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Summary

An accidentally dropped object in the sea can result in critical damage on pipelines, plat-
form base structures and underwater installations. This has to be accounted for during
offshore operations and installations. Earlier experimental investigations performed by
Aanesland in 1987 [4], have proved that slender, cylindrical bodies in particular can ex-
perience large excursions from the drop point. The objectives of this master thesis are
therefore to study the motion of slender cylinders through experimental work, compare
the results with a simulation script in MATLAB based on the manoeuvring equations cor-
rected for viscous effects, and compare the results to DNV-GL’s recommended practice,
DNV-GL RP F107.

Experiments were performed in the tank Dokka at Center of Marine Technology at NTNU
between the 19th and 23rd of February 2018 and between the 4th and 6th of April 2018.
Drops under and above the surface have been performed with capped and open, slender
cylinders and cylinders where the centre of gravity has been moved 3% and 7% of the full
cylinder length from the centre of volume. Drop angles were between 15◦ and 75◦. In the
experiments it was observed that the motions of symmetric cylinders can be described by a
falling leaf-like, oscillatory motion where the excursions and the trajectories are dependent
on the drop angle and slenderness of the body. For cylinders that are asymmetric about
the centre of gravity, the motions can be described by a straight path or a flip followed
by a straight path. These are dependent on the relative position of the centre of gravity.

The largest excursions were observed for cylinders where the relative position of the centre
of gravity is 3% of the cylinder length in front of the centre of volume. With excursions
of 4.65 m for a depth of 4 m, this greatly exceed the excursion estimated based on the
relevant method presented in DNV-GL RP F107. The method is general and largely
underestimates the excursion for most cylinder types for small water depths. The highest
velocities are obtained early in the trajectory for symmetric cylinders and converge to a
constant value for asymmetric cylinders. The highest velocities occur for cylinders where
the relative position of the centre of gravity is 3% of the length from the centre of volume.
The maximum velocity is 3.47 m/s.

The motion of slender cylinders can be described theoretically by the manoeuvring equa-
tions corrected for viscous effects. The values of the effective trailing edge that give
results most similar to the experimental results are 0.4 for small drop angles and 0.5 for
steep angles. The form drag coefficient has only a small impact on the motion. Optimal
values for the cross-flow drag coefficient are mostly between 1.0 and 1.2.

Overall, the simulation program gives a good estimate of the motion of a slender cylin-
der and the excursion at the sea bottom. The results are most accurate for symmetric
cylinders, but underestimate the excursions for open cylinders. For cylinders that are
asymmetric about the centre of gravity, the program overestimates the excursions for
large depths. The theory as presented by Aanesland, assumes motion limited to the XZ
plane, however large spreading observed in the experiments indicate that this assumption
is only valid for open cylinders. The motion for all other cylinder types must therefore
be calculated in three dimensions.
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Sammendrag

Fallende objekt som mistes ved et uhell i havet kan for̊arsake kritisk skade p̊a rørledninger,
plaformstrukturer og undervannsinnstallasjoner. Dette må det tas høyde for i offshore
operasjoner og installasjoner. Tidligere eksperimenter utført av Aanesland i 1987 [4],
har vist at spesielt avlange, sylindriske objekter kan bevege seg store avstander under
vann fra et gitt droppunkt. Form̊alet med denne masteroppgaven er derfor å undersøke
bevegelsen til avlange sylindere gjennom eksperimenter, og å sammenligne resultatene fra
dette med et program skrevet i MATLAB som simulerer banen til sylinderen basert p̊a
manøvreringslikningene korrigert for viskøse effekter og med DNV-GLs anbefalte praksis,
DNV-GL RP F107.

Eksperimentene har blitt utført i tanken Dokka p̊a Marinteknisk Senter p̊a NTNU, mel-
lom 19. og 23. februar 2018 og mellom 4. og 6. april 2018. Dropp har blitt utført
under og over vannoverflaten for lukkede og åpne avlange sylindere, og med sylindere
hvor gravitasjonssenteret er flyttet med 3% og 7% av sylinderens fulle lengde fra volum-
senteret. Droppvinklene har vært mellom 15◦ og 75◦. I eksperimentene ble det observert
at bevegelsen til symmetriske sylindere kan beskrives som en fallende, løv-liknende, svin-
gende bevegelse, hvor utslaget og bevegelsen bestemmes av droppvinkelen og lengden
av sylinderen sammenlignet med diameteren. For sylindere som er asymmetriske om
gravitasjonssenteret, kan bevegelsen beskrives som en rett linje eller en bevegelse hvor
sylinderen først snur seg vertikalt og s̊a beveger seg i en rett linje. Bevegelsen er avhengig
av den relative posisjonen til gravitasjonssenteret.

Det største utslaget fra droppunktet ble observert for sylindere der den relative posisjo-
nen av gravitasjonssenteret var 3% av sylinderlengden foran volumsenteret til sylinderen.
Med en lengde p̊a 4.65 m for en dybde p̊a 4 m, overskrider dette i stor grad utslaget
estimert ved hjelp av en passende metode fra DNV-GL RP F107. Metoden som er gitt i
veiledningen for anbefalt praksis, er generell og underestimerer i stor grad utslaget for de
fleste sylindertypene for små vanndyp. De høyeste hastighetene for symmetriske sylin-
dere oppn̊as tidlig i fallbanen. For asymmetriske sylindere konvergerer hastigheten til
en konstant verdi. Den største hastigheten er funnet for sylindere hvor gravitasjonssen-
teret har en avstand fra volumsenteret som tilsvarer 3% av den fulle lengden. Denne
hastigheten er 3.47 m/s. Bevegelsen til en avlang sylinder kan teoretisk beskrives ved
hjelp av manøvrerings-likningene korrigert for viskøse krefter. Verdiene av den effektive
avløsningskanten, som gir resultater som ligner mest p̊a de eksperimentelle resultatene,
er 0.4 for sm̊a droppvinkler og 0.5 for store. Den aksielle drag-koeffisienten har liten
innvirkning p̊a bevegelsen. Optimale verdier for tverrstrømningsdrag-koeffisienten er for
det meste mellom 1.0 og 1.2.

Samlet sett gir manøvreringslikningene korrigert for viskøse effekter, et godt estimat for
den forventede bevegelsen til en sylinder og den endelige avstanden fra droppunktet p̊a
havbunnen. Resultatene fra simuleringene og eksperimentene stemmer best overens for
symmetriske sylindere, men simuleringene underestimerer utslaget for åpne sylindere. For
sylindere som er asymmetriske omkring gravitasjonssenteret, overestimerer programmet
utslaget for større vanndyp. Den teoretiske beskrivelsen av bevegelsen antar at bevegelsen
kan beskrives in XZ-planet. Stor spredning observert i forsøkene indikerer imidlertid at
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dette kun er en antagelse som kan brukes for åpne sylindere. Bevegelsen for de andre
sylindertypene må derfor regnes ut i tre dimensjoner.
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Chapter 1

Introduction

Accidentally dropped objects may pose great danger to pipes, platform base structures
and underwater installations. The object may be dropped from the platform deck during
operation, or from a supply or installation vessel during hoisting and installation. If a
drop should occur, the result will be a much more expensive installation or operation
than planned. In a worst case scenario, the dropped object might cause loss of human
life or release of hydrocarbons to the sea. Thus, it is a key topic when planning marine
operations offshore.

The most important parameters when dealing with accidentally dropped objects are the
trajectory, the velocity and the final impact point, either with sea bottom or a subsea
structure. These variables are dependent on the size of the body, geometry, weight distri-
bution and the angle of which the object penetrate the water surface. As the maximum
velocity can be high, the object might experience large excursion and a large impact load
on an impact point. In 2009, the Dropped Object Prevention Scheme (DROPS) pre-
sented an information sheet about the danger of falling objects. By looking at the energy
that the object will have at the final impact point, DROPS proposes that most drilling
equipment have the potential of causing significant damage on pipeworks and systems
and/or subsea equipment when the depth is 150 meter, due to an accidental drop [1].

The probability of experiencing an accidental drop during hoisting and operation can
be calculated by the use of an empirical drop frequency. Based on data issued by UK
Department of Energy, covering the period from 1980 to 1986, DNV-GL has estimated
some drop frequencies. The frequencies depend on the type of lift and handling load.
The dropped object probability is 2.2 ∗ 10−5 per lift for lifts between vessel and platform.
For lifts above 20 tonnes the frequency is estimated to be 3.0 ∗ 10−5 per lift. For the
period in question the number of lifts to or from vessel was 4,500 per year [3]. These
data give a low number of drops per year. However, in 2010 the Norwegian Oil and Gas
Association reported that the number of dropped objects in 2008 was 167, in 2009 is was
192 and in 2010 it was 119 dropped objects [18]. For the latter case it is not clear what
type of objects have been dropped or whether it is into the ocean. However, statistics on
the matter state that 70% of all accidentally dropped objects fall onto the platform deck,
while 30% fall into the sea [3].
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1.1 Recommended Practice for Risk Assessment of
Accidentally Falling Objects

The recommended practice (RP) for risk assessment of pipeline protection, DNV-GL RP
F107 [3], includes risk assessment of accidental falling objects including object excursion
on the seabed, hit probability and impact energy of the objects. With regards to slender
objects the recommendations are limited to risk from crane activity. Slender objects
are objects with a length, L, much larger compared to the diameter, D, defined by the
slenderness parameter, ε = D/L [17].

The object excursion is assumed to be normal distributed around the drop point and
include both flat, long, box and round shaped objects. The probability of a sinking
object hitting the sea bottom at a distance x from the vertical line through the drop
point, p(x), is given by:

p(x) = 1√
2πδ

e−
1
2(xδ )

2

(1.1)

Here x is the horizontal distance from the drop point at the sea bottom, and δ is the
lateral deviation. The excursion is a function of the weight and the shape of the object.
For flat or long shaped bodies with weight smaller than 2 tonnes, between 2 to 8 tonnes,
and larger than 8 tonnes, the angular deviation, α, is 15◦, 9◦ and 5◦, respectively [3]. The
relation between the parameters is illustrated in Figure 1.1.

Figure 1.1: Object excursion on the seabed, δ, dependent on the depth, d, and angular
deviation, α. x is the horizontal excursion at the sea bottom for which the probability is
calculated.

Thus, from geometry the δ can be calculated from the depth, d, and α:

δ = d tan(α) (1.2)

The RP points out that slender or flat bodies may experience oscillations as presented
by Aanesland’s OTC paper from 1987, and this have to be accounted for. These motions
are commented on more extensively in section 1.2.1. Another notion refers to a paper
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by Katteland and Øygarden from 1995, where it was found that the maximum excursion
was obtained at 180 m depth and it would not change significantly in deeper water [12].

In order to get a complete risk picture for marine lifting operations, RP F107 recommends
to calculate the hit probability for different radii, r, from the drop point, with a constant
step length. This probability, P (x ≤ r), is expressed as [3]:

P (x ≤ r) =
∫ r

−r
p(x) dx (1.3)

1.2 Literature Review

1.2.1 Experimental and Theoretical Investigation by Aanesland

One of the first attempts to theoretically study the motion of a slender cylinder freely
falling in water, was presented by Aanesland in an OTC conference paper from 1987 [4].
This paper is based on a technical report from Aanesland and Huse from the year before
[5]. Based on observations of the trajectory of a slender cylinder dropped under the
water surface, Aanesland proposed that the motion could be described in two dimensions
assuming slender body theory, by the manoeuvring equations for a ship corrected for
viscous effects. Using a body-fixed coordinate system and assuming that the cylinder
moves as a rigid body and is symmetric about the centre of gravity (COG), the equations
of motion are described by:

− (M − ρ∇)g sin β + Fdx = MU̇1 (1.4)
− (M − ρ∇)g cos β + Fdz = U1a33U3 − U1(xT +M)Ω2 + (A33 +M)U̇3 (1.5)

Mdy = −U1(A33 + xTa33)U3 + U1x
2
Ta33Ω2 + (A55 + I55)Ω̇2 (1.6)

where U1, U3 and Ω2 are velocities in surge, heave and pitch, respectively, and U̇1, U̇3 and
Ω̇2 are the accelerations. M is the mass of the cylinder, ρ the density of water, ∇ the
displaced volume of the cylinder, and g is the gravity acceleration. β is the instantaneous
angle between the cylinder axis and the free surface, xt is the effective trailing edge, a33
is the two dimensional added mass in heave, and I55 is the mass moment of inertia in
pitch. Further, A33 and A55 are the added mass in heave and pitch respectively. Finally,
Fdx and Fdz are the viscous forces given by:

Fdx = −0.664πD
√
νρ2LU1

√
|U1| −

1
8ρπCDxD

2U1|U1| (1.7)

Fdz = 0.5
∫

L
ρCDzDuz(x)|uz(x)|dx (1.8)

D is the diameter of the cylinder, ν the kinematic viscosity of water, and CDx and CDz

are the drag coefficients in x and z direction, respectively. The viscous moment, Mdy, is
given by:
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Mdy = −0.5
∫

L
ρCDzDxuz(x)|uz(x)|dx (1.9)

A program estimating the trajectory was made based on this theory. In order to verify
the results from the program, drops from both above and under the water surface were
performed. The paper points out that for the drops performed above the surface, the
impact with the surface changed the angle of attack of the cylinder. Also, it conclude
that for drops above the surface the falling height in air is of great importance to the
motion itself. For drop angles of 0o and 90o it was observed that small disturbances in
the motion of the cylinders caused a deviation in the expected straight, vertical path and
thus some excursion from the drop point.

For drops under the water surface, the trajectories depending on the drop angle followed
six different paths, as given in Figure 1.2. The conference paper conclude that the
directional stability of the plane described by the cylinder axis have been observed to be
strong, and also that the most important parameter for falling cylindrical bodies are the
angle of attack immediately after submerge. [4]

Figure 1.2: Expected accidental drop trajectories of a slender, cylindrical bodies dropped
under water, as presented by Aanesland [4].

1.2.2 Experimental Studies on Dropped Objects

In a conference paper connected the OMAE conference (Conference on Ocean Offshore
& Artic Engineering) from 1995, Katteland and Øygaarden present the results from
research on the risk associated with dropped objects at depths larger than 300 m [12].
Here, accidental drops of tubular, box shaped and compact objects from crane and derrick
have been considered. The investigation is mostly based on the works by Aanesland and
an internal report in Dovre Safetec A/S. The paper identifies distributions on the sea
floor for different object groups, evaluates the effect of environmental forces and presents
a model for calculating risk for installations and pipelines on the sea floor.

In the investigation tubular objects, drill tubes and weight tubes are considered. The
tubes have a length of 9.14 m and 9.95 m, outer diameter of 0.127 m and 0.2032 m,
and density of 32.5 kg/m and 225 kg/m, all in respective order. Based on the internal
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report the paper argues that maximum excursion occurs at depth of approximately 180
m, with an excursion of 250 m. An increased spreading had been observed down to 180 m,
however at larger depths the spreading remained constant. For an accidental drop case
the paper argues that two falling patterns can be expected to occur; a straight downward
trajectory and a leaf-like pattern. In the first case the paper estimates a terminal velocity
of 23.0 m/s for vertical falling and 10.8 m/s for horizontal falling. This will be reached
after 50-100 m. For the latter case, terminal velocity will not be reached, but the velocity
will be between the terminal velocities of the straight downwards trajectories. Among
the assumptions made in the paper are the assumption that the majority of drops from
crane will have an angle with the water surface between 45o and 90o, and from the derrick
75o to 90o. Calculated values for one side of the distribution for a water depth of 1000
m, gives for crane accidents a probability of 50% to be within 75 m from the crane, and
90% within 175 m from the crane. For drops from derrick 60% land within 75 m and
90% land within 175 m. [12]

Most research done on motion of cylinders under water are focused on mines. One study
on this by Chu et al. (2005) investigated the dynamically characteristics of a falling
cylinder through the water column both experimentally and theoretically [7]. The study
used rigid plastic cylinders with aluminium capped ends with three different lengths. A
threaded bolt of copper inside enabled changing the COG in the cylinder. The drop
angles where 15◦, 30◦, 45◦, 60◦ and 75◦. The study observed six trajectory patterns from
the experiment: straight, spiral, flip, flat, seesaw and a combination. It confirmed that
the pattern was mostly dependent on the drop angle, initial speed and the characteristics
of the cylinder. Further, for drops where the COG lay higher than the Centre of Volume
(COV), the cylinder only flipped once in its trajectory. The distribution of mass away
from the COV proved to be more important when assessing the impact force on the sea
bottom. [7]

Yasseri (2014) performed an experimental study with cylindrical models with a diameter
of 4 cm and lengths of 9 cm, 12 cm and 15 cm. Additionally, each lengths had three
different centres of mass. All drops were performed above the water surface for drop
angles of 15o, 30o, 45o, 60o and 75o. Both trajectory and landing point were observed
only by the human eye. Trajectories observed were straight, spiral, flip, flat, seesaw and
combination, as presented in the paper by Chu et al. (2005). Moreover, Yasseri observed
in his experiment that for objects with coinciding COG and COV, the object hit the
bottom of the pool near the drop point more than 90% of the time. A small distance
between the two parameters, on the other hand, caused variability. The largest excursion
from the drop point occurred for objects dropped with COG behind the COV. Finally,
the paper conclude that for 50%, 80%, 90%, 95% and 98% of the times, the cylinders
landed respectively within lenghts that are 10%, 20%, 30%, 40% and 50% of the water
depth. [24]
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1.3 Objective and Limitations

The objective of this master thesis is to study the motion of a slender, symmetrical body
when it is dropped under and above the water surface, with focus on the first. The term
”slender” characterise bodies that have a length significantly longer than the diameter.
The cylindrical body is one of the simplest geometries to investigate for this case, and may
represent simplified drill pipes or weight pipes with capped ends. In addition cylindrical
bodies that are longitudinally asymmetric around COG, will also be investigated.

