
Camera-based SLAM for Dynamic
Positioning of Low-cost ROV

Tore Mo-Bjørkelund

Marine Technology

Supervisor: Roger Skjetne, IMT

Department of Marine Technology

Submission date: June 2017

Norwegian University of Science and Technology

1718�7URQGKHLP
1RUZHJLDQ�8QLYHUVLW\�RI�6FLHQFH�DQG�7HFKQRORJ\
'HSDUWPHQW�RI�0DULQH�7HFKQRORJ\

06&�7+(6,6�'(6&5,37,21�6+((7

1DPH�RI�WKH�FDQGLGDWH� 0R�%M¡UNHOXQG��7RUH

)LHOG�RI�VWXG\� 0DULQH�FRQWURO�HQJLQHHULQJ

7KHVLV�WLWOH��1RUZHJLDQ�� .DPHUD�EDVHUW�6/$0�IRU�G\QDPLVN�SRVLVMRQHULQJ DY�ODYNRVW�529

7KHVLV�WLWOH��(QJOLVK�� &DPHUD�EDVHG�6/$0�IRU�G\QDPLF�SRVLWLRQLQJ RI�ORZ�FRVW�529

%DFNJURXQG
$V�WKH�LQWHUHVW�LQ�VXEVHD�H[SORUDWLRQ�LQFUHDVHV��WKH�GHPDQG�IRU�FKHDS�H[SORUDWLRQ�YHKLFOHV KDV�LQFUHDVHG��
7KH�XQGHUZDWHU�HQYLURQPHQW�FDQ�EH�FKDRWLF�DQG�GLIILFXOW WR�QDYLJDWH LQ��VR�DQ\�KHOS�WKH�XVHU�FDQ�JHW�IRU�
PDQHXYHULQJ�WKH�YHKLFOH LV�ZHOFRPHG��$�OLPLWDWLRQ�RI�ORZ�FRVW 529V LV�WKH�ODFN�RI�VRSKLVWLFDWHG�VHQVRUV��
+HQFH��RQH�QHHGV�WR�PD[LPDOO\�XWLOL]H�WKH�VWDQGDUG�RQERDUG�VHQVRU�VXLWH��DQG�SRVVLEO\�PLWLJDWH�TXDOLW\�
LVVXHV E\� PRUH VRSKLVWLFDWHG� VRIWZDUH�� $� FKDOOHQJH� LQ� WKH� VXEVHD� HQYLURQPHQW� LV� ORFDOL]DWLRQ� DQG�
QDYLJDWLRQ��GXH�WR�WKH�ODFN�RI�DEVROXWH�SRVLWLRQ�UHIHUHQFH��SRVUHI��VLJQDOV��OLNH�*36��$�ZD\�WR�FLUFXPYHQW�
WKLV LV� WR�GR�PRWLRQ�VWDWH�HVWLPDWLRQ�RI� WKH�YHKLFOH�UHODWLYH WR� WKH�ORFDO�HQYLURQPHQW�E\� WKH�PHWKRG�RI�
6LPXOWDQHRXV� /RFDOL]DWLRQ� $QG�0DSSLQJ �6/$0� EDVHG� RQ� WKH� RQERDUG� PRQRFXODU� FDPHUD� 6/$0
FRQVLVWV�RI WKH�FRQFXUUHQW�PDSSLQJ RI�WKH�HQYLURQPHQW�DQG�WKH�HVWLPDWLRQ�RI�WKH�SRVH RI�WKH�URERW �YHKLFOH��
529��PRYLQJ�ZLWKLQ�LW�

7KH�ORZ�FRVW�529�X'URQH�ZDV�GHYHORSHG�LQ�DXWXPQ������E\�D�VWXGHQW�WHDP�DW�WKH�'HSDUWPHQW�RI�0DULQH�
7HFKQRORJ\� DW� 1718�� 7KH� X'URQH� KDV� WKH� IROORZLQJ� VHQVRU� VXLWH� GHSWK �SUHVVXUH� VHQVRU��� KHDGLQJ
�,08�J\UR�� FDPHUDV��DQG� LW� LV�DOVR�SRVVLEOH� WR�PHDVXUH�SRVH�E\� WKH�4XDOLV\V�XQGHUZDWHU�SRVLWLRQLQJ�
V\VWHP� 7KH�REMHFWLYH�RI�WKH�YHKLFOH�LV�WR�EH�D�WHVWEHG�IRU�FRQWURO��HVWLPDWLRQ��DQG�GHWHFWLRQ�DOJRULWKPV�LQ�
WKH�1718�0&�ODE��7KLV�SURMHFW�DLPV�WR�OHDUQ��XQGHUVWDQG��LPSOHPHQW��DQG�WHVW UHOHYDQW�6/$0�DOJRULWKPV�
IRU�PRQRFXODU�XQGHUZDWHU�FDPHUDV�IRU�XQGHUZDWHU�H[SORUDWLRQ� SRVVLEO\�DLGHG�E\�WKH�RQERDUG�ODVHUV�

6FRSH�RI�:RUN
�� 3HUIRUP�D�EDFNJURXQG�DQG�OLWHUDWXUH�UHYLHZ�WR�SURYLGH�LQIRUPDWLRQ�DQG�UHOHYDQW�UHIHUHQFHV�RQ�

D� 7KH�529�X'URQH��0&�/DE��DQG�%OX(\H�5RERWLFV�GURQHV��DQG�UHODWHG�FDPHUD�WHFKQRORJLHV�
E� 7KH�25%�6/$0�DQG�UHODWHG�6/$0�PHWKRGV IRU PRQRFXODU�FDPHUDV�
F� 5HOHYDQW FRPSXWHU�YLVLRQ DQG�LPDJH�SURFHVVLQJ��
G� 7KH�5RERW�2SHUDWLQJ�6\VWHP �526� DQG�RWKHU�UHOHYDQW�KDUGZDUH�VRIWZDUH IRU�KDQGOLQJ�6/$0�

DOJRULWKPV�
H� 5HOHYDQW�VHQVRU�IXVLRQ�
:ULWH�D�OLVW�ZLWK�DEEUHYLDWLRQV�DQG�GHILQLWLRQV�RI�WHUPV��H[SODLQLQJ�UHOHYDQW�FRQFHSWV�UHODWHG�WR�WKH�
OLWHUDWXUH�VWXG\�DQG�SURMHFW�DVVLJQPHQW�

�� 'HVLJQ�DQG�LPSOHPHQWDWLRQ�RI�D�VFDOH�DZDUH�6/$0�DOJRULWKP�
D� 'HVLJQ�DQG�LPSOHPHQW�D�UDQJH�HVWLPDWRU�XVLQJ�SDUDOOHO�ODVHUV�
E� ,QVWDOO�25%�6/$0�DQG�LQWHJUDWH�WKLV�ZLWK VFDOH DZDUHQHVV�
F� 'HVLJQ�GHSWK�REVHUYHU�DQG�XVH�LW LQ�FRQMXQFWLRQ�ZLWK�WKH�6/$0�DOJRUWLKP WR�HVWLPDWH�VFDOH�

�� 'HVLJQ�DQG�LPSOHPHQWDWLRQ�RI�D�FDPHUD�DVVLVWHG�'3 IXQFWLRQ�RQ�WKH�529�
D� &KDQJH�FRQWURO�SRLQW�WR�FDPHUD�OHQV�SRVLWLRQ�
E� 'HVLJQ�DQG�LPSOHPHQW�D��IUHH]H SRVLWLRQ��IXQFWLRQ�IRU�VWDWLRQNHHSLQJ�

1718)DFXOW\�RI�(QJLQHHULQJ�6FLHQFH�DQG�7HFKQRORJ\
1RUZHJLDQ�8QLYHUVLW\�RI�6FLHQFH�DQG�7HFKQRORJ\ 'HSDUWPHQW�RI�0DULQH�7HFKQRORJ\

�

�� 9HULILFDWLRQ�DQG�WHVWLQJ�
D� 9HULI\�DOJRULWKPV�ZLWK�FRPSXWHU�VLPXODWLRQV��ZKHUH�DSSOLFDEOH�
E� 'HVLJQ�WHVWV�IRU�WKH�FORVHG�ORRS�V\VWHP�DFFXUDF\�DQG�UREXVWQHVV��XVLQJ�X'URQH�LQ�0&�/DE�
F� &RPSDUH�HVWLPDWHG�SRVLWLRQ�IURP�6/$0�DJDLQVW�WUXH�SRVLWLRQ�IURP�4XDOLV\V�

6SHFLILFDWLRQV
7KH�VFRSH�RI�ZRUN�PD\�SURYH�WR�EH�ODUJHU�WKDQ�LQLWLDOO\�DQWLFLSDWHG��%\�WKH�DSSURYDO�IURP�WKH�VXSHUYLVRU��
GHVFULEHG�WRSLFV�PD\�EH�GHOHWHG RU�UHGXFHG�LQ�H[WHQW�ZLWKRXW�FRQVHTXHQFHV�ZLWK�UHJDUG�WR�JUDGLQJ�

7KH�FDQGLGDWH�VKDOO�SUHVHQW�SHUVRQDO�FRQWULEXWLRQ�WR�WKH�UHVROXWLRQ�RI�SUREOHPV�ZLWKLQ�WKH�VFRSH�RI�ZRUN��
7KHRULHV�DQG�FRQFOXVLRQV�VKRXOG�EH�EDVHG�RQ�PDWKHPDWLFDO�GHULYDWLRQV�DQG�ORJLF�UHDVRQLQJ�LGHQWLI\LQJ�WKH�
YDULRXV�VWHSV�LQ�WKH�GHGXFWLRQ�

7KH� UHSRUW� VKDOO� EH� RUJDQL]HG� LQ� D� ORJLFDO� VWUXFWXUH� WR� JLYH� D� FOHDU� H[SRVLWLRQ� RI� EDFNJURXQG�� UHVXOWV��
DVVHVVPHQWV��DQG�FRQFOXVLRQV��7KH� WH[W�VKRXOG�EH�EULHI�DQG�WR� WKH�SRLQW��ZLWK�D�FOHDU�ODQJXDJH��5LJRURXV�
PDWKHPDWLFDO�GHGXFWLRQV�DQG�LOOXVWUDWLQJ�ILJXUHV�DUH�SUHIHUUHG�RYHU�OHQJWK\�WH[WXDO�GHVFULSWLRQV��7KH�UHSRUW�
VKDOO�KDYH�IRQW�VL]H����SWV��,W�VKDOO�EH�ZULWWHQ�LQ�(QJOLVK��SUHIHUDEO\�86��DQG�FRQWDLQ�WKH�IROORZLQJ�HOHPHQWV��
7LWOH�SDJH��DEVWUDFW��DFNQRZOHGJHPHQWV��WKHVLV�VSHFLILFDWLRQ��OLVW�RI�V\PEROV�DQG�DFURQ\PV��WDEOH�RI�FRQWHQWV��
LQWURGXFWLRQ�ZLWK�REMHFWLYH��EDFNJURXQG��DQG�VFRSH�DQG�GHOLPLWDWLRQV��PDLQ�ERG\�ZLWK�SUREOHP�IRUPXODWLRQV��
GHULYDWLRQV�GHYHORSPHQWV�DQG�UHVXOWV��FRQFOXVLRQV�ZLWK�UHFRPPHQGDWLRQV�IRU�IXUWKHU�ZRUN��UHIHUHQFHV��DQG�
RSWLRQDO�DSSHQGLFHV��$OO�ILJXUHV��WDEOHV��DQG�HTXDWLRQV�VKDOO�EH�QXPHUDWHG��7KH�RULJLQDO�FRQWULEXWLRQ�RI�WKH�
FDQGLGDWH�DQG�PDWHULDO�WDNHQ�IURP�RWKHU�VRXUFHV�VKDOO�EH�FOHDUO\�LGHQWLILHG��:RUN�IURP�RWKHU�VRXUFHV�VKDOO�EH�
SURSHUO\�DFNQRZOHGJHG�XVLQJ�TXRWDWLRQV�DQG�D�+DUYDUG�FLWDWLRQ�VW\OH��H�J��QDWELE /DWH[�SDFNDJH���7KH�ZRUN�
LV�H[SHFWHG�WR�EH�FRQGXFWHG�LQ�DQ�KRQHVW�DQG�HWKLFDO�PDQQHU��ZLWKRXW�DQ\�VRUW�RI�SODJLDULVP�DQG�PLVFRQGXFW��
6XFK�SUDFWLFH�LV�WDNHQ�YHU\�VHULRXVO\�E\�WKH�XQLYHUVLW\�DQG�ZLOO�KDYH�FRQVHTXHQFHV��1718�FDQ�XVH�WKH�UHVXOWV�
IUHHO\�LQ�UHVHDUFK�DQG�WHDFKLQJ�E\�SURSHU�UHIHUHQFLQJ��XQOHVV�RWKHUZLVH�DJUHHG�XSRQ�

7KH�WKHVLV�VKDOO�EH�VXEPLWWHG�ZLWK�D�SULQWHG�DQG�HOHFWURQLF�FRS\�WR�WKH�PDLQ�VXSHUYLVRU��ZLWK�WKH�SULQWHG�FRS\�
VLJQHG�E\�WKH�FDQGLGDWH��7KH�ILQDO�UHYLVHG�YHUVLRQ�RI�WKLV�WKHVLV�GHVFULSWLRQ�PXVW�EH�LQFOXGHG��7KH�UHSRUW�PXVW�
EH�VXEPLWWHG�DFFRUGLQJ�WR�1718�SURFHGXUHV��&RPSXWHU�FRGH��SLFWXUHV��YLGHRV��GDWD�VHULHV��DQG�D�3')�YHUVLRQ�
RI�WKH�UHSRUW�VKDOO�EH LQFOXGHG�HOHFWURQLFDOO\�ZLWK�DOO�VXEPLWWHG�YHUVLRQV�

6WDUW�GDWH� �� -DQXDU\������ 'XH�GDWH� $V�VSHFLILHG�E\�WKH�DGPLQLVWUDWLRQ�

6XSHUYLVRU�� 5RJHU�6NMHWQH
&R�DGYLVRU�V��� 3HWWHU�1RUJUHQ��$QGUHDV�9��+HQULNVHQ��%OX(\H��

7URQGKHLP�

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
5RJHU�6NMHWQH��6XSHUYLVRU

Preface

This report is the result of the Master’s Thesis in Marine Technology at the Norwegian
University of Science and Technology carried out during the spring of 2017. The motiva-
tion for the thesis was to make a self contained position reference system for underwater
vehicles using computer vision. The methods developed can be used and improved upon
to gain stationkeeping and dynamic positioning capabilities of ROVs. The idea for us-
ing ORB-SLAM came up after a computer vision seminar at NTNU Trondheim in the
autumn of 2016, while the idea for laser range measurements came from (Henriksen,
2016). The assumed background of the reader should be an education in control engi-
neering with some knowledge within hydrodynamics and computer vision.

Trondheim, June 11th, 2017

Tore Mo-Bjørkelund

iii

Acknowledgment

I want to thank my supervisor Professor Roger Skjetne and co-supervisors Andreas V.
Henriksen at BluEye and PhD. candidate Petter Norgren for the support, discussions
and inspiration. Further, I would like to thank Torgeir Wahl for all help in relation to
practical issues in MCLab, especially for procuring batteries for the uDrone and granting
me access to proper soldering equipment.

I am also thankful to BluEye Robotics which has been supporting during the project
and given me much inspiration, also for lending me an IMU. A big thank you to my
friends and co-students Mads S. Skinderhaug, for all he has taught me about Linux and
soldering, Børge Mokleiv, for active problem solving in the MCLab, Erlend S. Harbitz,
for motivation and inspiration, and all three for interesting and insightful discussions. I
further would like to thank my girlfriend Karina Solheim for all the support along the
way. Last, I would like to thank my parents, Anna Mo-Bjørkelund and Vidar Østerbø,
for letting me find my own way in this world, and my siblings, Rune Mo-Bjørkelund and
Nora Mo-Bjørkelund for inspiration and motivation.

iv

Abstract

Low-cost ROVs are currently entering the market en masse, and providers face a great
challenge in keeping the cost low while providing the best user experience. For this
purpose, simple sensors and advanced software is needed. We explore the possibility of
monocular camera-based Simultaneous Localization And Mapping(SLAM) on an ROV
to achieve dynamic positioning. The main challenge of monocular SLAM is lack of
scale, due to a camera being a bearing-only sensor. Thus, it tells us nothing about the
scale of our map or the scale of the ROV position within the map. We implement the
ORB-SLAM algorithm from (Mur-Artal et al., 2015), along with laser range measure-
ments to estimate scale. The position estimate from SLAM is used for feedback control
of uDrone, a low-cost ROV built by students at the Marine Technology department of the
Norwegian University of Science and Technology. We present and discuss challenges,
methods and results form the work, concluding on the feasibility of underwater monoc-
ular SLAM for dynamic positioning.

