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Abstract

The interest in watching real-time video content transmitted over packet-based
communication networks such as the Internet is growing. When resources are
restricted, quality of service support and provisioning of service guarantees are
needed in the network to ensure a satisfactory user experience. In addition, the
video content, different choices made in the video encoding, the bitrate charac-
teristics of the resulting video stream, and the network performance will have an
influence on the perceived quality. Regarding the network performance, the packet
loss ratio and packet loss distribution are identified as important performance
parameters for real-time video, and are of particular interest. Estimating these
parameters is a step towards assessing the perceived quality of service for a video
transmission.

This thesis addresses issues related to video transmission over the Internet. In
particular, new methods to characterize and analyze video traffic in a network
perspective are proposed in order to estimate some key network performance
parameters. This requires models of the traffic and the network elements. Video
encoded using a newly developed slice-based H.264/AVC scheme is studied. This
scheme intends to give less bursty video traffic, and will hence be favorable for
encoding video to be transmitted over a resource constrained network.

Video clips encoded using this slice-based scheme are characterized using two
different approaches. First using the correlation and distribution functions and
second using a token bucket traffic model. The characterization gives statistical
information about the video traffic and is a prerequisite for developing traffic
models. Both of these issues are important since the slice-based video encoding
produces a new type of video traffic.

The frame sequence of a slice-based encoded video clip is divided into sections
that are classified using non-parametric methods. This classification is useful and
necessary since a video stream in general is non-homogeneous and non-stationary.
The classes can then be analyzed separately, and different models can be used for
the classes. The distribution and dependence structures in the classes are studied.
Next, a new approach for estimating loss is proposed using the classification of the
video frames, giving the average loss as well as information about the clustering
of the losses for the different classes. It is shown that losses over high thresholds
are independent or weakly dependent, and the upper bounds of losses can be
estimated using high quantiles. These quantiles give statistical guarantees for the
amount of loss.

iii



Next, a Gaussian model is developed for the video traffic. This model is
advantageous since it incorporates the correlation functions of real video traces.
Also, because of the additive properties of Gaussian processes, properties for an
aggregated traffic stream can be deduced from the single streams. The packet loss
for a video stream is defined using the exceedances of the video frame sizes over a
threshold. Characteristics of a loss period, in terms of length and loss volume, are
then found. These further give the loss ratio and loss distribution in a bufferless
model as well as for a small buffer. Such results are important since the perceived
quality depends on both the total amount of loss as well as the distribution of the
losses.

For real-time applications, service guarantees are needed to ensure a satisfactory
quality level for the users. These service guarantees are specified by network
calculus server models. An approach to parameter estimation for important
server models is proposed using external measurements on a network router. The
obtained results are compared to the theoretical values, and the cause of the
discrepancies is identified.
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Chapter 1

Introduction

This thesis studies encoded video in a network perspective, first through general
characterization of the video, next using different types of models both for the video
traffic and the network in order to analyze the Quality of Service (QoS). The focus
is on some key network performance parameters accessible at the network egress.
Knowledge of these parameters is a step towards assessing the QoS perceived by a
user watching the transmitted video. Video encoded using the recently developed
slice-based video encoding scheme is studied. This scheme was developed in order
to produce less bursty video traffic, and hence results in lower loss and delay for
an encoded video stream transmitted through a network.

This chapter serves as an introduction to the thesis. Section 1.1 gives the
motivation for the research conducted. The outline of the thesis is given in Section
1.2 and the main results and contributions are described in Section 1.3. The
papers written as part of the thesis are listed in Section 1.4.

1.1 Motivation

Originally, the Internet was designed to provide best-effort data delivery [1].
With the introduction of Voice over IP (VoIP) and streaming video over IP,
stricter requirements are imposed on the network since these real-time services
have stringent constraints regarding the key network performance parameters:
throughput, delay, delay jitter, and packet loss. The amount of video traffic
transmitted over the Internet has increased tremendously lately [2], partly due to
the growing popularity of web-based video streaming services such as YouTube [3].
Initially, YouTube provided only low quality video, but was recently updated to
allow for high quality video and audio. Video clips are now shown in a widescreen
high-definition format, using the latest standard for video coding, H.264/Advanced
Video Coding (AVC) [4]. The Norwegian Broadcasting Corporation (NRK) has
also had great success in offering real-time streaming of news etc., and recently also
in providing streaming from the Olympic games in Beijing. In addition, mobile
providers have put attention on video streaming for mobile devices, especially
focusing on big sporting events such as football championships and the Olympics
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1.1. Motivation

to attract users. This video is mostly real-time, which put demands on the network
in order to satisfy the quality requirements of the users. QoS support is then
needed when the network resources are restricted.

QoS is defined by ITU-T in the recommendation E.800 [5] as follows: “The
collective effect of service performance which determine the degree of satisfaction
of a user of the service”. As this definition shows, the user perspective is important
when evaluating QoS and this has led to the introduction of the terms Perceived
QoS (PQoS) and Quality of Experience (QoE) [6]. These terms link the user
perception and expectations for QoS to the quantitative performance parameters
accessible at the network boundaries, the most important being: throughput,
packet delay, delay jitter, and packet loss.

To support end-to-end QoS for real-time traffic over the Internet, two different
QoS architectures, namely the Integrated Services (IntServ) [7] and the Differ-
entiated Services (DiffServ) [8] have been proposed by the Internet Engineering
Task Force (IETF). Both of these architectures have the objective of minimizing
delay, delay jitter, and loss for real-time applications, using a reservation-based
approach and a class-based approach, respectively. To analyze the service guaran-
tees specified by these models, a set of traffic and server models are defined under
the name of Network Calculus, see e.g., [9] and [10].

Most of the video transmitted over the Internet is Variable Bit Rate (VBR)
encoded video, which is often preferred over Constant Bit Rate (CBR) encoded
video because of the constant end-user quality and higher compression efficiency
for the former. H.264/AVC [4] is the latest video coding standard, and provides a
considerable improvement in compression efficiency compared to earlier standards.
A high compression gain is achieved by removing temporal and spatial redundancy.
The present frame is encoded using previous or consecutive frame(s) as reference,
taking advantage of the temporal redundancy in consecutive frames belonging
to the same scene, while spatial redundancy is removed by transform coding. In
addition, intra coded frames are inserted periodically to prevent error propagation.
The size of the encoded frames is decided by the rate-distortion target for VBR
coding, giving variable frame sizes. The resulting video stream is therefore bursty,
which can cause network delay and hence packet loss due to late arriving packets.
With this in mind, the explicit slice-based video encoding scheme was developed,
originally described in [11], using the H.264/AVC standard. This new scheme has
no Group of Picture (GOP) structure and the large intra coded frames are avoided.
Video encoded using the slice-based scheme is hence smoother than regular frame-
based H.264/AVC encoded video, while retaining the constant end-user quality
and error resilience of the latter.

This thesis addresses issues related to video transmission over the Internet,
focusing on slice-based encoded video. Traffic characterization, modeling, and
analyzes are performed, with the objective of estimating the network performance
parameters (i.e., the packet loss) when a traffic stream is transmitted through
a given network. To be able to predict the QoS delivered to the users, models
of the traffic and the network are needed. In particular, models for aggregated
traffic are important, to reflect the fact that video traffic in the Internet is seen as
aggregates of single video streams.
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Video Internet

Traffic Characterization Traffic Analysis

Encoder

Traffic Model

Decoder

User

Network Model PQoS/QoE

Figure 1.1: Main areas and focus in this thesis, concerning video transmission
over the Internet.

The main areas and focus of this thesis shown in Figure 1.1 are traffic char-
acterization, traffic analysis, traffic models, network models, and PQoS/QoE
assessment. The latter is only discussed in terms of network performance, i.e.,
performance parameter estimation targeted at giving information about the PQoS
is pursued. The next section gives the outline of the thesis, showing how these
areas are covered.

1.2 Thesis Outline

This thesis is organized as follows. Part I continues with Chapter 2 which provides
a background for the most important topics addressed in the thesis. Chapter
3 gives an overview of the H.264/AVC standard and in particular the explicit
slice-based video encoding scheme. The two encoded video clips that are studied
in this thesis are also described.

Following this, the main body of research work is divided into four parts. These
parts are organized as follows:

Part II: Characterization of Slice-based H.264/AVC Encoded Video
Traffic. This part of the thesis mainly focuses on characterization of slice-
based encoded video. Studying the statistical properties of the slice-based
video is interesting because this new encoding scheme produces video traffic
with different characteristics from regular frame-based video. Characteri-
zation is also an important prerequisite for developing traffic models. Part
II is divided into two chapters. In Chapter 4, one video clip encoded using
the slice-based video encoding scheme is characterized with respect to the
distribution functions and the correlation functions of the scene lengths
and frame sizes. In addition, simulations are performed to compare the
performance of a slice-based encoded stream to that of a regular frame-based
encoded stream. In Chapter 5, token bucket characterization of the slice-
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1.2. Thesis Outline

based encoded video is pursued. The token bucket traffic model is important
in the Internet since it is used for resource reservation in IntServ and for
analyzing service guarantees using network calculus both in IntServ and
DiffServ.

Part III: Non-parametric Analysis of Slice-based H.264/AVC Encoded
Video Traffic. This part of the thesis describes a non-parametric approach
for classification and analysis of slice-based encoded video. Applying non-
parametric methods presents a new approach to traffic analysis, where no
information about the distribution functions is needed. This part of the
thesis is divided into two chapters. In Chapter 6, sections of the slice-based
encoded video stream are classified by the average frame size. A new method
for scene change detection for the individual classes is presented, and the
resulting scenes are checked for dependence. Also, characteristics of the
classes of video data are studied, such as the mean excess function and the
tail index, showing the distribution structure in the classes. In Chapter 7, the
results from Chapter 6 are exploited for estimation of loss using exceedances
of frame sizes over a high threshold. The high quantiles for the amount of
loss are also found.

Part IV: Characterization of Loss for Aggregated Video Using a Gaus-
sian Model. This part of the thesis is devoted to video traffic modeling
based on the results from Part II, and estimation of loss using the resulting
model. In Chapter 8, a Gaussian model is proposed for the slice-based en-
coded video. This model is advantageous since it incorporates the correlation
functions of real video traces, while still being a simple, parsimonious model.
Also, because of the additive properties of Gaussian processes, properties for
an aggregated traffic stream can be deduced from single streams. It is found
that the exceedances of frame sizes over a threshold for an aggregated stream
are related to the exceedances of frame sizes over a threshold for a single
video stream. In Chapter 9, these exceedances are analyzed, constituting
loss periods in a bufferless model. The moments of the length and loss
volume of a loss period are found numerically using the correlation functions
of the slice-based encoded video traces. In addition, relations between the
distributions of the length and loss volume of a loss period are exploited.

Part V: Router Models for Quality of Service Assessment. This part of
the thesis focuses on using measurements for router model parameterization.
In Chapter 10, network calculus server models are parameterized using
external measurements on the input and output links of a router. The
approach is to estimate the required parameters using measurements results
from burst and backlog periods and to use known results to derive the results
for Guaranteed Rate (GR) and Packet Scale Rate Guarantee (PSRG) server
models. These models are used to analyze service guarantees in IntServ and
DiffServ, respectively.
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Chapter 1. Introduction

Part VI: Concluding Remarks. This part of the thesis contains a summary
of the main results and conclusions of the thesis. Topics of future work are
also identified and described.

1.3 Contributions

The main contributions of Part II are:

• Video traffic encoded using the slice-based H.264/AVC video encoding scheme
is characterized, using distribution functions and correlation functions of the
scenes and frame sizes. The results show that there is only negligible autocorre-
lation for the scene lengths, and for the size of the frames in different scenes.
However, there is non-negligible correlation between the scene change frame
at the beginning of a scene and the average frame size in the scene. Also the
frames inside a scene exhibit non-negligible correlation.

• The packet loss and delay through a bottleneck node for the slice-based encoded
video are compared to those for regular frame-based encoded video, using network
simulations. The results show that the slice-based encoding is advantageous
compared to frame-based encoding when the buffer size is small.

• Lossless and loss bounded token bucket and leaky bucket traffic models are
parameterized for different slice-based encoded video streams. The results show
that the slice-based encoded video can tolerate fewer reserved resources than
the frame-based encoded video while still fulfilling the same loss and delay
requirements. For all streams, the token bucket parameters are significantly
reduced by introducing a small data buffer for input traffic queueing.

The main contributions of Part III are:

• Sections of a highly variable slice-based encoded video stream are classified
according to the average frame size. From the resulting classes, a non-parametric
method is proposed for scene change detection. The scenes are checked for
dependence, both using regular dependence measures such as the Autocorrelation
Function (ACF) and the Ljung-Box test, and using long-range dependence
measures. From the ACFs and the Ljung-Box statistics only non-negligible
correlation is found for scenes inside the classes, but the Hurst parameter
estimates show signs of long-range dependence for the scenes in the considered
classes.

• The distributions of the frame sizes in the classes are estimated by the mean
excess function. The results show that all classes contain mixtures of heavy-
and light-tailed distributed frame sizes. The number of finite moments for the
frame size distributions is estimated using the Hill’s estimate.

• The expected loss for the classified video stream when transmitted over a
bottleneck link is estimated. Two non-parametric functions, the mean excess
function and the extremal index are used. In addition, the high quantiles for
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1.3. Contributions

the losses are estimated, showing the upper bound for the amount of loss that
can occur with a given probability.

The main contributions of Part IV are:

• A discrete, multivariate Gaussian model is proposed for the slice-based encoded
video, taking the correlation between consecutive frames into account. Relations
between single and aggregated streams are found for the exceedances of the
frames sizes over a threshold.

• The relations between single and aggregated streams are exploited for calculating
the moments of the length of a loss period for the aggregated stream based on
the moments of the length for individual streams. Numerical results are given
for correlation functions from different video traces, showing higher first and
second moments for the length of a loss period when the correlation between
consecutive frames is increased.

• The moments of the loss volume of a loss period are estimated using a similar
numerical approach as for the length of a loss period. The results are compared
to the loss volume of a loss period for a continuous Gaussian process and
show satisfactory agreement for high thresholds. The loss volume is used for
estimating packet loss in a bottleneck node with a small buffer, in addition to
giving the loss directly in the bufferless case.

• A relation between the distribution of the length and loss volume of a loss
period for the continuous process is recognized. This relation is shown to be
valid for the length and loss volume of a loss period for the discrete process as
well. In addition, the first moment of the length of a loss period is shown to
agree with the first moment found using Little’s formula.

The main contributions of Part V are:

• The parameters of network calculus server models, in particular GR and PSRG,
are estimated using external measurements on a network router. The parameters
are estimated directly from the measurement results. In addition, a new approach
using burst and backlog period statistics and their relations to the GR and
PSRG server models is developed. With the latter method, the evaluation of
the delay for every packet is avoided.

• The measurement results are used for estimation of the router processing time.
The minimum processing time is shown to be equal to the difference between
the value of the theoretical server model rate parameters and the value of the
measured rate parameter. Furthermore, the values of the error parameters from
the measurements are higher than the values of the theoretical error parameters
due to processing times being higher than the minimum processing time.

• The results from the server modeling of a router can be used to give delay
bounds for token bucket constrained traffic flows. An example is given for the
token bucket characteristics of the slice-based encoded streams from Chapter 5.
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Chapter 2

Background

This chapter gives a brief background on topics of particular relevance to this
thesis. Section 2.1 gives an overview of QoS provisioning in the Internet, with
special focus on QoS architectures for the Internet. QoS for video transmission
over the Internet is discussed in Section 2.2. Section 2.3 summerizes the most
important aspects of network calculus relevant for this thesis, including server
models and traffic models.

2.1 QoS Provisioning in the Internet

This section gives an introduction to QoS provisioning in today’s Internet, starting
with an overview of the topic and continuing with the IntServ and DiffServ
architectures.

2.1.1 Introduction

“The Holy Grail of computer networking is to design a network that has the
flexibility and low cost of the Internet, yet offers the end-to-end quality-of-service
guarantees of the telephone network” [12]. This quotation from the late 90’s illus-
trates the ultimate goal of QoS provisioning in the Internet. Achieving this goal
is difficult because of the differences between these two networks. The telephone
network is connection-oriented and provides reserved resources as soon as the
connection is set up. QoS in the telephone network is therefore defined as the call
blocking probability as seen by the users and the term Grade of Service (GoS)
is defined as the general quality, including user and service provider aspects [13].
The ITU-T recommendation E.800 [5] defines QoS for the telephone network and
ISDN as follows:

Quality of Service (ITU-T):

“The collective effect of service performance which determine the
degree of satisfaction of a user of the service.”
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2.1. QoS Provisioning in the Internet

According to E.800, QoS depends on the service performance, which is divided
into support, operability, serveability, and security. The service performance
then again relies on the network performance characteristics such as transmission
performance and availability.

In the more recent ITU-T Recommendation G.1000 [14], new definitions for
QoS terms are given in order to have a set of consistent definitions. G.1000 gives
four different viewpoints for the QoS. These are:

1. QoS requirements of user/customer

2. QoS offered/planned by provider

3. QoS delivered/achieved by provider

4. QoS perceived by user/customer

In addition to putting more attention on the user, these new definitions are more
targeted to the use in Internet, where the diversity of applications and services
calls for new approaches to QoS compared to the telephone network. In this sense,
the fourth viewpoint also resembles the term PQoS which is discussed in more
details in Section 2.2.3.

The Internet, in contrast to the telephone network, was designed to offer
connection-less, best-effort data delivery and had no focus on QoS initially [1]. It
worked this way until the introduction of delay sensitive applications on top of IP.
QoS was then also defined by the IETF in RFC 2216 [15] as follows:

Quality of Service (IETF) refers to:

“the nature of the packet delivery service provided, as described by
parameters such as achieved bandwidth, packet delay, and packet loss
rates.”

This definition focuses only on the network performance parameters, and does not
take the user aspect into account at all.

With the introduction of real-time services over IP and the focus on QoS, the
need for service differentiation mechanisms in the Internet became clear, leading
to heavy research on the area. The research conducted mainly led to two different
proposals for support of QoS in the Internet, developed by the IETF. These are
the Integrated Service (IntServ) architecture [7] that offers absolute QoS and
the Differentiated Service (DiffServ) architecture [8] that provides relative QoS.
IntServ and DiffServ are described next.

2.1.2 IntServ

Observing that real-time applications did not perform well across the Internet
due to variable queueing delays and congestion losses, the IETF proposed IntServ
as the inital QoS architecture. IntServ was originally designed to be able to
control the end-to-end packet delay and provide bandwidth sharing [7]. It is a
per-flow based service differentiation scheme, focusing on resource reservation and
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Sender Receiver

1. Path message (TSpec, RSpec)

2. Resv/Error message

Figure 2.1: Resource reservation in IntServ using RSVP.

admission control on a per-flow basis for providing service guarantees. As such,
state information for each IntServ flow is needed in every router on the path from
source to destination, which makes the scheme unscalable in a large network.

The Resource ReSerVation Protocol (RSVP) [16] is used as signaling protocol
for resource reservation in IntServ, requesting resources along a path as shown
in Figure 2.1. The reservation is receiver initiated, but the sender will signal
the receiver to initiate the reservation. The reservation procedure is then as
follows: 1) During the signaling phase, a path message with a Traffic Specification
(TSpec) [17] and a Reservation Specification (RSpec) is sent from the sender
to the receiver. The TSpec specifies the traffic characteristics of the flow with
parameters such as token rate, bucket depth, peak rate, and maximum packet
size while the RSpec defines the level of service required, such as delay guarantees
and bandwidth requirements. 2) An admission control scheme is needed in the
routers to determine whether a router should accept the flow or not. If accepted,
the router records the traffic characteristics contained in the path message before
forwarding it to the next router on the path. 3) The receiver responds to the path
message by sending a reservation (Resv) message in the opposite direction along
the same route as the path message. If the request is rejected, an error message
is sent back to the sender. 4) If every router on the path accepts the resource
request based on the TSpec and RSpec contained in the path message, bandwidth
and buffer space are allocated and flow-specific state information is stored in the
routers. Every router on the path must participate in the resource reservation
process meaning that partial deployment of IntServ is not feasible.

IntServ introduces two service classes in addition to the best-effort service
class. A deterministic Guaranteed Service [18], which gives an upper bound on
the end-to-end delay and a stochastic Controlled Load Service [19], which provides
a QoS to a flow approximately equal to the QoS that the flow would receive from
an unloaded network element.

IntServ has not been a great success, mainly due to the per-flow resource
reservation and the succeeding per-flow processing and per-flow state in the
routers. These, together with the violation of the end-to-end design principle of
the Internet (see e.g., [20] for a discussion on this issue), are some of the main
reasons why IntServ has never been deployed. Different approaches have been
proposed to solve the scalability problem. In [21], it is proposed to use IntServ
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over DiffServ, where a DiffServ domain serves as a network element in IntServ and
participates in the end-to-end resource reservation as a single network element.
Furthermore, in [22] it is recommended to enhance the RSVP to perform resource
reservation on classes of aggregates, where an aggregate consists of a number of
flows with shared ingress and egress routers through an aggregate network. In
this case, per-flow resource reservation is needed only at the edge of the network
and per-aggregate resource reservation is performed in the aggregate network.

2.1.3 DiffServ

Two main problems with IntServ governed the need for another approach to QoS
provisioning in IP networks. First and foremost, with each router maintaining
per-flow state, IntServ could not scale well in a large network. In addition, only
two service classes were specified and the flexibility of differentiation between
flows of the same service class was lacking. With this in mind, the IETF proposed
the DiffServ architecture [8]. DiffServ is therefore not a per-flow based scheme
but a per-aggregate-class based service differentiation scheme, where the traffic is
divided into a small number of Behavior Aggregates (BA). DiffServ also allows for
different drop precedence levels for different flows, and even packets, belonging to
the same class.

The classification into BAs is done at the ingress of the network and involves
the DiffServ edge router assigning a DiffServ Code Point (DSCP) value to the
Type of Service (TOS) byte in each IP-packet. This DSCP value specifies which
BA the packet belongs to and decides the treatment that the packet receives from
the core routers. Routers in the core of the network provide service guarantees to
aggregates, using a variety of scheduling and queue management procedures.

The externally observable forwarding behavior in the routers for each BA
is called Per Hop Behavior (PHB), where each PHB maps to a DSCP value.
DiffServ defines two PHBs in addition to the default best-effort PHB, which are
the Expedited Forwarding (EF) PHB [23] and the Assured Forwarding (AF) PHB
group [24]. The EF PHB is supposed to provide low delay, low jitter, and low
packet loss by ensuring a configured service rate to the EF aggregate, as well
as a bounded deviation from this configured rate. Each node that provides EF
service should then comply with the Packet Scale Rate Guarantee (PSRG) server
model [25], as described in Section 2.3.1. The AF PHB group consists of four
different AF classes, each of which is allocated an amount of buffer space and
bandwidth in the nodes. Within each AF class, there are three different levels
of drop precedence, thereby providing differentiated treatment within each class.
The packets with the highest drop precedence value are dropped first in the case
of congestion, using an active queue management scheme such as Random Early
Detection (RED) [26].

Service Level Agreements (SLAs) define a service contract for the provisioning
of service guarantees, and are used between the customers and their source DiffServ
domain, as well as between different DiffServ domains [8]. These SLAs contain a
Service Level Specification (SLS), which specifies the traffic characteristics of an
aggregate as well as the PHB. The traffic characteristics are often defined using
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Figure 2.2: A simple DiffServ architecture (from [27]).

token bucket models [9] as described in Section 2.3.2. A Bandwidth Broker (BB)
function is then needed in each DiffServ domain to perform admission control,
manage network resources, etc., based on the SLAs.

A simple DiffServ architecture is shown in Figure 2.2. For the given source,
the first capable downlink router in the source domain (leaf router) will perform
per-flow classification, metering, and marking [27]. In addition, ingress and
egress routers need traffic conditioning capabilities. At an egress router, DiffServ
aggregates are shaped to conform to their profile, before being sent to another
DiffServ domain. At the ingress routers, classification and marking of aggregates
are performed, possibly after metering. In addition, core routers may include
traffic conditioning capabilities such as metering and shaping (or dropping) of
packets that are out-of-profile.

The use of DiffServ for transmission of layered MPEG-2 encoded video is
demonstrated in [28], where different video coding layers are put in different
DiffServ classes. It showed that the perceived quality of the the transmitted video
is highly dependent on how the layers are created, and the layered video can
tolerate a higher network load than regular video while achieving the same quality
target.

An experimental DiffServ network was developed for the Internet2 Qbone
project [27], but even though the project successfully demonstrated DiffServ
in a test network, DiffServ has not gotten the deployment that was hoped for.
Some people talk about overprovisioning instead of QoS support, arguing that
DiffServ will not the be widely deployed because of too high costs relative to the
benefits [29]. While overprovisioning may be an option in the backbone network,
the wireless access links still have limited resources. Hence, in [30] it is argued
that QoS mechanisms are indeed needed in today’s network and that QoS support
is well taken care of by the DiffServ architecture. Furthermore, the main obstacles
to a wide deployment of DiffServ are seen as mainly business related. Hence,
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Figure 2.3: Multimedia and network aspects influencing the PQoS for video
transmissions over the Internet.

with an increase in the amount of traffic transmitted over the Internet, service
differentiation is likely to become a value-added feature in the near future.

2.2 QoS for Video Transmission over the Internet

In this section, QoS issues related to video transmission over the Internet are dis-
cussed. Different types of video applications that have divergent QoS requirements
are described. Finally, challenges related to assessing the end-user perceived QoS
for a video transmission over the Internet are discussed.

2.2.1 Video Transmission over the Internet

Video transmitted over the Internet is often real-time video, which means that
requirements for low delay and loss are imposed in order to provide satisfactory
end-user quality [31]. Because of these requirements and the high and variable
bitrate of video traffic, various challenges arise for video transmissions over the
Internet. Traditionally, network performance metrics such as throughput, delay,
delay jitter, and packet loss probability were used for estimating the QoS for a
video transmission, in accordance with IETFs QoS definition. However, with new
advances in video coding and application level support for QoS, several other
aspects influence the QoS perceived by the end-users. An overview of multimedia
and network aspects that influence the perceived QoS is given next. These are
also shown in Figure 2.3.

Video Content

The characteristics of the video content is the first aspect affecting the resulting
quality. In particular, the type of video application is important. Video conference
streams on one hand are often quite static and have a high degree of spatial
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and temporal dependencies, making it relatively easy to compress. The resulting
bitrate is therefore low and has a low variability. Action movies on the other
hand have frequent scene shifts and higher motion within scenes, as well as a large
amount of details, resulting in less spatial and temporal dependencies. This type
of video will hence require more bits to encode, i.e., the rate-distortion function
is larger for a high activity scene than for a low activity scene with the same
distortion [32]. The resulting bitrate will probably also have higher variability
because of some low activity scenes. The influence of the video content on the
perceived quality is investigated in [33], where it is shown that the spatial and
temporal complexity influence the perceived quality and should be taken into
account in a model for predicting perceived quality.

The bitrate characteristics of slice-based encoded video are studied in Chapter
4 and 6. The bitrate reflects the video content after encoding and is important
to study since the bitrate characteristics of the video will influence the network
performance experienced.

Encoding

In order to transport a video stream over the Internet, compression is needed
to reduce the bitrate of the stream. H.264/AVC [4] is the latest standard for
video coding and is studied in this thesis. The encoding process and the encoding
parameters for H.264/AVC are targeted to the application type, the video content,
the underlying network, and possible feedback from the network. Application layer
techniques including error control and congestion control are used for coping with
variable network conditions. Error control comprise Forward Error Correction
(FEC), retransmissions, and error resilience [34]. For H.264/AVC, there has been
much focus on error resilience tools for transmission in lossy network environments.
These tools include picture segmentation, data partitioning, reference picture
selection, flexible macroblock ordering etc. The effect of a lost packet on the
distortion is highly dependent on which error resilience techniques are employed,
and this is studied using simulations in [35].

Packetization

After encoding, the video frames are divided into packets in a process called
packetization. For H.264/AVC, the Network Abstraction Layer (NAL) was in-
cluded to provide coding transparency towards the transmission medium. Simple
packetization then involves putting a NAL Unit (NALU), containing a slice of a
frame, into the payload of a Real-Time Transport Protocol (RTP) packet [36]. In
order to have fully decodable packets at the receiver, it is advantageous to keep
the slice size smaller than the Maximum Transport Unit (MTU) of the underlying
network. Hence, being able to decode all packets that are successfully transmitted.
Otherwise, the RTP packets are fragmented on the IP-layer to resemble the MTU
of the underlying network [35]. Video frames are typically encoded at a rate
around 30 frames per second and are usually much larger than typical MTU sizes.
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This results in bursts of packets carrying the size of the frames being sent to the
network. So, video traffic is generally bursty.

Network Protocols

The transmission medium and the network protocols above are taken into account
in the encoding process. The physical transmission medium will influence the FEC
and error resilience tools applied to the encoded video [37]. The packetization
process described above is also tailored to the underlying network, and the MTU
of the Medium Access Control (MAC) layer will decide the optimal NALU size.
For video traffic transmission over the Internet, the Internet Protocol (IP) [38] is
the obvious choice at the network layer. For the transport layer, the Transmission
Control Protocol (TCP) [39, 40] is currently employed for most non-real time
video content. TCP is connection-oriented and ensures the delivery of the video
packets without loss. This is accomplished by using retransmission of lost packets
and hence delay is traded for zero loss. Some streaming services also use TCP as
transport protocol, buffering a large amount of packets at the client side before
starting the playback. The buffering will account for variable network delay and
even give enough time to retransmit lost packets. For real-time video, there are
more strict time constraints because of a maximum allowable delay. Packets
arriving too late for decoding are of no use, while a low packet loss probability in
the order of a few percents is usually considered acceptable. The User Datagram
Protocol (UDP) [41] is therefore the preferred choice for transmission of real-time
video such as conversational services and real-time streaming. In addition, the
RTP [42] is usually employed to add support for real-time audio and video services
on top of UDP. RTP includes sequence numbers, facilitating detection of lost
packets. Finally, the Real Time Control Protocol (RTCP) is used together with
RTP to monitor the QoS of the session [42] and the Real Time Streaming Protocol
(RTSP) [43] is used for streaming video.

Network Performance

In addition to the different choices made for video transmission, the network
performance plays a significant role for the final perceived quality. The most
important network performance parameters that can be evaluated at the network
egress are:

• Throughput; defined as the number of bits successfully transmitted and
received by a source destination pair in a time interval, divided by the time
interval. IP link capacity using IP-layer bits is defined similarly in [44].

• Delay; defined as one-way delay [45] and round-trip delay [46].

• Delay variation (jitter); defined as the differences in the one-way delay of
packets belonging to one stream [47].
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Figure 2.4: A video playout buffer for streaming and conversational video.

• Packet Loss Rate/Ratio (PLR); defined as the ratio of the number of lost
packets to the number of transmitted packets between a source destination
pair [48].

• Packet loss pattern; defined using the distance between consecutive losses
and the length of a loss period [49].

An overview of the requirements to the performance parameters for different video
applications is given in Section 2.2.2. Ultimately, these parameters should be used
for assessing the QoS perceived by the end-users. This is discussed in more details
in Section 2.2.3,

Playout Buffer

For streaming video and conversational video as defined in the next section, an
application specific playout buffer (or jitter buffer) is needed at the receiver side for
absorbing variable network delays and to allow for retransmission of lost packets.
The size of the playout buffer decides the maximum allowable variation in network
delay and also the minimum time needed for buffering before the video playback
is started. A too big buffer then means unnecessary delay while a too small buffer
causes excessive packet loss [35]. A packet arriving at the playout buffer after
its scheduled playout time is considered lost. This is shown in Figure 2.4. For
real-time streaming video and conversational video, the size of the playout buffer
should be minimized to ensure low end-to-end delay. For non real-time video
streaming, the playout buffer can be large to account for large network delays as
well as packet retransmissions and will hence provide a low packet loss probability.
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Decoding

The decoder reconstructs the original video streams. In case of missing frames or
parts of frames, the decoder performs error concealment, e.g., using prediction
from previous frames or neighboring macroblocks [37]. The degree to which this
is successful depends on the video content, the error resilience tools applied at the
encoder, and also which parts of a frame and how much is lost. As described in [50],
basic MPEG-2 systems do not decode a frame with a lost packet, but discard the
entire frame and insert the previous frame instead. With H.264/AVC on the other
hand, the error concealment is usually more sophisticated and a lost packet should
optimally only result in one lost slice. This assumes that the slices are small
enough to avoid fragmentation on the IP layer, as described under packetization.
Hence, lost slices are recovered using error concealment tools corresponding to the
error resilience added at the encoder.

