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Summary

Non-invasive in-situ measurements can determine the soil properties in an undis-
turbed way, providing a more accurate characterization of the soil stiffness and
damping. This report focuses on the multichannel analysis of surface waves (MASW)
technique. The measured dispersion of a propagating seismic wave is used to char-
acterize the variation of small-strain soil stiffness with depth while a modified half-
bandwidth method is used to estimate the intrinsic soil damping variation with
depth. Both require solving an inversion problem with a global optimization strategy.

The equations governing wave propagation in layered visco-elastic media are
used to form a analytic forward model. Sensitivity studies are performed and it is
found that for a soil damping ratio below 10%, the migration of the real part of
the wavenumber is minor. Therefore, a decoupled approach is used, where the soil
stiffness is estimated first, followed by an estimation of the soil damping. The modal
dispersion curves are shown to be very sensitive to the shear wave velocity of the
soil, especially in the near surface layers. This is desirable as this sensitivity allows
for a more accurate inversion. Additionally, there is a high sensitivity to the layer
thickness of the model and it is shown that the discretization of the model, especially
near the surface, has a large impact on the predicted modal dispersion curves.

To estimate the stiffness profile, modal inversion is performed with a genetic al-
gorithm. The misfit function is based on the determinant of the secular function,
including a determinant normalization. Synthetic inversions were first applied to
verify that the technique is successful. Surface wave data from the Westermeerwind
offshore wind farm is analyzed and several estimates are made for the stiffness pro-
file versus depth using different inversion settings. It is shown that these estimates
agree well with a seismic cone penetration test (SCPT) estimate for the same site.
An inversion is also performed on a set of measurements taken at the North-Sea
Gjøa site. It is shown that the inversion is in good agreement with the published
predictions for the stiffness at this site.
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The damping profile is inverted based on a modified half-power bandwidth method.
A wavelet compression is used to select a smart set of root locations which leads to
an efficient and balanced inversion. Synthetic inversions show that the method is
successful in estimating the soil damping profile. The damping inversion technique
is very promising and the next step should be taken to apply this to the measured
data from the Gjøa and IJsselmeer sites.
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Nomenclature

Latin symbols
c Velocity ms−1

Cp Pressure or P-wave velocity ms−1

Cs Shear or S-wave velocity ms−1

E Elastic modulus Nm2

f Frequency Hz

f̄ext External source vector (in wave equation) N

k Wavenumber radm−1

k Wavenumber (shown in plots) m−1

M Coefficient matrix
Q Quality factor
u Displacement m

x Scalar x
x̄ Vector x
xij Matrix X component ij
xi,j Vector x compoent i, derivative wrt j
x̃ x transformed with Fourier transform
xH0 x transformed with Hankel transform

Greek symbols
ε Strain
ζ Material damping
γ Shear Strain
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λ Lamé’s first constant Nm−2

λ Wavelength m

µ Shear modulus, Lamé’s second constant Nm−2

ρ Density kgm−3

ρl Water density kgm−3

σ Stress Nm−2

ν Poisson ratio
φ Elastic dilational potential m2s−1

ψ Elastic rotational potential m2s−1

ω Circular frequency rads−1

τ Shear stress Nm−2

Abbreviations
CG Conjugate gradient minimization
CPT Cone penetration test
FW Full waveform method
LCOE Levelised Cost of Energy
MASW Multi-channel analysis of surface waves
MSW Modal surface wave method
SCPT Seismic cone penetration test
p-wave Pressure wave
s-wave Shear wave
SH Shear horizontally polarized
SV Shear vertically polarized
SSI Soil Structure Interaction
thkj Thickness of layer j
pFM Probability of full mutation
pSM Probability of small mutation
Ngen Number of generations in genetic inversion
NPop Number of candidates in genetic population
NDad Number of parents in genetic population
NCon Number of contestants in genetic population



Chapter 1

Introduction

1.1 Background

Improved understanding and modelling of soil-structure interaction could lead to a
7.5% [7] to 33% [22] reduction in the cost of the support structure in coming years.
The TKI Wind Op Zee consortium has predicted a 40% decrease in the cost of off-
shore wind from 2010 to 2020 [7]. Efficient design by improved modelling would
directly contribute to 1.1% levelized cost of energy (LCOE) reduction while partially
contributing to another 4.9% and possibly more if the effect of risk reduction by
improved modelling is considered. Regardless of the exact amount of potential sav-
ings, research in soil-structure interaction (SSI) will contribute to LCOE reduction.
The current API methods for determining soil properties are heavily empirical, and
soil properties are determined from limited simple parameters. Hence, a key factor
in improving the SSI based design methods will be to have an accurate estimate of
the soil characteristics. The small-strain stiffness is essential as it is important for
the eigenfrequency, dynamic loading and fatigue lifetime. Current methods of cone
penetration testing (CPT) and borehole sampling are testing failure at large strains
or are likely to disturb the sample.

This research focuses on one possible avenue which may contribute to a reduc-
tion in LCOE. Multi-channel analysis of surface waves (MASW) is a promising tech-
nique to enlighten soil characteristics, a key component for accurate SSI modelling
which is one of the most uncertain areas of offshore wind turbine design. Mea-
surements of propagating seismic waves will be analysed to estimate the stiffness
and damping properties of the soil. This is a direct non-invasive measurement and
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2 1. INTRODUCTION

also has the advantage that it is not related to a point sample but rather seismic
investigation will average over the measurement area.

The overall goal of the thesis is to demonstrate effective methods to determine
the soil stiffness and damping profiles in the 0− 50m range, which is of interest for
the design of offshore wind turbines. This MSc thesis builds on two previous MSc
theses [34] and [4] and aims to overcome the issues encountered therein.

1.2 Measurement Techniques

The section on Measurement Techniques is largely based on Chapter 6 of the Geotechni-
cal Earthquake Engineering texbook by S. Kramer [13]

There are many different ways in which the dynamic soil properties can be mea-
sured, each with its own set of advantages and disadvantages. These measurement
techniques may be broadly separated into small strain or large strain measurements
and may occur in the field, in situ, or in the laboratory. Soil exhibits nonlinear be-
haviour with respect to strain level and it is important to determine the dynamic
soil properties in a way which is representative of the real loading conditions and
the engineering model chosen. “The stiffness and damping characteristics of cyclically
loaded soils are critical to the evaluation of many geotechnical earthquake engineer-
ing problems.”[13]. Other properties such as Poisson’s Ratio and density tend to fall
within a relatively narrow range and therefore have less influence on the solution.

For offshore wind turbines, small and large strain properties may be of inter-
est depending on the load that is considered. Ultimate limit state loadcases may
develop large strains which could be modelled with secant stiffness while fatigue
driven designs may be more concerned with having accurate small strain or non-
linear stiffness especially to correctly predict the amplitude of stress cycles over the
entire lifetime. Stated another way, the large strain stiffness are lower and if one
secant stiffness is used for models, then the small strain cycles could be predicted
by a softer response than actually occurs with a more realistic non-linear stiffness.
The industry trend is towards larger turbines which are more often design driven by
fatigue limit states. Hence, it is increasingly important to predict lifetime responses
and fatigue with high accuracy.

1.2.1 Laboratory Testing

Only a brief overview of lab tests are given since this is beyond the scope of this
project. Borehole sampling is used to retrieve samples which are tested in the lab.
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1.2. MEASUREMENT TECHNIQUES 3

This can produce accurate results with high certainty properties. However, some
disadvantages include:

• Costly to conduct

• Process of sampling disturbs soil

• Samples are obtained at a point and spatial variability can only be estimated
with sampling at many locations, which would be very costly

Low strain tests are usually below 0.001% strain and the properties are assumed to be
linear elastic in this range. Low strain tests include the Resonant Column Test, Pulse
test and Piezo Bender Element test which all aim to determine the wave propagation
velocities through different means. High strain tests include cyclic triaxial test and
cyclic direct simple shear test. It could be very useful to compare the stiffness and
damping properties obtained by seismic inversion approach to those obtained by
laboratory tests on samples from the same site if a suitable location is found.

1.2.2 Seismic Reflection Test

This is perhaps conceptually the simplest seismic wave test. A source and receiver
placed a known distance apart on the seabed is required. Direct and reflected ar-
rival times are measured for the P-waves and S-waves. The created seismic wave
will travel until it reaches an abrupt change in impedance, where a portion of the
energy will be reflected back to the surface. This method usually focuses on the P-
wave reflections, using a source which is rich in P-wave content. It is more suitable
for large scale or deep stratigraphy and not for determining properties of shallow
layers. Sloping layers can makes this technique more difficult in practise and loca-
tion correction or migration of reflection data must be performed. Furthermore, for
smaller distances or shallower layers the reflected wave may arrive while the direct
wave is still being measured and this makes it difficult to separate.

1.2.3 Seismic Refraction Test

This is similar to the seismic reflection test but uses the first wave arrival time. As the
source-receiver distance increases, the waves that are detected first will transition
from direct waves to reflected waves, which have travelled through deeper faster
layers. This is seen as changes of slope on the distance-time arrival diagram. It only
works for soil deposits where the stiffness or wave speed is increasing with depth
and would not be useable when soft layers underlie a stiffer layer. For sloping layers
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4 1. INTRODUCTION

there is the issue of apparent velocities differing from the true velocity and a dip
angle must be determined by reverse profiling. Modern techniques extend this test
to create a tomographic profile of the soil.

1.2.4 Suspension Logging Test

A probe which contains a source at the tip and two geophone receivers near the top
is inserted into a borehole. An impulse pressure wave is generated which travels
through the drilling fluid and creates an S-wave and P-wave which runs up the bore
hole walls. The velocity of the wave can be accurately determined by the two geo-
phones over a small and precisely located distance. The polarity can be reversed
to distinguish P and S waves. Uncertainties may arise due interaction between the
wave, walls and drill fluid and difficulty defining the actual motion of the wave trav-
elling in the soil as it may be a surface wave similar to a Rayleigh wave, which has a
different and slower speed than corresponding P or S waves.

1.2.5 Cone Penetration Tests

Cone penetration testing (CPT) is one of the most commonly used methods to de-
termine soil properties in the field. The test is simple to conduct and is performed
rapidly and relatively inexpensively. However, the tip resistance versus depth data
must be interpreted into the properties of interest which in practise means that em-
pirical relations to the tip resistance are used. This method is not sufficiently accu-
rate to determine dynamic soil properties, although it remains very useful to deter-
mine the layering and density of the soil. Additional sensors are increasingly added
to gather more data, which will be discussed later on.

1.2.6 Seismic Cone Penetration Test

The seismic cone penetration test (SCPT) adds a geophone receiver to the standard
CPT probe. The CPT test is stopped while a source at the surface produces an impulse
seismic wave. This measures the almost vertical propagation of the waves in the soil.
There is some refraction due to the horizontal offset, which must be accounted for.
This method has been used to demonstrate that stiffness parameters varying with
depth can be determined and that when used in a 3D FEM model that there are
significant differences from the design approach specified by the standards [30].
The author shows that for a variety of assumptions about the variation of the soil
type that the deflections calculated from the FEM method are lower than the design
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1.2. MEASUREMENT TECHNIQUES 5

code approach and that the FEM results can be translated into an equivalent 1D
stiffness model [31].

1.2.7 Cross and Down hole tests

Cross hole seismic tests requires multiple boreholes and measures the time taken
for a source impulse to travel along a horizontal level to the receivers in the other
boreholes. This directly measures the speed along a layer. However, it can be dif-
ficult to coordinate the advancement of the probes in all the boreholes at the same
rate. Additionally, there is some uncertainty about the transfer function between the
sensors in the boreholes and the waves.

Down hole or up hole measurements only require one borehole and use a source
close to the borehole but on the seabed surface. The receiver is in the probe tip for
downhole configuration, which is very similar to the SCPT test, except that it takes
place in a borehole. An additional disadvantage is that there is uncertainty in the
transfer function between the body wave and the sensor due to the interaction at
the wall and with the drill fluid.

1.2.8 Spectral Analysis of Surface Waves

A source creates an impulse seismic wave that travels through the water as an acous-
tic wave and through the soil as a P, S, Rayleigh (or Scholte) and Love waves. The
response is measured by a geophone or an array of geophones on the seabed. With
an array this test is called a Multi-channel Analysis of Surface Waves (MASW) test.
The recorded sensor readings, which are in the space-time domain, can be converted
into a dispersion diagram, which is in phase velocity-frequency or wavenumber-
frequency domains. The dispersive character of the site is related to the variation
of the elastic body wave velocities with depth. This test is a recent development
with researchers pioneering it in the 1980s and early 1990s [13]. The author of
Geotechnical Earthquake Engineering calls it “one of the most significant recent ad-
vances in shallow seismic exploration.” In principle, the soil stiffness and damping vs
depth can be determined from the MASW measurements. However, this process is
not as straight-forward as other methods and requires an inversion process to de-
termine what the most likely soil properties are. Due to the possibility of complex
layering with stiffness inversions, the solution of the inversion problem may have
many local minima and a global search technique must be used. The MASW method
is the dynamic soil property identification method which this research project aims
to demonstrate is viable.
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6 1. INTRODUCTION

1.3 Review of Previous Work

1.3.1 First MSc at Siemens Wind Power

C. E. de Winter [34] established the theoretical basis for the modelling propagating
soil waves in continuum. She made some studies to choose the measurement set
up and compared different methods for the forward modelling approach. She used
finite difference modelling to compare various source-receiver combinations includ-
ing active or passive sources and vertical or horizontal receiver arrays. Practically
vertical arrays are hard to re-locate and also horizontal arrays are able to measure
geometric dispersion which is sensitive to the subsurface stratification. The use of
an active source is preferred since signature and timing of the source is known. It
is possible to use a passive source if a source independent objective function can
be formulated, as demonstrated [4]. Finite difference, modal surface wave (MSW)
method and full waveform (FW) methods are compared and it was recommended
to use full-waveform modelling due to the possibility for automatizing the entire
process. The modal inversion method typically requires an experienced geophysical
engineer in order to ensure that the correct modal curves are chosen. The finite
difference method is not guaranteed to match the analytic models, due to discretiza-
tion. Hence, the analytic methods were chosen. The modal surface wave method
requires a small wavenumber stepsize of 0.00024m−1 to avoid the calculation ‘miss-
ing’ modes.

Both the modal surface wave and full waveform inversion methods were devel-
oped and tested. The modal surface wave method uses an objective function that
is related to the distance between the theoretical dispersion curves and the mea-
sured dispersion curves. While the full waveform inversion compares the correlation
of the theoretical and measured 2D f-k spectra. The inversion method is then an
optimization problem to minimize this error/objective function, or maximize the
suitability of a candidate soil profile. The global optimization strategy of using a
genetic algorithm is chosen for the inversion process since the problem is non-linear
and expected to have many local minima. The conjugate gradient scheme can be in-
cluded in a hybrid approach to refine the final candidate to the best solution. Corine
verifies that the genetic algorithm is able to determine the soil profile with good ac-
curacy for a synthetic case. Also, the effect of incorrect a-priori knowledge is tested,
since the inversion only determines the shear stiffness and assumes that the layer
density, thickness and P-wave velocity are already known. It shows that errors in the
assumed parameters do affect the ability of the inversion to find the correct shear
wave velocity profile, but since only limited cases were tested, it is not possible to
generalize the results. The shallow layers are seen to have a big impact on the dis-
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1.3. REVIEW OF PREVIOUS WORK 7

persion used for the inversion and the algorithm is able to estimate these shallow
layers with the highest certainty and smallest standard deviation. Shallow layers are
felt by all waves, while deeper layers are only felt by low frequency long wavelength
content. A 5% uncertainty in the properties seems to result in a maximum error of
12%in the best inversion result although most results have an error smaller than 5%.
Corine then uses the finite difference model to generate synethic data, which is used
for an inversion. The error is higher and the inversion is not as good as the algorithm
is theoretically able to produce, but the profile and important contrasts are able to
be successfully visualized.

1.3.2 Second MSc at Siemens Wind Power

I. Bolderink [4] built on the work of Corine and applied the full waveform inversion
process to actual measured data from the IJsselmeer. In the theoretical part of his
his work, the objective function is modified to make it source independent, although
it is not entirely independent due to the need of a stabilization factor. The impact
of space domain truncation was included into the full waveform inversion process
by performing windowing on the theoretical model through an FFT algorithm which
is faster than the convolution method. A synthetic inversion is performed for the
pressure wave velocity and shows that the genetic algorithm can be used for deter-
mining the pressure wave velocity profile if the shear wave velocity profile and other
parameters are already known. For the in-situ measurements, several measurement
set-ups are considered for practial reasons and in the end a 48m array with a 1m
sensor spacing is used. During the actual measurements, the position of the array
is fixed, centred above the turbine location, while the source is moved in order to
concatenate multiple datasets and create a virtual measurement array with a longer
virtual length to improve resolution in the wavenumber domain. Due to some hard-
ware damages, only the hydrophone data was useable. Also, the accuracy of the
positioning system was low and so the shots had to be corrected for an angular error
of approximately 15 degrees. The locations were aligned using the direct arrival
time of the pressure wave in water. A sparse Radon transformation is used to clean
up the data and remove noise as the measured data becomes constructed by linear
and parabolic events. The dispersion record is improved by using RMS scaling on
the data to increase the influence of the far-field data by scaling the amplitudes to
the same RMS value at every spatial array location. The shot record is also win-
dowed with a tukey window in order to reduce the visible sidelobing and increase
the clarity of the energy distribution in the spectra. In the end, the visible response
is in the range of 0-0.1 m−1 wavenumber and 0− 30Hz.

An initial estimate is made for the soil profile based on the interpretation of the
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8 1. INTRODUCTION

CPT measurements and the report by Fugro. A model with a water layer, 8 soil layers
and a halfspace is used. The full waveform method initially resulted in an unsuc-
cessful inversion with a very low suitability and poor match obtained. Allowing a
larger search range and specifying a high halfspace velocity improved the suitability.
However, the estimate was not considered to be reliable. In the end, the best match
that could be obtained with the full waveform method was a suitability of 0.49 and a
corresponding spectral response which visually has a quite low correlation with the
measured response spectra. The effect of the damping profile is thought to have a
large impact on the visibility in the response spectra, perhaps as important or more
important even than the windowing effect of the limited length of the measurement
array. Hence, a good estimate of the damping profile may be required as part of a
successful full waveform inversion.

1.4 Problem Definition

The research objective of this thesis aims to answer two questions:

“Can modal waveform inversion reliably estimate the soil stiffness profile from sur-
face wave measurements? How can the soil damping profile be estimated from surface
wave measurements?”

Theoretically, the multi-channel analysis of surface waves can be used to retrieve
the stiffness and damping properties of near surface layers. So far the research at
Siemens has focused on estimation of the stiffness. However, a prediction of the soil
damping would be of great value for the design of offshore wind turbines. Hence,
this thesis would like to be able to estimate the damping. Typically, an accurate
stiffness profile is required in order to estimate the material damping, and so this
thesis will also focus on the stiffness inversion.

It is thought that the low success rate of the full waveform inversion is caused
by the high dependency of the full waveform spectra on the damping. It is possible
that a damping independent inversion method would be more successful. There-
fore, this research will focus on using the modal waveform inversion method to first
estimate the stiffness profile and then subsequently the damping profile may be es-
timated. Although the modal dispersion curves are not completely independent of
the damping, we can assume that they are independent for relatively low amounts of
damping. This is analogous to a single degree of freedom system where the resonant
natural frequency differs from the undamped natural frequency. This decoupling as-
sumption and the sensitivity of the modal dispersion curves to damping is discussed
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later in Section 4.1.
The attenuation of the surface waves is due to both geometric and material damp-

ing. The soil damping we wish to estimate is the material damping. To separate the
geometric damping from the total damping, an accurate stiffness profile is required.
Hence, once the stiffness is estimated, then the analysis can be performed to as-
sess the contribution of the material damping to the total attenuation of the surface
waves. Different techniques exist for estimating the damping profile, and this thesis
will have to develop a method which is appropriate for estimating the internal soil
damping.
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Chapter 2

Theory and Derivations

The derivations in this chapter have all been worked through by the author, but have
existed for many years and can be found in many reference materials. The three refer-
ence materials [8], [34] and [1] were used as the main guides for the author.

In general, there are four important types of propagating waves which occur in
soil systems considered to be linear elastic and isotropic [19] [13] [8]. There are
two body waves, P-waves and S-waves, which occur far from boundaries. The P-
wave also known as compressional or pressure wave is associated with longitudinal
particle motion where the soil undergoes a local compression and elongation in the
direction of travel as the wave passes. The S-wave or shear wave is associated with
particle motion in the transverse direction to the direction of motion of the wave.
This creates shear strain and shear stresses in the soil and hence the name. Any
shear wave motion can be decomposed into the horizontal and vertically polarized
components or SH and SV type waves. The figure 2.1 shows a visual representation
of the P-wave and S-wave, while the figure 2.2 shows the SH and SV components.

There are two waves, Rayleigh and Love waves, which occur at a free surface
of the soil. There is actually another wave type which occurs when there is a fluid-
soil interface, the Scholte wave, although its characteristics and motions are similar
to the Rayleigh wave and sometimes waves on the seabed are still referred to as
Rayleigh waves. The Rayleigh wave is a combination of the SV and P-waves inter-
acting at the surface. This creates and elliptical particle motion. It is called a surface
wave because this type of behaviour can only occur at the surface and the ampli-
tude of particle motions decay exponentially away from the surface. The Rayleigh
or Scholte wave motion is different to the motion of water waves because the parti-
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Figure 2.1: Particle motion in body waves.

Figure 2.2: Generic orthogonally polarized waves.
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Figure 2.3: Particle motion in surface waves.

cle motion traces an ellipse in the opposite direction to what occurs in water waves.
This retrograde motion is due to the shear stresses which cannot occur in water.
The other wave is the Love wave which is a combination of the SH and P-waves
and results in the ground moving side to side instead of up and down. The Love
wave is not considered in this thesis, the motions are out of the 2D plane which is
used to characterize the soil via the measurement array. It cannot be generated with
an airgun source and must be generated by a hammer and beam or another source
which imparts shear stress on the soil [19] [13]. A project by NGI in deep waters
successfully used a custom made suction bucket source and actuator in order to gen-
erate source waves in a very controlled manner. This showed that it is possible to
use mutltimodal Love and Scholte wave joint inversion to aid in the characterization
of the site and it is advantageous to be able to use multiple wave types [29]. Figure
2.3 shows the particle motion for surface waves.

Since a surface array will be used to record measurements, it is expected that the
Rayleigh waves will be the most visible and the most important in characterizing the
soil. Rayleigh waves contain the most energy [19] and are dispersive in character
in non-homogeneous media. Dispersion means that the wave speed is dependent on
the wavelength. Figure 2.4 shows the decay of particle motion at a certain depth
away from the surface. It can be normalized by the wavelength and after ∼ 1.5
wavelengths the amplitude is quite small. Therefore, the longer wavelength waves
will ‘feel’ deeper into the soil and their velocity is influenced by the stiffness of these
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14 2. THEORY AND DERIVATIONS

Figure 2.4: Variation of Rayleigh wave amplitude with depth [13].

deeper layers while short wavelength waves will have their speed governed by the
shallower layers of soil. This is the principle that makes inversion possible.

In acoustic media, which cannot develop shear stresses since it has no shear stiff-
ness, S-waves cannot exist. Therefore, only compressional or pressure type waves
exist.

2.1 Elastic Wave Equation

It is assumed that soil can be modelled as a continuum with certain macroscopic
properties and that we can formulate governing equations for soil systems based on
classical physical laws, such as Newton’s second law.

The derivation consists of combining 3 relations in 3 dimensions. In order to
keep the derivation succinct the more compact Einstein index notation is used. The
kinematic equation gives the relationship between strain and displacements. The
constitutive equation gives the relationship between stress and strain. The equi-
librium equation is formulated to satisfy Newton’s 2nd Law between stresses and
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2.1. ELASTIC WAVE EQUATION 15

accelerations.

