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I 

 

Problem description 

 

A significant amount of operational data associated with safety instrument systems (SISs) has been 

collected by the oil and gas facilities on the Norwegian continental shelf. Data collection is 

required by several regulators and safety standards. Such data are generated from failure 

notifications and work orders in the maintenance system. Review of operational data indicates that 

groups of similar equipment can experience different failure rates even under nearly identical 

operational environment. Specific inventory- and operational parameters (e.g. properties of 

equipment, maintenance practices, applied technology etc.) may result in those difference on 

reliability performance. It is of high interests to identify and analyze the parameters and would be 

found relevant relationships between the parameters and failure data (e.g. failure causes, failure 

modes or detection methods). 
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III 

 

Summary 

 

In the oil and gas industry, SISs are designed to ensure production safety and reduce risk of major 

accidents. SISs should be demonstrated the fulfillment of specified safety requirement by 

appropriate reliability analysis with particular interest on the types of faults and how often they 

occur for various SIS equipment. Such operational data provides a basis for reliability 

quantification for each safety instrumented function (SIF), which is needed to demonstrate that 

safety integrity level (SIL) has been achieved. Review of operational data indicates that similar 

equipment can experience different failure rates, even it installed in similar environments. This 

variation on reliability performance can be explained by inventory- and operational parameters. 

The main objective of the thesis is to propose an approach to identify the most important 

parameters based on data analysis, and suggest their relative influence on reliability performance 

of installed equipment. The result can be used to modify failure rates if significant parameters are 

identified. Modified failure rates enables the reliability analyst to more precisely quantify the 

reliability performance in SIL follow-up phases and predict the variations of reliability 

performance for new facilities, where changes in inventory- and operational conditions can be 

forecasted.   

Statistical methods for analyzing inventory- and operational parameters are employed in the 

project, where shutdown valves have been considered in particular. The data analysis results 

illustrate the strong relationships between reliability performance and some parameters of the 

shutdown valves, e.g. sizes, leakage requirement and flow medium. Failure analysis is also 

performed to explain and verify the results. Modified failure rates of the shutdown valves for a 

new facility are established as an example in this thesis. 

In short, the thesis proposes an approach to identify important parameters for reliability 

performance and modify failure rates based on operational data from the oil and gas industry. 

The work identifies a number of challenges and limitations in the approach and suggests 

considerable further work. 
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1 Introduction 

1.1 Background 

Within the oil and gas industry, SISs are designed to ensure production safety and reduce risk by 

implementing SIFs [1]. Each SIF should be demonstrated the fulfilment of SIL requirements by 

appropriate reliability analysis with interest on the types of faults and how often they occur for 

various SIS equipment. Such operational data are desired to be collected as input to reliability 

quantification of SISs during the whole life of SISs. A specific procedure for calculating failure 

rates and changing test intervals has been proposed by SINTEF [2]. Data collection also provides 

a basis for making decision on risk control, optimization maintenance and saving cost. It can be 

used to predict failure rates during design of new facilities, having data and experience with the 

similar equipment to be installed.  

Data collection is required by several regulators and safety standards. It is required by the 

Norwegian Petroleum Safety Authority (PSA) to monitor the performance of barriers during the 

whole life of facilities (ref. Management Regulations, section 5 and section 19). The recent 

updated IEC 61511 has highlighted the requirements concerning the quality of reliability data. 

The data should be credible, traceable, documented and justified. ISO 20815 emphasizes the 

systematic collection and treatment of operational experience, which is considered as a mean for 

improvement of production and safety critical equipment [3].  NOG 070 also proposes that 

operational data could be used as a basis for reliability calculation based on historic field 

experience [4]. 

A significant amount of operational SIS data have been collected by the oil and gas facilities on 

the Norwegian continental shelf. Review established operational data illustrates that similar or 

same equipment may experience different failure rates even under comparable operational 

environments [5]. This variation on reliability performance may be explained by various 

parameters. Those parameters refer to inventory parameters and operational parameters that 

impact on the equipment’s reliability performance, e.g. sizes for shutdown valves, measuring 

principle for level transmitters etc.  

The focus of this master thesis is hence to propose an approach to identify significant parameters 

and investigate influence of inventory- and operational parameters on reliability performance and 
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modify failure rates based on the analysis result. Modified failure rates are defined as more 

specific failure rates taking into account inventory- and operational parameters [5]. It is of interest 

to establish modified failure rates due to their application: 1) For providing more precise failure 

rates in follow-up SIS phase. 2) For predicting reliability performance for a group of equipment at 

a new facilities, where the equipment experience similar environmental and operational 

conditions as the existing facilities.   

 

1.2 Objectives  

The main objective of the thesis is to propose an approach to modify failure rates, including 1) 

identifying critical parameters that impact on reliability performance and investigating 

relationship between the parameters and reliability performance; 2) modifying failure rates for a 

specific group of equipment based on parameter analysis and failure analysis.  

The main objectives will be achieved through addressing the following questions: 

 Which group of equipment should be selected and what are criteria to identify the equipment?  

 What are the most relevant parameters that can explain varying reliability performance? Is 

the equipment likely to be sensitive to those parameters? 

 Which method is efficient to analyze the impact from inventory- and operational parameters 

on reliability performance? 

 How to modify failure rates in relation to important inventory- and operational parameters?  

 

1.3 Assumptions  

The assumptions within the approach have a significant impact on validity and reliability of the 

conclusion. It is thus required to make reasonable assumptions. The following assumptions are 

made in this master project: 

 Uncertainties due to inadequate information and data will be disregarded. 

 The thesis focuses on DU failures of shutdown valves, covering various failure modes. 

 Failure data used in this thesis have been collected by SINTEF.  
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 All the items have been put into service at time 0t  , and failure time is supposed to be 

stochastic independent and identically distributed. 

 Failures occurred in burn-in phase have been removed because those failures are often 

related to start-up and installations issues and many of them are typical systematic faults. 

 

1.4 Approach  

The approach used in the thesis include the following steps: 

 Identify equipment and parameters. Based on review of existing failure data, select one 

specific equipment group and identify parameters of equipment. 

 Data collection. Collect information of equipment from one or more facilities and connect 

equipment parameters with failure records and maintenance records. 

 Data analysis. Select appropriate approach to identify critical parameters that impact 

reliability performance significantly.  

 Estimate failure rates. Based on updated failure rates categorize equipment groups 

according to significant parameters and modify failure rates for a new facility. 

 

1.5 Structure of the thesis 

 Chapter 1: Describe background, objectives, approach, as well as assumptions for this 

master thesis. 

 Chapter 2: Review basic concepts and definitions with respect to failures and reliability 

estimation.  

 Chapter 3: Elaborate statistical methods for analyzing data and modifying failure rates. 

 Chapter 4: Present an approach to modify failure rates, study and select specific 

equipment and corresponding parameters. 

 Chapter 5: Describe data analysis process and show the results of the analysis.  

 Chapter 6: Elaborate an example of modifying failure rate based on failure analysis. 

 Chapter 7: Concluding remarks and discussion, propose recommendations for further work. 
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2 Basic concepts and definitions 

The objective of this chapter is to present main concepts and definitions related to failures, failure 

rates, reliability, inventory and operational parameters.  

 

2.1 Failures 

In IEC 60050-192, a failure is defined as an event that results in a fault of the item [6]. There are 

two main functions for SISs: 1) Ability to shut down or go to a safe state on demand. 2) Ability to 

enter or maintain safe state upon certain fault conditions. Failures associated with faults of SISs 

can be classified into four groups according to IEC 61508, IEC 61511 and NOROGs guideline 

070: 

 Dangerous Detected (DD): A failure which has the potential to put the component in a 

hazardous or fail-to-function state. This failure can be detected by self-test or online 

comparison of instruments.  

 Dangerous Undetected (DU): A failure with potential to put component in a hazardous or 

fail-to-function state, but cannot be detected automatically or by self-test. Typically, it will 

be revealed during function test, random observation or upon real demand. 

 Safe Detected (SD): A failure which does not have the potential to put the safety-related 

system in a hazardous or fail-to-function state and can be detected by automatically. 

 Safe Undetected (SU): A failure which does not have the potential to put the component in 

hazardous or fail-to-function state and cannot be detected by test. 

 

A similar classification has also been accepted by the PDS-method1. However, it should be noted 

that a given failure may be classified as either dangerous or safe depending on the intended 

application [7]. For example, loss of hydraulic supply to a valve actuator will be dangerous failure 

in an energize-to-trip application and safe failure in a de-energize-to-trip application. The focus of 

this master thesis is DU failure because they are the main contributors to unreliability for SISs. 

                                                 

1 See also www.sintef.no/pds 
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2.2 Failure rates 

Failure rate is defined in ISO 14224 as conditional probability per unit of time that the item fails 

between t and t dt , provided that it has working over 0, t [8]. It is used to reflect reliability 

performance and expresses numbers of failure per unit of time. There are different types of failure 

rates that apply for various situations: 

 Generic failure rates. It derives from handbooks on the basis of operational experience, 

laboratory tests and expert judgements [5]. Examples of sources for generic failure rates are 

OREDA handbook, PDS handbook and EXIDA handbook. The generic failure rate 

indicates the average of the expected performance for the equipment under consideration, 

e.g. 62.1 10DU    per hour is a generic failure rate for emergency shutdown (ESD) valve 

in the PDS data handbook [7]. 

 Operational failure rates. It is based on companies own operational data sources (e.g. 

maintenance system) and thereby represent real failure data from operation. This data can 

be used to generate an average performance of equipment for a single or several facilities 

[5]. 

 Modified failure rates. It is defined as more specific failure rates taking into account 

inventory- and operational parameters [5]. For example, modified failure rates of ESD 

valves may be a result of breaking down the failures into various groups according to the 

sizes of ESD valves: small-sized (e.g. diameter < 1 inch), medium-sized (e.g. diameter 1-3 

inch) and large-sized (e.g. diameter > 3 inch). 

 Manufacturer failure rates.  They are provided by manufactures for some specific 

products, based on failure reports, analyses and laboratory testing or a combination of 

these. Manufacture failure rates are more suitable for comparing performance among 

different products and less suited for predicting reliability of system [5]. 

 

Figure 1 illustrates the relationships between the four types of failure rates and their application. 

Generic failure rates are based on a large amount of operational experience from several facilities 

and for comparable equipment. They are often utilized in early project phases due to immature 

design and limited information about the selected equipment [4]. Operational failure rates come 
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from one specific facilities, related with groups of equipment data (e.g. identification, character of 

equipment) and corresponding failure data (e.g. number of failures, operational time, failure 

modes etc.). Manufacture failure rates focus on groups of equipment from a specific vendor. They 

are widely used for comparison and selection of equipment during procurement. Modified failure 

rates take into consideration equipment characteristics as well as operational and environmental 

data (e.g. location, operational condition, special environment etc.). It can mainly be applied for 

SIL follow-up and estimate failure rates for new facilities or modify equipment by comparing 

conditions with the exciting facilities.  

 

 

Figure 1 Relationships between failure rates and relevant applications  
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2.3 Reliability terminology 

The following other concepts will be mentioned in this thesis: 

 Failure mode: A failure mode is a manner in which failure occurs and may be related with 

the function lost [6].  

 Failure cause: is a set of circumstances that leads to failure. A failure cause may originate 

during specification, design, manufacture, installation, operation or maintenance etc. [6] 

 Failure effect: refers to consequence of a failure within or beyond the boundary of the failed 

item [6]. 

 Failure mechanism: is a process that leads to failure that may be physical, chemical, logical 

or a combination [6]. 

 Aggregated operational time: refers to aggregated time in operation for all components 

within an equipment group [8]. 

 Detection method:  are ways to detect in which failures for a component or safety system 

are revealed [1]. 

 Testing interval ( ):  expresses the time between function testing of a component or system 

[7]. 

 Self-testing: is a build-in test for assessing internal system status, which may occur on start-

up and/or throughout operation [6]. 

 Function test: refers to a periodic test performed to detect dangerous hidden failures in a 

SIS so that, if necessary, a repair can restore the system to an ‘as new’ condition [1]. 

 Partial stroke test (PST): is a testing method to reveal fail to close or fail to open for a 

valve by moving the valve without fully closing or open the valve [1]. 

 Leakage test: is a testing used to detect internal leak of the process fluid [1]. 

 Probability of failure on demand (PFD). is the average probability that a SIS is unable to 

perform its safety function upon demand [9]: 

  
0

1
( ) / 2avg DUPFD PFD t dt



 


    (2.1) 
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2.4 Term of parameters  

Parameters are referred to equipment attributes and operational environment that may impact on 

reliability performance, covering: 

 Inventory parameters includes identification data (e.g. facility, location, tag number, 

equipment character), characteristics data (such as type, size) and operational data (e.g. 

operating time). 

 Operational parameters includes environmental characteristics (e.g. pressure, temperature) 

and operation condition (e.g. flow medium). 

This master thesis will more focus on the inventory parameters and operational conditions due to 

insufficient information for environment, e.g. the pressure within ESD and process shutdown (PSD) 

valves are not available in practice. 

 

2.5 Reliability data in industries 

Functional safety in various industries are different complying with relevant standards. SISs in 

the oil and gas industry focus on ability to shut down or isolate the production process to protect 

equipment under control (EUC) and return EUC to a safe state [1]. The main standards regarding 

SISs are IEC 61508 and IEC 61511. The main safety function for an aircraft is to keep the engines 

running and to maintain safe distance between aircraft by monitoring pressure from sensors and 

height from radar. Examples of applicable safety standards are US RTCA DO-1788, US RTCA-

254 etc. SISs in the nuclear industry are mainly used to ensure cooling of the core and monitor 

earthquake activities according to standards IEC 61513 and IEC 61238. 