Perceived QoS

After decoding, the video stream is played to the end-user. The final video quality
perceived by the user is then denoted by the Perceived QoS (PQoS). As can be
seen from this discussion, the perceived quality depends on the video clip, the
encoding, the packetization, the network protocols, the network performance, the
playout buffer, and finally the decoding. Adding the user expectation brings on
the term Quality of Experience (QoE). The final quality experienced by the users
is hard to predict and analyze without the use of subjective tests. PQoS and QoE
for video transmissions over the Internet are discussed in more details in Section
2.2.3, together with an overview of important results for estimating the PQoS from
the network performance parameters and the multimedia imposed impairments.

2.2.2 Video Applications

Applications used over the Internet can be divided into elastic and non-elastic
applications [51]. Traditional Internet applications such as email, file transfer,
and web-surfing are elastic, meaning that they can tolerate delay and losses, in
addition to being able to decrease and increase their transmission rate depending
on the network conditions. These applications typically use TCP. Real-time video
applications on the other hand are non-elastic, meaning that they are less tolerant
to packet loss and variations in delay, and they require a minimum capacity equal
to the bitrate of the stream and cannot benefit from a higher available capacity.
These applications typically use UDP.

A classification of video into download, streaming, and conversational video
is common [31], where only download video is elastic. In addition, the Video-on-
Demand (VoD) sub-class of streaming video is called semi-elastic in this thesis, since
it can use TCP. These classes of video applications have divergent requirements for
throughput, delay, delay jitter, and packet loss. This is also taken into account in
the video encoder, where the encoder can be optimized for low-latency or coding
efficiency, depending on the application [35].

20



Chapter 2. Background

Table 2.1: Network performance requirements for classes of video applications.

Class Application Bandwidth Delay/Jitter Loss
Download Video download Elastic <15 seconds Zero

Streaming Video Video-on-Demand Semi-elastic <10 seconds <1%
Live streaming Non-elastic <2 seconds <1%

Conversational Video conferencing Non-elastic <150 ms <1%
Video telephony Non-elastic <150 ms <1%

The least demanding video application in terms of delay is the downloading
of a video for later replay. This application is elastic and can increase and
decrease the bitrate according to the available bandwidth, as well as being tolerant
to variations in the network delay. Downloading of video requires a lossless
transmission, however this is taken care of by the TCP protocol.

Streaming video includes all types of video transmissions where the playback
starts before the transmission of the video is finished [34]. Streaming video can be
VoD, where the video typically is pre-recorded and stored at a streaming server, or
live (real-time) streaming, which is available only in real-time. An example of the
former is YouTube, while live-streaming from football matches is an example of
the latter. These two types of streaming applications differ in their requirements
to the playout delay. Although both VoD and live-streaming can tolerate some
buffering, the latter typically has a shorter playout buffer and therefore lower
maximum delay, but also higher loss probability. Both of them have stringent
requirements for the packet loss probability, even as low as 1% [31].

Finally, the term conversational video is used, covering video conferencing,
video telephony, and other applications that are two-way/multi-way. These
applications have more stringent requirements for the network performance in terms
of maximum end-to-end delay and loss probability. In addition, the applications
are non-elastic and the bandwidth requirements are therefore stringent. Loss and
delay critical applications are the focus in this thesis, and real-time streaming and
conversational video are used.

The requirements to the network performance parameters for different video
applications, based on the segmentation from the ITU-T Recommendation G.1010
[31] are summarized in Table 2.1. Live-streaming is not explicitly addressed in [31],
but its delay requirement is set to a typical delay of two seconds here to distinguish
it from VoD.

2.2.3 Perceived QoS and Quality of Experience

While QoS proposals for the Internet focus on network performance measures such
as throughput, delay, delay jitter, and packet loss, the terms PQoS or QoE have
gained more importance for multimedia applications. In this thesis, PQoS is used
for the QoS as perceived subjectively by the end-users, while for QoE also user
expectations and economical aspects are included. The former is therefore most
important for the work in this thesis.
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Focus on the QoE conforms with the G.1000 recommendation which clearly
indicates the user perspective. A new definition for QoE is included as an appendix
in the ITU-T Recommendation P.10 [52].

Quality of Experience:

“A measure of the overall acceptability of an application or service, as
perceived subjectively by the end-user.”

This definition makes a clear separation between the QoS defined in E.800 [5] and
in RFC 2216 [15] as concerned with the network performance and the QoE as the
quality subjectively perceived by the users. However, this QoE definition better
resembles the fourth viewpoint in G.1000 [14].

For evaluating the quality of a video stream as perceived by the users, actual
users must be tested. A common measure of the perceived QoS is then the
subjective Mean Opinion Score (MOS) [53], where the opinion score is a measure
of the perceived quality as seen by test subjects. The evaluation is done by setting
up a viewing test as described in [53] and letting a group of people evaluate different
video clips, ranging them from 1 (bad) to 5 (excellent). The MOS result is then
given as the average of the individual opinion scores. This approach is expensive
and time-consuming. Objective tests are therefore frequently used instead. The
goal of the objective tests is then to give results that correlate well with the MOS
results. Three different classes of tests are used: Full Reference (FR), Reduced
Reference (RR), and No-Reference (NR) tests. These are distinguished by the
availability of the complete video stream or some simple statistics of the original
video stream at the receiver, for comparison with the altered stream.

For FR methods, the original video stream is required for comparison with the
distorted stream, which may not always be feasible. The Peak Signal to Noise
Ratio (PSNR), which uses the Mean Squared Error (MSE) of the two streams,
is a very common FR method, although being criticized for low correlation with
subjective results [54]. Another simple FR method is the Structural Similarity
Index Measurement (SSIM) described in [55]. SSIM focuses on measuring the
structural information change in the distorted stream compared to the original
stream in order to assess the image distortion. For RR methods, some statistics
of the original video stream must be available at the receiver for evaluation of the
quality. In [56], a combined RR/FR method is proposed, using wavelets. Finally,
for the NR method, no information about the original stream is available at the
receiver. Hence, the distorted video stream must be evaluated for estimating the
quality. One approach is to measure the block-edge impairments as described
in [57].

The Video Quality Experts Group (VQEG) has led the work on objective tests
for assessing multimedia quality. The results reported in [58] showed satisfactory
results for two FR algorithms and one RR algorithm, leading to two new ITU-T
Recommendations in 2008. These are J.247: Objective perceptual multimedia
video quality measurement in the presence of a full reference [59] and J.246:
Perceptual audiovisual quality measurement techniques for multimedia services
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over digital cable television networks in the presence of a reduced bandwidth
reference [60].

2.2.4 Evaluation of PQoS using Network Performance
Parameters

Ultimately, a mapping between the network QoS parameters such as throughput,
delay, delay jitter, and packet loss and the PQoS is the goal. This is also identified
in a recent paper on video quality assessment [54], where packet loss based metrics
are seen as a good solution to the PQoS assessment, due to the low computational
complexity compared to evaluation of the fully decoded video stream. Having
the discussion from the previous sections in mind, this may look as a difficult
task. However, in particular the packet loss burstiness has been identified as
an important metric for the PQoS, both for speech, audio, and video. This is
especially important for these applications since decoders in general have more
difficulties with concealing the effect of consecutive packet losses than single losses,
as discussed e.g., in [50].

Speech

For speech, perceived QoS can be assessed using the E-model [61], which is an
additive impairment model. Hence, impairments due to SNR, coding, transmission
delay etc., are added to give a rating factor that is converted to a MOS value. The
E-model has been updated recently, first to account for random packet loss based
on results published in [62] and next to account for arbitrary loss distributions
based on results published in [63]. The loss distribution is accounted for using the
packet loss burst ratio, given as the ratio of the first moment of the length of a
loss period to the first moment of the length of a loss period for random losses.

Audio

For audio, network simulations and subjective tests are used for evaluating the
effect of packet loss burtiness on the perceived quality in [64]. The distribution
of packet loss for music streams transmitted over a network is modeled using
results from simulations. Both best-effort and DiffServ nodes are simulated
and the differences in the packet loss burstiness resulting from these setups are
investigated. The best-effort case showed higher burstiness compared to the
DiffServ case because of RED active queue management for the latter. The same
packet loss ratio then resulted in a higher MOS value for the DiffServ case than
for the best-effort case for acceptable loss ratios.

Video

For video, several approaches have been proposed to assess the perceived QoS
depending on the loss process. However, most of these approaches use the
PSNR/MSE to estimate the distortion, instead of using subjective tests to estimate
the PQoS. The effect of the burst loss on the distortion is modeled and compared
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to simulations in [65]. The results show that the burst length of the loss process
is important for estimating the distortion and that loss occurring in bursts affects
the distortion more than single losses of the same amount. In [66], three different
methods are presented for evaluation of the quality of distorted video using the
MSE. The video is encoded using MPEG-2 and is transmitted over a packet
network. The NoParse method uses measures of the packet loss rate only, while
the QuickParse and FullParse methods also incorporates the impact of losses.
Next, an approach to real-time assessment of the video quality is described in [50].
Here, a loss-distortion model is developed, using both multimedia and network
aspects. For estimation of the distortion, the video content, type of video codec,
packetization, loss recovery mechanisms, and the amount of loss are taken into
account, the latter through the average number of packets between losses. A
mapping between the distortion and the PSNR is given. However, an additive
impairment model is used for the losses, and the more severe effects on the
distortion when the losses occur in bursts are not taken into account. Finally, a
hybrid metric for evaluation of perceived QoS is described in [54]. This model takes
the network impairments and information about the video stream into account.
Loss of intra or predictive coded slices give different impairments and the video
coding layer complexity, including the content charateristics, the amount of scene
changes, and the quantization level, are included to give the final MOS value.

Subjective test results on the effect of consecutive packet losses are given e.g.,
in [67]. Here, a random neural network model trained with results from subjective
tests is used for evaluating the effect of both coding parameters and network QoS
parameters on the perceived quality, for H.263 encoded video. In particular, it is
found that increasing the number of consecutive lost packets while keeping the loss
ratio constant leads to better quality because of fewer deteriorated frames. This
is explained by the high frame rate (30 frames per second is used) and thereby
difficulty of detecting a distorted frame.

In [68], a similar approach as for the E-model is pursued for video traffic. A
parametric video quality model is proposed, with additive impairment factors
calculated from the source quality, video coding, transmission impairments etc.
The transmission impairments include the packet loss as well as the packet loss
concealment. Only the packet loss ratio is investigated, however non-uniform
distributed packet loss is expected to be included in a future model. A strong
point is the use of subjective tests, and the ultimate goal is a comprehensive model
for the evaluation of video quality comparable to the E-model for speech. The
quality evaluation is more complicated for video compared to for speech, because
of the content dependencies on the perceived quality as shown in [33]. The effect
of the spatial and temporal complexity in the video sequences on the perceived
quality are investigated for inclusion in the model from [68].

The extent to which losses are concealed is highly dependent on the error
resilience tools, as shown using simulations in [35]. This also means that results
for the effect of bursty losses can be taken into account when applying these tools.
As this discussion shows, the effect of bursty losses is highly dependent on the
decoding. With a decoding scheme that discards the whole frame in the case of
a lost packet, bursty losses should improve the perceived quality compared to
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random losses. However, a lost packet should optimally only result in the loss of
one slice, and bursty losses will therefore most often decrease the perceived quality
compared to random losses, since bursty losses are more difficult to conceal [50].

In this thesis, two approaches to the estimation of the loss are pursued. First,
in Chapter 7, a non-parametric approach to the estimation of loss is proposed.
This approach gives the amount of loss as well as some information about the
clustering of the losses for a video trace. Second, in Chapter 9, the loss distribution
is estimated using a Gaussian model for the video traffic. This approach gives the
moments of the length and loss volume of a loss period for video traffic specified
by its mean and covariance function.

2.3 Network Calculus

In the recent decades, several works analyzing service guarantees in the Internet
have emerged under the name of network calculus, see e.g., [9, 10, 69, 70]. Network
calculus is called the system theory for computer networks. In contrast to linear
system theory where regular convolutions are used, network calculus frequently
uses the theory of min-plus convolution [10]. Namely:

(f ⊗ g)(t) := inf
0≤τ≤t

{f(τ) + g(t − τ)} (2.1)

and the de-convolution:

(f � g)(t) := sup
τ≥0

{f(t + τ) − g(τ)} . (2.2)

In general, network calculus defines bounding functions or envelopes for the
amount of traffic arriving in a time period, called arrival curves. Also, bounding
functions are defined for the service elements, called service curves. These curves
are defined using the convolution operation for the service curve and the de-
convolution for the arrival curve respectively, as described in the following.

Deterministic network calculus was defined first [9,10,69], followed by the prob-
abilistic version called stochastic network calculus [70]. The former is employed in
this thesis. Different types of traffic and server models defined under deterministic
network calculus are then described next.

2.3.1 Server Models

The general service curve model is described first, followed by the Latency Rate
(LR) server model which is a special case of the service curve model. In addition,
under the two Internet QoS architectures, the Guaranteed Rate (GR) and Packet
Scale Rate Guarantee (PSRG) server models are used to respectively define the
Guaranteed Service of an IntServ router and the Expedited Forwarding PHB of
a DiffServ router. Known relationships exist between these two models and the
service curve model. These relationships are employed in Chapter 10 for estimating
parameters for the GR and PRSG server models using external measurements on
a router.
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Service Curve

A server offers a service curve β(t) to a flow if and only if there is a t0 ≥ 0
with t0 ≤ t such that the amount of service received by the flow in [0, t], W (t)
and the amount of traffic generated by the flow in the time period [0, t0], A(t0)
satisfies [10]:

W (t) ≥ A(t0) + β(t − t0) (2.3)

The adaptive service curve is a variant of the service curve model, and has a
close connection to the PSRG server model [10].

Latency Rate (LR)

The LR server model was defined in [71] for describing the worst-case behavior of a
scheduler, covering a broad range of scheduling algorithms. The LR server model
uses the concept of burst period (busy period is used in [71]), and the amount of
service received by a flow in the burst period. A router burst period is defined
as a time period [t0, t∗] where the arrival rate at time t in [t0, t∗] is always at or
above the reserved rate, r [71]. That is:

A(t0, t) ≥ r(t − t0) , (2.4)

where A(s, t) denotes the amount of traffic arrived in the time interval [s, t].
The LR server model is defined using the burst period concept and uses two

parameters, the allocated rate, r, and the latency term, Θ. A server is then a LR
server if and only if for each t in the time period [t0, t∗], it is guaranteed that the
amount of service received by a flow in this time period satisfies [71]:

W (t0, t) ≥ r(t − t0 − Θ) , (2.5)

where t0 is the starting time of the burst period and t∗ is the time instant when
the last packet which arrived during the burst period leaves the server. The server
is then a LR server with rate r and latency Θ.

As seen from this definition and the definition in Equation 2.3, the LR server
model is a special case of the general service curve model where the service curve
β(t − t0) is equal to r(t − t0 − Θ). In the same way, the Latency Rate Worst-case
Service Guarantee (LR-WSG) [72] is a special case of the adaptive service curve
model, where the service curve is equal to r(t− t0 −Θ), but the service guarantee
is fulfilled for all t in a backlog period.

Guaranteed Rate (GR)

In contrast to the service curve and LR server models, the GR server model
defines a deadline guarantee for all packets with regard to the service in a Single
Server Queue (SSQ) with the same rate. For a GR server with rate r, it is then
guaranteed that the jth arriving packet is transmitted by time [73]:

dj ≤ V FT j + E , (2.6)
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where dj denotes the departure time of the jth packet from the server, E is an
error term and the Virtual Finish Time (VFT), which denotes the departure time
in the SSQ with rate r, is iteratively defined for j ≥ 1:

V FT j = max{aj , V FT j−1} +
lj

r
, (2.7)

where aj is the arrival time of packet j at the server, lj is the length of the jth
packet and V FT 0 = 0. The error term E captures how much a node may be
late with respect to the ideal SSQ with constant service rate r and is typically
dependent on the scheduling algorithm employed.

The GR server model specifies the service of a Guaranteed Service node in
IntServ. Scheduling algorithms conforming to the GR (and LR) server model
includes First In-First Out (FIFO), Weighted Fair Queueing (WFQ), and Deficit
Round Robin (DRR) as shown in [74].

Packet Scale Rate Guarantee (PSRG)

In the PSRG server model, a server may also be early compared to the ideal
constant rate server [25,72], thereby also providing a bound on the router jitter.
The delay guarantee for the PSRG server model is similar to that of the GR server
model, except for a modified VFT function, the PSRG VFT (PFT):

dj ≤ PFT j + E , (2.8)

where PFT is defined for j ≥ 1:

PFT j = max{aj ,min{PFT j−1, dj−1}} +
lj

r
, (2.9)

where d0 = 0 and PFT 0 = 0.
It is easy to verify that PSRG implies GR since for any packet j, the inequality

PFT j ≤ V FT j always holds. In other words, if a server provides PSRG with rate
r and error term E, it also provides GR with the same rate and the same error
term.

Also, known relationships exist between the service curve model and the GR
server model as well as between the adaptive service curve model and the PSRG
server model. These relationships are exploited in Chapter 10 for estimating the
rate and error parameters for the GR and PSRG server models using external
measurements on a router.

2.3.2 Traffic Models

The network calculus traffic models are special in the sense that they provide
deterministic or stochastic upper bounds on the amount of traffic generated in a
time period. A deterministic traffic bound gives an absolute bound on the amount
of traffic arriving in a time period:

Pr[Amount of traffic arriving in a time period ≤ α] = 1
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Figure 2.5: The traffic flow A(t, t + τ) constrained by the arrival curve α(τ).

while a stochastic traffic bound gives a probabilistic bound on the amount of
traffic arriving in a time period:

Pr[Amount of traffic arriving in a time period ≥ α] ≤ p

In this thesis, the focus is on different variants of the token bucket traffic model,
which is a deterministic traffic model. The token bucket model is of particular
importance since its variant, the dual token bucket, is employed for the TSpec
in IntServ, as well as for the SLS in DiffServ. The token bucket is also used for
traffic shaping at a DiffServ node if an aggregate is out of profile. In addition,
delay guarantees for the LR, GR, and PSRG server models are defined when the
token bucket parameters of the input flows are known [75].

The general arrival curve is defined first, followed by the regular token bucket
traffic model and the leaky bucket traffic model. The token bucket model is a
special case of the arrival curve.

Arrival Curve

The general deterministic arrival curve is defined as follows [10]:
A flow is said to be constrained by the function α(·), and hence has an arrival

curve α(·), if and only if for each t ≥ 0,

A(t, t + τ) ≤ α(τ) , (2.10)

where A(t, t + τ) is the amount of traffic generated by the flow in the time period
[t, t + τ ].

The arrival curve α(τ) and a traffic flow A(t, t + τ) constrained by the arrival
curve are shown in Figure 2.5.
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Figure 2.6: A token bucket with token generation rate ρ and token bucket size
σ.

Token Bucket Traffic Model

The token bucket traffic model is a deterministic traffic model and is defined as
follows [9]:

A flow is said to be token bucket (ρ, σ)-constrained if and only if for each t ≥ 0,

A(t, t + τ) ≤ ρτ + σ , (2.11)

where A(t, t + τ) is the amount of traffic generated by the flow in the time period
[t, t+ τ ], ρ is the token generation rate and σ is the token bucket size which defines
the maximum burst size to be transmitted.

The operation of the simple token bucket is shown in Figure 2.6. Tokens are
generated with a rate ρ until the token bucket reaches its maximum size, σ. A
traffic flow under study arrives over a link and acquires an amount of tokens equal
to the packet sizes. A packet finding fewer tokens than the packet size in the token
bucket upon arrival is dropped. The objective of traffic characterization using
token buckets is to find the parameters ρ and σ that are exactly large enough for
each packet to find enough tokens in the token bucket upon arrival. The output
stream from this token bucket will then be token bucket (ρ, σ)-constrained. Video
traffic characterization using token bucket traffic models is performed in Chapter
5, both using simulations and using an analytical approach.

The dual token bucket, employed for the TSpec [17] in IntServ, is defined in a
similar way. Namely, a flow is said to be dual token bucket (ρ, σ; p, L) constrained
if and only if for each t ≥ 0:

A(t, t + τ) ≤ min{ρτ + σ, pτ + M} , (2.12)

where p is the peak rate of the flow and M is the maximum packet size.
Additionally, a loss bounded token bucket model can be defined, with a bound

on the probability of packet loss due to an empty token bucket at arrival.
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Figure 2.7: A leaky bucket with token generation rate ρ and token bucket size
σ.

Leaky Bucket Traffic Model

The leaky bucket traffic model used in this thesis has a data buffer in addition
to the token bucket as can be seen in Figure 2.7. It should be noted that several
different definitions exist for the leaky bucket. Here, the model addressed in [76,77]
is denoted a leaky bucket. It works as follows. If a packet finds too few tokens
in the token bucket upon arrival, it is put in the data buffer for queueing until
enough tokens are present, hence smoothing the input stream by introducing an
extra delay. It is shown in [76] that the loss probability of an input stream to
a leaky bucket depends on the token bucket size and the data buffer size only
through their sum. The leaky bucket is also a deterministic traffic model, since
the output from the leaky bucket is token bucket constrained with parameters
ρ and σ. Hence, the arrival curve of a leaky bucket corresponds to that of the
token bucket. However, for traffic characterization, the leaky bucket will reduce
the token bucket parameters for a flow by introducing some delay in the data
buffer. The leaky bucket is employed in addition to the token bucket traffic model
for traffic characterization in Chapter 5.

30



Chapter 3

Slice-based H.264/AVC

This chapter describes the explicit slice-based mode type selection scheme devel-
oped using the H.264/AVC standard [4]. The scheme was first introduced in [11],
with the objective of reducing the burstiness of standard frame-based H.264/AVC
encoded video by using explicit mode type selection on the slice level, with one
intra coded slice per frame. When transmitting a slice-based encoded stream
through a network, this reduced burstiness should result in less network delay
and loss compared to standard frame-based encoded video. The slice-based video
encoding scheme has also been studied in [78–83].

Section 3.1 starts with an introduction to video coding and gives the motivation
behind the slice-based video encoding scheme. Section 3.2 gives an overview of the
H.264/AVC standard, while Section 3.3 describes the proposed slice-based scheme
in details. Finally, Section 3.4 presents the two sample traces used in this thesis.

3.1 Introduction

Video compression is necessary for effective transport of video streams over a
network. VBR video coding has gained much importance because of its improved
end-user quality and higher compression efficiency compared to CBR video coding.
The enhanced quality compared to CBR is achieved by a constant rate-distortion
target and hence using a constant quantization parameter for the whole sequence.
However, the constant quantization parameter and the periodic prediction scheme
used in VBR coding, with one large intra (I) coded frame at the beginning of
each Group of Picture (GOP) and small predicted (P) frames, result in a bursty
traffic stream when transmitted over a network. The bitrate variations due to
changes in the motion level in consecutive scenes are not easily removed while
retaining the end-user quality. The bitrate variations due to the different size of
the intra coded frames compared to the predicted frames are on the other hand
mostly removed in the novel enhancement to the H.264/AVC standard [4] called
the explicit slice-based mode type selection scheme [11]. Here, the GOP structure
is broken up and each frame contains an intra coded slice at successive positions.
This results in a smoother video stream, at the cost of a slightly increased average
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Figure 3.1: VCL and NAL in H.264/AVC (from [84]).

bitrate because of added redundancy in the form of partially overlapping I slices.
The overlap is needed to prevent errors from propagating upwards into parts of
the frame where it has already been removed by an I slice. The necessity of this
overlap for error resilience is investigated in [79], and found to be dependent on
the packet loss probability.

3.2 H.264/MPEG-4 Advanced Video Coding (AVC)

H.264/AVC is the latest standard for video coding developed by the ITU-T Video
Coding Experts Group (VCEG) and the ISO/IEC Moving Pictures Experts Group
(MPEG) [4]. The main objectives with the new standard were to increase the
coding efficiency compared to earlier standards and to provide coding transparency,
followed by an adaptation to a wide diversity of underlying networks. Application
areas include high definition TV broadcast as well as video transmission over
media with lower data rates, such as DSL and UMTS [84].

In order to support the large diversity in applications and transmission media,
the H.264/AVC design, in addition to the Video Coding Layer (VCL) for efficient
video coding, included a Network Abstraction Layer (NAL). The NAL is employed
for mapping the data from the VCL to a broad range of different transmission
media, thereby providing transparent video coding on the VCL layer. The structure
of the H.264/AVC encoder is shown in Figure 3.1. The coded macroblocks are
assembled into slices before being handed over to the NAL, which maps the encoded
video slices on to the transmission media. The VCL and NAL are described next.

3.2.1 Video Coding Layer (VCL)

H.264/AVC draws on previous ITU-T standards H.261, H.262 (MPEG-2) and
H.263, and uses a similar block-based hybrid video coding as those [84]. Each
picture is represented using variable-size macroblocks and inter-picture prediction
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B PI P P B P P B P P P I

GOP

Figure 3.2: Example GOP structure with a regular, frame-based prediction
scheme.

is employed for removing temporal dependencies between consecutive frames (i.e.,
motion compensation). Transform coding is then performed on the predicted
residuals for removing spatial dependencies (i.e., dependencies within each frame).
The name hybrid coding refers to these two steps for removing redundancies.

Macroblocks are assembled into slices, either sequentially or using Flexible
Macroblock Ordering (FMO). With FMO, a slice consists of macroblocks from
different parts of the picture, e.g., in a checker-board pattern. This means that
macroblocks from a lost slice can be concealed using neighboring macroblocks
belonging to successfully transmitted slices. This is shown to be beneficial e.g.,
for video conferencing applications [35].

Three main coding modes are used for the slices, in order to remove the
temporal dependencies. Namely, intra coded (I), forward predictive coded (P), and
bidirectional predictive coded (B) [84]. The prediction scheme for H.264/AVC is
similar to previous standards, but is enhanced to allow for more flexible prediction.
In contrast to earlier standards, the P slices can be predicted from a number of
previous frames and the B slices from a number of previous and subsequent frames.
In addition, it is now possible to use the B slices as a basis for prediction. An I
frame is always inserted as the first frame in each GOP. In the simplest form, the
same coding mode is applied for all slices of a frame for the rest of the frames in
the GOP. These frames are then either P frames that are predicted from previous
I or P frames, or B frames that are predicted from previous and subsequent I or P
frames. The GOP structure can then look like: IPPBPPBPPBPP, given a GOP
size of 12. This prediction scheme is shown in Figure 3.2. Throughout the rest of
the thesis, this prediction scheme is called standard frame-based, reflecting on the
use of the same encoding mode for all slices of a frame.

After removing temporal dependencies, transform coding is performed on the
predicted residuals, as is also done in the previous ITU-T standards. However, the
previous standards use a 8×8 Discrete Cosine Transform (DCT), while H.264/AVC
primarily uses an integer transform based on the DCT. This transform operates
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on 4 × 4 blocks instead of 8 × 8. Because of the improved prediction process in
H.264/AVC compared to earlier standards, less spatial correlation exists to be
removed by transform coding. Hence, the 4×4 transform is sufficient for removing
correlation, in addition it gives less noise around edges compared to the 8 × 8
transform [84]. The transform coefficients are then quantized and entropy coding
is performed on the quantized coefficients, with two different methods supported
in H.264/AVC [84].

3.2.2 Network Abstraction Layer (NAL)

The H.264/AVC standard was designed to be efficient for a variety of applications
and transmission systems. Examples of applications are: broadcasting, storage,
conversational services, video-on-demand, and multimedia streaming. The trans-
mission systems range from low bitrate, error prone wireless systems such as 802.11
and UMTS to high bitrate, error free fiber networks [84]. This is made effective
by use of a NAL. Also, since the NAL adjusts the encoding process to fit the
transmission system, better robustness against data errors and loss is achieved,
since the error resilience tools can be customized to the transmission system.

The NAL divides the encoded data from the VCL into NAL Units (NALU) [35].
The NALUs are different for packet-based systems and byte-stream systems, where
extra header information is needed for the latter to identify the NALUs within
the stream, while this information is included in the data packet for packet-based
systems. A set of NALUs are then assembled in NAL access units, where the
decoding of a NAL access unit results in one video picture. In addition, non-VCL
NALUs are employed for more efficient transmission of infrequently changing
information needed for decoding [84].

For real-time transmission, the NALUs are put into the payload of an RTP
packet. These NALUs should not be larger than the minimum MTU size of the
transmission network, in order to avoid packet fragmentation. In this sense, each
packet contains one slice of encoded video data and can be decoded individually
[35].

3.3 Slice-based H.264/AVC Video Encoding

For a video stream transmitted over a network, the packet loss probability and
queueing delay are of utmost importance. The objective of the explicit slice-based
video encoding scheme proposed in [11] is therefore to reduce the burstiness of
H.264/AVC encoded video and thereby reduce the packet loss and packet delay.

When applying the slice-based video encoding scheme, the frames of a GOP
are decomposed into fixed size slices. A fixed pattern is then applied for the
mode type selection (I or P) on the slice level as compared to the frame level for
standard frame-based encoded video as illustrated in Figure 3.3.

The mode type selection is a property of the H.264/AVC standard, and mode
types can be selected on the macroblock level. Instead of intra coding the first
frame of each GOP as in standard frame-based video encoding shown in the upper
part of Figure 3.3, a slice of each frame is intra coded in the slice-based scheme as
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Figure 3.3: The mode type selection for the frame-based and slice-based video
encoding schemes.

shown in the lower part of the figure. Consecutive frames belonging to the same
scene will then have similar sizes, reducing the burstiness compared to frame-based
encoding where the intra coded frames are significantly larger than the predicted
frames. To prevent error propagation, a small overlap of the intra coded slices in
consecutive frames is needed for the slice-based video encoding scheme, resulting
in a slightly increased average bitrate compared to frame-based encoded video.
The overlap is made equal to the maximum length of the motion vector in vertical
direction to prevent errors from propagating upwards in the consecutive frames.
The effect of the slice overlap for error robustness is described in more details
in [11] and also investigated in more details in [79], where also the advantages
of overlap versus no-overlap are studied. As expected the overlap option is most
beneficial compared to no-overlap when the packet loss probability increases.

As explained earlier, the objective of the slice-based scheme is to reduce
the burstiness of encoded video, and hence reduce the packet loss and delay.
However, the increased bitrate for the slice-based encoded video due to the partially
overlapping I slices will influence the gain of the scheme compared to regular frame-
based encoded video. The network performance for slice-based encoded video
compared to frame-based encoded video is investigated using network simulations
in Chapter 4.

3.4 Description of the Sample Traces

The slice-based scheme was implemented in the H.264/AVC reference software
version JM 10.1 [85] as described in [11]. The scheme does not require any
modifications to the standard decoder and only the configuration of the encoder
must be changed.
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(c) Slice-based H.264/AVC
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Figure 3.4: The generated frames for the StEM clip, standard frame-based
H.264/AVC and slice-based H.264/AVC encoded video, respectively.

Throughout this work, two slice-based encoded test sequences are employed.
The clips are encoded using intra and predictive coded slices. Part of the StEM [86]
clip with frequent scene changes and large variations in the motion levels in
consecutive scenes is used as one of the test sequences. The number of encoded
bytes per frame for two sections of the video is shown in Figure 3.4.

When comparing the slice-based encoded stream and the standard frame-
based encoded stream, the intra coded frames dominate and cause burstiness
for the frame-based encoded stream while the slice-based encoded video stream
is much smoother. However, the average bitrate is higher for the latter, due to
the overlapping of the intra coded slices as explained above. The slice-based
encoded stream is dominated by large peaks in the frame sizes because of scene
changes. For the scene changes, the encoder selects intra coded mode also for
the predicted slices because of the prediction errors, resulting in a larger size (in
terms of number of bytes) for the scene change frames. These scene change frames
are present for the frame-based encoded video as well, as can be seen in Figure
3.4(a) and 3.4(b). However, they are similar in size to the I frames and therefore
more difficult to detect. The occurrence of large frames only at scene changes for
the slice-based encoded video simplifies the scene change detection for slice-based
encoded video streams compared to frame-based encoded video streams, as is
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(b) Slice-based H.264/AVC

Figure 3.5: The generated frames for the Mobile clip, standard frame-based
H.264/AVC and slice-based H.264/AVC encoded video, respectively.