Index Terms – Simultaneous Localization And Mapping(SLAM), ORB-SLAM, ROV,
underwater, computer vision, dynamic positioning, ORB-SLAM, laser range.

v

Summary

A range of low-cost Remotely Operated Vehicles(ROVs) are currently emerging in the
consumer market. In this thesis we are exploring the possibilities of using monocu-
lar camera-based Simultaneous Localization And Mapping(SLAM) on a low cost ROV
for real-time position feedback, stationkeeping and dynamic positioning. Monocular
SLAM has an inherent weakness, stemming from that a normal camera is a bearing-only
sensor, this means that the scale of the map and the camera position within the map
is unknown. We present two methods for estimating the relation between SLAM and
real world scales, one based on laser range measurements using computer vision and
the other based on comparing offsets in the vertical direction. We present the low-cost
ROV used in this thesis, the uDrone, and the Marine Cybernetics Laboratory(MCLab).
ORB-SLAM (Mur-Artal et al., 2015) is chosen as the SLAM-algorithm for the thesis.
ORB-SLAM is a graph-based SLAM-algorithm based on the ORB feature descriptor
(Rublee et al., 2011) and Bundle Adjustment(BA) optimization. We then present the
pinhole camera model, and the distortions made of the lens shape, camera imperfec-
tions and refraction. ORB-SLAM only outputs the pose of the camera, thus, we need
to estimate velocity, this is done by first presenting the system model from (Sandøy,
2016), then developing two Extended Kalman Filters)(EKFs). The first solely based on
the model and inputs from the scaled ORB-SLAM pose, the second we exchange the
kinematic model by Inertial Measurement Unit(IMU)-measurements in all translatory
degrees of freedoms. To achieve dynamic positioning, we implement Proportional In-
tegral Derivative(PID) control laws in sway, heave and yaw degrees of freedom, and a
Pseudo Derivative Feedback(PDF) (Phelan, 1971) based control law inspired by (Kjer-
stad et al., 2017) in surge. ORB-SLAM, the scale estimators, EKFs and control laws are
implemented in the Robot Operating System on uDrone and tested in the MCLab basin.
We present the results of the experiments and comment on their performance. Both the
EKFs and the scaling factor estimates showed somewhat unsatisfactory results, while
the laser range measurements, controllers and ORB-SLAM showed satisfactory perfor-
mance. We conclude by arguing that the work done in this thesis is a successful proof of
concept and that if implemented on a commercial product, it needs more robustness and
refinement.

vi

Samandrag

Dei siste åra har interessa og tilgjengelegheita av lågkost undervassfarkostar auka kraftig.
I denne avhandlinga utforskar vi moglegheitane for å nytta monokulært kamerabasert
simultan lokalisering og kartlegging(SLAM) på ein lågkost undervassfarkost for san-
ntid posisjonstilbakekopling og dynamisk posisjonering. Monokulær SLAM har ein
veikskap i det at eit kamera kan berre måle retning, ikkje avstand. Dette fører til at
skalaen til kartet er ukjend. Vi presenterar to metodar for å estimere denne skalaen, ved
å samanlikne lasermålingar med avstandsmålingar i kartet, og ved å samanlikne verikale
forskyvingar frå startpunktet. Vidare presenterar vi farkosten nytta i arbeidet presen-
tert her, uDrone, og Marin Kybernetikk Laboratoriet(MCLab). Vi vel den grafbaserte
ORB-SLAM-algoritmen (Mur-Artal et al., 2015) som vår SLAM-algoritme, den nyttar
ORB-skildraren (Rublee et al., 2011) for datasyn og bundtjustering(BA) for optimer-
ing av grafen. Vi presenterar knappnålsholkameramodellen og forvrengingar forårsaka
av utforminga av linsa, ufullkommenskap i kameraet og refraksjon. ORB-SLAM gjev
berre posisjonen og retninga til kameraet, difor vil me estimere hastigheita. For å gjere
dette, nyttar vi modellen presentert i (Sandøy, 2016) og presenterar to Utvida Kalman
Filter(EKF) basert på denne modellen. For å oppnå dynamisk posisjonering nyttar
vi oss av to ulike regulaotrar, i fridomsgradene svai, hiv og gir er Proporsjonal Inte-
gral Derivat(PID)-regulatorar brukt. I jag er ein Pseudo Derivat Tilbakekopling(PDF)-
basert (Phelan, 1971) regulator brukt, denne er tungt inspirert av (Kjerstad et al., 2017).
ORB-SLAM, skalaestimatorar, begge EKF, og regulatorane er implementert i Robotop-
erativssystemet(ROS) på uDrone og testa i MCLab. Begge EKF og skalaestimatorane
viste lite tilfredsstillande resultat, medan laseravstansmålingane, ORB-SLAM og regu-
latorane viste tilfredsstillande resultat. Vi konkluderar med at arbeidet gjort i forbindelse
med denne avhandlinga fungerar som eit prov for konseptet, men treng vidare utvikling
og og arbeid for å gjere det robust og meir nøyaktig.

vii

viii

Table of Contents

Preface iii

Acknowledgment iv

Abstract v

Summary vi

Summary vii

Table of Contents xii

List of Tables xiii

List of Figures xvii

Abbreviations xviii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objective . 2
1.3 Problem Statement . 2
1.4 Scope . 2
1.5 Delimitations . 3
1.6 Low-cost ROVs . 3

1.6.1 Blueye Robotics Drones . 4
1.6.2 BlueROV and uDrone . 4

ix

1.6.3 Software . 5
1.6.4 Topside Processing Module 6

1.7 System Architecture . 6
1.8 Robot Operating System . 7

1.8.1 Constituting Parts . 7
1.8.2 ROS Systems . 7

1.9 Structure of Report . 8

2 Simultaneous Localization and Mapping 9
2.1 Background . 9

2.1.1 Introduction . 9
2.1.2 Graph-Based SLAM . 10

2.2 ORB-SLAM . 11
2.2.1 Fundamentals . 12
2.2.2 Map Initialization . 14
2.2.3 Tracking . 16
2.2.4 Local Mapping . 17
2.2.5 Loop Closing . 18
2.2.6 Bundle Adjustment . 19
2.2.7 ORB-SLAM in the Underwater Environment 20
2.2.8 Changes Made to ORB-SLAM 21

2.3 Camera Calibration . 21

3 State Estimation 27
3.1 Process Model . 27

3.1.1 Reference Frames . 27
3.1.2 Kinematics Model . 28

3.2 Scale . 32
3.2.1 Real World Range . 32
3.2.2 Computer Vision and Lasers 37
3.2.3 Depth Measurement . 41
3.2.4 ORB-SLAM Range . 42
3.2.5 Comparison and Filtering . 42

3.3 Observers . 44
3.3.1 Observability . 44
3.3.2 Extendend Kalman Filter . 45
3.3.3 Model Specific EKF for uDrone 47
3.3.4 Kinematic EKF . 49

3.4 Control Algorithm . 50

x

3.4.1 Pseudo Derivative Feedback 50

4 Experiments 57
4.1 Experimental Setup . 58
4.2 Range Measurement . 58

4.2.1 Setup . 59
4.2.2 Results . 59

4.3 Stationkeeping . 60
4.3.1 Results . 61

4.4 Setpoint Regulation . 64
4.4.1 Results . 65

4.5 Scaling Factor Comparison . 66
4.5.1 Results . 66

4.6 EKF Comparison . 68
4.6.1 Results . 69

4.7 Comments on the Results . 72

5 Discussion 73
5.1 Scaling factors . 73

5.1.1 Laser Range . 73
5.1.2 Depth Range . 74

5.2 Underwater ORB-SLAM . 74
5.3 Controller performance . 74
5.4 Estimator Performance . 74
5.5 Overall Discussion . 75

6 Conclusion 77
6.1 Conclusion . 77
6.2 Further Work . 77

Bibliography 79

A 83

Appendix 83
A.1 Proofs . 83

A.1.1 Proof 1 . 83
A.1.2 Proof 2 . 84

A.2 EKF Matrices . 84
A.2.1 Differentiation of f . 84

xi

A.2.2 Q and R matrices . 85
A.3 Attachments . 86

xii

List of Tables

2.1 Refractive indexes of water, air and acrylic glass. 23

3.1 Notation for marine vessel position and motion from SNAME (1950) . . 27
3.2 rg and rb for ROV uDrone, as presented in Sandøy (2016). 31
3.3 Damping constants for ROV uDrone, as presented in Sandøy (2016). . . 31
3.4 Mass and moment of inertia constant parameters for ROV uDrone a pre-

sented in Sandøy (2016). 32
3.5 Measurements for linear regression of laser range equation estimation. . 36
3.6 Tuning parameters for simulation of PDF control on the ROV uDrone. . 53

4.1 Tuning parameters for PDF and PID control of uDrone. 60
4.2 Desired x-positions of uDrone in relation to the initialization point of

ORB-SLAM. 64

xiii

xiv

List of Figures

1.1 Proposed system architecture for implementing camera-based SLAM
for dynamic positioning on ROV uDrone. The blocks are: uDrone; the
physical process plant, ORB-SLAM; the monocular SLAM algorithm,
Scaling Factor provides scale to ORB-SLAM, the EKF estimates posi-
tion, velocity and bias, x̂, the control law calculates a thrust command,
and the Thrust Allocation converts the control, u, to force exerted by the
actuators acting on the uDrone. 6

2.1 Illustration of graph construction, graph in the left diagram, constraints
in matrix form to the right, figure source: (Thrun and Leonard, 2008). . 10

2.2 ORB-SLAM system overview, showing the tree threads and the main
components of the algorithm, figure from (Mur-Artal et al., 2015). . . . 12

2.3 Pinhole camera model, figure from Wöhler (2012). 22

2.4 Illustration of refractive distortion due to water-acrylic glass and acrylic
glass-air interfaces. Figure from (Processing, 2015). 23

2.5 Images from the on board usb-camera on the uDrone, showing refractive
distortion. 24

2.6 Above water calibration of the usb-camera, using the ROS camera cali-
bration package. 25

3.1 ROV uDrone with camera center, Cc, and center of gravity, CG, indi-
cated. Original figure from Sandøy (2016), edited by author. 28

3.2 Two parallel lines, l1 and l2, intersecting a plane, A, at points p1 and
p2, and their projection on to the image plane. 34

3.3 Linear regression of relationship between zo and abs(1
û1
− 1

û2
) 36

xv

3.4 HSV color-scheme, image source: (Wikipedia, 2017a), edited by author. 38

3.5 Original HSV-image with Hough circles overlaid and the processed,
blurred image after range filtering. Two laser dots appear in both im-
ages. 40

3.6 Time domain plot of desired north position, Nd, and actual north posi-
tion, N , in simulation of step response. 54

3.7 Time domain plot of desired heading, ψd, and actual heading, ψ, in sim-
ulation of step response. 54

3.8 Time domain plot of desired north position, Nd, and actual north po-
sition, N , in simulation of step response. White noise is added in the
process model. 55

3.9 Time domain plot of desired heading, ψd, and actual heading, ψ, in sim-
ulation of step response. White noise is added in the process model. . . 55

4.1 ROV uDrone in the Marine Cybernetics Laboratory basin during full DP
using ORB-SLAM as position reference. 58

4.2 Comparison of the range measured by lasers, zo, and the range measured
by Qualisys, zQ. Both measurements are made from the optical axis to
the surface of a flat plate. 60

4.3 x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF. 61

4.4 y-position as measured by Qualisys and ORB-SLAM, and the estimated
y-position from the EKF. 62

4.5 z-position as measured by Qualisys and ORB-SLAM, and the estimated
z-position from the EKF. 62

4.6 ψ-position as measured by Qualisys and ORB-SLAM, and the estimated
ψ-position from the EKF. 63

4.7 x-position as measured by Qualisys and ORB-SLAM, and the estimated
position from the EKF, x̂. The drone was pushed in the negative x-
direction three times, at Time = [30s, 72s, 140s] 64

4.8 x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF along with the desired x-position. 65

4.9 x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF along with the desired x-position. 66

4.10 z-offsets from the initialization point as measured by ORB-SLAM, zs,
and pressure sensor, h. 67

4.11 Ranges from the camera to a flat plate as measured by ORB-SLAM, d̄,
and laser range measurement, zo. 67

xvi

4.12 Scaling factors as found by laser range measurement, sl, depth estima-
tion, sh, and in post processing, strue. 68

4.13 z-positions as estimated by scaled ORB SLAM, zs, the kinematic EKF,
ẑ, and measured by Qualisys, zq . 69

4.14 z-positions as estimated by scaled ORB SLAM, zs, the model based
EKF, ẑ, and measured by Qualisys, zq 70

4.15 The bias of the model based EKF in z-direction, b3, during the test pre-
sented in figure 4.14. Bias absolute value increases over time in order to
compensate for unmodeled forces. 71

4.16 w-velocities as estimated by scaled ORB SLAM, ws, the model based
EKF, ŵ, and measured by Qualisys, wq 71

4.17 w-velocities as estimated by scaled ORB SLAM,ws, the kinematic EKF,
ŵ, and measured by Qualisys, wq . 72

xvii

Abbreviations

SLAM = Simultaneous Localization And Mapping
BA = Bundle Adjustment
KF = Kalman Filter
EKF = Extended Kalman Filter
PF = Particle Filter
PDF = Probability Density Function or Pseudo Derivative Feedback
BRIEF = Binary Robust Independent Elementary Features
FAST = Features from Accelerated Segment Test
ORB = Oriented FAST and Rotated BRIEF
SPLAM = Simultaneous Planning Localization And Mapping
RB = Rao-Blackwell
IMU = Inertial measurement unit
GPU = Graphics Processing Unit
CPU = Central Processing Unit
GHz = Giga Hertz
MB = Mega Byte
RAM = Random Access Memory
ROV = Remotely Operated underwater Vehicle
ESC = Electronic Speed Controller
ROS = Robot Operating System
MCLab = Marine Cybernetics Laboratory
HSV = Hue Saturation Value
RGB = Red Green Blue

xviii

Chapter 1
Introduction

“Home is behind, the world ahead,
and there are many paths to tread
through shadows to the edge of night,
until the stars are all alight.”

The Lord of the Rings
J.R.R. Tolkien (1892-1973)

1.1 Background and Motivation

It is said that we know less about the ocean floor than about the lunar surface. Human
urge for exploration never ceases, we will go where our technology permits us, from Mt.
Everest to the Mariana Trench, humans have been there. At the risk of their lives. We
are the explorers of this world, as Carl Sagan (1934-1996) said:

The cosmos is within us. We are made of star-stuff. We are a way for the
universe to know itself.

Our probes have journeyed the solar system and beyond, exploring space, the final fron-
tier. Diverting our eyes from the sky, we turn to explore another world we know little of,
the ocean space.
In recent years, the interest in subsea exploration has increased. At the same time the
cost of personal, underwater drones has decreased, and small, low-cost ROVs are cur-
rently entering the market en masse. As opposed to commercial high-cost ROVs, the
low-cost ROVs often have a limited sensor suite. As maneuvering a small underwater

1

Chapter 1. Introduction

craft can be a challenge, having a stationkeeping capability would help the user. That is,
to be able to freeze the ROV position without any user input. This functionality would
especially be useful when exploring some interesting feature of the underwater world, as
the user can focus fully on the experience. Furthermore, when exploring a larger feature,
eg. a wreck or coral reef, it would be useful to be able to move at slow speed around the
feature without directly controlling the craft, and rather by setpoint regulation or path
following.

1.2 Objective

Th e objective of this thesis is to explore the possibilities of monocular camera-based
SLAM on a low cost ROV. Thus, it is our objective to make a self contained system for
dynamic positioning of a low-cost ROV using the available on board sensors.

1.3 Problem Statement

In this thesis we seek to use ORB-SLAM as a position feedback for local dynamic po-
sitioning of a low cost Remotely Operated Vehicle(ROV). Consider the position, η, and
velocity, ν, of an ROV. Can a system be designed, using the camera as a sensor and the
on board thrusters of an ROV as actuators, such that

lim
t→∞

[
η

ν

]
=

[
ηd

νd

]
(1.1)

for all η, ηd, ν, and νd ∈ R where ORB-SLAM is able to produce a position feedback.
To clarify, ORB-SLAM can only give position feedback if there are enough visual fea-
tures for it to detect. In addition, the position as provided by ORB-SLAM has an origin
in its initialization point, making the position reference local, not global unless we have
some knowledge about the global position of the ROV at initialization.

1.4 Scope

The main scope of this thesis is to design, implement and test dynamic positioning on
a low-cost ROV based on position feedback from a monocular SLAM algorithm, ORB-
SLAM from (Mur-Artal et al., 2015). The main challenge with position feedback from
monocular SLAM is that scale is unknown, due to a camera being a bearing-only sensor.
The work is divided into 7 main tasks, they are as follows:

2

1.5 Delimitations

• Perform a background and literature study.

• Implement ORB-SLAM on the topside processing unit of uDrone.

• Design and implement a scale estimator using parallel lasers.

• Design and implement a scale estimator using depth comparison.

• Design and implement a state estimator for velocity estimation.

• Design and implement a control law in order to achieve dynamic positioning.

• Test the implemented algorithms.

A background literature study was done in the fall of 2016, (Mo-Bjørkelund, 2016),
some of the findings are repeated in this thesis for substantiation. The literature study
concluded that for camera-based SLAM on a low-cost ROV, ORB-SLAM would be both
suitable and feasible.

1.5 Delimitations

This project is constrained by a 20 week time frame, thus, there are some compromises
made. In order to provide smooth setpoint regulation without implementing a reference
filter, the PDF controller is chosen as the preferred control law. However, it is only im-
plemented in one degree of freedom, surge, and we limit the regulation to only input
steps in the desired position without any reference filtering. Furthermore, the system is
designed to work in a laboratory setting, and is not robust enough for direct implemen-
tation on an ROV. All filters and controllers are also not tuned perfectly. Last, all motion
models and controls are limited to the 4 degrees of freedom, under the assumption that
the roll and pitch angles inherently stable due to the flotation center of uDrone being
above its center of mass.

1.6 Low-cost ROVs

Recent years has seen a vast expansion in the availability of low-cost personal drones. In
this section we will present the Blueye drones and the drone used in the work described
in this thesis, the uDrone.

3

Chapter 1. Introduction

1.6.1 Blueye Robotics Drones

Blueye Robotics,(Blueye, 2017) is a company with its origins in the marine technology
community in Trondheim. Their vision is to make an affordable, personal underwater
drone. In doing so, they have made several prototypes and are currently working on
developing the Pioneer intended for mass production. The current prototype for the
Pioneer is fitted with one camera module and has allocated space for two lasers for
distance estimation. The drone communicates to a device(PC or smart phone) via a fiber
optic cable connected to a wifi transponder that floats on the surface. The video feed
is available topside, and is intended for steering the drone, the current model has some
lag from the drone and up, in the range of 150-500 ms. The Pioneer is estimated to be
available for purchase in 2018.

1.6.2 BlueROV and uDrone

BlueROV is a product from Blue Robotics, now no longer available on the consumer
market due to the release of the new version, BlueROV2. This drone is a built-it-yourself
kit, where a chassis, thrusters and a watertight enclosure are included. Electronics and
software has to be provided by the consumer. In the autumn of 2015 and spring of
2016, a team of students at NTNU outfitted a BlueROV kit with electronics, sensors and
software. They chose to call it uDrone and their work laid some of the foundation for
this masters thesis. In the spring of 2017, some upgrades and repairs were made to the
uDrone by the author and Mads S. Skinderhaug. This includes changing the on board
CPU and adding an additional Inertial Measurement Unit(IMU). As the test platform for
this master thesis is the uDrone, we will give an account of its electronics, sensor suite,
and software.

