

Hydrogen Embrittlement of 25Cr duplex stainless steel exposed to well fluid with H2S - effect of cold working and product form

Svein Ollestad

Materials Science and EngineeringSubmission date:July 2017Supervisor:Roy Johnsen, MTP

Norwegian University of Science and Technology Department of Mechanical and Industrial Engineering

Hydrogen Embrittlement (HE)/Sulfide Stress Cracking (SSC) of corrosion resistant alloys in H_2S environment - the effect of product form and cold working

Svein Ollestad

July 8, 2017

Abstract

It is known that cold deformation may have detrimental effects on resistance against Sulphide Stress Cracking/Stress Corrosion Cracking and Hydrogen Induced Stress Cracking. Though it is clear that cold deformation should be restricted, it is sometimes necessary due to e.g. reeling installation or cold sizing. However, the most common standards relevant for pipe production and fabrication are not specific in how much cold deformation that can be allowed. NACE0175/ISO 15156 and ASME B31.3 allows maximum 5% cold deformation for carbon steel without subsequent heat treatment, but no limits are given for stainless steels (SS). NORSOK M-101 allows up to 10% cold deformation of austenitic stainless steel (SS)and 5% for duplex SS and Ni alloys, but as this is a standard for structural steel fabrication, this limit does not consider H_2S service.

Testing will be carried out on duplex SS and austenittic SS to get a better understanding of limitations on the amount of cold deformation these materials can have in a sour environment. 25% Cr duplex SS (wrought) and 22% Cr duplex SS (wrought) will be tested by constant load in NACE Solution A at an elevated temperature of 80°C and H₂S-partial pressure of 20kPa. As a base case the materials will be cold deformed to minimum 4.8% deformation before the start of constant load testing. The microstructure of the duplex materials will be examined in a Light Optic Microscope (LOM) before and after the initial deformation and before H₂S-exposure, to characterize the ferrite content and the austenite spacing in the materials. If any signs of cracking with the LOM, further investigation with a Scanning Electron Microscope will be done.

Preface and Acknowledgements

This thesis was written for a master's degree in Materials Science and Engineeering with specialization in Material Development and Properties at The Norwegian University of Science and Technology in Trondheim (NTNU). The thesis was proposed by my co-superisor at DNV-GL in Høvik, and has been carried out at DNV-GL's lab in Bergen. The work has been carried out with close cooperation from ATI Metals and OneSubsea, who have both contributed with financial support for materials as well as expences for travel and accomodation.

I would like to thank my supervisor Professor Roy Johnsen at NTNU in the IPM department and my other co-supervisor, Erling Skavås from DNV-GL in Høvik.

In addition I would like to thank employees of DNV-GL's materials department in Bergen for their help and advice throughout the project. Lastly, thank you to Einar Strans, John J. Dunn and Njall Stefansson in ATI Metlas and Christopher Nwakwuo in OneSubsea.

Contents

1	Intr		1
	1.1	8	1
	1.2	Objective	2
2	The	eoretical Background	3
	2.1	Environmentally Assisted Cracking	3
		2.1.1 Hydrogen Embrittlement	3
		2.1.2 Stress Corrosion Cracking	3
		2.1.3 Sulfide Stress Cracking	4
	2.2	Corrosion Resistant Alloys	5
		2.2.1 Martensitic Stainless Steels	5
		2.2.2 Duplex Stainless Steels	6
		2.2.3 Austenitic Stainless Steels	8
		2.2.4 Ni-based alloys	8
	2.3	Fracture Mechanics	9
		2.3.1 Fracture Mechanics	9
		2.3.2 Fractography \ldots	9
	2.4	H_2S -Containing Corrosive Environments $\ldots \ldots \ldots$	0
		2.4.1 Pipeline containing well fluid	0
	2.5	Corrosion Kinetics in Cl^H_2S -Environments	1
		2.5.1 H_2S -Corrosion	1
		2.5.2 Influence of H_2S on passivation $\ldots \ldots \ldots$	2
	2.6	Influence of Environmental Conditions	3
		2.6.1 pH	3
		2.6.2 Temperature	3
		2.6.3 Elemental Sulfur	4
	2.7	Non-environmental parameters	4
		2.7.1 Microstructure	4
		2.7.2 Plastic Deformation	6
		2.7.3 Hydrostatic Stress	6
	2.8	Environmental Limits	6
		2.8.1 Duplex Steels	6
		2.8.2 Ni-Base Alloys 1	8

		2.8.3	Martensitic Steels
	2.9	Materi	al Selection and Qualification
		2.9.1	Laboratory Test Methods for SSC/SCC Resistance 19
		2.9.2	Test Solution
3	\mathbf{Exp}		ntal Method 23
	3.1	Materi	al
		3.1.1	Material data
		3.1.2	Additional material deformation of Duplex SS
		3.1.3	Machining
	3.2	Pre-ex	amination $\ldots \ldots 24$
		3.2.1	Tensile test $\ldots \ldots 24$
		3.2.2	Hardness Test
		3.2.3	Pre examination of Duplex SS with LOM
	3.3	Consta	ant Load in H_2S
		3.3.1	Experimental Setup and General Procedure
		3.3.2	Test equipment 28
		3.3.3	Assembled Test Equipment
		3.3.4	Step 1: Test Solution
		3.3.5	Step 2-3: Preparation and Installation of Tensile Test Rods 33
		3.3.6	Step 4: Tensioning of Test Samples
		3.3.7	Step 5: Assemble Equipment 34
		3.3.8	Step 6-8:Filling with Test Solution and Purging
		3.3.9	Step 9-10: Gas and Temperature Adjustments
		3.3.10	Step 11: Monitoring
		3.3.11	Step 12: Disconnection
	3.4		SS: Revised Test Procedure
	0.1	3.4.1	Initial Test-Procedure
		3.4.2	Revised Test-Procedure
	3.5	-	$\begin{array}{c} \text{xamination} \\ 37 \end{array}$
	0.0	3.5.1	LOM
		3.5.1	SEM
	3.6		Precautions
	0.0	3.6.1	H_2S -gas
		3.6.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		3.6.2	
		3.6.4	8
		3.0.4	High-pressure/temperature testing
4	Res	ults	40
-	4.1		posure tests $\ldots \ldots 40$
	1.1	4.1.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		4.1.2	Hardness Test
		4.1.2	Duplex SS characterization in LOM 41
		T.T.U	Duplex by characterization in DOM

	4.2	Consta	ant Load in H_2S
	4.3	Post-e	xamination $\ldots \ldots 51$
		4.3.1	Macroscope
		4.3.2	LOM of cross sections
		4.3.3	Sample K: 22Cr Duplex SS, 4.8% Deformation, 20% H ₂ S 59
		4.3.4	Sample N: 25Cr Duplex SS, 10% Deformation, 20% H ₂ S 60
5	Disc	cussion	62
	5.1	Compa	arison with other test results $\ldots \ldots \ldots$
	5.2	Experi	mental Parameters
		5.2.1	Test Temperature
		5.2.2	Deformation and Microstructure
		5.2.3	H_2S -concentration
	5.3	Experi	mental challenges
		5.3.1	Loading of samples
		5.3.2	NaOH contamination of test solution
	5.4	Validit	y of results $\ldots \ldots 64$
6	Con	clusio	1 65
Bi	bliog	graphy	69
A	ppen	dix	70
		А	Risk analysis
		В	Poster
		С	Material Certificate - 22Cr
		D	Material Certificate - 25Cr
		Ε	Material Certificate - ATI830 83

Abbreviations

Actual Yield Strength
Corrosion Resistant Alloy
Cold Work
Det Norske Veritas Germanischer Lloyd
Double Cantilever Beam
Duplex Stainless Steel
Environmentally Assisted Cracking
Face Centered Cubic
Heat Affected Zone
Hydrogen Embrittlement
Hydrogen Enhanced Decohesion
Hydrogen Enhanced Localized Plasticity
Hydrogen Induced Cracking
Hot Isostatic Pressing
Hydrogen Induced Stress Cracking
Lower Explosive Limit
Light Optic Microscopy
Martensitic Stainless Steel
National Association of Corrosion Engineers
Norsk Teknisk Naturvitenskaplig Universitet /
Norwegian University of Science and Technology
Pitting Resistance Equivalent Number
Reduction of Area
Room Temperature
Super Martensitic Stainless Steel
Stainless Steel
Slow Strain Rate Testing
Stress Corrosion Cracking
Super Duplex Stainless Steel
Scanning Electron Microscopy
Sulfide Stress Corrosion
Ultimate Tensile Strength

Chapter 1 Introduction

1.1 Background

When exposed to an H₂S-environment, corrosion resistant alloys (CRA) may suffer from Hydrogen Embrittlement (HE) or Sulfide Stress Cracking (SSC). As a result of this NACE (the National Association of Corrosion Engineers) published the first edition of NACE MR0175 in 2001. This document gave guidance to which levels of H₂S partial pressure that requires further precautions against SSC. Today limitations for temperature, partial H₂S pressure, Chloride content and pH are given by ISO 15156 which gives requirements and recommendations for selection of a steel for use in an H₂S environment without suffering HE/SSC. These values are for extreme cases, and it is of high interest to acquire more information as other factors such as load, alloy composition, microstructure, product form and environmental conditions can influence the risk of failure.^{1,2}

Within the worldwide shelf little H_2S is found, but it is a common ingredient in oiland gas reservoirs. However, with an increased demand for oil and gas, wells are becoming deeper and deeper. This poses a challenge as with increasing depths a higher presence of H_2S is found. A direct consequence of this is an increased demand for more knowledge of the environmental limits of current CRAs as well as further development of stronger H_2S resistant alloys.^{3,4}

1.2 Objective

The main objective of this work is to :

- Establish a theoretical understanding of the mechanisms behind HE/SSC
- Perform a test program for examination of the resistance against HE and SSC for different forms of duplex stainless steels as well as a Ni-based alloy.

A thorough theoretical investigation shall look into the source of hydrogen and the mechanism of hydrogen development in a well fluid containing H₂S. The final test program is to be developed based on "state-of-the-art" knowledge of HE/SSC of corrosion resistant alloys, in addition to current limits set by governing standards. Included in the test program shall a full mechanical characterization be given, prior to the SSC test. This includes tensile test with material properties from stress/strain curve, hardness test and metallurgical inspection $(\alpha/\gamma$ -content and γ -spacing).

Chapter 2

Theoretical Background

2.1 Environmentally Assisted Cracking

A CRA may suffer several environmentally assisted cracking (EAC) modes. Hydrogen embrittlement (HE), stress corrosion cracking (SCC) and sulfide stress cracking (SSC) are some of the more important modes.⁵

2.1.1 Hydrogen Embrittlement

Hydrogen Embrittlement (HE) has been observed and reported as early as 1875 where the phenomenon was studied in iron and steel by William H. Johnson.⁶ A substantial amount of research has been done in later years as the need for strong corrosion resistant alloys has increased.⁷

An influx of Hydrogen into a metal may lead to loss of ductility, limit the materials toughness and accelerate the growth of a crack within the metal.⁸ This may lead to cases where the presence of hydrogen results in material failure at loads significantly lower compared to that a hydrogen-free metal would be able to sustain. In fact, failure may occur at stresses far lower than the Actual Yield Strength (AYS).^{9,10}

The general understanding of HE mechanism is migration of hydrogen towards internal stress centres such as a crack tip or a notch.¹¹ In addition, it is well known that a steels susceptibility towards suffering HE increases with increasing yield strength.^{8,11,12}

Despite extensive studies, a proper understanding of the mechanisms of HE still remains unclear. Several different models have evolved; Hydrogen-Enhanced Decohesion (HEDE) and Hydrogen-Enhanced Localization Plasticity (HELP) are the most predominant. Neither of these have been experimentally verified, but there are experiments that support the HELP-model.^{7,10}

2.1.2 Stress Corrosion Cracking

Stress Corrosion Cracking (SCC) is one of several types of environmentally assisted cracking modes, which has caused the oil and gas industry an annual cost of $\pounds 1.37$ Billion.¹³ This

is a process where combination of tensile stress and an anodic process of localized corrosion causes cracking. The corrosion process occurs when for instance a steel is exposed to a corrosive environment containing sour gas, hydrogen sulfide, carbon dioxide and free water. Higher presence of chlorides or oxidants as well as increased temperature leads too faster kinetics, thus increasing the likelihood of failure by this mechanism. SCC may occur below yield stress and fracture toughness, and will lead to rapid fracture when exceeded.^{1,13}

In addition to presence of corrosion environment and residual and/or applied stress, a susceptible material is required. Generally, the stronger the metal the higher susceptibility to SCC. Use of thicker steel with lower strength will reduce the risk of failure, but this is not necessarily the best option from an economic perspective.¹³

As SCC may occur under the surface, detection before a potentially catastrophic failure can be challenging. SCC failures has been reported as early in 1965, and several pipeline failures have been reported globally since, some leading to fatalities. The Trans Canada pipeline was exposed to six SCC-related failures in the period of 1985 to 1995, the latter resulting in a major explosion.^{13,14}

The electrochemical reactions involved in SCC are shown in equation 2.1-2.3.¹⁵

$$M \to M^n + ne^- \tag{2.1}$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^- \tag{2.2}$$

$$2\mathrm{H}^+ + 2\mathrm{e}^- \to \mathrm{H}_2 \tag{2.3}$$

Which of the cathodic reactions (equation 2.2 and 2.3) that occur depend on local electrochemical conditions such as pH, concentration of oxygen and potential.¹⁵

2.1.3 Sulfide Stress Cracking

Sulfide Stress Cracking may occur in an aqueous H_2S -environment, and is closely related to the materials HE-susceptibility. As SSC is a form of HE, tensile stress and a susceptible material is required. In addition, a corrosion reaction needs to occur, as this is a process that requires available hydrogen. Generally, it is expected that for a steel in this environment, a protective iron sulfide (FeS) layer will form and adhere to the metal surface, as described by equation 2.9.^{16–18}

This layer will normally protect against further corrosion, but it does not prevent hydrogen to migrate to interstitial positions in the matrix, especially within plastic regions such as crack tips.¹⁶ Unless the material is fully protected against corrosion, some hydrogen will be developed, which may pose a risk. It is also well known that harder microstructures such as non- or low-tempered martensite and bainite are more susceptible to suffer HE-related fractures. Unwanted harder structures may arise from poor heat treatment procedures or within the heat affected zone of welds.¹⁹

According to Kane¹⁸ the effects of H₂S-corrosion can be divided in two key consequences; Increased corrosion rate and limitation of hydrogen recombination (thus increased hydrogen absorption). The combination of these two effects is an increase in hydrogen charging compared to a similar environment without H_2S .¹⁸ The corrosion reaction and kinetics related to this is discussed further in section 2.5.1

Testing of SSC susceptibility of different materials have shown that even extremely low concentrations of H_2S may be sufficient to cause SSC failure.¹⁸ It is therefore vital that good knowledge of a materials susceptibility is obtained before chosen as a component in a H_2S -environment.

2.2 Corrosion Resistant Alloys

A CRA is an alloy that has been manufactured and chosen for an environment where extra strong resistance towards a corrosion environment is required, in addition to the need of high material strength. Use of a CRA may also eliminate the use of corrosion inhibitors. Four main categories of CRAs can be distinguished:^{5,18}

- Martensitic stainless steels (MSS)
- Duplex stainless steels (DSS)
- Austenitic stainless steels
- Ni-based alloys

An important application for CRAs have been in production of gas containing hydrogen sulfide (H₂S), also known as "sour gas". In a production tubing, proof stress (yield strength that gives 0.2% plastic strain) requirements can range from 550MPa to over 1100MPa for shallow and very deep and high-pressurized wells, respectively.⁵

Some of the more common CRAs used in oil and gas industry have been listed in table 2.1.¹⁷

2.2.1 Martensitic Stainless Steels

MSS is produced by quenching the alloy from the austenitic phase, producing a martensitic structure. C and Ni is used to stabilize the austenite phase, and Cr, typically 13%, is added for corrosion protection. Further alloying with 1-3% Mo will increase the resistance against H₂S. Minimum yield strength of a MSS is 550MPa and it has a surface hardness of about 280HV10, though some higher HV-values may be found at welds. The term Super Martensitic Stainless Steels (SMSS) is also used when the alloy has an extra low carbon content, typically around 0.01%. Compared to MSS, SMSS show excellent welding abilities and increased corrosion resistance.^{3,5,20}

2.2.1.1 Corrosion Properties

Pipelines produced with MSS are vulnerable to hydrogen embrittlement mechanisms such as sulfide stress cracking when exposed to a H_2S -containing environment. Some types of MSS has also had 4-6% Ni 1.5-2 Mo added for extra resistance to localized corrosion.

	Composition $(wt\%)$								
Alloy Group / name	UNS no.	Fe	Cr	Ni	Mo	С	Other		
Ni-based $(\gamma), CW$									
28*	N08028	Bal.	27	31	3.5	0.02	1.0Cu, Ti		
825	N08825	Bal.	22	42	3.0	0.03	2.0Cu, 1.0Ti		
Ni-based $(\gamma), PH$									
Alloy 925*	N09925	32	22	42	3.0	0.02	2.Cu, 2Ti, Al		
718*	N07718	19	19	52	3.0	0.02	5Nb, Ti, Al		
Duplex SS $(\alpha + \gamma), CW$									
22Cr	S31803	Bal	22	5.5	3.0	0.02	0.14N		
$25 Cr^*$	S31260	Bal	25	7.0	3.0	0.02	0.5Cu, 0.2W, 0.18N		
Martensitic SS									
AISI 410 SS	S41000	Bal	13	-	-	0.15	-		
13Cr*	S42000	Bal	13	-	-	0.20	-		

Table 2.1: Some typical CRAs used for production tubing in a oil/gas wells¹⁷

* These CRAs have been developed/modified for use in oil and gas wells.

 α = ferrite, γ = austenite, CW = cold work strengthening, PH = precipitation hardening.

MSS has a maximum susceptibility to SSC around room temperature. However, resistance to SSC is also dependent on pH, H_2S and Cl^- . Figure 2.1 illustrates the relationship between temperature and partial H_2S pressure for when a MSS is susceptible to SSC (sour service).^{3,18}

2.2.2 Duplex Stainless Steels

Duplex stainless steels were first developed in the 1940s and 1950s. Due to difficulties with fabrication of this complex microstructure as well as challenges with post-weld precipitation of brittle phases. Use has been limited until recent years, but currently DSS have been found useful in topside and subsea equipment in the oil and gas industry.²¹

Duplex stainless steels are obtained by adding elements that expands the $(\gamma+\alpha)$ -phase, producing austenite (γ) islands within a ferritic (α) matrix. This is done using a correct balance of α -formers (Cr, Mo, Ti, Nb, Si, Al) and γ -formers (Ni, Mn, C and N).^{22,23}

The result of this is a steel with a strength potentially twice as strong as ordinary austenitic steels. One of the reasons for this is the grain refinement achieved by the duplex phase structure, which can be further refined by application of a thermomechanical treatment around 900°C to 1000°C. With this treatment a very fine mircoduplex structure may be achieved, resulting in super-plasticity, that is, very high ductility at extra high tem-

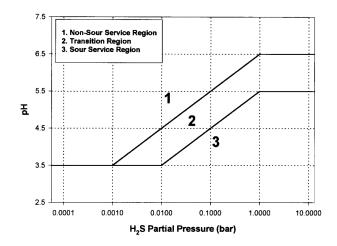


Figure 2.1: Relationship between pH and H_2S -content on sour service of a general MSS or CS.¹⁸

peratures. The result of this is a structure that has a superior corrosion resistance compared to MSS in brine environments containing H_2S and CO_2 gas.^{18,22,23}

2.2.2.1 Corrosion Properties

The ferrite structure in DSS grants a much stronger resistance against transgranular stress corrosion cracking than ordinary austenitic steels, as ferrite is immune to this type of failure. DSS is also considered to be resistant to solidification cracking, particularly with respect to welding.^{22,23}

To quantify the ability of a DSS to withstand from pitting corrosion in a Cl⁻ solution, a PREN-value (Pitting Resistance Equivalent Number) can be obtained. This value is also applicable to a Cl⁻-H₂S-environment. A DSS should have a value over 32, and if the PRENvalue is over 40 the steel is denoted as a Super-Duplex Stainless Steel (SDSS). Calculation of PREN-value⁵ is given by equation 2.4. For each listed element in the equation the wt% is used in the calculation. It is worth noting that even though a higher PREN-value provides a higher corrosion resistance, it also leads to an increased risk of detrimental sigma and alphaprime phases.²² Presence of these phases may lead to loss of impact toughness and decrease risk of cracking resistance. These phases may evolve during the manufacturing process or welding, and are best avoided by increasing the cooling rate.^{2, 5, 22, 23}

$$PREN = Cr + 3.3(Mo + 0.5W) + 16N$$
(2.4)

Within a H₂S and CO₂ environment DSS may risk EAC in both high and low temperatures, as the ferritic and austenitic phases show different properties. At lower temperatures, cracking is found in the ferrite phase as a result of typical HE, whereas at higher temperatures the anodic SCC is the more detrimental mechanism.¹⁷ These two factors combined is the result of a maximum susceptibility towards H₂S-related fracture at a temperature area of 60 to 120° C, depending the on alloy type and other environmental parameters.^{5,17}

2.2.3 Austenitic Stainless Steels

Austenitic stainless steels typically hold a high level of Ni, Cr, Mo and N, and hold a stable austenitic structure even after strong deformation.¹⁸

2.2.3.1 Corrosion Resistance

Due to a high level of Cr and Mo, this alloy group has an exceptionally good corrosion resistance in an H₂S-brine environment, both against general and localized (pitting) corrosion.¹⁸ The addition of N strengthens the pitting resistance further, however this effect appears to be not as strong in a H₂S-holding environment compared to e.g. oxygen holding seawater.¹⁸

2.2.4 Ni-based alloys

This group can be subdivided into two groups; Cold worked and precipitation hardened alloys. Both alloy categories, which typically only hold 5-15% Fe, show very good properties against SSC and corrosion due to their high amount of Ni, Cr and Mo alloy elements. According to ISO-15156:3,² alloys containing $\geq 30\%$ Ni and $\geq 3\%$ Mo are considered Ni-based.

Cold worked Ni-based alloys can for non-complex structures such as tubes be cold worked to strength levels over 1000MPa. Due to their treatment, cold worked alloys may have a more elongated microstructure, which may show as a variable in some tests. The austenitic structure can be strengthened by precipitation of gamma prime (Ni₃(Ti, Al)) and gamma double prime (Ni₃Nb)

For more complex geometries precipitation hardening alloys is a good alternative. This group is alloyed with Ti and Al, which increases the yield strength by formation of nitrides. These act as crack arrestors, thus strengthening the material.^{5,17,18}

2.2.4.1 Corrosion Resistance

These alloys may show SCC-failure at temperatures greater than 150° C, but failure often requires presence of a severe environment containing very high levels of H₂S.¹⁸

Due to the excellent corrosion resistance most Ni-based CRA's are found in wells with significant H₂S, typically over 10%. For these alloys higher Ni usually means SCC resistance at higher partial H₂S pressures or temperatures. Resistance against SCC also decreases with lower pH and higher salinity. To illustrate the SCC resistance of a Ni based alloy Rhodes suggests the parameter Σ , as shown in equation 2.5. This is only valid for alloys with Mo content ≥ 2.5 .⁵

$$\Sigma = Ni + 2Mo + 0.5Cr \tag{2.5}$$

2.3 Fracture Mechanics

2.3.1 Fracture Mechanics

Two fracture modes can happen in a metal; brittle and ductile fracture. A brittle fracture occurs by rapid crack propagation and shows no visible deformation on a macroscopic scale. Crack propagation will in most brittle crystalline materials occur as a transgranular fracture, also known as cleavage fracture. Cleavage fracture occurs by breaking of atom bonds along a specific crystallographic plane, propagating through the grain. In certain cases, especially where grain boundaries have been weakened, intergranular fracture may occur. In this case, the fracture path propagate in-between the grain boundaries. Weakening of boundaries may be a result of precipitation of brittle phases, hydrogen embrittlement and intergranular corrosion. Figure 2.3 shows an example of a brittle fracture surface of a steel.^{24,25}

Figure 2.2: Ductile Cup-and-cone fracture of an aluminium specimen.²⁴

Figure 2.3: Brittle fracture surface of a mild steel.²⁴

The ductile fracture mode is followed by extensive macroscopic plastic deformation. A tensile ductile fracture will usually include plastic deformation until a region of necking occurs. This will result in a cup-and-cone fracture, who's name is a result of the fracture surfaces forming mating surfaces similar to a cup and a cone. After necking occurs small microvoids will form within the sample. With continued deforming tensile stress these microvoids grow together to form an elliptical crack. The crack will continue to grow perpendicular to the load axis until rapid crack propagation around the outer part of the neck occurs. The crack propagates along shear planes at roughly 45° , which is the angle of maximum shear stress. A ductile cup-and-cone fracture surface is shown in figure 2.2, and the process is illustrated in figure 2.4.^{24,25}

2.3.2 Fractography

For detailed information of the fracture mechanism, microscopic examination by either scanning electron microscopy (SEM) or light optic microscopy (LOM) can be used. SEM is often

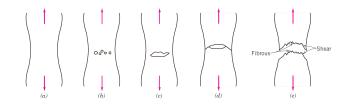


Figure 2.4: Illustration of the different stages in a ductile cup-and-cone fracture.²⁴

preferred as it has a much better resolution and depth of field, which are both needed to investigate a surface with larger topographic futures. Investigation of a ductile fracture surface in SEM, as shown in figure 2.5, will illustrate the spherical dimples, which is a characteristic of a ductile fracture from a tensile stress load. A transgranular and intergranular fracture are shown in figure 2.6 and figure 2.7, respectively.²⁴

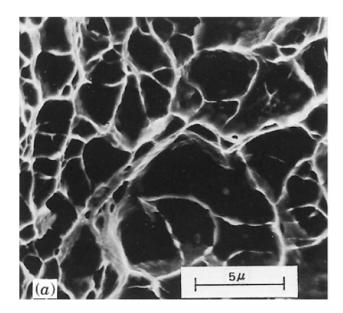


Figure 2.5: SEM photo showing the characteristic spherical dimples of a ductile fracture surface. Magnification 3300X.²⁴

In SSC Fractography low alloy steels may show both intergranular and transgranular fracture, but for high-strength steels with over 700MPa YS it appears that intergranular cracking is the most predominant mechanism.