Table 3.1: The encoding parameters for the StEM and Mobile clips.

Parameter StEM Mobile
GOP size 12 12
Frame rate 30 fps 15 fps
Frame size 720x576 720x576
Slice size 720x48 720x48
I slice size 720x64 720x64

Macroblock size 16 x 16 16 x 16
Maximum length of motion vector [-16;15.5],[-16;15.5] [-16;15.5],[-16;15.5]

explained in Chapter 4.
It is also obvious that the average frame size varies over consecutive scenes and

shows signs of non-stationarity. Both the scene lengths and the average bitrate are
different for the first 1000 frames compared to frames 5000-6000, with frequent
scene changes in the first part of the sequence and more infrequent scene changes
in the period between frame 5000 and 6000. Additionally, the dependence between
the size of the scene change frames and the average frame size in the consecutive
scene is visually observable.

Also, the well known “Mobile” video clip without scene changes is investigated
and the number of encoded bytes per frame for the frame-based and slice-based
streams is shown in Figure 3.5. As can be seen in Figure 3.5(b), there are no
large frames for the slice-based stream and hence no scene changes exist for the
Mobile clip. The bitrate is smooth for the slice-based stream compared to the
frame-based stream where the large intra coded frames dominate. The higher
average bitrate for the slice-based stream can also be seen in the figures.

Both of the clips are encoded with a GOP size of 12 frames while the frame
rate is 30 and 15 frames/second respectively for the StEM and Mobile clips. The
encoding parameters are summarized in Table 3.1, showing the different size of
the regular slices and the intra coded slices because of the overlap.
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3.4. Description of the Sample Traces

Table 3.2: Statistics for the frames of the slice-based encoded StEM and Mobile
clips (frame sizes in kbytes).

Sequence Sample Size Minimum Maximum Average StDev
StEM 7190 frames 0.181 50.294 8.764 7.038
Mobile 220 frames 21.210 49.970 35.869 5.800

The statistical description of the frame sizes for the test sequences is given
in Table 3.2, showing the main characteristics of the frames. The frames for the
StEM clip are more variable in the number of bytes than the frames from the
Mobile clip. This is reflected both in the minimum and maximum of the frame
sizes as well as in the standard deviation.
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Part II

Characterization of Slice-based
H.264/AVC Encoded Video

Traffic

The results in this part have been published as follows:

Astrid Undheim, Yuan Lin, and Peder J. Emstad. “Characterization of Slice-based H.264/AVC
Encoded Video Traffic.” In Proceedings of the Fourth European Conference on Universal
Multiservice Networks (ECUMN), Toulouse, France, February 2007.

Astrid Undheim and Peder J. Emstad. “Characterization of Slice-based H.264/AVC Encoded
Video Traffic Using Token Buckets.” Telecommunication Systems, Springer, 39(2), October
2008.
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Chapter 4

Traditional Characterization

In this chapter, the slice-based encoded StEM clip as described in Section 3.4 is
studied. This video clip is dominated by large frames caused by scene changes.
The characteristics of the video stream divided into scenes using a scene change
detection algorithm are then investigated, looking at the marginal distributions
and the correlations for the scenes and frame sizes. A simulation study is also
performed, to investigate the multiplexing properties and the buffer overflow
probabilities for the slice-based encoded stream compared to the frame-based
encoded stream.

The study shows that frame correlation is present only at low lags and the
periodic correlation structure seen in frame-based encoded video is mostly removed
for the stream under study. Results from simulations show that the slice-based
encoded video stream performs better than the frame-based encoded video stream
in terms of lower packet loss probabilities and lower average packet delay as long
as the buffer size is small or the link utilization is moderate.

4.1 Introduction

Video characterization has been an important topic for a long time and is an
important prerequisite for developing traffic models. Studying the statistical
properties of video traffic is especially important here, since the slice-based video
encoding scheme produces video traffic with different statistical characteristics
than regular frame-based encoded video traffic. The most important characteristics
for a video stream are the marginal distributions and the correlation functions
since they influence the performance experienced when a video stream is sent
through a network. The distribution of the scene lengths, the GOP sizes, and
the frame sizes are required. The correlation should be estimated on different
levels, the autocorrelation for the scene lengths and the frame sizes as well as the
correlation between the first frame in each scene and the ordinary frames in the
scenes are of interest. Slice-based H.264/AVC encoded video has some properties
that are different from standard frame-based H.264/AVC encoded video and this
calls for new approaches. The GOP structure is less dominant, since no entire

41



4.1. Introduction

frames are intra coded. Also, the first frame in each scene is larger than the
ordinary frames because of the prediction error as explained in Section 3.4 and
must be handled separately. For the standard frame-based encoded video, these
scene change frames are comparable in size to the I frames and are therefore not
as prominent as they are for the slice-based encoded video.

4.1.1 Related Work

Scene changes are an important part of recorded video and several works use scene
statistics to characterize the video traffic. Hence, several scene change detection
algorithms have been introduced in the literature. In [87], the scene changes
for video sequences encoded by an intrafield/interframe Differential Pulse-Code
Modulation (DPCM) coding scheme are detected by identifying frames with a
large number of bits compared to the previous and consecutive frame. However,
this algorithm is not useful for video encoded using a GOP structure, where the
large I frames will cause false positives. Therefore, the algorithm is refined in [88]
to look at the size of the I frames only and it is used for scene change detection for
MPEG-2 encoded video. Next, in [89], a similar scene change detection algorithm
based on the size of the I frames is introduced for MPEG encoded video. Here, an
increase in the I frame size over two consecutive I frames is needed to detect a
scene change. This algorithm could also be further developed to look at all frame
sizes instead of only the I frames. Finally, in [90], scene changes are detected
based on changes in the GOP size for MPEG encoded video.

The distribution of the scene lengths has also been investigated in several other
works. In [87], a large number of video clips is investigated and the scene length
distributions are found to match one of the Gamma, Weibull, or the Generalized
Pareto distributions. In [91], the scene length distribution in number of GOPs is
modeled using a Geometric distribution based on results from references therein.
Also in [88], a Geometric distribution is used for the scene lengths.

For the frame size distribution, it is usually distinguished between scene change
frames and ordinary frames for non-GOP encoded video, and between I, P, and
B frames for video encoded with a GOP structure. In [87], scene change frames
are found to be closest to the Gamma or Weibull distributions while the regular
frames in the scenes are Pareto distributed. In [89], the frame size distributions
for all frame types are found to match a Lognormal distribution for MPEG video.
In [92], both I, P, and B frames sizes as well as GOP sizes are found to match
the Gamma and Lognormal distributions. In [88], the frame size distribution for
MPEG video is modeled using a hybrid Gamma/Pareto distribution for all frame
types, the scene change frames are similar in size to the I frames and are modeled
as regular I frames. In [93] and [94], the size of the I, P, and B frames for MPEG
video is modeled using a Gamma distribution and also in [95] it is found that both
I, P, and B frames are Gamma distributed for H.264/AVC encoded video.

Scene lengths are generally believed to be uncorrelated, and independent,
identically distributed (iid) scene lengths are modeled in [87, 96]. The correlation
structure for non-GOP encoded video is studied in [87], and high correlation is
found between the scene changes frames and the consecutive frame as well as
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for the intra scene frames. For video encoded with a GOP structure, the frame
correlation shows periodic peaks caused by the I frames, and the frame correlation
is retained over scene boundaries as seen e.g., in [90,97,98].

It is widely known that bursty traffic may lead to buffer overflow and thereby
packet loss and packet delay. This is shown using simulation of an Ethernet
network in [99]. However, when a frame-based encoded stream experiences loss,
the loss probability is higher for packets from I frames than for packets from P
frames. This is obvious because of the higher number of bits for the I frames, and
is also shown in [89]. The effect of packet losses from I, P, and B frames on the
distortion is modeled in [54], with larger degradations from lost I slices than for
P and B slices. For the slice-based encoded video there are no I frames, and the
loss probability should be the same for all frames. It is therefore of great value to
study the performance of the slice-based encoded video, to compare it with the
frame-based video.

4.1.2 Chapter Outline

The rest of this chapter is organized as follows. The scene change detection for
the slice-based encoded video stream is investigated in Section 4.2, using different
algorithms from the literature. The marginal distributions for the scene length
and the frame size are investigated in Section 4.3 while the correlation functions
are investigated in Section 4.4. The simulation studies conducted to compare
the network performance of the slice-based encoded video to that of standard
frame-based encoded video are introduced in Section 4.5 and the results from
the simulations are shown in Section 4.6. Finally, some conclusions are given in
Section 4.7.

4.2 Scene Change Detection

For the StEM clip, the increased bitrate due to scene changes is well observable
by peaks in the bitrate as can be seen in Figure 4.1. The stream is dominated by
the scene properties, i.e., the bitrate is nearly constant within the scenes. Scene
statistics are therefore used to analyze and characterize the video stream. In
general, a scene is a portion of the video clip without shifts of view supplied by
editing or sudden camera movement or zooming [100]. The scenes detected from
the video trace should resemble the visually identifiable scenes. However, for video
characterization, the interest is mainly in the changes in bitrate. Hence, some real
scene changes may occur without a change in bitrate and bitrate changes may
occur without a real scene change.

For the slice-based encoded video, no frames are entirely intra coded, except
for the first frame in each sequence. This first frame must be intra coded since
there are no previous frames to make predictions from. Also, the first frame in a
scene will be large because of prediction errors when trying to predict the frame
based on the previous frame which is from another scene. This simplifies the scene
change detection, since the first frame in each scene is very large compared to the
ordinary frames.
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Figure 4.1: The frame sizes for the slice-based encoded StEM clip.

The scene change algorithms from the literature are investigated for the slice-
based stream. The method from [87] can be used directly to identify the scene
changes. This method locates frames that are large compared to the previous
and consecutive frames and is hence applicable for scene change detection for
the slice-based encoded video. When the method from [89] is applied to the
slice-based encoded video, the results are unsatisfactory because an increase in
frame size over two consecutive frames is needed to detect a scene change. For the
slice-based encoded video, a single large frame indicates a scene change and the
algorithm is unable to detect the visually observable scene changes in the video
stream. Finally, the method from [90] can be applied for the slice-based stream
without modifications. However, this method complicates the procedure since
although the GOP number with the scene change is identified, the scene change
frame is still unknown and requires further processing to locate. Because of the
shortcomings of the I frame method from [89] and the GOP method from [90],
the method from [87] is used to detect the scene changes in this chapter. Later, a
new non-parametric method for scene change detection for slice-based encoded
video is introduced in Chapter 6.

The scene changes for the slice-based encoded video are then detected by
looking at the second difference in frame sizes divided by a number of previous
frame sizes [87]:

[X(n + 1) − X(n)] − [X(n) − X(n − 1)]
(1/6)

∑n
j=n−5 X(j)

< −λ (4.1)

where X(n) is the nth framesize and λ is used as a threshold for the bitrate
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Table 4.1: The results from the scene change detection, scene lengths given in
number of frames.

Averaging level
λ Scene length 6 12 24

0.4 Sample Average 215.8 197.8 182.5
Sample Variance 67857.4 45603.6 40443.7

0.6 Sample Average 273.9 254.3 254.3
Sample Variance 96079.6 90315.7 90433.0

0.8 Sample Average 274.2 264.0 264.0
Sample Variance 96595.1 91942.6 91942.6

1.0 Sample Average 274.4 264.2 264.2
Sample Variance 96855.7 92196.2 92196.2

increase needed to have a scene change.
The algorithm performs very satisfactory for the first 1000 frames of the

sequence. However, in some other parts of the sequence, the motion is so high that
prediction errors cause highly oscillating bitrate. For these parts, the algorithm
will detect frequent scene changes that are false positives. Some constraints are
therefore put on the scene change detection algorithm, saying that a scene change
is detected only if no other scene changes were detected for the previous 12 frames.
This means that the minimum scene length is set to 13 frames. In comparison,
the minimum scene length is set to two GOPs in [89]. An additional problem
becomes apparent with very small frames, where only a small increase in bitrate
results in a scene change. The minimum scene change frame is therefore set to
the average frame size, which is equal to 8.764 kbytes.

The two parameters for the scene change detection algorithm, λ and the
averaging level, were evaluated in [87]. A λ value of 0.5 was used, and it was
argued that averaging over the previous six frames is almost identical to averaging
over 24 frames. For the slice-based stream, the algorithm is investigated for λ
values ranging from 0.4 to 1.0 and the averaging is performed over 6, 12 and 24
frames. The results from the scene change detection are shown in Table 4.1, where
the average number of frames in the resulting scenes as well as the sample variance
are shown.

The results are insensitive to the λ value and the averaging level in some parts
of the sequence, e.g., for the first 1000 frames where all scene changes are detected
regardless of the parameter setting. It can also be seen that when an averaging
over six previous frames is used, a λ value ranging from 0.6 to 1.0 gives almost
exactly the same average and variance. A λ value of 0.4 is finally chosen and
the averaging is done over 6 previous frames, based on the need to minimize the
number of false positives while still detecting the most prominent scene changes.
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4.3. Marginal Distributions
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(a) λ = 0.4, averaging 6
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(b) λ = 0.4, averaging 24

Figure 4.2: QQ-Plot of the sample scene lengths versus the Gamma distribution.

4.3 Marginal Distributions

The marginal distributions of the scene lengths and the frame sizes are investigated
next.

4.3.1 Scene Length Distribution

The scenes are identified using the algorithm from Equation 4.1 with λ = 0.4 and
the averaging is done over six frames as explained above. A Quantile-Quantile
(QQ) plot, which is a common goodness-of-fit test, is used for analyzing the
marginal distribution of the scene lengths. A QQ-plot shows the theoretical
quantiles from a distribution with mean and variance equal to the sample average
and sample variance against the samples. Distributional similarity between the
two data sets is verified when the points fall on a straight line. In Figure 4.2,
the sample scene lengths for different parameter settings are plotted against the
Gamma distribution with mean and variance equal to the sample average and
sample variance found in Table 4.1.

Since the test clip is short, the number of scene changes is small. This means
that an insufficient number of samples exists to verify any distribution. However,
the samples fall close to the straight line except for the largest samples, which
are too large compared to the theoretical quantiles. These outliers are caused by
the variations in the test stream, where most of the scene changes are frequent,
but some parts of the stream have very few scene changes. This means that
more samples are needed to verify the right tail of the distribution. The sample
distribution has a longer right tail than the Gamma distribution, which means
that the largest samples are larger than the corresponding theoretical quantiles
and an additional distribution could be used for modeling the right tail.
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(a) Sample scene change frame
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(b) Sample average frame size

Figure 4.3: QQ-Plot of the scene change frames and the average frame sizes in
each scene versus the Gamma distribution.

For the present samples, the Geometric distribution with parameter 0.05 gives
the exact same match as the Gamma distribution and could be used for modeling
the scene lengths as well. This corresponds to the results in [91], where the scene
length in number of GOPs is modeled using a Geometric distribution.

4.3.2 Frame Size Distribution

The first frame in each scene is larger than the ordinary frames because of the
prediction errors as explained earlier and is hereafter called a scene change frame.
The marginal distribution of the scene change frames can also be estimated by
the Gamma distribution and the QQ-plot is shown in Figure 4.3(a), where the
minimum sample value is subtracted from the data. Although the samples do not
match the Gamma distribution perfectly, the match is satisfactory in the right
tail. For a video traffic model, it is especially important to match the right tail
for a correct prediction of the buffer overflow probabilities.

The average frame size in each scene is calculated. The distribution of the
average frame size is investigated and the samples with the minimum sample value
subtracted are plotted against the Gamma quantiles in Figure 4.3(b). As for the
scene lengths, the largest sample deviates from the theoretical quantiles and the
right tail is heavier for the samples than for the theoretical distribution. This
could be taken into account by using a second distribution to model the right
tail. The outlier for the average frame size is caused by one particular part of the
video stream where the bitrate suddenly increases over a short period equal to one
scene, as can be seen in Figure 4.1. This part of the video stream is so different
from the rest of the stream that it is difficult to match it to any distribution.

For the ordinary frames, the histogram of the frame sizes is shown in Figure
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(b) QQ-Plot

Figure 4.4: Histogram and QQ-Plot for the ordinary frames.

4.4(a) and the QQ-Plot in Figure 4.4(b). For the slice-based encoded video, each
frame has an intra coded slice, and the distribution of the ordinary frames is
different from the Gamma distribution which was found to match the P frames
in [95]. Also the QQ-Plot shows large deviations from the straight line and then
also the Gamma distribution. The single high bitrate scene is dominating here as
well, with a local peak below 40 kbytes. In addition, there is a peak at low frame
sizes, which reflects the highly variable bitrate for the video sequence under study.
When the high and low bitrate frames are disregarded, the rest of the frames are
closer to the Gamma distribution, supporting the view that the frame sizes are
Gamma distributed for a video stream with a less variable bitrate than the stream
under study.

It is difficult to estimate the marginal distribution for both the scene change
frames and the average frame size in the scenes, due to the non-stationarity of the
stream. This is explored in Chapter 6, where the video frames are divided into
classes in order to have more stationary frame sizes inside the classes.

4.4 Sample Correlations

The sample correlations for the video stream are derived on different levels to
reflect the characteristics of the video stream. Both the Autocorrelation Functions
(ACFs) and the Correlation Functions (CFs), e.g., between the scene change frame
and the average frame size in a scene are estimated.

4.4.1 Scene Level

The ACFs for the length of the scenes as well as the size of the scene change
frames are investigated. The sample autocorrelations of an iid sequence have
the distribution N(0, 1/n), where n is the number of samples. This means that
at least 95% of the sample autocorrelation values should be within the bounds
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Figure 4.5: The ACF for the length of the scenes and the size of the scene change
frame.

±1.96/
√

n [101] for an iid sequence. This bound is used in the following to assess
if the CFs are from independent samples or not. If the correlation is mainly within
these bounds, it is regarded as a sign of independence. However, more tests are
needed to prove that the samples are indeed independent.

For the scene lengths, the ACF is well within the bounds ±1.96/
√

n for lags
> 0 as can be seen in Figure 4.5(a), which means that only negligible correlation is
detected for the number of frames in consecutive scenes. For the size of the scene
change frames, the ACF is shown in Figure 4.5(b). The size of the scene change
frames shows signs of independence as well, based on the same arguments as above.
Also, the CF between the length of the scenes and the size of the scene change
frames is investigated and it is negligible on all lags. Hence, the iid assumption
cannot be rejected for any of the scene level statistics. The marginal distributions
of the scene lengths and the size of the scene change frames found in Section 4.3.1
are then the only statistics needed for modeling the scenes when developing a
model of the video traffic.

4.4.2 GOP Level

For frame-based encoded video, the GOP correlation is dominating the ACF on the
frame level, and this is also shown for standard frame-based H.264/AVC encoded
video in [98]. For the slice-based H.264/AVC encoded video on the other hand,
the GOP structure is imperceptible as can be seen for the StEM clip in Figure 4.1.
This could also be seen in Figure 4.6, showing the ACFs for two different scenes.
There is, as was expected, no distinctive correlation with a period of 12, which
means that the GOP statistics can be omitted from the analysis.

4.4.3 Frame Level

The overall ACF at the frame level is investigated by removing the scene change
frame in each scene and looking at the ACF for the ordinary frames in each scene
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Figure 4.6: The sample ACF for all frames in two particular scenes.
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Figure 4.7: The correlation for ordinary frames.

and then averaging over the scenes, a method that was introduced in [87]. The
overall ACF is then found by letting all scenes longer than h contribute to the
autocorrelation at lag h. The ACF is shown in Figure 4.7(a) and shows that the
correlation is non-negligible at low lags, but is decreasing with increasing lags as
was expected. A 12-frame periodicity in the ACF for low lags is also present; this
is caused by some periodicity in individual scenes, but is not representative for
the whole sequence.

Second, the correlation between frames in consecutive scenes is investigated,
where correlation at lag 0 is the correlation between the ith frame in two consecutive
scenes. The overall CF is then found in the same way as for the ACF in a scene.
The CF is shown in Figure 4.7(b) and shows that there is no correlation between
frames of consecutive scenes. This indicates that the scenes are correctly identified,
since a scene change indicates a noticeable bitrate change and hence low correlation
between the frame sizes in the different scenes.

The ACF for the average frame size in consecutive scenes is shown in Figure
4.8(a). This ACF shows only negligible correlation as well. Finally, the CF for
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Figure 4.8: The ACF for the average frame size and the CF for the size of the
scene change frame and the average frame size.

the size of the scene change frame and the average frame size in each scene is
investigated. As was expected, this is non-negligible at lag 0 as can be seen in
Figure 4.8(b). This means that the average frame size in a scene is dependent
on the size of the scene change frame of the same scene, i.e., the first frame in
the scene. At lags > 0, the CF is negligible, which strengthens the view that the
scenes are independent, both with regard to the scene lengths and the size of the
frames in each scene.

Having looked at the correlations on different levels, the correlation between
the scene change frame and the average frame size in the same scene is the only
non-negligible correlation in addition to the autocorrelation for the frames in
the same scene. These correlations should be retained in a simulation model of
slice-based H.264/AVC encoded video, e.g., using an Autoregressive (AR) model
as has been done in [88] or alternatively a Gamma AR (GAR) model as in [102].

4.5 Network Simulations

Important information about a traffic stream can be found by looking at the
characteristics of the stream, e.g., the marginal distributions and the correlation
functions. However, when transmitting the stream over a network, other properties
may be more important and should be investigated for both the frame-based and
the slice-based encoded video using simulations. The Packet Loss Ratio (PLR),
the packet delay and the distribution of the losses over I and P frames are of
interest. In [89] it was shown that the loss probability is higher for I frames than
for P and B frames for the same stream. In addition, the effect of a lost packet
from an I frame can be more severe in terms of degraded quality than a lost packet
from a P frame, since the former means that the picture will not be restored until
the next GOP. This means that the performance with regard to error resilience
may be higher for a slice-based encoded stream than for a frame-based encoded
stream, even when the PLR is higher for the former. The error resilience for the
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slice-based encoded video is also studied and compared to frame-based encoded
video in [79].

The multiplexing gain for VBR video traffic is usually high and the gain for
the slice-based video encoding in comparison to the frame-based video encoding
should be studied. The multiplexing gain is defined in several different ways.
In [103], the multiplexing gain is found as the ratio of the number of VBR sources
to the number of CBR sources transmitted over the same link with the same PLR.
A different definition is given in [89], where the multiplexing gain μp is defined as
follows:

μp =
n · utilization at N = 1 and PLR = p

utilization at N = n and PLR = p
(4.2)

where n is the number of streams in the aggregated stream and the utilization is
defined as the ratio of the average bitrate of the video stream(s) to the capacity
needed on the output link to achieve the required loss ratio.

However, this last definition is non-intuitive, because increasing the utilization
for the multiplexed stream decreases the multiplexing gain, which is the opposite
of what is expected. A new definition of the multiplexing gain is then proposed as
follows:

μp =
n · capacity needed at N = 1 and PLR = p

capacity needed at N = n and PLR = p

=
utilization at N = n and PLR = p

utilization at N = 1 and PLR = p
(4.3)

These two expressions give the same results, however the former shows the
multiplexing gain in terms of reduced capacity usage for the same PLR when
sources are multiplexed. The latter expression gives a similar definition as Equation
4.2 in terms of the link utilization. The capacity needed to ensure the given loss
ratio may also be termed the effective bandwidth [104].

In [89], a fixed buffer size in bytes is used when calculating the multiplexing
gain. Here, the multiplexing gain with a constant buffer size both in size and in
terms of delay is evaluated. The latter means that the buffer size increases in
accordance with the capacity to ensure a fixed maximum buffer delay.

4.6 Results from Simulations

The simulations are performed with a trace-based simulator implemented in Demos
(Discrete Event Modelling on Simula) [105], implementing a single bottleneck link
with a drop tail queue in the sender node. The queue length and the bottleneck
capacity are varied.

4.6.1 Single Stream

The simulations investigating the PLR for a single stream are performed with two
different capacities, 2000 kbps and 4000 kbps, both with varying buffer sizes. The
average bitrate is approximately 6% higher for the slice-based encoded stream than
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Figure 4.9: The PLR from simulations with a single stream over a bottleneck
link with variable capacity and buffer size.

for the standard frame-based encoded stream. The results from the simulations
are shown in Figure 4.9.

When the link is heavy loaded, there will almost always be packets under
transmission and the PLR will be higher for the slice-based encoded video traffic
because of the higher bitrate. However, when the link is less loaded, the peaks in
the bitrate caused by the I frames for the standard frame-based encoded stream
will fill up the buffer and cause packet loss. This will be most prominent for small
buffer sizes. Therefore, the loss ratio for the standard frame-based encoded stream
will be higher than for the slice-based encoded stream for small buffer sizes, as
can be seen in Figure 4.9(b).

As mentioned earlier, the packet loss probability is different for packets be-
longing to I, P, and B frames [89]. This is so because these frames have different
sizes and when congestion occurs, packets from I frames are more likely lost due
to their larger sizes compared to B and P frames. For the slice-based encoded
stream, the bitrate is more constant inside a scene and the packet loss probability
should be similar for all packets. The scene change frames on the other hand are
larger than the ordinary frames and are most likely lost in the case of network
congestion. The PLRs for the packets from I and P frames are shown in Figure
4.10 for the single stream, indicating the same trends as in [89], with a higher loss
ratio for the I frames compared to the P frames.

When the utilization on the link is high, as can be seen in Figure 4.10(a),
the PLR for the packets from I frames is much higher than for the packets from
P frames. For a lower utilization, as is shown in Figure 4.10(b), the same is
true for low buffer sizes. This shows that for situations where loss occurs, either
because of a low link capacity or a small buffer, packets belonging to I frames
will experience a higher PLR than packets belonging to P frames. Even when the
slice-based encoded stream experiences a higher loss ratio, the performance may
be better than for the frame-based encoded stream because of the high number of
lost packets from I frames for the latter. This effect is modeled in [54], where the
loss from I, P and B slices have different impact on the distortion.
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Figure 4.10: The PLR for I and P frames for the frame-based scheme together
with the PLR for the slice-based stream.
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Figure 4.11: The average packet delay and the variance of the packet delay from
simulations with a single stream on a bottleneck link.
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The packet delays with different capacities on the link are also investigated.
The average packet delay as well as the variance when the buffer size is varied are
shown in Figure 4.11. When the capacity is low, the average delay is slightly higher
for the slice-based encoded stream, coinciding with the results from the packet loss
analysis. However, the frame-based encoded stream experiences a higher average
packet delay than the slice-based encoded stream with a capacity of 4000 kbps,
except for very low buffer sizes. The higher burstiness for the frame-based encoded
stream is most prominent when the utilization on the link is moderate, as was
also seen for the packet loss. The variance of the packet delay follows the same
trends as the average delay, with the variance slightly higher for the slice-based
encoded stream for low capacities and slightly higher for the frame-based encoded
stream for high capacities. When the buffer size is large, both for low and high
capacities, the packet loss ratio for the frame-based encoded stream is close to
zero, and the variance is higher for the slice-based encoded stream.

4.6.2 Aggregated Stream

The aggregation is performed over a single link and a total of ten identical streams
are aggregated. The aggregation method from [103] is used, producing a circular
list of the original video stream and choosing the start frame of each multiplexed
stream uniformly over the total stream length. The starting time of each stream
is also chosen uniformly over one inter frame period (33ms) to avoid synchronized
sources. The PLRs from the simulations are shown versus the utilization on the
link in Figures 4.12(a) and 4.12(b).

With a small buffer in the sender, the loss ratio for the slice-based encoded
stream is lower than for the frame-based encoded stream as long as the utilization
is kept moderate, as is seen in Figure 4.12(a). This also holds for the case with
a larger buffer as can be seen in Figure 4.12(b), where the PLR for the slice-
based encoded stream is lower than for the frame-based encoded stream when the
utilization is below 0.7-0.8. However, the difference is smaller than for the case
with a smaller buffer. When the buffer size is constant in delay as shown in Figure
4.12(c), the PLR for the single stream is lower for the slice-based stream for all
levels of utilization. However, with multiplexed streams, the PLRs are almost the
same for the slice-based and frame-based encoded video.

4.6.3 Multiplexing Gain

The multiplexing gain is obtained graphically for the aggregated streams in Figure
4.12(a)-4.12(c) and is shown in Table 4.2 for a PLR equal to 0.01. As is shown, the
gain is higher for the frame-based encoded video, with all buffer sizes. However,
the difference in percent is higher for the smallest buffer size. The multiplexing
gain is one of the advantages with VBR encoded video. The multiplexing gain is
high because of the highly variable bitrate, (see e.g., [89, 103]). The slice-based
encoding scheme removes some of the variations in the bitrate, resulting in a
lower multiplexing gain for the slice-based scheme compared to the frame-based
scheme, at least when the number of multiplexed sources is high. A high number
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Figure 4.12: The PLR from simulations with aggregated streams and different
buffer sizes.
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Table 4.2: The multiplexing gain with 10 multiplexed sources.

Slice-based Frame-based
100 kB 1000 kB 100 ms 100 kB 1000 kB 100 ms
1.582 1.147 1.680 1.670 1.156 1.857

of multiplexed streams is most common in the core network, where the capacity
is high. For the access network on the other hand, the number of multiplexed
streams will be lower and the slice-based scheme will be more favourable compared
to the frame-based scheme.

4.7 Conclusion

A video clip encoded using the slice-based video encoding scheme is characterized.
The scene changes are more dominant in the slice-based encoded stream than
in the corresponding frame-based encoded stream since there are no intra coded
frames between scene changes for the former. The slice-based encoded video is
therefore characterized mainly on the scene level. This view is defended by the
correlation analysis, showing that no dominating correlations exist on a larger
scale than in a scene, where there is non-negligible correlation between the size
of the first frame in each scene and the average frame size in the same scene.
Also, it is shown that there is non-negligible correlation for frames inside one
scene. However, there is no evidence of correlation at the GOP level and the
GOP statistics can be omitted from the study. The marginal distributions of
the scene lengths and the average frame sizes in the scenes are both found to be
close to a Gamma distribution for the stream studied. However, because of the
non-stationarity in the frame sizes, it is difficult to estimate the distributions.

The simulation results show that the slice-based stream performs better than
the frame-based stream when the utilization is low or the buffer size is small.
When looking at the PLR for packets belonging to I and P frames, it could be
argued that the performance may be better for the slice-based scheme even with
a higher loss ratio because of the high number of lost packet from I frames for the
frame-based scheme. Also the packet delay for a given link capacity is higher for
the frame-based encoded stream than for the slice-based encoded video stream
due to higher burstiness for the former. Analysis of the multiplexing gain with
ten multiplexed sources shows that the gain for the slice-based encoded video is
reduced compared to the frame-based encoded video. This is explained by less
burstiness. However, large gains are achieved by multiplexing slice-based encoded
streams as well.
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Chapter 5

Token Bucket Characterization

In this chapter, slice-based encoded video streams are characterized using the token
bucket and leaky bucket traffic models and compared to standard frame-based
encoded streams. Both lossless and loss bounded token bucket and leaky bucket
models are investigated and the high quantiles are found for the amount of loss.
It is shown that the reduced burstiness for the slice-based encoded video leads to
lower token bucket parameters than for the frame-based encoded video for the
Mobile clip without scene changes. For the StEM clip with scene changes, a larger
reduction in the token bucket parameters compared to the frame-based encoded
video is experienced when a small amount of delay or loss is allowed. Finally, an
approach to estimate the parameters for the token bucket model using simple
characteristics of the slice-based encoded StEM clip is developed.

5.1 Introduction

Traditional traffic characterization focuses on estimating specific properties of
the traffic under study, such as marginal distributions and correlations, as seen
in Chapter 4. These characteristics are often used for developing traffic models
for different purposes. Traffic models needed for resource reservation require a
bounding function for the stream under study and a different approach to the
traffic characterization is needed. The token bucket traffic model is one such
bounding function and its variant, the dual token bucket traffic model is used in
the TSpec [17] of IntServ [7] for reserving resources for a given flow. In addition,
the token bucket traffic model is employed in DiffServ [8] networks, where token
bucket constrained flows can be given absolute delay bounds. Streaming video
and video conferencing are delay critical services as shown in Section 2.2 and these
are examples of applications that will benefit from resource reservation.