Hydrodynamic Properties

A hydrodynamic model of uDrone was identified in (Sandøy, 2016), we present it in this
thesis in section 3.1. In addition, it was shown by experiment that uDrone floats right
side up, even when submerged. This means that the center of buoyancy lies above the
center og gravity, making roll and pitch angles inherently stable around zero.

Electronics

On board the uDrone, there is power electronics, responsible for reducing the voltage
from the battery(14.8V nominal) to the voltage used by the Raspberry Pi and Arduino(5V).
Furthermore there are 6 Electronic Speed Controllers(ESC), one for each thruster. They
are controlled by an Arduino Mega, which is responsible for the thrust allocation. The

4

1.6 Low-cost ROVs

Arduino also reads tempreature, data from the external IMU, and controls four laser
lights mounted in the front of the drone. The uDrone is equipped with the following
sensors and electronics:

• External IMU with pressure sensor.

• Internal IMU, located close to center of mass.

• Internal temperature sensor.

• Wide angle usb-camera with close to 180 degrees field of view.

• Raspberry Pi Camera with 62 degrees field of view.

• Battery voltage sensor.

• Arduino Mega.

• Raspberry Pi 3b.

• 6 Electronic Speed Controllers.

• Voltage converter.

• 4 Parallel laser lights mounted in a square.

In this thesis, we will focus on using the cameras, two of the parallel laser lights, and
both of the IMUs as sensors.

1.6.3 Software

An extensive amount of software was developed by the above mentioned team of stu-
dents in the course of their master and project thesis work in 2015-2016, (Sandøy, 2016).
This software includes, but is not limited to:

• Thrust allocation algorithm.

• Direct motion control.

• Auto heading and depth.

• Laser range control algorithm.

The work done by the previous students laid the groundwork for the work done in this
thesis. The thrust allocation algorithm is used as is, while the control algorithms are
modified to fit the purposes of this thesis. Implementation was made easier due to the
software architecture being already in place.

5

Chapter 1. Introduction

1.6.4 Topside Processing Module

Many of the computing tasks involving image processing and control are done on a PC
connected to uDrone via Ethernet cable. Formally this is called the topside processing
module, or topside. It is a Dell PC, with 32 GB memory and an Intel i7 processor,
capable of running ORB-SLAM and all other tasks needed in the work presented in this
report in real time. As a rule, if processing can be done by the topside, it is done by the
topside.

1.7 System Architecture

For the purpose of achieving dynamic positioning using ORB-SLAM as position refer-
ence we propose the system architecture presented in figure 1.1.

Figure 1.1: Proposed system architecture for implementing camera-based SLAM for
dynamic positioning on ROV uDrone. The blocks are: uDrone; the physical process
plant, ORB-SLAM; the monocular SLAM algorithm, Scaling Factor provides scale to
ORB-SLAM, the EKF estimates position, velocity and bias, x̂, the control law calculates
a thrust command, and the Thrust Allocation converts the control, u, to force exerted by
the actuators acting on the uDrone.

The system architecture in figure 1.1 will be changed depending on if we use the scaling
factor found by laser range measurement or by depth comparison. However, this is

6

1.8 Robot Operating System

the architecture used for the majority of the work presented in this thesis. It is also
worth noting that the actual implemented software architecture is more complicated than
presented in 1.1. All implementation done in this thesis are done in the Robot Operating
System(ROS), writing code in C++. We continue to give a brief presentation of ROS.

1.8 Robot Operating System

The Robot Operating System(ROS) is an open source framework for getting robots to
do things (Quigley et al., 2015). In its official distribution, there are over 2000 software
packages, and a large community of users, making it easy to find tutorials and other help.
We will here present the fundamentals of ROS.

1.8.1 Constituting Parts

ROS consists of many parts, building a solid framework for writing code for robots.
First, a set of drivers enabling the user to read data from sensors and send commands
to actuators in an abstracted, well-defined format. Second, a large and growing collec-
tion of fundamental algorithms that allows for the building of maps of the world and
navigating within it. Third, a computational infrastructure that allows for movement of
data in an organized manner. The publisher/subscriber structure of ROS makes it easy
to see which components of the code talk to each other, and also the hierarchy of the
code is easily identifiable. Fourth, a large set of tools for visualization, debugging, and
recording of data. Finally, the ROS community, or ecosystem, provides an extensive set
of resources, such as a Wiki page, forums, and Q- and A-page.

1.8.2 ROS Systems

ROS systems operate peer-to-peer, in that they consist of numerous small computer pro-
grams that connect to one another continuously, exchanging messages. There is no cen-
tral routing of the messages, this makes for a more complicated network of connected
programs, but scales better as the amount of data increases. Another strong side of ROS
is that is multilingual, the different programs can be written in different languages. The
languages available for ROS include, but is not limited to, C++, Python, Java, JavaScript,
and MATLAB.

7

Chapter 1. Introduction

1.9 Structure of Report

We continue in chapter 2 to present simultaneous localization and mapping, ORB-SLAM,
challenges to underwater monocular SLAM, and camera distortion. In chapter 3 we
present the uDrone process model, scaling factor estimation, the EKF, and control laws.
Experiments, results, and discussion of the specific results are presented in chapter 4,
followed by an overall discussion in chapter 5. In chapter 6 we conclude and present a
suggestion for future work.

8

Chapter 2
Simultaneous Localization and
Mapping

2.1 Background

2.1.1 Introduction

Simultaneous Localization And Mapping(SLAM) is one of the most fundamental prob-
lems in robotics, as stated in (Thrun et al., 2005). SLAM problems arise when the robot
does not have a map of the environment. In its most basic form, SLAM seeks to solve
the problem formulated in (2.1).

p(x1:t,m|z1:t,u1:t) (2.1)

The expression in (2.1) seeks to estimate the current and the past pose of the robot,
x1:t, and the map, m, given all measurements, z1:t, and all control inputs, u1:t as a
probability density function. Furthermore, this is called the full SLAM problem, the
online SLAM problem, presented in (2.2), seeks only to estimate the current pose of the
robot.

p(xt,m|z1:t,u1:t) (2.2)

Over the years, many solutions to this problem has been proposed, the most notable
being solutions involving the Extended Kalman Filter(EKF), graph-based optimization

9

Chapter 2. Simultaneous Localization and Mapping

methods, and solutions using the Particle Filter(PF) as discussed in (Thrun and Leonard,
2008). The preferable solution may depend on several factors such as computing power,
sensor suite and desired accuracy. Here, we focus on graph-based methods, and will give
a brief introduction to the intuition of the method before moving on to ORB-SLAM.

2.1.2 Graph-Based SLAM

Figure 2.1: Illustration of graph construc-
tion, graph in the left diagram, constraints
in matrix form to the right, figure source:
(Thrun and Leonard, 2008).

Graph-based methods solve the SLAM
problem through nonlinear sparse op-
timization, as stated in (Thrun and
Leonard, 2008). The robot poses and
landmark positions are thought of as
nodes in a graph. From each pose, xt,
there is a link to the previous pose, xt−1
and the landmarks, mi, observed at time
t. As each of the measurements carry an
inherent uncertainty, they can be thought
of as soft constraints in an optimization
function. The graph construction is illus-
trated in figure 2.1. Further, it is help-
ful to think of the graph as a mass-spring
system, computing the solution is equiva-
lent to computing the state of minimum
energy of this system. The graph cor-
responds to the log-posterior of the full
slam problem, as formulated in (Thrun
and Leonard, 2008).

log p(x1:t,m|z1:t,u1:t) (2.3)

The solution of (2.3) can be formulated as
in (2.4).

log p(x1:t,m|z1:t,u1:t) = const

+
∑
t

log p(xt|xt−1,ut)

+
∑
t

log p(zt|xt,m)

(2.4)

10

2.2 ORB-SLAM

The constraint of the form log p(xt|xt−1,ut) is the result of a single robot motion event
at time t. It corresponds to one arc in the graph. As with the previous constraint, the
term log p(zt|xt,m) corresponds to one sensor measurement at time t, to which there
is also a corresponding arc in the graph. The solution to the SLAM problem is then the
solution to the mode of (2.5).

x∗t ,m
∗ = argmaxx1:t,m

log p(x1:t,m|z1:t,u1:t) (2.5)

As stated in (Thrun and Leonard, 2008), the solution of (2.4) can, under the Gaussian
noise assumption, be resolved to a sparse function on the quadratic form, here presented
in (2.6).

log p(x1:t,m|z1:t,u1:t) = const

+
∑
t

[xt − g(xt−1,ut)]
ᵀ
R−1t [xt − g(xt−1,ut)]

+
∑
t

[zt − h(xt,m)]
ᵀ
Q−1t [zt − h(xt,m)]

(2.6)

In equation 2.6, g(·) is the model for state propagation, R is the corresponding covari-
ance matrix for the states, h(·) is the measurement equation, andQ is the corresponding
measurement covariance matrix. In order to solve this, a number of optimization tech-
niques can be applied, in ORB-SLAM, bundle adjustment is used. We will now present
the ORB-SLAM algorithm.

2.2 ORB-SLAM

ORB-SLAM was first presented in (Mur-Artal et al., 2015), and presents a versatile
method for monocular SLAM using Bundle Adjustment(BA). The bundle adjustment
method eliminates the need for filtering of the states in SLAM, such as landmark posi-
tions and robot pose. This makes ORB-SLAM more robust for prolonged use in contrast
to classical filtering approaches to SLAM such as PTAM (Klein and Murray, 2007) or
EKF-SLAM (Davison et al., 2007). In this section ORB-SLAM is presented briefly with
focus on its strengths and weaknesses in underwater operation of ROVs. In his section
we will present ORB-SLAM as it is presented in (Mur-Artal et al., 2015), the challenges
of ORB-SLAM in the underwater environment, and the implemented modifications.

11

Chapter 2. Simultaneous Localization and Mapping

2.2.1 Fundamentals

In this section we will present ORB-SLAM as it is presented in (Mur-Artal et al., 2015).
ORB-SLAM, using BA, is a graph-based SLAM algorithm. The algorithm is divided
into three threads: tracking, local mapping and loop closing. Furthermore, ORB-SLAM
is named after the Oriented FAST and Rotated BRIEF(ORB)-feature descriptor. Ori-
ented FAST and Rotated BRIEF(ORB) is a feature descriptor based on the FAST corner
detector and the BRIEF descriptor, from (Rublee et al., 2011). The descriptor is rotation
invariant and resistant to noise. It was showed in (Rublee et al., 2011), that it is two
orders of magnitude faster than SIFT. BRIEF is a descriptor with good robustness with
respect to lighting, blur, and perspective distortion. However, it is not rotational invari-
ant, this is introduced in the ORB descriptor, making it usable for real world purposes.
The following is a description of ORB-SLAM, based on figure 2.2.

Figure 2.2: ORB-SLAM system overview, showing the tree threads and the main com-
ponents of the algorithm, figure from (Mur-Artal et al., 2015).

12

2.2 ORB-SLAM

Features

In order to operate at a frame rate of 30 FPS, ORB-SLAM needs feature extraction in less
than 33ms, therefore ORB, (Rublee et al., 2011), is chosen. ORB has good invariance
to viewpoint, which allows for matching with wide baselines, which in turn boosts the
accuracy of BA.

Three Thread Structure

After initialization, the ORB-SLAM system incorporates three threads running in paral-
lel: tracking, local mapping, and loop closing.

Tracking Tracking is responsible for localizing the camera in every frame and decid-
ing when to insert a new keyframe. Tracking is done by doing initial feature matching
with the previous frame and then optimize the pose by motion-only BA. If tracking is
lost, global relocalization is initialized.

Local Mapping Local mapping processes the new keyframes and performers local
BA to achieve an optimal reconstruction of the surroundings of the camera pose. New
correspondences for unmatched ORB in the new keyframe are searched in connected
keyframes in the covisibility graph in order to triangulate new points. Local mapping is
also responsible for culling low quality points and redundant keyframes.

Loop Closing The loop closing searches for loops with every new keyframe. If a loop
is detected, a similarity transform is computed in order to inform about the accumulated
drift. Both sides of the loop is then aligned and the matched points are fused. Then,
optimization over the essential graph is done. All optimization, including BA, is done
using the Levenberg-Marquardt algorithm, (Moré, 1978).

The Map

The map consists map points, keyframes, the essential graph, the covisibility graph, and
the spanning tree.

Map Points Each point, pi, in the map stores the following information:

• Its 3D position,Xw,i,in the world frame.

• The viewing direction ni.

• A representative ORB descriptorDi.

13

Chapter 2. Simultaneous Localization and Mapping

• The maximum dmax and minimum dmin distances at which the point can be ob-
served.

Keyframes Each keyframe, Ki, stores the following:

• The camera pose Tiw

• The camera intrinsics, including focal point and principal point.

• All ORB features extracted in the frame whose coordinates are undistorted.

Map points and keyframes are generated generously, while the culling process hap-
pens after it is assessed which points and keyframes are bad or redundant.

Covisibility Graph and Essential Graph

Covisibility Graph The covisibility graph describes how many map points are visible
from the different keyframes. It is represented as a undirected weighted graph between
the keyframes. The weight is dependent on how many points are visible in the keyframes.
The weight, θ, is defined at the number of common map points.

Essential Graph The essential graph is a sparser, but more robust version of the cov-
isibility graph. For the essential graph, the minimum threshold of common map points
is θmin = 100 points. The covisibility graph also contains the spanning tree and loop
closure edges. The spanning tree is built from the initial keyframes and when a new
keyfram is added, it is added to the tree linked to the keyframe which shares the most
observations.

Bags of Words Place Recognition

Bags of words place recognition is embedded in the system to perform loop detection
and relocalization.

2.2.2 Map Initialization

There are two ways to initialize the map, by a homography assuming a planar scene or
by a fundamental matrix assuming a nonplanar scene. ORB-SLAM computes both in
parallel and give each a score in order to decide which one to use for initialization. The
initialization process is broken into five steps, which are presented below.

14

2.2 ORB-SLAM

Finding Initial Correspondences : Extract ORB features from the current frame Fc,
and search for matches in the reference frame Fr, if the number of matches is to low,
reset the reference frame.

Parallel Computing of Two models The homography, Hcr, and fundamental matrix,
Fcr, are defined as

xc = Hcrxr (2.7)

xTc Fcrxr = 0 (2.8)

where they are calculated by the normalized direct linear transformation and the eight-
point algorithm respectively, (Hartley and Zisserman, 2003), inside a RANSAC scheme.
Scores for the individual models M (H for homography and F for fundamental matrix)
are calculated as

SM =
∑
i

(ρM (d2cr(x
i
c,x

i
r,M)) + ρM (d2rc(x

i
c,x

i
r,M))) (2.9)

ρM (d2) =

{
Γ− d2 if d2 < TM

0 if d2 ≥ TM
(2.10)

where d2cr and d2rc are the symmetric transfer errors from one frame to the other. TM is
the outlier rejection threshold based on the χ2 test at 95%, assuming standard deviation
of 1 pixel in the measurement error. Γ is defined equal to TH .

Model Selection In order to choose which model to use, the scores are combined as

RH =
SH

SH + SF
(2.11)

and the homography is selected if RH > 0.45.

Structure From Motion When a model is selected, the motion hypothesis associ-
ated with it is retrieved. For homography, eight motion hypotheses are retrieved, and
attempted triangulated. If this fails, there might be insufficient parallax leading to the
choice of a wrong solution. For the fundamental matrix, it is converted to an essential
matrix, Erc, using the calibration matrixK as

Erc = KTFrcK (2.12)

15

Chapter 2. Simultaneous Localization and Mapping

Bundle Adjustment When a good initial guess is generated from the motion hypoth-
esis, BA is performed to refine the initial reconstruction.

2.2.3 Tracking

In this section, we describe the tracking thread in ORB-SLAM, in tracking, all steps are
performed for each frame.

ORB Extraction FAST corners at eight scale-levels with a scale factor 1.2 are ex-
tracted. Form images of size 512 × 384 to 751 × 480, 1000 corners are extracted, for
larger images, 2000. Homogeneous distribution is achieved by dividing each scale level
in a grid, attempting to extract at least five corners per cell. Orientation and ORB de-
scriptor are then computed on the FAST corners.

Initial Pose Estimation If tracking was successful for the last frame, a constant ve-
locity model to predict the camera pose and perform a guided search of the map points
observed in the last frame. If not enough matches were found, the search is widened.
The pose is then optimized with the found correspondences.

Pose Estimation via Global Relocalization If the tracking is lost, the frame is con-
verted into bag of words and and query the recognition database from keyframe candi-
dates for global relocalization. Correspondences with ORB associated with map points
in each keyframe is computed. If a camera pose with enough inliers is found, the pose is
potimized and tracking continues.

Tracking the Local Map Once the camera pose is estimated, and there is an initial set
of feature matches, the map is projected into the frame, and more point correspondences
are searched for. In order to bound the complexity in large maps, only a local map is
projected. The local map is the set K1 of keyframes which share map points witht he
current frame, and the set K2 with neighbours to the keyframes K1 in the covisibility
graph. Each map point in K1 and K2 is searched for in the current frame by algorithm 1
and is fully optimized when all map points are found in the frame.

16

2.2 ORB-SLAM

Algorithm 1 Local map point search in tracking.
1: Compute the point projection x in the current frame, discard if out of bounds.
2: Compute the angle between the current viewing ray v and the map point viewing

direction n, discard if v · n < cos(60◦).
3: Compute the distance d from the map point to the camera center, discard if d /∈

[dmin, dmax].
4: Compute the scale in the frame by d/dmin.
5: Compare the representative descriptorD of the map point with all unmatched ORB

features in the frame, at the predicted scale, and near x, associate the point with the
best match.

New Keyframe Decision In order to insert a new keyframe the following condition
must be met:

• More than 20 frames must have passed from the last global relocalization.

• Local mapping is idle, or more than 20 frames have passed since the last keyframe
insertion.

