDF that seemed unnecessary. Next
prototype would demand a restructure of the laser cut case and added insulation between
the display and the Raspberry Pi.

3.1.5 Prototype 4

Figure 3.5: Final prototype of the head mounted device in this project.

The goal of this prototype was to refine the previous iterations into a functional design.
To counteract overheating, a silent computer fan was installed, powered with USB power
from the Raspberry Pi. The laser cut casing was redesigned to better accommodate cooling
and wiring. The casing was properly attached to the headset with a sealing agent that kept
light out and held the case securely in place, and a computer fan was installed to cool the
components.

The head mounted device was now robustly constructed, operational over longer peri-
ods of time, and the code was being optimized for stability, user friendliness and detection
accuracy. The prototype had eliminated shortage of the Raspberry Pi, and the mechanical
structure of the case was optimized for longer operations. The electronics were organized
and kept stable by the case, so that there was no mechanical wear on them.
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Further work on the head mounted device was purely done in terms of software, and
this prototype is considered an alpha prototype for the head mounted device. A next iter-
ation could have been built from scratch with better/more efficient electrical components
and in a lighter material.

3.1.6 Looking through the screen
One idea of looking through the display in the headset was investigated by placing a cam-
era behind a standalone deconstructed display, and detecting infrared through the display.
Some rough prototypes were made to confirm that it was indeed possible to detect in-
frared through the LCD screen, when removing the backlight. When this was confirmed,
the screen was mounted in front of the camera, and the screen was put on the headset.
The screen was off, with no backlight, and it was possible to detect the pupil of an eye
illuminated by infrared through the display, as seen in Figure 3.6.

Although it was possible to see infrared images through the screen when the screen
was turned off and had no backlight, there are some major hurdles to overcome before
managing to produce a camera and display module that can perform the tasks that are
required in this project. For the screen to operate properly, the backlight panels need to
be removed where the camera is placed, and there might be a problem with illuminating
the display. Further on, the LCD functions by polarizing the crystals in the display matrix,
which will reduce the amount of light that shines through, making this even harder to
achieve. The feasibility of this module probe is low, but with a high amount of research, it
might be possible.

Figure 3.6: Seeing through an LCD screen without backlight panels. Left image shows a camera
that detects infrared light through the screen. Right image shows an eye as it is observed with the
camera through the screen.
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3.2 Eyes of the mannequin
Several ways of actuation were explored during the development work in this thesis were
based on the learnings described in Appendix B (Nygaard, 2016). The prototypes for
actuation are described in this section, detailing learnings they represent and why they are
explored.

3.2.1 Magnet actuation
As a result of the prototyping in the project task, a potential for noiseless actuation by way
of magnets was discovered and this was further investigated here. A rig was created to be
able to actuate a permanent magnet attached to an actuation rod, by controlling the power
of electromagnets. The power of the magnets was adjusted with pulse width modulation
(PWM) of the power supply. The magnets were controlled by 2 potentiometers and an
Arduino. The Arduino generated PWM signals that controlled the power supply to each
electromagnet through a MOSFET circuit, as seen in Figure 3.7.

It was possible to move the magnet accurately in two axes using the setup in Figure
3.7. Still, this control could only be exhibited if the actuation rod hung vertically when the
magnets were turned off, i.e. the rig needed to be placed flat on the ground.

If the rig was tilted, gravity was stronger than the power of the magnets on low PWM
cycles. This means that the actuation would only start when the electromagnets managed
to overpower gravity. When this happened, the permanent magnet would jerk towards the
electromagnet rapidly. Thus it was impossible to tilt the rig without some mechanism of
keeping the permanent magnet’s default position straight above the center of the electro-
magnet grid.

One solution was attempted in order to overcome the issue about gravity, namely to
connect a spring to the actuation rod that kept it at the default position. This did not solve
the problem, as even more power was needed to overcome the force of a spring that was
powerful enough to overcome gravity.

In addition to the above difficulties, the fact that noise is minimal with electromagnets
is overturned when using PWM. The pulsing signals range in frequency, but the frequen-
cies are in the audible spectrum, and the force of the magnet creates vibrations in the rig
and thereby also sound. Further on, the coils in the electromagnets have some resistance,
and the magnets eventually started to grow hot when high power was applied.
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(a) Magnet rig with a permanent magnet over 4 electro-
magnets.

(b) Control Schematic. 4 electromagnets, 4 MOSFETs and 2 potentiometers, controlled by an Arduino Uno.

Figure 3.7: The magnet rig.
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3.2.2 Projected eye
While looking into methods of actuation as an alternative to mechanical actuation, pro-
jecting an image of the eyes onto a spherical surface was investigated. These prototype
iterations had the goal of investigating if this was a viable method for designing eyes. The
first prototype was created by vacuum forming a clear plastic half sphere. This half sphere
was sanded down to better capture the projected light. A projector was held behind the
surface and moved back and forth to simulate movement of the eye.

The prototype showed that the appearance of the projected eye was promising. Still,
the sharp light emitted from the projector proved somewhat annoying, and diminished the
realism of the prototype.

The second iteration of the prototype added crude eyelids, made the iris larger and
added a camera above the eye. This camera was connected to a computer that ran a facial
recognition algorithm while displaying the iris. The prototype made the eye look straight
at the face of the person that looked at it, if their face was in the frame of the camera.

While the prototype’s behavior was impressive and users reported that it felt really
cool, the sharp light from the projector made it very unrealistic. Future work would be to
develop some way of diminishing the light shining through.

(a) First prototype (b) Second prototype

Figure 3.8: The two eye projection prototypes.
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3.2.3 Eye controlled robot
While investigating wireless actuation control, a simple robot was used to prototype the
transmission and response of signals. This goal of this prototype was not to make a robot,
but to rapidly test how it was possible to create wireless control and transmit a video feed
wirelessly in a dynamic environment.

This robot was communicating with an Arduino connected to the head mounted device
with wireless radio frequency (RF) data transmission to another Arduino. The robot had a
wireless Trek AI-Ball WIFI camera that could communicate with the Raspberry Pi in the
head mounted device, which in turn can display the image from the camera to the operator.

The robot showed that it was possible to control the actuators wirelessly while dis-
playing the image from the camera to the operator. As the operator looked to one side, the
robot would drive to that side. The range for the camera is estimated to around 30 meters,
or around 7 meters with a closed door in between. The RF chip’s range is much larger and
is not a limiting factor. The testing showed the possibilities of the wireless transmission of
video and actuation signals, and the concept was adapted into the next prototypes.
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(a) Robot from the front (b) Robot view

(c) Camera view

Figure 3.9: The eye controlled robot and what the operator sees inside the head mounted device.
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3.2.4 Camera mounted inside eyes
The idea of putting the camera inside one of the eye balls was investigated with the proto-
type in Figure 3.10. By mounting the camera inside the eyes, the camera would be invisible
to the observers, as opposed to a stationary camera outside of the eyes, which would be
visible. The goal of this prototype was to investigate how it feels for the operator to have
a camera moving along with the eyes of the mannequin.

While a stationary wide angle camera would provide a stationary frame of vision, an
eye-mounted camera would move as the operator looks around at the environment, thus
shifting the frame of vision. The prototype in Figure 3.10 allowed for the eye to look
in the direction the operator looked. The two servos actuate the vertical and horizontal
movements.

During testing it was discovered that as the operator looks at one point in the image
frame, the camera moves to look at that point, thus changing the frame of vision. When
the frame of vision is shifted, the operator will look back at the object, which is now at a
different point in the frame, and the frame of vision will shift again. This caused jittering
of the prototype eye, and it was strenuous for the operator.

It was found that the jittering could be reduced by introducing a buffer for when to
actuate the movement, and also by smoothing the motion through a moving average filter,
although these modifications affected the behaviour of the eye in such a way that it was
observed to be unnatural. The modifications to the movement also made the eye unable
to follow objects in a realistic manner. In addition to this, there is a slight delay in the
circuits and program. This means that after the eye movement happens and before the
frame is shifted there is about a 200-300 millisecond delay, which contributes to the strain
on the eyes of the operator.

The prototype showed that an eye mounted camera was strenuous to operate and the
operations that could fix this were affecting the observed behavior of the prototype eye.
The feasibility of this method might improve if there is more investment into high end
equipment to reduce delay and increase frame rate, though this is not pursued in this
project.

Figure 3.10: Eye mounted camera
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3.2.5 Animatronic eyes with actuator rig
To be able to better replicate human to human communication, animatronic eyes were
ordered from a special effect manufacturer. These eyes are made to look like human eyes,
and this may help to accommodate realism in the appearance and behavior of the product,
as seen in Figure 3.11.

The eyes were delivered with an aluminium frame and 8 servos to actuate the move-
ment of the eyes and eyelids. The servos were controlled by the Arduino and powered by
a 6 volt power source. The eyes are documented in detail in section 4.3.2.

The animatronic eyes were installed into a laser cut frame that was designed to fit into
the head of the mannequin. The frame was intended to hold the components in place inside
the head. Two screw holes are included in the frame for connecting the frame to the head
of the mannequin through the mouth, and the top of the frame is pressed against the top of
the head. The frame holds the eyes in the center of the eye holes in the mannequin’s head.

The electronic components were installed in the frame behind the animatronic eye rig.
The electronics are detailed in section 4.3.2. The actuation control, power management
and Arduino communication was possible to incorporate with the only wires being for
power.

To mount the wide angle camera, an adjustable holder for the camera was attached
to the aluminium frame. This holder clamps down on the frame and is held in place by
friction. Two screws connect an upper and lower laser cut part and pull them together. The
camera is attached to the upper part.

The camera module is designed to protrude the forehead of the mannequin’s head. This
will allow for a wide, stationary view of the environment around the mannequin, while the
general appearance of the prototype may suffer. There are smaller cameras than the one
utilized in this project, that would be less visible, but can provide the same field of view.

This prototype is considered the final prototype of the actuation and actuation control
modules, and is described completely in section 4.3.2. The prototype provided a solid
platform for interaction and actuation. The largest drawback of the rig was the noise
from the servos, although this was not prominent when installed inside the head of the
mannequin and tested in a workshop environment.
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Figure 3.11: Animatronic eyes with a stationary wide angle camera, electronics are installed behind
the eyes.
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Chapter 4
System details

Figure 4.1: The difference in appearance between the eyes of Lærdal’s mannequin, and the proto-
type described here.

The goal of the development of this alpha prototype is to create human like movement and
behavior of the eyes in the mannequin. By using a human as the control system input,
it may be possible to bridge the uncanny valley (Ishiguro, 2007) by removing the tiny
differences that separates natural from unnatural. This product may be useful in scenarios
where communication is important and it may be used to diagnose certain diseases. A
simple test, like following an object, may give insight towards the condition of the patient’s
brain. In addition, non verbal communication and eye contact is an important factor in a
patient-doctor relationship, and this product may provide a better training experience for
the medical personnel that participates in the simulation.

This chapter describes the purpose and details of the complete system as well as each
subsystem. The details included are essential for the function of the system as it is. Each
subsystem has evolved through a thorough development process, and the results are de-
scribed here.
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Figure 4.2: The system in operation.
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4.1 Complete system description
Figure 4.3 describes the functions of the system. The functions or components of the
system are listed below, with corresponding numbers in Figure 4.3. The details of the
components and functions can be found in sections 4.3 and 4.4.

1. Lenses

2. Eye tracking camera, Picam NoIR

3. Display

4. Raspberry Pi and display signal boards

5. Computer Keyboard

6. Computer Mouse

7. Arduino Master, attached to HMD

8. nRF24 communication boards

9. Arduino Node, attached to actuation rig

10. WIFI communication between camera and Raspberry Pi

11. Trek AI-Ball WIFI camera

12. Eyes actuated by servos

13. Servos
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(a) Functional map of the system

(b) Picture of the system, only visible elements are numbered.

Figure 4.3: Functions of the system.
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4.2 Usage and operation
The system, as described in detail in section 4.3 is intended to be used by an operator and
consists of a head mounted device that is worn by the operator, and an actuator rig that is
installed in the head of the mannequin. The system lets the operator see through the eyes
of the mannequin and the mannequin’s eyes will look where the operator is looking.

One usage scenario may be a simulation where the patient is conscious, can talk and
look around. The medical personnel approach the patient and get eye contact. The patient
is meeting their eyes and talking back. Initial questioning reveals that the patient has fallen
and hit their head. The medical personnel asks the patient to follow their finger back and
forth. The test reveals no sign of anomalies, but the medical personnel assess that the
patient is in distress based on rapid shifts in gaze, unwillingness to maintain eye contact
and excessive blinking.

In the above scenario, the eyes would be controlled by an operator that sits in adjacent
room. They are looking through the eyes of the mannequin and are acting as if they are
the patient. This allows them to control the situation in terms of communication and eye
movement. Other symptoms may be simulated in the same way as they normally would.

The presented system provides many new aspects of interactions between mannequin
and medical personnel. The system allows the operator to interact directly with the simu-
lation participants through the mannequin’s eyes. Some diagnostic methods rely on obser-
vation of eye movement and behavior in dynamic tests, such as the test described above.
Following objects in a smooth pursuit, as well as rapid shifts in visual direction can be
telling towards neurological disorders and mental state. Focusing on a dynamic object
might be more difficult if the patient is under the influence of drugs. Pictures from smooth
pursuit can be seen in Figure 4.4.

Further on, the system introduces another aspect of communication with the man-
nequin. The main focus of visual attention during human-human interaction is the eyes
and the region around the eyes. Implementing human like behavior and movement of the
eyes, may give medical personnel a more empathetic view of the mannequin, and it will
be easier to talk directly to the mannequin when eye contact is mutual.

The eyes are often the first point of contact for medical personnel, as the eyes are
telling of the medical condition of the patient. The eyes can, at a glance, answer questions
such as: ”Is the patient awake?”, ”Are they apathetic?”, ”Are the eyelids droopy, or do they
struggle to focus?”. The eyes contribute to the immediate impression of the well being of
a patient.
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Figure 4.4: Smooth pursuit of a finger.
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4.2.1 Running the prototype as it is today
The main goal of the prototype is human-machine interactions, which means that there
has not been a focus on developing a user interface. The current prototype is controlled
from the Raspberry Pi operating system Raspbian Jessie and the program is run through
the Terminal by keyboard input. The exact commands are described in section 4.4. After
making sure that the Raspberry Pi is connected to the WIFI network of the Trek AI-ball
camera that captures the mannequin’s view, the program can be initiated. This will display
the wireless video stream of the mannequin’s view to the operator, inside the head mounted
device. At the same time, the head mounted device will start tracking the movement of
the eyes of the operator and send the actuation signals to the actuators in the eyes. The
program can be shut down by pressing q on the keyboard.

4.3 Hardware
The hardware of the system has evolved into two separate systems that communicate wire-
lessly. The prototype that was developed in Appendix B (Nygaard, 2016) consisted of a
single system that showed the possibilities that the available technology presented. Fur-
ther development of the system required the system to split into two subsystems, the head
mounted device, to be worn by the operator, and the actuator rig that is placed inside the
head of the mannequin.

4.3.1 Head mounted device
For an operator to control the eyes, the operator needs to see what the eyes of the man-
nequin ”see” (this view is later referred to as the mannequin’s view, or in the code: environ-
ment). There are several possibilities for both capturing and displaying the mannequin’s
view. To be able to create a one-to- one behavior of the eyes of the mannequin and the
eyes of the operator, in such a way that the mannequin can interact with medical personnel
in a meaningful manner, the mannequin’s view must be displayed to the operator in a way
that feels natural.

Raspberry Pi

Development of the system is done with a Raspberry Pi as the core processing unit, using
available communication protocols and interfaces on the single board computer to control
and interact with the hardware that is used. The computer was chosen for its ease of use,
processing power and available online community for support and help. The Raspberry Pi
runs the operating system Raspbian Jessie and the programming language that is used is
Python. The Raspberry Pi can be seen in Figure 4.7 (b), (c) and (d) as well as in Figure
4.8.

The Raspberry Pi model 3 was chosen because it has a quad-core Cortex-A53 pro-
cessor that can provide high performance when using threading of the processes. This
prototype uses the following of the Raspberry Pi’s ports:

• MIPI camera serial interface (CSI), for Raspi NoIR camera.
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• HDMI port connected to the MIDAS MCIB-14 board

• General Purpose Input/Output (GPIO) pins:

– 5 volt output to MIDAS MCIB-14 board

– 3.3 volt output to ifrared diodes

– Ground to MIDAS MCIB-14 board and infrared diodes

– I2C Serial Data Line (SDA)

– I2C Serial Clock Line (SCL)

• Micro-USB port for power supply. The power supply can deliver 5 volts at up to 2.5
amperes.

• USB ports:

– Cooling fan

– Arduino Uno

– Computer keyboard

– Computer mouse

Display and lenses

Displaying the mannequin’s view to an operator could be done in several ways, and there
are positive and negative aspects to all of them. There are ways of tracking a person’s
gaze both with head-mounted gear or with stationary cameras, and the same is true for
displaying the mannequin’s view.

Displaying the view on a PC desktop monitor would be the simplest solution in terms
of hardware, although this would create difficulties with tracking the gaze of the operator.
There are libraries available for tracking a person’s gaze with a stationary camera, but they
require a lot of processing power, and are prone to being inaccurate.

Near eye displays (NEDs) are getting more and more common, as virtual reality tools
become more available and powerful. An Oculus Rift headset can be seen in Figure 4.5.
NEDs allow for compact form factors and with small, high resolution screens, they can
display an image that looks as sharp as with a desktop monitor.

In Appendix B (Nygaard, 2016) it was shown that capturing eye movement with a
camera close to the eyes was possible. Putting both the display and the camera inside a
head mounted device makes both displaying and capturing is easier, as head movement no
longer affects either. To accommodate both capturing of the operator’s eye movement and
the display, the mannequin’s view is only displayed on one eye, as shown in Figure 4.6.

The display that is used for displaying the image on the right eye has a resolution of
512 x 600 pixels. The lenses in the head mounted device allows the operator to focus on
the screen. While a higher resolution would be preferable on a near eye display, this screen
costs, with all accessories, around 600 NOK, making it very affordable. The resolution is
sufficient to be able to recognize faces from a large distance.

