
Data Analytics for Chemical Process Risk
Assessement: a Representative Case
Study to Support Safe Handling of
Hazardous Substances

Riccardo Solini

Reliability, Availability, Maintainability and Safety (RAMS)

Supervisor: Nicola Paltrinieri, MTP

Department of Mechanical and Industrial Engineering

Submission date: February 2018

Norwegian University of Science and Technology



 



RAMS
Reliability, Availability, 

Maintainability, and Safety

Data Analytics for Chemical Process Risk

Assessment: a Representative Case Study to

Support Safe Handling of Hazardous

Substances

Riccardo Solini

February 2018

MASTER THESIS

Department of Mechanical and Industrial Engineering

Norwegian University of Science and Technology

Supervisor 1: Nicola Paltrinieri

Supervisor 2: eng. Sarah Bonvicini



2



i

Abstract

Potential of data generation has exponentially increased nowadays. Through the World Wide

Web, for instance, information of any kind are collected and stored in databases. In the indus-

trial sector, a huge amount of data is set to be collected by the so-called industry 4.0. Also the

Seveso III Directive, which contains the rules for preventing and fighting major accidents in

establishments handling dangerous substances, advances the need of monitoring and analyz-

ing data in order to improve the safety management system of the plants. In this context, the

discipline of machine learning is suggested. It consists in methods through which computers

automatically retrieve knowledge from data. On the basis of this, they are able to support or

take decisions.

However, data are still not exploited as they should be and opportunities to learn are lost. It is

necessary to improve the use of such data and increase our knowledge.

This work suggests an approach to analyze heterogeneous data about past accidents in process

industries and extract important information to support safety-related decision making. The

knowledge retrieved should help improving the evaluation of the risk picture, by predicting the

consequence on humans.

The machine learning tool used to analyze the data is the open-source library TensorFlow. Through

its use, different models are built - a linear model, a deep neural network model and a combina-

tion of the two. The models, on the basis of specific inputs, may be able to make predictions

about the number of people killed or number of people injured. The tuning of the model’s

parameters is carried out using the past accident data contained in the MHIDAS database as

training data set. To evaluate the performance of the model another data set is needed. For

this reason, a new database has been built. Ammonia plants, which fall under the Seveso III

Directive, have been taken into consideration. Accidents occurred in these establishments - or

in similar sections of other plants - have been take into account, investigating public accident

databases, books, articles and journals. Their data have been collected and registered in a com-

mon database using MHIDAS keywords. A set of simulations have been performed not only to

validate the models, but also to identify their limitations. A good model for accident prediction

needs to be able to predict rare events - i.e. the ones with the highest number of people killed

or injured. This condition is obtained if the value of the statistic metric "recall" is high. For this

reason, the results returned by the simulations have been analyzed considering the value of the

area under the curve precision recall as a priority. From this, it is possible to understand if the

value of recall can be of interest or not. The results obtained have shown a common trend and a

type of model that, in general, have had better prediction skills than the other ones.
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Chapter 1

Introduction

1.1 Background

We are in the big data era (Murphy, 2012). The volume of data generated nowadays is, indeed,

enormous. From business, society, science and engineering, medicine, and almost every other

aspect of human life, all kind of information is collected and stored in databases (Jiawei Han,

2012). In the industrial field, an increasing volume of data is set to be collected by the new gen-

eration of industry, the so-called industry 4.0 (Paltrinieri et al., 2017).

At the same time, artificial intelligence (AI) has become an important field, with many practi-

cal applications. Intelligent software to automate routine labors or to give support in decision

making are now possible to use and research topics aim to make them even more reliable. De-

veloping methods through which AI systems - i.e. essentially computers - can automatically

learn from data and make intelligent decisions based on the knowledge retrieved from them, is

the natural consequence of this whole context. That is how the machine learning discipline was

born (Greenberg et al., 2012).

The Seveso III Directive (2012/18/EU) - which provides the rules and the indications for pre-

venting major accidents to occur in establishments handling hazardous substances, i.e. the

Seveso sites - advances the necessity of collecting and analyzing data. For instance, it suggests,

for the first time since it was issued in 1982, the use of indicators - such as safety performance

indicators (SPIs) - for the ongoing assessment of compliance, with the directive, of the estab-
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lishment’s safety management system. Another important point stressed in the 2012/18/EU, is

about learning from past accident or near misses. In order to gain knowledge from these events,

all the information regarding them has to be collected, without omitting any detail. Moreover,

an efficient system to share it is required, ensuring that everyone can have access to the infor-

mation.

However, the quantity of data generated is not exploited as it should be. Data are collected but

not ably analyzed and so opportunities to learn are lost. In this data-rich information-poor sit-

uation, it is necessary to use the advanced tools available nowadays and retrieve information

from data (Jiawei Han, 2012).

1.2 Objectives

Today’s risk analysis challenges consists essentially in 5 points (Paltrinieri and Comfort, 2018).

1. Dinamicity - how to continuously update and improve risk assessment, keeping track of

the constant evolution of the industrial system.

2. Cognition - how to learn from past accidents to improve risk assessment, in order to avoid

accident repetition.

3. Data processing - how to process the huge quantity of data coming from the industrial

system and extract useful risk information.

4. Emergence - how to be prepared for emerging risk, not known before, such as the one

deriving from new technologies.

5. Usability - how to provide a real support to the industry.

This work focuses mainly on points 2 and 3.

The purpose is to find an efficient way to analyze heterogeneous data of past accidents, occurred

in process industries, and extract, from them, important information to support safety-related

decision making. In other words, the information retrieved should help improving the evalua-

tion of the risk picture for plants handling hazardous substances.

This answers both the challenge of "Cognition" - since data from past accidents are taken into

account - and of "Data processing".

1.3 Approach

The idea is to consider sites handling hazardous substances, falling under the Seveso III Direc-

tive. With respect to that, past accidents from ammonia plants - or plants containing similar
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sections - have been taken into consideration. Their features have been obtained investigating

accident reports from different sources and have been collected in a common database using

keywords.

The database have been used for the evaluation of different models - i.e. a linear model, a deep

neural network model and a combination of the two - trained with the data from MHIDAS ac-

cident database (HSE, 1999). The machine learning tool used to perform the simulations is the

open source library TensorFlow. The results returned have been analyzed and compared in or-

der to detect the model that best predicts the consequences on human - in terms of people killed

or people injured.

1.4 Outline

The thesis is structured in seven chapters. Chapter 1 is an introduction of the topics discussed

in this work. It presents the problem to investigate, it describes the objectives established and

it introduces the approach used to meet the tasks. Chapter 2 is about risk assessment in Seveso

sites. Here, the well known Seveso disaster is described and the Seveso III Directive, currently in

force, is introduced. The chapter continues with a digression about how the classical risk assess-

ment could benefit from a dynamic approach, introducing the dynamic risk analysis (DRA). Fi-

nally, a note about the importance of having an efficient system to exchange information about

past accidents or near misses. Chapter 3 is about the creation of the ammonia plant accident

database. Data mining, as the tool which provides the necessary steps to manage data in order

to make them suitable for the simulations, is first described. Next, the accident sources used to

collect data are presented and, finally, the ammonia plant accident database is introduced and

its features illustrated. Chapter 4 is about the methods used to reach the thesis objectives. The

machine learning tool TensorFlow is first described, the models used are introduced and the in-

formation for computing and evaluating the simulations are indicated. In chapter 5 the results

are highlighted. Chapter 6 contains the elaboration and the discussion of the results, highlight-

ing the limitations of the work. Finally, chapter 7 sums up the topics discussed and highlights

the main results obtained.
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Chapter 2

Risk Assessment in Seveso Sites

2.1 Introduction

On Saturday 10 July 1976 an accident occurred in a plant manufacturing 2,4,5-triclorophenol

(TCP) in Meda, near Seveso. A runaway reaction occurred, causing a pressure increase in the

reactor and the rupture of the safety disk. This led to the release, into the atmosphere, of a

cloud containing 2,3,7,8-tetrachlorodibenzodioxine (TCDD), a very toxic chemical. Between

the 220000 people exposed, 250 developed the skin disease chloracne and 450 were burned by

caustic soda. Even though no one was killed, this is one of the most famous of all chemical plants

accidents, which changed the approach to risk assessment forever. As a matter of fact, it urged

the enactment, in Europe, of the so-called Seveso Directive, whose focus is on preventing major

accidents to occur and ensuring adequate protection to the citizens, the communities and the

environment. The industrial sites considered, which fall under the directive, are establishments

handling big quantity of dangerous substances, called Seveso sites, able to cause major acci-

dents. Nowadays, the Seveso III directive is in force (2012/18/EU), refining the previous Seveso

II Directive (96/82/EC).

The chapter firstly describes the Seveso accident, presenting how TCP was usually manufac-

tured and highlighting, then, what went wrong, showing causes and consequences of the disas-

ter. The Seveso III Directive is described next and its main points are introduced. The dynamic

risk analysis, as a new approach to risk assessment, which allows to take into account the dy-
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namicity of the industrial environment and to exploit the huge quantity of data collected nowa-

days, is then presented. Finally, a note about learning from past accidents and how important it

is to have an efficient system to exchange information about them is reported.

2.2 The Seveso Accident

2.2.1 Manufacturing Process of TCP

The site at Seveso was operated by Indsutrie Chimiche Meda Società Azionaria (ICMESA) (Lees,

2005). The manufacturing process of 2,4,5-trichlorophenol (TCP), described below, is referred

to the one used by the ICMESA factory, at the time of the accident.

The plant used a discontinuous total batch process, which consisted in 2 stages, as shown in

figure 2.1.

Figure 2.1: Reaction scheme for production of TCP (Lees, 2005).

The first stage consistsed in an alkaline hydrolysis, using caustic soda, of 1,2,4,5-tetrachlorobenzene

(1,2,4,5 TCB) at temperatures between 140 to 170 °C and at atmospheric pressure (ARIA, 2018),

forming sodium 2,4,5-trichlorophenate. The second one involved the acidification, using hy-

drochloric acid, of the mixture just formed, to produce TCP.

The installation consisted of a 10000 m3 Cr-Mo-Ni alloy vessel, equipped with a stirrer (ARIA,

2018). The reactor diagram is shown in figure 2.2.

The reactor was equipped with different safety features (ARIA, 2018):

- an oversized condenser for rapid cooling;
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Figure 2.2: Reactor system at Seveso (Sambeth, 1983b).
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- a 3000 litre reserve of water to flood the contents of the reactor and to rapidly cooled it to

avoid temperature increasing;

- a rupture disk - whose tare pressure was set at 3,8 bar - venting direct to atmosphere (Lees,

2005).

Exothermic reactions were not expected below 230 °C. For this reason, the reactor had a jacket

with steam flowing in it at 12 bar. At this pressure, its saturation temperature is 188 °C (Lees,

2005) and, consequently, the reaction mixture could not be heated beyond 180 °C (Sambeth,

1983a).

However, the controls on the reactor were relatively primitive. For instance, it was not equipped

with a temperature alarm (Lees, 2005) and the 3000 litre of water to rapidly cooled down the

system could not be opened automatically, only manually (ARIA, 2018). Moreover, no catchpot

to collect possible discharges was provided (Kletz, 2001).

At the start of the operation - i.e. at the beginning of the first stage - the following substances, in

the indicated quantity, were fed into the reactor (Sambeth, 1983a):

- 1,2,4,5 TCB, 2000 kg;

- NaOH, 1050 kg;

- ethyleneglycol, 3300 kg;

- xylene, 600 kg.

The ethyleneglycol fed was used as solvent (Sambeth, 1983a).

During the reaction, water was produced. For this reason, xylene was inserted in the system:

this way, mixing with it and producing the azeotropic mixture, water removal was promoted

(Sambeth, 1983a). As a matter of fact, the reactor was equipped with a condenser that separated

and sent away the water, feeding back the xylene to the reactor (ARIA, 2018).

In this stage, the initial mixture is heated at 170 °C using the steam flowing in the jacket of the

reactor. The reaction is carried out at this temperature for 6-8 hours (Sambeth, 1983a). At the

end of the reaction, the entire xylene and part of the ethyleneglycol were vacuum distilled to be

reused during the subsequent synthesis. The mixture is then cooled down to 50-60 °C adding

water (ARIA, 2018).

Stage 1 lasted 11 to 14 hours. The duration of every step of this stage is listed below (Sambeth,

1983a):

- charging: 1 hour;
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- reaction: 6-8 hours;

- vacuum distillation of the mixture: 3-4 hours;

- addition of water: 15 minutes.

The second stage, as already mentioned, was about converting the sodium 2,4,5-trichlorophenate,

obtained in stage 1, in TCP. This was done operating in an acid environment, using an aqueous

solution of hydrochloric acid (ARIA, 2018). The crude TCP is finally purified by fractional distil-

lation (Sambeth, 1983a).

The conventional process - normally used in industry - for the synthesis of TCP was different

than the one used in the Seveso plant. The solvent used was methanol, not ethyleneglycol,

and the operating pressure was 20 bar. The process modification was introduced by Givaudan,

ICMESA‘s parent company. Givaudan required TCP for making the bacteriostatic agent hex-

achlorophene, and, with the conventional process, TCP contained impurities unacceptable for

this application (Lees, 2005).

In the reaction, the formation of 2,3,7,8-tetrachlorodibenzodioxine (TCDD) as by-product is

unavoidable (Lees, 2005). At normal operating conditions just described - i.e. at 170 °C -, the

quantity produced is really low: it would be unlikely to exceed 1 ppm of TCP (Lees, 2005). How-

ever, TCDD can be produced in important quantities under high temperature conditions (ARIA,

2018): this is exactly what happened in the well known Seveso accident, described next.

2.2.2 The Accident

On Friday 9 July 1976 the TCP production began. It started exactly at 4 p.m., i.e. 10 hours later

than the usual time (ARIA, 2018). At the time, Italian law required the plant to shut down for the

weekend, even though it was in the middle of a batch (Kletz, 2001). The end of the shift of the

following Saturday morning - the 10th of July 1976 - was at 6 a.m., so the required 14 hours to

complete stage 1 were available (Sambeth, 1983a).

In a normal operation, just before the end of the shift, almost 50% of the ethyleneglycol used

would have been distilled. However, in the morning of the 10th of July 1976, only 15% was actu-

ally separated from the reaction mixture (Sambeth, 1983a). At about 5 a.m., the operator inter-

rupted the distillation. Fifteen minutes later also the strirring process was stopped (Sambeth,

1983a). Finally, also the temperature recorder was switched off and, according to the Italian

law previously mentioned, the installation was shut down for the weekend and it remained un-

supervised. The last temperature registered was 158 °C. Thus, the operator had no reason to

believe that it would have been dangerous to shut down the reactor and leave it without super-

vision (Sambeth, 1983a). As a matter of fact, as stated before, it was believed that the expected
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temperature at which an exothermic reaction would have occurred was around 230 °C.

Approximately after 6 hours and 30 minutes from the end of the last shift - precisely at 12.37 p.m.

of the 10th of July 1976 (Sambeth, 1983a) - the rupture disk broke and a reddish cloud containing

TCDD, one of the most toxic chemicals known (Lees, 2005), was released into the atmosphere

(ARIA, 2018). The gas emissions lasted about 20 minutes. Luckily, a maintenance foreman was

passing by and, hearing the noise produced by the discharge, opened the cooling water supply

cooling down the reaction mixture (Lees, 2005). If he had not done so, the discharge would have

been greater (Kletz, 2001).

In the meantime, the temperature recorder was switched on again, showing that the tempera-

ture of the reactor‘s contents was above 200 °C (Sambeth, 1983a).