The focus will be on the motion of a cylinder in the XZ plane and in particular under
water. It is assumed that current, waves and other environmental forces are absent.
Hence the trajectory under water will only be dependent on the ratio between the mass
and buoyancy forces, the hydrodynamic forces, the geometry of the cylinder and the
initial drop angle between the cylinder and water surface. Above water drop height,
slamming and air cavity play a part.

The motion of a cylinder can be described by the manoeuvring equations corrected for
viscous effects. Dependent on the characteristics of the cylinder, small changes to these
equations have to be made with regards to the effective trailing edge, added masses,
viscous forces and ratio between COG and COB. This will be presented in the theory
section. This theory will be used to make a program in MATLAB that can simulate the
trajectory of a cylinder dropped under water, dependent on its specific geometries.

Another main part of this thesis is the experimental work that will be performed this
spring. The experiments will be performed in the tank Dokka at Center of Marine
Technology in Trondheim. Under water drops will be performed with slender, geometrical
symmetric and capped cylinders with three different diameters, open cylinders with the
largest and smallest diameter of the three, and with cylinders with a small difference
between COG and COV, dropped with COG above and underneath COV. Drops above
water will be performed with the three types of geometrical symmetric cylinders. The
results from the experiments will be compared to the simulated results in order to verify
the accuracy of the latter. In addition the results will be compared to the DNV-GL RP
F107.
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Chapter 2

Theory

The motion of a slender, cylindrical object can be described by the manoeuvring equations
corrected for viscous effects. Thus the motion surge, heave and yaw dependent on the
local coordinate system of the body can be described. For drops under water small
changes in the equations dependent on the characteristics of the cylinder in question, can
be made in order to calculate an approximately correct path. For drops above water,
water entry effects such as slamming and air cavity have to be included. This will be
presented in the following chapter.

2.1 Slender Body Theory

In slender body theory it is assumed that the length, L, of an object is much larger
than the width or diameter, D. This is reflected in the slenderness parameter, ε, that is
assumed to be small and given by:

ε = D

L
(2.1)

The motion of a slender body can be described by the longitudinal and lateral motion of
the body in an unbound fluid. The lateral motion is assumed to be small with the result
that the two can be treated separately. Hence, the longitudinal motion is assumed to be
constant and much larger than the lateral motion. Also, it is assumed that geometries
are varying smoothly. [17]

2.2 Coordinate System

To describe the motion of a slender body moving in water, two coordinate systems are
required: one global, space-fixed and one local, body-fixed. Both coordinate systems
follow the right-hand rule and have a positive z-axis downwards. Both coordinate systems
can be seen in figure 2.1.
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Figure 2.1: Three-dimensional coordinate system and nomenclature for a falling cylin-
der in water. The upper, leftmost system is the global coordinate system (XGYGZG), and
the rightmost is the local coordinate system of the cylinder (xyz).

The global coordinate system has origin in the water surface with both the X-axis and
Y-axis laying in this plane. These axis are denoted XG and YG. The Z-axis points
downwards, normal to the the water surface plane and is denoted ZG.

The body-fixed coordinate system has origin in the centre of gravity (COG) of the body,
as can be seen in figure 2.1. The X-axis, denoted x, is aligned with the axis of the body,
the Y-axis, y, to the port side, and the Z-axis, z, normal to this plane. Θ, Φ and Ψ
are the angles between the axes in the global and local coordinate system. When the
body lay in the water surface these angles will equal zero, and the coordinate systems
will coincide.

For a three-dimensional coordinate system the relation between a motion described in
the local body-fixed system and the global system is expressed as [9]:

d

dt

XG

YG

ZG

 =

cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1


 cos Θ 0 sin Θ

0 1 0
− sin Θ 0 cos Θ


1 0 0

0 cos Φ − sin Φ
0 sin Φ cos Φ


U1
U2
U3

 (2.2)

where U1, U2 and U3 are the local velocities in surge, sway and heave, respectively.
This transformation between the global and local coordinate system is obtained from a
sequence of partial rotations by Euler angles, Θ, Φ and Ψ, resulting in the expression [9]:

d

dt

Θ
Φ
Ψ

 =

0 cos Φ − sin Φ
1 sin Φ tan Θ cos Φ tan Θ
0 sin Φ sec Θ cos Φ sec Θ


Ω1

Ω2
Ω3

 (2.3)

In this master thesis the focus is on motion in the XGZG and xz plane. Thus, YG = 0,
U2 = 0, Ψ = Φ = 0. Also, Θ is denoted β, and equation 2.2 and equation 2.3 reduces to:

d

dt

[
XG

ZG

]
=
[

cos β sin β
− sin β cos β

] [
U1
U3

]
(2.4)
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and

dβ

dt
= Ω2 (2.5)

2.3 Equations of motion

For a slender object moving in water the motion is dependent on the buoyancy force,
viscous forces and lifting forces. This will be described in the following section and
subsections based on [9] and [11].

By applying Newton’s second law and the buoyancy force to the coordinate system in
figure 2.1, and by using the Euler angles, it can be shown that

M(U̇1 + Ω2U3 − Ω3U2) = FX − (Mg − ρg∇) sin Θ
M(U̇2 + Ω3U1 − Ω1U3) = FY + (Mg − ρg∇) cos Θ sin Φ
M(U̇3 + Ω1U2 − Ω2U1) = FZ + (Mg − ρg∇) cos Θ cos Φ

(2.6)

where FX , FY and FZ are the hydrodynamic external forces acting on the body, ρ is the
density of water and ∇ is the displaced volume of the cylinder.

The external moments about the local x, y and z axis can be derived by differentiating
with respect to time the moment of momentum with the following result:

I44Ω̇1 − (I55 − I66)Ω2Ω3 − I64(Ω̇3 + Ω1Ω2) = Mdx

I55Ω̇2 − (I66 − I44)Ω3Ω1 − I64(Ω2
3 − Ω2

1) = Mdy

I66Ω̇3 − (I44 − I55)Ω1Ω2 − I64(Ω̇1 − Ω2Ω3) = Mdz

(2.7)

Here Iij is the mass moment of inertia in direction i due to motion in j. Mdx, Mdy

and Mdz are viscous moments. Applying the simplifications corresponding limiting the
domain to a plane, such that U2 = 0, Ω1 = Ω3 = 0 and Φ = 0. Moreover, denotation for
Θ is β, and equation 2.6 and equation 2.7 reduce to:

M [U̇1 + Ω2U3] = X − (Mg − ρg∇) sin β
M [U̇3 − Ω2U1] = Z + (Mg − ρg∇) cos β

I55Ω̇2 = My

(2.8)

The boundary condition in lateral direction for a slender body is given as [17]:

∂φ

∂n
= n3(U3 − xΩ2) (2.9)

where φ is the velocity potential, n is the unit normal and n3 is the unit normal in
z-direction.
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The added mass forces, non-lifting, and non-viscous forces and moments can be calculated
from:

F = −∂B
∂t
−Ω×B (2.10)

where B is a boundary vector [9]. The added mass forces on the body can be found by
looking at the pressure, p, on the wetted surface of a strip of the body. This is expressed
as:

p = −ρ
(
∂

∂t
− U1

∂

∂x

)
φ (2.11)

Since the surface of a cylinder is symmetric in the xz plane, the only force is acting in
the x-direction. Thus, the stripwise force can be expressed as the integral over the area
of each strip, A(x):

f3 = −
∫

A(x)
pn3 ds (2.12)

Integrating over each direction, the total forces on the body in each direction is then:

F n
1 = 0

F n
3 =

∫
L
f3 dx

F n
5 = −

∫
L
xf3 dx

(2.13)

By inserting the expressions above into the set of equations in 2.8, a set expressions
describing the motion in surge, heave and yaw for the cylinder:

MU̇1︸ ︷︷ ︸
inertial force

−MΩ2U3︸ ︷︷ ︸
Coriolis force

= −A11U̇1 − A33U3Ω2 − A35Ω2
2︸ ︷︷ ︸

added mass force

+ Fdx︸︷︷︸
viscous force

−(Mg − ρg∇) sin β︸ ︷︷ ︸
gravity and buoyancy forces

(2.14)

M [U̇3 − Ω2U1]︸ ︷︷ ︸
inertial forces

=U1U3[a33(x)]xNxT
− U1Ω2[xa33(x)]xNxT︸ ︷︷ ︸

lifting forces

−(A33U̇3 + A35Ω̇2) + A11U1Ω2︸ ︷︷ ︸
added mass force

+ Fdz︸︷︷︸
viscous

+ (Mg − ρg∇) cos β︸ ︷︷ ︸
gravity and buoyancy forces

(2.15)
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I55Ω̇2︸ ︷︷ ︸
inertial moment

=−U1U3[xa33(x)]xNxT
+ U1Ω2[x2a33(x)]xNxT︸ ︷︷ ︸

lifting moment

−(A53U̇3 + A55Ω̇2) + A33U1U3 + A35U1Ω2︸ ︷︷ ︸
added mass moment

+Mdy︸ ︷︷ ︸
viscous force

(2.16)

Here Aij for i = 1, 3, 5 and j = 1, 3, 5 are the added masses and a33 is the two-dimensional
added mass in heave. For slender bodies in general A11 will be much smaller compared
to the other forces in the equation. Therefore, it can be assumed that this added mass is
without significance.

xN and xT are the fore and aft effective trailing edge respectively given by the percentage
times the length which give the actual position of the trailing edge. It is a correction of the
length due to the fact that slender body theory assume smoothly varying geometries. The
end of the cylinder is abrupt and the equations of motion therefore need to be corrected
for this [4]. The value of a33(x) in the equations are dependent on whether the fore or
the aft meet the fluid first, thus whether U1 is positive or negative:

U1 > 0


a33(xN) = 0

a33(xT ) = ρπD2

4
U1 < 0

a33(xN) = ρπD2

4
a33(xT ) = 0

2.3.1 Viscous forces and moments

The longitudinal viscous force, Fdx, consists of a skin friction term and a form drag term,
expressed as:

Fdx = −0.5ρCFπDLU1|U1| −
ρ

8πCDxD
2U1|U1| (2.17)

where CF is the friction coefficient, ν is the kinematic viscosity of water and CDx is the
form drag coefficient. Here it is assumed that the cylinder is smooth and that only the
outside of the cylinder is wet. For laminar flow CF can be expressed by Blasius formula
[22]:

CF = 1.328√
ReL

= 1.328
√

ν

|U1|L
(2.18)

as in the theory presented by Aanesland [4]. For turbulent flow CF can be calculated
from [21]:

CF = 0.0015 +
(

0.30 + 0.015
(2L
D

)0.4)
Re−

1
3 (2.19)
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This calculation of the friction coefficient assume that the body experience turbulent,
axisymmetric flow with 106 < Re < 109, and that the surface of the body is smooth.
The Reynolds number, Re, is given by:

Re = U1D

ν
(2.20)

The transverse viscous force, Fdz, and the viscous pitch moment, Mdy, can be derived from
the cross-flow principle. The principle assume that the flow separates due to the cross flow
past a ship, that this force is mainly the result of separated flow effects on the pressure
distribution around the body, and that there are no influence of the longitudinal velocity
components on the transverse forces. This gives the following expressions integrated over
the length of the body:

Fdz = −0.5
∫

L
ρCDz(U3 − Ω2x)|(U3 − Ω2x)| dx (2.21)

Mdy = 0.5
∫

L
ρCDzx(U3 − Ω2x)|(U3 − Ω2x)| dx (2.22)

CDz is base drag. How both this coefficient and CDx can be found are described in the
Section 3.1.

2.3.2 Added Mass Coefficients and Moment of Inertia

Since the body in question is a slender cylinder and it is assumed in slender body theory
that the lateral and longitudinal motion can be treated separately, strip theory can be
applied to calculate the added masses for the cylinder. Therefore, two dimensional added
mass in heave can be expressed as:

a33 = ρπD2

4 (2.23)

By strip theory the added mass in heave and pitch can be defined based on a33:

A33 =
∫

L
a33 dx (2.24)

A55 =
∫

L
x2a33 dx (2.25)

For added mass in heave and pitch due to motion in pitch and heave, A35 and A53,
respectively, the expressions are:

A35 = −
∫

L
xa33 dx = A53 (2.26)
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The mass moment of inertia in pitch, I55, is given by:

I55 =
∫

L
x2m

L
dx (2.27)

2.3.3 Adaptation for Full Symmetry about Centre of Gravity

For the case of full symmetry it is assumed that the cylinder is symmetric about the
COG. Then A35 and A53 will be equal to 0. Also, from the expressions derived by Kochin
et al. (1964) [14] for acceleration dependent on force and moment components on an
axisymmetric body, the term −A33U3Ω2 will be zero [6]. In addition, because of the
symmetry an simplification of the lift forces and lift moment can be made. Since the
cylinder is symmetric around COG a33(xT ) = a33(xN) and xT = −xN . With this in mind
the lift force in heave, F l

3, can be expressed as:

F l
3 = −|U1|U3a33(xT ) + U1Ω2xTa33(xT ) (2.28)

and the lift moment in pitch, Fm
5 , as:

Fm
5 = U1U3xTa33(xT )− |U1|Ω2x

2
Ta33(xT ) (2.29)

2.3.4 Adaptation for Asymmetry about the Centre of Gravity

For the case where the COG is not in the same place as the COV, some modifications
have to be made to the equations of motion. First, all calculations of viscous forces, added
masses and mass moment of inertia have to be made dependent on the new coordinate
system where the origin is placed in the COG. Hence the length to the aft, LT , and
fore end, LN , of the cylinder will not be equal, as can be seen in figure 2.2. Second,
the balance between the centre of buoyancy (COB) and centre of mass (COM) of the
cylinder has to be accounted for. The difference between the placement of the two forces
create a moment influencing the pitch motion. The addition to the right hand side of the
expression for the pitch motion (equation 2.16), is given by the buoyancy and the length
from COG to COB, ∆CB:

−∆CB ∗ buoyancy = ρg∇ cos(β)∆CB (2.30)

A visual representation of the case can be seen in figure 2.2.
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Figure 2.2: Case where Centre of Gravity (COG) for a cylinder is positioned above the
Centre of Buoyancy (COB). ∆CB is the distance between COG and COB.

Last, the fore and aft effective trailing edges have to have the same distance from their
respective cylinder ends, ensuring that the assumed same flow regimes at both ends are
maintained.

2.3.5 Adaptation for Open Cylinders

Open cylinders have the same geometrical properties as capped cylinders. Thus A35 and
A53 will equal zero due to symmetry. The difference is the flow through the cylinder,
which also has to be accounted for. The flow results in an extra component to the lift
forces and moments. Thus, the lift is the sum of an outer lift component and an inner.
The lift forces and moments are calculated by applying equation 2.11, and the boundary
condition to equation 2.12. The boundary conditions are the same for the external and
internal flow, and are given in equation 2.9. The stripwise force on the cylinder can then
be expressed as:

f3 = −
(
∂

∂t
− u1

∂

∂x

)
(u3 − xΩ2) a33 (2.31)

Here a33 is slightly different for the inner and outer flow. Both can be calculated from
equation 2.23, dependent on the outer and inner diameter of the cross section of the
cylinder, by notation Dout and Din, respectively. As both A33 and A55 are defined by
a33, a33 in Equation 2.24 and Equation 2.25 is the sum of the two added masses when
A33 and A55 are calculated. Assuming that the open cylinder have an evenly distributed
mass, the lift force, F l

3, and moment, Fm
5 , are:

F l
3 = −|U1|U3(a33,out(xT ) + a33,in(xT )) + U1Ω2xT (a33,out(xT ) + a33,in(xT )) (2.32)

Fm
5 = U1U3xT (a33,out(xT ) + a33,in(xT ))− |U1|Ω2x

2
T (a33,out(xT ) + a33,in(xT )) (2.33)
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Last, the area over which the friction between the flow and cylinder occurs, approximately
doubles, as the internal area of the cylinder has to be included. Thus, two friction
coefficients are calculated, one based on Dout and one on Din.

2.4 Additions for Motion Through the Water Sur-
face

In a real case scenario drops of objects from some height above the surface are more likely
to occur compared to drops under the surface. This adds more complexity to the fall,
as motion through the surface must be accounted for. This include an initial velocity,
slamming and creation of air cavity.

For an object falling in air the forces affecting the motion of the body are the gravitational
force and air resistance. Assuming that the air resistance is small compared to the
gravitational force the velocity of the cylinder in air v can be expressed by g and drop
height, h0:

v2 = v2
0 + 2ah0 = 2gh0 (2.34)

2.4.1 Slamming

Slamming is defined as a impulse load with a high pressure peak that occur during impact
between a body and water [8]. The load only occur in a very short time period and is
very localised in space.

For a horizontal cylinder falling through an initially calm water surface with a constant
velocity V , it is assumed that the flow is two-dimensional, irrotational and that the fluid
is incompressible. The cylinder has small submerge. The parameters are shown in figure
2.3. Here V t is the lowest point of the body relative to the water plane, t is the time
variable, the wetted body is between −c(t) ≤ x ≤ c(t), and ηb is the vertical coordinate
of a point on the cylinder relative to the bottom of the cylinder.
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Figure 2.3: Definition of parameters in analysis of slamming; impact forces and pres-
sures on a cylinder [9]. V t is the lowest point on the body relative to the water plane, t
is the time, the wetted body is between −c(t) ≤ x ≤ c(t), and ηb is the vertical coordinate
of a point on the cylinder relative to the bottom of the cylinder.