• Current frame tracks at least 50 points.

• Current frame tracks less than 90% of points in Kref .

Where Kref ∈ K1 is the keyframe which shares the most map points with the current
frame. If a keyframe is inserted while the local mapping is busy, local BA is stopped in
order to process the new keyframe.

2.2.4 Local Mapping

In this section, we present the seps performed when inserting a new keyframe Ki.

Inserting Keyframe The covisibility graph is first updated, adding a new node forKi,
then the spannig tree is updated. Last, the bags of words representation of the keyframe
is computed.

Culling Recent Map Points In order to be retained in the map, a map point needs to
fulfill two conditions:

• Tracking must find the point in more than 25% of the frames in which predicted
to be visible.

17

Chapter 2. Simultaneous Localization and Mapping

• If more than one keyframe have passed from map point creation, it must be ob-
served from at least three keyframes.

Once a map point has passed this test, it can only be removed if at any time it is observed
from less than three keyframes.

Map point Creation New map points are generated by triangulation from connected
keyframes Kc in the covisibility graph. For each unmatched ORB in the keyframe Ki,
the point is searched for in the other keyframes. To be accepted the new points are
checked for positive depth in both cameras, parallax, reprojection error, and scale con-
sistency.

Local BA Local BA optimizes the currently processed keyframe along with all keyframes
connected to it in the covisiblity graph, Kc, and all map points seen by those keyframes.
The local BA also include the keypoints not connected in the covisibility graph, but they
remain fixed.

Local Keyframe Culling Keyframes which contain redundant information are deleted.
Keyframes in Kc that share at least 90% of its map points with three other keyframes in
Kc are deleted.

2.2.5 Loop Closing

Loop closure is an important part of SLAM, and is used in order to correct drift and
not generating overlaying maps. In this section we present the steps of loop closing in
ORB-SLAM.

Loop Candidate Detection First, the similarity between the bag of word vector of
Ki and all its neighbours in the covisibility graph is computed. Then a query of the
recognition database is made. In order to be accepted, three consistent loop candidates
must be made consecutively.

Similarity Transform In computing the similarity transform, Sim(3), the drift along
all 7 DOFs in the loop is found. The 7 DOFs are three translations, three rotations and
scale.

Loop Fusion In loop fusing, covisibility graph is updated, such that the current keyframe,
Ki, is corrected by the similarity transform. The correction is then propagated to all
neighbours of Ki, concatenating transformations, so that both sides of the loop get

18

2.2 ORB-SLAM

aligned. After correcting all the keyframes in the loop, overlapping map points are
fused.

Essential Graph Optimization In order to effectivly close the loop, pose graph po-
timisation over the essential graph is done. The optimization distributes the closing
error along the graph, and map points are transformed according to the transformation
according to the transformation of one of the keyframes that observes it.

2.2.6 Bundle Adjustment

The core of ORB-SLAM is based on Bundle Adjustment(BA). In this section we will
present the general form of BA and the specific form used in ORB-SLAM

Using the description from (Mur-Artal et al., 2015), we present the bundle adjust-
ment algorithm as follows. Consider N map keypoints, positioned in Xw,j ∈ R3 ap-
pearing in K images with poses Tw,i ∈ SE(3), where the index w indicates the world
reference frame. The positions are optimized minimizing the reprojection error with
respect to the matched keypoints xi,j in the image frame. The error for keypoint j in
image i is

ei,j = xi,j − πi(Tw,i,Xw,j) (2.13)

where πi is the projection function

πi(Tw,i,Xw,j) =

[
fi,u

xi,j

zi,j
+ ci,u

fi,v
yi,j
zi,j

+ ci,v

]
(2.14)

[xi,j , yi,j , zi,j]
T

= Rw,iXw,j + tw,i (2.15)

where Rw,i ∈ SO(3) and tw,i ∈ R3 are rotation and translation parts of Tw,i respec-
tively, and (fi,u, fi,v) and (ci,u, ci,v) are the focal length and principle point associated
with image i. The cost function used is formulated as

C =

K∑
i

N∑
j

ρh(eTi,jΩ
−1
i,j ei,j) (2.16)

Where ρh is the Huber robust cost function, and Ωi,j = σ2
i,jI2×2 is the covariance

matrix associated with the full scale at witch the keypoint was detected. With a tunable

19

Chapter 2. Simultaneous Localization and Mapping

parameter, δ, the Huber robust cost function is defined as

ρh(a) =

{
1
2a

2 for |a| < δ,

δ(|a| − 1
2δ) otherwise.

(2.17)

This puts quadratic penalty on small errors and linear penalties on outliers(|a| > δ).

Thus, we have a method for optimizing both the pose of the camera and the position
of the keypoints. For this to be valid, we make some assumptions in regards to the world.
First, we assume the world to be static, and that all our keypoints are fixed in the world
frame. Second, that we have a large enough sample of different images to optimize over.
These images must contain the same or parts of the same environment and be taken
from different poses. In other words, the image sample must be persistently exited in the
position of the keypoints, in computer vision this effect is called sufficient parallax. BA
can also be used to solve for the camera parameters needed for camera calibration.

2.2.7 ORB-SLAM in the Underwater Environment

ORB-SLAM is originally intended for above water operation in a feature rich environ-
ment, on a moving camera. As stated in (ORB-SLAM, 2017):

In general our Monocular SLAM solution is expected to have a bad time in
the following situations:

• No translation at system initialization (or too much rotation).

• Pure rotations in exploration.

• Low texture environments.

• Many (or big) moving objects, especially if they move slowly.

Due to light scattering in water, light has a much smaller penetration length in water than
in air. This means that we need to be relatively close to objects before we are able to see
them compared to above water. In turn, this reduces the amount of features available in
the environment for ORB-SLAM. Another limiting factor in using ORB-SLAM under-
water is the ORB-vocabulary, a feature vocabulary trained on a set of images. According
to (Mur-Artal and Tardós, 2014), the image set used in ORB-SLAM is the Bovisa 2008-
09-01 dataset, (Bonarini et al., 2006). This image set has the types mixed, static, and
natural lighting. This in turn means that for ORB-SLAM to function better underwater
it would probably need a vocabulary trained on underwater images.

20

2.3 Camera Calibration

2.2.8 Changes Made to ORB-SLAM

The original ORB-SLAM algorithm, available on GitHub (ORB-SLAM, 2017), was
changed in some respect to fit our application. In this section we will present the changes
made and why.

Initialization

In the initialization, the number of key points needed for initialization was reduced from
100 to 70. This was done to ease the initialization process due to the lack of features in
the Marine Cybernetics Laboratory(MCLab) basin compared to an outdoor scene. The
reduction also increases the risk of wrongful initialization and decreases its robustness.
However it was found that the change had significant positive impact on the initialization
success rate.

System State

ORB-SLAM can have different operation states, three of them are:

• Initializing.

• Tracking.

• Track lost, trying to re-localize.

For the rest of our system, the state estimator and control law, it is useful to know the
state of ORB-SLAM. In order to make use of the states, they are published in ROS, and
made available to the rest of the system.

Range Measurement

As our system is dependent on a scale estimate, we want to measure the distance from
the camera to the points in near vicinity of where the laser range measurement is taken.
The procedure for doing this, described in section 3.2.4, was also implemented in the
ORB-SLAM algorithm.

2.3 Camera Calibration

Proper reprojection is dependent on a properly calibrated camera model. Camera cali-
bration undistorts images taken by said camera such that they can be represented by the
pinhole camera model, found in (Wöhler, 2012), and presented in figure 2.3. OpenCV
and ROS offers tools for camera calibration, using a chess board pattern where the size

21

Chapter 2. Simultaneous Localization and Mapping

Figure 2.3: Pinhole camera model, figure from Wöhler (2012).

of the tiles are known. In this section we will present lens and refractive distortion, along
with camera calibration. In this section, we will use the notation presented in figure 2.3.

Lens Distortion

Due to lens distortion, there is often a more complex mapping between the sensed image
and the image plane. The distorted coordinates, Ixd, are obtained by the undistorted
coordinates, Ix = (û, v̂). Here the lens distortion model from (Heikkilä and Silvén,
1997) is described in (2.18).

Ixd = (1 + k1r
2 + k3r

4 + k5r
6)Ix+ dt (2.18)

dt =

[
2k2ûv̂ + k4(r2 + 2û2)

k2(r2 + 2v̂2) + 2k4ûv̂

]
(2.19)

r2 = û2 + v̂2 (2.20)

Finding the values for k1, k2, k3, k4, and k5 is discussed next. As the image perceived
by the camera is distorted by the lens, and improper image sensor alignment, we wish to
”undistort” the image by use of (2.18). Notice that the transformation is done by taking
the original image and distorting it to an ”undistorted” state. The constants k1, k3, and
k5 describes radial distortion, while k2 and k4 describes tangential distortion. Radial
distortion is effects such as barrel, pincushion or mustache distortion, as described in
(Jenkins and White, 1957). Tangential distortion appears when the camera sensor and

22

2.3 Camera Calibration

the camera lens are not perfectly parallel. This implies that straight lines in the object
space crossing the optical axis appear bent.

Refractive Distortion

Underwater, the distortion of an image can be exotic, due to refraction between several
surfaces. On the uDrone, the camera has to perceive light that is coming from water,
through acrylic glass, then through air. The refractive indexes of water, air and acrylic
glass are, according to (Wikipedia, 2017b), given in table 2.1.

Table 2.1: Refractive indexes of water, air and acrylic glass.

Water, nw Air, na Acrylic Glass, ng
1.330 1.000293 1.491± 0.001

The refractive distortion will then be as depicted in figure 2.4.

Figure 2.4: Illustration of refractive distortion due to water-acrylic glass and acrylic
glass-air interfaces. Figure from (Processing, 2015).

The effect of the refractive distortion becomes visible by comparing images from the
usb-camera on the uDrone above and below the water surface. In figure 2.5, we see that
lines that should have been straight, such as the bottom of the plate in figure 2.5a and the
edge at the bottom of figure 2.5b are distorted. We see that these lines, although they are
straight in the real world, are distorted in different ways. The underwater image shows
mustache distortion while the above water image shows barrel distortion.

23

Chapter 2. Simultaneous Localization and Mapping

(a) Underwater image. (b) Above water image.

Figure 2.5: Images from the on board usb-camera on the uDrone, showing refractive
distortion.

Due to the effect of refractive distortion, we have to perform the camera calibration
underwater. For more on refractive distortion, see (Kunz and Singh, 2008) and (Kwon
and Casebolt, 2006).

Calibration Software

Finding the constants needed for proper calibration is a highly involved process to
preform analytically. We can therefore use available software for calibration, such as
OpenCV, Adobe Photoshop or ROS. Usually these kinds of software need input in the
form of images where a known pattern is in the image, usually a chessboard or a circle.
In OpenCV, calibration is done by feeding images to the software, where a calibration is
done recursively by calibrating for each image. The calibration usually relies on a set of
images and converges to an optimal calibration, given that the known object is properly
flat and the image set is varying in the objects placement in the image.

In this thesis, the ROS calibration software was used, (ROS, 2017). This was done
by mounting a chessboard pattern on a plate which was submerged in water. The chess-
board during above water calibration is shown in figure 2.6, this procedure was repeated
underwater for underwater calibration.

24

2.3 Camera Calibration

Figure 2.6: Above water calibration of the usb-camera, using the ROS camera calibra-
tion package.

25

Chapter 2. Simultaneous Localization and Mapping

26

Chapter 3
State Estimation

3.1 Process Model

3.1.1 Reference Frames

In this thesis, we will use three frames of reference, the body-fixed, world-fixed and
the camera-fixed reference frame. We start by presenting the definitions of notation
from SNAME (1950) in table 3.1. This notation describes the forces and velocities
relative to the body-fixed reference frame and the pose relative some world-fixed frame
of reference. The North-East-Down-frame(NED) is often used as the world-fixed frame
of reference. However, since we are doing local positioning, we are bound to use the
somewhat arbitrary initialization point for the SLAM-algorithm as the origin for our
frame of reference.

Table 3.1: Notation for marine vessel position and motion from SNAME (1950)

Degree of Freedom Force Velocity Position
Surge X[N] u x[m]
Sway Y [N] v y[m]
Heave Z[N] w z[m]
Roll K[Nm] p φ[rad]
Pitch M [Nm] q θ[rad]
Pitch N [Nm] r ψ[rad]

27

Chapter 3. State Estimation

Relation Between Frames

From figure 3.1, we see that the camera center, Cc, is offset from the body center of
gravity,CG, by 140mm along the body x-axis and−20mm along the body z-axis. The
camera frame is also rotated in relation to the body frame this rotation can be described
by

xc = R(Θc
b)xb + vo (3.1)

where xc is a position vector in the camera-frame,Rcb(Θ) is the rotation matrix describ-
ing the rotation between the two coordinate frames, Θ ∈ S3 is the vector of rotation
between the frames, and vo is the offset vector between the frames.

Figure 3.1: ROV uDrone with camera center,Cc, and center of gravity,CG, indicated.
Original figure from Sandøy (2016), edited by author.

3.1.2 Kinematics Model

For the uDrone process model, we use the model presented in Sandøy (2016). This
model is a 4 DOF model where surge, sway, heave, and yaw motion is included. Roll
and pitch angles are excluded due to their inherent stability caused by the center of
flotation of uDrone being above the center of gravity. Using the notation from Fossen
(2011), we define η and ν, as they are used in this thesis, in (3.2) and (3.3).

28

3.1 Process Model

η :=
[
x y z ψ

]ᵀ
(3.2)

ν :=
[
u v w r

]ᵀ
(3.3)

η̇ = J(η)ν (3.4)

Mν̇ +C(ν)ν +D(ν)ν = τ (3.5)

Where

M = MRB +MA (3.6)

C(ν) = CA(ν) +CRB(ν) (3.7)

D(ν) = DL +DNL(ν) (3.8)

Rewriting gives

η̇ = J(η)ν (3.9)

ν̇ = M−1 [τ −C(ν)ν −D(ν)ν] (3.10)

Further, we present the individual parts of the above equations. We define the position
vector, η, in the SLAM xyz-frame with one rotation ψ. For simplification, the remaining
two degrees of freedom, φ and θ are not included. This frame relates to the North-East-
Down-frame(NED) (Fossen, 2011), as it is earth-fixed, but has no global origin. If we
know the global NED position of the SLAM origin, we can relate the two frames, how-
ever since our objective is local positioning, the local frame will be used. An important
relation between the NED-frame and the SLAM-frame is that because of roll and pitch
stability, it is assumed that the N - and z- axis of the two frames are parallel.

The NED-position, η, and the body velocity, ν, make up the state-space of the mathe-
matical model of the ROV. We will now present the remaining parts of the model. First
we present the transformation between the body- and SLAM-frames, J(η), in (3.11).

29

Chapter 3. State Estimation

J(η) =

[
R(ψ) 02×2

02×2 I2×2

]
(3.11)

R(ψ) =

[
cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

]
(3.12)

We continue to the mass matrices for the rigid-body mass, MRB , and the added mass,
MA. The rigid body mass is equal in all translation DOFs. In rotation DOFs the rigid-
body mass is equal to the mass moment of inertia about the axis of rotation. The added
mass matrix is dependent on the geometry of the vehicle and can be calculated using
methods outlined in Sandøy (2016) or Faltinsen (1993). In Sandøy (2016), the added
mass matrices are presented as in equations 3.13 and 3.14.

MRB =

[
m · I3×3 0

0 Izz

]
(3.13)

MA = diag



−Xu̇

−Yv̇
−Zẇ
−Nṙ


 (3.14)

DL = diag



Xu

Yv

Zw

Nr


 (3.15)

DNL(ν) = diag




X|u|u|u|+Xuuuu
2

Y|v|v|v|+ Yvvvv
2

Z|w|w|w|+ Zwwww
2

N|r|r|r|+Nrrrr
2


 (3.16)

(3.17)

In order to find the Coriolis matrices, we need the vectors rg and rb, these vectors
descrive the distance from the body frame to the center of gravity(CG) and to the center
og bouyancy(CB) respectively. These were found for the uDrone in Sandøy (2016), and
we present them here in table 3.2. Furthermore, we assume that off-diagonal added
mass-terms are zero, this is due to the lack of information about the vessel. Using the
Coriolis matrices presented in Fossen (2011), we find the Coriolis matrices CA and

30

3.1 Process Model

CRB

Table 3.2: rg and rb for ROV uDrone, as presented in Sandøy (2016).

Parameter Value Unit
rg [0 0 0]ᵀ [m]
rb [0 0 0.00019]ᵀ [m]

We define rbg , as done in (Fossen, 2011), as the vector from CB, rb to the CG, rg .

rbg = [xg yg zg]ᵀ = [0 0 −0.00019]ᵀ (3.18)

We see that rbg has small values, and thus we choose to neglect any effect that is caused
by the offset between the center of gravity and the center of buoyancy. Thus, we formu-
late the Coriolis matrices for added mass,CA, and rigid body,CRB , as done in (Fossen,
2011).

CA =


0 0 0 0

0 0 0 Zẇ · w
0 0 0 −Yv̇ · v
0 −Zẇ · w Yv̇ · v 0

 (3.19)

CRB =


0 0 0 0

0 0 0 −m · w
0 0 0 m · v
0 m · w −m · v 0

 (3.20)

From (3.19) and (3.20), we get the total Coriolis matrix, C(ν).

C(ν) = CA +CRB (3.21)

The damping coefficients are presented in table 3.3

Table 3.3: Damping constants for ROV uDrone, as presented in Sandøy (2016).

DOF Linear Value Quadratic Value Cubic Value
Surge Xu -4.03 X|u|u -18.18 Xuuu -24.24
Sway Yv -6.22 Y|v|v -21.66 Yvvv -128.52
Heave Zw -5.18 Z|w|w -36.99 Xuuu -123.15
Yaw Nr -0.07 N|r|r -1.55 Nrrr 0

31

Chapter 3. State Estimation

We use the parameters given for the ROV uDrone in Sandøy (2016), and present them
here in table 3.4

Table 3.4: Mass and moment of inertia constant parameters for ROV uDrone a presented
in Sandøy (2016).