2.2.2.1 The Causes

According to Sambeth (1983a), the information known at the time of the accident were not

enough to be able to predict the disaster. Even though similar incidents already occurred in

the past, he affirmed that the results obtained during the investigations proved the "simultane-

ous and unforeseeable occurrence of several factors, most of which were unknown prior to the

accident".

After detailed investigation following the accident, it was discovered that, at around 180 °C, weak

exothermic reactions started. However, their effect began to be important only after 190-200 °C

(Sambeth, 1983a). The reactor mixture in the ICMESA plant in Seveso, when left unsupervised

for the weekend stop, was at a temperature of 158 °C. Consequently, it was really difficult to

understand how the reactor could reach a temperature high enough to start these exothermic

reactions.

The answer came from the study of the thermal aspects of the whole installation. The tempera-

ture situation of the reactor, once left unsupervised, is shown in figure 2.3.

Figure 2.3: Temperature situation of the Seveso reactor left unsupervised (Kletz, 2001).
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The steam turbine feeding the jacket of the reactor was on reduced load and became super-

heated, at a temperature of about 300 °C (Lees, 2005). The temperature of the liquid stayed at

around 160 °C - the liquid boiling point (Kletz, 2001). Thus there was a temperature gradient in

the wall of the reactor in correspondence of the wet part: around 160 °C in the inner wall and

around 300 °C in the outside wall. However, the wall in the upper part of the reactor - i.e. the

one not touched from the liquid - was at 300 °C right through (Kletz, 2001). Once the steam was

isolated and the stirring was stopped, the wall in the wet part of the reactor dropped to the tem-

perature of around 160 °C, while the wall in the upper part, which remained hotter, heated the

upper few centimetres of the surface liquid. It reached a temperature of around 190 °C and the

weak exothermic reactions started. Because of this localized overheating, temperature began

to increase and the runaway known from literature - i.e. the exothermic reactions at 230 °C -

occurred. This, led to a rise in pressure and, finally, to the rupture of the safety disk (Kletz, 2001).

Although Sambeth (1983a) stressed the unpredictability of the accident, Kletz (2001) states that

the runaway could be avoided if:

- legistlators had not drafted laws which did not give the freedom to complete a batch before

the weekend;

- the batch was not stopped at an unusual step;

- a well done hazard and operability study (HAZOP) had been performed on the design.

Esepcially with a HAZOP, the rise of the temperature of the steam supplying the reactor, when

the turbine was in low load, and, consequently, the need of measuring its temperature, would

have been brought to light.

Finally, it is important to underline that, if a catchpot to collect the discharge from the rupture

disk would have been installed, the release would have not affected the surrounding area and

people, and the consequences, described next, would have not existed (Kletz, 2001).

2.2.2.2 The Consequences

The toxic cloud spread to the southeast of the plant, impacting a farming area (ARIA, 2018).

Once the situation with the installation was under control, the managers of the plant visited

the houses close by, informing the people living there not to consume anything from the garden

(Lees, 2005). However, the nature of the cloud was not directly made public and, at first, no evac-

uation plan was predicted. Finally, 14 days later - i.e. on the 24th of July -, after a general strike

called by the ICMESA work force, the arrest of the production director and the general manager

of ICMESA and a long series of meeting (Lees, 2005), an evacuation plan was studied and the

prohibition to consume food produced in the impacted areas was extended (ARIA, 2018).
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Site clean up started six months after the accident and lasted almost 5 years. The plant was de-

stroyed in 1982 and, in the site which hosted it, is now a sport complex and a natural park (ARIA,

2018).

The area of land contaminated was about 17 km2 and the one made uninhabitable was about 4

km2 (Kletz, 2001). Around 220000 people were exposed to dioxin (ARIA, 2018): about 250 people

developed the skin disease chloracne and about 450 were burned by caustic soda (Kletz, 2001).

One of the things that worried the people affected the most was about the long lasting health

effects. Different studies, such as the one proposed by Professor Pesatori from Milan University,

17 years after the accident, proved that the rate of cancer in the contaminated areas is not higher

than normal, except for 2 thyroid cancers (ARIA, 2018).

It is not a fact that the accidents with many people killed - or injured - or with substantial dam-

ages are the ones who can teach lessons to be learned the most. For instance, the Seveso acci-

dent, even though no one was killed, is one of the best known of all chemical plant accidents

(Kletz, 2001), which changed the approach to risk assessment forever (Paltrinieri and Reniers,

2017). Neither the residents or the authorities in Seveso were aware of the real hazard com-

ing from the plant or about the chemical substances used. There was a real problem about the

risk communication, which also led to the incapability of taking appropriate decision when the

disaster occurred (ARIA, 2018). This, and the need to ensure protection to the citizens and the

environment around industrial sites handling hazardous substances, led to the enactment of

the so called "Seveso Directive" (82/501/EEC). Throughout the years, different modifications

to the directive have been done, and, nowadays, Seveso III Directive (2012/18/EU) is in force,

amending and subsequently repealing Seveso II Directive (96/82/EC).

2.3 The Seveso III Directive

The European Parliament and the Council of European Union, on the 4th of July 2012, drafted

the Seveso III Directive (2012/18/EU). As the previous Seveso Directives - i.e. 82/501/EEC (the

Seveso Directive) and 96/82/EC (the Seveso II Directive) -, the 2012/18/EU aims to prevent and

reduce the risk of major accidents and to enable the necessary steps to be taken to limit the con-

sequences thereof. Thus, it ensures that a high level of protection for citizens, communities and

the environment, throughout the Union, is provided. As already mentioned, it replaces Seveso

II Directive, strengthening the level of protection - introducing new guidelines and refining old

ones - and reducing the unnecessary administrative burdens, in order to simplify its implemen-

tation (2012/18/EU).

The directive is divided in 34 articles, reported in table 2.1, and 7 annexes, listed in table 2.2.
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Articles

Article 1 Subject matter

Article 2 Scope

Article 3 Definitions

Article 4 Assessment of major-accident hazards for a particular dangerous substance

Article 5 General obligations of the operator

Article 6 Competent authority

Article 7 Notification

Article 8 Major-accident prevention policy

Article 9 Domino effects

Article 10 Safety report

Article 11 Modification of an installation, an establishment or a storage facility

Article 12 Emergency plans

Article 13 Land-use planning

Article 14 Information to the public

Article 15 Public consultation and participation in decision making

Article 16 Information to be supplied by the operator and actions to be taken following a major

accident

Article 17 Action to be taken by the competent authority following a major accident

Article 18 Information to be supplied by the Member States following a major accident

Article 19 Prohibition of use

Article 20 Inspections

Article 21 Information system and exchanges

Article 22 Access to information and confidentiality

Article 23 Access to justice

Article 24 Guidance

Article 25 Amendment of Annexes

Article 26 Exercise of the delegation

Article 27 Committee procedure

Article 28 Penalties
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Article 29 Reporting and review

Article 30 Amendment of Directive 96/82/EC

Article 31 Transposition

Article 32 Repeal

Article 33 Entry into force

Article 34 Addressees

Table 2.1: Seveso III Directive articles.

Annexes

Annex I Dangerous substances

Annex II Minimum data and information to be considered in the safety report referred to in
Article 10

Annex III Information referred to in Article 8(5) and Article 10 on the safety management sys-
tem and the organisation of the establishment with a view to the prevention of major
accidents

Annex IV Data and information to be included in the emergency plans referred to in Article 12

Annex V Items of information to the public as provided for in Article 14(1) and in point (a) of
Article 12

Annex VI Criteria for the notification of a major accident to the Commission as provided for in
Article 18(1)

Annex VII Correlation table

Table 2.2: Seveso III Directive annexes.

Table 2.1 and table 2.2 show the object of every article and every annex as they are reported in

the 2012/18/EU.

As it is often reminded in the directive, one of its focuses is the collection and the exchange of

information between Member States, making the authorities and the public aware about the

dangerous substances and the potential dangers coming from the so-called "Seveso sites" - i.e.

industrial sites handling dangerous substances (Paltrinieri and Reniers, 2017). For instance, op-

erators have to draw up a major-accident prevention policy (MAPP) setting out their overall

approach and measures for controlling major-accident hazards. The document has to be sent

to the competent authority when required by law and it should be reviewed at least every five

years. All the information about the MAPP can be found in Article 8.

Moreover, for sites handling significant quantities of dangerous substances - i.e. the "upper-tier

establishments" (information about the categorization of the establishments can be found in

Annex I) - a safety report needs to be provided, from the operator, to the competent authority.
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Information about the safety report is reported in Article 10.

Directive 2012/18/EU focuses also in sharing and exchanging information about major acci-

dents already occurred, in order to prevent unwanted events of similar nature to occur again.

It stresses the importance of collecting and exchanging data also about near misses, not only

accidents. Article 16, 17, 18, together with Annex VI, and Article 21 are about this topic.

It is finally important to mention that Seveso III underlines the importance of an appropriate

safety management system to implement the MAPP. In the last decade, as a way to assess and

control risk, focus has been put in evaluating and monitoring early deviations through appro-

priate indicators (Paltrinieri and Reniers, 2017), whose use and analysis is promoted by the ex-

tensive collection of data carried out in the industry nowadays. One of the points of Annex III

of the directive is about "monitoring performance". Here, the use of indicators such as safety

performance indicators (SPIs) and/or other relevant ones is suggested, in order to monitor the

performance of the safety management system. How such suggestions has been received in the

the EU member and associate countries can be found elsewhere (Paltrinieri and Reniers, 2017).

2.4 Improvement of the Classical Risk Assessment Approach:

the Dynamic Risk Analysis

The accident that occurred in Seveso on Saturday 10 July 1976 changed the approach to risk

assessment forever (Paltrinieri and Reniers, 2017). Article 10 and Annex II of the Seveso III Di-

rective are about the safety report and the minimum data and information to be considered in it.

There, it is stated that risk analysis has to be carried out to identify the possible major-accident

scenarios and its consequences and, thus, ensuring protection and intervention to limit them,

for human health and the environment. The safety report should be reviewed and updated every

five years, unless the competent authority requests it, major changes are performed or a major

accident occurs in the establishment. Quantitative risk assessment (QRA) is usually carried out

to comply with the Seveso III Directive (Paltrinieri and Reniers, 2017). Villa et al. (2016) listed

some of the achievements of the QRA in the last years, in line with the accomplishments for risk

analysis identified by Greenberg et al. (2012). However limitations of this approach have been

identified (Villa et al., 2016). QRAs are often developed in design phases and, consequently, they

are referred to that specific life cycle phase of the plant. As a matter of fact, available risk reduc-

ing measures are different in the design phase compared to the operational phase (Falck et al.,

2015). Furthermore, an industrial system - as its safety measures - constantly evolves, highlight-

ing new conditions. The QRA’s staticity and inability of updating the risk picture has suggested a

new approach, able to consider the dynamicity of the systems: the dynamic risk analysis (DRA).

DRA is based on the iteration of risk assessment, as represented in figure 2.4.

The iteration may be performed in three different levels:
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Figure 2.4: Risk flow-chart and suggested iterations (Paltrinieri and Reniers, 2017).

- identification of accident scenarios (hazard identification);

- analysis of initiating events, studying the likelihood of occurrence of these events;

- analysis of consequences, studying the consequences of the above-mentioned scenarios.

Each of these steps can be developed in different ways. Paltrinieri and Khan (2016) illustrate

several methods to do that. In particular, it is possible to focus on a selection of them, in the

perspective of dynamic risk analysis for Seveso sites (Paltrinieri and Reniers, 2017).

The general challenge is to decrease the probability of high impact, low probability (HILP) events,

which has the potential of having catastrophic losses, also in terms of human life (Paltrinieri and

Reniers, 2017). To do so, risk analysis is iterated - in the different levels mentioned before - inte-

grating new risk notions and lessons learned and monitoring and analyzing the so-called "Small

things" - which can be defined as deviations from normal/optimal conditions (Paltrinieri and

Khan, 2016). Extreme accidents are the results of a combination of these early warnings. Con-

sequently, focusing in preventing small things from happening, should consent to break this

chain of events and decrease the probability, or even prevent, HILP to occur (Paltrinieri and

Khan, 2016). Nowadays, a huge amount of data is collected in the industry and many indica-

tors, to monitor and evaluate these early deviations, are used - as suggested in the Seveso III

Directive (2012/18/EU). These indicators could be the perfect starting point to iterate the risk

analysis and, thus, to compute a DRA.

All in all, risk analysis is constantly improving and new methods to refine it have been studied.

Dynamic risk analysis, even though it still has evident limitations as pointed out by Paltrinieri

and Reniers (2017), is a promising approach, able to take into account the dynamicity of the

industrial environment and to exploit the huge amount of information coming from data col-
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lected - for instance indicators. The study should focus on refining the methods and on how to

analyze these data, in order to obtain relevant information for safety-related decision making.

2.5 Learning from Past Accidents

As already mentioned, Article 16, 17, 18, together with Annex VI, and Article 21 of the Seveso III

Directive give indications, among other things, about lessons to be learned from past accidents

or near misses and how to share the information deriving from them. According to Kletz (2001),

people do learn from experience of accidents and rarely they repeat the same mistakes again.

The issue is about passing the knowledge, without omitting any detail. It is essential to share all

the information about them, in order to allow everyone to learn the lesson. Thus, for such a pur-

pose, an efficient system to share the information is required, in order to facilitate the process

of acquiring the knowledge and learning the lesson. This is one of the points promoted by the

Seveso III Directive too. Moreover, well-written reports - i.e. clear, well structured and with all

the information needed - are important. According to Kletz (2001), investigating teams should

report not only the information needed to make their recommendations, but everything they

collect. This way, the readers, analyzing the report, may recognize additional causes or recom-

mendations and draw different conclusions.

All in all, it is important to facilitate the exchange and the comprehension of the information

about past accidents - but also near misses of particular technical interest, without omitting

any detail. This way, it is easier to access data, analyze them and learn from past accidents.

The work in this thesis suggests an approach to analyze heterogeneous data from chemical pro-

cess industries and to extract important information. More in detail, it is about collecting data

from past accidents and analyze them in order to obtain indications for handling hazardous

substances. Thus, it suggests a way to learn lessons from past unwanted events, analyzing the

data collected. It is clear that, the more the information available - and the better the reports are

written - , the better - and the more - methods like this can be developed and be of real support

to the industry.
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Chapter 3

Ammonia Plant Accident Database Creation

3.1 Introduction

One of the goals of the work is to analyze in an innovative way heterogeneous data from chemi-

cal process industries, in order to support and improve safe handling of hazardous substances.

For such a purpose, ammonia plants have been taken into consideration as an example. To

do so, the creation of an accident database has been performed. Events in ammonia plants

and in plants containing similar sections (for instance, desulfurization sections to clean the raw

gas before entering the reformer reactor, reforming sections to obtain syngas necessary for the

ammonia synthesis and storage tanks containing relevant substances in relevant physical and

chemical conditions) have been considered. Different information from different sources, such

as public accident databases, books, articles and journals, have been collected for this purpose.

It is important to mention that not all the accident reports consulted were structured the same

way and with the same level of detail; for this reason, it has not always been possible to extrap-

olate all the information needed.

In the chapter, data mining, as the method that provides the tools to collect and manage het-

erogeneous data in an efficient way, is introduced, the accident sources are presented and the

database created is showed and described.

21
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3.2 Data Mining

Nowadays, the data volume generated and collected every day is enormous. For instance, through

the World Wide Web it is possible to find and share any kind of information, while all the re-

searches made, all the websites visited and every "click" in general, is recorded in databases. In

the industrial field, an increasing volume of data is set to be collected by the so called "industry

4.0". Wireless sensors, for example, are now low cost instruments, often redundant in the sys-

tems; the more the sensors, the more the data collected and stored (Paltrinieri et al., 2017).