The hydrodynamic pressure, p, can be calculated from:

p = ρV
c

(c2 − x2) 1
2

dc

dt
(2.35)

and the vertical force on the body by:

F3 =
∫ c

−c
ρ dx = V

d

dt

(
ρ
π

2 c
2
)

(2.36)

where ρ is the density of water. From von Karman’s solution c2(t) = 2V tR − V 2t2 for
a circular cylinder with radius R. From Wagner’s approach c = 2

√
V tR. The difference

between the two approaches is that Wagner’s method include the local up-rise of water on
the body while von Karman’s do not. The result is a larger wetted length. The dynamic
free surface condition hold in both instances. [8]

2.4.2 Air Cavity

Air cavity is entrained air over and behind the body as the cylinder move through the
surface. As the air cavity collapses, or pinches off, an air bubble might stay connected
to the fore and aft of the body dependent on the Froude number, Fn = v/

√
gD [16]. For

the approximate band of 4.5 ≤ Fn ≤ 8.5 the flow regime is low-speed, for 8.5 ≤ Fn ≤ 100
transitional and for Fn ≥ 100 high-speed. In the low-speed and high-speed regimes
closure of the cavity bubble occur relatively far down into the water. In the transitional
flow regime the behaviour is complex and multiple pinch-offs may occur. [16]

In the water entry phase the air cavity affect the buoyancy force as the cylinder will not
be fully enclosed by water. The resulting force direction might not be vertical and thus
dependent on the angle of attack as the body pierce the surface, may alter the motion of
the cylinder with the deceleration in the opposite direction of the velocity [2]. The closed
cavity bubble will vibrate and collapse, and thus causing an oscillation in the acceleration
of the body. [16]
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Chapter 3

Numerical Work

In order to validate and compare the theory describing the trajectory of a falling cylinder
a simulation script based on the theory in Chapter 2 was made in MATLAB. The script
calculates the expected trajectory for drops under the surface for cases where the effect
of waves and current are neglected. Effects from motion through the water surface will
therefore not be included. The results from this script will be compared to the results from
the experiments. The script can simulate the trajectory of a cylinder with capped ends,
open ends, and with longitudinal asymmetry about COG. The classical Runge-Kutta
method of 4th order, as given in [15], were used to solve the equations of motion for a
time step, dt, of dt = 0.01 s, and the trapezoidal method were used for all integrations
over the length of the body. The scripts in itself and the simulated results have been
cross-checked with a similar script made by another student, as mentioned in the Preface.

3.1 Coefficients and Constants

The coefficients and constants in the script can be divided into two categories: con-
stants independent of the characteristics of the body to be dropped, and constants and
coefficients dependent on the characteristics. g, ν and ρ belong to the first group. As-
suming the water in the calculations is fresh water, these are set to g = 9.8085 m/s2, ν
= 1.14*10−6 m2/s and ρ = 1000 kg/m3.

The other group consist of the constant defining the trailing edge xT/L and the drag
coefficients CDx and CDz. Aanesland proposed an upper and lower limit of the effective
trailing edge, given by xT/L. The geometric trailing edge was used as an upper limit,
with the value 0.5, and the value used for ships with blunt after bodies, 0.3, were used
as the lower limit [4]. As the local coordinate system is centred in COG, the upper limit
represent the coordinate of the aft of the body.

The form drag, CDx, is caused by pressure due to boundary layer separation. The coef-
ficient can be found in Hoerner (1965) for cylindrical bodies in axial flow, and is set to
0.65 [10]. The coefficient for the cross-flow drag, CDz, is very much dependent on Re of
the flow. This is illustrated in Figure 3.1 for a circular cylinder in an incompressible flow
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regime. Here area A cover the subcritical flow regime with a laminar boundary layer,
area B the critical flow regime with transitional boundary layer, C the supercritical flow
regime and D the post-supercritical flow regime, both with a turbulent boundary layer.
For an approximate heave velocity of 1 m/s and D = 0.01 m, Re ≈ 9*103. This is clearly
in the subcritical area and give CDz equal to 1.0.

Figure 3.1: Cross flow drag coefficient, CDz, for circular cylinder in steady incident
flow. Area A cover subcritical flow, area B critical flow, area C supercritical flow and
area D post-supercritical flow. [20]
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Chapter 4

Experimental Work

Drop experiments were performed in the tank, Dokka, at the Centre of Marine Technology
between 19.02.2018 and 23.02.2018, and 04.04.2018 and 06.04.2018. The first time period
marks the first round of experiments and the latter the second. The experiments consisted
of drops under and above the surface with drop angles from 15◦ to 75◦. The drops
where performed with symmetric cylinders with varying diameter, with cylinders with
asymmetry around centre of gravity, and with open cylinders. The characteristics of the
cylinders where scaled with respect to the the depth of the tank to represent full size drill
pipes.

4.1 Scaling

In order to achieve similarity between the forces in model and full scale the following
conditions must be satisfied [20]:

• Geometrical similarity

• Kinematic similarity

• Dynamic similarity

With geometrical similarity the model and full scale geometry must be the same. This
also applies to the environment. This is given by a constant ratio between the dimensions
of the two:

λ = LF

LM

(4.1)

where LF and LM are any dimensions of the full scale and model scale structure.

For kinematic similarity to be satisfied between model and full scale, the ratio between
the velocities in one scale has to be equal to the ratio of the other. This ensures that the
flow will undergoes similar geometrical motion in both scales.
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Finally, dynamic similarity requires that the ratios for the different force contributions
present in the problem are the same for model and full scale. These force contributions
may be inertia forces, viscous forces, gravitational forces, pressure forces, elastic forces in
the fluid or surface forces.

4.1.1 Reynolds scaling

The Reynolds number expresses the ratio between the inertia and viscous forces, given
by

Fi

Fv

∝ ρU2L2

µUL
= ρUL

µ
= UL

ν
= Re (4.2)

where ρ is the density of the water, U the velocity and L the length. ν = µ/ρ is the
kinematic viscosity. This way it is ensured that the viscous forces are correctly scaled. As
the dominating force for the case of a falling cylinder in water is the drag force, and thus
the viscous forces, the Reynolds number will be used in the scaling of the experiments.
The scaling factors are given in the table 4.1 underneath.

Table 4.1: Scaling Factors by Reynolds number [13]

.

Parameter Expression Reynolds Scaling
Length, width, height LF/LM λ

Volume VF/VM λ3

Velocity UF/UM λ
Kinematic viscosity νF/νM 1

Mass mF/mM λ3

Force FF/FM 1

Generally it is not possible to achieve equality in Reynolds scaling, even though it should
in principle be satisfied. The viscous effect will not be correctly scaled and in the scaling
process from model to full scale, this effect has to be evaluated.

4.2 Set-up of the Experiments

The first round of drop experiments was performed between 19th and 23rd of February
2018 and consisted of drops under and above water with closed cylinders with varying
diameter and asymmetric cylinders. A drawing of the tank with the set-up is presented in
Figure 4.1, underneath. The cylinders were dropped from the middle of the tank, parallel
to the right and left wall. As the basin has a supporting wall to a basin beside Dokka,
and an open, deeper hole on the right hand side of the tank, the drop point was moved
90 cm towards the left wall. This can be seen in figure 4.1.
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(a) The vertical
position of the
Oqus cameras on
each camera rig.

(b) Overview of the set-up in the tank, Dokka.

Figure 4.1: Overview of the set-up for the first round of experiments, including positions
of cameras and drop rig in the tank (grey arrows). Please notice that the drop rig is placed
such that the cylinders will be dropped parallel to the left and right wall.

The second round of drop experiments was performed between the 4th and 6th of April
2018. In this round drops where performed with open cylinders with variation in diameter.
A drawing of the set-up in the tank can be seen in Figure 4.2. The cylinders were dropped
along the back side of the tank. This was done in order to properly trace the markers on
the pipes as it was not possible to attach the marker to the back end of the pipe. The
drop point was 33 cm from the wall and 92 cm from the back wall and the drop rig was
the same as in round 1. This can be seen in figure 4.2 and figure 4.4. Four Oqus 5+
cameras were used and the placement can also be seen in the figure 4.2. The position of
the cameras on each camera rig is the same as in the first round of experiments.

Figure 4.2: Overview of the set-up for the second round of experiments, including
positions of cameras and drop rig in the tank (grey arrows). Please notice that the drop
rig is placed such that the cylinders will be dropped parallel to the back wall.
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4.2.1 Measurement Equipment

The trajectories of the dropped cylinders in the experiments, were captured by an Oqus
Underwater System. For the first round of experiments three Oqus 5+ camaeras and one
Oqus 7+ camera, all with waterproof housing, were used. In the second round four Oqus
5+ cameras were used. For both rounds the frame rate was 179 frames per second. The
cameras are able to capture motion in three dimensions as long as at least two cameras
are able to identify the object in the water. As the cylinders in the experiments could
land in a range from 0 to 6 m from the drop point, the cameras were placed in the back
end of the tank in order to capture an area as large as possible in the first round. This
can be seen in figure 4.1, above. In the second round the cameras were placed with the
distance to the back wall where they were able to capture as much of the tank as possible
and still close enough to actually capture the motion.

The cameras capture the motion of an object by logging the position of a marker or
markers over time. The markers in the experiments in this thesis, were a reflex tape with
a thickness of 5 cm, glued on to one end and back of the cylinders. This can be seen in
figure 4.6. The Oqus cameras have a set of lights around the lens of each camera that
transmit light out into the water. The light is reflected in the markers and picked up by
the cameras.

Before the experiment different alternatives of marking the cylinders were tried out. It
was found, that with the set-up as given in the first round, the best and most even capture
of the position would occur for the cylinders were only one of the ends was marked with
reflex tape. The results from these experiments are therefore only the motion of the back
end of the cylinder. This is true for all drop cases except for drops with cylinders with
COG 1.4 cm above COV. For this instance the cylinders had to be dropped in the opposite
direction in order to prevent the cylinders from crashing into the cameras. Therefore, the
markers were placed in the front of the cylinder as this would be closest to the cameras.
The markers can be seen in figure 4.6.

4.2.2 Drop Rig

The drops in the experiments were executed by the help of the rig that can be seen in
figure 4.3. The construction is made out of wood plates and is painted to prevent the
wood from expanding or moving when subjected to water.

For drops above the water surface in round 1, two aluminium constructions were used to
give a drop height above the surface of 63 cm for a drop angle of 0o. Scaled to full scale
this gives a drop height of 13 m over the surface. The set-up was secured by weights and
vises, as can be seen in figure 4.3a. For drops 8.5 cm underneath the surface for a drop
angle of 0o, the rig lay on the cement covers over the tank, secured by two weights. This
can be seen in figure 4.3b For both cases the set-ups have been checked to be horizontal
with a leveler. This was also the case for drops in the second round of experiments, as
can be sin in Figure 4.4.
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(a) Above surface drop (b) Under surface drop

Figure 4.3: Setup of the rig in the first round of experiments.

Figure 4.4: Set-up of the rig for drops under the surface for the second round of exper-
iments.

As the experiment includes drops with initial drop angles of 15◦, 30◦, 45◦, 60◦ and 75◦,
the rig had to be built for this. The design of the drop section of the rig can be seen
in figure 4.5. The angle for which one drop is to be performed, is adjusted by moving
the black plate such that the side with the incision follows the line of the given angle.
The setting is secured by a metal stick through both plates. In the experiments it was
measured that the angles given on the drop section had an error of maximum ± 1o.
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(a) Above surface drop (b) Under surface drop

Figure 4.5: Drop section of the rig. The cylinders are dropped by the help of a magnetic
telescope arm. The drop angle are set by aligning the right side of the plate with the
indicated angles on the yellow back plate.

The drop mechanism consist of a magnet attached to a telescope arm and a steel pipe
holding the arm into place. During a drop the magnet is attached to the centre of the
cylinder such that the cylinder is normal to the steel pipe. Two wooden blocks on each
side of the end of the steel pipe support the cylinder in the right position. The cylinder
is released by pulling the telescope arm away from the cylinder.

4.2.3 Pipe Characteristics

As the theory in this thesis are based on the equations of motion presented by Aanesland
in 1987 [4], the scale and dimensions of the cylinders used in the experiments should be as
close as possible to what was used in his experiments. For a scale of 1:20.32, Aanesland
used tubes with L = 0.45 m, Dout = 0.01 m and sectional weight of 0.548 kg/m [4]. Using
a model scale of 1:20 and the same Dout and L as Aanesland, it is possible to model a
drill pipe of a full size length of 9 m. The depth of Dokka is 5 m hence giving a real
depth of 100 m.

In the experiments, the dependence of the theory on the slenderness of the body will
be checked. Therefore, while keeping the length the same, cylinders with three different
diameters will be tested. For ε equal to 1/45, 1/28 and 1/24 give approximately diameters,
D, of 0.010 m, 0.016 m and 0.019 m respectively. The dimensions in model and full size
are listed for type 1, 2 and 3 in Table 4.2.

In addition, the effect of a slightly displaced COG compared to COV will be investigated.
In particular a shift of 3% and 7% of the length will be used, that give a distance of COV
from COG, ∆CB, of 0.014 m and 0.030 m respectively. As the trajectory is expected to
be different for cases where COG is above COV in the drop and opposite, both will be
tested. As illustrated in Figure 2.2 in Section 2.3.4 ∆CB will be positive for drops where
COG is behind COV, and negative for the opposite case. The model size and full size

26



characteristics of the cylinders used in the experiments are listed for type 4 to 7 in Table
4.2.

Table 4.2: Cylinder characteristics in full scale and model scale (1:20) as used in the
first round of experiments. M/L is the sectional mass and W is the weight of the cylinder.

Type
Model scale (1:20) Full scale

Dout L M/L W ∆CB Dout L M/L W ∆CB

[m] [m] [kg/m] [kg] [m] [m] [m] [kg/m] [kg] [m]
1 0.010 0.45 0.215 0.097 0 0.20 9 86.22 776 0
2 0.016 0.45 0.451 0.203 0 0.32 9 180.44 1624 0
3 0.019 0.45 0.533 0.240 0 0.38 9 213.33 1920 0
4 0.010 0.45 0.233 0.105 0.014 0.20 9 93.33 840 0.28
5 0.010 0.45 0.233 0.105 -0.014 0.20 9 93.33 840 -0.28
6 0.010 0.45 0.253 0.144 0.030 0.20 9 128.00 1152 0.60
7 0.010 0.45 0.253 0.144 -0.030 0.20 9 128.00 1152 -0.60

From the set-up of the experiment it is required that the cylinders are made out of steel.
For the closed cylinders the ends were capped by gluing turned plugs of equal size to each
end. The ends were also covered by a sealing compound afterwards. The same method
was applied to cylinder types 4 to 7, but with plugs of different sizes dependent on ∆CB.
The cylinders used can be seen in Figure 4.6.

Figure 4.6: The cylinders used in the experiment, with D equal to 0.019 m, 0.016 m
and 0.010 m, from top to bottom.

The open cylinders dropped in the second round of experiments, have the same dimensions
as cylinder type 1 and 3, given above. The characteristics of the open cylinders are listed
in Table 4.3.

Table 4.3: Characteristics of the test pipes in model scale (1:20) and full scale used in
the second round of experiments. M/L is the sectional mass and W is the weight of the
cylinder.

Type
Model scale (1:20) Full scale

Dout Din L M/L W Dout Din L M/L W
[m] [m] [m] [kg/m] [m] [m] [m] [m] [kg/m] [m]

8 0.01 0.008 0.45 0.209 0.094 0.20 0.16 9 83.56 752
9 0.019 0.0165 0.45 0.513 0.231 0.38 0.33 9 205.33 1848
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4.2.4 Test Matrices

The test matrix from the first round of experiments can be seen in Table 4.4. Initially
all drops were performed 8 times for all types under water and for type 1 to 3 above the
water. Additional drops were performed for the drop angles where the result showed a
large spread. The weight of each cylinder was checked between each drop in order to
determine whether the cylinder was still watertight.

Table 4.4: Test matrix for the first round of experiments. The numbers listed in the
table, are the number of drops performed for each drop angle and cylinder type.

Type Underneath the surface Above the surface
15o 30o 45o 60o 75o 15o 30o 45o 60o 75o

1 8 8 8 8 8 8 8 8 8 8
2 8 8 8 16 8 8 8 8 8 16
3 8 8 8 16 8 8 8 8 16 15
4 8 8 8 8 8
5 8 16 13 8 8
6 8 8 8 8 8
7 8 8 8 8 8

For open cylinders only drops underneath the surface were performed. The reason is
that the objective of the thesis does not include comparison of capped and open cylin-
ders dropped above the surface as the effects and forces altering the trajectory will be
very different for the two cylinders. Thus, the test matrix has been as listed in Table
4.5. Initially 9 drops were performed for each drop angle, but for the drops where the
measurements were not detailed enough, additional drops were performed.

Table 4.5: Test matrix for the second round of tests with drops under the surface. The
numbers listed in the table, are the number of drops performed for each drop angle and
cylinder type.