2.1.1 Kinematic Equation

The deformation of a control volume is considered to determine the relationship
between displacements and strains. If we consider the deformation of a control
volume where u represents deformations:

ε11 =
∆u1

∆x1
=
du1

dx1
= u1,1 (2.1)

ε12 =
1

2
(
∆u1

∆x2
+

∆u2

∆x1
) =

1

2
(
du1

dx2
+
du2

dx1
) =

1

2
(u1,2 + u2,1) = ε21 (2.2)

In 3 dimensions all the strain components form a second order tensor. However, this
tensor is symmetric and there are only 6 independent strain components, which we
will make use of later. In index notation note that the “, ” is signifying the derivative
with respect to the terms which come after it. The strains are then given by:

εij =
1

2
(ui,j + uj,i) (2.3)

2.1.2 Constitutive Equation

In general the stiffness depends on the strain level. For example, Figure 2.5 shows
how the shear stiffness varies with strain level. Seismic waves induce a small strain

Figure 2.5: Secant stiffness and Gmax reduction[13].

as they propagate, mostly below 3 ∗ 10−4 [13]. As such we can assume that the
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16 2. THEORY AND DERIVATIONS

stiffness is constant and the material is linear elastic. We also assume it is isotropic,
with properties being direction independent. Then without external sources Hooke’s
law for normal stresses in an isotropic solid can be written as:εxxεyy

εzz

 =
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

σxxσyy
σzz

 . (2.4)

Where E the Young’s modulus, or material stiffness. The poisson ratio ν gives the
ratio of deformations in different directions. If a material has infinitely high vol-
umetric stiffness then by volume conservation the poisson ratio is 0.5. The lower
bound is usually take as 0 implying that range of values for poisson ratio is positive
and compression in one coordinate direction will cause expansion in the other two
directions.

E = stress
strain =

σ

ε

ν = − transverse strain
longitudinal strain = −dεtrans

dεaxial

The previous equation between stress and strain (Equation 2.4) can be inverted to
express the stress in terms of strains:σxxσyy

σzz

 =

λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ

εxxεyy
εzz

 , (2.5)

where λ and µ are again two elastic parameters, the Lamé coefficients, which can be
written as functions of the Young’s modulus and poisson’s ratio via:

λ =
νE

(1− 2ν)(1 + ν)
(2.6)

µ =
E

2(1 + ν)
. (2.7)

µ is also known as the shear modulus. In geotechnical engineering the shear modu-
lus is often expressed as G. λ+ 2µ is also recognized as the constrained modulus or
oedometer modulus and often expressed as M or Eoed.

For shear stresses in an isotropic linear elastic medium they are related to the
shear strain. Also the shear stresses and strains are symmetric.

σij = τij = µγij = 2µεij where i 6= j (2.8)
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Figure 2.6: Control volume x1 direction stresses [21].

It is easy to see that the shear stresses are only dependent on their respective shear
strains: σxyσxz

σyz

 =

2µ 0 0
0 2µ 0
0 0 2µ

εxyεxz
εyz

 , (2.9)

Written in compact Eistein notation both normal and shear stresses are expressed
by this equation:

σij = λεkkδij + 2µεij (2.10)

where δij the Kronecker delta.

2.1.3 Equilibrium Equation

Newton’s second law is applied to a control volume and which leads to the equations
below.

Considering the x1 direction:

ρ∆x1∆x2∆x3
∂2u1

∂t2
= (

∂σ11

dx1
∆x1)∆x2∆x3+(

∂σ21

dx2
∆x2)∆x1∆x3+(

∂σ31

dx3
∆x3)∆x1∆x2

(2.11)
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ρ
∂2u1

∂t2
=
∂σ11

∂x1
+
∂σ21

∂x2
+
∂σ31

∂x3
(2.12)

For all 3 directions with index notation and summation convention:

ρüi = σji,j (2.13)

In summation convention, a term with a twice repeated index indicates summation
over all the index numbers. In this equation j is the summation index which is
summed from 1 − 3, while the i index is simply enumerated 1 − 3 to produce three
separate equations.

2.1.4 3D Elastic Equation

By substituting the kinematic Equation 2.3 into the constitutive Equation 2.10 we
can express the stresses in terms of displacements:

σ11 = λ(u1,1 + u2,2 + u3,3) + 2µu1,1 (2.14)

σ21 = µ(u1,2 + u2,1) (2.15)

Or in general:
σij = λuk,kδij + µ(ui,j + uj,i) (2.16)

Which can then be substituted into Equation 2.13 to determine the final general 3D
elastic equation:

ρüi = λuj,ji + µ(ui,jj + uj,ij) (2.17)

If it is first grouped:
ρüi = (λ+ µ)uj,ij + µui,jj (2.18)

Then it can be expressed in vector form which may be more recognizable. The body
force vector, f̄ext, is also included for completeness.

ρ ¯̈ui = (λ+ µ)∇(∇ · ū) + µ∇2ū+ f̄ext (2.19)

2.1.5 Acoustic Equation

The acoustic equation, which is assumed governs wave propagation in water as fluids
do not develop shear stresses, can be obtained from the elastic equation. Simply, the
acoustic medium has no shear stiffness and the acoustic equation is a subset of the
elastic equation with µ = 0.

ρ ¯̈ui = λ∇∇ · ū+ f̄ (2.20)
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2.2. 2D MODAL SURFACE WAVE EQUATIONS 19

2.2 2D Modal Surface Wave Equations

In the MASW test a line array will be used to measure the response as the produced
wave propagates through the soil below the array. If source is aligned with the direc-
tion of the array then the wavefronts will always be normal to the array and we can
consider a 2D slice acting through the array and the source. Very close to the source
it will be spherical or cylindrical wavefront but some distance from the source the
curvature of the wavefront will be very small and can be approximated as a planar
wave. This is equivalent to a line source in a 3D space which would produce planar
waves. The derivation of 2D surface waves in plane homogeneous medium is the
simplest place to start for understanding the propagation of surface waves. It is as-
sumed that the motion is all in the x1 (horiztonal) and x3 (vertical) direction and all
derivatives with respect to the x2 (out of page) direction are zero. This means Love
waves will not be present in the solution, but the goal of this derivation is to prove
the existence and nature of the Rayleigh waves.

We can use the Helmholtz decomposition [8] in order to decouple the elastic wave
equation with the scalar potential φ and the vector potential ψ which separates the
displacement into a rotation free part, up, and a divergence free part, us which will
later be recognized as the pressure wave and shear wave components.

ū = ∇φ+∇× ψ̄ = ūp + ūs (2.21)

Where ∇× ūp = 0 and ∇ · ūs = 0. It should also be noted that for the 2D scenario
the ∇ × ψ̄ vector only contains rotation in the 2D plane and so there is only one
axis of rotation, normal to the 2D plane. Hence ψ̄ will be simplified to ψ which for
the x1, x3 plane will be a scalar field associated with the x2 direction vector. With
substituting this Equation 2.21 into the governing wave Equation 2.19 we get:

ρ∂2
t (∇φ+∇× ψ̄) = (λ+ µ)∇(∇ · (∇φ+∇× ψ̄)) + µ∇2(∇φ+∇× ψ̄) (2.22)

We must use several vector identities in order to rearrange this equation. The laplace
operator can be interchanged with the gradient and curl operator.

∇ · (∇× ψ) = 0

∇ · ∇ = ∇2

∇2(∇φ) = ∇(∇2φ)

∇2(∇× ψ) = ∇× (∇2ψ)

(2.23)
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Then Equation 2.22 can be separated into two equations which we can set both as
equal to zero in order to find a solution:

ρ∂2
t φ− (λ+ 2µ)∇2φ = 0

ρ∂2
t ψ − µ∇2ψ = 0

(2.24)

These equations can be seen to have the structure of a classic wave equation with
second order time derivative and second order spatial derivatives. The wave veloci-
ties can also be identified.

1

C2
p

∂2
t φ = ∇2φ, Cp =

√
λ+ 2µ

ρ

1

C2
s

∂2
t ψ = ∇2ψ, Cs =

√
µ

ρ

(2.25)

We recall that for 2D cartesian case the Laplace operator is:

∇2f =
∂2f

∂x2
1

+
∂2f

∂x2
3

Then, we take these equations into the Fourier domain based on the definition of
the forward Fourier transformation:

˜̃
f(κ1, x3, ω) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, x3, t)e
i(κ1x1−ωt)dx1dt (2.26)

which has the corresponding inverse definition:

f(x1, x3, t) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

˜̃
f(k1, x3, ω)e−i(k1x1−ωt)dx1dt (2.27)

Leading to the Fourier domain equations

−ω
2

C2
p

˜̃
φ = −k2

1
˜̃
φ+

d2 ˜̃
φ

dx2
3

−ω
2

C2
s

˜̃
ψ = −k2

1
˜̃
ψ +

d2 ˜̃
ψ

dx2
3

(2.28)

As seen by the choice of integration kernel for the fourier transformation, this cor-
responds to a solution which is a summation of components of harmonic propagating
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waves of ei(k1x1−ωt) in the time-space domain. Also we recognize two wavenumbers
related to the shear and pressure body wave speeds Cs and Cp which are generally
known:

kp =
ω

Cp
ks =

ω

Cs
(2.29)

It is then recognizable as two ODEs in x3:

d2 ˜̃
φ

dx2
3

+ (k2
p − k2

1)
˜̃
φ = 0

d2 ˜̃
ψ

dx2
3

+ (k2
s − k2

1)
˜̃
ψ = 0

(2.30)

Which are known to have solutions:
˜̃
φ(k1, x3, ω) = Ae−qpx3 +Beqpx3 , qp =

√
k2

1 − k2
p > 0

˜̃
ψ(k1, x3, ω) = Ce−qsx3 +Deqsx3 , qs =

√
k2

1 − k2
s > 0 (2.31)

C1 is the Rayleigh wavespeed, which for a isotropic halfspace we expect a single
magnitude of wavespeed with positive and negative roots corresponding to a +x1

and −x1 propagating wave. The roots corresponding to the evanescent waves in
the x1 direction are not considered. For the x3 direction we want a solution which
does not propagate but rather decays, and therefore qp and qs must be real valued,
hence k1 > ks > kp The unknown coefficients A,B,C,D and k1 must be solved with
boundary conditions. For a halfspace, since the solution must be finite at infinity we
can immediately say that B = D = 0 since these terms are exponentially increasing.
Additionally, the free-surface is stress free:

σ33(x1, x3 = 0, t) = σ31(x1, x3 = 0, t) = 0 (2.32)

The displacements and stresses are expressed in terms of the potentials using Equa-
tions 2.21 and 2.16. The symbolic software Maple was used in order to verify these
expressions.

Displacements:

u1(x1, x3, t) = ∂1
˜̃
φ− ∂3

˜̃
ψ = −ik1

˜̃
φ− ∂3

˜̃
ψ

u3(x1, x3, t) = ∂3
˜̃
φ+ ∂1

˜̃
ψ = ∂3

˜̃
φ+−ik1

˜̃
ψ (2.33)
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Stresses:

σ33(x1, x3, t) = λ(∂2
1

˜̃
φ+ ∂2

3
˜̃
ψ) + 2µ(∂2

3
˜̃
φ+ ∂2

13
˜̃
ψ)

= λ(−k2
1

˜̃
φ+ ∂2

3
˜̃
ψ) + 2µ(∂2

3
˜̃
φ− ik1∂3

˜̃
ψ)

σ31(x1, x3, t) = µ(2∂2
13

˜̃
φ+ ∂2

1
˜̃
ψ − ∂2

3
˜̃
ψ)

= µ(−2ik1∂3
˜̃
φ+ ∂2

1
˜̃
ψ − ∂2

3
˜̃
ψ)

(2.34)

Equations 2.31, 2.32 and 2.34 are combined, giving two equations with the un-
knowns A,C and k1 which after rearranging can be written in the matrix form:(

2k2
1 − k2

s 2ik1qs
−2ik1qp 2k2

1 − k2
s

)(
A
C

)
=

(
0
0

)
(2.35)

This homogeneous problem can only be solved when the matrix containing the coef-
ficients of A,C has determinant equal to zero. Traditionally, this will result in deter-
mining the unknown Rayleigh wavenumber k1. This is the modal solution since no
forcing is present and the wavenumber is determined from eigenvalues of this ma-
trix. There will be two eigenvalues for a 2 × 2 matrix and they must have the same
magnitude but opposite sign, corresponding to +x1 and −x1 propagating waves.
The ratio of the two scalar potentials φ and ψ is determined by the eigenvectors of
the matrix, which can be manipulated into the ratio of the vertical and horizontal
motions. The absolute magnitude of the displacements cannot be determined since
the solution is rank-deficient for the homogeneous problem. In simple terms, no
force is provided and so there cannot be any displacements, rather the modal solu-
tion is a property of the body. It can be demonstrated that the A and B coefficients
are π

2 out of phase and the motion takes on an elliptical pattern.
Note, that while the traditional solution to the homogeneous problem for the real

valued Rayleigh wave-number is correct, it is not complete. There is another com-
plex valued root pair corresponding to the body waves. These solutions are complex
because they are not limited to the surface but rather spread out continuously in
the x1 − x3 plane, thus leading to an attenuation or decrease in amplitude, known
as geometric damping. This will be discussed in the introduction of damping to
the equations, but it is important to realize that complex valued solutions can exist.
However, this body wave decays, so at a distance far from the source their effect
can be said to be negligible and they are often of minor importance in surface wave
analysis. Figure 2.7 is a schematic which shows the complex wavenumber plane for
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a homogeneous halfspace. Note that the complex root pair may lie on the real axis
for specific values of the poisson ratio, that is ν ≤ 0.2

Figure 2.7: Schematic of the complex wavenumber plane for a homogeneous media
show the real roots, complex roots and the branch points.

The Rayleigh wavenumber, Kr, lies on the real axis. Branch points are locations
where the determinant reaches a singularity and changes form, but these are not
root locations. The two branch points occur at Kp and Ks, the pressure and shear
wavenumbers associated with the body velocities. Below Kp and above Ks the de-
terminant is real valued. This is observed from inspecting the determinant equation
show below, which is directly obtained by taking the determinant of the matrix in
Equation 2.35. Note, a layered system will contain more branch points.

(2k2
1 − k2

s)2 − (2 ∗ k1)2
√
k2

1 − k2
s

√
k2

1 − k2
p (2.36)

Considering again only the real valued solution we see from the equations that
the Rayleigh wave number and the ratio of deformations only depends on the ratio
of the constrained modulus λ + 2µ and the shear modulus µ in the halfspace. In
terms of more physical parameters then it is only the ratio of the Cp and Cs velocities
which determines the characteristics of the system. In the limit case, where the shear
stiffness, or S wave speed, tends to zero, then the halfspace responds as an acoustic
halfspace.

If we assume 0 < ν < 0.5 and λ must be positive and we can rearrange to show

λ =
Eν

(1 + ν)(1− 2ν)
= µ(

C2
p

C2
s

− 2) (2.37)
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0 <
Cs
Cp

<
1√
2

(2.38)

If the reader is interested in a deeper physical understanding of these equations,
there are some illustrations and further discussion in the author’s previous report
[2]. Note also, for the Cs

Cp
range given above the C1

Cs
ratio lies between 0.878− 0.955.

2.3 Damped Full Waveform Equations

2.3.1 Adding a Force

If it is of interest to solve the absolute displacements, to create a synthetic seismic
test or to compare with measured results, then a force must be included and the
inhomogeneous problem solved. The step to the full waveform solution is actually
quite small and in some ways easier to consider than the modal solution. We are ul-
timately concerned with seismic measurements on the seabed and here we consider
an impulsive pressure source which can, for the simplest example, be represented as
a dirac delta pulse. However, other force profiles can be used, such as a ricker pulse
or a measured spectrum which will result in different response spectrums. The dirac
case is the simplest because it highlights the entire spectrum uniformly. The dirac
force:

F (x1, x3, t) = δ(t)δ(x1)δ(x3) (2.39)

Which transformed into the fourier domain and evaluated at x3 = 0 becomes:

F (k1, x3 = 0, ω) = 1 (2.40)

Hence, with a vertically acting normal stress source the Equation 2.35 then becomes:(
2k2

1 − k2
s 2ik1qs

−2ik1qp 2k2
1 − k2

s

)(
A
C

)
=

(
1
0

)
(2.41)

The variable k1 is no longer considered an unknown, but rather like ω it is a
specified value for which we wish to identify the response. Hence the matrix can be
viewed as a function f(ω, k1, Cp, Cs), where the compressional and shear body wave
velocities are chosen over the stiffness and density because it is a more physically
intuitive term and also what is often measurable. However, Cp and Cs depend on
E, ν, ρ, λ, µ, ζ where some of these parameters are dependent, but they are shown
here for completeness and clarity since various combinations of these parameters
may be used to define the inputs.
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The matrix can be inverted to determine the unknown potential amplitude coeffi-
cients stored in the vector X.

¯̄M X̄ = F̄

X̄ = ¯̄M−1 F̄
(2.42)

However, at some frequency-wavenumber combinations the determinant of ¯̄M
will be zero and the determinant is said to be singular and non-invertible. This
is of course occurring at the roots of the modal solution. These are the ‘resonant’
combinations of the system and have ‘infinite’ amplitudes. In order to be able to
invert the matrix for all frequency-wavenumber combinations, a small amount of
damping can be added which is a physical way to make the amplitude finite. If
the damping is very low then the matrix may be ill-conditioned and regularization
techniques may need to be used in order to calculate a stable inverse. Inspection
of singular values indicates that the ill-conditioning can be either discrete or rank
deficient. Truncated singular value decomposition can be used for rank-deficient
problems. Tikhonov regularization is required for discrete problems and can also be
used for rank-deficient problems. Some literature [10] recommends using Tikhonov
regularization and practically this makes sense since it can address both types of ill-
conditioning. However, applying damping was sufficient so that regularization was
not required.

2.3.2 Adding Damping

There are two types of damping [19] which contribute to the decay of soil waves.
Geometric or radiation damping, which is a decrease in the amplitude of the wave
due to the geometric spreading of the wave front. In an isotropic continuum the
wavefront will be spherical and the geometric damping is proportional to 1

r . For a
halfspace the Rayleigh wave travels only along the surface and geometrical damping
is proportional to 1√

r
, while body waves travelling at the interface decay faster with

a rate of 1
r2 [9], [10]. In more complex layered systems it is not possible to find a

simple geometric relation for radiation damping. The other type is material damp-
ing, which is a loss of energy due to internal dissipation within the material. This
can be modelled in several different ways:

Viscous Damping
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Viscous damping is commonly used in modelling a single degree of freedom mass-
spring-damper system. The damping force is proportional to velocity. The damping
work done in one cycle can therefore be shown to be proportional to the damping
coefficient, the frequency and the square of the amplitude [19].

Wd = (πωc) u2
o (2.43)

This is derived in Appendix A. Viscous damping can be applied through use of a
complex stiffness. ∗ denotes a complex valued term.

λ∗ = λ0 (1 + iωελ) (2.44)

µ∗ = µ0 (1 + iωεµ) (2.45)

The soil system or coefficient matrix,M , is computed at every frequency and wavenum-
ber separately so it is easy to add in damping which is either frequency or wavenum-
ber dependent. In this case, we simply substitute the complex stiffness into the
equations already derived.

Hysteretic Damping

It has been noted by researchers that damping in soils is not dependent on fre-
quency [19] and that viscous damping leads to an overestimation of damping at
higher frequencies due to the linear increase of damping with frequency. The hys-
teretic model is similar to the viscous damping but the equivalent viscous damping
coefficient is divided by ω to make the damping work per cycle independent of fre-
quency.

Wd = const u2
o (2.46)

The hysteretic damping is similarly applied with a complex stiffness.

λ∗ = λ0 (1 + iηλ) (2.47)

µ∗ = µ0 (1 + iηµ) (2.48)

The derivation in Appendix A shows how the loss factor, η, can be directly related
to a critical damping ratio, ζ, through an analogy to the single degree of freedom
mass-spring-damper system. This damping ratio is often given by ζ for single degree
of freedom systems while in soil modelling is often referred to by the capital letter
D. In this thesis we will refer to the material or intrinsic damping as ζ while D will
be reserved for the modal damping which is explained in Chapter 6.

ζ =
1

2
η (2.49)
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Coulomb Damping

The Coulomb model of damping hypothesizes that the damping should only be
proportional to the displacement amplitude and not the square of the displacement
amplitude. This is also sometimes referred to as dry friction or sliding friction.
Hence, the equivalent viscous damper must be divided by the displacement am-
plitude such that:

Wd = const uo (2.50)

Coulomb friction will not be used because it is not thought to represent the damp-
ing behaviour of soil accurately. Instead the focus will be on hysteretic damping as
suggested by [19] and possibly also viscous damping, since it can be implemented
in a very similar way.

Since adding damping increases the complexity, it is a good point to clarify a few
facts about these equations with and without damping. Without damping, all system
parameters (wave velocities) are real valued. However, the determinant is generally
complex, as shown in Figure 2.7. The Rayleigh velocity which solves the modal solu-
tion must be real (ignoring for now the complex body wave solutions which are not
surface wave solutions). The halfspace system response, computed at some chosen
surface or subsurface location, will be complex, since the determinant (appearing in
the denominator of the response) is complex. Physically this makes sense, as we ex-
pect we can express all of the frequency-wavenumber solution components in terms
of a magnitude and phase angle.

Adding damping, the P-wave and S-wave velocities can be seen as being complex
due to the complex stiffness. The determinant and response, will naturally also
remain complex. Additionally, the Rayleigh wavenumber (or velocity) solution of
the homogeneous or modal problem must also be complex ie k1 = k1,RE + ik1,IM .
To understand physically what this means, we consider the integration kernel or
basis function ei(ωt−k1x1). If we expand this with the complex wavenumber then we
see

ei(ωt−(k1,RE+ik1,IM )x1) = ek1,IMx1ei(ωt−(k1,RE)x1) (2.51)

The real part of this wavenumber kRE corresponds to the wave propagation and the
physical wavelength which is detected by a surface array. It is important to note
this, that the physical array and the Fourier transformation made to process the
data corresponds to the real part of the wavenumber, and no information about the
imaginary part is gathered through Fourier transformation of the data. Equally, we
compute the full waveform response over the frequency-real wavenumber plane, as
we did before, although the modal solutions lie out of this real plane and instead

CONFIDENTIAL



28 2. THEORY AND DERIVATIONS

on the complex wavenumber plane. The imaginary part of the wavenumber, as
can be seen above, no longer corresponds to a complex exponential or propagating
function, but to a real valued exponential. This corresponds to an exponential decay
in the direction of wave propagation if no mistakes have been made with the sign
convention. Hence if kRE is positive, we expect kIM to be negative and vice versa.
Modal solutions only exist in two of the four quadrants of the complex wavenumber
plane.

2.4 Cylindrical Coordinate Equations

The derivations for the cylindrical coordinate formulation in this section were completed
with the aid of [1].

Determination of the damping is tied precisely to amplitudes and energy dis-
tributions. Since we are interested in determining the material damping and this
is combined with the geometric damping, we can conclude that we must correctly
model the geometric damping in order to determine the material damping. Hence,
we must model our physical system correctly. Although, we have discussed geomet-
ric damping as the spreading of wavefront, let us try to understand physically how
this is different between 2D and 3D and also understand how geometric damping
relates to the typical frequency-wavenumber domain analysis, before jumping into
the 3D equation derivations.

Geometric damping cannot be seen in the wavenumber domain, it is a spatial
phenomenon, occurring in the space domain. With the Fourier transform we make a
change of basis from space/distance to wavenumber, so that the solution no longer
depends on the original spatial coordinate. Of course, this information is carried into
the wavenumber domain through the corresponding correct amplitude and phase
components, but the loss of energy with distance only exists in the complete solution
as the combination of all wavenumber components.

Firstly, consider the undamped 2D case where the basis functions are sinusoids.
If you examine any individual harmonic component then the amplitude will never
decay and it continues to infinity. In this case, with the line source, it logically
follows that there is no geometric spreading of the interface waves since they are
depth constrained and do not radiate energy into the lower halfspace, nor spread
laterally, since we consider an infinite line source. So while it may seem strange, we
logically conclude that in the hypothetical scenario of an infinite line source applied
on an undamped elastic homogeneous media, the interface waves which are depth
constrained, do not experience geometric damping in the far field. They are not
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subject to any amplitude decay, leading to a wave which will propagate forever.
Clearly, this must be a simplification.