In general, these days, the number of databases, collecting big quantities of data from busi-

ness, society, science and almost every other aspects of human life, has consistently increased,

and their number is still growing. According to Ian H. Witten (2011), it has been estimated the

amount of data stored in the world’s databases doubles every 20 months and there is a growing

gap between the generation of data and their understanding. In this data-rich but information-

poor situation, it is necessary to find a way to retrieve knowledge and, therefore, to exploit the

data in an efficient way. Data mining comes to the aid of this.

Data mining, or "knowledge discovery from data" (KDD), is the subject that provides the tools

to discover knowledge from data and the ability to use it (Jiawei Han, 2012). In general, its tasks

can be classified in two categories (He, 2015):

- "descriptive", whose aim is to characterize and describe a target data set and its proper-

ties;

- "predictive", to make predictions on future data performing induction and inference on

current data.

In other words, data mining consists in finding and describing patterns in large amounts of data.

However, not all the patterns mined are actually of practice interest to a given user. According

to Jiawei Han (2012), a pattern is interesting if it is easily understood by humans, valid on new

or test data with some degree of certainty, potentially useful, and novel. A pattern can also be

considered interesting if it confirms the hypothesis that the user wants to confirm. Either ob-

jective or subjective measures of pattern interestingness exist, in order to assess systematically

if the pattern found is of any use or not. Generally speaking, from a practical point of view, it is

possible to say that the patterns found must lead to some advantages to be worthwhile, usually

an economic one (Ian H. Witten, 2011).

The process of data mining consists essentially in seven steps, as indicated below (Jiawei Han,

2012).

1. Data cleaning. Missing values, noise and inconsistencies contribute to inaccurate data

and, thus, to inaccurate final results. The step’s aim is to avoid this, filling in missing val-

ues, smoothing out the noise and detecting outliers, i.e. eliminating inconsistent data.
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2. Data integration. It consists in merging data from different data sources. It is a challenging

step, because it is necessary to deal with heterogeneous data.

3. Data selection. In this step, only relevant data for the analysis are selected. It is especially

helpful when huge data sets are involved, because the time spent to analyze them could

be too long and the analysis not feasible. In this perspective, it is an useful step if correctly

done: the reduced data set will be more efficient and, anyway, the analytical result will be

almost the same.

4. Data transformation. Data are transformed or consolidated into appropriate forms for

mining. A common schema to register all data to be analyzed has to be found, in order to

improve the accuracy and speed of the whole process, and to make the patterns found in

the following steps easier to understand.

5. Pattern discovery. Data are here analyzed and the patterns describing them are retrieved.

6. Pattern evaluation. In this step, the patterns extracted in step 6 are evaluated and the

interesting ones are identified.

7. Knowledge presentation. Finally, the mined knowledge, by means of interesting patterns,

is presented to the users.

Steps from 1 to 4 are the so called preprocessing steps. Preprocessing data is very important. In

real-world databases, it is common to have low quality data - they are inaccurate, incomplete

or inconsistent - and this leads to low quality results. Improving the data quality contributes to

improve the overall quality of the patterns mined.

An important activity not mentioned in the seven reported above, is about the data collection.

As a matter of fact, it is essential to use relevant data or, in general, data which help to achieve the

goal of the analysis, in order to improve the performance of data mining. This step is required

only if the users want to build their own database to reach their own objectives. It is also possible

to mine data from pre-existing databases.

3.3 Accident Sources

In order to build the accident database to analyze, since no pre-existing databases about ammo-

nia plant accidents only exist, the data collection step is necessary. In this chapter, the accident

sources investigated to obtain and collect data are presented and described.
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3.3.1 eMARS

The eMARS database is an accident and near miss database, open to the public, established by

the EU’s Seveso Directive 82/501/EEC in 1982. The name is an acronym and it stands for "Major

Accident Reporting System": as a matter of fact, it was previously called "MARS", then was later

renamed "eMARS" after going online (MAHB, 2017).

EU, EEA, OECD and UNECE countries (under the TEIA Convention) provide reports to the Major

Accident Hazards Bureau (MAHB) of the European Commission’s Joint Research Center (JRC),

about chemical accidents and near misses. These data are included into the eMARS database

directly from the recognized authority reporting the event. The reports are compulsory for

EU Member States when a major accident - as defined by Annex VI of the Seveso III Directive

(201218/EU) - occurs in a Seveso establishment. For all the other countries previous listed, re-

porting the event is voluntary (MAHB, 2017).

The goal of the database is to collect all possible information about accidents, near misses and

so on, and sharing them with everyone, in order to learn from these information and to use

them as an instrument to prevent future dangerous events. To do so, it has been decided not to

show company names and location. This way, reporting the event in an accurate and detailed

way is supported (the company will not be judged from anyone) and the focus of the reader goes

completely on the accident information and not on the company or on the country associated

with it.

3.3.2 Japanese Failure Knowledge Database

The Japanese Failure Knowledge Database (JFKD) is an accident and failure database, whose

aim is to make companies learn from past events in order to prevent future accidents and to

improve reliability and safety of technology in society. The database started to be provided on

the 23rd of March 2005 by the Japan Science and Technology Agency (JST) and it is managed by

the Hatamura Institute for the Advancement of Technology (JFS, 2017).

Accidents and failures are divided in sixteen categories: selecting one of these categories it is

possible to consult the corresponding accidents (JST, 2017).

3.3.3 Major accidents from Lees’ Loss Prevention in the Process Industries

Another source of relevant accidents, from which some events have been considered and added

to the final database, is the "Lees’ Loss Prevention in the Process Industries" book (Lees, 2005).

Loss prevention approach is a wide field and it is rapidly developing. The author of the book felt

the need to integrate the basic elements of the subject in a textbook, in order to give assistance

to the direct interested, especially engineers. That is how and why "Lees’ Loss Prevention in the

Process Industries" has been written, as an attempt to meet this need. The book is divided in
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three different volumes. Volume 3 contains a series of appendices reporting reports or informa-

tion about past accidents. In Appendix 1, table 1.2, some major accidents in process industries

are listed in chronological order: from 1911 to 27.04.1995.

3.3.4 Fatality and Catastrophe Investigation Summaries - OSHA

"Fatality and Catastrophe investigation Summaries" is an accident database managed by "Occu-

pational Safety and Health Administration" (OSHA). OSHA is one of the agencies of the United

States Department of Labor (DOL). Its role is to guarantee safety and health to wokers in the

workplace, through training, outreach, education, assistance and by setting and enforcing stan-

dards (OSHA, 2017).

OSHA’s database is a collection of accident summaries developed after an inspection, performed

by an OSHA’s ispector, in response to a fatality or a catastrophe. It is possible to find summaries

about accidents from 1984 to one year earlier than today’s date. As a matter of fact, one year is

necessary to compute all the steps needed to post online the summary.

3.3.5 National Response Center (NRC) database

The National Response Center (NRC) is one of the first "layers" of the National Response System

(NRS). NRS is a multi-layered system: every layer has a function in order to respond effectively

to hazardous substance releases. When a release occurs, the organization responsible for the

release or spill is required by law to notify the NRC. Its function is to collect data in a national

database and to notify the On-Scene Coordinator, which is responsible to evaluate and coordi-

nate the response needed (EPA, 2017).

NRC is managed by United States Coast Guard (USCG). Its database is composed by annual re-

ports available on-line, from 1990, and it is currently updated to 2017 (USCG, 2017).

3.3.6 ZEMA

ZEMA stands for "Zentralen Melde-und Auswertestelle für Störfälle und Störungen in verfahren-

stechnischen Anlagen" (Infosis, 2017) which means "Central Reporting and Evaluation Station

for Accidents and Faults in Process Plants". It is the german accident database, containing,

mostly, events occurred in the german territory. It is managed by "Umweltbundesamt" (UBA),

the main environmental protection agency in Germany (UBA, 2017). It has been institued in

1993 to collect, evaluate and post all the events reportable to the "Störfall-Verordnung (12. BIm-

SchV)" - the 12th Federal Immission Control Ordinance. ZEMA aims for being an important

strating point for the development of technology and safety, making companies learn from past

mistakes, in order to do not repeat them again. Since 1999, with the arrival of internet, all the



CHAPTER 3. AMMONIA PLANT ACCIDENT DATABASE CREATION 26

infomation included in the database had been open to the public. Nowadays, it is possible to

count more than 570 national reports (Infosis, 2017).

Data are reported in "Jahresberichte", which are annual reports. On ZEMA website, reports from

1995 to 2014 are currently recorded. The last one is a biennal report: 2012-2014 (UBA, 2017). In

"Anhang 1" - Appendix 1 - of these reports, a list of accidents of the corrisponding year is in-

cluded, followed by detailed reports for each accident, in chronological order.

3.3.7 Ammonia Plant Safety and Rrelated Facility, Articles by AIChE

This collection of technical articles was made by American Institute of Chemical Engineers

(AIChE, 2001). It consist of 42 volumes collecting a series of papers about new process develop-

ment, maintenance and troubleshooting, revamping and upgrading of older ammonia facilities.

Also, works reporting past accidents can be found. The goal of the collection is to study all the

circumstances that led to a scenario or, for a great part of the cases represented, to a near miss.

Then, the authors propose solutions as improving the design of some apparatuses, suggesting a

different material or redefining organizational factors.

The most representative and significant cases on the ammonia plant were found in eight vol-

umes. In particular, 31 cases contained from the volume 35 to the volume 42 were analyzed.

All of these cases are described through detailed technical reports made by researchers and/or

companies. Most of the incidents accounted in this collection are caused by mechanical failure

(almost 60%). This is because these books are technical manuals. In fact, there are several stud-

ies on the mechanical properties of the materials and how they change due to the interactions

with the process stream. For example, High Temperature Hydrogen Attack (HTHA) and Stress

Corrosion Cracking (SCC) failures are largely discussed.

Another characteristic of this collection is the higher percentage of accidents in the ammonia

reactor (up to 45%) respect to the other sources (for example, ARIA: 27%; MHIDAS: 17%). This

is probably because the collection is completely focused on the ammonia plant and it is quite

difficult to find incidents about ammonia reactors in literature. Moreover, the ammonia reac-

tor is very sensitive to mechanical failure due to substances contained in the process stream (as

hydrogen). So, all of these incidents are very interesting for technical manuals like these ones.

3.3.8 ARIA Database

The ARIA (Analysis, Research and information on Accidents) database is managed and adminis-

trated by the BARPI (Bureau for Analysis of Industrial Risk and Pollution), in collaboration with

the French Minister of the Environment and the General Directorate for Risk Prevention. This

database is free and it is possible to consult it on its web page. It collects a series of industrial

and technological accidents from all over the world, containing over 46.000 reports about acci-
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dents and incidents. An average of 1.200 new events per year are added (ARIA, 2018).

The Database is updated by engineers and technicians. In fact, it is possible to find detailed

reports describing the main circumstances, outcomes, accident causes, how they managed the

incident and the actions taken to avoid it. Nevertheless, they underline that the cases repre-

sented are not exhaustive, but the only aim is to make risk prevention and mitigation.

Looking for incidents occurred in an ammonia plant, 16 inherent cases were found. Some of

these cases were integrated with information from other databases. All these cases were ac-

counted as reports. So, an interpretative work during the data preprocessing phase was done.

3.3.9 MHIDAS (Major Hazard Incident Data Service)

In 1986, the Major Hazard Assessment Unit of the United Kingdom Health and Safety Executive

(HSE) launched the Major Hazard Incident Data Service (MHIDAS). The database was main-

tained by AEA Technology. It is based on public domain information sources. In fact, a drawback

of this source is the variability of quality and accuracy of reports (HSE, 1999). This database had

been updated until mid 1990’s (Hare et al., 2009).

All the cases presented in the database are accounted through keywords and a very short de-

scription of the accident could be reported. The search was firstly based on looking for acci-

dents occurred in an ammonia plant and then on the main sections of the process. Here are

listed only the keywords used for the search that they have produced acceptable results:

- Ammonia plant;

- Ammonia synthesis;

- H2S;

- Syngas production.

15 cases are identified as relevant. Three of these cases were integrated with information from

other databases. For other three incidents, it is unknown if they occurred in an ammonia plant,

but the same technology was employed. For instance, in October 1981 in Czechoslovakia, a case

of a catastrophic failure in a synthesis gas reactor that led to a severe flash fire was accounted,

even if it is not specified that the accident occurred in an ammonia plant.

It is worth mentioning that 6 over 15 cases found are incomplete for general and specific causes,

confirming that the data quality of this database is not always guaranteed.

3.4 The Ammonia Plant Accident Database

The ammonia plant accident database (Appendix B) has been obtained considering all the rel-

evant events from the databases previously described. It consists in a list of dangerous events,
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to which specific information had been reported. Table 3.1 shows the categories of information

considered, the so called "attributes" (Jiawei Han, 2012).

Attribute Description

Date Date of the event.

Location Location - i.e. country, city, prefecture... - of the event.

Substance Substances involved in the event.

Incident type It specifies the typology of the accident (i.e. a release and/or an explosion and/or a

fire). Keywords in table 3.2 have been used.

Origin The particular area of the plant and the type of equipment from which the event

started. Keywords in table 3.3 have been used.

General cause The general cause - or causes - which provoked the event. Keywords in table 3.4,

under "General cause", have been used.

Specific cause The specific cause - or causes - which provoked the event. Keywords in table 3.4,

under "Specific cause", are used.

Injured The number of injuries due to the accident.

Evacuated The number of people evacuated.

Killed The number of deaths due to the accident.

Damage The economical damage to the property or due to production loss.

Section The section of the plant in which the event occurred.

Quantity The amount (ton) of substances released.

Table 3.1: Information categories in the ammonia plant accident database

As previously mentioned, it is important to stress that the information collected in this database

comes from different sources, using different ways to compile the accident reports and with a

different level of detail. Reports in the different databases are different. For this reason, for some

accidents it has not been possible to register all the information required.

Data collection and the data mining preprocessing steps have been computed to build the database,

i.e. data have been collected, they have been cleaned from noise and inconsistent and inaccu-

rate ones, information from different source have been taken, only the relevant data have been

considered and a first data transformation have been done, finding a common schema to clas-

sify the attributes, using a list of keywords, for instance, indicated next.
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3.4.1 Keywords

Keywords, to identify and register the incident type, the origin and the causes of the accidents

in the database, have been used. Their source is the Major Hazard Incident Data Service (MHI-

DAS) database (HSE, 1999). Table 3.2 catalogs the keywords used for the incident type. Table

3.3 reports the ones to indicate the origin of the accidents, i.e. the particular area of the plant

(general origin) and the type of equipment (specific origin) from which the considered event

has started. Table 3.4 lists and describes the keywords used to indicate the general cause and

the specific cause that provoked the examined accident.

Incident type

EXPLODE A release of energy producing gas at such

a temperature and pressure and at such

a speed as to cause damage to their sur-

roundings.

FIRE A process of combustion characterized by

heat or smoke or flame, or any combina-

tion of these.

RELEASE A release where it is not known whether

instantaneous or continuous.

Table 3.2: Incident type keywords (HSE, 1999).
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General origin Specific origin

PROCESS The incident originated in items of pro-

cess plant or in an area of process plant.

FIREDEQUIP Fired process equipment, includ-

ing furnaces, incenerators, stacks,

chimneys.

STORAGE The incident originated in items/area of

storage plant.

HEATXCHANGE Heat exchangers, including shell

and tube, plate exchangers, evap-

orators, condensers, boilers, re-

boilers.

HOSE Hoses and other similar load-

ing/unloading connections.

MACDRIVE Process machinery drives, includ-

ing electric motors, engines, tur-

bines.