Type 15◦ 30◦ 45◦ 60◦ 75◦
8 9 11 11 11 11
9 10 9 9 9

4.3 Post-processing

The measured position in time of each dropped cylinder in the water column, was auto-
matically saved in structure arrays in MATLAB file format by the Oqus System. The
analysis and plotting of the measurement data has consequently been performed in MAT-
LAB.

The results from the experiments include position plots and velocity plots. For the first
the trajectory have been plotted in the XYZ plane, the XY plane and XZ plane. For
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the latter the X coordinates have been found by projecting the coordinates in the XY
plane unto the X axis. This has been done in order to make it easier to compare the
experimental results to the simulations, as the theory behind assume a two-dimensional
motion.

Some of the drop data included have sudden indents in the trajectories in the transitional
area between the cameras. This might have been caused by the cameras not being
perfectly calibrated. For these cases the position plot have been smoothed by the smooth-
function in MATLAB where the effect of the smoothing did not significantly alter the
trajectory itself.

Figure 4.7: Illustration of the post-processing performed on the plotted total velocity
calculated from the position data. Blue plot line is the total velocity calculated from the
raw position data in time, red line the total velocity when peaks are removed and green line
the final velocity plot. Data before the cylinder has begun to move and after the bottom
has been reached, are not removed.

The velocities have been calculated from the change of position in time. As the position
data contain some noise and this noise will be amplified for the calculated velocity, some
processing of the data have to be performed in order to get proper velocity plots. Figure
4.7 illustrates the effect of this process. First, peaks where removed by checking whether
the difference between the velocities in two time steps was larger than half of the standard
deviation of the difference between each time step. For each time step where this occurred,
the total velocity was set to the mean of the the two neighbouring points in time. The
effect of this procedure can be seen in Figure 4.7 as a red plot line. Second, the plot
where smoothed by the same function in MATLAB as described above. This can be seen
as a green plot line in the Figure 4.7. In the final results calculated velocities for time
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instances where the cylinder had not been dropped and after the bottom was reached,
have been removed before the processing.
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Chapter 5

Results and Discussion

The following chapter present the most important results and the discussion of these.
This include the results from the experiments, the results from the theoretical simulations,
comparison of these and comparison with RP F107. The results from the experiments
are in their entirety, listed in the Appendix, and the different cylinder types are referred
to as the numbered type given in Table 4.2 and 4.3 in Chapter 4.

5.1 Results from the Experiments

The following section presents and discuss the most important results from the experi-
ments. This include drops under and above water for cylinders with variation in diameter,
open cylinders dropped under water and cylinders with longitudinal asymmetry about
the centre of gravity (COG). In the position plots of the XZ plane, the coordinates on
the X-axis are coordinates in the XY plane transposed to the X axis. In order to prevent
confusion this will be referred to as the transformed XZ plane in the following text and
as Xtr for X coordinates for this plane.

5.1.1 Drops Under the Surface with Capped Cylinders

The results from the experiments for drops under the surface for closed cylinders, are
presented as trajectory plots in Appendices A.1 to A.3, and plots of the velocity develop-
ment in Appendices B.1 to B.3. Tables with positions of the first and second turn, and
maximum velocities are given in Appendices C.1 and D.1. The cylinders in question are
listed as cylinders of type 1 to 3 in Table 4.2 in the Section 4.2.

The motion of a capped cylinder falling through the water column can be described by a
slightly curved outwards motion in the transformed XZ plane, where the steepness of the
curve is dependent on the initial angle with the surface. After a certain depth, dependent
on the initial drop angle, the motion of the cylinder slow down and an oscillatory, leaf-
like motion starts. This can be seen for a drop angle of 30◦ for type 1 and 3 cylinders
in Figure 5.1 and Figure 5.2. The height in the water for which the pendulum motion
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start, is listed as the first turn in Table 5.1 dependent on the drop angle and cylinder
type. As can be observed from the table the oscillatory motion begins in general higher
up in the water for smaller drop angles. For symmetric cylinders, the lift force created
by the axial motion of the cylinder, is concentrated at the leading edge, and thus the
front of the cylinder [17]. This will create a moment in the positive pitch direction of the
cylinder. Since the angle of the cylinder with the horizontal plane for small drop angles
is small, the required moment before the oscillatory motion start, is relatively small.

Figure 5.1: Trajectory for a capped cylin-
der of type 1 dropped under water with drop
angle 30◦. Each coloured line represent a
drop performed in the experiments.

Figure 5.2: Trajectory for a capped cylin-
der of type 3 dropped under water with drop
angle 30◦. Each coloured line represent a
drop performed in the experiments.

Table 5.1: Mean position of the first turn dependent on cylinder geometry and drop
angle, measured as the maximal horizontal excursion of the first turn. The cylinders are
of type 1, 2 and 3. Xtr is the transposed coordinate from the XY plane to the X axis
and σtr and σY are the standard deviations from the mean coordinates. Drop angles not
included have few or no turns compared to the number of drops.

Type: 1 2 3
Drop Xtr σtr Z σZ Xtr σtr Z σZ Xtr σtr Z σZ

angle [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]
15◦ 0.73 0.08 1.13 0.06 0.49 0.05 0.98 0.04 0.40 0.07 0.88 0.06
30◦ 2.37 0.35 2.20 0.27 1.61 0.23 1.72 0.18 1.47 0.09 1.60 0.07
45◦ 3.79 0.53 3.63 0.56 2.89 0.11 2.93 0.10 2.76 0.16 2.84 0.14

From Table 5.1 one can also observe that the oscillatory motion starts higher up in the
water and closer to the origin for larger diameters. This is the case for all drop angels
in the experiment where the oscillatory motion has been observed. For a larger diameter
the axial and cross sectional flow have to separate over a larger body, thus resulting in
larger negative viscous forces that will decrease the velocity of the cylinder. In addition,
the larger area of the surface of the body increases the lift and thus a larger momentum
about the COG.
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The final excursion of the cylinder from the drop point, is very much dependent on the
drop angle and the geometric properties of the cylinder. From the plots in the appendices
it is possible to observe that the falling leaf-motion oscillate around an approximate
Xtr position. Some of the drops experience a small drift skewing this oscillation line a
little. As a result the steepest drop angle has the largest excursion and the smallest the
shortest excursion, and the cylinders with the largest diameter have the shortest excursion
compared to cylinders with a larger one. This can also be observed in excursion at a depth
of 4 m for drop angles from 15◦ to 45◦, as is presented in Table 5.2. For drop angles of
60◦ to 75◦ few of the cylinders have begun their oscillatory motion before a depth of 4 m,
and the excursion for these can therefore be expected to be larger at an increased depth.

Table 5.2: Mean position of a cylinder dropped under water at a depth of 4 m for each
drop angle for cylinder type 1, 2 and 3. Xtr is the transposed coordinate from the XY
plane to the X axis and σtr and σY are the standard deviations from the mean coordinates.

Type: 1 2 3
Drop Xtr σtr Y σY Xtr σtr Y σY Xtr σtr Y σY

angle [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]
15◦ 0.89 0.19 -0.01 0.05 0.79 0.17 -0.05 0.04 0.35 0.18 -0.02 0.06
30◦ 2.32 0.56 -0.10 0.36 1.51 0.35 0.07 0.27 1.35 0.19 -0.10 0.14
45◦ 3.67 0.51 -0.04 0.81 2.79 0.12 -0.05 0.27 2.58 0.13 -0.21 0.29
60◦ 2.79 0.39 0.06 0.50 2.94 0.45 -0.73 0.59 2.48 0.67 -0.73 1.08
75◦ 1.49 0.18 0.02 0.18 1.68 0.04 0.16 0.26 1.81 0.17 -0.11 0.46

The spread in the results in the transformed XZ plane is also indicated in Table 5.2. It is in
general very varying independent geometry and drop angle. As can be seen in Figure 5.1
and Figure 5.2 there are small differences in the trajectory before the oscillatory motion
starts, indicating that the difference might be caused by mass and small differences in
viscous forces.

The highest velocities occur for the steepest drop angle independent on cylinder type.
This can be read from Table 5.3 where the mean maximum velocity, V̄max, is listed
with the standard deviation, σV̄max , for each cylinder type and drop angle. For steeper
drop angles the mass force have a larger impact on the motion compared to the lift and
viscous forces, resulting in a higher velocity. As the highest velocity for each drop angle
are obtained for cylinder type 1 and cylinder type 3 is more than twice as heavy as type
1, it is possible to conclude that the effect of the size of the viscous forces acting on the
cylinder, influence the velocity and the trajectory to a larger extent than the mass.
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Table 5.3: The average maximal total velocity, V̄max, and standard deviation, σV̄max,
dependent on cylinder type and drop angle in the experiments. The cylinders are of type
1, 2 and 3.

Type: 1 2 3
Drop V̄max σV̄max

V̄max σV̄max
V̄max σV̄max

angle: [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]
15◦ 0.85 0.02 0.85 0.03 0.79 0.02
30◦ 1.53 0.09 1.33 0.09 1.17 0.03
45◦ 2.17 0.09 1.92 0.07 1.70 0.03
60◦ 2.68 0.07 2.43 0.10 2.43 0.10
75◦ 2.96 0.05 2.60 0.02 2.33 0.03

In general, the total velocity peaks in value before the first turn, and then the size of
the velocity decreases and increases with a small difference corresponding to the oscil-
latory motion afterwards. This can be seen Figure 5.3 for cylinder type 1 and 3. An
approximate minimum is 0.5 m/s for cylinder type 1 and 0.4 m/s from cylinder type 3.
The approximate maxima in the oscillations are 0.8 m/s for both type 1 and 3. The fact
that the minima are not zero are caused by a vertical motion in the water even when the
horizontal motion is zero and the cylinder shift direction. However, these results are not
very exact and more experiments on a larger water depths are required to give a good
result.

(a) Type 1. (b) Type 3.

Figure 5.3: Total velocity compared to depth for closed cylinders. The cylinders are
dropped under the surface with initial drop angles 15◦, 30◦, 45◦, 60◦ and 75◦. Each plot
line represents an example of the total velocity development. The sudden jumps in the
graphs are caused by a jump in the position measurement, resulting in a jump in the
velocity graphs as the velocity is calculated from the position.
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5.1.2 Drops of Open Cylinders

The results from the experiments for drops under the surface for closed cylinders, are
presented as trajectory plots in Appendices A.7 and A.8, and as velocity plots in Ap-
pendices B.7 and B.8. Tables with positions of the first and second turn, and maximum
velocities are given in Appendices C.3 and D.3. The cylinders in question are listed as
cylinders of type 8 and 9 in Table 4.3 in Section 4.2.

The trajectory of open cylinders falling in the water column can be described in similar
terms to the motion of capped cylinders in the transformed XZ plane. As with capped
cylinders, the oscillatory motion begin higher up in the water column for cylinders with
a larger diameter compared to those with a smaller one, resulting in a smaller excursion
from the drop point. The difference in the excursion can be seen in Table 5.4, listing the
excursions, Xtr, Y coordinates and their respective standard deviations at a depth of 4
m.

Table 5.4: Mean position of an open cylinder dropped under the water at a depth of 4
m for each drop angle for cylinder type 8 and 9. Xtr is the transposed position from the
XY plane onto the X axis, and σtr and σY are the standard deviations from the mean
coordinates.

Type: 8 9
Drop Xtr σtr Y σY Xtr σtr Y σY

angle [m] [m] [m] [m] [m] [m] [m] [m]
15◦ 0.85 0.13 -0.15 0.08
30◦ 1.91 0.14 -0.19 0.18 1.20 0.37 -0.06 0.09
45◦ 2.57 0.17 -0.22 0.28 1.38 0.10 -0.07 0.14
60◦ 3.12 0.12 -0.10 0.25 2.09 0.10 -0.10 0.19
75◦ 2.62 0.26 -0.20 0.24 1.79 0.09 -0.14 0.24

In general, the excursions for open cylinders are significantly shorter compared to cylin-
ders with capped ends. This can be deduced by comparing the excursions from the drop
point for the open and closed cylinders that have turned. The difference is caused by the
fact that the open cylinders turn higher in up in the water column and closer to the drop
point, as can be observed for a drop angle of 60◦ in Figure 5.4. For the open cylinder
the axial drag is reduced as the flow does not meet a blunt front end of the cylinder, but
only have to separate around the edges. Thus, there will be flow through and around the
body, reducing the pressure on the cylinder itself. The result is a higher axial velocity
and consequently an increased lift on the cylinder. The effect of this on the motion can
be seen in Figure 5.5 where the motion of a cylinder with capped ends and one with open
ends with the same dimensions and the same drop angle, are plotted. By studying the
two plots it can be observed that the angle with the horizontal plane as the cylinder turn,
are steeper for the open cylinder compared to the closed one. This is also caused by the
size of the velocity and the lift force.
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(a) Type 8. (b) Type 9.

Figure 5.4: Comparison between the trajectory in the XZ plane for open (red lines) and
closed cylinders (black lines) dropped under water with a drop angle of 60◦.

(a) Type 3. (b) Type 9.

Figure 5.5: Orientation in water for capped and open cylinder at an drop angle of 30◦
as measured in the experiments.

In Figure 5.4 it is possible to observe that for cylinders of type 9 have a larger first turn
as part of the oscillatory motion compared to the turns further down into the water.
As this is not the case for capped cylinders, this indicate that this might be caused by
the internal flow. However, this pattern are not observed for type 8 cylinders. Type 9
cylinders have a double internal diameter compared to cylinder type 8. The internal flow
regime might therefore be slightly different in the two cylinders. Also, the fact that this
occur for the first turn, indicate that this is linked to the velocity of the cylinder. The
velocities further down in the oscillatory motion are much smaller.
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For open cylinders the maximum velocities are approximately the same for both cylinder
types, as listed in Table 5.5, thus indicating that the value of the slenderness parameter is
of less significance when considering the velocity. As the flow separation in the direction
of motion is limited to the separation around the edges of the cylinder the velocity is
less reduced for larger diameters. This is also the reason why V̄max is in general larger
for all drop angles compared to capped cylinders. However, as with cylinders with end
caps, V̄max is obtained relatively early in the trajectory and before the oscillatory motion
begins, as can be seen in Figure 5.6.

Table 5.5: The average maximal total velocity, V̄max, and standard deviation, σV̄max,
dependent on cylinder type and drop angle in the experiments. The cylinders are open
and dropped under the water surface.

Type: 8 9
Drop V̄max σV̄max

V̄max σV̄max
angle: [m/s] [m/s] [m/s] [m/s]

15◦ 1.05 0.05
30◦ 1.68 0.05 1.66 0.03
45◦ 2.35 0.07 2.32 0.04
60◦ 2.87 0.06 2.89 0.02
75◦ 3.29 0.05 3.30 0.02

(a) Type 8. (b) Type 9.

Figure 5.6: Total velocity compared to depth for open cylinders. The cylinders are
dropped under the surface for drop angels 15◦ (only type 8), 30◦, 45◦, 60◦ and 75◦. Each
plot line represent an example of the total velocity development.
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5.1.3 Cylinders Asymmetric about the Centre of Gravity

The drops performed for cylinders with a COG different from the centre of volume (COV)
have been executed for COG above the COV, and COG in front of the COG, as described
in Section 4.2. The results are presented as position plots in Appendices A.9 to A.12, and
as velocity plots in Appendices B.9 to B.12. Position and velocity tables are presented in
Appendices C.4 and C.5, and Appendices D.4 and D.5, respectively. The characteristics
of the cylinders are listed in Table 4.2 in Section 4.2.

For all drops except drops with cylinders of type 4 with initial drop angle of 15◦, 30◦ and
45◦, the motion of the aft of the cylinder has been tracked. For the excepted cases the
fore part has been tracked. As a result of measuring the front end instead of the back, the
cylinder will start slightly deeper in the water dependent on the drop angle, the excursion
of the first turn will be larger and the measurements of the trajectory will stop before
the bottom. However, the motion of the cylinder before and after the area where the
turn occur, will be very similar to the motion of a cylinder with the same characteristics
where the aft is measured.

(a) Type 4. (b) Type 6.

Figure 5.7: Trajectory for cylinders dropped under water with COG above COV for an
drop angle of 45◦. Each coloured line represent a drop.

For all performed drops where the COG is above the COV, the general motion can be
described by a slight curved motion before the cylinder flips, followed by a straight, very
stable motion in the opposite direction thereafter. This can be seen in Figure 5.7. The
height in the water column for which the turn occur, is dependent on the drop angle and
the relative position of the COG in the cylinder. This can be read from Table 5.6, listing
the positions of the flip in the water column for each cylinder type dependent on the drop
angle.
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Table 5.6: Mean position of the flip for cylinders dropped with COG above COV. The
positions are dependent on the relative position of COG and the drop angle. The cylinders
are of type 4 and 6. Drops where the front of the cylinder are measured is marked with F
and cases where the back are measured is marked A. Z corr. give an estimate of where the
aft would have been in the turns, as the origin mark the beginning of the tracked motion.
Z corr. has been calculated basted on the initial drop angle and length of the cylinders.

Type: 4 6
Drop Fore(F)/ Xtr σtr Z Z corr. σZ Fore(F)/ Xtr σtr Z σZ

angle Aft (A) [m] [m] [m] [m] [m] Aft (A) [m] [m] [m] [m]
15◦ F 0.21 0.10 0.36 0.47 0.15 A 0.07 0.01 0.45 0.01
30◦ F 0.65 0.05 0.57 0.8 0.03 A 0.41 0.01 0.84 0.01
45◦ F 1.74 0.09 1.29 1.61 0.08 A 1.04 0.02 1.35 0.02
60◦ A 2.62 0.21 2.97 0.21 A 1.66 0.03 2.15 0.05
75◦ A 3.04 0.03 4.31 0.05 A 2.14 0.00 3.17 0.07

For small drop angles there are little difference between the two types of cylinders for the
height of which the flip occur. For small angles the required moment necessary for this
to happen is small and thus less dependent on the relative position of COG. For drop
angles from 45◦ there is a clear dependence on the relative position of COG as cylinder
type 4 with only a small ∆CB flip increasingly deeper compared to type 6, dependent on
the drop angle.