2.4 H₂S-Containing Corrosive Environments

2.4.1 Pipeline containing well fluid

A unprocessed oil and gas mixture may pose a challenge with regards of detrimental effects as it can contain water, sand, CO_2 , H_2S in addition to hydrocarbons (in the form of oil,

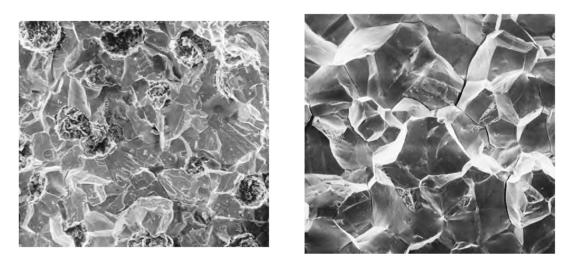


Figure 2.6: SEM of a transgranular brittle Figure 2.7: SEM of a intergranular fracture. Magnification unknown.²⁴ Tigure 2.7: Magnification 50X.²⁴

condensate and gas). The water in the mixture contains a high amount of ions, such as chloride, sodium and calcium. This water, originated from the reservoir has been denoted formation water, whereas water that condenses within the pipeline wall due to cooling of surrounding seawater is denoted condensed water.³

Above 200°C challenges may arise as the hydro carbons may contain naphthenic acids (NAs), which can be corrosive.³ Under this temperature the corrosive risk is due to wetting of the pipe wall, that is, contact between pipewall and a corrosive water film. Some environmental factors that contribute to this mechanism are pH, temperature, chloride content, dissolved CO_2 and H_2S and flow rate. In a typical unprocessed oil and gas mixture pH values are typically calculated to be in the ranges 3.5-4 and 4.5-6 for condensed water and formation water, respectively.³

2.5 Corrosion Kinetics in Cl⁻-H₂S-Environments

2.5.1 H_2S -Corrosion

The general corrosion reaction of Fe in a H_2S -environment under anaerobic conditions is given by the following reactions:¹⁸

anodic:

$$Fe \to Fe^{2+} + 2e^{-} \tag{2.6}$$

cathodic:

$$H_2S + H_2O \to H^+ + HS^- + H_2O,$$
 (2.7)

$$HS^{-} + H_2O \to H^+ + S^{2-} + H_2O$$
 (2.8)

net reactions:

$$H_2S + Fe = FeS + 2H^{\circ} \tag{2.9}$$

where H° is atomic hydrogen, adsorbed on the metal surface.

Depending on environmental conditions such as pH and partial H_2S -pressure, the iron sulfide products may be found in other forms such as FeS₂. The hydrogen produced in reaction 2.9 is atomic state, and will adsorb to the metal surface at local cathodic sites. The majority of the produced hydrogen will recombine to form molecular hydrogen-gas, and evaporate. Some hydrogen can however be absorbed into the metal and accumulate at interstitial positions and defects in the lattice.

The presence of dissolved H₂S greatly affects the kinetics of hydrogen gas formation, by limiting the amount molecular hydrogen gas that is formed. This leads to an increase in the amount of absorbed hydrogen in the metal. Elements with this effect are termed "hydrogen recombination poisons", and include in addition to sulfur elements such as Sn, Pb, Sb and P. A measurement of the relative amount of hydrogen being absorbed is defined by α , the hydrogen charging efficiency coefficient:¹⁸

$$\alpha = H_A/H_p \tag{2.10}$$

Where H_A and H_P is the amount of absorbed and (corrosion-)produced atomic hydrogen, respectively.

2.5.2 Influence of H_2S on passivation

The main purpose of the Cr-content in a steel is formation of a protective Cr-oxide, however presence of H₂S limits the growth of the oxide layer by adsorption of atomic sulfide, S_{ads} as well as production of sulfides at the metal surface. For a Cr-Ni-Fe alloy, the Cr will react with OH⁻ to form chromium oxide, whereas Ni together with sulfide produce small Ni-sulfide islands. The metallic-sulfides have strong bonds and will together with the adsorbed atomic sulfide block sites from formation of the passivating Cr-oxide layer. The passivation layer may grow in-between these sites, but will require longer time to grow laterally.^{3,26} This competitive mechanism, suggested by P. Marcus,²⁶ is illustrated in figure 2.8.

Two modes of passivity loss can occur. Either cathodic activation or anodicly initiated localized corrosion. The cathodic activation can occur if a sufficient acidic solution is present such that active corrosion can be sustained. An increase in corrosion increases the risk of loss of passivity. High corrosion motivates for higher alloy content as given by the PREN-formula 2.4, which is why SDSS shows a much better resistance than DSS.⁵

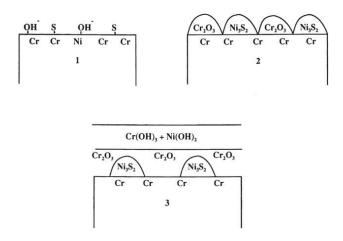


Figure 2.8: Illustration of the "competition" between formation of Cr-oxides and Ni-sulfides on the surface of a Ni-Cr-Fe-alloy.²⁶

2.6 Influence of Environmental Conditions

2.6.1 pH

There is a consensus between studies that an increase of pH leads to a reduction of susceptibility towards SSC and SCC. When pH is sufficiently low the passivity layer can be altered, thus making cracking possible when chlorides are present. Some cracking threshold limits have been proposed, but these depend on chloride content.^{5, 18, 21}

Depending on pH, the equilibrium reaction (equation 2.11) of H_2S shifts, as shown in figure 2.9.²⁷ This shows how predominant dissolved H_2S is at pH values below 4. As described earlier, H_2S considerably increases the general corrosion of steels, accompanied by hydrogen adsorption.

$$H_2S \rightleftharpoons HS^- + H^+ \rightleftharpoons S^{2-} + 2H^+$$
 (2.11)

2.6.2 Temperature

MSS and DSS are most susceptible to SSC around room temperature.¹⁸ According to TM0177 test temperatures above 24°C will reduce the SSC severity in steels, whereas temperatures below will increase the SSC susceptibility of the steel.

For higher temperatures, SCC is the dominating factor, as higher temperature increases the corrosion kinetics of the localized anodic corrosion.^{28,29} Figure 2.10 shows the relationship between time to SSC failure against temperature for a low alloy C-Mn steel.

The combination of SSC and SCC results in a worst-case scenario at intermediate temperatures for DSS. For duplex steels research have shown highest cracking susceptibility around 80-120°C.^{18,29,30}

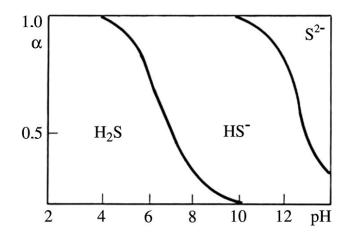


Figure 2.9: Dissociation (α) of H₂S, HS⁻ and S²⁻ as function of pH.²⁷

2.6.3 Elemental Sulfur

In solutions with high pressure gas and high H_2S content, elemental sulfur (S°) is often found. Especially in wells consisting of over 10% H_2S , S° is expected, but it has also been found in wells with half the amount of H_2S .

In a neutral brine solution, S° increases the acidity as shown in reaction 2.12

$$S^{\circ} + 4H_2O \rightarrow +3H_2S + H^+ + HSO_4^-$$

$$(2.12)$$

The reaction is slow and is not expected to have any effect at room temperature. Studies of UNS S30400 and UNS S31600 at 80°C did however show some H₂S-formation accompanied by a slight pH-drop. This effect was even stronger at higher temperatures. At 200°C the experiment found 100 ppm H₂S in the solution. At higher temperatures, where the solubility of elemental sulfur is higher, corrosiveness promoting pitting and crevice corrosion is found. A study of the Ni-based alloy 825 (UNS N08825) showed a more extensive corrosion.⁵

2.7 Non-environmental parameters

2.7.1 Microstructure

Austenite is not as vulnerable to hydrogen as ferrite, and may in fact under certain conditions act as a crack stopper. As SSC is a type of HE-mechanism, ferritic and martensitic steels show a much higher susceptibility to SSC-failure than austenitic materials. Ferritic/martensitic structures are also insensitive to SCC, with the exception when under applied strain rate equal or greater than yield stress. The increased susceptibility to SSC for a ferritic structure is due to a shorter diffusion path compared to within an austenitic structure.²¹

For austenite the sensitivity is the other way around; Insensitive to SSC and sensitive to SCC. Combined with the effect of temperature sensitivity described in section 2.6.2, DSS may suffer either or both SSC/SCC, given other environmental conditions (such as pH,

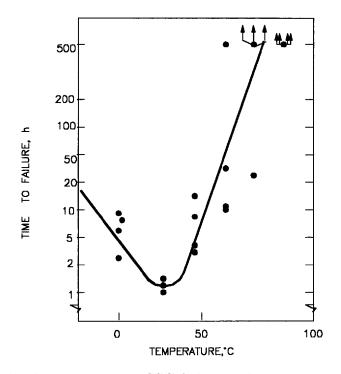


Figure 2.10: Relationship between time to SSC-failure and temperature for a low alloy C-Mn steel.¹⁸

 p_{H_2S}) are within their detrimental range.^{21,31} According to Zhao et. al,¹⁶ among the ferritic structures, microstructures with a high amount of acicular ferrite has a better resistance than pure ferritic microstructure. The pearlitic ferrite structure is the weakest microstructure in terms of SSC-resistance.

For a duplex steel it has been shown that the sigma phase significantly increases embrittlement risk of a 22%Cr DSS.²² In addition, grain size refinement plays an important role; The larger the grains, the larger the susceptibility to cracking.²¹ These factors show that poorly performed manufacturing process may lead to higher risk of failure. Little research is done to compare the susceptibility of wrought and HIP-steels to SSC-failure, which makes it hard to compare the effect of microstructure as function of production method.

Lattice diffusion coefficient of Hydrogen for common CRAs are listed in Table 2.2.³²

Table 2.2: Lattice diffusion coefficient (D) for some CRA materials³²

Material	$D [cm^2/s]$
Martensitic SS	$10^{-6} - 10^{-7}$
Austenitic SS	$10^{-10} - 10^{-12}$
Duplex SS	10^{-10}
Ni Base alloys	$10^{-10} - 10^{-11}$

2.7.2 Plastic Deformation

It is well known that austenitic structure may be transformed to martensitic either by a sufficiently low temperature, or sufficient plastic deformation. As described in 2.7.1, it is thus natural to expect the possibility of detrimental effects of plastic deformation on unstable austenitic alloys or semi-austenitic alloys such as DSS, when exposed to a HE-mechanism. The direct effect of the martensitic transformation is in fact to raise the start temperature of transformation, M_S .^{20,31}

Research has found that for a pre-strained austenitic alloy, deformation-induced martensite has a very strong effect on hydrogen diffusion in austenitic steels. This is found by a larger hydrogen diffusivity and permeability as a function of increasing martensite amount in these materials. Studies have also shown that a material under strain may enhance hydrogen diffusion in a BCC alloy due to local destruction of protective oxide films.³¹

Studies have shown that hydrogen ingress increases with cold work.²¹ In addition, it has also been shown that for a 22%Cr tubing material the critical chloride content for cracking decreases strongly with an increase in cold work. The direction of stress on a tubing material is also of importance, as the γ -islands tend to elongate along the longitudinal direction due to the manufacturing process. A stress along the transverse direction is therefore more detrimental as there will be a decrease of γ -islands along the crack path. This also means that a DSS with higher α should show a higher risk of failure.²¹

2.7.3 Hydrostatic Stress

It is well known that hydrostatic stress is a large driving force for hydrogen diffusion from bulk material to a crack tip.³² The strain of the material will be highest at the crack tip and slowly decrease with increasing distance, whereas the highest stress field is found a small distance away from the crack (figure 2.11). Due to the dilation of the lattice hydrogen will readily diffuse toward sites with increased hydrostatic stress.³²

2.8 Environmental Limits

2.8.1 Duplex Steels

2.8.1.1 Limit given by ISO 15156:3

For in-situ pH occurring in a production environment, ISO 15156:3 states that any chloride content is acceptable. However, a maximum temperature and maximum H_2S partial pressure has been given. These values are shown in table 2.3. The standard further states that given a maximum chloride content of 50ppm, some duplex materials have been used without any restrictions on temperature, partial H_2S pressure or in situ pH. These are shown in table 2.4.

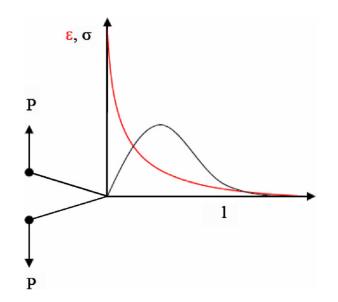


Figure 2.11: Stress and strain fields ahead of a crack.³²

Table 2.3: Temperatur, partial H_2S pressure and chloride content limits for DSS used for any equipment or component. *Any in situ pH in a production environment.²

Material	Temperature, max	Partial H_2S pressure, max	Chloride content	pН	
$32 \le PREN \le 40, Mo \ge 1.5\%$	232°C	10kPa	any	any in situ [*]	
S31803 (HIP)	232°C	10kPa	any	any in situ [*]	
$40 \le PREN \le 45$	232°C	20kPa	any	any in situ [*]	

2.8.1.2 Limits by experimental work

Several authors have found that a critical temperature for maximum cracking susceptibility for DSS and SDSS to be around 70-80 $^{\circ}$ C .²¹

In a NACE solution at RT the threshold pH limit for cracking appears to be around 3 for 22%Cr and 4 for 25%Cr. However, these treshold limits depend on chloride content.²¹

Maldonado et al.³³ confirmed the partial H₂S limit given in ISO 15156:3 (table 2.3) for duplex S31803 in solution-annealed condition (PREN ≈ 25) by loading triplet samples to 90% AYS for up to 90 days in pH solutions of 3 and 4, 5 with partial H₂S pressures of 10, 34 and 69kPa and a temperature of 80°C.

Not only did the 10kPa samples survive the test, but the samples exposed to 34kPa did not show any signs of cracking. A few of the samples exposed to 69kPa showed failure, but these happened at after more than 720 hours, which is the normal test period for TM0177 Method A.²⁸ A concentrated summary of the experiment is summarized in table 2.5^{33}

In another study, Siegmund et al. investigated the SSC/SCC resistance of a DSS and SDSS with H_2S partial pressures of 0.5bar (50kPa), 0.7bar (70kPa) and 1.0bar (100kPa) at

Table 2.4: Temperatur, partial H_2S pressure limits for DSS used for any equipment or component in production environments with limited chloride content. *Any in situ pH in a production environment.²

Material	Temperature, max	Partial H_2S pressure, max	Chloride content	рН	
$30 \le PREN \le 40, Mo \ge 1.5\%$ $40 \le PREN \le 45$	any any	any any		any in situ any in situ	

Table 2.5: Summary of test results of several series of a DSS with different environmental parameters.³³

Temperature °C	Cl ppm	H_2S kPa	рН	Exposure days	Result
80	1,000	10	3	30	no cracking
80	100,000	10	4.5	90	no cracking
80	1,000	34	3	90	no cracking
80	100,000	34	4.5	90	no cracking
80	1,000	69	3	90	some failures [*]
80	100,000	69	4.5	90	some failures [*]

*Cracking in one of three parallels, after 1152 and 1440 hours for pH 3 and 4.5, respectively.

several temperatures ranging from 28.5° C to 180° C. The experiment used tensile tests held at 90% of AYS for 720 hours. No cracking was observed, but there were cases of localized corrosion on some of the samples. This test did however not use the standard test solutions suggested, but a solution resulting in a pH estimated to range from 4.2 to 5.0. This pH value is substantially higher than the lowest expected pH values in a well fluid, as discussed in section 2.4.1.³⁴

2.8.2 Ni-Base Alloys

Studies carried out so far show that Ni-based alloys can show a resistance towards SSC far greater than of duplex steels. For instance, Sarinen found no susceptibility to SSC when exposing a UNS N06625 (HIP) in a SSRT with a temperature of 177° C and partial pressures of up to 21bar H₂S and 25bar CO₂.³⁵

Ni-base alloys are also prone to SCC failure, but this is only expected for temperatures above 150° C. However, this mechanism is limited to severe H₂S levels and high salinity. SCC resistance is increased with increased Ni, Mo and W.¹⁸

2.8.3 Martensitic Steels

ISO 15156:3 states that for a production environment, any combination of temperature and chloride content is acceptable. However, partial H₂S-pressure is limited to max 10kPa, and solution pH must be \geq 3.5. The standard also give important minimum requirements for quenching and tempering during production. Any welding performed on the material requires post weld heat treatment.²

At lower pH values lower than what is required for passivation of MSS, the steel shows a poor resistance against SSC. This can be improved by adding Mo, but partial H_2S pressure also plays a vital role. The lower pH limit increases as the partial H_2S pressure increases.³⁶

2.9 Material Selection and Qualification

ISO 15156 gives guidance to selection of materials for use in H₂S-environments in oil and gas production. The standard is divided in three parts; General principles for selection of cracking-resistant materials, selection of carbon and low-alloy steels and selection of CRAs. The limiting values given are based on field experience and/or laboratory testing. This means that no further testing is required on a general basis, when selecting a material. It is however strongly recommended to consider the consequences of failure before deciding to chose a material without further testing Tests can be performed either as fit-for purpose or at levels more detrimental than those expected in the are of use.^{1,2}

The applied stress or strain will not necessarily give an accurate service condition, as actual conditions may rely on manufacturing history and service exposure. EFC-17 recommends a applied stress of either 90% or 100% of the actual yield strength.

For Slow Strain Rate Test (SSRT) a strain rate of $10^{-6}s^{-1}$ is recommended. This strain rate is a result of a compromise: At higher strain rates SSC effects may be lost due to more predominant mechanical effects. Lower rates will lead to a higher time consumption, thus making the tests more demanding. As results from SSRT cannot be compared when performed with different sample sizes and strain rates, using a standardized sample size and strain rate is advisable.²⁹

2.9.1 Laboratory Test Methods for SSC/SCC Resistance

NACE Standard TM0177²⁸ can be used when further investigation of a materials resistance towards EAC in an H_2S is required. The main objective of using a standard as such is to make sure that data performed by different laboratories are done in the same matter, making them comparable. The standard describes four different test methods; Tensile Test, Bent Beam, C-Ring ad Double Cantilever Beam (DCB). All of these are constant load methods, and are intended to verify if a certain alloy fails under a defined load. This load is often related to the AYS. There are however supplementary tests that can be performed, such as SSRT. This chapter will look further into some of the different test methods, including other important aspects such as test solution and key differences between the methods.²⁸

2.9.1.1 Tensile Test

A constant load is applied to a tensile specimen in the desired environment. Tests performed according to NACE Standard TM0177 will be held under constant load for up to 720hours or until fracture occurs. By repeating this test a threshold stress limit can be achieved. Alternatively this test can also be performed to see if an alloy is fit for a given environment.^{2,15}

2.9.1.2 Slow Strain Rate Test

The Slow Strain Rate Test, also known as constant extension rate test, applies a load to a tensile specimen such that the strain rate is constant. The test is carried out until the test sample has fractured. Fracture by H_2S assisted SSC/SCC is determined by loss of ductility, reduction in ultimate tensile strength and fracture morphology. If the extension rate is too quick, ductile fracture will occur, as there is not enough time for a H_2S -assisted failure to occur. Due to this, it may be preferable to pre-charge the sample with hydrogen prior to testing. These tests may be preferable over a constant load test, as they usually go over a much shorter period of time. SSRT is in contrast to the constant load methods mentioned in this paper not described in TM0177, but some guidelines are given in EFC-17. This standard suggests use of a strain rate around $10^{-6}s^{-1}$.^{15, 29, 37}

Cyclic slow strain rate testing is an alternative SSRT method, where with a constant strain the load is increased and decreased between to set values. The purpose of this can be to simulate the effect of pipe movement.³⁸

2.9.1.3 Double Cantilever Beam

The Double Cantilever Beam test has guidelines given by TM0177 and tests SSC susceptibility of a material by determining a critical stress intensity factor, K_{ISSC} . There has been reports that measured values for K_{ISSC} may vary strongly with test variables.^{28,39}

2.9.1.4 Bent-Beam Test

The Bent-beam test, Method B in TM0177, is intended for testing carbon and low-alloy steels. The method evaluates cracking resistance in low-pH solution aqueous environments with H₂S. Samples are deflected with different bending stresses, and any failures are noted. By performing multiple tests of each specimen at each stress level a statistical probability, S_C factor is determined. This factor indicates that for this stress level there is a 50% chance of failure.²⁸

2.9.1.5 Dynamic vs Static loading test

SSRT requires shorter time than a static loading test, and will give a qualitative comparison between different alloys and environmental parameters, which can be used to set a basis for defining important limits. Especially towards SSC conditions, this method can potentially be too severe, which is a cause of criticism. EFC-17 does however recommend that this test is done as a supplementary test, in addition to a main test with static load.^{5,29}

A drawback of a static loading test is that there is no way to be certain what would happen if the tensile stress was held longer than the initial time span. NACE TM0177 suggests to hold the sample under tensile stress for 720 hours, but failures have been reported for tensile tests held up to 2160 hours. This may give reason to question the certainty of this test.³³

The severity of SSRT compared to a static tensile test is well illustrated in figure 2.12, where failure and no-failure of a MSS as a function of pH and partial H_2S pressure is plotted for different test methods. Results from these methods can be good to complement each other, but cannot necessarily be directly compared.⁵

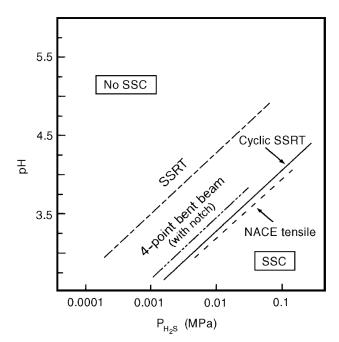


Figure 2.12: Comparison of SSC test results of a M13Cr-95 MSS with different test methods.⁵

2.9.2 Test Solution

Depending on test material and conditions, three different test solutions are suggested by TM0177. Test Solution A and B are both acidified and buffered aqueous brine solutions, saturated with H_2S . The pH for Test Solution A and B is expected to be in the ranges 2.6-2.8 and 3.4-3.6, respectively. Test Solution C is intended when a specific service environment is to be tested. Test of specific environment could for instance be of interest when a company want to do a "fit-for-purpose" test of a material for use in a specific environment.^{28,29}

EFC-17 recommends that when choosing a test environment pH should be less or equal to the lowest expected production environment pH. Partial H_2S pressure and chloride content should be equal or higher than the lowest expected pressure/content in the production environment. Addition of chlorides should generally be done with use of NaCl. If testing

is performed at higher temperature, stress should be applied at ambient temperature before heating to desired temperature.²⁹

In some cases, it can be interesting for a company to test other specific environments. In fact, ATI Metals, the supplier of the Ni-base alloy to be investigated in this work, will do this. The alloy will be tested with conditions according to ISO 15156 Level V.² These test conditions are: Temperature of 150°C, Cl⁻-content of 101 000mg/L and H₂S and CO₂ partial pressures of 0,7MPa and 1,4MPa, respectively.