A number of handbooks are available in different industries: oil and gas (e.g. OREDA and PDS), 

military (e.g. MIL-HDBK-217), aviation (e.g. guideline A120-17A and FAA regulations) and 

nuclear power plant (e.g. EIReDA, IAEA-TECDOC-1804 and T-book) etc. There are different 

motivations for providing various reliability data dossiers in the different industries. In the oil and 

gas industry, handbooks mainly focus on data for SIS elements. OREDA presents failure rates in 

relation to specified failure modes and mechanical equipment, including mean failure rates among 

the installations, lower and upper failure rates which mean 90% of the variation between the 

multiple samples [10]. SINTEF PDS handbook provides average failure rates containing DU 
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failures, DD failures and safe failures [7]. In the aviation industry, obligation of collecting data 

lays on the continuing airworthiness of aircrafts according to the EASA regulation2. For the 

nuclear industry, reliability data in handbooks are mainly related to the components in safety-

related systems, e.g. reactors, sites or reactor types [11]. 

Failure rates in various handbooks are computed by using different techniques and methods. In 

MIL-HDBK-217, failure rates are given by analytical functions which depend on parameters, e.g. 

temperature, voltage or electrical intensity [12].  The reliability data in EIReDA covers 

description of the equipment (e.g. identification, technical characteristics) and event recorded data 

(e.g. size of the samples, reliability parameters, accumulated time, number of failures) [13]. T-

book’s data based on critical failures includes probability of failures on demand, failure rates in 

standby, failure rates during operation and mean active repair time [14].  

Several methods to estimate and predict the failure rates are available in various industry. The 

most common methods have been categorized into three groups for generic failure rates, 

operational failure rates and physics-of-failure rates, as shown in Figure 2. A method proposed by 

Brissand, is to estimate failure rates by comparing factors under generic conditions and factors 

under specific conditions for a specific plant [15]. Methods proposed by Brissand and themethod 

in MIL-HDBK-217F are based on generic failure rates. Vatn also suggested a procedure to 

estimate failure rate by predicting the effect of risk reducing measures [16]. This method and the 

method in Telcordia SR332 are related to operational failure rates. There are other physics-of-

failure methods to modify failure rates are based on physics-of- failure parameters and 

acceleration models.  

 

                                                 

2 Information of aviation industry comes from Professor Bjørn Axel Gran in institute form department of production 

and quality in NTNU. 
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Figure 2 Methods for estimating and predicting failure rates in various industry 

 

2.5.1 Based on generic failure rates  

One example to modify failure rates based on generic failure rate is a method in MIL-HDBK-217F. 

It provides constant failure rate estimates for electronic equipment as well as the Part stress methods 

to account for influencing factors [1]. The method uses the part failure rate models where 

influencing factors covariant its effect and importance to the basic failure rate. Various coefficients 

should be determined by expert judgement. The general expression of the model is shown below: 

 1 2 3...P b m           (2.2) 

Where,  are the influencing coefficients, e.g. temperature, application, power rating, 

electrical stress, contact construction, quality and operating environmental factors.  

 

2.5.2 Based on operational failure rates  

Telcordia SR332 is also regarded as a method to predict failure rate. It is called reliability prediction 

procedure for electronic equipment. Telcordia SR332 uses MIL-HDBK-217 as a starting point and 

predicts failure rates based on field experience [12]. There are three ways to predict a failure rate: 

1) generic failure rate defined by the standard; 2) supplement the first method with real data that 

obtain from testing; 3) supplement the first method with real data that obtain from identical items 

under the same environmental conditions, identical items under different conditions or the field 

1 2 3 m   
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item are similar but not identical conditions. This method enable field data to incorporate into 

prediction in order to obtain more accurate results.  

 

2.5.3 Based on physics-of-failure life cycle.  

This kind of methods require comprehensive knowledge of the thermal, mechanical, electrical and 

chemical life cycle environment as well as process leading to failures in the field [17]. Many 

appropriate acceleration models are applied to predict failure rates, e.g. Arrhenius’s law for 

temperature, Voltage acceleration, Gunn’s law for humidity, Coffin-Manson based law for thermal 

cycling fatigue etc. 
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3 Statistical methods for data analysis  

This chapter presents some statistical methods to analyze inventory- and operational parameters 

that significantly impact on the reliability performance as well as a method to modify failure rates 

based on operational data. 

 

3.1 Overview of methods  

Statistical methods for data analysis in this project involves three main steps, as shown in Figure 

3, parameters analysis, equipment classification and modify failure rates. The aim of first step is 

to analyze parameters by using various methods, e.g. analysis of variance (ANOVA), generalized 

linear model (GLM) and proportion hazards model (COX model). The second step is armed at 

categorizing equipment into groups in accordance with significant inventory- and operational 

parameters. Modifying failure rates is the next step for generic failure rates or operational failure 

rates. Generic failure rates are derived from data from a range of facilities, while operational 

failure rate is regarded as a specific failure rate. The methods in step 1 and step 3 will be 

described in detail in the following sections. 

 

Figure 3 Overview of statistical methods in data analysis 
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3.2 Parameter analysis  

A number of the different methods can be implemented to analyze inventory- and operational 

parameters. To retain validity and reliability of the analysis results, it is vital to determine an 

appropriate method that depends on characteristics of the data. The flowchart in Figure 4 

illustrates the selection process.  

There are two kinds of most commonly used estimation methods: Non-parametric estimation and 

parametric estimation. Nonparametric estimation makes no assumptions about the probability 

distribution of the variables. Kruskal-Wallis test and Friedman test are two nonparametric 

estimations that are equivalent to the parametric method ANOVA. Kruskal-Wallis test is used to 

test on the equality of median. Friedman test can also be employed to test on medians from three 

or more samples [18]. Those nonparametric tests are utilized to compare samples (e.g. failure time 

in this thesis) and demonstrate whether the samples originate from the same distribution.  

Non-parametric estimation accommodate many conditions that parametric estimation do not 

handle, including non-normal distribution of samples, small sample sizes, ordered variables and 

outliers. In most cases, the choice between parametric and nonparametric estimation ultimately 

comes down to sample size and whether the center of the data’s distribution is better reflected by 

the mean or the median [18]. However, it seems to be difficult to make accurate quantitative 

statements from non-parametric estimations. The results of nonparametric analyses are more 

likely to be intuitive. The master thesis thus focus on parametric estimation. Parametric estimation 

focuses on the parameters, e.g. mean and the standard deviation and makes various assumptions 

about the data. 

Parametric estimation starts from failure time analysis. Considering an item (e.g. a valve) that is 

put into operation at t=0, failure times refers to the time from t=0 to the time in hours when the 

item doesn’t function. It differs from the mean time to failures, i.e. the mean time between 

consecutive occurrences of failures. The aim of failure time analysis is to estimate the distribution 

of failure time. When the observation time is a specific period, not from the start of operation, 

GLM based on binomial distribution of failures should be considered. If failure time is supposed 

to be normally distributed, it is possible to perform ANOVA to analyze parameters. When 

distribution is known to be one of exponential family, e.g. binomial distribution or passion 

distribution, GLM model can be to analyze inventory and operational parameters. In the case of 
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Non-exponential family distribution, COX model is a method to assess simultaneous effect of 

parameters on reliability performance without consideration of distribution of failures. In this 

master thesis, ANOVA, GLM model and COX model will be preferable methods to analyze 

inventory- and operational parameters.  

 

Figure 4 Flowchart of selection methods for parameter analysis 

 

ANOVA, GLM model and COX model based on various distribution assumptions and different 

criteria, as shown in Table 1. Methods selection should take into account the failures distribution. 

That is the reason why we will perform failure time analysis as a basis of parameter analysis.  
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Table 1 Summary of parameter analysis 

Methods Distributions Criteria Estimations Formula 

ANOVA Normal 

distribution 

Failure time  Least squares 

estimation 
ik ikT b x  

GLM Exponential 

family 

(Binomial) 

Failure 

probability 

Maximum 

Likelihood 

Estimation(MLE) 

log( )
1

ik ik

p
b x

p



  

COX  Free-distribution Failure rates/ 

hazard ratio 

Partial likelihood exp( )k ik ikx    

 

ANOVA is widely used in reliability assessment because it is efficient in comparing the 

influences of several factors (inventory- and operational parameters). Nevertheless, it can only be 

applied for normal distribution of samples. In case that failures is normally distributed and have 

equal standard deviation, then ANOVA can be performed to analyze parameters.  

In GLM models, it is assumed that the response variables is exponentially distributed. Then linear 

regression relationship between the response variables and the explanatory variables can be 

analyzed. In this instance, failure is supposed to be binomially distributed since the response 

failure can be regarded as discrete variables ( ‘success’ as 1 and ‘failure’ as 0). GLM model 

enables us to predict failure probability and analyze parameters that significantly influence failure 

probability. 

It is unnecessary for COX models to make any assumption about the shape of the underlying 

distribution of failures. However, it is required to check some assumptions by statistical test, 

which will be introduced later.  

Figure 5 illustrates different input and output in those models. Inputs of the models are related to 

inventory- and operational parameters as well as failure data (e.g. failure time, failure rates). 

Outputs in the models are used to check whether there is  statistical significance (P-value) and 

estimated impact on reliability performance for each parameter (e.g. F value for ANOVA, 

exponential coefficient for GLM model and failure rates for COX model). The following sections 

will introduce those models in detail.  
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Figure 5 Statistical methods of input and output 

 

 

3.2.1 ANOVA 

ANOVA is a term used for comparing means of groups of observations where the groups are 

defined by the levels of factors [19]. It is performed to analyze contributions of specific factors 

(e.g. inventory- and operational parameters, such as size) to the total variability [20]. Based on 

least square estimation, an important consideration in this method is to analyze the differences 

between levels (categories, e.g. large-sized, medium-sized and small-sized) and within levels (e.g. 

in large-sized groups).  Here, take one factor with n levels and k observed groups as an example. 

The total variation can be calculated as [20]: 

 
2 2

1 1 1

( ) ( )
n k n

T E P ij i i

i j i

SS SS SS y y k y y  

  

         (3.1) 

Where  is the total variation,  is the variation at the same level and PSS  is the variation 

from different levels. ijy  is a response variable for the observation j at level i, implying the 

outputs measured in the tests. The term response variable is referred to measurements that are free 

to vary in response to other variables called explanatory variables [19].  iy    is the average value 

of response variable at level i and can be calculated as: 
1

k

ij

j

i

y

y
k



 


. y  is the average value of all 

TSS ESS
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the response variables and can be expressed as: 
1 1

..

n k

ij

i j

y

y
N

 



 ( N k n  ).  Then analytical 

results are shown in Table 2. 

Table 2 ANOVA result table for one-factor 

Source SS DF MS F0 

Factor 
PSS  n-1 / 1P PMS SS n   PMS / EMS  

Variation  N-n /E EMS SS N n    

Total  N-1   

 

Where, degree of freedom (DF) means the minimum number of comparisons necessary to draw a 

conclusion [20]. MS denotes the variation of the mean responses. If 0 , 1,n N nF F   , the factor is 

statistically influential on the response variables at %  (e.g. 95%) significance level. , 1,n N nF    

can be found in the F-distribution table.  

 

3.2.2 GLM model 

The aim of GLM is to describe the statistical relationships between response variable 1,... NY Y  and 

explanatory variables 1 2, ,... kx x x  by estimating the corresponding parameters 1 2, ,... k   [21]. An 

explanatory variable is a type of independent variable that can affect response variables, which 

may be fixed by the experimental design.  

GLM are mostly based on maximum likelihood estimation and allows for regression modeling 

when response variables are distributed as one of the members of the exponential family. The 

observational model is given by [21]:  

 0 1 1 ...i i ik iky x x        (3.2) 

 ( ), ( )i i i iy g E Y     (3.3) 

Where g is a differentiable function called the link function [19]. A link function dependents on 

the distribution from exponential family is defined in  

Table 3:   

ESS

TSS
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Table 3 Link function for various exponential family members[21] 

Distribution Link functions Models 

Normal 
0 1 1 ...i i ik ikx x       (identity) 0 1 1 ...i i ik ikx x        

Poisson 
0 1 1ln ( ) ...i i ik ikx x       (log) 0 1 1exp( ... )i i ik ikx x        

Binomial 
0 1 1ln ( ) ...

1

i
i ik ik

i

x x


  


   


(logit) 0 1 1

0 1 1

exp ( ... )

1 exp ( ...

i ik ik
i

i ik ik

x x

x x

  


  

  


   
 

Exponential 
0 1 11/ ...i i ik ikx x       (reciprocal) 0 1 11/ exp( ... )i i ik ikx x        

 

It is decided to introduce a logit GLM model concerning binomial distribution in this master 

thesis. The main reason is that the observation time needn’t cover the whole lifetime of item and 

only two possible outcomes should be considered (e.g. the response variables are measured on a 

binary scale, failure or not). Let ~ ( , )i i iY Binomial n p  expresses response variables with failure 

probability ip , implying likelihood for an item will fail at a given time. If ( / )i i iE Y n p  and

1
var( / ) (1 )i i i i

i

Y n p p
n

  , then GLM model is given as: 

 0 1 1log( ) ...
1

i
i i i ik ik

i

p
x x

p
     


  (3.4) 

Formula of failure probability is calculated as: 

 0 1 1

0 1 1

exp( ... )

1 exp( ... )

i i i ik ik
i

i i i ik ik

x x
p

x x

  

  

  


   
  (3.5) 

In order to interpret the meaning of i  for each parameter, the next step is: 

 
2

( )
( ) 1

exp( )
( ) ( ) (1 )

i

i i i
ij

ij ij i

P

x x



 





 

 
  

  (3.6) 

Where i  denotes 0 1 1exp( ... )i i i ik ikx x     . It is concluded that failure probability is related 

with exp( )ij and significant parameters can be found by comparing estimation of coefficient i . 
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3.2.3 COX Model 

COX model is a survival model related to event hazards (e.g. failure rates) associated with time. It 

is possible to estimate the effect of parameters without any consideration of the distribution to 

response variables (e.g. failures). COX models can be used to modeling not only discrete (e.g. 

categorical variables) but also numeric.  