The screen is connected to the Raspberry Pi via HDMI. While the Raspberry Pi offers
a MIPI display serial interface, displays that can be connected to this port are mostly larger
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Figure 4.5: Oculus Rift virtual reality headset, gathered from (Walton, 2016)

displays with lower resolution and touch screen. This display is a thin film transistor (TFT)
liquid crystal display (LCD) with a low voltage differential signaling (LVDS) interface.
This technology offers low cost, but to communicate with the Raspberry Pi, the LVDS
signals needs to be converted to HDMI. This conversion is performed in two steps, as
shown in Figure 4.8. HDMI is converted to 20 pin LVDS interface with the MIDAS
MCIB-14. This board requires I2C communication of data and system clock as well as
a 5 volt power supply with a connection to ground. This is provided through the colored
wires in the figure. The 20 way LVDS cable connects the MDAS MCIB-14 to the MIDAS
MCIB-16. The MIDAS MCIB-16 converts the 20 pin input to the 40 pin output that the
display requires.

Arduino

To actuate the mechanical eyes, as described in section 4.3.2, it is not possible to use only
the Raspberry Pi, as the single board computer does not have the hardware to drive the
pulse width modulated servos. It is possible to run one servo with the available pins of
the Raspberry Pi, but to be able to control more, a micro-controller is needed. Arduino
is a company that produces single board micro-controllers for prototyping, that are pro-
grammed using a dialect of C and C++.

An Arduino Uno microcontroller is connected to the Raspberry Pi via USB, to allow
for power and serial communication through a single cable. Further on, the Arduino Uno
uses a nRF24-chip which is an ultra low power 2Mbps radio frequency transceiver inte-
grated circuit for the 2.4GHz band. This chip allows for wireless communication to one (or
more) external Arduino over significant distances. The RF communicates to an Arduino
Uno placed in the actuator rig as described in section 4.3.2.

Camera

A Picam NoIR is used to capture images of the operator’s left eye. The Picam NoIR has
no IR-filter, hence the name. This camera was chosen in order to be able to see inside the
head mounted device. The camera is engineered to be used with the Raspberry Pi, and
connects to its MIPI camera serial interface port. This connection allows for high speed
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(a) The head mounted device with lenses installed.

(b) The head mounted device without lenses, the camera protrudes
to the left.

Figure 4.6: The head mounted display displays only an image to the right eye of the operator, while
the left eye is tracked with a camera.

capturing of images. The camera has the ability to capture still images of up to 2592 x
1944 pixels, while at 640 x 480 pixels, it can capture up to 90 frames per second. The
camera can be observed as it is installed in the casing i Figure 4.7 (f).

Infrared lighting

To be able to see the eye of the operator when the prototype is worn on the head, infrared
lighting has been used. This makes it possible to see the operator’s eye without them
noticing, as it is completely dark on the left eye. The prototype has installed 3 infrared
diodes just left of the left lens as seen in Figure 4.6 (a), and they are connected to the
Raspberry Pi’s 3.3 volt output pin and ground as shown in Figure 4.10.

Cooling

As the Raspberry pi is running processes that are very demanding, the temperature of the
processor will rise over time. To avoid overheating, a computer fan was installed. The
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(a) Fan installed on outer casing (b) Wire management for MIDAS MCIB-
14 and MCIB-16

(c) Seperating layer (d) Layer that holds Raspberry Pi and Midas
MCIB-14

(e) The back of the screen is coated with in-
sulating tape.

(f) Lens and camera seen from the back

Figure 4.7: The casing for the processing, screen and camera is divided into layers to accommodate
wiring, cooling and robustness.

computer fan runs on 5 volts from the Raspberry Pi’s USB port, and has no noticeable
noise. To be able to run the fan from the Raspberry Pi, the USB port was chosen, as it can
deliver a higher current than the available 5 volt pins. The fan creates an air flow that runs
through the housing, cooling all the components. The fan can be seen in Figure 4.7 (a).
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Figure 4.8: The connection between display and Raspberry Pi. Communication goes through HDMI
and is converted to the LVDS interface of the display in two steps.

4.3.2 Actuation
The actuator rig is designed to be installed inside the mannequin’s head. The design does
not consider existing technology that is already embedded in the head of the mannequin.
It is designed to operate only connected to a power supply, communicating over radio fre-
quency and WIFI to the head mounted device. This allows for the rig to operate completely
independently in the mannequin, given that the power supply is able to supply sufficient
current.
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Figure 4.9: Arduino with nRF24 board connected.

Figure 4.10: How the infrared diodes are wired. R1 = 100 ohm.

Eyes and eyelids

The mechanical eyes, as well as the aluminium frame with mounted servos, was produced
by Dan Thomson, who runs www.animatronicparts.com. He creates high-end products
that attempt to visually replicate human appearance. The product offers lifelike eyeballs
that are hand made, and the eyelids are made to be modified. The prototype was fitted with
silicone eyelids of a skin color.

A high-end product was chosen for the prototype to better be able to illustrate human
like behavior. This was decided after testing revealed that low-end prototypes did not
provoke the feeling of realism that was desired. In Figure 3.10, a low-end prototype can
be seen, and it is clear how different the appearance looks and feels compared to the
prototype seen in Figure 4.2.
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Camera

The wireless camera is a Trek AI-ball WIFI camera. This camera generates a WIFI net-
work that the Raspberry Pi connects to automatically. The camera then generates a contin-
uous video stream that is run on a local website on the network. This stream can be read
by the Raspberry Pi.

The camera is run by the same power supply as the servo motors, but the voltage is
reduced from 6 volts to 3.3 volts through a voltage regulator. The camera requires around
500 milliamperes of current and is included in the circuit as seen in Figure 4.13.

The camera was mounted with a wide angle camera lens to give a larger field of view.
The wide angle lens has a field of view of about 160 degrees. The wider field of view
allows a better interaction with the environment around the mannequin, as more is visible.

Figure 4.11: WIFI camera with wide angle lens

Actuation control

Actuation is controlled through the Arduino Uno as shown in Figure 4.13. The control
input is received through the nRF24 chip, which is sent by the Arduino that is connected to
the Raspberry Pi. The actuation is controlled by assigning an angle to the servo. This angle
corresponds to where the operator is looking at in the mannequin’s view. The complete
control system code can be read in Appendix A.5.

The eyes and eyelids are actuated by 8 digital servos that operate in pairs. The pairs
are controlled by 4 signals, and they control upper lids, lower lids, vertical movement of
the eyes and horizontal movement of the eyes, respectively. The servos are mounted on an
aluminium frame, and are connected to the actuated parts via mechanical arms.

The servos are connected to the Arduino Uno as shown in Figure 4.12 and 4.13. The
servo pairs are represented as single servos in the schematic, as they are operated with
the same signal, power and ground. They are controlled using pulse widt modulation
(PWM), which means that a specific pulse width represent 0 degrees, and increasing this
will increase the angle of the servo.
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Figure 4.12: Arduino and power management, as described by schematics in Figure 4.13

Figure 4.13: Schematics of the actuation control

The servos share a power supply and ground connection and the required current peaks
at around 4 amperes. This means that for the camera to not loose power, the actuator rig
needs to have available a minimum of 4.5 amperes. Another solution may be to have
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individual power supplies for the motors and the camera.

Mounting rig

The mounting rig is constructed to contain all the components that are mounted inside the
head, and to position the eye balls in the center of the eye openings in the mannequin’s
head. The rig has supports for the top of the head and holds the correct shape of the skin
of the head. The rig is made from laser cut medium density fiber (MDF) plates, 6 mm
thick and wood. The electrical components are glued to the surface platform, while the
actuators are connected with steel wire through holes in the MDF platform and through
the aluminium frame that holds the servos, as seen in Figure 3.11.

4.4 Software
This section details important aspects of the software of this prototype. The code described
in this section can be found in Appendix A.

4.4.1 Raspberry Pi operating system
The Raspberry Pi runs the operating system Raspbian Jessie, and it has been configured
to display the screen on the near eye display mounted in the head mounted device. The
display configuration is done by editing the boot file /boot/config.txt. The following al-
terations have been added to the configuration file to make the display work correctly and
only show an image on the visible half of the screen:

hdmi_timings=1024 0 16 44 100 600 0 10 3 10 0 0 0 60 0
51000000 7

config_hdmi_boost=4
hdmi_group=2
hdmi_mode=87
start_x=1
gpu_mem=128
dtparam=spi=on
dtparam=i2c_arm=on

The Raspbian Jessie operating system comes with a Python 2.7 and Python 3 inter-
preter. In this project, Python 3 is being used. Other features that have been changed in
the operating system are to enable the I2C ports and to activate the MIPI CSI interface.

4.4.2 Python
Python is a high level programming language that is designed to be easier to read and learn,
and lets the user solve tasks in fewer lines of code than for example C++ or Java. Python
can be used for both small scale and large scale programming, and has a large amount of
modules that can be downloaded and imported when needed. More details about Python
is described in section 2.4.2
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The open source computer vision library OpenCV (Bradski, 2000) can be imported
as a module in Python after it is downloaded on the computer. It contains methods for
manipulating images and for detecting a wide range of objects. Along with the scientific
computing module NumPy, OpenCV allows the user to manipulate images effectively and
with a wide range of options.

The code for this project is divided into 4 Python scripts and uses threading to utilize
more of the processing power of the Raspberry Pi. The code can be read in full in Appendix
A. The scripts may be run individually, but are designed to be run from the main script,
main.py.

Separating the detection and wireless streaming operations from the main script in-
creases the frame rate of the displayed images. This is due to the display functions being
independent from the image manipulation operations. These operations are demanding
in terms of processing, and they may be slower than the frame rate of the video stream.
By running detection and wireless streaming in separate threads from the main script, the
displayed images will have a much higher frame rate and at the same time the detection of
the pupil will be much faster.

Interacting with DetectPupil.py

The script DetectPupil.py contains a class for detecting pupils in an image that is read from
the Picam, and sends these coordinates to the Arduino via serial communication. The class
DetectPupil can be imported from the file DetectPupil.py by running

from DetectPupil import DetectPupil

and when the script is initiated from main.py by running

pupil = DetectPupil()

the init () function defines the required parameters, initiates the camera, and if specified,
initiates Arduino communication. The detection class is named pupil for simplicity. After
initiation, a processing thread is started by running

pupil.start()

which starts a thread that runs the update() function. This function will run continuously
in this processing thread until it is explicitly told to stop. The function finds the pupil,
translates the position into bytes and sends them to the Arduino before updating the image
frame.

How DetectPupil.py works

In this prototype, a Hough Gradient Method (OpenCV, 2017) is used for detection of
circles, utilizing OpenCV’s function cv2.HoughCircles(). This methods finds gradients
and determines the positions of gradients that are connected, creating edges. This is done
using OpenCV’s Canny() edge detector. These edges can be investigated for whether they
are shaped like a circle. In Figure 4.14, the detected pupil is shown, as the eye is looking
in different directions.
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(a) Straight forward (b) Up

(c) Right (d) Down

Figure 4.14: Looking in different directions, tracking the pupil.

By tuning the parameters parameters below, it is possible to improve the robustness
of the Hough Gradient Method. The goal of the tuning has been to reduce the amount of
false positives, ensure that the pupil is detected if indeed present, and to make the observed
position of the pupil to be as precise as possible.

The function cv2.HoughCircles() takes in a grayscale image and applies the Hough
Gradient Method to detect cirlces in the image. The parameters that are tuned in the
detection algorithm are:

• First method-specific parameter. This value sets the higher value of the Canny()
edge detector threshold, while the lower value will be half of this value. If this is
set too high or too low, the edges may not be detected, as the gradient might be
completely outside the set threshold.

• Second method-specific parameter. This parameter is the accumulator threshold for
detection of circles. The lower it is, the higher chance is for false positives.

• Minimum distance between the centers of the detected circles. If this value is too
low, multiple circles may be detected from the same edges, while if it is too large,
some circles may not be detected. This value has been set to 1000 pixels, to ensure
that no other circles than the pupil are detected.

• Minimum circle radius has been set to 20 to avoid small circles detected in the
image’s noise and shadows.
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• Maximum circle radius has been set to 30 to avoid larger circles being detected, such
as the iris or some of the surrounding shadows.

The precision of the method can be improved further by utilizing image manipulations
such as blurring and thresholding before applying the Hough Gradient Method. In Figure
4.15 are examples of how the image frame is manipulated using the following code. The
last line shows the object ”circles”, which is a list of tuples in the form of (x,y,r) describing
the position of each circle in x and y, as well as radius. In this line, we see the parameters
that were tuned, as described above.

for f in videostream:
frame = f.array

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (radius, radius), 0)
(minVal, maxVal, minLoc, maxLoc) = cv2.minMaxLoc(blur)
low = minVal+20
_,threshold = cv2.threshold(blur, low, 255, cv2.
THRESH_BINARY)
circles = cv.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,
minDist=1000,param1=40,param2=15,minRadius=15,maxRadius
=30)

The function cv2.cvtColor() converts the image to grayscale, before the function
cv2.GaussianBlur() applies a Gaussian blur to the image. This makes the image flatter by
blurring out sharp edges and evening out contrasts, which helps the edge detector to find
the correct edges. The sharper the image is, the more false edges can be found. Lines
5 through 7 make a threshold image which is only white and black, with the pupil as a
black circle and the rest of the image white. These transformations can be seen in Figure
4.15, and each of the steps improve the accuracy of the detection algorithm. Each of the
image transformations have parameters that affect the degree of transformation and thus
the detection accuracy.

The current image frame, as well as the coordinates of the pupil, can be read from the
update() loop at any time by the read command, ran in main.py

x,y,x_conv,y_conv,r,frame = pupil.read()

The values x and y are the coordinates of the pupil as detected in the image frame of
the eye. x conv and y conv are the same values, translated in order to display the gaze
unto the mannequin’s view. That is, the coordinates of where the operator is looking. r is
the radius of the detected pupil, and frame is the image frame of the eye.

The coordinates of the center of the pupil, x and y, are sent to the Arduino by the
following lines of code:

if self.write:
x_pos= int(self.x/(self.right-self.left)*255)
y_pos= int(self.y/(self.upper-self.lower)*255)
self.ser.write(str.encode(’%3d%3d%1d’ % (x_pos,y_pos,
self.blink)))
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(a) Input frame (b) Grayscale

(c) Blurred (d) Threshold

Figure 4.15: Manipulating the image of the eye to increase detection accuracy

This section of the code maps the integer values of x and y into the arbitrary range of
0-255. This is part of the standardization that allows for modularity in the development
process. By having input to Arduino and output from Python standardized to a 0-255
range, it is easy to change either parts of the code, as long as the output or input has this
range.

The last line above encodes the integers into padded string values that can be sent via
serial communication to the Arduino. Padding the string to 3 digits (”%3d”) means that a
2 digit integer will be preceded by one 0 in the string. This means that if the coordinates of
the pupil is (480,200) in a 512 x 600 frame, the converted values will be (239,85). Thus,
the encoded string will be ”2390850”, assuming that self.blink is 0.

The DetectPupil thread is closed by running

pupil.stop()

stream.py

This script contains a class that is structured the same way as DetectPupil, with functions
with the same names: init (), update(), start(), read() and stop(). The main difference
is the content of the init () and update() functions. The class is called stream, and in
main.py, the class is initiated with

from stream import stream

50



Environment = stream()
Environment.start()

Here, the init () function in stream() defines the necessary values, while the up-
date() thread continuously reads the streamed video feed from the Trek AI-Ball camera as
mentioned in section 4.3.2. The streamed image can be read at request with the command

environment = Environment.read()

where ”environment” is the image frame while ”Environment” is the stream() class.

calibrate.py

To be able to override the predefined image cropping variables as they are defined in
main.py, there is a possibility to enable manual calibration of the image frame with the
calibrate class that is found in calibrate.py. To be able to capture the gaze correctly, the
pupil should be positioned approximately in the middle of the image frame, and the whole
eye should be visible.

When the calibration is activated (by parsing the argument -cb 1 as described below),
4 trackbars allow the operator to manipulate the cropping of the frame in such a way that
it is possible to position the eye to the requirements above.

main.py

The main script is named main.py, and this script imports, initiates and calls the other
scripts. The script is initiated through the Terminal on the Raspberry Pi. The script runs
an argument parser that allows the user to change the run commands, which is useful for
prototyping and troubleshooting. This means that the script can be run without an Arduino
connection by running

python main.py -a 0

or to set another resolution for the Raspi NoIR camera with for example

python main.py -x 320 -y 240

See Appendix A.1 to see all the available arguments to parse.
The script loops over the code below. The main operations are:

• Read the current image frames in the DetectPupil() and stream() threads

• Check that the image frames are not empty, or ”None”

• Display the image frame

• If the key q is pressed, exit the loop and stop the parallel threads.

while True:
x,y,x_conv,y_conv,r,frame = pupil.read()

if not args["display"]:
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environment = Environment.read()
if environment is not None:

cv2.imshow("Display", environment)

elif args["display"]:
if frame is not None:

cv2.circle(frame,(x,y),r,(0,0,255),3)
cv2.imshow("Display", frame)

if cv2.waitKey(1) & 0xFF == ord(’q’):
pupil.stop()
if not args["display"]:

Environment.stop()
break

4.4.3 Arduino
The Arduino programming languange is a dialect of C and C++ that uses the same syntax
and has its own functionality that is specifically designed to work with electromechanical
sensors and actuators that connects to the Arduino microcontroller. A script must be com-
piled and uploaded to the Arduino board, and the most used method for this is to use the
Arduino integrated development environment (IDE).

TrollBot

To use the nRF24 breakout board, as seen in Figure 4.13, some libraries need to be in-
stalled, particularly NRF24.h and NRF24network.h. In addition, a project group at Troll-
LABS, NTNU, has recently developed a library for easy implementation of RF communi-
cations between Arduinos, using these libraries. Their library is called TrollBot (Trollbot,
2017).