In general for cylinders dropped with COG above COV, the cylinders with the smallest
shift in COG have the largest excursion from the drop point. As the length of ∆CB the
moment created by the relative position of COG is small and hydrodynamic forces will
affect the motion to a larger extent, compared to higher values of ∆CB.

Table 5.7: Mean position at a depth of 4 m for a cylinder dropped under water with COG
above COV, for each drop angle for cylinder type 4 and 6. Xtr is the radial coordinate
from the XY plane, and σtr and σY are the standard deviations from the mean coordinates.

Type: 4 6
Drop Fore(F)/ Xtr σtr Y σY Fore(F)/ Xtr σtr Y σY

angle Aft (A) [m] [m] [m] [m] Aft (A) [m] [m] [m] [m]
15◦ F -4.35 0.41 -0.27 0.94 A -2.49 0.19 0.07 0.45
30◦ F -3.43 0.20 -0.57 0.80 A -1.66 0.14 0.04 0.50
45◦ F -1.04 0.24 0.01 0.54 A -0.71 0.15 0.41 0.29
60◦ A 1.72 0.46 -0.13 0.14 A 0.65 0.15 -0.12 0.30
75◦ A 2.73 0.06 -0.31 0.15 A 1.80 0.14 -0.03 0.19

For drops where the cylinder has been dropped with COG under COV, the trajectory
can simply be described as a straight path from the drop point to the bottom. This can
be seen in Figure 5.8. The steepness of the path depends on the initial drop point. The
trajectory is most linear for type 5 cylinders where the COG are only displaced with
a few percentage of the length. For type 7 cylinders the trajectory is slightly curved
inwards. This very stable, linear motion, which also occur for cases where cylinders are
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dropped with COG above COV, can be explained from the dynamic stability of a ship as
described in [17]. The stability is dependent on the length from the COG to the trailing
edge, xT . For sufficiently large values of xT the ship will be stable and thus by moving
the COG towards the fore part of the ship, the directional stability will increase [17].
However, as the cylinder is falling in the water column, which is not the case for a ship,
and thus affected by the moment created by the buoyancy and mass force, moving COG
too far towards the front will affect the trajectory. This is the case of the slightly curved
trajectory of cylinder type 7.

(a) Type 5. (b) Type 7.

Figure 5.8: Trajectory for cylinders dropped under water with COG under COV for an
drop angle of 45◦. Each coloured line represent a drop.

As for cases where the cylinder has been dropped with COG above COV, the maximum
excursion for cylinders dropped with COG under COV from the drop point, is also largest
for the cylinder with the smallest shift in the relative position of COG. This can be found
by comparing the excursions in Table 5.8 for a depth of 4 m. Compared to the other
drop experiments performed in this thesis, the excursion for cylinder type 5 for an drop
angle of 15◦ is the absolute largest.

Table 5.8: Mean position of a cylinder dropped under water with COG under COV
at a depth of 4 m for each drop angle for cylinder type 5 and 7. Xrad is the radial
coordinate from the XY plane and σrad and σY are the standard deviations from the mean
coordinates.

Type: 5 7
Drop Xrad σrad Y σY Xrad σrad Y σY

angle [m] [m] [m] [m] [m] [m] [m] [m]
15◦ 4.65 0.22 0.20 1.28 2.81 0.12 0.33 0.33
30◦ 3.79 0.27 -0.43 1.08 2.34 0.07 0.24 0.34
45◦ 2.59 0.17 -0.16 0.57 1.73 0.12 -0.05 0.36
60◦ 1.70 0.16 -0.22 0.38 1.14 0.12 0.10 0.17
75◦ 0.98 0.04 -0.09 0.09 0.52 0.10 0.02 0.10
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The cylinders dropped with COG above COV have velocities that peak before they
decrease and the cylinders turn. Afterwards the velocity increases. For the cylinder with
the largest shift in COG the velocity is larger after the flip. The maximum velocities are
listed in Table 5.9. As can be read from the table there is a large difference in V̄max for
type 4 and type 6 cylinders.

Table 5.9: The average maximal total velocity, V̄max, and standard deviation, σV̄max,
dependent on cylinder type and drop angle in the experiments. The cylinders have COG
behind COV and are dropped under water. The cylinders are of type 4 and 6.

Type: 4 6
Drop V̄max σV̄max

V̄max σV̄max
angle: [m/s] [m/s] [m/s] [m/s]

15◦ 1.88 0.20 2.94 0.18
30◦ 1.94 0.11 3.04 0.12
45◦ 2.11 0.05 3.03 0.07
60◦ 2.39 0.04 3.06 0.13
75◦ 2.88 0.03 2.82 0.09

For cylinders dropped with COG under and in front of COV, the velocity increases from
the drop point before it converges to a constant velocity. The converged velocity is nearly
independent of the drop angle for the cylinder where the COG is closest to the front end.
This might be because the angle of attack of cylinder type 7 is much steeper compared to
type 5. This may indicate that the mass forces are affecting the motion to larger degree
compared to the hydrodynamic forces. This may also explained the difference observed
for cylinders of type 4 and 6.

(a) Type 5. (b) Type 7.

Figure 5.9: Total velocity compared to depth for cylinders with asymmetry about COG.
The cylinders are dropped under the surface for drop angles 15◦, 30◦, 45◦, 60◦ and 75◦.
Each plot line represent an example of the total velocity development.

V̄max are listed for cylinder type 5 and 7 in Table 5.10. Cylinder type 7 has, as mentioned,
the highest V̄max. Compared to closed and open, geometrical symmetric cylinders the
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maximum velocities for cylinder type 7 are higher. More importantly the velocity converge
and consequently the probability of causing critical damage on equipment and structures
in the water column, is much higher.

Table 5.10: The average maximal total velocity, V̄max, and standard deviation, σV̄max,
dependent on cylinder type and drop angle in the experiments. The cylinders have COG
in front of COV and are dropped under water. The cylinders are of type 5 and 7.

Type: 5 7
Drop V̄max σV̄max

V̄max σV̄max
angle: [m/s] [m/s] [m/s] [m/s]

15◦ 2.03 0.10 3.20 0.09
30◦ 2.33 0.15 3.22 0.05
45◦ 2.75 0.13 3.27 0.11
60◦ 2.98 0.04 3.33 0.10
75◦ 3.08 0.05 3.47 0.09

5.1.4 Drops from Above the Surface

The results from drops of cylinders of type 1, 2 and 3 dropped above the water surface
are presented as position plots in Appendices A.4 to A.6, as velocity plots in Appendices
B.4 to B.6, and as position and velocity tables in Appendix C.2 and Appendix D.2.

The motion of a slender, cylindrical object dropped above the surface, is to a large degree
altered by the motion through the surface itself. This can clearly by observed by studying
the figures of the cylinder trajectories in the transformed XZ plane in the appendices.
By comparing the experimental results for drops above water with the results for drops
underneath the surface, one can roughly observe that the angle of attack is in general
altered with −15◦ to −30◦. This is caused by the impact force between the cylinder and
the water surface, described as slamming, and the occurrence of air cavity.

Air cavity was observed for all cylinders dropped from air, and air bubbles at the upper
front and the aft of the cylinder were observed for drop angles from 30◦ to 75◦. For
cylinder type 3 this can be seen in Figure 5.10 that show the development in the water
entry phase, and in Figure 5.11 and Figure 5.12 that show attached air bubbles at the
upper front and at the back of the cylinder. As described in Chapter 2, the creation of
bubbles and time until pinch-off are dependent on the Froude number, Fn. By applying
Equation 2.34 in Chapter 2 the velocity of a cylinder falling in air from a height of 0.65
m is estimated to be 3.57 m/s. This give a Fn between 8.3 and 11.4 which correspond
to a low-speed and transitional flow regime. Thus one could expect pinch-off to occur
relatively deep into the water for the first, while for the second there could be several
pinch-offs and a more complex cavity behaviour.

The effect of the presence of air cavity contribute to the difference observed for drops
under and above water. Only the position of the cylinder in the water have been measured,
and it is therefore hard to determine the exact impact of the vibrating air bubbles. The
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change of buoyancy as the cylinder move through the surface might explain why the first
turn for drop angles of 15◦ has a small radii compared to the following oscillatory motion.

Figure 5.10: Water entry of a cylinder of type 3 dropped with COG 63 cm above the
surface with a drop angle of 45◦. The upper part of the picture is the mirrored reflection
from the free surface.

Figure 5.11: Drop angle: 45◦. Cavitation
bubbles on the upper front and the back end
of a type 3, dropped with COG 63 cm above
the water surface with a drop angle of 45◦.

Figure 5.12: Drop angle 60◦. Cavitation
bubbles on the upper front and the back end
of a type 3 cylinder, dropped with COG 63
cm above the water surface with a drop angle
of 60◦.

The motion through the surface has a great impact on the motion of the cylinders. This
can also be observed in the maximum radial excursion and the excursion at a depth
of 4 m. The latter are listed in Table 5.11. Compared to the results for the cylinders
dropped under the surface the excursion of the drop cases where the cylinder has started
its oscillatory motion, the drops above the surface have a smaller excursion. The pattern
that the most slender cylinder have the largest excursion, is also the case when dropped
above water.
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Table 5.11: Mean position of a cylinder dropped above the water at a depth of 4 m
for each drop angle for cylinder type 1, 2 and 3. Xtr is the transposed coordinate from
the XY plane to the X axis, and σtr and σY are the standard deviations from the mean
coordinates.

Type: 1 2 3
Drop Xtr σtr Y σY Xtr σtr Y σY Xtr σtr Y σY

angle [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m]
15◦ 0.22 0.12 -0.02 0.03 0.16 0.29 0.05 0.11 0.04 0.15 -0.03 0.03
30◦ 0.70 0.25 0.01 0.10 0.34 0.26 0.04 0.05 0.05 0.20 -0.08 0.13
45◦ 1.47 0.28 -0.04 0.15 0.90 0.22 0.03 0.08 0.64 0.17 -0.12 0.16
60◦ 2.64 0.57 0.20 0.31 1.66 0.14 -0.15 0.18 1.54 0.54 -0.36 0.72
75◦ 3.21 0.24 -0.28 0.71 3.40 0.49 0.39 1.16 2.83 0.47 -0.43 1.50

In the experiments the velocity of the dropped cylinder is first captured by the cameras
after the cylinder has pierced the surface. For drop angles from 15◦ to 45◦ the cylinder
will gain the maximum velocity as it falls through the air. In the velocity plots in in
Figure 5.13 it can clearly be seen that the total velocity of the cylinder decreases rapidly
after the object pierce the surface for drop angles 15◦ to 60◦. By applying Equation 2.34
in Chapter 2 the velocity of a cylinder falling in air from a height of 0.65 m is estimated
to be 3.57 m/s.

(a) Type 1. (b) Type 3.

Figure 5.13: Total velocity compared to depth for cylinders with dropped above the
surface. The cylinders are dropped under the surface for drop angles 15◦, 30◦, 45◦, 60◦
and 75◦. Each plot line represent an example of the total velocity development.

As the cylinder lose a large part of its energy gained from falling in the air, V̄max is
smaller for all drop angles and cylinder types tested in the water column. This can be
read from Table 5.12 listing V̄max dependent on cylinder type and drop angle. As with
closed cylinders dropped under water, the maximum velocities are highest for the cylinder
with the smallest diameter. In general the velocities are higher compared to the velocities
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for drops under water, but this is mainly a result of the velocity achieved as the cylinder
fall through air.

Table 5.12: The average maximal total velocity, V̄max, and standard deviation, σV̄max,
dependent on cylinder type and drop angle in the experiments for drops above the water
surface. The cylinders are of type 1, 2 and 3.

Type: 1 2 3
Drop V̄max σV̄max

V̄max σV̄max
V̄max σV̄max

angle: [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]
15◦ 1.91 0.50 1.56 0.19 0.78 0.03
30◦ 1.51 0.15 1.74 0.35 0.81 0.04
45◦ 1.76 0.30 1.66 0.20 1.22 0.04
60◦ 2.13 0.19 2.09 0.20 1.79 0.07
75◦ 2.88 0.14 2.65 0.09 2.39 0.05

5.1.5 Spreading in the XY Plane

The largest spreading in the XY plane can be observed for drops of closed cylinders that
are symmetric about the COG. In general the degree of spreading for all drop cases are
dependent on the cylinder diameter and the initial drop angle. For cylinders of type 1 to
3 an increase in diameter result in a larger deviation from the X-axis in the XY plane.
This can be read from σY in Table 5.2 and Table 5.11. For both cases the spreading
increase up until a drop angle of 45◦ for type 1 cylinders dropped under water, 60◦ for
type 2 and 3 dropped under water, and 75◦ for type 2 and 3 dropped above the water
surface. The most extreme excursions occur for type 3 cylinders under water, as can be
seen in Figure 5.14, and for both type 2 and 3 above water. The excursion of the latter
can be seen in Figure 5.15. For these drops some of the cylinders turn up to 180◦ and
land parallel to the drop rig. Some of the cylinders turned up to 90◦ and then hit the
wall either on the left or right side, indicating that for a larger tank the excursion could
have been even larger.
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Figure 5.14: XY plot for drop under the surface for closed cylinders of type 3, at a drop
angle of 60◦. This is the maximum excursion from the X axis for all capped cylinders
dropped under water. The cameras have not managed to capture the full width of the tank
and the actual excursion observed in the experiments are wider.

(a) Type 2. (b) Type 3.

Figure 5.15: XY plot for closed cylinders dropped 0.63 m above the surface at a drop
angle of 75◦. These are the instances where the maximum excursion occur as observed
in the experiments. The cameras have not managed to capture the full width of the tank
and the actual excursion observed in the experiments are larger.

The deviation from the X-axis might be caused by asymmetric cross-flow separation.
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The asymmetry will cause a side force on the cylinder resulting in a curved motion in
in the XY plane [6]. In general the vortex shedding around a cylindrical object develop
over time. The boundary layer of a cylinder in an impulsively started flow will after a
certain time lapse, separate from the surface of the cylinder [19]. The time is dependent
on the Reynolds number, Re, and the diameter of the cylinders. The distance covered
until boundary layer separation begin, s′, for a cylinder with constant acceleration from
rest, is s′ = 0.293 ∗ d = 5.567 mm for a cylinder with a diameter of 19 mm. The vortex
shedding is expressed in the theory as the cross-flow coefficient, CDz. The development
of CDz over time can be seen in Figure 5.16, where the data is based on experiments
performed by Sarpkaya [19]. Based on Figure 5.16 one can roughly estimate that the
first asymmetry will occur for s = 76 mm after boundary layer separation, and the first
vortex at s = 162 mm. Comparing this to Figure 5.14 and results in the appendices, this
correspond with the development of the motion, and could therefore be the cause of the
large spread. Further work on the subject is required to determine this properly.

Figure 5.16: Drag coefficient, CDz, noted as CDc in the figure, for a circular cylinder
in impulsively started laminar flow. s

R
is the relative displacement where s is the dis-

placement of the cross flow and R is the radius or the half width of the body. For circular
cylinders s

R
≈ V t

R
for all practical purposes.[19]

The fact that the largest excursion occur for a drop angle of 60◦ for cylinders dropped
under water and for 75◦ for cylinders dropped above, indicate that there might be a
certain angle of attack where a large directional instability occur. From the position
plots in the appendices the angle of attack of the cylinder around the point where the
excursions begin, can roughly be calculated to be around 60◦.

The spread in the XY plane for open cylinders are small. σY as given in Table 5.4 have
small values with a maximum deviation from the X axis of ± 0.8 m. The flow through
the cylinders work as a stabilizing steering effect along the X-axis. This is especially
clear for cylinder type 3. Moreover, because of the small area over which the flow have
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to separate, the separation around the edges is less likely to cause a complex flow over
the cylinder.

For cylinders that are asymmetric around the COG, the largest excursion in the XY
plane occur for small drop angles, independent on whether the COG or COV are above
the other. For cylinders with a small shift in COG from COV, as are the case for type
4 and 5, there is a clear reduction in the excursions for higher drop angles, as can be
concluded from Table 5.7 and Table 5.8. This is not as evident for cylinder type 6 and
7 as the COG is moved further towards the front of the cylinder, thus resulting in a
more stable motion in the XY plane. For small drop angles the velocities are small in
the beginning, and thus small disturbances can affect the direction of motion. As with
closed cylinders the cylinders with COG different from COV experience a slightly curved
motion that might be caused by asymmetric vortex shedding along the cylinder.

In conclusion, the largest spreading occur for closed, symmetric cylinders for steep drop
angles. For these cases, the assumption presented by Aanesland that the motion can
be assumed to have small deviations in the XY plane such that the trajectory can be
described in the 2D plane [4], is not correct. This is also the case for asymmetric cylinders
around the COG. However, for open cylinders the deviation from the X-axis is in general
small enough to assume two dimensional motion.

