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Summary

Industry standard imaging algorithms do not treat internal multiples correctly. ’Cross-talk’
with primary reflections may therefore occur in the imaging procedure, potentially causing
significant artifacts in the image of the subsurface.

The Inverse Scattering Series (abbr. ISS) internal multiple prediction algorithms enable
completely data-driven computation of internal multiple models that are kinematically ac-
curate with well-approximated amplitudes. The ISS prediction algorithms are therefore
key candidates for computing internal multiple models suitable for use in adaptive sub-
traction procedures. This thesis work has been centered around implementation of the
Inverse Scattering Series predictors in the coupled plane wave domain in 2D, and its 1.5D
variant in the plane wave domain.

The prediction codes implemented employ a vast range of optimizations, including algo-
rithmic optimizations and code optimizations, such as vectorization and parallelization. In
the case of restricted dips of interfaces related to internal multiple generation the coupled
plane wave domain easily facilitates a reduction of the number of required computations.

Linear Radon transforms constitute the mapping of the input data to the coupled plane
wave domain. Due to the non-orthogonality of the forward and inverse transform pairs,
certain aperture artifacts may arise in the input data after mapping to the prediction do-
main. Experimental results demonstrated that this may yield some undesired artifacts in
the calculated multiple model. It should be noted that, compared to the 2D predictor, the
1.5D prediction algorithm does not appear as sensitive to artifacts present in the plane
wave domain.

Motivated by the possibility to minimize artifacts and, in general, to improve the pre-
diction output lead to the implementation of a so-called high-resolution or sparse linear
RT. By virtue of its design, where sparseness constraints are imposed in τ − p domain
directly, it is effective at both reducing aperture artifacts and as well as compressing the
temporal support of the signal.

The usage of high-resolution RTs for transformation to the prediction domain resulted
in internal multiple predictions with less artifacts and improved (apparent) waveform
matches. Results from adaptive subtraction demonstrated improved internal multiple at-
tenuation, compared to using standard Radon transforms. Automatic regularization rou-
tines for the sparse Radon transform can give further benefits, especially for prediction in
the coupled plane wave domain.

A previously proposed procedure for enabling multidimensional internal multiple predic-
tion using migrated datasets has been demonstrated with a simple proof of concept. The
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procedure is considered suitable for application to real data.
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Sammendrag

Migrasjonsalgoritmer som benyttes i anvendt geofysikk behandler ikke interne multipler
på en korrekt måte. På grunn av dette kan de ’kryss-snakke’ med primære refleksjoner i
migrasjonsprosedyren, noe som kan gi betydelige artefakter i avbildningen av undergrun-
nen.

Prediksjonsalgoritmer for interne multipler som kommer fra Inverse Scattering Series
(forkortet ISS) muligjør utregning av modeller for interne multipler som er kinematisk
korrekte og med amplituder som er gode approksimasjoner. Dette gjøres på en fullstendig
datadrevet måte, og de kalkulerte modellene for interne multipler er godt egnet for bruk i
adaptive subtraksjonsprosedyrer. Arbeidet tilknyttet denne mastergraden har vært fokusert
rundt implementasjon av ISS prediksjonsalgoritmene i det koblede planbølgedomene i 2D,
og dens 1.5D variant i ordinært planbølgedomene.

Prediksjonskodene som har blitt implementert inneholder mange optimaliseringer for å
forbedre kjøretiden, f.eks. som optimaliseringer tilknyttet algoritmen og optimaliseringer
av koden, slik som vektorisering og parallellisering. Det koblede planbølgedomene muliggjør,
på en enkel måte, reduksjon i antall utregninger i situasjoner hvor reflektorer som er in-
volvert i generering av interne multipler har begrensede vinkler (ift horisontale akser).

Lineære Radon transformasjoner benyttes for å dekomponere bølgefeltsdata til sine
planbølgekomponenter, som igjen brukes i prediksjonsalgoritmene. Fordi framover- og
inverstransformasjonene ikke er ortogonale på hverandre, medfører bruk av denne typen
transformasjon ofte enkelte artefakter i transformdomenet. Eksperimentelle resultater viser
at disse artifaktene kan medføre andre artefakter i den predikterte modellen av interne
multipler. Riktignok virker det som at 1.5D prediksjonsalgoritmen ikke er like sensitiv til
artefakter i planbølgedomenet, når en sammenlikner med 2D algoritmen.

Muligheten til å kunne minimere artifakter og forbedre prediksjonsresultatet ble en mo-
tivasjon for å implementere høy-oppløsnings eller sparsom linære RT. Fordi kravene til
sparsomhet settes direkte i planbølgedomene er implementasjonen effektiv både i å re-
dusere artefakter såvel som å komprimere signalets støtte i tid.

Bruken av høy-oppløselige Radon transformasjoner til planbølgedekomposisjon resulterte
i prediksjoner av interne multipler med mindre artefakter og tilsynelatende bedre gjen-
givelse av bølgeform. Resultater fra adaptiv subtraksjon demonstrerte at dette også gav
bedre fjerning og attenuasjon av interne multipler, når en sammenlikner med bruk av stan-
dardformulasjoner av lineære Radon transformasjoner. Implementasjon av automatiske
regulariseringsprosedyrer for den høy-oppløselige Radon transformasjonen kan potensielt
sett gi enda bedre resultater, spesielt for 2D prediksjon i koblet planbølgedomene.

En tidligere foreslått prosedyre for å kunne gjennomføre multidimensjonell prediksjon
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av interne multipler ved bruk av migrerte datasett har blitt demonstrert til å fungere.
Prosedyren vurderes som passende for bruk på reelle feltdata.
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Chapter 1
Introduction

Disclaimer: Section 1.2, History of the inverse scattering series, in this chapter is directly
derived from the work in Aaker (2017) performed in the course TPG4570 - Petroleum
Geosciences, Specialization Project.

1.1 On internal multiples

Internal multiples constitute a complex, higher order scattering phenomenon. In contrast
to so-called primary reflections, internal multiples are defined as the subpart of the wave-
field which has experienced more than one reflection-like scattering within the subsurface.

Industry standard wavefield redatuming and imaging algorithms do not treat internal mul-
tiples correctly. If they are considerably present in the recorded seismic data, they may
’cross-talk’ with primary reflections in the imaging phase. This has the potential to cause
significant distortions in the resulting seismic images.

One way to prevent the unwanted effects related to internal multiples is to predict and re-
move the multiples prior to performing the imaging procedure. This particular part of the
wavefield is however highly sensitive to medium heterogenities and travel along complex
wavepaths. In practice, the medium of interest is usually not known to the specifications
and resolution needed to faithfully reproduce internal multiples in a model-driven fashion.

Data driven prediction algorithms are therefore exceedingly interesting for use in inter-
nal multiple prediction and removal. The Inverse Scattering Series (abbr. ISS) (Weglein
et al., 1997) provides the ability to exactly reproduce the kinematics and in an approximate
sense recover the amplitudes. The method requires virtually no knowledge of the medium
and in general avoids many assumptions and restrictions imposed on the subsurface.
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1.2 History of the inverse scattering series
The origin of the Inverse Scattering Series traces back to a result obtained by Moses
(1956). Razavy (1975) applied the latter work to the problem of determining the velocity
of acoustic waves from reflection data originating in a 1D medium. These works were
transformed for application in a multi-dimensional earth by Weglein et al. (1981) and Stolt
and Jacobs (1980). Carvalho (1992) presented a way to use the inverse scattering series
to remove free-surface multiples in marine seismic data. Matson and Weglein (1996) pre-
sented algorithms for free-surface multiple removal in an elastic formulation. Weglein
et al. (1997) gave a thorough description of an ISS derived algorithm for internal multiple
prediction. This was based on the earlier works of Araújo (1994) and Araújo et al. (1994).
A review paper on the ISS in the context of seismic exploration is found in Weglein et al.
(2003).

Ramı́rez (2007) presented a rigorous amplitude and phase analysis of the inverse scat-
tering derived internal multiple predictor. Furthermore, it included a detailed derivation of
the algorithm. The first mapping of the internal multiple predictor from the wavenumber-
pseudodepth domain to the coupled plane wave domain was given in Coates and Weglein
(1996). Nita and Weglein (2009) gave an in-depth analysis of the relation between the two
domains. The latter article demonstrated that the psuedo-depth monotonicity condition
translates to an intercept time monotonicity condition in the coupled plane wave domain.
In practice, the ISS prediction algorithms in the pseudo-depth wavenumber formulation
typically suffer from known artifacts (Sun and Innanen, 2015). The results by Sun and
Innanen (2015) seemed to indicate that the plane wave domain might yield an improved
setting for performing internal multiple prediction. Along with the analysis and results
in Sun and Innanen (2016), this has lead to a renewed interest in ISS internal multiple
prediction in the plane wave domain.
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Chapter 2
Theory of Internal Multiple
prediction from the Inverse
Scattering series.

Disclaimer: The work presented in this chapter is mainly derived from the work in Aaker
(2017) performed in the course TPG4570 - Petroleum Geosciences, Specialization Project.
Beyond a general correction of errata, section 2.6 has seen extensive re-work, while section
2.9 and beyond also feature certain modifications.

2.1 Scattering theory and nomenclature.
The theory and nomenclature that follows here is largely derived from the review paper
Weglein et al. (2003).

Scattering theory is a form of perturbation analysis that describes how perturbations in
medium properties relate to perturbations in wavefields that experience said medium. Of-
ten, one considers an original, unperturbed medium as a reference medium, and a per-
turbed medium to be the actual medium of interest. In this notation, the differences be-
tween the actual and reference media upon wavefields passing through them is encoded
in the perturbation operator. In scattering theory, one distinguishes between two different
tasks/models, namely forward and inverse scattering:

• Forward scattering is the process that outputs the actual wavefield given the prop-
erties of the reference medium, the reference wavefield and the perturbation opera-
tor.

• Inverse scattering in turn, outputs the perturbation operator, which again encodes
the difference between actual and reference medium, when given the reference
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medium, the reference wavefield and measured values of the actual wavefield. In
the setting of exploration seismology, the measured values of the actual wavefield
are acquired through the seismic acquisition process.

In order to be able to define and exemplify the necessary quantities, this paper will begin
with a brief mathematical description of the differential equations that govern wave prop-
agation in media relevant for exploration seismology. The wavefield that is the impulse
response, or Green’s function, of an actual medium can be notationally described in the
space-frequency (x, ω) domain as:

L(x, ω)G(x,x′, ω) = −Iδ(x− x′) (2.1)

The location of the impulsive source is at position x′. I denotes the identity matrix, or
unit operator. G is the Greens’ matrix containing Green’s function entries. These entries
depend on the physical problem at hand as well as the chosen parametrization. L(x, ω)
is the differential operator matrix describing wave propagation in this medium. For the
problems studied here, L is a linear differential operator. The coordinate vector is defined
as x := (x, y, z) with horizontal components xH := (x, y). The sign convention chosen
at the right-hand side of equation (2.1) is arbitrary, and may be chosen otherwise1.

Similarly, one can define the Green’s function in a reference medium, G0, where wave
propagation is described by the reference differential operator L0:

L0(x, ω)G0(x,x′, ω) = −Iδ(x− x′) (2.2)

With these definitions in hand, the perturbation operator V is defined:

V := L−L0 (2.3)

The scattered field is defined as the difference between the actual and reference Green’s
functions:

Ψs := G−G0 (2.4)

Note that even though Ψs is an arithmetic difference between two Green’s functions, it is
not itself a Green’s function2.

Clearly, the actual Green’s function can be described as the sum of a scattered wavefield
and a reference Green’s wavefield:

G = Ψs + G0 (2.5)

Example of operators and Green’s functions in acoustic media
In arbitrarly inhomogenous acoustic media, where we parametrize a Green’s function

1I.e., the properties of the Green’s functions are independent of the sign of the source function.
2I.e, the scattered parts of the Green’s wavefield does not satisfy the differential equation given in eq. (2.1).
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purely in terms of acoustic pressure (rather, deviations from a reference pressure) the ma-
trices containing the Green’s functions G and G0 can be reduced to scalars. In further
discussion, the one scalar entry of the Green’s matrix G(0) is denotedG(0). The impulsive
sources are in the following notation of the volume injection type.
The differential operators of the acoustic wave equation can then be written as follows:

L(x, ω) = L(x, ω) = ω2κ(x) + ∂i
1

ρ(x)
∂i · (2.6)

L0(x, ω) = L0(x, ω) = ω2κ0(x) + ∂i
1

ρ0(x)
∂i · (2.7)

In the actual and reference media respectively, described by the properties κ(0)(x) and
ρ(0)(x) corresponding to adiabatic incompressibility and volumetric density. Einstein
summation notation is implied on repeated indices. Latin indices take on the values
i ∈ {1, 2, 3} whereas Greek indices take on the values α ∈ {1, 2}.

In an acoustic medium with actual and reference differential operators in equations (2.6)
and (2.7), by the definition of the perturbation operator in equation (2.3), the acoustic
perturbation operator becomes:

V(x, ω) = ω2{κ(x)− κ0(x)}+ ∂i

[
(

1
ρ(x)

− 1
ρ0(x)

)∂i ·
]

(2.8)

The perturbation operator may only be nonzero in areas x where the reference and actual
media differ in properties.

In media with properties beyond the acoustic case, e.g. elastic, poroelastic and seismo-
electric, G, L and V are all matrices. Matrix notation thus includes a more general result.

2.2 Forward and inverse scattering series
The scattered wavefield and the two Green’s functions in equation (2.4) are related through
the operator identity named the Lippmann-Schwinger equation, which reads in the space-
frequency domain (Weglein et al., 2003):

Ψs = G0VG (2.9)

Although usually known specifically from quantum mechanics, the Lippmann-Schwinger
integral equation is elegantly derivable from the two-way reciprocity theorems of convo-
lution type (Vasconcelos et al., 2009). Relation (2.9) can be used to generate the forward
scattering series in terms of the reference wavefield G0 and the perturbation operator V .
In order to accomplish this, substitute the representation of the actual wavefield G given
in equation (2.5):

Ψs = G0VG0 + G0VΨs (2.10)
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As such, by substituting equation (2.9) into itself repeatedly and making use of the repre-
sentation of G, this generates an infinite series in terms of increasing scattering order. The
resulting series is termed the forward-scattering, Born or Neumann series.

Ψs = G0VG0

+G0VG0VG0 + G0VG0VG0VG0 + · · ·+ (2.11)

Note that equation (2.11) is written in operator notation. In order to account for all scatter-
ing phenomena of a wavefield excited at xs and observed at x, the series is written as an
integral formulation over all possible locations (of scattering) in the medium of interest:

Ψs(x,xs, ω) =
∫

G0(x,x1, ω)V(x1, ω)G0(x1,xs, ω)

×dx1 +
∫

G0(x,x1, ω)V(x1, ω)G0(x1,x2, ω)V(x2, ω)

×G0(x2,xs, ω)dx1dx2 + · · ·+ (2.12)

Each term in equation (2.12) is to be interpreted as a sequence of propagations in the refer-
ence medium, given by G0 and scattering from points where actual and reference medium
differ, encoded in V .

Rewriting the scattered wavefield explicitly in terms of the order of V (in operator no-
tation):

Ψs = (Ψs)1 + (Ψs)2 + (Ψs)3 + · · ·+ (2.13)

By this notation, the term

(Ψs)n := G0(VG0)n (2.14)

is n−th order in the perturbation operator V .

In the following discussion, the data considered correspond to the marine experiment with-
out a free surface (equivalently without its effects3), after subtraction of the reference field
and source signature deconvolution. The data, D, can therefore be considered to be the
measured values of the scattered wavefield:

Ψm
s = D (2.15)

Because the scattered wavefield could be written in terms of order in V , eq. (2.13), so can
the data (Weglein et al., 1981):

D = D1 + D2 + · · ·+ =
∞∑
i=0

Di (2.16)

3I.e. after common processing procedures such as Surface Related Multiple Eliminiation (SRME) and source
and receiver deghosting.
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This implies, through the following geometric series argument, that V can be written as a
power series of terms Vi that are i-th order in (all the) data (Weglein et al., 1997).

Consider the following forward series:

x = a

∞∑
n=1

yn =
ay

1− y
(2.17)

This series, has a corresponding inverse series, representing y as powers of x:

y =
x

x+ a
=
∞∑
n=1

cos[(n− 1)π](
x

a
)n (2.18)

Considering D as an analog to x, then V is analog to y. This provides the justification for
the expansion of V as a geometric series in D. We expand V as previously declared:

V = V1 + V2 + V3 + · · ·+ (2.19)

Inserting equation (2.19) and relation (2.15) into the Born series, eq. (2.11), yields:

D = G0(V1 + V2 + V3 + · · ·+)G0

+G0(V1 + · · ·+)G0(V1 + · · ·+)G0 + · · ·+ (2.20)

By equating the terms on the left- and righthandside of this equation in terms of their order
in the data D, one gets:

D = G0V1G0 (2.21)

0 = G0V2G0 + G0V1G0V1G0 (2.22)

0 = G0V3G0 + G0V1G0V2G0 + G0V2G0V1G0

+G0V1G0V1G0V1G0 (2.23)

Equations for higher order terms follow the exact same structure. Equations (2.21) through
(2.23) and the infinitely many following equations constitute what is named the inverse
scattering series (Weglein et al., 1981). By first solving for the component of V that
is linear in the data, V1, by equation (2.21), one can then determine V2 by equation
(2.22) and so forth. Hence, the inverse scattering series allows one to sequentially build
the subseries that constitutes the true reflectivity V of the perturbed medium. The only
assumption made so far is that V1 truly is the portion of V that is linear in the data4.

4Note: In the formalism of the inverse scattering series the inverse Born approximation is never invoked.
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2.3 Leading order primary and internal multiple genera-
tors in the forward series

As primaries per definition only have one upward reflection, the leading order contribution
for primary reflections is the first term in the forward-scattering series: G0VG0 (Matson
and Weglein, 1996). However, do note that all primaries are constructed in the forward
series by portions of every term in the series. Extra terms in V can describe e.g. extra
transmission, and self-interaction on the path between source and receiver.

As first order internal multiples have three factors of reflection-like scattering, the lead-
ing order contribution in the forward modelling of the internal multiples comes from the
term with three factors of the perturbation operator: G0VG0VG0VG0 (Matson and We-
glein, 1996). In general, n−th order internal multiples have contributions from all terms
starting at term 2n+ 1, where the term 2n+ 1 itself is the leading order contribution.

However, as stated, all primaries are constructed in the forward series by portions of every
term in the series (Weglein et al., 2003). The term G0VG0VG0VG0 therefore con-
tributes both to generate primaries and first order internal multiples. A separation of this
term into the part that solely can create the first-order internal multiple is needed. For
this we follow Weglein et al. (2003), invoking a geometrical argument that works well for
internal multiple generation in many geological settings. The scattering described in the
term G0VG0VG0VG0 occurs at three distinct subsurface locations, x1,x2,x3, respec-
tively. In the sense of forward modelling, many first-order internal multiples will satisfy
a scattering-like reflection pattern given by: one upward reflection at x1 followed by one
downward at x2, and finally one upward at x3. For this to be possible, the true depth of
the second reflector/scatterer must be shallower than that of the other two. Hence, we end
up at the condition:

z1 > z2

z3 > z2 (2.24)

This is termed the Lower-Higher-Lower condition, abbreviated LHL. A Feynman-type di-
agram for a first order internal multiple satisfying the Lower-Higher-Lower condition is
shown in figure 2.1.

Ramirez and Otnes (2008) demonstrated that each order of approximation within the for-
ward series provides the correct wave type. For two-parameter (velocity and density)
perturbations the amplitude and traveltime is incorrect at each order contribution. Fur-
thermore, they showed that the forward series requires an infinite number of terms to be
corrected. In order to yield a prediction procedure of practical value, the internal multi-
ple prediction sought is instead often from the inverse series. The LHL condition in the
forward series, in true depth, gives a hint as to which terms contribute in the sense of the
inverse series.
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Figure 2.1 First order internal multiple satisfying the lower-higher-lower relationship.
xs

x1

x2

x3

xr

2.4 Linking forward series multiple generators to the in-
verse series mutiple attenuator

The internal multiple predictor studied in this paper does not originate from the forward
series, but rather from the inverse series. The clue to realizing an internal multiple atten-
uator from the inverse series lies in the hint given in the forward series. Understanding
how the forward series creates an event can give information on where the inverse process
might be located in the inverse series (Weglein et al., 2003). This is virtue of a symmetry
between the two series. The first term in the forward series that constructs the leading
order term in the internal multiple and the corresponding first term in the inverse series
that predicts its eliminator of a given order are only approximate. However, as noted by
Weglein et al. (2003), the efficiency of the first term in the removal subseries is remarkably
higher than the first term in the forward creation. The internal multiple attenuator predicts
the time precisely and gives an approximate amplitude prediction (Weglein et al., 2003).
The efficiency of the first internal multiple subterm of the inverse scattering series is what
accounts for its practical value.

In the forward series, the leading order contribution to the first order internal multiple lies
in the third order scattering term. Using the link between the two series, one searches for
the contributing subterms in the third order term of the inverse scattering series, equation
(2.23). As shown by Araújo (1994), the two terms G0V1G0V2G0 and G0V2G0V1G0

always contain a refraction-like scattering component. They do not contribute to the in-
ternal multiple predictor (Weglein et al., 2003). The resulting internal multiple predictor
derived from the Inverse Scattering Series is in operator notation G0V1G0V1G0V1G0

(Weglein et al., 2003). In integral formulation the internal multiple predictor is expressed
as:

(G0V3G0)IM = dIM3 (xr,xs, ω) := −
∫
z1>z2
z3>z2

G0(x1,xs)V1(x1)G0(x2,x1)

×V1(x2)G0(x3,x2)V1(x3)G0(xr,x3)dx1dx2dx3 (2.25)

The internal multiple predictor in (2.25) satisfies an LHL condition in pseudodepth5. The
assumption is that the ordering of the actual and the pseudo depths of two sub-events is

5Note: this is in contrast to the forward series LHL condition, which is given in true depth.
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preserved (Nita and Weglein, 2009). This is termed the pseudodepth monotonicity con-
dition. Note however that attempting to perform internal multiple prediction directly via
equation (2.25) does not actually yield a correct prediction. Rather, the equation needs to
be re-written in terms of a quantity that in every dimension would correspond to a scattered
field with spike-like events (Weglein et al., 2003). For this, V1 is re-written in terms of
the effective data, b1. This derivation will be provided in section 2.7. Until we have actu-
ally realized a proper internal multiple prediction algorithm by studying and re-writing the
terms in (2.25), we will still refer to the latter as the internal multiple predictor, although
this is not strictly true.

2.5 A short note on the first order perturbation operator
The first order perturbation operator V1 is present within the leading order internal mul-
tiple predictor. It is briefly studied here in order to investigate why the predictor is purely
data-driven.

Under the assumption that G0 is invertible, i.e.:

G0
−1G0 = I (2.26)

The solution of equation (2.21) for V1 is written:

V1 = G0
−1DG0

−1 (2.27)

Equation (2.27) represents a migration performed using the Green’s functions, and there-
fore implicitly the medium properties, of the reference medium. The mapping of the data
to pseudodepth is provided by this migration. As a strict discrepancy between common
migrations used in exploration geophysics, the properties of the reference medium migra-
tion in eq. (2.27) are never required to be close to that of the actual medium. Therefore,
V1 should not be seen as close to the true reflectivity V . In other words, the inverse Born
approximation is never invoked in the formalism of the inverse scattering series.