The TrollBot library allows for easy wireless control of actuators and sensors. The
library lets the user have one master Arduino to control almost limitless numbers of slave
Arduinos. The master Arduino contains all the custom code, and should be the only one
where code is modified. The slaves, or nodes, are only coded to respond to the master’s
requests. In this project, only one slave Arduino is used. The Arduino node’s circuit is
described in Figure 4.13.

Master Arduino code

The complete code can be read in Appendix A.5. The main operations of the code is:

• Read byte signal from Python

• Translate into integers and map the values to the corresponding servo actuation sig-
nal

• Send actuation signal to the servos
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The Arduino code is intended to actuate the servos in response to the observed pupil
position, as detected in DetectPupil.py in section 4.4.2. In order to calibrate the actuation to
respond correctly to every new user that uses it, a dynamic calibration algorithm maps the
historical maximum and minimum values as the corresponding maximum and minimum
values for the mapping. This means that if the user positions the eye differently inside the
image frame, the calibration will use the historical values to define the actuation range.
The largest drawback to this method is that the first few movements will be somewhat
exaggerated and thereby inaccurate. As the user looks around, the actuation will be more
and more calibrated.

In this script, valx and valy are raw byte values representing the pupil position as read
from Python. These values are read from the serial connection to the Raspberry Pi. The
code below waits for a serial signal and reads 7 bytes. The byte sequence of 7 bytes is read
into 3 strings, strx, stry and blinkstr. These are then converted to integers to be actuated.

while (Serial.available() > 0) {

Serial.readBytes(vals, 7);
for (int i = 0; i < 3; i++) {

strx += vals[i];
}
for (int i = 3; i < 6; i++) {

stry += vals[i];
}
blinkstr += vals[6];

// Converting strings to ints. Range: 0-255
int valx = strx.toInt();
int valy = stry.toInt();
int blinking = blinkstr.toInt();

Below, the calibration and mapping is shown. The historical maximum and minimum
values, xmax, xmin, ymax and ymin, are defined if the new value of x and y are higher than
the historical maximum. To filter out noise or falsely positive detections, the new value
is unable to be too large, as restricted by the if-statements. EV means Eyes Vertical, EH
means Eyes Horizontal, LL means Lids Lower, LU means Lids Upper. The mapped values
are actuation values that are relative to the maximum and minimum historical values.

// Dynamic calibration
if (valx > xmax && valx/xmax < 1 + (255-xmax)/xmax) {

xmax = valx;
}
if (valy > ymax && valx/xmax < 1 + (255-xmax)/xmax) {

ymax = valy;
}
if (valx < xmin && valy/xmin > (255-(255-xmin))/(255-xmin))

{
xmin = valx;
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}
if (valy < ymin && valy/xmin > (255-(255-xmin))/(255-xmin))

{
ymin = valy;

}

// Map calibrated values to servo values
int EVval = map(valy, ymin, ymax, EVmin, EVmax);
int EHval = map(valx, xmin, xmax, EHmax, EHmin);
int LUval = map(valy, ymin, ymax, LUmax, LUmin);
int LLval = map(valy, ymin, ymax, LLmin, LLmax);

In addition to controlling the gaze direction of the mechanical eyes, the script also con-
trols blinking. Blinking occurs when no pupil is detected in DetectPupil. The actuation of
a blink is performed by closing the eyelids when an absence of pupil is detected. The gaze
direction will not change, something that makes the blinking look natural and realistic.

The eyelids are also actuated when they are not blinking. The actuation is performed
in such a way that the eyelids cover the edge of the iris as the eyeballs move with the
changing gaze. This is similar to how the eyelids move in humans.

4.5 Testing and feedback
The different prototypes have been tested on people in most of the development stages.
The alpha prototype described in this chapter has been tested as well. These tests have
shown that the prototype is able to gain eye contact, follow people and objects and to
blink in such a way that people have reported that it looks almost completely natural. The
feedback of the latest prototypes have not mentioned eeriness or unease, as is a common
way to describe feelings associated with the Uncanny Valley (Ishiguro, 2007).

A typical test setup has been to place the eyes on the table and interact with people
remotely. The eyes have also been put inside the mannequin’s head and people could
interact with it. The natural movement and blinking of the alpha prototype cause the
observers to not think about the fact that the eyes are mechanical. In addition to this,
the realism of the eyes, which is a result of using high-end special effect eyes, makes the
feedback be mainly about behavior and movements. Most negative feedback has been
about bugs in the control system that have occurred during prototyping and testing, such
as suddenly jittering violently or similar.

Further on, the servo motors can be quite noisy when doing rapid actuation, such as
when blinking, which has led to some feedback on the noise level of the prototype. The
noise is reduced when the rig is installed into the mannequins head.
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Chapter 5
Discussion

This chapter reviews the system as it is, and how it may be improved or developed further.
The methodology of the project is reviewed in a perspective of the methods presented and
performed and their effectiveness and efficiency.

5.1 System review
The prototype that is presented in this thesis is an alpha prototype, as described in section
2.2.1. This means that the prototype shows a proof of concept, fulfilling some of the
needs that were discovered in the early stages of the development. Some features have
intentionally been kept at a low resolution, as they are not important to the function of
the product. One example is the laser cut case for the processing and wire arrangement
in the head mounted device. This case is heavy, big and not optimized in other aspects
than the critical functions of stability and cooling. These are things that will not affect the
performance of the device, although it may affect the comfort of the operator.

This product shows the potential of what can be achieved with small investments into
the technologies of the eyes. The alpha prototype shows that interactions between man-
nequin and medical personnel can be improved with the use of mechanical eyes and oper-
ator control of the mannequin. Simulations were observed to lack natural communication
and empathy, and this product shows how these challenges may be overcome. The product
has the potential to improve health care simulations by letting medical personnel practice
diagnostics on the eyes as well as interactions with patients that are awake and aware. Ad-
ditionally, this can solve concrete problems that were observed in the simulations such as
the mannequin being awake, but participants do not notice, or similar.

This thesis had the scope of developing, building, and refining a conceptual prototype,
as described in section 3.1, of a smooth actuation and control system of the human eyes
in a healthcare simulation mannequin with the aim to achieve perceived human like eye
movement, behavior and interaction.

The mechanical actuation has been solved to a high degree, as it delivers high precision
and speed. The servos can be controlled accurately, and they can replicate movements
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rapidly. The biggest drawback of the actuators is noise, but this has been overlooked to
some degree in this thesis. Solutions for reducing noise were investigated in Appendix B
(Nygaard, 2016).

The electrical system was created to accommodate modularity in the development pro-
cess by standardizing module interfaces. Power management and signal transmission has
been a large factor in the electrical design of the prototype.

The mechanical structure of the prototypes are primarily made in laser cut MDF or
other materials that allow for rapid prototype generation and quick iterations. MDF has
the added positive aspect of being robust while being easily modified.

The Python scripts have been split into several modules to allow threading on the
Raspberry Pi. This allows the processes to run in parallel to achieve more computation
speed. This also accommodates the modularity that has been discussed. The Arduino
control system allows for wireless transmission and for rapid actuation while being easily
modifiable.

All in all, the system fulfills the thesis’ scope to a high degree, and delivers a robust,
efficient prototype system that may be able to give healthcare simulations a new aspect of
interaction between medical personnel and mannequin.

5.2 System future
How can development of this prototype continue in the future? The prototype proves that it
is possible to create human like movement of the eyes of the mannequins, and to increase
the degree of non-verbal communication that occurs in simulations. This may lead to a
higher degree of reported empathy towards the mannequins, and may also provide a tool
for diagnostics.

It is possible to refine the system into an implementable module. The control system
could be improved by the implementation of diseases of the eyes. The system could be
made compatible with the existing system of Lærdal’s mannequins, and the head mounted
device could be made into a more efficient product.

The system is created as a low-cost prototype with sub-optimal capabilities in terms
of processing, and it could be improved by creating an integrated processing unit which
does not require an operating system or user control. There are several possibilities for
future development of this prototype. It might be possible to further develop the software
to allow for the development of artificial intelligence.

5.2.1 Artificial intelligence
Artificial intelligence (AI) is a term that describes computational tools that use advanced
statistics to predict outcome or expected behavior based on big data sets of observed inputs.
Neural networks are AI methods that are ”black box” methods that tries to learn behavior
from given input and categorize this behavior.

CAFFE (Jia et al., 2014) is a deep learning framework that allows learning of visuo-
motor control from video streams. For example, a robot can learn how to perform simple
tasks, like moving an object from A to B purely by observing a video stream of a per-
son moving this object. Similarly, it would be possible to define parameters for training
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behavior of the eyes based on inputs from the video stream. As described in chapter 4,
the control system output is a 7 digit byte sequence that stems from an image input. This
image can be manipulated and objects can be detected in the image. This means that it
would be possible to train a control system with the use of neural network AI to react to
image inputs such as the actual image, faces detected in the image, objects detected (finger
held up, flashlight into the eyes, etc.) or sounds.

If the AI system could be trained to behave like a human would, in the situations it was
trained to face, the control of the eyes could be decoupled from the head mounted device,
and the operator could continue operating the simulations like they do today, only through
the simulation software.

5.2.2 Ideas for future development
If the system is further developed, there are several areas where improvement can be made.
The most prominent is how the product should be used in a simulation setting. In the case
of AI, a control system would only require control input from the simulation software to
change the behavior. These alterations to the behavior could be sluggish behavior, inability
to focus on objects or similar symptoms.

With no AI, the system would demand operator control, as it is designed for today.
This would also require incorporation into the existing simulation software, so the operator
could choose to activate the headset and take control over the eyes. It might be possible
to implement idle movements that the mannequin could make when the operator does not
take control over the eyes, or the eyes could default back to the functions that the eyes
have in mannequins today. This could be behavior like looking straight forward while
being able to blink.

Further development into streamlining the head mounted device would lead to re-
designing it for weight and comfort. Major improvements could be achieved by changing
the design into a custom made case, optimizing electronics in terms of size and weight and
processing capabilities.

It is possible to use other gaze tracking methods to allow the operator to have a display
on both eyes. Some alternative tracking methods were discussed in section 2.3.2, such as
infrared reflection of the cornea or electrodes measuring the electric potential differences
in the skin around the eyes. The implementation of other methods would allow a more
pleasant viewing experience with a screen on both eyes. Some virtual reality headsets
have implemented eye tracking with other methods.

The viewing experience could further be improved simply by upgrading the hardware
of the display module. Investing in a display with a higher resolution and refresh rate
would provide smoother observed motions and less strain on the eyes.

For implementation of vergence actuation and for a better one to one representation
of the eyes of the operator, it might be necessary to implement a two-camera detection
method where the cameras could be placed below the screen. The implementation of such
a system could provide more diagnostic tools for the simulations.

For vergence to be accurately captured, a 3D environment would have to be displayed
to the operator. This could be done by displaying a different video stream to both eyes.
This might be achievable by having two cameras. It might be possible to have a camera
inside each of the eyes, but not like in section 3.2.4, where the camera moves with the
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eye. One idea was suggested where a stationary camera was mounted inside of the eye in
such a way that the eye can move independently of the camera, and the camera provides a
stationary field of view. This might be achievable by using a one way, perforated film that
the camera can see through, but from the outside it looks like an eye. Another solution
could be to have cameras installed in glasses that the mannequin could wear. Otherwise it
might be possible to have the cameras mounted near the eyes in some way, even though
this might affect the appearance of the mannequin.

Improving eye detection and actuation

As mentioned in section 2.3.2, the gaze direction can be accurately calculated by trans-
forming the two-dimensional coordinates of the pupil detection algorithm into spherical
angles. This is useful when trying to determine where in space someone is looking, either
in a 3D-space and tracking both eyes, or on a 2D screen. Gaze direction tracking is not
used in this project, as the gaze can be actuated by assuming that the coordinates extracted
from the pupil detection algorithm can be transformed linearly into actuation of the servos.
This assumption can be used for an approximations as long as the camera that is used for
detection is placed directly in front of the eye and as long as the operator’s visual attention
is concentrated roughly in the center of the display.

When using this technique, the actuation will be more and more inaccurate as the
operator looks towards the corners of the display, as explained by Figure 5.1. From left to
right in the figure, the approximation error can be explained:

1. Left: The movement space of the operator’s pupil as observed by the camera, as the
operator looks upon the screen, is not rectangular, but a four sided area of a sphere
where the corners are 90 degrees.

2. Middle: The actuation control system on the Arduino represents the observed space
as a Cartesian space with maximum horizontal and vertical movements in a rect-
angular shape. As observed, the control space does not accurately represent the
movement space of the pupil.

3. Right: The actuated movement, based on the Cartesian control space. As seen here,
the corners are not actuated accurately.

As explained above, the 2D coordinates that represent the detected pupil, are obtained
through the detection algorithm, but needs to be mapped to overcome the curvature of the
eye. Figure 5.1 shows how the curvature distorts the coordinates that are detected by the
eye tracking. This phenomenon can be observed in Figure 5.2. To the camera, the path
that the pupil follows will be shaped like an ellipse when following a line on the display
due to how the gaze plane intersection with the sphere of the eyeball is projected to the
camera.

The elliptical path distortion can be overcome by applying the following transforma-
tion of observed coordinates x’ and y’ into actuation coordinates X and Y. The equations
are derived from the geometry described in Figure 5.3. The radius of a human eyeball aver-
ages around 12 mm, which is needed for the calculations. X and Y needs to be represented
by x’ and y’.
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Figure 5.1: Representation of the approximation error in the pupil actuation control system.

(x′, y′)→ (X,Y )

The formula of the ellipse that the pupil will follow (Figure 5.3) when looking at an arbi-
trary horizontal line is described as

x′2

12mm2
+

y′2

Y 2
= 1

which can be solved for Y

Y =

√
y′2

(1− x′2
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and by the formula
x′

y′
=

X

Y

the corrected actuation coordinates can be found:

(X,Y ) = (
x′

y′
∗
√

y′2

(1− x′2

12mm2 )
,

√
y′2

(1− x′2

12mm2 )
) (5.1)

The above equation is only valid if x’ is smaller than y’. If this is not the case, the following
equation is derived similarly, but with ellipses with a vertical main axis.

(X,Y ) = (

√
x′2

(1− y′2

12mm2 )
,
y′

x′
∗
√

x′2

(1− y′2

12mm2 )
) (5.2)

This method is currently not implemented, but could be applied in the Arduino code.
The discrepancy was discovered late in the process, but feedback has not shown that the
inaccuracy was noticeable.
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Figure 5.2: The nine extreme positions of the actuated eye.
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Figure 5.3: How the elliptical path of the pupil can be used to calculate the corrected actuation
coordinates.

Figure 5.4: How the approximation error is corrected by equation (5.1) and (5.2)
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Figure 5.5: Global and local coordinates

Equations (5.1) and (5.2) are not generalized to handle if the eye is placed in an ar-
bitrary position in a coordinate system, but defined when the center of the eye ball is in
(0,0).

It is possible to position Figure 5.3 as a local coordinate system in a global coordinate
system, if the center position of the eye ball is known, as seen in Figure 5.5. To generalize
for all cases, equation (5.3) can be derived from positioning the local coordinates (x’,y’)
in the global coordinate system. Below, it is assumed that eye ball center is known, and
referred to as C, and (X,Y) are the calibrated coordinates relative to global origin. We
define the raw observed coordinates relative to origin, as (Xo,Yo).

O = (Xo, Yo)

C = (Xc, Yc)

(X,Y ) = C + f(x′, y′)

f(x′, y′) =

{
Equation (5.1) if x′ < y′

Equation (5.2) if x′ > y′

(x′, y′) = (Xo −Xc, Yo − Yc)
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(X,Y ) =



if Xo −Xc < Yo − Yc:

(Xc, Yc) +

(
Xo −Xc
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∗
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1− (Xo−Xc)2

12mm2

,

√
(Yo − Yc)2

1− (Xo−Xc)2

12mm2

)

if Xo −Xc > Yo − Yc:

(Xc, Yc) +

(√
(Xo −Xc)2

1− (Yo−Yc)2

12mm2

,
Yo − Yc

Xo −Xc
∗
√

(Xo −Xc)2

1− (Yo−Yc)2

12mm2

)
(5.3)

Equation (5.3) can be implemented into the Arduino code as is. (Xo,Yo) are the raw
byte values sent from Python to the Arduino. These values can also be used to approximate
(Xc,Yc) over time, as mentioned in section 4.4.3. This means that (X,Y) can be derived
from only (Xo,Yo), using the assumptions above.

To find the center of the eye ball, it is possible to use similar dynamic calibration
method as is currently implemented in the Arduino code for calibration. With the camera
positioned straight in front of the eye, it may be assumed that the observed extreme values
of vertical and horizontal eye movement are symmetrical in relation to C. Thus, C can be
approximated by averaging the historical maximum and minimum values of Xo and Yo.
This gives us (Xc,Yc) and by observing (Xo,Yo). It is possible to accurately actuate the
servos with the values (X,Y) by implementing Equation (5.3) in the actuation control.

Further accuracy in the actuation could be achieved by implementing a two camera
setup, as described in section 5.2.2, where each eye has an embedded stationary camera.
This could allow the operator to actually look through the eyes of the mannequin, and
each eye could have been controlled by one of the operator’s eyes. This would allow for
actuation of vergence (focal point shifts), blinking with one eye and more.
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5.3 Methodology review
The development method that has been utilized in this thesis has been inspired by the
concept of probing in the Wayfaring Model (Gerstenberg et al., 2015), as well as concepts
from set-based design (Smith, 2007), as explained in section 3. These exploratory early
phase tools have been used in a modular development strategy that has allowed for rapid
paradigmic shifts in each of the modules, while not sacrificing the functionalities of the
rest of the system. This has created a high efficiency in the development, and it lessens
rework.

This modular approach has been possible due to the complexity of the system that
was to be developed. The project has consisted in programming, mechanical actuation
and electronics, and all the subsystems, or modules, have required some kind of interface.
These interfaces have been electrical, mechanical and digital. Separating the project into
modules that allow radical changes while retaining the same interface, has expanded the
ability to test rapidly and gain feedback on individual modules.