Property Notation Value Unit
Mass m 7.31 [kg]
Yaw moment of inertia Izz 0.16 [kgm2]
Surge added mass Xu̇ -5.50 [kg]
Sway added mass Yv̇ -12.70 [kg]
Heave added mass Zẇ -14.57 [kg]
Yaw added moment of inertia Nṙ -0.12 [kgm2]

3.2 Scale

The scale of ORB-SLAM is somewhat arbitrary, depending on the initialization and
camera calibration, as discussed in chapter 2. In order to have good estimates of the true
states, we need to have a measurement of the relationship between the scale of the real
world and the scale of ORB-SLAM. In this section, we present a method for calculating
this relationship. We start with presenting the estimation of the real world range estimate
using parallel lasers to an object. We then present the method of estimating the ORB-
SLAM range to the same area as the lasers are pointed at, last we find and filter the
relationship between the two estimates. Last, we present a method for estimating scale
using depth offsets from pressure sensor data and ORB-SLAM.

3.2.1 Real World Range

Theory

In this section, we will use the notation presented in figure 2.3 to develop a method
for finding the distance from a camera lens to a flat plane. Starting from the pinhole
camera model, as presented in Wöhler (2012) and shown in figure 2.3, we can model
two lines, l1 and l2, parallel with he camera z-axis and their projection into the image
plane. Modeling the lines parallel to the camera z-axis, with offsets, a1 and a2, in the
camera x-axis and no offset in the camera y-axis the lines become as presented in (3.22)

32

3.2 Scale

and (3.23).

l1 =
[
a1 0 z

]ᵀ
(3.22)

l2 =
[
a2 0 z

]ᵀ
(3.23)

Using the transformation from camera coordinate frame to image plane, (3.24), pre-
sented in Wöhler (2012), we can find the relationship between the z-position of any
point along a line and the û-position in the image frame.

û

b
=
x

z
(3.24)

Inserting x = a1 and solving for z of a point along l1, p1, we get the relationship
presented in (3.25).

zp1 =
a1b

û1
(3.25)

Similarly, for a point along l2, p2, we get the relationship presented in equation 3.26.

zp2
=
a2b

û2
(3.26)

Consider now that the two points, p1 and p2, are placed at the intersection of a plane,
A, not parallel to the z-axis of the camera coordinate system, and the lines l1 and l2,
as shown in figure 3.2. Using the measurements from the image plane, we seek to
find the point in which the optical axis intersects the plane. We call this point po =

[0 0 zo]ᵀ. In the special case where A is orthogonal to the optical axis, zo =

zp1 = zp2 , in all other cases zp1 will be offset from zo by a value, c, and zp2 will have
an offset equal to a2

a1
c, due A being a flat plane. We can express this as in (3.27) and

(3.28).

zp1
= zo + c (3.27)

zp2
= zo +

a2
a1
c (3.28)

33

Chapter 3. State Estimation

A

{

x

z

l1 l2

p1

p2

a1 a2

û1û2

Zo

û
Figure 3.2: Two parallel lines, l1 and l2, intersecting a plane, A, at points p1 and p2,
and their projection on to the image plane.

34

3.2 Scale

Inserting (3.27) and (3.28) in (3.25) and (3.26) respectively, and solving for û1 and û2.

û1 =
a1b

zo + c
(3.29)

û2 =
a2b

zo + a2
a1
c

(3.30)

Thus, we have two equations, (3.29) and (3.30), and two unknowns, c and zo. We assume
a1, a2, and b to be known, solving for zo gives (3.31).

zo =
a1a2b

a1 − a2

(
1

û2
− 1

û1

)
(3.31)

By (3.31), we see that zo is not defined for a1 = a2, û1 = 0, or û2 = 0. This introduces
some constraints in the use of parallel lines:

• a1 and a2 must be different values.

• ûn must be be nonzero for finite zpn
, for n ∈ {1, 2}.

• an must be be non-zero since it would render ûn to be zero for finite zpn
, for

n ∈ {1, 2}.

• The points p1 and p2 on the surface A must be have a corresponding position in
the camera coordinate frame, thus, zp1

and zp2
must be strictly positive values.

This derivation is illustrated in figure 3.2, we will now present a practical application for
this theory.

Solving for Constants

We seek to find the distance from the Raspberry Pi camera mounted on the uDrone to
the object its optical axis is pointed at. In order to do this, we assume the following:

• The object is a flat surface(e.g. a wall).

• The distance, zo, is always positive since the camera cannot observe things behind
it.

• The lasers mounted on the uDrone are perfectly parallel.

• The v̂-value of the lasers in the camera coordinate frame is always zero.

• The Raspberry Pi camera module behaves like a pinhole camera.

35

Chapter 3. State Estimation

In order to find the constant term in (3.31), the distance form the camera to a wall was
measured using a tape measure. The term abs

(
1
û2
− 1

û1

)
was logged at four different

distances, presented in table 3.5. Since we assume a positive distance, the absolute value
is taken. Linear regression was then performed on the data points, and the results are
presented in figure 3.3. From the linear regression we obtain the expression in (3.32).

Data point zo[m] abs
(

1
û2
− 1

û1

)
1 0.35 0.0440411
2 0.50 0.0626376
3 0.80 0.102853
4 1.00 0.129572

Table 3.5: Measurements for linear regression of laser range equation estimation.

zo = 7.569abs

(
1

û2
− 1

û1

)
+ 0.02[m] (3.32)

abs(1
û1

−

1
û2
)

0 0.05 0.1 0.15

z
o
[m

]

0

0.2

0.4

0.6

0.8

1

1.2

z
o
 = mx+b

Data point 1
Data point 2
Data point 3
Data point 4

Figure 3.3: Linear regression of relationship between zo and abs(1
û1
− 1

û2
)

Discussion

As the constant term, 0.02m, in equation 3.32 is small, we can choose to neglect it in
the final range estimation. As (3.31) has no additional terms, the source of the constant

36

3.2 Scale

might be measurement error and modeling errors, as the Raspberry Pi camera is not a
true pinhole camera. A true pinhole camera has an infinitesimally small lens, which is
not possible in the real world as stated in Wöhler (2012). The tests were also conducted
in air, not water. In order to verify if the distance estimation behaves well under water,
we do an experiment. We measure the true distance and compare with the estimated
distance to flat plate. The results of the experiment are presented in section 4.2.

3.2.2 Computer Vision and Lasers

As described in Henriksen (2016), we can find the lasers in an image using HSV-colors.
Using the OpenCV (OpenCv, 2017) library in conjunction with ROS, we can run the
computer vision algorithms on the topside processing unit. This enables us to run the
algorithm at 30Hz or more if needed. In this section we will present the methods used
for laser detection in the image frame. We start by presenting the OpenCV library and
continue to present the HSV color scheme, last we present the method used for automat-
ically finding the laser points in the image.

OpenCV

As stated on the home page of OpenCV:

OpenCV is released under a BSD license and hence it’s free for both aca-
demic and commercial use. [...] Adopted all around the world, OpenCV
has more than 47 thousand people of user community and estimated number
of downloads exceeding 14 million. Usage ranges from interactive art, to
mines inspection, stitching maps on the web or through advanced robotics.
-OpenCV Home page

OpenCV is an open-source library for computer vision for the C, C++, and Python pro-
gramming languages. It is supported by a large community of users and contributors,
making almost any computer vision task solvable. This makes OpenCv he go-to library
for computer vision. Other libraries, such as libCVD or ccv could be considered. How-
ever, OpenCV seemed to be the best choice. In this project, computer vision is used
extensively as ORB-SLAM, laser detection, and video pipelines relies on it.

37

Chapter 3. State Estimation

HSV-colors

Figure 3.4: HSV color-scheme, image
source: (Wikipedia, 2017a), edited by au-
thor.

Hue Saturation Value(HSV) color repre-
sentation (Smith, 1978), illustrated in fig-
ure 3.4, is an alternative to the classic
Red Gree Blue(RGB) color scheme used
in most image processing (Hunt, 1967).
The RGB color scheme is intuitive in
that it represents each of the primary col-
ors, red, green and blue with a number,
{R,G,B} ∈ {0, 255} in a way such that
{255, 0, 0} is red, {0, 255, 0} is green,
and {0, 0, 255} is blue.

In the HSV color-scheme the hue, satura-
tion and value of the color is represented,
in stead of the color combination of red,
green, and blue. The hue, H ∈ [0, 360],
value determines the ”color” or hue of the
color. A low hue value corresponds to a
red color and as the value increases, the
hue moves through the rainbow towards
violet. The saturation, S ∈ [0, 180] de-
termines the deepness of the color, its in-
tensity. Staring from S = 0 where there
is no color to the maximum intensity of
S = 180. Finally the value, V ∈ [0, 1]

determines the brightness or lightness of
the color. At V = 0 the color is black,
and going towards V = 1, the color be-
comes lighter and lighter, until there is no
black left in the color at V = 1. This is
illustrated in figure 3.4. The properties of the HSV-image make it easy to pick out colors
with a certain hue from an image within a range of saturations and brightnesses and vice
versa. This will be helpful in locating the lasers in the image.

Laser Localization

In order to locate the laser points in the image frame of the Raspberry Pi camera, we
need to filter out all other sources of light and disturbances. Due to the above men-

38

3.2 Scale

tioned properties of the HSV-color scheme, we choose it for filtering. First, the image
is cropped to include the area where the lasers are to be found in order to lessen the
computational load and remove unnecessary noise. We choose to crop more than what
was done in (Henriksen, 2016), as it was found that the lasers kept inside the cropped
image for all relevant distances from the camera to the object in front of it.

t h i s −>myMatImage1 = t h i s −>myMatImage1 (Rec t (2 0 , 1 3 0 , 6 0 0 , 1 0 0)) ;

After cropping, the image is converted into an HSV-image. Then, a filter is applied
filtering out all pixels whose colors are not within a dynamic range. The range of the H,
S and V values is determined by algorithm 2. It is important to note that the range of H,
S, and V is changed as we move in to computer vision, where the values are discretized
to integers such that {H,S, V } ∈ {0, 255}. This is convenient for computing, as each
value can be described by one byte.

Algorithm 2 Automatic color range calibration for detecting laser points in HSV-image.
Initialization

Hmin = 0 Hmax = 25

Smin = 0 Smax = 120

Vmin = 100 Vmax = 255

(3.33)

for each new image do
if points detected in last image < 2 then

Increase Hmax and Smax by 1
Decrease Vmin by 1

else if points detected in last image > 2 then
Increase Vmin by 1
Decrease Hmax and Smax by 1

else
All values remain the same

end if
end for

After the for the filter is determined, the image is filtered using the inRange-function
from OpenCV, documentation available in (OpenCV, 2017b).

cv : : inRange (matOriginalHSV , cv : : S c a l a r (hmin , smin , vmin) ,
cv : : S c a l a r (hmax , smax , vmax) , m a t P r o c e s s e d) ;

39

Chapter 3. State Estimation

The processed image is then an image with only black or white pixels. White pixels
indicate pixels that were within the range, and black pixels indicate pixels that were
outside the range.

Figure 3.5: Original HSV-image with Hough circles overlaid and the processed, blurred
image after range filtering. Two laser dots appear in both images.

We call this image the processed image, or matProcessed in the code. After filtering, the
processed image is blurred with Gaussian blur.

cv : : G a u s s i a n B l u r (ma tProces sed , ma tProces sed , cv : : S i z e (5 , 5) , 2 . 2) ;

After blurring, the image is searched for Hough Circles, presented in (Yuen et al., 1990)
and (OpenCV, 2017a), that have a radius, r, that is in the range 8 ≤ r ≤ 30 pixels.
The radius range is limited at 8 pixels in order to reduce the effect of image noise. The
upper bound of 30 pixels is chosen as to not include other circles present in the image,
that may not have been filtered out. The original image containing two laser dots, with
overlaid circles and the filtered, blurred image are presented in figure 3.5.

cv : : H o u g h C i r c l e s ()

This function return a vector of circles found in the blurred image. If two circles were
found, the distances û1 and û2 are found and the distance zo is calculated using (3.32).

Outlier Rejection

There are several error modes in the above presented approach. In order to handle false
and bad measurements of zo, we need some way to reject the bad measurements. First,
we present the known sources of bad measurements, second, we present the methods
developed for handling them.

40

3.2 Scale

The most common source of bad measurements is the detection of a Hough circle
where there is no laser. The reason for this may be bad filtering of the image, light scat-
tering from the laser or image noise. Another source may be adjustments bade by the
camera, such as automatic white balance and shutter time, causing the color of the laser
points to shift out from the range we are filtering. We propose the outlier rejection algo-
rithm presented in 3 in order to compensate for the effects of wrongful measurements.

Algorithm 3 Automatic outlier rejection of laser range measurements
for each new image do

Solve for zo,t
if |żo,t| < 0.3m/s then

Keep zo,t
else

Discard zo,t
end if

end for

The calculation of żo,t in algorithm 3 is done by Euler differentiation, as presented in
equation 3.34. The choice of a threshold of 0.3m/s is based on the heuristic of maximum
expected surge velocity of uDrone.

żo,t =
zo,t − zo,t−n

n · h
(3.34)

h =
1

fps
(3.35)

In (3.34), the term zo,t−n denotes the last inlier, n denotes the number of frames that
have passed since the last inlier measurement, and in (3.35), fps denotes the frame rate,
or frames per second, of the image stream.

The outlier rejection procedure has some flaws due to its simplicity. First, the laser
points may jump from some nearby object to some object in the distance, making |żo,t| >
0.3m/s, thus rejecting a true measurement. Second, there may be bad measurements
that are treated as inlier measurements, however, these would not cause a great change
in zo, as the rate of change is the restricting factor.

3.2.3 Depth Measurement

In (Sandøy, 2016), a depth estimator was made based on the measurements from the
pressure sensor on the external IMU. The depth is estimated using the hydrostatic rela-

41

Chapter 3. State Estimation

tion P = ρgh, where P is the pressure in pascal, ρ is the density of the medium in kg
m3 ,

and h is the depth in meters. When submerging something in water on the surface of the
earth, we have to account for the atmospheric pressure, Patm, such that the depth of the
drone below the water surface can be found by (3.36).

h =
P − Patm

ρg
(3.36)

In (3.36), the atmospheric pressure is set to Patm = 101kPa, the water density is set to
ρ = 1000 kg

m3 , and the gravitational acceleration os set to g = 9.81ms2 . The last term, P ,
is the pressure sensed by the pressure sensor.

3.2.4 ORB-SLAM Range

In order to get a notion of the scale of the ORB-SLAM reference frame and compare it
to the real-world. In the ORB-SLAM frame, we measure the distance from the current
camera position, pcc, to map points, Mp = [p1 p2 ... pN]ᵀ, located in an area
in the center of the image frame. This area is then assumed to be centered around the
laser points discussed in section 3.2.1. This distance is assumed to be the average dis-
tance from the camera to the map points. In order to measure this distance, we calculate
the Euclidean norm for each vector and average the norms.

d̄ =

∑N
i=1 ‖pcc − pi‖

N
(3.37)

Implicit in (3.37) is the assumption that the distance from the camera to the map points
are Gaussian distributed. To check if this assumption is valid, we examine the estimated
position relative to the measured position in section 4.2.s

3.2.5 Comparison and Filtering

In this thesis, we propose two approaches for estimating the scale of ORB-SLAM. First,
by directly comparing and filtering the laser range measurements presented in section
3.2.1 and the and the ORB-SLAM range presented in section 3.2.4. Second, by compar-
ing the offset in heave from the initialization point as estimated by ORB-SLAM and by
the pressure sensor. In this section we will present both methods.

42

3.2 Scale

Scale From Laser Range Measurements

Scale is obtained by comparing the distance to the same area measured in the ORB-
SLAM frame and by laser range measurements. The approach is based on the assump-
tion that ORB-SLAM has found map points in the area where the lasers are measuring
the distance. Furthermore, it is assumed that this area is relatively flat. When compar-
ing, we get the scaling factor, sl, by dividing the laser range measurements, obtained by
(3.32), by the ORB-SLAM range measurements, obtained by (3.37).

sl =
zo
d̄

[m] (3.38)

We give the scaling factor the unit of meter in (3.38), due to the lack of any knowledge
about the ORB-SLAM units of length. For each update of zo or d̄, sl is updated, gen-
erating an array of scaling factors, sl = [sl,1 sl,2 ... sl,k]. The scaling factor is
then low pass filtered in a discrete low pass filter, presented in (3.39), where β ∈ (0, 1)

is set to β = 0.3. For each new measurement of zo or d̄, the filter is updated.

slf,k = βsl,k + (1− β)slf,k−1 (3.39)

In this case, a cutoff frequency of ωc = 4.3[rad/s] was found to be suitable, as the scale
drift of ORB-SLAM is assumed to be a slowly varying process.

Scale From Heave Offset

In comparing the heave offsets in the ORB-SLAM frame and from the depth measure-
ments, a depth measurement is made when ORB-SLAM is initialized. This leads to the
z-position in the ORB-SLAM frame is equal to its offset. This is based on the assump-
tion that ORB-SLAM is initialized with sufficiently small roll and pitch angles, such
that the z unit vector in ORB-SLAM is approximately parallel to the gravitational ac-
celeration vector in the NED-frame. Depth is measured by (3.36) at the same time as
ORB-SLAM is initialized, the initial depth is denoted h0. For each new measurement of
z or h, the heave scaling factor, sh, is updated by (3.40).

sh =
h− h0
z

(3.40)

As the drone comes closer ot the ORB-SLAM xy-plane, the scaling factor will become
more sensitive to measurement noise and eventual biases in h0. This effect os minimized
by rejecting all measurements of z or h − h0 that lies within a range around zero. This

43

Chapter 3. State Estimation

approach is presented in algorithm 4, where sign(·) outputs the sign of its argument.

Algorithm 4 Algorithm for rejecting small measurements of z and h− h0.
for Each new sh do

if |h− h0| < 0.05m or |z| < 0.05 then
Reject sh

else if sign(h− h0) not equal to sign(z) then
Reject sh

else
Keep sh

end if
end for

Measurements that pass through algorithm 4 are then low pass filtered, using the same
approach as presented in (3.39). However, this filter is running at a fixed frequency,
10Hz. This means that we can calculate the cutoff frequency, ωc, for β = 0.3 by (3.41).
The cutoff frequency was found to be ωc = 4.3[rad/s], this is high, but easily tunable.