The token bucket traffic model is specified using the parameters ρ and σ, where
ρ is the token generation rate and σ is the token bucket size. Tokens are put into
the token bucket at the rate ρ until it reaches the maximum size σ. A traffic
stream that is sent through a token bucket acquires a number of tokens equal to
the packet sizes of the stream. For traffic characterization, the task is to find the
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appropriate token bucket parameters (ρ, σ) such that all packets of the traffic
stream can be sent without delay.

The token bucket traffic model is used in this work for comparing the resource
reservation needs for slice-based and frame-based encoded video streams, where the
token bucket parameters are found from simulations. The StEM and Mobile video
clips described in Section 3.4 are studied. Real-time video can tolerate a certain
amount of packet loss without degradation in quality, as discussed in Section 2.2.
The token bucket parameters when fulfilling a maximum packet loss ratio for
the frame-based and slice-based encoded streams are therefore also investigated.
Additionally, a data buffer is included in the token bucket model for traffic shaping.
High quantiles for the packet loss, given the token bucket parameters, are also
investigated. Finally, statistics about the scene changes and the average frame
sizes in the scenes are used to deduce the token bucket parameters analytically for
the StEM clip.

5.1.1 Related Work

Due to the importance of the token bucket traffic model for admission control and
resource reservation in the Internet, several techniques have been introduced for
estimating the token bucket parameters analytically or experimentally. In [106],
an equivalent queueing system is used for estimating the token bucket parameters
for a voice over IP application when a stochastic model of the traffic flow exists.
Token bucket parameter estimation for VBR MPEG encoded video is performed
in [107] using a combined Markov chain and Discrete Autoregressive (DAR) model
of the video traffic, in [108] using a Switched Batch Bernoulli Process (SBBP) as a
model of the MPEG encoded video traffic, and in [109] using an analytical model
with the average data rate as an estimate of the token generation rate. In [110] it
is shown that long-range dependence affects the token bucket parameters and a
Fractional Brownian Motion (FBM) model is used for modeling the long-range
dependent traffic. For all of these methods, it is required that a stochastic model
of the traffic under study exists, or that the traffic trace is available.

5.1.2 Chapter Outline

The rest of this chapter is organized as follows. In Section 5.2, the approach to
token bucket parameter estimation using simulations is described, while the results
are shown in Section 5.3. The token bucket curves for the slice-based and frame-
based encoded streams are found through simulations and both lossless models
and models with restricted loss probability are investigated. Furthermore, the
token bucket parameters are found when the frames of the streams are reshuffled,
in order to investigate the long- and short-term correlation. In Section 5.4, the
token bucket parameters are found analytically for the slice-based encoded stream
with scene changes. Finally, some conclusions are given in Section 5.5.
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5.2 Token Bucket Parameter Estimation from Simulation

In this section, the method for estimating the token bucket parameters from
simulations is described, as well as some proposals for choosing the optimal
parameters from the token bucket curve. Two different traffic models, the token
bucket traffic model and the leaky bucket traffic model as described in Section
2.3, are used in this work. The simple token bucket traffic model causes no traffic
shaping and is therefore useful for characterizing the traffic, while the token bucket
model with loss is used for traffic shaping needed for resource reservation. The
leaky bucket has a data buffer in addition to the token bucket, thereby shaping the
traffic stream by delaying some of the packets. Both models are parameterized for
the studied slice-based and frame-based encoded video clips and lossless models and
models allowing a certain percentage of packet loss are investigated as described
next.

A property of token bucket constrained flows described in [9] can be used
to estimate the token bucket parameters for a traffic flow using simulations. A
bounding function Q(t) is defined as follows:

Q(t) = sup
s≤t

{A(s, t) − ρ(t − s)} (5.1)

when this holds, Q(t) ≤ σ if and only if the flow defined by the arrival process A
is token bucket (ρ, σ) constrained.

This means that the burst parameter σ can be calculated for a given token
generation rate by letting the flow under study, defined by the arrival process
A, be input to a virtual Single Server Queue (SSQ) system with ρ as the service
rate and an infinite buffer size. Q(t) is then the queue length at time t and the
maximum queue length throughout the simulation can be used as an estimate for
σ. The simulations are performed with different values for the rate parameter,
resulting in several sample pairs (ρ, σ).

The simulations give the curve of the token bucket parameters for the stream
under study, the optimal parameter pair however, is an open question. A starting
point, employed e.g., in [110], originally proposed in [12], is to identify a knee
point at the curve outside of which either the token generation rate or the token
bucket size increase heavily with only a small reduction of the other parameter.
The token bucket parameters should then be located in the vicinity of this knee
point.

Next, in [111], it is suggested to use the maximum allowable delay, Dmax, to
set the token bucket parameters, where σ = Dmaxρ for a LR server [71] when
the output scheduler is WF2Q+ and it is assumed that the latency parameter is
negligible.

Finally, for a GR server [73] with the allocated rate r and error term E to a
flow which is token bucket (ρ, σ)-constrained (where ρ ≤ r) it is guaranteed that
the delay of every packet of the flow is bounded by [75]:

D ≤ σ

r
+ E (5.2)
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For a FIFO scheduler, the theoretical error term E is zero [74] and a determin-
istic bound for the delay is provided for token bucket constrained flows:

D ≤ σ

r
(5.3)

The worst case delay is then given when the token generation rate is equal to the
reserved rate for the flow at the server.

The presented results give two corresponding relations for the delay bound and
the token bucket parameters, valid when the network element is specified either as
a LR or GR server and with the specified output schedulers. In the next section,
the token bucket curves found from simulations are analyzed together with the
delay curves estimated from Equation 5.3.

5.3 Results from Simulations

This section shows the results from the token bucket parameter estimation using
simulations. Both lossless and loss bounded token bucket and leaky bucket
models are investigated. The lossless token bucket model is also investigated after
reshuffling the frames of the video streams. Finally, the high quantiles for the
losses at a token bucket with given parameters are presented.

5.3.1 Lossless Token Bucket

The token bucket curves for the StEM clip and the Mobile clip found from
simulations are shown in Figure 5.1(a) and Figure 5.1(b) respectively, together
with the delay curves estimated from Equation 5.3, with r = ρ. The first 6000
frames of the StEM clip are used, to avoid the high bitrate scene described in
Chapter 4.

For the StEM video clip, a knee point is located between 4500 and 5000 kbps
both for the slice-based and the frame-based stream, suggesting this as a starting
point for the token generation rate. The token bucket size at the knee point is
around 80 kbytes. The maximum average bitrate in a scene is approximately equal
to 4000 kbps, which means that the token generation rate at the knee point is
well above the maximum average bitrate in a scene.

To fulfill an end-to-end delay requirement of 150 ms for video conferencing [31],
the network delay should be considerable lower than 150 ms, which justifies 100
ms as the delay bound. Figure 5.1(a) shows that in order to fulfill this delay
requirement, a token generation rate slightly higher than the token generation rate
at the knee point is needed for the StEM clip. The token bucket parameters for
the slice-based stream are lower than the parameters for the frame-based stream
for all token bucket pairs fulfilling this delay requirement. However, since the
token bucket traffic model gives an upper bound on the traffic in a time period, the
high bitrate scene change frames for the slice-based stream result in very similar
token bucket curves for the slice-based and frame-based streams.

For a video stream with no scene changes on the other hand, the difference
between the token bucket curves for the slice-based and frame-based streams is
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Figure 5.1: The token bucket curves together with the delay curves.

63



5.3. Results from Simulations

much larger, in favor of the slice-based scheme. This is illustrated in Figure 5.1(b),
where the token bucket curves for the Mobile clip, without scene changes, are
shown. As can be seen, the token bucket sizes for the slice-based stream for token
generation rates higher than at the knee point are now significantly lower than
those for the frame-based stream. For very low token generation rates however,
the higher average bitrate of the slice-based stream implies that a larger token
bucket size is needed than for the frame-based stream.

For the Mobile video clip, the knee point is located around 5000 kbps both
for the frame-based and the slice-based streams. The average bitrate for the
slice-based stream is 4300 kbps, which is again lower than the token generation
rate at the knee point. To satisfy the delay constraint of 100 ms, a token generation
rate slightly higher than the rate at the knee point is needed for the slice-based
stream, while a token generation rate much higher than the rate at the knee point
is needed for the frame-based stream.

5.3.2 Lossless Leaky Bucket

With a data buffer introduced, the video streams are smoothed at the token bucket,
delaying those packets that arrive at an empty token bucket as shown in Section
2.3.2. The number of packets delayed in the data buffer as well as the average
and sample variance of the delay experienced by these packets are studied. The
results from the simulations with variable token generation rate and token bucket
size for the frame-based and slice-based encoded streams, StEM and Mobile clips,
are found in Table 5.1.

The results for the StEM clip show that because of the burstiness of the streams,
introducing only a very small delay at the token bucket can significantly reduce the
token bucket size. The total number of packets delayed for the slice-based stream
is lower than for the frame-based stream because of the lower burstiness for the
former, where the scene change frames are the main cause of burstiness. Without
scene changes, as for the Mobile clip, the difference between the slice-based and
frame-based streams is even larger and with a token bucket size of 40 kbytes, only
a very few packets of the slice-based stream are delayed in the data buffer for the
studied token generation rates.

The total end-to-end delay bounds for the video streams will be the same with
the added data buffer, since the size of the data buffer and hence the maximum
delay is equal to the reduction in the token bucket size. This holds since the loss
probability at a leaky bucket is dependent on the token bucket size and the data
buffer size only through their sum [76]. A smaller token bucket size then leads to
a lower delay bound through the network, but with an added delay from the data
buffer.

5.3.3 Loss Bounded Token Bucket

Real-time video traffic can tolerate a certain amount of packet loss without
noticeable degradations in quality, see e.g., [31,67] and the discussion in Section 2.2.
For resource reservation purposes, a token bucket model satisfying a predetermined
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Table 5.1: Statistics for the data buffer.

Rate ρ Size σ # delayed Average Max Variance
[kbps] [kbytes] packets delay [s] delay [s] delay

St
E

M Fr
am

e-
ba

se
d 5000

20 2581 0.0154 0.0957 1.27·10−4

30 683 0.0120 0.0791 1.27·10−4

40 67 0.0213 0.0634 3.48·10−4

6000
20 2039 0.0126 0.0627 6.90·10−5

30 579 0.0088 0.0489 4.83·10−5

40 51 0.0114 0.0358 9.78·10−5

Sl
ic

e-
ba

se
d 5000

20 614 0.0196 0.0985 2.80·10−4

30 207 0.0172 0.0795 3.35·10−4

40 50 0.0276 0.0623 3.32·10−4

6000
20 137 0.0198 0.0615 2.83·10−4

30 55 0.0215 0.0472 1.75·10−4

40 32 0.0154 0.0309 6.97·10−5

M
ob

ile Fr
am

e-
ba

se
d 6000

20 2318 0.0343 0.1035 7.47·10−4

40 998 0.0325 0.0762 3.33·10−4

60 460 0.0202 0.0434 1.27·10−4

8000
20 1965 0.0237 0.0757 3.99·10−4

40 723 0.0245 0.0521 1.90·10−4

60 342 0.0165 0.0306 5.54·10−5

Sl
ic

e-
ba

se
d 6000

20 1925 0.0133 0.0372 4.54·10−5

40 21 0.0041 0.0096 4.84·10−6

60 0 - - -

8000
20 1840 0.0097 0.0269 2.36·10−5

40 8 0.0035 0.0053 1.58·10−6

60 0 - - -

ratio of lost packets is therefore of great value, reducing the resource reservation
needs for a bursty stream. The simulation results for the cases with 0.5, 1, and
2% packet loss are shown in Figure 5.2(a) and 5.2(b) for the StEM clip and the
Mobile clip, respectively. The token bucket parameters are found by simulating a
number of token bucket sizes for each token generation rate and finding the lowest
token bucket size that provide the required bound on the loss ratio.

For the StEM clip, the slice-based encoded video stream performs significantly
better than the frame-based encoded stream for all packet loss ratios. For the
highest packet loss ratio the token bucket size is almost twice as large for the
frame-based stream as for the slice-based stream for token generation rates higher
than at the knee point. The slice-based encoded stream has very few large frames,
which is clearly appreciated when a small amount of packet loss is allowed. For
the Mobile clip, the reduction in the token bucket parameters for the slice-based
stream under the different packet loss ratios is lower compared to the no-loss case
(see Figure 5.1(b)) than for the StEM clip because of the frequent scene change
frames for the latter. However, the token bucket sizes for the slice-based stream
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Figure 5.2: The token bucket curves with packet loss ratio 0.5, 1, and 2%.
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are still significantly lower than for the frame-based stream for the same token
generation rates, which is favorable when reserving resources.

5.3.4 Loss Bounded Leaky Bucket

Finally, the token bucket parameters are investigated for a loss bounded leaky
bucket, hence introducing both delay and loss. The results from the simulations
with a data buffer of 10 ms and 0.5, 1 and 2% loss are shown in Figure 5.3(a)
and 5.3(b) for the StEM clip and the Mobile clip, respectively. The same method
as for the loss bounded token bucket is applied for finding the minimum token
bucket size for each token generation rate.

The figures show that by introducing a data buffer with 10 ms delay at the token
bucket and allowing a small amount of packet loss, the token bucket parameters
are significantly reduced. For the StEM clip, the token bucket size is reduced from
approximately 60 kbytes for the simple token bucket to approximately 15 kbytes
for the loss bounded leaky bucket for a token generation rate of 5000 kbps and a
PLR of 2%, while for the Mobile clip a reduction from 88 kbytes to approximately
30 kbytes is experienced for the same token generation rate and PLR.

5.3.5 Token Bucket Curves after Reshuffling

By removing the large intra coded frames for the slice-based encoded video, the
correlation between frames of different scenes is reduced. In Chapter 4, only
negligible correlation between the scenes is detected for the slice-based encoded
StEM clip. For the frame-based stream on the other hand, the lag-12 correlation
will remain positive and high across scene boundaries because of the large intra
coded frames as shown in [90,97,98].

The effect of long-range dependence on the token bucket curve has previously
been investigated, using reshuffling of the video stream on different time scales [110],
not taking the scenes into account. Investigating the token bucket curves after
reshuffling the frames of the StEM clip internally in the scenes as well as reshuffling
the scenes, is of interest. The former reveals the effect of short-term correlation,
while the latter shows the long-term correlation over the scenes. This analysis is
interesting in order to see if there is differences in the correlation for the slice-based
and frame-based encoded video streams which affect the token bucket curves in
different ways.

The token bucket curves for the StEM clip after reshuffling are shown in Figure
5.4. Different random seeds are employed for the reshuffling, with similar results,
hence only one of the result sets is presented here. The token bucket curve for
the externally reshuffled stream is identical to the unshuffled stream both for the
slice-based and frame-based encoded streams, except for low token generation rates
where the token bucket size is so high that correlation between scenes influence the
token bucket parameters. The internal reshuffled stream has lower token bucket
parameters than the unshuffled stream for the slice-based stream, but slightly
higher token bucket sizes for high token generation rates for the frame-based
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Figure 5.3: The token bucket curves with 10 ms data buffer and packet loss
ratios 0.5, 1, and 2%.
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Figure 5.4: The token bucket curves with reshuffling of the scenes (external),
the frames inside the scenes (internal), and all frames (total) respectively.

stream. This indicates correlation between the frames in each scene, while the
correlation between frames in different scenes is minimal. Furthermore, the internal
reshuffled stream is identical to the total reshuffled stream for token generation
rates above 4000 kbps and identical to the original stream for token generation
rates lower than 3000 kbps for the slice-based stream. The token bucket sizes
in these bounding points correspond to the size of the largest frame and to the
length of two frame periods, respectively. For the slice-based stream, the internal
reshuffled version is close to the unshuffled stream because the correlation is high
inside a scene. For the frame-based stream, internal reshuffling may put two or
more intra coded frames closer together, which causes higher token bucket sizes
for the same token generation rates for the internal reshuffled stream compared to
the unshuffled stream.

Since the token bucket curves for the regular stream and the external reshuffled
stream are the same for the StEM clip, except for very low token generation rates,
the scenes can be looked at independently when determining the token bucket
parameters. This is exploited for the analytical token bucket estimation in Section
5.4.

For the Mobile clip there are no scene changes and only total reshuffling is
performed. The results are shown in Figure 5.5. Similar results as for the StEM
clip are observed, where the reshuffled stream has higher token bucket sizes than
the unshuffled stream for high token generation rates for the frame-based stream.
For the slice-based stream the curves are the same for the reshuffled and the
unshuffled version except for low token generation rates.

Test of Long-Range Dependence

Long-Range Dependence (LRD) indicates the degree to which an incident in a
time series is dependent on an incident far away in time, see e.g., [112]. A common
definition is that the ACF sums to infinity for a long-range dependent time series.
The long-range dependence may be seen in comparison to the effect of reshuffling
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Figure 5.5: The token bucket curves for the Mobile clip after total reshuffling.

the frames. The Hurst parameter H (1/2 < H < 1) estimates the degree of
long-range dependence for a time series, where ρ(h) = c · h2(H−1) for a constant
c > 0 and a large h [112]. A value close to 0.5 indicates short-range dependence
and a value close to 1 indicates long-range dependence. The Hurst parameters
for the different reshuffled streams as well as the original streams are estimated
using the method from [113], assuming that the processes are exactly second-order
self-similar:

Ĥn =
1
2
[1 + log2(1 + ρ̂n(1))] (5.4)

where ρ̂n is the sample ACF for the stream.
When H is unknown, as in our case, the 95% confidence interval centered

around Ĥn can be simply estimated as [113]:

wn =
5√
n

(5.5)

where n is the number of samples.
The results in Table 5.2 show that the Hurst parameters are almost identical

for the original stream and the externally reshuffled stream for both the slice-based
and frame-based streams for the StEM clip. This is in agreement with the token
bucket curves, which are also very close for the two streams. The internal reshuffled
version for the slice-based stream has a lower Hurst parameter, showing less long-
range dependence, while the total reshuffled stream has a Hurst parameter around
0.5, which reflects the short-range dependence of the totally randomized stream.
However, the assumption that the processes are exactly second-order self-similar
is not checked and the Hurst parameters should only be used to compare the
reshuffled streams with the original stream.

70



Chapter 5. Token Bucket Characterization

Table 5.2: The Hurst parameter for the different streams.

Stream ρ̂n(1) Ĥn 95% CI

St
E

M

S
li
ce

Regular 0.8725 0.9525 [0.8879, 1.0170]
External reshuflling 0.8738 0.9530 [0.8884, 1.0175]
Internal reshuffling 0.6026 0.8402 [0.7757, 0.9048]
Total reshuffling -0.0213 0.4845 [0.4199, 0.5490]

F
ra

m
e

Regular 0.1942 0.6280 [0.6926, 0.5635]
External reshuflling 0.1958 0.6290 [0.5645, 0.6936]
Internal reshuffling 0.1936 0.6277 [0.5631, 0.6922]
Total reshuffling -0.0243 0.4823 [0.4177, 0.5468]

M
ob

ile S
li
ce Regular 0.8866 0.9579 [0.6200, 1.2958]

Total reshuffling -0.1013 0.4230 [0.0851, 0.7608]

F
ra

m
e Regular -0.0805 0.4394 [0.1016, 0.7773]

Total reshuffling -0.0205 0.4850 [0.1472, 0.8229]

5.3.6 High Quantiles for the Packet Loss

The high quantiles for the loss at the token bucket give the upper bounds for
the amount of loss that can occur with a given probability. To estimate the high
quantiles for the packet loss at the token bucket, the token bucket must be small
enough and the token generation rate must be high enough to let the token bucket
always be full at the arrival of a new video frame, in order to provide independent
losses. This means that the token bucket should be filled up in a time period
equal to a frame period minus the length of the maximum frame size, smax, with
a given token generation rate. The maximum token bucket size is then calculated
as follows:

σmax ≤ ρ ·
( 1

f
− smax · 8

c

)
(5.6)

where f is the number of frames per second and c is the capacity on the incoming
link. For all token buckets smaller than this maximum, the number of lost packets
from a frame is only depending on the size of the frame and not the token bucket
content at arrival.

The high quantiles of the packet loss for given token bucket parameters are of
interest. The high quantiles for the specific token generation rate of 5000 kbps
are investigated, giving a maximum token bucket size of 18.8 kbytes when c is
100 Mbps, smax is 40.385 kbytes and f is 30. Two different token bucket sizes,
14 and 16 kbytes are used, since these correspond to approximately 2 and 1%
packet loss respectively for the slice-based encoded StEM clip as is shown in Figure
5.2(a). The loss samples, giving the amount of loss per frame, are then found from
simulations.

The (1-p)th quantile for the packet loss is estimated using the Weissman’s
estimator [114]:

xw
p = Y(n−k0)

( k0 + 1
(n + 1)p

)1/α̂

(5.7)
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Figure 5.6: The extremal index estimation by blocks and runs estimates.

where Y(1) ≤ Y(2) ≤ ... ≤ Y(n) are the order statistics of the packet losses, Y1, ..., Yn

and α̂ is an estimate of the tail index α. α = 1/γ, where γ defines the shape of
the tail, and α is found e.g., using Hill’s Estimator [115]:

α̂H =
( 1

k0

k0∑
i=1

lnY(n−i+1) − lnY(n−k0)

)−1

(5.8)

where the smoothing parameter k0 is found using the bootstrap method as de-
scribed in in more details in Chapter 6. The bootstrap method produces resamples
of the initial data set and chooses the k0 that gives the minimum Mean Squared
Error (MSE).

The assumptions for using the Weissman’s estimator are that the underlying
data are stationary and independent, the latter checked by the extremal index. In
addition, the data should have a positive tail index.

The extremal index is estimated using the blocks or runs estimators, also
described in Chapter 6, where the sample is divided into fixed size blocks. The
inverse extremal index then denotes the number of exceedances per cluster, where
a cluster is a block with at least one exceedance over a given threshold. The
extremal index should be close to 1 to assume asymptotic independence. The
block and runs estimators for a fixed block size, k and variable threshold are
shown in Figure 5.6. For both buffer sizes, the extremal index is close to 1 for
high thresholds. This information means that independence or weak-dependence
of the losses can be assumed.

The Hill’s estimates, which are higher than 1 for both buffer sizes, are shown in
Table 5.3. Hence, both requirements for the Weissman’s estimator are fulfilled and
the estimator is used for estimating the high quantiles. The results are shown in
Table 5.3. Loss above the high quantiles will only occur with a very low probability.
For the token bucket size of 14 kbytes, the amount of loss from one frame will be
within 42.049 kbytes with 99% probability.
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Table 5.3: High quantiles for the losses.

Token Bucket α̂H 99% 99.9%
14 kbytes 1.330 42.049 kbytes 237.478 kbytes
16 kbytes 1.381 43.202 kbytes 228.888 kbytes

5.4 Analytical Estimation of the Token Bucket

Parameters

In the previous section it was shown that simulations provide a straightforward
method for deciding the token bucket parameters for a video stream. However,
the trace of the video stream under study must be available for analysis. Also,
several simulation runs are needed to find the token bucket curve. Estimating the
token bucket parameters based only on some simple characteristics of the video
stream may therefore be of great value. The StEM clip is investigated since the
Mobile clip only has one scene.

As seen from the simulation results, the token generation rate should be higher
than the maximum average bitrate in the scenes to fulfill the delay requirements
and only this part of the token bucket curve is investigated. The analysis is divided
into two different cases.

Case 1: Minimum Token Bucket Size.

The minimum token bucket size is determined by the number of tokens needed
to transmit a maximum sized frame, which is the maximum sized scene change
frame, smax. The token bucket will be empty at the departure of the last packet
from the frame, which happens a time ts after the arrival of the first packet of the
frame at the token bucket. Time ts is then given by:

ts =
smax · 8

c
(5.9)

where c [bps] is the capacity on the incoming link to the token bucket.
Next, the token generation rate must be sufficiently high so that enough tokens

are generated for frames arriving after the maximum sized scene change frame to
be transmitted without loss. The maximum size of the frame arriving after a scene
change frame is given by the maximum sized ordinary frame, omax. As was found
in Chapter 4, the correlation is high between the size of the scene change frame
and the size of the consecutive frames and estimating the consecutive frame by the
maximum size of an ordinary frame is reasonable. The time available to generate
tokens for the maximum sized ordinary frame arriving after the maximum sized
scene change frame, tmin, is then:

tmin =
1
f
− ts (5.10)

where f is the number of frames per second, which is 30 for the stream under
study.
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Figure 5.7: The time periods needed for Case 1.

The time from the arrival of the first packet of the maximum sized ordinary
frame until the arrival of the last packet of the frame for generating tokens has
not been included. This time is denoted as to, and is defined similarly to ts:

to =
omax · 8

c
(5.11)

These time periods are shown in Figure 5.7.
The minimum number of tokens that should be generated in the time period

tmin is then given by:

nmin = omax · 8 − (to · ρmin) (5.12)

where ρmin is the minimum token generation rate.
From these equations, the minimum token generation rate can be calculated

as:
ρmin =

nmin

tmin
(5.13)

And with the minimum token generation rate ρmin, the minimum token bucket
size is given by:

σmin = smax · 8 − (ts · ρmin) (5.14)

where the number of tokens generated from the arrival of the first packet to the
arrival of the last packet is subtracted from the maximum scene change frame to
find the minimum token bucket size.

Case 2: Variable Token Bucket Size.

For a token bucket size larger than the minimum size, the size of the token bucket
will again be decided by the rate needed for the token bucket to be full enough
to transmit the number of consecutive large frames arriving a specific number of
frame periods after the scene change frame, or at other periods in a scene. It is
not enough to look at one maximum sized ordinary frame as for Case 1, since
the maximum sized scene change frame will now leave behind a non-empty token
bucket. The token generation rate needed for generating enough tokens for the
first maximum sized ordinary frame is then lower than the token generation rate
needed for the second maximum sized ordinary frame. The number of maximum
sized ordinary frames taken into account is decided by the maximum number
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Figure 5.8: The time periods needed for Case 2.

of consecutive frames larger than the number of tokens generated in the same
interval.

With a token generation rate higher than the maximum average bitrate in
a scene, the token bucket is always full when a scene change frame arrives and
a number of tokens are still present in the token bucket after the transmission
of the scene change frame. The amount of tokens in the token bucket after the
departure of the last packet of the scene change frame is then given by σ − j(ρ)
for the token generation rate ρ where σ is the token bucket size and j(ρ) is the
number of tokens required to transmit a maximum sized scene change frame when
the token generation rate is ρ.

Now, tmin(k) is the time available to generate tokens for k maximum sized
ordinary frames arriving after the maximum sized scene change frame, given by:

tmin(k) =
k

f
− ts (5.15)

This time period for k = 2 is shown in Figure 5.8 together with the time periods
ts and to.

The minimum number of tokens that should be generated in the time period
tmin(k) is then given by:

n = k · omax · 8 − to · ρ − (σ − j(ρ)) (5.16)

and the token generation rate for a given token bucket size is then given by:

ρ =
n

tmin(k)
(5.17)

for a token bucket size σ, where j(ρ) is given by:

j(ρ) = smax · 8 − (ts · ρ) (5.18)

The parameters for the slice-based video used to calculate the upper bound of
the token bucket parameter curve are shown in Table 5.4.

The analytical curve found from these calculations is shown in Figure 5.9(a),
together with the token bucket curve from simulations. As can be seen from the
figure, when the token generation rate is close to the maximum average bitrate
in a scene, the number of consecutive frames larger than the number of tokens
generated in the same interval increases. This is what causes the knee point in
the token bucket curve.
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Table 5.4: Parameters for the slice-based video stream.

Parameter Value
smax 40385 bytes
omax 38930 bytes
fmax 16638 bytes

f 30 fps
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Figure 5.9: The token bucket parameters found from analytical estimation.

In Equation 5.16, it is assumed that the size of all large frames is equal to the
size of the maximum sized ordinary frame. This means that the token bucket size
will be overestimated when the token generation rate is decreased, as can be seen
in Figure 5.9(a). As a second approach, it is assumed that the size of the k large
frames is lowered in correspondence to the lower token generation rate. Hence, if
ten frames are larger than the token generation rate at 5000 kbps, and 15 frames
are larger at 4500 kbps, these five frames are set to 5000 kbps. The analytical
curve from this calculation is plotted in Figure 5.9(b) together with the curve
from simulations. The analytical curve gives an upper bound for the token bucket
curve derived by simulations for all token bucket pairs with a token generation
rate higher than the maximum average bitrate in a scene.

5.5 Conclusion

Token bucket traffic models for slice-based and frame-based encoded video streams
are investigated through simulations and it is found that a high token generation
rate is needed to fulfill the strict delay requirements imposed on real-time video
traffic. Two video clips, the StEM clip and the Mobile clip, are studied. The StEM
clip has frequent scene changes, resulting in large frames at the scene boundaries.
For this stream, the token bucket curves are therefore almost identical for the
slice-based and frame-based streams. However, for the Mobile clip without scene
changes, the token bucket parameters are significantly lower for the slice-based
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stream than for the frame-based stream. Hence, less resources need to be reserved
for the slice-based stream than for the frame-based stream for the same delay
guarantees. When a small amount of loss and/or delay is allowed, the token
bucket parameters are significantly reduced for all of the streams, especially for
the slice-based streams. Hence, the resource reservation needs are lowered and
the utilization and maximum delay in the network is increased and decreased
respectively. The high quantiles are estimated for the token bucket traffic model
with given token bucket parameters. The high quantiles give valuable insight into
the statistical loss guarantees.

The long-term correlation of the slice-based and frame-based streams are
studied by reshuffling the frames of the streams and it is shown that only correlation
inside the scenes affect the token bucket parameters, except for very low token
generation rates. This means that the correlation between the scenes is small
since it does not affect the token bucket curve.

Finally, the token bucket parameters are also investigated analytically for the
slice-based encoded StEM video clip, with very satisfactory agreement for all
token generation rates higher than at the knee point. This method requires only
knowledge of the scene changes and the maximum number of consecutive large
frames.

77





Part III

Non-parametric Analysis of

Slice-based H.264/AVC Encoded

Video Traffic

The results in this part have been published as follows:

Natalia Markovich, Astrid Undheim, and Peder J. Emstad. “Slice-based VBR Video Traffic-
Estimation of Link Loss by Exceedance.” In Proceedings of the 4th International Telecommu-
nication Networking Workshop on QoS in Multiservice IP Networks (QoS-IP), Venice, Italy,
February 2008.

Natalia Markovich, Astrid Undheim, and Peder J. Emstad. “Classification of Slice-based VBR
Video Traffic and Estimation of Link Loss by Exceedance.” Computer Networks, Elsevier, 53(7),
May 2009.
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Chapter 6

Classification of Slice-based

Encoded Video Traffic

In this chapter, the slice-based encoded StEM clip as described in Section 3.4, is
further studied. Due to the high variability, non-stationarity, and non-homogeneity
in the underlying video data as identified in Chapter 4, the video trace is divided
into sections that are classified according to their average frame size. A new
approach to scene change detection is then developed, using the empirical quantiles
of frame sizes within the classes. The dependence and distribution structure of
the scenes within the obtained classes are investigated.

6.1 Introduction

Video traffic is in general non-stationary and non-homogeneous. This causes
problems when developing models for the video traffic, and also when trying to
apply known estimation methods for the analysis of the video data. Also the
sequence of frame sizes from the StEM clip is non-homogeneous and non-stationary.
As observed in Section 4.3, it is difficult to estimate the distribution functions of
the frames because of the non-stationarity. Besides, due to the specific slice-based
encoding scheme, a special kind of dependence among the frame sizes is observed
in Section 4.4, different from regular frame-based encoded video where the GOP
structure causes a periodic correlation structure. Hence, in the following, the
sequence of frame sizes is divided into sections, which are classified according to the
average frame size. This is done in order to obtain classes where the distribution
and dependence structures are stationary.

In order to have homogeneous groups of frames and also to identify the large
scene change frames, the entire video trace was divided into scenes in Section 4.2.
When the classes are known, the scenes can be identified using a simple quantile
estimation method, without any need for parameterization.