PIPEWORK On-plant pipes and associated

valves, joints.

PSVESSEL Pressurized storage vessels.

PUMP Any type of pump, compressor,

ejector, fan.

PVESSEL Process vessels, including items

such as centrifuges, towers,

columns, dryers, distillation,

absorption, filtration, cyclones,

ion-exchange, crystallizer equip-

ment, etc.

TANKCONTR A tank having a capacity of >=50L

whose shell is fitted with items of

service equipment and structural

equipment. Capable of carriage by

land or sea and of loading or dis-

charge without removal of struc-

tural equipment. Possessing sta-

bilising members external to shell,

and capable of being lifted when

full.

Table 3.3: Origin keywords (HSE, 1999).
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General cause Specific cause

EXTERNAL External events. BRITTLE Brittle failure.

HUMAN Human factor. COMPAIR Compressed air or nitrogen.

INSTRUMENT Instrument failure. CONSTRUCT Construction error.

MECHANICAL Mechanical failure. CONTROL Controller.

PROCOND Upset process conditions. CORRODE Crorrosion.

DESIGN Design error.

ELECTRIC Electricity.

EXTNLFIRE Fire.

FLANGCOUPL Leaking coupling or flange.

GENERAL General management error.

GENERALOP General operational.

GLANDSEAL Leaking gland or seal.

INCOMPAT Use of incompatible materials.

INTNLFIRE Internal fire.

MAINTAIN General maintenance.

METALLURG Other metallurgical failure.

OVERHEAT Overheating.

OVERPRES Overpressure.

VALVE Leaking or passing valve.

WELDFAIL Weld failure.

Table 3.4: Cause keywords (HSE, 1999).
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3.4.2 Database Feature Analysis and Description

The number of accidents found and registered in the database is 140. In table 3.5, the distribu-

tion of the accidents, from the different sources, in terms of number of events collected, is shown

and the weight of each source in the whole database is reported. It is important to indicate the

weight, in order to understand the contribution of each database in the overall results.

Source Events collected Weight

Ammonia Plant Safety

and Related Facilities
31 22,14%

Aria 12 8.57%

eMARS 21 15%

JFKD 10 7,14%

Lees’ 5 3,57%

MHIDAS 11 7,86%

NRC 39 27,86%

OSHA 4 2,86%

ZEMA 5 3,57%

Other 2 1,43%

Table 3.5: Number of events collected, per source, and source weight in the ammonia plant accident database.

The NRC database is the source from which most of the accidents have been collected, followed

by the Ammonia Plant Safety and Related Facilities: the accidents taken there, together, repre-

sent more than half of the total events. This means that is likely that the overall features of the

database will be greatly affected by the characteristics of these two sources.

The time span covered is more than sixty years: it goes from the accident in Ube, Japan, occurred

on the 11th of July 1959 - an explosion due to oxygen and syngas in the CO2 removal section with

44 injuries and 11 deaths - , to the accident in Sulphur, Louisiana, on the 13th of July 2016 - an

ammonia release from the reforming sections, with no injured or killed people.

Figure 3.1, reports the subdivision, per continent, of the accident locations in the database.

Most of the events registered occurred in America - almost 50% - , followed by Europe and Asia -

almost 30% and more than 20% respectively. Only 2 events took place in Africa - less than 2% of

the total. The accidents for which it has not been possible to obtain the location information are

around 17% of the total number of events collected, indicated under the category "unknown"

in the graph. It is important to report the unknown group, for each attribute, as it represents the

quality of the database for the attribute considered: the lower it is, the higher the quality. As a

matter of fact, the more data we have about a specific feature, the more it is possible to correctly

identify and describe it and, therefore, the higher the quality of the database for that feature.
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Figure 3.1: Event location subdivsion, per contentinent, in the ammonia plant accident database.

Ammonia plants fall on the Seveso III Directive (2012/18/EU), since many dangerous substances,

in big quantities, are handled. Figure 3.2 shows most of these substances and suggests the ones

mainly involved in the events collected, i.e. the ones responsible for the accidents.

Figure 3.2: Substances involved in the events collected in the ammonia plant accident database.

It is evident that ammonia - present in almost 50% of the events collected - and syngas - more

than 30% - are the substances that caused most of the accidents in the database. Other note-

worthy substances are hydrogen - more than 10% - , hydrogen sulfide and natural gas - both at
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around 5%. The quality of the database, for the feature "substance", is quite good, since for only

4 events the substances involved were not indicated. It is important to mention that more than

one substance could be responsible for a single event.

In figure 3.3 the percentage subdivision of the incident type, for the accidents registered in the

database, is reported.

Figure 3.3: Incident type for the accidents collected in the database.

Around 80% of the accidents is due to a release. The percentage is high because, in most of

the cases, an accident starts with a release then it evolves into an explosion or a fire. Thus, it

is common to find the combination "RELEASE and EXPLODE" or "RELEASE and FIRE" or even

"RELEASE,EXPLODE and FIRE" under the "Incident type" field. The percentage of "FIRE", in the

events found, is around 40% and the one of "EXPLODE" is around 25%. The unknown events,

as for the incident types, are about 13% of the total events registered in the database.

About the "Origin" category, as it is shown in figure 3.4, the events in the database are mostly

originated in items or in an area of process plant - almost 95% -, rather than in the storage area

- a bit more than 6%. In the sources investigated to collect the accidents, it was possible to

take into account more accidents occurred in the storage area than the ones actually registered.

However, it has been decided to focus mainly in the process part, this is why only a few of them

have been considered - only the most representative ones.

Figure 3.5 shows the different general causes for the accidents collected, quantifying, in per-

centage, how often each general cause have been met in the registered events.

The main general causes are the "MECHANICAL" one - found in more than 60% of the events



CHAPTER 3. AMMONIA PLANT ACCIDENT DATABASE CREATION 35

Figure 3.4: General origin of the accidents in the ammonia plant accident database.

Figure 3.5: General cause for the accidents collected in the ammonia plant accident database.
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- and the "HUMAN" one - almost 40%. It is necessary to mention that, also in this case, more

than one general cause can be found in a single event. The general cause is not always clearly

indicated in reports or it is not indicated at all. This is why the percentage of the unknown

category is high: for more than 25% of the total number of events it has not been possible to

recognize a general cause. The more the details requested for a specific feature, the less the

quality of the database for that feature. That is why for the specific cause, shown in figure 3.6,

the percentage of the unknown category is even higher than for the general cause, around 40%.

This means that the representation quality of the database, for the specific cause, is not relevant.

Figure 3.6: Specific cause for the accidents collected in the ammonia plant accident database.

Given these points, the main specific causes are the "DESIGN" one and the "MAINTAIN" one -

both present in around 25% of the events for which it has been possible to find a specific cause.

Noteworthy also the "GENERALOP" - around 15% - the "FLANGCOUPL" - more than 10% - and

the "GENERAL" - almost 10%.

Figure 3.7 shows the consequences of the accidents on humans, the damage on humans, in

terms of injuries and deaths. A classification in three categories has been done in order to as-

sess, qualitatively, the magnitude of the accidents collected:

- the "No injured - No Dead" category, including all the events with zero injuries and zero

deaths;

- the "Only injured" category, including the accidents with one or more injured but zero

deaths;
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- the "Dead" category, containing all the events with one or more deaths.

Figure 3.7: Damage on humans, in the accidents collected in the ammonia plant accident database, divided in
three categories: "No injured - No dead", "Only injured" and "Dead".

The most common category in the events collected in the database is the "No injury - No dead"

one, found in more than 70% of the accidents. Injuries and deaths are found with lower per-

centages: a slightly higher one for the "Only injured" category - a bit more than 14% - than the

"Dead" one - almost 13%.

Interesting issues come from the analysis of figure 3.8, indicating, in percentage, the occurrence

of the events collected in the database in the main sections of the ammonia plant.

It is clear that the most critical section is the reforming one - around 40% of the accidents for

which it has been possible to indicate the section occurred there - , followed by the ammonia

synthesis one - around 30%. However, in many reports, the section involved in the accident was

not clearly stated. As a result, the unknown category’s percentage is high - almost 40% - and the

quality of the database in describing the critical sections is relatively low.
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Figure 3.8: Sections involved in the accidents collected in the ammonia plant accident database.

Information about the "damage" and the "quantity" is not often indicated in the reports ana-

lyzed. Damage data have been collected only for 22% of the total number of events and quantity

data only for 32%. Consequently, the description quality of the database for these two features

is really low, and it is not meaningful to analyze them more in detail.

3.4.3 Remarks and Assumptions

The origin and especially the cause of an accident can be tangled; therefore, it is relatively com-

plicated to describe with only one word each field - general origin, specific origin, general cause

and specific cause of the examined accident. This is also because the accident reports analyzed

to extrapolate the data to register in the database were often not clear and incomplete, i.e. not

all the information sought were actually reported. For this reason, more than one keyword for

category have been used when the particular event needed it. It is also important to stress the

limitation, due to the personal interpretation of the information contained in the reports, when

assigning the keywords.

The problem deriving from bad written, bad structured or incomplete accident reports is a real

issue in the industrial field. For this reason, companies are currently working on methods for

teaching the operators to write properly made ones. An example of one of these methods is

based on a process of reverse engineering: the operator should write clear standardize struc-

tured reports and fill them according to the information he, himself, would like to find in them.
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Different assumptions have been made while collecting and registering the data in the ammo-

nia plant accident database. For instance, about the number of injuries and deaths caused by an

accident. Because of the issue of incompleteness of the reports, just discussed, sometimes this

information is not even mentioned. Damage on humans is a critical, important, information,

the first thing to write on a report. If nothing is indicated about that, it can be assumed that the

accident did not cause any injury or fatality. Thus, in these cases, a number of 0 injured and 0

killed have been taken.

Occasionally, during the historical analysis, the same accidents, in two or more databases, have

been found. When this happened, the event considered has been registered once only, under

the database that best describes the event - i.e. with a higher number of relevant data - , adding

and completing the information needed with the one in the other databases. In the few excep-

tions in which the number of injured or dead was different, the higher value has been taken,

conservatively.

It is finally important to stress, as already mentioned before, that some of the accident sources

analyzed have a higher weight on the overall information contained in the database. From

these sources a higher number of event has been taken and, consequently, the behavior of the

database describing the features will depend more on them. For instance, the NRC database

is the source with the highest weight - 27,86% of the events have been taken from them - and

it mainly describes accidents occurred in America, releasing ammonia, with no injured and no

dead, without going into detail - or without even indicating - when describing the causes of the

accident or the section involved. It is possible to see how these information partially reflects the

feature description of the database made in the previous subsection.
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Chapter 4

Methods: a Machine Learning Application

4.1 Introduction

Throughout the years, artificial intelligence (AI) has become an important field. People look for

intelligent software for different purposes. For instance, recognizing images, music or videos -

through computers - is nowadays possible. AI is also used to support medical decisions or as a

tool for scientific research. In short, there are many practical applications and active research

topics about AI (Goodfellow et al., 2016).

In different projects involving artificial intelligence, it was common to hard-code the knowledge

of the world, allowing the computer to reason automatically on the basis of that knowledge.

Even though the idea was promising, they met several difficulties and none of the projects led to

a major success. It was only then that the need, for AI systems, to acquire their own knowledge

from data was brought to light and the machine learning discipline was born (Goodfellow et al.,

2016).

According to Murphy (2012), machine learning is defined as "a set of methods that can auto-

matically detect patterns in data, and then use the uncovered patterns to predict future data, or

to perform other kind of decision making under uncertainty". In other words, computers learn

and understand the world from experience - i.e. real data - and they are able to make intelligent

decisions based on it (Jiawei Han, 2012).

Nowadays, we are entering the era of big data (Murphy, 2012). A huge amount of data is con-

41
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stantly produced and stored in databases. This should be seen as an opportunity to learn. It is a

need to try to analyze and to understand these data, in order to obtain important information.

Machine learning can be the perfect tool to do so.

This work suggests an innovative way to analyze data coming from the process industry, in order

to obtain support for safety-related decision making. The patterns in the data - and the knowl-

edge coming from there - have been found using machine learning. The methods, developed to

efficiently manage the data and retrieve knowledge from them, have been studied together with

Kongsberg Digital. As a working tool, the open source software library TensorFlow have been

used.

In the chapter, TensorFlow is first described, the models used to analyze the data are then illus-

trated and, finally, the information needed to run the simulation and to understand the results

are indicated.

4.2 TensorFlow

As stated in the offical website (TensorFlow, 2018), TensorFlow is an open-source library for Ma-

chine Intelligence. It was first developed by researchers and engineers working on the Google

Brain Team within Google’s Machine Intelligence research organization. Thus, it originally started

as an in-house tool, but in 2015 was made available for everyone as an open-source software

(Vincent, 2017). This allows the community to improve TensorFlow with contributions. Accord-

ing to Unruh (2017), more than 890 external contributors added something to the code. The

main communities are Stack Overflow (Stack Overflow, 2018) - monitored by the TensorFlow

team - and GitHub (GitHub, 2018) - which has had more than 1000 unique non-Googler con-

tributors -, but the number of repositories using it is constantly growing (Unruh, 2017).

TensorFlow is the primary tool used for a lot of machine learning works in Google products

(Dean, 2017), but its domain of applicability is wide. For instance, it found applications in lan-

guage translations - speech recognition capabilities and image recognition capabilities have im-

proved through its use (Le and Schuster, 2016) - and in medical diagnosis, such as detection of

skin cancer and preventing blindness in diabetics (Sandjideh, 2017). More in general, Tensor-

Flow is an accessible framework to create custom tools for a whole range of industries (Vincent,

2017), included the process industry.

TensorFlow uses data flow graphs to execute numerical computation. In these graphs, it is pos-

sible to find nodes - which represent mathematical operations - and graph edges - which serve

as tensors connected between them. Tensors are multidimensional data arrays and represent

the central unit of data in TensorFlow (TensorFlow, 2018).

It also provides multiple application programming interfaces (APIs): a lower one, which con-

sents to have complete programming control, and a higher one. The last one simplifies the me-
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chanics of machine learning - e.g. running training loops, running evaluation loops and manag-

ing data sets - and it is easier to learn and use. Moreover, it offers a number of commonly used

models ready to use out of the box, making it easy to configure them (TensorFlow, 2018).

Generally speaking, the aim of this work is to solve a binary classification problem, described

later. To do so, the "tf.contrib.learn" high level API has been used. The models trained and eval-

uated, whose tools to build and manage are already available in the API, are a linear one - i.e.

the linear model -, one based on deep learning - i.e. the deep model - and a combination of the

previous 2, supposed to have the benefits of both of them - i.e. the wide&deep model.

4.3 The Models

Even though every model considered is conceptually different, they all go through a process of

learning, following, in general, the same steps. The difference is in how and in what they learn.

Generally speaking, every model elaborates some inputs to generate the output. To do so, it is

first trained with a training data set. The data possess both the values of the inputs and of the

output. This is because, during the training step, the model parameters are the ones who have

to be quantified. Once the model is trained, it can be used for prediction.

Focusing on binary classification - which is the one of interest for this work - after the train-

ing, the input space is divided into two "decision regions" whose boundaries are called decision

boundaries (Bishop, 2006). Decision boundaries assume different shapes for different models.

Considering the same model, decision boundaries can be different, according, mainly, to the

number of steps and the threshold value chosen. This last value is especially important. It is

the probability value, according to which, the output is part of the class considered or not. As

a matter of fact, at the end of the training, the model returns values - in the interval [0;1] - rep-

resenting the probability of belonging to a class or to the other one - since binary classification

has been considered. For instance, it is assumed that the model returns P0 = 0.65 and P1 = 0.35

- with P0 as the probability of being part of the class "0" and P1 as the probability of being part

of the class "1". If the threshold value, referred to the class 0, is T = 0.6, the model will conclude

that the output is in class 0. However, if T = 0.7, the model will conclude that the record is in

class 1.