Chapter 3

Experimental Method

3.1 Material

3.1.1 Material data

Two duplex SS materials and one austenitic SS were tested. The materials with their composition and PREn (for Duplex SS) as given by their material certificates are listed in table 3.1 and 3.2. For simplicity, the Duplex SS materials, UNS S31803 and UNS S32750, will be referred to as "22Cr Duplex" and "25Cr Duplex", respectively. The austenitic SS, UNS N08830, will be referred to as "ATI-830". Material certificates are shown in Appendix C, D and E

Table 3.1: Composition of Duplex SS test materials and PREn.

Material	$\begin{array}{c} \text{Composition} \\ [\text{wt\%}] \end{array}$										PREn		
	С	Si	Mn	\mathbf{Cr}	Mo	Cu	Ni	W	Р	S	Ν	Fe	
UNS S31803 (22Cr Duplex) UNS S32750 (25Cr Duplex)	$\begin{array}{c} 0.021\\ 0.024\end{array}$	$0.41 \\ 0.25$	$\begin{array}{c} 1.50 \\ 0.80 \end{array}$	$22.24 \\ 25.53$	$3.12 \\ 3.79$	$0.38 \\ 0.19$	$5.72 \\ 6.90$	0.051	$\begin{array}{c} 0.030\\ 0.024 \end{array}$	$0.003 \\ 0.0006$	$0.168 \\ 0.2750$	fill fill	$35.3 \\ 42.257$

Table 3.2: Composition of ATI-830 test material.

	Composition [wt%]									
A1 0.020	Co 2.648	Ct 21.608	Cu 1.181	Mn 4.383	Mo 5.106	$^{ m Nb}_{ m <0.01}$	Ni 29.993	P 0.0157	Si 0.238	Ti <0.01
V 0.036	W 34.0658	Fe 34.0658	Al+Ti 0.020	${}^{ m Ni+Co}_{ m 32.642}$	Al+Ti+W 0.718	C 0.004	S <0.0003	N 0.393	В 0.0021	

3.1.2 Additional material deformation of Duplex SS

The materials were given various degrees of pre-deformation prior to testing. Test materials with deformation grades to be investigated are shown in table 3.4.

3.1.3 Machining

Nace standard tensile test samples were produced,²⁸ according to measurements shown in table 3.3. The Tensile test rod with measurements are shown in figure 3.1

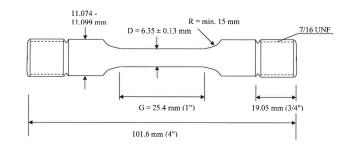


Figure 3.1: NACE standard tensile test rod produced for testing with constant load in H_2S -environment.²⁸

Table 3.3: Dimensions of standard tensile test specimen. D = Diameter, G = Gauge and R = Radius.²⁸

Measurement	Requirement [mm]
D	6.35 ± 0.13
G	25.4
R_{min}	15

Table 3.4: List of materials to be tested with degrees of pre-deformation marked with "X".

Material	Deformation grades			
	0%	4.8%	10%	
22Cr Duplex		Х		
25Cr Duplex		Х	Х	
ATI-830	Х			

3.2 Pre-examination

3.2.1 Tensile test

Prior to the constant load test in H_2S , tensile test data were gathered for all materials shown in table 3.4 at both ambient and actual temperature. Results are shown in section 4.1.1. Due to limited material only one sample was taken for each material/condition.

3.2.2 Hardness Test

Hardness was measured with Rockwell C (HRC) for all deformation grades tested.

3.2.3 Pre examination of Duplex SS with LOM

The Duplex SS materials were given a pre-examination in LOM. Ferrite content was counted and austenite spacing was found for the cross section and the longitudinal direction of the materials. Pictures were taken with magnification of both 500X and 1000X with a Reichert MEF4 A LOM. These results are shown in section 4.1.3. AST-E562⁴⁰ was used as guidance for this process.

3.2.3.1 Material preparation

Materials were embedded in an acrylic resin named Struers ClaroFast, which was done with a Struers LaboPress-3. Resin quantity and embedding settings used are shown in table 3.5.

Resin quantity	Cylinder	Heating		Cooling	Force
	diameter	Time	Temperature	Time	
[mL]	[mm]	$[\min]$	[C]	$[\min]$	[kN]
20	30	3	180	6	25

Table 3.5: Input settings used for embedding Duplex samples in ClaroFast embedding resin

After embedding, the samples were first prepared with an automatic grinder, Struers Tegrapol-31. Grinding material, suspension and times are shown in table 3.6. Lastly, the samples were etched with 20% NaOH with 3.0V for 3-4s with a Struers LectroPol-5. Safety precautions according to section 3.6.2 were taken whilst handling NaOH.

3.2.3.2 Microstructure analysis

The microstructure were analysed using imageJ, an open source software⁴¹, to find the austenite/ferrite content as well as austenite spacing. Determination of phase fractions were

Table 3.6: List of applied grinding material, suspension and time for material preparation prior to etching.

Grinding Material	Suspension	Time [m:ss]
SiC-Paper #220	Water	5:00
Largo	All/Lar.	6:00
Dac	Dac	4:00
Chem	OP-S	5:00

done by cropping and converting pictures of a clear area with a minimum amount of scratches or contaminations to 8-bit pictures, before being converted to a black/white image. Black (ferrite) and white (austenite) pixels are then counted by the computer. The process is illustrated in figure 3.2.

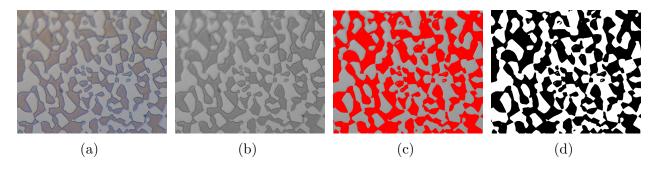


Figure 3.2: The four steps of preparing an image for ferrite counting: crop a clean LOM image (a), convert to 8-bit (b), define ferritic area (c) and convert to black and white for counting of black pixels/ferrite (d).

To find the Austenite-spacing (γ -spacing) a yellow line was drawn parallel to the scale bar, as illustrated in figure 3.3. The scale bar was then measured in the software to determine the pixel per μ m ratio. The distance in-between all austenite grains along the yellow line was gathered followed by calculation of average distance and standard deviation. For each material and deformation grade this was done twice; once for the transverse cut and once for the longitudinal. Results are shown in table 4.4.

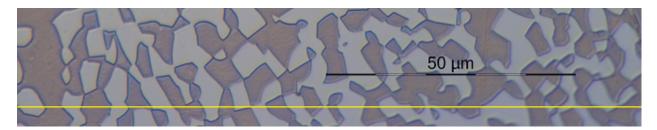


Figure 3.3: Example of setup of yellow line on LOM picture of a Duplex SS to measure and determine the average γ -spacing.

3.3 Constant Load in H_2S

3.3.1 Experimental Setup and General Procedure

All test materials and conditions are listed in table 3.7. The order of the steps taken during setup is listed below. Further explanation and equipment details are given in the following subsections.

- 1. Prepare test solution
- 2. Prepare test cell (autoclave).
- 3. Treat tensile test surface and install in autoclave.
- 4. Apply load to test sample, and adjust for cold creep (Only for Duplex SS).
- 5. Prepare and install all other test equipment:
 - (a) N_2 and H_2S sources
 - (b) NaOH-bucket for neutralization of H_2S .
 - (c) Heating equipment.
 - (d) Warning signs at entrance of test area.
- 6. Fill autoclave with test solution that has been pre-purged with N_2 .
- 7. Purge autoclave with N_2 .
- 8. Purge autoclave with H_2S .
- 9. Adjust valves:
 - (a) Duplex SS: reduce flow of H_2S to a flow of no more than 1 bubble a second. Bubbles are seen in the NaOH bucket.
 - (b) ATI-830: Close inlet and outlet valves around the test cell
- 10. Apply test temperature:
 - (a) Duplex SS: Increase temperature slowly and adjust H₂S flow according to step above.
 - (b) Increase temperature slowly and monitor pressure gauge.
- 11. Monitor at regular intervals until experiment has ended.
- 12. Disconnect equipment.

Table 3.7: All materials to be tested with test conditions as well as applied and estimated loads at ambient and test temperature, respectively. %AYS is the % of the Actual Yield Strength at the given temperature. (*)Load never decided due to delayed discussions.

Test	Material		Temperature	Gas [MPa]		Load [%AYS]		
series	ID's	Type	Def.	[°C]	H2S	CO2	amb. T	test T.
1	А, В	22Cr Duplex	4,8%	90	0.010	fill	100	>100
1	C, D	25Cr Duplex	4.8%	90	0.020	fill	100	>100
2	E, F	22Cr Duplex	4.8%	80	0.010	fill	89.5	100
2	G, H	22Cr Duplex	4.8%	80	0.020	fill	89.5	100
2	I, J	25Cr Duplex	4.8%	80	0.020	fill	88.4	100
3	K, L	22Cr Duplex	4.8%	80	0.020	fill	89.5	100
3	M, N	25Cr Duplex	10%	80	0.020	fill	90.4	100
4	О, Р	ATI-830	0%	150	50	200	(*)	100

3.3.2 Test equipment

3.3.2.1 Inlet Control Valves and Manifold

Main gas pressure and flow control values are shown in figure 3.4. Both the N_2 and the H_2S gas is led into a manifold where output gas for each test cell can be controlled, as well as another flow control value. In addition, the figure shows how extra gas lines are connected to flush the H_2S lines with N_2 . Figure 3.5 shows the manifold with inlets, outlets, gas selection and gas flow values.

Figure 3.4: Inlet pressure control values for N_2 and H_2S : N_2 control values (A), 10/20% H_2S control values (B/C), N_2 to NACE Solution A container (D), N_2 to Manifold (E), N_2 to flush H_2S systems through value G (F), inlet value for flushing H_2S system with N_2 (G), outlet to filter used when flushing (H), H_2S to manifold (I).

Figure 3.5: Control manifold used to adjust flow and input gas to cells. Yellow circles from upper right to lower left show the input connection points for gas, the output lines to different test cells, gas selection valve (N_2 , closed or H_2S) and flow control valve.

3.3.2.2 Test Cells and Autoclaves

Figure 3.6 shows the final assembly of the test cells in the autoclaves with valves and heating equipment connected. The test cells are sealed with O-rings around the tensile test rod to avoid leakage, as seen in figure 3.7.

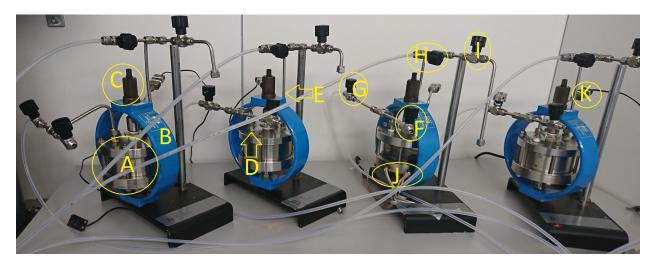


Figure 3.6: Final assembly of test cells in autoclaves: Test cell (A), Autoclave (B), bolt for tensioning of sample (C), gas inlet (D), gas outlet (E), valve for liquid filling from test solution storage container (F), valve for gas from manifold to inlet (G), valve for normal gas outlet to NaOH-bucket (H), "contingency-valve" (I), heating rods (J), thermocouple connection (K).

3.3.2.3 Heating Equipment

The test solution was heated with two test rods that were inserted in the bottom of the test cells. Temperature control was done by measuring the temperature within the cell. The heating rods and connection to thermocouple are shown as item J and K in figure 3.6.

3.3.2.4 NaOH-solution Container

The bucket of NaOH-solution was made of approximately 8L of water and 3kg of solid NaOH. The NaOH bucket, as shown in the bottom left in figure 3.10, was placed close to the ventilation inlet to remove as much as possible H_2S directly if the NaOH-solution would be saturated. Mixing of NaOH was done according to safety precautions as described in section 3.6.2.

The gas hoses from the test cells to the NaOH-solution were split in two just before entering the bucket, so that there would be a backup flow line in case one of the hoses were to be clogged.

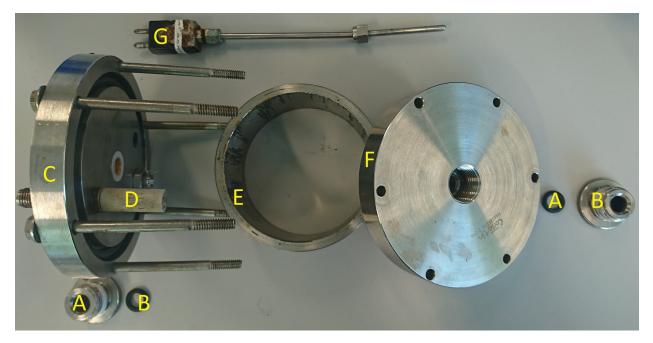


Figure 3.7: Disassembled test cell with showing container lock bolts for tensile test rod (A), O-rings for tensile test rod (B), top lid (C), gas inlet for bubbling in solution (D), container wall (E), bottom lid (F), thermocouple (G).

3.3.2.5 Test Solution Containers

The NACE Solution A container, as shown in figure 3.10, item D, was used for all mixing of NACE Solution A. When in use, the container was sealed and held under a slight overpressure of N_2 to limit oxygen intrusion. A sketch of the container with associated hoses and valves are shown in figure 3.8

No permanent solution container was needed for the ATI-830 samples.

3.3.2.6 pH-equipment

All pH measuring was done sing a PHM 92 Lab pH meter, as shown in figure 3.9. Whenever the solution measured contained or could contain H_2S , measurements were done under a ventilated fume hood. All tests were done after calibration with reference solutions of pH 1.679 ± 0.01 and 4.04 ± 0.01 .

3.3.3 Assembled Test Equipment

3.3.3.1 Duplex SS

The final setup is shown in figure 3.10. Details about components and setup procedure are explained in the proceeding sections. A simplified sketch of the setup is shown in figure 3.11.

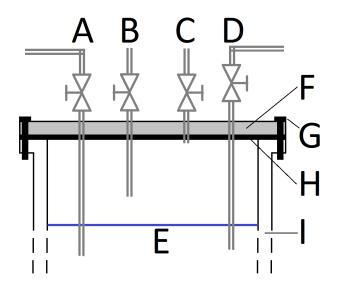


Figure 3.8: Sketch of NACE Solution A container: outlet for NACE Solution A to test container (A), inlet for new NACE Solution A (B), outlet for air during purging (C), inlet for N₂ (D), NACE Solution A (E), Plexiglas Lid (F), bolts (G), O-ring (H) and container (I)

Figure 3.9: Equipment used for pH measurements

Note that the manifold is excluded from this sketch, and instead drawn as a 3-point valve (gas selection) followed by a normal ball valve (flow control).

3.3.3.2 ATI-830

The setup of ATI-830 testing is the same as for Duplex SS with exception of an added safety wall due to the high pressure in the test container. The system will also have a NACE-bucket, but the outlet and inlet will be closed throughout the experiment as this test is performed at an elevated pressure.

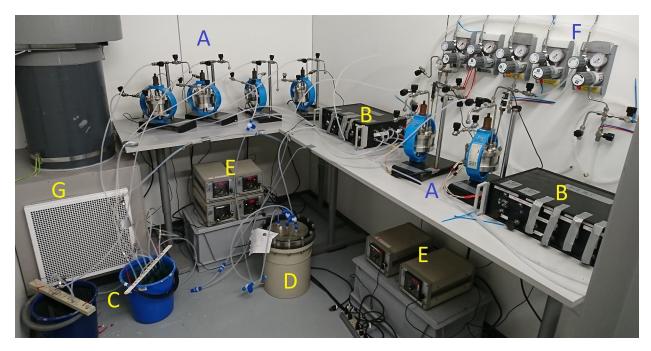


Figure 3.10: Overview of the experiment: Autoclaves with tensile test rods (A), manifold (B), NaOH buckets (C), container for NACE Solution A (D), heating equipment (E), main inlet valves with pressure control valve and gauge (F) and inlet to filter (G).

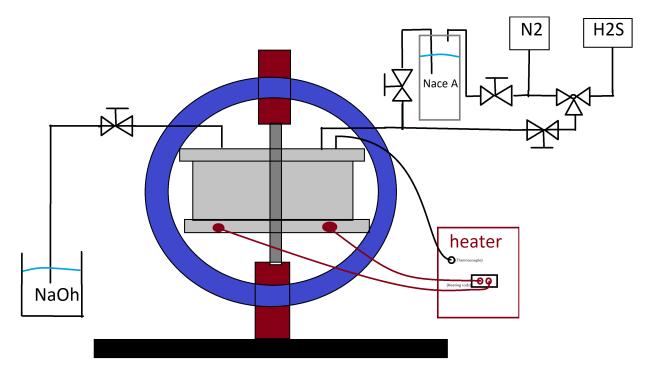


Figure 3.11: Simplified sketch of experiment setup

3.3.4 Step 1: Test Solution

3.3.4.1 Duplex SS: NACE Solution A

Nace Solution A was used in all Duplex SS tests. The solution was made of 5.0% NaCl and 0.5% CH₃COOH (glacial acetic acid) dissolved in deionized water. A quantity of ca 3L were made each time.

To make sure that no oxygen were in the solution prior to filling the cells, the solution was purged over night in N₂ with a flow of 1-2 bubbles per second. After purging the solution was controlled to have a pH of 2.7 ± 0.1 .

3.3.4.2 ATI-830: ISO Level V

For ATI-830 deionized water with >91g/L NaCl shall be used. For this solution there are no pH requirements. pH value after purging as well as after test will nevertheless be recorded.

3.3.5 Step 2-3: Preparation and Installation of Tensile Test Rods

Machined test samples were prepared by manual grinding along the longitudinal axis with grit paper grades 320, 500 and 800. Before changing to a finer grit size the sample was examined using a macroscope to reveal any tracks/notches going around the sample. If the sample did not show only longitudinal tracks further grinding with the same grit size was done. Before installing the test rods in the cells the minimum diameter was determined using a calibrated digital calliper with a resolution of 0.01mm. Measurements are shown in section 4.2.

3.3.6 Step 4: Tensioning of Test Samples

Loading of test samples were done by measuring the calculated expected downwards deflection of the ring whilst tensioning the test sample. The autoclaves are calibrated every 2nd year. The deflection was calculated using the minimum diameter, and was measured using calibrated dial gauges with a resolution of 0.001 inches.

Due to the cold creep effect of Duplex SS, loading of these samples required additional adjustments (re-application of load) when the tension fell. Each adjustment made was subsequently followed by at least 1 hour of waiting before applying additional load or concluding that the target load was met. Due to limited available equipment, no dial gauges was available to monitor the deflection of the autoclave during the actual test.

While setting up the first round (sample A through D as listed in table 3.7) the load was wrongfully set to a higher load than intended, as no consideration of change of YS as a function of temperature were given. A list of applied and estimated loads at ambient and test temperatures, respectively, are also shown in table 3.7. For the other tests, load was applied (at ambient temperature) as a function of the AYS at the test temperature, i.e. as a load of 100% AYS at test temperature was wanted, the samples were loaded to the YS values found at the elevated temperature tensile tests, as described in section 4.1.1.

3.3.7 Step 5: Assemble Equipment

Before any test solution can be filled in the test containers, all other equipment was connected/set up; NaOH-container, Heating equipment, warning sign at entrance to test room, and all gas-equipment including hoses, valves and manifold.

After installation of test equipment all components (including H_2S -components) were flushed with pure N_2 . The H_2S -hoses and pipes were flushed by connecting a N_2 -hose to the outlet from the main H_2S pressure control valve, reducing the risk of O_2 -contamination as much as possible.

3.3.8 Step 6-8:Filling with Test Solution and Purging

10% or 20% H₂S gas mixtures with CO₂ as fill gas was used in all tests. The Duplex SS materials were tested under ambient pressure, and had therefore a very low flow of H₂S bubbling through the test cell throughout the experiment to avoid any O₂-contamination.

All gas outlets were led to a bucket of NaOH solution, so that the H_2S was "eliminated" by production of Sodium Sulfide and water (equation 3.1).

$$H_2S(g) + 2NaOH(aq) \rightarrow Na_2S(s) + 2H_2O$$
 (3.1)

Test cells were purged with N_2 for at least 1 hour, followed by H_2S -purging for 1 hour. Flow during purging was set to approximately 3-5 bubbles per second.

3.3.9 Step 9-10: Gas and Temperature Adjustments

3.3.9.1 Duplex SS

As purging was complete the flow of H_2S -gas was reduced so that no more than 1 bubble per second could be observed in the NaOH-container. Temperature was then gradually increased for each cell, and gas flow was monitored continuously until temperature was stable. Flow was then further reduced to roughly 0.2 to 0.5 bubbles per second when the final temperature was reached.

3.3.9.2 ATI-830

Upon completion of purging all outlet valves are to be closed and pressure and gradually increased. After each increment of gas pressure, the inlet valve is to be closed, and pressure read from manometer to make sure no leaks are present. As the total pressure of the cell has reached 250MPa, the inlet gas shall be closed.

Temperature shall gradually be increased towards 150°C whilst pressure gage is monitored. When target temperature is reached, total pressure shall be noted and checked to be in compliance with expected added partial pressure from the water vapour phase.

3.3.10 Step 11: Monitoring

3.3.10.1 Duplex SS

During the experiment temperature and gas flow was monitored on a near-daily basis. Hoses in the NaOH solution were checked to make sure that no deposits had clogged the hose, making sure the H_2S -gas could flow freely. To make sure sufficient NaOH was available in the solution the buckets were refilled with a fresh NaOH-solution after approximately 2 weeks. Furthermore, as water vapour escaped the bucket, more water was put in 1 week after the refill, to make sure all hoses were submerged at all times.

3.3.10.2 ATI-830

Due to the high pressure and temperature of this test, no unnecessary contact with equipment will be made. The position of the pressure gages on the test cells are however placed in such a way that pressure can be monitored from outside the test room.

3.3.11 Step 12: Disconnection

3.3.11.1 Duplex SS

When the test came to an end the temperature control dials were all set to minimum temperature so that the test cells would cool of to room temperature. At the same time inlet valves for H_2S was shut, and a slight flow of N_2 was introduced to the test cells.

As the test cells reached 30° C or lower, at least 1 hour after cooling and post-purging was initiated, all values were closed and equipment around the test cell was removed. Unfractured test cells had their load removed to allow for removal of the test cell. Test cells were prior to opening moved to a ventilated fume hood to avoid unnecessary contact with any H₂S-rests. As the tensile test rods were removed, volume of the remaining test solution as well as its pH was recorded.

The test cells were completely disassembled and washed with hot water and soap before being cleaned in deionized water and reassembled for the next test series.

3.3.11.2 ATI-830

Prior to disconnecting any equipment or dumping pressure, heating equipment shall be turned of and equipment left alone until temperature of less than 30°C is measured.

Reduction of pressure will be done by gradually alternately opening the two dump valves a tiny bit and observing if any pressure is released (either by watching the pressure gauge dropping, or by observing gas bubbles in the NaOH-container). When pressure begins to drop, equipment will be left alone until the pressure gauge showed ambient pressure. N₂ shall then used to purge the equipment for at least 1 hour with 3-5 bubbles per second observed in the NaOH-solution.

After purging, equipment is to be disconnected and measurements shall be taken as done in disconnection of Duplex SS, described in section 3.3.11.2

3.4 Duplex SS: Revised Test Procedure

Due to several revisions the test procedure has varied a bit for the different Duplex SS materials. The matrix shown in table 3.8 shows which test procedure that was used for the different Duplex SS samples.

3.4.1 Initial Test-Procedure

Due to the design of the initial setup, water vapour was allowed to escape the test cells through the outlet tubes, as no condenser was available. This was wrongfully assumed to be of a negligible as shown by the high loss of liquid in the result section. This resulted in the need of a revised test procedure.

Procedure			Test S	ample	ID's		
	A,B	$^{\rm C,D}$	$^{\mathrm{E,F}}$	$_{\rm G,H}$	I,J	$_{\rm K,L}$	M,N
Initial	Х	Х					
1st Revision			Х	Х	Х		
2nd Revision						Х	Х

Table 3.8: Test procedures used for Duplex SS test samples listed in table 3.7.

3.4.2 Revised Test-Procedure

3.4.2.1 1st Revision

With exception of the following step, the revised test-procedure followed the same steps as the initial, which were described in sections 3.3.4-3.3.10. Temperature was also reduced from 90°C to 80°C to reduce the water vapour pressure.

No major changes was made to the equipment setup, but a liquid refill procedure was applied: After approximately halfway through the duration of the experiment, the test was completely shut down; temperature reduced to ambient and H_2S gas flow was closed. New pre-purged NACE Solution A was then introduced to the container until liquid could be seen coming out through the outlet. At this point normal purging procedure with N_2 followed by H_2S was done. The test samples were reheated and gas flow was adjusted as per normal procedure.