The dependence structure for scenes within the classes is estimated using the
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classical dependence measures like the ACF and Ljung-Box test, while the cross
correlation between scene lengths and scene change frames is estimated using the
Kendall’s τ and Spearman’s ρ, in addition to linear correlation. The long-range
dependence of scenes within the classes is also analyzed and quantified, using
the Hurst parameter. In addition, the extremal index is calculated for the entire
frames and the classes. The extremal index shows the asymptotical dependence
in the time series [115–118] and is also employed for estimating the average loss
over a threshold for the considered video stream in Chapter 7.

The classes obtained are also checked by the mean excess function and the tail
index to find the type of distribution within each class. The entire trace contains
a mixture of light- and heavy-tailed distributed frame sizes. A heavy tail means
that the tail of the distribution goes to zero at infinity with a slower rate than the
exponential one [119] and some moments of the distribution may not exist. The
lack of the second or even the first moment implies that it is impossible to use the
sample average and the sample variance to estimate them. The number of finite
moments can be identified by the tail index, which reflects the shape of the tail of
the distribution.

The proposed classification is useful when trying to specify a bounding function
for the video stream, e.g., a token bucket specification as in Chapter 5, where
different bounding functions can be specified for the different classes. Also, for
video modeling the classes are useful and different models, e.g., Autoregressive
Moving Average (ARMA) models or Gaussian models as in Chapter 8, can be
specified for each class in case the whole video trace cannot be modeled by a single
model. The classes can also be mapped to states in a Markov chain for modeling
of the video traffic.

6.1.1 Related Work

The classification of video frames is an essential step for developing a Markov
model for video traffic with variations in the bitrate. Each class then maps to
a state in the Markov chain. This is investigated in [90], where MPEG encoded
video is classified both on the GOP level and the scene level. Scenes are classified
by the average GOP size, and the GOPs in each scene class are classified by the
average frame size. A nested Markov chain is then developed for generation of
synthetic video traffic.

Long-range dependence in VBR video traffic is extensively analyzed in [120],
and a large number of video clips are used to prove the existence of LRDs in VBR
video data. The confidence intervals for the Hurst parameter are above 0.5 for
all video clips. Since then, the Hurst parameter has been estimated for a large
number of video traces in different papers. MPEG-1 encoded video traces are
studied in [92], and the Hurst parameter is estimated using R/S plots. A total
number of 15 traces are analyzed, and the Hurst parameter is above 0.5 for all
traces and above 0.8 for 11 of the traces, clearly indicating LRD for the traces
under study. Also in [97], the Hurst parameter for the frame sizes of a long video
clip is estimated using the R/S method, and a value of 0.995508 is found.
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Long-Range Dependent (LRD) input traffic is shown to have a significant effect
on the buffer overflow probability in [121]. For real-time traffic transmitted over a
network with small buffers, it is found that the LRD does not have a large effect
on the buffer overflow [122]. In [96], it is found that LRD traffic leads to higher
buffer overflow probabilities compared to Short-Range Dependent (SRD) traffic
when the buffer size is large. For small buffer sizes, the correlation persistence has
less effect on the buffer overflow probabilities, in correspondence to [122].

6.1.2 Chapter Outline

The rest of this chapter is organized as follows. The classification of the video
frames and a new procedure for the scene change detection are described in Section
6.2. The obtained classes are checked for dependence in Section 6.3. Estimation
of the mean excess function and the tail index for the classes is considered in
Section 6.4, giving information about the frame size distributions. Estimation of
the extremal index is performed and subsequent classification using the extremal
index is discussed in Section 6.5. Finally, the chapter is concluded in Section 6.6.

6.2 Scene Change Detection

In this section, the slice-based encoded StEM video trace is divided into sections
of video frames which are classified by means of the average frame sizes. Next,
a new scene change detection method is proposed, using the empirical quantiles
within the classes. The short- and long-range dependence of the resulting scenes
are investigated.

6.2.1 Classification of the Video Frames

Part of the StEM [86] clip, as presented in Section 3.4, with frequent scene changes
and large variations in the motion levels in consecutive scenes is used as a test
sequence. In Figure 6.1, the frame sizes of the trace are shown together with the
thresholds 10.925 kbytes, 21.278 kbytes and 38.802 kbytes corresponding to the
80%, 95% and 99% empirical quantiles of the frame sizes, and the threshold 8.764
kbytes equal to the average frame size.

From the trace, it can be visually observed that the video trace can be divided
into sections and the sections can be classified by the average frame size, giving
four classes. Separating the frames into more than these four classes is difficult
because there will not be enough observations for each class. The statistics for the
classes and the entire trace are shown in Table 6.1. The upper and lower bounds
of the classes are indicated by the frame numbers.

6.2.2 Definition of Scenes

The division of the highly variable StEM clip into scenes was motivated in Chapter
4. For the analysis in this chapter it is also important to identify scenes as
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Figure 6.1: The frame sizes of the slice-based encoded video stream together
with the average frame size 8.764 kbytes and the 80%, 95% and 99% empirical
quantiles.

Table 6.1: Description of the video traffic data (frame size in kbytes).

Class Frame number Samples Min Max Average StDev

All [0, 7198] 7198 0.181 50.294 8.764 7.038
Class 1 [0, 4000] ∪ [6461, 7198] 4738 0.181 38.930 8.680 4.167
Class 2 [4001, 6039] 2039 0.214 13.949 4.789 2.276
Class 3 [6040, 6210] ∪ [6335, 6460] 297 8.226 50.294 32.561 9.006
Class 4 [6211, 6334] 124 2.175 44.143 20.339 13.572

independent blocks of data in order to estimate the extremal index in Section 6.5
and afterwards the average loss per cluster in Chapter 7.

The scene change detection for the slice-based encoded video traffic is com-
pletely different to that for the frame-based encoded video traffic. In Chapter 4,
the algorithm for scene change detection proposed in [87] was used, with good
results. However, using this algorithm requires parameter selection in order to
work with the underlying data.

Here, an additional approach to the scene change detection is proposed, namely
to use the quantiles of the frame sizes to identify the scene change frames. Because
of the different average frame size and sample variance of the classes, the quantiles
are investigated for the classes separately. The frame sizes in the different classes
are shown together with the 80%, 95%, and 99% empirical quantiles in Figure
6.2. The empirical quantile xp of level (1 − p) · 100%, p ∈ (0, 1), is determined
by means of the empirical distribution function Fn(x) = (1/n)

∑n
i=1 1(x ≥ Xi)
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(c) Class 3
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Figure 6.2: The 80%, 95%, and 99% empirical quantiles for the separate classes.

of frame sizes in such a way that Fn(xp) = (1 − p). Here 1(A) is an indicator
function of the event A.

As can be seen from the figures, occasionally there will be bursts of frames
higher than the quantiles. In this case, the first frame in the burst will be chosen
as the scene change frame. 13 frames is the minimum scene length as for the
approach in Chapter 4. From the figures, it can be observed that very few scene
changes are detected by the 99% quantiles. At the same time, the estimation of the
extremal index in Section 6.5 requires a sufficiently large number of independent
scenes. Hence, in the rest of this work the 95% and 80% quantiles will be used.

The sample average and sample variance of the scene lengths and sizes of the
scene change frames from the quantile approach for the 80% and 95% quantiles
are shown in Table 6.2 together with the results from the scene change detection
method from Chapter 4 with λ = 0.4 (note that the scene lengths are given in
terms of number of frames in Chapter 4). Statistics for the entire trace and the
classes are shown. Class 3 and 4 have too few scenes to make any statistics for
the original method and the 95% quantile method. Class 3 has rather constant
bitrate apart from the frame numbers exceeding 200, while Class 4 is short and
has a periodic structure of the frame sizes with high variability as can be seen in
Figure 6.2.

The new quantile method for scene change detection has some important
advantages. First, it does not require the selection of any parameters and selects
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Table 6.2: Scene statistics for the classes.
Class Method Number Scene Lengths Scene Change Frames

of Scenes (in Mbytes) (in kbytes)
Mean Variance Mean Variance

All
80% Quantile 190 0.332 0.173 14.545 84.122
95% Quantile 73 0.864 1.160 19.473 131.855

Original 33 1.912 4.372 18.761 115.690

Class 1
80% Quantile 121 0.340 0.179 14.241 27.012
95% Quantile 39 1.055 1.618 21.306 50.593

Original 27 1.774 2.568 19.466 108.440

Class 2
80% Quantile 51 0.191 0.071 7.408 1.146
95% Quantile 24 1.197 15.450 8.662 3.916

Original 6 1.628 3.411 8.446 169.351

Class 3 80% Quantile 13 0.744 0.350 37.342 77.427

Class 4 80% Quantile 5 0.504 0.020 35.294 40.171

the scene change frames from the distribution of the frame size only. Second, the
quantile method provides a larger number of scenes than the original method,
which is advantageous when estimating the extremal index. In the next section,
the scenes from the 80% quantile method are checked for dependence.

6.3 Test of the Dependence of Scenes

The scenes obtained using both scene change detection methods are checked for
dependence, first using regular short-range dependence measures and next using
long-range dependence measures.

6.3.1 Short-Range Dependence

The sample ACFs for the scene lengths and the size of the scene change frames are
shown in Figures 6.3-6.5 for the original and the quantile scene change detection
methods. For the latter method, the 80% quantiles in the respective classes are
employed to find the scene changes. Class 3 and 4 are omitted because of the low
number of scenes.

Since all ACFs for the classes are located inside the 95% confidence interval
with the bounds ±1.96/

√
n, it can be assumed that both the scene lengths and

the size of the scene change frames are independent for all the considered classes.
For the scene change frames for the 80% quantile method on the entire trace, the
ACF is non–negligible for low lags.

In addition, the Ljung-Box portmanteau test [123] is applied to the scene
lengths and the size of the scene change frames to check the dependence. This
test was originally proposed for checking the hypothesis of independent residuals
after fitting an ARMA model to a time series. It tests the value of a sum of
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Figure 6.3: The ACF for the scenes of the entire sample.
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Figure 6.4: The ACF for the scenes of Class 1.
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Figure 6.5: The ACF for the scenes of Class 2.
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Table 6.3: Ljung-Box test results.

Class Method Lags Scene Lengths Scene Change Frames
Q p-value Q p-value

All
80% Quantile

20 54.284 0.000 540.260 0.000
30 69.126 0.000 555.910 0.000

Original
10 9.131 0.520 7.804 0.648
20 17.349 0.630 16.720 0.671

Class 1
80% Quantile

20 28.850 0.091 14.756 0.790
30 34.331 0.268 33.101 0.318

Original
10 11.380 0.329 4.973 0.893
20 22.669 0.305 14.509 0.804

Class 2
80% Quantile

20 9.947 0.969 10.850 0.950
30 13.746 0.995 13.073 0.997

Original 3 1.882 0.597 2.142 0.544

autocorrelations of a time series [101]. The statistic:

Q = n(n + 2)
h∑

j=1

ρ̂2(j)/(n − j) (6.1)

is then calculated. Its distribution may be approximated by the Chi-square
distribution with h degrees of freedom. Here, ρ̂(j) is the sample ACF at lag j
and n is the number of samples. A large value of Q suggests that the data are
not independent and identically distributed (iid). The iid hypothesis is rejected at
level α if Q > χ2

α(h), where χ2
α(h) is the α quantile of the Chi-square distribution

with h degrees of freedom, i.e., Pr{χ2 > χ2
α(h)} = α, 0 < α < 1.

The results of Ljung-Box test applied to the scene lengths and the scene change
frames for the entire sample, Class 1, and Class 2 and for the two scene change
detection methods are shown in Table 6.3. The iid hypothesis is rejected at level
0.05 if the corresponding p-value given in the table is less than 0.05. For the
StEM clip, this means that the iid hypothesis is rejected for the quantile method
employed on the entire trace, in correspondence with the results from the analysis
of the ACFs. For the rest of the data the iid hypothesis cannot be rejected.

It is also interesting to investigate the dependence between the scene lengths
and the size of the scene change frames by scatter plots. The scatter plots of the
considered scene change detection methods for the whole trace are shown in Figure
6.6, and demonstrate dependence of different types. The original method provides
nearly uniformly distributed points above the approximate line y = 1.6x+11. Such
uniformness indicates rather weak dependence. In case of the quantile method,
many points are located along the approximate line y = x − 8.5. The rest of the
points are located above this line, but not uniformly. The natural logarithms
of scene change frame sizes equal to the approximate values 8.9, 9.5 and 10.5
correspond to many different scene lengths. These three conglomerates correspond
to the average scene change frame sizes of Class 2, Class 1, and both Class 3 and
4, respectively. Class 4 can be separated from Class 3 by the observation of the
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Figure 6.6: Scatter plot of the natural logarithm of the scene lengths in bytes
versus the natural logarithm of the size of the scene change frames in bytes for
the whole trace.

conglomerate with the center 10.47. Hence, the proposed quantile method for
the scene change detection is more sensitive to the selection of the classes with
different average frame sizes than the original method used before.

In addition, the Kendall’s τ and Spearman’s ρ rank correlation coefficients
which measure the degree of correspondence between two data sets are calculated
for the scene lengths {Li} and the size of the scene change frames {Si}, i =
1, 2, ..., n. The scenes are ranked in terms of the scene lengths according to the
order statistics L(1) ≤ L(2) ≤ ... ≤ L(n). ri is then the rank of the scene among
S1, ..., Sn that has the length L(i). The coefficients τ and ρ are calculated by the
formulas

ρ = 1 − 6Sρ

n3 − n
∈ [−1, 1], where Sρ =

n∑
i=1

(ri − i)2 (6.2)

and

τ =
2Sτ

n(n − 1)
∈ [−1, 1], where Sτ =

n∑
i=1

n∑
j=i+1

sign(rj − ri), (6.3)

where sign(x) is equal to 1 if x > 0 and to −1 if x < 0.
The linear dependence is also calculated. The results for both scene change

detection methods are shown in Table 6.4. All the considered dependence measures
give a value zero for independent random variables but the converse is not true.
Since the dependence measures have mostly nonzero values, one may assume
that the scene lengths and the size of the scene change frames are most probably
dependent and this dependence is nonlinear. Similar to scatter plots, all dependence
measures for the entire sample demonstrate weaker dependence for the original
method than for the 80% and 95% quantile methods.
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Table 6.4: Kendall’s and Spearman’s rank correlation coefficients for the scene
lengths and the size of the scene change frames.

Method Class Kendall’s τ Spearman’s ρ Linear

80% Quantile

All 0.4377 0.5644 0.3071
Class 1 0.1703 0.2122 0.0653
Class 2 0.1969 0.2750 0.0337
Class 3 -0.0256 -0.0714 0.1848
Class 4 0.2000 0.3000 0.4103

95% Quantile
All 0.2721 0.3764 0.3321
Class 1 0.1795 0.2391 0.2068
Class 2 -0.0399 -0.0300 -0.0219

Original Method
All 0.2808 0.3660 0.2054
Class 1 0.2454 0.3160 0.1394
Class 2 -0.6000 -0.7143 -0.7021

6.3.2 Long-Range Dependence

To check the long-range dependence of the scenes the Hurst parameter H, 0.5 <
H < 1 within each class is calculated by the aggregated variance method (A/V )
[124], the rescaled adjusted range method (R/S) [125], and the Abry-Veitch
wavelets estimator [126].

The A/V and R/S methods are based on the properties of self-similar pro-
cesses. Namely, V ar(X(m)(k)) ∼ m2H−2V ar(Xk) and E(R(l, r)/S(l, r)) ∼ a1r

H ,
respectively, where a1 is a positive, finite constant [124, 127]. According to the
A/V method, one plots the logarithm of V̂ arX(m) versus log(m). A straight
regression line approximating the points has the slope β = 2H − 2, −1 ≤ β < 0.
According to the R/S method the estimate of H is given by the slope of the
statistics log(R(li, r)/S(li, r)) against log(r), where r denotes a range.

In order to check the self-similarity, Higuchi’s method [128] is used. Using a
given time series X1, X2, ..., Xn, one first constructs a new time series Xm

k which
is defined as follows:

Xm
k : Xm, Xm+k, Xm+2k, ..., Xm+[(n−m)/k]k, m = 1, 2, ..., k. (6.4)

Then one calculates

Lm(k) =
n − 1

k2[(n − m)/k]

[(n−m)/k]∑
i=1

|Xm+ik − Xm+(i−1)k|, (6.5)

and computes a log-log plot of the statistic L(k), which is the average value
over k sets of Lm(k), versus k. A constant slope D in L(k) ∝ k−D indicates
self-similarity.

It was found that the scene lengths and scene change frame sizes of the four
underlying classes are almost self-similar processes, since the slopes of the log-log
plots of the statistic L(k) against k are approximately constant. The results for
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(a) Scene lengths (b) Scene change frame size

Figure 6.7: The log-log plot of the statistic L(k) versus k for the scene lengths
and the scene change frame sizes of Class 1.

Table 6.5: Estimation of the Hurst parameter of the scenes obtained by the 80%
Quantile method.

Class Scene Lengths Scene Change Frame
R/S A/V Abry-Veitch R/S A/V Abry-Veitch

All 0.60 0.65 0.80 [0.66, 0.95] 0.62 0.55 0.78 [0.60, 0.96]
Class 1 0.55 0.65 0.63 [0.25, 1.01] 0.65 0.55 0.70 [0.44, 0.96]
Class 2 0.80 0.55 - 0.85 0.50 -
Class 3 0.70 0.58 - 0.60 0.50 -
Class 4 0.90 -0.65 - 0.96 1.08 -

Class 1 is shown as an example in Figure 6.7. This implies that the A/V and R/S
methods can be applied to estimate the Hurst parameter H of the scene lengths
and scene change frame sizes.

An Ĥn close to 1 indicates possible long-range dependence. It implies that the
dependence in the time series is kept over an unusually long period of time. The
results of the calculations for the A/V and R/S methods given in Table 6.5 lead
to the conclusion that the scene lengths and the scene change frames of all classes
have a moderate amount of long-range dependence. The results for Class 2-4 are
not reliable due to the small number of observations (n ∈ {51, 13, 5}).

The Abry-Veitch estimator is a wavelet based estimator for the Hurst parameter,
shown to be unbiased under very general conditions [126]. The results from
applying the Abry-Veitch estimator show a bit higher Hurst parameter estimates
for both the scene lengths and the scene change frames compared to the A/V
and R/S methods. Nevertheless, since the confidence intervals for the Abry-
Veitch estimates include values around 0.6, the hypothesis that independence or
short-range dependence also occurs cannot be rejected.
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Figure 6.8: The sample mean excess function ê(u) for the whole trace against
the threshold u.

6.4 Estimation of the Mean Excess and Tail Index

The mean excess function is a simple test to detect visually whether a distribution
has a light or a heavy tail [119]. The mean excess function e(u) = E(X−u|X > u)
or its empirical analogue, the sample mean excess function:

ê(u) =
n∑

i=1

(Xi − u)1{Xi > u}/
n∑

i=1

1{Xi > u} (6.6)

determines the average bit loss over a number n of frame sizes {Xi} under
investigation within a corresponding time t, where t = n/30, because 30 frames
are formed each second. u is a threshold given in kbytes. ê(u) is plotted for the
whole trace in Figure 6.8 and shows that the frame size data are non-homogeneous
in the following sense. Generally an increasing (or decreasing) plot indicates that
the data are distributed with a heavy (or light) tail, a linear mean excess plot
corresponds to Pareto-type distributed data, while a constant ê(u) corresponds to
an Exponential distribution.

The non-homogeneity in the frame sizes reflects another class structure of the
frame size data regarding the threshold value u. The frame sizes that exceed the
values u ∈ [0, 8], u ∈ (8, 14], u ∈ (14, 15], u ∈ (15, 21], u ∈ (21, 37], u ∈ (37, 44]
and u ∈ (44, 50] kbytes correspond to one of seven classes as shown in Table 6.6.
At the interval (37, 44], ê(u) tends to increase not significantly. For a large u, the
ê(u) is not quite reliable since there are not enough observations beyond such u.
Hence, it is difficult to make precise conclusions regarding the interval (44, 50].

Since the frame size data from the whole trace follow a mixture of distributions,
classification by the mean excess function concerns the distributions of component
classes of the mixture. For example, if u=7 kbytes or u=41 kbytes, the frame
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Table 6.6: Classification by the mean excess value for a given threshold u.

Contributor Threshold Distribution
classes interval type
1 − 4 u ∈ [0, 8] Light-tailed
1 − 4 u ∈ (8, 14] Pareto-like
1, 3, 4 u ∈ (14, 15] Light-tailed
1, 3, 4 u ∈ (15, 21] Pareto-like
1, 3, 4 u ∈ (21, 37] Light-tailed
1, 3, 4 u ∈ (37, 44] Heavy-tailed
3, 4 u ∈ (44, 50] Light-tailed
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Figure 6.9: The sample mean excess function for the individual classes.

sizes from all classes and the frame sizes from only the third and fourth class
respectively, contribute to the mean excess value.

Figure 6.9 shows the ê(u) for each class. The estimates indicate that all classes
contain mixtures of heavy- and light-tailed distributed frame sizes. This is very
typical for telecommunication data, where none of the classical distribution models
fits the data [119]. Indeed, the heavy-tailed components dominate the shape of
the tails and determine the heaviness of tails in the mixtures.

The distribution type of the frame sizes can also be checked by estimation of the
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tail index. For the wide class of heavy-tailed distributions called distributions with
regularly varying tail, the tail distribution function is determined by 1 − F (x) =
x−α · 
(x), where 
(x) is a slowly varying function, i.e., limx→∞

�(tx)
�(x) = 1 for any

positive t. Positive constants and ln(x) provide examples of 
(x) [115, 116, 119].
The tail index α and the Extreme Value Index (EVI) γ = α−1 indicate the shape
of the distribution tail. The smaller the value of α, the heavier is the tail. A
positive sign of α indicates that the distribution is heavy-tailed. The value of
α shows the number of finite moments for the regularly varying distributions.
Namely, the moment is finite, i.e., E[Xβ ] < ∞ if β < α and infinite, E[Xβ ] = ∞,
if β > α.

Since Pareto-like regularly varying components are present in all four classes
and determine the heaviness of tails of the classes one can assume that the
distribution of the frame size is regularly varying. To estimate γ for the trace
under study the popular Hill’s estimator, which is only valid for positive EVIs, is
used:

γ̂H (n, k0) =
1
k0

k0∑
i=1

lnX(n−i+1) − lnX(n−k0). (6.7)

This estimator can be applied to dependent data under mild mixing conditions
[129]. This is a big advantage for the analysis of our data. Here, X(1) ≤ X(2) ≤
. . . ≤ X(n) are the order statistics of the sample Xn = {X1, X2, . . . , Xn} and
k0 is a smoothing parameter. k0 is selected by the bootstrap method [119,130].
The idea of the bootstrap method is to minimize the bootstrap estimate of the
Mean Squared Error (MSE), MSE=E(γ̂H(n, k0) − γ)2 by k0. Since γ is unknown,
it must be replaced by the bootstrap estimate γ̂B. The latter is an average of
estimates γ̂ which are built by re-samples {X∗

1 , X∗
2 , ..., X∗

n1
}. These re-samples are

drawn from the initial sample {X1, X2, ..., Xn} with replacement. The re-sample
size n1 = nβ , 0 < β < 1 is smaller than the size of the initial sample n.

Let γ̂H
i (n1, k1) denote the Hill’s estimate of the tail index constructed by the

ith of B bootstrap re-samples. Then one finds the k1 ∈ [1, ..., n1 − 1] that provides
the minimum empirical bootstrap MSE:

̂MSE(n1, k1) =
( 1

B

B∑
i=1

γ̂H
i (n1, k1) − γ̂H(n, k0)

)2

+
1

B − 1

B∑
i=1

(
γ̂H

i (n1, k1) − 1
B

B∑
i=1

γ̂H
i (n1, k1)

)2

(6.8)

The relation between k0 and k1 is given by:

k0 = k1 ·
( n

n1

)ν

, 0 < ν < 1. (6.9)

As it is proven in [130], β = 1
2 and ν = 2

3 provide a consistent bootstrap
Hill’s estimate, i.e., for a sufficiently large sample size n the bootstrap estimate
1
B

∑B
i=1 γ̂H

i (n1, k1) converges to γ.
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Table 6.7: Hill’s estimate of the tail index α of frame sizes for the selected classes.

Class number Hill’s estimate
Class 1 4.1248
Class 2 11.1003
Class 3 18.4467
Class 4 5.8846

The results from the estimation of the tail index α is shown in Table 6.7 for
the selected classes, with B = 200. The values of the Hill’s estimate indicate
that Class 1 has the heaviest tail in the sense that it has four finite moments. In
contrast, Class 3 has the lightest tail with 18 finite moments. This follows from
the common property of the class of the regularly varying distributions mentioned
before. The values of the Hill’s estimate correspond to the mean excess plots in
Figure 6.9, where Class 1 and 4 have large intervals with an increase in the mean
excess, corresponding to heavy-tail distributed frames sizes.

6.5 Estimation of the Extremal Index

In this section, the extremal index is estimated and used for classification of the
video stream. Subsequently, the extremal index is employed for estimating the
average loss per cluster in Chapter 7.

Let Xi, i = 1, 2, ..., n be a stationary process with a marginal distribution
function (df) F (x) and X̃i, i = 1, 2, ...n be an associated iid sequence with the
same df. According to the theory of extremal values, for large n and un, typically

P{max (X1, ..., Xn) ≤ un} ≈ P θ{max
(
X̃1, ..., X̃n

)
≤ un} = Fnθ(un) (6.10)

holds, where θ ∈ [0, 1] is a constant known as the extremal index [115,117,118].
For iid sequences, θ = 1 holds. The extremal index characterizes the change in
the limiting distribution of the sample maxima due to dependence in the sequence.
Estimators of θ are distinguished by the different definitions of a cluster.

Regarding the blocks estimator, a cluster is defined as a block of data with at
least one exceedance over a threshold. The blocks estimator for the threshold u is
calculated by the formula:

θ
B

(u) =
k−1
∑k

j=1 1(M(j−1)r,jr > u)
rn−1

∑n
i=1 1(Xi > u)

, (6.11)

where Mi,j = max(Xi+1, ..., Xj), k is the number of blocks, and r = [n/k] is the
number of observations in each block, where [·] denotes the integer part of the
number.

For the runs estimator, a cluster is defined as a block of data with some
number of exceedances over a threshold and at the same time the subsequent r
observations are all below the threshold. The runs estimator for the threshold u
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Figure 6.10: Blocks, scene blocks, and runs inverse estimates 1/θ
B

, 1/θ
B

S and
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for the whole trace.

is calculated by the formula:

θ
R
(u) =

(n − r)−1
∑n−r

i=1 1(Xi > u,Mi,i+r ≤ u)
n−1
∑n

i=1 1(Xi > u)
(6.12)

The runs estimate does not require any block structure and has a better asymp-
totic bias than the blocks estimate [118]. 1/θ

B
(u) and 1/θ

R
(u) have a simple

interpretation. Both are the ratio of the number of observations that exceed the
threshold u to the number of clusters and show the average number of exceedances
in a cluster.

The selection of the threshold u and the number of blocks k (or r in the runs
estimator), driven by the sample, is still an open problem. The idea is to select
parameters that make the clusters independent [116]. Very roughly, they should
be sufficiently far away from each other. The latter may provide some mixing
conditions which are necessary to satisfy Equation 6.10 [115].

The simplest way is to use a value that corresponds to a stable interval of the
plot (1/θ(u), u) over a range of thresholds for a fixed parameter k (or r) as an
estimate for θ. The reason is that both of the considered estimates are consistent,
i.e., θ = limn→∞ θ. In Figure 6.10(a), θ

B
= 0.052 and θ

R
= 0.036 are the average

values over u ∈ {15, 16, ..., 38} kbytes and u ∈ {20, 21, ..., 38} kbytes for the blocks
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Figure 6.11: Inverse runs estimate for variable thresholds u and the runs
parameter r.

and runs estimates, respectively. The sudden drop in the inverse extremal index
for thresholds above 38 kbytes is due to the higher bitrate of Class 3 and 4. Both
estimates of θ are close to 1 for u = 50 kbytes. This means that the exceedances
over 50 kbytes are well approximated by overshooting arising from a stationary
process of iid random variables Xi with the same marginal distribution. From
Figures 6.10(b) and 6.10(c) it can be seen that beyond k = 100 both plots reach
stability. However, the behavior of the inverse extremal index in the case of
independent clusters in Figure 6.10(c) is different from the dependent case in
Figure 6.10(b).

The 3D-plot of the runs estimate in Figure 6.11 is considered in order to
investigate the stability of 1/θ

R
(u) with respect to both u and r. One may

conclude that the plot is stable for u ∈ [20, 30] and for any value r in the interval
[70, 150].

Often it is possible to choose appropriate parameters u and k (or r) with
knowledge about the problem. In this work, it is proposed to use the scenes
as blocks, meaning that the blocks will have unequal sizes. It implies that the
parameter r will be variable in Equation 6.11, i.e., a scene blocks estimator is
proposed as follows:

θ
B

S (u) =

∑k
j=1 1(MPj−1

m=0 rm,
Pj

m=1 rm
> u)∑n

i=1 1(Xi > u)
, (6.13)

where rj is the number of frames in the jth scene,
∑k

j=1 rj = n, r0 = 0, and k is
the number of scenes. It was found in Section 6.3 that the scenes are independent,
indicating that the scenes are correctly selected as blocks of frames in the scene
blocks estimator. The scene blocks estimate is shown in Figure 6.10(a), together
with the blocks and runs estimates.

The separation of the video trace into four classes with different average bitrates
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Figure 6.12: Blocks, scene blocks, and runs inverse estimates 1/θ
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S , and
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for the classes.

also influences the extremal index. For example, the thresholds beyond which
the losses are independent for the whole trace will give no loss at all for Class
2. The extremal index is therefore investigated for each separate class, assuming
stationarity of the process within each class. The blocks, scene blocks, and runs
estimates are shown in Figure 6.12 as functions of the threshold u. The number
of blocks k (and r) is lower for Class 3 and 4 because of the lower number of
observations for these classes. For Class 1 in Figure 6.12(a), the inverse extremal
index is close to 1 for thresholds above 25 kbytes, which means that the losses
over this threshold are weakly dependent or almost independent. For Class 2 the
same is true for thresholds above 10 kbytes, while for Class 3 and 4 the same
threshold as for the whole trace is needed for independence. These results can be
used to calculate losses for the classes separately and is used in Chapter 7.

It can be seen that the scene blocks estimate behaves similarly to the other
estimates, at least for the high thresholds. However, this method does not require
the selection of an appropriate fixed k (or r).
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Figure 6.13: The inverse extremal index from the scene blocks method with
moving window equal to ten scenes for the entire sample.
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Figure 6.14: The inverse extremal index from the scene blocks estimate for Class
1-3. The threshold u is equal to the 80% quantiles of frame sizes for the individual
classes.

6.5.1 Classification by the Extremal Index

Next, the frame sizes are classified by the value of the extremal index θ. It implies
that the video trace is divided according to the dependence of frames in the scenes
of each class. The following procedure is proposed for the classification. The
extremal index (or its inversion) is calculated sequentially for a moving window
containing m scenes with m = 10. The interpretation of the classification by θ is
the variation of the dependence within the scenes. Figures 6.13 and 6.14 show the
estimate 1/θ̂ against a number of moving windows for the scene blocks estimate
for the entire trace and the classes, respectively. Scenes are selected by the 80%
quantile method.

For the entire sample, periodicity in the dependence structure reflecting the
high variability in the data can be observed. The periodicity exists also in Class
1 and 2 but with lower variability. For Class 3 the dependence is more stable.
The closer the extremal index is to 1 (or to 0) the stronger is the asymptotic
independence (or dependence) of maximal frame sizes inside scenes of the moving
window. Class 4 is not shown due to the small number of scenes.

Furthermore, the extremal index can detect non-stationarity in the data as
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follows. The asymptotic distribution of the inter-exceedance times was proved
in [131] to be Exponential with an intensity equal to the extremal index. More
exactly, under a specific mixing condition, inter-exceedance times normalized by
F (un) = P{Xi > un} converge in distribution to a random variable Tθ which
is zero with probability 1 − θ and strictly positive with probability θ. Namely,
P{F (un)T (un) > t} → θ exp(−θt) for t > 0 as n → ∞, where T (un) = min{n ≥
1 : Xn+1 > un|X1 > un} are inter-exceedance times in the stationary sequence
{Xi} corresponding to the threshold un. In this respect, the extremal index may
detect non-stationarity in the data.