4.3.1 The Linear Model

According to Murphy (2012), linear models are the "work horse" of statistics and machine learn-

ing. Following what Hastie et al. (2009) indicates, for a linear model, given a vector of inputs

X T = (X1, X2, ..., Xp ), the output Y is predicted via the equation:
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Y =β0 +
p∑

j=1
X jβ j (4.1)

where β0 is the so-called bias - i.e. the intercept -, β = (β1,β2, ...,βp ) is the vector of the model

parameters.

Often 4.1 is written in vector form as an inner product:

Y = X Tβ (4.2)

including the constant variable 1 in X and the bias, β0, in the vector of the model parameters, β.

The model needs then to be trained with a training set data in order to learn the weights - i.e.

the values of the model parameters - of every attribute (or feature) - i.e. the inputs X j . Once the

weights are known, the model can be use for prediction. However, considered its definition, the

linear model is not able to take into account the relative importance of specific combinations of

features: after the training, independent weights are assigned to separate features (TensorFlow,

2018). In TensorFlow, for instance, it is possible to get around this limitation introducing new

inputs, constituted by the combination of the features believed to be dependent one from the

other - i.e. the "crossed-columns" or "crossed-features" (TensorFlow, 2018).

Figure 4.1 shows a classification example using a linear model.

Figure 4.1: Classification using a linear model (Hastie et al., 2009).

It is a binary classification in which, for example, the response Y of the model is coded as 0 for

"Blue" and 1 for "Orange". In figure 4.1 are 100 points, each one of them are "Blue" or "Orange".

After the training, with definite number of steps and threshold value, the model recognizes two

different areas: the lower one is the "Blue" one and the upper one is the "Orange" one. In this
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case, the decision boundary is a linear function of the input vector X, since a linear model has

been used for the classification (Hastie et al., 2009).

Even though this approach may seem dull in comparison to other modern and more refined

methods, linear models are still widely used (James et al., 2014). They train quick, they work

well on very large feature sets and can be interpreted easily (TensorFlow, 2018). As a matter of

fact, there is a direct correlation between every input and the output, weighted on the model

parameters. Thus, it is possible to define the impact of every feature on the output (Hastie et al.,

2009). Finally, its simplicity and accessibility make the linear model a good starting point for

learning about machine learning (TensorFlow, 2018) and to develop new approaches (James

et al., 2014).

4.3.2 The Deep Model

The deep model used for this work is a feed-forward neural network. To understand how it

works, a good starting point is considering linear models and how to overcome its limitations

(Greenberg et al., 2012). One of the most evident is that the connections between inputs and

output is restricted to linear functions. With respect to that, the central idea behind neural net-

works is to model the target as a nonlinear function of the input features (Hastie et al., 2009).

According to Bishop (2006), the basic neural network model can be described as a series of func-

tional transformations. First, M linear combinations of the input variables X1, X2, ..., Xp are con-

structed, following the equation:

ai =βi 0 +
p∑

j=1
X jβi j (4.3)

with i = 1, ..., M .

Quantities ai are called activations (Bishop, 2006).

As in the linear model, βi 0 are the bias, βi j are the model parameters.

This is the first layer of the network.

The activations are then transformed using a differentiable, non linear function, called acti-

vation function - h(·) - (Bishop, 2006):

Zi = h(ai ) (4.4)

This layer is the so-called hidden layer of the neural network. The Zi are called hidden units

(Greenberg et al., 2012). Their name is due to the fact that the training data does not show their

values (Greenberg et al., 2012). This can be seen as a limitation, because, unlike the linear model,

it is not interpretable and it is not possible to know the weights of the inputs on the outputs.
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In general, the hidden layers can be more than one. To make it simple, only one hidden layer is

now considered.

Different activation functions exist, but one of the most used is the sigmoid (eq. 4.5):

h(a) = 1

1+exp(−a)
(4.5)

Next, the hidden units are again linearly combined, in order to give the activations - ak - of the

so called output layer (Bishop, 2006):

ak =βk0 +
M∑

i=1
Ziβki (4.6)

with k = 1, ...,K - K is the total number of outputs.

βk0 and βk j are again, respectively, the bias and the model parameters of this layer.

Finally, a proper activation function is used to give the outputs Yk :

Yk =σ(ak ) (4.7)

Combining the various stages, the overall network function takes the form:

Yk (X ,β) =σ

(
βk0 +

M∑
j=1

βk j h

(
βi 0 +

p∑
j=1

X jβi j

))
(4.8)

where the vector β contains all the biases and the models parameters.

The model just built, represented in equation 4.8, is a non-linear function, giving outputs Yk

from inputs X j , controlled by a vector β of adjustable factors - i.e. the model parameters.

A neural network is typically represented by a network diagram as in figure 4.2.

This is the case of a feed-forward neural network with p inputs, M hidden units - in the only

hidden layer -, and K outputs.

The model is called "feed-forward", because information flows through the network, from the

inputs to the outputs, without feedback connections - i.e. connections through which the out-

puts are fed back into the model. Neural networks incuding also feedback connections are called

recurrent neural networks (Greenberg et al., 2012).

Moreover, it is composed by layers, forming a chain structure. The overall length of the chain

gives the depth of the model. The name "deep learning" derives from it (Greenberg et al., 2012).

Finally, the name "neural" is inspired by how the human brain works. Each units represent a
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Figure 4.2: Feed-forward neural network (Hastie et al., 2009).

neuron and the connections represents synapses (Hastie et al., 2009). Similar to neurons, the

units receive inputs from many other units and they elaborate their own outputs (Greenberg

et al., 2012).

Training a deep model of this kind requires more effort than a normal linear model. For in-

stance, the design decisions to be made consist also in building the architecture of the network

- how many hidden layers, how many units for each hidden layer and how they should be con-

nected to each other - and in selecting appropriate activation functions (Greenberg et al., 2012).

Moreover, the computational effort is higher than for a linear model. However, the decision re-

gions are not so neat and the decision boundaries can be of any kind - they are not limited to be

linear, as shown in figure 4.3.

The figure represents a binary classification using two different classifiers - i.e. models whose

data analysis task is classification (Jiawei Han, 2012). The black continuous line is the decision

boundary for the neural network model, the broken purple boundary is referred to the so-called

Bayes classifier. The last one has not been considered for this work and more information can

be found elsewhere (Hastie et al., 2009).

4.3.3 The Wide&Deep Model

Linear models and deep models are widely used and they form the basis of many important

applications (TensorFlow, 2018; Greenberg et al., 2012). The first ones are able to learn and

memorize the impact of every feature to the output - for instance from historical data - and re-

produce it for new predictions. The weak point is the generalization of the results: to achieve it,
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Figure 4.3: Decision boundaries for a neural network model (Hastie et al., 2009).

a higher engineering effort is required. However, the model is not able to take into consideration

combinations of features who have not been already manually implemented. The deep neural

networks, on the other hand, are able to generalize the results, finding combinations of features

that have never or rarely occurred in the past. The problem is that they can over-generalize and

make less relevant recommendations (Cheng et al., 2016).

In order to obtain the benefits of both the linear models and the deep neural network models,

Cheng et al. (2016) introduce the wide&deep model. The wide component is a generalized lin-

ear model of the form of equation 4.1 of section 4.3.1. The deep one, is a feed-forward neural

network, discussed in section 4.3.2. The wide&deep model is based on the joint training of the

two. This means that all the parameters of the wide part and the deep part are optimized simul-

taneously and then combined during training time. This way, both memorization - from the

wide part - and generalization - from the deep part - are obtained.

In figure 4.4, the 3 models - i.e. wide, deep and wide&deep - are represented.

Figure 4.4: From the left: the wide model, the wide&deep model and the deep model configurations (Cheng et al.,
2016).

It is clear, from the figure, the linear dependence of inputs and output in the wide models. In
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deep models, the sparse features are first converted into low-dimensional and dense real-valued

vectors, the so-called embedding vectors, then they are fed into the hidden layers and, finally,

the output is obtain. The wide&deep models are a combination of the two. In general, for the

latter, the wide part only needs to complement the weakness of the deep with a small number

of crossed-features, rather than a full-size wide model (Cheng et al., 2016).

4.4 The Simulations

The aim of the work conducted is to analyze accident data from chemical process industries

and obtain important information, in order to support safety-related decision making. To do so,

the ammonia plant accident database - described in chapter 3 - is considered. Taking as inputs

the data collected, the objective is to detect the model that best predicts the consequences on

human - in terms of people killed or injured - deriving from the accidents, focusing in particular

on the prediction of the rarest event.

In order to do so, a linear model, a deep neural network model and the wide&deep model have

been considered. The open-source library TensorFlow has been used as working tool. Here,

through the high-level API "tf.contrib.learn", the models just mentioned are already ready to

use out of the box.

The evaluation of the model is done using the ammonia plant accident database. However, an-

other accident data set is needed in order to train the model - i.e. to define the model parame-

ters. For this purpose, the MHIDAS database (HSE, 1999) has been used. The events in common

between the two databases - i.e. the MHIDAS and the ammonia plant accident databases - have

been canceled from the latter one.

MHIDAS contains 8972 accidents, with the attributes indicated in table 4.1.

The training data set and the one used for evaluation need to have the same attributes, in the

same form and order. For this reason, modifications on both the data sets have been done. The

final attributes, considered for the work, are the ones in table 4.2.

The code to build the computational graph on TensorFlow and run the simulations is written in

python language. A summary of the code is reported in the following.

#import datasets

training_datasets

test_datasets

#attributes

columns=["DA", "PD", "LO",..., "IS2"]

#Define columns

DA= tf.feature_column.categorical_column_with_vocabulary_list(
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’DA’, ["<1900s", "1900s", "1910s", "1920s", "1930s", "1940s", "1950s", "1960s", "1970s", "1980s",

"1990s"])

PD = tf.feature_column.categorical_column_with_vocabulary_list("PD", ["R", "U","Na"])

LO = tf.feature_column.categorical_column_with_hash_bucket(’LO’, hash_bucket_size=280)

...

IS2 = tf.feature_column.categorical_column_with_hash_bucket(’IS2’, hash_bucket_size=20)

#crossed columns crossed=[

tf.feature_column.crossed_column(["DA", "LO"], hash_bucket_size=int(1e5)),

...

tf.feature_column.crossed_column(["IS1", "IS2"], hash_bucket_size=int(1e4))

]

#WIDE MODEL input

#if insert_label_type == "NPI":

base_columns=[DA, PD, LO,..., IS2]

crossed_columns=crossed

#DNN MODEL input

deep_columns = [

tf.feature_column.indicator_column(DA),

tf.feature_column.indicator_column(PD),

tf.feature_column.embedding_column(LO, dimension=8),

...

tf.feature_column.embedding_column(IS2, dimension=4),

]

#CLASSIFIERS

model_wide model_deep model_w_d

#training and evaluation

model.fit(input_fn=get_input_fn(train_file, None, False) , steps=insert_steps)

results=model.evaluate(input_fn=get_input_fn(test_file, 1, False), steps=None)

#print the results

print("%s : %s" %(key, results[key]))

#print the probability values

predictions=list(model.predict_proba(input_fn=get_input_fn(test_file, 1, False)))

print("\n".join(map(str, predictions)))



CHAPTER 4. METHODS: A MACHINE LEARNING APPLICATION 51

MHIDAS Attributes

AN MHIDAS Record Number

ME Multiple Entry

CR Contributor

DA Date of Incident

PD Population Density

LO Location

MN Material Name

MT Material Type

MH Material Hazard

MC Material Code

IT Incident Type

OG Origin

NP Number of People Affected

DG Damage (US Dollars)

GC General Cause

SC Specific Cause

QY Quantity (Tonnes)

IG Ignition Time (Seconds)

IS Ignition Source

KW Keywords

AB Abstract

RA References Available

ID Inverted Incident Date

KR Killed

IR Injured

ER Evacuated

DR Damage

QR Quantity

Table 4.1: MHIDAS database attributes (HSE, 1999).



CHAPTER 4. METHODS: A MACHINE LEARNING APPLICATION 52

Final attributes

DA Date

PD Population Density

LO Location

MN Material Name

MH Material Hazard

MC Material Code

IT Incident Type

GOG General Origin

SOG Specific Origin

NPI Number of People Injured

NPK Number of People Killed

NPE Number of People Evacuated

GC General Cause

SC Specific Cause

QY Quantities (Tonnes)

IS Ignititon Source

Table 4.2: Attributes considered for the simulations.
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In order to accurately asses and compare the criteria to use for building the models, cases with

200, 2000, 20000 and 200000 iteration steps have been used for the training. The simulations are

carried out using NPI (Number of People Injured) and NPK (Number of People Killed) as output

labels.

Moreover, different classes of simulations have been performed, according to the categorization

made on the output label’s values. Table 4.4 shows this categorization for NPI.

Output label’s categories

YES one or more injuries

NO no injuries

<10 between 1 and 10 injuries

10-100 between 10 and 100 injuries

100-1000 between 100 and 1000 injuries

>1000 more than 1000 injuries

Table 4.4: Categorization for NPI values

The same categorization has been carried out for NPK, considering the deaths instead of the

injuries.

All in all, before running the simulations, the output label, the model type, the iteration steps

and the output label category have to be chosen. Table 4.5 reports all the possible options.

Output label Model type Iteration steps Output label category

NPI wide 200 YES

NPK deep 2000 NO

wide&deep 20000 <10

200000 10-100

100-1000

>1000

Table 4.5: List of all output labels, model types, iteration steps and output label categories considered for the sim-
ulations.

4.4.1 The Evaluation Metrics

In order to evaluate the performance of the model selected - for a considered output label, num-

ber of steps and output category - the program compares the values predicted with the real ones.

The evaluation metrics used for this work are listed in table 4.6.
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Evaluation metrics

accuracy It calculates how often predictions match labels (TensorFlow, 2018).

accuracy/baseline_label_mean It indicates the fraction of text examples belonging to the output cat-
egory picked (Stack Overflow, 2018).

auc Area under the ROC curve.

auc_precision_recall Area under the curve precision/recall.

global_step Total number of iteration steps.

loss It measures the discrepancy between the truth value of the values in
the output category and the model’s prediction (TensorFlow, 2018).

precision/positive_threshold_0.5_mean It reports the statistic value "precision".

recall/positive_threshold_0.5_mean It reports the statistic value "recall".

Table 4.6: Evaluation metrics used for the simulations.

Between all these values, the focus is primarily on the recall and on the "auc_precision_recall".

The recall can be calculated following the equation (Flach and Kull, 2015):

R = Tp

Tp +Fn
(4.9)

R indicates the recall.

Tp are the so-called "true positives". They are events belonging to the output category chosen -

i.e. the "positive" events - which were correctly detected.

Fn are the so-called "false negatives". They are events belonging to the output category chosen

which were not correctly detected. The reason of the name is because the model detected the

events wrongly, as "negatives" - i.e. not belonging to the output category selected.

The recall indicates, then, the fractions of events, belonging to the output category chosen, cor-

rectly detected (Greenberg et al., 2012). A high value of this metric is obtained when Fn is low.

Thus, it indicates that the quantity of positive events not detected from the model is low. How-

ever, in this case, it is possible to detect, as positives, also events which are actually negatives.

These are called "false positive".

Usually, to correctly asses the performance of a model, the recall is used in combination with

the so-called "precision", defined as (Flach and Kull, 2015):

P = Tp

Tp +Fp
(4.10)

where P is the precision, Tp the true positive and Fp the so called "false positive".