β =
ωc∆T

1 + ωc∆T
(3.41)

3.3 Observers

When using ORB-SLAM, one only obtains the relative pose from the current camera
position relative to the initialization frame as stated in (Mur-Artal et al., 2015). Fur-
thermore, the current frame has a delay of about 350ms as stated in (Henriksen, 2016).
This means we have no real measurement of the current velocity and position. Using
an observer, we can estimate the velocities. In order to do so, we must first check if the
system is observable.

3.3.1 Observability

In order to make a state observer, our system must be observable. We start with the sys-
tem model presented in section 3.1 and augment it to include bias estimation as described
in (Sørensen, 2012).

44

3.3 Observers

x =

 η

ν

b

 y = η (3.42)

ẋ =

 04×4 J(η) 04×4

04×4 −M−1 [C(ν) +D(ν)] M−1J(η)

04×4 04×4 −T−1b

x+

 04×4

M−1

04×4

 τ (3.43)

From (3.42) and (3.43) we get theA and C matrices presented in (3.44).

A =

 04×4 J(η) 04×4

04×4 −M−1 [C(ν) +D(ν)] M−1J(η)

04×4 04×4 −T−1b

 (3.44)

C =
[
I4×4 04×4 04×4

]
(3.45)

From the matricesA and C, we check the rank of the observability matrix,O.

O =

 C

CA

CA2

 =

 I4×4 04×4 04×4

04×4 J(η) 04×4

04×4 −J(η)M−1 [C(ν) +D(ν)] J(η)2

 (3.46)

The system is observable ifO has full rank for all x. We see that is the case if and only
if J(η) and J(η)2 has full rank. Since the rotation matrix in J(η) has full rank for
all η(see appendix, section A.1.2) and all other elements are diagonal, we can conclude
that J(η) has full rank. Furthermore, we can prove that J(η)2 = J(2η)(see appendix,
section A.1.1) and by the same logic, J(η)2 must have full rank for all η.

3.3.2 Extendend Kalman Filter

In order to estimate the velocity and reject measurement and process noise, we will
use the discrete time Extended Kalman Filter(EKF). In this section we will present the
algorithm as it is presented in (Fossen, 2011), and comment on the implementation in
our specific case.

General EKF

The EKF is the nonlinear version of the Kalman Filter, linearizing for each time step. It
applies to systems of the form

45

Chapter 3. State Estimation

ẋ = f(x) +Bu+Ew (3.47)

ẏ = Hx+ v (3.48)

Where f(x) is a nonlinear vector field. Furthermore, w is the process noise, and v is
the measurement noise. Both are assumed to be zero-mean Gaussian white noise. The
discrete-time linearizations are found by forward Euler integration:

F(x̂(k),u(k)) ≈ x̂(k) + h [f(x̂(k)) +Bu(k)] (3.49)

Φ(k) ≈ I + h
∂f(x(k),u(k))

∂x(k)

∣∣∣∣∣
x(k)=x̂(k)

(3.50)

Γ(k) ≈ hE (3.51)

where h is the sample time.

Algorithm 5 Discrete-time extended Kalman Filter
Initialization

Q = Qᵀ > 0 (3.52)

R = Rᵀ > 0 (3.53)

x̄(0) = x0 (3.54)

P̄ (0) = E [(x(0)− x̂(0))(x(0)− x̂(0))ᵀ] = P0 (3.55)

For each time step do

K(k) = P̄ (k)Hᵀ(k)
[
H(k)P̄ (k)Hᵀ(k) +R(k)

]−1
(3.56)

x̂(k) = x̄(k) +K(k) [y(k)−H(k)x̄(k)] (3.57)

P̂ (k) = [I −K(k)H(k)] P̄ (k) [I −K(k)H(k)]
ᵀ

+K(k)R(k)Kᵀ(k) (3.58)

x̄(k + 1) = F(x̂(k),u(k)) (3.59)

P̄ (k + 1) = Φ(k)P̂ (k)Φᵀ(k) + Γ(k)Q(k)Γᵀ(k) (3.60)

The matrices Q and R correspond to the covariance of the process and measurement
noise, respectively. The matrix P represents the error covariance, and it can be shown

46

3.3 Observers

that if

pminI ≤ P (t) ≤ pmaxI (3.61)

pmax > 0 (3.62)

pmin > 0 (3.63)

the continuous time EKF is incremental globally exponentially stable, as stated in (Fos-
sen, 2011). That is, the error state converges exponentioally to zero or the estimated
states converge to the actual states.

3.3.3 Model Specific EKF for uDrone

In order to estimate the velocity of the drone, we choose to use an EKF, in this sec-
tion we will present the model used in the EKF. It is based on the model presented in
section 3.1, for simplification, the Coriolis term, C(ν)ν, is removed. As the objective
of this thesis is dynamic positioning at low speeds, the cross terms of the Coriolis ma-
trix will become minimal. However, in maneuvering at speed it will become relevant.
We also add a bias state, b, in the system to compensate for constant or slowly vary-
ing unmodeled dynamics. The bias dynamics are of first order, as done in (Sørensen,
2012). Furthermore, the bias is largely a noise driven process, as unmodeled dynamics
are treated as model noise. The bias can also be modeled as zeroth-order dynamics, or
purely noise driven, this means that the bias can grow unbounded. We choose to restrain
the growth by choosing large Tb, such that the bias dynamics in (3.66) become globally
exponentially stable, but slowly converging in absence of noise.

η̇ = J(η)ν (3.64)

ν̇ = M−1 [τ −D(ν)ν] + J(η)b (3.65)

ḃ = −T−1b b+Ebwb (3.66)

y = η + v (3.67)

Using (3.64)-(3.67) and our knowledge of the measurements, we can find f(x), B, E,
and H . Tb is a diagonal matrix containing the time constants for bias convergence. As
the diagonal entries in Tb increase, the convergence rate of the bias states in absence of
white noise will increase. We start by defining x in (3.68).

x =
[
ηᵀ νᵀ bᵀ

]ᵀ
(3.68)

47

Chapter 3. State Estimation

We move on to define f(x) in equation 3.69.

f(x) =

 f1

f2

f3

 =

 J(η)ν

−M−1 [C(ν)ν +D(ν)ν − J(η)ᵀb]

−T−1b b

 (3.69)

The matricesB andH are defined next in equations 3.70 and 3.71.

B =

 04×4

M−1

04×4

 (3.70)

H =
[
I4×4 04×4 04×4

]
(3.71)

In order to estimate how the states propagate, we need to define F(x̂(k),u(k)), it is
approximated by forward Euler integration in (3.72).

F(x̂(k),u(k)) ≈ x̂(k) + h [f(x̂(k)) +Bu(k)] (3.72)

Next, we need to define Φ(k), this is done using the first order Taylor expansion of
f(x), as presented in (3.73).

Φ(k) ≈ I12×12 + h
∂f(x(k),u(k))

∂x(k)
(3.73)

Equation 3.73 calls for the differentiation of f(x), this differentiation is presented in the
following.

∂f(x(k),u(k))

∂x(k)
=


∂f1
∂η

∂f1
∂ν

∂f1
∂b

∂f2
∂η

∂f2
∂ν

∂f2
∂b

∂f3
∂η

∂f3
∂ν

∂f3
∂b

 (3.74)

The individual elements of (3.74) are presented in the appendix, section A.2.1.The co-
variance matrices,R andQ, are presented in the appendix, section A.2.2.

48

3.3 Observers

3.3.4 Kinematic EKF

After the model specific EKF was implemented and tested, it was found not to give satis-
factory linear velocity estimates. We therefore propose to include Inertial Measurement
Unit(IMU)-measurements in order to have a better estimate of the linear velocities. In
this section we will present the new EKF structure, starting by presenting the IMU.

IMU

The IMU installed in the uDrone is mounted as near as possible to the center of mass.
It measures all linear accelerations in the body-frame, along with angular velocities and
angles. In this implementation, we will use the linear accelerations along with the roll
and pitch angles. The angles are used for canceling the gravitational acceleration experi-
enced by the IMU. We present this approach in (3.75), where yIMU is the measurement
vector compensated for gravity, y∗

IMU is the raw measurement, Rbn(φ, θ) is the rota-
tion matrix for roll and pitch from the NED-frame to the body-frame, where roll, φ, and
pitch, θ, are measured by the IMU, and g is the gravitational acceleration vector in the
NED-frame.

yIMU =
[
u̇IMU v̇IMU ẇIMU

]ᵀ
= y∗

IMU −Rbn(φ, θ)g (3.75)

EKF formulation

The kinematic EKF is formulated by starting with the model specific EKF and switching
the model based accelerations for measurements done by the IMU. In our case this means
modifying the f2-term in (3.69), we call this term g2. We keep the model based angular
acceleration model and exchange the linear accelerations as presented in (3.76).

g2(x, yIMU) =


u̇

v̇

ẇ

ṙ

 =


u̇IMU

v̇IMU

ẇIMU
Z−Nrr−Nr|r|r|r|

Izz−Nṙ

+ J(η)ᵀb+EIMUwIMU

(3.76)

As there might be a constant bias in the IMU-measurements, we choose to keep the bias
model, f3, as it is, we also choose to keep f1 as it is. Because of this change, we also
need to update the process covariance matrix, Q, as a measurement now has become
a part of the model. We update the covariance terms relating to u, v, and w to the

49

Chapter 3. State Estimation

covariance of the IMU measurements, yIMU . The covariance propagation expression,
Φ should also be changed to fit the new model, however, this was not done.

3.4 Control Algorithm

In this project, two different control algorithms are used, Pseudo-Derivative-Feedback(PDF)
and Proportional-Integral-Derivative(PID). PDF is used in surge and PID is used in
sway, heave and yaw. In this section the PDF control algorithm is presented, we will not
present the PID control algorithm due to its commonness and the assumption that the
reader is familiar with PID-control.

3.4.1 Pseudo Derivative Feedback

A control law for a surface vessel based on Pseudo Derivative Feedback(PDF) was pro-
posed in (Kjerstad et al., 2017). It is an adaptation of the linear time invariant concept
proposed in (Phelan, 1971). In this section we will present a control law similar to the
one presented in (Kjerstad et al., 2017). Further, we will implement the controller in a
simulation to indicate the stability of the system. Last, we implement the control law in
DOF on uDrone and test its performance.

Controller Fomulation

In (Phelan, 1971), the PDF controller is formulated for a linear time invariant system.
Consider the system in (3.77)-(3.78) where ẍ, ẋ, x ∈ R is the acceleration, velocity and
position, respectively, m, d ∈ R>0 are known system parameters, and b is an unknown,
constant bias. Full state feedback is assumed, such that both PID and PDF control laws
can be formulated.

mẍ+ aẋ = u+ b (3.77)

ḃ = 0 (3.78)

For the system (3.77)-(3.78), the PDF control law is formulated as in (3.79).

uPDF = −kpx− kdẋ− ki
∫ t

0

(x− xd)dt (3.79)

In order to indicate stability, we look at the closed-loop transfer function, as was done in
(Kjerstad et al., 2017).

50

3.4 Control Algorithm

s2mx+ sax = −kpx− skdx−
kix

s
+
kixd
s

+ b (3.80)

x(s) =
kixd + bs

(ms3 + (kd + a)s2 + kps+ ki
(3.81)

We see by 3.81 that kp, ki, and kd can be tuned such that the poles of the transfer function
lies in the left half plane.

Model Specific PDF

We move on to design a controller for our nonlinear system, heavily inspired by the
formulation found in (Kjerstad et al., 2017). In order to design the controller, we start
by looking at the model for our system without bias or disturbance.

η̇ = J(η)ν (3.82)

ν̇ = M−1(τ −D(ν)ν −C(ν)ν) (3.83)

Based on the model, we propose the control law in (3.84)-(3.85), where J(η)−1 =

J(η)ᵀ, ξ is the integration state, ηd is the desired position, Kd is the derivative gain
matrix, Kp is the proportional gain matrix, and Ki is the integral gain matrix. In this
controller design, we assume that the pose, η, and velocities ν are perfectly known.

ξ̇ = Ki(η− ηd) (3.84)

τ = D(ν)ν +C(ν)ν −M(Kdν + J(η)ᵀ(Kpη+ ξ)) (3.85)

This renders our system

ξ̇ = Ki(η− ηd) (3.86)

η̇ = J(η)ν (3.87)

ν̇ = −Kdν − J(η)ᵀ(Kpη+ ξ) (3.88)

In order to check if the closed loop system is stable, we propose the error states in
(3.89)-(3.91).

51

Chapter 3. State Estimation

z1 = η− ηd (3.89)

z2 = J(η)ν (3.90)

z3 = Kpη+ ξ (3.91)

In order to find the closed loop error dynamics, the error states are differentiated. The
controller is going to be used in setpoint regulation using steps without a reference filter,
this renders ∂ηd

∂t
= 0, thus rendering νd = 0. The closed loop error dynamics then

become as in (3.92)-(3.94).

ż1 = z2 (3.92)

ż2 = J(η)(S(ν)−Kd)J(η)ᵀz2 − z3 (3.93)

ż3 = Kiz1 +KpJ(η)ᵀz2 (3.94)

Choosing Kd = S(ν) + J(η)ᵀK∗
dJ(η) and Kp = K∗

pJ(η) renders the system

linear. Defining z :=
[
z1 z2 z3

]ᵀ
, we can define the state-space as in (3.95).

ż =

 0 I 0

0 −K∗
d −I

Ki K∗
p 0


︸ ︷︷ ︸

=A

z (3.95)

This renders the equilibrium, z =
[

0 0 0
]ᵀ

, globally exponentially stable ifK∗
d ,

Ki and K∗
p are designed such that A is Hurwitz. We continue to constrain the conver-

gence velocity.

Convergence Velocity Constraint

In (Kjerstad et al., 2017), the convergence velocity is constrained by saturating the error
in the integration state, ξ, as presented in (3.96) and (3.97).

ξ̇ = sat(Ki(η− ηd)) (3.96)

sat(x) =

x if |x| ≤ xmax
sign(x)xmax else

(3.97)

52

3.4 Control Algorithm

In (3.97), x ∈ R, xmax ∈ R>0, and sign(·) is the sign operator. From the saturation, it
follows that we can limit the rate of convergence. This stems from the intuition of the
integration state has to overcome the proportional state. The choice of xmax will have
an impact on the maximum convergence rate, high xmax will lead to fast convergence
rate and vice versa.

Tuning

We follow the procedure of tuning presented in (Kjerstad et al., 2017), and augment it to
include heave motion as well. For each degree of freedom, we can calculate kp, ki and
kd by (3.98)-(3.100), where kn are the diagonal entries in the matrixKn for n = p, i, d.

kd = 2ζω0 + α (3.98)

kp = ω2
0 + 2ζω0α (3.99)

ki = αω2
0 (3.100)

In (3.98)-(3.100), ζ is the damping coefficient, ω0 is the natural frequency of the system,
and α acts as an inverse first order lowpass filter time constant as stated in (Kjerstad
et al., 2017).

Verification by Simulation

The controller is verified by simulation in Simulink. In this section we will present
the parameters used and the simulation results. A simulation model of the uDrone was
made in Simulink using the mathematical model presented in section 3.1. Furthermore,
the control law was implemented and tuned with the tuning parameters presented next.
For simplicity and proof of concept, ζ, ω0, and α were chosen to be equal for all degrees
of freedom. We present the tuning parameters in table 3.6.

Table 3.6: Tuning parameters for simulation of PDF control on the ROV uDrone.

ζ ω0 α xmax

1.5 0.7 2 0.3

We continue to present the simulation results for the north position change and the yaw
motion. In this simulation, we change ηd from ηd =

[
0 0 0 0

]ᵀ
to ηd =[

0.5 0 0 0.2
]ᵀ

at time t = 1sec. The results from the simulation is presented in
figures 3.6 and 3.7.

53

Chapter 3. State Estimation

Time [s]
0 5 10 15 20 25

N
[m

]

0

0.1

0.2

0.3

0.4

0.5

Nd N

Figure 3.6: Time domain plot of desired north position, Nd, and actual north position,
N , in simulation of step response.

Time [s]
0 5 10 15 20 25

A
[r
ad

]

0

0.05

0.1

0.15

0.2

Ad A

Figure 3.7: Time domain plot of desired heading, ψd, and actual heading, ψ, in simula-
tion of step response.

We move on to test the robustness of the controller by adding band-limited white noise
in the process model and run the simulations again. We plot the results in figures 3.8 and
3.9.

54

3.4 Control Algorithm

Time [s]
0 5 10 15 20 25

N
[m

]

0

0.1

0.2

0.3

0.4

0.5

0.6

Nd N

Figure 3.8: Time domain plot of desired north position, Nd, and actual north position,
N , in simulation of step response. White noise is added in the process model.

Time [s]
0 5 10 15 20 25

A
[r
ad

]

-0.05

0

0.05

0.1

0.15

0.2

0.25

Ad A

Figure 3.9: Time domain plot of desired heading, ψd, and actual heading, ψ, in simula-
tion of step response. White noise is added in the process model.

We see that in both cases, with and without the process noise, the system takes about
15 seconds to converge to the desired positions. There were two main motivations for
doing a simulation test; to confirm the control law, and to help tune the controller used
in the real world implementation.

55

Chapter 3. State Estimation

56

Chapter 4
Experiments

In this chapter results form experiments will be presented. All experiments and tests
were carried out in the MCLab basin with the uDrone. MCLab is located at Tyholt
and is a laboratory for testing and developing surface and underwater vehicles. The lab
consists of a basin, sensor systems for above and under water positioning (Handbook,
2016). The experiments that were carried out are as follows:

• Laser range measurement validation.

• Stationkeeping capability in calm water.

• Stationkeeping capability when perturbed.

• Setpoint regulation capabilities in surge.

• Test of scaling factor found by range comparison.

• Test of scaling factor found by depth comparison.

• Comparison of the model based and kinematic EKFs.

First, the experimental setup is presented, then the results from the above mentioned ex-
periments are presented along with a more comprehensive description of the experiment.