Let  1 2, ......i i i ipX X X X be the realized values of the covariates (e.g. inventory and operational 

parameters) and   is a column vector consisting of the coefficients. The hazard (i.e. failure in this 

case) function is formed as [22]: 

 0( , ) ( )exp( )i ih t X h t X   (3.7) 

  1 1 2 2( ... )

0( ) / ( ) p pX X X
h t h t e

   
  (3.8) 

Where 0 ( )h t is called baseline hazard rate (i.e. failure rate), dependent only on time. The ratio of 

any two hazard rates are constant: 

  

^
*

* 0 ^
*1

^
1

0

1

( ) exp( )
( , )

exp( ( ))
( , )

( ) exp( )

p

i p

i
ip

i

i

i

h t X
h t X

X X
h t X

h t X













  





 (3.9) 

It implies that the ratio is independent of time t and the covariates (e.g. inventory- and operational 

parameters) may have a multiplicative effect on the hazard rates (failure rates) [23]. Even though 

the baseline hazard is unspecified, coefficients of the COX model can still be estimated through 

maximization of partial likelihood [24]. The conditional probability of a failure at time it  and 

partial likelihood function are calculated as follows: 

  
( )

exp( )
Pr( )

exp( )
i

i
i

j R t j

X
t

X








 , 
1 ( )

exp( )
( )

exp( )

i

i

k
i

i j R t j

X
L

X








 

 
  

  



 (3.10) 

Where ( )iR t  denotes the number of cases that are at risk of failures at time it . i  defines to be 0 if 

the item is censored (i.e. no failure within censoring time) and 1 if the item is uncensored (i.e. 

failure occurs within censoring time).  
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To interpret the meaning of i , it is suppose that we increase iX  by 1 while other covariate values 

are same, the relative change of failure hazard can be calculated as: 

  0 1 1 2 2

0 1 1 2 2

( , ) ( ) exp( ... ( 1) ... )
exp( )

( , ) ( ) exp( ... ... )

new i i k k
i

i i k k

h t X h t X X X X

h t X h t X X X X

   


   

    
 

  
           (3.11) 

If exp( ) i

i e
 are called hazard ratio (HR, in this case, it could be regarded as failure rates), it is 

concluded that “HR >1” indicates the failure rates will increase and vice versa. By comparing the 

value of HR, it can be found some significant parameters that impact on reliability performance.  

 

3.3 Estimated failure rates  

The purpose of estimating failure rates is to change failure rates based on operational experienced 

data, covering both generic failure rates and operational failure rates, as shown in Figure 6. 

Generic failure rates can be modified by categorizing failure rates into various subcategories, e.g. 

inventory and operational parameters. For operational failure rates, updating failure rates is 

related to real numbers of experienced failures in a specific period. Based on updated failure rates, 

modifying failure rates rely on more detailed analysis methods, e.g. Failure Mode Effects and 

Diagnostic Analysis (FMECA), failure analysis, Bayesian estimation. Methods to modify 

operational failure rates will be introduced in detail. 

 

Figure 6 Estimation of generic failure rates and operational failure rates 
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3.3.1 Updated failure rates 

The main intention of updating failure rates is to verify that the experienced failures are acceptable 

as intended or not. The calculation of failure rates based on the field experienced data is [4]:  

  
^

DU

Number of failures x

Aggregated timein service n t
  


 (3.12) 

Where, x is the number of observed DU failures during observation period. n denotes number of 

components and t represents observation time. It is established 90% confidence interval for :  

   (3.13) 

SINTEF report points out that it is possible to use operational data instead of generic data from 

handbooks under sufficient data [2]. Sufficient data imply a significant amount of available data 

with the high number of installed units based several years of operation [2]. Specific requirements 

concerning the volume of operating experience reference is made to the requirements for field 

experience as suggested in IEC 61508, e.g. 100000 operating hours and at least one year of service 

history [4]. However, it is not easy to distinguish sufficient data and insufficient data about failures. 

In practice, when having observed a few failures, for example 0 or 1 failures during operation, it 

will be recognized as insufficient data.  

If the operational data is insufficient, it is difficult to solely use operational data due to statistical 

confidence problem. In this case, it will be necessary to combine the operational data with the a 

priori estimate of the failure rates:  

 
2

 
( )

DU

DU CE DU




 




, DU      (3.14) 

Then updated failure rate based on operational experience combined with a prior failure rate, is 

estimated as: 

  DU

n

x

t






 



 (3.15) 

DU CE   denotes conservative estimate of the failure rate and can be determined as: 

DU


0.95,2 0.05,2( 1)

1 1
,

2 2
x x

n n

Z Z
t t



 
 
 
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   7user specified value,  2 ,  5  10DU CE DUMax  

    (3.16) 

 

3.3.2 Modified failure rates 

This section presents a method used to modify failure rates for a new facility or modified a new 

equipment with comparable environmental conditions, maintenance and operational procedures as 

a current facility [5]. 

Based on the result from performance analysis, the failure rates (i.e. generic failure rates or 

operational failure rates) can be divided into n groups: 

  
^

1 2 ...DU n        (3.17) 

  
^

i i DU     (3.18) 

The values of ωi represents the impact on the reliability performance from parameter i and can be 

determined by expert judgement. The weight for each parameter should be normalized, and can be 

expressed as: 

  
1

1
n

i

i




  (3.19) 

It is supposed that parameter i have m subcategories, then failure rates of parameter i can be divided: 

  
1 2 ...i i i ij        (3.20) 

  ij ij i     (3.21) 

ij is the fraction of DU failures for subcategory j among all DU failures for parameter i: 

  ,

,

1

.

.

i j

ij m

i j

j

No of DU failures

No of DU failures








 (3.22) 

Then, by comparing existing parameter conditions and new parameter conditions, the modified 

failure rates can be calculated as: 
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* * * *

1 2 ...DU n        (3.23) 

  
*

i ij ij     (3.24) 

Where ij denotes the score of influence from subcategory j of parameter I, which is determined by 

judging of change between existing condition and new condition (e.g. inventory conditions). The 

assumptions of score are: 

1) If the influence on reliability performance is supposed to be in a medium state, then 1ij   

2) If the influence on reliability performance is supposed to be in a more suitable state, then 1ij   

3) If the influence on reliability performance is supposed to be in a less suitable state, then 1ij   

The weights i  is related to importance of influence on reliability performance from the each 

inventory- and operational parameters. The weight ij  is an estimated value for inventory and 

operational parameters by comparing conditions of the existing facilities and the new facility.  

The weight for each subcategory ij  generates from the statistical results of DU failures. Those 

estimated or experienced weights are critical to the results of modified failure rates. 
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4 Approach for modifying failure rates  

This chapter gives an overview introduction for the approach to modify failure rates and elaborates 

how to identify equipment and inventory- and operational parameters.   

 

4.1 Overview of approach 

A necessary prerequisite for establishing modified generic failure rates is to evaluate the 

following two important questions: 1) Are the equipment likely to be sensitive to specific 

inventory- and operational parameters; 2) Can it be supported by operational experience or data? 

An approach for modifying failure rates involving six steps is suggested, as illustrated in Figure 7: 

 Step 1: Identify equipment group based on the criteria of criticality, sufficiency, 

sensitivity and significance. 

 Step 2: Identify the most relevant parameters that can explain variation in reliability 

according to the criteria of relevance, complexity, availability and repeatability. 

 Step 3: Collect inventory data and operational environmental information. 

 Step 4: Select available methods to analyze parameters and perform data analysis.  

 Step 5: Check significance. It is also important to emphasize statistically, if there is no 

significance, it should be return to identify other equipment and/or parameters. 

 Step 6: Modify failure rates for generic failure rates or operational failure rates. 

 

 

 

 

 

 

 

Figure 7 Approach to modify failure rates 



25 

 

4.2 Identify equipment  

Based on review of operational data from several facilities, it is showed that reliability 

performance within a group of equipment can be quite different even in the same environment [6]. 

But not all types of equipment have variations in reliability performance. Some equipment are 

likely to demonstrate similar failure rates between different facilities, e.g. fire dampers. The 

priority of the data analysis is given to identify which groups of equipment in SISs are expected to 

have significant variations. It is necessary to review SIL requirement as the first step, e.g. safety 

analysis report (SAS) and safety requirement specification (SRS). It is also desirable to set up 

common criteria to evaluate and select equipment. Four criteria for identifying equipment are 

important: 

 Criticality. Is the equipment critical for SISs with huge contributions to the PFD? 

 Sufficiency.  Is there enough information about the equipment and are there sufficient 

amount of operational data?  

 Significance. Is there large variation for this type of equipment at different facilities? 

 Sensitivity. Are the equipment sensitive to specific parameters? 

 

It is decided to focus on ESD/PSD valves in this project on the basis of the criteria above. Data for 

shutdown valves are adequate and they are critical for the safety system. They are the major 

contributors to probability of failure on demand (PFD, as shown an example in Figure 8 [4].  It is a 

part of the process section on an offshore oil and gas production installation. In case of an 

emergency situation, e.g. the event of a failure in process control system, PSD and ESD valves will 

stop process or isolate equipment to prevent major accidents. 
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Figure 8 Example of shutdown valves in the safety system  

 

If only the PSD function is considered in the calculation of PFD. Basically, a PSD function 

consists of sensors, a logic solvers and final element. Reliability Block Diagram (RBD) for PSD 

function, is illustrated in Figure 9. 

              
 

Figure 9 RBD for the PSD function 

The PFD for PSD valve is 
39.2 10 accounting for 67.6% of total PFD, as indicated in Table 4, 

which is a dominate contributor of PFD compared to the other components in the SIF. 

Table 4 An example of PFD calculation results for the PSD functions 

Component Voting Failure rate (per hour)  PFD for component % of total 

Transmitter 1oo1 0.3
610  

31.3 10  9.6% 

PSD logic 1oo1 0.7
610  

33.1 10  22.8% 

PSD valve  1oo1 2.1
610  

39.2 10  67.6% 

Total   21.4 10   

Note: DU generate from SINTEF PDS handbook[7], 8760  hours 
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4.3 Identify parameters 

It is vital to determine the range and degree of collected data[11]. In this case, it is desirable to 

decide how many parameters and which parameters involved. Selection of inventory- and 

operational parameters should be taken into account four criteria: 

 Relevance. Do those inventory- and operational parameters impact on reliability 

performance? 

 Complexity. What is the degree of complexity for this parameter?  

 Availability. Is it possible to collect and analyze the parameters? 

 Repeatability. Which failure have actually occurred in the past? Did it occur again? 

It is required to investigate the mechanism of the shutdown valves. Both ESD and PSD valves can 

isolate related process segments in case of emergency or abnormal operating conditions and 

thereby limit the flow within the valves. The boundary of a valve includes valves (e.g. bonnet, 

closure member, flange, seals, seat rings, stem and valve body etc.), actuator (e.g. actuating 

device, case, gear, piston etc.), control system and monitoring (e.g. control unit, cabling boxes, 

instrument, monitoring, internal power supply etc.), as showed in Figure 10 [10].  

 

Figure 10 Boundary of shutdown valves 
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Selected parameters in terms of inventory equipment and operational/environmental conditions 

for ESD/PSD valves are showed in Table 5. 

Table 5 Identify parameters for shutdown valves 

Inventory information  Environment/Operational condition 

Functional location (Tag number) 

Type 

Size 

Actuator principle  

Required response time  

Area/location 

Flow medium 

Special environment area 

Date put into service 

Functional location is a tag number used to identify equipment’s physical location. Each location 

has an identical logical location number within a system and are vital to determine the identity of 

equipment. The groups of functional location are defined as main equipment, piping, electrical 

field equipment, automation field equipment and telecom field equipment. 

There are three main types shutdown valves: Ball, Butterfly and Gate. All valves are designed to 

control pressure and flow based on various principles, function and structures. It is important to 

know each type of valve’s characteristics and peculiarities, e.g. poor methanol resistance in O-

rings and deposits that can prevent seat movement are challenges for ball valves. Precipitation and 

abrasion are typical problems for gate valves. A butterfly valve will usually produce turbulence 

flow that gives higher pressure and erosion to the valve at a small opening. Figure 11 shows an 

example of a line with a gate valve and a ball valve [25].  

 

Figure 11 Example of ball valve and gate valve 
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Size of the valves affects maximum permitted working pressure, e.g. a 40 mm stem on a "4 gate 

valve at 120 bar must be closed, while a "8 valve has a differential pressure of 60 bar [25]. The 

surface area of a 10 inch valve is about 100 mm2 and the area of a circular surface is calculated by 

the radius squared multiplied by Pi [25]: " 2 211.3
10 100 ( )

2

mm
mm    . It is assumed that the 

pressure area for a "10  ball valve is 50000 mm2. Given a force of 500000N, then the pressure 

across the ball valve is 100 bar (100 bar = 10 N/ mm2 = 1 kg).  

In this project, size of valves are classified into three groups: small-sized, middle-sized and large-

sized (in some cases, there is another group for extreme large-sized valves). Small-sized valves 

are characterized by small diameters with extreme high pressure, e.g. less than 1 inch. They differ 

from the other valves due to their particular structure and functions. However, those valves are 

usually not main contributors of total failures and risk. They may not cause to major accident. For 

example, a the valves with 1/2 inch diameter for the chemical injection system are regarded as 

small-sized valves. It is a water-based valve that will not lead to fire or explosion. Middle-sized 

valves refer to diameter of valves from 1 to 3 inch and large-sized valves are more than 3 inch.  

Flow medium is a considerable parameter for valves since a valve is highly affected by the fluid 

flowing through it. Various fluid or gas result in erosion, corrosion, cavitation on the surface, 

degradation of seals and clogging by particles and deposits. The medium within ESD and PSD 

valves may be hydrocarbon liquid, gas, multiphase, chemical (e.g. Mono Ethylene Glycol (MEG), 

Triethylene Glycol (TEG) etc.), produced water, fresh water and sea water. Flow medium in the 

methanol injection system is consisting of 90% MEG and 10% water. The flow medium within 

gas compression and re-injection system is Hydrocarbon liquid (HC). For riser and well system, 

the flow medium is likely to be mixture of hydrocarbon, H2O and sand.  

Most safety valves use single principle actuators (i.e. spring return), can be divided into three 

groups: hydraulic, pneumatic or electrical. They supply different power to move or control valves. 

Hydraulic and pneumatic actuators should be able to operate the valve safely at the lowest 

instrument pressure, but not damaging the valve if it is operated at maximum instrument pressure 

[25].  