The precision indicates the fraction of detections reported by the model that were correct (Green-

berg et al., 2012). A high value of precision is obtained when Fp is low. It means that, in this case,

almost all the "positives" detected are actually positive. However, it does not take into consid-
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eration the false negatives. This means that it is possible to have a really high value of precision

without detecting many positive values - i.e. detecting them as negative.

For this work, more than having a high value of precision, the purpose is to look for a model able

to detect all the positive events, also the rarest ones. That is why it is interesting to focus on the

recall. The fact that having high values of recall means, in general, low values of precision - i.e.

high values of false positives - is not important. Detecting, as positives, values that usually are

negative, only makes the model more conservative.

Anyway, the combination of these two statistical values gives, in general, a good idea of the

performance of the classifier. As a matter of fact, the curve precision-recall is widely used. An

example of the curve is shown in figure 4.5.

Figure 4.5: Curve precision-recall (Flach and Kull, 2015)

This curve is obtained trading precision for recall varying the threshold (Greenberg et al., 2012).

In general, decreasing the threshold referred to the positive values - i.e. the probability value

defining if the event is positive or not -, the recall increases while the precision decreases.

Rather than using a curve, it is usually preferred to summarize the information with a single

number (Greenberg et al., 2012). In order to do so, the area under the curve precision-recall is

considered. The bigger this value the more interesting is the model.

The simulations computed for this study automatically return values of precision and recall with

a specific threshold chosen by the tool. It is by looking at the "auc_precision_recall" that it is pos-

sible to understand if the model is good or not. For instance, the "recall/positive_threshold_0.5_mean"

found can be low, but if the "auc_precision_recall" is high enough, it is possible to obtain a good

model, for the purpose of this work, just by varying the threshold.
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Chapter 5

Results

5.1 Introduction

In this chapter, all the results of the simulations for the linear model, the deep neural network

model and the wide&deep model are reported.

The values for the output label category "100-1000" and ">1000" are not recorded for both the

output label NPI (Number of People Injured) and NPK (Number of People Killed). This is be-

cause the database used for evaluation - i.e. the ammonia plant accident database - does not

contain events with a number of injuries - or deaths - between 100 and 1000 or higher than 1000.

5.2 The Linear Model

The results obtained from the simulations, using the linear model, are presented in the follow-

ing.

The Number of People Injured (NPI) label is first considered.

Table 5.1 reports the results obtained with the output label category "YES" - indicating events

with one or more injuries.

Table 5.2 indicates the values returned from the model for the output label category "NO" - re-

57
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ferring to events with no injuries.

Table 5.3 reports the results for the category "<10" - events with a number of injuries between 1

and 10.

Finally, table 5.4 contains the results for the category "10-100" - categorizing events with a num-

ber of injuries between 10 and 100.

Wide model: NPI - YES

STEPS 200 2000 20000 200000

accuracy 0.34375 0.789062 0.742188 0.789062

accuracy/baseline_label_mean 0.203125 0.203125 0.203125 0.203125

auc 0.638575 0.514517 0.445513 0.388198

auc_precision_recall 0.349323 0.279142 0.23533 0.20392

loss 0.808906 0.603909 0.62173 0.952959

precision/positive_threshold_0.5_mean 0.231481 0.4 0.266667 0.333333

recall/positive_threshold_0.5_mean 0.961538 0.0769231 0.153846 0.0384615

Table 5.1: Wide model: evaluation metric values for the output label NPI and output label category YES.

Wide model: NPI - NO

STEPS 200 2000 20000 200000

accuracy 0.34375 0.789062 0.742188 0.789062

accuracy/baseline_label_mean 0.796875 0.796875 0.796875 0.796875

auc 0.638575 0.514517 0.445513 0.388198

auc_precision_recall 0.876248 0.798864 0.750359 0.76012

loss 0.808906 0.603909 0.62173 0.952959

precision/positive_threshold_0.5_mean 0.95 0.804878 0.80531 0.8

recall/positive_threshold_0.5_mean 0.186275 0.970588 0.892157 0.980392

Table 5.2: Wide model: evaluation metric values for the output label NPI and output label category NO.
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Wide model: NPI - <10

STEPS 200 2000 20000 200000

accuracy 0.820312 0.8125 0.820312 0.820312

accuracy/baseline_label_mean 0.179688 0.179688 0.179688 0.179688

auc 0.676605 0.579089 0.40766 0.375776

auc_precision_recall 0.269507 0.202159 0.160256 0.141215

loss 0.471002 0.675007 0.569665 1.0105

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.3: Wide model: evaluation metric values for the output label NPI and output label category <10.

Wide model: NPI - 10-100

STEPS 200 2000 20000 200000

accuracy 0.976562 0.984375 0.984375 0.984375

accuracy/baseline_label_mean 0.0234375 0.0234375 0.0234375 0.0234375

auc 0.424 0.814667 0.764 0.729333

auc_precision_recall 0.0454154 0.539458 0.537017 0.366366

loss 3.20941 0.285693 0.165543 0.0919773

precision/positive_threshold_0.5_mean 0 0.666667 1.0 1.0

recall/positive_threshold_0.5_mean 0 0.666667 0.333333 0.333333

Table 5.4: Wide model: evaluation metric values for the output label NPI and output label category 10-100.
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The results obtained performing the simulations using the output label NPK are then shown.

Table 5.5 reports the evaluation metric values returned by the model for the category "YES" -

classifying events with one or more deaths.

Table 5.6 shows the results for the output label category "NO" - indicating events with no deaths.

Table 5.7 contains the values returned by the model for the category "<10" - referring to events

with a number of deaths between 1 and 10.

Finally, table 5.8 includes the results for the category "10-100" - categorizing events with a num-

ber of deaths between 10 and 100.

Wide model: NPK - YES

STEPS 200 2000 20000 200000

accuracy 0.796875 0.882812 0.8125 0.898438

accuracy/baseline_label_mean 0.117188 0.117188 0.117188 0.117188

auc 0.8059 0.733333 0.7 0.684956

auc_precision_recall 0.407194 0.309212 0.298231 0.41536

loss 0.578526 0.396275 0.422599 0.38058

precision/positive_threshold_0.5_mean 0.310345 0.5 0.263158 0.666667

recall/positive_threshold_0.5_mean 0.6 0.2 0.333333 0.266667

Table 5.5: Wide model: evaluation metric values for the output label NPK and output label category YES.

Wide model: NPK - NO

STEPS 200 2000 20000 200000

accuracy 0.796875 0.882812 0.8125 0.898438

accuracy/baseline_label_mean 0.882812 0.882812 0.882812 0.882812

auc 0.8059 0.733333 0.7 0.684956

auc_precision_recall 0.969383 0.953774 0.933252 0.923549

loss 0.578526 0.396275 0.422599 0.98058

precision/positive_threshold_0.5_mean 0.939394 0.901639 0.908257 0.909836

recall/positive_threshold_0.5_mean 0.823009 0.976451 0.876106 0.982301

Table 5.6: Wide model: evaluation metric values for the output label NPK and output label category NO.
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Wide model: NPK - <10

STEPS 200 2000 20000 200000

accuracy 0.890625 0.867188 0.914062 0.898438

accuracy/baseline_label_mean 0.109375 0.109375 0.109375 0.109375

auc 0.734336 0.709587 0.780389 0.764098

auc_precision_recall 0.240246 0.236979 0.418801 0.356113

loss 0.663478 0.643362 0.295076 0.404255

precision/positive_threshold_0.5_mean 0 0.2 1 1

recall/positive_threshold_0.5_mean 0 0.0714286 0.214286 0.0714286

Table 5.7: Wide model: evaluation metric values for the output label NPK and output label category <10

Wide model: NPK - 10-100

STEPS 200 2000 20000 200000

accuracy 0.992188 0.992188 0.992188 0.898438

accuracy/baseline_label_mean 0.0078125 0.0078125 0.0078125 0.0078125

auc 0.944882 0.948819 0.767717 0.779528

auc_precision_recall 0.0416668 0.0625001 0.016129 0.0172414

loss 0.0862017 0.0646929 0.0920474 0.16875

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.8: Wide model: evaluation metric values for the output label NPK and output label category 10-100
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5.3 The Deep Model

The results obtained from the simulations, using the deep model, are presented in the following.

The Number of People Injured (NPI) label is first shown.

Table 5.9 reports the results for the output label category "YES" - indicating events with one

or more injuries.

Table 5.10 shows the values returned by the model for the category "NO" - referring to events

with no injuries.

Table 5.11 contains the results obtained for the category "<10" - events with a number of injuries

between 1 and 10.

Finally, table 5.12 includes the values returned by the model for the category "10-100" - catego-

rizing events with a number of injuries between 10 and 100.

Deep model: NPI - YES

STEPS 200 2000 20000 200000

accuracy 0.526041333 0.747396 0.53125 0.460938

accuracy/baseline_label_mean 0.203125 0.203125 0.203125 0.203125

auc 0.533874 0.644231 0.407428 0.384804

auc_precision_recall 0.241089 0.337787 0.195943 0.258708

loss 0.698439 0.506459 2.87726 6.46264

precision/positive_threshold_0.5_mean 0.221065 0.500418 0.113636 0.135593

recall/positive_threshold_0.5_mean 0.551282 0.141026 0.192608 0.307692

Table 5.9: Deep model: evaluation metric values for the output label NPI and output label category YES

Deep model: NPI - NO

STEPS 200 2000 20000 200000

accuracy 0.596354 0.687500 0.773438 0.484375

accuracy/baseline_label_mean 0.796875 0.796875 0.796875 0.796875

auc 0.627137 0.585596 0.547134 0.439857

auc_precision_recall 0.844169 0.850263 0.884186 0.802515

loss 0.666904 0.590606 2.58352 4.73528

precision/positive_threshold_0.5_mean 0.785204 0.817195 0.806723 0.772727

recall/positive_threshold_0.5_mean 0.660131 0.784314 0.941176 0.5

Table 5.10: Deep model: evaluation metric values for the output label NPI and output label category NO
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Deep model: NPI - <10

STEPS 200 2000 20000 200000

accuracy 0.820312 0.820312 0.71875 0.476562

accuracy/baseline_label_mean 0.179688 0.179688 0.179688 0.179688

auc 0.639683 0.558040 0.484886 0.46087

auc_precision_recall 0.299808 0.265903 0.176128 0.255764

loss 0.500608 0.476159 1.98578 3.18913

precision/positive_threshold_0.5_mean 0 0 0.190476 0.176471

recall/positive_threshold_0.5_mean 0 0 0.173913 0.521739

Table 5.11: Deep model: evaluation metric values for the output label NPI and output label category <10

Deep model: NPI - 10-100

STEPS 200 2000 20000 200000

accuracy 0.976562 0.976562 0.960968 0.960938

accuracy/baseline_label_mean 0.0234375 0.0234375 0.0234375 0.0234375

auc 0.608889 0.580889 0.604444 0.637333

auc_precision_recall 0.0912892 0.0439778 0.052894 0.0865163

loss 0.227724 0.158686 0.2422 0.3475583

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.12: Deep model: evaluation metric values for the output label NPI and output label category 10-100.
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The results obtained performing the simulations with the output label NPK are then shown.

Table 5.13 reports the values returned performing the simulations using the output label cate-

gory "YES" - classifying events with one or more deaths.

Table 5.14 contains the results for the category "NO" - indicating events with no deaths.

Table 5.15 shows the evaluation metric values for "<10" - referring to events with a number of

deaths between 1 and 10.

Finally, table 5.16 includes the results for the category "10-100" - categorizing events with a

number of deaths between 10 and 100.

Deep model: NPK - YES

STEPS 200 2000 20000 200000

accuracy 0.882812 0.783854 0.65625 0.5625

accuracy/baseline_label_mean 0.117188 117188 117188 117188

auc 0.570206 0.63707 0.570502 0.471976

auc_precision_recall 0.184593 0.183196 0.201393 0.200881

loss 0.523201 0.461321 1.98905 2.63829

precision/positive_threshold_0.5_mean 0 0.128395 0.162791 0.0816327

recall/positive_threshold_0.5_mean 0 0.244445 0.466667 0.266667

Table 5.13: Deep model: evaluation metric values for the output label NPK and output label category YES

Deep model: NPK - NO

STEPS 200 2000 20000 200000

accuracy 0.882812 0.773437 0.59375 0.53125

accuracy/baseline_label_mean 0.882812 0.882812 0.882812 0.882812

auc 0.554179 0.473746 0.602065 0.385546

auc_precision_recall 0.888845 0.872665 0.927423 0.891102

loss 0.561255 0.50782 2.59215 4.05464

precision/positive_threshold_0.5_mean 0.882812 0.887428 0.917808 0.835443

recall/positive_threshold_0.5_mean 1 0.852507 0.59292 0.584071

Table 5.14: Deep model: evaluation metric values for the output label NPK and output label category NO
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Deep model: NPK - <10

STEPS 200 2000 20000 200000

accuracy 0.890625 0.880208 0.851562 0.789062

accuracy/baseline_label_mean 0.109375 0.109375 0.109375 0.109375

auc 0.636800333 0.688701 0.693609 0.683897

auc_precision_recall 0.251586 0.270186 0.325247 0.215281

loss 0.820374 0.364296 0.988342 1.33151

precision/positive_threshold_0.5_mean 0 0.111111 0.307692 0.217391

recall/positive_threshold_0.5_mean 0 0.095238 0.285714 0.357143

Table 5.15: Deep model: evaluation metric values for the output label NPK and output label category <10

Deep model: NPK - 10-100

STEPS 200 2000 20000 200000

accuracy 0.992188 0.992188 0.921875 0.921875

accuracy/baseline_label_mean 0.0078125 0.0078125 0.0078125 0.0078125

auc 0.417323 0.571654 0.366142 0.354331

auc_precision_recall 0.00942188 0.00989547 0.00390626 0.00390626

loss 0.0841593 0.0746411 0.22798 0.319463

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.16: Deep model: evaluation metric values for the output label NPK and output label category 10-100
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5.4 The Wide&Deep Model

The results obtained from the simulations, using the wide&deep model, are presented in the

following

The Number of People Injured (NPI) label is first shown.

Table 5.17 shows the results of the simulations with the output label category "YES" - indicating

events with one or more injuries.

Table 5.18 contains the values obtained for the category "NO" - referring to events with no in-

juries.

Table 5.19 reports the results for the category "<10" - events with a number of injuries between

1 and 10.

Finally, table 5.20 includes the evaluation metric values obtained for the category "10-100" -

categorizing events with a number of injuries between 10 and 100.