By representing D using the Lippmann-Schwinger equation, equation (2.9), this solution
for the first order scattering term becomes:

V1 = G0
−1(G0VG0 + G0VG0VG0+

G0VG0VG0VG0 + . . .+)G0
−1 (2.28)

Invoking the assumption of invertibility of the reference Green’s matrix:

V1 = V + VG0V + VG0VG0V + . . .+ (2.29)

Evidently, V1 contains the information of the true reflectivity of the medium V . The
additional terms (VG0V + VG0VG0V + . . .+) are however not treated correctly. The
internal multiple prediction given by (2.25) can be considered a demigration procedure that
generates a subset of the data, namely the main contribution to first-order internal multi-
ples, given the first-order reflectivity and the Green’s function(s) in the reference medium.
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The process of first solving equation (2.27) and then using it to predict first-order internal
multiples by a properly re-expressed version equation (2.25)6, can as such be referred to
as a migration-demigration procedure, as is the way Verschuur (2006, p. 183) describes it.

This description of the internal multiple prediction algorithm aids in the interpretation
as to why it is indeed data driven, as opposed to model driven. The parameters used in the
migration, e.g. velocity of the reference medium, are not of critical importance, because
the errors commited in this stage is balanced by the demigration procedure.

2.6 Re-representing the internal multiple predictor in terms
of three subevents

Two of the Green’s function terms in equation (2.25) can be re-written using representa-
tion integrals, so that each of them could have been emitted or recorded on the acquisition
surface. For this, we will consider an acoustic reference medium. As such, the matrices in
equation (2.25) reduce to scalars.

Consider the Kirchhoff-Helmholtz integral7 for two states, A and B, of Green’s functions
satisfying the constant-density Helmholtz equation:

G(xA,xB) =
∫
∂D
{G∗(x,xA)∂iG(x,xB)− (∂iG∗(x,xA))G(x,xB)}nid2x (2.30)

The outlines of the domain D of interest is shown in figure 2.2. D is a proper subset of
the reference medium, which is here chosen to be characterized only by the waterspeed
velocity, i.e it is homogenous everywhere. ∂D0 and ∂Di represent the upper and lower
horizontal boundaries. They are defined at pseudodepths z0 and zi, respectively, and have
normal vectors parallel to the z axis. The upper boundary ∂D0 represents the aquisition
surface, while the boundary ∂Di is chosen at convenience. For selection of ∂Di we will
make use of the Lower-Higher-Lower relation in pseudodepth in order to achieve an op-
timal single-sided representation. S represents the surface of the cylindrical part and is
parallel to the z axis. Its area grows proportional to ∝ rH . The far-field response8 of
the terms involved in the integral have amplitudes given by ∝ 1

rH
(Fokkema and van den

Berg, 2013). Their products therefore have amplitudes proportional to 1
r2H

. For the present
choice of the domain D, the contribution over S therefore vanishes.

6That is, by the proper formulas derived and showed in sections 2.7 and 2.8, respectively.
7The Kirchhoff-Helmholtz integral is properly introduced and derived in appendix A.
8Recall that the evaluation on this boundary is performed in the limit xH → ±∞
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Figure 2.2 Cylindrical domain of interest, D, with non-overlapping boundaries ∂D =
∂D0 ∪ ∂Di ∪ S.

D
xH → ±∞

S

∂D0

∂Di

Figure 2.3 Configuration for re-representation of G0(x2,x1, ω).

z0 xρ
∂D0

x1G0(x,x1)

x2G∗0(x,x2)
zi ∂Di

Figure 2.4 Configuration for re-representation of G0(x3,x2, ω), through is reciprocal
quantity, G0(x2,x3, ω).

xσ
z0 ∂D0

x3G0(x,x3)

x2G∗0(x,x2)
zi ∂Di
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State A State B

Wavefield G0(x,x1) G∗0(x,x2)

Source s(x, ω) δ(x− x1) x1 /∈ D δ(x− x2) x2 ∈ D

Directivity at ∂D0 Purely outgoing Purely ingoing

Directivity at ∂Di Purely ingoing Purely ingoing

Table 2.1: Configuration for re-representation of G0(x2,x1, ω)

State A State B

Wavefield G0(x,x3) G∗0(x,x2)

Source s(x, ω) δ(x− x3) x3 /∈ D δ(x− x2) x2 ∈ D

Directivity at ∂D0 Purely outgoing Purely ingoing

Directivity at ∂Di Purely ingoing Purely ingoing

Table 2.2: Configuration for re-representation ofG0(x3,x2, ω) through is reciprocal quan-
tity, G0(x2,x3, ω).

Case I: Representation of G0(x2,x1, ω)

The configuration for re-presentation of the term G0(x2,x1, ω) is shown graphically in
figure 2.3, and the tabulated format is given in table 2.1. We will consistently use the fact
that at the boundaries, only terms that propagate in opposite directions contribute to the
boundary integrals (Wapenaar, 2014). Note that because the reference medium is globally
homogenous, no scattering can take place in or outside D. The wavefield directivities at
the boundaries are therefore extraordinarily simple. Furthermore, we will make use of a
far-field approximation of the partial derivatives of the Green’s functions, namely we will
replace them with ∂iGni ≈ ∓ jωc G (Wapenaar and Fokkema, 2006). The minus sign de-
notes an ingoing wave at the boundary with normal vector ni, while the plus sign denotes
an outgoing wave at the same boundary.

Because of these properties we achieve the representation for G0(x2,x1, ω):

G0(x2,x1, ω) ≈ −2jω
c0

∫
∂D0

G0(xρ,x1)G∗0(xρ,x2)d2xρ,H (2.31)

It is evident from the integral representation that xρ represents an auxiliary receiver co-
ordinate. The acquisition boundary varies only in the horizontal coordinates, hence the
integration is over xρ,H evaluated at zρ = z0.

Case II: Representation of G0(x2,x3, ω)
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Idem, the configuration for re-presentation of the term G0(x3,x2, ω) is shown graphi-
cally in figure 2.4 and the tabulated format is given in table 2.2. We will achieve the
representation through the reciprocal term G0(x2,x3, ω).

Inserting the properties from table 2.2 yields the formula:

G0(x2,x3, ω) ≈ −2jω
c0

∫
∂D0

G0(xσ,x3)G∗0(xσ,x2)d2xσ,H (2.32)

We make use of acoustic source-receiver reciprocity (Wapenaar, 2014) for all of the three
terms involved, in one step, in order to achieve:

G0(x3,x2, ω) ≈ −2jω
c0

∫
∂D0

G0(x3,xσ)G∗0(x2,xσ)d2xσ,H (2.33)

It is evident from the integral representation that xσ represents an auxiliary source coor-
dinate. Similarly as for the representation in equation (2.31), the integration is over xσ,H
evaluated at zσ = z0.

Substitution into the internal multiple predictor
Substituting the Green’s function representations in equations (2.31) and (2.33) into the
internal multiple predictor, eq. (2.25), and re-arranging the involved terms:

dIM3 (xr,xs, ω) ≈ (
2jω
c0

)2

∫
z1>z2
z3>z2

[G0(x1,xs)V1(x1)G0(xρ,x1)]

×[G0(x2,xσ)V1(x2)G0(xρ,x2)]∗

×[G0(x3,xσ)V1(x3)G0(xr,x3)] dx1dx2dx3d
2xρ,Hd2xσ,H

(2.34)

We have used the fact that for cases of lossless true and reference media, V1 must be a
self-adjoint operator. Furthermore, note that V1 is a scalar not a differential operator. The
terms involving Green’s functions can therefore be moved around. The representation
in equation (2.34) reveals that the internal multiple predictor is constructed from three
individual subevents, isolated in the brackets, each emitted and recorded at the acquisition
surface. The constant factor outside the integral is real-valued and thus constitutes no
phase information. The predicted traveltime of the internal multiple is thus the sum of
the traveltimes of the three subevents. The second term is an anticausal, i.e. backwards
propagating, term. This leads to the predicted traveltime:

T IM = T1 + (−T2) + T3 = T1 − T2 + T3 (2.35)

The three subevents are graphically depicted in figure 2.5.

Again we stress that Weglein et al. (2003, p. R60) do not use V1 in the internal multiple
predictor. They state that taking V1 through this algorithm does not lead to an attenuation
algorithm, based upon empirical evaluation. b1 is instead used, the effective data gener-
ated by a single frequency plane-wave incident field (Weglein et al., 2003). Starting from
equation (2.34) we will see how to enable this in the following subsection.
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Figure 2.5 The three subevents that construct the internal multiple. Scattering points de-
noted in red, source and receiver locations along acquisition surface ∂D0 denoted in blue.
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2.7 Novel derivation: Internal multiple attenuator due to
1D wave propagation in a 1D medium

Consider the true medium to vary only in the vertical direction, z. The wave propaga-
tion considered is also only in the vertical direction. In this reduced dimensionality the
boundary integrals over the additional source and receiver coordinate xσ and xρ in equa-
tion (2.34) vanish9. Furthermore, ignore the Lower-Higher-Lower relationship in equation
(2.34), such that we first consider d3, containing both primaries and internal multiples.
With these substitutions, one gets:

d3(zr, zs, ω) ≈ (
2jω
c0

)2

∫
[G0(z1, zs, ω)V1(z1, ω)G0(zr, z1, ω)]

×[G0(z2, zs, ω)V1(z2, ω)G0(zr, z2, ω)]∗

×[G0(z3, zs, ω)V1(z3, ω)G0(zr, z3, ω)] dz1dz2dz3 (2.36)

For simplicity, assume in the following that zr = zs = 0.
The Green’s functionG0(z, zs, ω) defined in the one-dimensional reference medium obeys
the constant-velocity, constant-density Helmholtz equation:

(
∂2

∂z2
+
ω2

c20
)G0(z, zs, ω) = −δ(z − zs) (2.37)

From now on define the quantity k = ω
c0

. The analytical solution of (2.37) reads:

G0(z, zs, ω) =
−ejk|z−zs|

2jk
(2.38)

9A boundary integral in one dimension is just an evaluation of the integrand, and is therefore implicitly
considered.
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Making such substitutions into equation (2.36) gives:

d3(ω) = (2jk)2(
1

2jk
)3 1

2jk

∫
e2jkz1V1(z1, ω) dz1

× 1
−2jk

∫
e−2jkz2V1(z2, ω) dz2

× 1
2jk

∫
e2jkz3V1(z3, ω) dz3 (2.39)

Following Ramı́rez (2007), we identify, due to the contribution of Razavy (1975):

V1(k, k, ω) =
∫
e2jkzV1(z, ω) dz (2.40)

Furthermore, the definition of the effective data b1, which represents the effective data gen-
erated by a monochromatic plane-wave incident field (Weglein et al., 2003), is (Ramı́rez,
2007):

b1(kz) =
V1(k, k, ω)

2jk
= d(ω)2jk (2.41)

Furthermore, define the Fourier conjugate to pseudodepth: kz := 2k. Equation (2.39) then
reads:

d3(ω) = (
1

2jk
)b1(kz)b1(−kz)b1(kz) (2.42)

Consider an effective-data term on the lefthandside b3(kz) = d3(ω)2jk. Furthermore, the
terms b1(kz) are recognized as Fourier transforms, such that:

b3(kz) =
∫
ejkzz1b1(z1) dz1

∫
e−jkzz2b1(z2) dz2

×
∫
ejkzz3b1(z3) dz3 (2.43)

This expression can further be separated into four different contributions, regarding the
relative locations between z1, z2, z3. The only term that contributes to the internal multiple
attenuator is the one that satisfies the LHL condition in pseudodepth (Weglein et al., 2003):

bIM3 (kz) =
∫
ejkzz1b1(z1) dz1

∫ z1−ε

−∞
e−jkzz2b1(z2) dz2

×
∫ ∞
z2+ε

ejkzz3b1(z3) dz3 (2.44)

The parameter ε has been introduced to avoid non-linear self interaction in bandwidth-
limited scenarios. In contrast to equations (2.25) or (2.36), the internal multiple attenuator
given in equation (2.44) will actually yield an attenuation algorithm, due to its expression
in terms of the effective data b1. Equation (2.44) is the exact same as equation 83 in
Weglein et al. (2003). Perhaps a curiosa, yet this result has been derived without the need
for Cauchy principal value analysis as used in Weglein et al. (2003) and Ramı́rez (2007).
Also note that the Green’s function derivative approximation ∂iGni ≈ ∓ jωc G is indeed
exact for 1D wave propagation in a 1D medium, as can be verified by use of the analytic
solution in equation (2.38).
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2.8 The 2D internal multiple attenuator
The 2D generalization of equation (2.44) reads, as per Weglein et al. (2003):

bIM3 (kx,r, kx,s, kz) =
1

(2π)2

∫ ∞
−∞

dν1e
−jν1(zg−zs)

∫ ∞
−∞

dν2e
−jν2(zg−zs)

∫ ∞
−∞

dz1e
j(νr+ν1)z1b1(kx,r, kx,1, z1)

∫ z1−ε

−∞
dz2e

−j(ν1+ν2)z2b1(kx,1, kx,2, z2)

×
∫ ∞
z2+ε

dz3e
j(ν2+νs)z3b1(kx,2, kx,s, z3) (2.45)

Where we have introduced:

• kx,s is the Fourier conjugate to xs, i.e. a horizontal wavenumber.

• kx,r is the Fourier conjugate to xr, i.e. a horizontal wavenumber.

• νs is the vertical wavenumber associated with source location:

νs = − sign(ω)
√

(
ω

c0
)2 − k2

x,s (2.46)

• νr is the vertical wavenumber associated with receiver location:

νr = − sign(ω)
√

(
ω

c0
)2 − k2

x,r (2.47)

• kx,1 and kx,2 are two auxilliary horizontal wavenumbers with corresponding vertical
wavenumbers ν1 and ν2, respectively.

• kz is defined as: kz = νr + νs and is the Fourier conjugate to the pseudodepth
variable z.

• z represents pseudodepth.

• c0 is the constant velocity of the reference medium, i.e. in the marine case it corre-
sponds to the waterspeed velocity.

• b1 is the effective data generated by a monochromatic plane-wave incident field
(Weglein et al., 2003):

b1(kx,r, zr, kx,s, zs, kz) =
(−2jνs)D(kx,r, zr, kx,s, zs, ω) (2.48)

• ε is a parameter related to the wavelength of the wavelet present in the seismic data.
Its purpose is to avoid self-interaction in band-width limited scenarios.
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2.9 The 2D internal multiple attenuator in τ − p domain.
Equation (2.45) can be transformed to the coupled plane wave domain by using the con-
tribution of Nita and Weglein (2009) , relating the intercept time τ to the pseudodepth
z:

ωτi = kzzi (2.49)

Furthermore, the slownesses and wavenumbers are related via:

kx,α = ωpα (2.50)
kz = ωq = ω(qs + qr) (2.51)

Hence, equation (2.49) can be re-written as:

τi = qzi (2.52)

The contribution of Nita and Weglein (2009) made it clear that the mapping between pseu-
dodepth and intercept-time is one-to-one, i.e.:

z1 > z2 ⇔ τ1 > τ2 (2.53)

The coupled plane wave domain representation of (2.45) hence becomes:

bIM3 (pr, ps, ω) =
1

(2π)2

∫ ∞
−∞

dp1e
jωq1(zs−zr)

∫ ∞
−∞

dp2e
jωq2(zr−zs)

×
∫ ∞
−∞

dτ1e
jωτ1b1(pr, p1, τ1)

∫ τ1−ε

−∞
dτ2e

−jωτ2b1(p2, p1, τ2)

×
∫ ∞
τ2+ε

dτ3e
jωτ3b1(p2, ps, τ3) (2.54)

The input here is a scaled version of the input gathers after a transform to the coupled
plane wave domain: b1(pr, ps, τ2) = −j2qsD(pr, ps, τ) (Sun and Innanen, 2016). It is
the same type of effective data as seen in equation (2.48), yet in the coupled plane wave
domain.

In order to provide an internal multiple prediction as a data term, dIM3 , instead of an effec-
tive data term, bIM3 , an inverse scaling is applied: dIM3 (pr, ps, ω) = (−j2qs)−1bIM3 (pr, ps, ω).

Equation (2.54) is equivalent to those found in Coates and Weglein (1996) and Sun and
Innanen (2016).

2.9.1 The 1.5D internal multiple attenuator in τ − p domain.
The 1.5D case describes the situation of 2D wave propagation in a laterally invariant
medium. An implication of Snel’s law, for media with variations only in the vertical di-
rection, is that the horizontal slowness of any given ray is reserved. In essence, this leads
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to the property that for a given take-off slowness ps, a ray propagating into the subsurface
and returning to the surface, the recorded slowness component pr is equivalent to the take-
off slowness. Hence, for all waves scattered in a laterally invariant medium, the source
and receiver slownesses are coupled one-to-one and the recorded reflection data ’lose’ a
degree of freedom:

D(pr, ps, τ)
∣∣∣
1D earth

= D(pr, τ)δ(pr − ps) = D(ps, τ)δ(ps − pr) (2.55)

By recognizing this property the internal multiple predictor in equation (2.54) can be sim-
plified for horizontally layered media:

bIM3 (pr, ω) =
1

(2π)2

∫ ∞
−∞

dτ1e
jωτ1b1(pr, τ1)×

∫ τ1−ε

−∞
dτ2e

−jωτ2b1(pr, τ2)

×
∫ ∞
τ2+ε

dτ3e
jωτ3b1(pr, τ3) (2.56)

The input here is a scaled version of the reflection data transformed to the τ − p domain:
b1(ps, τ) = b1(pr, τ) = −j2qrD(pr, τ).

2.9.2 The 1D internal multiple attenuator in τ − p domain.
For poststack applications, see e.g. Ramirez et al. (2017), the internal multiple predictor
for one-dimensional wave propagation in a one-dimensional earth is often used. It is given
by the zero-slowness component of the 1.5D predictor:

bIM3 (ω) =
1

(2π)2

∫ ∞
−∞

dτ1e
jωτ1b1(τ1)×

∫ τ1−ε

−∞
dτ2e

−jωτ2b1(τ2)

×
∫ ∞
τ2+ε

dτ3e
jωτ3b1(τ3) (2.57)

For one-dimensional wave propagation in a horizontally layered medium the vertical com-
ponent of source slowness is simply qs = 1

c0
, s.t. the input becomes: b1(τ) = −j2 1

c0
D(τ).

Furthermore, in this situation the vertical intercept time, τ , is equal to the two-way travel-
time, t.

2.10 Psuedodepth-wavenumber and coupled slowness do-
mains for internal multiple prediction

The internal multiple prediction in psuedo-depth wavenumber given in equation (2.45),
requires a mapping of seismic gathers from time to pseudodepth. This requires one to
perform a constant-velocity Stolt migration of the data in the frequency domain. The
velocity used for the marine case is the waterspeed velocity. Stolt migration involves a
simple phaseshift mapping of angular frequency, ω, to vertical wavenumber, kz . In spatial
dimensions beyond one, the dispersion relation used for this mapping is non-linear in the
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relation ω ↔ kz and vice versa. Creating the pseudodepth axis therefore requires exten-
sive interpolation to create a regular grid in kz , given a regular grid in ω. The interpolation
operations themselves are not trivial to implement correctly. As shown by Harlan (1982),
treating the interpolation operators incorrectly can cause incorrectly migrated events to
entirely replace correctly migrated events.

Furthermore, the input to the psuedodepth-wavenumber prediction is not easily inter-
pretable nor intuitive to display. Sun and Innanen (2015) have indicated that the parameter
ε is not stationary in this domain and that this can lead to artifacts in the internal multiple
prediction.

In contrast, Sun and Innanen (2015) demonstrated, for the 1.5D case, that the plane wave
domain provides an environment where ε is quite stationary. Internal multiple predictions
with relatively low levels of artifacts are achieved in this domain. Sun and Innanen (2016)
showed that the input in the coupled plane wave domain is somewhat sparse with respect to
(pr, ps), where the maximum contributing bandwidth for a constant pr,s section in terms
of ps,r is related to the maximum dip angle of reflectors. Indeed, as the maximum dip of
the medium approaches 0◦, the 2D predictor gradually deteriorates to the 1.5D predictor,
except that the calculation is still performed in the coupled plane wave domain. For media
with limited reflector dips, the sparseness of the input data in the coupled plane wave
domain can potentially be used to minimimize the operations count required to calculate
internal multiple predictions. For these reasons, the coupled plane wave domain is our
preferred domain for internal multiple prediction. Its only downside is that the linear
Radon transform(s) required to create the input data to this domain require some work in
order to perform at the required fidelity. The properties of the linear Radon transform and
a proposed algorithm to create the input in the coupled plane wave transform is discussed
in chapter 3.

2.11 Internal multiple prediction using migrated data
The original input to the internal multiple prediction in equation (2.54), before coupled
plane wave transforms, needs to be unmigrated. In exploration seismology, many seis-
mic datasets are only available post migration, either collapsed or uncollapsed. In order
to accomodate internal multiple prediction for uncollapsed migrated datasets, the author
identified two options. Either, the internal multiple predictor in e.g. equation (2.54) must
be modified to allow for migrated datasets. The other alternative is to construct the input
data needed by undoing the migration performed. The process that accomplishes this is
termed demigration.

The work performed in Aaker (2017) discussed these two alternatives. A key conclu-
sion reached was that it would be computationally optimal to perform demigration prior
to internal multiple prediction, rather than modifying the internal multiple prediction inte-
grals. Demigration furthermore enables data reconstruction on survey geometries different
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from original, physical surveys. Hence, it has the possibility to provide data that satisfy
the stringent and special sampling requirements of the multidimensional Inverse Scattering
Series internal multiple predictors.

21



22



Chapter 3
The Linear Radon Transform and
transformation to the Coupled
Plane Wave domain

Disclaimer: The work presented in this chapter is partially derived from the work in Aaker
(2017) performed in the course TPG4570 - Petroleum Geosciences, Specialization Project.

This chapter starts with the the definition of the linear Radon transform, and in partic-
ular provides the link to perform the transformation via frequency-domain operators. The
formulation of the forward transform as an inverse problem is discussed in section 3.2.
The underlying rationale of this formulation is also introduced. Based upon the work of
Turner (1990), the sampling requirements of the linear RT are briefly reviewed. In sec-
tion 3.4 transformations to the coupled plane wave domain are explicitly discussed. A
proposed algorithm for performing the transformation is presented. The final section dis-
cusses some of the well-known artifacts that may arise due to application of (standard)
linear Radon transforms, and attempts to point at which problems this might give for in-
ternal multiple prediction. In doing so, it also points to a source of improvement, so-called
high-resolution Radon transforms-discussed thoroughly in chapter 4.