57

Chapter 4. Experiments

4.1 Experimental Setup

Figure 4.1: ROV uDrone in the Marine Cybernetics Laboratory basin during full DP
using ORB-SLAM as position reference.

In order to test the sationkeeping capabilities of the system, we need an absolute mea-
surement of the robot pose and compare it with the estimated pose from the implemented
SLAM-algorithm and the EKF. To achieve this, a metal plate with high contrast features
was lowered into the basin of the Marine Cybernetics Laboratory(MCLab) within the
range of the Qualisys positioning system. Qualisys is a reliable and accurate positioning
system, using 6 cameras emitting low wavelength light and detecting its reflection on re-
flectors visible on uDrone in figure 4.1 (Handbook, 2016). The plate served as the main
source of features observed by ORB-SLAM. In order to know the positions of the plate
and the drone, both were fitted with reflective balls visible to the positioning system.

4.2 Range Measurement

In order to verify the range measurement we need to compare the measurements made
by the range estimator described in section 3.2.1. This is done by comparing the mea-
surement of zo to the distance from the Raspberry Pi camera to the front of the plate as
measured by Qualisys, zQ. In this section we will present the experiment done in order
to verify the range estimator and its results.

58

4.2 Range Measurement

4.2.1 Setup

The experiment was set up as depicted in figure 4.1, with both the plate and the drone
visible to the positioning system. First, a measurement was made finding the offset, z̃o,
between the body-frames of the uDrone and the plate made in Qualisys when the range,
zo, was zero. The validity of the measurement was based on the following assumptions.

• When the front of the uDrone is in contact with the plate, and the optical axis is
orthogonal to the plate surface, the range is zero.

• When the range is measured, the optical axis is aligned with the Qualisys x-axis.

• When the range is measured the plate surface is parallel to the Qualisys yz-plane.

Thus, we assume that the offset is only manifested in the direction of the optical axis,
which is assumed parallel to the Qualisys x-axis. The offset was found to be z̃o =

0.30[m]. We then calculated the range as measured by Qualisys, zQ, by equation 4.1,
where xp and xu is the x-positions of the plate and the uDrone, in the Qualisys reference
frame, respectively.

zQ = xp − xd − z̃ (4.1)

We will further present the results from the measurements made during stationkeping
in calm water, comparing zQ and zo.

4.2.2 Results

The results plotted in figure 4.2 are from stationkeeping in calm water, where the distance
from the optical center to a flat plate is measured underwater. We see that the range
estimation, zo, has some outliers and is somewhat noisy otherwise. Disregarding the
outliers and noise, it is visible by figure 4.2 that the range measurement is quite accurate.
It may become less accurate at smaller distances due to refractive distortion, this was
not tested due to the plate creating a blind spot for Qualisys where uDrone cannot be
detected. A counter argument would be that since the Raspberry Pi camera has a more
narrow field of view, it would not be as affected by refractive distortion as the usb-
camera.

59

Chapter 4. Experiments

Time [s]
0 20 40 60 80 100 120 140

R
an

ge
[m

]

0

0.5

1

1.5

2
zo zQ

Figure 4.2: Comparison of the range measured by lasers, zo, and the range measured by
Qualisys, zQ. Both measurements are made from the optical axis to the surface of a flat
plate.

Based on the results presented in figure 4.2, we deem the laser range measurements to
be accurate but in need of better outlier rejection and filtering.

4.3 Stationkeeping

In this section we will present the stationkeeping experiment. This experiment was set up
the same way as the previous one. The desired position is set to ηd =

[
0 0 0 0

]ᵀ
,

which corresponds to the initialization point of ORB-SLAM. The first experiment was
done in calm water, with minimal external perturbation. In the second experiment, the
drone was pushed away from its position with a rod. Currents and waves were not intro-
duced due to safety for the drone.The PDF and PID controllers were tuned according to
table 4.1. The PID controller in z-direction is tuned quite aggressively in to compensate
for the buoyant force on uDrone. PDF-gains were found using α = 1, ζ = 1.5 and
ω0 = 0.7[rad/s].

Table 4.1: Tuning parameters for PDF and PID control of uDrone.

DOF Controller kp ki kd xmax

x PDF 3.14 0.49 2.59 1

y PID 0.6 0.002 0.04 -
z PID 10 0.5 0.4 -
ψ PID 0.3 0.001 0.02 -

60

4.3 Stationkeeping

For state estimation, the kinematic EKF was used. It provided position and velocity
estimates to the controller.

4.3.1 Results

In this section the results from the stationkeeping tests are presented. We start by pre-
senting the unperturbed system, and continue to present the results from when the system
was perturbed.

Calm Water

We recorded the pose with Qualisys and ORB-SLAM and estimated the states using the
EKF. These three measurements are now compared for the four degrees of freedom in
our model. In figures 4.3, 4.4, 4.5, and 4.6, the position is plotted for the two measure-
ments and the EKF estimate for x-, y-, z-, and ψ-position respectively.

Time [s]
0 20 40 60 80 100 120 140

x
[m

]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
xq x̂ xs

Figure 4.3: x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF.

In figure 4.3, we see the x-position of uDrone oscillating around its setpoint, 0. The
oscillations has a period of about T = 7s to T = 11s, this corresponds well with ω0

used in tuning the PDF controller, which gives To = 2π
ω0

= 8.976s. In addition, we see
that the Qualisys measurements has a larger amplitude than the position estimates from
ORB-SLAM and the EKF, this indicates that the scaling factor is too small. Last, a time
delay is visible as the peaks of xs and x̂ is shifted to the right compared to xq . This time
delay might be responsible for the oscillatory behavior of the system.

61

Chapter 4. Experiments

Time [s]
0 20 40 60 80 100 120 140

y
[m

]

-0.04

-0.02

0

0.02

0.04

0.06
yq ŷ ys

Figure 4.4: y-position as measured by Qualisys and ORB-SLAM, and the estimated
y-position from the EKF.

Figure 4.4 shows the y-position of uDrone during stationkeeping, from yq it is visible
that the drone held its position within±3cm in contrast to xq , which showed larger fluc-
tuations. This might be caused by a less aggressive control algorithm for sway motion,
leading to a smaller controller frequency, thus reducing the effect of time-delay.

Time [s]
0 20 40 60 80 100 120 140

z
[m

]

-0.1

-0.05

0

0.05

0.1

zq ẑ zs

Figure 4.5: z-position as measured by Qualisys and ORB-SLAM, and the estimated
z-position from the EKF.

By figure 4.5, we see that the zq-position was held within ±10cm, and again, that the
scaling factor was too small. Also, the estimate, ẑ, behaved more erratically than the
other estimated states. Error sources for this are:

62

4.3 Stationkeeping

• Wrong roll- and pitch-estimates from the IMU, such that the acceleration mea-
surement in z-direction was influenced by gravity

• Wrongful implementation of the EKF.

Time [s]
0 20 40 60 80 100 120 140

A
[r
ad

]

-0.1

-0.05

0

0.05

0.1

0.15
Aq Â As

Figure 4.6: ψ-position as measured by Qualisys and ORB-SLAM, and the estimated
ψ-position from the EKF.

The last figure from this experiment, figure 4.6, shows the heading, ψ, as estimated by
ORB-SLAM and the EKF along with the measured heading from Qualisys. It shows
a near perfect correlation of the estimates and measurements along with the time-delay
between Qualisys, ORB-SLAM and the EKF. Oscillations occur in the range ±0.1rad,
and are more likely caused by poor controller tuning, wrong control law, asymmetrical
thrust allocation or time-delay.

Perturbed System

As mentioned above, the system was perturbed during stationkeeping by using a rod
to push the drone off its position. Experiments using waves or current were not done
due to constraints in the experimental setup. If waves were to be introduced in the
basin, the metal plate would oscillate and might damage the drone. If current were to be
introduced in the basin, the plate would be dragged off to one end of the basin, due to
it being mounted on a bridge on rails. Thus, experiments with waves and current were
replaced with manual perturbation.

63

Chapter 4. Experiments

Time [s]
-50 0 50 100 150 200 250

x
[m

]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
xq x̂ xs

Figure 4.7: x-position as measured by Qualisys and ORB-SLAM, and the estimated
position from the EKF, x̂. The drone was pushed in the negative x-direction three times,
at Time = [30s, 72s, 140s]

Figure 4.7 shows the x-positions of the drone as estimated by ORB-SLAM, xs, the
EKF, x̂, and as measured by Qualisys, xq . The drone was pushed in the negative x-
direction three times, at Time = [30s, 72s, 140s]. The system responds to these per-
turbations similarly, being bushed back, overshooting the setpoint by almost the same
distance as it was pushed back and settling on the oscillatory motion visible in figure
4.3.

4.4 Setpoint Regulation

In this section the results from setpoint regulation tests are presented. As the PDF con-
troller is intended for setpoint regulation, we present results from changing sepoints
along the x-axis. Controller tuning remains the same as in the previous experiments, as
presented in table 4.1. The desired x-positions, xd, used in this test are presented in 4.2.
All other desired postions were kept at 0, such that ηd = [xd 0 0 0]ᵀ.

Table 4.2: Desired x-positions of uDrone in relation to the initialization point of ORB-
SLAM.

Time 0 18.7s 68.7s 98.8s 128s

xd 0.0m −0.5m 0.0m −1.0m 0.0m

We continue to present the results from this experiment.

64

4.4 Setpoint Regulation

4.4.1 Results

Results from the setpoint regulation test are plotted in figure 4.8. Again, the oscilla-
tory behavior from the previous tests is visible and the scaling factor is also too small.
Furthermore, we see that the plate creates a blind spot for Qualisys, as it drops out at
xq >≈ −0.25m, this is due to the plate blocking the view of the Qualisys cameras.

Time [s]
-20 0 20 40 60 80 100 120 140

x
[m

]

-2.5

-2

-1.5

-1

-0.5

0

0.5
xq x̂ xs xd

Figure 4.8: x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF along with the desired x-position.

Disregarding the error in scaling factor and oscillatory motion, we analyze the step re-
sponse when xd is changed from −0.5m to 0.0m.

65

Chapter 4. Experiments

Time [s]
60 65 70 75 80 85 90 95 100 105

x
[m

]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

x̂ xs xd

Figure 4.9: x-position as measured by Qualisys and ORB-SLAM, and the estimated
x-position from the EKF along with the desired x-position.

From table 4.2, we see that the step in desired position is introduced at time t = 68.7s

and that the state x̂ reaches the desired position at time t ≈ 81s, this indicates that x̂(and
xs) converges to xd in ≈ 12s.

4.5 Scaling Factor Comparison

The two scaling factor estimates were logged during the tests, in this section we will
present the findings. In order to get an estimate of the scaling factor from depth compar-
ison, the desired pose was set to ηd = [0 0 0.1 0]ᵀ. The true scale was estimated
in post processing by comparing the positions in x-direction measured by ORB-SLAM
and Qualisys. The experimental setup used in this section is the same as depicted in
figure 4.1, where the drone is performing stationkeeping in front of a flat plate. First, we
present the input data to the depth scale estimation, second, we present the laser range
scaling factor along with the depth scaling factor and the true scaling factor.

4.5.1 Results

In this section, results and comparison of the scaling factors are presented. In figure 4.10,
the inputs to depth scaling factor estimator are presented. These inputs are h, which is
the offset from the initialization point to the current position along the worldD-direction
as measured by the pressure sensor, and zs which is the ORB-SLAM z-position of the
drone. As mentioned in section 3.2.1, this corresponds to the offset in z-direction in the
ORB-SLAM frame from the initialization point.

66

4.5 Scaling Factor Comparison

Time [s]
5 10 15 20 25 30 35 40 45

z
[m

]

-0.2

-0.1

0

0.1

0.2

0.3

h zs

Figure 4.10: z-offsets from the initialization point as measured by ORB-SLAM, zs, and
pressure sensor, h.

We see by figure 4.10 that h has a larger amplitude than zs, this should indicate that the
depth scaling factor ought to be larger than one. Also, there is a zero-crossing around
Time = 18s which may cause problems for the scale estimator. Next we will present
the inputs to the laser range scaling factor estimator for the same experiment.

Time [s]
-10 0 10 20 30 40 50 60

R
an

ge
[m

]

0

0.5

1

1.5

2

2.5

7d zo

Figure 4.11: Ranges from the camera to a flat plate as measured by ORB-SLAM, d̄, and
laser range measurement, zo.

Figure 4.11 shows the distance from the Raspberry Pi camera to the plate as estimated
by laser range measurements, zo, and the distance from the usb-camera estimated by

67

Chapter 4. Experiments

ORB-SLAM, d̄. In this case, the ORB-SLAM range has an overall larger amplitude than
the laser range measurements. Because of this, it is expected that the estimated scaling
factor should be between one and zero. Next, we present the scaling factors as found by
laser range and depth along with the estimated true scale.

Time [s]
0 10 20 30 40 50 60

S
ca

li
n
g

F
ac

to
r
[m

]

-0.5

0

0.5

1

1.5

2

2.5
sh sl strue

Figure 4.12: Scaling factors as found by laser range measurement, sl, depth estimation,
sh, and in post processing, strue.

In figure 4.12, the laser range scaling factor, sl, being quite steady and having a near
constant offset from the true scale. This offset is found to be approximately factor 1.8

of the true scaling factor. If the figures in the above experiments are examined, we see
that the laser range scaling factor is too small. This indicates that something is wrong in
the assumptions. We revisit the assumptions in section 3.2.4. Furthermore, figure 4.12
shows that the depth measurement scaling factor, sh, is far more erratic than sl. It also
dips below zero during the zero-crossing, before returning to near strue. This indicates
that a more robust filtering and zero-handling approach is needed. It is also worth noting
that in this experiment, the constraint on the sign of the depth offsets were not enforced.
This is due to implementation errors in implementing the sign comparison.

4.6 EKF Comparison

Comparing the two EKFs ability to estimate position and velocity will give an indication
of which one has the better performance. The comparison is done using as equal values
for the Q and R matrices, in addition, the covariance propagation function Φ is kept
equal in both cases. First, the performance of the model based EKF is tested, second

68

4.6 EKF Comparison

the kinematic EKF. In this experiment, the ẑ- and ŵ-estimates from both filters are com-
pared to the z-estimate and w from ORB-SLAM, where w is found in post processing
using a Finite Impulse-Response(FIR)-filter, presented in (Sørensen, 2012), on the ver-
tical velocity found by Euler differentiation. Utilizing the FIR-filter the results from the
differentiation was also low pass filtered in order to remove high amplitude noise. The
reason for choosing the z and heave directions is that here we have an unmodeled bias,
the buoyancy of uDrone, giving the model based EKF a disadvantage. In z-direction,
the kinematic EKF will aslo be at a disatvantage, due to imperfect cancellation of gravi-
tational acceleration. Thus, this will also be a test for the bias estimator.

4.6.1 Results

In this section, we present the z-positions as estimated by ORB-SLAM and the EKF,
along with the positions from Qualisys from two different experiments, using the model
based EKF in the first experiment, and the kinematic EKF in the second experiment. x̂

Time [s]
-10 0 10 20 30 40 50 60 70 80 90

z
[m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ẑ zs zq

Figure 4.13: z-positions as estimated by scaled ORB SLAM, zs, the kinematic EKF, ẑ,
and measured by Qualisys, zq .

Looking at ẑ in figure 4.13, it fluctuates around zs and behaves erratically indicating that
the IMU-measurements are not filtered properly, and their covariance is underestimated.
As it fluctuates, ẑ behaves like it is bound to a the values around zs, not diverging from
it. We move on to the model based EKF.

69

Chapter 4. Experiments

Time [s]
0 10 20 30 40 50 60

z
[m

]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

zq ẑ zs

Figure 4.14: z-positions as estimated by scaled ORB SLAM, zs, the model based EKF,
ẑ, and measured by Qualisys, zq .

In figure 4.14, ẑ behaves much less erratically, and more smoothly than in figure 4.13.
An initial divergence from zs is also visible. This is most likely to the unmodeled buoy-
ant force of the drone, acting in the negative z-direction, causing the controller to com-
mand a force in the positive direction, this force, as part of the model, will then push
the estimate above the true value. It is also visible that ẑ converges towards zs after the
initial divergence, before the position diverges again along with motion in the negative
z-direction(towards the surface). The convergence before time t ≈ 45s is caused by the
estimated bias. Next, the bias estimate for the same experiment is presented in figure
4.15.

70

4.6 EKF Comparison

Time [s]
5 10 15 20 25 30 35 40 45 50 55

B
ia

s
[N

]
#10-3

-15

-10

-5

0

5
b3

Figure 4.15: The bias of the model based EKF in z-direction, b3, during the test pre-
sented in figure 4.14. Bias absolute value increases over time in order to compensate for
unmodeled forces.

In figure 4.15, the bias for ẑ, b3, is plotted. As ẑ lies above zs in most of figure 4.14,
we would expect b3 to be decreasing for the duration, which it does. We move on to
examine the velocity estimates from the EKFs.

Time [s]
5 10 15 20 25 30 35 40 45 50 55

w
[m

/s
]

-0.15

-0.1

-0.05

0

0.05
ws ŵ wq

Figure 4.16: w-velocities as estimated by scaled ORB SLAM, ws, the model based
EKF, ŵ, and measured by Qualisys, wq .

By figure 4.16, we see that the w-velocity estimate of the EKF is too slow compared to
the filtered Euler differentiated zs.

71

Chapter 4. Experiments

Time [s]
-10 0 10 20 30 40 50 60 70 80 90

w
[m

/s
]

-0.05

0

0.05
ws ŵ wq

Figure 4.17: w-velocities as estimated by scaled ORB SLAM, ws, the kinematic EKF,
ŵ, and measured by Qualisys, wq .

The above figures show that that neither the model based nor the kinematic EKF is any
good at estimating the velocity in heave. The model based EKF is underestimating the
velocity, and the kinematic EKF velocity estimate is erratic. The white-noise like be-
havior of the kinematic EKF is most likely caused by noise from the IMU. The poor
performance can be attributed to poor tuning, wrongful implementation or a large differ-
ence between the model and the true behavior of the drone.