If we instead consider a point source, then we can formulate the equations in
cylindrical coordinates and we see the effect of the lateral spreading of energy as the
propagation wavefront circumference is constantly expanding. Cylindrical type ODE
problems are well known to have solutions that can be expressed in terms of Bessel
functions. These Bessel function solutions naturally incorporate the 3D spreading
of energy and the decay of the amplitude, as shown in figure 2.8. Hence, even in
undamped media, the interface waves will have a decay of amplitude which is due
to the geometric damping and the spreading of the wavefronts. In an homogeneous
halfspace, Rayleigh waves are known to decay at 1√

r
. The Bessel functions are es-

sentially a combination of a sinusoidal function and a real valued exponential decay.
This leads to some methods that use the 2D equation formulations but include a
‘geometric spreading factor’ to account for this amplitude decay. The problem is that
the analytical solution of the decay factor is only known for the homogeneous half-
space case, and for layered soil systems this factor must be estimated as part of an
inversion approach. It is better to use the 3D equations which can automatically ac-
count for geometric damping in a layered media. Of course, in any of these methods
it should be noted that errors in the estimate of the stiffness profile may lead to er-
rors in the geometric damping. Approaches which use spatial domain processing to
estimate the damping are especially subject to these errors since the combination of
propagating modes results in a complicated amplitude versus distance pattern which
does not simply decay exponentially but may have local increases due to constructive
interference of waves.

The derivation now considers the waves generated by a point source in a 3D
domain. However, for our purpose we consider only the axi-symmetric case, so
there is motion only in 2 dimensions - the radial (r) and vertical (z) dimensions,
and the mathematics is not much more complicated than the cartesian case. With
the axi-symmetric assumption we can then say uθ = 0 and ∂θ = 0. Hence, the
Helmholtz decomposition of the displacement, previously given in Equation 2.21, is
ū = ∇φ + ∇ × ψ̄. It was expanded using the definition of the curl in cylindrical
coordinates as obtained from Maple:uruθ

uz

 =

∂rφ∂θφ
∂zφ

+

 1
r∂θψz −

1
r∂z(rψθ)

∂zψr − ∂rψz
1
r∂r(rψθ)−

1
r∂θψr

 (2.52)

If uθ = 0 then it follows ψr = ψz = 0 which is also proven if ψ ∼ ∇× u. Hence, ψ̄ is
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Figure 2.8: Bessel functions automatically include amplitude decay while harmonic
functions do not.

simply written as ψ because only ψθ is non-zero and Equation 2.52 is simplified to:

uruθ
uz

 =

 ∂rφ− ∂zψ
0

∂zφ+ 1
r∂r(rψ)

 (2.53)

We also need the stress equations and from Equations 2.5 and 2.9, we know the
definition of the relevant compressional and shear stresses are:

σzz = (λ+ 2µ)εz + λ(εr + εθ)

τzr = µγzr
(2.54)
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However, the strain vectors are different in cylindrical coordinates [20].
εr
εθ
εz
γrθ
γθz
γzr

 =


∂rur

u
r + 1

r∂θuθ
∂zuz

∂ruθ + 1
r∂θur −

uθ
r

1
r∂θuz + ∂zuθ
∂zur + ∂zuz

 (2.55)

Substitution into the stress Equation 2.54 results in the cylindrical coordinate
stresses given in Equation 2.56. The compressive stress was written in a simpler
form using the chain rule, and ∂θ = 0 applied due to axisymmetry.

σzz = (λ+ 2µ)∂zuz + λ(∂rur +
ur
r

+
1

r
∂θuθ)

= (λ+ 2µ)∂zuz +
λ

r
∂r(rur)

τzr = µ∂zur + ∂zuz

(2.56)

If the displacements from Equation 2.53 are substituted into Equation 2.56 then
the stresses in terms of potentials becomes:

σzz = (λ+ 2µ)∂z(∂zφ+
1

r
∂r(rψ)) +

λ

r
∂r(r(∂rφ− ∂zψ))

τzr = µ∂z(∂rφ− ∂zψ) + ∂z(∂zφ+
1

r
∂r(rψ))

(2.57)

The Helmholtz separation and all the stages leading to Equations 2.25 were per-
formed with vector mathematics and therefore the coordinate system is, up to that
point generalized. So we can also take the governing equations and continue in
cylindrical coordinates

1

C2
p

∂2
t φ = ∇2φ

1

C2
s

∂2
t ψ = ∇2ψ

Hence, we begin with these equations and use the appropriate scalar and vector
laplace definition in cylindrical (r, θ, z) coordinates [35]. Scalar laplacian:

∇2f =
1

r
∂r(r∂rf) +

1

r2
∂2
θf + ∂2

zf (2.58)
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Vector laplacian of V̄ :

∇2V̄ = ∇2


Vr

Vθ

Vz

 =


∂2
rVr + 1

r2 ∂
2
θVr + ∂2

zVr + 1
r∂rVr −

2
r2 ∂θVθ −

Vr
r2

∂2
rVθ + 1

r2 ∂
2
θVθ + ∂2

zVθ + 1
r∂rVθ + 2

r2 ∂θVr −
Vθ
r2

∂2
rVz + 1

r2 ∂
2
θVz + ∂2

zVz + 1
r∂rVz

 (2.59)

Which for the axi-symmetric case, including the fact that ∂θ = 0, the vector Laplacian
reduces to:

∇2Vθ = ∂2
rVθ + ∂2

zVθ +
1

r
∂rVθ −

Vθ
r2

(2.60)

The substitution is made into Equations 2.25 (also repeated above), which leads
to:

1

C2
p

∂2
t φ = ∂2

rφ+
1

r
∂rφ+ ∂2

zφ

1

C2
s

∂2
t ψ = ∂2

rψ + ∂2
zψ +

1

r
∂rψ −

ψ

r2

(2.61)

These equations are transformed into the frequency domain with a single Fourier
integral, similar to the double Fourier integration performed previously.

−ω
2

C2
p

φ̃ = ∂2
r φ̃+

1

r
∂rφ̃+ ∂2

z φ̃

−ω
2

C2
s

ψ̃ = ∂2
r ψ̃ + ∂2

z ψ̃ +
1

r
∂rψ̃ −

ψ̃

r2

(2.62)

Now we have the displacement, the stress and the governing equations in terms
of potentials, they can all be transformed to the wavenumber domain using the
appropriate Hankel transformation. The detailed transformation of Equations 2.53,
2.57 and 2.62 are shown in Appendix C. Different orders of Hankel transformation
are used in order to get the equations in the most convenient form. The order of
Hankel transformation is dependent on the order of the Bessel function which is
used in the integration kernel and the order is denoted by n in Equation 2.63.

f̃Hn(κr, x3, ω) =

∫ ∞
0

f̃(r, x3, ω)rJn(rκr)dr (2.63)
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The Hankel transformed wave equations in the frequency-wavenumber domain
which are derived in the Appendix C are:

∂2
z φ̃

H0 − (k2
r − k2

p)2φ̃H0 = 0 (2.64)

∂2
z ψ̃

H1 − (k2
r − k2

s)ψ̃H1 = 0 (2.65)

These are almost identical to the wave equations obtained by the 2D cartesian
derivation and shown in Equation 2.30.

This type of equation is known to have the solutions of the following form:

φ̃H0(kr, x3, ω) = Ae−qpx3 +Beqpx3 , qp =
√
k2
r − k2

p > 0

ψ̃H1(kr, x3, ω) = Ce−qsx3 +Deqsx3 , qs =
√
k2
r − k2

s > 0 (2.66)

The wavernumber domain displacement and stress equations which where de-
rived in Appendix C are:

ũH1
r = −krφ̃H0 − ∂zψ̃H1 (2.67)

ũH1
z = ∂zφ̃

H0 + krψ̃
H1 (2.68)

σ̃H0
zz = µ

(
(2k2

r − k2
s)φ̃H0 + 2kr∂zψ̃

H1

)
σ̃H0
zz = −ρω2φ̃H0 (for acoustic media)

(2.69)

τ̃zr = −µ
(

2kr∂zφ̃
H0 + (2k2

r − k2
s)ψ̃H1

)
(2.70)

These equations can also be manipulated into a format which is very similar
to the displacement and stress equations for the 2D cartesian case given in Equa-
tions 2.33 and 2.33. The equations are compared in table 2.1 and show remarkable
similarity. This supports the findings of the author that the wavenumber domain
solutions are identical in magnitude for 2D and 3D formulations. This is further
supported by [15] which states:
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A very important indeed fundamental observation that can be made
about waves in horizontally layered media is that the wave spectra for
SV-P and SH waves do not depend on whether plane-strain waves or
cylindrical waves are being considered, even if the displacements pat-
terns elicited by such waves are not the same. For example, guided tor-
sional (cylindrical SH) waves in a layer over an elastic half-space exhibit
exactly the same dispersion characteristics as plane Love waves in that
same medium, that is, they propagate at exactly the same speed for a
given frequency. Thus, it suffices for us to consider in detail only the
two plane strain cases for SH and SV-P waves, which we then generalize
without much ado to cylindrical waves.

Table 2.1: Displacement and stress equations in 2D and 3D.

Cartesian Cylindrical

u1 (−ik1)
˜̃
φ− ∂3

˜̃
ψ −(kr)

˜̃
φ− ∂3

˜̃
ψ

u3 ∂3
˜̃
φ+ (−ik1)

˜̃
ψ ∂3

˜̃
φ+ (kr)

˜̃
ψ

σ31 µ(2(−ik1)∂3
˜̃
φ+ (−k2

1)
˜̃
ψ − ∂2

3
˜̃
ψ) µ(−2(kr)∂3

˜̃
φ+ (−k2

r)
˜̃
ψ − ∂2

3
˜̃
ψ)

σ33 (λ+ 2µ)∂2
3

˜̃
φ+ λ(−k2

1)
˜̃
φ+ 2µ(−ik1)∂3

˜̃
ψ (λ+ 2µ)∂2

3
˜̃
φ+ λ(−k2

r)
˜̃
φ+ 2µ(kr)∂3

˜̃
ψ

So if the magnitudes are identical, does it matter if we formulate in 2D or 3D?
Of course! The basis functions in the integration kernel are still different and so
taking the inverse transformations, the spatial domain solutions are different. Given
the same spatial data, the choice of transformation will effect the energy spectra
calculated which will be different for these two cases. So, the measured data must
be transformed to the wavenumber domain using the Hankel transformation in order
to correctly compute the distribution of energy in the wavenumber spectra. Also, any
theoretical cases which wish to include the effect of windowing by windowing in the
space domain, should use the Hankel transformation to transfer between space and
wavenumber.

2.5 Layered Model

Now that the halfspace model has been understood, we can extended this to a hor-
izontally layered soil system. The jump to a layered model is theoretically straight-
forward, although tracking the mathematics and understanding the more complex
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solutions which can arise from such a system is indeed quite challenging. Maple
symbolic software is used to generate the equations, which are then converted to
Matlab code such that the models are pre-defined and hardcoded within the Matlab
function. This adds the disadvantage of another step if the model is not created for
the desired number of layers. From coding and running both methods, it was found
the hard-coding the definitions offers a significant speed advantage as compared
with creating the model for an arbitrary number of layers within Matlab.

2.5.1 Equations

We begin with Equation 2.31 and now allow for the possibility of different potentials
in every layer, since every layer in general has different physical properties. Thus the
layer number is now denoted by the index j. One global coordinate system is used
with x3 positive downwards and x1 horizontally along the surface.

˜̃
φj(x3) = Aje

−qpjx3 +Bje
qpjx3 , qpj =

√
k2

1 − k2
pj > 0

˜̃
ψj(x3) = Cje

−qsjx3 +Dje
qsjx3 , qsj =

√
k2

1 − k2
sj > 0 (2.71)

In order to help with the numerical computations, a scaling term is introduced which
limits the size of the positive exponential. The negative exponential term starts at
e−qpjx3 = 1 when x3 = 0 and decreasing in magnitude in depth. The increasing
exponential is scaled to the layer depth so that it reaches a value of 1 at the bottom
of the layer.

˜̃
φj(x3) = Aje

−qpjx3 +Bje
qpj(x3−thkj)

˜̃
ψj(x3) = Cje

−qsjx3 +Dje
qsj(x3−thkj) (2.72)

Where thkj is the thickness of soil layer j. This is allowed sinceB andD are unknown
constants. The displacements from Equation 2.33 can then be defined:

u1|j(k1, x3, ω) = −ik1
˜̃
φj − ∂3

˜̃
ψj

u3|j(k1, x3, ω) = ∂3
˜̃
φj +−ik1

˜̃
ψj

(2.73)
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And stresses from Equation 2.34:

σ33|j(k1, x3, ω) = λ(−k2
1

˜̃
φj + ∂2

3
˜̃
ψj) + 2µ(∂2

3
˜̃
φj − ik1∂3

˜̃
ψj)

σ31|j(k1, x3, ω) = µ(−2ik1∂3
˜̃
φj + ∂2

1
˜̃
ψj − ∂2

3
˜̃
ψj)

(2.74)

For our application the upper layer is considered to always be a water layer. This
is an acoustic layer with no shear stiffness and it is assumed no shear stresses can
develop in this layer. The above equations then are simplified since µ = 0 and also
ψ = 0.

Acoustic potential

˜̃
φj(x3) = Aje

−qpjx3 +Bje
qpj(x3−thkj), qpj =

√
k2

1 − k2
pj > 0 (2.75)

Acoustic displacements:

u1|j(k1, x3, ω) =− ik1
˜̃
φj

u3|j(k1, x3, ω) =∂3
˜̃
φj

(2.76)

Acoustic stress:

σ33|j(k1, x3, ω) = −k2
1λ

˜̃
φj + 2µ∂2

3
˜̃
φj

σ31|j(k1, x3, ω) = −2ik1µ∂3
˜̃
φj

(2.77)

2.5.2 Boundary Conditions

The equations are formulated in the global coordinate system and the Depthj refers
to the depth at the bottom of the jth layer. There will only be Nlayer−1 depth values
which must be specified since the last layer contains the halfspace which is consid-
ered to extend to∞. The following boundary and interface conditions are applied:

• Pressure at the free surface equals zero.
σ33|1(k1, x3 = 0, ω) = 0
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• No shear stress can be transferred at the soil-liquid interface -shear stress
equals zero.
σ31|2(k1, x3 = Depth1, ω) = 0

• Continuity of vertical stress at the soil-water interface.
σ33|1(k1, x3 = Depth1, ω) = σ33|2(k1, x3 = Depth1, ω)

• Continuity of horizontal displacements at the soil-liquid interface.
u1|1(k1, x3 = Depth1, ω) = u1|2(k1, x3 = Depth1, ω)

• Continuity of horizontal and vertical displacements at every soil-soil interface.
u1|j−1(k1, x3 = Depthj , ω) = u1|j(k1, x3 = Depthj , ω)
u3|j−1(k1, x3 = Depthj , ω) = u3|j(k1, x3 = Depthj , ω)

• Continuity of horizontal and vertical stress at every soil-soil interface
σ33|j−1(k1, x3 = Depthj , ω) = σ33|j(k1, x3 = Depthj , ω)
σ31|j−1(k1, x3 = Depthj , ω) = σ31|j(k1, x3 = Depthj , ω)

• No inward radiation at the infinite boundaries
BNlayer = DNLayer = 0

These equations form a closed system of equations with the number of unknowns
and equations being equal to 2 + 4Nsoil + 2 or 4Nlayer − 4 where the first layer is
an acoustic layer and the last layer is a halfspace so that C1 = D1 = BNlayer =
DNlayer = 0. A Maple script was created which will generate all the equations and
collect the coefficient matrix. The generated system matrices are then hard coded
into a Matlab script. This is found to be much faster than generating the symbolic
matrices in the Matlab function.
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Chapter 3

Modal Inversion Method

This chapter treats in detail several specific aspects related to the inversion pro-
cess. A short description of the inversion process will be given, but it should also be
emphasized that the inversion can be considered as a general optimization problem
once a few key aspects are treated carefully. The key parameter in an inversion prob-
lem is the objective function. If this is formulated in a poor or non-robust way then
no matter what scheme or method is used, the results may be futile. On the other
hand, a robust well-defined objective function can allow multiple methods to reach
the correct result. The objective function is also called the misfit or error function
and the goal of optimization is to minimize this error and thereby find the best can-
didate. The ideal candidate would have an objective function value of 0, although in
reality this is often impossible to achieve due to noise and model simplifications. If
a suitability function is used then this is the negative of the error function and often
scaled so that the perfect candidate, with no error, has a suitability of 1.

The inversion of the soil stiffness profile is a non-convex problem which is ex-
pected to have many local minima [34], [10]. Therefore, a global optimization
strategy must be used which can capture the global minima. The problem has an
element of non-uniqueness, meaning that many different soil profiles can provide a
reasonable approximation of the measured dispersion and have a objective function
value that is close to the global optimum. This makes it more difficult to determine
the global minima and even narrowing in on the solution could be a problem. As an
analogy, imagine trying to find the lowest point in a bumpy football field, it would
not be obvious where in the field it might occur and many dips might be close to
the global minimum. On the other hand, a well behaved function is like a hill, there
may be bumps on it but you can be sure the highest point is near the top.
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The genetic algorithm initially creates a random, uniformly distributed popula-
tion with the model values within stipulated search ranges. At every generation,
more suitable candidates have a higher chance to pass on their ‘genes’ to the next
generation. Cross breeding and random mutation occurs every time a new genera-
tion is born, so there is a significant amount of randomness to the search, which is
what allows the genetic algorithm to find the global optimum. Specific details about
the implementation of the genetic algorithm are given in Chapter 5.

Key to this process is having a robust reliable objective function. Finding the
undamped or real dispersion curves is a key part of the classic modal misfit function.
Finding the damped dispersion curves is essential to the damping inversion, which
will be discussed in Section 5.1. Normalization of the determinant was found to be
key to the chosen misfit function.

Additionally, several small topics including spectra identification, windowing,
aliasing and resampling are covered which are of more relevance to the full wave-
form stiffness or damping inversions. They are considered in this section because
they are useful for understanding the entire theoretical framework surrounding seis-
mic inversion.

3.1 Modal Root Finding

Based on the equations given in Chapter 2, the theoretical dispersion character of
a system is found as all the frequency-wavenumber combinations which lead to a
zero determinant of the system matrix. The determinant equation is non-linear and
in general the roots are difficult to find. Foti [10] states that the dispersion relation
can only be written implicitly and is a “highly non-linear, transcendental function”
which depends on the input arguments λ, µ, ρ, k, ω. The solution is non-trivial and
the eigenvalue problem must be solved with numerical techniques. “For an elastic
medium, the roots of the dispersion relations can be obtained by means of root-
bracketing techniques combined with bisection. The use of the slow converging
root-finding techniques is recommended by the rapidly oscillating behaviour of the
Love and Rayleigh secular functions” and “requires the use of robust methods”. “De-
termination of the roots in viscoelastic continua is even more difficult because in
this case (the secular function) is a complex-valued mapping of the complex-valued
wavenumber.” Lai and Rix [14] state that “computing the zeros of a complex valued
function of a complex variable is not trivial, particularly if the function is highly non-
linear and known only numerically, as is the case for the Rayleigh secular function in
vertically heterogeneous media. No general methods are available”. They present a
method for finding the complex roots, but this is based on complicated mathematics
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and the Cauchy’s residue theorem and is beyond the scope of this thesis.

3.1.1 Undamped Roots

The undamped roots are found by searching for the point where a sign switch occurs
on both the real and imaginary parts of the determinant. First the determinant is
computed for every grid point within the desired frequency-wavenumber domain.
Then, a search is performed along a line of constant wavenumber, and the modal
points are identified as the first point after (at larger frequency than) the sign of
the real and imaginary parts change. Note the search direction will have an effect
on the points which are found. However, generally with the fine discretization used
the error on the position (due to the discrete nature of the calculation) is relatively
small. However, there is a weighting effect. If we consider that the surface wave
events are slow events, these have a low slope in the f-k domain and a search along
constant wavenumber will cross a mode more times than a search along constant
frequency as previously used [34]. Hence, searching along constant wavenumber
gives a better resolution of surface wave events while searching along constant fre-
quency results in a better resolution of the high velocity (often P-wave) modes. The
position error of the modes, due to the discrete grid, is greatly reduced by refining
the location of the root with a constrained local non-linear optimization function
which minimizes the determinant value. It is chosen to keep the frequency constant,
while the wavenumber is varied in the refinement optimization, in order to be able
to compare values at the same frequency. This optimization is kept stable by con-
straining it to a very small search area of +/− one grid step of the initial location.
The Matlab function fmincon is used.

Additionally, it was found by experimenting that this approach cannot find all
of the roots. At points slower than the minimum Cs velocity of the system, the
imaginary part of the determinant is zero. This is explained by Section 2.2 and
Figure 2.7. It can be seen in the response plots that part of the fundamental mode is
not captured by the strict definition, as shown in Figure 3.1 and 3.2. The test case
profiles for TC2 and TC3 are described in in Tables 4.2, 4.3 and Figures 4.2, 4.3. It
is shown that this occurs both in normally (TC3) and inversely dispersive systems
(TC2). Therefore, a modification of the picking criteria is used such that only the
real part of the determinant is checked for a sign switch if the imaginary part of the
determinant is zero and the grid location is at a phase velocity lower than the soil
system minimum Cs velocity. This modified root definition is seen to capture all of
the modes and will be used in all future root picking operations.

It is also interesting to note that we see more roots from the theoretical root
finding than we might expect from a visual inspection of the response spectra. The

CONFIDENTIAL



42 3. MODAL INVERSION METHOD

0 0.05 0.1 0.15 0.2

Wavelength-1 [1/m]

0

5

10

15

20

25

30

35

F
re

q
u
e
n
c
y
 [
H

z
]

Pressure Response Amplitude

(a) Response spectra to dirac impulse for
lightly damped TC2 soil profile.
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Figure 3.1: Comparison of found roots with spectral response for TC2 soil profile.
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(a) Response spectra to dirac impulse for
lightly damped TC3 soil profile.
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Figure 3.2: Comparison of found roots with spectral response for TC3 soil profile.

response spectra is generated using a dirac source, so it is expected to highlight ev-
erything in the f-k domain since the force is uniform. However, especially near the
maximum Cs velocity of the system there is no visible energy in the response spec-
tra. In Figure 3.2, the mode which runs straight (non-dispersively) from (0.02,5) to
(0.08,30) is not visible in the response spectra. It is expected that there is a cut-off
behaviour above the maximum Cs velocity where surface waves will no longer prop-
agate because they leak and lose energy rapidly. However, the roots are still within
the Cs range of the system so it is not clear why they do not show up in the spectra.
This should be kept in mind for the real measurements, that there simply may not
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be enough energy to activate this part of the higher modes.