3.4.2.2 2nd Revision

The temperature reduction done in the first revision appeared to be a sufficient step to reduce the water vapour pressure. Since the refill procedure deemed a risk in terms of NaOH-contamination, this part of the revised procedure was cut out. The lowered test temperature of 80°C was kept.

Remaining liquids after the test was recorded and calculated as a percentage of maximum gauge coverage. Measurements used for the calculation of maximum and minimum coverage were taken with an "open cell" as shown in figure 3.12.

Figure 3.12: Setup to measure max and minimum depths/volumes required 100% and 0% coverage of the gauge area on the tensile test samples.

3.5 Post-examination

3.5.1 LOM

All test rods were initially examined with a macroscope at 10X and 40X magnification to give a general picture of the extent of surface corrosion.

Due to limited available moulding material, only one 22Cr Duplex SS and one 25Cr Duplex SS were investigated further in the LOM. However, for each material, one sample exposed to the assumed worst condition (highest deformation and highest H_2S -concentration) was investigated. This process was used to reveal the typical size of any pits as well as to see if there were any micro-cracking in the pits.

3.5.2 SEM

As none of the samples fractured or showed micro-cracking, no SEM investigation was deemed necessary.

3.6 Safety Precautions

3.6.1 H₂S-gas

 H_2S is a poisonous gas that may in worst case lead to loss of consciousness or life. At higher concentration the gas may also be explosive. It was therefore taken strict precautions to avoid any unnecessary contact with the gas both during connection, maintenance and completion of the tests.

Experiments including H_2S were performed within a closed Ex-secured area with a security system that monitored H_2S levels at the floor (H_2S is heavier than air), oxygen level as well as % LEL (Lower Explosion Limit). If any limits were breached, pneumatically controlled normally closed valves would shut down all H_2S supply, as well pumping air out of the test chambers through a filter. This shutdown could also be activated by a emergency switch by the exit of the test area.

Any change to the main pressure control valve, or opening of the main inlet valve on the H_2S -system was always done with 2 persons present. And at all times a hand held gas detector was used, shown in figure 3.13b.

As described in the test equipment section, handling of equipment that has had H_2S inside was purged with N_2 , and then opened under a ventilated fume hood, as shown in figure 3.13c.

(a) Closed of test room with warning sign.

(b) Gas detector

(c) Disassembly of test cell under ventilated fume hood.

Figure 3.13: Equipment used as different safety tools

3.6.2 Concentrated NaOH

The NaOH solution used was treated carefully as it was very basic. Any mixing was done under a ventilated fume hood, with thick rubber gloves, eye goggles, face screen and protective clothing. During etching the same safety equipment was used.

Deposition of NaOH solution was done in the sink under the fume hood, heavily diluted in tap water.

3.6.3 Handling of Nace solution A

Mixing of Nace solution A involves handling of CH_3COOH , glacial acetic acid, and was therefore handled with the same care as mixing of NaOH. Deposition of Nace solution A was done in the sink under the fume hood, heavily diluted in tap water.

3.6.4 High-pressure/temperature testing

Due to the dangers related to high pressure and high temperature water with H_2S , a safety wall with a thick Plexiglas was put between the user and the test cells. Valves for dumping pressure are put just behind the wall so that they can be reached from the safe side of the safety wall. A warning sign was also put on the entrance of the test room warning anyone against entering.

Chapter 4

Results

4.1 Pre-exposure tests

4.1.1 Tensile Test

Results from tensile tests with various degrees of pre-deformation and temperature are shown in table 4.1. The table shows the AYS, Ultimate Tensile Strength (UTS) and fracture elongation in percent. Stress-strain diagram of the five tensile tests performed at elevated temperature are shown in figures 4.1-4.3

Table 4.1: Results from tensile testing of materials of interest prior to H_2S -testing. Values were taken for various degrees of deformation as well as for ambient and test temperature. Values marked ⁽¹⁾ are test data received from manufacturer.

Material	Temperature [°C]	Deformation [%]	YS [MPa]	UTS [MPa]	Fracture elongation [%]
22Cr Duplex	ambient	4.8	774	818	32.4
22Cr Duplex	80	4.8	699	744	34.0
22Cr Duplex	90	4.8	690	741	30.0
25Cr Duplex	ambient	4.8	832	927	37.6
25Cr Duplex	90	4.8	735	841	34.8
25Cr Duplex	80	10	847	887	27.0
ATI-830	ambient	0	$1151^{(1)}$	$1255^{(1)}$	$21.8^{(1)}$
ATI-830	150	0	1040	1080	19.0

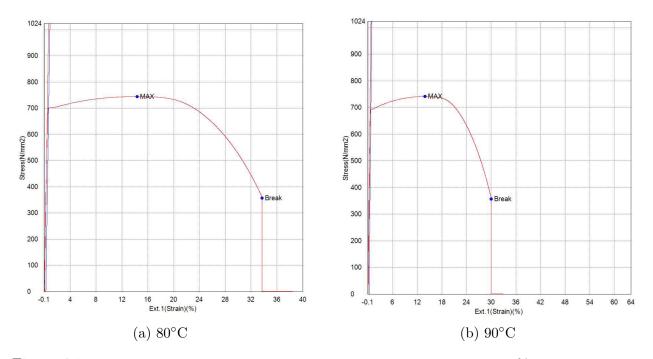


Figure 4.1: Stress-strain diagrams of tensile tests of 22Cr Duplex SS with 4.8% pre-deformation at elevated temperatures.

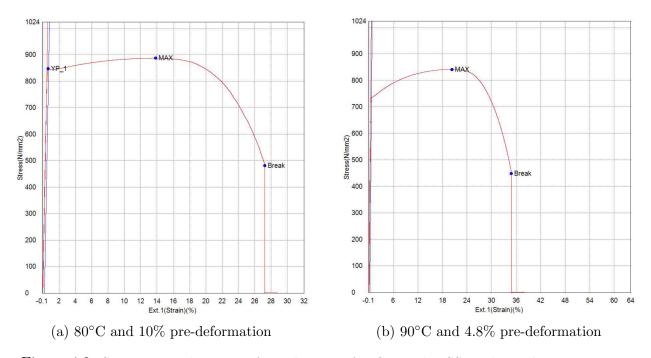


Figure 4.2: Stress-strain diagrams of tensile tests of 25Cr Duplex SS at elevated temperatures.

4.1.2 Hardness Test

Results of HRC test are shown in table 4.2. The table shows 3 measured values (Sample 1 through 3), the average HRC value and the standard deviation.

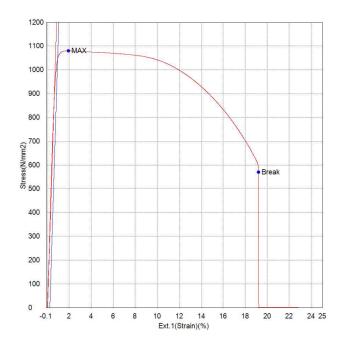


Figure 4.3: Stress-strain diagram of tensile test of ATI-830 at 150°C with 0% predeformation.

Table 4.2: HRC Samples taken for both 22Cr and 25Cr Duplex materials with various degree of pre-deformation.

Material	Deformation	Sample 1	Sample 2	Sample 3	Average	Std.Dev
22Cr Duplex	0%	19.50	21.41	22.75	21.22	1.63
22Cr Duplex	4.8%	21.38	22.36	22.08	21.94	0.50
25Cr Duplex	0%	22.77	25.91	24.86	24.51	1.60
25Cr Duplex	4.8%	27.61	27.95	27.82	27.79	0.17
25Cr Duplex	10%	32.53	31.86	28.98	31.12	1.89

4.1.3 Duplex SS characterization in LOM

4.1.3.1 Calculation of ferritic content

Table 4.3 shows the ferrite content in the tested Duplex SS samples.

Photos of areas that has been used to calculate the content are shown in figure 4.4-4.5 and figure 4.6-4.7 for the 22Cr Duplex and 25Cr Duplex, respectively.

4.1.3.2 Calculation of austenite spacing

Calculated average austenite spacing, with standard deviation and resolution of measurements are shown in table 4.4. Calculation of austenite spacing is shown for both longitudinal and transversal direction of all degrees of deformation used for the different Duplex SS alloys.

Material	Deformation	Ferrite count [%]	Pixel count.
22Cr Duplex	0%	53.698	2304080
22Cr Duplex	4.8%	55.056	3109184
25Cr Duplex	0%	53.274	2919280
25Cr Duplex	4.8%	52.245	1455543
25Cr Duplex	10%	53.151	609(*)

Table 4.3: Result of counting ferritic phase using imageJ. (*)Pixel count lower due to other software settings.

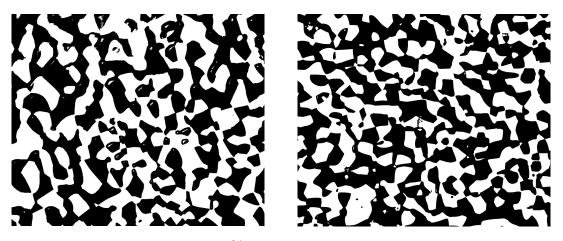
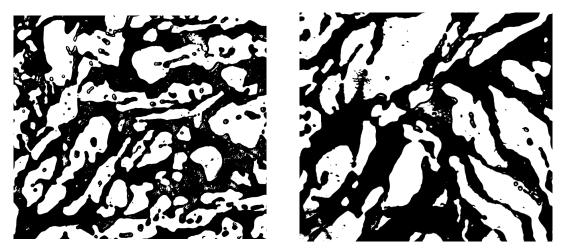
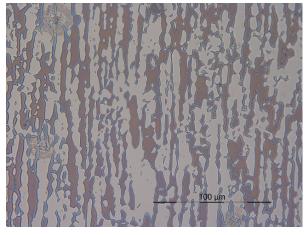
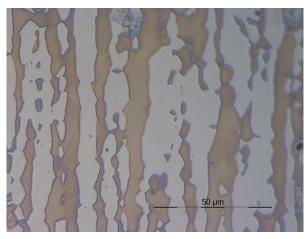


Figure 4.4: 22Cr Duplex with 0% pre-Figure 4.5: 22Cr Duplex with 4.8% predeformation deformation

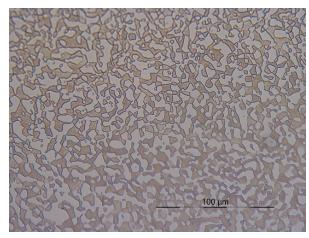
Table 4.4: Austenite spacing for different samples of Duplex SS with various degrees of deformation. Directions are either cross section or longitudinal.

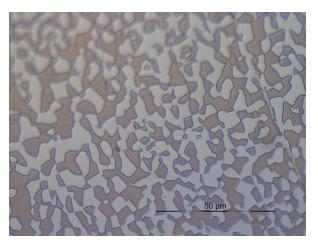
Material	Deformation	Direction	Counts	γ -spacing $[\mu m]$	St.Dev $[\mu m]$	Resolution [Pixels/ μ m]
22Cr Duplex	0%	Long	13	5.30	2.97	20.66
22Cr Duplex	0%	Cross	16	4.21	1.95	20.68
22Cr Duplex	4.8%	Long	12	5.49	3.41	20.62
22Cr Duplex	4.8%	Cross	14	4.74	3.89	20.61
25Cr Duplex	0%	Long	12	4.98	2.86	20.66
25Cr Duplex	0%	Cross	13	4.61	2.09	20.62
25Cr Duplex	4.8%	Long	18	3.50	2.72	20.62
25Cr Duplex	4.8%	Cross	15	3.62	2.95	20.64
25Cr Duplex	10%	Long	13	6.47	4.57	20.63
25Cr Duplex	10%	Cross	17	9.18	5.80	20.60


Figure 4.6: 25Cr Duplex with 0% pre-Figure 4.7: 25Cr Duplex with 4.8% predeformation deformation

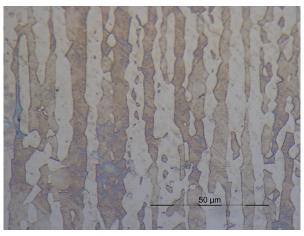
4.1.3.3 LOM Pictures


LOM pictures at 500X and 1000X magnification of both Duplex SS materials with the various deformation grades are shown in figures 4.8-4.12.



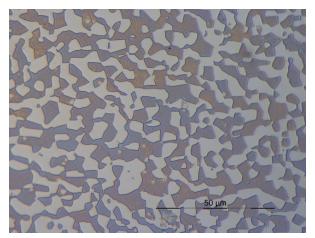
(a) Longitudinal section magnified 500X

(b) Longitudinal section magnified 1000X

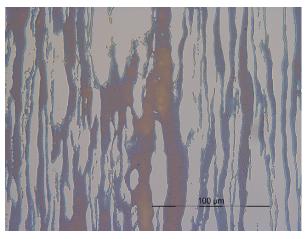


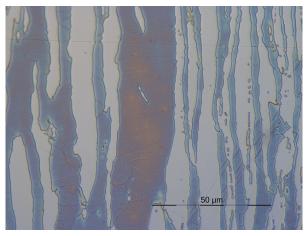
(d) Cross section magnified 1000X

Figure 4.8: LOM pictures of 22Cr Duplex with 0% pre-deformation



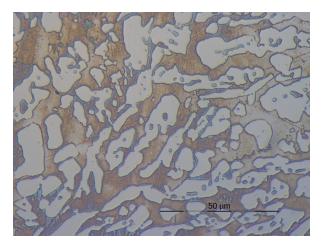
(a) Longitudinal section magnified 500X


(b) Longitudinal section magnified 1000X

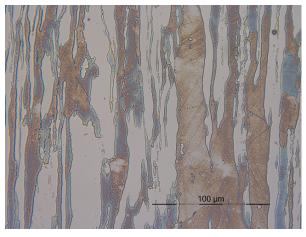


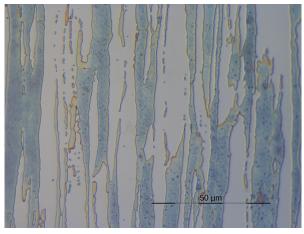
(d) Cross section magnified 1000X

Figure 4.9: LOM pictures of 22Cr Duplex with 4.8% pre-deformation

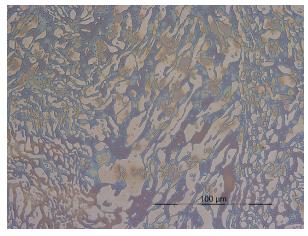


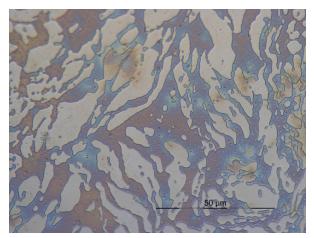
(a) Longitudinal section magnified 500X


(b) Longitudinal section magnified 1000X

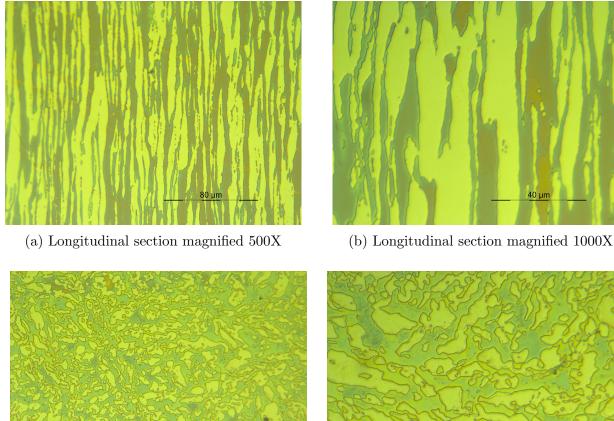


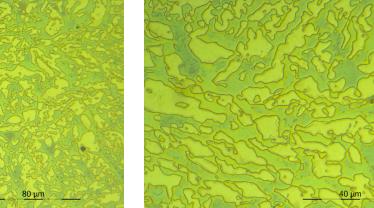
(d) Cross section magnified 1000X


Figure 4.10: LOM pictures of 25Cr Duplex with 0% pre-deformation


(a) Longitudinal section magnified 500X

(b) Longitudinal section magnified 1000X




(c) Cross section magnified 500X

(d) Cross section magnified 1000X

Figure 4.11: LOM pictures of 25Cr Duplex with 4.8% pre-deformation

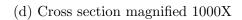


Figure 4.12: LOM pictures of 25Cr Duplex with 10% pre-deformation

4.2 Constant Load in H_2S

Results of constant load test in H_2S are for 22Cr Duplex and 25Cr Duplex showed in table 4.5, 4.6-4.7 and 4.8, respectively. The tables show the applied load a test temperature as % of AYS, test temperature, partial H_2S -pressure as a percentage of total pressure, test duration in days, whether or not the sample failed (fractured), initial and final pH, initial and final minimum diameter, Final volume in litres, days since last refill and percentage of the gauge area that was covered at the lowest liquid level.

Due to delayed discussions with provider of ATI-830 there was not sufficient time to finish constant load testing of ATI-830 before the deadline of the thesis. As a result of this no results from ATI-830 are shown in this section or the post-examination section.

ID	Load	Т	$P_{P_{H2S}}$	Dur.	Fail?	pH		D_i	Final Volume		
	[% AYS]	$[^{\circ}C]$	$[\% P_T]$	[days]		Initial	Final	[mm]	[L]	[days]	[%]
А	>100	90	10	31	no	2.70	3.96	6.24	0.15	31	59
В	>100	90	10	31	no	2.70	3.58	6.26	0.24	31	95
Ε	100	80	10	30	no	2.70	8.43	6.42	0.30	18	100
F	100	80	10	30	no	2.70	9.20	6.42	0.30	18	100
G	100	80	20	(*)	(*)	2.70	-	6.35	0	$<\!\!7$	0
Η	100	80	20	30	no	2.70	4.10	6.34	0.30	18	100
Κ	100	80	20	31	no	2.70	4.03	6.22	0.28	31	100
L	100	80	20	31	no	2.70	4.04	6.23	0.30	31	100

Table 4.5: Test results of Constant load test with H_2S for 22Cr Duplex with 4.8% predeformation. (*)Sample G lost all liquid within 7 days and was disqualified.

Table 4.6: Test results of Constant load test with H_2S for 25Cr Duplex with 4.8% predeformation.

ID	Load	Т	$P_{P_{H2S}}$	Dur.	Fail?	$_{\rm pH}$		D_i	Fin	Final Volume	
	[% AYS]	$[^{\circ}C]$	$[\% P_T]$	[days]		Initial	Final	[mm]	[L]	[days]	[%]
С	>100	90	20	31	no	2.70	3.88	6.29	0.20	31	79
D	>100	90	20	31	no	2.70	3.79	6.23	0.21	31	83
Ι	100	80	20	30	no	2.70	8.67	6.36	0.325	18	100
J	100	80	20	30	no	2.70	8.85	6.36	0.30	18	100

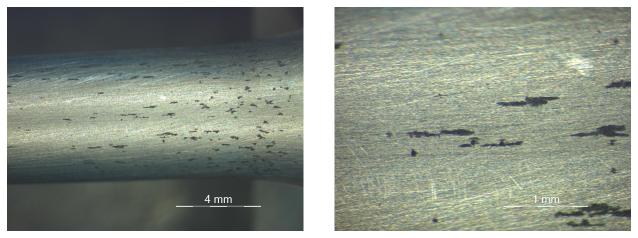
Table 4.7: Test results of Constant load test with H_2S for 25Cr Duplex with 10% predeformation. (*)Sample M lost all liquid at an unknown time and was disqualified.

ID	Load	Т	$P_{P_{H2S}}$	Dur.	Fail?	pН		D_i	Fin		
	[% AYS]						Final	[mm]	[L]	[days]	[%]
М	100	80	20	(*)	(*)	2.70	-	6.23	0	-	0
Ν	100	80	20	31	no	2.70	4.04	6.22	0.25	31	99

Table 4.8: Test results of constant load test with H_2S for ATI-830 in modified ISO lvl 5 environment. No data available as testing was not completed prior to deadline of thesis.

ID					Days	Failure	$_{\rm pH}$			D_f
	%AYS	[°C]	[Mpa]	[Mpa]			Initial	Final	[mm]	[mm]
0	100	150	50	200	-	-	-	-	-	-
Р	100	150	50	200	-	-	-	-	-	-

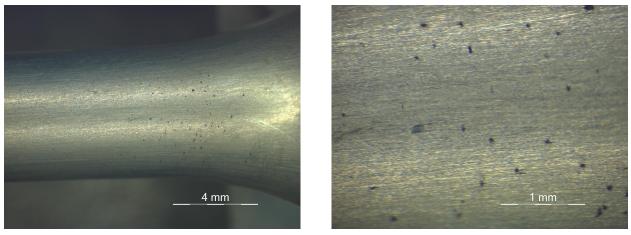
4.3 Post-examination


The surface of the test samples were investigated in a macroscope at up to 40X magnification. Pictures of each tensile sample are shown in figures 4.13-4.20 for 22Cr Duplex. 25Cr Duplex are shown in 4.21-4.24 and 4.25 for 4.8% and 10% pre-deformation, respectively. Only a few samples were cleaned properly prior to macroscope investigation. This is specified in each picture.

The following samples had further investigation of the cross section in LOM to measure pitting depth and look for micro-cracking in the pit. Results are shown in section 4.3.2.

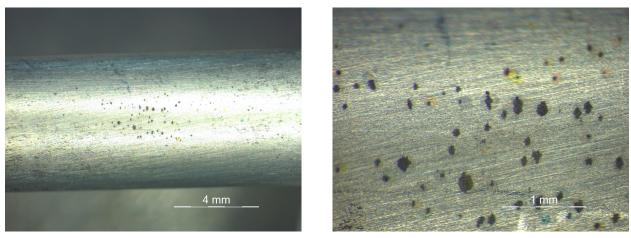
- Sample K: 22Cr, 4.8% Pre-deformation, 20% H₂S
- Sample N: 25Cr, 10% Pre-deformation, 20% H₂S

4.3.1 Macroscope


4.3.1.1 22Cr Duplex

(a) 10X magnification

(b) 40X magnification

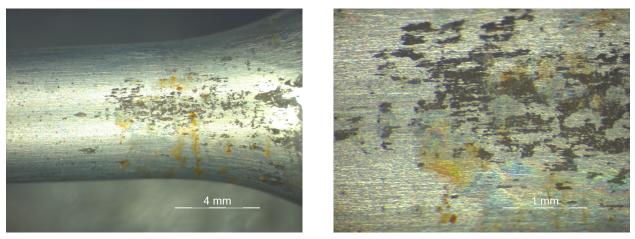

Figure 4.13: Sample A: 22Cr with 4.8% deformation tested in 10% H2S and 90°C . Samples not cleaned prior to investigation.

(a) 10X magnification

Figure 4.14: Sample B: 22Cr with 4.8% deformation tested in 10% H2S and 90°C . Samples not cleaned prior to investigation.

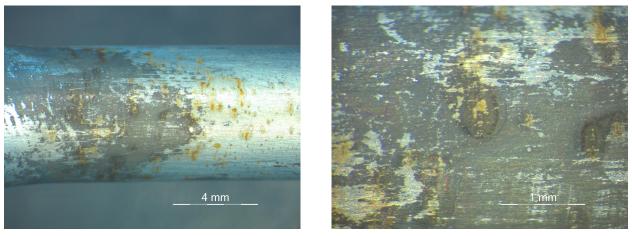
(a) 10X magnification

(b) 40X magnification


Figure 4.15: Sample E: 22Cr with 4.8% deformation tested in 10% H2S and 80°C . Samples not cleaned prior to investigation.

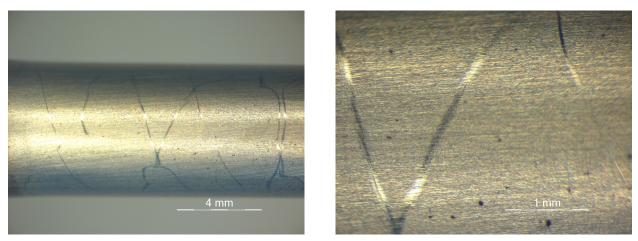
(a) 10X magnification

(b) 40X magnification


Figure 4.16: Sample F: 22Cr with 4.8% deformation tested in 10% H2S and 80°C . Samples not cleaned prior to investigation.