Other inventory- and operational parameters, e.g. required response time, location and date put 

into service, provide also valuable information. Required response time is a measure of how long 
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a valve is being opened or closed once it starts moving. Area/location describes the area where 

equipment installed, e.g. outside, inside or subsea. Date put into service explains when a valve 

starts to supply the service. Special environment conditions are referred to some particular 

situation, e.g. exposed to salt or ice. Detail information of main inventory and operational 

parameters, is listed in Table 6. 

Table 6 Description of inventory and operational parameters 

Parameters  Subcategories  Descriptions 

Type  Ball Control flow through it by rotating a perforated and pivoting 

ball,  poor methanol resistance in O-rings and deposits. 

 Gate Open and close by lifting or putting a gate out/down of the 

path of the fluid.  Precipitation and abrasion are typical 

problems. 

 Butterfly Regulating or isolating flow by a damper. It produces 

turbulence flow at a small opening that gives higher pressure 

drop and erosion 

Size Small-sized Less than 1 inch  

 Medium-sized Between 1 and 3 inch 

 Large-sized Larger than 3 inch,  (Extreme large more than 18 inch) 

Flow medium HC liquid Oil and condensate hydrocarbon liquid 

 Diesel Diesel fuel in fare water system and power system etc. 

 Chemical Chemical medium in chemical injection system e.g. H2S, 

Oxygen and some in methanol injection system e.g. 90% 

MEG with 10% water 

 Multiphase Mixture of different flow medium, e.g. mixture of 

hydrocarbon, water and sand 

 Water Fresh water with normal temperature and produced water 

with high temperature 

 Sea water Used for fire water system and is characterized by salt  

 Gas HC gas or HC vapor in gas compression and re-injection 

system, gas treatment system, gas export and metering 

system, heating medium system etc. 

Actuator  Hydraulic Using hydraulic power to move or control valves 

 Pneumatic Converts energy formed by vacuum or compressed air at 

high pressure into linear or rotary motion 

 Electrical Powered by a motor converts electrical energy into 

mechanical moving 
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5 Data analysis   

The aim of this chapter is to use the statistical methods that was introduced in chapter 3 for 

parameters analysis, based on the collected data from two facilities within the Norwegian oil and 

gas industry. The present chapter is broken down into three main parts. The first part introduces 

the data collection process and describes the data sets, then five potential parameters are specified 

in this case. The second part elaborates the modeling process and defining variables in the 

models. The last part describes the result of two models GLM model and COX model, then 

validates the models is performed to check goodness of fit of models and data.   

 

5.1 Data collection  

A systematic and efficient way to collect data can improve completeness and large population of 

data [11]. Figure 12 illustrates the data-collection process in this thesis: 

 Map resource for data-collection and review all the available data. 

 Extract the relevant data and interpret data. 

 Assess the quality of data. It is desirable to obtain all wanted events and exclude errors.  

 Perform data analysis.  If more data is required, it will return to extracting data.  

 

Figure 12 Data collection process 

In this project, the data stems from two facilities within oil and gas industry in Norway and is 

mostly recorded in two information management systems: Systems, Applications & Products 

(SAP) and Technical Information and Documentation System (STID). SAP is an enterprise 
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resource planning (ERP) system that enables the facility to run the business processed, ranging 

from accounting, sales, production, human resource, payment, maintenance and operation in an 

integrated environment.  STID is used to control and manage documentations in the companies, 

covering operation, marketing, technology, project management and IT support etc. 

Data collection can be performed by sorting key words (e.g. functional location, failure 

notifications and equipment number etc.). All the technical and equipment information are coded 

by a common coding system in SAP and STID. It enables us to ensure standardized classification 

and translation of the data. Additional manual effort is also required in data collection, e.g. 

reviewing corresponding documents, such as safety requirements specification (SRS), process and 

instrumentation diagrams (P&IDs), maintenance and operational report etc. In some cases, it is 

desirable to communicate with SAP experts and maintenance personnel to acquire reliable 

information. Despite various techniques could be employed in data collection, data for some 

inventory- and operational parameters turn out to be insufficient in practice, e.g. date put into 

service, operational temperature and pressure within a valve. 

Collected data for this master project covers failure data sets, inventory data sets as well as 

maintenance data sets. Besides sortable categorical data, the data sets contain detailed comments 

with written text, e.g. description of characters of valves providing information about types and 

sizes of the valves. In total, the data sets through operational reviews have 589 ESD and PSD 

valves and 161 DU failures, and aggregated operational time is 
73.2 10  hours. Data analysis 

concerns both ESD and PSD valves for two facilities by ensuring the sample size is large enough. 

Modification of operational failure rates is based on the data from one specific facility. 

Failure data sets comprise information in relation with failure time, failure mode, failure causes, 

failure consequence etc. In the PDS project of SINTEF, operational reviews of safety critical 

equipment on several facilities have been performed. The purpose of the data reviews have been 

to verify the performance of SIL and determine whether the functional test intervals should be 

adjusted [26]. Failure analysis with consideration of detection methods, failure causes and failure 

modes have been carried out in the specialization project [27]. Therefore, this master project will 

not review failure records, unless it is relevant to look into details during the data analysis. 

Inventory data sets are related to equipment data and environmental information that has been 
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introduced in the previous chapter. Maintenance data sets include function test, leakage test and 

partial stroke test and test intervals etc.   

 

5.2 Data sets  

The quality of data set is highlighted for data analysis. There is always the possibility that the data 

sets from the facilities’ system contain wrong data. So it is necessary to assess the quality of data 

sets and clean it before the data analysis. It is found that seven DU failures for one facility are 

regarded as one failure owing to the same design problem and high temperature. Another seven 

DU failures are removed from the dataset because of high-frequency problem on hydraulic system 

in the first two years. It is unable to find any relevant inventory information for one DU failure, 

which result in dropping from the data sets. 

Being subjected to acquire insufficient information, available inventory- and operational 

parameters that are regarded as explanatory variables in the data analysis are: Type, Size, Flow 

medium, Actuator principle and Leakage requirement. Each parameter could be split into several 

subcategories, as shown in Figure 13. The main types of valves are ball, gate and butterfly valve. 

Sizes of the valves can be divided into three groups: Small, Medium and Large. Actuator 

principle refers to hydraulic, pneumatic and electric actuator. Flow medium within the valves may 

involve hydraulic liquid, gas, chemical, mixture, diesel and water etc. For maintenance parameter, 

we consider only one parameter: Leakage requirement. Having a leakage requirement does not 

essentially influence any degradation mechanism in the valves. The main reason for being a 

potential parameter, however, is that the valve with leakage requirement may be more vulnerable 

to failures that related to LCP failure mode. The same type of valve may have different DU failure 

rate, depending on whether the valve has been assigned leakage requirement or not. More detailed 

information of the five parameters has been described in the previous chapter. 
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Figure 13 Inventory- and operational parameters for this case study 

Censoring time is introduced to terminate observation, implying it prevents observing the full life 

time of the valves even though the valves have not failed. Censoring time expresses the hours 

between the dates put into the service until the end of observation. One facility has been installed 

and operated from 2005, while another one has been operated from 2007. As illustrated in Figure 

14, censoring time for two facilities are defined as 11 years ( 1 96456st  hours, 12/31/2005 to 

12/31/2016) and 7 years ( 2 72312st  hours, 10/01/2007 to 12/31/2015). The observation has to be 

terminated if a valve fails or the censoring times arrive at 1st / 2st . 

 

Figure 14 Operational time for two facilities 
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Table 7 illustrates an example of a dataset used in data analysis for the shutdown valves at two 

facilities. For instance, No. 1 valve has never failed in observation period, while No. 4 valve 

failed after time = 624 hours. 

Table 7 An example of dataset used in data analysis 

No. 
 

Failure Time 
(hours) 

Censoring 
 

Type 
 

Dimension 
 

Flow 
Medium 

Actuator 
 

Leakage 
requirement 

1 96456 0 BALL Large HC Liquid Hydraulic YES 
2 96456 0 BALL Medium Others Hydraulic YES 
3 96456 0 BALL Large Others Hydraulic NO 
4 624 1 BALL Large Others Hydraulic NO 
5 96456 0 BALL Medium Gas Hydraulic YES 
6 96456 0 BALL Medium Gas Hydraulic YES 
7 96456 0 BALL Small Gas Hydraulic YES 
8 96456 0 BALL Medium Gas Hydraulic YES 
9 96456 0 BALL Small Gas Hydraulic YES 

10 96456 0 BALL Medium HC liquid Hydraulic YES 
11 96456 0 BALL Medium Gas Hydraulic NO 
12 96456 0 BALL Medium Gas Hydraulic NO 
13 46056 1 BALL Medium Gas Hydraulic NO 
14 34920 1 BALL Medium Gas Hydraulic NO 
15 89448 1 BALL Medium Others Pneumatic NO 
16 48360 1 BALL Large Gas Hydraulic NO 
17 21264 1 BALL Large Gas Hydraulic NO 
18 39384 1 GATE Medium Others Hydraulic       YES 
19 96456 0 BALL Medium Others Pneumatic NO 

… … … … … … … … 
589 72312 0 Others Medium Others Hydraulic       NO 

Note: 1) ''1'' -failed and ''0'' - censoring.  

2) ''Yes'' –with leakage requirement and ''NO'' – without leakage requirement 
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5.3 Regression modeling  

The analysis of failure times is used as a basis for obtaining the failure distribution. Considering 

an item (e.g. a valve) that is put into operation at t=0, failure time refers to the time from t=0 to 

the time in hours when the item doesn’t function. It differs from the mean time to failures, i.e. the 

mean time between consecutive occurrences of failures. Failures time of the ESD and PSD valves 

for two facilities are shown in Figure 15. There was in total 161 DU failures (36 DU failures for 

ESD valves and 125 DU failures for PSD valves). 

 

Figure 15 Failure time for ESD and PSD valves  

 

It is desirable to determine which distribution of failure time fits the best by comparing how 

closely the plot points lie to the best-fit lines of a probability plot. Anderson-Darling (AD) is used 

to measure how well the data follow a particular distribution and compare the goodness of fit of 

several distribution. Four distributions are considered in this case: Weibull, Lognormal, 

Exponential and Normal distribution. As shown in Figure 16, AD value for the four distributions 

are near to 2167 (far from 0). That may be due to a greater number of censors in this case (428 

censors and 161 failures). 
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Figure 16 Probability of failure time for ESD and PSD valves  

 

Any conclusion of failure distribution cannot be obtained from failure time analysis. In spite of 

that, two models have been suggested: 1) GLM model, based on binomial distribution, 

considering only whether a valve has failed or not during observation period in this method, 

rather than the whole lifetime of valves. 2) COX model. The advantage of the COX models is free 

of any assumption about the shape of underlying distribution [28]. The goal of model selection is 

to find an appropriate model that fits well data and can be used as a basis for inference and 

prediction. Poor model will lead to uncertainty and invalidity of the data analysis. The main 

reason for using GLM model and COX model is to avoid selecting inappropriate model, 

regardless of unknown distribution of failures.  

Analysis models have been set up with consideration of the types of variables because the results 

of analysis is dependent on appropriate variables. A variable is not only something measured, but 

also something to be manipulated and controlled. Failure probability, i.e. likelihood of an item 

will fail at time t, is regarded as response variables in GLM models. Failure rates are treated as 

response variables in COX models. Both GLM and COX model allow to use categorical variables 

(names or labels, e.g. small, medium and large) and numerical variables ( measurable quantity, 
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e.g. 18’ inch of a valve). For the categorical models, the result is estimated for each subcategories 

of explanatory variable, e.g. coefficient represents parameter small-sized at subcategories level.  

For numerical model, explanatory variables are expressed at category level, e.g. coefficient 

represents for parameter size.  

In this instance, each potential inventory- and operational parameters for categorical variables are 

split into two or three levels taking into account computing complexity and limited data. As 

shown in Table 8, Ball, Gate and Others are regarded as three groups of the valves. ''Other'' 

includes Butterfly valves and unknown type of valves. Sizes of the valves are divided into three 

groups, i.e. S (0-1''), M (1''-3'') and L (>3''). Actuator includes hydraulic and pneumatic two 

groups. ''Other'' for flow medium covers diesel, chemical, water and sea water, multiphase and 

unknown. Leakage requirement represents a dichotomous variable categorized as either ''Yes'' or 

''No''.  

Table 8 Summary of parameters classification  

Type Size Medium Actuator Leakage 

requirement 

Ball      L     HC liquid    Hydraulic     Yes         

Others         M    Others               Pneumatic   No         

Gate     S     Gate          

Numerical variables are given value in the same range (-1, 1). The similar range will reduce the 

impact from given value of the parameters (e.g. Ball = 1, Gate = -1 and others = 0). Table 9 

illustrates the given value of inventory- and operational parameters. 

Table 9 Summary of parameters with numerical variables 

Type Size Medium Actuator Leakage 

requirement 

Ball         1 L     1 HC liquid   1 Hydraulic    1 Yes        1 

Others     0 M    0 Others         0   Pneumatic  -1 No        -1 

Gate        -1 S    -1 Gas            -1   

 

COX model can be specified as follows:

  1 2 3 4 5,  Type Size FlowmFailurerate Time Failur edium Actuator Leake age                
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GLM model can be specified as follows: 

  1 2 3 4 5Type Size FlFailure propabil owmedium Actuator Leakagity Failur ee              

Where i  denotes the estimated coefficient for each inventory- and operational parameter 

(explanatory variable), “Failure” means failure = 1 and censor = 0. 

 

5.4 Analysis results 

The feasible models in this project have been determined to be implemented in software R (codes 

in Appendix D). R program is a free software for statistical computing and graphics. The 

following sections will take COX model with categorical variables, COX model with numeric 

variables and GLM model with numerical variables as examples.  

 

5.4.1 COX model 

The results of data analysis in COX model with categorical variables are shown in Table 10. The 

results can mainly be interpreted by P-value, coefficient (i.e. estimated Beta i ) and hazard risk 

(HR, i.e. failure rate, exponential coefficients). More detailed information for other models can be 

checked in Appendix C. 