3.1.2 Damped Roots

The roots of the determinant equation become complex. Hence, naively searching
for roots along only the real wavenumber axis will not find any roots. Instead, the
roots must be found in the complex plane. However, the roots are required at a
fine resolution on the f − k grid and adding another dimension to the problem,
for a f, kRE , kIM would require computing an extraordinary number of points, and
take too long. Hence, we need a smarter way to find the complex roots. Literature
notes that this is indeed a complicated problem, and for high damping there are not
that many satisfactory techniques. Some techniques linearize the equations to make
finding the roots easier, but this error becomes large for high amounts of damping
[14]. The roots start on the real axis and move deeper into the complex plane as
damping is increased. However, if only a small amount of damping is applied the
undamped root location can be used as a starting estimate for the location of the
complex damped root. The Matlab function fminsearch and fmincon were used to
find the complex roots. However, neither of these turned out to be robust and able
to capture all of the roots. A function was tested which uses the argument principle,
to bound the solution and locate how many poles lie within a search box. This box
is then divided into pieces until the roots are singly contained within a search box.
Then a particle swarm optimization is used to determine the root location. In trials,
this function got stuck during the bisection phase and was terminated because it
took too long to be feasible. Another approach, with the best results thus far, turned
out to be using a weighted gradient based search optimization in order to follow
the initial undamped root estimate to the complex root solution. This function was
calibrated by noticing that the shift in the real part of the wave number is small while
the majority of the shift tends to be in the complex direction. Hence, the gradient
is weighted to move with a 10:1 ratio in the imaginary direction. However, this
approach was still not generally able to find all of the root locations. For some points
the optimization would simply diverge or fail to find a solution. In the end, the most
robust solution was to use a semi-brute force approach. In this case, the soil model
is incremented to the full amount of damping, and the roots are found at each of the
intermediate damping steps. At each stage, the initial estimate of the root is used to
define a small complex plane (the size of which is calibrated with some semi-effective
non-dimensional numbers based on testing). The minima or dips of the determinant
on this plane are identified and assumed to be the roots. In some instances this leads
to additional roots being found, since multiple roots can fall within this small search
plane when roots are closely spaced or if a numerical zero occurs (which tends to

CONFIDENTIAL



44 3. MODAL INVERSION METHOD

happen at the body wave velocities of the system). The Matlab function fmincon
is then used to search within a very small zone one grid-step around the found
points. Multiples of roots are removed from the solution. Additionally, sometimes
the numerical (not physical) roots corresponding to the body wave velocities are
found, and these should be filtered out of the solution, since it is known they occur
at one of the input velocities of the model.

3.2 Understanding Dispersion Curves

Low wavenumbers (long wavelengths), ‘feel’ deeper into the soil while high wavenum-
bers or short wavelengths only ‘feel’ the shallow soil layers and are not at all sensitive
to the deeper deposits. Additionally, the phase velocity is equal to the slope in the
f-k domain while the gradient of the slope gives the group velocity.

cphase =
f

k
cgroup =

df

dk

The wave speed in (visco)elastic media is directly related to the stiffness. Hence,
we can understand from Figure 3.3 that the modes are fast in the deep material and
slower in the shallower material. Further since the dispersion curves vary smoothly
without kinks, we can understand that this corresponds to a deposit with stiff soil
deep down and soft soil in the shallow layers, and a smooth, possibly linear, varia-
tion of the properties from soft to stiff with increasing depth. Kinks in the dispersion
curves are an indication of a soil stiffness profile which contains more discrete be-
haviour, for example, when the actual soil deposit has clear physical layering such
as a layer of clay between sand.

We can further understand what is happening by investigating the mode shapes
of the shear stress waves. In order to compute the surface response spectra we
calculate the potential coefficients which describe the solution in all of the layers.
Normally, only the coefficients from the top layer is used and the depth is set to
zero so that the response at the surface is calculated. But we can also compute the
response within every layer over the depth. Therefore, the mode shapes at a specific
(f,k) location in the spectrum are computed by plotting the shear stress over the
depth. Here it is then useful to consider three cases, as outlined in Figure 3.4. The
first case, is looking at three points along the fundamental mode to see the effect of
increasing the wavelength (decreasing wavenumber). The second case is at constant
frequency while the third case is at constant wavenumber.

Figure 3.5 shows that the non-dimensional shape is very similar for the three
points on the fundamental mode. It is well noted in literature that the depth of
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Figure 3.3: Horizontal velocity spectra for a linearly increasing stiffness profile.

Figure 3.4: Points of response spectrum at which mode shapes are plotted showing
the three cases considered.

penetration is related to the wavelength for the fundamental mode and most of the
wave is contained within approximately one wavelength deep. The wavelengths
corresponding to this figure are 5.7, 8.1 and 13.3m respectively. The shape corre-
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sponds well to the shape given by Kramer [13] and shown in Figure 2.4. Note for
homogeneous media, this fundamental mode shape is often non-dimensionalized by
dividing the depth with the wavelength.
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Figure 3.5: Mode shapes along fundamental mode corresponding to Figure 3.4 case
1.

The second case, Figure 3.6, plots mode shapes at constant frequency. Here,
the wavelength is changing and we move to higher modes as the wavelength gets
longer. Both of these are expected to increase the penetration depth of the wave.
The higher modes also contain more oscillatory behaviour and the number of stress
reversals seems to correspond to the number of the mode. That is, the fundamental
mode is single sided, while the first higher mode has one stress reversal and the
second higher mode has two.

The third case, Figure 3.7, which is the least intuitive, is what happens when the
wavelength is kept constant. The wavelength for this plot is 13.3m and we see that
the fundamental mode is contained within this distance. However, the higher modes
increasingly feel a larger depth and the second higher mode even feels to 26m or
double the surface wavelength. It is therefore clear that higher modes have deeper
penetration even at the same surface wavelength. Additionally, the higher modes are
proportionally more sensitive to deeper layers because a greater portion of the stress
amplitude is at lower depth. Note for example that the second higher mode has
much more energy between 11-24m depth than the upper portion between 0-11m.
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Figure 3.6: Mode shapes at constant 15Hz frequency corresponding to Figure 3.4 case
2.
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Figure 3.7: Mode shapes at constant 0.075m−1 wavelength corresponding to Figure
3.4 case 3.
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3.3 Misfit Functions

In order to perform the inversion process, we must have an idea of how well the
theoretical model matches the measured data. The error in the match is determined
by the choice of formulation of this misfit or objective function. This inversion pro-
cess then attempts to minimize this error and thereby maximize the suitability of the
modelled candidate.

It is essential to determine the location of the modal dispersion curves from the
measured data. Similar to a single degree of freedom system, the damped reso-
nant frequency may be shifted from the undamped (stiffness only) natural frequency.
However, with a low amount of damping this shift is quite small and could be consid-
ered negligible. For practical simplicity it is chosen that the experimental dispersion
curves are identified as the peaks of the measured response.

3.3.1 Classic Misfit Function

The method proposed by [34] is an example of the classic formulation for the misfit
function. It compares the distance between the theoretical and measured dispersion
curves. The error from the measured mode to the closest analytic mode is found and
is done per frequency trace. A schematic is shown in Figure 3.8.

Figure 3.8: Schematic showing a possible suitability comparison between some mea-
sured and analytic modes [34].

The result is expressed by the equation:

Err(f) =

Nmodes(f)∑
n=1

min[kmeas(n, f)− kSW (f)] (3.1)

Where kSW (f) represents all analytic surface wave modes for that frequency. To nor-
malize the error per frequency, the maximum distance in the wavenumber domain
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is calculated. From Figure 3.8, the maximum error node 1 can have is the maximum
of l(1) and r(1). This means that the maximum error for frequency trace f equals:

Errmax(f) =

nfreq∑
n=1

max[l(n, f), r(n, f)] (3.2)

ε =
1

nfreq

nfreq∑
n=1

Err(f)

Errmax(f)
(3.3)

The suitability is then calculated as:

suit = 1− ε (3.4)

The disadvantage of this formulation is that the roots of the theoretical system
must be found, which is computationally intensive since it involves computing the
determinant at every point in the 2D f-k spectra. Further, the roots may not always
be matched up in an accurate way as how one would intuitively measure their sep-
aration. That is no consistency is required so that a root which is roughly between
two modes may be partially measured to one and partially measured to the other.
Also, if the root finding misses any points, then a large error may be made by this
distance measuring approach unless a smart way is made to interpolate the roots to
ensure there are no gaps in a root measurement set. This would be easy to do if
only one mode occurs but with multi-modal data the data from the theoretical root
finding is unorganized and not attributed to any specific mode.

3.3.2 Determinant Misfit Function and Normalization

This objective function is based on the research of Maraschini et al [17]. The disper-
sion curves are identified from the measured data. This will form a set of N points
containing (f,k) locations where the modes are occurring. These points are picked
to be the peaks of the measured response. For the theoretical model that exactly
matches the measured results, the determinant at all of these points should be zero
since modes occur at zeros of the determinant equation. Hence, if the determinant
is non-zero at these points where the modes occur, then this represents a misfit or an
error of the theoretical soil profile. Therefore, this misfit function is simply the sum
of the determinant at the modal points picked from the measured response.

Error =
1

N

N∑
n=1

|M(fi, ki)| (3.5)
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where N is the number of points in the measured dispersion curve as picked from
the response spectrum. This approach is much faster since the theoretical root set
does not need be calculated across the entire f-k grid, but rather just at the points
where roots have been measured to exist. Hence, instead of 500X500 = 250000
points, perhaps only 100− 500 points are required resulting in an speed up > 100X.
Additionally, the roots do not have to be assigned to a specific mode and if multiple
modes come close or cross, such as with an apparent dispersion curve, then the area
between them has a low determinant function value, and the misfit associated to
that region is low.

The disadvantage to this approach is that the determinant function can vary by
many orders of magnitude within the f-k grid. Hence, the points at low phase ve-
locity can have a determinant that is much lower than a point which occurs very
close to a root, but at a higher phase velocity. From experimenting, it was noticed
the determinant function seems to drop off with some relationship to the velocity.
Theoretically, this makes some sense as we can see that equations 2.31, which form
the system matrix, contain an exponential term which gets exponentially smaller
with decreasing phase velocity. That is the qs =

√
k2

1 − k2
s can also be written

qs =
√
k2

1 − ω2

C2
s

so that we see qs is a balance between the k and ω terms. If we

divide by waveumber then this term becomes: qs
k1

=

√
1− C2

phase

C2
s

. As the phase ve-

locity gets very low then qs gets larger and approaches k and the e−qsx3 gets very
small. So even though we cannot conclude something in general about the de-
terminant, we can say that the terms in the matrix get exponentially smaller with
decreasing phase velocity.

It is necessary for a successful inversion with wide velocity ranges that the de-
terminant has a similar value over the entire grid domain and only approaches zero
at modal locations. Otherwise, a soil profile which puts all of the roots in the low
velocity region of the model will have a very small determinant, and the inversion
will therefore converge on a stiff, high velocity soil profile. A pragmatic approach,
here called the ‘phase velocity correction function approach’, is then suggested for nor-
malizing the determinant. This involves determining the relationship between phase
velocity and the model determinant value (away from the mode). This is done by
computing the determinant on several (usually 3) testlines which trace arcs in the
f-k domain. Figure 3.9 shows the determinant spectra with 3 testlines. Note that
the determinant is plotted to the power of 0.3 in order to make it more visible be-
cause hardly anything is visible when only the absolute value of the determinant is
plotted. A radial pattern where the testlines are discretized at uniform angular spac-
ing was chosen. However, the radial distances are chosen randomly to be between
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25−100% of the distance from the origin. These testline distances are randomized to
avoid the situation where the theoretical soil profile coincides in such a way with the
testlines that it receives an unfairly favourable normalization (resulting in a lower
determinant value). However, that means the determinant norm alization process is
not entirely determininstic which may be unfavourable for repeatability during the
inversion process. This assumption should be tested with the inversion process and
a choice made if it is better to use fixed radial test locations.
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Figure 3.9: Testlines plotted on un-normalized determinant raised to the power 0.3

Figure 3.10 shows the raw determinant computed along the test lines. Since the
modes cross the testlines at different points, the relationship of determinant vs theta
is slightly different. Hence, the three testlines are averaged to form one estimate of
the determinant-velocity relationship, which is less dependent on the modes which
can cross these testlines. This line is then smoothed to further remove the effect
of the determinant dipping to zero at the modes. A variety of smoothing methods
were tested. In the end a moving average smoothing function was the most robust
as some other methods could result in negative scaling factors in the low velocity
region seen in Figure 3.10. It is known that the moving-average method is sub-
optimal and it consistently cannot follow the steep drop-off of determinant in the
low phase velocity region, leading to an underestimated scaling factor. However, the
resulting low determinant region is much smaller than before, and much closer to
the value in the rest of the grid, so it is quite acceptable. The dips at the modes are
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very localised and only a small number of samples are required for computing the
average. Testing resulted in a choice of 5 samples over which the moving average is
calculated. Keeping this value small helps the normalization to reach a more uniform
value, but without smoothing at all we would run the risk that we scale out the very
modal dips in the spectrum that we are interested in. Averaging 3 lines also helps to
avoid that we can remove a modal dip with the normalization.
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Figure 3.10: Un-normalized determinant vs angle in the f-k spectrum, where 0 degrees
begins on x-axis and increases counter-clockwise.

The determinant at every point in the f-k domain is then normalized by using
the found determinant-velocity relationship. The Figure 3.11 shows that the nor-
malization is successful for this system of 1 water layer, 8 soil layers and a halfspace.
This normalization approach is very pragmatic, and was found to be very effective in
allowing the inversion to progress to the correct solution while being able to specify
a wide search velocity range. Although, this method is fairly effective and the nor-
malized determinant has a value 1 between modes, the exact value is not precisely
determined and will vary a bit with the number of layers in the model (or size of
the determinant matrix). Therefore, for the inversion the suitability is normalized
by the mean of the suitability of the starting, completely random, population. It is
then expected for a successful inversion that the mean of the objective function (or
suitability) for the population will start at 1 and decrease until some small value
where it levels off, indicating that the solution has converged. The best member of
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Figure 3.11: Determinant spectra after normalization with the phase velocity correc-
tion function approach.

the population, with the lowest objective function value, should follow this general
trend as well, but can certainly increase in some generations because of the genetic
mutations and cross-breeding meaning that the best sample may be ‘destroyed’ in a
given generation.

3.4 Timing Comparison

The vast majority of the time in one run of the inversion is taken for creating the
system matrices and evaluating the inverse since it must be done at every point. In
testing with Matlab it is found to account for 80 − 95% of the entire run time. A
timing comparison was made between Fortran and Matlab for generating one re-
sponse spectra for 1023X1024 grid points for a soil system with water, 8 layers and
a halfspace, as used by [4] in the full waveform inversion process. The Fortran code
of [34] was used while the Matlab code was programmed by the author. It was
found that with a serial run in Fortran it took 0.8Gb of memory and 20.9minutes
to generate the response, with 1 core of an intel i5-4300M CPU of 2.60GHz. While
Matlab automatically used 2 cores, 0.6Gb of memory and the run time was 22.5min-
utes. Hence, for equivalent runtime the Matlab code took 45minutes. This means
that the Matlab runtime is approximately twice as long as the Fortran code. Without
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implementing parallelization, the two codes run at almost the same speed. Given
the greater degree of difficulty and complexity of debugging and coding in Fortran
and the practise of post-processing with Matlab, the author proceeded to code ev-
erything in Matlab. This also allows a clean start, rather than modifying the Fortran
code of [4], which is already a modification of the code of [34]. Further, there are
many very useful Matlab functions and documentation accessible which puts a lot of
capability within close reach and also gives the potential to make the code easier for
others to understand if more standard functions are used.

3.5 Notes about full waveform inversion

There were various challenges encountered for using the full waveform inversion to
identify the stiffness profile [4]. Although, the full waveform process will not be used
in this report, the author wishes to make some comments which may assist further
attempts with the full waveform inversion process. Additionally, some comments are
provided for a deeper and not entirely intuitive understanding about signal collection
in relation to windowing and Shannon-Nyquist limits.

3.5.1 Source Spectra

The full waveform response spectrum is dependent on the choice of source. As
noted, the method used for removing the source dependency is not entirely source
independent due to the stabilization factor [4]. Therefore, an attempt was made to
identify the source spectrum. One simple and very rough way to identify the source
spectrum is to first transform the measured data to the f-k domain and then at every
frequency to average the amplitude across all wavenumbers. This results in a source
spectrum which is roughly equivalent to the spectrum identified by Ingmar. Figure
3.12 shows a comparison of the source identified by Ingmar, the source identified
by the method described above and the source used by Ingmar in the full wave-
form inversion process. This shows that it is likely the source differs significantly
from the source spectrum used, with two clear peaks in the response at 5Hz and
13.5Hz, while the Ricker wavelet used for the inversion had a peak at 20Hz. Hence,
even if the source profile is roughly Ricker shaped, it should be centered between
these frequencies or a multi-peaked source spectrum could be created by combining
multiple ricker wavelets. This may allow the full waveform inversion to find a better
match and also to make the theoretical profiles visually much closer to the measured
profile.
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Figure 3.12: Comparison of the identified source signal with the Ricker pulse previ-
ously used for full waveform inversions.

3.5.2 Windowing

For a useful reference about discrete collection and windowing see [26]

Linear time invariant operations on the time signal are equivalent to multiplica-
tion by a transfer function on the fourier domain spectrum, that is they change the
magnitudes or angles. Any other operations will create new frequency components
that can be referred to as leakage in a broad sense [33]. The window function in-
troduces spectral leakage, where when we take the fourier transform of the signal,
the energy becomes spread around the frequency where it actually occurs at. The
spreading is a characteristic of the window used and is generally a trade off between
the reduction in height of the peaks and the width of the main lobe. The rectangular
window is the simplest window and is often used in transient analysis to avoid at-
tenuating energy from the impulse inducing a shift in the energy distribution of the
spectrum.

First, let us understand the effect of windowing in 1D, then we can easily un-
derstand this concept in 2D where the principles are the same. When we measure
a time domain continuous signal at a point, we immediately introduce two effects.
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First we perform continuous time truncation of the true signal - or a multiplication
with the rectangular/boxcar window function. That is, the signal is captured every-
where within the measurement window (multiply by 1) and nowhere outside of the
measurement window (multiply by 0). Secondly, we perform discrete data sampling,
which is represented with a multiplication by the dirac comb function. This is 1 at
multiples of the sampling period and zero in between. The effect of the dirac comb
is that we sample the continuous time or frequency domain signal at discrete points.
The points that we sample are dependent on the length sampling period and will
result in a spectrum resolved at multiples of df = 1

T . In the case when the measured
signal frequencies are exact integer multiples of the sampling spectrum resolution,
there is no effect of windowing. This is seen more clearly by diving into the math-
ematics and recalling the convolution property where a multiplication in the time
domain is a convolution in the frequency domain.

f(t)× g(t) = F (ω) ∗G(ω) (3.6)

where the convolution integral is given as:

F (ω) ∗G(ω) =

∫ ∞
−∞

F (ω)G(Ω− ω)dω =

∫ ∞
−∞

F (Ω− ω)G(ω)dω (3.7)

The rectangular window function is the sinc function in the frequency domain.
If g(t) is the boxcar function of period T, then it can be shown that

∫ ∞
−∞

g(t)eiωtdt = G(f) =
sin(πfT )

πfT
= sinc(fT )

= G(ω) =
sin(ω2 T )

ω
2 T

= sinc(
1

2π
ωT )

(3.8)

It can be proved using L’Hopitals rule that sinc(0) = 1 and that the zero cross-
ings occur at multiples of the periodic frequency df = 1

T . If f = ndf = n
T then

sinc(fT ) = sin(nπ)
nπ ) and if n = 1, 2.... then sinc(fT ) = 0.

A harmonic is can be expressed in the frequency domain∫ ∞
−∞

eiΩteiωtdt = F (Ω) = δ(ω − Ω) (3.9)

If we perform multiply the harmonic signal f(t) with the rectangular sampling
window g(t), we can perform this as a convolution in the frequency domain and
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Figure 3.13: Sinc function of 1s rectangular window in frequency domain.

obtain a shifted sinc function.

F (Ω) ∗G(Ω) = δ(ω − Ω) ∗
sin(ω2 T )

ω
2 T

=
sin( (ω−Ω)

2 T )
(ω−Ω)

2 T
(3.10)

This mathematics is still considering a continuous time signal. If we now move
to a discrete definition we can use the dirac comb to represent sampling. The fourier
transform of the dirac comb sampling function again returns the dirac comb in the
frequency domain.∫ ∞

−∞
IIIT (t) eiωtdt = dfIIIdf (f), where df =

1

T
(3.11)

So we multiply f(t) · g(t) with IIIT (t) in order to obtain the sample data. This
operation is again represented by a convolution in the frequency domain. Convolu-
tion with the dirac comb has the effect of ‘copying’ the shifted sinc function to every
point of the dirac comb. Note that the function is mathematically continuously de-
fined, although we are trying to represent discrete sampling. Therefore, we should
only consider the points in the frequency domain which are sampled when we com-
pute our discrete fourier transformation. These are multiples of df = 1

T . Therefore,
we can actually reduce this convolution operation to a multiplication with the Dirac
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comb in order to make it more clear which points are considered in the frequency
domain.

Spectral leakage is then associated with the points at which the Dirac comb sam-
ples the shifted sinc function. The sample period is always an integer multiple of the
timestep. That is T = n∆t and this both defines the sinc function sinc( 1

2πωT ) and
the dirac comb III 1

T
. Therefore, what determines if spectral leakage occurs is the

sample period, T, and the frequency of the sampled signal, Ω. It can be expressed
Ω = n

T = n df . If n is an integer, then the dirac comb samples the shifted sinc func-
tion at exactly the zero crossings and the peak point. If n is not an integer then, the
shifted sinc function is sampled not at these points and there is spectral leakage.

To demonstrate this visually, we consider a sampling window of 1s then, the
periodic frequency associated with this window is df = 1Hz. We see the fourier
transformed version of the rectangular sample window in Figure 3.13. The zero
crossings of the sinc function indeed occur at integer multiples of the sample period
frequency df = 1

T = 1[Hz].
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(a) Integer sampling - no spectral leakage
occurs.
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(b) Non-integer sampling - spectral leakage
occurs.

Figure 3.14: Dirac comb discrete sampling.

The continuous spectrum associated with sampling this is the convolution of this
function with the sinc function, which results in a shifted sinc function, shown in
black on Figure 3.14a. When the discrete sampling is considered, we only get infor-
mation at the orange marks shown. This is considering a sample window of 1s and
a frequency of 3Hz, so three periods fit exactly within the sample window. However,
if we consider a harmonic signal with 2.5Hz and the same sampling window, we see
that there is spectrum leakage as shown in Figure 3.14b. There is not an integer
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Figure 3.15: Dirac comb discrete sampling of a 1.5s rectangular window.

number of periods and the sampling points do not line up with the crossings of the
sinc function or with the main peak.

This can also be shown, if we consider the same 3Hz harmonic signal, but con-
sider a different sample period of 1.5s. The sinc function is wider this time, and
the associated sampling frequency resolution is smaller with df = 1

1.5 = 0.67[Hz].
Again, the harmonic signal is not an integer multiple of the frequency resolution and
so the sampling results in leakage as shown in Figure 3.15

Note, that real signals consist of many frequencies, and the frequency spectrum
can often be described by a continuous function, so many frequency components
experience spectral leakage due to windowing. Therefore, it can be said that practi-
cally, discrete samples are always affected by spectral leakage due to windowing.

Note also, that the FFT windowing technique [4] first starts with discrete fre-
quencies. Therefore, it may not be subject to windowing in the same manner as a
measured data, especially if the truncated length of the array fits an integer multiple
of times into the virtual array which is computed.