This modular independence is best described with an example: when testing the control
system for the actuation, instead of building the actuator as it was thought to be, a simpler
module could be employed. This simpler module was the eye controlled robot in section
3.2.3, which had all the same interfaces, while being a much simpler design. Thus, it was
possible to get a general response to the control system output instead of a specialized
response that required more development.

Similarly, when testing actuators for viability in terms of smoothness of motion, in-
stead of running the incomplete pupil tracking software, a much simpler facial recognition
program was sufficient to create the same control signals. This allowed for development in
parallel of both control system of the actuators and the mechanical design of the actuators.

5.3.1 Development as one person opposed to in teams
This project was performed by one person. Although the community in and around Troll-
LABS is helpful and available, the project and its work has been performed mainly by
the author. This has lead to some reflections about working with a product development
project as one person as opposed to working in teams, when applying team based methods
such as wayfaring, agile, set-based and other techniques mentioned in the thesis.

Working as one person as opposed to working in teams affects the development process
in several ways. The effects have been observed to be mainly detrimental to the efficiency
of the development process. This is thought, by the author, to be due to unknown un-
knowns and how they may be discovered through Generative Design Questions (GDQs)
and Deep Reasoning Questions (DRQs) (Eris, 2003, 2004) in team-work. GDQs are es-
sential generating concepts in teams, as they are open ended questions that are looking for
unknown answers or unknown questions. These unknowns may remain unknown longer
when externals are not included in the development process, both to answer the GDQs and
to pose their own questions.

This is also true when it comes to DRQs and their ability to exclude non-viable ideas
based on answers that are enlightening to unknown aspects of the product and its use. This
means that a team-member may be able to see some restrictions about the prototype that
might make in non-viable for the requirements, that you do not see yourself.
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However, the mindset of using these types of questions might still be beneficial in a
solo-development setting. By being aware of how GDQs create openness towards new
ideas, and how they open up the solution space, it may be possible to create more ideas
than if one is not aware of them. The same can be said for DRQs and how they may help
to converge the solution space.

Personal factors, such as general and specialist knowledge will affect the efficiency of
the development, as new subjects will have to be explored when entering a new area of
development. A diverse team will have a broader knowledge base than one developer.

Sjøvold (2006) describes how members of an efficient team will continuously change
roles in the team. In a solo-development process, the developer will not be able to fill
several roles at the same time, to create a similar dynamic. Further on, people of different
disciplines may have different ways of solving problems and understanding challenges,
which can help development in multidisciplinary teams.

One positive side to developing alone could be that the modular approach that this
project has employed may be harder to utilize when working in teams. The knowledge
that is required about each subsystem in order to be able to change the subsystem radi-
cally while retaining the interface, might be harder to communicate and coordinate across
teams, and especially so across multidisciplinary teams. This could be easier when the
developer has to accumulate specialist knowledge about each module. Of course this re-
quires a developer with the ability and available time to be able to learn each subject matter
thoroughly.

5.3.2 Trial and error or wayfaring?
Trial and error is the process of trying to accomplish goals by trial, or in the terms of
product development, by prototyping. When conducting trial and error development, a
goal has been set in terms of functions that should be fulfilled, and this goal is pursued in
a manner that consists of finding a solution, make the prototype, test the prototype, and
abduct knowledge from the trial. After this, you reconsider the design and you either probe
further, or shift concept.

What, then, separates trial and error from Wayfaring and the design-build-test cycle
that it explains? Mainly, the difference comes in the form of diverging and in the amount
of ideas generated and investigated. With both mindset and methods for generating a large
amount of ideas, or even better, tangible prototypes, wayfaring tries to uncover a large
solution space and probe into the solutions that seem most viable. Being agile in the
development and delaying decisions of which concept to choose allows that more ideas
can be probed in design-build-test cycles. This will create more abductive learning, and
more unknown unknowns may be uncovered.

In conclusion, trial and error is the default way of problem solving, which has proved
an effective method as long as problem solving has been done. Wayfaring is a mindset that
encompasses methods for creativity, divergence, agility in development and probing into
ideas or concepts. Wayfaring tries to manage product development projects where critical
knowledge may yet be uncovered, where the uncertainty is large and the reward of success
is high. The methods for trying to manage such projects need to be agile and ready for
change, and they need to try to capture as much knowledge as possible to overcome the
uncertainty of the fuzzy front end of product development.
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Chapter 6
Conclusion

This master’s thesis describes the development of eyes for healthcare simulator man-
nequins, that can be used in medical simulations. The eyes were developed to overcome
an observed lack of emotional connection and non-verbal communication between med-
ical personnel and the simulation mannequin. Gaze behavior and eye contact between
medical personnel and patient has been found to impact patient-centeredness and medi-
cal personnel’s awareness of a patient’s psychological distress and cognitive functioning
(D’Agostino and Bylund, 2014).

Discussion of the current academic standings in topics such as early stage product de-
velopment methodologies, agile methods in enterprises, humanoid robots and eye move-
ment and behavior constitutes the academic background of the product. The technological
background of the product is discussed in terms of Lærdal Medical’s current products’
abilities. Technical possibilities are explored by benchmarking and investigation of the
newest discoveries and technological advances.

This thesis describes the development process of the alpha prototype as described in
Chapter 4, which details the product as it is in the last prototyping iteration. The methods
used, their efficiency and effectiveness, have been reviewed and investigated.

In conclusion of this master’s thesis, the alpha prototype proves that the concept of
human control of a mannequin’s eyes is possible, and demonstrates one way that this
is achievable. The thesis itself presents alternatives to the current solution, as well as
possibilities for further development and improvements. The current prototype can be
characterized as a low-cost human-machine interface system to bridge the Uncanny Val-
ley, which can allow improvements in health care simulations by introducing nonverbal
communication and diagnostic tools related to the eyes.

This thesis details possibilities for nonverbal communication and diagnosing diseases
based on eye movement and behavior. This allows for a new dimension of diagnostic
possibilities, as both psychological and physical trauma can affect the behavior of the
eyes, and certain diagnoses can create apathy and non-responsiveness while the patient is
awake. In today’s mannequin, this is not possible to simulate, but the presented system
creates an opening for implementation of such symptoms and diagnostics.
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The product described here is still a prototype, but it provides insights into several top-
ics and gives an idea of how to solve this particular challenge. In addition to this, the thesis
reviews the methods used, presents the results and discusses the efficiency and effective-
ness of the methods. The primary conclusions about the methods used for this early stage
product development project is that developing a complex system as one person requires
adaptation and learning quickly to be able to develop in diverse subjects. This resonates
with the idea of agility in development projects, and is further supported by Wayfaring
Model. Further on, applying modularity in the development to overcome the complexity
of the system, grants the developer a higher understanding of the project. In addition,
it provides a flexibility in the development process as it lets modules be completely re-
designed without having to redesign the complete system.

To sum up, this project describes the development of an alpha prototype of a system
that may improve healthcare simulations by allowing nonverbal communications and eye
movement diagnostics.
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A.1 main.py

1 import argparse, time, cv2
2 from DetectPupil import DetectPupil
3 from calibrate import calibrate
4

5 #construct the argument parser and parse the arguments
6 ap = argparse.ArgumentParser()
7 ap.add_argument("-x", "--resx", type=int, default=640,
8 help="resolution in x")
9 ap.add_argument("-y", "--resy", type=int, default=480,

10 help="resolution in x")
11 ap.add_argument("-a", "--arduino", type=int, default=1,
12 help="connect to Arduino? 1/0")
13 ap.add_argument("-cb", "--calibrate", type=int, default=0,
14 help="calibrate? 0/1")
15 ap.add_argument("-d", "--display", type=int, default=0,
16 help="display? eye = 1, environment = 0")
17 ap.add_argument("-n", "--num", type=int, default=1,
18 help="The first picture has this number when taking snapshots. ")
19 args = vars(ap.parse_args())
20

21 num = args["num"]
22

23

24 # __________________Calibration ___________________
25

26 left = 250
27 right = 500
28 upper = 300
29 lower = 100
30

31 #Override the above values if -cb = 1
32 if args["calibrate"] == 1:
33 c = calibrate(,left,right,lower,upper)
34 c.start()
35 left, right, lower, upper = c.calibrate()
36 c.stop()
37

38 # ______________________Initializing________________
39

40 #Pupil detection
41 time.sleep(0.2)
42 pupil = DetectPupil((args["resx"],args["resy"]),32,args["arduino"],left,

right, lower, upper)
43 pupil.start()
44 time.sleep(0.2)
45

46 #Display positioning
47 cv2.namedWindow("Display",cv2.WINDOW_NORMAL)
48 cv2.moveWindow("Display",0,0)
49 cv2.resizeWindow("Display",512,args["resy"]*(1024/2)/args["resx"])
50

51 #Environment display
52 if not args["display"]:
53 from stream import stream
54 Environment = stream()
55 Environment.start()
56

57 # ______________________Running____________________
58

59 while True:
60

61 #Read position and size of pupil, and the current frame.
62 #(x,y) is for "frame", (x_conv,y_conv) is for environment.
63 x,y,x_conv,y_conv,r,frame = pupil.read()
64

74



65 #Display the stream image if not otherwise specified
66 if not args["display"]:
67 environment = Environment.read()
68 if environment is not None:
69 cv2.moveWindow("Display",0,0)
70 cv2.imshow("Display", environment)
71

72 #Show the eye if -d = 1
73 elif args["display"]:
74 if frame is not None:
75 cv2.circle(frame,(x,y),r,(0,0,255),3)
76 cv2.imshow("Display", frame)
77

78 #Stop the threads and exit the loop if "q" is pressed
79 if cv2.waitKey(1) & 0xFF == ord(’q’):
80 pupil.stop()
81 if not args["display"]:
82 Environment.stop()
83 break
84

85 #If "a" is pressed, take a snapshot of the displayed image.
86 if cv2.waitKey(33) & 0xFF == ord(’a’):
87 if not args["display"]:
88 cv2.imwrite("/home/pi/images/environment%1d.jpg" % num

,environment)
89 elif args["display"]:
90 cv2.imwrite("/home/pi/images/eye%1d.jpg" % num,frame)
91 num = num + 1
92

93 cv2.destroyAllWindows()
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A.2 DetectPupil.py

1 from picamera.array import PiRGBArray
2 from picamera import PiCamera
3 from threading import Thread
4 import cv2, serial
5

6 class DetectPupil:
7 def __init__(self, resolution, framerate,arduino,left, right, lower,

upper):
8 self.arduino = arduino
9 self.r = 7

10 self.camera = PiCamera()
11 self.camera.resolution = resolution
12 self.camera.framerate = framerate
13 self.rawCapture = PiRGBArray(self.camera, size=resolution)
14 self.stream = self.camera.capture_continuous(self.rawCapture,format="

bgr", use_video_port=True)
15 self.resx,self.resy=resolution
16 self.upper = upper
17 self.lower = lower
18 self.left = left
19 self.right = right
20 self.frame = None
21 self.x = 0
22 self.y = 0
23 self.x_conv = 0
24 self.y_conv = 0
25 self.radius = 0
26 self.stopped = False
27 self.blink = 1
28 if self.arduino:
29 self.write = True
30 self.connected = False
31 self.ser = serial.Serial("/dev/ttyACM0",9600,rtscts=1)
32 while not self.connected:
33 serin = self.ser.read()
34 self.connected = True
35 else:
36 self.write = False
37

38 def start(self):
39 Thread(target=self.update, args=()).start()
40 return self
41

42 def update(self):
43 for f in self.stream:
44 frame = f.array
45 frame = cv2.flip(frame,0)
46 frame = frame[self.lower:self.upper,self.left:self.right]
47 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
48 gray = cv2.GaussianBlur(gray, (self.r, self.r), 0)
49 circles = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1,1000,param1=20,

param2=15,minRadius=20,maxRadius=30)
50

51 if circles is not None:
52 self.blink = 0
53 for i in circles[0,:]:
54 self.x = i[0]
55 self.y = i[1]
56 self.x_conv = int(i[0]*640/(self.upper-self.lower))
57 self.y_conv = int(i[1]*480/(self.right-self.left))
58 self.radius = i[2]
59 if self.write:
60 x_pos= int(self.x/(self.right-self.left)*255)
61 y_pos= int(self.y/(self.upper-self.lower)*255)
62 self.ser.write(str.encode(’%3d%3d%1d’ % (x_pos,y_pos,self.
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blink)))
63 elif circles is None:
64 self.blink = 1
65 if self.write:
66 x_pos= int(self.x/(self.right-self

.left)*255)
67 y_pos= int(self.y/(self.upper-self.lower)*255)
68 self.ser.write(str.encode(’%3d%3d%1d’ % (x_pos,y_pos,self.blink)

))
69

70 self.frame=frame
71 self.rawCapture.truncate(0)
72

73 if self.stopped:
74 self.stream.close()
75 self.rawCapture.close()
76 self.camera.close()
77 if self.arduino:
78 self.ser.write(str.encode(’%3d%3d%1d’ % (90,90,1)))
79 self.ser.close()
80 return
81

82 def read(self):
83 return self.x,self.y,self.x_conv,self.y_conv,self.radius,self.frame
84

85 def stop(self):
86 self.stopped = True
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A.3 calibrate.py

1 from picamera.array import PiRGBArray
2 from picamera import PiCamera
3 from threading import Thread
4 import cv2
5 import numpy as np
6 import time
7

8 class calibrate:
9 def __init__(self,left,right,lower,upper):

10 self.camera = PiCamera()
11 self.camera.resolution = (640,480)
12 self.r = 45
13 self.camera.framerate = 32
14 self.rawCapture = PiRGBArray(self.camera, size=self.camera.

resolution)
15 self.stream = self.camera.capture_continuous(self.rawCapture,
16 format="bgr", use_video_port=True)
17 self.resx,self.resy=self.camera.resolution
18 self.upper = upper
19 self.lower = lower
20 self.left = left
21 self.right = right
22 self.frame = None
23 self.x = 0
24 self.y = 0
25 self.radius = 0
26 self.stopped = False
27 self.font = cv2.FONT_HERSHEY_SIMPLEX
28 self.avglen = 50
29 self.xstorage = np.zeros((self.avglen,), dtype = np.int)
30 self.ystorage = np.zeros((self.avglen,), dtype = np.int)
31 cv2.namedWindow("trackbar")
32 cv2.resizeWindow("trackbar",256,240*(1024/2)/640)
33 cv2.createTrackbar("left","trackbar", self.left,self.resx,self.

nothing)
34 cv2.createTrackbar("right","trackbar",self.right,self.resx,self.

nothing)
35 cv2.createTrackbar("lower","trackbar",self.lower,self.resy,self.

nothing)
36 cv2.createTrackbar("upper","trackbar",self.upper,self.resy,self.

nothing)
37

38 def update(self):
39 for f in self.stream:
40 frame = f.array
41 if frame is not None:
42 self.left = cv2.getTrackbarPos("left","trackbar")
43 self.right = cv2.getTrackbarPos("right","trackbar")
44 self.lower = cv2.getTrackbarPos("lower","trackbar")
45 self.upper = cv2.getTrackbarPos("upper","trackbar")
46 frame = cv2.flip(frame,0)
47 if self.left is not -1:
48 frame = frame[self.lower:self.upper,self.left:self.

right]
49

50 self.frame=frame
51 self.rawCapture.truncate(0)
52

53 if self.stopped:
54 self.stream.close()
55 self.rawCapture.close()
56 self.camera.close()
57

58 def start(self):
59 Thread(target=self.update, args=()).start()
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60 return self
61

62 def nothing(x,y):
63 pass
64

65

66 def calibrate(self):
67 while True:
68 if self.frame is not None:
69 cv2.imshow("trackbar",self.frame)
70 if cv2.waitKey(33) & 0xFF == ord(’ ’):
71 self.stop()
72 print(self.left,self.right,self.lower,self.upper)
73 break
74

75 return self.left,self.right,self.lower,self.upper
76

77 def stop(self):
78 self.stopped = True
79 cv2.destroyAllWindows

A.4 stream.py

1 import numpy as np
2 import cv2
3 import urllib
4 from threading import Thread
5

6 class stream:
7 def __init__(self,URL="http://192.168.2.1/?action=stream"):
8 self.stream = urllib.urlopen(self.URL)
9 self.byte = ""

10 self.stopped = False
11 self.image = None
12

13 def update(self):
14 while True:
15 self.byte += self.stream.read(1024)
16 a = self.byte.find("\xff\xd8")
17 b = self.byte.find("\xff\xd9")
18 if a!=-1 and b!=-1:
19 jpg = self.byte[a:b+2]
20 self.byte = self.byte[b+2:]
21 self.image = cv2.imdecode(np.fromstring(jpg, dtype=np.

uint8),1)
22 if self.stopped:
23 return
24

25 def start(self):
26 Thread(target=self.update, args=()).start()
27 return self
28

29 def read(self):
30 return self.image
31

32 def stop(self):
33 self.stopped = True
34

35 cv2.destroyAllWindows()
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A.5 Arduino

A.5.1 Master
1 #include "RF24Network.h"
2 #include "RF24.h"
3 #include "RF24Mesh.h"
4 #include <SPI.h>
5 #include <Servo.h>
6 #include <TrollBot.h>
7

8 char vals[6];
9 String strx;

10 String stry;
11 String blinkstr;
12

13 int LUmax = 110; // Fully open
14 int LUmin = 80; // Fully closed
15 int LLmax = 110; // Fully open
16 int LLmin = 80; // Fully closed
17

18 int EVmax = 110; // Fully down
19 int EVmin = 70; // Fully up
20 int EHmax = 110; // Fully left
21 int EHmin = 70; // Fully right
22

23 int xmax = 127;
24 int xmin = 127;
25 int ymax = 127;
26 int ymin = 127;
27

28 TrollBot Master(’M’);
29 TrollBot Albert(’A’);
30

31 void setup() {
32 Serial.begin(9600);
33

34 // Confirm Serial Connection to Python:
35 Serial.write(’1’);
36

37 Master.setup_setNodeID(0);
38

39 Albert.servo_attach(1, 0); // Eyes Vertical
40 Albert.servo_attach(2, 1); // Lids Lower
41 Albert.servo_attach(3, 2); // Lids Upper
42 Albert.servo_attach(4, 3); // Eyes Horizontal
43