When looking at the extremal index estimates in Figure 6.14, Class 2 and
3 seem more stationary than Class 1 with respect to the more homogeneous
inter-exceedance time distribution.

6.6 Conclusion

In this chapter there are several ideas that are interesting both regarding new
statistical tools and video traffic inference. It is proposed to divide the video
stream into sections and classify the sections by the average frame size. A new
quantile method for scene change detection is then proposed for the classes. The
resulting classes are checked regarding distribution and dependence structure.

The ACFs and Ljung-Box tests show independent scenes in the classes, but
a moderate amount of LRD is found using different estimators for the Hurst
parameter. The distributions of the scenes inside the classes are analyzed by the
mean excess function and the tail index and it is found that the distributions of
frame sizes of the selected classes can only be mixtures of classical heavy- and
light-tailed distributions.

Furthermore, the extremal index which detects the changes of the stationarity
and the dependence of frames within scenes is investigate. A new scene blocks
estimate for the extremal index is proposed, where blocks are specified by scenes.
The extremal index shows a variable dependence structure within the classes, due
to the variability of the video stream.

The proposed approach is merely non-parametric. It implies that the estimation
of the distribution of the underlying random variables, e.g., positive exceedances,
inter-exceedance times etc., arising during the analysis is avoided.

The results of the analysis for a test flow cannot be generalized to any video
flow due to high variability of video data. However, the proposed methodology
for the classification of the stream can be extended to any flow including an
aggregated stream.
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Chapter 7

Estimation of Loss from

Threshold Exceedance

This chapter uses the classification of the slice-based encoded StEM clip from
Chapter 6, and estimates the bit loss for the video stream from the exceedance
of frame sizes over a threshold. A non-parametric approach is proposed and a
bufferless model of the communication system is considered. The characteristics
of the losses, including the average loss and the clustering of losses, are estimated
and the high quantiles of the losses are found.

7.1 Introduction

Characterization of the packet loss, i.e., the loss ratio and the loss distibution, is
an intermediate step to estimate the perceived QoS for a video stream sent over
a network as described in Section 2.2. Only bit losses due to congestion in the
network are considered here. For real-time data, packets that experience extensive
delay through the network will also be dropped when arriving at the receiver’s
playout buffer, this is not taken into account in this work.

A bufferless model of a communication system is used. In [132], the justification
of the bufferless fluid model is given and the amount of bits and packets lost
during congestion periods is discussed. It is argued that desirable queueing delays,
especially in interactive audio and multimedia systems, require small buffers. The
congestion periods are denoted loss period here, and they resemble the clusters
from Chapter 6. These clusters have at least one frame exceedance over a threshold.
Regarding the bufferless model, the bit losses are calculated using the exceedances
of the frame sizes over a threshold during the loss periods.

The slice-based encoded StEM clip that was classified in Chapter 6 is studied,
and the results from the classification are employed to estimate the bit loss for the
individual classes. The loss assessment is carried out by means of the extremal
index and the mean excess function, which were estimated in the previous chapter,
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both for the whole trace and for the individual classes. The characteristics for the
average loss volume in the loss periods as well as the number of frames between
loss periods are important for estimating the burstiness of the losses.

The threshold u such that the exceedances over u are weak-dependent can be
evaluated. In the case of independence, the high quantiles, i.e., the quantiles that
are close to 100%, e.g., 99% and 99.9%, can be estimated. The amount of losses
can exceed these quantiles only with a very small probability.

7.1.1 Chapter Outline

The rest of this chapter is organized as follows. The estimation of the average loss
for the bufferless model is carried out in Section 7.2, statistics for the loss and the
clustering of loss in the individual classes are also presented. In Section 7.3, the
high quantiles of positive exceedances of frame sizes are calculated. The chapter
is concluded in Section 7.4.

7.2 Estimation of Loss in the Bufferless Model

In Chapter 6, the exceedances of the video frames over the high quantiles showed
that the large frame sizes are the extreme events of interest when estimating loss.
It is also observed that the frame sizes can be separated into four classes where
the classes have different average frame size. The loss estimation can then be
carried out for the individual classes.

The estimation of the loss for the video stream under study is based on the
evaluation of the cluster structure of the data as shown in Figure 7.1, where a
cluster or a loss period is defined as a period in which one or more frame sizes are
larger than the threshold.

    Loss periods

Frame size

Time

Threshold

Clusters

Figure 7.1: The cluster exceedance structure showing that the clusters correspond
to the loss periods.
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Figure 7.2: The bit loss against the threshold u over all clusters for each class.

In Chapter 6, the clusters are identified and the extremal index, giving the
mean number of exceedances in the clusters, is evaluated in order to check the
dependence and stationarity in the classes. Three different definitions are given
for the clusters, giving three different estimators for the extremal index; the blocks
estimator, the scene blocks estimator, and the runs estimator.

The overall bit loss E(u) over all clusters for a fixed threshold u coincides with
the cumulative exceedance over the threhold u of the entire trace, i.e.,

E(u) =e(u) · θ(u)−1 · K(u)

=
∑n

i=1(Xi − u)1{Xi > u}∑n
i=1 1{Xi > u} ·

∑n
i=1 1{Xi > u}

K(u)
· K(u)

=
n∑

i=1

(Xi − u)1{Xi > u},

where K(u) is the number of clusters, e(u) is the mean excess function, and θ(u)
is the extremal index. The estimate of the bit loss Ê(u) for the underlying frame
size data against the threshold u for all classes is shown in Figure 7.2.

Naturally, the bit loss decreases with increasing threshold. Also, the rate of
decrease for the losses is different for the classes, being lowest for Class 3 and 4
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Figure 7.3: The average loss per cluster against the threshold u for each class,
using the scene blocks estimate.

because the amount of exceedances for these classes does not change much up to
the thresholds u = 40 and u = 30, respectively, in contrast to Class 1 and 2.

In addition, it is interesting to study the average loss per cluster, corresponding
to the average loss volume in a loss period. The average loss per cluster is
determined by the sample mean excess function and the inverse extremal index
estimate as ê(u) · θ(u)−1. This is an important item for evaluating the perceived
QoS, since it evaluates the burstiness of the losses. The burtiness of losses influences
the perceived QoS of video traffic transmitted over a network as observed e.g.,
in [65]. The average loss volume in a loss period, when combined with the overall
bit loss and the average length of a non-loss period, reflects the loss structure in
the following sense. The occurrence of a few loss periods with a large loss volume
or more frequent loss periods with a lower loss volume may influence the perceived
QoS since the same overall loss ratio and different loss volumes in the loss periods
give different distributions of frames between loss periods (clusters). The average
loss per cluster for each class is given in Figure 7.3, calculated using the scene
blocks estimate.

Statistics for the loss periods are given in Table 7.1, where also the threshold
required for each class to satisfy a given loss ratio, equal to 3%, is shown. The
average loss volume and average length of non-loss period are evaluated for this
loss ratio. It can be seen that Class 3 needs a higher threshold than the other
classes to fulfill the loss requirement, while Class 2 needs the lowest. The average
loss volume in a loss period as well as the average length of a non-loss period are
also shown in Table 7.1. For the required loss bound, the average loss volume
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Table 7.1: The 3% overall loss ratio, average loss volume per loss period, average
length of non-loss period, and the corresponding threshold for each class

Class Threshold 3% loss Loss volume Length of non-loss period
[kbytes] [kbytes] [kbytes] [number of frames]

1 15 1033.71 24.23 110.14
2 8 109.85 3.39 63.00
3 37 258.12 21.44 24.51
4 35 74.68 25.72 42.41

in a loss period is approximately the same for Class 1, 3 and 4, while it is much
lower for Class 2. The average length of a non-loss period is given as the average
number of frames between loss periods, being largest for Class 1 and smallest for
Class 3. This indicates that Class 1 has large (in terms of loss volume) and rare
loss periods as far as Class 2 has more frequent and smaller loss periods and Class
3 has very frequent and large loss periods.

An overall capacity corresponding to the threshold u equal to 37 kbytes
is required to host all traffic classes. It is calculated as the maximum of the
requirements for the individual classes. This capacity provides less than 3% overall
loss ratio for Class 1-4.

As is discussed in Section 2.2, and also shown in several papers [50, 65, 67],
the same loss probability and a variable number of consecutive lost packets give
different perceived QoS for video traffic. Estimating the clustering of losses
therefore gives valuable information that can be used for assessing the PQoS as
well as being applied in the video encoding, for selecting error resilience tools.

7.3 High Quantile Estimation of Losses

To evaluate the high quantiles of the losses, only positive exceedances {Yi =
Xi − u, i = 1, 2, ..., n} with unknown df F (y) are considered. These are calculated
from the measured frame sizes {Xi, i = 1, ..., n} for a fixed threshold u. Since
{Yi} form the losses in the bufferless model, their quantiles should be estimated,
in particular, high quantiles close to 100%. The high quantiles of exceedances
determine the bound on the amount of loss that can occur with a given probability.

High quantiles are, as a rule, located outside the range of the sample (i.e., the
interval between the minimum and maximum values of the underlying sample).
Hence, they cannot be evaluated by means of the empirical df or other df estimators
based on the sample only. The estimators of high quantiles are based on models
of the tail of the distribution [119]. The Generalized Pareto df,

Ψσ,γ(x) =
{

1 − (1 + γx/σ)−1/γ , γ 
= 0,
1 − exp (−x/σ) , γ = 0,

(7.1)

where σ > 0 and x ≥ 0, as γ ≥ 0; 0 ≤ x ≤ −σ/γ, as γ < 0, or Pareto-type df

F (x) = 1 − cx−1/γ
(
1 + dx−β + o(x−β)

)
, (7.2)
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Table 7.2: Extremal index using the blocks estimator for given thresholds.

Data u Ymax Ne uy θ
B

(uy)
Class 1 15 23.930 271 20 1.25
Class 2 8 5.949 131 3 1
Class 3 37 13.294 124 11 1

where γ > 0, β > 0, c > 0, −∞ < d < ∞, are often used to approximate the
distribution beyond the sample location where there are no observations. To
estimate the (1 − p)th, p ∈ (0, 1), high quantile of exceedances the well known
Weissman’s estimator [114] is used,

xw
p = Y(n−k0)

(
k0 + 1

(n + 1)p

)1/α̂

, k0 = 1, . . . , n − 1. (7.3)

It was built for the Pareto model, where Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) are the order
statistics of the sample Y1, ..., Yn and α̂ is some estimate of the tail index α. In
case of weakly dependent data, the Hill’s estimate can be used for α̂ and then k0

is the smoothing parameter of the Hill’s estimator as described in Section 6.4.
When p � n−1 the high quantiles are extrapolated outside the sample, hence

losses which have not yet occurred are evaluated.
The prerequisites of the Weissman’s estimator are that the underlying sam-

ple Y1, ..., Yn is independent (or weak dependent) and stationary, and that the
corresponding tail index α is positive. The latter indicates that the distribution
is heavy-tailed. Therefore, these properties are checked. For this purpose, the
extremal index θ(u) is calculated by the blocks estimator θ

B
(u) as described in

Section 6.5. A value of θ(u) near 1 indicates asymptotic independence (i.e., when
n → ∞) of the corresponding positive exceedances.

Table 7.2 shows the threshold u used to determine the positive exceedances,
the number of positive exceedances Ne and the maximum of these exceedances
Ymax for each class. The threshold u is chosen as the threshold that provided
3% overall loss ratio for the individual classes in Table 7.1. The thresholds uy

for each class are then selected to give blocks estimates of θ(uy) close to 1. This
corresponds to almost independent positive exceedances.

Figure 7.4 shows the inverse extremal index estimates using the blocks estimate
against the threshold uy. These plots help us to select the uy that give approxi-
mately independent positive exceedances. Class 4 is excluded from the calculation
of the high quantiles and extremal index due to the small number of observations
and thereby the impossibility to detect enough independent exceedances.

The high quantiles for the losses corresponding to an overall loss ratio of 3% is
given in Table 7.3. The same thresholds u as in Table 7.2 is used for estimating the
high quantiles. These thresholds correspond to weakly dependent exceedances and
are low enough to provide a sufficient number of exceedances for the calculation
of the high quantiles. In [129] it is proved that a mild dependence condition is
sufficient for the consistency of the high quantile estimate that is very similar to
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Figure 7.4: The extremal index estimation for positive exceedances for classes
using the blocks estimate, k = 10.

Weissman’s estimate. The thresholds u normalized by time can be interpreted as
the channel capacity required to get an upper bound for the losses. The latter is
determined by the high quantiles.

The Hill’s estimate used for the calculation of the high quantiles and its
non-asymptotic confidence interval [133] are also presented in Table 7.3. This
confidence interval of level 1 − ε, is calculated by formula

Iε =
[ γ̂H(n, k0)

1 + yεN
−1/2
n

;
γ̂H(n, k0)

1 − yεN
−1/2
n

]
, (7.4)

where Nn =
∑n

i=1 1{Yi > u} is the number of exceedances over the threshold u
for the positive exceedances Yi and yε is calculated as a quantile of the standard
normal distribution Φ(x). Namely, Φ(−yε) = (ε/2 − C∗N

−1/2
n )+, where C∗ < 0.8

is a constant. C∗ is chosen such that the narrowest confidence interval is provided.
Hill’s estimate should be inside this interval. ε = 0.05 is selected. The empirical
quantiles are also presented.

The Hill’s estimates indicate that the exceedances from all the considered
classes have heavy tails. Class 2 has the lightest tail. It is reflected in the
difference between the 99% and 99.9% quantiles. This difference is larger for Class
1 and 3 than for Class 2. The high quantiles indicate that the largest upper bounds
of losses with probabilities 99% and 99.9% are for Class 1 and the smallest losses
are arising for Class 2. This is caused by the heaviness of tail of the distribution
of positive exceedances for Class 1. Nevertheless, Class 2 requires a capacity that
is two times lower than Class 1. The loss for Class 3 is half of the loss for Class
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Table 7.3: Estimation of the high quantiles for the positive exceedances data.

Class Tail index High quantile Empirical quantile
Hill’s 95% CI 99% 99.9% 95% 99%

Class 1 2.1234 [1.8975, 2.4104] 21.725 64.250 9.692 23.403
Class 2 4.5174 [3.8569, 5.4508] 3.028 5.042 2.061 2.394
Class 3 2.6528 [2.2557, 3.2194] 10.591 25.230 5.299 10.339

1 with a probability 99%, but the required capacity is approximately two times
higher.

7.4 Conclusion

The bit losses arising from exceedances of frame sizes over a threshold are estimated
using a bufferless model. The video stream under study is classified in Chapter
6, and the bit losses are estimated for the classes. The average loss volume in a
loss period as well as the average length of a non-loss period are found for the
individual classes, giving information about the clustering of losses. This gives
valuable information to use for assessing the perceived QoS and can be applied in
the video encoding.

Moreover, the high quantiles of bit losses, which determine the upper bounds
of the bit losses for a fixed threshold are evaluated. In addition, the capacity that
is required to satisfy the maximum allowed loss ratio for each class is estimated.

The approach to characterization of the losses is merely non-parametric. It
implies that estimating the distribution of the underlying random variables, e.g.,
the positive exceedances, arising during the analysis is avoided.
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Part IV

Characterization of Loss for

Aggregated Video Using a

Gaussian Model

The results in this part have been published as follows:

Astrid Undheim and Peder J. Emstad. “Distribution of Loss Periods for Aggregated Video
Traffic.” In Proceedings of the ITC Specialist Seminar 18 (ITCSS’18), Karlskrona, Sweden,
May 2008.

Astrid Undheim and Peder J. Emstad. “Distribution of Loss Volume and Estimation of Loss for
Aggregated Video Traffic.” Submitted for publication, 2009.
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Chapter 8

A Gaussian Model for Aggregated

Video Traffic

In this chapter, slice-based encoded video traffic is modeled as a discrete Gaussian
process, taking the correlation between consecutive frames into account. This
model can hence be used for studying the effects of frame correlation on the loss
distribution. An aggregate of independent video streams will also be Gaussian
and relations between the exceedances of frames sizes over a threshold for a basic
stream and an aggregated stream are found. Results for the characteristics of
exceedances for the continuous Gaussian model are introduced, and a relation
between the length and volume of an excursion is found. This relation can be
exploited for the discrete model as well.

8.1 Introduction

In general, video traffic models are needed for two purposes, to simulate such
traffic in a network and to establish an analytical model. In this chapter, an
analytical traffic model for video encoded using the slice-based H.264/AVC video
encoding scheme as described in Chapter 3, is developed.

In the Internet, the video traffic will not appear as single streams but as
aggregates of several video streams with similar means and correlation structures.
Evaluation of the packet loss for the aggregate by knowledge about the single
stream is of great interest. In particular, the loss probability, the distribution of
the length and loss volume of a loss period, and their variation with some key
parameters are interesting. To accurately grasp the distribution of the length
and loss volume of a loss period it is necessary to apply a model that takes the
covariance function into account. Also, it is of paramount interest to choose a
type of model that can model an aggregate based on similar models of its single
streams and which is parsimonious in parameters. A general Gaussian process
lends itself for this purpose thanks to its simple additive properties. It only
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8.1. Introduction

requires knowledge of the means and the covariance functions of the aggregate
members. In Chapter 4, correlation is found to exist mainly within scenes for a
slice-based encoded video stream. Hence, in this work, the effect of short- and
medium-range dependence on the characteristics of a loss period is studied and
a general Gaussian process defined by its mean and covariance matrix is used.
The exceedances of the frame sizes over a threshold constitute the loss for a video
transmission over a bufferless link.

8.1.1 Related Work

Popular models used for simulations of video traffic in the last decades include
Markov-type models and Autoregressive Moving Average (ARMA) models, and
also combinations of these. These models can model short-range dependence.
DPCM encoded video is modeled in [87], and both a Markov chain model and
a DAR(1) model is used for modeling the dependence of the intra-scene frames.
For video conferencing, the Gamma Beta AR (GBAR) model is proposed in [134],
and a survey of regressive models for use in video conferencing is given in [135].
The GBAR model from [134] is extended to non-video conference video in [94],
where a GOP GBAR model is proposed to explicitly model the GOP structure of
MPEG video.

Long-Range Dependence (LRD) in VBR video traffic was extensively analyzed
in [120], leading to the development of new types of video models. In [88], two
AR(2) models are nested together to model the LRD of VBR MPEG video. One
AR(2) model is used to model the mean I frame size in consecutive scenes, hence
preserving the LRD. A second AR(2) process is used for modeling the deviation
from the mean I frame size in each scene. This nested model is enhanced in [136],
and a nested AR multinomial model is proposed for MPEG-4 video traffic modeling.
Nested Markov models are proposed for video traffic modeling in [90], and it is
argued that this type of model can model the LRD if the scene level is modeled
as one Markov chain and the GOP sizes within the scene states is modeled as
another Markov chain. A Markov renewal process is proposed for the modeling
of MPEG encoded video traffic in [93], where the states correspond to different
classes of GOP sizes. A scene-based Markov modulated process is also proposed
for modeling of MPEG-4 video in [97] and it is shown that the model captures
the LRD of the video traces under study.

Although the nested AR model from [88] and the scene-based Markov models
from [90, 97] can incorporate the LRD of video traces, specific models are also
developed for modeling of LRD. Self-similarity models include the Fractional
Autoregressive Integrated Moving Average (FARIMA) model which is employed
in [137].

A new approach to video source modeling, introduced after the discovery of
LRD in video traffic, is the use of wavelet models. These models are advantageous
since they can model a complicated short- and long-range dependence structure
in the time domain using a short-range model in the wavelet domain. In [138], a
hybrid wavelet approach is proposed, modeling the I frames in the wavelet domain
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Chapter 8. A Gaussian Model for Aggregated Video Traffic

and using intra GOP correlation to model the P and B frames, using a linear
model. In [98], the approach is extended to multi-layer MPEG-4 and H.264/AVC
video traffic, also modeling the I frames in the base layer using wavelets.

Other proposals for video source models intended for simulation studies include
the Transform Expand Sample (TES) model, combined with a Markov-Renewal
model in [139] and the M/G/∞ model proposed in [140].

For the analysis, a different approach to modeling is needed, which ensures
analytical tractability. Renewal-type models such as Poisson models are attractive
for queueing analysis models. However, these models can only model independent
arrivals and are therefore unsuitable for modeling video traffic as described in [141].

Markov-type models are also attractive from a queueing analysis perspective.
These can incorporate the autocorrelation using nested Markov chains as is
proposed in [90]. A periodic Markov Modulated Batch Bernoulli Process (P-
MMBBP) is introduced to model MPEG video traffic in [142]. This type of model
can model a periodic, exponentially decaying ACF. A P-MMBBP/D/1 queueing
system is analyzed, and the queue length distribution is found analytically. Finally,
a matrix-analytical approach for the multiplexing of VBR sources is developed
in [143], where the video traffic is modeled using a time discrete Batch Markovian
Arrival Process (D-BMAP).

Fluid-type models can be used to model aggregated video traffic. In [144], a
fluid-flow model is used for video traffic in order to develop a rate control scheme
for video over the Internet. In [32], a fluid-flow model is proposed for the queueing
analysis of a statistical multiplexer with video traffic input.

Wavelet models can be employed for queueing analysis as well. In [145], video
traffic is modeled in the wavelet domain, and a queueing formula is developed for
estimating the tail queue probability for an infinite buffer. A wavelet model is
also proposed for the modeling of video traffic in [146], and a similar queueing
analysis is performed.

For analyzing service guarantees, the token bucket traffic models such as
those described in Section 2.3 are interesting. The EF class in DiffServ and the
Guaranteed Service class in IntServ are both defined using network calculus server
models, and these give deterministic delay guarantees to token bucket constrained
input traffic. Token bucket modeling for video traffic is described in Chapter 5,
and related work on video traffic modeling using token buckets is described in
Section 5.1.1. In particular, in [108] and [147] a Switched Batch Bernoulli Process
(SBBP) is proposed for the modeling of video traffic for the analytical evaluation
of token bucket performance.

Gaussian processes with independent increments have since long been used to
model queueing type systems. Fractional Brownian Motion (FBM) models, which
have a corresponding increment process that is Fractional Gaussian Noise (FGN),
have become popular for modeling long-range dependencies [121]. However, to use
this kind of model, the trace must match the autocorrelation of FGN. In [148],
this FBM model is compared to a Markov Modulated Fluid Flow (MMFF) model
for the modeling of the variance function of H.264/AVC encoded video, and the
variance is used as input to an effective bandwidth approach for estimating the
buffer exceedance probability. The results show that it is difficult to match the
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8.2. The Multivariate Normal Distribution

ACF of real video traces to the FBM model.
In this work, the effect of short- and medium-range dependence on the loss

period is studied and a general Gaussian process defined by its mean and covariance
matrix is used. This is motivated by the correlation analysis in Chapter 4, showing
that correlation exists only within scenes.

Previous work on continuous Gaussian processes in [149] gives the limit distri-
bution functions of the length, volume, and maximum height of excursions over
high thresholds. However, the covariance process is continuous in this case. Based
on the results in [149], a relation between the distributions of the length and
volume of the excursions can be derived for the continuous process. A relationship
between the length and loss volume of a loss period for a discrete process is of
similar interest and is investigated further in Chapter 9.

8.1.2 Chapter Outline

The rest of this chapter is organized as follows. The multivariate normal distri-
bution is described in Section 8.2, while the model for aggregated video traffic is
developed in Section 8.3. The excursion characteristics for the continuous Gaus-
sian process are described in Section 8.4 and the requirements for the correlation
function for the continuous process are investigated followed by a study of two
permissible functions. Finally, some conclusions are given in Section 8.5.

8.2 The Multivariate Normal Distribution

Let Z = (Z1, ..., Zm) be a vector of independent and identically distributed
standard normal random variables with zero mean and covariance matrix equal to
Cov(Z) = Im, where Im is the identity matrix of dimension m.

The random vector Z has a standard multivariate normal distribution if the
density of Z, fZ(z) is equal to:

fZ(z) =
1√

(2π)m
exp
(
− 1

2

m∑
i=1

z2
i

)
(8.1)

The random vector X = (X1, ..., Xm) is defined as X = μX +ΓZ, which means
that X has mean E(X) = μX = (μX1 , .., μXm), where μXi = μX and covariance
matrix Cov(X) = r, where r = ΓΓT and r is assumed to be non-singular.

X has a multivariate normal distribution if the density of X, fX(x) is equal
to:

fX(x) =
1√

(2π)m|r| exp
(
− 1

2

∑
i,j

(xi − μX)r−1
ij (xj − μX)

)
(8.2)

where r−1
ij is element (i, j) of the inverse of the covariance matrix r of X.

The distribution of X is determined by the mean vector, μX and the covariance
matrix, r = ΓΓT . For each X with these properties the corresponding Z is given
by Z = Γ−1(X − μX) which is standard multivariate normally distributed.
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Throughout this work the probability of m consecutive exceedances of the
process X over a threshold a is studied, using the Multivariate Normal Integral
(MVNI).

The MVNI for the multivariate normal random vector X is then given as:

Pr[a ≤ X1 ≤ ∞, a ≤ X2 ≤ ∞, ..., a ≤ Xm ≤ ∞]

=
∫ ∞

a

· ·
∫ ∞

a

fX(x1, x2, .., xm)dx1 · ·dxm

=
1√

(2π)m|r|

∫ ∞

a

· ·
∫ ∞

a

exp
(
− 1

2

∑
i,j

(xi − μX)r−1
ij (xj − μX)

)
dx1 · ·dxm (8.3)

In the next section, the probability of exceeding the threshold is evaluated for
an aggregated process and relations between this probability for the aggregate
and single non-zero mean and zero mean processes are found.

8.3 Model for Aggregated Multimedia Traffic

In the Internet, video traffic will appear as aggregates of single video streams. For
modeling purposes it is reasonable to assume independence between sources and
between streams of an aggregate. Each stream is then modeled with a Gaussian
process and aggregates can easily be represented based on parameters for their
individual streams. The effect of correlation in a single stream and an aggregate
can then be studied.

Video sources will not be synchronized in time and will start their cyclic frame
transmissions randomly. The lack of synchronization is overcome by looking at the
accumulated number of bits sent over an inter-frame period. The loss or even the
delay can then be estimated given knowledge about the capacity of the outgoing
link. This could also require knowledge of some implementation issues at the node,
but is not treated in this work. To this end it is assumed that the exceedance
limit for acceptable loss in an inter-frame period is given, and this exceedance
limit denotes the threshold in our model.

In this section, the probability of exceeding a threshold for an aggregated
video stream modeled as a Gaussian process is evaluated. The aggregate can be
described as a sum of single Gaussian processes. This aggregated process can be
viewed as an aggregate of n statistically equal and independent processes X, called
basic processes. In other words, the focus is on the distribution of the exceedances
over a threshold for the aggregated multivariate normally distributed process, Y ,
which can be viewed as consisting of n statistically equal basic processes X in
which case Y =

∑n
k=1 Xk.

This gives the following relations for the aggregated process, Y and its basic
processes. The mean vector is given by:

μY = E(Y ) = n · E(X) = n · μX (8.4)
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The covariance function for the aggregate process, when the basic processes
are independent, is given by:

Cov(Yi, Yj) = n · Cov(Xi, Xj) (8.5)

And the elements (i, j) of the covariance matrix, q, for the aggregated process
is given by:

qij = n · rij (8.6)

The density of Y , fY (y) is then equal to:

fY (y) =
1√

(2π)m|q| exp
(
− 1

2

∑
i,j

(yi − μY )q−1
ij (yj − μY )

)
(8.7)

where μY = n · μX , q−1
ij is element (i, j) of the inverse of the covariance matrix

of the aggregated process Y and q−1
ij = 1

nr−1
ij since:

q−1
ij =

adj q

|q| =
nm−1adj r

nm|r| =
1
n

r−1
ij (8.8)

where adj q (respectively r) is the adjoint matrix of q (respectively r). For the
determinant of the covariance matrix of the aggregated process |q|, the relation
|q| = nm|r| is used.

The multivariate normal integral for the aggregated process, with the lower
threshold b, then becomes:

Pr[b ≤ Y1 ≤ ∞, b ≤ Y2 ≤ ∞, ..., b ≤ Ym ≤ ∞]

=
∫ ∞

b

· ·
∫ ∞

b

fY (y1, y2, .., ym)dy1 · ·dym

=
1√

(2π)m|q|

∫ ∞

b

· ·
∫ ∞

b

exp
(
− 1

2

∑
i,j

(yi − μY )q−1
ij (yj − μY )

)
dy1 · ·dym

(8.9)

In order to represent the multivariate normal integral for the aggregated
process in terms of a basic process, the relations between the basic stream and
the aggregated stream are used, giving:

Pr[b ≤ Y1 ≤ ∞, b ≤ Y2 ≤ ∞, ..., b ≤ Ym ≤ ∞]

=
1√

(2π)mnm|r|

∫ ∞

b

· ·
∫ ∞

b

exp
(
− 1

2

∑
i,j

(yi − nμX)
1
n

r−1
ij (yj − nμX)

)
dy1 · ·dym

(8.10)

The variables for the integrals are changed in order to find an expression similar
to Equation 8.3, using f = (f1, f2, .., fm) as the new variable of integration, where
y = u(f), hence dy = u′(f) · df . In order to get rid of the aggregating factor
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n ahead of μX and 1/n ahead of r−1
ij in the integral, the integration variables fi

should satisfy the following relation:

(yi − nμX) = (fi − μX) · √n (8.11)

The differential is then:
dyi =

√
ndfi (8.12)

and the lower integral limits b are changed accordingly to b̂. This gives:

b̂ =
b√
n
− μX(

√
n − 1) (8.13)

The Jacobian of the transformation T which is needed when changing variables
in multiple integrals is given by:

JT (f1, f2, .., fm) =
∂(y1, y2, ..., ym)
∂(f1, f2, ..., fm)

=

∣∣∣∣∣∣∣∣∣∣

∂(y1)
∂(f1)

∂(y1)
∂(f2)

. . . ∂(y1)
∂(fm)

∂(y2)
∂(f1)

∂(y2)
∂(f2)

. . . ∂(y2)
∂(fm)

...
...

. . .
...

∂(ym)
∂(f1)

∂(ym)
∂(f2)

. . . ∂(ym)
∂(fm)

∣∣∣∣∣∣∣∣∣∣
=

√
n

m

since
√

n is the partial derivative of each of the expressions on the diagonal, while
the rest of the partial derivatives are zero. Including the Jacobian when changing
the variable of integration then gives: dy1 · ·dym =

√
n

m
df1 · ·dfm. This results in

the following integral for the aggregated process:

Pr[b ≤ Y1 ≤ ∞, b ≤ Y2 ≤ ∞, ..., b ≤ Ym ≤ ∞]

=
1√

(2π)mnm|r|

∫ ∞

b̂

· ·
∫ ∞

b̂

√
n

m exp
(
− 1

2

∑
i,j

√
n(fi − μX)

1
n

r−1
ij

√
n(fj − μX)

)
df1 · ·dfm

=
1√

(2π)m|r|

∫ ∞

b̂

· ·
∫ ∞

b̂

exp
(
− 1

2

∑
i,j

(fi − μX)r−1
ij (fj − μX)

)
df1 · ·dfm (8.14)

where |r| is the determinant of the covariance matrix of X and r−1
ij is element (i, j)

of the inverse of the covariance matrix. The integral in Equation 8.3 is recognized
with another lower integration limit, hence:

Pr[b ≤ Y1 ≤ ∞, b ≤Y2 ≤ ∞, ..., b ≤ Ym ≤ ∞]

= Pr[b̂ ≤ X1 ≤ ∞, b̂ ≤ X2 ≤ ∞, ..., b̂ ≤ Xm ≤ ∞]

= Pr

[
b√
n
− μX(

√
n − 1) ≤ X1 ≤ ∞, ..,

b√
n
− μX(

√
n − 1) ≤ Xm ≤ ∞

]
(8.15)
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μX = 0

n streams n streams

MV NI(a∗,∞, 0, r)

MV NI(b∗,∞, 0, nr)

a∗ = a − μX

b∗ = b − n · μX

MV NI(a,∞, μX , r)

b∗ = a∗ · √n

MV NI(b,∞, nμX , nr)

b = a
√

n + μX(n −√
n)

b = a∗ · √n + nμX

Figure 8.1: The relations between the single and aggregated processes.