5.1.6 Risk Assessment and Evaluation of the Results

For all drop cases performed in the experiments, the highest velocities occurred for open
cylinders for drops under water with a mean maximum velocity at 3.3 m/s for a drop
angle of 75◦ for cylinder type 9. Scaled to full size this give a velocity of 66.0 m/s. This
velocity is reached early in the trajectory and before the maximum horizontal excursion
of the first turn. The maximum velocity in the oscillatory motion, however, is less than
1.4 m/s, i.e. 28.0 m/s in full size. Therefore, the most critical risk for symmetric cylinders
will be to hit an object high up in the water as this is where the highest velocity and thus
the highest impact, force will occur.

For cylinders that are asymmetric around the COG the velocities converge towards a
maximum velocity for cylinders dropped with COG under COV. From the velocity plots
it looks like this would also be the case for drops with COG above COV, but this require
experiments at larger depths to determine. Compared to symmetric cylinders this con-
stant final velocity is quite high. Maximum velocity occur for cylinder type 7 for a drop
angle of 75◦, with V̄max equal to 3.47 m/s, i.e. 69.4 m/s in full scale. Thus, the impact
risk is quite high for all depths where the maximum velocity has been reached.

As accidental drops from under the water surface will only have the possibility to occur
for an installation process occurring under water, effects from entering the water surface
have to be considered. In the few drops performed above the surface in this thesis, the
water surface has been completely still. This is rarely the case offshore. The presence
of waves will alter the angle of attack of the dropped cylindrical object, and dependent
on the velocity of the wave it might act on the cylinder as a sideways force, altering the
trajectory. Thus, the possibility that the cylinder will enter the surface with a completely
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vertical orientation is small. Katteland and Øygarden (1995) argue that the majority of
drops from crane accidents will hit the surface with an angle of attack between 45◦ and
90◦. For drop of pipes from the derrick, the angle of attack is between 75◦ and 90◦ [12].
Even with water entry effects the cylinders will still have an angle of attack after entering
the surface, that can result in high velocities and a large spread.

Overall, the maximum velocities obtained in the experiments could indicate critical dam-
age on installations and equipment in the sea. However, it should be noted that it is not
possible to scale the results to full a full size environment, as the geometrical similarity
will not be obtained both for the Reynolds number and Froude number. In addition, in
full scale there will be a larger presence of turbulent flow and the boundary layer will be
larger and might be slightly different. Nevertheless, the scaling of the results from the
experiments can give an estimate of what one can expected.

5.2 Comparison Between Experimental Results and
DNV-GL RP F107

In RP F107 it is assumed that the excursion under the drop point for accidentally dropped
objects will be normal distributed. The width of the distribution used to calculate the
expected excursion of a accidentally dropped object, is dependent on the object in ques-
tion. Figure 5.17 show the distribution at a depth of 4 m for the the aft end of the
cylinders obtained in the experiments. This include all the drops performed in the ex-
periments. Since the distribution is based on radial excursion, it is assumed that the
cylinders dropped with COG behind COV are dropped in the opposite direction of the
rest.

Even though the distribution presented in Figure 5.17 might be hard to fit to a dis-
tribution in particular, mirroring the distribution around origin will not give a normal
distribution. However, including bulkier and less slender objects might give a result closer
to the distribution assumed in RP F107. One should bare in mind that the distribution
in Figure 5.17 does not include drops with initial angles of 0o and 90o. These would, for
ideal conditions, land straight underneath the drop point. Though, as also Aanesland
remarked, for 90◦ small disturbances the symmetry about the cylinder axis will be de-
stroyed and thus the cylinder will deviate from its straight trajectory and there would be
a larger excursion [4]. Also some of the capped cylinders dropped with initial angels of
60◦ and 75◦ had not yet started their oscillatory motion. Therefore, one can expect that
the the distribution at a larger depth will be wider and rightmost part elongated.
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Figure 5.17: Statistical distribution of the radial excursion at a depth of 4 m based
on the experiments performed in this master thesis. This include drops of cylinders with
length 0.45 m and diameter of 0.01 m, 0.016 m and 0.019 m under and above the surface,
open cylinders with the same length and diameter of 0.01 m and 0.019 m, and cylinders
with length 0.45 m and diameter of 0.01 m with COG 1.4 cm and 3 cm from COV. The
drops have been performed with initial drop angles of 15◦, 30◦, 45◦, 60◦ and 75◦ and the
positions refere to the aft end of the cylinders.

The recommended practice provide a method to roughly estimate the excursion from the
drop point, δ, at the sea floor. The method have been described in Section 1.1. As full
scale excursion is most relevant the results from the experiments are scaled to represent
full scale cylinders. The full scale characteristics of the dropped cylinders are presented in
Table 4.2 and Table 4.3 in Section 4.2. As the full size weight of the largest cylinder is less
than 2 tonnes, the objects in question can be categorised as flat or long shaped cylinders
with a weight less than 2 tonnes, giving an angular deviation, α, of 15◦ from RP F107
for all cylinders. The estimated excursion based on and the scaled results from drops
with cylinder type 1, 5 and 9 in the experiments, are presented in Table 5.13. Cylinder
type 1 and 5 have the largest excursions found in the experiments, while type 9 have the
shortest. For type 1 cylinders few of the dropped cylinders have started their oscillatory
motion for drop angles of 60◦ and 75◦, and these excursions are therefore expected to be
larger. This will be included in the following comparison.
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Table 5.13: Comparison with estimated excursion from DNV-GL RP F107 and excur-
sion from the experimental results scaled to full size drilling pipes by a factor of 20.

Type 1 5 9 DNV-GL RP F107

Drop angle δ [m],
σ [m] δ [m],

σ [m] δ [m],
σ [m] δ [m], δ [m], δ [m],

80 m 80 m 80 m 80 m 180 m 400 m
15◦ 17.80 3.80 93.00 4.40 21.44 48.23 107.18
30◦ 46.40 11.20 75.80 5.40 24.00 7.40 21.44 48.23 107.18
45◦ 73.40 10.20 51.80 3.40 27.60 2.00 21.44 48.23 107.18
60◦ 55.80 7.80 34.00 3.20 41.80 2.00 21.44 48.23 107.18
75◦ 29.80 3.60 19.60 0.80 35.80 1.80 21.44 48.23 107.18

For a depth of 80 m the method provided in RP F107 largely underestimate the expected
excursion for most drop angles. This is the full scale depth for the experiments executed
in this thesis. It is however able to cover the excursion for a few of the drop angles.

At 180 m RP F107 argue that the increase in the spreading due to increased depth,
will stop and the spreading will be constant and independent on depth. For perfectly
symmetric cylinders this might be true because of the oscillatory motion, however as the
experiments in this thesis have proved, only a small change in the relative position of
COG might alter the trajectory of a slender body in the water column a lot. Either
way, as can be read from the Table 5.13, the estimated excursions do not cover the full
possible length from the drop point on the sea bottom for cylinders of type 1 and 5. The
estimated excursions first cover the experimental excursions calculated at 80 m, for a
depth of 400 m.

Overall, the method provided in RP F107 underestimate the excursion of the dropped
cylinders. The difference between the excursions estimated and the excursions found in
the experiments, are smallest for cylinder type 9 in general, but also here the excursions
are larger. If a worst case scenario is considered the method is not sufficient at all.
Even though proper scaling to full size application cannot be achieved, the difference
between the experimental excursions and the estimated excursions are too large. The
method given in RP F107 in itself, is very general in the treatment in body types and
weights, where the categories used to estimate the excursion could cover bodies with very
different slenderness parameters. This might explain the difference between the estimated
and actual results.
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5.3 Results from the Calculated Trajectories

The theory presented by Aanesland in 1987 [4], to describe the motion of a falling cylinder
in the water column, assume that the motion will have negligible excursion from the XZ
plane. This is not the case for capped cylinders dropped above and under the surface for
large drop angles. For open cylinders the assumption can be valid, while for cylinders with
a small shift in COG it could be valid for large drop angles, as discussed in Section 5.1.5.
In order to be able to compare the simulated results with the actual experimental results,
the coordinates in the XY plane have been transformed to the X axis. In addition,
in the following results of the simulations the position of the aft and fore part of the
cylinder has been calculated and plotted dependent on which end has been measured in
the experiments.

5.3.1 Capped cylinders

In the theory presented in Chapter 2, the coefficients and constants not absolutely de-
termined are the axial drag coefficient, CDx, the cross-flow drag coefficient, CDz, and the
effective trailing edge, xT . Underneath in Figure 5.18 and 5.19 the effect of varying CDx

for cylinders of type 1 and 3 are presented. As can be seen in the figures, only values half
as big and a half value larger as 0.65 of CDx give a noticeable change in the trajectory.
Therefore it is reasonable to keep the value of CDx = 0.65 as given in Hoerner [10].

Figure 5.18: Simulated results for varia-
tions in CDx with ± 50% (0.975 and 0.325)
and ± 10% (0.715 and 0.585) from CDx =
0.65 for a drop angle of 45◦ for cylinder type
1. The calculated results are represented as
coloured lines and the experimental results in
black. As can be observed the variation in
CDx have a relatively small impact on the
trajectory.

Figure 5.19: Simulated results for varia-
tions in CDx with ± 50% (0.975 and 0.325)
and ± 10% (0.715 and 0.585) from CDx =
0.65 for a drop angle of 45◦ for cylinder type
3. The calculated results are represented as
coloured lines and the experimental results in
black. As can be observed the variation in
CDx have a relatively small impact on the
trajectory.
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Variations in xT and CDz however, give a variation in the result of significance. Figure
5.26 to Figure 5.31 show the results of variation in these coefficients compared to the
experimental results. As can be observed from the figures xT influence the size of the
oscillatory motion, while CDz mainly has an impact on the excursion from the drop point.
When considering the value of xT for each drop angle the best fit for small drop angels
is a value of xT/L from 0.3 to 0.4. For steep drop angles a value of xT/L of 0.5 gives the
best fit. This correspond well to the results found by Aanesland. He suggest to use a
small value of xT/L for small drop angle and values corresponding to xT/L close to the
trailing edge for steeper drop angles [4].

In general the effect of varying CDz has more impact on the motion for type 1 cylinder
compared to type 3 cylinder. For type 1 cylinder the best value of CDz is 1.0 for most
drop angles. For type 3 cylinders the most similar results compared to the experimental
results occur when the value of CDz varies between 0.8 and 1.0 for drop angles from 15◦
to 30◦, and 1.2 for 45◦ to 75◦. Xiang et al. (2017), however, found that a value CDz equal
to 1.0 gives the overall best fit to the experimental data from Aanesland [23].

Figure 5.20: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 15◦ for cylinders of type 1. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.21: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 15◦ for cylinders of type 1. Here CDx =
0.65 and xT = 0.3. The simulated results
are presented as coloured lines and the ex-
perimental results in black.
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Figure 5.22: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 45◦ for cylinders of type 1. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.23: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 45◦ for cylinders of type 1. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Figure 5.24: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 75◦ for cylinders of type 1. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.25: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 75◦ for cylinders of type 1. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.
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Figure 5.26: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 15◦ for cylinders of type 3. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.27: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 15◦ for cylinders of type 3. Here CDx =
0.65 and xT = 0.3. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Figure 5.28: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 45◦ for cylinders of type 3. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.29: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 45◦ for cylinders of type 3. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.
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Figure 5.30: Simulated results for varia-
tions in xT from 0.3 to 0.5 for a drop angle
of 75◦ for cylinders of type 3. Here CDx =
0.65 and CDz = 1.0. The simulated results
are presented as coloured lines and the exper-
imental results in black.

Figure 5.31: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 75◦ for cylinders of type 3. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Overall, the simulation program gives a good approximate estimate on the excursion from
the drop point. It is however not able to capture the oscillatory behaviour correct as it
simulate too wide and large turns. Dependent on the chosen values for CDz and xT/L the
calculated excursions are approximately the same for cylinder type 1. For cylinder type
3 the program deliver good results with respect to estimated excursions for drop angles
from 15◦ to 45◦. For higher drop angles it overestimate the lift force on the body.

Figure 5.32: Simulated trajectories for a cylinder of type 1 for a depth of 15 m for drop
angles from 15◦ to 75◦. xT = 0.4, CDz = 1.0, CDx =0.65.
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Figure 5.32 show the simulated results for each drop angle for a depth of 15 m and
cylinder type 1. As can be observed in the figure the theory predict the oscillatory
motion to decrease in width as the cylinder moves further down in the water column.
This in particular was not observed in the experiments for capped cylinders, but it is in
general hard to determine as the depth of the tank is limited. However, it is an expected
pattern in RP F107 for depths above 180 m [3], based on [12].

5.3.2 Cylinders with Open Ends

Equal to capped cylinders a variation in CDx have a small impact on the whole motion of
the cylinder. Figure 5.33 to Figure 5.36 show the calculated trajectories for 45◦ and 75◦
for open cylinders with variations in CDz. The figures have a fixed value of xT dependent
which value have been found to give the best fit. For open cylinders as for closed the
calculations correspond best to the experiments for values of xT/L equal to 0.4 for drop
angles of 15◦ to 30◦ and 0.5 for drop angles of 45◦ to 75◦. In the following figures a value
of CDz equal to 1.2 give approximately the same landing point at 5 m.

Figure 5.33: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 45◦ for cylinders of type 8. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Figure 5.34: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 45◦ for cylinders of type 9. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.
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Figure 5.35: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 75◦ for cylinders of type 8. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Figure 5.36: Simulated results for varia-
tions in CDz from 0.8 to 1.2 for a drop angle
of 75◦ for cylinders of type 9. Here CDx =
0.65 and xT = 0.5. The simulated results
are presented as coloured lines and the ex-
perimental results in black.

Figure 5.37: Simulated trajectories for a cylinder of type 9 for a depth of 15 m for drop
angles from 15◦ to 75◦. xT = 0.4, CDz = 1.0, CDx = 0.65.

The estimated trajectories calculated in the program can give an approximate estimation
of the maximum excursion of the cylinder and the approximate point at which it will land
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on the sea floor. However, for most drop angles the program slightly underestimates the
excursion from the drop point. In addition, similar to the closed cylinders, the simulation
program is not able to capture the oscillatory behaviour in a right manner and calculate
a slightly smaller lift force as the cylinder approaches the leaf-like part of its motion. In
addition, similar to closed cylinders, the script calculates trajectories with a decreasing
width of the oscillatory motion, as can be seen in Figure 5.51. For type 9 cylinders the
results from the experiments might indicate that this is the actual case, as can be seen
in Figure 5.34, but further drop experiments in a deeper tank is required in order to get
a proper result.

5.3.3 Cylinders Asymmetric about the Centre of Gravity

As with fully symmetric cylinders CDx only has a minor influence on the calculated
trajectory for cylinders with a slightly shifted COG. As can be seen in Figure 5.38 and
Figure 5.39, a difference of significance is first reach when the value of CDx of 0.65 as given
in Hoerner [10] is changed with ± 50%. CDx has some influence on the straightness of
the of the calculated path. A larger axial drag coefficient will contribute to a deceleration
of the axial velocity. As the destabilising hydrodynamic forces depend on this velocity, a
larger CDx results in a straighter path. As can be observed at a depth of 4.5 m to 5 m in
Figure 5.39, CDx might have a larger influence for an increased depth.

Figure 5.38: Calculated trajectories for
variations in CDx with ± 50% (0.975 and
0.325) and ± 10% (0.715 and 0.585) from
CDx = 0.65 for a drop angle of 45◦ for a
cylinder of type 4. The calculations are for a
cylinder dropped with COG 1.4 cm in front
of COV, xT = 0.4 and CDz = 0.1. The calcu-
lated results are represented as coloured lines
and the experimental results as black.

Figure 5.39: Calculated trajectories for
variations in CDx with ± 50% (0.975 and
0.325) and ± 10% (0.715 and 0.585) from
CDx = 0.65 for a drop angle of 45◦ for a
cylinder of type 5. The calculations are for a
cylinder dropped with COG 1.4 cm in front
of COV, xT = 0.4 and CDz = 0.1. The calcu-
lated results are represented as coloured lines
and the experimental results as black.
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Results for COG above COV

The most optimal values of xT/L compared to the experimental results for type 4 cylin-
ders, are for xT/L = 0.4 for drop angles from 15◦ to 45◦ and xT/L = 0.5 for drop angles
from 60◦ to 75◦. For type 6 cylinders the calculated trajectories have straight path after
the first turn, while the experimental results curve slightly inward. For that reason, one
either have to prioritise whether the path should most closely resemble the area around
the first turn or the point at which the cylinder hit the bottom. For increased depths
the simulation program will therefore not be able to estimate the excursion. This is es-
pecially true for small drop angles, as can be seen in Figure 5.41. As it was found in
the experiments that the velocity might converge to a constant velocity and thus have a
large impact force on the sea bottom, the final excursion will be prioritised. The best fit
for drop angles from 45◦ to 60◦ is xT/L = 0.4, and xT/L = 0.5 for the rest. This can be
seen in Figure 5.40 to Figure 5.45.

Figure 5.40: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 15◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
4.

Figure 5.41: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 15◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
6.
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Figure 5.42: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 45◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
4.

Figure 5.43: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 45◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
6.

Figure 5.44: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 75◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
4.

Figure 5.45: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 75◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
6.

The effect of varying CDz is quite small. It has some influence on the radial excursion
from the drop point, but a relatively little effect on the landing point. For drop angles of
15◦ and 30◦ a CDz around 0.8 will give the most similar calculated trajectory, while for
drop angles of 45◦ to 75◦ a value of CDz of 1.0 gives a better result.
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Figure 5.46: Simulated trajectories for a cylinder of type 4 for a depth of 20 m for drop
angles from 15◦ to 75◦. xT = 0.4, CDz = 1.0, CDx = 0.65.