4.7 Comments on the Results

It is worth noting that the results presented in this chapter exhibit survivorship bias in
regards to successful initializations and runs. In about 50% of the cases, the difference in
scale between ORB-SLAM and the real world was too great for the control algorithms
to be effective. As the initial guess of the scaling factor is 1, the convergence to true
scale needs to be faster for it to be more robust. In some cases, the scale also drifted
rapidly, oftentimes in conjunction with large movements in surge. This drift might be
caused by poor camera calibration together with light scattering in the water. Scattering
makes long time tracking of the same points a challenge when the drone moves through
water, since the points in space change their appearance as a function of distance. This
calls for a more robust feature descriptor, more suitable for the underwater environment.
For more results, video and pictures from the experiments, see attachment.

72

Chapter 5
Discussion

In this chapter we will discuss the main topics and results found in this thesis, starting
with the laser range scaling factor, continuing to the depth scaling factor, the fitness
of ORB-SLAM in the underwater environment, the performance of the controllers and
estimators, finishing with a discussion about the thesis as a whole.

5.1 Scaling factors

5.1.1 Laser Range

In the results chapter, especially figure 4.7, is is visible that the scaling factor is too
small compared to what it should be. This could have several error sources, comparing
the range estimates from figures 4.2 and 4.11, we see that the latter has more outliers, and
they last for longer periods. We can also see that almost all of the outliers in figure 4.11
are below the true range, driving the average of the range estimate down. This will in turn
drive the laser range scaling factor down. However, faulty laser range measurements are
not the only error source. In order to examine the main suspect for the underestimation
of the scaling factor we need to revisit the assumption made in section 3.2.4; that the
points in the ORB-SLAM map have a Gaussian distribution around the range from the
usb-camera to the surface in front of it if that surface is flat and orthogonal to the optical
axis. Points initiated with sufficiently low parallax can be initiated at any depth between
0 and∞, thus making it likely that the points are initiated too far away from the camera
in the map. This in turn, drives the ORB-SLAM range up, decreasing the range laser
scaling factor.

73

Chapter 5. Discussion

5.1.2 Depth Range

As it is presented in this thesis, the scaling factor from depth offset comparison is more
a suggestion of how scale can be inferred, rather than a fully functioning algorithm. In
order to compare the offsets from the initialization point accurately, both filtering and
an offset is needed. We see by figure 4.10, that the depth estimate is quite noisy, thus,
it will have several zero-crossings close to the initialization depth. In order to be less
erratic than in figure 4.10, the depth scale estimate is in need of more active filtering and
a larger rejection zone, or a new approach altogether.

5.2 Underwater ORB-SLAM

ORB-SLAM has proved satisfactory performance underwater, albeit poorer performance
than above water. The reason for performance reduction could be a combination of a
more complex image distortion and the poor light penetration in water compared to air.
As ORB-SLAM needs features to detect in order to function, we can predict that the
algorithm will have better performance in a real ocean environment compared to the
relative uniformness of the MCLab basin.

5.3 Controller performance

Looking at the results presented in sections 4.3 and 4.4, we see that all DOFs exhibit
some oscillatory motion, and the controllers could use more tuning. Another error source
for poor controller performance is that both the PDF and PID controllers are dependent
on velocity estimates. From figures 4.17 and 4.16, we see that the velocity estimates
are inaccurate. Furthermore, it is known that there is a time-delay in the video pipeline,
causing ORB-SLAM to having a delay. There will also be some inherent delay in the
thrust allocation, causing the overall process delay to increase. If this delay is large
enough it could cause sufficient phase shift, causing oscillation.

5.4 Estimator Performance

As discussed in section 4.6 and above, the estimation capabilities of bot EKFs are quite
poor. Both filters are in need of proper tuning, and at their current state they are not prop-
erly estimating the velocity. However, they have served the purpose of a great learning
experience in implementing EKFs in discrete time, and insight has been gained.

74

5.5 Overall Discussion

5.5 Overall Discussion

Looking at the results presented in the previous chapter, we can argue that ORB-SLAM
can work for dynamic positioning of a low-cost ROV. We can argue that it is not neces-
sary for the ROV to go 1 meter when given the command to go one meter forward. It is
however necessary that the user can direct the ROV to the position he or she desires. In
turn, this means that the scaling factor does not need to be perfect, although in its current
state, it is underestimating the scale.

75

Chapter 5. Discussion

76

Chapter 6
Conclusion

6.1 Conclusion

In this thesis we have shown a proof of concept for using camera-based slam to perform
dynamic positioning of a low-cost ROV. We have highlighted challenges, methods and
results relevant for implementation of scale-aware ORB-SLAM in the underwater en-
vironment. In summation, it is possible for a low-cost ROV with sufficient computing
power to successfully perform stationkeeping and dynamic positioning within a small
area without any external position reference other than ORB-SLAM.

It is not essential for the user experience to be able to control the position accurately
in the sense of scale, however scale needs to be more accurately estimated for the sake of
the estimators and control algorithms. As mentioned in section 4.7, the rate of successful
initializations is at it current sate 50%. In conclusion, the work presented in this this has
served as a proof of concept for camera-based SLAM on a low-cost ROVs. We have
explored ORB-SLAM and it applicability for underwater operations, computer vision
for laser range measurement, state estimation and feedback control based on position
feedback from ORB-SLAM. There is still work to be done before this is a viable solution
for any commercial or industrial application, thus we present our suggestions for further
work.

6.2 Further Work

In this section we propose suggestions on further work as suggested by the author. The
goal of this section is guiding the work in the direction of a robust implementation of the

77

Chapter 6. Conclusion

approach presented in this thesis.

• Revisit and improve the ORB-SLAM range estimate d̄, in order to reject possible
outliers.

• Make an ORB-vocabulary based on underwater images, preferably from the same
ROV it is to be implemented on.

• Develop a smarter and more robust depth comparison scale estimator.

• Develop a more robust outlier rejection for laser range measurements.

• Develop a dynamic thruster model for use in process models.

• Develop a method for accurate time delay estimation, and a predictor to compen-
sate for the delay.

78

Bibliography

Blueye, 2017. Blueye robotics home page. https://www.blueye.no/, accessed:
June 11th, 2017.

Bonarini, A., Burgard, W., Fontana, G., Matteucci, M., Sorrenti, D. G., Tardos, J. D.,
2006. Rawseeds: Robotics advancement through web-publishing of sensorial and
elaborated extensive data sets. In: In proceedings of IROS. Vol. 6.

Davison, A. J., Ried, I. D., Molton, N. D., Stasse, O., 6 2007. Monoslam: Real-time
single camera slam. IEEE Transactions on pattern analysis and machine intelligence
29 (6).

Faltinsen, O., 1993. Sea loads on ships and offshore structures. Vol. 1. Cambridge uni-
versity press.

Fossen, T. I., 2011. Handbook of Marine Craft Hydrodynamics and Motion Control, 1st
Edition. Wiley, Trondheim, Norway.

Handbook, M., 2016. Ntnu marine cybernetics laboratory handbook. NTNU Trondheim
Norwegian University of Science and Technology Department of Marine Technology,
available at https://github.com/NTNU-MCS/MC_Lab_Handbook.

Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, Cambridge, U.K.

Heikkilä, J., Silvén, O., 1997. A four-step camera calibration procedure with implicit
image correction. Proc. IEEE Conf. on Computer Vision and Pattern Recognitio,
1106–1112.

79

https://www.blueye.no/
https://github.com/NTNU-MCS/MC_Lab_Handbook

Henriksen, A. V., 2016. Camera-assisted dynamic positioning of rovs. Master Thesis,
NTNU Trondheim Norwegian University of Science and Technology Department of
Marine Technology.

Hunt, R. W. G., 1967. The reproduction of colour.

Jenkins, F. A., White, H. E., 1957. Fundamentals of optics. Tata McGraw-Hill Educa-
tion.

Kjerstad, i. K., Skjetne, R., Calabro, V., Værnø, S. A., 2017. Full-scale experiments with
a robust dynamic positioning tracking control law including acceleration feedforward.

Klein, G., Murray, D., 11 2007. Parallel tracking and mapping forsmall ar workspaces.
In: Proc. IEEE ACM Int. Symp. Mixed Augmented Reality. Nara, Japan, pp. 225–234.

Kunz, C., Singh, H., 2008. Hemispherical refraction and camera calibration in underwa-
ter vision. In: OCEANS 2008. IEEE, pp. 1–7.

Kwon, Y.-H., Casebolt, J. B., 2006. Effects of light refraction on the accuracy of camera
calibration and reconstruction in underwater motion analysis. Sports biomechanics
5 (2), 315–340.

Mo-Bjørkelund, T., 2016. A feasibility study on camera-based slam for control of low-
cost rov, unpublished project thesis.

Moré, J. J., 1978. The levenberg-marquardt algorithm: implementation and theory. Nu-
merical analysis, 105–116.

Mur-Artal, R., Montiel, J. M. M., Tardós, J. D., 2015. ORB-SLAM: a versatile and
accurate monocular SLAM system. IEEE Transactions on Robotics 31 (5), 1147–
1163.

Mur-Artal, R., Tardós, J. D., 2014. Fast relocalisation and loop closing in keyframe-
based slam. In: Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, pp. 846–853.

OpenCV, 2017a. Opencv hough circle feature detection documentation.
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_

detection.html?highlight=houghcircles, accessed: June 2nd, 2017.

OpenCV, 2017b. Opencv inrange documentation. http://docs.opencv.org/
java/2.4.9/org/opencv/core/Range.html.

OpenCv, 2017. Opencv librairy home page. http://opencv.org/, accessed: June
8th, 2017.

80

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=houghcircles
http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html?highlight=houghcircles
http://docs.opencv.org/java/2.4.9/org/opencv/core/Range.html
http://docs.opencv.org/java/2.4.9/org/opencv/core/Range.html
http://opencv.org/

ORB-SLAM, 2017. github page of orb-slam. https://github.com/raulmur/
ORB_SLAM, accessed: June 2nd, 2017.

Phelan, R. M., 1971. Pseudo-derivative-feedback (pdf) control. Tech. rep., California
Univ., Livermore. Lawrence Radiation Lab.

Processing, M. I., 2015. 3d-modeling of seafloor structures from rov-based video
data. http://www.mip.informatik.uni-kiel.de/tiki-index.php?
page=3DBlackSmoker, accessed: May 31th, 2017.

Quigley, M., Gerkey, B., Smart, W. D., 2015. Programming Robots With ROS - A Prac-
tical Introduction to the Robot Operating System, 1st Edition. O’Reilly, O’Reilly Me-
dia, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, USA.

ROS, 2017. Ros camera calibration package documentation. http://wiki.ros.
org/camera_calibration, accessed: June 8th, 2017.

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. Orb: an efficient alternative to
sift or surf. In: IEEE International Conference on Computer Vision. ICCV, IEEE, pp.
2564–2571.

Sandøy, S. S., 2016. System identification and state estimation for rov udrone. Master
Thesis, NTNU Trondheim Norwegian University of Science and Technology Depart-
ment of Marine Technology.

Smith, A. R., 1978. Color gamut transform pairs. ACM Siggraph Computer Graphics
12 (3), 12–19.

SNAME, 1950. Nomenclature for treating the motion of a submerged body through a
fluid. The Society of Naval Architects and Marine Engineers, Technical and Research
Bulletin No., 1–5.

Sørensen, A. J., 2012. Marine control systems propulsion and motion control of ships
and ocean structures lecture notes.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics, 1st Edition. MIT Press.

Thrun, S., Leonard, J. J., 2008. Simultaneous localization and mapping. In: Springer
handbook of robotics. Springer, pp. 871–889.

Wikipedia, 2017a. Hsl and hsv wikipedia page. https://en.wikipedia.org/
wiki/HSL_and_HSV, accessed: June 8th, 2017.

Wikipedia, 2017b. List of refractive indices. https://en.wikipedia.org/

wiki/List_of_refractive_indices, accessed: June 2nd, 2017.

81

https://github.com/raulmur/ORB_SLAM
https://github.com/raulmur/ORB_SLAM
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=3DBlackSmoker
http://www.mip.informatik.uni-kiel.de/tiki-index.php?page=3DBlackSmoker
http://wiki.ros.org/camera_calibration
http://wiki.ros.org/camera_calibration
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices

Wöhler, C., 2012. 3D computer vision: efficient methods and applications. Springer
Science & Business Media.

Yuen, H., Princen, J., Illingworth, J., Kittler, J., 1990. Comparative study of hough trans-
form methods for circle finding. Image and vision computing 8 (1), 71–77.

82

Appendix A

A.1 Proofs

A.1.1 Proof 1

We seek to prove J(η)2 = J(2η) fo our particular J(η). We start by presenting J(η)

in (A.1)

J(η) =


cos(ψ) −sin(ψ) 0 0

sin(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

 (A.1)

We then calculate J(η)2 in (A.2).

J(η)2 =


cos(ψ)2 − sin(ψ)2 −2sin(ψ)cos(ψ) 0 0

2sin(ψ)cos(ψ) cos(ψ)2 − sin(ψ)2 0 0

0 0 1 0

0 0 0 1

 (A.2)

Rewriting gives (A.3).

83

J(η)2 =


cos(2ψ) −sin(2ψ) 0 0

sin(2ψ) cos(2ψ) 0 0

0 0 1 0

0 0 0 1

 = J(2η) (A.3)

Q.E.D.

A.1.2 Proof 2

We seek to prove that J(η) has full rank for all ψ, thus for all η. We check the determi-
nant of (A.1) in (A.4).

det(J(η)) =

∣∣∣∣∣∣∣∣∣
cos(ψ) cos(ψ) 0 0

−cos(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣ (A.4)

det(J(η)) = cos2(ψ) + sin2(ψ) = 1 (A.5)

Since det(J(η)) = 1 for all ψ, the matrix J(η) has full rank for all η.

A.2 EKF Matrices

A.2.1 Differentiation of f

∂f(x(k),u(k))

∂x(k)
=


∂f1
∂η

∂f1
∂ν

∂f1
∂b

∂f2
∂η

∂f2
∂ν

∂f2
∂b

∂f3
∂η

∂f3
∂ν

∂f3
∂b

 (A.6)

84

∂f1
∂η

=
∂

∂η
(J(η)ν) =

∂

∂η


u · cos(ψ)− v · sin(ψ)

u · sin(ψ) + v · cos(ψ)

w

r

 (A.7)

∂f1
∂η

=


0 0 0 −u · sin(ψ)− v · cos(ψ)

0 0 0 u · cos(ψ)− v · sin(ψ)

0 0 0 0

0 0 0 0

 (A.8)

∂f2
∂η

=
∂

∂η

(
−M−1D(ν)ν

)
= 04×4 (A.9)

∂f3
∂η

=
∂

∂η

(
−T−1b b

)
= 04×4 (A.10)

∂f1
∂ν

=
∂

∂ν
(J(η)ν) =

∂

∂ν


u · cos(ψ)− v · sin(ψ)

u · sin(ψ) + v · cos(ψ)

w

r

 (A.11)

∂f1
∂ν

=


cos(ψ) sin(ψ) 0 0

−sin(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

 (A.12)

∂f2
∂ν

=
∂

∂ν

(
−M−1D(ν)ν

)
(A.13)

∂f2
∂ν

= diag



−Xu+2·Xu|u|u+3·Xuuu|u|u

m−Xu̇

−Xv+2·Yv|v|v+3·Yvvv|v|v
m−Yv̇

−Zw+2·Zw|w|w+3·Zwww|w|w
m−Zẇ

−Nr+2·Nr|r|r

Izz−Nṙ


 (A.14)

∂f3
∂ν

=
∂

∂ν

(
−T−1b b

)
= 04×4 (A.15)

∂f1
∂b

= 04×4 (A.16)

∂f2
∂b

= 04×4 (A.17)

∂f1
∂b

= −T−1b (A.18)

A.2.2 Q and R matrices

TheQ andR matrices used in the EKFs are presented here.

85

Q =

 I4×4 0 0

0 0.1I4×4 0

0 0 I4×4

 · 10−3 (A.19)

R = I4×4 · 10−4 (A.20)

A.3 Attachments

In the attachment folder the following are included:

• uDrone Simulink model.

• Raw data from all tests presented in this thesis.

• Videos and pictures from some of the tests.

• All written code used, without libraries or ROS. The contents are both results of
the work of previous students and the author. The posref package is written solely
by the author, while the EKF.cpp and slamAutoPos.cpp files in the udrone package
are altered by the author.

• The altered ORB-SLAM code, including camera calibration file.

• Master’s Thesis presentation poster.

86

	Preface
	Acknowledgment
	Abstract
	Summary
	Summary
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Objective
	Problem Statement
	Scope
	Delimitations
	Low-cost ROVs
	Blueye Robotics Drones
	BlueROV and uDrone
	Software
	Topside Processing Module

	System Architecture
	Robot Operating System
	Constituting Parts
	ROS Systems

	Structure of Report

	Simultaneous Localization and Mapping
	Background
	Introduction
	Graph-Based SLAM

	ORB-SLAM
	Fundamentals
	Map Initialization
	Tracking
	Local Mapping
	Loop Closing
	Bundle Adjustment
	ORB-SLAM in the Underwater Environment
	Changes Made to ORB-SLAM

	Camera Calibration

	State Estimation
	Process Model
	Reference Frames
	Kinematics Model

	Scale
	Real World Range
	Computer Vision and Lasers
	Depth Measurement
	ORB-SLAM Range
	Comparison and Filtering

	Observers
	Observability
	Extendend Kalman Filter
	Model Specific EKF for uDrone
	Kinematic EKF

	Control Algorithm
	Pseudo Derivative Feedback

	Experiments
	Experimental Setup
	Range Measurement
	Setup
	Results

	Stationkeeping
	Results

	Setpoint Regulation
	Results

	Scaling Factor Comparison
	Results

	EKF Comparison
	Results

	Comments on the Results

	Discussion
	Scaling factors
	Laser Range
	Depth Range

	Underwater ORB-SLAM
	Controller performance
	Estimator Performance
	Overall Discussion

	Conclusion
	Conclusion
	Further Work

	Bibliography
	
	Appendix
	Proofs
	Proof 1
	Proof 2

	EKF Matrices
	Differentiation of f
	Q and R matrices

	Attachments