44 Albert.servo_write(1, 90);
45 Albert.servo_write(2, 90);
46 Albert.servo_write(3, 90);
47 Albert.servo_write(4, 90);
48

49 delay(500);
50 }
51

52 void loop() {
53

54 Master.loop();
55

56 // Reading Serial Input into strings strx and stry, each 3 bytes, and
blink, 1 byte

57 while (Serial.available() > 0) {
58

59 Serial.readBytes(vals, 7);
60 for (int i = 0; i < 3; i++) {
61 strx += vals[i];
62 }
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63 for (int i = 3; i < 6; i++) {
64 stry += vals[i];
65 }
66 blinkstr += vals[6];
67

68 // Converting strings to ints. Range: 0-255
69 int valx = strx.toInt();
70 int valy = stry.toInt();
71 int blinking = blinkstr.toInt();
72

73 // Dynamic calibration
74 if (valx > xmax) {
75 xmax = valx;
76 }
77 if (valy > ymax) {
78 ymax = valy;
79 }
80 if (valx < xmin) {
81 xmin = valx;
82 }
83 if (valy < ymin) {
84 ymin = valy;
85 }
86

87 // Map calibrated values to servo values
88 int EVval = map(valy, ymin, ymax, EVmin, EVmax); // valy ymin-ymax,

EV 70-110
89 int EHval = map(valx, xmin, xmax, EHmax, EHmin); // valx xmin-xmax,

EH 110-70
90 int LUval = map(valy, ymin, ymax, LUmax, LUmin); // valy ymin-ymax,

LU 110-80
91 int LLval = map(valy, ymin, ymax, LLmin, LLmax); // valy ymin-ymax,

LL 80-110
92

93

94 // Truncate the strings, to make room for new serial input
95 strx = "";
96 stry = "";
97 blinkstr = "";
98

99 // If not blinking
100 if (blinking == 0) {
101 Albert.servo_write(1, EVval); // EV
102 Albert.servo_write(2, LLval); // LL
103 Albert.servo_write(3, LUval); // LU
104 Albert.servo_write(4, EHval); // EH
105

106 }
107 // If blinking
108 else if (blinking == 1) {
109 Albert.servo_write(1, EVval);
110 Albert.servo_write(2, LLmin);
111 Albert.servo_write(3, LUmin);
112 Albert.servo_write(4, EHval);
113 }
114 }
115 }
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A.5.2 Node

1 #include <TrollBot.h>
2

3 TrollBot Albert(’A’);
4

5 void setup(){
6 Albert.setup_setNodeID(0);
7 }
8

9 void loop(){
10 Albert.loop();
11 receive_send(’A’);
12 }
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Summary

This project task identifies, collects, judges and conceptualizes technologies to simulate
eye movement and behavior in healthcare simulator mannequins. The project identifies
techniques for controlling the behavior of the eyes of mannequins in a realistic manner,
and explores technologies for realistic movement.

Prototypes are shown that tackle the problems of human-like movement and behavior.
A system is proposed for further development and potential research, and challenges and
possibilities with this system are considered. The system prototype processes and captures
the eye movement of an operator and mimics this in a mechanical eye. By letting the oper-
ator see the environment around the mannequin, they can look around and the mannequin
will replicate this movement.

Several possibilities for automation of the behavior has been proposed, where the most
promising is supervised learning in artificial neural networks. By using deep learning, it
may be possible to train an algorithm to mimic human behavior and thus removing the
need for operator control.

The system that has been proposed is the current iteration in a product development
cycle and is far from a perfect solution. Implementation is dependent on further work and
optimization. The system has potential, and it has to be further explored and developed.
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Preface

This project thesis describes the development of a prototype system for actuation and
control of eyes in health care simulators, as requested by Lærdal Medical. It was writ-
ten to fulfill the requirements of the Product Development and Materials specialization at
NTNUs Department of Engineering Design and Materials. I was engaged in this project
between August and December 2016.

The task was created as a collaboration between my supervisor Martin Steinert, my sup-
porting coach Carlo Kriesi, representative from Lærdal Medical, Arild Eikefjord and me.
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of Medisinsk SimulatorSenter at St. Olav’s Hospital, I got valuable insights into the use of
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during the project.

Truls Nygaard
Trondheim 12.12.2016

ii



Table of Contents

Summary i

Preface ii

Table of Contents iv

List of Figures v

1 Introduction 1

2 Literature and Technology Review 5
2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Product development methodologies . . . . . . . . . . . . . . . . 5
2.1.2 Humanoid robots . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Technology review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Simulator eyes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Animatronic eyes . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Computer vision and processing . . . . . . . . . . . . . . . . . . 8
2.2.4 Virtual reality tools . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Development 11
3.1 Users and usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Proposed solution 19
4.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Environment recording . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Displaying the environment . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Recording eye movement of the operator . . . . . . . . . . . . . 21

iii



4.1.4 Filtering and processing of blinking . . . . . . . . . . . . . . . . 22
4.1.5 Processing the eye movement . . . . . . . . . . . . . . . . . . . 22
4.1.6 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Scenario: Medical students in simulation . . . . . . . . . . . . . 23

5 Further work 25
5.1 Training of scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Research possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion 29

Bibliography 31

Appendices 35

iv



List of Figures

1.1 Lærdal’s mannequin opened up . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lærdal’s SimPad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Lærdal’s mannequin with blinking . . . . . . . . . . . . . . . . . . . . . 3

2.1 Wayfaring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Eye of Lærdal’s patient simulator mannequin . . . . . . . . . . . . . . . 8
2.3 Animatronic eyes (Discovery, 2011) . . . . . . . . . . . . . . . . . . . . 8
2.4 Haar-like features used for detecting objects (Viola and Jones, 2001) . . . 9
2.5 Oculus Rift virtual reality headset, gathered from (Walton, 2016) . . . . . 9

3.1 Simple pupil dilation prototype . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Face recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Mechanical eye, as it tracks a face . . . . . . . . . . . . . . . . . . . . . 14
3.4 Air muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Fishing line muscle holding 500g . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Magnet control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 PiezoMotor’s LEGS technology (PiezoMotor, 2016) . . . . . . . . . . . 17
3.8 Canon’s Nano USM (Canon Imaging Plaza, 2016) . . . . . . . . . . . . . 17

4.1 Illustration of the flow of information . . . . . . . . . . . . . . . . . . . 20
4.2 The camera that records the environment, along with the mechanical eye . 21
4.3 Left eye is recorded by a camera and the pupil is located . . . . . . . . . 21
4.4 Simple mechanical actuation with two servo motors. . . . . . . . . . . . 23

v



vi



Chapter 1
Introduction

Lærdal Medical (later referred to as Lærdal) is an international company that develops
advanced healthcare simulation mannequins. The company has its origins in Stavanger,
and started out as a toy manufacturer, but transitioned into production and development of
mannequins with the purpose of advancing emergency care and resuscitation.

Today, Lærdal manufactures advanced patient simulators (later referred to as man-
nequins) that have a broad spectrum of features and functions. They are able to simulate
medical conditions that may occur too rarely, or be too life threatening to practise on real
life scenarios. Conditions that rarely occur are hard to experience or practice on real pa-
tients, but mannequins can provide the necessary training for these situations.

The mannequins can be controlled to exhibit complex medical conditions, or the con-
ditions can be more subtle. There are mannequins made for many different scenarios.
Some can simulate heart conditions, breathing problems or similar. Some are in the shape
of adults, while others are made to simulate a woman giving birth or an infant. The simu-
lations are controlled by an operator that is trained to use the simulator software that often
has clinical experience in healthcare. They control the mannequin’s responses and outputs
remotely through the simulation software.

A mannequin was provided for this project. In figure 1.1 the mannequin is shown both
closed and open. Some functions that can be seen in the figure are:

1. RFID chips embedded in the skin of the mannequin can be seen as small circular
extrusions on the inside of the skin. These can be found with a tool that replicates
ultrasound equipment and displays images of internal organs as if they are observed
at that particular spot.

2. The green area is a patch for simulated defibrillation. To avoid destroying the man-
nequin, the participants use a special defibrillator and the mannequin acts as if it is
a real defibrillator.

3. The ribcage is embedded with microphones that can simulate heartbeat and lung
sounds when the participants listen with a stethoscope. The ribcage can be com-
pressed when performing chest compressions.

1



Figure 1.1: Lærdal’s mannequin opened up

These are only examples of the many functions this mannequin has. The mannequin
and its functions are controlled by an operator through a simulation software. The Lærdal
SimPad, as shown in in figure 1.2, can control the functions with an intuitive interface. It
operates with a touch screen and can change lung sounds, heart rates, breathing patterns
and much more.

Figure 1.2: Lærdal’s SimPad

One of the main challenges with the mannequin is noise. Mechanical noise from move-
ment of the ribcage, friction between skin and mechanical components, compressor and
air flow are examples of noise sources in the mannequin. When the doctor listens for heart
sounds with a stethoscope, they can hear many of these sounds. This can impact the way
they interact with the mannequin and in the worst case scenario, they are unable to identify
crucial information in the heartbeat or lung sounds due to the interfering noise.
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The eyes of the mannequins today have either few responses or no response. Some
have blinking capabilities and pupil dilation which provide some information to the doctor.
These functions can assist the doctor in determining some diagnoses. Figure 1.3 shows the
blinking feature in one of Lærdal’s mannequins.

Figure 1.3: Lærdal’s mannequin with blinking

To improve interaction between doctors or other medical personnel who participate in
the simulation (later referred to as participants) and the mannequin, Lærdal wants to re-
design the eyes of the mannequin in such a manner that they can replicate human behavior
and movement. By replicating these features, there can be an increased flow of informa-
tion to the participant. Non-verbal communication is a large factor in how humans interact
(see section 2.1.2), and can be an important way to determine if a person is acting normal
or is suffering from some kind of disease or discomfort.

During simulations, an operator can speak through the mannequin’s internal speakers
to simulate conversations. This can help participants to train on building rapport with the
patient, and it can help to communicate discomforts, pain or other information. While
verbal communication through a microphone may assist the operator to convey a message
or meaning to the participants, it has been shown that eye movements and the gaze can
have a social and emotional function as mentioned in section 2.1.2. This means that we
can transfer information about our emotional state as well as our feelings towards other
individuals, just with our eyes.

There are also mechanical features to look for in the eyes. The eye has voluntary
and involuntary movements that can be affected by medical conditions or drugs. The
voluntary movements have 3 different modes of operation as mentioned in section 2.1.3:
smooth pursuit, vergence shifts and saccades. There are also involuntary movements, such
as pupil dilation, saccadic jerks, ocular flutter or reflexes. All of these movements may
provide the doctor with crucial information about medical conditions.

This project is sponsored by Lærdal, and the scope is to explore technologies that can
enhance simulations and communication between participant and mannequin by using the
eyes of the mannequins. The main dimensions of interest are to replicate human physiol-
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ogy, i.e the movement of the eye, and to mimic the behaviour of the eye. The project task
consists of:

• Generating concepts

• Building prototypes

• Building test setups

• Testing and comparing alternatives

• Judging concepts

The execution of this product development task was performed in the fuzzy front end
of the development process. Wayfaring is used as a product development methodology in
this project. A wayfaring model is a non-linear development process with no fixed goals.
The main objective is to change often and iterate rapidly. This is far less costly in the early
stages of the product development process, and can provide better solutions in the end, as
more dimensions have been explored. This is further explained in section 2.1.1
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Chapter 2
Literature and Technology Review

2.1 Literature review

2.1.1 Product development methodologies
This project utilizes a wayfaring model in the fuzzy front end of the product development
cycle. To find the needs of the users, observation of user cases and interviews have been
conducted.

Smith and Reinertsen (1992) coined the phrase ”fuzzy front end” of product develop-
ment. They explained that the early stages of the development offer the best opportunities
for large, cheap changes to the product development cycle. They call it the fuzzy time
between idea and large investment of resources. Changing product idea or concept in this
phase is inexpensive and easy, while later stage change can be costly.

Addressing the right problems in the right way is a large part of the fuzzy front end
(Gassmann and Schweitzer, 2014). This is not always easy, as it is impossible to know
what the best solution is before you start. This is why a wayfaring model can be introduced
in the fuzzy front end (Steinert, Martin and Leifer, Larry J., 2012; Gerstenberg et al.,
2015). A wayfaring model can be seen in figure 2.1, and it is based on the idea that radical
innovations are outside of what is possible to plan and execute linearly. When using a
wayfaring model, you are aware that at any point it might be necessary to change your
design radically, throwing away a lot of what you have done so far. When developing in
the fuzzy front end of the development cycle, radically changing a design is not costly.

In (Leifer and Steinert, 2014), need finding is defined as being central to the early stage
development. To establish the needs of users, one can borrow anthropological methods for
immersing oneself in the situation of the user. Needs are often not spoken, or the spoken
needs do not reflect the true needs. To establish an understanding of how the problem
can be tackled, it is important to both observe and participate. This allows the product
developer to obtain a feeling of the problem that otherwise could be lost.

To reduce effort in product development, it is possible to utilize a Wizard of Oz method
to simulate complicated systems (Dow et al., 2005). By simulating the proposed system
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Figure 2.1: Wayfaring model

with manual control, one can get feedback and avoid rework. This means that if you have
a system that requires a lot of software development, it might be a good idea to manually
control parts of the system, and iterate on the feedback you get from user testing.

2.1.2 Humanoid robots
Non verbal communication in a health care setting has been found to be very important.
Both patients and doctors are affected by the counterpart’s gaze (Hall and Lloyd, 1990;
Hall and Knapp, 2013). Eye contact can greatly increase the patient’s attitude towards the
doctor, and it can function as a reassurance and be calming to the patient. However, there
has also been conducted research to establish how this effect relates to humanoid robots.

Is there a difference in how we interpret non verbal communication from a human and
that of a humanoid robot? As human likeness in humanoid robots increases, there will be
an increase in how familiar the robot feels, until a certain point called the uncanny valley
(Ishiguro, 2007). When the robot becomes very similar to a human, there will be little
more than subtle differences that makes the humanoid differ in appearance from a real
human. These differences can be small, but they will be enough to create unease with the
observer. A sensation of strangeness can occur, as the differences can feel intangible and
eerie.

2.1.3 Eyes
Wong (2008) provides extensive details about the movements of the eyes, both voluntary
and involuntary, and explains medical conditions that can affect or induce different move-
ments. The most important information for this projects is that is controlled by 6 muscles,
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and has 6 degrees of freedom. The main voluntary movements are smooth pursuit (track-
ing objects), vergence shifts (binocular focusing) and saccades (rapid shifts in gaze and
focus). Human eyes perform approximately 10.000 saccades each day. In diagnosing of
medical conditions, these three voluntary movements can provide important information,
and can be examined by simple tests. Tracking a finger from left to right will show if the
patient is capable of smooth pursuit. Tracking a finger that moves from a short distance
away, towards the nose, will show if the patient is capable of vergence shifts. Saccades
can be tested by having the patient move their gaze from one point on the left to another,
one the right.

Involuntary movements are numerous and complex. Wong (2008) explains the com-
plexity of involuntary movements, and how they can be used in clinical diagnosing. An
example of an involuntary movement, can be Nystagmus. Involuntary oscillations of the
eye initiated by slow eye movements drives the eye away from the target. The oscillations
appear differently based on different medical conditions, and can be induced by different
types of movements. Some conditions cause the eyes to move in sinusoidal patterns, while
others cause linear jerking patterns. Some are presented while head is still, while others
appear only with head movement.

To track the eyes, there are many possibilities. The need for vision tracking has been
present for some time and there are two types of eye tracking: tracking motion relative to
the head, and tracking orientation in space (Duchowski, 2007). The most common tech-
nique relies on placing electrodes around face to measure the skin’s electrical potential
differences. One technique uses infrared light reflecting of the eye into a sensor and an-
other technique uses video detection of the pupil. Video detection tracking is the easiest to
implement, as it requires little calibration or signal interpretation. This method tracks the
eye’s orientation in space, not relative to the head.

2.2 Technology review

2.2.1 Simulator eyes
The eyes used in one of Lærdal’s simulators can be seen in figure 2.2. These eyes are
immobile and have a blinking mechanism. They also have the option to include pupil
dilation functionality. The pupil dilation is reacting to light conditions, like in the human
eye. The blinking is controlled by the operator, through the simulation software, and is
actuated with an electromagnetic motor.

2.2.2 Animatronic eyes
Animatronics is the technique of making and operating lifelike robots. Animatronic projects
have made realistic eyes both in movement and appearance. These can move in a manner
that seems fluid and natural. They are controlled either by code, or manually in real time
by an operator and usually actuated by servos. This makes them look natural, but there
is usually some noise when actuated. An example of the animatronic eyes can be seen in
figure 2.3.
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Figure 2.2: Eye of Lærdal’s patient simulator mannequin

Figure 2.3: Animatronic eyes (Discovery, 2011)

2.2.3 Computer vision and processing
In this project, processing in done in python with serial communication to an Arduino. By
utilizing powerful computer vision tools, it is possible to process real time video streams
and utilize feature recognition software to control the output to the Arduino.

OpenCV is a python library that handles computer vision and can perform feature
recognition. By using machine learning techniques on Haar-like features in images (Figure
2.4), OpenCV can be trained to detect objects (Bradski, 2000; Viola and Jones, 2001). The
classifier is called a Haard cascade classifier, and in the OpenCV library there are cascades
for, amongst others, eyes and faces. Training a Haar cascade classifier to identify a new
object would require around 10 000 positive and negative images to achieve an acceptable
accuracy. A positive image in this case is an image that contains the object you want to
detect, while a negative image does not.

2.2.4 Virtual reality tools
Virtual reality has boosted technology surrounding images displayed close to the eyes. An
example of a virtual reality headset can be seen in figure 2.5. Lenses and headsets can
come in all shapes and price ranges. Some are cheaper than ever and easy to work with
while other technologies are kept as trade secrets. Software is available for processing and
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Figure 2.4: Haar-like features used for detecting objects (Viola and Jones, 2001)

distortion of the image. Small high resolution screens with high frame rates are becoming
more common and inexpensive and can are easily implemented.