Overall, the calculated results that correspond best with the experimental results occur
for a drop angle of 75◦. As can be observed in the results for the cylinder of type 6, the
experimental results slightly curve inwards with depth, while the calculated trajectory
do not. The curving of the arc is increased with an increasing ∆CB. The result is an
overestimation of the radial excursion. The calculated excursion can therefore only give
an indication of the excursion at small depths and for small values of ∆CB. As can be seen
in Figure 5.51 the simulated results have a very straight path after the flip independent
on depth. The value of the drag coefficients and effective trailing edge must be chosen
dependent on depth.

Results for COG Underneath COV

The results from the experiments show that for cases where the cylinders are dropped
with COG in front of COV, the trajectory of the cylinder will be a very straight path.
Thus, variations in CDz have very little impact on the trajectory. Compared to the
experimental results the optimal value of CDz is 1.2 as this will give the most similar
calculated trajectories.

The stabilizing effect of the trailing edge dependent on the value chosen for this parameter,
can clearly be observed in Figure 5.47 to Figure 5.50. For small values of xT/L the
calculated trajectory either has a slight wave-like motion or quite a curved path. The
first is the case in Figure 5.47 and the latter in Figure 5.49. For calculation of the
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trajectory of cylinders dropped with COG in front of COV, a value of xT/L equal to 0.5
gives the most similar results for all drop angles, as can be observed in the figures.

Figure 5.47: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 30◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
5.

Figure 5.48: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 30◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
7.

Figure 5.49: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 60◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
5.

Figure 5.50: Calculated trajectories
(coloured lines) for variations in xT/L from
0.3 to 0.5 for a drop angle of 60◦ compared to
experimental results (black lines). Here CDx

= 0.65, CDz = 1.0 and the cylinder is of type
7.

Comparing the calculated trajectories with the experimental results, the estimated paths
are closest to the experimental results for steep drop angels for a depth of 5 m. In
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general, the calculated trajectories curve outward, while the results from the experiments
do not, as is the case for cylinder type 5, or curve slightly inwards, as is the case for
cylinder type 7. The theory applied to calculate the trajectories gives an indication of
the final excursion for small water depths. For increasingly larger depths the theory would
overestimate the excursion with a corresponding increasingly factor. As can be seen in
Figure 5.51 this overestimation is largest for steep drop angles as the curve flatten out
over time.

Figure 5.51: Simulated trajectories for a cylinder of type 7 for a depth of 20 m for drop
angles from 15◦ to 75◦. xT = 0.4, CDz = 1.0, CDx = 0.65.

5.3.4 Comment on the Friction Coefficient

As described in the theory section, the value of the friction coefficient, CF , depend on
whether the boundary layer can be assumed to be laminar or turbulent. As can be seen
in Figure 5.52 the difference between the two assumptions greatly affect the result. In
general, CF for laminar flow give larger excursions compared to CF for turbulent flow.
This is especially evident for open cylinders, as can be seen in Figure 5.52a.
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(a) Type 1: capped cylinder. (b) Type 8: open cylinder.

Figure 5.52: Comparison of the difference with applying a laminar (dotted lines) and
turbulent (whole lines) in the simulations. The drop angles are 15◦, 30◦, 45◦, 60◦ and
75◦.

In general, the use of a turbulent CF has given simulated results most similar to the
experimental results. This might be caused by how the abrupt edge of the front of the
cylinder causing a flow around the front that is not entirely laminar. For open cylinders
the simulation program underestimate the maximum excursion. A laminar assumption
might therefore be more proper for this instance. There is also a good probability that
the flow inside the open cylinders is laminar while the flow outside is turbulent. Further
investigations are required to determine this properly.

5.4 Errors and Uncertainties

The errors and uncertainties in the experiments are mostly limited to the characteristics
of the cylinders, the measurement equipment and the basin where the experiments were
performed. In the case of the cylinders, there was a large problem of keeping the cylinders
watertight for a repeated number of drops. For steep drop angles the impact force on
the cylinder from the tank bottom could be significant and the sealing of the cylinder
would break along the edge. It was discovered that only small amounts of water inside
the cylinder would give an observable change in trajectory as the COG would shift to
one side or the other of COV dependent on the orientation of the cylinder. Therefore
the weight of the cylinder where checked between each drop. The weight used had an
uncertainty of ± 1 g. Smaller differences in weight could therefore not be observed.

The second factor that could have affected the measured trajectory of the cylinders were
the measurement tape. The tape itself has a thickness of 0.25 mm and a width of 5
cm. It could therefore have contributed to a slightly increased drag on the cylinder in
the negative longitudinal direction or contributed to a changed flow regime at the back
end of the cylinder. In addition, disturbances in the flow could have been made in the
area where the tape ends meet around the cylinder. Tests performed with asymmetric
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appendices attached to the back of the cylinder body, showed that a small asymmetry
of 2 mm would significantly affect the motion of the cylinder. The motion would swerve
to one side independent on drop angle. This was not observed for all drop angles in the
experiments, which indicate that the influence of the tape have been little.

With regards to the measurement equipment, the result would have been even more
accurate if a larger tank was used where the cameras could capture the motion from two
different sides. This could have allowed for tracking of both ends and would eliminate
the problem encountered when the cylinder turned to one side or flipped. Furthermore,
the calibration of the cameras became less accurate during the experiments resulting in
the sudden jumps in some of the measurement data. The calibration procedure should
therefore have been repeated more times than it was.

Last, experiments with waves were performed in the tank against Dokka. As the two tanks
are connected by a steel wall vibrations from the wave generation could have created small
vibrations in the water or a small current. This was not possible to observe by the naked
eye, but could have affected the trajectory of the dropped cylinders to a small degree.

5.5 Further work

One of the surprising effects observed in the experiments, was how for certain drop angles
and diameters the cylinder would have a large spreading where some of the cylinders
swerved out to one side. This greatly contradicted the assumption that the motion of
the cylinder would be limited to the XZ plane. Experiments investigating exactly at
what angles and which geometries this occur, and the hydrodynamic behaviour causing
and affecting this, would be of great interest. Other experimental work contributing to
the knowledge of the cylinder trajectory, would be to study the effect of air cavity and
slamming as the cylinder enter the water, the effect of attaching small appendices to the
cylinders, and to investigate the trajectory where waves and currents are present. In
addition, drops at a greater water depths should be performed in order to obtain some
knowledge of how the oscillatory motion changes over a larger depth. This would help
determine the accuracy of the theory presented in this thesis.

With regards to the simulation program it remains to develop the program to include
drops above the water surface with inclusion of drop height and water entry effects.
In order to make a program that could give an accurate estimate of the excursion and
velocity both high up in the water and at the sea bottom, the effect of waves and currents
also need to be included. Finally, in the program presented in this thesis, the cross-flow
is assumed to be constant over the cylinder. However, it is most likely to develop over
time and over the length of the cylinder affecting the trajectory, as found by Sarpkaya
[19]. In order to get a more accurate simulation this also needs to be included.
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Chapter 6

Conclusion

The motion of a slender, symmetric cylinder dropped under water can be described
as a slightly curved motion that after a certain depth begins an oscillatory, leaf-like
motion. The point at which the oscillatory motion starts is dependent on the drop
angle and diameter of the cylinder; a decrease in the steepness of the drop angle and an
increase in diameter both give oscillatory motion higher up in the water column. The
maximum excursion is directly linked to where the oscillatory motion starts, and thus
the closed cylinder with the smallest diameter has the largest excursion. Open cylinders
have in general a smaller excursion compared to capped. For drops above the surface
the trajectory is similar to that of capped cylinders, but the angle of attack is altered by
water entry effects.

For cylinders with asymmetry, the motion is a straight path through the water with an
angle of attack dependent on the drop angle. For cases where the cylinder has been
dropped with COG above COV, the cylinder flips once before it follows this path. The
depth at which the flip occurs is dependent on the drop angle, similar to symmetric
cylinders, and the distance between COG and COV, ∆CB. Steeper drop angles and
decrease in ∆CB results in a flip deeper in the water. The angle of attack is also dependent
on ∆CB, where a smaller ∆CB gives a smaller angle of attack with the surface, and thus a
larger excursion. Cylinders with ∆CB = 1.4 cm that are dropped with COG under COV
have the largest excursions out of all the drops performed, with an excursion of 4.65 m
for a depth of 4 m.

The highest velocity occurs for drops with COG under COV and ∆CB = 1.4 cm. The
velocity increases from the drop point and converges to a value of 3.47 m/s. Because of
the convergence, this cylinder type provides a great risk as the possible impact force will
be high independent on what water depth the impact should occur. In order to give a
realistic picture of the accuracy of the DNV-GL RP F107, the experimental results have
been scaled up to represent 9 m long drill pipes. This gives a depth of 80 m. Comparing
the results with the estimated excursions for a depth of 80 m, the conclusion is that
the method largely underestimate the final excursion. It is closest for open cylinders,
but estimated excursions do not cover the excursions for all drop angles. The difference
in the estimated excursion and the excursions found in the experiments, are largest for
cylinders with a slight shift in COG of 1.4 cm with a difference of 72 m.
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The theory presented in this thesis assume that the trajectory of a slender, cylindrical
body is limited to the XZ plane. For open cylinders this is approximately true, but for
capped cylinders with a large diameter the spreading is large for steep drop angles. For
angles of attack just under the surface of 60◦ a certain number of cylinders swerve to
one side creating a large spreading. The assumption is therefore not valid and may be a
reason for deviations between the experimental and simulated results.

A simulation script has been made based on earlier known theory describing the motion of
the cylinders by the manoeuvring equations corrected for viscous forces. In the equations
the effective trailing edge, xT , the form drag, CDx, and the cross-flow drag, CDz, can be
varied dependent on the drop case. xT affects the stability of the oscillatory motion, CDz

affects the horizontal excursion and CDx have in general little effect on the motion. The
latter has to be increased or decreased by more than 50% in order to gain an observable
result. The values of xT that give the most similar results to the experimental results, are
for symmetric cylinders xT/L = 0.4 for small drop angles and xT/L = 0.5 for steep drop
angles. With regards to CDz, values between 1.0 and 1.2 give the most similar results
compared to the experimental results. For cylinders that are asymmetric about the COG
these values varies between xT/L = 0.4 and xT = 0.5 dependent on ∆CB for cases where
the cylinders are dropped with COG above COV. For small drop angles CDz = 0.8 and
for large CDz = 1.0. For cases where the cylinder has been dropped with COG under
COV the most similar results occur for xT = 0.5 and CDz = 1.2. These parameters also
have to be changed dependent on the depth for cylinders with a shifted position of COG.

Overall, the simulation program is able to give an estimate of the motion of the cylinder
and the excursion at the bottom for symmetric cylinders. It gives most accurate results
for capped cylinders while slightly underestimating the excursion for open cylinders.
However, the program fails to predict the behaviour of the oscillatory motion properly.
In both cases the trajectories for larger depths indicate an assumption of decreasing
oscillatory motion for increased depth. This has not been observed in the experiments,
but experiments at larger depths are required to determine this properly. For cylinders
with a position of COG different from COV, the program is able to give a good estimate of
the excursion for small depths. For larger depths the program overestimates the excursion
with an increasing factor for an increasing depth.

In conclusion, the use of the manoeuvring equations corrected for viscous forces could be
used for pipes, while the spreading for all other cylinder types indicate the motion have
to be calculated for a three dimensional plane.
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A Position plots

A.1 Drop of 10 mm diameter cylinders under the water surface

A.1.1 15◦ initial drop angle

Figure 1: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.

Figure 2: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the X-Y plane
and each coloured line represents a drop.

Figure 3: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.1.2 30◦ initial drop angle

Figure 4: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 5: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 6: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.1.3 45◦ initial drop angle

Figure 7: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 8: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 9: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.
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A.1.4 60◦ initial drop angle

Figure 10: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 11: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 12: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.1.5 75◦ initial drop angle

Figure 13: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 14: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 15: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.2 Drop of 16 mm diameter cylinders under the water surface

A.2.1 15◦ initial drop angle

Figure 16: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 17: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 18: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.2.2 30◦ initial drop angle

Figure 19: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 20: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 21: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.2.3 45◦ initial drop angle

Figure 22: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 23: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 24: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.
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A.2.4 60◦ initial drop angle

Figure 25: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 26: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 27: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.2.5 75◦ initial drop angle

Figure 28: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 29: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 30: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.3 Drop of 19mm diameter cylinders under the water surface

A.3.1 15◦ initial drop angle

Figure 31: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 32: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 33: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.3.2 30◦ initial drop angle

Figure 34: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 35: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 36: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.3.3 45◦ initial drop angle

Figure 37: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 38: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 39: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.
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A.3.4 60◦ initial drop angle

Figure 40: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 41: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 42: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.3.5 75◦ initial drop angle

Figure 43: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 44: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 45: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.4 Drop of 10mm diameter cylinders over the water surface

A.4.1 15◦ initial drop angle

Figure 46: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 47: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 48: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.4.2 30◦ initial drop angle

Figure 49: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 50: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 51: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.4.3 45◦ initial drop angle

Figure 52: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 53: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 54: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.
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A.4.4 60◦ initial drop angle

Figure 55: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 56: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 57: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.4.5 75◦ initial drop angle

Figure 58: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 59: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 60: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.5 Drop of 16 mm diameter cylinders over the water surface

A.5.1 15◦ initial drop angle

Figure 61: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 62: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 63: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.5.2 30◦ initial drop angle

Figure 64: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 65: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 66: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.5.3 45◦ initial drop angle

Figure 67: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 68: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 69: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.

XXIII



A.5.4 60◦ initial drop angle

Figure 70: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 71: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 72: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.5.5 75◦ initial drop angle

Figure 73: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 74: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 75: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.6 Drop of 19mm diameter cylinders over the water surface

A.6.1 15◦ initial drop angle

Figure 76: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 77: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 78: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.6.2 30◦ initial drop angle

Figure 79: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 80: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 81: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.6.3 45◦ initial drop angle

Figure 82: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 83: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 84: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.
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A.6.4 60◦ initial drop angle

Figure 85: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 86: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 87: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.6.5 75◦ initial drop angle

Figure 88: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 89: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 90: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.7 Drop of open 10 mm cylinders under the water surface

A.7.1 15◦ initial drop angle

Figure 91: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 15◦ initial drop angle.
Each coloured line represents a drop.

Figure 92: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 15◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 93: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 15◦ initial drop angle.
Each coloured line represents a drop.
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A.7.2 30◦ initial drop angle

Figure 94: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.

Figure 95: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 30◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 96: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.
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A.7.3 45◦ initial drop angle

Figure 97: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.

Figure 98: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 45◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 99: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.
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A.7.4 60◦ initial drop angle

Figure 100: X-Y view: Drop of open 10mm diameter
cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.

Figure 101: X-Z view: Drop of open 10mm diameter
cylinders under the water surface at 60◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 102: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.
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A.7.5 75◦ initial drop angle

Figure 103: X-Y view: Drop of open 10mm diameter
cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.

Figure 104: X-Z view: Drop of open 10mm diameter
cylinders under the water surface at 75◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 105: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.
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A.8 Drop of open 19 mm cylinders under the water surface

A.8.1 30◦ initial drop angle

Figure 106: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.

Figure 107: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 30◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 108: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.
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A.8.2 45◦ initial drop angle

Figure 109: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.

Figure 110: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 45◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 111: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.
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A.8.3 60◦ initial drop angle

Figure 112: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.

Figure 113: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 60◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 114: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.
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A.8.4 75◦ initial drop angle

Figure 115: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.

Figure 116: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 75◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 117: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.
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A.9 Drop of 10mm diameter cylinders under the water surface with COG displaced with
1.4cm (COG over COV)

A.9.1 15◦ initial drop angle

Figure 118: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 119: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 120: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.2 30◦ initial drop angle

Figure 121: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 122: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 123: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.3 45◦ initial drop angle

Figure 124: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 125: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 126: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.4 60◦ initial drop angle

Figure 127: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 128: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 129: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.9.5 75◦ initial drop angle

Figure 130: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 131: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 132: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.10 Drop of 10mm diameter cylinders under the water surface with COG placed with 1.4
cm (COG under COV)

A.10.1 15◦ initial drop angle

Figure 133: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 134: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 15◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 135: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.2 30◦ initial drop angle

Figure 136: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 137: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 30◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 138: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.3 45◦ initial drop angle

Figure 139: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 140: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 45◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 141: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.4 60◦ initial drop angle

Figure 142: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 143: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 144: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.5 75◦ initial drop angle

Figure 145: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 146: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 147: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.11 Drop of 10mm diameter cylinders under the water surface with COG placed with
3cm (COG over COV)

A.11.1 15◦ initial drop angle

Figure 148: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 149: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 150: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.2 30◦ initial drop angle

Figure 151: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 152: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 153: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.3 45◦ initial drop angle

Figure 154: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 155: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 156: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.4 60◦ initial drop angle

Figure 157: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 158: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 159: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.5 75◦ initial drop angle

Figure 160: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 161: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 162: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.12 Drop of 10mm diameter cylinders under the water surface with COG placed with
3cm (COG under COV)

A.12.1 15◦ initial drop angle

Figure 163: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 164: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 165: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.2 30◦ initial drop angle

Figure 166: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 167: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 168: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.