Wide&deep model: NPI - YES

STEPS 200 2000 20000 200000

accuracy 0.523437 0.786458 0.625 0.679688

accuracy/baseline_label_mean 0.203125 0.203125 0.203125 0.203125

auc 0.539844 0.630845 0.392345 0.530354

auc_precision_recall 0.225683 0.330302 0.202903 0.318757

loss 0.654253 0.518993 1.88773 2.68498

precision/positive_threshold_0.5_mean 0.157827 0.607655 0.133333 0.285714

recall/positive_threshold_0.5_mean 0.602564 0.179487 0.153846 0.384615

Table 5.17: Wide&deep model: evaluation metric values for the output label NPI and output label category YES
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Wide&deep model: NPI - NO

STEPS 200 2000 20000 200000

accuracy 0.679688 0.809896 0.34375 0.445312

accuracy/baseline_label_mean 0.796875 0.796875 0.796875 0.796875

auc 0.53821 0.588801 0.454563 0.451169

auc_precision_recall 0.851897 0.867517 0.783502 0.788911

loss 0.628977 0.516108 4.40671 5.30077

precision/positive_threshold_0.5_mean 0.78769 0.810667 0.736842 0.803922

recall/positive_threshold_0.5_mean 0.813725 0.993464 0.27451 0.401961

Table 5.18: Wide&deep model: evaluation metric values for the output label NPI and output label category NO

Wide&deep model: NPI - <10

STEPS 200 2000 20000 200000

accuracy 0.820312 0.820312 0.671875 0.6875

accuracy/baseline_label_mean 0.179688 0.179688 0.179688 0.179688

auc 0.586819 0.632781 0.398137 0.355694

auc_precision_recall 0.216702 0.265357 0.133898 0.141654

loss 0.479485 0.451136 2.47009 3.5826

precision/positive_threshold_0.5_mean 0 0 0.0869565 0.0952381

recall/positive_threshold_0.5_mean 0 0 0.0869565 0.0869565

Table 5.19: Wide&deep model: evaluation metric values for the output label NPI and output label category <10

Wide&deep model: NPI - <10

STEPS 200 2000 20000 200000

accuracy 0.976562 0.981771 0.96875 0.914062

accuracy/baseline_label_mean 0.0234375 0.0234375 0.0234375 0.0234375

auc 0.553333 0.738009 0.636 0.576667

auc_precision_recall 0.0412882 0.0497824 0.078183 0.0362891

loss 0.28707 0.188535 0.284812 0.414595

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.20: Wide&deep model: evaluation metric values for the output label NPI and output label category 10-100
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The results obtained performing the simulations with the output label NPK are then shown.

Table 5.21 includes the results obtained from the simulations carried out with the output label

category "YES" - classifying events with one or more deaths.

Table 5.22 shows the values for the category "NO" - indicating events with no deaths.

Table 5.23 reports the results for the category "<10" - referring to events with a number of deaths

between 1 and 10.

Finally, table 5.24 contains the evaluation metric values for the output label category "10-100" -

categorizing events with a number of deaths between 10 and 100.

Wide&deep model: NPK - YES

STEPS 200 2000 20000 200000

accuracy 0.882812 0.817771 0.53125 0.75

accuracy/baseline_label_mean 0.117188 0.117188 0.117188 0.117188

auc 0.613471 0.673451 0.494985 0.658112

auc_precision_recall 0.152307 0.207747 0.202501 0.313107

loss 0.295398 0.47763 2.83981 1.44217

precision/positive_threshold_0.5_mean 0.166667 0.244444 0.0909091 0.242424

recall/positive_threshold_0.5_mean 0.0222222 0.288889 0.333333 0.533333

Table 5.21: Wide&deep model: evaluation metric values for the output label NPK and output label category YES

Wide&deep model: NPK - NO

STEPS 200 2000 20000 200000

accuracy 0.757812 0.817708 0.703125 0.523438

accuracy/baseline_label_mean 0.882812 0.882812 0.882812 0.882812

auc 0.750017 0.688594 0.641298 0.374041

auc_precision_recall 0.908476 0.94205 0.94099 0.879091

loss 0.593612 0.451672 1.5891 3.62232

precision/positive_threshold_0.5_mean 0.910115 0.899623 0.894737 0.861111

recall/positive_threshold_0.5_mean 0.80826 0.893805 0.752212 0.548673

Table 5.22: Wide&deep model: evaluation metric values for the output label NPK and output label category NO
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Wide&deep model: NPK - <10

STEPS 200 2000 20000 200000

accuracy 0.890625 0.890625 0.804688 0.835938

accuracy/baseline_label_mean 0.109375 0.109375 0.109375 0.109375

auc 0.584378 0.707957 0.593045 0.630639

auc_precision_recall 0.127306 0.224997 0.13449 0.19583

loss 0.415087 0.341036 1.00402 1.05551

precision/positive_threshold_0.5_mean 0 0 0.133333 0.266667

recall/positive_threshold_0.5_mean 0 0 0.142857 0.285714

Table 5.23: Wide&deep model: evaluation metric values for the output label NPK and output label category <10

Wide&deep model: NPK - 10-100

STEPS 200 2000 20000 200000

accuracy 0.992188 0.992188 0.914062 0.976562

accuracy/baseline_label_mean 0.0078125 0.0078125 0.0078125 0.0078125

auc 0.839895 0.699213 0.275591 0.374016

auc_precision_recall 0.0198826 0.0308853 0.00390626 0.00390627

loss 0.0897457 0.0883096 0.26657 0.22804

precision/positive_threshold_0.5_mean 0 0 0 0

recall/positive_threshold_0.5_mean 0 0 0 0

Table 5.24: Wide&deep model: evaluation metric values for the output label NPK and output label category 10-100
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Chapter 6

Elaboration and Discussion of the Results

In order to analyze the results and the performance of the models, the area under the curve

precision-recall is considered ("auc_precision_recall"). The recall returned by the simulation is,

indeed, specific for a certain value of the threshold, chosen by the tool. It is by looking at the

area under the curve precision-recall that it is possible to correctly asses the performance of the

model: if the value is high, it means that the value of recall achievable, varying the threshold,

can be of interest.

Figures 6.1, 6.2, 6.3 and 6.4 shows a comparison between the models, in reference to the label

NPK (number of people killed), using 200, 2000, 20000 and 200000 steps respectively.
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Figure 6.1: Comparison of the three models for the different categories. Output label NPK, iteration steps=200.

Figure 6.2: Comparison of the three models for the different categories. Output label NPK, iteration steps=2000.
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Figure 6.3: Comparison of the three models for the different categories. Output label NPK, iteration steps=20000.

Figure 6.4: Comparison of the three models for the different categories. Output label NPK, iteration steps=200000.
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From all the figures, it is possible to notice a common trend: the more the event is rare, the lower

the value of the area under the curve precision-recall. This matches the expectations. The pre-

diction skill of a model is, indeed, better for common events. It is more difficult to detect events

that have never or rarely happened because there are few chances to learn.

In general, the model which seems to work better is the linear one (wide).

Considering common events - i.e. essentially the output label category "NO" - all three models

give satisfactory results. For every example taken into account, the wide model is the best. The

deep and wide&deep give substantially the same results. The linear model assumes a linear as-

sociation between the inputs and the event to predict, while the other two have more complex

structures. As it is possible to see from a bow-tie diagram, the more a feature is far from the event

to predict, the more interactions it has with other features. That is why the deep model and the

wide_deep model have been taken into consideration: the output, in these cases, is predicted

on the basis of combinations of the inputs. However, the results of the simulations show that

these models give worse results than the linear one. A reason can be found in the uncertainty

and in the low quality of data collected in the ammonia plant accident database. Many times,

some features were not even registered because of the lack of information in the safety reports

investigated.

Taking into account rare events the situation does not change: the linear model is, in general,

the one which makes better predictions. The only exceptions are for the category "<10" using

200 and 2000 steps. Here, the deep model is the one which works better, followed by the wide

and, lastly, by the wide&deep.

Figures 6.5, 6.6, 6.7 and 6.8 shows, instead, the results obtained using the output label NPI for the

three models, with, respectively, 200, 2000, 20000 and 200000 iteration steps. All the categories

are considered.
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Figure 6.5: Comparison of the three models for the different categories. Output label NPI, iteration steps=200.

Figure 6.6: Comparison of the three models for the different categories. Output label NPI, iteration steps=2000.
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Figure 6.7: Comparison of the three models for the different categories. Output label NPI, iteration steps=20000.

Figure 6.8: Comparison of the three models for the different categories. Output label NPI, iteration steps=200000.
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The expected trend is the same one described for the label NPK. However, this does not always

reflects the results.

Considering the deep and wide&deep models, there is no difference from what already stated

above for the NPK label: the more the event is rare the lower the value of "auc_precision_recall".

For the linear model, instead, using 2000, 20000 and 200000 steps, this metric decreases going

from the "NO", to the "<10" category and then it registers high values for the category "10-100".

This is probably due to the lack of events in the ammonia plant accident database, used for the

evaluation. Here are only two events registered as "10-100" for the output label NPI. Detecting

one only would make a big difference in the final results. Looking carefully at the database, it

is possible to notice that one of the two is associated with a high number of people evacuated

(NPE). In the linear model, every input is linearly correlated to the output (NPI in this case),

with a certain weight defined during the training. It’s likely that, because of the high number of

people evacuated associated to the event, the model detected that record, correctly, as positive -

i.e. belonging to the category "10-100". The deep and the wide&deep model, on the other hand,

because of their non-linearity between input and output, were not able to detect them - with

the specific threshold considered - as it is possible to see from the recall value returned equal to

0. Thus, their "auc_precision_recall" value is much lower than the one obtained with the linear

model. It is important to underline, also, that only in case of 2000, 20000 and 200000 iteration

steps the wide one has high value of the area under the curve precision-recall. This means that

for a low number of steps, also this model is not able to detect the events belonging to the cate-

gory "10-100".

In general the wide model works well also for the label "NPI" but it is not always the best one. for

number of iteration steps=200, it is the one which predicts better. However, using 2000, 20000

and 200000 steps, the situation changes. In these 3 cases, considering the categories "NO",

"YES" and "<10", the deep and the wide&deep give similar results - better than the ones ob-

tained from the linear. In general, the deep model is a bit better than the wide&deep. For the

category "<10", as already stated above, the wide model is able to detect one of the two events

registered in the database used for evaluation, so it gives much better results.

Another important argument to consider is that, even though the value of recall returned by

the model is low or equal to 0, it does not necessarily mean that the model is not good enough

for the purpose of this work. As already mentioned in Chapter 4 - section 4.4.1, this is the rea-

son why "auc_precision_recall" is considered: if this is high enough it is possible to obtain good

values of the recall just by varying the threshold. For instance, let’s consider the simulation car-

ried out using the wide model and choosing NPI, as output label, <10, as output category and

a number o iteration steps equal to 2000. The "recall/positive_threshold_0.5_mean" returned

is 0, while the "auc_precision_recall" value is 0.202159. Figure 6.9 reports the curve precision
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recall for this particular case, using threshold equal to: 0; 0,06; 0,08; 0,1; 0,12; 0,14; 0,16; 0,18;

0,2; 0,22; 1.

Figure 6.9: Precision-Recall curve (PR curve) for output label NPI, output category <10, iteration steps=2000. Wide
model.

The values returned from the model corresponds to the point of coordinates (0;0) in the graph

- precision=0;recall=0. This is due to the default configuration of the model, which aims to give

high value of accuracy. However, the purpose of this work is to predict accidents, being con-

servative on the prediction: a high value of the recall is then preferred, even if it could lead to

lower values of accuracy and precision. Decreasing the threshold to a value of 0.08, for instance,

improves the situation: it brings the value of precision at around 0.2 and the value of recall at

around 0.95. All of this means that, using the threshold chosen by the tool, the model could

not predict any of the events belonging to the category "<10". Varying the threshold to 0.08, the

same model is able to detect almost all of these events.

6.1 Limitations of the Work

The number of accident collected in the ammonia plant accident database are not enough to

give a fully correct evaluation of the models.

The lack of detail of the safety reports influenced the quality of the data in the final database and,

consequently, the quality of the simulations. It was difficult to comprehend the real information

reported. Consequently, the data collected in the ammonia plant accident database, are affected

by the personal interpretation of the writer, with respect to the content of the reports.



Chapter 7

Conclusions

Analyzing data and extract knowledge from them has become an important need. Especially in

the industrial sector, with the so-called industry 4.0, a big amount of data is set to be collected.

This should be seen as an opportunity to learn: not exploiting them would be a waste. The

Seveso III Directive, whose focus is laying down the rules to prevent major accidents in estab-

lishments handling hazardous substances, also advances the necessity to monitor data in order

to improve the safety management system of the plants.

In this work, a way to manage and analyze heterogeneous data from chemical process industry,

in order to obtain important information for establishing the risk picture, has been proposed.

The establishment taken into consideration for this work is the ammonia plant, which falls un-

der the Seveso III DIrective. Information about past accidents occurred in these sites have been

collected from different sources and they have been stored in a common database. Data have

been registered using keywords, in order to make them easier to analyze. The ammonia plant

accident database have been used for evaluating three different models - a linear one, one based

on deep learning and a combination of the two - trained with the past accident data stored in

the MHIDAS database. The aim of the model is to predict the consequence on human - in terms

of number of people injured or number of people killed - on the basis of information about past

accidents. The machine learning tool used, which provided the instruments to build the mod-

els, is the open source library TensorFlow.

The value of the recall and the area under the curve precision-recall have been used as primary

metrics to asses the performance of the models. One of the purposes of this work is, indeed, to
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find a model able to detect all the events, also the rarest ones, even if the "precision" of the model

will not result high. In order to meet this need, the value of the threshold could be lowered. That

is why it has been important to consider the value of the area under the curve precision-recall:

even though the model, in some cases, returned low values of the recall, the value of the area

under the curve was still good. This was an indicator of the fact that, lowering the threshold, the

value of the recall would have increased and become of interest.

The general trend of the results showed that the value of the area under the curve tended to

decrease the more the events considered in the simulations were rare, as expected. Above all,

the linear model gave the best results. Because of the linear dependence between the inputs,

weighted on the model parameters tuned during the training, and the output, it showed good

prediction skills also in case of rare events.
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Appendix A

Acronyms

AI Artificial Intelligence

API Application Programming Interface

DOL (United States) Department of Labor

DRA Dynaic Risk Analysis

EEA European Economic Area

EEC European Economic Community

eMARS Major Accident Reporting System

EPA Environmental Protection Agency

EU Eurpean Union

HAZOP Hazard and operability study

HILP High Impact Low Probability

HSE Health and Safety Executive

ICMESA Industrie Chimiche Meda Società Azionaria

JFKD Japanese Failure Knowledge Model

JRC (European Commssion’s) Joint Research Center

JST Japanese Science and Technology

KDD Knowledge Discovery from Data
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MAHB Major Accident Hazards Bureau

MAPP Major-Accident Prevention Policy

MHIDAS Major Hazard Incident Data Service

NRC National Response Center

NRS National Response System

OECD Organization for Economic Co-operation and Development

OSHA Occupational Safety and Health Administration

QRA Quantitative Risk Assessment

SPI Safety Performance Indicator

TCB 1,2,4,5-tetrachlorobenzene

TCDD 2,3,7,8-tetrachlorodibenzodioxin

TCP 2,4,5-trichlorophenol

TEIA Transboundary Effects of Industrial Accidents

UBA Umweltbundesamt

UNECE United Nations Economic Commission for Europe

USCG United States Coast Guard

ZEMA Zentrale Melde-und Auswertestelle (für Störfälle und Störungen)
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Ammonia Plant Accident Database
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Appendix C

The TensorFlow Code used to Run the

Simulations

#!/usr/bin/env python

import tensorflow as tf

import tempfile

import pandas as pd

tf.logging.set_verbosity(tf.logging.INFO)

#input information

insert_label_type=input("\nInsert label type.\nInsert NPI for the injuries.\nInsert NPK for the fatali-

ties.\n")

insert_model=input("Insert model type.\nValid model types: wide, deep, wide&deep.\n")

insert_steps=int(input("Insert number of steps for the training.\n"))

insert_model_dir=input("Insert model directory.\nFor example: /tmp/model\n")

insert_label=input("Insert label value ("+insert_label_type+").\nValid values: YES, NO, <10, 10-100, 100-

1000, >1000.\n")