3.1 Definition of the Linear Radon Transform
For the first subsections the transform considered is not a coupled transform, as this is
elaborated on in section 3.4. For now, consider the data f(x, t) as a constant section of the
same function with (possibly) more degrees of freedom. Id est:

f(x, t) := f(x′, x′′, . . . ,= const, x, t) ,∀(x, t)

.
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The general Radon transform with kernel φ is hereby written as:

f̂(p, τ) =
∫

R
dx

∫
R
dt φ(x, t, p, τ)f(x, t) (3.1)

For the linear Radon transform the kernel is defined to be: φ = δ(t − px − τ). As such,
the transform reads, by the sifting properties of the delta function:

f̂(p, τ) =
∫

R
dxf(x, t = τ + px) (3.2)

The corresponding inverse transform has the formal expression:

f(x, t) =
∫

R
dpf̂(p, τ = t− px) (3.3)

The linear Radon transform, in similarity to the parabolic RT, utilizes a time-invariant op-
erator. For this very reason it is equivalently possible to calculate the transformations using
frequency domain operators. In the latter case, the amount of required computations are
bounded by O(Nω ×Np×Nx), whereas an implementation using time domain operators
have an asymptotic bound ofO(Nt×Nτ×Np×Nx). For this very reason, the forward and
inverse transforms are commonly implemented in frequency rather than in time domain.
In this thesis we will only consider calculating the linear Radon transform using frequency
domain operators.

Performing the Fourier transform of the forward transform (3.2) with respect to τ yields:

f̂(p, ω) =
∫

R
dτ

∫
R
dxf(x, τ + px)e−jωτ (3.4)

A change of integration variables is introduced: u = τ + px. This leads to the following
frequency-domain forward transform.

f̂(p, ω) =
∫

R
du

∫
R
dxf(x, u)e−jω(u−px) (3.5)

f̂(p, ω) =
∫

R
dxf(x, ω)ejωpx (3.6)

Idem, a frequency-domain inverse transformation exists, namely:

f(x, ω) =
∫

R
dpf̂(p, ω)e−jωpx (3.7)

The discretized versions of equations (3.6) and (3.7) read:

f̂(pk, ω) =
N−1∑
j=0

f(xj , ω)ejωpkxj , k = 0, 1, . . . ,M − 1 (3.8)

f(xj , ω) =
M−1∑
k=0

f̂(pk, ω)e−jωpkxj , j = 0, 1, . . . , N − 1 (3.9)
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The summations are recognized as Matrix-Vector multiplications. The corresponding lin-
ear algebraic notation is chosen as follows:

f̂(ω) = L†(ω)f(ω) (3.10)

f(ω) = L(ω)f̂(ω) (3.11)

Using the linear operator and its adjoint constitute a way to perform the inverse and for-
ward linear Radon transforms in the frequency domain. In practice however, such imple-
mentations yield smearing and poor resolution by the construction to the τ − p domain.
The resulting reconstruction, via the inverse transform, is therefore poor (Sacchi and Ul-
rych, 1995). The forward transform is therefore cast as an inverse problem. This is the
next point of study.

3.2 Forward Radon Transform as an inverse problem
In order to ease the notational treatment of the forward transform as an inverse problem,
we will introduce the following notation:

f̂(ω) = m(ω) (3.12)
f(ω) = d(ω) (3.13)

From hereon, the notation of frequency dependence is for the sake of convenience dropped.

We define the inverse transform to be the forward problem of study:

d = Lm (3.14)

We introduce the (zeroth order) Tikhonov regularized objective function ϕ, the combina-
tion of two complex `2 norms:

ϕ(m|d, λ) = ||(d− Lm)||22 + λ||m||22 = (d− Lm)†(d− Lm) + λm†m (3.15)

λ is a regularization parameter, controlling the relationship between least-squares fitting
and regularization. The regularization imposed here is a damping towards a zero-valued
prior model. It is often used to stabilize and filter the SVD components of the solution
(Hansen, 2005). The Radon model optimal in the regularized least squares sense is esti-
mated by minimizing the objective function with respect to m.

m = arg min
m

{
ϕ(m|d, λ)

}
(3.16)

By expanding the complex `2 norms, the objective function can be re-written as:

ϕ = m†L†Lm + d†d− d†Lm−m†L†d + λm†m (3.17)

The objective function is a scalar real-valued function consisting of complex-valued argu-
ments: ϕ : C→ R. There are two equivalent conditions that describe the stationary points
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of such a function (Kreutz-Delgado, 2009):

∂ϕ

∂m

∣∣∣
m∗=const

= 0 (3.18)

equivalently,
∂ϕ

∂m∗

∣∣∣
m=const

= 0 (3.19)

We first consider the former condition, by applying the cogradient operator:

∂ϕ

∂m

∣∣∣
m∗=const

=
(
L†L

)T
m∗ − LTd∗ + λm∗ = L†Lm∗ −

(
L†d

)∗
+ λm∗ = 0

(3.20)

By applying the conjugate cogradient operator, the latter condition gives:

∂ϕ

∂m∗

∣∣∣
m=const

= L†Lm− L†d + λm = 0 (3.21)

Evidently we have the symmetry that:

∂ϕ

∂m

∣∣∣
m∗=const

=

{
∂ϕ

∂m∗

∣∣∣
m=const

}∗
(3.22)

A closed form solution is reached. The regularized least squares optimal Radon model
therefore reads:

m = (L†L + λI)−1L†d = (L†L + λI)−1madj (3.23)

madj is defined to be the low resolution transform using the adjoint operator L†.

On the structure of (L†L + λI)
Due to its computational implications, it will be demonstrated that the matrix of the nor-
mal equations, (L†L + λI), possesses an Hermitian Toeplitz structure.

Consider the definition of the Hermitian transpose of a matrix A:

(Ai,j)† = (Aj,i)∗ (3.24)

The definition of matrix-matrix multiplication is:

(C)i,j =
∑
k

Ai,kBk,j (3.25)

Thereby, we express the matrix-matrix product L†L as:

[L†L]l,m =
M−1∑
k=0

L∗k,lLk,m , Lk,m = e−j2πfpmxk

[L†L]l,m =
M−1∑
k=0

ej2πfplxke−j2πfpmxk =
M−1∑
k=0

ej2πf(l−m)∆pxk (3.26)
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The uniform samplying property of horizontal slowness has been defined and used:

pi := p0 + i∆p, i = 0, 1, . . . ,M − 1 (3.27)

From equation (3.26) one can identify that the matrix L†L has an Hermitian Toeplitz
structure. Idem, the Tikhonov regularized variant, (L†L + λI), is Hermitian Toeplitz with
entries:

[(L†L + λI)]l,m =
M−1∑
k=0

e−j2πf(l−m)∆pxk + λδl,m (3.28)

Inverting a Toeplitz matrix is highly computationally efficient by the Levinsion recursion
scheme and is on the order of O(M2) operations (Golub and Van Loan, 2012). Schemes
valid for general, full-rank matrices, e.g. LU factorization or Gaussian Elimination are
of the order O(M3) operations. Inversion by the Levinson recursion schemes is there-
fore computationally very attractive. As an example, the program sfradon in Madagascar
(Madagascar Development Team, 2012) utilizes this Toeplitz structure in order to perform
the forward Radon transform.

However, as shown by e.g. Sacchi and Ulrych (1995), this particular form of regular-
ized least-squares inversion does not retrieve a high-resolution Radon model. The zero-th
order Tikhonov regularization, equivalent to assuming a Gaussian prior in model space,
constitues a major source of amplitude smearing in the Radon domain. Improved schemes
with less smearing and better reconstruction are available and are discussed in chapter 4.

3.3 Linear Radon Sampling Requirements
Turner (1990) derived sampling criterions for the plane wave transform by a geometrical
argument of constructive summing along slants. These are briefly reviewed here.

• Sampling in τ :
This is equivalent to the Shannon-Nyquist sampling criterion:

∆τ ≤ 1
2fmax

(3.29)

• Sampling in p:

∆p ≤ 1
xrangefmax

(3.30)

xrange := xmax − xmin

• Sampling in x:

∆x ≤ 1
prangefmax

(3.31)

prange := pmax − pmin

27



The most critical sampling requirement for the input data to the linear Radon transform is
that given by (3.31) as it is a data domain requirement. For seismic surveys, it is virtually
always far more restrictive than that of (3.29). The sampling requirement in (3.30) is a
model domain requirement and thus is selected by the end user of linear Radon transforms.

3.4 Radon Transform to the coupled plane wave domain
So far, the discussion on the linear Radon transform has been in a univariate setting with
respect to spatial coordinates. Constructing the data in a coupled plane-wave domain can
be done by a frequency domain implementation akin to (3.6) (Stoffa et al., 2006):

f̂(pr,ps, ω) =
∫

R
dxsdxrf(xr,xs, ω)ejω(pr·xr+ps·xs) (3.32)

Casting the transform in (3.32) as a least squares inverse problem with regularization is
straightforward in the sense previously discussed. The most prominent downside to such
an approach is that code from existing linear Radon transforms is not easily (re-)useable.
This drawback can be avoided by performing the transform in two steps:

Algorithm 1 Perform coupled plane wave transform through univariate plane wave trans-
form

• I) A linear Radon transform is performed over xr. The output data are in the domain
(pr,xs, τ).

• II) Resort the data into constant pr sections. These sections appear similar to com-
mon receiver sections, except that arrival times are replaced by vertical delay times
and that the data for each source position have a common angle of incidence at the
surface (instead of a common receiver).

• III) Perform linear Radon transform over xs. The output data are in the domain
(pr,ps, τ), but sorted in common receiver slowness sections.

• IV) Resort data to regular sorting w.r.t (pr,ps, τ).

Hence, code for a normal common-source or common-offset section plane wave trans-
form can easily be used for performing the forward transform to the coupled plane wave
domain. Otherwise, the existing code can be modified in order to allow strided memory
access across common source sections. Such an approach would avoid the two sorting
operations in algorithm 1.

A particularity of transforming to the coupled plane wave domain via algorithm 1
Experimentally, I note that in order for Snel’s law to read: D(pr, τ) = D(pr, ps, τ)δ(pr−
ps), one modification must be made. In step III, one needs to reverse either the ps or the
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xs axis. If this is not done, the data represented in the coupled plane wave domain read
D(pr, ps, τ)δ(pr + ps).

Coupled plane wave domain sampling requirements
The only way to completely sample all of the source and receiver slowness contributions of
the medium is to have an acquisition geometry where, within a given aperture, sources and
receivers occupy all discrete positions along the acquisition surface. This translates to fix-
ing the horizontal position of the receivers and allowing the sources to fire along the same
positions. Real world examples of acquisition geometries that satisfy this requirement in-
clude marine OBC geometries and certain land geometries, e.g. the roll-along geometry.
For marine streamer data this acquisition geometry cannot be met in the original survey.
Data reconstruction techniques such as e.g. modelling by demigration are therefore needed
in order to provide sufficient data in the presence of marine streamer surveys.

3.5 Truncation artifacts
The explicit linear Radon transform is only exact for infinite aperture data available in a
continuum. Suffice to say, such data are never available (or even possible to work with).
The absence of available information beyond the survey aperture causes an amplitude
diminution and some signal distortion (Wang and Houseman, 1997). By applying a trun-
cated summation to approximate the infinite integral of the linear Radon transform, certain
linear dipping events are introduced in the transformed domain. They do not correspond
to any physical events as e.g. mappings of traveltime curves, and are therefore considered
unwanted.

Amelioration: Spatial tapering
A much used strategy to suppress linear truncation artifacts is to perform spatial tapering
of the data near the ends of the survey apterture. This is similar to the effect of tapering
a time series reduces spectral leakage in the Fourier domain. Smoothly varying tapering
functions such as sine or cosine functions are often used (Wang and Houseman, 1997).
E.g. for tapering a common shot gather along the ends of the receiver axis, the tapered
data can be expressed as:

d taper(xr, xs, t) =

 d(xr, xs, t) cos
[
π
2 ( xr−xref

xmax−xref
)
]
, for xref ≤ xr ≤ xmax

d(xr, xs, t), for x < xref


(3.33)

xref is the reference position within the aperture beyond which spatial tapering should
take place. The formulation ensures that at xr = xref the amplitude is preserved, while at
xr = xmax it is 0.

Strategies such as tapering naturally suffer from the fact that they are not proper solutions
to the non-orthogonality of the linear Radon transform. Their effectiveness is therefore
only limited. Furthermore, any reconstruction of tapered parts of a given input dataset is
highly limited after application of the inverse transform. For the reasons considered above,
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more sophisticated solutions to the aperture related artifacts are sought.

Amelioration: High-resolution linear Radon transforms
Not only are high-resolution Radon transforms efficient in reducing amplitude smearing,
they are also able to minimize aperture effects. This is done by building a sparser Radon
model than what is given by the adjoint or Tikhonov regularized least-squares optimal
model. High-resolution Radon transforms are discussed in chapter 4.

Implications for Inverse Scattering Series based internal multiple prediction
1.5D: For internal multiple prediction using the 1.5D algorithm, equation (2.56), typical
artifacts in the input are the lines shown on the right-hand panel of figure 3.1. When
the linear artifacts coincide with the slowness range used to calculate the internal multi-
ple prediction, they may combine with the data to create other linear artifacts, a type of
’pseudo-event’. This is naturally unwanted. However, as these pseudo-events are lines in
the Radon space, they will map back to points in the physical domain via the inverse trans-
forms. Single points per definition have sparse support. The effect of the pseudo-events
should not be too large after inverse transforming. In the 1.5D case the stationarity of the
search-limiting parameter ε does not seem too threatened by the possible presence of a
few linear artifacts in the input data.

2D: When performing prediction using the 2D predictor in the coupled plane wave do-
main, equation (2.54), the situation is very different from the 1.5D case. Here, the input
data have a representation which is a lot sparser than what they would have in the phys-
ical domain or after a univariate Radon transforms. Certain events originating from an
approximately horizontal part of the subsurface, e.g. a waterbottom reflection, should map
approximately to a point with respect to the support in (pr, ps), in the coupled plane wave
domain. Only a linear Radon transform with a high resolving power will be able to do
what theory describes is optimal and/or correct. Figure 3.2 shows typical artifacts in the
coupled plane wave domain generated using a standard least squares transform. The input
data were modelled using a 1.5D earth model. Knowing the particular properties of the
model, every subevent in figure 3.2 should either collapse to a single point if the slowness
component (pr, ps) was recorded, or conversely completely vanish if it was not. The left-
hand panel shows a common ps = 0 s/km slice of the volume. Significant butterfly effects
are evident. The right-hand panel demonstrates that at higher dips, ps = 0.2 s/km, cer-
tain events that should vanish (slowness component not recorded) are smeared out on lines.

The 2D internal multiple predictor searches across combinations of pr, ps and auxiliary
source and receiver slownesses to construct the internal multiple prediction. The physical
subevents in the plane wave domain may be allowed to combine nonlinearly with trans-
form artifacts. The result of an insufficent Radon transform to the coupled plane wave
domain will be that the search-limiting parameter ε, which attempts to prevent non-linear
combinations, is challenged or even violated. An implication of transform artifacts in the
coupled plane wave domain is the presence of predicted ’pseudo-events’ in the internal
multiple prediction. Compared to the 1.5D case, these artifacts may span a larger space
both in the coupled plane wave domain and in the physical domain.
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Figure 3.1 A shot gather (left) transformed to the τ − po domain via a standard Least
Squares transform. Red arrows point at linear transform artifacts.

Figure 3.2 Typical ’butterfly’ and linear artifacts in the coupled plane wave domain pro-
duced by using a standard, least squares linear RT.
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Chapter 4
High resolution Linear Radon
transforms

This chapter is motivated by the analysis in chapter 3 on some of the deficiences of the
linear Radon transform, either as a direct implementation or in a least-squares, Tikhonov
regularized formulation. Linear Radon transforms often suffer from truncation artifacts,
as the explicit transformation is only exact for infinite aperture data. It is the conjecture
from section 3.5 that truncation artifacts will negatively affect Inverse Scattering Series
internal multiple prediction. This would especially be true for performing prediction in
two or higher dimensions.

In order to provide optimal input for the internal multiple prediction we consider the use
of high resolution, also termed sparse, linear Radon transforms. This chapter attempts
to give a thorough analysis of sparse time-invariant RTs. Implementational results are
demonstrated at the very end. Sacchi and Ulrych (1995) provided the first proper analysis
on the underlying reasons why standard Radon transforms suffer from artifacts and low
resolving power. They also provided the first analysis and derivations of high resolution
time-invariant Radon transforms. This was done in a setting of probabilistic inverse prob-
lems. For historical reasons we will therefore start the analysis in a Bayesian setting in
sections 4.1-4.4. By recognizing a special case of symmetry between Bayesian and deter-
ministic inverse theory, we will from thereon move to the latter setting. From section 4.5
and onwards some modern advancements on sparse inversion will also be considered, e.g.
results from compressive sensing.
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4.1 Bayesian inversion theory
Consider the forward modelling theory given by the linear operator L acting on the model
m yielding the data d. Considering the effect of noise, due to either incomplete modelling
theory and/or data with noise, this yields the relation:

Lm + n = d (4.1)

We will solve the linear inversion problem for m via a probabilistic formalism. For this,
we introduce and consider Bayes’ formula

p(m|d) =
p(d|m)p(m)∫

M p(d|m)p(m)dm
(4.2)

Bayes’ formula gives the posterior probability density function (abbreviated pdf) of the
model parameters m given the data d, in terms of

• The prior in model space p(m)

• The data likelihood function p(d|m).

• The normalisation factor
∫
M p(d|m)p(m)dm = p(d), commonly termed the evi-

dence.

The model space posterior, p(m|d), contains all information obtainable by combining the
prior knowledge of the forward modelling theory, the data and the parameters of the model.
Prior knowledge of the forward modelling theory and the data are jointly incorporated into
the likelihood function, p(d|m), whereas prior knowledge of the model parameters is rep-
resented by the prior in model space, p(m). The posterior probability density function is
the solution of the Bayesian inverse problem. In the probabilistic framework there are no
constraints on the properties of the forward problem, e.g. linearity and differentiability1.
The denominator, the evidence, in Bayes’ formula is often ignored. As a normalisation
factor it does not modify the relative probabilities in the model space. Furthermore, it
requires an M dimensional integration routine, which can become prohibitively expen-
sive for geophysical inverse problems. The unnormalised expression for the model space
posterior therefore reads:

p(m|d) ∝ p(d|m)p(m) (4.3)

In order to derive a model from Bayesian inversion by equation (4.3) one must consider:

• I) How to determine the model m given p(m|d).

• II) How to construct the prior in model space p(m)

For the first problem one can determine a (suitable) model by applying a decision rule onto
p(m|d). A frequently used rule is to consider the maximum a posteriori (MAP) model,
mMAP , which is defined as the model that maximizes p(m|d):

mMAP := arg max
m

{p(m|d)} (4.4)

1Only in the special case of Radon transforms will we consider a linear forward problem.
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The second problem concerns how to translate prior knowledge and preference of model
space characteristics into a probability density function. In the context of linear Radon
transforms we seek a solution that has sparse support, in order to minimize artifacts.

4.2 Constructing the prior from the principle of maxi-
mum entropy

For a continous variable m with probability density function p(m) the entropy H is de-
fined as:

H := −
∫
M
p(m) loga[p(m)]dm (4.5)

By relation to Shannon’s measure of information content:

H = E{− loga[p(m)]} = E{I(m)} (4.6)

The entropy is equivalent to the expected value of the information content. The base, a, of
the logarithm determines the unit of the entropy.

The distribution that most honestly describes the model, given only what is known, is
the maximum entropy distribution (Jaynes, 1968). When making inferences based upon
incomplete information it is therefore sound to draw them from the pdf that has the max-
imum entropy allowed by the available information. We would also like to constrain the
model towards our preferred characteristics.

Hence, we wish to describe the prior by maximizing:

H = −
∫
M
p(m) loga[p(m)]dm (4.7)

Subject to the constraints: ∫
M
p(m)dm = 1 (4.8)∫

M
p(m)f(m)dm = F := E{f(m)} (4.9)

The constraint (4.8) ensures the second axiom of probability. In equation (4.9) we have in-
troduced the constraint f(m), acting on the prior p(m), and its associated expected value
F . In the continous case one can impose an arbitrary number of constraints on p(m). In
this consideration one constraint suffices, namely one that promotes sparseness.

For solving the maximization problem we consider the functional J(p) constructed via
the method of Lagrange multipliers:

J(p) :=
∫
M
p(m) loga[p(m)]dm (4.10)

−λ0

[ ∫
M
p(m)dm− 1

]
− λ1

[ ∫
M
p(m)f(m)dm− F

]
(4.11)
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λ0, λ1 are the Lagrange multipliers associated with each of the constraints, respectively. In
geophysical inverse problems we are not concerned with finding the Lagrange multipliers,
they are selected by the end user, unless some automatic parameter selection procedure is
considered. If the functional J(p) has a local maxima at p = h, the test function η(m) is
an arbitrary, smooth function with compact support inM and for any number ε close to 0,
the following inequality holds:

J(h) ≥ J(h+ ηε) (4.12)

J(h+ηε) is termed the first variation of the functional J . Given that J(p) has a maximum
at p = h it follows that its first variation has a maximum around ε = 0.

∂J(h+ ηε)
∂ε

=
∫
M
η loga[h+ ηε]dm (4.13)

+
∫
M
h

1
h+ ηε

ηdm +
∫
M
ηε

1
h+ ηε

ηdm− λ0

∫
M
ηdm− λ1

∫
M
ηfdm (4.14)

∂J(h+ ηε)
∂ε

∣∣∣
ε=0

=
∫
M
η(m)

{
loga[h(m)] + 1− λ0 − λ1f(m)

}
dm = 0 (4.15)

Given the properties of η(m) one can apply the fundamental lemma of calculus of varia-
tions and therefore retrieve:

loga[h(m)] + 1− λ0 − λ1f(m) = 0 (4.16)

By reversing the renaming previously implied, h→ p, and by re-writing:

p(m) = e1−λ0−λ1f(m) ∝ eλ0−λ1f(m) (4.17)

The prior model p(m) in (4.17) is the prior model that maximizes the entropy, (4.7) given
the constraints in (4.8) and (4.9). In the last step we have for simplicity used logarithm
base a = e, without any significant loss of generality.

4.3 Sparseness-promoting constraints
There still remains the task of determining a suitable constraint f(m) given our preference
for sparse models. Sacchi and Ulrych (1995) state that a constraint of the form

f(m) =
∑
i

ln[m∗imi + b2] (4.18)

can be used to quanitfy the amount of sparseness of a vector. It is a stabilized version
of Burg’s measure of entropy (Burg, 1975), where the parameter b2 acts as a stabilizer.
Alternatively, one can assume a Cauchy pdf for the model space prior, which will yield
the exact same system of normal equations. The normal equations themselves are to be
derived and will follow. In the case of a Cauchy prior however, the hyperparameter b2
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does not (explicitly) represent a background power or stabilization factor. Rather, it rep-
resents a probabilistic hyperparameter, namely the model space variance σ2

m. Due to ease
of reference we may refer to the minimization of Burg’s measure of entropy constraint as
assuming a Cauchy prior in the following sections.

When considering the maximum entropy prior, equation (4.17), the resulting prior pdf
is given by:

p(m) =
eλ0∏

i

[m∗imi + b2]λ1
(4.19)

Ignoring the factor constant for all parts of model space, we get the per-element 1D prior:

p(mi) ∝
1

[m∗imi + b2]λ1
(4.20)

For large values of λ1, the resulting prior distribution is sharp. Conversely, for very small
values of λ1 the distribution p(mi) approaches uniformity. A uniform prior is naturally
uninformative. In order to have a preference for sparse models λ1 can therefore not be set
too small.