A relation between non-zero mean and zero mean (denoted X∗) single processes
is straightforward, where the lower integration limit for the latter will be equal to
b̂ − μX . This in turns leads to the following relation between the non-zero mean
aggregate and the zero-mean single process:

Pr[b ≤ Y1 ≤∞, b ≤ Y2 ≤ ∞, ..., b ≤ Ym ≤ ∞]

= Pr

[
b√
n
−μX(

√
n − 1) − μX ≤ X∗

1 ≤ ∞, ..,
b√
n
− μX(

√
n − 1) − μX ≤ X∗

m ≤ ∞
]

(8.16)

The relations between the MVNI for the single and aggregated processes with
zero mean and non-zero mean are summed up in Figure 8.1, with the limits for the
MVNI (lower integration limit, upper integration limit, mean, covariance matrix).

For the expression in Equation 8.3, the threshold exceeding probabilities for
different thresholds can be found numerically using the Cholesky transform as
described in [150], or experimentally using simulations. In the latter case it suffices
to study a single basic process.

8.4 Limit Distributions for Characteristics of Excursions

Expressions for the limit distributions of characteristics of excursions over a high
level are found for a continuous Gaussian process in [149], as length, volume
and height of an excursion. The process has zero mean and the exceedances are
evaluated over the level r when r → ∞, where Δr is the length of an excursion,
mr is the maximum height of excursion and Sr is the area of excursion as shown
in Figure 8.2.

The distribution functions for the excursion statistics over a high threshold r
are then given as:

P1(v) = P{rΔr ≥ v} = exp
{
− λ2

8λ2
0

v2
}

(8.17)
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Figure 8.2: The characteristics of excursions for a continuous process.

P2(v) = P{rmr ≥ v} = exp
{
− v

λ0

}
(8.18)

P3(v) = P

{
3
2
r2Sr ≥ v

}
= exp

{
−
( λ2

8λ4
0

)1/3

v2/3

}
(8.19)

where λk is given by:

λk =
∫ ∞

0

λkdF (λ) =
∫ ∞

0

λkf(λ)dλ (8.20)

and F (λ) and f(λ) are the spectral distribution function and spectral density
function of the autocorrelation of the process, respectively.

The spectral density for an autocorrelation function ρ(t) is given as:

f(λ) =
2
π

∫ ∞

0

cos(λt)ρ(t)dt (8.21)

For the continuous distributions, the i-th order moments for the length of an
excursion are defined using the complementary cdf as [13]:

E[rΔi
r] =

∫ ∞

0

i · vi−1P1(v)dv (8.22)

For the distribution of the volume and maximum height of an excursion, the
moments are defined in the same way:

E[rmi
r] =

∫ ∞

0

i · vi−1P2(v)dv (8.23)

E
[3
2
r2Si

r

]
=
∫ ∞

0

i · vi−1P3(v)dv (8.24)
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In addition, the relationship between the distribution functions of the length
and volume of an excursion is explored. It can be seen from Equation 8.20 and
8.21 that λ0 is always equal to 1, hence:

P1(v) = exp
{
− λ2

8
v2
}

(8.25)

and

P3(v) = exp
{
−
(λ2

8

)1/3

v2/3
}

(8.26)

Taking the natural logarithm of both of them gives:

P3(v) = exp
{
−
(
− lnP1(v)

)1/3}
(8.27)

and hence a very simple relation between the distribution functions of the two
characteristics exists. This relation is also explored for the length and loss volume
of a loss period for the discrete process in Section 9.4.

8.4.1 Permissible Correlation Functions

When choosing a correlation function for the analysis, two requirements must be
satisfied. First, the correlation function should resemble the actual video data,
and appropriate correlation functions for modeling are explored in Section 9.3.1
for the video traces described in Section 3.4. Second, conditions for the continuous
process are given in [149], saying that the process should be a stationary, ergodic
Gaussian random process with zero mean and a twice differentiable correlation
function such that for |t| ≤ t0:

|ρ′′(0) − ρ′′(t)| ≤ ψ(|t|), (8.28)

where ψ(|t|) is a non-decreasing and continuous function for |t| ≤ t0, ψ(0) = 0.
This defines the permissible correlation functions. It is found in [149] that the
function ψ(t) = C/| log |t||1+ε , ε > 0 satisfies the required restriction placed on
ψ(t).

The inequality in Equation 8.28 is plotted in Figure 8.3 for the functions e−t

and e−t2 to test if these functions are permissible. As can be seen in the figure,
the condition is fulfilled for both of these functions, and they are suitable choices
for the analysis based on the second requirement. However, even though this
figure shows that the chosen functions are permissible, preliminary calculations
showed non-converging integrals for the λ-constants for e−t, as is shown next.

8.4.2 Study of Two Permissible Correlation Functions

This section starts with the calculation of the λ-constants with the correlation
function ρ(t) = e−t. This gives the following expression for the spectral density:

f(λ) =
2
π

∫ ∞

0

cos(λt)e−tdt =
2
π

1
1 + λ2

(8.29)
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Figure 8.3: |ρ′′(0) − ρ′′(t)| versus ψ(t) = C/| log |t||1+ε where C = 60 and
ε = 0.001.

and hence for the λk constants:

λk =
2
π

∫ ∞

0

λk 2
π

1
1 + λ2

dλ (8.30)

This integral does not converge when k = 1, 2. Hence, the distribution of the
excursion cannot be found for this correlation function, even though it is a
permissible correlation function.

Next, the calculation of the λ-constants using the correlation function ρ(t) =
e−t2 is shown. This gives the following expression for the spectral density:

f(λ) =
2
π

∫ ∞

0

cos(λt)e−t2dt =
e−

1
4 λ2

√
π

(8.31)

and hence for the λk constants:

λk =
2
π

∫ ∞

0

λk e−
1
4 λ2

√
π

dλ (8.32)

The λk-constants will then be equal to: λ0 = 1, λ1 = 2√
π

and λ2 = 2. For these
constants the moments of the excursion statistics can be evaluated. The correlation
function ρ(t) = e−t2 is therefore employed for comparison of the characteristics of
an excursion for the continuous process with the moments of the length and loss
volume of a loss period for the discrete process in Section 9.4.

8.5 Conclusions

In this chapter, it is shown that the exceedances over a threshold for an aggregated
video stream modeled as a discrete, multivariate Gaussian process can be estimated
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using characteristics of exceedances for a basic stream, also modeled as a Gaussian
process. This gives the required fundament to proceed with a numerical solution.

The results based on the limit distributions for the continuous process are
unfortunately of limited value due to the restriction on the correlation functions and
the problem of computing the λ-values even for permissible functions. Appropriate
correlation functions computed from the video traces can therefore not be employed
for estimation of the limit distributions. Because of these shortcomings, the
numerical approach for the discrete process seems as an attractive approach to
estimate the exceedances. These exceedances constitute loss periods and the
numerical results for the distribution of the loss period are given in Chapter 9,
together with results from simulations.
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Chapter 9

Characteristics of Loss Periods for

Aggregated Video Traffic

In this chapter, slice-based encoded video traffic is modeled using the Gaussian
model as described in Chapter 8. The correlation functions are modeled using
the video traces described in Chapter 3 and the exceedance probabilities of frame
sizes over a threshold are found numerically. These exceedances constitute loss
periods, and the distributions of the length and loss volume of a loss period are
found. The loss volume gives the packet loss in the bufferless case and is also used
for estimating the packet loss in a bottleneck node with small buffers.

9.1 Introduction

Estimation of the packet loss for a video transmission over a communication
network is an important step for assessing the perceived QoS of the transmission.
The loss probability is particularly important, but also the characteristics of a loss
period have a profound effect, since bursty losses influence the perceived QoS in
a different way than uniform distributed losses, as discussed in Section 2.2. The
distribution of the loss periods, and particularly the first and second moments,
is therefore of great interest and can be used to deduce the perceived QoS for a
video transmission. Knowledge about the probability of subsequent packet losses
in a packet stream is also important for doing video encoding, as this knowledge
can be exploited to choose the best encoding parameters.

The multivariate normal integral is used for evaluating the exceedances of
frame sizes over a threshold, and relations between the exceedances for the basic
process and the aggregate is found in Chapter 8. The multivariate normal integral
problem is solved numerically, since an analytical solution is impossible. The
numerical solution is acceptable if it is accurate enough and does not take to much
time.

The numerical results for the exceedance probabilities are used for estimating
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the length of a loss period as well as the loss volume of a loss period for the
discrete process. For a bufferless node, the total packet loss will be equal to the
loss volume. In addition, an approach to packet loss estimation for a bottleneck
node with a small buffer is developed, using the distribution of the loss volume
for the discrete process. In addition, the correspondence between loss period
characteristics for discrete processes and excursion characteristics for continuous
processes is investigated. Furthermore, the relation found between the length and
volume of excursions over high thresholds for continuous processes in Section 8.4
is employed for the discrete process as well.

9.1.1 Related Work

As described in Section 2.2, the perceived QoS for a user watching a video
transmitted over a network is affected by a number of factors, including the loss
ratio and the distribution of the losses. This motivates the focus on the distribution
of a loss period in this work. The effect of the burst loss on the distortion is
studied e.g., in [65]. A model is proposed to estimate the distortion from different
types of artifacts, and the results are compared to simulations. The results show
that the burst length of the loss process is important for estimating the distortion,
and that loss occurring in bursts affect the distortion more than single losses of
the same amount.

Characterization of the loss period can be viewed as a level-crossing problem.
Level-crossing is a very difficult problem and there are few general results. This
problem has been studied for Gaussian processes in [151] and experimental prob-
lems are investigated in [152]. This theory can be used to predict crossings over
a threshold for several physical processes such as flood level. For traffic analysis
purposes, the level-crossing problem in discrete time can be used for predicting
packet loss over a bufferless communication link, where the level corresponds to a
given threshold.

In [153], relationships between discrete and continuous Gaussian processes are
investigated. In particular, results are given in the case where the discrete process
is first order Markovian (AR(1)), and the continuous process has a sampled
autocorrelation function which is exponential, in order to match the discrete
process.

In this work, the correspondence between the excursions for the continuous
Gaussian process described in Chapter 8 and the moments of the length and loss
volume of a loss period for the discrete Gaussian process is investigated.

9.1.2 Chapter Outline

The rest of this chapter is organized as follows. The distribution of the length
and loss volume of a loss period for the aggregated traffic is found in Section 9.2.
The multivariate normal integral is calculated numerically for the single stream in
Section 9.3 and the moments of the length and loss volume of a loss period for the
aggregated traffic are deduced. Section 9.4 compares the first moments of a loss
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Figure 9.1: Characteristics of exceedances.

periods and of an excursion for a permissible correlation function. Little’s formula
is employed for estimating the first moments of the length of an excursions and a
loss period in Section 9.5, validating the numerical results. The calculation of the
loss in a model with a small buffer, using the distribution of the loss volume in a
loss period, is then given in Section 9.6. Finally, some conclusions are given in
Section 9.7.

9.2 Characteristics of Loss

The distribution of the loss is studied, since the perceived QoS depends on the
packet loss distribution in addition to the loss ratio. Discrete and continuous
multivariate Gaussian processes as described in Chapter 8 are used, having the
same mean and covariance. The term excursion is used for exceedances over a
threshold for the continuous process, while the term loss period is used for the
exceedances in the discrete case. An illustration of loss periods for a discrete
process and excursions for a continuous process is given in Figure 9.1, to clarify
the terminology.

As can be seen in the figure, a loss period equals a number of consecutive
frames with frame sizes larger than the threshold. There is a difference between
the discrete and the continuous process since the loss period of the former has
a minimum length equal to 1, while there is no minimum for the continuous
process. The loss period defined here is also different from the loss period defined
in Chapter 7, since the latter only require one exceedance in a cluster.

The approach to estimate the moments of the length and loss volume of a loss
period for the discrete process is given next.

9.2.1 Length of a Loss Period

An expression for the complementary cumulative distribution function (cdf) for
the number of consecutive losses, Pr[MX,a > m] is found, where MX,a denotes
the number of consecutive exceedances for the process X over the threshold a.
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From the complementary cdf, known solution methods can be used to find the
moments of the length of a loss period.

The complementary cdf for the number of consecutive losses, conditioning on
a loss event, is then given by:

Pr[MX,a > m] = Pr[Xm+1 > a,Xm > a, .., X2 > a|X1 > a,X0 < a] (9.1)

Using the law of conditional probability on this last equation gives:

Pr[Xm+1 > a,Xm > a, .., X2 > a|X1 > a,X0 < a]

=
Pr[Xm+1 > a,Xm > a, .., X1 > a,X0 < a]

Pr[X1 > a,X0 < a]
(9.2)

Applying the law of total probability on the numerator and denominator gives
the following expression for the complementary cdf for the length of a loss period:

Pr[MX,a > m] =
Pr[X1 > a, .., Xm+1 > a] − Pr[X0 > a, .., Xm+1 > a]

Pr[X1 > a] − Pr[X0 > a,X1 > a]
(9.3)

MY ,n,b is then the number of consecutive exceedances over the threshold
b for the process Y , where the aggregate consists of n basic processes. The
complementary cdf for the number of consecutive exceedances for the aggregate is
then given by:

Pr[MY ,n,b > m] =
Pr[Y1 > b, .., Ym+1 > b] − Pr[Y0 > b, .., Ym+1 > b]

Pr[Y1 > b] − Pr[Y0 > b, Y1 > b]

= Pr[MX,b̂ > m] = Pr[MX∗,b̂−μX
> m] (9.4)

The above equation establishes the relations between the distribution of the
length of a loss period for the aggregated process Y and the single processes X
and X∗. It follows that:

E[M i
Y ,n,b] = E[M i

X,b̂
] = E[M i

X∗,b̂−μX
] (9.5)

where i-th order moments for a loss period for the aggregate process (and hence
the single processes) can be calculated as:

E[M i
Y ,n,b] =

∑
m

mi · Pr[MY ,n,b = m] (9.6)

The distribution of the length of a loss period for an aggregate of n video
streams can then be found from the basic processes, defined by their means
and covariance functions. The multivariate normal integral has to be calculated
numerically or by using simulation. Simulation is demanding and cumbersome,
and will also inevitably suffer some inaccuracies. Simulation is hence only an
alternative for cases when computation of the multivariate normal integral fails.
The numerical calculation is investigated in Section 9.3 together with results from
simulation.
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In an aggregate, the constellation of scenes will change, governed by scene
changes in each stream. It was found that scene lengths are close to a Geometric
distribution in Chapter 4. This is in agreement with the negative exponential
distribution (ned) in the continuous case, found to model the scene length in [96].
The length of a scene constellation in an aggregate will then also be ned. A
given constellation can then be analyzed separately and a representative mix of
constellations weighted together afterwards. The occurrence of the various scene
constellations will determine the resulting loss.

9.2.2 Loss Volume in a Loss Period

The moments of the loss volume in a loss period, or loss volume in short, can be
employed for estimating the packet loss in a bufferless network node, as well as
the loss in a node with a small buffer. To the best of our knowledge, no exact
results exist for the loss volume for a discrete, multivariate normal distribution.
In this section, an approximate numerical approach for estimating the loss volume
for the discrete process is developed.

To find the distribution of the loss volume, it needs to be conditioned on
that the frame immediately before and after the loss period are both below
the threshold. Conditioning on the process being below a value is much more
cumbersome than conditioning on a particular value. Hence, several cases are
investigated in the following. The notation fX(x) = Pr[X = x] is used as a
shorthand for fX(x) = Pr[x < X ≤ x + dx], and the following moments are of
interest:

E[(X1 − a + .. + Xm − a)k|X0 = x0, X1, ..Xm > a,Xm+1 = xm+1] (9.7)

i.e., the moments of the loss volume.
The distribution:

Pr[X1 = x1, .., Xm = xm|X0 = x0, Xm+1 = xm+1] (9.8)

can easily be found using known results from the conditional multivariate distri-
bution [154]. Including the final condition, X1, .., Xm > a, is then a matter of
normalization, namely:

fX(x1, .., xm|X0 = x0, X1, ..Xm > a,Xm+1 = xm+1)

=
fX(x1, .., xm|X0 = x0, Xm+1 = xm+1)

Pr[X1, .., Xm > a|X0 = x0, Xm+1 = xm+1)
(9.9)

The conditional distribution in Equation 9.8 is then rewritten as:

fC(C1|C2 = c) (9.10)

where

C1 =

⎡⎢⎢⎣
X1

·
·

Xm

⎤⎥⎥⎦ , C2 =
[

X0

Xm+1

]
(9.11)

127



9.2. Characteristics of Loss

and

c =
[

x0

xm+1

]
(9.12)

Results for conditional multivariate normal distributions given e.g., in [154]
are then employed in the following.

For our process, the mean vectors have elements:

μ1 =

⎡⎢⎢⎢⎢⎣
μX1

μX2

·
·

μXm

⎤⎥⎥⎥⎥⎦ and μ2 =
[

μX0

μXm+1

]
(9.13)

and the covariance matrix has elements:

Σ11 = E[C1C
T
1 ], (9.14)

Σ12 =
[
E[C1X0] E[C1Xm+1]

]
, (9.15)

Σ21 =
[

E[X0C
T
1 ]

E[Xm+1C
T
1 ]

]
, (9.16)

and

Σ22 =
[

E[X0X0] E[X0Xm+1]
E[X0Xm+1] E[Xm+1Xm+1]

]
(9.17)

Then the distribution of C1 conditioned on C2 = c is multivariate normal
(C1|C2 = c) ∼ N(μ,Σ) with mean vector

μ = μ1 + Σ12Σ−1
22 (c − μ2) (9.18)

and covariance matrix
Σ =Σ 11 − Σ12Σ−1

22 Σ21. (9.19)

The final step is then to estimate this distribution and estimate the expectation
function in Equation 9.7 numerically. This gives the moments of the sum of
exceedances conditioned on a given length of the loss period. To find the overall
moments, the expectations are unconditioned using the probability density function
of the length of the loss period as found in Section 9.2.1.

The k-th moment for the loss volume is then found as:

E(Sk) =
m∑

i=1

E

[( i∑
j=1

Xj − a
)k
]
· Pr[MX,a = i] (9.20)

where S is the loss volume of the loss period.
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Figure 9.2: One scene from the slice-based encoded StEM clip.

9.3 Numerical Computations and Results from

Simulations

Exact calculation of the multivariate normal integral is generally not feasible [151].
However, a numerical method with acceptable accuracy is developed in [150],
using the Cholesky transformation. This method for evaluating the integral is
implemented in the package mvtnorm [155], contained in the program R [156].
Also, the generation of multivariate normal variates with a given mean vector
and covariance matrix is included. The loss period characteristics over a given
threshold can then easily be estimated from these variates using simulations.

The expectation function needed for evaluating the volume of a loss period can
not be found using the mvtnorm package in R. However, a function qsimvnef in
Matlab is available from [157] for estimating the MVN expectation for an arbitrary
expectation function, also employing the algorithm from [150].

The numerical computation time for the moments of the length and loss
volume of a loss period is in the order of seconds for each threshold, using a regular
computer.

Next, the ACFs from real video traces are modeled, followed by the numerical
and simulation results for the distributions of the loss period characteristics.

9.3.1 Modeling the ACF using Video Traces

Real video traces encoded using the slice-based video encoding scheme as described
in Section 3.3 are used as a basis for choosing the ACFs used in the model. First,
one scene of the StEM clip is employed. This clip has high variability in the
average bitrate over scenes, but within each scene the bitrate is more constant.
The number of bytes per frame for one scene with approximately 230 frames, as
well as the ACF are shown in Figure 9.2. The ACF is high for lags < 50, but then
decreases and stays almost within the confidence interval 1.96/

√
n.

Second, the Mobile clip with 220 frames and a relatively stable bitrate is used.
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Figure 9.3: The slice-based encoded Mobile clip.

The number of bytes per frame is shown in Figure 9.3 together with the ACF. The
ACF for the Mobile clip shows some oscillating behavior, and is also negligible for
high lags.

The ACFs for the two video clips, when generalized to either a slowly decreasing
or an oscillating function, are believed to be representative for a large number of
video clips (and also audio clips). In the following they form the basis for two
different types of models used for the ACF.

The covariance matrix r for X needs to be a positive definite matrix. A
correlation function which satisfies this requirement is [158]:

ρ(h) = e−khν

, 0 < ν ≤ 2 (9.21)

For ν = 1 the function becomes the ordinary negative exponential function; for
0 < ν < 1 it has a longer tail. A sum of two positive definite functions is also
positive definite [158]. A permissible function is therefore:

ρ(h) = a1e
−h/x1 + a2e

−h/x2 , x2 >> x1 (9.22)

where a1 + a2 = 1. This combined function can model a longer tail and is used in
this study.

For the oscillating ACF the exponentially damped cosine correlation function
is used:

ρcos(h;ω, R) = e−3h/R cos ωh (9.23)

where the period ν = 2π/ω. This function is also positive definite [158].
In Figure 9.4, the different correlation functions employed are shown. It is

clear that using the exponential function with parameter 1.0 gives only short term
correlation, while the combined functions and the oscillative decaying functions
have higher correlation values at higher lags, resembling the ACF of the traces.

9.3.2 Exceedances over a Threshold

The exceedances over various thresholds are evaluated, where the thresholds are
expressed as fractions of the standard deviation σX of X (X∗). This means that
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Figure 9.4: The correlation functions employed.
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Figure 9.5: The probability of m consecutive exceedances for variable thresholds.

only the correlation matrix is needed as input to the model.
As a first step, the probability of consecutive exceedances over the threshold

for the basic, zero-mean multivariate normal process X∗ is evaluated. The
intermediate results are shown for the exponential correlation function with
parameter 1.0. Later, the first and second moments of the length of a loss period
are compared for all correlation matrices.

The probabilities of consecutive losses, Pr[M = m] found from the multivariate
normal integral are shown in Figure 9.5. The thresholds which correspond to the
lower integration limits in the MVNI are equal to 0.1, 0.2, 0.4 and 0.6 times the
standard deviation. The probability of m = 1 consecutive exceedances gives the
overall loss probability.

The thresholds b∗ for the zero-mean aggregate consisting of n basic processes
will now be found using the relation b∗ = a∗ · √n where a∗ is the threshold for the
basic zero-mean process. For the aggregated stream with n = {2, 5, 10, 20, 50}, the
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Table 9.1: The threshold b∗ for the zero-mean aggregate.

n 0.1 · σX 0.2 · σX 0.4 · σX 0.6 · σX

2 0.0705 σY 0.1425 σY 0.2830 σY 0.4245 σY

5 0.0446 σY 0.0894 σY 0.1788 σY 0.2684 σY

10 0.0316 σY 0.0632 σY 0.1265 σY 0.1897 σY

20 0.0224 σY 0.0447 σY 0.0895 σY 0.1342 σY

50 0.0141 σY 0.0283 σY 0.0566 σY 0.0849 σY

Table 9.2: Complementary cdf for the length of a loss period.

m 0.1 · σX 0.2 · σX 0.4 · σX 0.6 · σX

0 1.0 1.0 1.0 1.0
1 0.572 0.542 0.483 0.425
2 0.342 0.308 0.245 0.190
3 0.206 0.177 0.126 0.0856
4 0.125 0.101 0.0643 0.0387
5 0.0753 0.0582 0.0329 0.0175
6 0.0455 0.0333 0.0169 0.00789
7 0.0275 0.0191 0.00866 0.00356
8 0.0166 0.0110 0.00444 0.00161

results are shown in Table 9.1. This means that the probability of exceeding the
threshold 0.1 · σX for the basic process is equal to the probability of exceeding the
threshold 0.0141 · σY (where σY = n · σX) for the aggregate consisting of n = 50
basic processes.

9.3.3 Length of a Loss Period

For estimating the length of a loss period, the next step is to calculate the
complementary cdf Pr[MX∗,a∗ > m] and Pr[MY ∗,n,b∗ > m] for the basic and
aggregated processes respectively. Equation 9.3 is used, and the same thresholds
as before are employed for the basic and aggregated processes. It is conditioned
on the occurrence of a loss, therefore the probability of more than zero losses is
equal to 1 for all thresholds. The results from these calculations are shown in
Table 9.2. The complementary cdf for the length of a loss period is then the same
for the aggregate, where the corresponding threshold is found in Table 9.1.

The moments of the length of a loss period is calculated using Equation 9.6.
First, the results for the exponential correlation functions are shown. The first
moments are shown in Figure 9.6(a), with different covariance matrices and for
variable thresholds. The moments for the basic process with the threshold given
in the figure correspond to the moments for the aggregated process of n basic
processes where the threshold for the aggregated process for each n is given in
Table 9.1. In Figure 9.6(b), the second moment for the number of consecutive losses
is shown for the same thresholds and covariance matrices as above, while in Figure
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Figure 9.6: Characteristics of the length of a loss period.
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Figure 9.7: First moment of the length of a loss period found from the numerical
calculation together with the average length of a loss period from the traces.

9.6(c), the coefficient of variation is shown. A value of the coefficient of variation
around 1 indicates a Geometric distribution, values lower than 1 and higher than
1 indicate Hypogeometric and Hypergeometric distributions respectively.

As expected, there are large differences in the moments of the length of a loss
period for the different covariance functions. This indicates that while the loss
periods are relatively short and frequent when the parameter of the exponential
function is equal to 1.0, the loss periods become longer and less frequent when the
correlation is given by a combination of exponential functions with parameters 0.1
and 0.2.

In Figure 9.7(a), the first moment of the length of a loss period for the StEM
clip, using the real correlation values of the clip in the model, is compared to
the sample average and sample second moment from direct inspection of the
trace. Also, the first moment for two different ACFs are shown. The difference
between the first moment from the the trace and from the model is partly due to
a single long loss period for the trace. For the oscillative decreasing correlation
functions, the first moments are shown in Figure 9.7(b). In addition to the
moments calculated from the model, also the sample moments of the length of
a loss period from the Mobile trace are shown, found from direct inspection of
the trace. As can be seen, the sample average and sample second moment are
less smooth than the moments from the model. This is due to the low number of
frames in the clip and hence only a few loss periods contribute to the calculation of
the sample moments for high thresholds. More and larger clips are hence needed
to validate the model.

Finally, the length of a loss period is found using simulation. 20 different
samples are generated, with 3000 variates in each. The first moment including
Student’s t-confidence intervals for the correlation function e−h2

, is shown in
Figure 9.8 together with the results from the numerical computation. As can be
seen in the figure, the results overlap completely for the numerical computation
and simulation.
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and simulation with correlation function e−h2

.

9.3.4 Loss Volume of a Loss Period

The first moment of the loss volume from numerical computation is shown in
Figure 9.9(a), together with the results from simulation. The correlation function
ρ(h) = e−h2

is used, in order to compare with the results from the continuous
process. Three different sets of results are shown, varying the condition on the
frames before and after the loss period, with x0, xm+1 = a as the worst case and
x0, xm+1 = 0 as the best case in terms of a smaller first moment. x0, xm+1 = 0.5a
gives the best correspondence to the simulation results. It is clear that decreasing
the condition values influences the expectation. Conditioning on x0, xm+1 = a
gives too high moments for the loss volume as compared to simulations, while
the lowest condition value gives a smaller loss volume than the loss volume from
simulations for high thresholds.

The second moment of the loss volume from the numerical computation is
shown in Figure 9.9(b), together with the results from simulations, including
confidence intervals. Similar discrepancies as for the first moment are observed.

Finally, to overcome the discrepancies due to conditioning on explicit values of
X0 and Xm+1, conditioning on the expected values of X0 and Xm+1 given that
they are below the threshold is done.

x0 =E[X0|X0 < a,X1 > a]
xm+1 =E[Xm+1|Xm > a,Xm+1 < a] (9.24)

The results are given in Figure 9.9(c), and show that conditioning on the expected
value gives results very close to conditioning on x0, xm+1 = 0.5a, where the latter
is a simpler approach.
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Figure 9.9: Moments of loss volume in a loss period found from numerical
computation and simulation.
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Figure 9.10: Moments of the length and loss volume of a loss period, continuous
process and discrete process.

9.4 Comparison of Loss Periods and Excursions

In order to check the agreement between characteristics of excursions for the
continuous process and the discrete process, the quantiles for loss within a certain
percent are investigated. The focus is on 5, 3 and 1% loss, and these quantiles are
found for the standard normal distribution N(0, 1) as 1.645 for 5% loss, 1.881 for
3% loss, and 2.326 for 1% loss.

Acceptable loss is typically below 3%, or even lower for real-time video as
described in Section 2.2 meaning that thresholds above 1.8 are of highest interest.
Whether the correspondence between the moments for the continuous process and
the discrete process over these thresholds is satisfactory or not should then be
investigated.

The limit distributions, P1(v), P2(v) and P3(v) for the correlation function
ρ(t) = e−t2 can now be estimated for different thresholds. A comparison between
the first moments of the length and volume of the excursions from the continuous
model and likewise for the discrete process using numerical evaluation of the
multivariate normal integral is shown in Figure 9.10(a), while the second moments
are shown in Figure 9.10(b).

The results from [149] are valid only when the threshold r → ∞, which explain
the discrepancies for low thresholds in Figure 9.10(a) and 9.10(b). For thresholds
higher than approximately 1.5, the results for the discrete and continuous processes
are comparable, covering the interesting range of the thresholds (> 1.8) for which
the loss probability is acceptable. Next, the first moment of the continuous
process goes towards zero for high thresholds, while for the discrete process it is
conditioned on a loss event and the first moment of the length is always higher
than 1.
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Figure 9.11: First moment of length and loss volume of a loss period, together
with the loss volume from the relation.

9.4.1 Using a Relation Between Length and Volume

For the continuous Gaussian process, a relation between the length and volume
of an excursion over high thresholds exists, as shown in Equation 8.27. In this
section, it is investigated if this relation is valid at high thresholds for a discrete
process as well.

As a first step, the moments of the length of a loss period are found for the
discrete model using the MVNI integral. The first moment of the loss volume is
then calculated from the length using Equation 8.27, and the results are shown in
Figure 9.11(a), together with the first moment of the loss volume found from the
numerical method, conditioning on x0, xm+1 = a.

As can be seen in the figure, the relation between the length and volume of the
excursion for the continuous process is a good approximation also in the discrete
case. Estimating the loss volume from the relation gives almost identical first
moment as for the numerical estimation at high thresholds, using the condition
x0, xm+1 = a. This means that the first moment of the loss volume estimated
from the relation is a bit higher than the loss volume from simulations.

Next, the first moments of the length and loss volume of a loss period from the
Mobile trace are shown in Figure 9.11(b), together with the loss volume calculated
using the relation between the length and the volume. For high thresholds, the
relation gives a close approximation, as was also seen for the discrete process.

To investigate the usefulness of the relation further, the differences between
the true loss volume and the loss volume from the relation for each threshold are
evaluated for the Mobile clip. If the differences are independent, it is an indication
that the relation can be employed. In Figure 9.12, the ACF of the differences
between the first moment of the loss volume from the relation and the first moment
of the loss volume from the trace is shown. The ACF is negligible for lags > 1,
which is a first indication that the differences are independent. In addition, the
Ljung-Box test is calculated for the differences samples. This test, as described
in [101], evaluates the sum of the ACF up to a given lag. If this sum is too large,
the samples are probably not independent. In our case, the Ljung-Box test gives
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Figure 9.12: ACF of the differences from comparing the first moment of the loss
volume from the Mobile trace with the loss volume from the relation.

a clear indication of independent differences. Together, these two tests indicate
that the relation for the continuous process is valid for estimating the loss volume
from the length of a loss period for the discrete process.

9.5 Expected Length of a Loss Period and an Excursion

Using Little

As an alternative to finding the first moment of the length of a loss period and an
excursion, Little’s formula [13] can be employed to estimate the expected length,
when the intensity into the loss area is known.

Little’s queueing formula gives a relation between the average number in a
system state, the arrival intensity into the state and the average sojourn time in
the state.

For the discrete process, the intensity into the loss area, ΛD, is known as the
probability of having a frame larger than the threshold when the previous frame
was below the threshold. This is given as:

ΛD = Pr[X1 > a,X0 ≤ a] = Pr[X1 > a] − Pr[X0 > a,X1 > a] (9.25)

The expected length of a loss period (WD) is then found using the intensity
into the loss area (ΛD) and the expected number in the loss state (LD), where
the latter is merely the probability of being in the loss state, given as Pr[X0 > a].