3.5.3 Nyquist-Shannon Sampling Limits

The Nyquist-Shannon sampling theorem states that the minimum sampling frequency
required is double the highest frequency in the signal. This can also be stated that
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the Nyquist or maximum frequency which can be measured is half the sampling fre-
quency or that at least two measurements must be made within one wavelength or
period considering harmonic signal components.

fnyquist =
1

2∆t

knyquist =
1

2∆x

(3.12)

However, stated this way is not actually entirely correct. In fact, aliasing can
be used in compressed or sparse sampling of signals in order to extract information
above the Nyquist frequency. What the Nyquist-Shannon theorem states is more that
only signals up to the Nyquist-Shannon frequency can be recovered with perfect fi-
delity, since at higher frequencies the signal becomes undistinguishable from a lower
frequency. This is shown in Figure 3.16. However, if other constraints are known,

Figure 3.16: Example of aliasing due to an undersampled high frequency component
compared with a well sampled low frequency[32].

then this energy can be recovered. In the case of space data and wavenumbers, we
actually know that the data occuring at higher frequencies cannot be attributed to
the corresponding lower negative frequencies. This is because we have selected our
measurement array so that it only contains wave propagation in one direction and a
negative frequency would correspond to a wave propagation in the opposite direc-
tion. This assumes that the amount of reflected energy is very minor and no reverse
propagating waves exist. Using this knowledge, the spectrum can be extended to
double the nyquist frequency and all of the energy in the negative spectrum can be
recovered.
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3.5.4 Implementation of Discrete Transforms

The continuous forward Hankel transformation of order n is given:

f̃Hn(kr, x3, ω) =

∫ ∞
0

f̃(r, x3, ω)rJn(rkr)dr (3.13)

While Fourier transformations may be computed with fast fourier transformation
techniques, no similar method exists for uniformly spaced data. An exponential grid
can be used in order to utilized the Mellin connection which allows the Hankel trans-
formation to be computed with a regular FFT algorithm [12]. However, our data has
been collected on a uniform grid and a discrete direct numerical integration will be
used. The discrete form of the Hankel transformation, considering rectangular inte-
gration for one fixed frequency is:

f̃Hn(kr) =

N∑
j=1

f̃i(rj)rjJn(rjkr)∆r (3.14)

N is the length of the radial position vector, r. This integral is computed for
every wavenumber at which we wish to obtain the solution. This is one benefit
of direction integration over fast transformation techniques, that we can compute
the transformed variables only at the specific wavenumbers which we desire them.
Given a grid vector in the wavenumber domain, of length M, then we can define
the integrand matrix I = rjJ(kr|i) of dimensions MxN. This is precomputed by
determining all of the values for i=1...M and j=1...N. This integrand matrix can be
used for all the integrations on a grid of the same size and the entire integration
simply becomes a matrix multiplication operation as shown below.

f̃Hn(kr) = I ˜f(r)
′

(3.15)

In this equation f̃Hn(kr) is a column vector of length M, I is the integrand matrix
rJn(rkr) as computed above and ˜f(r)

′
is the data vector to be transformed, which is

transposed to be in column format for the matrix multiplication.
Since this integration is computed for discrete data, rectangular integration is

used. It can be shown that the accuracy is very close to trapezoidal integration,
since it is only the first and last integration point which are modified in trapezoidal
integration. Additionally, higher orders of integration, such as Simpsons rule, do
not give an increase in accuracy except for the start and end integral terms. This is
because we have discrete data and cannot evaluate the function value at interme-
diate points. A short refinement study was performed to determine the resolution
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required for an accurate discrete transformation. The reference case of ∆x = 0.01m
was used. The error is plotted relative to the values computed with this finest refine-
ment level. It is found that the error behaves linearly as shown in Figure 3.17a. A
resolution level of dx = 0.2m seems to be sufficient, with an error of just over 0.2%.
The run time for all of these cases was not significant, when compared with the time
required to generate a full grid response.

(a) Accuracy of direct Hankel transformation
vs the spatial step size.

(b) Speed of direct Hankel transformation vs
the spatial step size.

Figure 3.17: Results of direct Hankel transformation refinement study.

3.5.5 Resampling to finer grids

The physical measurements are collected on relatively coarse grids. Although the
1m spacing is more than sufficient to capture the high wavenumber content, the res-
olution may not be good enough to perform reliable discrete transformation calul-
cations. Hence, we require the data on a finer grid. This can fairly easily be done
by first converting the data to the frequency domain using a fast fourier transform
(FFT in Matlab). Then, the data is padded with extra trailing zeros and the inverse
fast fourier transformation is taken. This will result in the data on a grid with a finer
spatial sampling. This is a physically accurate way to interpolate harmonic func-
tions. Of course, we expect that our functions are actually Bessel functions, so this
is not a completely valid approach since the interpolation uses harmonic functions.
However, in practice this method seems to achieve very good results.
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Chapter 4

Model Studies

The theory behind wave propagation, generating system matrices and finding modal
dispersion curves has been covered in Chapter 2 and Chapter 3. This chapter aims
to understand the model further by investigating how various properties or choices af-
fect the location of the dispersion curves and hence, to understand the limitations or
implications for the inversion process.

4.1 Sensitivity to damping

We wish to be able to estimate the in-situ stiffness and damping parameters. These
could be estimated from a combined inversion, but it would be more robust if the
estimation could be decoupled whereby the stiffness is first estimated and then the
damping is estimated. During the modal inversion process, the root locations from
the measured data must be identified. They are taken to be the location of the peaks
in the measured response spectra. However, this does not directly correspond to the
location of the undamped roots of a system with only stiffness.

It is known for a single degree of freedom mass-spring-damper system that the
damped resonant frequency differs from the natural frequency, especially as the
damping becomes large. The relationship for a system with viscous damping is
ωres = ωnat

√
1− 2ζ2. For the layered soil system it is not possible to derive such

a simple expression for the effect of damping on the modal location, so it will be
investigated numerically. It is important to know how the damping affects the loca-
tion of the dispersion curves, since the location of the dispersion curves dictates the
stiffness found by the inversion process. If we assume that the stiffness inversion is
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64 4. MODEL STUDIES

damping independent, how big is the error that we make by identifying the modal
locations as the resonant peaks of the damped system? Is a decoupled inversion an
acceptable assumption to make or would it introduce a large error on the stiffness?

In order to study this effect four model cases were used. A normally dispersive
soil profile is one where the stiffness and shear wave velocity increases with increas-
ing depth, while an inversely dispersive profile gets weaker with depth. The first
test case, TC1, is normally dispersive and consists of a 5m water layer, a 5m soil
layer and a halfspace with the Cs velocity profile shown in Table 4.1 and Figure 4.1.
The second test case, TC2, consists of a 5m water layer, two 5m soil layers and a
halfspace where the halfspace is weaker than the layer above as shown in Table 4.2
and Figure 4.2. The results for TC2 should be interpreted carefully since this case
is not thought to be very representative of what happens in reality and would be
quite a rare situation. The third test case, TC3, shown in Table 4.3 and Figure 4.3
is a profile with a water layer, three soil layers and a halfspace, where there is a
velocity inversion in the layers but the overall profile is normally dispersive. While
the last test case, TC4, is the profile which was determined as the best result from
full waveform inversion [4] and contains a water layer, 8 soil layers and a halfspace
and has the profile shown in Table 4.4 and Figure 4.4.

Table 4.1: Properties for TC1 soil profile.

Layer Thickness [m] Cp [m/s] Cs [m/s] ζp ζs ρ[Mg/m3]
Water 5 1500 0 0 0 1.0
1 5 1000 100 0.05 0.05 2.0
Half-space ∞ 1000 200 0.05 0.05 2.0

Table 4.2: Properties for TC2 soil profile.

Layer Thickness [m] Cp [m/s] Cs [m/s] ζp ζs ρ[Mg/m3]
Water 5 1500 0 0 0 1.0
1 5 1000 75 0.05 0.05 2.0
2 5 1000 300 0.05 0.05 2.0
Half-space ∞ 1000 150 0.05 0.05 2.0

The complex roots are found using the methods outlined in Chapter 3. As noted,
this process is not entirely robust. The complex roots are difficult to find and in some
parts the roots may not be found without a clear reason why, but due to divergence
of the solver or some other reason. The determinant equation is noted for being
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Table 4.3: Properties for TC3 soil profile.

Layer Thickness [m] Cp [m/s] Cs [m/s] ζp ζs ρ[Mg/m3]
Water 5 1500 0 0 0 1.0
1 3 1500 100 0.01 0.01 1.8
2 3 1500 200 0.01 0.01 2.2
3 3 1500 100 0.01 0.01 1.8
Half-space ∞ 1500 400 0.01 0.01 2.3

Table 4.4: Properties for TC4 soil profile.

Layer Thickness [m] Cp [m/s] Cs [m/s] ζp ζs ρ[Mg/m3]
Water 4.4 1450 0 0 0 1.0
1 2.0 1500 98 0.03 0.03 1.9
2 0.6 1450 53 0.03 0.03 1.5
3 0.7 1600 50 0.03 0.03 1.0
4 5.3 1650 405 0.03 0.03 2.0
5 1 1700 617 0.01 0.01 2.0
6 6.5 1700 180 0.01 0.01 2.0
7 3.3 1600 365 0.01 0.01 2.0
8 1.2 1600 334 0.01 0.01 1.8
Half-space ∞ 1600 884 0.01 0.01 2.0

0 50 100 150 200 250

Cs [m/s]

-15

-10

-5

0

D
e
p
th

 [
m

]

Figure 4.1: Cs velocity of TC1 soil pro-
file.
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Figure 4.2: Cs velocity of TC2 soil pro-
file.
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Figure 4.3: Cs velocity of TC3 soil pro-
file.
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Figure 4.4: Cs velocity of TC4 soil pro-
file.

difficult to solve in literature [10], [14]. However, the general sensitivity trends can
certainly be determined. For the comparisons we project the roots into the real plane
and take only the real part of the wavenumber. This is also what happens with the
measurements if we pick the dispersion curves directly from the peaks of the spectra.

Figure 4.5 shows for the cross section of the TC1 spectra how the roots are vary-
ing in the complex plane for a cross section of the spectra taken at 35Hz. The
poles start on the real axis with zero imaginary part and then move downwards into
the complex plane as damping is applied while the real part of the wavenumber is
slowly decreasing in magnitude. At the points of the poles the determinant is zero
and hence these look like dips in the surface of the determinant on the complex
plane. The points represent increments of ∆ζ = 2.5% for a total range of damping
ratio of 0 < ζ < 25%

For TC1, Figure 4.6 shows how the modes vary with soil damping ratio. It can
be seen that the wavenumber decreases as damping increases and that it seems to
vary in quite a smooth manner. The pole migration from TC2 is shown in Figure 4.7.
There are unintuitive patterns in some locations where the dispersion curve moves
to the increasing wavenumber. A cross section of the spectra, showing the pole
migration on the complex plane is shown in Figure 4.8 which shows the strange
behaviour where the modal roots can migrate to higher wavenumbers when damp-
ing is increased and also a new pole appearing which has a high imaginary part.
This behaviour is unexpected since it means that increasing a damping decreases
the velocity of the wave. Typically, since damping adds to the overall magnitude of
the force resisting motion, it has a similar effect to increasing the stiffness in that
it promotes a shift to a stiffer, faster wavenumber. This case has a weak halfspace
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Figure 4.5: Pole migration on complex plane at 35Hz, from 0− 25% in steps of 2.5%,
with the undamped roots having zero imaginary part and the poles migrating from top
to bottom as damping increases.

Figure 4.6: Dispersion curve migration under the influence of increased soil damping
ratio for TC1 soil profile.
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Figure 4.7: Dispersion curve migration
under the influence of increased soil
damping ratio for TC2 soil profile.

Figure 4.8: Complex plane pole migra-
tion for TC2 soil profile at 36[Hz].

with a stiffer layer on top and is thought to be unrepresentative of reality, occurring
very rarely if at all. Therefore, little emphasis is placed on these results, and no
conclusions are drawn from TC2.

The migration of the modes for TC3 is shown in Figure 4.9 which again displays
the same trend that the real part of the wavenumber is decreasing with increasing
damping. Similarly, TC4 shows the same pattern of mode migration as the other
normally dispersive cases, although the amount of ‘missing’ modes where the root
finding strategy has not been able to find the complex roots is increasing. The author
believes that this is because at these locations the roots become imaginary more
rapidly and deviates further from the initial guess. Hence, the roots cannot be found.
This possibly also indicates that these roots would be less likely to appear in the real
data, because if they have a larger imaginary component then they will decay faster
and less energy will make it to the measured spectrum.

The data is aggregated for test cases 1,3 and 4, where the percentage shift of the
roots for all of the found roots in the 2D spectra is calculated. Figure 4.11 shows
the trend that the shift is fairly consistent and predictable and the shift is relatively
small for the expected range of soil damping ratios of 0 − 10%. Within each of
the datapoints in this figure, there is of course a distribution around this mean point
which is shown on the graph. However, the author verified by checking histograms of
the percentage shift that representing it by the mean is valid. Although, in hindsight,
it would have been nice to include standard deviation bars around this mean values.
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Figure 4.9: Dispersion curve migration under the influence of increased soil damping
ratio for TC3 soil profile.

Figure 4.10: Dispersion curve migration under the influence of increased soil damping
ratio for TC4 soil profile.
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Figure 4.11: Summary of percentage shift in wavenumber due to change in soil damp-
ing ratio.

Further, we cannot say from this graph alone what error a 2% shift in the location
of the wavenumber due to a 10% soil damping means in terms of the error for the
stiffness estimation. Therefore, the next section investigates the model sensitivity
in order to put these results on the sensitivity of the modal damping locations into
better context.

Tests were also completed to determine the relative sensitivity of the P-wave and
the S-wave damping, since in the general model these can be specified differently.
However, the tests were conclusive that the S-Wave damping dominates the model
and the P-wave has a very small effect. Therefore, it is recommended to use one
combined value of the damping, so that the P-Wave and S-Wave damping values are
the same.

Additionally, tests were done for a viscous damping assumption. However, it
was very difficult to find the complex roots, especially at higher frequencies. This
is because the amount of damping applied is very large at higher frequencies when
compared with the hysteretic damping. Hence, it is recommended to use hysteretic
damping since it is also noted by researchers that damping in soils is not dependent
on frequency for seismic waves [19]. It may also be possible that the real frequency
dependence of the damping can be identified from the measured data.
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4.2 Sensitivity to model properties

The idea of this section, is to develop an understanding about the sensitivities in the
layered soil system model. This is important for understanding the level of confi-
dence we can have in an inverted estimate and also to determine which parameters
are important for a successful inversion. Here one model parameter value in one
layer is varied by either +/ − 5% while all of the rest are kept fixed. The new roots
and dispersion curve locations are calculated and then the mean shift in wavenum-
ber from the baseline case is computed. The sensitivity from the +/− cases are
combined and the figures show the total change in wavenumber for a 10% shift in
the model property in that layer. It is well noted by literature that the surface wave
propagation is most sensitive to the shear wave velocity profile of the soil [34], [10]
and [13]. We can calibrate our expectations about the sensitivity by considering the
case where the Cs velocity of all layers is simultaneously changed by 10%. Then, this
has the effect equivalent to scaling the axis and given that C = ω

k we can rearrange
so that we see a 10% increase in the Cs velocity results in the wavenumber shifting to

1
1+0.1 for the same ω. Hence, a 10% increase in Cs velocity results in a 9.1% decrease
in wavenumber and a 10% decrease in Cs velocity results in a 11.1% increase in the
wavenumber.

Figures 4.12, 4.13 and 4.14 show that the modal locations are most sensitive to
the Cs velocity and fairly sensitive to the thickness of the layer. The other parame-
ters have a very low sensitivity. The model also seems to be more sensitive to the
near surface layers than to deeper layers. The sensitivity of the model to the layer
thickness is relatively higher than suspected, which indicates that this could be a
confounding parameter for the inversion. That is, if the incorrect layer thicknesses
are chosen in the initial model then the inversion will have difficult to converge to
the correct soil profile. Additionally, given that the CPT measurements only sample
a very thin column of the soil, there is quite a high probability that the thickness of
the layers identified from the CPT measurements would not be exactly the layering
over the entire surface array if the site has a significant amount of lateral variability.
This would then suggest that it could be beneficial to perform a joint inversion of
the Cs velocity and layer thickness, so that the inversion process is not hindered by
an unrepresentative initial guess for the model layering. Of course, this increases
the amount of parameters to be estimated in the inversion process and would in-
crease the length of the inversion process since the search domain size is increased
by including additional parameters.
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Figure 4.12: TC1 modal location sensi-
tivity to model parameter variations.

Figure 4.13: TC3 modal location sensi-
tivity to model parameter variations.

Figure 4.14: TC4 modal location sensitivity to model parameter variations.

4.3 Layer Splitting

This section attempts to address the question - what happens if one of the layers in
the model is split into two layers, both with a property variation? Or said another
way, what is the effect of averaging two layers into one thicker layer. Hence, in
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this section a specific property and model layer is chosen and two soil variants are
created by splitting this layer into two layers of equal thickness and in one variant
the top layer will have a property variation of +10% and the bottom layer will have
−10% while in the other variant the top layer will have −10% and the bottom will
have +10%. This test is only performed on TC3 and TC4 and note that the water
layer is not plotted in this case, so that the depth starting at zero is measuring from
the seabed. From the Figure 4.15 and TC3 we get the clear idea that splitting layers
is more has a much bigger effect the closer it is to the surface. It is not clear from
Figure 4.16 what the pattern is of splitting the first layer but it is very interesting to
note from the right figure the pattern given by the roots of the variants resulting from
splitting the second layer. The third mode past the kink at 17Hz and 0.05m−1 is the
only part of the dispersion curve that is clearly affected by splitting the second layer.
From Figure 4.17 it can be seen that the effect of splitting layers is also important
for thick layers, although, in this model which already has more layers, the effect
of splitting any layer has a smaller impact on the overall dispersion curves. It is
interesting to see from Figure 4.18 that both for the first and sixth layers, which
are shown because they have the highest sensitivities, that the effect of splitting the
layer is localized to a specific part of a mode or modes. In the case of the first layer,
splitting it has the big impact on the fundamental mode between wavenumbers of
0.05 and 0.15 m−1 and for the second mode for wavenumbers above the kink just
after 0.05 m−1. The sixth layer has a very localized effect where the only visible
change in the root locations occurs for the fourth mode. This could be an important
tool for an experienced user who wishes to use intuition to improve the inversion
algorithm. For example, if the best inversion candidate has a mismatch only at a
specific place, it may be possible that this requires a splitting of one of the model
layers in order to allow the model to vary the roots in that specific way without
affecting the other parts of the roots which may already be correct. It is a challenge
how to effectively incorporate the findings of the effect of layer splitting and is likely
to have to be evaluated on a case by case basis if layer splitting would improve a
modelled result and which layer is the correct one to split.

4.4 Layer Discretization

From the study on layer splitting we already have an indication that the resolu-
tion of the near surface layers is important for the correct prediction of the dis-
persion curve locations. This intuitively makes sense if we consider that the higher
wavenumbers and smaller wavelengths have a smaller lengthscale and therefore, the
non-dimensional layer resolution is worse for small wavelengths because the wave

CONFIDENTIAL



74 4. MODEL STUDIES

Figure 4.15: TC3 modal location sensitivity to soil layer splitting.

Figure 4.16: TC3 modal root locations for baseline soil profile and splitting of layers
1 and 2.

samples fewer layers than a longer wavelength would.
For this two test cases are considered. The first case is a linear soil profile, which

varies from a Cs of 100 to 900 m/s over 32m of depth and then remains constant
in the halfspace as shown in figure 4.19. The second case is a profile with a velocity
inversion which varies linearly between a Cs of 100-400-200-500 with turn points in
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Figure 4.17: TC4 modal location sensitivity to soil layer splitting.

Figure 4.18: TC4 modal root locations for baseline soil profile and splitting of layers
1 and 6.

the profile at 8, 16 and 24m of soil depth as shown in figure 4.21.
Figure 4.19 shows the discretizations for layer sizes of ∆x = 1, 2, 3. The differ-

ence between ∆x = 1 and ∆x = 2 is fairly small. There is a definite shift in the
location of the first and second higher modes above the fundamental mode, espe-
cially this difference is larger at higher wavenumbers. This makes sense, since the
higher wavenumbers or shorter wavelengths reach a smaller depth and are more
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Figure 4.19: Discretization of linear Cs
profile.

Figure 4.20: Dispersion curves of lin-
ear Cs profile.

affected by the discretization. The ∆x = 4 is not fine enough to capture the correct
dispersion behaviour. These roots are far away from the ∆x = 1 root locations. This
makes sense because the smallest wavelength is 4m corresponding to k = 0.25. The
model resolution should be at least 2 − 4 times as small as the smallest wavelength
which is considered.

Figure 4.22 shows a similar pattern to the linear case. This time the discretiza-
tions plotted are ∆x = 1, 2, 3. Both the ∆x = 2 and ∆x = 3 cases seem to have
root locations which differ significantly from the ∆x = 1 case. Even a model dis-
cretization half the size of the smallest wavelength is not sufficient to accurately
predict the roots. A resolution of at least 4 times smaller than the smallest wave-
length is recommended. Possibly even smaller discretization would be beneficial if
the computational expense is permissible. It is clear that the discretization is very
important to the theoretically predicted modal dispersion curves in linearly varying
soil deposits. For both test cases the results with even larger discretizations have
been omitted, since the dispersion curves are even much more erroneous and the
diagrams become chaotic.

4.5 Implications for Inversion

This section aims to pull together the model studies conducted in this chapter and
draw some conclusions about what this implies for the inversion process.
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Figure 4.21: Discretization of linear Cs
profile with velocity inversion.

Figure 4.22: Dispersion curves of pro-
file with velocity inversion.

• Damping has a predictable impact, causing a smooth shift in the modal root
locations. For a damping up to 10%, the shift in the real part of the wavenum-
ber is approximately 2%. This is considered to be acceptably small in order
to use a decoupled inversion approach. If damping inversion indicates a high
level of damping, an iteration or correction to the soil stiffness profile could be
performed in order to achieve more accurate results.

• The dispersion curves are highly sensitive to the shear wave velocity, especially
near the surface. However, it is also fairly sensitive to the chosen layer thick-
nesses and an incorrect a-priori choice may be a confounding parameter for a
stiffness inversion.

• Averaging two layers into one layer, or splitting on into two, has a high impact
if the layer was near the surface. Additionally, thick layers also influence the
results. The effect is found to be relatively localized (to one mode or to spe-
cific small frequency and wavenumber ranges of the modes) on the dispersion
curves and it is possible an experienced user could identify how the model
layering should be changed in order to improve the fit of a model.

• Discretization of the layers and the thicknesses chosen are very important to
the predicted dispersion curve locations. This was probably the most signifi-
cant finding from the model studies and indicates that a finer resolution should
be considered in the models than was previously used for the full waveform
inversion.
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• Deposits which have continuously varying soil deposits have smooth dispersion
curves while kinks or sharp bends in the dispersion curves are indicative of
a more discretely layered soil deposit with jumps in the shear wave velocity
profile.

• Higher modes have higher sensitivity to deeper layers, as was seen from split-
ting the deeper layers into two.

• The S-wave damping ratio controls the amplitudes of the spectral response
and the P-wave damping ratio has almost no effect. Therefore, it should be
sufficient to use one damping ratio, assuming that the P-wave damping ratio is
the same as the S-wave damping ratio.

• Assuming viscous damping makes the roots very hard to predict at higher fre-
quencies because the amount of damping applied, compared with hysteretic
damping, is very large. Hysteretic damping should be used, although if possi-
ble, the actual frequency dependency of the damping should be identified from
the data.
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Chapter 5

Modal Surface Wave Inversion

In the inversion process, the goal is to find the soil properties that make the forward
model best match the measured results. Usually, a subset of the parameters is chosen
to vary in order to match the results. Parameters such as the density or poisson ratio
are generally not inverted for since they tend to fall within a relatively narrow range
[13] and therefore have less influence on the solution. It is also shown in Chapter
4 that there is a low sensitivity to the density and compression wave velocity. The
modal solution can be assumed to be independent of the damping in the system as
also shown in Chapter 4. Hence, the goal of the modal surface wave inversion is
to determine the shear wave velocity without the damping influencing the results.
Later on the damping will be estimated.

5.1 Inversion via a genetic algorithm

The layered soil model forms a complicated system and it can be expected that lo-
cal minima occur in the objective function of the optimization problem. Hence,
the algorithm should be able to handle the local minima and find the global min-
imum[34]. Therefore, in our research we adopted a global optimization method,
being the genetic algorithm. However, some researchers have also used conjugate
gradient optimization for inverting for the damping ratio from a suitable starting
estimate [3]. It is also possible that a hybrid model could achieve a more efficient
inversion process. However, this is left for further research.

The location of the modal dispersion curves is identified from the measured data
using a semi-automated GUI that the author programmed. This tool allows the pick-
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ing of the peak energy points from the measured spectrum but requires the user to
verify that erroneous points, due to noise in the response spectrum, are not included
in the pick. There is also the option to pick the roots completely manually, which
relies on an experienced person to interpret the measured spectrum and to pick the
dispersion curves. The implementation of the genetic algorithm follows closely with
the process used by [34] with some practical changes that increase the flexibility
of the algorithm and allow the possibility of more ways to tune the inversion for
a more successful or faster result. Additionally, the suitability or objective function
implemented is the determinant based suitability, as discussed in section 3.3.2.