In the case that the stabilization factor b2 is large compared to m∗imi, one can approx-
imate ln[m∗imi + b2] ≈ m∗imi

b2 + ln(b2) (Sacchi and Ulrych, 1995). Hence, for relatively
large b2 equation (4.20) can be replaced by:

p(mi) ∝
e−λ1

m∗i mi

b2

b2λ1
(4.21)

This represents a Gaussian distribution, which in the deterministic setting is equivalent to
using zero-th order Tikhonov regularization. Gaussian distributions promote smoothness
and do not allow a sparse representation. With this in mind, it is very important not to
select b2 too large, otherwise no sparseness can be obtained.

4.4 The maximum a posteriori model
Under the assumption that the noise in equation (4.1) follows a Gaussian distribution, the
calculated likelihood function is given by:

p(d|m) = e−
1
2{Lm−d}†C−1

n {Lm−d} (4.22)

The unnormalized posterior distribution follows from Bayes’ rule

p(m|d) ∝ e−λ1f(m) · e− 1
2{Lm−d}†C−1

n {Lm−d} (4.23)

Cn is the covariance matrix of the noise. Under the assumption that the noise is uncor-
related, Cn becomes a diagonal matrix, a property which would translate to its inverse,
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C−1
n . Estimation of the covariance matrix and its inverse is in practice difficult and may

not always be performed. As long as the noise variance is relatively stationary throughout
the data d, the weighting applied by a diagonal C−1

n can be incorporated into the regular-
ization parameter λ1.

The MAP model can easily be calculated through minimization of the negative log-likelihood
− ln{p(m|d)}, indeed:

arg max
m

{
p(m|d)

}
= arg min

m

{
− ln{p(m|d)}

}
(4.24)

mMAP = arg min
m

{
− ln{p(m|d)}

}
= arg

m

{
− ∂ ln{p(m|d)}

∂m
= 0
}

(4.25)

Due to the symmetry between deterministic and probabilistic inversion for the special case
of a linear forward operator and Gaussian distributed noise, the maximum a posteriori
model of (4.23) is the one that minimizes the objective function consisting of an `2 data
norm and the regularization function f(m):

ϕ(m|d) = λf(m) + ||Wd(d− Lm)||22 = λf(m) + (d− Lm)†W†
dWd(d− Lm)

(4.26)

λ := 2λ1

Implicity we have introduced the data weighting matrix in order to express the inverse of
the noise covariance matrix:

W†
dWd = C−1

n (4.27)

The unconstrained optimization problem therefore reads:

m = arg min
m∈M

{ϕ(m|d)} (4.28)

It should be noted that this is in fact equivalent to solving the constrained optimization
problem:

minimize f(m)

subject to ||Wd(d− Lm)||22 ≤ γ2

for some value of λ (Van Den Berg and Friedlander, 2008). Here, γ represents a suitable
estimate of the 2-norm of the combined effect of data noise and errors in the forward mod-
elling.

We continue the derivation from the unconstrained optimization in equation (4.28).
Application of the conjugate cogradient operator to the constraint function, f(m), yields
in elementwise notation:

∂f(m)
∂m∗`

=
∑
i

1
m∗imi + b2

miδi,` =
1

m∗`m` + b2
m` (4.29)
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By introducing a diagonal matrix {D(m)}ii := 1
m∗imi+b2

, the full conjugate cogradient of
f(m) reads:

∂f(m)
∂m∗

∣∣∣
m=const

= D(m)m (4.30)

The normal equations which retrieve the maximum a posteriori model with sparsity con-
straints therefore reads:[

λD(m) + L†W†
dWdL

]
mMAP = L†W†

dWdd (4.31)

Note that equation (4.31) is non-linear with respect to the model parameters, even though
the forward model operator is linear and the data norm is an `2 norm. The nonlinearity
is introduced solely by the regularization. Popular solvers for such nonlinear problems
are e.g. those from optimization methods, which include Non-Linear Conjugate Gradient,
Gauss-Newton or Full-Newton methods. However, because the forward operator is linear,
one can avoid the full computational complexity of these methods. In the context of high-
resolution Radon transforms, solving the normal equations given in (4.31) by Iteratively
Reweighted Least Squares (IRLS) (Scales et al., 1988) is attractive. This approach is
discussed in section 4.8.

4.5 Other sparsity norms and a generalization

In the years after Sacchi and Ulrych’s article, other model constraints have gained popu-
larity for promoting sparseness, mostly based upon using `p norms for model-space regu-
larization, for 0 ≤ p ≤ 1. A variant of the objective function (4.26) for an `q data norm
and an `p model norm is given by:

ϕ(m, p, q|d) = ||Wd(d− Lm)||qq + λ||m||pp (4.32)

The unconstrained optimization problem reads:

m = arg min
m∈M

{ϕ(m, p, q|d)} (4.33)

The sparsest model obtainable is the one that minimizes the `0 model norm. The `0 norm
is defined as the number of nonzero elements in a vector:

||m||0 := #{i : mi 6= 0} (4.34)

Unfortunately, the `0 norm is non-convex, leading to a problem which is difficult to solve.
The `1 norm can fortunately be seen as a convex relaxation of the `0 norm and can there-
fore be used as an approximation (Candès et al., 2006). Indeed, in Compressive Sensing,
medical imaging and geophysics, choosing an `1 norm is much used for retrieving sparse
models. References for the two latter fields of science may include Lustig et al. (2007) and
Trad et al. (2003), respectively.
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The `1 model norm reads ||m||1 =
∑
i

|mi|. The relevant sensitivities are given by:


∂||m||1
∂m`

=
∑
i

2
2

1
|mi|miδi` = 1

|m`|m`, m ∈ RM

∂||m||1
∂m∗`

= 1
2

1
|m`|m` =

{
∂||m||1
∂m`

}∗
, m ∈ CM

 (4.35)

In the following the constant factor 1
2 present in the complex case will simply be ignored,

and implicitly considered as a part of the regularization parameter.

By defining the model-weighting matrix as a diagonal weighting matrix with elements:

{Wm}`1ii =
1√
|mi|

(4.36)

one can re-write the `1 model norm as a weighted `2 norm:

||m||11 = ||Wmm||22 = m†W†
mWmm (4.37)

In this formalism, the constraint resulting from assuming a Cauchy prior can also be ex-
pressed using a diagonal model space weighting matrix in a weighted `2 model norm.
By this generalization, we express the general objective function for an `q − `p inverse
problem as the combination of weighted `2 norms:

ϕ = ||Wd(d− Lm)||22 + λ||Wmm||22 (4.38)

The effect of an `q data-norm is absorbed into the data weighting matrix Wd in a sense
similar as for the model space constraints.

Discussed choices for the weighting matrices include, here shown for the model-space
weighting matrix:

{Wm}ii =


1, `2 norm. (Gaussian prior)

1√
|mi|

, `1 norm. (Laplace prior)

1√
m∗imi+b2

, Burg’s measure of entropy (Cauchy prior)

 (4.39)

The text in the parenthesis labels the probability distribution assumed on the prior p(m)
for the corresponding norm/measure. Only the two latter choices of model space norms
can promote sparsity. In order to provide some intuition as to why this is the case, we will
consider the three corresponding probability density functions.

Figure 4.1 shows a comparison of a standard Gaussian distribution N (0, 1) alongside a
Laplace distribution and a Cauchy distribution. The two latter have median and mode at
x = 0 and scale parameters set equal to unity. One must note that the scale parameters
have different interpretations for the distinct pdfs. Therefore, the plot is only indicative.
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A very important observation available from figure 4.1 is that the Gaussian distribution is
only gently peaked around its mean and rapidly approaches zero away from it. By Bayes’
rule, the posterior distribution of the model is proportional to p(m|d) ∝ p(d|m)p(m).
Assumption of a Gaussian model space prior can therefore not retrieve models composed
of a few, large coefficents.

The Laplace pdf is notably peaked around p(x = 0), while still allowing large coefficients.
It is therefore much more effective at obtaining models composed of many zero-valued and
a few, large elements, i.e. sparse models. Idem, this can be argued for the Cauchy distri-
bution, yet it has a characteristic pdf somewhat different to the Laplace distribution.
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Figure 4.1 Comparison of univariate Gaussian, Laplace and Cauchy distributions for the
pdf p(x).
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4.6 Stabilization of the `1 norm and its relation to the Hu-
ber norm.

The weighting operator for the `1 norm defined in equation (4.36) is in practice modified
slightly in order to avoid the singularity that occurs when |mi| → 0. A common way to
stabilize it is to modify it such that:

{Wm}`1ii =


1√
|mi|

, |mi| > ε

1√
ε

|mi| ≤ ε

 (4.40)

ε is here a user chosen parameter introduced in order to avoid division by zero.

The Huber norm, proposed by Huber (1973), is given by the following equation:

||mi||Huber :=

 |mi| − ε
2 |mi| > ε

m2
i

2ε |mi| ≤ ε

 (4.41)

The Huber norm can be interpreted as a hybrid `1/`2 norm. For small values of |mi| it
behaves like an `2 norm, while large entries |mi| are effectively treated by an `1 norm. In
this setting the threshold value, ε, is not a small value in order to avoid division by zero,
but rather the turning point where the norm changes from `1 to `2. The gradient of the
Huber norm reads:

∂||mi||Huber

∂m`
=

 mi

|mi| δi` |mi| > ε

mi

ε δi` |mi| ≤ ε

 (4.42)

Therefore, the weighting matrix associated with the Huber norm is given by:

{Wm}Huber
ii =


1√
|mi|

, |mi| > ε

1√
ε

|mi| < ε

 (4.43)

The stabilized `1 weighting matrix entries, eq. (4.41), and the Huber norm weighting
matrix entries, eq. (4.43), are evidenly equal. Again, I stress that interpretations of the
threshold values ε are to be different. However, this result does imply that choosing a
stabilization parameter ε too large will effectively yield an `2 type regularization term. ε
should be chosen in order to maintain a balance between stabilization and sparseness.

4.7 Transformation to the standard form
The regularization through weighting matrices can be imposed in a slightly modified for-
mulation, by transforming the inverse problem to standard form, which is a form in which a
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general regularization term ||Wmm||22 is replaced by ||m̃||22 (Hansen, 2005). The standard
form is useful for situations where one wants to decrease the dependence of the solution
upon the hyperparameter λ. This can be achieved by regularization through iteration. In
order to achieve the standard form normal equation, right-hand preconditioning is applied
to the forward modelling equation:

d = LW−1
m Wmm = L̃m̃ (4.44)

We have implicitly introduced the quantities L̃ = LW−1
m and m̃ = Wmm. The effect of

the right-hand preconditioning is to set the regularization as part of the modelling, rather
than a penalty factor in the objective function. Note that the right-hand preconditioning is
only valid for a full-rank matrix Wm. Due to the diagonality and the stabilization of Wm,
it suffices to say that the matrix is full rank2.

By right-hand preconditioning, the null space of the forward model operator is modified.
Hence, information that lives in the null space of the operator is added (Nichols, 1997).

The standard-form objective function simply reads:

ϕ(d, m̃) = ||Wd(d− L̃m̃)||22 + λ||m̃||22 (4.45)

Minimization of (4.45) minimizes the norm of the solution in the transformed model space,
M̃, and not the norm in the original space:

m̃ = arg min
m̃∈M̃

ϕ(d, m̃) (4.46)

The resulting normal equations read:[
W−†

m L†W†
dWdLW−1

m + λI
]
m̃ = W−†

m L†W†
dWdd (4.47)

The preconditioned operator L̃ and its adjoint have been written out only for clarity. In
the context of using an iterative solver to solve the normal equation (4.47), one can set the
hyperparameter λ = 0 and let the number of iterations play the role of regularization. The
approach of regularization through iteration is discussed in section 4.10 and some of the
underlying mathematics are reviewed in a Conjugate Gradient setting in Appendix B.

4.8 Iteratively Reweighted Least Squares

The approach used by IRLS to solve equation (4.31) or (4.47) is to solve a sequence of
the equation with recursively computed weighting matrices. At each step one therefore
approximates the nonlinear normal equations with its corresponding linear version. This

2The singular values of a diagonal matrix are the diagonal entries themselves. As long as no diagonal entry
approaches zero or infinity, a square diagonal matrix will be full rank.
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approach will be demonstrated for the normal equations given in (4.31). The Iteratively
Reweighted Least Squares approach to solving the latter equation is:

m(k) =
[
λW(k−1)†

m W(k−1)
m + L†W(k−1)†

d W(k−1)
d L

]−1

L†W(k−1)†
d W(k−1)

d d k ∈ {1, ..., Nexternal}
(4.48)

From hereon, the iterations involved in updating the model and/or data weights are referred
to as external iterations. Nexternal is the number of external iterations involved in the IRLS
scheme.

At each external iteration of (4.48) the system of normal equations is linear, and can there-
fore be solved with classical linear systems solvers. In the case that the linear solver
involves iterations, we refer to its iterations as internal iterations.

The functions that update W(k)
m and W(k)

d are denoted χ(m(k), εm) and ψ(d,Lm(k), εd),
respectively.

Algorithm 2 Iteratively reweighted least-squares algorithm
Solves the unconstrained `q − `p optimization problem given in equation (4.33).
Input: d, λ, εm, εd, Nexternal
Output: m
k = 0 , m(0) = 0, W(0)

d = I, W(0)
m = I

while k < Nexternal do

m(k+1) =
[
λW(k)†

m W(k)
m + L†W(k)†

d W(k)
d L

]−1

L†W(k)†
d W(k)

d d

W(k)
m = diag[χ(m(k), εm)]

W(k)
d = diag[ψ(d,Lm(k), εd)]

k = k + 1
end
return m(k)

Algorithm 2 can handle mixed `p − `q problems through the action of the data and model
weighting matrices. The IRLS algorithm for solving a standard-form inverse problem fol-
lows directly from this algorithm.

A clear distinction between the types of iterations involved in IRLS, external and internal,
is now evident. External iterations update the model weights. Internal iterations attempt
to solve the resulting linear normal equations and update the model. In the context of this
thesis, the iterative solver Conjugate Gradient Least Squares (CGLS) has been used for
internal iterations (Hestenes and Stiefel, 1952).

4.9 Time-Frequency domain Linear Radon transform
Frequency domain forward and adjoint operators have constituted the standard way of
performing linear Radon transforms because of their computational advantage over time-
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domain operators. However, in the context of linear Radon transforms with sparsity con-
straints, the frequency domain provides some disadvantages. The primary disadvantage
is that model weights set in the frequency domain are coupled for all times, which they
should not be. Sparse Radon transforms in the frequency domain can often generate ar-
tifacts in the situation of strong amplitude inbalance (i.e. in presence of high-amplitude
events) (Trad et al., 2003). Furthermore, the hyperparameters in the frequency domain
are not easily or intuitively set, and are generally harder to decide by data inspection. This
holds in particular for the background power b2 or the threshold parameter ε in the cases of
regularization by minimization of Burg’s entropy (Cauchy prior) or `1 norm, respectively.

The weaknesses of the frequency domain for computing sparse Radon transforms was
first recognized by Cary et al. (1998), which proposed to compute time-invariant Radon
transforms in the time domain through the application of frequency domain operators.
This would allow one to set the model weighting matrices in the τ − p domain directly,
rather than in the ω − p domain. Furthermore, the hybrid approach still allows one to take
advantage of the computational flexibility of frequency domain operators. If chosen, the
hybrid approach still allows exploiting the Hermitian Toeplitz symmetry of the operator
L†L to perform MVMs via circular convolutions in the Fourier domain.

In order to accomodate the time-frequency domain linear Radon transform in the sense
indicated, we consider the modified forward modelling operation:

d = F†LFVm (4.49)

L is still the linear operator performing the inverse linear Radon transform in the frequency
domain, yet it is naturally modified from its monofrequency representation. It is simply
expanded such that all frequencies are calculated simultaneously. F is the unitary normal-
ized Fourier transform operator from time to frequency, such that: F†F = FF† = I.

V is a circulant matrix performing convolution with the source wavelet. Its adjoint is the
cross-correlation matrix. By including it into the forward modelling operation we attempt
to ensure that:

• I) The predicted data have an approximately correct waveform.

• II) The action of the operator does not modify the linear Radon transform sampling
requirements, and thus does not introduce any aliasing.

Furthermore, the introduction of the source convolution operator enables the representa-
tion of a single, constant amplitude plane in the t− x space to map to a single point in the
τ − p domain. In fact, when considering a time-invariant RT with sparsity constraints, the
time-frequency domain formulation will promote sparsity not just in the slowness direc-
tion, p, but also in intercept time, τ . This is a feat that frequency domain formulations are
not able to enforce.

The time-frequency domain unconstrained optimization problem reads:

m = arg min
m∈M

{ϕ(m, p, q|d)} = arg min
m∈M

{||Wd(d−F†LFVm)||qq + λ||m||pp} (4.50)
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Due to the fact that V is a circulant matrix we will make use of its eigendecomposition,
with the discrete Fourier basis acting as the matrix of eigenvectors (Golub and Van Loan,
2012):

V = F†ΛV F (4.51)

The resulting normal equations are:[
λW†

mWm + F†Λ†V FF†L†FW†
dWdF†LFF†ΛV F

]
m = F†Λ†V FF†L†FW†

dW
†
dd

(4.52)

In order to exploit any possible Hermitian Toeplitz symmetry we assume that W†
dWd =

α2I ∀α ∈ R. The consequence of which is that the following holds only for an `2 data
norm in the presence of uncorrelated, constant variance Gaussian noise. Furthermore, we
make use of the property that the Fourier operator is a unitary matrix. The simplified
normal equations reduce to:[

λW†
mWm + F†Λ†V L†LΛV F

]
m = F†Λ†V L†Fd (4.53)

For completeness, the solution of the standard-form unconstrained optimization problem
in the time-frequency formulation for q = 2 is then simply:[

λI + W−†
m F†Λ†V L†LΛV FW−1

m

]
m̃ = W−†

m F†Λ†V L†Fd (4.54)

Because the model-weights and the Radon-model itself are both defined in the τ − p
domain the transformation to standard form is also here given by m̃ = Wmm.

4.10 Hyperparameter dependence
The quality of the output of the sparse Radon transforms considered in this thesis all de-
pend heavily on the choice of the hyperparameters. In an optimal setting one should there-
fore have some robust, preferably automatic way to estimate good choices of the hyperpa-
rameters. Other ways to handle this issue is to select solution strategies that do not depend
on these parameters. Because the types of hyperparameters introduced by the sparsity pro-
moting regularization are of different nature, a Lagrange multiplier λ and a stabilization
parameter b2/ε, we will treat them in individual subsections.

4.10.1 Stabilization parameters b2 and ε
For estimating the stabilization parameter some authors use the process of trial and er-
ror, such as Trad (2001) used for σ2

m/b
2 for frequency domain Radon transforms with a

Cauchy prior. Others, e.g. Ibrahim and Sacchi (2013) use some percentage of the max-
imum of the model or data. Trad et al. (2003) use a percentile sorting algorithm where
the threshold is determined by the value located at percentile P . In such an approach the
hyperparameter dependence is shifted to the given percentile chosen, which must to some
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degree be chosen via trial and error.

For the frequency-domain implementation of a parabolic RT with a Cauchy model space
prior, Hokstad and Sollie (2006) gave another type of data-driven approach to this prob-
lem. Their approach was to take some percentile of the maximum frequency-averaged
spectral amplitude of the model. This was done at each step of the external iterations in
the IRLS sequence. The averaging involves a smoothing effect, which may aid in stabi-
lizing the inversion scheme. In any case, as with all other approaches for choosing the
stabilization parameter, it only partially solves the problem of hyperparameter estimation.
As much of the focus on sparse Radon Transforms in this thesis is towards hybrid time-
frequency methods, robust frequency domain parameter estimation schemes have not been
implemented.

Preferences for stabilization parameter
Madagascar already has pre-implemented a percentile sorting function using Hoare’s al-
gorithm (Claerbout, 2014) in the function sf quantile. Ioan Vlad’s program sfquantile
demonstrates usage of this functionality. For hybrid time-frequency Radon transforms
both percentile sorting and simple trial and error have been used to estimate good values
for ε. To some extent both methods are quite equivalent, they assume to know something
on the model-space sparseness and they often require some trial and error in assuming ei-
ther a decent percentile value or a decent value for ε directly. However, the percentage clip
method can offer certain diagnostics when echoing the determined thresholds to command
line during IRLS (test) runs. Furthermore, it allows a varying threshold between IRLS
iterations. One of its biggest pitfalls come to show in situations where the input data, and
therefore often the model as well, is quite empty. In such situations proper and improper
percentage clip values may be distinguished based on fractions of percentages. Estimating
ε directly through trial and error can therefore be an easier approach in particular situa-
tions.

4.10.2 The regularization parameter λ

The penalty-parameter λ is perhaps even more difficult to estimate, as it is the parameter
that controls the relationship between data-fitting and model regularization. It can be es-
timated via e.g. the L-curve criterion (Hansen, 2005), but that requires many solutions of
the inverse problem for a given range of λ and is therefore impractical and too expensive
in terms of computations.

Hansen (2005) recognized that the number iterations of the conjugate gradient algorithm
can be exploited to generate a regularizing effect. In order to enable such regularization
the inverse problem must be formulated in standard form. Given the unconstrained `2− `2
minimization problem:

x = arg min
x
{||b−Ax||22 + λ||Wxx||22} (4.55)
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This is transported to standard form as per section 4.7 by applying right-hand precondi-
tioning of A by the matrix W−1

x .

x̃ = arg min
x̃
{||b− Ãx̃||22 + λ||x̃||22} (4.56)

Again, the normal equations that result from equation (4.56) read:

[ÃT Ã + λI]x̃ = ÃTb (4.57)

For the normal equations of a standard problem, the effect of the regularization parameter λ
can be approximated by setting λ = 0 and rather use an appropriate termination condition
for the Conjugate Gradient iterations (Hansen, 2005). The results presented by Hansen
(2005) for geophysical inverse problems indicate that a termination condition based upon
reaching the minimum of the Generalized Cross Validation (GCV) can come close to the
effect of L-curve estimation of the most optimal value for λ. One of the key strengths
of the GCV function is that it needs no estimate of noise variance. It is based upon the
consideration that proper regularization parameter values should not lead to a solution that
is sensitive to the elimination of one data point (Haber and Oldenburg, 2000). Furthermore,
the observation that is left out should be predicted fairly well. Let x̃n(λ) be the minimizer
of:

ϕn = ||r||22 − r2
n + λ||x̃||22 (4.58)

ϕn is a modified objective function where the n − th element is missing. For each regu-
larization parameter λ, the function ϕn can be minimized to yield a solution x̃n(λ). The
standard Cross-Validation function is defined to be the sum of square differences between
predicted data with and without the n-th element (Haber and Oldenburg, 2000):

CV (λ) :=
N∑
n=1

(rn(λ))2 (4.59)

The Cross-Validation, or rather its minimizer, is not very practical to compute. For the
k − th Conjugate Gradient solution x̃k, the matrix C̃k is termed the influence matrix and
describes how well x̃k predictes the right-hand-side vector b:

Ãx̃k = C̃kb (4.60)

For this particular choice of the influence matrix, the GCV function is defined as (Favati
et al., 2014) (Hansen, 2005):

GCV (k) =
||rk||22

[Trace(I− C̃k)]2
(4.61)

In this formulation, the GCV function is linearly proportional to an estimate of the mean
predictive error. Its minimizer can be used as an approximation of the optimal number of
iterations, kopt. From a probabilistic point of view, the denominator contains the degrees
of freedom of the Generalized Cross Validation function.
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The diagonal of C̃k contains the Conjugate Gradient filter factors (Favati et al., 2014).
The filter factors are however impractical to calculate for large matrices Ã, as it requires
the knowledge of the singular values of ÃT Ã projected onto the k-th step Krylov sub-
space Kk(ÃT Ã, ÃTb). Approximate expressions to the trace of the influence matrix are
therefore often sought.