LVI



A.12.3 45◦ initial drop angle

Figure 169: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 170: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 171: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.4 60◦ initial drop angle

Figure 172: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 173: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 174: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.5 75◦ initial drop angle

Figure 175: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 176: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 177: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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B Velocity plots

B.1 Velocity of 10 mm cylinder dropped from under the water surface

Figure 178: Total velocity compared to depth for closed 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 179: Total velocity compared to time for closed 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

LX



B.2 Velocity of 16 mm cylinder dropped from under the water surface

Figure 180: Total velocity compared to depth for closed 16 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 181: Total velocity compared to time for closed 16 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.3 Velocity of 19 mm cylinder dropped from under the water surface

Figure 182: Total velocity compared to depth for closed 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 183: Total velocity compared to time for closed 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.4 Velocity of 10 mm cylinder dropped from above the water surface

Figure 184: Total velocity compared to depth for closed 10 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 185: Total velocity compared to time for closed 10 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.5 Velocity of 16 mm cylinder dropped from above the water surface

Figure 186: Total velocity compared to depth for closed 16 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 187: Total velocity compared to time for closed 16 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.6 Velocity of 19 mm cylinder dropped from above the water surface

Figure 188: Total velocity compared to depth for closed 19 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 189: Total velocity compared to time for closed 19 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.7 Velocity of open 10 mm cylinders dropped from under the water surface

Figure 190: Total velocity compared to depth for open 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 191: Total velocity compared to time for open 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.8 Velocity of open 19 mm cylinders dropped from under the water surface

Figure 192: Total velocity compared to depth for open 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 30o, 45o, 60o and 75o. Each plot line represent an example of the total velocity
development.

Figure 193: Total velocity compared to time for open 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 30o, 45o, 60o and 75o. Each plot line represent an example of the total velocity
development.
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B.9 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
1.4 cm (COG above COV)

Figure 194: Total velocity compared to depth for cylinders with COG displaced 1.4 cm (Centre of Gravity (COG)
over Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o,
45o, 60o and 75o. Each plot line represent an example of the total velocity development.

Figure 195: Total velocity compared to time for cylinders with COG 1.4 (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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B.10 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
1.4 cm (COG under COV)

Figure 196: Total velocity compared to depth for cylinders with COG 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.

Figure 197: Total velocity compared to time for cylinders with COG 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.
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B.11 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
with 3 cm (COG above COV)

Figure 198: Total velocity compared to depth for cylinders with COG 3 cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.

Figure 199: Total velocity compared to time for cylinders with COG 3 cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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B.12 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
with 3 cm (COG under COV)

Figure 200: Total velocity compared to depth for cylinders with COG 3 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.

Figure 201: Total velocity compared to time for cylinders with COG 3 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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C Position tables

C.1 Position data for drop of 10, 16 and 19 mm diameter cylinders dropped from under
the water surface

Table 1: Position data for closed 10 mm diameter cylinders with closed ends dropped from under the water surface.
The table shows radial x-position, y-position and z-position with the corresponding standard deviations at the
first and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does
not occur for the drop angles in question.

10 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.73 0.08 1.13 0.06 -0.02 0.04 0.62 0.18
30◦ 2.37 0.35 2.20 0.27 -0.13 0.34 2.22 0.37
45◦ 3.79 0.53 3.63 0.56 -0.14 0.70 3.01 0.30
60◦ 0.04 0.18 1.71 0.13
75◦ -0.01 0.08 0.88 0.09

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.46 0.10 1.72 0.08 -0.01 0.05 0.89 0.19
30◦ 2.14 0.40 2.79 0.24 -0.10 0.36 2.32 0.56
45◦ 3.17 0.37 3.83 0.19 -0.04 0.81 3.67 0.51
60◦ 0.06 0.50 2.79 0.39
75◦ 0.02 0.18 1.49 0.18

Table 2: Position data for 16 mm diameter cylinders with closed ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.Empty cells are due to the fact that the first and second turn does not
occur for the drop angles in question.

16 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.49 0.05 0.98 0.04 -0.03 0.05 0.41 0.13
30◦ 1.61 0.23 1.72 0.18 0.05 0.32 1.57 0.30
45◦ 2.89 0.11 2.93 0.10 -0.05 0.27 2.86 0.09
60◦ -0.33 0.26 1.76 0.21
75◦ 0.05 0.08 0.93 0.03

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.26 0.06 1.53 0.04 -0.05 0.04 0.79 0.17
30◦ 1.33 0.30 2.32 0.12 0.07 0.27 1.51 0.35
45◦ 2.56 0.10 3.56 0.14 -0.05 0.27 2.79 0.12
60◦ -0.73 0.59 2.94 0.45
75◦ 0.16 0.26 1.68 0.04
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Table 3: Position data for 19 mm diameter cylinders with closed ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does not
occur for the drop angles in question.

19 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.40 0.07 0.88 0.06 -0.02 0.08 0.22 0.12
30◦ 1.47 0.09 1.60 0.07 -0.08 0.15 1.40 0.12
45◦ 2.76 0.16 2.84 0.14 -0.18 0.42 2.68 0.23
60◦ -0.47 0.43 1.63 0.33
75◦ -0.05 0.15 0.99 0.07

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.16 0.12 1.41 0.04 -0.02 0.06 0.35 0.18
30◦ 1.12 0.11 2.18 0.12 -0.10 0.14 1.35 0.19
45◦ 2.36 0.16 3.44 0.15 -0.21 0.29 2.58 0.13
60◦ -0.73 1.08 2.48 0.67
75◦ -0.11 0.46 1.81 0.17
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C.2 Position data for drop of 10, 16 and 19 mm diameter cylinders dropped from over the
water surface

Table 4: Position data for 10 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does not
occur for the drop angle in question.

10 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.17 0.03 0.44 0.03 0.00 0.03 0.32 0.09
30◦ 0.50 0.07 0.63 0.07 0.00 0.08 0.51 0.17
45◦ 1.24 0.11 1.04 0.08 -0.01 0.08 1.14 0.26
60◦ 2.64 0.20 2.09 0.16 0.22 0.23 2.43 0.34
75◦ -0.32 0.42 2.03 0.14

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.03 0.04 0.98 0.04 -0.02 0.03 0.22 0.12
30◦ 0.23 0.18 1.25 0.06 0.01 0.10 0.70 0.25
45◦ 0.89 0.15 1.64 0.05 -0.04 0.15 1.47 0.28
60◦ 2.36 0.34 2.74 0.07 0.20 0.31 2.64 0.57
75◦ -0.28 0.71 3.21 0.24

Table 5: Position data for 16 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.

16 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.17 0.03 0.38 0.06 0.02 0.04 0.29 0.17
30◦ 0.44 0.05 0.57 0.05 0.01 0.05 0.32 0.22
45◦ 0.97 0.08 0.85 0.07 0.09 0.13 0.54 0.19
60◦ 2.03 0.16 1.64 0.11 -0.13 0.18 1.74 0.15
75◦ 3.65 0.57 4.13 0.31 0.24 0.55 2.23 0.24

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.02 0.08 0.92 0.07 0.05 0.11 0.16 0.29
30◦ 0.16 0.13 1.16 0.07 0.04 0.05 0.34 0.26
45◦ 0.44 0.09 1.62 0.09 0.03 0.08 0.90 0.22
60◦ 1.70 0.57 2.35 0.19 -0.15 0.18 1.66 0.14
75◦ 3.46 0.20 4.55 0.26 0.39 1.16 3.40 0.49
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Table 6: Position data for 19 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.

19 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.15 0.01 0.42 0.01 0.00 0.03 0.22 0.13
30◦ 0.34 0.04 0.51 0.05 -0.06 0.08 0.14 0.19
45◦ 0.90 0.06 0.84 0.07 -0.14 0.29 0.48 0.09
60◦ 1.96 0.35 1.68 0.34 -0.32 0.71 1.58 0.44
75◦ -0.37 0.90 2.22 0.27

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ -0.06 0.03 1.04 0.20 -0.03 0.03 0.04 0.15
30◦ -0.05 0.09 1.14 0.17 -0.08 0.13 0.05 0.20
45◦ 0.45 0.07 1.52 0.07 -0.12 0.16 0.64 0.17
60◦ 1.44 0.46 2.35 0.26 -0.36 0.72 1.54 0.54
75◦ 3.46 0.20 4.55 0.26 -0.43 1.50 2.83 0.47
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C.3 Position data for drop of 10 and 19 mm diameter cylinders with open ends dropped
from under the water surface

Table 7: Position data for 10 mm diameter cylinders with open ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. All empty cells are due to the fact that the cylinder does not have a
second turn at 75◦.

10 mm cylinder with open ends dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.71 0.08 1.01 0.04 -0.10 0.04 0.72 0.10
30◦ 1.85 0.09 1.63 0.05 -0.17 0.19 1.90 0.13
45◦ 2.63 0.10 2.31 0.06 -0.18 0.25 2.35 0.14
60◦ 3.41 0.13 3.41 0.11 -0.06 0.18 2.89 0.13
75◦ 3.70 0.04 4.57 0.05 -0.10 0.08 1.30 0.07

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.55 0.07 1.51 0.06 -0.15 0.08 0.85 0.13
30◦ 1.59 0.11 2.21 0.04 -0.19 0.18 1.91 0.14
45◦ 2.33 0.14 2.90 0.03 -0.22 0.28 2.57 0.17
60◦ 3.09 0.10 4.01 0.13 -0.10 0.25 3.12 0.12
75◦ -0.20 0.24 2.62 0.26

Table 8: Position data for 19 mm diameter cylinders with open ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. No measurement exist of for drop angle 15◦, hence the empty cells.

19 mm cylinder with open ends dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦

30◦ 1.29 0.05 1.23 0.02 -0.07 0.04 1.08 0.19
45◦ 1.98 0.04 1.70 0.03 -0.06 0.10 1.44 0.10
60◦ 2.55 0.03 2.43 0.03 -0.09 0.14 1.95 0.08
75◦ 2.67 0.02 3.23 0.03 -0.18 0.19 2.37 0.08

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦

30◦ 0.68 0.16 1.93 0.10 -0.06 0.09 1.20 0.37
45◦ 1.15 0.08 2.51 0.05 -0.07 0.14 1.38 0.10
60◦ 1.62 0.12 3.29 0.07 -0.10 0.19 2.09 0.10
75◦ 1.71 0.12 4.10 0.09 -0.14 0.24 1.79 0.09
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C.4 Position data for drop of 10 mm diameter cylinders with centre of gravity displaced
1.4 cm.

Table 9: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 1.4 cm.
The cylinders is dropped with the initial position of the centre of gravity (COG) over the cylinder volume centre
(COV). The table shows radial x-position, y-position and z-position with the corresponding standard deviations
at the first and second turn, and at 3 and 4 m depth. The empty cells are due to the fact that a second turn does
not occur.

10 mm cylinder with COG displaced 1.4 cm dropped from
under the water surface (COG over COV)

First turn Depth: 3mDrop
angle rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.21 0.10 0.36 0.15 0.04 0.66 -3.01 0.33
30◦ 0.65 0.05 0.57 0.03 -0.25 0.46 -2.10 0.11
45◦ 1.74 0.09 1.29 0.08 0.02 0.26 0.09 0.21
60◦ 2.62 0.21 2.97 0.21 0.03 0.28 2.53 0.17
75◦ 3.04 0.03 4.31 0.05 -0.16 0.05 1.26 0.02

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ -0.27 0.94 -4.35 0.41
30◦ -0.57 0.80 -3.43 0.20
45◦ 0.01 0.54 -1.04 0.24
60◦ -0.13 0.14 1.72 0.46
75◦ -0.31 0.15 2.73 0.06

Table 10: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 1.4 cm.
The cylinders is dropped with the initial position of the centre of gravity (COG) under the cylinder volume centre
(COG). The table shows radial x-position, y-position and z-position with the corresponding standard deviations
at the first and second turn, and at 3 and 4 m depth. The empty cells are due to the lack of turns.

10 mm cylinder with COG displaced 1.4 cm dropped from
under the water surface (COG under COV)
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.22 0.81 3.55 0.16
30◦ -0.18 0.54 2.77 0.14
45◦ -0.07 0.32 1.89 0.06
60◦ -0.15 0.17 1.19 0.08
75◦ -0.05 0.03 0.60 0.03

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.20 1.28 4.65 0.22
30◦ -0.43 1.08 3.79 0.27
45◦ -0.16 0.57 2.59 0.17
60◦ -0.22 0.38 1.70 0.16
75◦ -0.09 0.09 0.98 0.04
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C.5 Position data for drop of 10 mm diameter cylinders with centre of gravity displaced 3
cm.

Table 11: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 3 cm.
The cylinders is dropped with the initial position of the centre of gravity over the cylinder volume centre. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. The empty cells are due to the fact that no second turn occur.

10 mm cylinder with COG displaced 3 cm dropped from
under the water surface (COG over COV)

First turn Depth: 3mDrop
angle rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.07 0.01 0.45 0.01 0.03 0.28 -1.81 0.09
30◦ 0.41 0.01 0.84 0.01 -0.04 0.47 -1.10 0.15
45◦ 1.04 0.02 1.35 0.02 0.25 0.17 0.13 0.30
60◦ 1.66 0.03 2.15 0.05 -0.03 0.11 1.18 0.07
75◦ 2.14 0.00 3.17 0.07 0.25 0.87 1.96 0.44

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.07 0.45 -2.49 0.19
30◦ 0.04 0.50 -1.66 0.14
45◦ 0.41 0.29 -0.71 0.15
60◦ -0.12 0.30 0.65 0.15
75◦ -0.03 0.19 1.80 0.14

Table 12: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 3 cm.
The cylinders is dropped with the initial position of the centre of gravity under the cylinder volume centre. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. The empty cells are due to the lack of turns in the trajectory of the
cylinders.

10 mm cylinder with COG displaced 3 cm dropped from
under the water surface (COG under COV)
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.23 0.24 2.26 0.09
30◦ 0.20 0.23 1.85 0.05
45◦ -0.03 0.23 1.33 0.08
60◦ 0.07 0.11 0.84 0.07
75◦ 0.01 0.04 0.37 0.05

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.33 0.33 2.81 0.12
30◦ 0.24 0.34 2.34 0.07
45◦ -0.05 0.36 1.73 0.12
60◦ 0.10 0.17 1.14 0.12
75◦ 0.02 0.10 0.52 0.10
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D Velocity tables

D.1 Velocity tables for drop of 10, 16 and 19 mm diameter cylinders dropped from under
the water surface

Table 13: The average maximal velocity and standard deviation for 10, 16 and 19 mm cylinders with closed ends,
dropped from under the water surface.

Cylinders dropped from under the water surface
10 mm 16 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 0.85 0.02 0.85 0.03 0.79 0.02
30◦ 1.53 0.09 1.33 0.09 1.17 0.03
45◦ 2.17 0.09 1.92 0.07 1.70 0.03
60◦ 2.68 0.07 2.43 0.10 2.43 0.10
75◦ 2.96 0.05 2.60 0.02 2.33 0.03

D.2 Velocity tables for drop of 10, 16 and 19 mm diameter cylinders dropped from over
the water surface

Table 14: The average maximal velocity and standard deviation for 10, 16 and 19 mm cylinders with closed ends,
dropped from over the water surface.

Cylinders dropped from over the water surface
10 mm 16 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.91 0.50 1.56 0.19 0.78 0.03
30◦ 1.51 0.15 1.74 0.35 0.81 0.04
45◦ 1.76 0.30 1.66 0.20 1.22 0.04
60◦ 2.13 0.19 2.09 0.20 1.79 0.07
75◦ 2.88 0.14 2.65 0.09 2.39 0.05

D.3 Velocity tables for drop of 10 and 19 mm diameter cylinders with open ends dropped
from under the water surface

Table 15: The average maximal velocity and standard deviation for 10 and 19 mm cylinders with open ends,
dropped from under the water surface.

Cylinders with open ends dropped from under the water surface
10 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.05 0.05
30◦ 1.68 0.05 1.66 0.03
45◦ 2.35 0.07 2.32 0.04
60◦ 2.87 0.06 2.89 0.02
75◦ 3.29 0.05 3.30 0.02
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D.4 Velocity tables for drop of 10 mm diameter cylinders with centre of gravity displaced
1.4 cm

Table 16: The average maximal velocity and standard deviation for 10 mm cylinders with closed ends and the
centre of gravity displaced 1.4 cm, dropped from under the water surface. The cylinders is dropped with the initial
position of the centre of gravity (COG) over and under the cylinder volume centre (COV).

Cylinders with COG displaced 1.4 cm dropped from under the water surface
COG over COV COG under COVDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.88 0.20 2.03 0.10
30◦ 1.94 0.11 2.33 0.15
45◦ 2.11 0.05 2.75 0.13
60◦ 2.39 0.04 2.98 0.04
75◦ 2.88 0.03 3.08 0.05

D.5 Velocity tables for drop of 10 mm diameter cylinders with centre of gravity displaced
3 cm

Table 17: The average maximal velocity and standard deviation for 10 mm cylinders with closed ends and the
centre of gravity (COG) displaced 3 cm, dropped from under the water surface. The cylinders is dropped with
the initial position of COG over and under the cylinder volume centre (COV).

Cylinders with COG displaced 3 cm dropped from under the water surface
COG over COV COG under COVDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 2.94 0.18 3.20 0.09
30◦ 3.04 0.12 3.22 0.05
45◦ 3.03 0.07 3.27 0.11
60◦ 3.06 0.13 3.33 0.10
75◦ 2.82 0.09 3.47 0.09
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