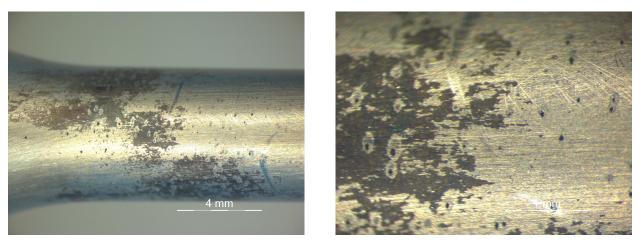
(a) 10X magnification

(b) 40X magnification


Figure 4.17: Sample H: 22Cr with 4.8% deformation tested in 20% H2S and $80^\circ \rm C$. First of two locations photographed. Samples not cleaned prior to investigation.

(a) 10X magnification

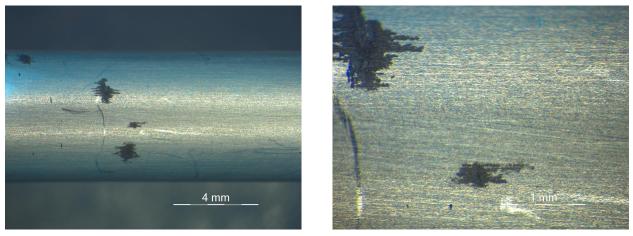
(b) 40X magnification


Figure 4.18: Sample H: 22Cr with 4.8% deformation tested in 20% H2S and 80°C . Second of two locations photographed. Samples not cleaned prior to investigation.

(a) 10 magnification

(b) 40 magnification

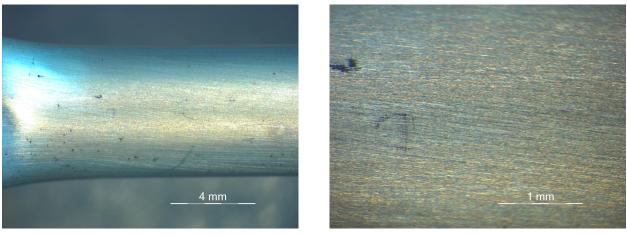
Figure 4.19: Sample K: 22Cr with 4.8% deformation tested in 20% H2S and 80°C . Samples cleaned with soap and hot water.



(a) 10X magnification

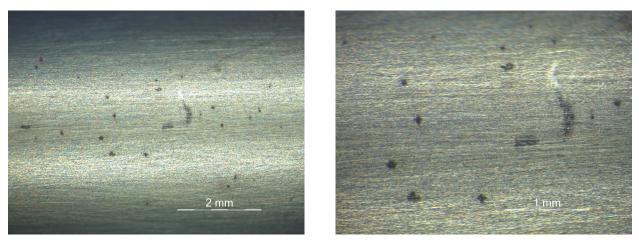
(b) 40X magnification

Figure 4.20: Sample L: 22Cr with 4.8% deformation tested in 20% H2S and 80°C . Samples cleaned with soap and hot water.


4.3.1.2 25Cr Duplex

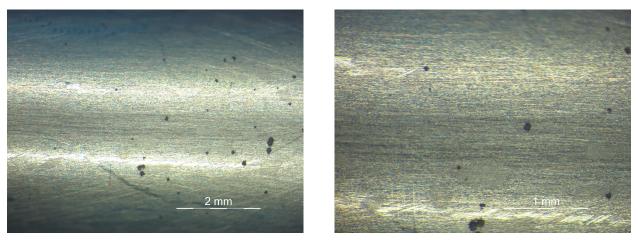
(a) 10X magnification

(b) 40X magnification


Figure 4.21: Sample C: 25Cr with 4.8% deformation tested in 20% H2S and 90°C . Samples not cleaned prior to investigation.

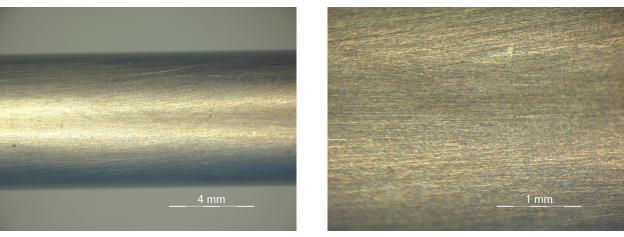
(a) 10X magnification

(b) 40X magnification


Figure 4.22: Sample D: 25Cr with 4.8% deformation tested in 20% H2S and 90°C . Samples not cleaned prior to investigation.

(a) 20X magnification

(b) 40X magnification


Figure 4.23: Sample I: 25Cr with 4.8% deformation tested in 20% H2S and 80°C . Samples not cleaned prior to investigation.

(a) 20X magnification

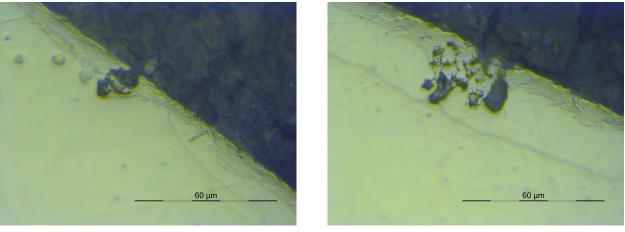
(b) 40X magnification

Figure 4.24: Sample J: 25Cr with 4.8% deformation tested in 20% H2S and 80°C . Samples not cleaned prior to investigation.

(a) 10 magnification

(b) 40X magnification

Figure 4.25: Sample N: 25Cr with 10% deformation tested in 20%H2S and 80°C . Samples cleaned with soap and hot water.


4.3.2 LOM of cross sections

A few pits were found on the cross sections of both samples. For sample K typical pits were i30, and for sample N i50. Figures in sections 4.3.3-4.3.4 show the most detrimental pits found on the samples, as well as a less magnified photo giving an overview of the surface. No signs of micro cracking were found.

Due to a limited amount of available moulding powder, only one sample of 22Cr Duplex SS and 25Cr Duplex SS. The samples investigated were chosen as they were assumed to be exposed to the worst condition in terms of deformation and H_2S -concentration.

4.3.3 Sample K: 22Cr Duplex SS, 4.8% Deformation, 20%H₂S

Two typical pits photografed are shown in figure 4.26. The pits have a typical depth of $<30\mu$ m and showed no signs of microcracking in the pottom of the pits. The same pits can be seen in the overview picture shown in figure 4.27.

(a) pit 1

(b) pit 2

Figure 4.26: Two typical pits found on a cross section of sample K at 1000X magnification



Figure 4.27: An overview of sample K at 100X magnification.

4.3.4 Sample N: 25Cr Duplex SS, 10% Deformation, 20%H₂S

A typical pit photografed is shown in figure 4.28. The pits had a typical depth of $<50\mu$ m and showed no signs of microcracking in the pottom of the pits. The same pit can be seen in the overview picture shown in figure 4.29

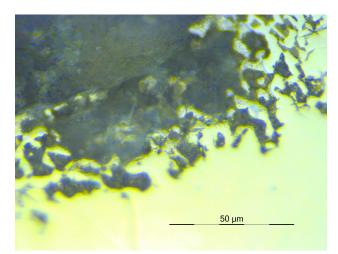


Figure 4.28: A typical pit found on a cross section of sample N at 1000X magnification.

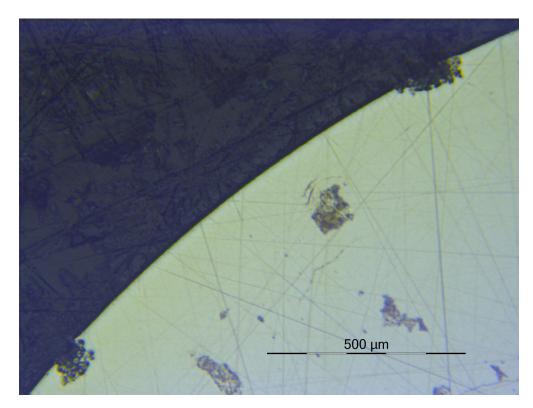


Figure 4.29: An overview of sample N at 100X magnification.

Chapter 5

Discussion

5.1 Comparison with other test results

Little information of earlier testing on these materials in H_2S have been found, and no information of testing on the used Duplex SS materials with deformation in H_2S has been found. However an annealed UNS S31803 sample, the same material as the 22Cr Duplex SS investigated in this work, was tested with various levels of Cl⁻, pH and H_2S partial pressures³³ (see table 2.5). No cracking occurred for gas concentrations of up to 34kPa H_2S , but fractures occurred for samples tested with 69kPa H_2S after roughly 45 days of exposure.

5.2 Experimental Parameters

5.2.1 Test Temperature

As discussed in section 2.6.2, ISO 15156-3 specifies 80-90°C as the worst temperature range,² and other literature supports this as well as that a range as wide as 80-120°C may show the most detrimental effects.^{18,29,30} Temperature was chosen arbitrarily within this range, initially at 90°C, and later 80°C due to difficulties with loss of test liquid. No information about which temperature that will give the most severe environment was found during the literature study, but it seems reasonable that a higher temperature (e.g. 120°C) could increase the pitting growth rate on the samples, thus increasing the risk of micro cracking at the bottom of the pit.

5.2.2 Deformation and Microstructure

ISO 15156-3 does not give any guidance for how much additional deformation the Duplex SS materials can take when exposed to an H_2S -environment.² No signs of cracking was found for sample K and N (22Cr and 25Cr, respectively), which were the samples with highest deformation and H_2S -concentration for each of the materials. This may indicate that some deformation (up to 4.8% for 22Cr Duplex SS and 10% for 25Cr Duplex SS) has little effect

on the materials susceptibility to SSC, but more testing, perhaps at longer intervals, should be done before this can be concluded.

Unpublished resources has shown that for a plain carbon steel deformation under exposure to sour service has a much higher risk of causing fracture than deformation occurring prior to sour service. That is, deformation caused by for instance on and of-reeling of a pipe should be less detrimental than deformation caused during operation. As the constant load test only gives information about the material's susceptibility to H₂S-related failures with pre-deformation, it would be very useful to see whether or not the material's would show the same resistance using SSRT. As described in section 2.9.1.2, this method applies and increases load during testing. This test would possibly give a more precise idea of the area where the material will fail as a constant load test that does not lead to fracture says nothing about the upper limits of the material.

As discussed in see section 2.7.1-2.7.2, the pre-examination of the materials showed a very fine-grained microstructure, which is beneficial against risk of cracking.²¹ The added material deformation was done along its longitudinal axis, i.e., parallel to the elongated duplex grains. It was therefore expected, with good reason, that cracking resistance along the cross section was largely conserved. However, theory also shows a larger hydrogen ingress with added cold work.²¹ Given the longitudinal structure, a higher risk of crack propagation is to be expected along the longitudinal direction with higher cold deformation, as this increases the distance between the -islands, which act as crack barriers.

5.2.3 H_2 S-concentration

A maximum of 10% H₂S is recommended for the 22Cr Duplex SS according to ISO 15156-3,² however none of the 22Cr Duplex SS samples that were tested with 20% failed or showed signs of cracking (sample K and L). Some pitting did however occur, and it can therefor not be concluded that the material will be safe within this environment before further testing is done. As with deformation, testing for a longer interval could be of interest, to see if the pits grow further, followed by crack initiation.

5.3 Experimental challenges

5.3.1 Loading of samples

Loading of samples was done at ambient temperature, and adjustments were made to adjust for cold creep. A typical case would be to apply a load of approximately 90% of AYS, which should then result in 100% AYS at test temperature. However, if any cold creep occurred during heating of the samples this would not be possible to adjust. This means that in some cases the applied load could be a bit lower than the intended value of 100% AYS at test temperature. For the first samples (A-F) load a load of 100% AYS at room temperature was applied by mistake, which led to a higher load during test temperature. These results of these samples are therefore more conservative with regards to applied load.

5.3.2 NaOH contamination of test solution

Certain samples in test set 2 were exposed to NaOH solution during the refill procedure. This resulted in pH values in the area of 8 to 9. During the refill procedure, temperature was shut of, which resulted in NaOH-solution creeping up the hoses and in to the test cells. The tests did therefor not contain uncontaminated NACE Test Solution A for longer than 12 days. It is likely that use of a condencer as required NACE TM0177²⁸ this would not have happened as liquid loss should have been limited. Unfortunately, this equipment was not available.

5.4 Validity of results

Due to the loss of water through the vapour phase, some samples were not fully exposed to the test solution throughout the experiment. The worst case (sample G) was measured to have a gauge area coverage of only 59%. Most samples did however have 80-100% Coverage. As loss of water from the test solution leads to a higher salinity, the test solution is assumed to be give more concervative results (for the part that was exposed to liquid throughout the test). For further testing use of a condenser is highly recommended.

Lastly, it is important to emphasize, as discussed in section 5.1, that similar materials did fail in similar experiments with longer test periods. This gives a good reason to question whether or not some of the samples tested in this paper would fracture, or at least show signs of micro-cracking in the pits, if a longer time of exposure was used.

Chapter 6

Conclusion

22% Cr duplex SS (wrought) and 25% Cr Duplex SS (wrought) were tested with constant load under exposure to H₂S-partial pressure of 10 or 20kPa. The materials were cold deformed to 4.8% or 10% prior to testing. The first samples were loaded to 100% AYS at room temperature, whereas the rest were loaded to a lower value that was estimated to be 100% AYS at actual test temperature. Materials and parameters are summarized in table 6.1. No samples failed, but some pitting was found during LOM investigation of samples subjected to the most detrimental parameters. No signs of micro-cracking were found in the pits.

This may indicate that limits given for sour service of Duplex SS in ISO 15156-3 are too strict, but due to uncertainties in the experiments further testing is required to be certain.

The preliminary theoretical study gave reason to expect a higher susceptibility to cracking with higher deformation or H_2S -partial pressure. This was neither confirmed nor rejected due to the limited experimental scope.

Material	Deformation [%]	Load [%AYS]	Temperature [°C]	$\begin{array}{c} P_{\rm H_2S} \\ [\rm kPA] \end{array}$
22Cr Duplex SS	4.8	>100	90	$ \begin{array}{r} 10\\ 10\\ 20 \end{array} $
22Cr Duplex SS	4.8	100	80	
22Cr Duplex SS	4.8	100	80	
25Cr Duplex SS	4.8	>100	90	20
25Cr Duplex SS	4.8	100	80	20
25Cr Duplex SS	10	100	80	20

Table 6.1: Summary of materials tested with key parameters.

Bibliography

- ¹ ISO 15156-1:2015(E) Petroleum and natural gas industries Materials for use in H2Scontaining environment in oil and gas production - Part1: General principles for selection of cracking-resistant materials. Standard, International Organization for Standardization, Geneva, CH, September 2015.
- ² ISO 15156-3:2015(E) Petroleum and natural gas industries Materials for use in H2Scontaining environment in oil and gas production - Part3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys. Standard, International Organization for Standardization, Geneva, CH, September 2015.
- ³ Jakob Enerhaug. A study of localized corrosion in super martensitic stainless steel weldments. Phd thesis, Norges teknisk-naturvitenskapelige universitet, Instituttfor maskinkonstruksjon og materialteknikk, 2002.
- ⁴ Christophe Mendibide and Thomas Sourmail. Composition optimization of high-strength steels for sulfide stress cracking resistance improvement. *Corrosion Science*, 51(12):2878– 2884, 2009.
- ⁵ P. R. Rhodes. Environment-assisted cracking of corrosion-resistant alloys in oil and gas production environments: A review. *Corrosion*, 57(11):923–966, 2001.
- ⁶ Johnson W. H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids. *Proceedings of the Royal Society of London*, 23:168–179, 1874.
- ⁷ J Ćwiek. Prevention methods against hydrogen degradation of steel. Manufacturing Engineering, 43(1):214–221, 2010.
- ⁸ N. Nanninga, J. Grochowsi, L. Heldt, and K. Rundman. Role of microstructure, composition and hardness in resisting hydrogen embrittlement of fastener grade steels. *Corrosion Science*, 52(4):1237–1246, 2010.
- ⁹ A. Taha and P. Sofronis. A micromechanics approach to the study of hydrogen transport and embrittlement. *Engineering Fracture Mechanics*, 68(6):803–837, 2001.
- ¹⁰ P. Sofronis, Y. Liang, and N. Aravas. Hydrogen induced shear localization of the plastic flow in metals and alloys. *European Journal of Mechanics / A Solids*, 20(6):857–872, 2001.

- ¹¹ Peter F. Timmins. Solutions to hydrogen attack in steels. 1997.
- ¹² N. Eliaz, A. Shachar, B. Tal, and D. Eliezer. Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels. *Engineering Failure Analysis*, 9(2):167–184, 2002.
- ¹³ P. Roffey and E. H. Davies. The generation of corrosion under insulation and stress corrosion cracking due to sulphide stress cracking in an austenitic stainless steel hydrocarbon gas pipeline. *Engineering Failure Analysis*, 44:148–157, 2014.
- ¹⁴ B. Y. Fang, A. Atrens, J. Q. Wang, E. H. Han, Z. Y. Zhu, and W. Ke. Review of stress corrosion cracking of pipeline steels in "low" and "high" ph solutions. *Journal of Materials Science*, 38(1):127–132, 2003.
- ¹⁵ Sridhar Ramamurthy and Andrej Atrens. Stress corrosion cracking of high-strength steels. Corrosion Reviews, 31(1):1–31, 2013.
- ¹⁶ Ming-Chun Zhao, Bei Tang, Yi-Yin Shan, and Ke Yang. Role of microstructure on sulfide stress cracking of oil and gas pipeline steels. *Metallurgical and Materials Transactions A*, 34(5):1089–1096, 2003.
- ¹⁷ P. R. Rhodes, L. A. Skogsberg, and R. N. Tuttle. Pushing the limits of metals in corrosive oil and gas well environments. *Corrosion*, 63(1):63–100, 2007.
- ¹⁸ R. D. Kane. Roles of H₂S in behaviour of engineering alloys. *International Metals Reviews*, 30(1):291–301, 1998.
- ¹⁹ The European Federation of Corrosion. Guidelines on materials requirements for carbon and low alloy steels for H_2S -containing environments in oil and gas production. *Publication Number 16*, 1995.
- ²⁰ H. K. D. H. Bhadeshia and Sir Robert Honeycombe. Steels: Microstructures and Properties (Third Edition), 5 - Formation of Martensite, pages 95–128. Butterworth-Heinemann, Oxford, 2006.
- ²¹ Thierry Cassagne and Freddy Embrittlement. A review on hydrogen embrittlement of duplex stainless steels. *Corrosion*, Paper No. 5098, 2005.
- ²² H. K. D. H. Bhadeshia and Sir Robert Honeycombe. Steels: Microstructures and Properties (Third Edition), 12 - Stainless Steel, pages 259–286. Butterworth-Heinemann, Oxford, 2006.
- 23 Jan Kjetil Solberg. Teknologiske metaller og legeringer. 2014.
- ²⁴ William D. Callister and David G. Rethwisch. Materials science and engineering : an introduction. Wiley, New York, 7th ed. edition, 2007.

- ²⁵ George E. Dieter and David Bacon. *Mechanical metallurgy*. McGraw-Hill series in materials science and engineering. McGraw-Hill, London, si metric ed. edition, 1988.
- ²⁶ P. Marcus. Corrosion Mechanisms in Theory and Practice: Second Edition, Revised and Expanded, Sulfur-Assisted Corrosion Mechanisms and the Role of Alloyed Elements, pages 287–310. 202.
- ²⁷ O. I. Radkevych and V. I. Pokhmurs'kyi. Influence of hydrogen sulfide on serviceability of materials of gas field equipment. *Materials Science*, 37(2):319–332, 2001.
- ²⁸ Nace standard tm0177-2005, "laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in H₂S environments. Standard, International Organization for Standardization, Geneva, CH, September 2015.
- ²⁹ The European Federation of Corrosion. Corrosion resistant alloys for oil and gas production: guidance on general requirements for test methods for H_2S service. *Publication Number 17*, 1996.
- ³⁰ Fiona Ruel, Saghi Saedlou, Sandra Le Manchet, Christian Lojewski, and Krzysztof Wolski. The influence of temperature and ph on the eac behavior of the uns(1) s32304 lean duplex stainless steel. 2014.
- ³¹ A. M. Brass and J. Chene. Influence of deformation on the hydrogen behavior in iron and nickel base alloys: a review of experimental data. *Materials Science & Engineering A*, 242(1):210–221, 1998.
- ³² V. Olden, C. Thaulow, and R. Johnsen. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels. *Materials & Design*, 29(10):1934–1948, 2008.
- ³³ Julio G. Maldonado and James W. Skogsberg. Cracking susceptibility of duplex stainless steel at an intermediate temperature in the presence of h2s containing environments. *Corrosion*, Paper No. 4134, 2004.
- ³⁴ Gerit Siegmund, Guenter Schmitt, and Lars Kuhl. Unexpected sour cracking resistance of duplex and superduplex steels. *Corrosion*, Paper No. 7631, 2016.
- ³⁵ K. Saarinen, E. Hamalainen, and H. Hanninen. Slow strain rate testing of corrosion resistant alloys in high temperature h2s environments. *NACE International*, 1997.
- ³⁶ Shuji Hashizume and Yasuto Inohara. Effects of ph and ph2s on ssc resistance of martensitic stainless steels. *NACE Internationl*, 2000.
- ³⁷ J. A. Beavers and G. H. Koch. Limitations of the slow strain rate test for stress corrosion cracking testing. *NACE International*, 1992.

- ³⁸ A. J. Grifths, G. Hinds, and A. Turnbull. Monotonic and cyclic slow strain rate testing of super 13% chromium steel weldsunder cathodic protection, february 2005. *Corrosion*, 62(2):111–118, 2005.
- ³⁹ Kenji Kobayashi, Masakatsu Ueda, Keiichi Nakamura, and Tomohiko T. Omura. Effect of testing temperature on ssc properties of low alloy steel. *Corrosion*, Paper No. 6127, 2006.
- 40 Astm e562 02 standard test method for determining volume fraction by systematic manual point count. Standard.

⁴¹ https://imagej.nih.gov/ij/index.html. 29/05/2017.