Trad et al. (2003) uses a simplified denominator for the GCV function, which is termed
the KA approach by Favati et al. (2014). It reads:

GCVKA(k) ≈

Nd∑
j=1

[r(k)
j ]2

(Nd − k)2
(4.62)

For 2D problems Favati et al. (2014) found that the KA approach to computing the trace
of the influence matrix lead to a GCV function which in most cases had no minimum. In
the short note below follows a discussion on the GCV function and the choice of CGLS
algorithm, as well as some findings related to the implementation presented in this thesis.

Other stopping conditions for regularizing CG iterations also appear in the literature.
Ibrahim and Sacchi (2013) used primarily a stopping criterion based on misfit change be-
tween Conjugate Gradient iterations, while Liu and Sacchi (2004) used a condition based
on the value of the residual norm. The latter examples go on to show that any stopping
condition is not entirely exact and that there may be room and need for empirical testing.

As a heuristic, one can also simply use a predetermined number of iterations as stop-
ping criterion and simply adjust it as needed. The amount of regularization imposed is
then directly transported from λ to Niter, which at first might seem hardly an improve-
ment. However, Niter is a natural number and imposing regularization this way will also
remove any dependence on choice of stopping conditions that must be applied for solving
a system of linear normal equations. Furthermore, by first testing small values of Niter
one can determine a suitable value within small amounts of (computational) time.

Other approaches to resolving hyperparameter dependence
Other approaches to solving the dependence on the regularization parameter λ have also
appeared in the literature in recent years. As an example, Gholami and Aghamiry (2017)
propose the Iteratively re-weighted and refined least squares (IRRLS) algorithm. In this
formulation, λ is allowed to vary between external iterations. Its value is estimated by
using the secant method for root finding, in order to concentrate around a solution that
satisfies either a data or model space constraint, i.e. a target misfit or model norm size.
Implementation and testing of such automatic parameter selection algorithms is beyond
the scope of this thesis, but perhaps future works should address them.

A note on the GCV function and the CGLS algorithm chosen
Trad et al. (2003) used the standard formulation, set λ = 0 and let the termination con-
dition based upon the KA-approximate GCV function play the role of the regularization.
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However, there is discrepancy/drawback with this approach. Only variants of CGLS that
do not explicitly form matrix-vector products ÃT Ãv have data-space residuals, r, avail-
able. The most known example of this is what is referred to by Björck et al. (1998) as
CGLS1. The variants that do explicitly form ÃT Ãv instead, do not have data-space resid-
uals available, but rather the residuals of the normal equations: s = ÃTb− [ÃT Ã+λI]x̃.
This variant is referred to by Björck et al. (1998) as CGLS2. Though the latter suffers more
from finite precision errors, in the context of linear Radon transforms we would like to be
able to exploit the symmetry of the matrix L̃†L̃ to perform matrix-vector multiplications
using circular convolutions. Minimizing the amount of operations needed is especially
relevant for hybrid time-frequency domain implementations.

In theory, only the squared 2-norm of the residual, ||r(k)||22, is needed for calculating the
KA approximation to the GCV. The conjugate gradient data residuals can be written as:

r(k+1) = r(k) − α(k+1)Ap(k+1) = r(0) −
k+1∑
j=1

α(j)Ap(j) (4.63)

The squared 2-norm of the residuals at each step therefore becomes:

||r(k)||22 = (r(k))T r(k) =
[
r(0) −

k∑
i=1

α(i)Ap(i)
]T [

r(0) −
k∑
j=1

α(j)Ap(j)
]

(4.64)

Due to the ATA orthogonality of the p(k) vectors: p(i)ATAp(j) = 0 , i 6= j (Shewchuk
et al., 1994), this simplifies to:

||r(k)||22 = ||r(0)||22 − 2
k∑
j=1

α(j)(s(0))Tp(j) +
k∑
j=1

(α(j))2(p(j))TATAp(j) (4.65)

Where we have also used the fact that rTAp =
(
AT r

)T
p = sTp.

Therefore, in theory the KA approach could be used within the CGLS2 framework using
only circular convolutions to perform matrix-vector multiplications. The proposed ap-
proach has been implemented and tested. Tests demonstrated that it does not work..
In these tests, using the `2 − `1 hybrid time-frequency transform, the approximate GCV
function did not show any minimum. There are two underlying reasons for this. Interest-
ingly, they both point at the same issue, and are listed below.

• I) The ATA orthogonality of the p(j) vectors holds only in infinite precision.
Therefore, in finite-precision implementations this type of orthogonality is lost after
a few iterations and the expression for the residual norm is not strictly valid.

• II) Secondly, and perhaps even more important, the KA approximation to the GCV
function has been found by Favati et al. (2014) to be an arguable approximation. Ex-
perimentally they found that for 1D problems this approximation could be defend-
able, even though it was outperformed by more sophisticated ways to approximate
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the trace of the influence matrix. For 2D problems the KA approach was found to
be very unreliable, as in most cases it led to a GCV function which showed no min-
imum. The KA approach hinges on the analytic property of the CG iterations that
the residual of normal equations s(k) are mutually orthogonal. In finite precision
however, the s(k) lose their orthogonality after a few steps and the KA approach
cannot give the correct degrees of freedom for the GCV function.

Evidently, finite precision limits the practical validity of not only equation (4.65) but also
of the KA approximation, equation (4.62). Based upon my experimental results and the
theoretical analysis and results by Favati et al. (2014), using the KA-approximate GCV
with reccured ||r(k)||22 can not be recommended. Instead, if one wishes to use the GCV
function for stopping criterion for regularizing CG iterations, one should use a more so-
phisticated GCV approximation. A good discussion on this is found in Favati et al. (2014).
In particular, the Incomplete Derivative (ID) approach, equivalent to a Monte-Carlo based
trace estimation method, appears as an attractive algorithm.

Preferences for regularization parameter
Given that explicitly calculating optimal values for λ via e.g. the L-curve criterion is
impractical for large data and model vectors, this approach was never realistically consid-
ered. Therefore, the main priority has been to find a good way to perform regularizing CG
iterations. Quite some time was spent on deriving expressions from CGLS2 in order to
use the KA-approach to calculate the GCV function. It was therefore disappointing that
the calculated GCV function showed no minimum, however the discussion and research
on this topic is quite interesting. Transformation of the inverse problem to standard-form
showed somewhat improved convergence properties for nonzero values of the regulariza-
tion parameter. In the setting of regularization by iteration it was discovered that simply
setting a pre-determined number of iterations gave an intuitive way to perform regular-
ization. With the current experiences in mind, the author would have liked to explore the
usage of a more robust approach to calculating the GCV function. In that case, however,
it would be necessary to dismiss matrix-vector calculations via circular convolutions, and
therefore the whole modelling code would have to be rebuilt. In a future work it would be
interesting to do exactly this. For this thesis the current approach will have to suffice.

4.11 Implementational notes: Fast Matrix-Vector Multi-
plication

This small section intends to shortly describe how to perform matrix-vector multiplica-
tions with the matrix L†L with an O(N log(N)) computational complexity instead of the
O(N2) complexity valid for general matrices. This is possible by exploiting the Hermitian
Toeplitz symmetry of the matrix and the intimate relations between Circulant and Toeplitz
matrices.
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4.11.1 Toeplitz and Circulant Matrices
DEFINITION (Complex Toeplitz matrix) Suppose T ∈ CN×N . The matrix is Toeplitz
iff. there exist scalars t−N+1, ...., t0, ..., tN−1 such that Ti,j = tj−i ∀(i, j) and the
Hermitian structure t−j = t∗j holds. Hence, with N = 4:

T =


t0 t1 t2 t3

t∗1 t0 t1 t2

t∗2 t∗1 t0 t1

t∗3 t∗2 t∗1 t0

 (4.66)

Toeplitz matrices are completely determined from 2N −1 values, eliminating the need for
explicit matrix storage.

DEFINITION (Circulant Matrix) Let C ∈ CN×N ∨ C ∈ RN×N be a matrix with the
form

C =


c0 cN−1 cN−2 · · · c1

c1 c0 cN−1 · · · c1
...

...
...

. . .
...

cN−1 cN−2 cN−3 · · · c0

 (4.67)

It is known as a circulant matrix. As with a Toeplitz matrix, a Circulant matrix is com-
pletely determined from its first column. In fact, Circulant matrices are considered special
classes of Toeplitz matrices (Golub and Van Loan, 2012)

Fourier transform based Circulant matrix vector multiplication.
Any Circulant matrix can be written on the eigenvalue decomposition given by (Golub and
Van Loan, 2012):

C = F†ΛF (4.68)
Λc := diag(Fc) (4.69)

F is the unitary discrete Fourier basis for a vector of length N and c is the first column
of the circulant matrix C. Hence, a matrix-vector product of the form b = Cz can be
computed as:

z̃ = Fz

c̃ = Fc

b̃ = c̃� z̃

b = F† b̃ (4.70)

The operation � denotes element-wise multiplication. Hence, matrix-vector multipli-
cation involving circulant matrices can be performed with the asymptotic cost function
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O(N logN) via Fast Fourier Transforms.

Fourier transform based Toeplitz matrix vector multiplication.
The Fast Fourier Transform based matrix vector multiplication can be translated to Toeplitz
matrices by recognizing the intimate relationship between the two matrix classes.
In general, if Ti,j = tj−i is an N ×N complex Toeplitz matrix, then T can be considered
a subset of a larger, circulant matrix: T = C(0 : N−1, 0 : N−1). C ∈ C(2N−1)×(2N−1)

is a circulant with:

ci =

 ti, for 0 ≤ i ≤ N − 1

t∗i−N for N ≤ i < 2N − 1

 (4.71)

Then, note that for the matrix vector product b = Tz, if z(N : 2N − 2) = 0, then
b(0 : N − 1) = {C z}(0 : N − 1). This shows that Toeplitz matrix vector products can
also be computed at the computational complexity of Circulant matrices. This is done by
embedding the Toeplitz matrix into a Circulant matrix and zero-padding the vector z. The
output, b, is truncated to original size after inverse transformation. Explicitly for N = 4,
this yields the system:

b =



b0

b1

b2

b3

×
×
×


=



t0 t1 t2 t3 t∗3 t∗2 t∗1

t∗1 t0 t1 t2 t3 t∗3 t∗2

t∗2 t∗1 t0 t1 t2 t3 t2

t∗3 t∗2 t∗1 t0 t1 t2 t3

t3 t∗3 t∗2 t∗1 t0 t1 t2

t2 t3 t∗3 t∗2 t∗1 t0 t1

t1 t2 t3 t∗3 t∗2 t∗1 t0





z0

z1

z2

z3

0

0

0



The vertical and horizontal lines in equation (4.11.1) are added purely for demonstration.
They delimit the left-and uppermost part, consisting of the original Toeplitz matrix, from
the parts that are augmented in order to form the resulting circulant matrix.

Fourier transform based Fast Matrix Vector multiplication for linear Radon trans-
forms
The complex hermitian matrix L†L is a Toeplitz matrix, c.f (3.26) in chapter 3. By choos-
ing the CGLS2 algorithm (Björck et al., 1998), all matrix-vector multiplications in the
Conjugate Gradient algorithm are performed with this Toeplitz matrix. Via equation (4.71)
the resulting Circulant matrix is formed and matrix-vector multiplications are performed
via FFTs. For time-frequency domain implementations it is advisable to modify the mod-
elling operation (4.49) such that it includes a unitary transposition matrix and its inverse.
By doing so, the resulting matrix L†L is a block diagonal matrix consisting of Toeplitz-
submatrices (one per frequency). The transposition matrix is never explicitly formed, it is
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handled by the FFT operator.

A short note on numerical precision
For time-frequency domain implementations the author notes that using single-precision
floating point numbers dramatically slowed convergence. Comparing the FFT based matrix-
vector multiplication with a double-precision MATLAB implementation, discrepancies of
up to a few percent were observed. In a Conjugate Gradient setting the stated level of
round-off errors is unacceptable. Such problems were never seen in frequency-domain
implementations, indicating that the time-frequency domain complex Hermitian matrix
has a considerably higher condition number than its frequency-domain counterpart. After
re-implementation, using double precision floating point numbers, the numerical round-off
errors returned to acceptable levels and the CG algorithm converged.

4.12 Examples of implementational results
The author of this thesis has implemented an `2− `1 hybrid time-frequency domain sparse
linear Radon transform. It is written in the C programming language (Kernighan and
Ritchie, 2017), utilizing the Madagascar API (Madagascar Development Team, 2012) for
input and output routines. Fast Fourier Transforms are handled by the FFTW3 library
(Frigo and Johnson, 2005).

This section attempts to showcase some of the potential which sparse linear Radon trans-
forms can unlock. In consideration are two examples of transforms calculated using the
implemented `2 − `1 hybrid time-frequency domain sparse RT. The inputs to the two ex-
amples are shown together in figure 4.2. We will compare the Radon gathers to those
calculated with an `2−`2 frequency domain linear RT, which is referred to as a ”standard”
linear Radon transform.

Example A: Decomposition of planes
Decomposition of planes is an especially relevant measure of the resolution of a linear RT.
Subject to an optimal transformation, a constant amplitude plane defined by t = τ̂ + p̂x
should decompose to the point (τ̂ , p̂). The two planes in the input, shown in the lefthand
panel of figure 4.2, should decompose to two points (τ1, p1) = (0.4 s, 0.0 s/km) and
(τ2, p2) = (0.35 s, 0.1 s/km), respectively. The frequency domain `2 − `2 transform,
calulculated via sfradon, and the Radon gather calculated via the sparse RT are shown in
figure 4.3. As expected, the standard transform suffers from aperture artifacts, while it also
has a few other artifacts present. The sparse Radon transform focuses much better to two
points in Radon space. It should be noted that the transform parameters could possibly be
tweaked even more in order to focus exactly to two points.

Example B: Offset transform of symmetric shot gather
In order to show how the high resolution RT performs on actual seismic data, a transform
of a simple shot gather is demonstrated in this section. The input consists of two primary
reflections and is shown in the righthand panel of figure 4.2. The resulting Radon gathers
are shown in figure 4.4. From left to right, they are calculated via a frequency domain
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`2−`2 transform, using sfradon, and the `2−`1 hybrid time-frequency domain transform,
respectively. As expected, the standard transform naturally shows artifacts related to the
limited aperture, which here manifest in the shape of lines. The sparse Radon transform is
completely free from this type of artifact. A slice through p0 = 0 s/km is shown in figure
4.5. It confirms that indeed the sparse hybrid time-frequency transform promotes sparsity
in time as well as slowness.

56



Figure 4.2 Inputs for example A (left) and example B (right) tests of the sparse, hybrid
time-frequency domain Radon transform.

Figure 4.3 Resolution comparison of decomposition of two planes using a standard `2−`2
linear RT (left) and an `2 − `1 hybrid time-frequency domain linear RT (right)
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Figure 4.4 Resolution comparison of transformation of a simple shot gather using a stan-
dard `2−`2 linear RT (left) and an `2−`1 hybrid time-frequency domain linear RT (right).

Figure 4.5 A po = 0.0 s/km slice through figure 4.4.
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4.13 Limitations and possible improvements
This section will mainly discuss the limitations in the proposed implementation of the
hybrid time-frequency `2 − `1 high-resolution RT. One of its weaknesses may lie in the
properties that the use of an `2 data norm will make the transformation more sensitive
to outliers and erratic (non-Gaussian noise) than more robust data norms, e.g. the `1 or
Huber norm. On this note it is however important to note that the article by Ibrahim and
Sacchi (2013) demonstrated that it is often difficult to enforce robustness and sparseness
simultaneously. In terms of model space regularization, the approximation of the `0 norm
with the `1 norm will in many cases retrieve the same model (Candès et al., 2006). In
cases where this is not applicable, the `0 norm should yield improved results. However, as
a non-convex optimization problem it gives a problem of a much more complex nature.

As a further improvement one can use pure time-domain operators instead of the hybrid-
time frequency formulation. As stated by Trad et al. (2003), time domain operators are
expected to produce the most sparse results. They can also provide flexibility with regards
to the dimensions of the input and output space. The most obvious drawback of using
time domain operators is the increased asymptotic computational cost function. In order
to build (relatively) efficient time domain operators, one needs to build them in a sparse
manner. This involves storing and computing only the parts of input and output space
needed, leading to sparse Matrix storage and multiplications with vectors.

Regardless of which sparsity norms and operators that are chosen, the choice of regu-
larization and stabilization parameter will have great impact on the computed solutions.
The current implementation is somewhat hamstrung by this aspect. For inverse problems
with linear forward model operators, the use of regularizing Conjugate Gradient iterations
as described by Hansen (2005) is an elegant proposition to circumvent the regularization
parameter alltogether. In order for regularization by iteration to give results similar to what
is obtained using highly optimal regularization parameters, a proper termination condition
is required. The Generalized Cross Validation function can yield what is sought (Hansen,
2005). The most simple approximation to the GCV function is the KA-approximation
(Favati et al., 2014). Thorough attempts were made to incorporate the latter in a setting
using the CGLS2 algorithm (Björck et al., 1998) while performing all matrix-vector mul-
tiplications using circular convolutions, i.e. by exploiting the Toeplitz structure of L†L.
This did not lead to success as several of the identities used in the derivations do not hold
in a finite precision setting. In order to make regularizing CG iterations work optimally
for multidimensional inverse problems using the GCV function to determine termination,
two modifications need to be made. The Toeplitz structure of L†L can not be exploited
and the CGLS1 algorithm (Björck et al., 1998) should be used. Secondly, a more robust
approximation to the GCV function needs to be considered. This is properly reviewed in
Favati et al. (2014).
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Chapter 5
Implementational aspects of the
Internal multiple predictor

The inverse scattering series based internal multiple predictors are algorithms that are very
demanding in terms of computations. In order to be able to realize an implementation that
has practical value it is important to take all possible steps to minimize program run-time.
The first section attempts to elaborate on the high computational cost function of the 2D
ISS internal multiple predictor, and relates this to another costly algorithm, namely 3D
SRME. Sections 5.2 through 5.5 show that it is possible to reduce the complexity of the
algorithm substantially, mostly through mathematical analysis and, in some cases, through
a priori knowledge of the angular dip of reflectors in the medium. Section 5.7 discusses
relevant programming choices in order to yield a high performance implementation, given
the algorithm from the preceding sections. Doing so, it introduces some concepts from
computer science along the way. Section 5.9 is the last section of this chapter. It gives
some benchmarks of the code optimizations presented in the section preceding it.

5.1 The computational complexity of the Internal multi-
ple predictor.

For completeness we re-iterate the leading contribution to the first order internal multiple
predictor, b3 in the coupled plane wave domain for an arbitrary 2D earth:

b3(pr, ps, ω) =
1

(2π)2

∫ ∞
−∞

dp1e
jωq1(zs−zr)

∫ ∞
−∞

dp2e
jωq2(zr−zs)

∫ ∞
−∞

dτ1e
jωτ1b1(pr, p1, τ1)

×
∫ τ1−ε

−∞
dτ2e

−jωτ2b1(p2, p1, τ2)×
∫ ∞
τ2+ε

dτ3e
jωτ3b1(p2, ps, τ3) (5.1)

As it reads, the asymptotic cost function for all possible pr, ps, ω is:

Ĉ = O(Nω ×Nps
×Npr

×Nps
×Npr

×Nτ ×Nτ ×Nτ ) ∝ N8 (5.2)
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Ĉ does not differentiate between the different types of floating point operations involved1.
Efficient evaluation of the multidimensional integral that computes b3 is of serious impor-
tance due to the high computational cost of the algorithm.

Comparison to 3D SRME

A surface-related multiple model in the full 3D2 sense through the theory of SRME can
read Dragoset et al. (2010):

M(xr, yr, xs, ys, ω) = r0

∑
xk,yk

R(xr, yr, xk, yk, ω)P−(xk, yk, xs, ys, ω) (5.3)

where R(xr, yr, xk, yk, ω) denotes the response of the earth in absence of a free surface,
and P− is the upgoing part of the recorded wavefield. Both are recorded at vertical po-
sition z = 0, coinciding with the location of the free surface for the latter term. For
simplicity assume that source and receiver coordinates and angular frequency dimensions
contain roughly the same amounts of samples N . Then, the associated asymptotic cost
function is: ĈSRME,3D = O(N7). We have ignored the steps necessary to compute the
reflection response R. We can however state that the baseline Inverse Scattering Series
internal multiple predictor in 2D has a computational complexity comparable to that of
surface related multiple prediction in 3D. The latter is known as a highly expensive algo-
rithm in terms of computations.

With this in mind, in order to implement a tool that has any practical value, one must

• a) make good efforts in order to reduce the algorithmic complexity

and

• b) write a code that is high-performance and utilizes, to the best of its ability, the
hardware it will run on.

5.2 Algorithmic optimizations through mathematical anal-
ysis.

Most of the optimizations presented in this section were originally discovered by Kaplan
et al. (2004), who gave a good discussion on this subject. Only a few new optimizations
are present in this discussion.

Lemma 1, presented below, will be demonstrated particularly useful for reducing the com-
putational complexity of computing the innermost three integrals in the internal multiple
predictor.

1That is, there is no distinction between multiplication, addition, division, exponential evaluation etc.
2That is, for a three-dimensional earth. The dataset is five-dimensional.
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Lemma 1
Let f(t) and g(t) be any integrable functions. Then:∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt g(t)
∫ ∞
t+ε

dt′ f(t′) (5.4)

The proof of Lemma 1 is demonstrated in appendix C.