Table 10 Results for COX model with categorical variables 

Explanatory variable Beta( i ) HR P-value Low .95 Upper .95 

Type Gate 0.27 1.31 0.17 0.89 1.94 

Type Other 0.50 1.65 0.16 0.81 3.35 

Size Medium -1.25 0.29 81.32 10  0.19 0.44 

Size Small -2.20 0.11 31.62 10  0.03 0.44 

Medium HC -2.60 0.07 69.35 10  0.02 0.23 

Medium Other -0.87 0.41 58.77 10  0.27 0.65 

Actuator Pneumatic 1.39 4.01 0.07 0.92 17.57 

Leakage No -1.30 0.27 32.11 10  0.12 0.63 

Leakage Yes 0.46 1.59 0.02 1.07 2.35 

  Likelihood ratio test =  171.1 on 9 df,   p=0 

  Wald test                   = 122.3 on 9 df,   p=0 

  Score (logrank) test   = 160.8 on 9 df,   p=0 
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P-value (i.e. probability value) evaluates statistical significance of each variable. It should be 

noted that statistical significance is not the same as importance. Statistical significance is a 

likelihood to demonstrate difference between groups for variables caused by systematic samples 

other than by chance. A small P-value (e.g. P<0.05) enables us to determine reject null hypothesis 

(i.e. there is no effect from this variable on reliability performance) and gives the evidence for 

supporting statistical significance of the variable. In this case, there are three explanatory 

variables that have high statistical significance: Size (small and medium-sized), Flow medium 

(HC liquid and others) and leakage requirement (No or Yes). 

The HR indicates if a variable is more likely to be related to changes in reliability performance. It 

can also be interpreted as multiplicative effects on the failure rates. It have been discussed in the 

chapter 3. If iX  increase by 1 while other covariate values remain constant, e.g. holding other 

variables being constant, 23exp( ) 0.11  means that being a small-size of valve will reduce 89% 

failure on average compared with other sizes of valves. 51exp( ) 1.588  indicates that leakage 

requirement for a valve increases the failure rates by 58% compared to other valves without 

leakage requirement. Some estimation for variables are not illustrated in the tables. The reason for 

may be that the model return coefficients based on a base level won’t be shown in the tables. 

The likelihood-ratio test, Wald test and score logrank test describe statistical significance of the 

COX model. The less represents the better statistical significant in general. In this case, ‘9 df’ 

denotes proposed degree of freedom and P-values is in close 0. It implies that the H0 hypothesis 

(i.e. there is no impact on reliability performance from the explanatory variables) is soundly 

rejected. Considered at a global level, it can be concluded that there is statistical significance in 

this model. 

It also gives upper and lower 95% confidence interval for the failure rate. For example, the 

estimate range of 95% bound for Small-sized is from 0.03 to 0.44. The predicted failure 

probability at any given point time can be obtained by survival probability in R program. Survival 

probability will decrease while failure probability increase.  

Figure 17 illustrates the estimated survival function for the ESD and PSD valves. The broken 

lines show a point-wise 95% confidence envelope around the survival function. 
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Figure 17 Estimated survival function in the COX mode (Time in hours)  

 

The presence of correlation and interaction of the variables has important implication for the 

interpretation of statistical models and results. Hence, to develop the analysis models, statistical 

independence and autocorrelation of the explanatory variables should be checked [28]. For 

example, required response time of the valves often follow a linear regression with the sizes of the 

valves: " "2 2Responsetime Diameter   (for the control system). When the size of valves is 

included in the analysis models, the required response time is not regarded as an explanatory 

variable. Interaction of the explanatory variables in COX model can be checked in R, e.g. the size 

and flow medium. It indicate that the interactions should not be included in this case. The detail 

results of analysis by this model are not shown here due to page limitation. 

Some explanatory variables may be excluded in the models due to statistical insignificance by 

command ‘step ()’ in R, e.g. type and actuator principle. It appears that they are not sensitive 

enough to distinguish subcategories. Therefore, the model could be developed by eliminating the 

two parameters:  

  1 2 3,  SizeFailurerates FlTime Failu owmedium Leakagere          
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The value of likelihood ratio test decreases to 165.3, as shown in Table 11, has reduced 5.8 with a 

loss of 3 degrees of freedom. It is reasonable to remove the parameters actuator and type from the 

model. 

Table 11 Results for developed COX model with categorical variables 

Explanatory variable Beta HR P-value Low .95 Upper .95 

Size Medium -1.32 0.27 106.15 10  0.17 0.40 

Size Small -1.81 0.16 32.10 10  0.05 0.52 

Medium HC -2.54 0.08 51.42 10  0.03 0.25 

Medium Others -0.72 0.48 44.32 10  0.32 0.73 

Leakage NO -1.10 0.33 34.47 10  0.16 0.71 

Leakage Yes 0.52 1.68 33.49 10  1.19 2.38 

  Likelihood ratio test = 165.3 on 6 df,   p=0 

  Wald test                   = 116.7 on 6 df,   p=0 

  Score (logrank) test   = 148.7 on 6 df,   p=0 

 

It is also desirable to check and verify the results obtained in the COX models with numerical 

variables. The results are listed in Table 12. Size, medium and leakage requirement could be 

considered as significant inventory- and operational parameters taking into account impact on 

failure rates. 

Table 12 Results for COX model with numeric variables 

 coef exp(coef) z  Pr(>|z|) lower .95 upper .95 

Size 1.24 3.45 6.61 0.00 2.39 4.99 

Medium -0.95 0.39 -5.91 0.00 0.28 0.53 

Leakage 0.35 1.41 4.12 0.00 1.20 1.67 

Rsquare= 0.226   (max possible= 0.966 ) 

Likelihood ratio test  = 151.2  on 3 df,   p=0 

 

Moreover, to show the interaction of variables on reliability performance, Figure 18 is used to 

illustrate survival probability with consideration of two of three explanatory variables. The large-

sized valves with leakage requirement and large-sized valves with gas have the lowest survival 

probability.   
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Figure 18 Estimated survival function for size and leakage requirement 

Further, it is also possible to investigate the influence from numerical variables by check how 

estimation depended upon the value of a numeric variables. Figure 19 displays survival functions 

of sizes, flow medium and leakage requirement. It appears each variables significantly distinguish 

between subcategories when other variables are fixed to the average values, implying that those 

explanatory variables are independent upon the numeric values in the model. 
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Figure 19 Estimated survival function with constant value 

 

5.4.2 GLM model 

The estimated results of the GLM model based on binomial distribution are displayed in Table 13.  

The results can mainly be interpreted by P-value, akaike information criterion (AIC) and 

coefficient (i.e. estimated Beta).  

Table 13 Results for GLM model with numerical variables 

Explanatory variable Beta Exp(Beta) Standard 

error 

Z-value P-value 

(Intercept) -1.72 0.18 0.37 -4.67 62.99 10  

Type -0.31 0.73 0.14 -2.16 0.03 

Size 1.43 4.18 0.23 6.22 104.97 10  

Medium -1.27 0.28 0.20 -6.24 104.29 10  

Actuator  -0.65 0.52 0.37 -1.77 0.08 

Leakage requirement 0.38 1.46 0.11 3.33 30.86 10  

 Null deviance: 690.96 on 588 degrees of freedom 

 Residual deviance: 539.74 on 583 degrees of freedom 

 AIC: 551.74 
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In this case, P values of explanatory variables for size, medium and leakage requirement, i.e. 1.43, 

-1.27 and 0.38 respectively, indicate that the three explanatory variables have high statistical 

significance. In addition, Exp(Beta) represents the impact from each inventory- and operational 

parameter on the reliability performance. The intercept, often labeled as a constant, is supposed to 

be the mean value of failure probability when all the explanatory variables are equal to 0. Z value 

is a ratio of each regression coefficient divided its standard error. 

The null deviance shows how well the response variable is predicted by a model that include only 

intercept, whereas the residual deviance is related to a model includes the explanatory variables. 

For instance, null deviance is 690.96 on 588 degrees of freedom. The deviance decreases to 

539.74 on 583 degrees of freedom. It implies that the deviance has reduced 151.22 with a loss of 

5 degrees of freedom, a significant reduction in deviance. AIC is equal to 551 provides a value for 

assessing the quality of the model through comparison of related models. Its intent is to prevent us 

from including irrelevant variables. 

Interactions between leakage requirement and size is involved in the developed GLM model, then 

the value of AIC decrease from 551.74 to 543.67, as illustrated in Table 14. It implies that the 

interaction should be taken into account in the model. The developed GLM model is:   

  1 2 3 :SizeFailure pr Flobability F owmedium Size Flowmediulure mai          

Size and interaction between Size and Leakage requirement are important for failure rates in this 

case. It can be also interpreted that Size and Leakage requirement have significant influence on 

reliability performance.  

Table 14 Results for developed GLM model with numerical variables 

Explanatory variable Beta Exp(Beta) Standard 

error 

Z-value P-value 

(Intercept) -2.54 0.08 0.22 -11.33 162.00 10  

Size 1.57 4.81 0.21 7.34 132.08 10  

Medium -1.09 0.34 0.18 -5.86 94.52 10  

Size: Leakage 0.66 1.93 0.13 5.15 72.63 10  

 Null deviance: 690.96 on 588 degrees of freedom 

 Residual deviance: 535.67 on 585 degrees of freedom 

 AIC: 543.67 
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5.5 Model validation 

When conducting any data analysis, it is important to evaluate how well the model fits the data 

and that the data meet the assumption of the model [24]. As a standard linear model, the 

assumptions that support the GLM should be checked. The validation methods for GLMs is used 

for Gaussian linear models. However, some adaption are necessary and depending on the type of 

GLM, which will not be discussed here. More information about the methods can be found in the 

book: Extending the linear model with R [29].  

The focus of this thesis is to introduce the validation for COX models. Although the COX model 

has the assumption of distribution free failure times, there are still some essential assumptions: the 

variables are independent; the regression coefficients i  is constant over time, which is also called 

proportional hazards (PH) assumption; the link function is exponential; linear combination of the 

explanatory variable [30]. The model validation is employed to examine goodness-of-fit of the 

models and data.  

The data analysis using models produces a set of residuals. A residual represents the difference 

between the data and the model and are essential to explore the adequacy of the model [29]. It is 

of specific use in our context because some residuals can be used in more powerful ways to 

examine goodness-of-fit. As indicated in Figure 20, five residual Cox-Snell residual, Schoenfeld 

residual, deviance, martingale residuals and influential observation, can split into two main 

categories: Those used to validate the goodness-of-fit for the model (Cox-Snell, Schoenfeld and 

martingale residual) and those for data (influential/Score residual and deviance).  

 

Figure 20 COX model validation process 
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Cox-Snell residuals are performed to examine the overall fit of a model. If the model fits, then the 

residuals should be distributed exponentially [24]. Martingale residual can be viewed as the 

difference between the observed number of death items and the expected numbers based on the 

fitted model. Schoenfeld residual are based on the contribution to the derivative of the log partial 

likelihood. If the Schoenfeld residual exhibits randomly, then this gives the evidence that the 

explanatory variables’ effect is not changing by time [24]. It can be used to check PH assumption 

in the models. Score residuals (i.e. influential residual) is a measure for difference influences on 

explanatory variables’ coefficients from various observations. The influence is the impact of a 

single data point on the fit of a model [24]. Deviance residual is a basic way to check potential 

outliers that are observation points are distant from other observations. 

Which residuals should be used lies on the purpose of validation, e.g. when we concern 

proportional hazards (PH) assumption in the model, scaled Schoenfeld residuals vs time could be 

employed to test and graphical diagnostic. Some examples of residuals (i.e. Cox-Snell, 

Schoenfeld and score residuals) for the developed COX model with three categorical explanatory 

variables (i.e. Size, Flow medium and Leakage requirement) are given in the following section. 

Not all residuals will be applicable in this case. 

 

5.5.1 Cox-Snell residuals 

Cox-Snell residual is a kind of residual for checking overall goodness-of-fit of COX model. If the 

model fit well, the plot should have a 45-degree slope. Shown in Figure 21 is the exponential 

probability plot of Cox-Snell residuals, which confirms the adequacy of the fitted model.  
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Figure 21 Checking goodness of fit for COX model 

 

5.5.2 Scaled Scheoenfeld residuals 

Statistical tests for the PH assumptions called Scale Scheoenfeld residuals, by using command 

‘cox.zaph()’ in R. It computes at a test for each explanatory variables along with a global test for 

the model as a whole. Plotting scaled Schoenfeld residuals against time for each parameters in the 

model is shown in Figure 22, interpreting the graphs by smoothing. It is expected the slope of 

Schoenfeld residuals vs time should be not changing with time. In this case, it seems to be no 

obvious trend in the plots, implying that the PH assumptions appears to be supported for the 

explanatory variables: Size, Medium and Leakage requirement. 
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Figure 22 Plots of scaled Schoenfeld residuals against time 

 

5.5.3 Scaled score residuals 

Scaled score residual (i.e. influential residual) can be used to identify influential observations by 

estimating changes on coefficients. “Dfbeta” is a measure of estimated changes in the coefficients 

divided by their standard errors. In this case, scaled score residuals appear in Figure 23. It 

suggests that none of the observation is dramatically influential, although some of the residual 

value are large. 
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Figure 23 Plots of scaled score residuals 

 

Summing up the above, it can be concluded that the developed COX model with categorical 

variables adequately describes the data in general. Cox-Snell residuals, Scaled Scheoenfeld 

residuals and scaled score residual, provide evidence that support goodness of fit for the model 

and the corresponding data.  

Hence, it is concluded that the following parameters are significant for establishing modified 

failure rates for shut down valves: 
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 Size of valve is one of significant parameters for reliability performance (i.e. failure rates). 

Large size could be regarded as a negative influencing factor so that increased size will 

increase failure probability for a shutdown valve.  

 Leakage requirement is a contributor to failures since it is associated with increasing 

failure probability. Valves with leakage requirement may be more vulnerable to the 

failures compared to the valves without leakage requirement. 

 Valves with HC liquid medium will have lower failure probability compared to valves 

with gas. 

  



52 

 

6 Estimate failure rates  

This chapter performs the failure analysis that is the basis for estimating DU failure rates. The 

analysis results in COX model and GLM model in the previous chapter are: 1) Larger size 

increase failure probability for an ESD or PSD valve; 2) Leakage requirement is a contributor 

to failures since it is associated with increasing failure probability; 3) Valves with HC liquid 

medium have lower failure probability compared to valves with others. In order to explain and 

verify those result, the failure analysis will be performed for acquiring more detail information 

about failures (e.g. failure modes, detection methods, failure causes) and investigating correlation 

between failures and parameters. This chapter also presents an example of modifying failure rates 

for a new facility that has similar environmental and operational conditions with the existing 

facilities, considering the influence of inventory- and operational parameters on reliability 

performance. 