WD =
LD

ΛD
=

Pr[X0 > a]
Pr[X1 > a] − Pr[X0 > a,X1 > a]

(9.26)

For a continuous process, the intensity into the loss area, ΛC , is given in [159]
and [153]:

ΛC =
1
2π

·
√

−ρ′′(0)
ρ(0)

· e(− a2
2ρ(0) ) =

1
2π

·
√
−ρ′′(0) · e(− a2

2 ) (9.27)
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Figure 9.13: First moment of the length of a loss period and length of an
excursion, together with the results found using Little’s formula.

for the threshold a. Using Little again then gives:

WC =
LC

ΛC
(9.28)

where the probability of being in the loss state is taken from the standard normal
distribution for the given threshold a.

The results from using Little on the discrete and continuous processes with
correlation function ρ(h) = e−h2

and ρ(t) = e−t2 , respectively, are shown in Figure
9.13 together with the previous results for the discrete and continuous processes.
As can be seen, the results from the numerical evaluation for the discrete process
are identical to those using Little, validating the numerical approach. For the
continuous process, the difference between the moment found from Little and
found using the limit distribution from [149] is large for low thresholds, but for
thresholds higher than 2.0 they coincide. This is as expected since the limit
distribution is valid only for high thresholds.

9.6 The Approximate Loss with a Small Buffer

In a bufferless system, the bit loss is estimated by the distribution of the loss
volume in a loss period. Next, when the buffer size in a node is finite and relatively
small, the loss in a loss period is determined by the buffer size, the buffer content
at the beginning of the loss period, and the loss volume of a loss period in a
bufferless system. Loss with a small buffer can then be approximated from the
characteristics of the bufferless system.

The excess capacity in a non-loss period is the unused capacity at a time
instant. The excess volume (V ) is then defined as the accumulated excess capacity
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Figure 9.14: Expected buffer content at the end of a loss period, for different
thresholds a.

in a non-loss period and gives the available capacity that can be used for emptying
the buffer before the next loss period. When a non-loss period has a larger excess
volume than the remaining buffer content at the end of a loss period, the loss can
be found from the loss volume in a loss period in the bufferless system, since the
buffer is then always empty at the beginning of a new loss period.

The probability of an empty buffer at the start of a loss period for given
thresholds and buffer sizes is therefore investigated. The buffer size is denoted
z and the buffer content is denoted U . The buffer content at the end of a loss
period is then given as U = min(z, S), where S is the loss volume of a loss period
in the bufferless model.

The expected buffer content at the end of a loss period is then:

E[U ] = P (S ≥ z) · z + P (0 < S < z) · E[S|0 < S < z] (9.29)

The expected buffer content is shown in Figure 9.14 for different buffer sizes
and thresholds.

The excess volume in a non-loss period can be found numerically using the
same procedure as for the loss volume of a loss period. The probability of the
excess volume in a non-loss period being larger than the remaining buffer content
at the end of a loss period is then given as:

Pr[V > U ] =
∫ z

u=0

Pr[V > U |U = u] · Pr[U = u]du

=
∫ z

u=0

∫ ∞

v=u

fU (u)fV (v)dudv (9.30)
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Figure 9.15: The probability of the excess volume in a non-loss period being
larger than the remaining buffer content at the end of a loss period, for different
thresholds a.

where the density function is fU (u) for the remaining content and fV (v) for the
excess volume, respectively. It is assumed that the remaining buffer content and
the excess volume are independent. For the cases studied, the mean and variance
of S and V are known. Both of them have a coefficient of variation around 1, and
are therefore modeled with an Exponential distribution. The remaining buffer
content will have the same distribution as the loss volume for U < z, and be equal
to z for U = z.

The probability of an excess volume in a non-loss period being larger than the
remaining buffer content at the end of a loss period for thresholds equal to 0.5-2.5
is shown in Figure 9.15. As can be seen, the probability that the buffer is empty
at the beginning of a loss period is high for high thresholds.

When it is justified that the probability of an empty buffer at the beginning of a
loss period is high, the amount of loss (Sfinite) is given by Sfinite = max(S − z, 0).
The expected loss is then given as:

E[Sfinite] = P (S > z) · (E[S|S > z] − z) + P (S ≤ z) · 0 (9.31)

The expected loss is shown in Figure 9.16(a), for thresholds from 0.5 to 2.0.
Clearly, even a very small buffer significantly reduces the expected loss.

Finally, the reduction in the expected loss in a loss period by introduction of a
small buffer is given in Figure 9.16(b) as E[Sfinite]/E[S]. This can be interpreted
as the gain in terms of reduced loss by including a buffer of the given size.
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Figure 9.16: Expected loss with a small buffer, and the corresponding reduction
in loss compared to the bufferless case.

9.7 Conclusion

The QoS perceived by a user watching a video transmitted over the Internet
depends on the packet loss both through its value and its distribution. The
moments of the length of a loss period are evaluated with different thresholds and
different correlation structures and show that the first and second moments vary
with the correlation structure for the same loss probabilities.

The distribution of the loss volume of a loss period is important for estimating
the expected loss in a node with a small buffer, in addition to giving the loss
directly in a bufferless node. The results for the discrete process are compared
to the results for a continuous process, based on results for limit distributions.
Comparison of the first and second moments of the length and the volume of a loss
period for the continuous and discrete process gives satisfactory correspondence for
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high thresholds. This is as expected, since the results for the continuous process
are only valid for high thresholds. The relation between the length and volume of
an excursion over high thresholds for the continuous process is found to be useful
for the discrete process as well for the examples studied.

A first validation of the Gaussian model is done using real video traces, however,
more work is required. Also, more effort should be put into the specification of
correlation matrices for real video traces. It also remains to find the distribution
of losses for a targeted single stream in the aggregate.
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Part V

Router Models for Quality of

Service Assessment

The results in this part have been published as follows:

Astrid Undheim, Yuming Jiang, and Peder J. Emstad. “Network Calculus Approach to Router
Modeling Using External Measurements.” In Proceedings of the International Conference on
Communications and Networking in China (ChinaCom), Shanghai, China, August 2007.
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Chapter 10

Router Modeling with External

Measurements

In this chapter, a measurement approach for estimating parameters for the Guaran-
teed Rate (GR) server model and the Packet Scale Rate Guarantee (PSRG) server
model is proposed. The idea of the proposed approach is to conduct measurements
externally on the router and to estimate the desired parameters using burst and
backlog period statistics. This is of particular importance since these parameters
cannot be obtained or verified through theoretical analysis for a real network
router. The characterization of the router is valid for all kinds of input traffic,
and a bound on the router delay can be provided when the characteristics of the
input traffic, such as the token bucket parameters, are known. This is explored for
the slice-based encoded video streams that were characterized using token buckets
in Chapter 5.

10.1 Introduction

When analyzing service in a communication network, models specifying the
service of network nodes are a necessity. Moreover, the deployment of real-
time applications such as streaming video and voice over IP on top of the current
best-effort Internet has governed the need for QoS guarantees. These guarantees
may be specified by server models from the network calculus domain [10], showing
the theoretical service guaranteed to traffic flows by a network node. Utilizing
these server models represents a new approach to router modeling, using only few
parameters that may easily be estimated for a network router.

Two proposals for Internet QoS guarantees have been given by the IETF,
namely the IntServ architecture [7] and the DiffServ architecture [8]. The GR server
model [75] and the PSRG server model [25] specify the Guaranteed Service [18]
by an IntServ router and the Expedited Forwarding (EF) PHB [23] by a DiffServ
router respectively, as described in Chapter 2, giving the rationale for choosing
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them for router modeling in this work. These models use a rate and an error term
parameter to characterize each output interface of the router. The stationarity
assumption that is often needed by and hence restricts the use of traditional
queueing models is avoided in these models, and they are independent of the
router architecture and the input traffic. The theoretical values for the rate
and error term parameters under GR and PSRG are known for many types of
schedulers such as First In First Out (FIFO), Weighted Fair Queueing (WFQ)
and Deficit Round Robin (DRR) [72,73], and delay guarantees are given when the
input traffic is constrained by a token bucket model as seen in Chapter 5. However,
the complex architecture of a router is not taken into account in calculating these
theoretical values, and hence the rate parameter may be smaller and the error
term larger for a real router than for the ideal scheduler.

The purpose of this work is to investigate the use of GR and PSRG server
models to characterize a router, with particular focus on estimating the parameters
for these models through external measurements. As mentioned above, the
parameters for the GR and PSRG server models include a rate parameter and an
error parameter for each output interface. These parameters may be obtained in
several ways: (1) through theoretical analysis, (2) through simulating the router,
(3) through actively probing the router and (4) through passive measurements.
The first two methods require detailed knowledge of the router which includes the
internal switching/routing architecture and the scheduling and buffer properties
[160]. However, such information is often not available. For the third method,
active probing introduces extra load in the network, which may be undesirable in
an operational setting. In this work, the focus is on using passive measurements to
estimate the required parameters, providing an elegant solution to the parameter
estimation when theoretical values cannot be obtained or these values need to be
verified.

10.1.1 Related Work

For modeling network routers, traditional queueing models [161] and models taking
the detailed router architecture into account [162] have been employed. However,
the limitations imposed by these models, such as input traffic constraints and
dependence on the router architecture, restrict their usability.

Using external, passive measurements has come up as an attractive approach to
estimate parameters for a network router model. In [163], external measurements
are used for estimating the router performance and a model of the router is
developed. The model incorporates a minimum processing time as well as a fluid
output queue. Measurements on network routers have also been used to evaluate
service guarantee mechanisms. In [164], measurements on router backlog periods
are used for identifying the scheduling algorithms employed in the routers as
well as estimating the rate limiter parameters. Passive measurements are used
together with maximum likelihood estimation to determine the parameters of
interest, based on the estimated arrival and service rates.

Simulation is another approach to parameter estimation for a network router,
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requiring a model of the router. In [160], a simulation approach is proposed to
estimate parameters for a non-FIFO node using input and output statistics for
throughput analysis. Backlog periods are identified and an approach to estimation
of the parameters for a rate-latency service curve is described.

10.1.2 Chapter Outline

The rest of this chapter is organized as follows. In Section 10.2, the GR and PSRG
server models considered for router modeling are introduced. Also, approaches
appropriate for parameter estimation are presented as well as the relationship
to the GR and PSRG server models. In Section 10.3, techniques for estimation
of the different parameters are given. The measurement setup, results from the
measurements, and the mapping to the chosen router models are presented in
Section 10.4. Finally, conclusions are given in Section 10.5.

10.2 Network Calculus Approach to Router Modeling

The structure of a generic router mainly consists of three parts: (i) the router line
cards that hold the input and output ports, (ii) the routing processor which runs
the operating system and computes the router forwarding tables, and finally, (iii)
the switching fabric, most often consisting of buses, shared memory or a cross-bar
switch. The server models from the network calculus domain usually describe a
router as simply consisting of buffered output links, not taking the processing and
switching time into account. This is a simplification and in [165], the router delay
is separated into queueing time, processing/switching time, and transmission time,
showing that the processing/switching time is a significant part of the total router
delay. This implies that the allocated rate is lower and the error term is higher
for a real router than they are in the theoretical model.

Several different models have been proposed to describe the behaviour of a
server and analyze service guarantees under network calculus [25, 71–73]. The
GR and PSRG server models are defined to specify the guaranteed service of an
IntServ router and the EF PHB class for a DiffServ router respectively, and are
therefore the most interesting server models for router modeling. Modeling routers
using GR and PSRG requires that the allocated rate as well as the error term
are determined or estimated. These models were defined in Section 2.3.1, but are
repeated here for the convenience of the reader.

For a GR server with rate r and error term E, it is guaranteed that the jth
arriving packet is transmitted by time [73]:

dj ≤ V FT j + E , (10.1)

where the VFT is defined as:

V FT j = max{aj , V FT j−1} +
lj

r
(10.2)

where aj is the arrival time of packet j and lj is the packet size.
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For a PSRG server with rate r and error term E, it is guaranteed that the jth
arriving packet is transmitted by time [25]:

dj ≤ PFT j + E , (10.3)

where the PFT is defined as:

PFT j = max{aj ,min{PFT j−1, dj−1}} +
lj

r
, (10.4)

With an estimate for the rate parameter, a direct matching approach based
on Equations 10.1-10.4 can be used to find the error parameters. However, when
these parameters need to be obtained through measurements, this approach is
cumbersome, because the VFT or PFT for each packet must be calculated, and
the error term for each packet must be found in order to find the smallest term
such that the delay guarantee is fulfilled.

10.2.1 Approach to Parameter Estimation

In this work, a novel approach to parameter estimation for GR and PSRG is
advocated. It has been proved in the literature that the GR model is closely
related to the service curve model [10,74] and the PSRG model is equivalent to
the adaptive service curve model, both defined under network calculus [10, 25].
Based on these relationships and available results for getting the service curve or
the adaptive service curve of a server, it is proposed to conduct measurements
on the burst periods and/or the backlog periods and from the measurements to
further deduce the parameters for the GR and PSRG models.

A router backlog period is defined as a maximum time interval in which one
or more packets are received but not yet served by the router. The router is then
continuously backlogged for k packet transmissions in the interval [aj , dj+k−1]
if [164]:

dj+m > aj+m+1 , (10.5)

for all 0 ≤ m < k − 1 for k ≥ 2.
A router burst period is defined as a time period [t0, t∗] where the average

arrival rate at time t in [t0, t∗] is always at or above the reserved rate, r [71]. That
is:

A(t0, t) ≥ r(t − t0) , (10.6)

where A(s, t) denotes the amount of traffic arrived in the time interval [s, t].
The difference between burst period and backlog period is shown in Figure 10.1,

where a burst period is defined between a1 and vft2 and the router is backlogged
from a1 to d2.

The following results provide the theoretical basis for the proposed approach
to estimating parameters for GR and PSRG. Their proofs follow directly from
Theorem 2 in [74] and Theorem 2.1 in [72] respectively and are hence omitted.
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Figure 10.1: The router burst and backlog periods ended by the VFT and the
departure time respectively.

Lemma 1. Consider a network node. If for any time t in a burst period [t0, t∗],

the amount of service provided by the node in time interval [t0, t] satisfies

W (t0, t) ≥ r(t − t0 − Θ)+ (10.7)

then the node is a GR server with rate r and error term E:

E = Θ − Lmin

r
, (10.8)

where Lmin is the minimum packet length, and (x)+ = max{x, 0}.

Lemma 2. Consider a network node. If for any time t in a backlog period [t0, t∗],

the amount of service provided by the node in time interval [t0, t] satisfies

W (t0, t) ≥ r(t − t0 − Θ)+ (10.9)

then the node is a PSRG server with rate r and error term E:

E = Θ . (10.10)

With Lemma 1 and Lemma 2, it is clear that to obtain the rate and error term
for the GR and PSRG server models, it is sufficient to measure the rate and Θ,
called the latency term in the rest of the chapter, respectively. Next, the approach
to determe these parameters through measurements is presented.
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10.3 External Measurements for Router Model

Parameterization

This section details the approach to parameter estimation for Lemma 1 and Lemma
2 through measurements. The measurement results are then used to estimate the
parameters for the GR and PSRG server models.

10.3.1 Estimation of the Rate Parameter

As seen from the definitions, the backlog periods are defined using the arrival and
departure times, and can be used to find an estimate for the allocated rate. In
this work, the maximum throughput measured over backlog periods is used as the
rate parameter. This corresponds to the theoretical rate parameter for the server
models with FIFO scheduling that ideally should be equal to the capacity on the
outgoing link.

The throughput or the amount of service received in the time interval [s, s + t]
of length t when the router is continuously backlogged is defined as [164]:

R(t) =
U [s, s + t]

t
, (10.11)

where U [s, s + t] is the number of bits serviced in the time interval in which the
router is backlogged. The estimation of the throughput is for the full length of
each backlog period, hence s is the arrival time of the first packet and s + t is the
departure time of the last packet in the backlog period.

The maximum R(t) is then taken as the estimate for the allocated rate, from
which, the VFTs and PFTs can be estimated and the burst periods identified.

10.3.2 Estimation of the Error Parameters

To estimate the error parameters, several methods are available. In this work, it is
first investigated how to directly use the definitions of GR and PSRG to estimate
the error terms. Furthermore, backlog period and burst period measurements are
used for parameter estimation for Lemma 1 and Lemma 2, based on which error
terms for the GR and PSRG models are estimated.

Once the rate is estimated, the VFTs and PFTs are found using the arrival
and departure time of each packet and the definitions in Equations 10.2 and 10.4.
With this at hand, the error term for the GR and PSRG server models can be
estimated by the maximum error samples found using the departure time, the
VFT/PFT for each packet and the definitions from Equations 10.1 and 10.3.

The error terms found from these definitions give the lowest possible error
terms for the measurement samples. The method will however require several
computations for each packet for finding the VFT/PFT and the corresponding
error term, and the complexity is proportional to the load. Simpler methods for
the error parameter estimation are therefore required.
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Figure 10.2: Latency term estimation from burst/backlog period.

As described earlier, Lemma 1 and Lemma 2 define service during burst and
backlog periods respectively. A procedure for latency term estimation for Lemma
1 and Lemma 2 followed by error parameter estimation for the GR and PSRG
server models is proposed in the following.

The VFT of each packet is found using the allocated rate, r, and the burst
periods are identified. The maximum latency in each burst period is calculated by
finding the curve with rate equal to r bounding the amount of service received.
The latency in each burst period is the distance from t0 to the intersection of
r with the time axis as shown in Figure 10.2(a). The estimate for the latency
term Θ for Lemma 1 is found as the maximum of the sample latencies. The
error parameter, E, for the GR server model is then found using the latency term
estimate from the burst period analysis and the relationship from Equation 10.8.

The maximum latency in each backlog period is calculated by finding the curve
with rate equal to r bounding the amount of service received as shown in Figure
10.2(b). The latency is the distance between t0 and the intersection of r with
the time axis and the latency term Θ for Lemma 2 is found as the maximum
of the sample latencies. The error parameter, E, for the PSRG server model is
found using the latency term estimate from the backlog period analysis and the
relationship from Equation 10.10.

10.3.3 Estimating the Processing Time

The GR and PSRG server models account for the queueing delay due to packets
of the same (possibly aggregated) flow and the transmission time on the outgoing
link, given a certain allocated rate. With no queueing, a maximum rate lower than
the theoretical capacity on the outgoing link will be due to internal processing.
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A lower bound on the processing time may then be found by investigating the
processing time for packets transmitted during backlog periods with only one
packet in backlog. In these periods, packets will experience an empty router and
hence no queueing delay.

The sample rates for the packets transmitted in backlog periods with only one
packet in backlog are found by:

rj =
lj

dj − aj
, (10.12)

where rj is the rate experienced by packet j. The total delay, dj − aj may also be
specified using the theoretical capacity C and the processing time δj as follows:

dj − aj = δj +
lj

C
, (10.13)

where δj is the processing delay for packet j. When inserting Equation 10.13 into
Equation 10.12 an expression for δj is found:

δj =
lj · (1 − rj

C )
rj

. (10.14)

The minimum of these samples is accounted for in an allocated rate lower than
the capacity. The error term must then account for the internal router delay due
to processing times higher than the minimum. The result from the evaluation of
the processing time is shown in Section 10.4.3.

10.4 Results from Measurements

The idea of the proposed approach is to obtain packet information through passive
measurement on input and output links of a router. This information is then used
to calculate the rate and error term parameters in its GR and PSRG models.

10.4.1 Measurement Setup

DAG-cards [166] are used for the external measurements. These cards are capable
of capturing a chosen amount of information from the IP-header such as arrival
time, packet length, and type of service. With such information, delay, loss,
throughput as well as burst period and backlog period statistics can be gathered.

The measurement setup is shown in Figure 10.3 with the studied router in the
center and DAG cards for traffic capturing. The DAG cards are synchronized using
a GPS receiver, giving satisfactory timestamp accuracy. All links are Ethernet
links. An ordinary PC is used to produce measurement traffic using tcpreplay [167],
capable of replaying any file in the .pcap format. The trace files are pre-recorded
multimedia traces in the MPEG4 encoding format.
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Figure 10.3: The measurement setup with the DAG-cards indicated.

10.4.2 Parameter Estimation for a FIFO Scheduler

Without loss of generality and for ease of explanation, the considered router uses
FIFO for packet scheduling as do (most) routers in the current Internet.

The maximum estimated rate is 9.6597 · 107 bps while the capacity on the
link is 100 Mbps. The rate parameter should ideally be equal to the capacity,
as for the theoretical models. However, because of the processing time, a lower
maximum rate is experienced. The estimated latency terms for Lemma 1 and
Lemma 2 found from the burst/backlog periods are shown in Table 10.1, together
with the theoretical values. The theoretical values for a FIFO scheduler are given
in [72,74], and are equal to Lmax/C, where Lmax is the maximum packet size.

Table 10.1: The estimated latency parameters for Lemma 1 and Lemma 2.

Model Theoretical Latency Burst/Backlog Latency
Lemma 1 0.12112 ms 0.2309 ms
Lemma 2 0.12112 ms 0.2309 ms

The estimated error terms for the GR and PSRG server models are shown in Ta-
ble 10.2, where the parameters are found using direct evaluation and burst/backlog
period estimation together with the relationships from Section 10.2.

Table 10.2: The estimated parameters for the GR and PSRG server models.

Model Theoretical Error Direct Error Burst/Backlog Error
GR 0 ms 0.10808 ms 0.2230 ms

PSRG 0.12112 ms 0.10808 ms 0.2309 ms

The error terms found from direct evaluation is the same for the GR and PSRG
server models. This is obvious since the maximum measured rate in a backlog
period is used as the rate parameter. This means that the server never runs early
compared to the ideal constant rate server and the departure time of a packet
is then never before the PFT. Also, the error term for PSRG found from direct
evaluation is lower than the theoretical value, since the latter, i.e., the theoretical
value from [72], is based on a more stringent server definition [72].
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Figure 10.4: Parameter curves with different rate parameter estimates.

The error terms from the backlog/burst period estimations are higher than the
error terms from the direct evaluation, as expected since the latency is calculated
by assuming that all packets are transmitted at the maximum rate. According to
results in [74], the error term for a GR server model with FIFO scheduling should
be 0. The error terms found from the measurements are however higher, since
the packets experience delays due to processing time higher than the minimum
processing time.

The parameters estimated from the direct evaluation and the burst/backlog
periods are also shown in Figure 10.4, where the rate parameter is varied between
the minimum estimated rate from the backlog periods to the maximum estimated
rate in the backlog periods.

For the direct evaluation, the curve for the PSRG server model is significantly
higher than for the GR server model for low rates because the error term for
PSRG also includes jitter and the server runs faster than the allocated rate. For
an allocated rate equal to the minimum estimated throughput, the error term for
the GR server model is zero, in agreement with the theoretical model. Estimating
the error terms from burst and backlog periods and the server model relationships
gives approximately the same error terms as can be seen in Figure 10.4(b), but
the curves are higher than those from the direct evaluation.

For token bucket constrained traffic flows, such as the StEM and Mobile video
traces investigated in Chapter 5, the results from the router parameterization give
the delay bound of the streams through the specific router. The delay when the
router is specified as a GR server with FIFO scheduling will be bounded according
to Equation 5.2, as:

D ≤ σ

r
+ E

≤ 80 · 8 · 1000 bit
9.6597 · 107 bps

+ 0.00010808 s = 6.733 ms (10.15)

for a token bucket size of 80 kbytes, and a token generation rate lower than the
allocated rate. If the allocated rate at the router is equal to the token generation
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rate of the input flow, the delay bound will be given as:

D ≤ 80 · 8 · 1000 bit
5.0 · 106 bps

+ 0.00010808 s = 128.108 ms (10.16)

where the token generation rate is 5000 kbps, corresponding to the knee point of
the token bucket curve for the StEM clip in Figure 5.1(a).

10.4.3 Processing Time

When looking at the throughput in backlog periods with only one packet, the
minimum processing time through the router is found, as discussed earlier, and as
shown in Table 10.3.

Table 10.3: The processing time evaluated in backlog periods.

Max rate Min proc, δj
min Max proc δj

max

9.3457 · 107 bps 0.00524 ms 0.11296 ms

The maximum rate is lower here than for the rate parameter estimation using
all backlog periods because the former is estimated from backlog periods with only
one packet in backlog and no packets are processed while others are transmitted.
The minimum processing time is accounted for in an allocated rate lower than the
capacity on the outgoing link as explained earlier. It is also interesting to look
at the maximum processing time, which is approximately equal to the difference
between the theoretical latency parameter and the estimated latency parameters,
explaining the higher value for the latter.

The processing time is highly variable although all samples are from backlog
periods with one packet in backlog. A packet size dependent component as found
in [165] can explain some of this variability, which also means that the error term
for the server models may be divided into a packet size dependent and independent
part. Also, router internal operations such at router table updates and garbage
collection may cause additional delay. These are irregular and can be fairly large.
All these issues need further investigation.

10.5 Conclusion

The GR and PSRG server models are used for router modeling by IntServ and
DiffServ. In this chapter, it is shown that the parameters of these models for
a network router can be found by using external measurements on the router.
Specifically, the proposed approach uses relationships between the GR and PSRG
models and the server models in the network calculus domain that have close
relation to the burst and backlog period. Then based on the relationships, burst
period and backlog period measurements are performed and parameter estimation
for GR and PSRG is further conducted with satisfactory results. In addition, the
measurement results are used to analyze the processing delay in the router. The
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processing time is identified as the cause of a lower value of the rate parameter
and a higher value of the latency parameter from the measurements, compared to
the theoretical values.

The proposed approach provides another means for deciding GR/PSRG pa-
rameters when the router architecture is so complex that theoretically determining
these parameters is impossible. In addition, the approach is a simple method for
the user of a router to verify the router’s GR or PSRG specification provided by
the vendor.

Future work includes more extensive measurements with different input traffic
as well as measurements with alternative scheduling disciplines on the output link.
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Concluding Remarks
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Chapter 11

Conclusions

This thesis focuses on quality of service issues for video transmissions over the
Internet. When real-time traffic is transmitted over resource constrained networks,
stringent requirements to the network performance parameters, throughput, delay,
delay jitter, and packet loss are imposed in order to guarantee a satisfactory user
experience. In this respect, service guarantees need to be provided by the network
in order to accommodate these requirements.

The work presented in this thesis focuses on characterization and modeling of
video traffic, in particular the new slice-based H.264/AVC encoded video traffic.
Estimation of the performance parameters and in particular the packet loss is of
high interest. The loss period distribution will influence the perceived QoS and is
important in addition to the knowledge about the total amount of loss.

Traffic characterization is necessary for developing traffic models and Part II
of the thesis focuses on video traffic characterization for slice-based encoded video.
This characterization is important since the slice-based encoded video presents a
new type of traffic which has not been studied before. The slice-based encoded
video has no GOP structure and the frames within the scenes are statistically equal.
Important findings include the negligible autocorrelation for frames in different
scenes, different from regular frame-based encoded video where the I frames cause
high, periodic correlation over scene boundaries. However, there is non-negligible
correlation between the size of the scene changes frames and the average frame
size in the same scene as well as non-negligible ACF for frames inside the scenes,
as is expected. The distributions of the scene lengths and the average frame sizes
in the scenes are both found to be close to a Gamma distribution for the stream
studied. Simple network simulations show that the slice-based stream performs
better than the frame-based stream in terms of lower loss and delay when the
buffer size is small.

Resource reservation and admission control are important functions for pro-
viding service guarantees in a network. For these functions, traffic characteristics
described using token bucket traffic models are usually needed. The token bucket
parameters of two slice-based encoded video clips are estimated using simulations.
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The StEM clip has frequent scene changes and the resulting token bucket curves
are therefore almost identical for the slice-based and frame-based streams. How-
ever, for the Mobile clip without scene changes, the token bucket parameters are
significantly lower for the slice-based stream than for the frame-based stream and
less resources are needed for the former to ensure equal delay guarantees.

In Part III of the thesis, non-parametric analysis of slice-based encoded video
traffic is pursued. The sequence of frame sizes is divided into sections, which
are classified according to the average frame size. A new quantile method for
scene change detection is then employed for the classes. The resulting classes are
checked regarding dependence structure, type of distribution, heaviness of tails,
and stationarity. The ACFs and Ljung-Box tests show independent scenes in the
classes, but a moderate amount of LRD is found using different estimators for the
Hurst parameter. The mean excess function shows that the distributions of frame
sizes of the selected classes can only be mixtures of classical heavy- and light-tailed
distributions and the Hill’s estimates give the number of finite moments for the
frame distributions inside the classes. The video data are also classified by the
value of the extremal index. The extremal index detects changes in the stationarity
and dependence of frames within scenes. The dependence structure within the
classes is variable due to the variability of the video stream. Non-parametric
methods are also employed for estimation of loss using a bufferless model. The
average bit loss in a loss period, the average length between loss periods and
the overall bit losses in the bufferless model are found. These statistics give
information about the distribution of the losses. Moreover, the high quantiles of
bit losses are evaluated. These quantiles give statistical guarantees for the amount
of loss which can occur.

The correlation analysis in Part II showed that frame correlation exists only
within scenes. Based on this, in Part IV of the thesis a discrete Gaussian model is
proposed for the slice-based encoded video traffic, taking the autocorrelation for
the frames inside a scene into account. The Gaussian model is a simple model and
is found to give accurate results for the cases studied, and the same approach can
be applied to audio and video traffic. The exceedances of the video frames over a
threshold then constitute loss periods of variable lengths and variable loss volumes.
Utilizing the additive properties of the Gaussian process, the distribution of a
loss period for an aggregated video stream is estimated using characteristics of
a basic stream. The loss volume gives the loss in a bufferless node. In addition,
the distribution of the loss volume is used for estimating the expected loss in a
node with a small buffer. The moments of the length and loss volume of a loss
period for the discrete process are shown to be comparable to the results for a
continuous process, over high thresholds. The simple relation between the length
and loss volume of a loss period for the continuous process is found to hold also
for the discrete process.

GR and PSRG server models have been proposed for analyzing service guaran-
tees in IntServ and DiffServ. In Part V of the thesis, it is shown that the parameters
of these models for a network router can be found from external measurements on
the router. Specifically, the proposed approach uses relationships between the GR
and PSRG models and the network calculus server models that have close relations
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to the burst and backlog period. Then based on the relationships, measurement
results are analyzed for burst and backlog periods and parameter estimation for
GR and PSRG are conducted with satisfactory results. These results are then
used for calculating the delay bound for the token bucket constrained slice-based
encoded video streams from Part II. In addition, the measurement results are
used to analyze the router processing delay, which is identified as the cause of a
lower value of the rate parameter and a higher value of the error parameter from
measurements, compared to the theoretical values.

11.1 Future Work

This thesis addresses the estimation of some important network performance
parameters. This should be followed by a mapping to the perceived QoS. Some
work has already been done on this mapping, as discussed in the thesis, but it is a
complicated task because of the wide diversity in the video applications and in
the coding techniques applied. Subjective tests addresses this problem, and work
on such subjective tests is currently in progress at the Q2S centre.

Both for the characterization and modeling of the video traffic, more and
longer video traces should be studied for the slice-based video encoding scheme.
The slice-based video encoding scheme is only implemented in software. Together
with the lack of raw video available, this causes difficulty in producing long video
clips of required quality.

Both the regular characterization and the token bucket characterization would
benefit from being applied to the classes, since the frames inside the classes are
more stationary and homogeneous. In addition, video source models such as
ARMA models can be defined for the different classes.

For the Gaussian modeling, several issues remain to be studied. A first
validation of the Gaussian model is done using real video traces. However, more
work is required for the validation. Validating that an aggregate of slice-based
encoded video can be modeled as a multivariate Gaussian process is needed, using
real measurements. This is not done due to the same reasons as above, the lack of
suitable traces. Also, more efforts should be put into the modeling of correlation
matrices from real video traces. The accuracy of this modeling depends on the
length of the video, and should be studied further for more and longer video clips.

It also remains to find the distribution of losses for a single stream in the
aggregate. In this respect, it is interesting to study the length and loss volume of
a loss period for a single stream with known characteristics for the aggregate.

For the network calculus router modeling, only the simple FIFO scheduler was
studied. Using alternative scheduling disciplines on the output link as well as
applying different input traffic, possible with different service classes, are of high
interest. Measurements to address these issues are continued in another project.
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