We define the variable R to consist of the innermost three integrals:

R(pr, ps, p1, p2, ω) :=
∫ ∞
−∞

dτ1e
jωτ1b1(pr, p1, τ1)

×
∫ τ1−ε

−∞
dτ2e

−jωτ2b1(p2, p1, τ2)×
∫ ∞
τ2+ε

dτ3e
jωτ3b1(p2, ps, τ3) (5.5)

As such, when re-arranging the sums over the auxilliary source and receiver slownesses,
equation 5.1 can be arranged as:

b3(pr, ps, ω) =
1

(2π)2

∫ ∞
−∞

dp1e
jωq1(zs−zr)

∫ ∞
−∞

dp2e
jωq2(zr−zs)R(pr, ps, p1, p2, ω)

(5.6)

The quantity R is decomposed so that Lemma 1 may be used:

f(τ) := ejωτ b1(pr, p1, τ) (5.7)

g(τ) := e−jωτ b1(p2, p1, τ)×
∫ ∞
τ+ε

dτ3e
jωτ3b1(p2, ps, τ3) (5.8)

By Lemma 1 we can re-express R as:

R(pr, ps, p1, p2, ω) =
∫ ∞
−∞

dτ1g(τ1)
∫ ∞
τ1+ε

dτ2f(τ2)

R(pr, ps, p1, p2, ω) =
∫ ∞
−∞

dτ1e
−jωτ1b1(p2, p1, τ1)

×
∫ ∞
τ1+ε

dτ3e
jωτ3b1(p2, ps, τ3)×

∫ ∞
τ1+ε

dτ2e
jωτ2b1(pr, p1, τ2)

(5.9)

The two innermost integrals are now decoupled. By simply re-naming τ3 to τ2, this can be
seen even better:

R(pr, ps, p1, p2, ω) =
∫ ∞
−∞

dτ1e
−jωτ1b1(p2, p1, τ1)

×

[∫ ∞
τ1+ε

dτ2e
jωτ2b1(p2, ps, τ2)

]
×

[∫ ∞
τ1+ε

dτ2e
jωτ2b1(pr, p1, τ2)

]
(5.10)
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Decoupling of the two integrals makes the new asymptotic cost function O(N7), consti-
tuting a saving of one order of magnitude N .

5.2.1 Recognizing recursion patterns

In the discrete sense, the integrations involved in constructing b3 correspond to summa-
tions. For certain methods of discrete integral evaluation, there is a recursive structure
in the terms involved in the integration over intercept time. Exploitation of the recursive
structure can further reduce the asymptotic complexity. For studying this, we define the
functions3 f , g and h such that

R(p1, p2, pr, ps, ω) :=
∫ ∞
−∞

dτ1f(p1, p2, ω, τ1)

×
∫ ∞
τ1+ε

dτ2h(p2, ps, ω, τ2)×
∫ ∞
τ1+ε

dτ2g(pr, p1, ω, τ2) (5.11)

f(p1, p2, ω, τ1) := e−jωτ1b1(p2, p1, τ1) (5.12)

g(pr, p1, ω, τ2) := ejωτ2b1(pr, p1, τ2) (5.13)

h(p2, ps, ω, τ2) := ejωτ2b1(p2, ps, τ2) (5.14)

From these definitions, the left handed Riemann expansion of R yields:

R(p1, p2, pr, ps, ω) ≈ ∆τ3

(
f0[h0+ε + h1+ε + ...+][g0+ε + ...+ g1+ε + ...+]

+f1[h1+ε + h2+ε + ...+][g1+ε + ...+ g2+ε + ...+] + ...+

)
(5.15)

The Riemann expansion can be re-written as:

R(p1, p2, pr, ps, ω) =
N−1∑
j=0

fjHjGj (5.16)

Note that two of the involved terms, H and G, in equation (5.15) have recursive foruma-
tions:

H0 = h0+ε + h1+ε + ...+
H1 = h1+ε + h2+ε + ...+ = H0 − h0+ε

H2 = H1 − h1+ε

...

3Note that the definitions of g and f here are not related to those of the previous subsection.
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G0 = g0+ε + g1+ε + ...+
G1 = g1+ε + g2+ε + ...+ = G0 − g0+ε

G2 = G1 − g1+ε

... (5.17)

The calculation of each Gi and Hi is O(N) for i = 0, but O(1) for each subsequent term.
The total complexity of the construction of R in equation 5.16 is of order O(N) when
considering the recursive formulations for Gi, Hi.

It is possible to do slightly better in terms of the actual implementation, by reversing the
order of evaluation involved in equation (5.15):

R(p1, p2, pr, ps, ω) ≈ ∆τ3

(
fN−1−ε[hN−1][gN−1]

+fN−2−ε[hN−1 + hN−2][gN−1 + ...+ gN−2] + · · ·+

)
(5.18)

R(p1, p2, pr, ps, ω) =
0∑

j=(N−1)

fjHjGj (5.19)

Where the suitable recursive formulations read:

HN−j = HN−(j−1) + hN−j+ε, for 1 ≤ j ≤ N (5.20)
GN−j = GN−(j−1) + gN−j+ε, for 1 ≤ j ≤ N (5.21)

This formulation avoids the need to re-calculate previously calculated terms. It yields a
truly optimalO(N) formulation for calculating R(p1, p2, pr, ps, ω). By decoupling of the
innermost integrals and recognizing the recursion involved in the numerical integration,
the asymptotic cost function has become Ĉ ∝ O(N6). This constitutes two orders of N
in savings.

5.3 Algorithmic simplifications for the 1.5D predictor

In a 1D medium the representation of b3 in terms of the defined quantity R simplifies to:

b3(pr, ω) = R(pr, ω) (5.22)

The expression for R itself has simplified in terms of its constituent terms:

R1.5D(pr, ω) :=
∫ ∞
−∞

f1D(pr, ω, τ1)dτ1 ×
∫ ∞
τ1+ε

dτ2h
1D(pr, ω, τ2)×

∫ ∞
τ1+ε

dτ2g
1D(pr, ω, τ2)

(5.23)

65



Where the integral kernels are represented by:

f1.5D(pr, ω, τ1) = b1(pr, τ1)e−jωτ1 (5.24)

h1.5D(pr, ω, τ2) = g1.5D(pr, ω, τ2) = b1(pr, τ2)ejωτ2 (5.25)

Due to the equality between the two innermost integration kernels, we can re-write for R:

R1.5D(pr, ω) :=
∫ ∞
−∞

f1.5D(pr, ω, τ1)dτ1 ×

[∫ ∞
τ1+ε

dτ2g
1.5D(pr, ω, τ2)

]2

(5.26)

The recursive formulation for G still holds, yet now G and H are equal. The optimal
asymptotic cost function for the 1.5D predictor is Ĉ1.5D ∝ O(N3).

5.4 Algorithmic optimization: A priori dip angle knowl-
edge

Liu et al. (2000) recognized that for a wavefield of plane waves the possible coupling
between slownesses on source and receiver sides is limited by the maximum dip and the
minimum velocity of the medium. The expression reads:

|ps − pr| ≤
2 sin(α)
vmin

(5.27)

Equation (5.27) mirrors the slowness bandwidth of the input dataset b1, and, by the inter-
pretation of Ma et al. (2009), also the bandwidth of the output dataset b3.

We repeat that the computational complexity of the 2D internal multiple predictor in terms
of slownesses is proportional to (Np)4. Searching only for contributions within the range
defined by equation (5.27) can yield a highly significant speedup in cases of limited dip
of interfaces related to internal multiple generation. In fact, for a laterally invariant earth,
α = 0, the 2D internal multiple predictor deteriorates to the 1.5D predictor, except that the
former computes the prediction the coupled plane wave domain.

In order to demonstrate the possible computational savings involved, we will demonstrate
a simple case where the medium and sampling parameters are given by:
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vmin 1500 m/s

pmin −0.5 s/km

pmax 0.5 s/km

Np 251

α {5◦, 10◦, 20◦}
|ps − pr| {0.1162, 0.2315, 0.456}

Table 5.1: Parameters used for demonstrating the effect of dip restriction upon number of
calculations required.

pmin and pmax define the range of slownesses in which the internal multiple prediction is
calculated. For this range, the number of slownesses Np are determined using an incre-
mental slowness ∆p at the aliasing limit set by a maximum frequency of fmax = 50 Hz
and a horizontal range of the domain xs,max−xs,min = xr,max−xr,min = 5000m. The
example attempts to represent a realistic scenario.

We define the number of calculations as the number of computations of the quantity
R(p1, p2, pr, ps, ω) normalized by the number of frequencies.

Calculations

Dip (α) No dip restriction Dip restricted by equation (5.27) Relative saving

5◦ 3.9691e+09 2.9210e+07 135.89

10◦ 3.9691e+09 1.9765e+08 20.08

20◦ 3.9691e+09 1.1630e+09 3.4130

Table 5.2: Calculations ofR(p1, p2, pr, ps, ω) needed for certain maximum dips, given the
parameters in table 5.1. Calculations are normalized by the number of frequencies.

The results in table 5.2 indicate that it is possible to realize large savings in the presence
of only a slightly dipping subsurface. In the limit of α → 45◦ the relative computational
saving approaches 1, i.e. no saving.

5.5 Algorithmic optimization: Symmetry of the frequency
spectrum

The internal multiple prediction d3(pr, ps, τ) is calculated via an inverse Fourier transform
of its Fourier-domain representation:

d3(pr, ps, τ) = F−1
{
d3(pr, ps, ω)

}
(5.28)

67



In the discrete sense, the inverse Fourier transform of F [ωn], n ∈ 0, . . . , N − 1 yields the
time series f [τk], τk = k∆τ, k ∈ 0, . . . , N − 1. When f [τk] is a real-valued time-series,
F [ωn] is completely determined from the first N/2 + 1 frequencies:

F [ωN−n] = F ∗[ωn] (5.29)

I.e. the amplitude spectrum of the Fourier representation of the time series is symmetric
around the Nyquist frequency.

In the context of internal multiples, we know a-priori that the internal multiple model
must be real-valued, also in the coupled plane wave domain. Therefore, we need only
to calculate approximately half of the frequencies involved in constructing d3(pr, ps, τ).
Information at frequencies above the Nyquist frequency can either be calculated by equa-
tion (5.29) or be implicitly known by utilizing a complex-to-real discrete inverse Fourier
transform.
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5.6 Algorithm for calculating asymptotically optimal 2D
internal multiple predictor

In order to elaborate a bit more to the reader on how the internal multiple predictor is im-
plemented, a pseudo-code listing is found in algorithm 3. It contains the algorithimic sim-
plifications introduced, mostly through the quantity R, defined in equation (5.5). The only
quantity not explicitly introduced is the table E containing the tabulation of the complex
exponential terms, which is introduced in section 5.7.2. For compactness of the algorithm
listing we have assumed zr = zs.

Algorithm 3 2D Internal multiple predictor with algorithmic optimizations
Calculates the internal multiple prediction dIM3 (pr, ps, τ)
Input: d(pr, ps, τ), ε, |pr − ps|, c0
Output: dIM3 (pr, ps, τ)
/* Initialization */
β ← |pr − ps|/* Bandwidth in terms of slownesses. */

for ps = pmin to ps = pmax do
for pr = pmin to pr = pmax do

b1(pr, ps, τ)← −2jqsd(pr, ps, τ) /* Create effective data */
end

end
/* Compute loop */
for ω = 0.0 to ω = ωNyq do

E ← tabulateExponentials(ω, dτ, τ0, Nτ )
for ps = pmin to ps = pmax do

forall contributing pr do
accumulator← 0.0 + 0.0i

forall contributing p1 do
forall contributing p2 do

accumulator += calculate R(b1, ps, pr, p1, p2, E)

end
end
d3(pr, ps, ω)← (−2jqs)−1 × accumulator

end
end

end
/* Inverse Fourier transform, complex to real */

d3(pr, ps, τ)← F−1
{
d3(pr, ps, ω)

}
return dIM3 (pr, ps, τ)
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5.7 High-performance code development

5.7.1 Operational Intensity
We define operational intensity, Io, as the number of floating point operations per byte
transferred from DRAM (Williams et al., 2009).

IO(N) =
C(N)
B(N)

(5.30)

C(N) is the floating point operations complexity function for a given size N , and B(N)
is the number of bytes transferred from dynamic RAM. Operational intensity gives an in-
dicator for whether the performance of a computational kernel (i.e. an algorithm) is most
likely to be limited by the instructions throughput of the hardware, compute bound, or
by the transfer bandwidth between caches and DRAM, memory bound. The two extrema
correspond to high and low computational intensity, respectively. An exact cutoff for what
defines high or low operational intensity is not particularly meaningful. However, in terms
of asymptotics, a kernel with an asymptotic bound greater thanO(1) is often not limited by
memory bandwidth and is therefore compute bound. For example, general Matrix-Matrix
multiplication is a kernel with IO(N) ∝ O(N) and well-designed implementations are
able to reach full hardware performance for large input sizes N .

In the context of the internal multiple predictor we will attempt to state an approximate op-
erational intensity in order to highlight which optimizations are most important in order to
improve program performance. This forms the theory for the optimizations implemented
into the code.

The floating point cost function of the internal multiple predictor after algorithmic op-
timizations is asymptotically C(N) ∝ O(N6). For the amounts of bytes transferred from
DRAM we will only consider compulsory loads and implicitly ignore capacity and conflict
misses on the level of caches. The measure of amounts of bytes transferred will therefore
not be strictly correct, yet for the demonstrational purpose considered it suffices. Empir-
ical insight into the exact number of memory transfers can be given from performance
monitors, which can be called from inside an implemented program. An example of such
a monitor is the Intel Performance Counter Monitor (PCM) (Intel, 2017 (accessed Febru-
ary 2018). As this was not available for installation in the development system the author
used, the simple asymptotic bounds have to suffice. The amount of compulsory loads on
b1 is bounded by B(N) ∝ O(N3). The asymptotic bound on the operational intensity is
therefore:

IO(N) ∝ O(N6)
O(N3)

= O(N3) (5.31)

This demonstrates that the inverse scattering series internal multiple predictor can be con-
sidered a compute-bound algorithm. The majority of code optimizations implemented and
described in the subsequent sections are therefore optimizations that aim to improve the
instruction throughput and/or reducing the number of floating point operations performed.
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5.7.2 Computational strategies: Tabulation
Tabulation is the process of pre-calculating and/or storing previously calculated values in a
table. Certain computational algorithms, when implemented in a straight-forward fashion,
may involve large amounts of redundant computations. In such cases, values that have al-
ready been calculated are re-calculated on a further iteration. By simply storing the values
in question in an array, one can prevent an excessive waste of clock cycles. Pre-calculation
may also be beneficial in cases where instruction switches yield significant amounts of la-
tency, e.g. frequent switching from multiplication to addition. Tabulation may then yield
a performance closer to the throughput bound, instead of the latency bound. The success
of tabulation routines will depend on the size of the resulting table. If it is small enough to
be ’guaranteed’ to be in caches, tabulation most certainly can be considered. If its values
always need to be loaded from DRAM, tabulation may even cause lower program perfor-
mance.

Tabulation of exponentials

Tabulation is especially beneficial if the values considered are generated by an expen-
sive instruction. All instructions that are not directly pipelined, such as trigonometric
expressions, logarithms etc., and depend on series expansion need several clock cycles
to complete. For simple, pipelined instructions such as floating point multiplication and
addition the instruction throughput may be more than one instruction per clock cycle4.
Evaluation of sine and cosine expressions typically need to wait at least 20 cycles per is-
sue, making this an extremely expensive operation5.

Herein lies one of the most important potentials for optimizing implementations of the
ISS internal multiple predictors. The factors e−jωτ1 and ejωτ2 are per-frequency con-
stant. In an ordinary implementation these would be calculated via Euler’s identity ejax =
cos(ax) + j sin(ax). Instead, by implementing the loop over ω as the outermost one, and
at this level tabulating the exponential factors one can gain serious speedups. The tables
are also small, needing only 8Nτ bytes each, and will be kept in cache as they are always
re-used at the innermost computational level.

Furthermore, we recognize that for a regularly sampled τ :

e±jωτk = e±jωτ0
k∏
e±jωdτ (5.32)

Expression (5.32) can be evaluated using only two complex exponential evaluations and
k − 1 complex-complex multiplications. The total amount of complex exponential evalu-
ations can therefore be reduced fromO(N6) toO(N), and the time to calculate the tables
therefore becomes negligible.

4Depending on the number of floating-point unit (FPU) ports on the given hardware.
5It is however not possible give an exact latency for trigonometric functions. Inherently, this is because the

number of clock cycles depend not only on the hardware but also on the implementation, and even the input
value. Indeed, for small values x the best approximation to sin(x) is simply sin(x) ≈ x, involving almost no
clock cycles used.
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Tabulation of the G term
The sequence G0, . . . , GN−1, see e.g. equations (5.17) and (5.13), depend on the slow-
nesses pr and p1. By demanding that the loop over p2 is the innermost, the terms Gi
constitute a constant sequence there. By simply storing the values of G calculated on each
new iteration over p1, one can avoid some redundant computations. This table is also small
and is expected to reside in cache.

5.7.3 Vectorization: The principle of SIMD

If utilized, the vectorization features implemented in modern central processing units
(CPUs) can bring highly significant improvements to programs performance. Perhaps
the best way to introduce the concept is to quote Intel, the currently dominant producer of
CPUs.

Computing architecture can be described at the highest level using Flynn’s
architecture classification scheme as single instruction, single data (SISD);
multiple instruction, single data (MISD); single instruction, multiple data
(SIMD); or multiple instruction, multiple data (MIMD) systems. General-
purpose computing most often employs simple SISD processing units, even if
they are multi-core, super-scalar, or hyper-threaded; but the addition of vec-
tor instructions that can operate on multiple data words in parallel with a sin-
gle instruction (SIMD) can provide powerful acceleration for data-intensive
algorithms (Intel (2016 (accessed February 2018))

In the SIMD model there are simultaneous (parallel) computations that arise due to only
a single instruction. This is often employed by making use of so-called vector registers
which, in distinction from scalar registers, can hold multiple entries of the given datatype.
The operations are then employed in parallel, independently for each entry in the vector
register. The parallelism employed is at one of the finest grain scales possible, e.g. it
is much more fine-grained than multi-core or multi-thread parallelism. The difference
between a SIMD instruction for addition of numbers in arrays A and B is graphically
shown in figure 5.1.
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Figure 5.1 Comparison between a SIMD and a scalar instruction for vector addition. The
width of the SIMD register can hold 8 values of the given datatype. Retrieved from Intel
(2011 (accessed February 2018).

In this particular situation, in the SIMD case eight additions can be independently per-
formed per instruction, while in the scalar case only one addition can be performed per
instruction. In both cases the number of instructions performed is directly determined
by the width of the registers. On modern hardware, scalar registers are physically and
logically only subparts of vector registers6. Supporting legacy instructions this way en-
sures that both the vector and scalar instruction have the same latency and throughput.
In essence, this means that for an n-value wide SIMD register, the maximum theoretical
speedup the SIMD instruction can give relative to the scalar instruction is n times.

The instruction set used for vectorization is the Advanced Vector Extensions with 256
bit registers (AVX-256), originally introduced in 2011 (Lomont, 2011 (accessed February
2018). The available vector datatypes are shown in figure 5.2.

Figure 5.2 Datatypes of the AVX-256 extension to the x86-64 ISA. Retrieved from Intel
(2011 (accessed February 2018)

6On x86 this started with the SIMD extension SSE2, introduced with the Pentium 4 in year 2000. Floating
point instructions in x86-64 are based on the vector extensions SSE or AVX. All processors capable of executing
x86-64 code must support at least SSE2 (Bryant et al., 2003).
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The single-precision float constitues the standard datatype in virtually all seismic data
processing. The AVX-256 type __m256 can hold eight single-precision floating point
values, corresponding to eight real values or four complex values. In figure 5.2, this cor-
responds to the second lowermost datatype.

The following notes outline some of the subroutines in the ISS internal multiple predictors
most relevant for vectorization.

Vectorized complex-complex math multiplication.

Multiplication of two complex numbers z = a+ jb and w = c+ jd is defined mathemat-
ically as:

zw = (ac− bd) + j(bc+ ad) (5.33)

The operation therefore requires four multiplications and two additions. Moreover, several
terms interact across the boundaries of register entries. In order to enable that interaction,
shuffle instructions are needed in order to create the layout required. A minimum-work
implementation uses three shuffles, one multiplication and one fused multiplication and
addition (FMA) operation.

INSTRUCTION AMOUNT LATENCY RECIPROCAL THROUGHPUT

mm256 shuffle ps 3 1 1

mm256 mul ps 1 3 0.5

mm256 fmaddsub ps 1 3 0.5

Table 5.3: Instruction table for complex-complex multiplication

By table 5.3 the lower bound on cycles needed for multiplication of four complex numbers
by four complex numbers is given by 9 cycles. If FMA is not supported, one would
have to add three cycles, as the _mm256_fmaddsub_ps operation would be replaced
by one _mm256_mul_ps and one _mm256_addsub_ps. A lower bound for scalar
calculation for a single complex multiplication would be 9.5 → 10 or 10.5 → 11 cycles,
with and without FMA operations, respectively. In terms of four complex numbers this
would respectively yield 40 and 44 cycles.
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OPERATION:COMPLEX-COMPLEX MULTIPLICATION

INSTRUCTION SET RECIPROCAL THROUGHPUT PER 4 COMPLEX

AVX-256 & FMA 9

AVX-256 12

x86-64 & FMA 40

x86-64 44

Table 5.4: Lower bounds for complex-complex multiplication

From table 5.4 there are potentially good gains to be had from implementing vectorized
code for this operation.

Vectorized imaginary-complex math multiplication.

The motivation for imaginary-complex math multiplication stems from the fact that the
input data b1(pr, ps, τ) = (−2jqs)d(pr, ps, τ) is purely imaginary, and can therefore be
stored as a normal float. This can enable a reduced amount of computations as well as
freeing up memory bandwidth.

The multiplication of the imaginary number z = jb and the complex number w = c+ jd
is defined mathematically as:

zw = −bd+ jbc (5.34)

This operation requires two multiplications and a sign-flip. However, some extra care must
be taken when implementing this kernel. An __m256 register can theoretically hold eight
imaginary numbers, yet it can only hold four complex numbers. For performing loads on
z one should only load four values. This is implemented by using SSE-128 loads on z and
AVX-256 loads on w.

INSTRUCTION AMOUNT LATENCY RECIPROCAL THROUGHPUT

mm256 castps128 ps256 1 0* 0*

mm256 permute2f128 ps256 1 3 1

mm256 permutevar ps 1 1 1

mm256 permute ps 1 1 1

mm256 mul ps 1 3 0.5

mm256 xor ps 1 1 1

mm256 blend ps 1 1 1/3

*Does not generate an instruction. Only for compilation.

Table 5.5: Instruction table for imagininary-complex multiplication
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The lower bound for four imaginary-complex multiplications is 10 cycles. The lower
bound of a scalar version for one imaginary-complex multiplication would be 4.5 → 5
cycles, as it requires only two multiplications and a bitwise XOR operation7. However,
the scalar operation would need an intrinsic of sort, as bitwise XOR is not defined for
floating point numbers in x86-64. Therefore, the lower bound for the scalar version might
be even higher.

OPERATION:IMAGINARY-COMPLEX MULTIPLICATION

INSTRUCTION SET RECIPROCAL THROUGHPUT PER 4 COMPLEX

AVX-256 10

x86-64 20

Table 5.6: Lower bounds for imaginary-complex multiplication

We note however, that in the case that the FMA instruction set is available, it could be
slightly cheaper to perform this operation via complex-complex multiplication with the
real part of one of the inputs set to zero.

5.7.4 Parallelization

Parallelization is unavoidable for the more demanding algorithms and/or bigger datasets.
This is especially true for the 2D ISS internal multiple predictor, while the 1.5D predictor
can avoid the need for parallelization, depending on the size of the input.

Modern CPUs typically feature several independent workers, or cores, typically in the
range 2−32 per socket. Several processors are often linked together across nodes in order
to form computing clusters. One can utilize the sheer number of processors and program
them to perform independent calculations. In this way, more work is performed in the
same amount of time.