 

6.1 Failure analysis  

Failure analysis is a process for examining the causes and mechanism of failures [31]. The focus 

of failure analysis is on DU failures for the ESD and PSD valves at the two facilities. The failure 

analysis is employed to investigate not only the failure causes but also the relationship between 

DU failures rates and inventory data. It enables us to obtain more detailed information of DU 

failures, failure rates associated with inventory- and operational parameters. Then it could be 

determined significant parameters that impact on reliability performance and modify failure rates 

for a new device or new facility. 

DU failures can be classified into various groups with respect to failures (e.g. failure modes, 

detection methods and failure causes) and inventory- and operational parameters (e.g. type, size, 

flow medium of the valves). In the following section, the focus is on the three inventory- and 

operational parameters: size, flow medium and leakage requirement, because they are considered 

as significant inventory- and operational parameters from the data analysis in chapter 6.  

DU failure modes for shutdown valves are mainly divided into delayed operation (DOP), fail to 

close on demand (FTC), and leakage in closed position (LCP). DOP refers to failures where the 

valves cannot be closed within the required closing time. FTC represents a situation where the 
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valve will not fully close and may be caused by e.g. a broken spring, blocked return line for the 

hydraulic fluid or too high friction [1]. LCP is associated with a situation where fluid leaks 

through the closed valve and is often generated from corrosion or erosion on the gate or seat [1]. 

FTO are normally not dangerous failures for shut down valves since most shut down valve shall 

close upon demand. However, there are some valves that shall open upon demand and hence, 

FTO is also regarded as a failure mode in this thesis. 

Detection methods for shut down valves are classified into the following subcategories: Function 

test, demand, random observation, partial stroke test and leakage testing. Function test is 

performed manually at predefined time intervals to verify the equipment functionality. Demand 

presents random events where the SIF with the equipment was needed, which implies that failures 

could be revealed during a planned or unplanned shutdown event. Random observation refers to a 

situation where operators or maintenance crew detect failures incidentally, such as an operator 

that may detect a hydraulic leak that would have caused the valve to close too slow. Partial stroke 

testing for a valve is a confirmed partially test of the valve’s ability to perform its safety function 

by moving the valve without fully closing the valve [32]. Leakage testing is used to detect a too 

high internal leak rate through the valve.  

The causes of DU failures may be associated with design, fabrication and installation, operation 

and maintenance as well as internal and external environment.  Design is a common reason for 

failures of ESD and PSD valves, e.g. a valve actuator designed with insufficient tension so that 

failures will reoccur unless improving the actuator design. An example of an installation failure 

may be caused by incorrect installation. Operational failures are related to service and 

maintenance errors for the equipment, e.g. that a valve has not been sufficiently lubricated during 

preventive maintenance. External or internal environment are also important factors that impact 

on reliability performance, e.g. DU failures caused by excessive icing or sand production. 

The following section will present and discuss results of DU failures classification in accordance 

with the three critical inventory- and operational parameters. 
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6.1.1 Size 

Table 15 displays a large number of large-sized valves with DOP failure mode. By reviewing 

those DU failures, it is known that the failures often occur at one facility and mainly caused by 

similar hydraulic problems. The problems are in relation with their control systems, rather than 

the valves. In total 31 DU failures are linked to hydraulic problems and should be removed from 

our DU failure analysis in order to obtain more reasonable results. 

Table 15 DU failure distribution for sizes and failure modes 

          Mode  

Size       DOP FTC FTO LCP Total 

Large 114 13 1 3 131 

Medium 9 16 - 2 27 

Small - 3 - - 3 

Total 123 32 1 5 161 

 

Then the updated distribution of DU failures is illustrated at Table 16. The table shows that 78% 

of DU failures are related to Large-sized valves and the DOP failure mode accounts for over 83% 

of DU failures for Large-sized. FTC failures tend to occur within the Medium-sized group. DU 

failures of Small-sized valves account for only 1% of total DU failures. It seems therefore that a 

Large-sized valve and medium-sized valves have higher failure probability than Small-sized 

valve. That is the same results as the results from the data analysis introduced before.  

Table 16 Updated DU failure distribution for sizes and failure modes 

          Mode  

Size       DOP FTC FTO LCP Total 

Large 85 13 1 3 102 

Medium 9 14 - 2 25 

Small - 3 - - 3 

Total 94 30 1 5 130 

 

As showed in Table 17, DU failures of Large-sized valves and medium-sized valves are mainly 

detected by function test and demands. PST is used to reveal 14 DU failures for large-sized valves 

with gas medium. But they have been excluded from the dataset due to hydraulic problems that 

have been explained previously. 
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Table 17 DU failure distribution for sizes and detection methods 

       Method 

Size Demand 

Function 

test 

Leakage 

testing 

Partial 

stroke test 

Random 

observation Total 

Large 46 52 1 - 3 102 

Medium 8 11 - - 6 25 

Small - 1 - - 2 3 

Total 54 64 1 - 11 130 

 

It is difficult to spot a clear correlation between failure causes and the sizes of valves due to a 

large number of failures with unknown causes in this case, as shown in Table 18. 

Table 18 DU failure distribution for sizes and failure causes 

       Cause    

Size Design Environment 

Fabrication 

/installation Management 

Operation 

/maintenance Unknown Total 

Large 3 12 2 1 4 80 102 

Medium 2 9 1 - 1 12 25 

Small - - - - 1 2 3 

Total 5 21 3 1 6 94 130 

 

6.1.2 Flow medium 

The majority of DU failures occurs for the valves with gas medium, illustrated in Table 19, which 

is a bit of surprise consider that gas is a clean medium. DOP failure mode accounts for 76% of 

total. Those DU failures stem from one facility with a large number of DOP failures (123 DU 

failures in total). Only 3 DU failures are related to HC liquid, which can be used to explain why 

medium HC liquid has less impact on failure rates compared to gas. 

Table 19 DU failure distribution for flow medium and failure modes 

          Mode 

Medium DOP FTC FTO LCP Total 

Gas 75 19 1 4 99 

HC 2 1 - - 3 

Others 17 10 - 1 28 

Total 94 30 1 5 130 

 

Table 20 shows the distribution of flow medium associated with ESD and PSD valves, 

considering valves at the two the facility as one data set. More detail statistical result about 

inventory- and operational parameters could be found on Appendix A. There are 268 valves with 
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gas medium, accounting for 63% of total. 257 valves that are regarded as large-sized valves (i.e. 

60% of the total). The major portion of the valves are the valves with gas medium or the large-

sized valves. That may be one reason that medium gas and large-sizes have significant influence 

on failure rates.  

Table 20 Distribution of the valves for flow medium and sizes of valves 

Medium No. of valves Percentage Size No. of valves Percentage 

Gas 268 63% Large 257 60% 

HC 51 12% Medium 154 36% 

Others 108 25% Small 16 4% 

 

6.1.3 Leakage requirement 

Leakage requirement is regarded as a significant inventory- and operational parameters as well. 

LCP failures mode should be the most dominate failure mode among the valves failures for the 

valves with leakage requirement. Leakage requirement is in relation to specified maximum 

internal leakage rate that is relevant to define the failure model LCP. However, there is no 

obvious evidence to support this assumption by the fact that only 5 DU failures is related to LCP 

failure mode, as shown in Table 21. Therefore, when modifying failure rates, leakage requirement 

will not be regarded as an inventory- and operational parameter that significantly impact on 

reliability performance.  

Table 21 DU failure distribution for leakage requirement and failure modes 

          Mode 

Leakage DOP FTC FTO LCP Total 

NO 38 19 1 3 61 

YES 56 11 - 2 69 

Total 94 30 1 5 130 

 

6.2 Modifying failure rates  

A method for modifying failure rates was suggested in chapter 3. Here, a specific example will be 

given to show how to modify failure rates based on operational experience taking into account 

inventory- and operational parameters. A company intends to install a new facility with comparable 

environmental and operational conditions corresponding to an existing the facility. There are two 
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important inventory- and operational parameters for the ESD and PSD valves from the data analysis: 

size and flow medium, as we discussed previously. Four steps will be presented in detail in the 

following section. 

Step 1: Update failure rates based on operational data 

The objective of this step is to collect operational data for updating failure rates. It is a basis for 

modifying failure rates. The number of DU failures, aggregated operational time and failure rates 

of ESD and PSD valves for a facility are shown in Table 22. Updated failure rates for ESD and 

PSD valves is 78.9 10DU


  ) that is lower than generic failure rates from the PDS handbook 

( 62.1 10DU   ). The master project work covers categorizing failure data as well as inventory- 

and operational parameters (See Appendix B) for this specific facility.  

Table 22 Summary of DU failures, operational time and failure rates 

 No. of DU failures 

Aggregated operational 

Time(hours) Failure rates 

ESD & PSD 13 71.5 10  78.9 10  

 

Step 2: Determine the two parameters weights, i.e. sizes and medium.  

In order to divide updated failure rates 
DU


 into groups of parameters, the weights of two 

parameters should be determined by expert judgement. For example, the weight of size is assigned 

as the value of 0.6, while the weight of flow medium is 0.4. The distribution of weights is shown 

in Table 23. 

 

Step 3: Determine the subcategories weights for each parameter  

We must determine the weights of subcategories corresponding DU failures. The weights ij  is 

calculated by the fraction of DU failures for subcategory j among all DU failures for parameter i, 

for example, the weight of small-sized is 15.4% (e.g. 
2

2 5 6
small sized  

 
). Then we can obtain 

failure rates to subcategories for each parameter.  For instance, the failure rate to small-sized of the 

valves is estimated as: 7 80.6 15.4% 8.9 10 8.2 10small sized size small sized DU   


 

           
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Table 23 Parameter weights and failure rates for subcategories  

Parameter Weight of 

parameter ( i ) 

Subcategory No. of 

DU 

failures 

Weight of 

subcategory 

( ij ) 

ij  

Size 0.6 Small-sized 2  15.4% 88.2 10  

Medium-sized 5 38.5% 72.0 10  

Large-sized 6 46.1% 72.5 10  

Medium 0.4 Gas 5 38.5% 71.4 10  

HC Liquid 0 - - 

Others 8 61.5% 72.2 10  

Total     78.9 10  

 

Step 4: Determine score of influence of subcategory j of parameter i 

By comparing inventory conditions (e.g. the distribution of inventory- and operational parameters) 

with existing facility and new facility, correction factors of subcategory ij could be determined by 

expert judgement. The value of the correction factors regarding influence on reliability performance 

for each subcategories, can obtain from Table 24. 

Table 24 Explanation of the correction factors based on expert judgement 

ij  Explanation 

0.1 The subcategory j to the parameter i is expected to eliminate the failure rates for new 

facility compared to the existing facility with the similar conditions and it should be 

demonstrated significant impact on reliability performance through analysis 

parameters. 

0.5 The subcategory j to the parameter i is expected to have a significant effort on 

decrease failure for new facility compared to the existing facility with the similar 

conditions. 

1.0 No specific effect indicate that anything is changed for the failure rates 

1.5 Failure rate will not considered changed for the new facility with respect to this 

subcategory j 

3 The situation is significantly worse for new facility with respect to this subcategory j 

 

As shown in Table 25, the conditions of the parameters rely on the distribution of subcategories 

for size and process medium. 
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Table 25 Comparison of the distribution for subcategories  

Parameter Existing 

facility 

Distribution New facility Distribution 
ij  *

ij  

Size Small-sized 12%  Small-sized 10%  1 88.2 10  

Medium-sized 48% Medium-sized 30% 1 72.0 10  

Large-sized 40% Large-sized 60% 1.5 73.7 10  

Flow 

medium 

Gas 17% Gas 30% 0.5 70.7 10  

HC Liquid 35% HC Liquid 35% 1 - 

Others 48% Others 35% 1 72.2 10  

Total      79.5 10  

 

Where ij illustrates the impact on failure rates by comparing the distribution subcategories for new 

facility and existing facility. It can be based on several experts and engineering knowledge and 

judgment by identifying the values for each subcategory. Modified failure rate are: 79.5 10DU


   

for ESD and PSD valves at new facility.    
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7 Discussions and Conclusions  

This chapter is divided into three parts: 1) Summary the main contributions and results for the 

master project; 2) Discussion of challenges and limitations in the approach; 3) Proposed 

recommendations for further work. 

 

7.1 Conclusions 

Inventory- and operational parameters traditionally have often been skipped in reliability 

assessment. The main contribution of this thesis have been to suggest an approach to establish 

modified failure rates for safety critical equipment taking into account important inventory and 

operational parameters that significantly impact on reliability performance. The contributions are 

decomposed into three parts: 

 An approach has been proposed for establishing modified failure rates, including 

identification of equipment and parameters, data collection, data analysis and modifying 

failure rates.  

 Methods and analytical models have been employed to identify and analyze significant 

parameters. 

 A method has been proposed to modify failure rates for a new facility, where it is foreseen 

that inventory and operational parameters may effect reliability performance. 

The results of the thesis is that three important parameters have significant influence on reliability 

performance: size, flow medium and leakage requirement. Large-sized valves are more prone to 

fail compared with others,  implying that increased size can increase the failure probability for 

shutdown valves. Valves located in pipelines with HC liquid will have lower failure probability 

compared to valves with other flow medium. It appears that valves with leakage requirement have 

higher failure rates than valves without leakage requirement. The reason for that may be that the 

valves with leakage requirements are required more complex maintenance procedures, high 

frequency to check and more strict acceptance criteria. Having large-sized, HC liquid or leakage 

requirements for shutdown valves do not essentially influence any degradation mechanism of the 

valves. It seems that the valves with large-sized, gas medium and leakage requirements may be 

more vulnerable to failures.    
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7.2 Discussions 

Although the data from two facilities is not sufficient to obtain strong and uniform results, the more 

important is that the thesis offers an effective and practical approach to establish modified failure 

rates for safety critical equipment. The approach and the methods in this thesis is applicable during 

updating handbooks and design phases. They can be used for identifying important inventory- and 

operational parameters when updating failure data of the handbooks. They are also enable designers 

to pay more attention on the significant parameters in order to reduce the failure risk. When it is 

desired to decide size of a shutdown valve, for example, smaller-sized in a reasonable and 

acceptable range is better for reliability performance. Efforts in this thesis have also been made to 

elaborate statistical methods to identify and analyze the parameters for explaining variations of 

reliability performance in detail. It enables us to improve safe systems concerning significant 

inventory- and operational parameters during SISs design phases. Modified failure rates can be used 

to better predict the variations when it is foreseen that facilities’ specific conditions. It provides 

more efficient data support on reliability performance prediction that apply for decision-making on 

risk control and management. 