The genetic algorithm breeds a random initial population that is uniformly dis-
tributed within the defined search ranges for all of the properties and layers that
are allowed to vary. The suitability function is calculated for every member of the
population. The suitability defines how well the trial solution fits the observed mea-
surements. Then, in the default case, 1/3 of the population is chosen via tournament
selection to act as the ‘parents’ that pass on their characteristics to the next popu-
lation. In the actual implementation, the 6 random members from the population
are automatically allowed to pass on their genes in order to keep a little more ran-
domness in the population. The tournament selection chooses a random selection of
candidates from the yet unselected population and then holds a tournament whereby
only the best candidate from this subset is selected into the parent population. This
promotes more variation than simply choosing the best 1/3 of the entire population
by allowing some random chance that a less suitable profile may be passed on.

Once the parent population is selected, then the new population is bred. The
first 1/3 is an exact copy of the parent population, the next 1/3 uses the top n
layers from the parent population and takes the rest from a random parent, where
n is a random number of layers that varies for each candidate. The last 1/3 keeps
the bottom n layers and takes the rest from a random parent, where n is again a
different random number for each candidate. Additionally, an option is included
where a specified number of the best candidates that have ever occurred can be
included in the child population. This will decrease the genetic variability, but may
help allow the algorithm to converge better by avoiding the situation where the best
candidates are lost due to either mutation or cross breeding.

Lastly, the entire child population is allowed to mutate based on some specified
probability. So each of the properties in each of the layers will generate a random
number and if it is within the probability of mutation then the value will be replaced
with a uniform randomly selected value within the search range. Experience with
test cases suggested that the full mutation that is uniform randomly distributed over
the search range has a low success range in the new generated candidates. So the
algorithm was tweaked to allow two kinds of mutation. The first is the original full
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mutation that allows the new property to be anywhere within the search range. The
second is a small mutation where the property is random uniformly picked from a
range of +/ − 10% around the starting property value. When included this allows
the candidates the possibility to vary themselves on a finer scale to improve their fit.
Only one type of mutation is allowed per layer property, so the small mutation is
additional to the full mutation and increases the genetic variability.

Some other improvements include dynamic re-ranging, layer stripping, phased
settings and run interrupts. The dynamic re-ranging was found to have a big pos-
itive impact on the inversion process without adverse side-effects. The dynamic
re-ranging allows the search ranges to be automatically adjusted as the inversion
progresses. This allows for a wide search range to be specified at the beginning
of the inversion but accomplishes that the algorithm naturally reduces the ranges
to avoid computing useless profiles and wasting guesses far away from the global
minima. At every generation specified, for example at every 10th generation, then
the best certain fraction of the population, say 15%, is taken. The maximum and
minimum values of the properties for each of the layers in this subset of the popula-
tion is then computed. These are set to be the new search ranges. Although it may
be unnecessary, there is a relaxation factor provided on this to avoid the situation
where the ranges would shrink too quickly.

The second feature that is helpful in some inversions is layer stripping. Since
the objective function is most sensitive to the near-surface layer properties, then the
near-surface layers can overwhelm the successful estimation of the deeper proper-
ties. Hence, as the inversion progresses, the layers near the surface are progressively
turned off, allowing the deeper layers to be estimated with more confidence. This is
seen to work very well in synthetic cases where the algorithm can converge to the
correct solution in the top layers and then move on to deeper layers. However, there
is still the question if it is a good choice to make for the real measurements, since we
may end up locking in an error on the upper layers if the algorithm has not correctly
determined them due to the non-uniqueness of the problem.

Thirdly, the settings are phased, which allows for a new set of mutation prob-
abilities or any other setting to be introduced after N generations. This includes
the ability to introduce a different rootset such that the inversion algorithm is ini-
tially using only the fundamental mode and after N generations it can switch to
using a root set that contains all the modes for computing the suitability. There is
also the ability to specify weights between different roots, so that if three roots sets
are loaded, for example the fundamental mode and the two higher modes, then a
specified weighting between these modes can be given to the suitability function.

Finally, the last important modification is the option to interrupt a run in a
smooth way by changing a setting in a text file in the run folder. This allows the
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run to be terminated early if convergence is reached or if the user wishes to view the
results urgently. After every generation the program also computes statistics for the
population, so that the progress of the inversion may be monitored. The best 5 pro-
files are plotted at each generation to get a visual on how the profile is progressing,
although usually the user will not be observing the inversion process. In the future
a smooth restart capability could also be added such that the user could truly steer
the inversion process by altering some settings.

5.2 Synethetic Data Inversion

In order to first verify that the inversion process is working, it was tested on a syn-
thetic case. It was decided that profile TC3, shown in Table 4.4, would be a good
benchmark since this is a relatively difficult profile with the sharp jump in velocities.
For the first run the default same mutation probability used by [4] of 25% was used
and none of the other new additions to the program such as dynamic ranging and
layer stripping were used. The resulting Cs velocity profile obtained is shown in Fig-
ure 5.1. This already shows very good agreement with the initial input profile and
the convergence is rapid so that this case was only run for 20 generations.
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Figure 5.1: Result of Cs inversion on the synthetic dispersion curve of the TC3 soil
profile using default inversion parameters.

In testing, the main feature that was able to improve the convergence of the
inversion profile to better match the true profile was layer stripping. After every 5
generations the top active layer is turned off. This results in a very good estimate of
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Figure 5.2: Result of Cs inversion on the synthetic dispersion curve of the TC3 soil
profile using layer stripping.

the soil profile, as shown in Figure 5.2, with good convergence characteristics shown
in Figure 5.3. Due to the layer stripping process we have fixed in a small error in
some of the upper layers because they were turned off before they fully converged
to the correct solution. However, the benefit can clearly be seen for the lower layers;
the stiffness of the lower layers is predicted within a much narrower range.
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Figure 5.3: Error convergence for Cs inversion on the synthetic dispersion curve of
TC3 soil profile curve using layer stripping.

5.3 IJsselmeer Stiffness Inversion

The collection and processing of the IJsselmeer data from the W27 turbine of the
Westermeerwind wind farm will be discussed. Then 4 different stiffness inversion
cases are presented, which use a combination of different inversion settings and
different dispersion curve interpretations.

5.3.1 Collection and Processing

The difficulties with collecting the data meant that only one good dataset was ob-
tained and this was for the hydrophones. No useable data was obtained for the
geophones. The measurement array consists of 48 sensors spaced at every 1m. The
array was placed stationary and centred over the location where the wind turbine
would be installed while the source was moved so that shots were performed at sev-
eral distances from the start of the array. The accuracy of the positioning system was
low and the shots were performed at a ∼ 15o angle to array. Hence, the array spac-
ing was scaled to account for this. The results were concatenated into one virtual
array of longer length and this combined shot record is shown in Figure 5.4. There
are some gaps in the data and several traces had to be removed due to unexpected
jumps in the amplitude. In order to reconstruct a clean dataset, a sparse Radon
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transformation [27] was used to decompose the shot record into a minimum num-
ber of linear and parabolic events. Hence, a reconstructed virtual shot record, which
represents a ‘clean’ version of the actual shot record, is created. This is shown in
Figure 5.5. It is important to note that the start of the shot record has a large impact
on the spectrum, but several different choices can be made on how to extrapolate
the record to one that starts at the origin. Theoretically, the amplitude is infinite at
the origin since it is a point source. However, a more practical approach was taken
where the extrapolated amplitude is finite. The validity of the record is questionable
in this region, where there are many near-field effects and wave development taking
place. More details on the pre-processing, scaling and radon space reconstruction
can be found in [4].
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Figure 5.4: Concatenated shot record from the IJsselmeer data.

Since the taking the Fourier or Hankel transform of the data results in the same
modal root locations, the FFT is taken for the stiffness determination for conve-
nience. If the FFT of the data is taken then the resulting spectrum is very unclear.
Previously, RMS scaling of the amplitudes at each sensor (spatial) location was per-
formed. The benefit is that this increases the influence of the far-field effects. Addi-
tionally, windowing was simultaneously performed with a Tukey window. Testing by
the author indicated that the primary reason for the windowing further clearing up
the spectrum is the further reduction of the near-field effects. However, windowing
redistributes the energy by introducing new frequencies. Therefore, it is preferable
to simply truncate the sensor traces near the start of the array and ignore the data
it carries. The separate effects of RMS scaling, truncation and windowing before the
Fourier transformation are shown in Figures 5.6, 5.7, 5.8 and 5.9.
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Figure 5.5: Concatenated and pre-processed shot record for the IJsselmeer data.

Figure 5.6: F-K spectrum of the raw IJs-
selmeer data.

Figure 5.7: IJsselmeer spectrum after
application of RMS scaling and Tukey
windowing.

Due to timing considerations and for consistency, the modal root locations were
picked from the spectrum as produced by RMS scaling and Tukey windowing the
first and last 100 traces. The root locations in this spectrum are not fully clear
and there are features of the spectrum that are not easily explainable. Especially
the large blob of energy occurring at wavelengths of 70-120m or wavenumbers
0.008− 0.015m−1 and 13.5Hz. The phase velocity associated with this event is very
high, 1200-1500m/s and it occurs at a low wavenumber. If this is a propagating
mode it implies that there must be a stiff deep layer of at least 1200m/s shear-wave
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Figure 5.8: IJsselmeer data spectrum
with only RMS scaling.

Figure 5.9: IJsselmeer data spectrum
with first the 70 data traces discarded.

velocity, since propagating surface wave modes do not exist above the maximum
shear wave velocity of a system. Consultation with Fugro [23] indicates that indeed
it is likely that there is a layer of bedrock at 60-100m depth since the Appelscha rock
formation[5] is known to be present in this area. There is also energy that appears
to even touch the y-axis at zero wavenumber. This could be caused by a zero-group
velocity mode [11] or could be caused by smearing of the data due to the truncation
effect. This high energy event could be associated with some form of stationary or
resonating soil behaviour. We know there is a stiff layer at 30m, since none of the
CPT measurements were able to measure past this depth and the sensor force spiked
off the scale. Further, the borehole sample shows that there is gravel layer at 30m
depth. Hence, this high energy event could be associated with a full wavelength res-
onance down to the bedrock at 60-100m (although the author considers it unlikely
that the source has enough energy to resonate such a large soil layer). Otherwise,
it could be a resonance of the soil above the stiff layer at 30m, which would corre-
spond to approximately one quarter of a wavelength. It could also be due to a direct
wave arrival of the P-wave in water, which travels at ∼ 1500m/s. Further, it could
be a converted wave, where a P wave travels downwards and at a sharp jump in
the properties creates a reflected converted S-wave which propagates upwards. The
physics behind all the phenomena is complicated, but the model should theoreti-
cally be able to capture this response behaviour. However, in all the models tested in
this research, it was not possible to generate a significant (visible) response in this
region. Since, it is likely this corresponds to some resonating behaviour, then this
event may not be of interest for the surface wave identification and probably can be
ignored if it does not assist the inversion.
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To investigate this slightly further, the data was analyzed in the frequency-space
domain. At every frequency the decay factor was fit to the data for a simple ge-
ometric decay of A = c

rn where n is the decay factor, c is a constant and r is
the radial distance from the source. Logs were taken of the equation and the pa-
rameters were fit by using a linear polyfit in Matlab, where the equation form is
log(A) = log(C) − nlog(r). Surface waves are known to decay with n=0.5 while
body waves that travel along the surface decay faster at n=2 [9], [10]. The mate-
rial damping will increase this decay factor while the interaction of multiple modes
means that the amplitude may not strictly decay but can locally increase, rendering
this simple fitting method to be less accurate. From Figure 5.10 we see that only
near 5Hz is the energy concentrated near a decay factor associated with a surface
wave. At the other frequencies, the decay factor is much higher, which indicates that
it is related to an evanescent wave type or a body wave that propagates along the
surface. Surface waves can still exist since this is a combined decay factor, but it
is clear that the surface waves, which we wish to use for identification, are not the
major contribution to the total energy at this part of the spectrum.

Figure 5.10: Frequency-Space domain fit attenuation factors n where A ∼ r−n.
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Overall, it becomes clear that this is a difficult dataset and perhaps the measure-
ment setup is not sufficient for the surface wave inversions that we wish to perform.
However, now that we understand the limitations of the quality of the data, let us
try to get the best possible results out of it.

Several picks or interpretations of the modal root locations are made using both
purely manual picking and a semi-automated method which is a combination of
automated and manual picking. Since the data is not clear, and the picked root lo-
cations have a large impact on the stiffness inversion, several different root sets are
tested in the inversion process, also with different inversion settings. The picked
roots are shown in figures 5.11 to 5.14. The fully automated pick shown in Figure
5.11 are not used, but is included to show the location of the peaks in the response
spectra. It is interesting that the high velocity event and mode that extends above
the large spot of energy is composed of multiple peaks of lower group velocity rather
than one single peak. It is possible this one large energy event is actually a combi-
nation of multiple modes. In the manually picked root set, in Figure 5.12, it is
intentional that there is a denser selection on the fundamental mode to resolve the
fundamental mode more accurately. The fundamental mode is of key interest to
the inversion process. Although it is unclear where the modes lie, several points
are placed in the centre of some disconnected energy regions in order to give some
minor weighting to these phenomena in case they do actually correspond to modes.
The high energy spot and the tail extending above the spot is picked with one single
line, even though it is not physically clear what this event corresponds to, perhaps
it will be important to the inversion and is thus included. It is only picked from the
centre of the spot and above so that the maximum phase velocity of these points is
1200[m/s]. Two root sets, shown in figures 5.13 and 5.14, are created with a semi-
automated picking method. The automatic pick for the lower modes are accepted
while two interpretations of the higher mode are manually added to the root set.
In the first pick, a more classic picking approach is taken while in the second it is
considered that a more strange mode behaviour may be possible where the highest
mode extends all the way to the y-axis. It is seen in literature that these types of
modes can theoretically exist [11]. The use of these various dispersion curve root
sets will be discussed in the specific inversion cases which are considered.

An estimate of the stiffness profile in 1m increments down to 30m has been made
by Pim Versteijlen [31]. This profile was estimated by performing an inversion on
seismic cone penetration test measurements. Although, a baseline profile is not used
in the inversion process, the model search range must be defined and so it is useful to
have a realistic estimate of the stiffness profile. This profile can also be used to make
a smart choice on the discretization of the model. Regions with variations will be
discretized more finely than regions where the Cs velocity is roughly constant. It will
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Figure 5.11: Peaks of response spec-
trum found with the automatic picking
tool shown on the measured response.

Figure 5.12: Manually picked disper-
sion curves shown on the measured re-
sponse.

Figure 5.13: Dispersion curves found
with semi-automated picking - interpre-
tation 1.

Figure 5.14: Dispersion curves found
with semi-automated picking - interpre-
tation 2.

also be considered that the near-surface layers need a finer discretization than the
deeper layers. Several discretizations are also investigated to see what the effect is
on the inversion, although only the most important runs are included in this report.
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5.3.2 Case 1

The first case considers a model with 9 soil layers sandwiched between a water layer
and a halfspace layer. This corresponds to the model size that was used in the full
waveform inversion [4] although, in this case it is extended to 30m. This is done
both since we have the SCPT estimate up to 30m and because we know that this is
a point where an abrupt change to a stiffer material occurs. Hence, it seems like an
appropriate location for the halfspace. Additionally, the layer thicknesses were made
more uniform because the author believes the lateral variability means that the CPT
based thickness estimates are not more beneficial than a more uniform choice for
the discretization. Assuming less a priori information about the layer thicknesses is
also beneficial if the inversion can be successful without it.

This inversion uses the ‘semi-automated 2’ root set from Figure 5.14. The inver-
sion settings that can be compared to the full waveform inversion are summarized in
Table 5.1, while the additional settings that relate to added functionality are given
in Table 5.2. The soil profile fixed parameters and Cs velocity range which was spec-
ified for the inversion is shown in Table 5.3. A uniform Cp velocity is used, which is
equal to the water acoustic velocity. This choice is made since the soil is saturated
and it is unlikely that the dilational wave will travel slower than the pressure wave
velocity in water [25]. Further, the model sensitivity is very low for the Cp velocity
as shown in Chapter 4. Since the model sensitivity to the density is also fairly low, a
uniform density is used for this case. A better estimate could be made by computing
the layer densities as the average from the finer resolution density profile given with
the SCPT results [31]. This was not done for the first case, but was performed for
subsequent cases for a small improvement in accuracy.

Table 5.1: IJsselmeer inversion case 1 settings for the genetic algorithm.

Ngen NPop NDad NCon pFM
100 240 80 35 0.25

Ngen is the number of generations which the genetic algorithm will run. NPop is
the number of trial soil profiles making up the population. NDad is the number of
parents which pass on their genes to the next generation population, which is taken
as one third of NPop by default. NCon is the number of contestants taking part in
the tournament selection. pFM is that probability that one of the properties will be
uniformly randomly selected from within the search range. pSM is the probability
that one of the properties will be selected from a small range, usually 10%, around
the current value.
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Table 5.2: IJsselmeer inversion case 1 additional settings.

pSM Re-Range Layer Strip Rootset
0 Yes - every 10 gen No IJ comb2

Table 5.3: IJsselmeer stiffness inversion case 1 soil profile and Cs velocity search
range.

Layer Thickness Cp ρ Cs Min Cs Max
Water 4.4 1520 1025 0 0

1 1 1520 2000 40 250
2 2 1520 2000 40 250
3 2 1520 2000 40 250
4 3 1520 2000 40 250
5 3 1520 2000 100 450
6 4 1520 2000 100 450
7 5 1520 2000 100 450
8 5 1520 2000 100 450
9 5 1520 2000 100 450

Halfspace ∞ 1520 2000 400 1200

The convergence observed in Figure 5.15 is not as good as in the synthetic case.
There are several reasons for this. Reality does not correspond to a discrete horizon-
tally layered soil deposit. So we expect there is some residual error in the location
of the roots because of discretization in our model. Additionally, any noise or mea-
surement error in the measured response spectrum and error in the picking of the
roots means that the residuals at the roots cannot be satisfied and the error function
remains high. However, we see that the result seems to have converged by approxi-
mately 50 generations since the values of the suitability are no longer dropping but
oscillate at the same level.

Figure 5.16 shows that the estimate of the best profile is actually somewhat close
to the expected stiffness given by the SCPT curve. Indeed we see it is a lot closer than
the estimate from the full waveform inversion process as described in [4]. This is a
very encouraging result. However, there may be other profiles that have a very simi-
lar suitability but different shape. This is related to the non-uniqueness of the found
solution. In the full waveform inversion the solutions which were found were dras-
tically different, suggesting they are far away from a global solution. Far from the
global solution, multiple solutions have very different profiles but a similar objective
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Figure 5.15: Error convergence for case 1 Cs inversion of the IJsselmeer soil profile.

function value. So in order to characterize the range of possibilities within which
the solution could lie, the maximum and minimum of the values in the top 15% of
the population are determined. This is shown in Figure 5.17 where the mean value
of the top 15% population is also plotted. These ranges are fairly wide, indicating
there is still quite some variability and non-uniqueness in the solution.

5.3.3 Case 2

The second case that will be considered for the IJsselmeer inversion uses 21 soil lay-
ers between the water layer and the halfspace in order to provide a better resolution
and also allow the model more flexibility in the shape of the stiffness profile found.
From the model studies it was observed that the layer discretization can have a big
impact on the dispersion curves. Also, we see a strong linear shape in the SCPT
profile near the surface and so both of these would suggest that a fine discretization
could be beneficial.

The genetic algorithm settings that were used are the same as those for the first
case and are shown in Table 5.1. The root set which was used for case 2 is the ‘semi-
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Figure 5.16: IJsselmeer Cs inversion case 1 comparison of inversion results.

automated 1’ shown in Figure 5.13 and this difference is shown in the additional
settings in Table 5.4. The soil profile fixed parameters and Cs velocity range which
was specified for the inversion is shown in Table 5.5.

Table 5.4: IJsselmeer inversion case 2 additional settings.

pSM Re-Range Layer Strip Rootset
0 Yes - every 10 gen No IJ comb1

The convergence at the end of the inversion run does not appear to have im-
proved significantly over the previous case, as shown in Figure 5.18. The best es-
timate has a lower error than the previous case, however, it is difficult to directly
compare the suitability between models with a different number of layers. The best
profile, shown in Figure 5.19, shows a very good agreement with the SCPT profile,
although it very clearly disagrees in the first 5m. There the MASW predicts a higher
stiffness near the surface and that the dip in the stiffness has its minimum 2m deeper
in the soil. Figure 5.20 shows that the ranges are wide and so the uncertainty in such
a profile could still be relatively high, but it again confirms the overall shape of the
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Figure 5.17: IJsselmeer Cs inversion case 1 range of the estimated parameters based
on the top 15% of the population.

SCPT profile quite well.

5.3.4 Case 3

The third inversion case uses the same genetic algorithm and inversion settings as
the previous case, but with the manually picked root set shown in Figure 5.12. This
change of the root set in the additional inversion settings is shown in Table 5.6. The
soil profile fixed parameters and search ranges were kept the same as the previous
case and are shown in Table 5.5.

Figure 5.21 shows the convergence is comparable to before. Figure 5.22 sum-
marizes the inversion run results. The best profile seems to deviate more from the
SCPT estimate, even though the velocity ranges are slightly smaller. This could be
random chance and the mean of the top population indeed has quite a good agree-
ment with the SCPT measurements. This indicates that manually picking the root
set, seems to have a small effect on the inversion performance if the picking is done
carefully. In fact, the slightly smaller ranges could indicate that the manually picked
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Table 5.5: IJsselmeer stiffness inversion case 2 soil profile and Cs velocity search
range.

Layer Thickness Cp ρ Cs Min Cs Max
Water 4.4 1520 1025 0 0

1 1 1520 1400 40 250
2 1 1520 1700 40 250
3 1 1520 2000 40 250
4 1 1520 2000 40 250
5 1 1520 2000 40 250
6 1 1520 2000 40 250
7 1 1520 1900 100 350
8 2 1520 1800 100 350
9 1 1520 1800 150 450

10 1 1520 1800 150 450
11 2 1520 1800 150 450
12 1 1520 1800 150 450
13 2 1520 1600 150 450
14 1 1520 1700 150 450
15 3 1520 1667 150 450
16 1 1520 1800 150 450
17 3 1520 2000 150 450
18 1 1520 2000 150 450
19 1 1520 2000 150 450
20 2 1520 2000 150 450
21 2 1520 2000 150 450

Halfspace ∞ 1520 2000 400 1200

Table 5.6: IJsselmeer inversion case 2 additional settings.

pSM Re-Range Layer Strip Rootset
0 Yes - every 10 gen No IJ MP1

roots resulted in an estimate with a higher degree of certainty. It is interesting that
the weakest layer with a depth of 4− 5m has a very narrow range, while most of the
ranges are much larger.
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Figure 5.18: Error convergence for case 2 Cs inversion of the IJsselmeer soil profile.

Figure 5.19: IJsselmeer Cs inversion case 2 comparison of inversion results.
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Figure 5.20: IJsselmeer Cs inversion case 2 range of the estimated parameters based
on the top 15% of the population.
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Figure 5.21: Error convergence for case 3 Cs inversion of the IJsselmeer soil profile.

5.3.5 Case 4

The last case uses a new root set, shown in 5.23, that ignores the high energy spot
and the mode that occurs above it. The genetic algorithm and all other inversion
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Figure 5.22: IJsselmeer Cs inversion case 3 comparison of inversion results and range
of the estimated parameters based on the top 15% of the population.

settings are kept the same. The 21 layer soil model given in Table 5.5 is also used.
It is clearly seen in Figure 5.24 that this results in a better convergence. The

high energy mode was difficult for the model to handle and that is why there was
a persistent large error due to the points in this region that could not be matched.
Removing those points has allowed for a better convergence. As a result the ranges,
defined by the top 15% of the final population, in 5.25 are much smaller in width
compared to the previous inversion attempts. This indicates a higher certainty in
the stiffness profile. Although, the best candidate, shown in Figure 5.26, seems to
have a more staggered appearance that seems to be physically unrealistic. This could
correspond to the presence of several stiff layers or it could be some form of error
where the inversion process is not converging to a physically valid candidate. The
top 15% of the population is plotted with the colours scaled by the suitability where
the red profile is the best candidate and the fainter yellow profile is the worst of the
top 15% of the final population.