Figure 2.5: Oculus Rift virtual reality headset, gathered from (Walton, 2016)
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Chapter 3
Development

3.1 Users and usage
Through observation of simulations, participation and interviews, two main users and their
different needs were identified. Simulation and interviews were conducted in St. Olav’s
hospital with base in their simulator center. Observed simulations were emergency care
of an infant arriving in ambulance, conducted in the emergency room, as well as a cardiac
arrest case were a doctor was found lifeless in a hallway.

There are two main users of the patient simulator mannequins: simulation participants,
which can be a doctor, medical student or others, and the operator, who controls the man-
nequin and the simulation scenario. The users have different ways of interacting with the
mannequin. The participants are training in a simulation environment to obtain experience
that might be difficult to get from real life scenarios. The operator controls the mannequin
and interacts with the system controls and the participants if needed. The operators are in
the background and oversee the simulation.

The two main users have different needs that have to be fulfilled. For the operator,
the mannequin, as well as the software and mechanical functions have to be operational at
any time. There should be no downtime or delays. The operator needs to be able to alter
scenarios in real time to create a fluid environment that adapts. The participants need to be
able to extract information from the patient simulator to generate meaning. This meaning
can be deduced from mechanical feedback, sound or visual cues. This meaning should
lead to a conclusion or diagnose, and the participants should learn from the experience.
Was the diagnose correct or wrong, and why?

Since participants in the simulations often do not know about the mannequin’s full
capabilities, they are prone to misinterpreting a lack of response from the simulator. They
are not sure whether no response is a result of limited capabilities of the simulator, or if it is
indeed a part of the simulation. This creates an artificial environment in which the doctor
is very aware that it is indeed a simulation and contacts the operator to gather information,
instead of the patient. This leads to behaviors that are unusual or non-intuitive for the
simulated situation.
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Some participants reported that they changed their mindset when approaching a sim-
ulation. They report that when participating in a simulation, they no longer think in the
same way as when they work with real patients, and they enter a ”simulation mindset”.
Thus, they are training to become very good simulation participants, but can struggle to
make the training relevant to real cases.

3.2 Prototyping
To incorporate wayfaring into the fuzzy front end of this development process, iterations
and rapid prototyping has been heavily weighted. By prototyping in dimensions of interest,
it is possible to learn from the process of development and testing (Erichsen et al., 2016).
This can enlighten new dimensions of interest or needs that can be further explored. In a
non-linear product development process, like this one is, it is important to not get locked
into solutions.

Prototypes should be developed in certain dimensions of interest. This project tries
to fulfill the needs of the users by focusing on generating meaning from the mannequin
eyes. By introducing behavior and movement to the mannequin eyes, it may be possible
to simulate human non verbal communication.

3.2.1 Prototypes
To develop meaningful behaviour of the eyes, it is important to look at how the human eye
moves. The human eye tends to look at faces and objects, while also performing micro-
movements that scan the surrounding environment (Cerf et al., 2009). The meaning these
movements create is based on their responsiveness, range and accuracy. To explore these
factors during simulation, participants should be able to communicate with and observe
the patient, and they can perform tests to search for different faults in the patient’s vision
or movement of the eye.

Some features are easier to replicate than other, such as pupil dilation. One simple
example of pupil dilation is shown in figure 3.1. This prototype utilizes a light-dependent
resistor to determine the amount of light that enters the ”eye” through an iris diaphragm,
and the diaphragm closes to adapt to the amount of light.
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Figure 3.1: Simple pupil dilation prototype

The implementation of movement and behavior in a mannequin is a complex problem.
The problem can be split into to two parts: actuation, which replicates the movement, and
environment response, which replicates behavior. The development of both actuation and
environment response was conducted in parallel.

Environment response

The scope of the first environment response prototypes was to autonomously act upon an
observed environment. The prototypes were developed in Python 3.6 with communication
to Arduino through serial. The code for the face recognition can be seen in Appendix A. By
capturing and scanning each frame of the video stream of the mannequin’s environment,
searching for faces with OpenCV’s Haar cascade classifiers (Bradski, 2000), as seen in
figure 3.2, it is possible to control the mannequin eyes. A camera sends a video stream
to the processor, and the processor sends a control signal to an Arduino, which in turn
controls the movement of the mechanical eye, as seen in Figure 3.3.
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Figure 3.2: Face recognition

Figure 3.3: Mechanical eye, as it tracks a face

When there are multiple faces present in the video stream, there are several possibilities
for choosing the correct one. This can be chosen randomly, or by directional audio, if
someone is speaking. If someone is speaking, it might also be possible to determine this
with movement of the mouth. To tackle this problem, a directional microphone was used
to record audio in parallel with the face recognition. To choose which face to look at, a
test setup was developed. By recording the audio, as well as the position of the faces in
view, it is possible to use a machine learning algorithm to choose which face to look at. In
Appendix B, a python code is shown which records all data and prepares it for machine
learning. The data will consist of an audio file and a position file. The labels of the data tell
us which person is speaking. The audio file can be processed to extract uniform features
per audio chunk, such as volume, pitch, difference between channels or similar.

The test setup is to have two or more faces present in the environment, and have one
person speaking. The data is then labelled, and it is possible to use supervised learning
algorithms to create a classifier than can choose the right face in real time. A suggested
machine learnign algorithm for a problem like this is Support Vector Machines (SVM)
(Mohri et al., 2012).
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Creating coded behaviour that appears natural and not eerie, as mentioned in section
2.1.2, is extremely difficult. It requires incredible amounts of coding to cover all possible
outcomes. To circumvent this problem, a Wizard of Oz-inspired prototype (See section
2.1.1) was developed and implemented in the proposed system as described in Chapter 4.
The original idea with this prototype was to teach the system where to look and to use the
prototype to obtain user feedback. It turned out that to implement an operator controlled
eye, might provide better results than a coded/programmed controlled eye.

Actuation

Actuation of the mechanical eye is an important factor in order to avoid the uncanny val-
ley. To create fluent, fast, precise and silent movement can be incredibly difficult. Some
solutions offer one or more of these dimensions, but few offer all of them.

Air muscles as shown in figure 3.4 are strong linear actuators that expand radially to
create a linear pulling force. These can be controlled quickly by applying air pressure,
but they operate in a binary fashion if you can’t control the pressure precisely. If you are
able to control pressure, the muscles can be positioned fairly accurately. When releasing
pressure, there is significant noise. However, they are cheap and easy to make and can be
created in many sizes.

Figure 3.4: Air muscle

Heat controlled muscles can be made from fishing lines by applying a constant axial
force and then twisting the line until it creates a coil. This coil has the property of con-
tracting when heated, and some versions of these muscles can contract up to 49% (Haines
et al., 2014). This muscle can be controlled precisely, silently and quickly, if you are able
to control the temperature. By putting the coil inside a flexible tube, it is possible to feed
warm or cold water to the muscle, and the muscle will contract based on the temperature
of the water.

Magnet control is viable as an actuation method, if there is sufficiently low friction in
the bearings of the eye ball. An experimental setup is shown in figure 3.6, where the eye
can be controlled in one axis between the two magnets. The electromagnets interact with
a permanent neodymium magnet attached to the eyeball, and by regulating the relative
voltage between the magnets, it is possible to control the positioning of the magnet very
accurately. Each magnet can be controlled with pulse width control (PWC) between 0 (off)
and 255 (maximum power). This means that the position of the neodymium magnet can be
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Figure 3.5: Fishing line muscle holding 500g

regulated between the electromagnets. By setting the magnets’ power to (LEFT,RIGHT)
= (255,0), the magnet will be in the extreme left position. (255,255) is center, and (0,255)
is the extreme right. This means that we can control the position very accurately in the
available movement space. Drawbacks of this actuation is that the magnets produce some
sound and can get hot over time.

Figure 3.6: Magnet control

Servo motors can be a cheap way to actuate both rotation or linear motion. With a pre-
cise, fast response, they are easily controllable. They are small and can produce significant
forces. There are however few silent servo motors, and they produce significant amounts
of noise. To reduce the noise, it is possible to lubricate the gears. Digital servos also
produce more noise than analog ones, as digital servos have constant position regulation.

Piezoelectric motors are motors that are controlled by sending specialized electric sig-
nals to a piezoelectric ceramic. This ceramic actuates a certain movement based on the

16



electrical signal and the shape of the ceramic. This allows the piezoelectric ceramic to per-
form movements that are similar to walking (PiezoMotor, 2016). They perform stepwise
movements with very precise control. Many piezoelectric motors offer sub-micrometer
movement, and some even sub-nanometer movement. The actuation speeds range be-
tween 1 and 200 mm/s with varying positioning precision. Piezoelectric motors are highly
customizable, and can be very small. Canon produces DSLRs that have a small piezoelec-
tric motor that drives the autofocus of the lens. This operates on ultrasonic frequencies,
and is completely inaudible. It has a fast motion that is very precise (Canon Imaging Plaza,
2016).

Figure 3.7: PiezoMotor’s LEGS technology (PiezoMotor, 2016)

Figure 3.8: Canon’s Nano USM (Canon Imaging Plaza, 2016)
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Chapter 4
Proposed solution

This project describes the early stages of product development of patient simulator eyes.
This implies that a proposed solution is temporary. Constant learning and testing creates
new solutions that changes the product. The proposed solution is only the current iteration
in the prototyping process.

4.1 System
When creating a control system for the eyes of the patient simulator, natural movement
and behaviour is important. To create an interaction between patient and doctor, there has
to be actual interaction. There has to be emotion and communication through the eyes,
and the behaviour of the eyes has to induce meaning with the doctor.

To facilitate this communication, the proposed solution is to mimic the eye movement
of the operator, as they look through the eyes of the mannequin. The operator can put on
a headset, similar to a virtual reality headset, where they can see a video stream of what
the mannequin sees. In real time, the headset tracks the eye movement of the operator,
and mimics this movement in the mannequin. This means that if a person enters the
mannequin’s field of view, and the operator looks at this person, the mannequin also looks
at this person.

To manually control the eyes of the mannequin during all simulations is not feasible.
This is why further work will include attempts to record emotions, behaviours and health
conditions. By learning patterns and movements that are distinct for each situation, these
situations can be played out without manual operation.

The proposed system is developed to create natural communication between the opera-
tor and the patient. The subsystems have to be further developed and optimized to enhance
the communication. The subsystems of the product are:

• Environment recording

• Displaying of the environment to the operator
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Figure 4.1: Illustration of the flow of information

• Recording eye movement of the operator

• Filtering and processing of blinking

• Processing the eye movement and blinking, and translating into actuation control

• Actuation

The prototype is built using 2 cameras, one display, a virtual reality headset, an Ar-
duino, a computer and two servo motors. The video streams are interpreted with python
3.6 and the computer vision library OpenCV 3.1 and processed on the computer. The code
can be found in Appendix C. The display used in the prototype is an iPhone that displays
the video from the camera that records the environment. The other camera is placed in
the headset and records the left eye of the operator. The actuation of the servo motors is
controlled by an Arduino that receives the coordinates through serial communication.

4.1.1 Environment recording
To be able to translate what the mannequin ”sees”, it is necessary to record the environ-
ment. The mannequin already records sounds, and by putting a camera on the doll that
records its field of view, it is possible to feed this image to the operator or to an algorithm
as will be discussed in section 5.1. By avoiding advanced image processing and relying on
human processing of the images, a more natural behaviour can be implemented or trained.
The camera that records the environment should have a wider angle lens than the current
one, as the field of view is narrower than that of a human.
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Figure 4.2: The camera that records the environment, along with the mechanical eye

4.1.2 Displaying the environment
When the operator has the headset on, a display inside the headset provides a real time
video feed from the mannequin. This is displayed close to the eye with a lens that lets the
operator focus on the screen. When showing the environment to the operator, they will
instinctively start to look around and try to make sense out of everything that is displayed.
This means that the operator shows us a natural way of looking at the environment.

When using lenses to display a screen close to the eye, it is important to have a high
resolution screen. The pixels can be very easy to see when looked at up close. There is
also some distortion due to the curvature of the lens, which has to be counteracted.

4.1.3 Recording eye movement of the operator

Figure 4.3: Left eye is recorded by a camera and the pupil is located
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The camera in the headset records the left eye of the operator. With 3 infrared diodes
and an infrared camera chip, it is possible to detect the pupil even with no light present.
The infrared light creates no reflection on the eyeball. Combined with the fact that the
headset blocks a large amount of visible light from entering, it is possible to get accu-
rate readings without being affected by lighting conditions. In figure 4.3, there is some
reflection, as the headset is not closed fully.

In the current iteration, the camera that records the eye has a defect that affects the
image it records, as seen in figure 4.3. This lowers the accuracy of the detection, but this
can be counteracted by using a camera without defects.

4.1.4 Filtering and processing of blinking
In eye tracking, blinking is usually considered to be noise that has to be filtered out. In
this application, it is possible to utilize blinking as an actuation tool. When the operator
blinks, there will be 1-2 frames in the video stream where no eye is detected. This can
be interpreted as a blink, meaning that it is possible to communicate to the Arduino that
blinking has occurred. If the operator closes their eyes, or removes the headset, there will
also be no eyes detected. The difference can be detected easily through coding, as there
will be larger amount of frames with no eye detected.

4.1.5 Processing the eye movement
The video stream from the headset is processed with the OpenCV library and the position
of the pupil is found by utilizing a Haar cascade classifier trained to find eyes. The classi-
fier is not optimized to find pupils, but it is possible to train a new Haar cascade classifier
to achieve a higher accuracy, as mentioned in section 2.2.3.

If the classifier finds an eye, the eye is recorded with an values (x,y,w,h) which de-
scribes the middle point of the pupil and the width and height. When the eye’s position is
found, this is translated and sent to the Arduino through a serial port. The Arduino con-
trols actuator with the coordinates that are received. The actuators are controlled with an
adjusted value based on the eye’s position in the video stream. If the video has resolution
600x480, and the pupil is found in (x,y) = (300,400) the Arduino will receive 2 bytes with
values between 0 and 255. This means that x value received will be 127 and the y value
will be 212. The Arduino can then control the actuators with these values. If the actuators
are 180 degree servos, the Arduino has to map these values between 0 and 179.

In optimization of the accuracy of the tracking, it is possible to have the recorded eye
position displayed to the operator. In effect, the operator is shown where the program
thinks they are looking and it is possible to calibrate this until the eye tracking is correct.

4.1.6 Actuation
Actuation of the eyes is a complicated matter. To achieve a natural behaviour of the eye,
it is important that the movement is fluid and that it is silent. Possibilities for optimal
actuation is considered in section 3.2.1 and 5.3. In the current prototype, servos are used
to illustrate the movement that it is possible to achieve. While not being optimal, they
serve prototyping purposes.
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Figure 4.4: Simple mechanical actuation with two servo motors.

One proposed solution is to use piezoelectric, ultrasonic motors. They make no audible
sound and can control the movement rapidly and precisely. Ultrasonic piezoelectric mo-
tors are used in silent autofocus motors in DSLR cameras, and can have sub-micrometer
precision at speeds up to 200 mm/s. Due to their complexity and price, they have to be
manufactured to order. The largest drawbacks are that they are expensive and require large
amounts of engineering. They also require external driver electronics that should be en-
gineered to the particular motor and use. Still, they can be customized to be extremely
compact and specialized.

For further development, prototyping samples of linear piezoelectric motors have been
requested by PiezoMotor, a Swedish piezomotor manufacturer.

4.2 Usage
The proposed system is designed to be used manually in live simulations and also in train-
ing of scenarios that can be put in a library. The use is intended to further enhance patient-
doctor interactions and to simulate conditions that require communication. Some condi-
tions require thorough examination of the eyes, which can be simulated with this solution.

4.2.1 Scenario: Medical students in simulation
Medical students with limited experience are often put into low stress simulations in order
to get used to interacting with patients. Some scenarios may be emergency care patients
with non life threatening conditions, or nursing of post-operation patients. Communication
is a tool that can help diagnosing certain conditions, like strokes. Movement of the eyes
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may also contribute to eliminating the feeling of a simulation, as the mannequin appears
more human.

In this scenario, the operator can assume the role of the patient, and the participants can
interact with them by talking and observing. Certain conditions may be revealed through
the way a person blinks, how their field of view is or how quickly they respond to visual
cues. All of this is possible to implement by manipulating the image displayed to the
operator, or in the mechanical response of the eye.
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Chapter 5
Further work

Continuing development will be done in a couple dimensions of interest. To create a
responsive actuation, the hope is to acquire prototyping samples of piezoelectric linear
actuators. Precise control of these can provide the desired movement of the eyes.

Another dimension of interest is to optimize eye detection and calibration. By creating
a Haar cascade for the pupil, it could be possible to achieve better tracking. Another way
to increase accuracy is to get better calibration from testing.

To achieve better environment response and the implementation of medical conditions,
it will be interesting to explore machine learning, and to conduct user tests where an oper-
ator can control the eyes while a participant interacts with them.

5.1 Training of scenarios
Since the operator has other tasks than just operating the eyes, the mannequin should be
able to be taught how to act during certain specified scenarios. A large opportunity for
development is the training of scenarios. By recording certain behavior that is specific to
one condition, it might give the operator the freedom to execute pre-trained programs that
can act out conditions such as panic, pain, strokes etc..

There are a number of medical conditions that can affect the way a person sees their
environment. Some conditions can give the patient blind areas in their field of view. Drugs
can affect the movement of the eyes and the way a person blinks. Some drugs make the
eyes move very rapidly, while others make them slow. Certain conditions can make the
eyes flicker and move inconsistently, as mentioned in section 2.1.3.

The training environment might be based on position recording of the eye, as well as
blinking and observed faces from the environment. The training can either be recorded
and played out directly, or it can be trained by machine learning and respond to inputs
from the environment. A third alternative is a combination of the two. By using recorded
behavior and add coded or trained behavior as a response to certain environment changes,
such as bright lights, faces or voices.
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A feasible machine learning approach may be artificial neural networks. By using su-
pervised deep learning neural networks (Bengio, 2009), it could be possible to replicate the
behavior of the operator based on inputs from the environment. This can create smart be-
havior that mimics the operator. This has the potential of creating an artificial intelligence
(AI) that can make the need for operator control obsolete.