On a global level, the main objectives of the thesis have been realized.  The various use of the term 

regarding reliability assessment and statistical methods are investigated and summarized in chapter 

2 and 3. In chapter 4, the approach for modifying failure rates has been proposed and elaborated. It 

was decided to focus on shutdown valves and suggested the relevant selection criteria; Five 

potential parameters that impact on reliability performance are specified: size, flow medium, 

leakage requirement, type and actuator principle; statistical methods to analyze the parameters has 

employed in chapter 5; An example for modifying failure rates of the shutdown valves at a new 

facility is presented in chapter 6.  

Despite having achieving the objectives, there are some challenges and limitations in the thesis 

related to the approach to modify failure rates, methods of data analysis and the quality of data as 

well as data-collection. Challenges in the approach arises from identification of equipment and 

parameters, derivation of categories,  values of variables and subjective judgement. This thesis is 

delimited to shutdown valves based on data from two facilities. The variations of reliability 

performance have been revealed by size and flow medium in this case. It should be noted that the 

results may not be applicable for other facilities. When splitting up the parameters, a challenge is 
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how to categorize the data. In this case, inventory- and operational parameters are divided into two 

or three categories in order to reduce complexity of calculation. However, in practice such 

classification can be further developed to more categories. The values used in the quantification of 

variables in the modes will also impact on result, which is defined as parameter uncertainty. 

Moreover, determining the weights of the parameters relies on subjective judgment form expert, 

which will have effect on credibility of the approach. The limitations of the approach may have 

many causes, such as the lack of knowledge, variation of the operational data and human factors 

etc. 

The results of data analysis are dependent on applied methods and models. A poor model will lead 

to uncertainty and invalidity of the data analysis. The focus of this thesis is parameter estimations. 

The difference between parameter estimation and non-parameter estimation should be checked by 

several techniques and methods, but not covered in this thesis. The main reason for using COX and 

GLM model, is that they make no assumption about the underlying failure distributions and can be 

used for discrete variables, regardless of the distribution of failures. It will reduce inappropriateness 

from selection of models. However, the two models are linear regression models, without 

consideration of complex interaction and time-dependent variables. In addition, one shutdown 

valve had many failures due to design problem have been removed in the data analysis. That may 

potentially be a considerable contributor to failures. 

The choice of methods and models is strongly dependent on the assumptions made in the approach. 

COX models rely on the assumption that the ratio between the failure rates is constant over time. 

The validation of the model is thus important and have been performed in R. A set of residuals, i.e. 

statistical tests, have been used to check assumptions of the models and goodness-of-fit of models. 

GLM model is based on the assumption that the failures are binomially distributed. The whole 

lifetime of the equipment (e.g. the time from the point put into service to the end of life) is not 

required in this model. It is difficult to conclude which method is more appropriate without specific 

situation. In this case, it is seemed that COX models perform more reasonably and applicably 

compared to GLM models since the assumptions and the models fit well the data. More specific 

statistical tests are desired to evaluate the two models. 

When evaluating data based on field experience, two issues should be considered: the scale of 

collected data (e.g. the number of equipment) and the quality of collected data (e.g. the 
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completeness of data). It is challenging to derive sufficient statistical significance and obtain 

uniform results from a dataset consisting of in total 161 failures for two facilities. The results of 

data analysis emphasize that equipment like shutdown valves are relatively few in numbers. In 

addition, a number of factors may lower the quality of data, e.g. human errors (e.g. editing/typing 

errors), technical problems (e.g. limited scope and scale of searching) and changes of information 

systems (e.g. different classification of failure modes). Failure notifications and equipment 

information are mainly registered by first line operation and maintenance personnel. They do not 

always fill in all relevant information concerning equipment and failures, e.g. time put into service, 

replacement information etc. Insufficient failure notifications will reduce the accuracy of failure 

analysis, e.g. unknown failure causes. The main uncertainty of data stems from misunderstand, time 

or cost constraints or lack of resource and support etc. More efforts on improving quality and 

completeness of data are expected. Some relevant recommendations for data collection, are shown 

in Table 26.  

Table 26 Challenges and recommendations to data collection 

Current situation and challenges  Recommendations 

Insufficient inventory data in the 

systems 

 

Improve the quality of SAP reports with respect to 

inventory and environmental parameters, e.g. time put 

into service, replacement information, pressure, and 

temperature etc.  

Incomplete data recorded in the 

systems 

Training for data- collection should be given to the first 

line operation and maintenance personnel. Detailed 

introduction about registering data will help to improve 

completeness of the data. Review and correcting records 

should be carried out regularly.  

No documentation of how to 

perform data search in the systems  

Prepare a brief introduction to search inventory and 

environmental data from the systems  

Different code system and 

classification, e.g. failure modes, 

detection methods. 

Check the difference in code system and reexamine 

classification of failure and detection methods. It is also 

necessary to discuss the content of the notification with 

operators in order to obtain as correct information as 

possible. 

Inconsistent data forms from 

various manufacturers 

Uniform data-collection formats with the same 

requirements for various manufacturers 
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7.3 Further work  

Shutdown valves act as the examples in this master thesis. The further research activities could  

focus on collecting more data for other groups of safety critical equipment, e.g. level transmitters, 

fire and gas detectors, smoke detectors, pressure safety valves etc. It is desirable to identify and 

analyze relevant parameters and compare the difference between equipment groups. It will also be 

necessary to consider a larger sample of equipment based on data from several facilities to obtain 

sufficient statistical confidence. Some suggestions to improve the quality of data during data 

collection have been discussed in the previous section. More detailed recommendations to enhance 

the quality of data collection should be proposed after communication with the operators and 

maintenance personnel. 

It is possible to develop the analytical methods to identify significant parameters with more 

complex and dynamic models. It should be noted that it will be more relevant to perform specific 

facility analysis for some types of equipment, such as smoke detectors, where the number of tags 

on one facility is often large.  

In this master thesis, the application of modified failure rates is given for a new facility when 

estimating failure rates with comparable conditions as an existing facility. The approach to modify 

failure rates can also enable to update the data for safety critical equipment in the handbooks, e.g. 

PDS handbook, taking into account inventory- and operational parameters. Other applications of 

modified failure rates could be considered and discussed in further work, e.g. maintenance 

optimization etc.  
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Appendix A Statistics for two facilities 

The aim of this project report is to analyze various inventory- and operational parameters as well 

as DU failure data, and to provide a basis for identifying critical parameters that impact on the 

reliability performance of the valves. It focuses on data analysis for ESD and PSD valves based 

on operational experience from two facility within the oil and gas industry.  

 

A.1  DU failures 

We take into account DU failures for those two facilities. Detailed information of DU failures and 

corresponding operational time are shown in Table 27. Failure rates for two facilities are higher 

than generic failure rates from handbook, i.e. 
62.1 10 per hour. 

Table 27 Summary of failure rates information for two facilities 

 DU failures Aggregated Operational time Lambda 

ESD 44 
68.1 10  

65.5 10  

PSD 131 
72.4 10  

65.4 10  

ESD & PSD 175 
73.2 10  

65.4 10  

 

A.2  Type 

The distribution of types for ESD and PSD valves is shown in the following table and figures. As 

seen, there are more Ball valves and Butterfly valves for PSD than for ESD valves.  

Table 28 Types of the valves for two facilities 

 Ball Gate Butterfly Others 

ESD 71 57 2 - 

PSD 355 62 29 13 

ESD+PSD 426 119 31 13 

 

A.3  Size 

Table 29 displays the distribution of the sizes of the ESD and PSD. The ESD and PSD valves are 

split into four groups according to their size: Small (0-1''), Medium (1''-3''), Large (3''-18'') and 

Extreme large (>18''). It is shown that there are more large-sized valves for PSD than ESD. 
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Table 29 Sizes of the valves for two facilities 

 Small Medium Large Extreme large 

ESD 18 30 54 27 

PSD 18 196 171 70 

ESD+PSD 36 226 225 97 

 

A.4  Flow medium 

It is found that gas is regarded as primary flow medium both for PSD than ESD. More detail 

information is shown in Table 30. 

Table 30 Flow medium of the valves for two facilities 

 ESD PSD ESD+PSD 

Chemical 28 68 96 

Diesel - 8 8 

Gas 63 261 324 

HC liquid 21 57 78 

Multiphase 2 23 25 

Sea water - 9 9 

Water 16 33 49 

 

A.5 Actuator principle 

The distribution of actuator principles for ESD and PSD valves is illustrated in Table 31. The 

primary part of the ESD and PSD valves use hydraulic actuators. 

Table 31 Actuator principles of the valves for two facilities 

Actuator Hydraulic Pneumatic Total 

ESD 120 10 130 

PSD 446 13 459 

Total 566 23 589 

 

A.6  Leakage requirements 

Table 32 shows the difference leakage requirement between with ESD and PSD valves. The most 

of ESD valves (80% of total ESD valves) have leakage requirement, whereas only 26% of PSD 

valves require leakage test. 

Table 32 The valves with leakage requirement for two facilities 

Leakage requirement ESD PSD ESD+PSD 

Number 104 119 223 

Percentage 80% 26% 38% 
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Appendix B Statistics for one facility 

This project report focuses on data analysis for ESD and PSD valves based on operational 

experience from one facility within the oil and gas industry. The aim of the project report is to 

analyze DU failures associated with various inventory- and operational parameters, and to 

identify critical parameters that impact on the reliability performance of the valves.  

 

B.1 DU failures 

In this report, only DU failures are taken into account since they will prevent the execution of 

safety-critical functions as long as they are not detected and revealed. Detailed information of DU 

failures is shown in the following tables and figures. 

Table 33 Summary of DU failure, operational time and failure rates for one facility 

 DU failures Operational time Lambda 

ESD 6 5.0 ⋅ 106 1.2 ⋅ 10−6 

PSD 7 9.7 ⋅ 106 7.2 ⋅ 10−7 

ESD & PSD 13 1.5 ⋅ 107 8.7 ⋅ 10−7 

 

It is beneficial to understand and analyze failures by classifying DU failures into various groups 

with respect to failure modes, failure mechanism and failure causes. In this report, DU failure 

modes are mainly divided into DOP, FTC and LCP. Detection methods are classified into the 

following subcategories: Function test, demand, random observation, and leakage testing. The 

causes of DU failures are associated with design, fabrication and installation, operation and 

maintenance as well as internal and external environment.  Detailed information with respect to 

failure modes, detection methods and failure causes related to DU failures of ESD and PSD 

valves is listed in Table 34 and Table 35. 

Table 34 DU failure modes and detection methods for one facility 

Failure modes Demand Function test Random observation Total 

FTC 1 8 4 13 

LCP 1 - 3 4 

FTO - 1 1 2 

Total 2 9 8 19 
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Table 35 DU failure modes and failure causes for one facility 

Failure 

mode Design Environment 

Fabrication 

/installation 

Operation 

/maintenance Unknown Total 

FTC 8 1 2 1 1 13 

LCP 2 - - 1 1 4 

FTO - 1 1 - - 2 

Total 10 2 3 2 2 19 

 

B.2 Types 

The distribution of types for ESD and PSD valves is shown in the following table: 

Table 36 Types for ESD and PSD valves for one facility 

Component Ball Gate Butterfly 

ESD 35 23 0 

PSD 73 26 5 

ESD+PSD 108 49 5 

 

B.3 Sizes 

The ESD and PSD valves are split into four groups according to their size: S (0-1''), M (1''-3''), L 

(3''-18'') and XL (>18''), as shown in Table 37. 

Table 37 Sizes for ESD and PSD valves for one facility 

Component Small Medium Large Extreme Large 

ESD 14 26 18 0 

PSD 6 51 46 1 

ESD+PSD 20 77 64 1 

 

B.4 Flow medium 

ESD and PSD valves are exposed to different process medium including hydrocarbon liquid, gas, 

multiphase, chemical (e.g. Mono Ethylene Glycol (MEG), Triethylene Glycol (TEG)), produced 

water, fresh water and sea water etc. The distribution of flow medium for ESD and PSD valve is 

illustrated below: 
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Table 38 Flow medium for ESD and PSD valves for one facility 

Component ESD PSD ESD+PSD 

Chemical 15 8 23 

Diesel - 8 8 

Gas 10 46 56 

HC liquid 15 12 27 

Multiphase 2 23 25 

Sea water - 3 3 

Water 16 4 20 

The medium through PSD valves are more likely to be gas and multiphase mixture compared to 

the medium in ESD valves.  

 

B.5 Leakage requirement 

Information concerning internal leakage requirements is illustrated in Table 39. As seen, a 

relatively higher portion of ESD valves has an associated internal leakage requirement as 

compared to PSD valves. 

Table 39 Leakage requirement for ESD and PSD valves for one facility 

Leakage requirement ESD PSD ESD+PSD 

Number  45  14  59 

%  78%  13%  36% 
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Appendix C Data analysis in R 

C.1 COX model with categorical variables 

coxph(formula = Surv(Time, Failure) ~ Type + Size + Medium + Actuator + Leakage, data = 

ESD.PSD), n= 589, number of events= 161  

 

 coef exp(coef) se(coef) z Pr(>|z|)  
Type Gate 0.27 1.31 0.20 1.37 0.17  
Type Other 0.50 1.65 0.36 1.39 0.16  
Size Medium -1.25 0.29 0.22 -5.68 0.00 *** 

Size Small -2.20 0.11 0.70 -3.15 0.00 ** 

Medium HC -2.60 0.07 0.59 -4.43 0.00 *** 

Medium Other -0.88 0.42 0.22 -3.92 0.00 *** 

Actuator Pneumatic 1.39 4.01 0.75 1.84 0.07 . 