In order to further verify the results, for every run we have investigated sensi-
tivities, statistics about the population and the roots. A good way to analyse the
results is to plot the input roots on top of the F-K spectrum of the response related
to the best candidate after inversion. This is shown in Figure 5.27. Alternatively,
Figure 5.28 shows the roots from the best candidate profile and plotted on top of the
measured response spectrum. Lastly, the theoretical roots of the best candidate are
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Figure 5.23: New root set automatically picked from the IJsselmeer response spectrum
which only contains the 3 lower roots.
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Figure 5.24: Error convergence for case 4 Cs inversion of the IJsselmeer soil profile.
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Figure 5.25: IJsselmeer Cs inversion case 4 comparison of inversion results.
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Figure 5.26: IJsselmeer Cs inversion case 4 search range and top 15% of the popula-
tion with scaled colours based on the suitability

plotted with the input (measured) roots, shown in Figure 5.29. For this inversion
case these three plots show quite good agreement, meaning the found candidate is
plausible and valid. If the roots do not match up, then it can be certain the inversion
was not good enough to trust the inversion. A good visual match is not enough to say
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that a profile is correct, but adds a large measure of confidence. It can be observed
in Figure 5.29 that the measured second mode wiggles around the theoretical mode,
and it is likely that if we were to interpret the measured data considering a more
straight mode response at this location, that we could get an even better fit.
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Figure 5.27: IJsselmeer Cs inversion
case 4 comparison of input modes plot-
ted on the response spectrum of the
best candidate.
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Figure 5.28: IJsselmeer Cs inversion
case 4 comparison of theoretical modes
of best candidate plotted on the mea-
sured response spectrum.
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Figure 5.29: IJsselmeer Cs inversion case 4 comparison of the input modes and the
theoretical modes of the best candidate.

CONFIDENTIAL



5.4. GJØA STIFFNESS INVERSION 103

5.3.6 Conclusions on the IJsselmeer stiffness inversion

Although the results are not exhaustive, it can be concluded that the modal inversion
process is significantly more successful than the full waveform inversion process.
Several velocity profiles are found, which are all in relatively close agreement with
the SCPT inversion profile. A range of different profiles have a suitability value close
to that of the best fit, so perhaps it cannot be said exactly what the best profile is,
but rather a range can be given within which it is expected to lie. No results were
presented for the layer stripping process because it was not found to be effective
for the inversions of the IJsselmeer data. The layer stripping process forces the
upper layers to fix on one value and due to the non-uniqueness of the solution,
where multiple profiles are close to satisfying the data, this is a bad assumption.
The algorithm may converge to one profile, but it is not guaranteed that it is the
global minimum and also it would misrepresent that data if we suggest that we can
determine one specific profile from the data.

The roots of the best stiffness profile from the final inversion run match the mea-
sured roots well, and the spectra are also in reasonable correspondence. Table5.7
shows the values determined by the end of the last inversion run. The maximum,
minimum and mean of the top 15% of the population are given along with the profile
of the best candidate.

5.4 Gjøa Stiffness Inversion

Another dataset to perform the inversion method on was made available through
a collaboration with the Norwegian Geotechnical Institute (NGI). This high quality
dataset was obtained via the NGI prototype seabed-coupled shear wave vibrator.
This uses a 3.25m diameter suction caisson which penetrates 2.5m into the soil
and contains a linear hydraulic actuator with a 3700kg mass. The actuator can be
rotated to produce Love or Scholte waves. It can produce excitation frequencies
from 5-60Hz and can produce a flat power spectral density between 10-55Hz. The
maximum horizontal force is 250kN. A 4 component cable is used to capture the
hydrophone and 3 direction geophone signals. The array is 600m long and dragged
into place across the source so that there is 440m of uninterrupted cable on one side
of the source. Dragging is used to achieve an effective receiver spacing of 2.5m. The
source sweep contains a signal which ramps up in frequency and lasts 7.5s and then
an additional 7.5s is recorded in order to capture the propagating waves. For the
full details about the collection of the data refer to [29].

The Gjøa data set contains stacked versions of both the in-line and cross-line
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Table 5.7: Summary statistics for IJsselmeer Cs inversion case 4 result.

Layer Thickness Cp ρ Cs Min Cs Best Cs Max Cs Mean
Water 4.4 1520 1025 0 0 0 0.0

1 1 1520 1400 72.4 94.8 165.0 92.9
2 1 1520 1700 118.4 198.9 238.1 208.4
3 1 1520 2000 132.3 210.9 240.6 207.3
4 1 1520 2000 101.0 109.8 217.6 159.1
5 1 1520 2000 76.2 100.7 168.1 107.9
6 1 1520 2000 43.0 43.7 54.0 48.9
7 1 1520 1900 204.6 240.7 313.1 259.2
8 2 1520 1800 225.5 304.1 329.8 275.4
9 1 1520 1800 217.5 291.6 406.1 330.0

10 1 1520 1800 247.2 396.6 401.4 330.5
11 2 1520 1800 232.0 268.3 343.4 267.4
12 1 1520 1800 223.5 395.6 395.6 310.6
13 2 1520 1600 201.3 235.7 311.3 251.5
14 1 1520 1700 226.0 366.5 395.8 310.5
15 3 1520 1667 181.4 237.0 287.2 229.7
16 1 1520 1800 220.8 400.3 416.6 336.6
17 3 1520 2000 208.6 293.6 375.7 278.3
18 1 1520 2000 227.1 227.1 410.9 320.0
19 1 1520 2000 258.8 394.6 407.6 339.2
20 2 1520 2000 195.6 328.1 355.1 260.3
21 2 1520 2000 212.9 212.9 361.2 259.9

Halfspace ∞ 1520 2000 842.1 973.9 1073.4 939.1

source sweeps. These can be used for Scholte and Love wave analysis. Since the
author’s tools were not developed to handle Love waves, this analysis will only focus
on the Scholte wave. However, it should be considered that the Love wave may
prove to be the best dataset to use since it does not contain the body pressure waves
and only the surface waves are present. Figure 5.30 shows a shot record for the
vertical velocity of the inline sweep.

The data is transformed to the wavenumber domain using a discrete Hankel
transformation (DHT). The computed spectrum is shown in Figure 5.31. Two root
sets are considered for the inversion cases and are shown in Figures 5.32 and 5.33.
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Figure 5.30: Gjøa shot record for vertical velocity of the inline sweep.

5.4.1 Case 1

The first inversion case for the Gjøa data used only the fundamdental mode. The
same settings genetic algorithm settings are used as for the IJsselmeer inversion
cases, except for the different input roots and soil layering. The settings are shown
in Table 5.8 and 5.9. The fixed soil parameters and the Cs velocity ranges are shown
in Table 5.10.

Table 5.8: Gjøa inversion case 1 settings for the genetic algorithm.

Ngen NPop NDad NCon pFM
100 240 80 35 0.25

Table 5.9: Gjøa inversion case 1 additional settings.

pSM Re-Range Layer Strip Rootset
0 Yes - every 10 gen No Fundamental only
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Figure 5.31: Gjøa data f-k spectrum of vertical velocity for the inline sweep.
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Figure 5.32: Gjøa fundamental mode
picked from spectrum peaks.
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Figure 5.33: Gjøa fundamental mode
and two higher modes.

Figure 5.34 shows that the inversion achieves excellent convergence. This is
because the data is of a high quality and because only the fundamental mode is
used. The inversion finds a very good match to the data. Figure 5.34 shows the
ranges of the estimate for the top 15% of the final population as well as the mean of
this top population. It shows that the top 10m of soil has been estimated with a very
high degree of confidence as indicated by the very narrow ranges. Lower in the soil
the ranges are wider as the system loses sensitivity to the lower layers. The overall
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Table 5.10: Gjøa soil profile fixed parameters and Cs velocity search range.

Layer Thickness Cp ρ Cs Min Cs Max
Water 364.6 1500 1025 0 0

1 1 1500 1650 20 300
2 2 1500 1700 20 300
3 4 1500 1800 20 300
4 4 1500 1800 80 400
5 4 1500 1900 80 400
6 4 1500 1900 80 400
7 4 1500 2000 80 400
8 4 1500 200 150 500
9 4 1500 2100 150 500

10 4 1500 2100 200 600
11 4 1500 2100 200 600

Halfspace ∞ 1500 2100 200 700

profile is very linear in behaviour. It matches well with previously published results
[25], both in shape and in magnitude.

Figure 5.34: Error convergence for case 1 Cs inversion of the Gjøa soil profile.
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Figure 5.35: Gjøa Cs inversion case 1 range and mean of the estimated parameters
based on the top 15% of the population.

5.4.2 Case 2

The second inversion case for the Gjøa data starts with the same settings as before
but uses the phased settings functionality. It starts with only the fundamental mode
and then after 30 generations introduces the next two higher modes as well. After
30 generations the fundamental mode is given a weighting of 0.5 while each of the
two higher modes each have a weighting of 0.25. Additionally, at generation 40
layer stripping is started and one layer is turned off every 10 generations.

Figure 5.36 shows that excellent convergence is again obtained. It is difficult to
comment about the exact level of convergence since the values are no longer visible
on the same scale as the starting graph. In such a case the suitability should perhaps
be plotted on a log scale. Figure 5.37 shows that the soil profile has been estimated
with higher certainty down to 15m, an improvement over the previous case. This is
due to two combined effects. The first is that the higher modes carry sensitivity to
the deeper soil deposits and including them allows more certainty about the deeper
layers. The second effect is that the layer stripping turns off variation in the upper
layers, so the inversion can focus on the deeper layers and estimate them with a
higher degree of certainty. With the already high certainty of the estimates in the
upper layers, it is unlikely that the layer stripping process is locking in the wrong
estimates, which would compound the error for deeper layers. Hence, layer stripping
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can be used because the inversion already appears to be well behaved. However, it
should not be used too agressively, that is it should not be started too early in the
inversion process or layers switched off too rapidly as this would lead to estimation
errors.

Figure 5.36: Error convergence for case 2 Cs inversion of the Gjøa soil profile.

Figure 5.41 shows the search ranges and the top 15% of the final population
with the colours scaled according to the suitability of the candidates. The red profile
shows the best one while the lighter yellow profiles are less good estimates. There
is still a lot of scatter in the deeper layers of the estimates.

In order to assess the validity (or lack thereof) of the estimate, it is insightful to
compare the roots and spectral responses. Figure 5.38 shows the measured modes
plotted on the theoretical response spectra, created with a dirac pulse source. Fig-
ure 5.39 shows the theoretical modes of the best estimate for the stiffness profile
plotted on top of the measured response spectrum. Figure 5.40 shows the theoret-
ical roots of the best estimate plotted with the measured dispersion curves. From
these three figures we can see that the fundamental mode lines up extremely well.
The other modes, do not seem to line up as clearly. The second measured mode
crosses between the third and second theoretical modes while the third measured
mode shares is close to the fourth theoretical mode at some points but also deviates
at other points.

This is an interesting result, since the error function indicated a very good con-
vergence, yet visually there is a misfit. This is for several reasons. The classic misfit
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Figure 5.37: Gjøa Cs inversion case 2 range and mean of the estimated parameters
based on the top 15% of the population.

function, which measures the distance between the roots, corresponds well with vi-
sual intuition. However, the determinant based misfit does not since the formulation
is completely different and does not directly include any distance measuring. The
determinant function can be relatively flat between the modes due to the normaliza-
tion. Therefore, the error is not increasing with linear distance of the mode from its
’true’ location and the points which are ‘far’ from lining up may only incur slightly
more error than points which are ‘close’. This can be understood by seeing that the
dips in the normalized determinant in Figure 3.11 are very close to the modes, and
that relatively large spaces between modes can have similar error values.

If it is required to have the modes line up more accurately this could be done in
three ways. Firstly, the higher modes could be given a higher weighting in the cost
function. Secondly, it is possible to adjust the smoothing operation of the determi-
nant normalization in order to allow more sensitivity of the determinant function to
the distance from the mode. That is, the dips of the determinant function near the
modes could be made wider by applying the moving average over a larger number of
points. This could be beneficial or disadvantageous and further testing would have
to be completed with inversion runs. Using a small smoothing fraction ensures that
all of the soil profiles have more similar determinant values, so a larger smoothing
fraction may make the fit worse. The third method would be to use the classic misfit
function in a hybrid approach which uses both misfit functions. After the inversion
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has been done with the determinant misfit function, then the final soil profile can be
tweaked to fit better according to the classic distance measuring misfit function.
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Figure 5.38: Gjøa Cs inversion case 2
comparison of input modes plotted on
the response spectrum of the best can-
didate.

Figure 5.39: Gjøa Cs inversion case 2
comparison of theoretical modes of best
candidate plotted on the measured re-
sponse spectrum.
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Figure 5.40: Gjøa Cs inversion case 2 comparison of the input modes and the theoret-
ical modes of the best candidate.
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5.4.3 Conclusions on the Gjøa stiffness inversion

Overall, we see that the predicted stiffness profile, shown in Figure 5.41, agrees well
with the published results from Socco [25], shown in Figure 5.42. There are several
differences in the formulation of the inversion process. First, the choice of using a
genetic algorithm instead of using a Monte Carlo approach as used by Socco. Ad-
ditionally, the choice to normalize the determinant and how the determinant was
normalized. Thirdly, use of the layer stripping process. Hence, it is encouraging
that these results are in good agreement. The results presented in this report sug-
gest a higher degree of certainty for the stiffness profile than the published results.
However, more studies would have to be done to make this conclusive.

The average and mean profiles are shown in Table 5.11.

Table 5.11: Gjøa soil profile fixed parameters and Cs velocity search range.

Layer Thickness Cp ρ Cs Best Cs Mean
Water 364.6 1500 1025 0 0

1 1 1500 1650 45 45
2 2 1500 1700 52 52
3 4 1500 1800 68 68
4 4 1500 1800 99 99
5 4 1500 1900 99 99
6 4 1500 1900 148 153
7 4 1500 2000 282 270
8 4 1500 200 283 349
9 4 1500 2100 241 339
10 4 1500 2100 268 387
11 4 1500 2100 440 382
12 4 1500 2100 449 449

Halfspace ∞ 1500 2100 439 471

The main purpose of this stiffness inversion was to determine the stiffness profile
accurately so that it could be used in a damping inversion method. To that end, we
have a high degree of confidence that we have found a good estimate of stiffness
profile and can use it for the damping inversion, which will be discussed in Chapter
6. Since only the fundamental mode is lining up well, then only the fundamental
mode should be used for the damping inversion. If a multi-modal damping inversion
is to be performed, then the misfit in the higher mode dispersion curves needs to
be addressed in order to ensure that theoretical modes correspond directly to the
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Figure 5.41: Gjøa Cs inversion case 2
search range and top 15% of the popu-
lation with scaled colours based on the
suitability.

Figure 5.42: Gjøa published stiffness
estimate [25].

measured modes.
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Chapter 6

Damping

This chapter focuses on the identification of the material damping properties of the
soil. The damping is of great relevance for monopile structures since this long slen-
der structure tends to be poorly damped. Current design methods combine structural
and soil damping into one combined conservative value that is decided based on ex-
perience and limited data. Hence a method to estimate the actual damping could be
of great value to the design process.

Section 6.1 discusses three methods to identify the modal damping or attenua-
tion curves from measured data. By nature of their differences, these three methods
will result in different modal damping curves. Section 6.2 verifies two methods
to compute the modal damping curves of a theoretical soil system. These meth-
ods should produce the exact same model damping curves and any differences are
due to computation errors. Note, that confusingly the half-bandwidth or Q-factor
method, described in section 6.1.3, falls under both categories and could be used to
both compute the modal damping curve from measurements or from the response
spectrum computed for a theoretical model.

6.1 Attenuation Curve Identification Methods from Mea-
sured Data

There are several methods used in literature that can theoretically be used to iden-
tify the material damping ratio from measurements. The paper by S.A. Badsar [3]
covers two existing methods and introduces a new method, while comparing the
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effectiveness of all three methods. The findings of this paper are summarized below.

6.1.1 Phase-Amplitude Regression in Frequency-Space Domain

The force signal and resulting displacement are transformed from time to frequency
via the Fourier transformation. The frequency-space transfer function of force to
displacement is computed H(r, ω) = u(r,ω)

F (ω) where H(r, ω) is the transfer function,
u(r, ω) is the displacement and F (ω) is the source spectrum. Usually several record-
ings are stacked to create an estimate of the transfer function with better signal
to noise ratio. The experimental dispersion curve, CR(ω), and attenuation curve,
AR(ω), of the surface wave are determined by phase and amplitude regression. This
scheme assumes that there is only one surface wave and multiple modes do not exist.
Then the transfer function is

h(r, ω) = ζ(r, ω)e
(−i ω

CR(ω)
)
e−AR(ω)r

The first term ζ(r, ω) accounts for the geometric damping and is equal to the
displacement amplitude in a soil deposit without damping. Since it depends on the
stratification, which is initially unknown, the surface wave decay factor of ζ(r, ω) =

1√
(r)

is used and then iterated. The second term e
(−i ω

CR(ω)
) is a harmonic function

that depends on the Rayleigh wave velocity. The third term e−AR(ω)r is an exponen-
tial decay that accounts for the wave decay due to material damping.

The first step in the inversion procedure is to perform an amplitude and phase
regression. This problem has many local minima and the correct global solution
must be found. The estimate of the dispersion and attenuation curves are then used
to solve an inverse problem for the shear wave velocity profile. This new profile is
used to update the geometric spreading factor and this whole procedure is iterated
until convergence is reached. Next, the attenuation curve is assumed to be correct
and an inversion problem is solved to determine the material damping ratio profile
of the soil, which corresponds to the attenuation curve.

6.1.2 Amplitude Regression in Frequency-Wavenumber Domain

This method is somewhat similar to the previous method and is also similar to the
modal surface wave inversion. The experimental transfer function is determined
where the frequency-space data from the previous method is transformed into the
frequency-wavenumber domain using the appropriate Hankel transformation in or-
der to properly account for the cylindrical nature of the wavefield. The dispersion
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curve is taken to be the peak in the frequency-wavenumber spectrum. An inverse
problem is solved to find the stiffness profile. Then this is used to estimate the
geometric spreading factor. No iteration is required for the geometric spreading fac-
tor since it is computed directly. The attenuation curve is still calculated from the
frequency-space data, but using the direct estimate of the geometric spreading fac-
tor. With the attenuation curve AR(ω) found then a second inverse problem must be
solved to determine the material damping ratio of the layered soil.

6.1.3 Half-power Bandwidth in Frequency-Wavenumber Domain

The final method uses a modified half-power bandwidth or Q-factor method in or-
der to determine the attenuation curve directly from the measured data. It is the
only method that is suitable for incorporating multi-mode data and calculating at-
tenuation curves separately for each mode rather than just assuming one relation
with frequency. This method uses an analogy to the single degree of freedom system
and the attenuation curve is identified from the width of the peak of the spectral
response. Appendix B shows a proof of the relationship for the half-power width,
the Q-factor and the damping ratio. In a single degree of freedom system we have

ζ =
∆ω

ωres
=

1

2Q
(6.1)

A modification is made to the half-power bandwidth method where instead of
measuring the magnitude at 1√

(2)
, (or 1

2 in the energy spectrum), the amplitude

can be measured at any height that is specified as γ times the peak value. It is
preferable to measure the width closer to the peak since there is a relatively smaller
contribution occurring from adjacent peaks. The relationship is derived for both
viscous and hysteretic damping and so it is verified that for both that the following
relation applies:

ζ =
∆ω

ωres

1√
γ−2 − 1

(6.2)

where γ is the ratio of the amplitude where the width is measured to the ampli-
tude of the peak and is therefore allowed to vary between 0 and 1. The height at
which this measurement is made is a parameter that must be carefully chosen [3].
Selecting γ closer to 1 results in less influence from adjacent energy peaks, but may
introduce more error in determining the actual width.

The limited length of the measurement array introduces a windowing effect that
causes a widening of the peaks in the frequency-wavenumber domain. Badsar [3] re-
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moves this effect by introducing an artificial additional damping in the form of an ex-
ponential window. The decay rate for this exponential window must be chosen care-
fully and is chosen differently for every frequency with the windowing performed
in the frequency-space domain. This artificial attenuation that is introduced by the
exponential window is subtracted from the attenuation that is measured from the
spectrum. Note, the geometric attenuation is automatically accounted for through
transformation of the measured spectrum with the Hankel transformation and with
the estimated stiffness profile that is required as an input for the damping inversion
problem. If the stiffness profile is poorly estimated, this can cause an inaccurate
prediction of the geometric damping thereby leading to an incorrect estimate of the
material damping. However, this error is common to all three methods.

In the comparison by Badsar, the half-power bandwidth method was found to be
the most effective at retrieving the synthetic damping profile on three benchmark
tests. All three methods can retrace an adequate damping profile. While in the ir-
regular soil profile the third method retrieves a better result than the first two due
to the contribution of the higher modes which cannot be accounted for in the first
two methods. The third method also fares better than the first two in the soil de-
posit with linearly varying properties, since the first two methods assume that the
geometric damping is exactly known. It is important to note that theoretically only
the third method can deal with soil deposits where there is a strong contribution of
multiple modes. With a multi-mode situation the geometric spreading factor may
contain local increases in the amplitude due to interference of the modes. We also
wish to be able to use the inversion technique for multi-modal situations and com-
plex stiffness profiles and additionally this third method has a better performance in
all of the cases tests. Therefore, the half power bandwidth method, will be used for
the estimation of the modal damping curve from the measured data.

6.2 Verification of the Theoretical Calculation Method

This section aims to verify that the half-bandwidth method which will be used to com-
pute the modal damping curve from the measured data, matches with the modal damp-
ing curve computed using the theoretical phase damping ratio method.

The first step to implementing a successful inversion of the soil damping profile
is to verify that the two methods that are used to calculate the attenuation curves are
indeed equal. The first is the half-power bandwidth method which is used to com-
pute the attenuation or modal damping curve from the measured response spectrum.
The second method is using the phase damping ratio relation of the complex roots
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and will be used to generate the theoretical attenuation curves from the candidate
models. Although these methods use alternate definitions of the quality factor in
their derivation, they should be equivalent. The phase damping ratio method is
used for computing the theoretical modal damping curves because it is more com-
putationally efficient as it does not require generating the entire response spectrum.
It is also theoretically more accurate, since some interpolation error is made during
the measurement of the spectral width with the modified half-bandwidth method.

6.2.1 Phase Damping Ratio

The phase damping ratio is suggested by S. Foti [10] and is a method that was used
by Misbah and Strobbia [18] to analyse the modal attenuation of a theoretical model.
This paper borrows from the derivation of the quality factor (Q factor) performed by
Carcione [6]. This definition considers the ratio of the peak energy density stored
per cycle to the energy dissipated during the cycle. The phase damping ratio is given
as:

D(ω) =
Im(k∗2)

2Re(k∗2)
(6.3)

where k∗ denotes a complex wavenumber and not a conjugation operation.
The test case defined by [10] on page 256 is used with the properties given in

Table 6.1.

Table 6.1: S. Foti test case soil profile for phase damping ratio.

Layer Thickness [m] Cp [m/s] Cs [m/s] Dp Ds ρ[Mg/m3]
1 5 400 200 0.04 0.04 1.9
2 5 500 250 0.03 0.03 1.9
3 5 600 300 0.025 0.025 1.9
Half-space ∞ 800 400 0.02 0.02 1.9

The complex root locations were computed using the complex root finding tool
and methods described previously in Section 3.1. Figure 6.1 shows the multi-modal
phase damping ratio curves. The plot on the left is presented by S. Foti [10] and
the plot on the right was computed by the author. This clearly shows that the au-
thor’s root finding tool is in good agreement with the predictions given by S. Foti.
However, it can be noted that the root finding is not perfect, which is not surprising
given all of the previously outlined difficulties related to finding the complex roots.
Nonetheless, the author wished to point out that several erroneous numerical roots
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are also found with his root finding technique. These can be seen to occur exactly at
the damping ratios specified as inputs for the soil layers, since the erroneous roots
occur at phase damping ratios of 0.025,0.03 and 0.04. These roots can and will be
filtered to remove them from the modal damping curves.