To be able to execute a neural network training, the pupil recording has to be more
precise. A deep learning framework that fits the needs of this project may be Caffe (Jia
et al., 2014). This framework is made for expression, speed and modularity by the Berke-
ley Vision and Learning Center. The framework has a Python interface and has been used
for advanced visuomotor tasks before (Levine et al., 2015). It has among other things been
used to teach a robot to screw a cork on to a bottle.

A possible outcome of the neural network, based on the accuracy and extent of training
that is performed, is the training of emotional states. It might be possible to train the
algorithm to exhibit stress or discomfort.

5.2 Testing
User testing has not yet been performed. The current prototype has been made from ob-
served needs of operator and simulation participants. Testing will provide crucial feedback
on the system and on the design. The goal is to implement simple user tests with facilita-
tors at St. Olav’s Hospital when the accuracy of the eye tracking is sufficient.

By performing user tests it is possible to obtain feedback on the system as a whole, as
well as comfort, ease of use and their general thoughts. The testing is expected to reveal
unforeseen problems and concerns.

5.3 Actuation
Further work on the actuation will hopefully include piezoelectric motors, if they are ob-
tainable. Otherwise, the easiest solution would be to obtain small, analog servos that can
be lubricated to limit noise. A more challenging solution would be to implement the heat
controlled fishing line muscle, as the technology is really promising in terms of speed of
actuation and strength. Magnet control is also an alternative that is promising and can
be further explored. For testing, there should be a complete actuation system available,
preferably with 2 eyes, including blinking. This can help to get user feedback when test-
ing.

5.4 Challenges
The main challenges of the implementation of this system are to create lifelike movement
and to make the behavior accurately represent the operator’s behavior. There might be
some problems with processing power, depending on the camera resolution. The current
programs are running on a 2.5 GHz Intel core I7, but it is still a demanding process.
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Creating a Haar cascade classifier for the pupil might increase the accuracy of the
detection algorithm as mentioned in section 2.2.3. This requires a large amount of prepa-
ration of the images, but it should be possible to create. Calibration of eye position to the
recorded environment as well as the actuated eye might be a challenge. The camera ob-
serving the environment might have to be a wide angle lens in order to capture a sufficient
view. The calibration is also important for creating effective communication between the
participant and the mannequin.

Another challenge is to implement medical conditions that alter the mechanical move-
ment of the physical prototype. As discussed in section 2.1.3, there are large amounts of
involuntary movements and movement patterns that can be affected by different medical
conditions. Achieving accurate representation of the most important and decisive move-
ments may depend on the actuator accuracy and speed.

5.5 Research possibilities
In section 5.1, a neural network is proposed for mimicking human environment response.
Research on gaze and eye tracking is mainly done with respect to classification of diseases
and to analyse where a person’s gaze is focused. In Campana et al. (1999) they use neural
networks to classify identify patients with Schizophrenia.

The possibility of creating a behavior of the eyes in the mannequins that mimic human
behavior through neural networks may prove to be an interesting study. An alternative is to
make a comparative study that compares human control against recorded behavior, coded
behavior and neural net control, and performing Turing tests.
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Chapter 6
Conclusion

This project has had the task of identifying, collecting, judging and conceptualizing tech-
nologies to simulate human eye movement and behavior. Through a wayfaring model,
this task has been performed and the iterations and prototypes have been shown in this
paper. The proposed system is put together from a set of subsystems that have been gener-
ated throughout the project, and is the current iteration in both actuation and environment
response.

The system provides some solutions to the needs that have been identified through user
observations and interviews. At this time, the system is at an early prototyping stage. To
venture forward, there are possibilities and challenges that must be addressed. The system
needs to be user tested when the prototypes are mature enough to be tested. The viability
of the proposed system is dependent on further development and testing.

Further dimensions of development have been proposed in order to be able to leverage
this technology in a simulation setting. This includes optimization and calibration as well
as the creation of a training environment, when it comes to behavior.

Actuation must be implemented in the complete system, and not as stand-alone com-
ponents. The environment response system is capable of sending control signals that have
to be acted out. Further work on the actuation must be performed so that the mechanical
system can operate flawlessly in combination with the rest of the mannequin.

By using the operator as the control for the eyes, the system becomes a lot more fluid
and natural. The coding also becomes less complex and requires less processing power.
The code that mimics the operator’s behavior is very simple, as opposed to one that has
to account for every possible scenario that could happen. The implementation of taught
behavior based on recorded scenarios, may be an effective way to simplify the operator’s
experience. A library of predefined conditions may offer a powerful communication.

As mentioned in section 5.1, it might be possible to train an algorithm that can control
the behavior of the mannequin. If this done in a sufficient manner, it will be interesting to
perform a Turing test (Harnad, 2003). A Turing test asks humans to try to distinguish a
machine from a human. If they are indistinguishable, the machine has passed. In this case,
the test would be to determine if the eyes are controlled by an operator or by the neural
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net.
All in all, the system as it is now, shows the possibilities of what may be achieved with

further development. The system may provide a powerful platform for communication
that could improve learning in simulation scenarios. Human non verbal communication is
a crucial component in how we interact, and this may be a tool for introducing non verbal
communication to health care simulations.
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A Face recognition

Python code

1 i m p o r t numpy as np
2 i m p o r t cv2 , s e r i a l
3

4 #Open Face d e t e c t i o n c l a s s i f i e r and i n i t i a t e v i d e o
5 c a s c P a t h = ” / Use r s / t r u l s / opencv / d a t a / h a a r c a s c a d e s /

h a a r c a s c a d e f r o n t a l f a c e a l t . xml ”
6 eyeCascade = cv2 . C a s c a d e C l a s s i f i e r ( c a s c P a t h )
7 e y e C a p t u r e = cv2 . VideoCap tu re ( 1 )
8

9 # C a p t u r e camera r e s o l u t i o n
10 r e s x = e y e C a p t u r e . g e t ( 3 )
11 r e s y = e y e C a p t u r e . g e t ( 4 )
12

13 # Connect t o Arduino
14 c o n n e c t e d = F a l s e
15 s e r = s e r i a l . S e r i a l ( ’ / dev / cu . usbmodem1411 ’ , 9600)
16 w h i l e n o t c o n n e c t e d :
17 s e r i n = s e r . r e a d ( )
18 c o n n e c t e d = True
19

20 w h i l e True :
21 # Open one f rame of t h e v i d e o s t r e a m and m i r r o r i t
22 , f rame = e y e C a p t u r e . r e a d ( )
23 f rame = cv2 . f l i p ( frame , 1 )
24 # D e t e c t f a c e s i n t h e c u r r e n t f rame
25 g ra y = cv2 . c v t C o l o r ( frame , cv2 .COLOR BGR2GRAY)
26 eyes = eyeCascade . d e t e c t M u l t i S c a l e (
27 gray ,
28 s c a l e F a c t o r = 1 . 1 ,
29 minNeighbors =5 ,
30 minSize =(50 , 50) ,
31 maxSize = ( 2 5 0 , 2 5 0 ) ,
32 )
33 # I f f a c e s a r e p r e s e n t , w r i t e i t s p o s i t i o n t o t h e Arduino
34 i f l e n ( eyes ) >0:
35 x s t r = np . z e r o s ( ( l e n ( eyes ) ) , d t y p e =np . i n t )
36 y s t r = np . z e r o s ( ( l e n ( eyes ) ) , d t y p e =np . i n t )
37 x s t r =( i n t ( ( eyes . i t em ( 0 , 0 ) ) / r e s x ∗255) )
38 y s t r =( i n t ( ( eyes . i t em ( 0 , 1 ) ) / r e s y ∗255) )
39 s e r . w r i t e ( b ”%3d%3d ” % ( x s t r , y s t r ) )
40 # Draw a r e c t a n g l e a round t h e f a c e s
41 f o r ( x , y , w, h ) i n eyes :
42 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x+w, y+h ) , ( 0 , 255 , 0 ) , 2 )
43 # D i s p l a y t h e f rame wi th a r e c t a n g l e a round t h e f a c e
44 cv2 . imshow ( ’ EyeCaptu re ’ , f rame )
45
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46 i f cv2 . wai tKey ( 3 3 ) & 0xFF == ord ( ’ a ’ ) :
47 b r e a k
48 s e r . c l o s e ( )
49 e y e C a p t u r e . r e l e a s e ( )
50 cv2 . des t royAl lWindows ( )

Arduino code

1 # i n c l u d e <Servo . h>
2 Servo Servo1 ;
3 Servo Servo2 ;
4 i n t rng = 179 ;
5 c h a r v a l s [ 6 ] ;
6 S t r i n g s t r x ;
7 S t r i n g s t r y ;
8

9 vo id s e t u p ( ) {
10 S e r i a l . b e g i n ( 9 6 0 0 ) ;
11 S e r i a l . w r i t e ( ’ 1 ’ ) ; / / Connect t o Python
12 Servo1 . a t t a c h ( 1 0 ) ; / / S e t Se rv os t o c e n t e r p o s i t i o n
13 Servo1 . w r i t e ( 9 0 ) ;
14 Servo2 . a t t a c h ( 1 1 ) ;
15 Servo2 . w r i t e ( 9 0 ) ;
16 }
17

18 vo id lo op ( ) {
19 w h i l e ( S e r i a l . a v a i l a b l e ( ) > 0) { / / While t h e Arduino r e c e i v e s a s e r i a l
20 S e r i a l . r e a d B y t e s ( v a l s , 6 ) ; / / i n p u t t h e code w r i t e s t h e x−v a l u e
21 / / t o one se rvo , and t h e y−v a l u e
22 / / t o a n o t h e r
23

24 f o r ( i n t i = 0 ; i < 3 ; i ++) {
25 s t r x += v a l s [ i ] ;
26 }
27

28 f o r ( i n t i = 3 ; i < 6 ; i ++) {
29 s t r y += v a l s [ i ] ;
30 }
31

32 i n t v a l x = s t r x . t o I n t ( ) ;
33 v a l x = map ( va lx , 0 , 255 , 0 , 179) ;
34 i n t v a l y = s t r y . t o I n t ( ) ;
35 v a l y = map ( va ly , 0 , 255 , 0 , 179) ;
36

37 Servo1 . w r i t e (179− v a l x ) ;
38 Servo2 . w r i t e ( v a l y ) ;
39

40 s t r x = ” ” ;
41 s t r y = ” ” ;
42 }
43 }

B Face recognition and audio preparation

Python code
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1 from s y s i m p o r t b y t e o r d e r
2 from a r r a y i m p o r t a r r a y
3 from s t r u c t i m p o r t pack
4 i m p o r t numpy as np
5 i m p o r t cv2 , sys , s e r i a l , pyaudio , wave , csv , s t r u c t , m a t p l o t l i b
6

7

8 c o n n e c t e d = F a l s e
9 s e r = s e r i a l . S e r i a l ( ’ / dev / cu . usbmodem1411 ’ , 9600)

10 w h i l e n o t c o n n e c t e d :
11 s e r i n = s e r . r e a d ( )
12 c o n n e c t e d = True
13

14

15 p r i n t ( ’ i n p u t a u d i o f i l e FILENAME : ’ )
16 FILENAME = i n p u t ( ) # Get f i l e n a m e i n p u t s
17 p r i n t ( ’ i n p u t p o s i t i o n i n g FILENAME : ’ )
18 POSFILE = i n p u t ( )
19 p r i n t ( ’ i n p u t a u d i o − csv FILENAME : ’ )
20 AUDCSV = i n p u t ( )
21

22 # a u d i o
23 THRESHOLD = 100
24 CHUNK SIZE = 8192
25 FORMAT = pyaud io . p a I n t 1 6
26 RATE = 44100
27 CHANNELS=2
28 CHANGE RATE = 1
29

30 # v i d e o
31 c a s c P a t h = ” / Use r s / t r u l s / opencv / d a t a / h a a r c a s c a d e s /

h a a r c a s c a d e f r o n t a l f a c e a l t . xml ”
32 f a c e C a s c a d e = cv2 . C a s c a d e C l a s s i f i e r ( c a s c P a t h )
33 v i d e o c a p t u r e = cv2 . VideoCap tu re ( 1 )
34 r e s x = v i d e o c a p t u r e . g e t ( 3 )
35 r e s y = v i d e o c a p t u r e . g e t ( 4 )
36

37 d e f n o r m a l i z e ( s n d d a t a ) :
38 # ” Average t h e volume o u t ”
39 MAXIMUM = 16384
40 t i m e s = f l o a t (MAXIMUM) / max ( abs ( i ) f o r i i n s n d d a t a )
41

42 r = a r r a y ( ’ h ’ )
43 f o r i i n s n d d a t a :
44 r . append ( i n t ( i ∗ t i m e s ) )
45 r e t u r n r
46

47 d e f t r i m ( s n d d a t a ) :
48 # Trim t h e b l a n k s p o t s a t t h e s t a r t and end
49 d e f t r i m ( s n d d a t a ) :
50 s n d s t a r t e d = F a l s e
51 r = a r r a y ( ’ h ’ )
52

53 f o r i i n s n d d a t a :
54 i f n o t s n d s t a r t e d and abs ( i )>THRESHOLD:
55 s n d s t a r t e d = True
56 r . append ( i )
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57

58 e l i f s n d s t a r t e d :
59 r . append ( i )
60 r e t u r n r
61

62 # Trim t o t h e l e f t
63 s n d d a t a = t r i m ( s n d d a t a )
64

65 # Trim t o t h e r i g h t
66 s n d d a t a . r e v e r s e ( )
67 s n d d a t a = t r i m ( s n d d a t a )
68 s n d d a t a . r e v e r s e ( )
69 r e t u r n s n d d a t a
70

71 d e f a d d s i l e n c e ( s n d d a t a , s e c o n d s ) :
72 #Add s i l e n c e t o t h e s t a r t and end of ’ s n d d a t a ’ o f l e n g t h ’ s e c o n d s ’ (

f l o a t )
73 r = a r r a y ( ’ h ’ , [0 f o r i i n r a n g e ( i n t ( s e c o n d s ∗RATE) ) ] )
74 r . e x t e n d ( s n d d a t a )
75 r . e x t e n d ( [ 0 f o r i i n r a n g e ( i n t ( s e c o n d s ∗RATE) ) ] )
76 r e t u r n r
77

78 d e f s t a r t r e c o r d ( ) :
79 p = pyaud io . PyAudio ( )
80 c o u n t e r = 0
81 s t r e a m = p . open ( f o r m a t =FORMAT, c h a n n e l s =CHANNELS, r a t e =RATE,
82 i n p u t =True , o u t p u t =True ,
83 f r a m e s p e r b u f f e r =CHUNK SIZE )
84 r = a r r a y ( ’ h ’ )
85 p o s i t i o n = [ ]
86

87 w h i l e True :
88 # Audio r e c o r d i n g
89 s n d d a t a = a r r a y ( ’ h ’ , s t r e a m . r e a d ( CHUNK SIZE , e x c e p t i o n o n o v e r f l o w

= F a l s e ) )
90 i f b y t e o r d e r == ’ b i g ’ :
91 s n d d a t a . by teswap ( ) #wav f o r m a t e n d i a n n e s s i s ” l i t t l e ”
92 r . e x t e n d ( s n d d a t a )
93 # Face r e c o g n i t i o n and d i s p l a y v i d e o
94 r e t , f rame = v i d e o c a p t u r e . r e a d ( )
95 g ray = cv2 . c v t C o l o r ( frame , cv2 .COLOR BGR2GRAY)
96 f a c e s = f a c e C a s c a d e . d e t e c t M u l t i S c a l e (
97 gray ,
98 s c a l e F a c t o r = 1 . 1 ,
99 minNeighbors =5 ,

100 minSize =(30 , 30) ,
101 )
102 f o r ( x , y , w, h ) i n f a c e s : # Draw a r e c t a n g l e a round t h e f a c e s
103 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x+w, y+h ) , ( 0 , 255 , 0 ) , 2 )
104

105 i f l e n ( f a c e s ) :
106 x s t r = np . z e r o s ( ( l e n ( f a c e s ) ) , d t y p e =np . i n t )
107 y s t r = np . z e r o s ( ( l e n ( f a c e s ) ) , d t y p e =np . i n t )
108 x s t r =( i n t ( ( f a c e s . i t em ( 0 , 0 ) ) / r e s x ∗255) )
109 y s t r =( i n t ( ( f a c e s . i t em ( 0 , 1 ) ) / r e s y ∗255) )
110 s e r . w r i t e ( b ”%3d%3d ” % ( x s t r , y s t r ) )
111
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112 # w r i t i n g p o s i t i o n i n g and t i m i n g
113 t emp pos = [ 0 ]∗ l e n ( f a c e s )
114 x s t r = [ x [ 0 ] f o r x i n f a c e s ]
115 y s t r = [ y [ 1 ] f o r y i n f a c e s ]
116 f o r i i n r a n g e ( 0 , l e n ( f a c e s ) ) :
117 t emp pos [ i ] = [ i n t ( x s t r [ i ] / r e s x ∗255) , i n t ( y s t r [ i ] / r e s y ∗255) ]
118 p o s i t i o n . append ( temp pos )
119

120 cv2 . imshow ( ’ Video ’ , f rame ) # D i s p l a y t h e r e s u l t i n g f rame
121 i f cv2 . wai tKey ( 3 3 ) & 0xFF == ord ( ’ a ’ ) :
122 b r e a k
123

124 p r i n t ( ’∗done r e c o r d i n g ’ )
125 s a m p l e w i d t h = p . g e t s a m p l e s i z e (FORMAT)
126 s t r e a m . s t o p s t r e a m ( )
127 s t r e a m . c l o s e ( )
128 p . t e r m i n a t e ( )
129

130 r = n o r m a l i z e ( r )
131 r = t r i m ( r )
132 r = a d d s i l e n c e ( r , 0 . 5 )
133

134 v i d e o c a p t u r e . r e l e a s e ( )
135 cv2 . des t royAl lWindows ( )
136 r e t u r n sample wid th , r , p o s i t i o n
137