Leakage NO -1.30 0.27 0.42 -3.08 0.00 ** 

Leakage YES 0.46 1.59 0.20 2.32 0.02 * 

Significant codes:    0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  exp(coef) exp(-coef) lower .95 upper .95 

Type Gate 1.31 0.76 0.89 1.94 

Type Other 1.65 0.61 0.81 3.35 

Size Medium 0.29 3.51 0.19 0.44 

Size Small 0.11 9.00 0.03 0.44 

Medium HC 0.07 13.49 0.02 0.23 

Medium Other 0.42 2.40 0.27 0.65 

Actuator Pneumatic 4.01 0.25 0.92 17.57 

Leakage NO 0.27 3.66 0.12 0.63 

Leakage YES 1.59 0.63 1.07 2.35 

Concordance= 0.776  (se = 0.023 ) 

Rsquare= 0.252   (max possible= 0.966 ) 

Likelihood ratio test  = 171.1  on  9 df,   p=0 

Wald test                   = 122.3  on  9 df,   p=0 

Score (logrank) test   = 160.8  on  9 df,   p=0 
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C.2 Developed COX model with categorical variables 

coxph(formula = Surv(Time, Failure) ~ Size + Medium + Leakage, data = ESD.PSD2C) 

n= 589, number of events= 161  

 

  coef exp(coef) se(coef) z Pr(>|z|)   

Size Medium -1.33 0.27 0.21 -6.19 0.00 *** 

Size Small -1.81 0.16 0.59 -3.08 0.00 ** 

Medium HC -2.54 0.08 0.59 -4.34 0.00 *** 

Medium Others -0.72 0.48 0.21 -3.52 0.00 *** 

Leakage NO -1.10 0.33 0.39 -2.84 0.00 ** 

Leakage YES 0.52 1.68 0.18 2.92 0.00 ** 

 exp(coef) exp(-coef) lower .95 upper .95 

Size Medium 0.27 3.77 0.17 0.40 

Size Small 0.16 6.08 0.05 0.52 

Medium HC 0.08 12.70 0.03 0.25 

Medium Others 0.48 2.06 0.32 0.73 

Leakage NO 0.33 2.99 0.16 0.71 

Leakage YES 1.68 0.60 1.19 2.38 

Concordance= 0.777  (se = 0.023 ) 

Rsquare= 0.245   (max possible= 0.966 ) 

Likelihood ratio test  = 165.3  on 6 df,   p=0 

Wald test                    = 116.7  on 6 df,   p=0 

Score (logrank) test   = 148.7  on 6 df,   p=0 

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

C.3 COX model with numerical variables 

coxph(formula = Surv(Time, Failure) ~ Size + Medium + Leakage, data = a) 

n= 589, number of events= 161  

 

 coef exp(coef) se(coef) z  Pr(>|z|)  
Size 1.24 3.45 0.19 6.61 0.00 *** 

Medium -0.95 0.39 0.16 -5.91 0.00  *** 

Leakage 0.35 1.41 0.08 4.12 0.00  *** 

 exp(coef) exp(-coef) lower .95 upper .95 

Size 3.45 0.29 2.39 4.99 

Medium 0.39 2.59 0.28 0.53 

Leakage 1.41 0.71 1.20 1.67 

Rsquare= 0.226   (max possible= 0.966 ) 

Likelihood ratio test  = 151.2  on 3 df,   p=0 

Wald test                  = 118.2  on 3 df,   p=0 

Score (logrank) test  = 140.8  on 3 df,   p=0 

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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C.4 GLM model with numerical variables 

glm(formula = Failure ~ Type + Size + Medium + Actuator + Leakage, family = binomial(link = 

logit), data = w) 

 

Deviance Residuals:   
Min 1Q Median 3Q Max 

-1.6285 -0.6892 -0.442 0.7856 2.9963 

 

 Estimate Std. Error z valu e Pr(>|z| ) 

(Intercept) -1.72 0.37 -4.67 0.00 *** 

Type -0.31 0.14 -2.16 0.03 * 

Size 1.43 0.23 6.22 0.00 *** 

Medium -1.27 0.20 -6.24 0.00 *** 

Actuator -0.65 0.37 -1.77 0.08 . 

Leakage 0.38 0.11 3.33 0.00 *** 

Null deviance:        690.96  on 588  degrees of freedom 

Residual deviance: 539.74  on 583  degrees of freedom 

AIC: 551.74 

Number of Fisher Scoring iterations: 5 

 

 

C.5 Developed GLM model with numerical variables 

Glm (formula = Failure ~ Size + Medium + Leakage : Size, family = binomial(link = logit),   data 

= w) 

 

Deviance Residuals:  

Min 1Q Median 3Q Max 

-1.52 -0.65 -0.39 0.87 3.09 

 

 Estimate Std. Error  z value  Pr(>|z|)  
(Intercept) -2.54 0.22 -11.33 < 2e-16 *** 

Size 1.57 0.21 7.34 0.00 *** 

Medium -1.09 0.19 -5.86 0.00 *** 

Size : Leakage 0.66 0.13 5.15 0.00 *** 

Null deviance:        690.96  on 588  degrees of freedom 

Residual deviance: 535.67  on 585  degrees of freedom 

AIC: 543.67 

Number of Fisher Scoring iterations: 5 
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C.6 GLM model with categorical variables 

Glm (formula = Failure ~ Type + Size + Medium + Actuator + Leakage, family = binomial(link = 

logit), data = ESD.PSD2G) 

 

Deviance Residuals:  

Min 1Q Median 3Q Max 

-1.64 -0.69 -0.36 0.78 2.78 

 

Coefficients: 

 Estimate Std. Error z value Pr(>|z|)  

(Intercept) -0.17 0.22 -0.76 0.45  
Type Gate 0.67 0.31 2.17 0.03 * 

Type Others 0.69 0.45 1.53 0.13  
Size Medium -1.45 0.26 -5.63 0.00 *** 

Size Small -2.51 0.78 -3.22 0.00 ** 

Medium HC -3.06 0.62 -4.92 0.00 *** 

Medium Others -1.15 0.28 -4.11 0.00 *** 

Actuator Pneumatic 1.92 0.89 2.16 0.03 * 

Leakage NO -1.37 0.45 -3.02 0.00 ** 

Leakage YES 0.54 0.26 2.08 0.04 * 

Null deviance:        690.96  on 588  degrees of freedom 

Residual deviance: 525.11  on 579  degrees of freedom 

AIC: 545.11 

Number of Fisher Scoring iterations: 6 
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Appendix D Code in R 

 

##Plot of failure time 

A<-read.table ("ESD Time to failure.txt", header=TRUE); A 

nr<-130 

plot(c(0,0),c(1,1),type="l", ylim=c(0,nr+1), xlim=c(0,max(A$Time[1:nr])+10), 

xlab ="Time to failure", ylab ="nr") 

for (i in 1: nr) lines(c (0, A$Time[i]), c(i,i)) 

for (i in 1: nr) { 

if (A$Time[i]! =72312 & A$Time[i]! =96456) 

points (A$Time[i], i, col = "red", pch=20)} 

 

## COX model with categorical variables for ESD&PSD valves at two facilities 

ESD.PSD<-read.table ("ESD+PSD for two.txt", header=TRUE) 

library (survival) 

args (coxph) 

cox.cate<-coxph ( Surv (Time, Failure)~Type + Size + Medium + Actuator + 

Leakage, data=ESD.PSD) 

summary (cox.cate) 

cox.new<-coxph ( Surv ( Time, Failure)~ Size + Medium + Leakage, data=ESD.PSD) 

summary (cox.new) 

cox.new1<-coxph ( Surv ( Time, Failure) ~ Size + Medium + Leakage+ Size: 

Medium, data=ESD.PSD) 

summary (cox.new1) 

 

## Plot failure probability for COX model with categorical variables 

plot (survfit (cox.cate), xlab="Time", ylab="Survival probability") 

plot (survfit(cox.new), col = 'red', xlab="Time for new model", ylab="Survival 

probability") 

 

## COX with numerical variables for ESD and PSD valves at two facilities 

a<-read.table ("ESD+PSD 1 for two.txt", header=TRUE) 

library (survival) 

args (coxph) 

cox.no<-coxph (Surv (Time, Failure) ~Type + Size + Medium + Actuator + 

Leakage, data=a) 

summary (cox.no) 

cox.no.new<-coxph (Surv (Time, Failure) ~ Size + Medium + Leakage, data=a) 

summary (cox.no.new) 

 

 

## Plot size and leakage requirement for COX model with numerical variables 

library ("survminer") 

require ("survival") 

E.P2<- survfit (Surv (Time, Failure)~Size + Leakage, data=a) 

Ggsurvplot (E.P2,pval = TRUE, xlab="Time(ESD and PSD valves for two 

facility)", legend = "bottom", legend.labs=c("S without leakage", "S with 

leakage", "M without leakage", "M with leakage", "L without leakage", "L with 

leakage"), ggtheme = theme_bw(),xlim = c(0, 90000)) 

 

##Plot size and flow medium for COX model with numerical variables 

library ("survminer") 

require ("survival") 
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E.P2<- survfit (Surv (Time, Failure) ~Size + Medium, data=a) 

ggsurvplot (E.P2, pval = TRUE, xlab="Time (ESD and PSD valves for two 

facility)", legend = "bottom", ggtheme = theme_bw (), xlim = c(0, 90000)) 

 

#Validate estimated coefficient of sizes depends upon covariate value  

cox.size<-with(a,data.frame(Size=c(-1,0,1), Type=rep(mean(Type),3), 

Medium=rep(mean(Medium),3), Actuator=rep(mean(Actuator),3), 

Leakage=rep(mean(Leakage),3))) 

b<-survfit (cox.no, newdata=cox.size) 

library ("survminer") 

require ("survival") 

ggsurvplot (b, pval = TRUE, conf.int=TRUE, lty=c (1, 2, 3), legend = "bottom", 

legend.labs=c ("S","M","L")) 

 

#Validate estimated coefficient of flow medium depends upon covariate value  

cox.medium<-with(a,data.frame(Medium=c(-1,0,1), Type=rep(mean(Type),3), 

Size=rep(mean(Size),3), Actuator=rep(mean(Actuator),3), 

Leakage=rep(mean(Leakage),3))) 

c<-survfit (cox.no, newdata=cox.medium) 

library ("survminer") 

require ("survival") 

ggsurvplot (c, pval = TRUE, conf.int=TRUE, lty=c (1, 2, 3), legend = "bottom", 

legend.labs=c ("Gas","OTH","HC Liquid")) 

 

# Validate estimated coefficient of leakage requirement depends upon covariate 

value  

cox.lk<-with(a,data.frame(Leakage=c(-1,1), Type=rep(mean(Type),2), 

Medium=rep(mean(Medium),2), Actuator=rep(mean(Actuator),2), 

Size=rep(mean(Size),2))) 

d<-survfit (cox.no, newdata=cox.lk) 

library ("survminer") 

require ("survival") 

ggsurvplot (d, pval = TRUE, conf.int=TRUE, lty=c (1, 2,3), legend = "bottom", 

legend.labs=c("Without Leakage", "With leakage")) 

 

 

## COX validation or diagnosis 

#Plot Cox-snell residuals 

cox.snell<-ESD.PSD$Failure-resid (cox.new) 

sv <- survfit (Surv (cox.snell, ESD.PSD$Failure) ~1) 

plot (sv$time, -log(sv$surv), ylab="Failure probability", xlab="Time") 

abline (0, 1,col = 'red', lty = 1) 

title (main="Cumulative Hazards of Cox-Snell Residuals", sub ="Checking 

goodness of fit for Cox models") 

 

# Plot scale schoenfeld residuals 

Par (mfrow=c (3, 2)) 

Plot (cox.zph (cox.new), col = 'red') 

 

# Plot influential observations 

dfbeta<-residuals (cox.new, type="dfbeta") 

par (mfrow=c (2, 3)) 

for (j in 1:6){ 

plot (dfbeta[, j], xlab=names (coef (cox.new))[j], ylab="dfbeta") 

abline (h=0, col = 'red', lty=2)} 

 



78 

 

 

# Plot Score residuals 

score<-residuals(cox.new, type="score") 

par (mfrow=c(2,3)) 

for (j in 1:6){ 

Plot (score[,j],xlab=names(coef(cox.new))[j],ylab="score") 

Abline (h=0,col = 'red', lty=2)} 

 

 

# Plot Martingale residuals 

par (mfrow=c(2,3)) 

scatter.smooth (ESD.PSD$Size, resid(cox.new, type = "martingale")) 

abline (h=0,col = 'red', lty=2) 

scatter.smooth (ESD.PSD$Medium, resid(cox.new, type = "martingale")) 

abline (h=0,col = 'red', lty=2) 

scatter.smooth (ESD.PSD$Leakage, resid(cox.new, type = "martingale")) 

abline (h=0,col = 'red', lty=2) 

 

#Plot deviance (outliers) 

plot (resid (cox.new, type = "deviance"), xlab="No. of valves", 

ylab="Deviance") 

abline (h=0,col = 'red', lty=2) 

 

 

## GLM model with numerical variables for ESD and PSD valves at two facilities 

w<-read.table("ESD+PSD for two.txt",header=TRUE) 

glm.ESDPSD<-

glm(Failure~Type+Size+Medium+Actuator+Leakage,family=binomial(link=logit), 

data=w) 

summary(glm.ESDPSD) 

glm.no<-step (glm.ESDPSD) 

summary(glm.no) 

glm.new<-glm(Failure~Size+Medium+Leakage, family=binomial(link=logit), data=w) 

summary(glm.new) 

glm.new1<-glm(Failure~Size+Medium+Leakage:Size, family=binomial(link=logit), 

data=w) 

summary(glm.new1) 

 

 

## Validation and diagnosis for GLM model 

par(mfrow=c(2,2)) 

plot(glm.new1)    

deviance(glm.new1) 

pchisq(535.67,585) 

pchisq(690.96,588) 

sum(residuals(glm.new1,type="pearson")^2) 

 

 

 