Appendix

A Risk analysis

NTNU				Ularbeidet	av Nummer	Deto	
	Kartlegging a	iv risikofylt ak	livitet	HMS-avd	HMSRV2601	22 03 2011	1 🝈
HMS	1			Godkjent a Rektor	·	Enstator 01.12 2008	M
	skrivelse av hovedaktivitet/hovedprosess: gaven rent teoretisk? (JA/NEI): NEI lering Dersom «JA»: Beskriv kort ektivitipteteh i kartleg				h H2S - effect of c noen aktivitete	old working and r som krever	product for
isikovurd lignatu	lering. Dersom «JA»: Beskriv kort aktiviteteten i kartlag				noen ektivitetei	r som krever	
	lering Dersom «JA»: Beskriv kort ektiviteteten i kertleg Irear: Ansvarlig veileder:	«JA» belyr & Igingskjemaet unde	It velleder innestår for at op r. Risikovurdering trenger li Student Etke isterende dok umentasjon Internal general HSE doca at DNV-GL Bergen	pgavan ikke inneholder kke å fylles ut.	h H2S - effect of ci noen aktiviteter Lov, forskrift	r som krever	product for Trentar
ilgnatu	Intern teolecisk (JANEI): NE Alexing Dersom «JA»: Beskriv kort ektiviteteten i kertieg Inter: Ansvarlig veileder: Us Julia Aktivitet/prosess	«JAb betyr e gdingskjernaet under - Svein Ollestad (user) - DNV-GL (equipment prov - Svein Ollestad (user) - DNV-GL (equipment prov	It velleder innestår for at op r. Risikovurdering trenger li Student Etke isterende dok umentasjon Internal general HSE doca at DNV-GL Bergen	pgaven ikke inneholder kke å tylies ut. Eksisterende sikringetiltak Training on sile by	noen ektivitetei	r som krever	

NTNU		Ularbeidel av	Nummer	Dato	
D	Risikovurdering	HMS-avd	HMSRV2601	22 03 2011	683
HMS		Godkjeni av		Erstatter	MIN
		Rektor		01,12 2006	1911

Dato: 03/02/2017

Enhet: IPM

Linjeleder: Roy Johnsen

Deltakere ved kartieggingen (m/ funksjon): Roy Johnsen (havedveileder), Svein Ollestad (student), Erik K. Sverre (Technical Manager Laboratory Facilities) (Ansv. Vallader, student, evt. medveiledere, evt. andre m. kompetanse) Risikovurderingen gjelder hovedaktivitet: Hydrogen Embrittement of 26Cr duplex steinless steel exposed to well fluid with H2S - effect of cold working and product form

	Aktivitet fra kartleggings- skjemaet	Mulig uønsket hendelse/ belastning	Vurdering av sannsyn- fighet	Vurdering	av ko	nsekven	8:	Risiko- Verdi (menn-	Kommentarer/status Forslag til tiltak
ID nr			(1-5)	Menneske (A-E)	Ytre miljø (A-E)	Øk/ materieil (A-E)	Om- dømme (A-E)	eske)	
1	Use of SEM	Damage to equipment	3	A	A	A	•		Follow instructions as given Take care when removing sample from chamber
2	Connection of equipment	Damage to equipment (o-rings) (or other sealing component)	3	A	A	A	A		Perform pressure test with leak detection to avoid that non-sealing equipment is used with H2S
2	Application of H2S atm	Leakage of H2S gas H2S is highly toxic and may lead to unconsciounces if sufficient H2S is in the atmosphere	1	E	8	B	D		No personell is given access to lab without sufficient training prior to work - use of gas alarm in room and on personell issues warning before concen- rations is to sign - vertilation and H2S scrubber to execute H2S atmosphere and "jet that sende H2S alarm system with SMS warning to rele- vant personell protective gear including rescape gas mesk", giowes, gewear, coat
2	Disconnection of H2S con- nection and removal of H2S gas	Leakage of H2S gas unconsiousness of personell	1	E	8	B	D		- Same as for "application of H2S" - flushing of test chamber with Nitrogen for at least 24 hours before opening

10.2			
Dato	22.03.2011	Erstatter	01.12.2006
Nummer	HMSRV2601		
Utarbeidet av	HMS-avd.	Godkjent av	Rektor
	Dieikowurdering		
-			

Sannsynlighet vurderes etter følgende kriterier:

Svært stor 5	Skjer ukentlig
Stor 4	1 gang pr måned eller sjeldnere
Middels 3	1 gang pr år eller sjeldnere
Liten 2	1 gang pr 10 år eller sjeldnere
Svært liten 1	1 gang pr 50 år eller sjeldnere

Konsekvens vurderes etter følgende kriterier:

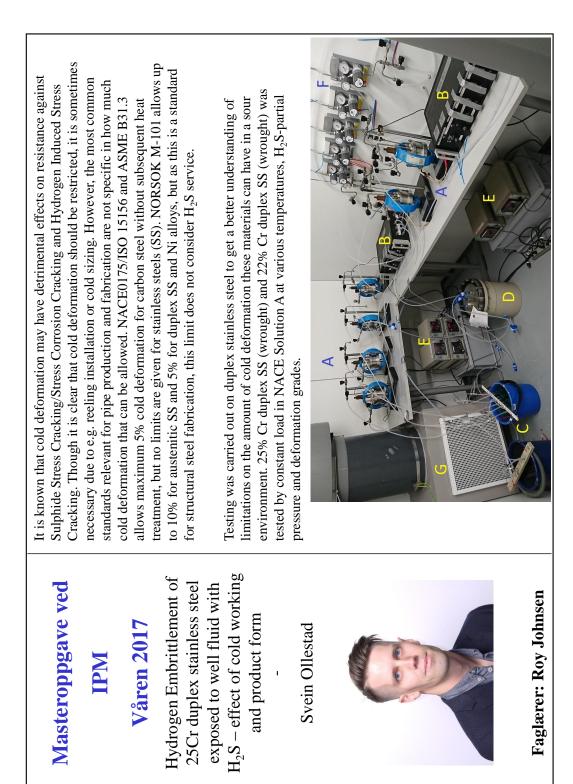
Gradering	Menneske	Ytre miljø Vann, jord og luft	Øk/materiell	Omdømme
E Svært Alvorlig	Død	Svært langvarig og ikke reversibel skade	Drifts- eller aktivitetsstans >1 år.	Troverdighet og respekt betydelig og varig svekket
D	Alvorlig personskade.	Langvarig skade. Lang	Driftsstans > ½ år	Troverdighet og respekt
Alvorlig	Mulig uførhet.	restitusjonstid	Aktivitetsstans i opp til 1 år	betydelig svekket
C Moderat	Alvorlig personskade.	Mindre skade og lang restitusjonstid	Drifts- eller aktivitetsstans < 1 mnd	Troverdighet og respekt svekket
B	Skade som krever medisinsk	Mindre skade og kort	Drifts- eller aktivitetsstans <	Negativ påvirkning på
Liten	behandling	restitusjonstid	1uke	troverdighet og respekt
A	Skade som krever førstehjelp	Ubetydelig skade og kort	Drifts- eller aktivitetsstans <	Liten påvirkning på troverdighet
Svært liten		restitusjonstid	1dag	og respekt

Risikoverdi = Sannsynlighet x Konsekvens Beregn risikoverdi for Menneske. Enheten vurderer selv om de i tillegg vil beregne risikoverdi for Ytre miljø, Økonomi/materiell og Omdømme. I så fall beregnes disse hver for seg.

Til kolonnen "Kommentarer/status, forslag til forebyggende og korrigerende tiltak": Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, dvs. sannsynlighetsreduserende tiltak foran skjerpet beredskap, dvs. konsekvensreduserende tiltak.

			_		- L.
NTNU		utarbeidet av	Nummer	Dato	
	Dicilomotrico	HMS-avd.	HMSRV2604	08.03.2010	
		godkjent av		Erstatter	
HMS/KS		Rektor		09.02.2010	

1


MATRISE FOR RISIKOVURDERINGER ved NTNU

	Svært alvorlig	E1	E2	E3	E4	E5
SNE	Alvorlig	D1	D2	D3	D4	D5
SEKA	Moderat	C1	C2	C3	C4	C5
KON	Liten	B1	B 2	B3	B4	B5
	Svært liten	A1	A2	A3	A4	A5
		Svært liten	Liten	Middels	Stor	Svært stor
			SAN	SANNSYNLIGHET	HET	

Prinsipp over akseptkriterium. Forklaring av fargene som er brukt i risikomatrisen.

Farge	Beskrivelse
Rød	Uakseptabel risiko. Tiltak skal gjennomføres for å redusere risikoen.
Gul	Vurderingsområde. Tiltak skal vurderes.
Grønn	Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn.

B Poster

\mathbf{C} Material Certificate - 22Cr

Acciaierie Valbruna s.p.A.

36100 VICENZA (Italia) - Viale della scienza, 25 z.i. Telefono 0444.968211 - Fax 0444.963836 Stab.: 39100 BOLZANO (Italia) - Via A. Volta, 4/37 Telefono 0471.924111 - Fax 0471.924497 Cliente / Besteller/Purchaser/Client

VALBRUNA NORDIC AB LOVARTSGATAN 7 65221 - KARLSTAD - SWEDEN - SE

Produttore : ACCIAIERIE VALBRUNA S.P.A. Hersteller/Item/Usine produtrice

Stato di fornitura : Hot rolled Descaled Annealed Hot rolled Les de livraison Lieferzustand / De Etat de livraison

Specifiche: Anforderungen / Requirements / Exigences

MS-RB-4462 9 1.4462/F51/60 A ASTM A182 2014A S32205 A (2) ASTM A479 2014 S31803 A ASTM G48 2011 METHOD A NACE MR0103 2010 S31803 A (0)Norsok-standard M-630 Edition 6, October 2013 (0)QTR $N^\circ 10$ for forged bars and $N^\circ 38$ for hot rolled bars. (1)to ASTM A479. (2)to ASTM A479. (3)Technical circular 1:2011 Published 2011-06-14 Qualità: S31803

Werkstoff/Grade/Nuance

AND BELLEVILLE	SADOT REPORT OF TRANSPORT	SANTI ROA
ISO 9001	AS 9100	ISO/TS 16949

CERTIFICATO DI COLLAUDO ABNAHMEPRUEFZEUGNIS **INSPECTION CERTIFICATE CERTIFICAT DE RECEPTION** EN 10204 (2004), 3.1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY LLOYD'S REGISTER

Avviso di Spedizione: Lieferanzeige/Packing list/B.L. D-VI15027802

Ordine nr: R31641 R31641 Your order Commande

MDS D47 5 S31803 A (0)

ASTM A276 2013A S31803 A

ASTM A479 2014 S32205 A

EN 10088-3 2005 1.4462 A

Tipo di Elaborazione: E+AOD elzungsart/Melting process/Mode d'elaboration

Certificato nr: MEST768512/2015/ Prüfung/Test/Es

MR

Conferma ordine nr: EI15000377 Werks/Our Order/Ref nr.

Marchio di Fabbrica:

Zeichen des Liefernwerkes Trade mark Sigle de l'usine produtrice

Punzone del Collaudatore: Stempel des Werkssachverständigen Inspector's stamp/Poinçon de l'assayeur

ASTM A182 2014A S31803 A (1) ASTM A276 2013A S32205 A ASTM E562 2005 EN 10272 2007 1.4462 A

NACE MR0175 2009 S31803 A (3) (0)Approval Norsok-standard M-650 Edition 4, September 2011 (1)For products machined directly from bar refer also (2)For products machined directly from bar refer also (3)ANSI/NACE MR0175/ISO 15156-3, second edition 2009-10-15

Marca: Markenbezeio Brand/Nuanco		MN			Tol. as request	ed			atura: S318 hnung/Marking								
Pos. nr. Item nr. Nr. de poste	Oggett Gegenstar Product descr Descrip. du pr	nd iption			nsioni - mm bmessungen Dimension Dimension			Ŭ	EZZA - MM Lange Length ongueur	Colata Schmelze Heat Coulée	Stū Pi	eces eces	Ge	o - KG wicht eight oids		Lotto n Losnr. Lot nr. Lot nr.	r.
0070	Roun	d			16,000			330	0/ 3300	42744	0			877,0	50	01604	210
	Test	on delive		dition Prüefung	g auf lieferbereit	tem produ	ukt t	est a l"eta	ORNITURA		obre el mate	erial asi	í come e	entrega	do		
	1) L=longitudinale/längs, T=trasversale/quer, Q=Tangenziale Provetta/Probestab Posiz: Spervamento Spervamento Resiste						-										
TEST	Provetta/Probestab Specimen/Eprouvette Larg.diam Spess. Breite Diam. Dicke Width Diam. Thickness	°C	Posiz. Saggio Probertage Location Emplacement	Snervamento Streckgrenze Yield Stress Limite elastique	Snervamento Streckgrenze Yield Stress Limite elastique	Resiste Zugfestigi Tensile stre Resistance á	keit ength traction			Strizione Einschnürung Reduction of area Striction		к	Resilienza Kerbschlagarbelt Impact Value Resilience KV		Durezza Haerte Hardness Durete HB		
	Utidth Diam. Thickness Emplacament Rp 0,2% Rn arm mm ¹⁾ N/mm2 N/mm2							A5 %		Z %			J HB				
Valo						660)	25	-	-	-		100	-			
Anfonderur Valer						860)									270	
A	Viscul Commerces					768	}	38		81		264	269	265	258		
				Test	On Delivering	Conditio	on										
Test on	delivery conditior	n / Prüef	ung auf	lieferbereitem p	rodukt / Test a l'	'etat de fo	ournitu	ire / Prueb	a sobre el ma	aterial así con	e entregad	b					
TEST	, , ,						n	nin	max								
A	A HRc								28,0	23,6							
	TEST ALLO STATO DI FORM						TUR	A									
Test on	delivery conditior	n / Prüef	ung auf	lieferbereitem p	rodukt / Test a l'	'etat de fo	ournitu	ire / Prueb	a sobre el ma	aterial así con	e entregad	р					
TEST							n	nin	max								
A	Delta Ferrite						3	5,0	55,0	48,0) %						

Vicenza, 28/10/15	Il collaudatore di stabilimento / der Werkssachverständige / Works inspector / L'agent d'usine M.Rizzotto / Ludu	Pagina - 1 di 4
(Mod. MCE2) WSP8888EFBFD184447A88B4AAAASE545455	MI.RIZZOUDU	

Acciaierie Valbruna _{S.p.A.}

Produttore : ACCIAIERIE VALBRUNA S.P.A.

Stato di fornitura : Hot rolled Descaled Annealed Hot rolled Lieferzustand/Delivery state rolled

QUALITY MANAGEMENT SYSTEM CERTIFIED BY LLOYD'S REGISTER

Avviso di Spedizione: Lieferanzeige/Packing list/B.L. D-VI15027802

Ordine nr: R31641 R31641 Bestell Your order Commande

Tipo di Elaborazione: E+AOD Erschmelzungsart/Melting process/Mode d'elaboration CERTIFICATO DI COLLAUDO ABNAHMEPRUEFZEUGNIS INSPECTION CERTIFICATE CERTIFICAT DE RECEPTION EN 10204 (2004), 3.1

Certificato nr: MEST768512/2015/ Prüfung/Test/Essai

Conferma ordine nr: EI15000377 Werks/Our Order/Ref nr.

Zeichen des Liefernwerkes Trade mark Sigle de l'usine produtrice Punzone del Collaudatore: Stempel des Werkssachverständigen Inspector's stamp/Poirçon de l'assayeur

Marchio di Fabbrica:

MR

							•									
			1) L	=longitudinale/längs, 1	=trasversale/quer, Q=	Tangenziale/tan	gential									
TEST	Provetta/ Probestab SpecimervEprouvette Larg.diam Spess. Breite Diam. Dicke Width Diam. Thickness Larg. diam. epais mm	°C	Posiz. Saggio Probentage Location Emplacement		Resilienza Kerbschlagarbelt Impact Value Resilience KV J			Es	pansior Lateral E	ixpansion			She she			
Anfonder	Ori richiesti ungen/Required values eurs démandées	m ma		45	45	45	-			-	-	-		-	-	
В	10X10	-46	L	235	238	262										
			1)1	=longitudinale/längs]	r=trasversale/quer, Q=		lelivery co	ondition	ı							
TEST	Provetta/Probestab Specimen/Eprouvette Larg.diam Spess. Breite Diam. Dicke Width Diam. Thickness Larg. diam. epais mm	°C	Posiz. Saggio Probentage Location Emplacement	Snervamento Streckgrenze Yield Stress Limite elastique Rp 0,2% N/mm2	Streckgrenze Yield Stress Limite elastique	Resistenza Zugfestigkeit Tensile strength Resistance å tracti Rm N/mm2	a Allu	Ingame Bruchdehnung Elongation Allongement	3	Striz Einsch Reductio Stric	nürung n of area	Resilien Kerbschlaga Impact Val Resilienc	belt		Haerte Hardness Durete HB	I
Anfonder	ori richiesti ungen/Required values eurs démandées	mi ma		485	-	660 860	-		25	-	45	-			- 270	
D	12,5	20	L	655		789			39		78			260		
				Tes	st on delivery (condition										
TEST							min	ma	ax							
D	HRc							28	,0	23	,4	7				

		Corrosion test per A	ASTM G48 I	method A [2	5C/24h]					
	Corrosion test per ASTM G48 method A [25C/24h]									
TEST			min	max						
В	Weight loss			4,0000	0,1800 g/m2					

Ferrite content tested according to ASTM E562.

Analisi chimica

					Chemi	SCIIC Zusainine	insetzung/Chen	lical Allalysis/A	nalyse chimique	-					
	min 31,0	-	-	-	22,00	3,00	-	4,50	-	-	-	0,150	-	-	
Schmelze/Coulée	max 38,0	0,030	1,00	2,00	23,00	3,50	-	6,50	-	0,030	0,015	0,200	-	-	-
	PRE	C %	Si %	Mn %	Cr %	Mo %	Cu %	Ni %	W %	Р%	S %	N %			
427440	35,3	0,021	0,41	1,50	22,24	3,12	0,38	5,72	0,051	0,030	0,003	0,168			

Material is free from intermetallic phases and precipitates

examined at 500x magnification.

Corrosion test per ASTM G48 PRACTICE A(25C/24hrs):

no pitting at 20x magnification.

Annealing temperature 1080°C for 1 h/water cooling.

I.Korrosion nach EN ISO 3651-2A Sensibilisierung : T1 : OK

Vicenza, 28/10/15	Il collaudatore di stabilimento / der Werkssachverständige / Works inspector / L'agent d'usine M.Rizzotter fruger	Pagina - 2 di 4
(Mod. MCE2) WSP8888EFBF0184447A598AAAAA3E545455	W.Rizzottow	

Acciaierie Valbruna _{s.p.A.}

36100 VICENZA (Italia) - Viale della scienza, 25 z.i. Telefono 0444.968211 - Fax 0444.963336 Stab.: 39100 BOLZANO (Italia) - Via A. Volta, 4/37 Telefono 0471.924111 - Fax 0471.924497 Cliente / Besteller/Purchaser/Client VALBRUNA NORDIC AB LOVARTSGATAN 7 65221 - KARLSTAD - SWEDEN - SE

Produttore : ACCIAIERIE VALBRUNA S.P.A. Hersteller/Item/Usine produtrice

Stato di fornitura : Hot rolled Descaled Annealed Hot Lieferzustand / Delivery state Etat de livraison Folled

Corrosion test per EN ISO 3651-2A sensitized T1 : OK Reduction ratio = 111,4 : 1

Allegati / Anlagen / Enclosure / Attachments :

ME15000780

Sono state soddisfatte tutte le condizioni richieste Die gestellen Anforderungen sind it. Anlage erfüllt The material has been furnished in accordance with the requirements Le material acté trouvé conforme aux exigences Controllo antimescolanza: OK Verwechslungprüfung: spectralanalytisch durchgeführt Antimixing testing performed: OK Controle antimelange fait: r.a.s.

Melted and manufactured in Italy No welding or weld repair Material free from Mercury contamination

We declare that the finished product is checked for radioactive contamination through Portal System when it leaves the production plant.

The Quality Management System is Certified acc. Pressure Equipment Directive '97/23/EC' Annex 1,s.,4.3 by TUEV and LLOYD'S Any act of tampering, modification, alteration, counterfeiting and/or falsification and/or any other action which modifies the contents of this test certificate shall constitute a violation of applicable civil and criminal laws. Acciaierie Valbruna shall protect its rights and interests before any competent court, authority and jurisdiction.

Maxival and/or Valplus grades/products are manufactured with ladle techniques to control composition, distribution, size and shape of non-metallic inclusions for improved machinability.

The supplied product conforms to requirements expressly requested by the purchaser and conforms to requirements specified by certified norms and standards. Should the product be used for more severe, critical and/ or in any case different applications than those the material is generally intended for, any different and/or supplementary requirements shall be specifically demanded, at least, upon order of the Product by the Purchaser. Acciaierie Valbruna SpA shall not be responsible for any improper use of the Products.

CERTIFICATO DI COLLAUDO ABNAHMEPRUEFZEUGNIS INSPECTION CERTIFICATE CERTIFICAT DE RECEPTION EN 10204 (2004) . 3.1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY LLOYD'S REGISTER

Lieferanzeige/Packing list/B.L. D-VI15027802

zungsart/Melting process/Mode d'elaboration

Ordine nr: R31641 R31641

Tipo di Elaborazione: E+AOD

Avviso di Spedizione:

Bestell Your order Commande ISO/TS 16949

Certificato nr: MEST768512/2015/ Prüfung/Test/Essai

Conferma ordine nr: EI15000377 Werks/Our Order/Ref nr.

Marchio di Fabbrica: Zeichen des Liefernwerkes Trade mark Sigle de l'usine produtrice

Punzone del Collaudatore: Stempel des Werkssachverständigen Inspector's stamp/Poinçon de l'assayeur

Controllo visivo e dimensionale: soddisfa le esigenze

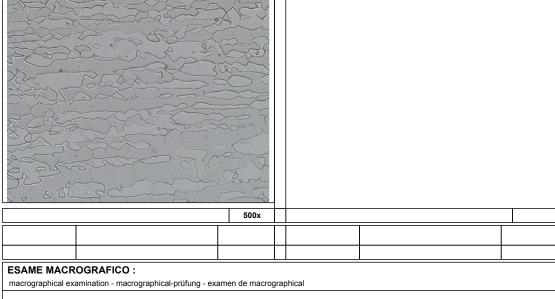
Besichtiguñg und Ausmessung: ohne Beanstandung Visual inspection and dimensional checks:satisfactory

Contrôle visuel et dimensions: satisfaisant

MR

 Vicenza, 28/10/15
 Il collaudatore di stabilimento / der Werkssachverständige / Works inspector / L'agent d'usine

 VCQ008
 M.Rizzottol


Acciaierie Valbruna s.p.A.

36100 VICENZA (Italia) - Viale della scienza, 25 z.i. Stab.: 39100 BOLZANO (Italia) - Via A. Volta, 4 CERTIFICATO Certificate - Zeugnis - Certificat N° ME15000780 Pag 4 di 4

ESAME METALLOGRAFICO

Metallographic examination - Mikroschliff Prüfung - Metallographic

Secondo : According to - Na	ach - Selon								
Cliente : VAI	BRUNA NORD	IC AB			Conferma : E	EI15000377/0070	/001		
Customer - Best	eller - Client				Confirmation - Be	estätigung - Confirma	tion		
MARCA	DIME	INSIONI	COLATA	BARRE	PESO	LUNGH	EZZA		
Grade Qualităt Nuance	Abme	Size essungen iensions	Heat Schmelze Coulèe	Bars Stäbe Barres	Weight Gewicht Poids	Length Länge Longueur			
V225MN	Round	Round 16,000 KG		Round 16,000 KG 42			KG : 877,0	3300 :	
Т. ТЕ	RMICO	ESECUZIONE		Condizion	i Superficiali	TOLLE	RANZA		
Wärmel	eatement behandlung ermique	Condition Ausführung Execution		Obe	urface erfläche Conditions	Tolerance Toleranz Tolerance			
Anı	nealed	Hot rolled		De	scaled	Tol. as requested			

NOME P.Ramina	COLLAUDATORE
Name - Nom	Inspector - Abnahmesachsverst -
DATA : 21/10/15	Inspecteur
Date - Date Pariero Polo	
FIRMA	