138 d e f r e c o r d t o f i l e ( p a t h ) :
139 # Records from t h e microphone and o u t p u t s t h e r e s u l t i n g d a t a t o ’ p a t h ’
140

141 sample wid th , da t a , p o s i t i o n = s t a r t r e c o r d ( ) # p o s i t i o n
c o o r d i n a t e s : [ X0 X1 X2 . . . , Y0 Y1 Y2 . . . ]

142

143 d a t a = pack ( ’< ’ + ( ’ h ’∗ l e n ( d a t a ) ) , ∗ d a t a )
144

145 wf = wave . open ( pa th , ’wb ’ )
146 p r i n t ( ’∗ s a v i n g r e c o r d i n g and c l o s i n g ’ )
147 wf . s e t n c h a n n e l s ( 2 )
148 wf . s e t s a m p w i d t h ( s a m p l e w i d t h )
149 wf . s e t f r a m e r a t e (RATE∗CHANGE RATE)
150 wf . w r i t e f r a m e s ( d a t a )
151 wf . c l o s e ( )
152 r e t u r n p o s i t i o n
153

154 d e f pcm channe l s (FILENAME) :
155 ””” Given a f i l e−l i k e o b j e c t o r f i l e p a t h r e p r e s e n t i n g a wave f i l e ,
156 decompose i t i n t o i t s c o n s t i t u e n t PCM d a t a s t r e a m s .
157

158 I n p u t : A f i l e l i k e o b j e c t o r f i l e p a t h
159 Outpu t : A l i s t o f l i s t s o f i n t e g e r s r e p r e s e n t i n g t h e PCM coded d a t a

s t r e a m c h a n n e l s
160 and t h e sample r a t e o f t h e c h a n n e l s ( mixed r a t e c h a n n e l s n o t

s u p p o r t e d )
161 ”””
162 s t r e a m = wave . open (FILENAME, ” rb ” )
163

164 num channe l s = s t r e a m . g e t n c h a n n e l s ( )
165 s a m p l e r a t e = s t r e a m . g e t f r a m e r a t e ( )
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166 s a m p l e w i d t h = s t r e a m . ge t sampwid th ( )
167 num frames = s t r e a m . g e t n f r a m e s ( )
168

169 r a w d a t a = s t r e a m . r e a d f r a m e s ( num frames ) # R e t u r n s b y t e d a t a
170 s t r e a m . c l o s e ( )
171

172 t o t a l s a m p l e s = num frames ∗ num channe l s
173

174 i f s a m p l e w i d t h == 1 :
175 fmt = ”%iB ” % t o t a l s a m p l e s # r e a d u n s i g n e d c h a r s
176 e l i f s a m p l e w i d t h == 2 :
177 fmt = ”%i h ” % t o t a l s a m p l e s # r e a d s i g n e d 2 b y t e s h o r t s
178 e l s e :
179 r a i s e V a l u e E r r o r ( ” Only s u p p o r t s 8 and 16 b i t a u d i o f o r m a t s . ” )
180

181 i n t e g e r d a t a = s t r u c t . unpack ( fmt , r a w d a t a )
182 d e l r a w d a t a # Keep memory t i d y ( who knows how b i g i t might be )
183

184 c h a n n e l s = [ [ ] f o r t ime i n r a n g e ( num channe l s ) ]
185

186 f o r index , v a l u e i n enumera t e ( i n t e g e r d a t a ) :
187 b u c k e t = i n d e x % num channe l s
188 c h a n n e l s [ b u c k e t ] . append ( v a l u e )
189

190 r e t u r n c h a n n e l s , s a m p l e r a t e
191

192 d e f w r i t e p o s t o c s v ( p o s i t i o n ) :
193

194 p r i n t ( ’ Saved ’ ,
195 l e n ( p o s i t i o n ) ,
196 ’ p o s i t i o n s t o f i l e ’ ,
197 POSFILE )
198

199 wi th open ( POSFILE , ”w” ) as f :
200 w r i t e r = csv . w r i t e r ( f )
201 w r i t e r . w r i t e r o w s ( p o s i t i o n )
202

203 d e f w r i t e c h a n n e l s t o c s v ( c h a n n e l s ) :
204

205 p r i n t ( ’ Saved ’ ,
206 l e n ( c h a n n e l s ) ,
207 ’ c h a n n e l s w i th ’ ,
208 i n t ( l e n ( c h a n n e l s [ 0 ] ) / CHUNK SIZE ) ,
209 ’ a u d i o chunks o f s i z e ’ ,
210 CHUNK SIZE ,
211 ’ t o f i l e s ’ ,
212 FILENAME,
213 ’ and ’ ,
214 AUDCSV)
215

216 wi th open (AUDCSV, ”w” ) as f :
217 w r i t e r = csv . w r i t e r ( f )
218 w r i t e r . w r i t e r o w s ( c h a n n e l s )
219

220 p o s i t i o n = r e c o r d t o f i l e (FILENAME)
221 c h a n n e l s , s a m p l e r a t e = pcm channe l s (FILENAME)
222 s e r . c l o s e ( )
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223 w r i t e p o s t o c s v ( p o s i t i o n )
224 w r i t e c h a n n e l s t o c s v ( c h a n n e l s )

C Eye recognition, displaying and actuation

1 i m p o r t numpy as np
2 i m p o r t cv2 , s e r i a l
3 i m p o r t math as m
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5

6

7 img = cv2 . imread ( ” / Use r s / t r u l s / P i c t u r e s / p a t t e r n . j p g ” )
8

9 # v i d e o
10 c a s c P a t h = ” / Use r s / t r u l s / opencv / d a t a / h a a r c a s c a d e s / h a a r c a s c a d e e y e . xml ”
11 eyeCascade = cv2 . C a s c a d e C l a s s i f i e r ( c a s c P a t h )
12 e y e C a p t u r e = cv2 . VideoCap tu re ( 0 )
13 mannequinEye = cv2 . VideoCap tu re ( 1 )
14 r e s x = e y e C a p t u r e . g e t ( 3 )
15 r e s y = e y e C a p t u r e . g e t ( 4 )
16 r e s x 2 = mannequinEye . g e t ( 3 )
17 r e s y 2 = mannequinEye . g e t ( 4 )
18

19 c o n n e c t e d = F a l s e
20 s e r = s e r i a l . S e r i a l ( ’ / dev / cu . usbmodem1411 ’ , 9600)
21 w h i l e n o t c o n n e c t e d :
22 s e r i n = s e r . r e a d ( )
23 c o n n e c t e d = True
24

25 gamma = 1
26

27 # p l o t i n i t i a t e
28 p l t . i o n ( )
29 p l t . ho l d ( F a l s e )
30

31 b l i n k l e n = 0
32

33 d e f ad jus t gamma ( image , gamma ) :
34 # b u i l d a lookup t a b l e mapping t h e p i x e l v a l u e s [ 0 , 255] t o
35 # t h e i r a d j u s t e d gamma v a l u e s
36 invGamma = 1 . 0 / gamma
37 t a b l e = np . a r r a y ( [ ( ( i / 2 5 5 . 0 ) ∗∗ invGamma ) ∗ 255
38 f o r i i n np . a r a n g e ( 0 , 256) ] ) . a s t y p e ( ” u i n t 8 ” )
39

40 # a p p l y gamma c o r r e c t i o n u s i n g t h e lookup t a b l e
41 r e t u r n cv2 . LUT( image , t a b l e )
42

43

44 w h i l e True :
45 # Face r e c o g n i t i o n and d i s p l a y v i d e o
46 eyeFPS = e y e C a p t u r e . g e t ( 5 )
47 mqFPS = mannequinEye . g e t ( 5 )
48

49

50 r e t , f rame = e y e C a p t u r e . r e a d ( )
51 f rame = cv2 . f l i p ( frame , 1 )
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52

53 f rame = adjus t gamma ( frame , gamma )
54 f rame = cv2 . s u b t r a c t ( frame , img )
55 a , f rame2 = mannequinEye . r e a d ( )
56 g ray = cv2 . c v t C o l o r ( frame , cv2 .COLOR BGR2GRAY)
57 eyes = eyeCascade . d e t e c t M u l t i S c a l e (
58 gray ,
59 s c a l e F a c t o r = 1 . 1 ,
60 minNeighbors =5 ,
61 minSize =(50 , 50) ,
62 maxSize = ( 2 5 0 , 2 5 0 ) ,
63 )
64

65

66 f o r ( x , y , w, h ) i n eyes : # Draw a r e c t a n g l e a round t h e f a c e s
67 cv2 . r e c t a n g l e ( frame , ( x , y ) , ( x+w, y+h ) , ( 0 , 255 , 0 ) , 2 )
68 x c i r c = i n t ( ( x+w/ 2 ) ∗ r e s x 2 / r e s x )
69 y c i r c = i n t ( ( y+h / 2 ) ∗ r e s y 2 / r e s y )
70

71 cv2 . c i r c l e ( frame2 , ( x c i r c , y c i r c ) , 30 , ( 0 , 255 , 0 ) , 2 )
72

73 i f l e n ( eyes ) >0:
74 x s t r = np . z e r o s ( ( l e n ( eyes ) ) , d t y p e =np . i n t )
75 y s t r = np . z e r o s ( ( l e n ( eyes ) ) , d t y p e =np . i n t )
76 x s t r =( i n t ( ( eyes . i t em ( 0 , 0 ) ) / r e s x ∗255) )
77 y s t r =( i n t ( ( eyes . i t em ( 0 , 1 ) ) / r e s y ∗255) )
78 s e r . w r i t e ( b ”%3d%3d ” % ( x s t r , y s t r ) )
79

80 p l t . p l o t ( i n t ( x++w/ 2 ) , r e sy−i n t ( y+h / 2 ) , ’ r . ’ , ms=100)
81 p l t . a x i s ( [ 0 , r e sx , 0 , r e s y ] )
82 p l t . show ( )
83

84 b l i n k l e n = 0
85 e l i f l e n ( eyes ) == 0 & b l i n k l e n < 1 2 :
86

87 p l t . a n n o t a t e ( s= ’BLINK ’ , xy =[ r e s x / 2 , r e s y / 2 ] )
88 b l i n k l e n = b l i n k l e n + 1
89 e l s e :
90 p l t . a n n o t a t e ( s= ’EYE SHUT ’ , xy =[ r e s x / 2 , r e s y / 2 ] )
91

92 cv2 . imshow ( ’ EyeCaptu re ’ , f rame ) # D i s p l a y t h e r e s u l t i n g f rame
93 cv2 . imshow ( ’ MannequinEyes ’ , f rame2 )
94 i f cv2 . wai tKey ( 3 3 ) & 0xFF == ord ( ’ a ’ ) :
95 b r e a k
96

97 s e r . c l o s e ( )
98 e y e C a p t u r e . r e l e a s e ( )
99 mannequinEye . r e l e a s e ( )

100 cv2 . des t royAl lWindows ( )
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 Aktivitet fra 

kartleggings- 
skjemaet 

Mulig uønsket 
hendelse/ 
belastning 

Vurdering  
av sannsyn- 
lighet 

Vurdering av konsekvens: Risiko- 
Verdi 
(menn-
eske) 

Kommentarer/status 
Forslag til tiltak 

ID 
nr 

 
         (1-5) 

 
Menneske 
(A-E) 

Ytre 
miljø 
(A-E) 

Øk/ 
materiell 
(A-E) 

Om- 
dømme 
(A-E) 

1 Bruk av Trolllabs 
workshop.  
 

        

1a-i Bruk av roterende 
maskineri 
 

Stor kuttskade 2 D A A D 2D Sørg for at roterende deler 
tilstrekkelig sikret/dekket. Vær 
nøye med opplæring i bruk av 
maskineri.  

1a-ii  
 
 

Liten kuttskade 3 B A A A 3B Vær nøye med opplæring i bruk 
av maskineri. Ikke ha løse 
klær/tilbehør på kroppen.  

1a-
iii 

 Klemskade 2 D A A C 2D Vær nøye med opplæring i bruk 
av maskineri. Ikke ha løse 
klær/tilbehør på kroppen.  

1a-
iv 

 
 
 

Flygende 
spon/gjenstander 

3 C A A B 3C Bruk øyevern og tildekk hurtig 
roterende deler (Fres og 
lignende.) 

1a-v  
 
 
 

Feil bruk-> ødelagt utstyr 3 A A C A 3C Vær nøye med opplæring i bruk 
av maskineri 

1b-i Bruk av laserkutter 
 
 

Klemskade 
 

2 D A A C 2D Vær nøye med opplæring i bruk 
av maskineri. Ikke ha løse 
klær/tilbehør på kroppen.  

1b-ii 
 
 
 
 

 Brannskade 3 B A A A 3B Vær nøye med opplæring i bruk 
av maskineri. Bruk hansker ved 
håndtering av varme materialer. 
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1b-
iii 
 
 

 Øyeskade-laser 2 D A A C 2D Bruk øyevern! Skru av laser når 
maskinen ved oppsett.  

1b-
iv 
 
 

 Brann 2 B A D C 2B Vær nøye med opplæring i bruk 
av maskin. Ha slukkeutstur 
tilgjengelig 

1c-i 
 
 

Bruk av 3D-printer Brannskade 3 B A A A 3B Vær nøye med opplæring i bruk 
av maskin.  

 
1c-ii 
 

 Innhalering av plast/ 
printemateriale 

5 A A A A 5A Bruk åndedretsvern/ vernebriller 

1c-
iii 
 
 

 Feil bruk-> ødelagt 
maskineri 

3 A A C A 3A Vær nøye med opplæring i bruk 
av maskin.  

1d-i Bruk av skjæreverktøy Stor kuttskade 
 
 

2 D A A D 2D Bruk skapre verktøy og riktig 
skjæreunderlag 

1d-ii  Liten kuttskade 
 
 

3 B A A A 3B Bruk skapre verktøy og riktig 
skjæreunderlag 

1e-i 
 
 
 

Bruk av 
samenføynigsmidler 
(lim og lignende.) 

Eksponering på øyet 2 D A A B 2D Bruk øyevern, ha datablad 
tilgjengelig 

1e-ii  
 
 

Eksponering hud 4 A A A A 4A Bruk hansker, ha datablad 
tilgjengelig 

1e-
iii 

 Eksponering åndedrett 4 A A A A 4A Bruk åndedretsvært/ god 
ventilasjon. Ha datablad 
tilgjengelig. 

1e-
iv 

 Søl 4 A B A A 4A Ha papir/ rengjøringsmateriell 
tilgjengelig. Ha datablad 



NTNU 
Risikovurdering 

Utarbeidet av Nummer Dato 

  
HMS-avd. HMSRV2601 22.03.2011 
Godkjent av  Erstatter 

HMS Rektor  01.12.2006 

 
tilgjengelig.  

2 Tilstedeværelse ved 
arbeid utført av andre. 
 

Se andres risikovurdering 
om sikkerhet betviles.  

3 C C C C 3C Hold et øye med hva som foregår 
rundt deg. 

3-i 
 
 

Eksperimentelt arbeid Vann-drukning 1E A A A D 1E Bruk redingsvest i båt og 
lignende.  

3-ii  Elektrisitet- strøm 
 
 

3 B A A A 3V Typisk lite energi involvert. Bruk 
isolerte verkøty 
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Sannsynlighet vurderes etter følgende kriterier: 
 

Svært liten 
1 

Liten 
2 

Middels 
3 

Stor 
4 

Svært stor 
5 

 
1 gang pr 50 år eller sjeldnere 

 
1 gang pr 10 år eller sjeldnere 

 
1 gang pr år eller sjeldnere 

 
1 gang pr måned eller sjeldnere 

 
Skjer ukentlig 

 
Konsekvens vurderes etter følgende kriterier: 
 

Gradering 
 

Menneske Ytre miljø 
Vann, jord og luft 

Øk/materiell Omdømme 

E 
Svært Alvorlig 

 

Død  Svært langvarig og ikke 
reversibel skade 

Drifts- eller aktivitetsstans >1 år. 
 

Troverdighet og respekt 
betydelig og varig svekket 

D 
Alvorlig 

 

Alvorlig personskade.  
Mulig uførhet. 
 

Langvarig skade. Lang 
restitusjonstid 

Driftsstans > ½ år 
Aktivitetsstans i opp til 1 år 
 

Troverdighet og respekt 
betydelig svekket 

C 
Moderat 

 

Alvorlig personskade. Mindre skade og lang 
restitusjonstid 

Drifts- eller aktivitetsstans < 1 
mnd 
 

Troverdighet og respekt svekket 

B 
Liten 

 

Skade som krever medisinsk 
behandling 
 

Mindre skade og kort 
restitusjonstid 

Drifts- eller aktivitetsstans < 
1uke 

Negativ påvirkning på 
troverdighet og respekt 

A 
Svært liten 

 

Skade som krever førstehjelp Ubetydelig skade og kort 
restitusjonstid 

Drifts- eller aktivitetsstans < 
1dag 
 

Liten påvirkning på troverdighet 
og respekt 

 
Risikoverdi = Sannsynlighet x Konsekvens  
Beregn risikoverdi for Menneske. Enheten vurderer selv om de i tillegg vil beregne risikoverdi for Ytre miljø, Økonomi/materiell og Omdømme. I så fall beregnes 
disse hver for seg. 
 
Til kolonnen ”Kommentarer/status, forslag til forebyggende og korrigerende tiltak”: 
Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, dvs. sannsynlighetsreduserende tiltak foran 
skjerpet beredskap, dvs. konsekvensreduserende tiltak.  
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MATRISE	FOR	RISIKOVURDERINGER	ved	NTNU	
 
 

K
O

N
SE

K
V

E
N

S 

Svært 
alvorlig E1 E2 E3 E4 E5 

Alvorlig D1 D2 D3 D4 D5 

Moderat C1 C2 C3 C4 C5 

Liten B1 B2 B3 B4 B5 
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  SANNSYNLIGHET 
 

 

Prinsipp over akseptkriterium.  Forklaring av fargene som er brukt i risikomatrisen. 

Farge Beskrivelse 
Rød  Uakseptabel risiko. Tiltak skal gjennomføres for å redusere risikoen. 
Gul  Vurderingsområde. Tiltak skal vurderes. 
Grønn  Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn. 
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