I will briefly discuss the parallelization implemented in the 2D predictor. It is implemented
using the distributed memory library standard named Message Passing Interface (MPI)
(Walker and Dongarra, 1996). Domain decomposition is used by splitting the dimensions
of the output along the slowest varying dimension, in this case the source slowness ps.
The input, b1, is distributed to all processes through collective communicators. Idem, the
output is collected from all processes through a (variable) gather collective communica-
tor. This scheme minimizes the amount of communication required and works well in 2D.
This particular parallelization model scales up to a few hundred processes. A more sophis-
ticated approach would make use of shared-memory parallelization within each node using
e.g. OpenMP or POSIX Threads. For research grade code the implemented parallelization
scheme is more than sufficient.

7This would be the cheapest way to perform a sign change of floating point number.
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5.8 Implemented internal multiple predictors
The internal multiple predictors implemented in this thesis are:

• The 1.5D internal multiple predictor in the plane wave domain, τ − p, equation
(2.56).

• The 2D internal multiple predictor in the coupled plane wave domain, τ − pr − ps,
equation (2.54).

The algorithmic optimizations present in the code are:

• Optimal asymptotic cost functions, O(N3) and O(N6) for the 1.5D and 2D predic-
tors, respectively.

• Only contributing slownesses are calculated for a given dip range.

• Utilization of symmetry of frequency spectrum.

The code-specific optimizations include:

• General, scalar optimizations such as function inlining, scalar replacement etc.

• Tabulation of the innermost exponential terms in the computational kernel.

• AVX-256 vectorization of imaginary-complex and complex-complex math routines.

• MPI-based parallelization based on domain decomposition and collective commu-
nicators.

The author of this thesis has written all of the predictor codes in the C++ programming
language. The Madagascar API (Madagascar Development Team, 2012) has been utilized
for input and output routines whereas Fast Fourier Transforms are handled by the FFTW3
library (Frigo and Johnson, 2005).

5.9 Benchmarks
For benchmarking the effect of some of the proposed implementational strategies we will
make use of the 1.5D internal multiple predictor. It can contain virtually all the optimiza-
tions possible to use for the full 2D predictor, and still provide runtimes acceptable for
benchmarking even the slowest implementations. Especially for the baseline code, imple-
menting this into the 2D code would lead to unnacceptable runtimes. Furthermore, for the
1.5D predictor no parallellization is needed, allowing the study of purely serial optimiza-
tions. The results from this section will demonstrate that serial optimizations might be just
as important for program performance as parallelization yet with the advantage that no
extra resources (hardware) is required. The parallelization considered for the 2D predictor
scales linearly and is not particularly interesting for benchmarking.
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For the purpose of benchmarking we will consider three implementations. All of which
include all of the possible algorithmic simplifications described in sections 5.2 through
5.5. Except for the differences denoted in the listing below, all implementations have the
same general optimizations present, e.g. function inlining, scalar replacement etc8.

• Baseline: An implementation in which all exponentials are explicitly evaluated. No
SIMD is present

• Tabulation: An implementation in which all exponentials are tabulated according
to the procedure in section 5.7.2. No SIMD is present.

• Tabulation+AVX-256: An implementation in which all exponentials are tabulated
according to the procedure in section 5.7.2. AVX-256 based SIMD routines for all
of the innermost computational routines are present.

INFO ON BENCHMARKING SYSTEM

CPU Intel(R) Xeon(R) CPU E5-2670

Operating System RedHatEnterpriseServer 6.6

Compiler G++ version 4.4.7

Compiler Flags -O3 -fno-tree-vectorize -std=c++0x (-mavx)a

Timing infrastructure std::chrono

Timing sensitivity 1E+06 TICKS/SECOND

General math library <math.h>

Complex math libraryb std::complex

aOnly used for vectorized code
bOnly used in scalar implementations.

Table 5.7: Benchmarking system and software.

Basic information on the input dataset is as follows:

Benchmarking dataset

Radon gathers 3

Np 1089

Nt 949

ε 0.25s

Table 5.8: Properties of dataset used for benchmarking

Using the dataset properties in table 5.8 and the benchmarking system properties in table
5.7, the benchmarking of the performance of the different implementations is performed.

8An excellent reference on scalar optimizations can be found in e.g. Bryant et al. (2003).
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The measurements are all cold-cache but do not show any significant variability across
runs. The results were averaged over two independent runs and are shown in table 5.9.
The graphical bar plots of the information contained in the table are shown in figures 5.3
and 5.4.

Implementing tabulation of complex exponential functions lead to a speedup of a factor
18.4. This demonstrates that indeed trigonometric functions are expensive to compute.
In this particular case, highly significant speedups are available from performing tabula-
tion.

The gain that the implementation of AVX-256 routines for complex and imaginary mathe-
matics brought over the scalar, tabulated implementation reads a factor of 16.9. Writing
such vectorized code is naturally more challenging from the view of the implementer, how-
ever it often pays off; the speedup presented is very good. The speedup in fact exceeds
a-priori expectations of maximum speedup, namely a factor 8x. SIMD code requires the
developer to explicitly handle memory references including loads and stores to/from reg-
isters. Well written vectorized code will therefore typically enable the compiler to perform
memory optimizations beyond what it is allowed to perform in the scalar case. It is also
probable that the complex math functions in std::complex are not optimal in terms of
(scalar) performance.

The total speedup from worst to best is a factor of more than 300 times the program perfor-
mance of the former. From these benchmarks we conclude that attempts to understand and
exploit the underlying hardware limitations and capabilities are very important in order to
realize implementations of demanding geophysical algorithms, with practical value.

Benchmark results
IMPLEMENTATION RUNTIME [s] SPEEDUP VS BASELINE

BASELINE 1277.86 1.0

TABULATE 69.5104 18.4

TABULATE+AVX-256 4.1116 310.8

Table 5.9: Benchmark results
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Figure 5.3 Benchmark of three implementations of the 1.5D predictor
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Figure 5.4 Speedup of two implementations of the 1.5D predictor with respect to the
baseline implementation.
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Chapter 6
Predictions of internal multiples

6.1 2D predictor using 1.5D data

The usage of one dimensional earth models, can often be very helpful. Although they are
simple, they can be used to test code, algorithms and routines as analytical solutions are
often available or intuitively deduced. For this very purpose, the aim of this subsection is
to test the 2D internal multiple predictor in the coupled plane wave domain using a 1.5D
dataset. The one dimensional earth model is shown in figure 6.1 and contains only two
interfaces.

The forward modelled seismic data are calculated with Jan Thorbecke’s & Deyan Draganov’s
open source Finite Difference code (Thorbecke and Draganov, 2011). Perfectly Matching
Layers (Berenger, 1996) were used for all four boundaries in order to suppress simulation
artifacts as well as to not model free surface multiples. Only one shot gather is modelled
and a simple utility was built for creating the remaining shots by exploiting the lateral in-
variance of the earth model. A cube of the resulting shots with the geometry of shots and
receivers occupying all horizontal positions is shown in figure 6.2.

The input data were transformed to the coupled plane wave domain via algorithm 1, us-
ing the standard-resolution transform in sfradon. Cosine tapering of the edges of source
and receiver coordinates have been performed to suppress artifacts. The coupled plane
wave domain representation is shown in figure 6.3 for three source slownesses ps ∈
{−0.2, 0.0, 0.2} s/km, from left to right respectively. For reference, this is the same
dataset used for discussing artifacts in (pr, ps, τ) in section 3.5 where it is represented in
figure 3.2.

The internal multiple prediction is calculated using an ε value of ε = 0.25s and a con-
tributing slowness bandwidth corresponding to |pr − ps| = 0.05 s/km. The result-
ing internal multiple predictions are compared to the input data for source slownesses
ps ∈ {−0.16, 0, 0.16} s/km in figures 6.4 through 6.6, respectively. The coupled plane
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wave domain representation of the internal multiples seem to be well recovered. After
inverse transforming to the physical domain that description holds very much still. The in-
ternal multiple predictions for shot gathers at source positions xs ∈ {500, 2500, 4000}m
are shown in figures 6.7 through 6.9. One can observe that the internal multiple predictions
are indeed kinematically correct. The temporal support of the predicted internal multiples
is larger than that what found in the input. This is a known effect of not performing source-
signature deconvolution before prediction (Weglein et al., 2003).

From the discussion on the effect of transform artifacts on internal multiple predictions
from section 3.5 these results, using a dataset with a considerable amount of artifacts,
renders the question:

Why are the predicted internal multiples relatively free from artifacts when computed
from an input dataset with artifacts?

This question fortunately has a straight-forward answer. Because the contributing slow-
ness bandwidth |pr − ps| is very much restricted, the data are only barely able to combine
with their artifacts. Had the prediction been run with a higher value of |pr − ps|, then
artifacts would contribute more to the prediction. We will see examples of this in section
6.2 when proper 2D data are used.
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Figure 6.1 A simple horizontally layered medium consisting of two interfaces.
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Figure 6.2 Shot gathers modelled via the Finite Difference method
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Figure 6.3 1.5D Input data shown for three distinct source slownesses.

Figure 6.4 Comparison of internal multiple prediction in coupled plane wave domain:
ps = −0.2 s/km
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Figure 6.5 Comparison of internal multiple prediction in coupled plane wave domain:
ps = 0.0 s/km

Figure 6.6 Comparison of internal multiple prediction in coupled plane wave domain:
ps = 0.2 s/km
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Figure 6.7 Comparison of internal multiple prediction in time-space domain: xs = 500 m

Figure 6.8 Comparison of internal multiple prediction in time-space domain: xs = 2250
m
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Figure 6.9 Comparison of internal multiple prediction in time-space domain: xs = 4000
m
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6.2 2D predictor using 2D data
For properly testing the 2D predictor it is required to use an earth model containing two di-
mensional features. We will consider the velocity and density models based upon a model
of the Johan Sverdrup field. The full models are shown in figure 6.10. From the discussion
in chapter 5 it would be useful, for research purposes, to consider an earth model with a
restricted dip range, so that internal multiple predictions can be calculated in a relatively
short time. For this, we consider the velocity and density models displayed in figure 6.11,
a subpart of the full Johan Sverdrup model. The maximum dips in the overburden are
somewhat less than 10◦. The steeply dipping underburden is not considered.

6.2.1 Using standard resolution Radon Transforms.
The author wishes to thank professor Børge Arntsen for providing the Finite Difference
modelling code written by Espen B. Raknes and Wiktor Weibull used to create the syn-
thetic data. A cube of the modelled shots are shown in figure 6.12. As a general char-
acteristic, the Finite Difference method suffers somewhat from the discretization of the
interfaces in the velocity model. This is termed the ’staircasing’ problem, yielding numer-
ical diffractions in the modelled data. Figure 6.13 shows an example shot gathers plotted
with a colorscale in order to emphasize the numerical diffractions present.

For the first experiment, the modelled data were transformed to the coupled plane wave
domain via algorithm 1, using the standard-resolution transform in sfradon. Cosine ta-
pering of the edges of source and receiver coordinates have been performed to suppress
artifacts. Figure 6.14 shows the coupled plane wave representation for the slownesses
ps ∈ {−0.2, 0.0, 0.2} s/km, respectively. The two convex-up curves are mappings of
the reflection events related to the two most curved interfaces in the model. As seen in
the previous section for the 1.5D case, the waterbottom reflection here suffers from the
butterfly-type artifact. Furthermore, the straight and curved lines not related to aperture
artifacts are mappings of numerical diffractions to the coupled plane wave domain. The
numerical diffractions are smeared out over a large spatial extent.

In order to show the predicted internal multiples in a concise manner, they are compared
to the input in the shot domain directly. The comparisons are extracted at three distinct
shot locations xs ∈ {500, 2500, 4500} m. The corresponding figures are shown figures
number 6.15 through 6.17. The input gathers are consistently shown in the lefthand panel,
although do note that either dataset might be reversed in order to ease any interpretation.
Also do note that colorscale produced in the input gathers is heavily clipped in order to
emphasize the internal multiples present.

Although the internal multiple predictions seem quite accurate kinematically, the inter-
nal multiple hyperboloids seem somewhat more ’wavy’ than what is seen in the input
data. Furthermore, som of the smaller scale features are not exactly reproduced due to the
inferior frequency bandwidth of the internal multiple prediction. This effect is largely due
to not performing source-signature deconvolution before prediction. The linear artifacts
seen above the first internal multiple are most likely due to some non-linear interaction of
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artifacts at the far ends of the coupled plane wave domain.

More worryingly, however, is the situation seen in figure 6.17 where the two first pri-
maries are also a part of the prediction. This arises due to combination of the butterfly
artifact of the first primary and the other two primary events themselves. Prediction of
primaries is naturally highly unwanted as this can lead to damaging results after adaptive
subtraction.
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Figure 6.10 Johan Sverdrup synthetic velocity and density models.

Figure 6.11 Velocity and density models in area of figure 6.10 used for internal multiple
prediction study
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Figure 6.12 Cube of shots modelled using the velocity and density models in figure 6.11

Figure 6.13 Example shot gather extracted from figure 6.12 at xs = 2500 m in order to
show numerical diffractions
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Figure 6.14 Coupled plane wave domain representation of 6.12 using sfradon extracted at
slownesses ps ∈ {−0.2, 0.0, 0.2} s/km

Figure 6.15 Comparison of input (left) and predicted internal multiples (right) using a
standard Radon transform. Shot gathers extracted at xs = 500 m.
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Figure 6.16 Comparison of input (left) and predicted internal multiples (right) using a
standard Radon transform. Shot gathers extracted at xs = 2500 m.

Figure 6.17 Comparison of input (left) and predicted internal multiples (right) using a
standard Radon transform. Shot gathers extracted at xs = 4500 m.
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6.2.2 Using high-resolution Radon transforms

In order to test the effect of using high-resolution transforms, the modelled shot gathers
are again transformed to the coupled plane wave domain using algorithm 1. Only the last
Radon transform in the algorithm (step III) was computed usying the sparse `2− `1 hybrid
time-frequency domain transform described in chapter 4. This approach was chosen in
order to prevent over-sparseness in the coupled plane wave domain representation. Figure
6.18 compares the coupled plane wave domain data at ps = 0.0 s/km using the standard
and the sparse transforms. Unsurprisingly, the sparse transformed data show less smear-
ing and butterfly-type aperture artifacts. It should be noted that graphical representation
of data in this sparse domain, especially with sparseness promoting transforms, is particu-
larly difficult with respect to colorbar levels and amplitude clipping.

The most evident challenge in using high-resolution variants of the linear Radon transform
is to achieve a good compromise between artifact prevention and avoiding over-sparseness.
Without routines that automatically and robustly estimate regularizarion parameters, this
can be somewhat challenging. It would have been especially beneficial to have some au-
tomatic regularization because empirically the high-dip components in the coupled plane
wave domain would benefit from more regularization compared to low-dip components.
Because all source slownesses are calculated for each independent receiver slowness in
step III of algorithm 1, automatic regularization routines would have been able to spec-
ify independent levels of regularization to the low and high ends of the receiver slowness
range.

Similarly as in the previous subsection, the internal multiple predictions are compared
directly to the input data in the shot gather domain. Figures 6.19 through 6.21 show
the input compared to the internal multiple prediction at the same shot locations, namely
xs ∈ {500, 2500, 4500} m. The temporal support of the internal multiple predictions ap-
pear to give a good match of that in the input data, a virtue of the sparse Radon transform’s
ability to promote sparseness in time. Even more interesting is perhaps the observation
that even fine-scale features in the internal multiples are accurately modelled. In places,
up to four internal multiples coincide at the same arrival time at near offsets, while diverg-
ing at larger offsets. These types of very detailed features are accurately reproduced in the
internal multiple prediction.

The internal multiple predictions using standard and sparse Radon transforms are also
compared to each other. The comparisons are extracted at the very same shot locations
studied previously, and are graphically depicted in figures 6.22 through 6.24. Kinemati-
cally, the two predictions appear very similar. The sparse transform prediction shows an
improved frequency bandwidth. Therefore, many of the fine-grained features appear to
be more accurately represented. At the shot gather at xs = 4500 m in figure 6.24 one
can also observe that the pseudo-events in the standard prediction are not present in the
sparse prediction. Indeed, observing again the comparison of the input datasets in figure
6.18, it is readily observed that the waterbottom reflection shows no butterfly artifact and
focuses very well. A slice through the shot gather depicted in figure 6.24 at receiver po-
sition xr = 5000 m is shown in figure 6.25. The first 1.25 seconds have been muted in
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order to compare only the events not corresponding to obvious artifacts. The waveform of
the standard prediction does not resemble a time-shifted zero-phase wavelet, rather many
events are closer to a mixed-phase wavelet. It also shows significant energy in locations
where there are no internal multiples. This might be an effect of numerical diffractions
acting as a type of noise. The sparse RT prediction is more similar to a series of spiked
events with a plausible, time-shifted zero-phase wavelet.

6.2.3 Results from adaptive subtraction
It is certainly interesting to study how the predictions, using standard and sparse Radon
transforms on the input, fare in adaptive subtraction procedures. Ultimately, the end goal
of internal multiple predictions to attenuate any internal multiples present in the input
data. The input and adaptive subtraction result when using the prediction based on stan-
dard Radon transforms is shown in figure 6.26. Idem, the same figure when using the
prediction based on sparse Radon transforms in figure 6.27. In general, both predictions
yielded adaptive subtraction results with significant internal multiple attenuation. Recall
that the internal multiples related to the steeply dipping underburden, i.e. the last primary,
are in general not modelled, due to restriction of the dip-range in the internal multiple
modelling according to the dips of the overburden. Their presence after adaptive subtrac-
tion is correct behaviour.

The adaptive subtraction filter used is estimated based on an `2 data norm. By using the `2
norm one implicitly assumes that the filtered data (consisting of the primaries) is orthog-
onal to the internal multiples, and has minimum energy (Guitton and Verschuur, 2004).
This assumption may not be strictly true. Application of a subtraction filter optimal in the
`2 sense can therefore cause internal multiple energy to leak into primaries and vice versa.
These kind of artifacts are partly visible both in figures 6.26 and 6.27. When comparing
the two adaptive subtraction results, in figure 6.28, one can observe that the result using
the sparse transform prediction as internal multiple model is significantly more successful
at internal multiple removal, with less artifacts.

The author wishes to thank Shruti Gupta for running the adaptive subtraction procedure.
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Figure 6.18 Comparisons of input in the coupled plane wave domain using a standard
Radon transform (left) and a sparse, hybrid time-frequency variant (right). Extracted at
ps = 0.0 s/km

Figure 6.19 Comparison of input (left) and predicted internal multiples (right) using a
sparse, hybrid time-frequency Radon transform. Shot gathers extracted at xs = 500 m.

96



Figure 6.20 Comparison of input (left) and predicted internal multiples (right) using a
sparse, hybrid time-frequency Radon transform. Shot gathers extracted at xs = 2500 m.

Figure 6.21 Comparison of input (left) and predicted internal multiples (right) using a
sparse, hybrid time-frequency Radon transform. Shot gathers extracted at xs = 4500 m.
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Figure 6.22 Comparison of internal multiple predictions using standard Radon transform
(left) and sparse, hybrid time-frequency Radon transform (right). Shot gathers extracted at
xs = 500 m.

Figure 6.23 Comparison of internal multiple predictions using standard Radon transform
(left) and sparse, hybrid time-frequency Radon transform (right). Shot gathers extracted at
xs = 2500 m.
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Figure 6.24 Comparison of internal multiple predictions using standard Radon transform
(left) and sparse, hybrid time-frequency Radon transform (right). Shot gathers extracted at
xs = 4500 m.

Figure 6.25 Trace comparison of internal multiple predictions using standard Radon
transform (left) and sparse, hybrid time-frequency Radon transform (right). Extracted
at xr = 5000 m, xs = 4500 m.
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Figure 6.26 Input (left) and adaptive subtraction result (right), when using internal mul-
tiple model predicted from input data transformed with a standard linear RT. Extracted at
xs = 1500 m.

Figure 6.27 Input (left) and adaptive subtraction result (right), when using internal mul-
tiple model predicted from input data transformed with a sparse linear RT. Extracted at
xs = 1500 m.
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Figure 6.28 Comparison of adaptive subtraction results, using prediction with a standard
linear RT (left) and prediction with a sparse linear RT (right). Extracted at xs = 1500 m.
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6.3 Test on demigrated data
In order to utilize multidimensional internal multiple prediction using migrated data, Aaker
(2017) presented a workflow utilizing a demigration-migration scheme. As a proof of con-
cept of this idea, it is tested on synthetic, demigrated data.

The data were originally (i.e. pre-migration) modelled via a Finite Difference method uti-
lizing Johan Sverdrup-based velocity and density models similar to those shown in figure
6.10. The migration procedure used was Kirchhoff based. Idem, the demigration proce-
dure was similar to kinematic Kirchhoff modelling, yet with a spherical divergence factor
applied. The implementation of this particular demigration procedure could not provide
the acquisition geometry required for prediction in 2D. This trial-run was therefore limited
to usage of the 1.5D predictor.

An example of a demigrated gather is shown in figure 6.29. Among the difficulties in
using this for internal multiple prediction is that the mute applied is harsh, and in partic-
ular the waterbottom reflection is barely preserved. There are also some vertical stripes
present, although their effect on the prediction did not appear to be critical. In general,
some tweaking of amplitudes were required in order to reach satisfying internal multiple
model, especially on the waterbottom reflection.

The prediction result using a standard linear Radon transform is shown in figure 6.30,
where it is compared to the input gather. Similarly, the prediction result using the imple-
mented sparse linear RT is shown in figure 6.31. In general, the predicted internal multiple
models appears to match those present in the input in a quite decent manner. Note that
discrepancies are in general expected as a 1.5D predictor has been utilized on a dataset
originating from a 2D earth model. Furthermore, high dip components (often correspond-
ing to larger offsets) are largely not available for modelling due to the mute present in the
input gather. Therefore, these components of the internal multiples will not be retrieved
entirely correctly. However, the resulting predictions are still very fair.

For completeness, the two internal multiple predictions are compared to each other in
figure 6.32.

The author wishes to thank Emin Sadikhov and Shruti Gupta for providing the demigrated
synthetic data.
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Figure 6.29 Synthetic, demigrated gather.

Figure 6.30 Comparison of input gather (left) and internal multiple prediction using a
standard Radon transform on input (right).
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Figure 6.31 Comparison of input gather (left) and internal multiple prediction using a
sparse Radon transform on input (right).

Figure 6.32 Comparison of internal multiple predictions using a standard transform (left)
and a sparse transform (right) on input.
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Chapter 7
Limitations and relation to other
methods

7.1 Limitations of the inverse scattering series internal
multiple predictor

The most profound limitation of the internal multiple predictors studied in this thesis seem
to be their need of transform domains. Artifacts may arise in the pseudodepth-wavenumber
formulation, as the parameter ε is not stationary across this domain (Sun and Innanen,
2015). The plane wave formulations do not explicitly suffer from this deficiency. How-
ever, due to the non-orthogonality of the linear Radon transform, the input data in plane-
wave domains often include certain artifacts. The 1.5D plane wave domain predictor does
seem somewhat robust to these transform limitations. In multidimensional plane wave
formulations, however, artifacts may span large parts of the domain. On the contrary, the
actual data tend to have a sparse representation. Artifacts and data may therefore combine
to create significant artifacts in the internal multiple predictions. The use of transform
domains also imposes the need of a special sampling geometry, in the case of multidimen-
sional prediction. It should be noted that the demigration procedure in Aaker (2017) can
effectively deal with this.