D Material Certificate - 25Cr

							Seite Page	1 /2									
											X	B	GI	-			
										BGł	l Ede	Istal	hl Fr	eital (Gmb	рΗ	
				m Stahlwerk 1	01705 Freita	L.				Zeugni Certific	ate no.	409	989				
2	overdr	up Ste	el A/S							Besche Certifica	ate of mate	rial test	s accord	ung nach I ing to DIN	EN 102	204 31	
5	Strand	sving	en 2							Die Lief Deliver	ferung ents y in accord	pricht d ance wi	en verei th the ag	x selon DIM nbarten Lie reed terms	eferbed s of del	0204 ingungen.	
	l032 S Norweg		ger							Zeicher Trade n	n des Liefe	werkes	Stem Inspe		erkssac	hverständig	
Kunden-B Customer Cde. no. c	oraci no.	81463	3			BGH-Auftrags-Nr. BGH works no. BGH référence	34835	301/193	3706	X	3			BGH Q40			
Erzeugnisfo Product	•		und, ges bars, pe														
Verkstoff /																	
Anforderun Requireme	gen D nts U)ocN JNS S	o. 43.20 32750	0.027 Re ASTM A	276 - 13a	1											
	U	JNS S	32750		< M 630 E	Edition 6 10/											
						0 57 Rev. 5 SO15156-3 :		ir.1:201	1								
				TR 2000 NiMoN 25		DS: D35 Re	v. G 02/	07									
	D	GRL	97/23/E	G Anhang		rch NOBO 0	036										
						40014		1 2	~ .		-				2		
_				750) AST Eigenscha		182M - aktu		gabe (n	ur Ch	emisch	e Zusa	mme	nsetzi	ung und	b		
_	n G	nechai Sefertig	nische E gt nach	igenscha QTR_F_E	ften) 5_32750 r	nach Norsok	elle Aus			emisch	e Zusa	mme	nsetzi	ung und	d		
_	n G P	efertig ED 97	hische E gt nach 7/23/EG	igenscha QTR_F_E Annex I,	ften) 5_32750 r 4.3 by NC		elle Aus M-650 I	Edition 4	1					Ū		nly)	
Besichtig	n G P F	nechar Sefertig PED 97 53 (UI Manufa	nische E gt nach 7/23/EG NS S32 actured a	igenscha QTR_F_E Annex I, 750) ASTI	ften) 32750 r 4.3 by NC M A182/A TR_F_E_3	nach Norsok 0BO 0036 182M - Lat. 32750 acc. to	elle Aus M-650 I Rev. (Cl o Norsol	Edition 4	1 Comp	positior		echa	nical	propert	ies o	.,	b)
Inspection Inspection	rr G P F M ung und M n and dime n et contré	Anechar Sefertig PED 97 53 (UI Manufa Maßnachp ensional Sile de din	nische E gt nach 7/23/EG NS S32 nctured a prüfung control	igenscha QTR_F_E Annex I, 750) ASTI	ften) _32750 r 4.3 by NC M A182/A <u>R_F_E_</u> Er M	nach Norsok)BO 0036 \182M - Lat.	elle Aus M-650 I Rev. (Cl o Norsol	Edition 4 hemical (M-650	1 Comp	positior		echa Ver Ide exa	nical wechslu ntificatio	propert	ies o g (spec ctral-ar cation(a	troanalytisc nalysis) analyse spe	
Inspection Inspection Ohne with	m G F M ung und M n and dim n at contro Bear Out c	nechai Sefertig PED 97 53 (UI Maßnachp ensional bie de din instar objec	nische E gt nach 7/23/EG NS S32 actured a prüfung control nension ndung ction	Eigenscha QTR_F_E Annex I, 750) ASTI acc. to QT	ften) _32750 r 4.3 by NC M A182/A <u>R_F_E_</u> Er M	nach Norsok DBO 0036 182M - Lat. 32750 acc. to schmelzung/Nach eltingprocess/seco ode d'élaboration/	elle Aus M-650 I Rev. (Cl o Norsol	Edition 4 hemical (M-650	1 Comp	positior		Ver Ide exa Ol	nical wechslu ntificatio mination nne itho	propert ngsprüfung n test (spe n d' identific	ies o g (spec ctral-ar cation(a t a n	troanalytisc nalysis) analyse spe dung	
Inspection Inspection Ohne with Pos. Item	rr P F M ung und M n and dim n et contro Bear	nechai Geferti PED 97 53 (UI Manufa Maßnachp ensional ble de din histar object hi	nische E gt nach 7/23/EG NS S32 Ictured a prüfung control nension ndung	Eigenscha QTR_F_E Annex I, 750) ASTI acc. to QT	ften) _32750 r 4.3 by NC M A182/A <u>R_F_E_</u> Er M	nach Norsok DBO 0036 182M - Lat. 32750 acc. to schmelzung/Nach eltingprocess/seco ode d'élaboration/	elle Aus M-650 I Rev. (Cl o Norsol	Edition 4 hemical (M-650	1 Comp	positior	and m	Ver Ide exa	nical wechslu ntificatio minatior hne itho t	propert ngsprüfung n test (spe n d' identific Beans ut ob	ies o g (spec ctral-ar cation(a t a n	troanalytisc nalysis) analyse spe dung tion	
Inspection Inspection ohne with Pos. Item 1	m G P F M ung und M n and dim n et contro Bear Out c Anza	nechai Geferti PED 97 53 (UI Manufa Maßnachp ensional ble de din histar object hi	Abmessur	Eigenscha QTR_F_E Annex I, 750) ASTI acc. to QT	ften) _32750 r 4.3 by NC M A182/A <u>R_F_E_</u> Er M	nach Norsok DBO 0036 182M - Lat. 32750 acc. to schmelzung/Nach eltingprocess/seco ode d'élaboration/	elle Aus M-650 I Rev. (Cl o Norsol	Edition 4 hemical (M-650	1 Comp	positior	and m	Ver Ide exa Ol W: Gewich	nical wechslu ntificatio minatior hne itho t	propert ngsprüfung n test (spe n d' identific Beans ut ob	ies o g (spec ctral-ar cation(a tan ojec	troanalytisc nalysis) analyse spe dung tion Nr.	
Inspection Inspection Ohne with Pos. Item 1 Schmelze Heat %	m G P F M ung und M n and dimm n and dimm Bear Out C Anza Quan Bd. C	hechai Sefertiç PED 97 53 (Ul Manufa Maßnachp ensional ble de din instar objec	hische E gt nach 7/23/EG NS S32 cctured a müfung control nension dung ction Abmessur Dimensior 16,00 F Si	Eigenscha QTR_F_E Annex I, 750) AST acc. to QT	ften) = 32750 r 4.3 by NC M A182/A R_F_E_: E E P	nach Norsok DBO 0036 182M - Lat. 32750 acc. tr schmeizung/Nach Hingprocess/sec ode d'elaboration// - VOD	elle Aus M-650 I Rev. (Cl Donorsol Dehandlung ndary refinit rraitement ul	Edition 4 hemical (M-650 ng térieur	t Comp Editio	Ni	and m	Ver Ide exa Ol W Gewich Weight	nical ntificatio mination nne itho t k N	propert ngsprüfung n test (spe o d'identifie Beans ut ob He g 3	ies o g (spec ctral-ar cation(a t a n ojec shmelz- aat-No. 38847 PRE	troanalytisc nalysis) analyse spe dung tion Nr. 75	
Inspection Inspection Ohne With Pos. Item 1 Schmelze Heat %	m G P F M Mung und M n and dim n et contro Bear Out c Anza Quan Bd. C 5 0,	nechai Sefertig PED 97 53 (UI Manufa Maßnachpensional ble de dim Instar obbjec hil hilty 024	hische E gt nach 7/23/EG NS S32 ictured a röfung control hension dung ction Abmessur Dimensior 16,00 F Si 0,25	Eigenscha QTR_F_E Annex I, 750) AST acc. to QT RD Mn 0, 80	ften) <u>2</u> 32750 r <u>4.3 by NC</u> M A182/A <u>R_F_E_</u> <u>F</u> <u>F</u> <u>F</u> <u>F</u> <u>F</u> <u>F</u> <u>F</u> <u>F</u>	nach Norsok DBO 0036 .182M - Lat. 32750 acc. tr schmelzung/Nach ellingprocess/seco doe d'elaboration// - VOD S 0,0006	elle Aus M-650 I Rev. (Cl o Norsol Dehandlung ndary refnir rraitement ul	Edition 4 hemical (M-650 ng térieur	t Comp Editio	positior on 4	and m	Ver Ide exa Ol W Gewich Weight	nical wechslu ntificatio iminatior nne itho t k	propert ngsprüfung n test (spe o d'identifie Beans ut ob He g 3	ies o g (spec ctral-ar cation(a t a n ojec shmelz- aat-No.	troanalytisc nalysis) analyse spe dung tion Nr. 75	
Inspection Inspection ohne with Pos. Item 1 Schmelze Heat % 388475 Wärmebelt Condition	m G P F M ung und M n and dimm n et contro Bear Quar Bd. C 5 0, nandlungs of heat tree	nechai Sefertig PED 97 53 (UI Manufa Maßnachgensional bie de din 1star objec hli htity 024 zustand eat	hische E gt nach 7/23/EG NS S32 actured a röfung control nension ndung stion Abmessur Dimensior 16,00 F Si 0,25 Iösung solutio	Eigenscha QTR_F_E Annex I, 750) ASTI acc. to QT RD Mn 0, 80 Sgeglüht n anneale	ften) <u></u>	nach Norsok DBO 0036 182M - Lat. 32750 acc. tr schmeizung/Nach Hingprocess/sec ode d'elaboration// - VOD	elle Aus M-650 I Rev. (Cl Donorsol Dehandlung ndary refinit rraitement ul	Edition 4 hemical (M-650 ng térieur	t Comp Editio	Ni	and m	Ver Ide exa Ol W Gewich Weight	nical ntificatio mination nne itho t k N	propert ngsprüfung n test (spe o d'identifie Beans ut ob He g 3	ies o g (spec ctral-ar cation(a t a n ojec shmelz- aat-No. 38847 PRE	troanalytisc nalysis) analyse spe dung tion Nr. 75	
Inspection Inspection ohne with Pos. Item 1 Schmelze Heat % 388475 Wärmeber Condition Traitment	m G P F M ung und M h and dim n et contro Bear Out C Anza Quar Bd. C 5 0, nandlungs of heat tre	nechal Sefertig PED 97 53 (UI Manufa Maßnachgensional ble de din Instar obbjec Inl ntity 024 zustand sat	hische E gt nach 7/23/EG NS S32 octured a röfung control nension dung ction 16,00 f Si 0,25 lösung solutio 1127°C	RP0, 2	ften) <u></u>	Anach Norsok DBO 0036 182M - Lat. 32750 acc. tr schmelzung/Nach Unigprocess/seco ode d'élaboration// - VOD S 0,0006 STM A182 er (<260°C)	elle Aus M-650 I Rev. (Clo Do Norsol- behandlung ndary refinit rraitement ul Cr 25, ;	Edition 4 hemical (M-650 ng térieur	t Comp Editic	Ni Kerbs	and m	echa Ver Ide exa Ot Weight Gewich 616 .9	nical weekslu http://weekslu itho t N 0,27 Probenf Shape c	propert ngsprüfung n test (spe n test (spe d 'dentified Beans ut ob g 3 50 4 50 4	ies o g (spec ctral-ar cation(a t an)jec chmelz- sat-No. 88841 PRE 12,2	troanalytisc nalysis) analyse spe dung tion Nr. 75 257 ärte ardness	
Inspection Inspection ohne with Pos. tem 1 Schmelze teat % 388475 Wärmeber Condition Traitment robe- est-N	n G P F M Ung und M Bear out c Anza Quar Bd. C C 5 0, 1 , s of heat tre thermique Nr. o.	Lage	hische E gt nach 7/23/EG NS S32 octured a röfung control nension ddung ction Abmessur Dimensior 16,00 f Si 0,25 lösung solutio 1127°C	RD RD RD RD RD RD RD RD RD RD RD RD RD R	ften) <u></u>	Anach Norsok DBO 0036 182M - Lat. 32750 acc. to schmelzung/Nach Unigprocess/seco odd d'élaboration// - VOD S 0,0006 STM A182 er (<260°C) Rm N/m	elle Aus M-650 I Rev. (Clo Do Norsol- behandlung ndary refinit rraitement ul Cr 25, ; mr ²	Edition 4 hemical (M-650 ng terieur M 35 3, A4 %	t Comp Editic	Ni 6,90	a and m	echa Ver Ide exa Ot Weight Gewich 616 .9	nical wechsluk ntificatio nne i tho t N 0,27	propert ngsprüfunn n test (spe n d' identifi Beans ut ob He g 3 50 4	ies o g (spec ctral-ar cation(a t an)jec chmelz- sat-No. 88841 PRE 12,2	irroanalytisc halysis) dung tion Nr. 75	
Inspection Inspection ohne with Pos. Item I Schmelze Heat % Wärmeber Condition Traitment Condition Traitment Condition Condition Schulzre	n G P F N N F M S S O C C C C C C C C C C C C C C C C C	nechal Seferije PED 97 53 (UM Alaßnechyster Statument De de did net statument De de de de did net statument De de de de de did net statument De de de de did net statument De de de de de de did net statument De de	hische E gt nach 7/23/EG NS S32 cottred a röfung control nension dung ction Abmessur Dimensior 16,00 F Si 0,25 lösung solutio 1127°C Temp. °C	Eigenscha QTR_F_E Annex I, 750) ASTT acc. to QT acc. to QT RD Mn 0, 80 Sgeglüht n anneale C 87" Was Rp0, 2 N/mm ² >=550	ften) <u></u>	Anach Norsok DBO 0036 182M - Lat. 32750 acc. to schmeizung/Nach Hilingprocess/seco ode d'elaboration// - VOD S 0,0006 SSTM A182 er (<260°C) Rm N/m >=8	elle Aus M-650 I Rev. (Clo Norsol- behandlung ndary refinit rraitement ul Crr 25, 2 mr ² 00	Edition 4 hemical (M-650 ng térieur M 35 3, 35 3,	4 Comp Editio	Ni 6,90	a and m	Ver Ide exc Of Weight 616 - 9	nical wechslu htificatio i tho t k N 0,27 Probenf Shape c Charpy-	propert ngspröfung nest (spe d'identific Beans ut ob g 3 50 4 550 4 550 4	ies o g (spec ctral-ar action(a t an ojec thmelz- sat-No. 88847 PRE 12,2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	troanalytisc analysis) analysis) analyse spe dung tion Nr. 75 257 257 257 257 257 257 257 257 257	
Inspection Inspection ohne with Pos. Item 1 388475 Warmeber Condition Traitment Probe- est-N Soll/R	n G P F N N Bear Bear Anza Quar BBd. C 5 5 0, nandlungs Bd. C N r. o. c	nechal Seferij PED 97 53 (Ul Manufz Ataßnechych Distar Dbjecchi Lage Lage Lage Lage L	hische E gt nach 7/23/EG NS S32 cotured a röfung control nension dung ction Abmessur Dimension 16,00 F Si 0,25 Iösung solutio 1127° Temp. °C RT RT	RP0,2 N/mm ² S50 Strain Strain Strai	ften) _32750 r 4.3 by NC R_F_E_C F B C 0, 024 gemäß A ed sser/ wate	nach Norsok DBO 0036 182M - Lat. 32750 acc. to schmelzung/Nach Hilingprocess/sec odd d'elaboration// - VOD S 0,0006 ASTM A182 or (<260°C) Rm N/m >=8 870	elle Aus M-650 I Rev. (Clo Norsol- behandlung ndary refinir rraitement ul Cr 25, 2 00	Edition 4 hemical (M-650 ng terieur M 35 3, 35 3, 24 % >=25 43	4 Comp Editio	Ni 6,90 kerbs J 323	a and m	Ver Ide exc Of Weight 616 - 9	nical weekslu http://weekslu itho t N 0,27 Probenf Shape c	propert ngsprüfunn n test (spe n d' identifi Beans ut ob He g 3 50 4	ies o g (spec ctral-ar action(a t an ojec thmelz- sat-No. 88847 PRE 12,2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	irroanalytisc aalaysis) analyse spe dung tion Nr. 75 257 ärte ardness RC	
Inspection Inspection Inspection Ohne with Pos. tem 1 Sase Condition Traitment Traitment Traitment Soll/R Soll/R Soll/R	n G P P F N M Bear C C C C C C C C C C C C C C C C C C C	nechal Seferije PED 97 53 (UM Alaßnechyster Statument De de did net statument De de de de did net statument De de de de de did net statument De de de de did net statument De de de de de de did net statument De de	hische E gt nach 7/23/EG NS S32 control tension dung ction Abmessur Dimensior 16,00 F Si 0,25 lösung solutio 1127°C Temp. °C RT RT mp 1a	Annex I, 750) ASTT ACC to QT Annex I, 750) ASTT ACC to QT ACC to QT ACC to QT ACC ACC ACC ACC ACC ACC ACC ACC ACC AC	ften) _32750 r 4.3 by NC/ R_F_E_C F P 0,024 gemäß A ad sser/ wate reitung	nach Norsok DBO 0036 ,182M - Lat. 32750 acc. tr schmeizurg/Nach Hillingprocess/seco odd d'elaboration// - VOD S 0,0006 SSTM A182 er (<260°C) Rm N/m >=8 870 870	elle Aus M-650 I Rev. (Clo Norsol- behandlung ndary refinir raitement ul Cr 25, 2 00 cherb:	Edition 4 hemical (M-650 ng térieur M 35 3, 35 3, 24 % >=25 43 ruchar	4 Comp Editic	Ni 6,90 kerbs J 323	a and m	Ver Ide exc Of Weight 616 .9	nical wechslu htificatio i tho t k N 0,27 Probenf Shape c Charpy-	propert ngspröfung nest (spe d'identific Beans ut ob g 3 50 4 550 4 550 4	ies o g (spec ctral-ar action(a t an ojec thmelz- sat-No. 88847 PRE 12,2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	troanalytisc analysis) analysis) analyse spe dung tion Nr. 75 257 257 257 257 257 257 257 257 257	
Inspection Inspection Inspection Name Name Inspection I	n G P P F M Mung und k and diministry Bear out c Anzar Bed. C C 5 0, nandlungs of heat tre thermique Nr. No	nechal Seferije PED 97 53 (UM Alaßnechyster Star Dbjece nil tity 0224 zustand bat Lage loc. L L Ten Ten	hische E gt nach 7/23/EG NS S32 control tension dung ction Abmessur Dimensior 16,00 F Si 0,25 lösung solution 1127°C Temp. °C RT RT mp 12 C	Annex I, 750) ASTT ACC to QT Annex I, 750) ASTT ACC to QT ACC TO Q	ften) _32750 r 4.3 by NC/ R_F_E_C F P 0,024 gemäß A ad sser/ wate reitung	nach Norsok DBO 0036 182M - Lat. 32750 acc. tr schmeizung/Nach- lingprocess/seco odd d'elaboration/ – VOD – VOD – VOD – VOD – VOD – S – S – 0,0006 STM A182 – (<260°C) – Rm – N/m – S – 8 – 870 – mm S on	elle Aus M-650 I Rev. (Clo Norsol- behandlung ndary refinir rraitement ul Cr 25, 2 00	Edition 4 hemical (M-650 ng terieur M 35 3, 35 3, 24 k >=25 43 ruchar fract	4 Comp Editic	Ni 6,90 npac J >=45 npac J npac	chlagarbe 348	Ver Ide exa ot Weight 616 9	nical ntificatio inne i tho t N 0,27 Probenf Shape c charpy-	propert ngspröfung nest (spe d'identific Beans ut ob g 3 50 4 550 4 550 4	ies o g (spec ctral-ar- cation(i t t an ojec y hmelz- sat-No. 88847 PRE 42,2 42,2 42,2 42,2 42,2 42,2 42,2 42,	troanalytisc analysis) analysis) analyse spe dung tion Nr. 75 257 257 257 257 257 257 257 257 257	
Inspection Inspection Inspection Inspection Inspection Pos. Item 1 Schmelze Heat % Warmeber Condition Traitment II Probe- Cest-N Soll/R D30HV1 Prob- Test- 030HV Ferti	n G P P F N Mung und M B B C C C C C C C C C C C C C C C C C	nechal Seferije PED 97 53 (UM Alaßnechyster Statument De de din stat De de de din stat De de de din stat De de de de din stat De de de de de din stat De de de de de de de de din stat De de	hische E gt nach 7/23/EG NS S32 control tension dung ction Abmessur Dimensior 16,00 F Si 0,25 Iösung solutio 1127°C Temp. °C RT RT mp 12 C 6 h QM-3	Annex I, 750) ASTI acc. to QT Annex I, 750) ASTI acc. to QT Mn 0,80 Sgeglüht n anneale C 87" Was Rp0,2 N/mm ² >=550 668 ater.Br later.e 2,1 2 System	ften) _32750 r 4.3 by NC/ A.3 by NC/ R_F_E_: P 0,024 gemäß A d sser/ wate p ceitung expansi 2,2 2,	nach Norsok DBO 0036 182M - Lat. 32750 acc. tr schmeizung/Nach- lingprocess/seco odd d'elaboration/ – VOD – VOD – VOD – VOD – VOD – S – S – 0,0006 STM A182 – (<260°C) – Rm – N/m – S – 8 – 870 – mm S on	elle Aus M-650 I Rev. (Cl D Norsol- Dehandlung ndary refinit raitement ul Cr 25, 2 mr ² 00 cherb: shear 100 / QM s	A4 A A4 A A4 A4 A4 A4 A4 A4 A4	4 Comr Editic 0 .79 8 8 81 111. 5 5 ure 100	Ni 6,90 npac na na na na na na na 	chlagarbe 348	echa Ver Ide exc of Weight 616 .9 .9	nical weetheld	propert ngsprüfung n test (spe a 'dentifie Beans ut ob g 3 50 4 50 4	ies o g (spec tralar sation(i tan jec thmelz- sat-No. 88847 PRE 42,2 42,2 42,2 42,2 42,2 42,2 42,2 42,	irroanalytisc analysis) analyse spe dung tion Nr. 75 257 257 ärte ardness RC =32 8	
Inspection Inspection	n G P P F N N Bear C Anza Quar Bd. C C 5 0, andlungs Bd. C C S 0, andlungs Bd. Nr. o. eq. Nr No C U US-Prc	nechal Seferij PED 97 53 (Ul Manufz Alaßnachys Dbjec Dbjec Dbjec Dbjec Dlac L L L L Tel o o -4 nac	hische E gt nach 7/23/EG NS S32 cotured a röfung control rension adung ction Abmessur Dimension 16,00 f Si 0,25 lösung solutio 1127°C Temp. °C RT RT RT h QM-5 UT report	RD RD RD RD RD RD RD RD RD RD	ften) 32750 r 4.3 by NG R_F_E. F MM M E 0,024 gemäß A ad gemäß A ad sser/ wate citung sxpansi 2,2 2, ISO 90 Compositionen (Composition) (nach Norsok DBO 0036 .182M - Lat. 32750 acc. tr schmeizung/Nachi ellingprocess/seco odd d'elaboration/ – VOD S 0,0006 STM A182 er (<260°C) Rr 870 - 870 - 870 - 33	elle Aus M-650 I Rev. (C D Norsol Dehandlung nodary refinit raitement ul Cr 25, 1 00 cherb: shear 100	A4 % A4 % >=25 43 ruchar fract 100 system date e	4 Comr Editic 0 .79 8 8 81 111. 5 5 ure 100	Ni 6,90 npac na na na na na na na 	chlagarbe 348	echa Ver Ide exc of Weight 616 .9 .9	nical y wechslut ii tho i tho 0,27 Probenf Shape o Charpy-	propert ngsprüfung n test (spe a 'dentifie Beans ut ob g 3 50 4 50 4	ies o g (spec ctral-ar cation() j e c ation() 38841 PRE 42,2 42,2 42,2 42,2 42,2 42,2 42,2 42,	troanalytisc analysis) analysis) analyse spe dung tion Nr. 75 257 257 257 257 257 257 257 257 257	

<image/> <text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text>		Seite 2 / 2		
BOH Edulatif Faulti GmbH An Stathewst 1 0705 Field Zeugnis-M: 409989 Sverdrup Steel A/S Backeningung der Weisstaffrühung and Din KN 10204 Certificate no. Manuel State State Beschningung der Weisstaffrühung and Din KN 10204 Certificate no. 4032 Stavanger Norwegan Certificate so. Beschningung der Weisstaffrühung and Din KN 10204 Certificate no. Kunden-Gestäffer, 814633 EGH-Auftrags-N: 34835301/193706 Die Weisstaffrühung entgericht der Weisstachweistangen Tagen auf die Weisstachweistangen State auf die Weisstachweistangen Tagen auf die Weisstachweisstangen Tagen auf die Weisstachweistangen Tagen auf die Weisstangen Tagen auf die Weisstaffrüht die Weisstaffrüht die Weisstachweisigen zu Profitung: 30 Felder/16 Punkt (30 fields of 16 points) KorrosTest ASTM G48 Meth.A: 50°C/24h: kein Lochfraß- no pitting is observed corrosion test Meth.A: Gewichtsverlust/weight loss: 0, 027 g/m² Längsproben/ longitudinal test specimen Prüfort-test location: D/2 Material wurde nicht reparaturgeschweißt/ Material no weld repaired. <td< th=""><th></th><th>i ayo</th><th>💢 BG</th><th>н</th></td<>		i ayo	💢 BG	н
Sverdrup Steel A/S No. de certificate Strandsvingen 2 Strandsvingen 2 4032 Stavanger Norwegen Dialeran of the strandsving match DN EN 10204 4032 Stavanger Norwegen Strandsvingen 2 Korden-Read-Name Strandsvingen 2 More strandsvingen 2 Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 Strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 Strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 More strandsvingen Strandsvingen 2 Stre			BGH Edelstahl F	reital GmbH
Die Liders graupten tige her in her graupten and delay.4032 Stavanger NorwegenZeichen des Liderweike, Stare delay. Lie Wreisen conservoid aux conditions de Wreisen conservoid Signe du LumisseuStare delay. Lie Wreisen conservoid aux conditions de Wreisen conservoid Signe du LumisseuKunden-Bestell-Mt g14633 Custemer order no. Cake no. acidentBGH-Auffrage-Mt. BGH works no. BGH works no. 			Certificate no. 	rrüfung nach DIN EN 10204
4032 Stavanger Norwegen M	Strandsvingen 2		Die Lieferung entspricht den ve	reinbarten Lieferbedingungen.
<pre>Supre dufournisseur Worden-Beachtwick 814633 Come no du client Bief Heidinence Bief Heidi</pre>			La livraison correspond aux cor Zeichen des Lieferwerkes Ste	nditions de livraison convenues. empel des Werkssachverständigen
<pre>von 0,1 Bq/g. Radioactivity inspection without objection, the measured value is below the detection limit of 0.1 Bq/g. Deltaferrit/ ferrite delta ASTM E562 (quer): D/2 = 51% relative Genauigkeit = 10% Prüfung: 30 Felder/16 Punkt (30 fields of 16 points) Atzmittel/ Etchant: V2A + 30 % NaOH KorrosTest ASTM G48 Meth.A: 50°C/24h: kein Lochfraß- no pitting is observed corrosion test Meth.A: Gewichtsverlust/weight loss: 0,027 g/m² Längsproben/ longitudinal test specimen Prüfort-test location: D/2 Material wurde nicht reparaturgeschweißt/ Material no weld repaired. Das Material ist frei von Quecksilber, Radium oder Alphateilchenverunreinigungen. This material is free from mercury, radium or alpha particle contamination. Gefüge frei von intermetallischen und anderen schädlichen Phasen. Microstructure free from intermetallic or other detrimental phases. Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370. Test pieces taken from actual bar prolongation x 6" length according to ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.</pre>	Kunden-Bestell-Nr. 814633 BGH-Auftrags-Nr. Customer order no. BGH works no.	34835301/193706		BGH
 Ätzmittel/ Etchant: V2A + 30 % NaOH KorrosTest ASTM G48 Meth.A: 50°C/24h: kein Lochfraß- no pitting is observed corrosion test Meth.A: Gewichtsverlust/weight loss: 0,027 g/m² Längsproben/ longitudinal test specimen Prüfort-test location: D/2 Material wurde nicht reparaturgeschweißt/ Material no weld repaired. Das Material ist frei von Quecksilber, Radium oder Alphateilchenverunreinigungen. This material is free from mercury, radium or alpha particle contamination. Gefüge frei von intermetallischen und anderen schädlichen Phasen. Microstructure free from intermetallic or other detrimental phases. Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH. 	von 0,1 Bq/g. Radioactivity inspection without objection limit of 0.1 Bq/g. Deltaferrit/ ferrite delta ASTM E562 (qua	on, the measur er): D/2 = 51%	ed value is bel	ow the detection
corrosion testMeth.A: Gewichtsverlust/weight loss: 0,027 g/m²Längsproben/ longitudinal test specimenPrüfort-test location: D/2Material wurde nicht reparaturgeschweißt/ Material no weld repaired.Das Material ist frei von Quecksilber, Radium oder Alphateilchenverunreinigungen.This material is free from mercury, radium or alpha particle contamination.Gefüge frei von intermetallischen und anderen schädlichen Phasen.Microstructure free from intermetallic or other detrimental phases.Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370.Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.	Ätzmittel/ Etchant: V2A + 30 % NaOH			
Material wurde nicht reparaturgeschweißt/ Material no weld repaired. Das Material ist frei von Quecksilber, Radium oder Alphateilchenverunreinigungen. This material is free from mercury, radium or alpha particle contamination. Gefüge frei von intermetallischen und anderen schädlichen Phasen. Microstructure free from intermetallic or other detrimental phases. Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370. Test pieces taken from actual bar prolongation x 6" length according to ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.				
Das Material ist frei von Quecksilber, Radium oder Alphateilchenverunreinigungen. This material is free from mercury, radium or alpha particle contamination. Gefüge frei von intermetallischen und anderen schädlichen Phasen. Microstructure free from intermetallic or other detrimental phases. Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370. Test pieces taken from actual bar prolongation x 6" length according to ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.				.on: D/2
Microstructure free from intermetallic or other detrimental phases. Proben wurden von der Stabverlängerung entnommen x 6" Länge, gemäß ASTM A 370. Test pieces taken from actual bar prolongation x 6" length according to ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.	Das Material ist frei von Quecksilber, R.	adium oder Alpi	hateilchenverur	
Test pieces taken from actual bar prolongation x 6" length according to ASTM A 370. Stahlhersteller des Ausgangsmaterials: BGH Edelstahl Freital GmbH.				
Anlagen US-Protokoll/ UT report Freital.den Abnahmebeauftragter	Anlagen US-Protokoll/ UT report	Freital,den		Abnahmebeauffranter
Encl. Place and date Lieu et date Inspector representative Inspector representative Annexe Gefügeaufnahme/ micrograph 01.09.2015 Das Zeugnis wurde maschinell erstellt und ist auch ohne Unterschrift gültig. This certificate was generated by data system and it is valid without signature asse Ce certificat a été établi sur system informatique et est valide sans signature ausse	Annexe L Gefügeaufnahme/ micrograph 0	.ieu et date 11.09.2015	ate was generated by data evelo	Inspector representative Inspecteur de réception Kadner