#import datasets

train_fileYN_inj = "/home/riccardo/Scrivania/my_codes/Datasets/eventdataYN_inj_full.csv"

train_fileYN_kill = "/home/riccardo/Scrivania/my_codes/Datasets/eventdataYN_full.csv"

test_ammYN_inj = "/home/riccardo/Scrivania/my_codes/Datasets/Ammdata_YN_inj.csv"

test_ammYN_kill = "/home/riccardo/Scrivania/my_codes/Datasets/Ammdata_YN_killed.csv"

train_fileCAT_inj = "/home/riccardo/Scrivania/my_codes/Datasets/eventdataCAT_inj_full.csv"

train_fileCAT_kill = "/home/riccardo/Scrivania/my_codes/Datasets/eventdataCAT_full.csv"

test_ammCAT_inj = "/home/riccardo/Scrivania/my_codes/Datasets/Ammdata_CAT_inj.csv"

test_ammCAT_kill = "/home/riccardo/Scrivania/my_codes/Datasets/Ammdata_CAT_killed.csv"

if insert_label_type == "NPI":

train_fileYN = train_fileYN_inj
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train_fileCAT = train_fileCAT_inj

test_fileYN = test_ammYN_inj

test_fileCAT = test_ammCAT_inj

elif insert_label_type == "NPK":

train_fileYN = train_fileYN_kill

train_fileCAT = train_fileCAT_kill

test_fileYN = test_ammYN_kill

test_fileCAT = test_ammCAT_kill

else : print("\n———The label type inserted is not correct.———\n")

if insert_label == "YES" or insert_label == "NO": train_file = train_fileYN

test_file = test_fileYN

else :

train_file = train_fileCAT

test_file = test_fileCAT

#attributes

if insert_label_type == "NPK":

columns=["DA", "PD", "LO", "MN1", "MN2", "MN3", "MN4", "MN5", "MN6", "MN7", "MN8", "MN9",

"MH1", "MH2", "MH3", "MH4, "MH5", "MH6", "MH7", "MH8", "MH9", "MC1", "MC2", "MC3", "MC4",

"MC5", "MC6", "MC7", "MC8", "MC9", "IT1", "IT2", "IT", "GOG1", "SOG1", "GOG2", "SOG2", "NPK",

"NPE", "GC1", "GC2", "GC3", "SC1", "SC2", "SC3", "QY", "IS1", "IS2"]

else :

columns=["DA", "PD", "LO", "MN1", "MN2", "MN3", "MN4", "MN5", "MN6", "MN7", "MN8", "MN9",

"MH1", "MH2", "MH3", "MH4, "MH5", "MH6", "MH7", "MH8", "MH9", "MC1", "MC2", "MC3", "MC4",

"MC5", "MC6", "MC7", "MC8", "MC9", "IT1", "IT2", "IT", "GOG1", "SOG1", "GOG2", "SOG2", "NPI",

"NPE", "GC1", "GC2", "GC3", "SC1", "SC2", "SC3", "QY", "IS1", "IS2"]

df_train=pd.read_csv(train_file, names=columns, skipinitialspace=True)

df_test=pd.read_csv(test_file, names=columns, skipinitialspace=True)

#input function

if insert_label_type == "NPK": def get_input_fn(data_file, num_epochs, shuffle):

df_data=pd.read_csv(tf.gfile.Open(data_file),

names=columns,

skipinitialspace=True,

engine="python")

df_data=df_data.dropna(how="any", axis=0)

labels=df_data["NPK"].apply(lambda x: insert_label in x).astype(int)

return tf.estimator.inputs.pandas_input_fn(

x=df_data,

y=labels,

num_epochs=num_epochs,

shuffle=shuffle,

num_threads=1)

else :
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def get_input_fn(data_file, num_epochs, shuffle):

df_data=pd.read_csv(tf.gfile.Open(data_file),

names=columns,

skipinitialspace=True,

engine="python")

df_data=df_data.dropna(how="any", axis=0)

labels=df_data["NPI"].apply(lambda x: insert_label in x).astype(int)

return tf.estimator.inputs.pandas_input_fn(

x=df_data,

y=labels,

num_epochs=num_epochs,

shuffle=shuffle,

num_threads=1)

#Define columns

DA= tf.feature_column.categorical_column_with_vocabulary_list(

’DA’, ["<1900s", "1900s", "1910s", "1920s", "1930s", "1940s", "1950s", "1960s", "1970s", "1980s",

"1990s"])

PD = tf.feature_column.categorical_column_with_vocabulary_list("PD", ["R", "U","Na"])

LO = tf.feature_column.categorical_column_with_hash_bucket(’LO’, hash_bucket_size=280)

MN1 = tf.feature_column.categorical_column_with_hash_bucket(’MN1’, hash_bucket_size=1450)

MN2 = tf.feature_column.categorical_column_with_hash_bucket(’MN2’, hash_bucket_size=375)

MN3 = tf.feature_column.categorical_column_with_hash_bucket(’MN3’, hash_bucket_size=170)

MN4 = tf.feature_column.categorical_column_with_hash_bucket(’MN4’, hash_bucket_size=90)

MN5 = tf.feature_column.categorical_column_with_hash_bucket(’MN5’, hash_bucket_size=30)

MN6 = tf.feature_column.categorical_column_with_hash_bucket(’MN6’, hash_bucket_size=15)

MN7 = tf.feature_column.categorical_column_with_vocabulary_list("MN7", ["AEROSOLS","FUEL

OIL", "Na", "NITRIC ACID", "OIL", "STYRENE"])

MN8 = tf.feature_column.categorical_column_with_vocabulary_list("MN8", ["HG SEED DRESS", "Na",

"NATURAL GAS", "TOLUENE DIISOCYANATE"])

MN9 = tf.feature_column.categorical_column_with_vocabulary_list("MN9", ["Na",

"ORG.PHOS.PESTIC"])

MH1 = tf.feature_column.categorical_column_with_vocabulary_list("MH1", ["AS", "CD", "CO", "EX",

"FI", "Na", "OX", "TO"])

MH2 = tf.feature_column.categorical_column_with_vocabulary_list("MH2", ["AS", "CD", "CO", "EX",

"FI", "Na", "OX", "TO"])

MH3 = tf.feature_column.categorical_column_with_vocabulary_list("MH3", ["AS", "CO", "EX", "FI",

"Na", "OX", "TO"])

MH4 = tf.feature_column.categorical_column_with_vocabulary_list("MH4", ["CO", "FI", "Na", "OX",

"TO"])

MH5 = tf.feature_column.categorical_column_with_vocabulary_list("MH5", ["CO", "FI", "Na", "TO"])

MH6 = tf.feature_column.categorical_column_with_vocabulary_list("MH6", ["CO", "FI", "Na", "TO"])

MH7 = tf.feature_column.categorical_column_with_vocabulary_list("MH7", ["CO", "FI", "Na"])

MH8 = tf.feature_column.categorical_column_with_vocabulary_list("MH8", ["FI", "Na", "TO"])

MH9 = tf.feature_column.categorical_column_with_vocabulary_list("MH9", ["Na", "TO"])



APPENDIX C. THE TENSORFLOW CODE USED TO RUN THE SIMULATIONS 96

MC1 = tf.feature_column.categorical_column_with_hash_bucket(’MC1’, hash_bucket_size=350)

MC2 = tf.feature_column.categorical_column_with_hash_bucket(’MC2’, hash_bucket_size=180)

MC3 = tf.feature_column.categorical_column_with_hash_bucket(’MC3’, hash_bucket_size=95)

MC4 = tf.feature_column.categorical_column_with_hash_bucket(’MC4’, hash_bucket_size=55)

MC5 = tf.feature_column.categorical_column_with_hash_bucket(’MC5’, hash_bucket_size=23)

MC6 = tf.feature_column.categorical_column_with_hash_bucket(’MC6’, hash_bucket_size=15)

MC7 = tf.feature_column.categorical_column_with_vocabulary_list("MC7", ["Na", "1267", "2031",

"1223", "1950", "2055"])

MC8 = tf.feature_column.categorical_column_with_vocabulary_list("MC8", ["Na", "1971", "2588",

"2206"])

MC9 = tf.feature_column.categorical_column_with_vocabulary_list("MC9", ["Na", "2588"])

IT1 = tf.feature_column.categorical_column_with_hash_bucket(’IT1’, hash_bucket_size=15)

IT2 = tf.feature_column.categorical_column_with_hash_bucket(’IT2’, hash_bucket_size=15)

IT3 = tf.feature_column.categorical_column_with_hash_bucket(’IT3’, hash_bucket_size=15)

GOG1 = tf.feature_column.categorical_column_with_hash_bucket(’GOG1’, hash_bucket_size=15)

SOG1 = tf.feature_column.categorical_column_with_hash_bucket(’SOG1’, hash_bucket_size=15)

GOG2 = tf.feature_column.categorical_column_with_vocabulary_list("GOG2", ["PROCESS"])

SOG2 = tf.feature_column.categorical_column_with_vocabulary_list("SOG2", ["PIPEWORK", "HEATX-

CHANG"])

NPE = tf.feature_column.numeric_column(’NPE’)

GC1 = tf.feature_column.categorical_column_with_hash_bucket(’GC1’, hash_bucket_size=12)

GC2 = tf.feature_column.categorical_column_with_hash_bucket(’GC2’, hash_bucket_size=10)

GC3 = tf.feature_column.categorical_column_with_hash_bucket(’GC3’, hash_bucket_size=10)

SC1 = tf.feature_column.categorical_column_with_hash_bucket(’SC1’, hash_bucket_size=72)

SC2 = tf.feature_column.categorical_column_with_hash_bucket(’SC2’, hash_bucket_size=65)

SC3 = tf.feature_column.categorical_column_with_hash_bucket(’SC3’, hash_bucket_size=50)

QY = tf.feature_column.categorical_column_with_vocabulary_list("QY", ["Na", "1000-10000", "100-

1000", "10-100", "from1to10", "<1", ">10000"])

IS1 = tf.feature_column.categorical_column_with_hash_bucket(’IS1’, hash_bucket_size=12)

IS2 = tf.feature_column.categorical_column_with_hash_bucket(’IS2’, hash_bucket_size=20)

#crossed columns crossed=[

tf.feature_column.crossed_column(["DA", "LO"], hash_bucket_size=int(1e5)),

tf.feature_column.crossed_column(["MN1", "MN2", "MN3", "MN4", "MN5", "MN6", "MN7", "MN8",

"MN9"], hash_bucket_size=int(1e6)),

tf.feature_column.crossed_column(["MH1", "MH2", "MH3", "MH4", "MH5", "MH6", "MH7", "MH8",

"MH9"], hash_bucket_size=int(1e6)),

tf.feature_column.crossed_column(["MC1", "MC2", "MC3", "MC4", "MC5", "MC6", "MC7", "MC8",

"MC9"], hash_bucket_size=int(1e6)),

tf.feature_column.crossed_column(["IT1", "IT2", "IT3"], hash_bucket_size=int(1e4)),

tf.feature_column.crossed_column(["GOG1", "SOG1"], hash_bucket_size=int(1e4)),

tf.feature_column.crossed_column(["GOG2", "SOG2"], hash_bucket_size=int(1e4)),

tf.feature_column.crossed_column(["GC1", "GC2", "GC3"], hash_bucket_size=int(1e5)),

tf.feature_column.crossed_column(["SC1", "SC2", "SC3"], hash_bucket_size=int(1e5)),

tf.feature_column.crossed_column(["IS1", "IS2"], hash_bucket_size=int(1e4))
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]

#WIDE MODEL input

#if insert_label_type == "NPI":

base_columns=[DA, PD, LO, MN1, MN2, MN3, MN4, MN5, MN6, MN7, MN8, MN9, MH1, MH2, MH3,

MH4, MH5, MH6, MH7, MH8, MH9, MC1, MC2, MC3, MC4, MC5, MC6, MC7, MC8, MC9, IT1, IT2, IT3,

GOG1, SOG1, GOG2, SOG2, NPE, GC1, GC2, GC3, SC1, SC2, SC3, QY, IS1, IS2]

crossed_columns=crossed

#DNN MODEL input

deep_columns = [

tf.feature_column.indicator_column(DA),

tf.feature_column.indicator_column(PD),

tf.feature_column.embedding_column(LO, dimension=8),

tf.feature_column.embedding_column(MN1, dimension=11),

tf.feature_column.embedding_column(MN2, dimension=9),

tf.feature_column.embedding_column(MN3, dimension=7),

tf.feature_column.embedding_column(MN4, dimension=6),

tf.feature_column.embedding_column(MN5, dimension=5),

tf.feature_column.embedding_column(MN6, dimension=4),

tf.feature_column.indicator_column(MN7),

tf.feature_column.indicator_column(MN8),

tf.feature_column.indicator_column(MN9),

tf.feature_column.indicator_column(MH1),

tf.feature_column.indicator_column(MH2),

tf.feature_column.indicator_column(MH3),

tf.feature_column.indicator_column(MH4),

tf.feature_column.indicator_column(MH5),

tf.feature_column.indicator_column(MH6),

tf.feature_column.indicator_column(MH7),

tf.feature_column.indicator_column(MH8),

tf.feature_column.indicator_column(MH9),

tf.feature_column.embedding_column(MC1, dimension=8),

tf.feature_column.embedding_column(MC2, dimension=7),

tf.feature_column.embedding_column(MC3, dimension=7),

tf.feature_column.embedding_column(MC4, dimension=6),

tf.feature_column.embedding_column(MC5, dimension=5),

tf.feature_column.embedding_column(MC6, dimension=4),

tf.feature_column.indicator_column(MC7),

tf.feature_column.indicator_column(MC8),

tf.feature_column.indicator_column(MC9),

tf.feature_column.embedding_column(IT1, dimension=5),

tf.feature_column.embedding_column(IT2, dimension=5),

tf.feature_column.embedding_column(IT3, dimension=5),

tf.feature_column.embedding_column(GOG1, dimension=5),
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tf.feature_column.embedding_column(SOG1, dimension=5),

tf.feature_column.indicator_column(GOG2),

tf.feature_column.indicator_column(SOG2),

NPE,

tf.feature_column.embedding_column(GC1, dimension=4),

tf.feature_column.embedding_column(GC2, dimension=3),

tf.feature_column.embedding_column(GC3, dimension=3),

tf.feature_column.embedding_column(SC1, dimension=6),

tf.feature_column.embedding_column(SC2, dimension=6),

tf.feature_column.embedding_column(SC3, dimension=6),

tf.feature_column.indicator_column(QY),

tf.feature_column.embedding_column(IS1, dimension=4),

tf.feature_column.embedding_column(IS2, dimension=4),

]

#to make the model run on the cpu

run_config = tf.estimator.RunConfig().replace(

session_config=tf.ConfigProto(device_count=’GPU’: 0))

#CLASSIFIERS

model_wide= tf.contrib.learn.LinearClassifier(

feature_columns=base_columns+crossed_columns,

model_dir=insert_model_dir,

)

model_deep= tf.contrib.learn.DNNClassifier(

feature_columns= deep_columns,

hidden_units=[1024, 512, 256],

model_dir=insert_model_dir,

)

model_w_d= tf.contrib.learn.DNNLinearCombinedClassifier(

model_dir=insert_model_dir,

linear_feature_columns=crossed_columns,

dnn_feature_columns=deep_columns,

dnn_hidden_units=[1024,512,256],

)

if insert_model == "wide":

model=model_wide

elif insert_model == "deep":

model=model_deep

elif insert_model == "wide&deep":

model=model_w_d
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else :

print("\n———The model type inserted is not correct.———\n")

#training and evaluation

model.fit(input_fn=get_input_fn(train_file, None, False) , steps=insert_steps)

results=model.evaluate(input_fn=get_input_fn(test_file, 1, False), steps=None)

#print the results

model_dir=insert_model_dir

print("\nmodel directory= %s" %model_dir)

print("\n" + insert_model + " model, " + insert_label_type + ": " + insert_label + "\n")

for key in sorted(results):

print("%s : %s" %(key, results[key]))

#print the probability values

predictions=list(model.predict_proba(input_fn=get_input_fn(test_file, 1, False)))

print("\n".join(map(str, predictions)))
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