The amplitudes predicted by the internal multiple predictor bIM3 are only approximate
(Weglein et al., 2003). The predicted amplitude is always less than the true amplitude of
the internal multiple. The so-called attenuation factor controlling this behaviour is due to
the inclusion of extra transmission terms in the predicted internal multiple (Ramı́rez et al.,
2005). Some waveform mismatches are also to be expected from this prediction algo-
rithm. This arises because three subevents, with three wavelets, are combined to calculate
contributions to the internal multiple prediction. Therefore, the frequency bandwidth and
waveform of predicted internal multiples will not match what is found in their true counter-
parts. The amplitude and waveform mismatches require the use of an adaptive subtraction
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routine in order to suppress internal multiples in the input data.

The ISS internal multiple prediction criterion consists of a Lower-Higher-Lower relation-
ship in pseudodepth or intercept time. Compared to general scattering coda, there will
exist certain geological scenarios in which the LHL criterion will fail to describe an inter-
nal multiple. Examples of this includes models that may give rise to complex scattering,
such as salt domes.

In its multidimensional formulations, the inverse scattering series internal multiple pre-
dictors have high computational cost functions. Chapter 5 gave an overview of algorith-
mic simplifications and implementational strategies intended to give practical value to the
two-dimensional internal multiple predictor. Due to the computational cost, full three di-
mensional inverse scattering series internal multiple prediction is currently not viable with
deterministic evaluation of the prediction integrals.

7.2 Relation to other methods

Among the key strengths of the internal multiple predictors derived from the inverse scat-
tering series is that they are virtually entirely data driven. The only input needed is the
velocity of the medium most proximal to the receivers and sources. In the marine case this
corresponds to the waterspeed velocity. Several other methods proposed to predict and/or
implicitly treat internal multiples rely on a subsurface velocity and/or reflectivity model.
As an extension of the Delft approach to SRME, the Common Focus Point approach for-
mulated by Berkhout and Verschuur (2005) requires a velocity model for inverse wave-
field extrapolation and a reflectivity model to estimate the subsurface locations of internal
multiple generators. The model requirements and restrictments in the method of Berkhout
and Verschuur (2005) may be a key reason as to why it did not gain traction in the industry.

Internal multiples need not to be explicitly predicted and removed, they may also be cor-
rectly treated in redatuming and/or imaging. By solving the three dimensional Marchenko
equations (Wapenaar et al., 2014) one can retrieve the full1 scalar Green’s function in a data
driven manner. This enables the possibility to not just inverse extrapolate a recorded wave-
field but also to focus it at an arbitrary location inside the (generally) unknown medium of
interest. Applications of Marchenko derived methods to treat internal multiples have very
recently appeared, e.g. in Staring et al. (2017). The current formulation of the Marchenko
equations requires a velocity model in order to calculate the direct part of a transmitted
Green’s function. In this case, the need for a velocity model stems from the ill-posedness
of the 3D Marchenko equation, which is treated by a translation of Marchenko’s orig-
inal ansatz to three dimensions. Note also that the validity of the Marchenko ansatz for
arbitrary three-dimensional earth models may not hold. Non-scalar formulations, e.g. elas-
todynamic, are currently limited by the very same ansatz.

1I.e. not just the approximate Green’s function due to invocation of the inverse Born approximation.

106



Löer et al. (2016) derived expressions for data driven internal multiple prediction using
Source-Receiver Interferometry. Similar to the ISS approach, the SRI predictor can not
provide the exact amplitude of the internal multiples. In its current formulation, the SRI
internal multiple predictor does not require any knowledge of the medium of interest. The
internal multiple generation criterion is here a Lower-Higher-Lower relationship in two-
way traveltime, t. For 1D applications such a condition is by causality bound to hold.
However, for multidimensional approaches it remains to be seen how much of a limitation
this generation criterion will provide for reflection data aquired in arbitrarily inhomoge-
nous earth models.

107



108



Chapter 8
Conclusions and further work

8.1 Conclusion
The work performed in relation to this thesis has uncovered the following:

• Within the work of this thesis the author has implemented, in the C and C++ pro-
gramming languages, Inverse Scattering Series 2D and 1.5D internal multiple pre-
dictors, as well as a high resolution linear Radon transform.

• Implementation of the linear Radon transform was not part of the original problem
specification, but rather implemented as a method to yield improved internal multi-
ple prediction results.

• While the coupled plane wave formulation of the ISS internal multiple predictor
shows quite stationary values of the search-limiting parameter ε, other difficulties
may arise due to the non-orthogonality of the linear Radon transform.

• The usage of high-resolution linear RTs attempts to ameliorate this deficiency by
minimizing amplitude smearing and aperture artifacts in the (coupled) plane wave
domain.

• In a hybrid time-frequency domain formulation, the implemented transforms were
able to compress the temporal support of the signal as well.

• Synthetic, multidimensional data examples appear to have demonstrated that the
resulting internal multiple predictions are to a better extent able to reproduce small-
scale features, with the usage of high resolution RTs. Observed waveforms also
appear to have given an improved match.

• Results from adaptive subtraction demonstrated that the usage of high resolution
linear RTs provided improved internal multiple removal and attenuation with less
artifacts.
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• Using synthetic demigrated data, the concept of the demigration-prediction-migration
procedure proposed in Aaker (2017) has been demonstrated to work. The procedure
can therefore be applied to real data.

• The internal multiple predictors studied have high computational cost functions. The
implemented predictors therefore needed to be re-expressed through mathematical
analysis in order to reduce the computational cost by a factor O(N2). This part of
the work was largely based on the analysis of (Kaplan et al., 2004).

• The coupled plane wave domain provided a natural framework to be able to restrict
the required amount of calculations in situations where subsurface reflectors related
to internal multiple generation have limited angular dips.

• Concepts from high-performance computing were applied in order to squeeze per-
formance out of the available hardware. Speedups larger than two orders of magni-
tude were seen, using the exact same hardware and computational algorithm.

8.2 Recommendations for future work
The recommendations listed below point at obvious limitations of this work, and what
would potentially be interesting and realistic to see in a future work.

• The coupled plane wave domain internal multiple predictors should be tested with
real seismic data.

• Because the different subparts of the coupled plane wave domain benefite from dis-
tinct levels of regularization, it is conjectured that automatic regularization routines
for the high-resolution linear Radon transform can yield further benefits.

• Due to its high computational cost function the full 3D coupled plane wave domain
internal multiple predictor has not been implemented. Most likely it will need a
method distinct from Riemann summation to evaluate the high-dimensional inte-
grals involved. Such an approach is however not easily extendable from the code
implemented in this thesis.
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Appendix
A Derivation of the acoustic Kirchhoff-Helmholtz integral from the

acoustic reciprocity theorem of correlation type
In the space-frequency domain, the acoustic pressure p̂(x, ω) and particle velocities v̂i(x, ω)
defined in a lossless arbitrary inhomogenous acoustic medium obey the stress-strain rela-
tionship:

jωκp̂+ ∂iv̂i (A.1)

and the equations of motion:

jωρv̂i + ∂ip̂ = f̂i (A.2)

The source terms q̂ and f̂i represent sources of volume injection rate and external force,
respectively. The medium parameters κ(x) and ρ(x) are adiabatic incompressibility and
volumetric density. Notation of frequency dependence is consistently suppressed in this
section.

Consider two wavefield states A and B, both defined in the same medium and each obeying
the acoustic stress-strain relationship and equations of motion. The reciprocity theorem of
correlation type reads (Wapenaar and Fokkema, 2006):∫

D
{p̂∗Aq̂B + v̂∗i,Af̂i,B + q̂∗Ap̂B + f̂∗i,Av̂i,B}d3x =∮

∂D
{p̂∗Av̂i,B + v̂∗i,Ap̂B}nid2x (A.3)

It relates the interaction of wavefield components across the two states at the boundary
∂D to the interaction of the wavefield components and the source distributions through-
out the domain D. When states A and B coincide, the boundary integral term is linearly
proportional to the acoustic power flux1 through the surface ∂D with normal vector ni
(Wapenaar, 2017). Given two identical states, the correlation type reciprocity theorem
then describes that the generation of power by the sources within D must be balanced by
the power flux through the boundary ∂D. Equation (A.3) is exact under the assumption of
non-evanescent linearized wave motion in a lossless acoustic medium.

From hereon no state will be considered in which the source of external force is present.
From the equations of motion (A.2) in the acoustic medium, the particle velocity can then
be written as:

v̂i =
−1
jωρ

∂ip̂ (A.4)

1Simply scale the integral with a factor 1
4

to obtain the power flux through the surface.
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Inserting (A.4) into (A.1), yields the following wave equation:

ω

c2ρ
p̂+ ∂i(

1
ρ
∂ip̂) = −jωq̂(x,x′) (A.5)

The quantity p̂ represents, through the stress-strain relationship and the definition of q̂, the
acoustic pressure due to a source of volume injection rate. The propagation velocity is
c(x) = {κ(x)ρ(x)}− 1

2 .

Rather than the source-term on the right-handside defined by −jωq̂, we search for a
slightly alternative representation. Define P = p̂

jω and Vi = v̂i

jω . In terms of the modified
wavefield quantities, the acoustic equations of motion and stress-strain relationship now
read:

Vi =
−1
jωρ

∂iP (A.6)

jωκP + ∂iVi =
q̂(x,x′)
jω

=: îV (x,x′) (A.7)

Hence, P represents the acoustic pressure due to a source of volume injection, as opposed
to volume injection rate. The structure of the resulting wave-equation is the same as (A.5),
but due to a different source function:

ω2

c2ρ
P + ∂i(

1
ρ
∂iP) = −q̂(x,x′) (A.8)

The corresponding Green’s function is denoted G(x,x′). Idem, we define a further mod-
ified wavefield P that satisfies the constant-density Helmholtz wave equation, valid in a
constant density medium:

ω2

c2
P + ∂i∂iP = −q̂(x,x′) (A.9)

By a similar exercise as for the pressure fieldP one can show that, physically, P represents
the acoustic pressure due to a source of buyoancy injection2. The corresponding Green’s
function is denoted G(x,x′).

The following quantities will be used in the correlation type reciprocity theorem (A.3).
For state A, we use the Green’s function, G(x,xA) in terms of acoustic pressure due to
an impulsive source of volume injection, îV (x,xA) = q̂(x,xA)

jω = δ(x−xA)
jω , located at

xA inside D. For state B, consider the physical wavefield in terms of acoustic pressure
P(x,xB) due to a source of volume injection located at position xB outside D.

2Although in a constant density medium this represents but an arbitrary scaling of the wavefield or the source
function.
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Inserting for states A and B, the correlation type reciprocity theorem gives:∫
D
{(δ(x,xA)

jω
)∗P(x,xB)}d3x =

∮
∂D

−1
jωρ

{
G∗(x,xA)∂iP(x,xB)

−(∂iG∗(x,xA))P(x,xB)
}
nid

2x (A.10)

P(xA,xB) =
∮
∂D

1
ρ
{G∗(x,xA)∂iP(x,xB)− (∂iG∗(x,xA))P(x,xB)}nid2x (A.11)

Equation (A.11) is the Kirchhoff-Helmholtz integral for an acoustic pressure field due
to a source of volume injection. Idem, for wavefield states G(x,xA) and P (x,xB) sat-
isfying the constant-density Helmholtz-equation, equation (A.9), the slightly simplified
Kirchhoff-Helmholtz integral reads:

P (xA,xB) =
∮
∂D
{G∗(x,xA)∂iP (x,xB)− (∂iG∗(x,xA))P (x,xB)}nid2x (A.12)

Representations theorems derived from the (unified) reciprocity theorems of correlation
type are extensively used for inverse wavefield extrapolation, i.e. extrapolating a wave-
field recorded at the boundary backwards in time and into the medium. The Kirchhoff-
Helmholtz integrals simply represent specific variants expressed in terms of scalar, acous-
tic fields.

B The regularizing effect of Conjugate Gradient iterations
Prelude: A review of Singular Value decomposition

Consider a matrix A ∈ RM×N and for simplicity assume M ≥ N . Then, the Singular
Value Decomposition (SVD) of A is of the form;

A = UΣVT =
N∑
i=1

uiσivTi (B.1)

Where U = (u1, · · · ,uN ) ∈ RM×N and V = (v1, · · · ,vN ) ∈ RN×N are matrices with
orthonormal columns s.t. UTU = IN = VTV. Σ is a diagonal matrix with non-negative
entries σi appearing in non-increasing order s.t.:

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0 (B.2)

The scalars σi are termed the singular values of A. They are defined as the stationary val-
ues of the expression ||Ax||2/||x||2. The vectors ui and vi are the left and right singular
vectors of A, respectively, and form two sets of orthonormal basis vectors. In the case that
M < N , apply the SVD to AT and interchange U and V.

The singular value decomposition of A is strongly related to the eigenvalue decomposition
of the symmetric matrices ATA and AAT . Suppose the former symmetric matrix can be
expressed in an eigenvalue decomposition of the following:

ATA = EΛET (B.3)
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Via the SVD Decomposition by equation (B.1), one can write:

ATA = VΣTUTUΣVT = VΣTΣVT = EΛET (B.4)

Idem, suppose AAT can be expressed in an eigenvalue decomposition according to:

AAT = ÊΛ̂ÊT (B.5)

Then, we perform the same exercise using the SVD decomposition:

AAT = UΣTVTVΣUT = UΣTΣUT = ÊΛ̂ÊT (B.6)

From equations (B.4) and (B.6) we can therefore state the following regarding the singular
value decomposition A = UΣVT :

• The right-singular vectors, i.e. the columns of V, are the eigenvectors of ATA.

• The left-singular vectors, i.e. the columns of U, are the eigenvectors of AAT .

• The singular values, i.e. entries of Σ, are the square roots of the eigenvalues of
ATA or AAT .

SVD Decomposition of inverse matrices
For a square matrix A ∈ RN×N of full rank, i.e. with all σi > 0, the singular value
decomposition of its inverse is given by:

A−1 = V−TΣ−1U−1 = VΣ−1UT =
N∑
i=1

vi
1
σi

uTi (B.7)

However, if the matrix is rectangular, not of full rank or both, then the solution to Ax = b
is given through application of its pseudoinverse3 A+. The SVD of the pseudoinverse is
given by:

A+ = VΣ+UT =
rank(A)∑
i=1

vi
1
σi

uTi (B.8)

In relation to linear least squares inverse problems of the form x = arg min
x

||b −Ax||22,

the least squares solution xLS is given by:

xLS = A+b =
rank(A)∑
i=1

vi
uTi b
σi

(B.9)

Division by the small singular values in the expression for xLS amplifies high-frequency
components in the data b. Furthermore, the sensitivity of the least squares solution xLS to

3Commonly it is also termed the Moore-Penrose generalized inverse.
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perturbations in either b and/or A can be measured by the condition number of the matrix
A:

Cond(A) :=
||A||2
||A+||2

=
σ1

σrank(A)
(B.10)

Very small relative singular values will evidently make the least squares solution very sen-
sitive to perturbations. In the context of iterative matrix inversion algorithms, e.g. the
CGLS algorithm, high condition numbers deteriorate the convergence rate due to an in-
creased sensitivity to numerical round-off errors (Björck et al., 1998).

Rank deficient systems of equations
Consider the the theoretical situation where A and b are free of perturbation and all op-
erations are performed on infinite precision hardware. Treating rank deficient problems
can then be done easily by simply ignoring the components of the SVD where σ = 0 and
computing the solution by means of the pseudoinverse, as in equation (B.9).

In practice, however, A is never exactly rank deficient. Rather, it may be numerically
rank deficient such that in a canonical sense Rank(A) = N , but one or more of the last
σi are very small. The influence of such small singular values significantly perturb the
solution. As a demonstration, the squared `2 norm of the least-squares solution xLS is
given by:

||xLS ||22 =
N∑
i=1

[
vi

uTi b
σi

]T [
vi

uTi b
σi

]
=

N∑
i=1

(uTi b
σi

)2

(B.11)

Therefore, the solution norm will be very large, and the solution xLS as a whole may be
dominated by the SVD components corresponding to numerically rank deficient singular
values.

One way to deal with rank deficiency, exact or numerical, is to project the matrix A onto a
rank-kmatrix Ak where the latter has its small, but nonzero, singular values σk+1, · · · , σN
replaced with exact zeros. The solution to the corresponding least squares inverse problem
reads:

xLS,k = A+
k b =

k∑
i=1

vi
uTi b
σi

(B.12)

The solution xLS,k is referred to as the truncated SVD solution, abbreviated TSVD. Only
the k first SVD components are allowed to contribute to the solution.

Alternatively, rank deficiency can be treated via regularization of the inverse problem.
The effect of this will be demonstrated for simple, zero-th order Tikhonov regularization.
The regularized inverse problem reads:

x = arg min
x

{
||b−Ax||22 + µ2||x||22

}
(B.13)
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The regularized solution can be expressed as a filtered version of the SVD components of
the least squares solution (Hansen (2005)):

xLS,reg =
N∑
i=1

vifi
uTi b
σi

(B.14)

For zero-th order Tikhonov regularization the values of the implicitly introduced filter
components fi read:

fi =
σ2
i

σ2
i + µ2

(B.15)

Hence, for σ2
i >> µ2 the filter coefficients behave like fi ≈ 1, hence the filter is all-pass

in this range of singular values. On the other end of the spectrum, situations may occur in
which σ2

i << µ2. Then, the behaviour of the filter coefficents approach fi ≈ σ2
i

µ2 ≈ 0.

The effect of Tikhonov regularization is to smoothly filter the singular value spectrum
of the solution. The amount of contributing singular values are inversely proportional to
the value of the regularization parameter.

Iterative regularization methods

In the context of regularization through application of iterative methods, each iteration vec-
tor x(k) can be considered a regularized solution, where the iteration number k plays the
role of the regularization parameter. For this to occur we must require iteration schemes
that when applied to discrete, ill-posed problems initially pick up the SVD components
that correspond to the largest singular values. One attempts to avoid the phenomenon of
semiconvergence by stopping the iterative scheme (long) before convergence to a minimal
residual solution. The phenomenon of semiconvergence entails the iteration history where
the vector x(k) converges towards the exact solution xexact for small k but later on diverges
and approaches the non-optimal xLS least-squares solution as defined by (B.9) for large k.
It should be noted that due to the ill-posedness of the inverse problem, the iterative solution
may diverge from the true solution while concurrently the data residuals and residuals of
the normal equations may convergence.

In order to make use of the regularizing properties of iterative methods, the regularized
objective function ϕ = ||b −Ax||22 + µ2||Wxx||22 is transformed into its standard form
ϕ = ||b − AW−1

x x̃||22 + µ2||x||22 through the application of the preconditioner W−1
x .

In order to let the iteration numbers play the role of the regularizing parameter, the pa-
rameter µ2 must be set to zero. The preconditioner used here improves a part of the
singular value spectrum of A, in particular those singular values that contribute most to
the regularized solution. Hence, this is in contrast to ”normal” preconditioning of an SPD
system of linear equations Ax = b, whose aim is to choose a preconditioner M s.t.
Cond(MA) < Cond(A) in order to aid convergence.
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Regularizing Conjugate Gradient Iterations

For conjugate gradient iterates x(k) with residual vector r(k) = b −Ax(k), the residual
of normal equations are given by s(k) = ATb−ATAx(k) = AT r(k). Furthermore, they
are mutually orthogonal, i.e.:

s(k) ⊥ s(j) j 6= k (B.16)

This orthogonality implies that if the initial solution is the zero vector, x(0) = 0, then the
norm of the solution ||x(k)||22 increases monotonically with k (Hestenes and Stiefel, 1952).
From the monotonic behaviour of the solution norm, one can intuitively sense a relation-
ship between iteration number and which SVD components contribute to the solution, see
e.g. (B.11) for reference.

Hansen (2005) states that the Conjugate Gradient method often produces iterative solu-
tions in which the large eigenvalues of A converge faster than the smaller components.
For least squares inverse problems, the eigenvalues of ATA are simply σ2

i , as per equa-
tion (B.4). Hence, the singular value components associated with the large σi tend to
converge the fastest. If the CG algorithm is stopped long before convergence to the Least-
Squares solution xLS = A+b sets in, it should be equivalent to a regularized, LS solution
for a particular choice of µ2.

The k-th Conjugate Gradient iterate vector can be written as (Bjorck, 1996):

x(k) = arg min
x

{
||b−Ax||22

}
subject to x ∈ Kk(ATA,ATb) := span{ATb, · · · , (ATA)k−1ATb} (B.17)

Kk(ATA,ATb) is the Krylov subspace of the k-th iteration of the CG algorithm. Hansen
(2005) states that in certain4 applications the Krylov subspace Kk(ATA,ATb) can be
considered an approximation to the subspace spanned by the first k right singular vectors
of the matrix A. Therefore, the iterative solution x(k) can be considered an approximation
to the TSVD solution xLS,k given in (B.12), if the CG algorithm is applied to the standard
form least-squares problem, i.e. if it is right preconditioned with W−1

x and µ2 = 0.

In a more formal sense, the SVD component filtering properties of the CG algorithm is
controlled by Ritz values. We denote the matrix T(k) as the representation of ATA pro-
jected onto Kk(ATA,ATb). The eigenvalues of T(k) are θ(k)

1 , · · · , θ(k)
k are called the

Ritz values of ATA at the k-th step and converge to the square of the singular values σi
when k → ∞ (Favati et al., 2014). The filter factors of the Conjugate Gradient algorithm
at the k-th step have the form (Hansen, 2005):

f
(k)
i = 1−

k∏
j=1

(
1−

σ2
j

θ
(k)
j

)
(B.18)

4Note that Hansen (2005) does not discuss in which situations this analysis is applicable.
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In regularizing Conjugate Gradient iterations the optimal number of iterations kopt is there-
fore determined by the convergence behaviour of the Ritz values. If the number of iter-
ations is chosen too large, all of the Ritz values converge and the iterative solution ap-
proaches the unregularized least-squares solution:

lim
k→∞

x(k) = xLS (B.19)

C Proof of Lemma 1
To prove, for any integrable functions f(t) and g(t):∫ ∞

−∞
dt f(t)

∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt g(t)
∫ ∞
t+ε

dt′f(t′) (C.1)

We define the Heaviside step function: Θ(x):

Θ(x) =

 0, for x < 0

1, for x ≥ 0
(C.2)

Equation (C.1) can then be re-written as:∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt f(t)
∫ ∞
−∞

dt′ g(t′)Θ[(t− ε)− t′]

Then by renaming: t→ t′, t′ → t:∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt′ f(t′)
∫ ∞
−∞

dt g(t)Θ[(t′ − ε)− t]∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt′ f(t′)
∫ ∞
−∞

dt g(t)Θ[t′ − (t+ ε)]∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt g(t)
∫ ∞
−∞

dt′ f(t′)Θ[(t′ − (t+ ε)]∫ ∞
−∞

dt f(t)
∫ t−ε

−∞
dt′ g(t′) =

∫ ∞
−∞

dt g(t)
∫ ∞
t+ε

dt′ f(t′) � (C.3)
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