Seite 1 /1

DIN EN 10204 3.1

Ultraschallprüfung Ultrasonic testing

BGH Edelstahl Freital GmbH

iden-Bestell-Nr. 814633 tomer order no. e. no. du client	BGH-Auftrags-I BGH works no. BGH référence	^{Nr.} 348353-01	Zeugnis-Nr. 409989 Certificate no. No. de certificat	
2	ab, rund, geschäl	lt		
	und bars, peeled			
Werkstoff/Quality :UN Abmessung/Dimension:		e: 388475		
Anzahl/Quantity : Bo	d. Gewi	.cht /Weight : 1	616 kg	
Värmebehandlungszustan Condition of heat treat	d : lösungsgeglüht : solution annealed		182	
raitment thermique	: 1127°C 87" Wasser	/ water (<260°C)		
Prüfrichtlinie Specification				
API 6A, 20.Ed. 10/10 PSL 3 Pkt. 7.4.2.3.15	(b)			
Bearbeitungszustand	: geschäl	t		
Machining condition	peeled	ж.		
Prüfgerät	: GE ROWA	B4		
Cest equipment				
Prüfkopf	: 4 Array	sá 90° - Radi	us:35 mm	
	je 20 E	lemente - 10 MH	Z	
robe				
Kopplungsmittel Coupling medium	: Wasser water			
Prüfumfang	: vollstä	ndia		
Extent of examination	completel	-У		
Einschallrichtung Direction of incidence		ht und in Winke cular and angle bear	leinschallung 40° m 40°	
Registriergrenze	: Prüfung fikatio	-	erfolgten gemäß obige	r Spezi
		ugslinie von 1,		
Registration level		-	a. m. specification.	
		he reference line o		
Befund Result		egistrierpflich	tigen Anzeigen	
Prüfdatum	: 28.08.2			
Examination date	. 20.00.2	010		
Freital,den Prüfer Testing o Place and date Opérate	ur	Abnahmebeauftragter Inspector representative Inspecteur de réception	BGH Supervisor Surveilleur	
Lieu et date Günthe 01.09.15 Stufe 2 I	er DIN EN 473 / ISO9712	JUNGKUNZ Level III SNT-TC 1A	Q414	

Inahmen zum Zertificat Nr. / Microstructure to certificate No.: Gefü

Gerugeaumanmen zum zeruncat	NI. / MICIOSTIUCIUTE TO CERTIFICATE NO
Besteller/Purchaser:	Sverdrup Steel A/S
Bestell-nr./Order-No.: Werkstoff/Quality:	814633 UNS S32750
Chargen-nr./Cast-No.:	388475
Erzeugnisform/Product:	Stab, rund, geschält / Round bars, peeled
Abmessung/Dimension: Kommnr./Work-No.:	16,00 RD 34835301

409989

E Material Certificate - ATI830

				CERTIEI	CATE OF TE	ST				
Specialty Mat	torials			Cert No	Batch - 141106					
4374 Lancaste Highway, Richburg, SC	er				Ren	Heat - C5B85				
US							Terry F Certificat	. Hopper\es ion Auditor ry 02, 2017	Ingot - 1	
(3	Pu	rchase Orde	r No	Sales Or	der No		Sales Orde	r line No	
i			I 830 Alloy		Ource on			Sales Ulde	I LINE NO	
1										
Size (in)	Size (m	m)	Cross sec	tion No Pc	s	Weight (l	bs) We	ight (kgs)	Alloy	
0.7874	20.0000		Round	1		9	4	,	ATI 830TM Alloy	
Specifica	ations									
Spec Name			Rev				Compliar	ce Condition		
CHEMISTRY REP	ORT ONLY		001				Chemistr	y Only		
Remarks: ATI 830TM All	.ov									
As Shippe	-	tion								
Heat Treat			Heat	t Treat Cycles	S		Hot Work	Туре		
Annealed and	Cold Drawn			t To 2150 F ((s) Water Quer		d 30	Rolled			
Surface Finis	h									
Centerless Gr	ound									
Melt Meth	nod Deta	ils								
Primary Melt			Fac	ility			Address			
Electric Arc Decarburizati		on Oxyge	en ATI	Latrobe Opera	ations		ATI Flat Rolled Products 242 Allvac Lane, Latrobe, PA 15650 US			
Remelt				ility			Address			
Electroslag R				Lockport Oper	rations		695 Ohio	Street, Loc	kport, NY 14094 U	
Conversio		d Det								
Conversion Ty	pe			ility			Address			
Rolling			ATI	Richburg Oper	rations		4374 Lan 29729 US		ay, Richburg,	

Page 1 of 3

Cert No.99364 Rev.1

ATI Specialty Materials-4374 Lancaster Highway,Richburg, SC 29729 US
Batch - 141106
Heat - C5B85

Ingot - 1

	MISTR												
Test Facility						ATI Monroe Operations							
Sample Source				14		Heat A	Avg						
and the other states.	lements UOM			Method		Averag	e	-					
A1			XRF			0.020							
Co %		XRF			2.648								
Cr		%			XRF			21.608					
Cu %		XRF			1.181								
		XRF		4.384									
		XRF			5.106								
Nb %		XRF			<0.01								
Ni %				XRF	5 D D	29.993							
P			%		XRF		0.0157	2 					
Si		%			XRF		0.238						
Ti	_	%			XRF		<0.01	<0.01					
V		%			XRF		0.036						
N		%			XRF		0.698						
Fe		%			XRF		34.065	8					
Al+Ti	i	%			XRF		0.020						
Ni+Co	D	8			XRF		32.642						
Al+Ti	i+W	8			XRF		0.718						
C		%			CS		0.004						
S	-	%			CS		<0.000	3					
N		%			GAS		0.393						
В		%			OES		0.0021						
DES = KRF = VET =	= Spark = X-Ray = Induct	Gas Fusion Optical Em Fluorescen ively Coup	ce	a Emiss:	ion								
DES = (RF = VET = Test	= Spark = X-Ray	Optical Em Fluorescen ively Coup. y	ce	a Emiss:	ion		ATI Mor Ladle	nroe Opera	ations				
DES = KRF = VET = F est Sampl	= Spark = X-Ray = Induct Facilit Le Sourc	Optical Em Fluorescen ively Coup. y	ce led Plasm	a Emiss:	ion Method			nroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme	= Spark = X-Ray = Induct Facilit Le Sourc	Optical Em Fluorescen ively Coup y e	ce led Plasm I	a Emiss:				nroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme Pb	= Spark = X-Ray = Induct Facilit Le Sourc	Optical Em Fluorescen ively Coup y e UON	ce led Plasm I	a Emiss:	Method		Ladle	nroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme Pb Sn	= Spark = X-Ray = Induct Facilit Le Sourc ents	Optical Em Fluorescen ively Coup y e UON PPN	ce led Plasm I	a Emiss:	Method WET		Ladle	nroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme Pb Sn Remar	= Spark = X-Ray = Induct Facilit Le Sourc ents	Optical Em Fluorescen ively Coup y e UON PPN	ce led Plasm I I	a Emiss:	Method WET		Ladle	nroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme Pb Sn Remar VET =	= Spark = X-Ray = Induct Facilit Le Sourc ents = Mass S	Optical Em Fluorescen ively Coup y e UON PPN PPN PPN pectroscop	ce led Plasm I I	a Emiss:	Method WET		Ladle	nroe Opera	ations				
DES = KRF = VET = Test Sampl Eleme Pb Sn Remar VET =	= Spark = X-Ray = Induct Facilit Le Sourc ents rks: = Mass S HANIC	Optical Em Fluorescen ively Coup g e UON PPN PPN PPN pectroscop	ce led Plasm I I	a Emiss:	Method WET		Ladle	nroe Opera	ations				
DES = KRF = VET = Test Sampl Eleme Pb Sn Remar VET = MEC AS	= Spark = X-Ray = Induct Facilit Le Sourc onts -ks: = Mass S HANIC Shipp	Optical Em Fluorescen ively Coup g e UON PPN PPN PPN pectroscop	ce led Plasm I I	a Emiss:	Method WET		Ladle	iroe Opera	ations				
DES = KRF = WET = Test Sampl Eleme Pb Sn Remar VET = WEC AS : Tens	= Spark = X-Ray = Induct Facilit Le Sourc ents -ks: = Mass S HANIC Shipp sile	Optical Em Fluorescen- ively Coup. y e UOM PPM PPM PPM PPM PPM AL ed	ce led Plasm I I Y Vltimate	Ultimate	Method WET WET	.2%	Ladle <1 12 4D-Elongation	Deduction		Initial	Crosshead	Strain Rate	Test
DES = (RF = VET = Test Sampl Eleme b Sn Remar VET = MEC AS : Tens	= Spark = X-Ray = Induct Facilit Le Sourc onts -ks: = Mass S HANIC Shipp	Optical Em Fluorescen ively Coup y e UON PPN PPN pectroscop AL ed	ce led Plasm I I Y	Ultimate	Method WET WET	-2% Yield Strength	Ladle <1 12	Deduction		Initial Diameter	Crosshead	Strain Rate (in/in/min)	Test Facility
DES = KRF = VET = Cest Sampl Eleme Pb San Remar VET = MEC AS Fiece	= Spark = X-Ray = Induct Facilit Le Sourc ents -ks: = Mass S HANIC Shipp sile	Optical Em Fluorescen- ively Coup. y e UOM PPM PPM PPM PPM PPM AL ed	ce led Plasm I I Y Vltimate	Ultimate Strength 183,597 psi 1266 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	.2% Yield Strengt 166,177 psi 1160 MPa	Ladle <1 12 4D-Elongation		Initial Gage Length 2 in 51 mm	Initial Diameter 0.504 in 12.802 mm	Crosshead Speed	Strain Bate (in/in/min) .003	Test Facility ATI Monro Operation
DES = KRF = Fest Fest Sampl Ba Bampl Bampl Bampl Bampl Bampl Bampl Bampl Bampl Bampl Ban	= Spark = X-Ray = Induct Facilit Le Sourc ents -ks: = Mass S HANIC Shipp Sile Sample Direction	Optical Em Fluorescen ively Coup. y e UON PPN PPN PPN PPN PPN PPN PPN PPN PPN P	Ce led Plasm Ultimate Strength 183.0 ksi 1265.9 MPa	Ultimate Strength 183,597 psi 1266 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	168,177 psi	4D-Elongation (%)	Reduction of Area (%)	Initial Gage Length 2 in	0.504 in 12.802	.05		
DES = KRF = VET = Test Sampl Eleme Pb Sn Remar VET = MEC MEC	= Spark = X-Ray = Induct Facilit Le Sourc ents - Mass S HANIC Shipp Sile Sample Direction L	Optical Em Fluorescen- ively Coup y e UON PPM PPM PPM PPM PPM Com Com Room	Ce led Plasm I Ultimate Strength 183.6 ksi 1265.9 MPa	Ultimate Strength 183,597 psi 1266 MPa	Method WET WET .2% Yield Strength	168,177 psi	4D-Elongation (%) 21.6	Reduction of Area (%) 72.8	Initial Gage Length 2 in 2 in	0.504 in 12.802 mm 0.504 in 12.802	.05	.003	ATI Monro Operation ATI Monro
DES = (RF = VET = VET = Cest Sampl Eleme Pb San Remar VET = MEC NEC	= Spark = X-Ray = Induct Facilit Le Sourc ents - Mass S HANIC Shipp Sile Sample Direction L	Optical Em Fluorescen ively Coup y e UOM PPM PPM PPM PPM PPM PPM PPM PPM PPM P	Ce led Plasm Ultimate Strength 183.0 ksi 1265.9 MPa	Ultimate Strength 183,597 psi 1266 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	168,177 psi	4D-Elongation (%) 21.6	Reduction of Area (%) 72.8	Initial Gage Length 2 in 2 in	0.504 in 12.802 mm 0.504 in 12.802	.05	.003	ATI Monro Operation ATI Monro
DES = RF = (FT = rest samplieme b n temar (FT = MEC NEC AS rens iecce	= Spark = X-Ray = Induct Facilit Facilit Le Sourc onts 	Optical Em Fluorescen ively Coup. y e UON PPN PPN PPN pectroscop: AL ed Test Temperature ROOM ROOM	Ce led Plasm Ultimate Strength 183.0 ksi 1265.9 MPa	Ultimate Strength 183,597 psi 1266 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	168,177 psi	4D-Elongation (%) 21.6	Reduction of Area (%) 72.8	Initial Gage Length 2 in 2 in	0.504 in 12.802 mm 0.504 in 12.802	.05	.003	ATI Monro Operation ATI Monro
CES =	= Spark = X-Ray = Induct Facilit Facilit Le Sourc onts *ks: = Mass S HANIC Shipp Sile Sample Sample L L *ks:	Optical Em Fluorescen ively Coup y e UON PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 psi 1266 MPa 180,879 psi 1247 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	168,177 psi	4D-Elongation (%) 21.6	Reduction of Area (%) 72.8	Initial Gage Length 2 in 2 in	0.504 in 12.802 mm 0.504 in 12.802	.05	.003	ATI Monro Operation ATI Monro
DES = (RF = VET = Test Samplieme b Remar VET = MEC MEC Tens Siece x x eemar . = L STM eesul	= Spark = X-Ray = Induct Facilit Facilit Le Sourc ants *ks: = Mass S HANIC Shipp sile Sample Sample L L	Optical Em Fluorescen ively Coup. y e UON PPN PPN PPN pectroscop: AL ed Test Temperature ROOM ROOM	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 psi 1266 MPa 180,879 psi 1247 MPa	Method WET WET .2% Yield Strength 168.2 ksi 1159.7 Mg	168,177 psi	4D-Elongation (%) 21.6	Reduction of Area (%) 72.8	Initial Gage Length 2 in 2 in	0.504 in 12.802 mm 0.504 in 12.802	.05	.003	ATI Monro Operation ATI Monro
DES = (RF = VET = VET = VET = Potonomic VET = MEC MEC MEC VET = VET	= Spark = X-Ray = Induct Facilit Facilit Le Sourcents 	Optical Em Fluorescen ively Coup y e UON PPN PPN PPN PPN PCTroscop AL ed Test Tomperature ROOM ROOM	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 1266 MPa 1267 MPa 1247 MPa n only.	Method WET WET Strength 168.2 Ksi 1159.7 MPa 165.3 Ksi 1139.7 MPa	168,177 psi 1160 MPa 165,304 psi 1140 MPa	4D-Elongation (%) 21.6 21.9	Reduction of Area (%) 72.8 72.9	Initial Gage Length 2 in 57 mm 2 in 57 mm	0.504 in 12.802 mm 0.504 in 12.802 mm	.05	.003	ATI Monro Operation ATI Monro
DES = (RF = VET = VET = VET = Potonomic VET = MEC MEC MEC VET = VET	= Spark = X-Ray = Induct Facilit Facilit Le Sourcents 	Optical Em Fluorescen ively Coup y e UON PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 1266 MPa 1267 MPa 1247 MPa n only.	Method WET WET -2% Yield Strength 168.2 Ksi 1139.7 MPa	168,177 psi 1160 MPa 165,304 psi 1140 MPa	4D-Elongation (%) 21.6 21.9	Reduction of Area (%) 72.8 72.9 Hardness Typ	Initial Gage Length 2 in 57 mm 2 in 57 mm	0.504 in 12.802 mm 0.504 in 12.802 mm	.05 .05 Test Facili	.003 .003	ATI Monro Operation ATI Monro
DES = KRF = KRF = KRF = Cest Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sampl	= Spark = X-Ray = Induct Facilit Facilit Le Sourcents 	Optical Em Fluorescen ively Coup. y e UOM PPM PPM PPM PPM PPM PPM PPM PPM PPM P	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 psi 180,879 psi 180,879 n 180,879 n only. Ha	Method WET WET 166.2 Ksi 1159.7 MPa 165.3 Ksi 1139.7 MPa	168,177 psi 1160 MPa 165,304 psi 1140 MPa	4D-Elongation (%) 21.6 21.9	Reduction of Area (%) 72.8 72.9	Initial Gage Length 2 in 57 mm 2 in 57 mm	0.504 in 12.802 mm 0.504 in 12.802 mm	.05	.003 .003 .ty Operations	ATI Monro Operation ATI Monro
DES = KRF = KRF = Fest Sampl Eleme Pb Sn Remar VET = MEC MEC As S Fens X Remar - = L ASTM Resul Hard	= Spark = X-Ray = Induct Facilit Facilit Le Sourcents 	Optical Em Fluorescen ively Coup. y e UOM PPM PPM PPM PPM PPM PPM PPM PPM PPM P	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 psi 180,879 psi 180,879 n only. He 41 40 40	Method WET WET -2% Yield Strength 168.2 Ksi 1139.7 MPa	168,177 psi 1160 MPa 165,304 psi 1140 MPa	4D-Elongation (%) 21.6 21.9	Reduction of Area (%) 72.8 72.9 Hardness Ty; HRC	Initial Gage Length 2 in 57 mm 2 in 57 mm	0.504 in 12.802 mm 0.504 in 12.802 mm	.05 .05 Test Facili ATI Monroe	.003 .003 ty Operations Operations	ATI Monro Operation ATI Monro
DES = XRF = NET = Test Sample Eleme Pb Sn Remar NET = MEC MEC MEC As Remar = L XSTM Result	= Spark = X-Ray = Induct Facilit Facilit Le Sourcents 	Optical Em Fluorescen- ively Coup y e UON PPN PPN PPN PCTrosperature ROOM ROOM inal (2016a) rted for in Sample Loca NS	Ce led Plasm Ultimate Strength 183.6 ksi 1265.9 MPa 180.9 ksi 1247.1 MPa	Ultimate Strength 183,597 1266 MPa 1247 MPa 1247 MPa n only. He 41 41	Method WET WET 106.2 Ksi 1159.7 MPa 165.3 Ksi 1139.7 MPa	168,177 psi 1160 MPa 165,304 psi 1140 MPa	4D-Elongation (%) 21.6 21.9	Reduction of Area (%) 72.8 72.9 Hardness Typ HRC HRC	Initial Gage Length 2 in 57 mm 2 in 57 mm	0.504 in 12.802 mm 0.504 in 12.802 mm	.05 .05 Test Facili ATI Monroe ATI Monroe	.003 .003 ty Operations Operations Operations	ATI Monro Operation ATI Monro

Page 2 of 3

Cert No.99364 Rev.1

ATI Specialty Materials-4374 Lancaster Highway, Richburg, SC 29729 US

Batch - 1	141106	Heat - C5B85	Ing	ot - 1
Piece ID	Sample Location	Hardness Value (Rockwell)	Hardness Type	Test Facility
1X	NS	40	HRC	ATI Monroe Operations
1X	MR	40	HRC	ATI Monroe Operations
1X	C	37	HRC	ATI Monroe Operations

NS=Near-Surface

MR = Mid-Radius

C = Center

ASTM E18 (2016)

Results reported for information only.

Charpy

Piece ID	Sample Direction	Sample Location	Test Temperature	Sample Size (None)	Ft/Lbs Energy (ft/lbs)	Specimen Type	Striker Size	Test Facility
1	L	C	ROOM	Standard (10mm X 10mm)	218	v	8 mm	ATI Monroe Operations
1	L	C	ROOM	Standard (10mm X 10mm)	207	v	8 mm	ATI Monroe Operations
1	L	С	ROOM	Standard (10mm X 10mm)	187	v	8 mm	ATI Monroe Operations

Remarks:

L = Longitudinal

C = Center

ASTM E23 (2016b) Results reported for information only.

Outside Source Addresses

Outside Testing Laboratory

Facility

ATI Monroe Operations

Remarks

Material has been produced, sampled, inspected and tested in accordance with the acknowledged customer purchase order and referenced specifications and conforms to the requirements unless otherwise noted in this Certificate of Test or in other communications regarding purchase order clarifications, specification exceptions, or long term agreements."

Address

2020 Ashcraft Avenue, Monroe, NC 28110 USA

If customer purchase order does not specifically reference a revision to a specification, ATI Specialty Materials will work to the latest revision on file and in effect at the time of order placement. ATI Specialty Materials has complied with all producer requirements of AS6279.

Any chemical elements analyzed and found to have values below the actual limits of detection may be reported as < less than or reported at the detection level.

When values are reported to the significant places called for in the specifications, rounding will be done in accordance with ASTM E29.

This is to certify that during the manufacturing, handling, testing and inspection, this material did not come in direct contact with mercury or any device employing a single boundary of containment. ATI Specialty Materials products have not come in contact with radioactive materials during manufacturing or processing.

No weld repair has been performed on this material.

Material melted and manufactured in the United States of America unless otherwise noted in this Certificate of Test. Material Safety Data Sheets (MSDS) - View or print from our site: www.atimetals.com Printed copies are available upon request from the ATI Specialty Materials Sales Department.

ATI Specialty Materials certifies that it has procedures in place to provide reasonable assurance that any non-scrap/non-recycled Conflict Minerals (Columbite-Tantalite/Coltan and its derivative metal Tantalum; Cassiterite and its derivative metal Tin; Wolframite and its derivative metal Tungsten; and Gold) included in the materials supplied under this purchase order do not originate from the Democratic Republic of Congo or specified adjoining countries (Covered Countries) as defined by and in accordance with Section 1502 of the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2012. ATI Specialty Materials will provide a CMRT form annually upon request. The recording of false, fictitious, or fraudulent statements or entries on this document may violate Federal statutes, including but not limited to Title 18, Chapter 47 of the United States Code and may be punishable as a felony.

This Certificate of Test shall not be reproduced, except in full, without the written approval of ATI Specialty Materials Quality.

Page 3 of 3

Cert No.99364 Rev.1