Figure 6.1: Multi-modal phase damping ratio comparison. Image from S. Foti [10]
[shown left], attenuation curves computed by the author [shown right]

6.2.2 Half-Bandwidth

The next verification case that was considered was the first test case from [3].

Table 6.2: S.A. Badsar regular test case soil profile for attenuation curve comparison.

Layer Thickness [m] Cp [m/s] Cs [m/s] ζp ζs ρ[Mg/m3]
1 2 300 150 0.04 0.04 1.9
Half-space ∞ 500 250 0.025 0.025 1.9

Note that since we are measuring a spatial decay (and not a time decay) the
Q-factor method is used in the wavenumber direction. Therefore, the equation be-
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comes:

ζ =
∆k

kres

1√
γ−2 − 1

(6.4)

Also, the attenuation curve is directly related to the damping ratio curve by:

A(ω) = ζ(ω)k (6.5)

Figure 6.2 shows the attenuation curve that S.A. Badsar [3] has computed us-
ing the ElastoDynamic Toolbox in Matlab and then matched by using the Q-factor
method. Figure 6.3 shows the attenuation curve computed by the author using both
the phase damping ratio and the half-bandwidth method. Using the phase damping
ratio method the attenuation curves were calculated for all of the modes, while both
in the S.A. Badsar [3] plot and the half-bandwidth method it is only computed for
the fundamental mode. Overall, we see extremely good agreement in the attenu-
ation curves and both of these methods match exactly with the plot given by [3].
Therefore, we are confident that our models work and we can implement them in
an inversion technique.

Figure 6.2: S.A. Badsar case 1 attenuation curve [3].
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(a) Q-factor method computation of
theoretical modal damping curve of
fundamental mode.

(b) Phase damping ratio computation of
theoretical modal damping curve of multiple
modes.

Figure 6.3: Verification of both modal damping curve computation methods.

6.3 Damping Inversion Method

The damping inversion process assumes that the stiffness profile versus depth has
already been determined. The theoretical candidate that results from the stiffness
inversion should have the roots lining up on the peaks of the measured response if
the inversion is successful. At the very least the modes should line up with the peaks
where the attenuation curve is measured for the damping inversion. The inversion
will be conducted using the attenuation curve measured from the fundamental mode
of the measured response spectra. Later, higher modes can also be incorporated. The
undamped, elastic roots of the soil profile are calculated and the points correspond-
ing to the fundamental mode are selected. This corresponds to the starting guess
for the complex root finding algorithm in order to ensure that only the fundamental
mode is used. The inversion process uses the same genetic algorithm as was used
for the stiffness inversion method. The complex roots of the fundamental mode are
found for each of the members of the population. The modal damping curve is cal-
culated using the phase damping ratio method. Then, the objective function is the
difference between these two curves given by equation 6.6.

Error =
1

N

N∑
i=1

|Di −Di,meas| (6.6)
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Figure 6.4 shows the modal damping curves from the first three population mem-
bers. The measurement algorithm will measure the distance between the measured
and theoretical curves and in this case the blue curve of the second member of the
population provides the best fit. Of course the population is much larger and more
profiles are considered, but this is shown for illustrative purposes.
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Figure 6.4: Three genetic population instances of the fundamental mode damping
curves of the TC3 profile.

The theoretical curves are computed on the same frequency grid points as the
measured modal damping curve in order to allow a direct comparison. In case there
is an error with the root finding algorithm and any points are lost, then the damping
ratio at the lost points is interpolated. For a densely sampled curve the error of losing
some points is very minimal, while for a sparsely sampled curve this will introduce
more errors. The interpolated curve will have a higher misfit error than the true
curve for the given soil profile. This provides a soft way to discourage soil profiles
that are numerically challenging while still providing a solution which is useful and
can allow the inversion to proceed towards the global minimum.

When the objective function is minimized, the modal damping curve should line
up exactly on the measured curve. The half-bandwidth damping inversion method
proposed by [3] uses the modal attenuation curve. However, as shown by equation
6.5, this provides a linear scaling of the damping ratio curve with wavenumber. This
is equivalent to providing a higher weighting of higher wavenumber points if the
error function is the distance. This would increase the sensitivity of the solution to
the near surface damping ratio. Hence, this inversion process will use the modal
damping ratio curves as this provides a more balanced comparison.
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Due to the use of the complex root finder(discussed in section 3.1.2), it is both
faster and more robust to compute the complex roots at small values of damping. It
was verified that scaling the entire profile with the multiplication of a scalar provides
an equal scalar multiplication to the phase damping ratio curve. Therefore, a curve
that is calculated with a ζ = 1% is simply 1

5 of the magnitude of a modal damping
curve computed at 5%. This also means that the shape of the modal damping curve
only depends on the stiffness profile (which is already fixed) and the shape of the
damping profile vs depth. Figure 6.5 shows that this approximation is reasonable
up to 10%. The shape of the damping ratio curves remains the same and if these
curves are normalized by the maximum magnitude, they almost line up on top of
each other. This linear assumption is not expected to be a good assumption at high
damping ratios.

(a) Absolute damping ratio curves for
multiplication of the entire damping profile by
a scalar ratio.

(b) Curves normalized by maximum value

Figure 6.5: Normalized Damping Ratio curves almost line up, showing the linear
approximation is reasonable up to 10% damping ratio.

6.3.1 Method Testing and Adjustments

Initial runs with the genetic inversion technique indicated two major difficulties.
Firstly, the suitability is very sensitive to the near surface layers. Secondly, the
damping inversion is significantly slower than the stiffness inversion since the com-
plex root finding problem is computationally much more intensive. Although the
linearization assumption speeds the root finding up significantly, the process is still
rather slow. An inversion with 50 generations and 60 population or 3000 candidates
and only 4 soil layers takes 13 hours. For systems with more layers, the system
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matrix is much larger and computational time increases rapidly with size of the ma-
trix, meaning damping inversion of the finely discretized soil profiles determined
in Chapter 5 are computationally impractical without moving to high performance
computing systems.

Testing indicated that the damping inversion problem has a more unique solu-
tion with less local minima than the stiffness inversion problem. It is possible that
the problem is convex, such that a local search technique, such as gradient based
optimization, could be successful. A gradient solution is less computationally in-
tensive since it progresses towards the minimum in a smart way as opposed to a
genetic algorithm that randomly guesses its way to the solution and contains much
more variability. A partial visualization of the objective function was performed, by
varying only two variables at a time from the reference profile given in Table 6.3.

Table 6.3: TC3 soil profile with varied damping.

Layer Thickness [m] Cp [m/s] Cs [m/s] Dp Ds ρ[Mg/m3]
Water 5 1500 0 0 0 1.0

1 3 1500 100 0.05 0.05 1.8
2 3 1500 200 0.035 0.035 2.2
3 3 1500 100 0.02 0.02 1.8

Half-space ∞ 1500 400 0.01 0.01 2.3

Figure 6.6 shows the objective function value when the damping is varied in the
top layer and in the halfspace, while the other two layers have their true value. In
this case the objective function is the most sensitive to the first layer and second
most sensitive to the halfspace. The figure shows that there is a very large difference
in the gradient, or sensitivity, in the two layers. This characteristic that the objective
function is significantly more sensitive to the damping in the first layer also holds
for other soil systems. It can be easily rationalized that this is valid, since all waves,
short and long, must interact with the first layer. It also appears that, at least for
these two parameters, there is only one local minimum which is also the global
minimum.

A brief summary will be given for the relatively unsuccessful local optimization
inversion methods that were attempted, before introducing what was found to be an
acceptable solution. This first attempt used a steepest-descent gradient method with
a fixed and then with a decreasing step size. It was found that they could predict the
damping of the first layer well but not retrieve the damping in the other layers. The
first layer damping would oscillate around the correct value while other layers would
not necessarily even have the gradient pointing in the correct direction, indicating
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Figure 6.6: Objective function for TC3 showing high sensitivity to top soil layer.

a solution stuck in a global minimum. The next attempt was to use an optimal
step size for the direction vector. This is the first step towards a conjugate gradient
approach. Here the gradient vector is found while at every step an optimization
is performed in order to determine the length of step in the steepest direction that
gives the minimum objective function value. This was more successful, but still
not satisfactory. A conjugate gradient approach was implemented next, in which
the direction vector is relaxed to include some of the previous iteration direction
vector. The β value, or gradient relaxation factor, was computed via the Fletcher-
Reeves method [34], [24]. Strangely, the conjugate gradient method was found
to give worse performance, although theoretically it should be superior or equal
to the steepest descent method. This could be because the theoretical conditions
on the A matrix for the use of the conjugate-gradient method are not satisfied. In
our case, we do not have an A matrix to map the unknown damping profile to a
set of measurements via Ax = b. Rather it is a process of finding and measuring
roots which gives a non-linear relationship between parameters and measurements.
Nonetheless, the technique was used in a similar scenario [34].

The last local optimization approach that was attempted was a very simple and
‘crude’ method, but was the most successful. This involves estimating the damping
one layer at a time starting with the top layer and working to progressively deeper
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layers. A step change is made to the damping in a layer and if the resulting objective
function is lower, the new profile is kept. The step size halves with each iteration,
until the algorithm moves on to the next layer. This process is in a loop, so that after
all the layers have been estimated, it starts from the top layer again. This couples
the layers, ensuring that errors are reduced and the solution converges towards the
global minima. A slight improvement to this process was found by estimating the
layers in order of most sensitive to least sensitive, which was found to be top layer
and then stiffest to softest. The best result of the local optimization, obtained by this
looping strategy, is shown in Figure 6.7. The damping ratio curve of the best estimate
profile already matches very closely with the ‘measured’ damping ratio curve. The
estimated profile is shown in Table 6.4. Even though the the curve visually matches
very well and the first layer is estimated accurately, there is still a substantial error
in the estimate of the damping in the lower soil layers.

Table 6.4: Damping profile of the best local optimization strategy.

Layer ζref [%] ζinversion[%] Error [%]
Water 0 0 -

1 5 5.04 0.8
2 3.5 2.90 -17.1
3 2 2.52 26.0
∞ 1 1.68 68.0

This local optimization fails because close to the global solution the change in
suitability due to changes in deeper layers is very small and in the discrete calcu-
lations can act like local minima. Additionally, local minima are occurring, where
is has been observed that changing the damping in the ‘wrong’ direction in a layer
maybe decrease the fit error if there is an error in the damping in the other layers.
The figure 6.8a is created by varying layers 2 and 3, with a small +2% error in the
damping in layer one. It can be seen that the objective function minima is in the
‘wrong’ place, and that a small error in the estimation of the damping in the first
layer could lead to a relatively large error for the lower layers. This is compounded
if the root positions cannot be refined in the root finding tool. Then the suitabil-
ity function becomes much more rough exhibiting misplaced local minima. This is
shown in figure 6.8b.

The visualizations were made to understand the poor success of the local opti-
mization strategies. The problem, appeared at first sight to be convex, but fails to
converge on the correct values. This is attributed to the fact that the sensitivity is
drastically different for the different layers. Although the first layer is predicted well,
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Figure 6.7: The synthetic and estimated damping ratio curves match closely even
though there is significant error in the estimated soil profile.

the other layers are not resolved because there is not enough sensitivity to reach the
correct solution. Perhaps the local schemes would have worked effectively if op-
timization toolbox licenses had been available, but time was insufficient to make
this determination. Therefore, a solution should be found that addresses both the
high sensitivity of the first layer dominating the solution and the long runtime of the
genetic inversion.

6.3.2 Wavelet Compression

The challenges with the damping inversion process can be summarized into two core
problems. Firstly, the solution is highly sensitive to the first layer damping ratio and
poorly sensitive to the damping ratios of the lower layers. Secondly, the inversion
process takes a long time due to the computationally expensive root finding process.

From figure 6.7 we see that there is still some small error at the peaks and
troughs. These are the points that must be matched exactly if we are to find the
correct profile. The problem is that there is too many additional points and so the
small distance error at these relatively few but crucial points is hardly noticeable in
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(a) Objective function shows local minima. (b) Objective function without root refinement
optimization is more chaotic, with more local
minima.

Figure 6.8: Partial visualization of the objective function with +2% error in Layer 1

the average misfit value. If a smarter selection of points is used, then we can retain
only the points that are crucial to the solution. These are the points near positions
of high curvature. This reduces the number of points computed, speeding up the
computation, and makes the objective function more balanced, because changes in
the deeper layers are represented by a relatively bigger fraction of the points.

The wavelet compression scheme [16] is used to select an intelligent subset of the
points where the resolution is needed because there is high curvature. The scheme
starts with the full grid, as shown in figure 6.9a and removes every odd point (blue
points). An intermediate compression resolution level is shown in Figure 6.9b. The
linear approximation between the remaining even points, shown in black in Figure
6.9b, is used to compute the approximation at the x-axis location of the odd points.
If the distance between the approximation and the actual point is below a speci-
fied distance tolerance, the points are discarded (blue, no circle). If the distance
is greater than the tolerance, then those points are kept (blue, red circle). In this
way the points are kept where the linear approximation cannot match the original
curve within the tolerance (red circles). The even points become the new grid on
the coarser resolution level and this process repeats until the coarsest resolution is
reached with only two or three points in the even grid. All the points that were
marked for keeping are kept along with the final even grid. This becomes the com-
pressed subset. For this application the data for reconstructing the original curve is
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discarded and only the reduced points are kept. This compression is done on the
theoretical model with uniform material damping for the phase damping ratio vs
frequency. By doing it on the model, instead of on the measured curve, this ensures
that we capture the controlling points where the model is sensitive and must be
matched to the measured data. The real wavenumbers corresponding to the kept
frequencies are kept and these form the elastic root guess.
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(a) Original damping ratio curve with full
resolution.
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Figure 6.9: Wavelet compression on TC3 damping ratio curve.

The success of this strategy will be discussed by considering two synthetic inver-
sion cases in the next section.

6.4 Synthetic Inversion

In this section two case studies are considered. It is shown that the damping inver-
sion technique can accurately estimate the damping profile for the synthetic cases.

6.4.1 TC3 Damping Inversion

It was chosen to perform a synthetic inversion for the TC3 profile, with a damping
profile that decreases with depth. Table 6.3 on page 125 summarizes the properties.

The genetic algorithm is the same as was used for the stiffness inversion and is
described in Chapter 5. The dynamic re-ranging is not possible in a simple way due
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Figure 6.10: Modal damping ratio curve before and after full wavelet compression
reduction.

to the linearisation assumption on computing the damping profiles. The inversion
settings that are used are summarized in table 6.5.

Table 6.5: Damping inversion settings for the synthetic TC3 profile.

Ngen NPop NDad NCon pFM
100 240 80 35 0.25

The rootset contains 20 points that were obtained using the wavelet compression
technique and corresponds exactly to the red circles shown in figure 6.10. The
inversion resulted in a good estimate of the true damping profile. Figure 6.11 shows
that the two modal damping ratio curves match very well. Figure 6.12 shows some
statistics related to the estimation population. The maximum, minimum and mean
values of the top 15% of the population are shown with the true and best profiles as
well. It can be seen that the estimation range for the top layer is very small while
it increases slightly for the lower layers, indicating a larger uncertainty or a lack
of convergence. It could still be beneficial to use a larger population size in order
to generate more consistency among the top population. Although the best profile
has a very small prediction error in all the layers, this is not true for all the top 5
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candidates and a different run may not always be so lucky with the best candidate.
Table 6.6 shows the numeric values for some of the results, both in the absolute
value of damping and in a percentage error to the reference profile.

Figure 6.11: Modal damping curve of estimated damping profile shows excellent
agreement with the synthetic damping ratio curve.

6.4.2 TC5 Damping Inversion

The next test case considers a new profile, test case 5 (TC5). The profile summary is
given in table 6.7. This is a typical dispersive soil profile where the soil stiffness in-
creases with depth. An unusual damping profile is assumed for the reference profile
to determine if the algorithm can also estimate a staggered damping profile

The wavelet compression scheme was used on the theoretical rootset to reduce
it to 20 points. Otherwise the same settings were used as for the previous damping
inversion and are shown in table 6.5.

This inversion had a clear issue, where one of the starting root points consistently
led to incorrectly computed modal damping ratio for one of the points in the curve.
This is seen in the discontinuous dip in the modal damping ratio curve, which is
shown in figure 6.13. The rest of the curve for the best profile matches very well,
but near this error the fit is poor. Since the incorrect value is lower than it should
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Figure 6.12: Summary of damping profile estimates for the inversion of the TC3
profile.

Table 6.6: Summary of 5 best damping inversion profiles for the synthetic TC3 inver-
sion.

Damping Profiles of Best 5 Candidates
True Top(1) Top(2) Top(3) Top(4) Top(5)

Layer 1 5.0 5.0 5.0 5.0 5.1 5.1
Layer 2 3.5 3.7 3.6 3.3 3.1 3.1
Layer 3 2.0 1.8 2.0 2.1 2.4 2.4

Halfspace 1.0 1.0 0.8 1.4 1.6 1.6

Percentage Error of Best 5 Candidates
True Top(1) Top(2) Top(3) Top(4) Top(5)

Layer 1 - -0.8 0.7 0.7 1.7 1.7
Layer 2 - 6.0 3.3 -4.8 -12.0 -12.0
Layer 3 - -8.6 0.4 6.3 18.7 18.7

Halfspace - -3.5 -21.6 42.0 63.8 63.8

be, it forces the theoretical estimate to have a higher damping in the lowest layers
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Table 6.7: Parameters for the TC5 profile with variable damping.

Layer Thickness [m] Cp [m] Cs [m] ζp ζs ρ[Mg/m3]
Water 5 1500 0 0 0 1.0

1 3 1500 100 0.05 0.05 1.8
2 3 1500 200 0.035 0.035 2.2
3 3 1500 100 0.02 0.02 1.8

Half-space ∞ 1500 400 0.01 0.01 2.3

Figure 6.13: Modal damping curve of estimated damping profile shows good agree-
ment with the synthetic damping ratio curve except for the single outlier point.

than it should.

Figure 6.14 shows that even with this error the first layer damping estimate is ex-
tremely close. The lower layer, especially the halfspace, has a very incorrect damping
value. This is due to the easily noticeable error.
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Figure 6.14: Summary of damping profile estimates for the inversion of the TC5
profile.

Table 6.8: TC5 Synthetic Damping Inversion Results.

Damping Profiles of Best 5 Candidates
True Top(1) Top(2) Top(3) Top(4) Top(5)

Layer 1 3.0 3.0 2.9 3.0 3.0 3.0
Layer 2 4.0 4.2 4.5 4.1 4.2 4.1
Layer 3 2.0 1.6 0.9 1.6 1.6 1.6

Halfspace 1.0 2.5 2.8 2.5 2.6 2.5

Percentage Error of Best 5 Candidates
True Top(1) Top(2) Top(3) Top(4) Top(5)

Layer 1 - -0.6 -2.5 -0.3 -0.9 0.4
Layer 2 - 3.6 12.1 3.0 4.3 2.4
Layer 3 - -18.8 -56.8 -18.4 -22.2 -19.0

Halfspace - 151.3 183.7 154.0 158.0 153.6
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6.5 Gjøa Damping Inversion

Some preliminary modal damping curves have been extracted from the f-k spectrum
using the half-bandwidth method. The f-k spectrum was made with FFT and discrete
Hankel transformation (DHT) for time and space respectively. There is a lot of noise
in the spectrum, which leads to a large scatter in the extracted datapoints. Hence,
the curves are taken as a smoothed version of the raw datapoints.

The removal of the windowing effect, as performed [3], via a frequency de-
pendent exponential window has not been performed yet. Therefore, the modal
damping curves are not directly comparable to the theoretical curves and may over-
estimate the damping. The modal damping values are very high, especially for the
low frequency content in the modes. This could be due to the signal to noise ratio
degrading since this occurs where the visibility of the modes are disappearing in the
spectrum due to a lack of energy at the lowest frequencies. However, theoretical
modal damping curves for soil profiles with approximately linear increase in stiff-
ness do exhibit the same type of shape with a large increase in the modal damping
ratio near the low frequency portion of the curve. Therefore, the curves are very
reasonable and match the shape we expect for the estimated Gjøa stiffness profile.
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Figure 6.15: Extracted modal damping curve for Gjøa fundamental mode .

The best estimate of the Gjøa stiffness profile, shown in Table 5.11, was used as
the soil profile for the damping inversion. Initially, the method is to compute the
modal damping curve from a uniform damping. The shape should already roughly
match the shape of the measured modal damping curve. Then, this theoretical modal
damping curve is compressed using the wavelet compression technique described in
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(a) Modal damping of first higher mode.
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(b) Modal damping of second higher mode.

Figure 6.16: Modal damping curves for higher Gjøa Modes.
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Figure 6.17: Extracted modal damping curves for Gjøa site.

section 6.3.2. The reduced set of points is then used for the damping inversion using
the genetic algorithm.

Unfortunately, it was not possible to give an estimate for the Gjøa damping pro-
file due to a failure of the root finding tool meaning that the complex roots could not
be reliably determined. As an example, the ‘found roots’ of the uniformly damped
profile are shown in Figure 6.18. These correspond to using the best and the mean
soil profiles from the final stiffness inversion, as shown in Table 5.11. The discontin-
uous behaviour is clearly not correct and these theoretical modal damping curves do
not match our expectations. The reason for the failure of the complex root finding
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(b) Fundamental mode damping ratio curve
for mean stiffness profile.

Figure 6.18: Erroneous modal damping curves for fundamental Gjøa mode

tool could not be located in the time available. It is possible it is located to having
a soil system with more layers, as all of the test cases, on which it worked without
problems, had a few number of layers.

6.6 IJsselmeer Damping Inversion

A damping estimation from the IJsselmeer data will be difficult. Only a small por-
tion of the fundamental mode is clean enough that it is plausible to extract the
modal damping ratio curve. The result of a preliminary extraction is shown in Fig-
ure 6.19. The exponential windowing should still be applied, so the damping ratio
shown here is likely to be somewhat overestimated. However, the scaling and win-
dowing decrease the width of the peaks in the spectrum and decrease the measured
damping, so these effects may counteract each other.

It is noticeable that the modal damping ratio is very high. It is considered likely
that the soil damping for this site is indeed quite high. However, it would be too early
to make any judgements about the amount of damping, since the material damping
(soil property) values are not directly related to the modal damping values. The
frequency range of the extracted modal damping curve may correspond to a location
of the theoretical damping ratio curve where the damping is significantly amplified
compared to material damping values. This can easily be seen by considering the
low frequency portion of the curves in Figure 6.17.
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A successful damping inversion should first be performed on the Gjøa data in
order to verify that the damping inversion method also works on real measured
data. Then an attempt can be made to estimate the damping from the IJsselmeer
site.
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Figure 6.19: IJsselmeer fundamental mode extracted modal damping ratio.
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Chapter 7

Conclusions

An analytical forward model was used to test the sensitivity of dispersion curves to
various factors including damping and model discretization. A modal surface wave in-
version technique was developed and used to estimate the soil stiffness profile from the
Westermeerwind offshore wind farm in the IJsselmeer and the Norwegian sector of the
North Sea at the Gjøa site. A damping inversion method is developed which performs
well in retrieving the soil damping profile from synthetic measurements. From these
results, the following is concluded:

Model studies

• The thickness of the layers in the theoretical soil model must be fine enough to
accurately capture the dispersion behaviour for the range of wavelengths that
are modelled. The thickness of the shallowest layers in the model should be at
least 2− 4 times smaller than the smallest wavelength which is considered.

• Damping has a predictable impact, causing a smooth shift in the modal root
locations. For damping up to 10%, the shift in the real part of the wavenumber
is a decrease of approximately 2%. This is considered to be acceptably small in
order to use a decoupled inversion approach. If damping inversion indicates
a high level of damping, an iteration or correction to the soil stiffness profile
could be performed in order to achieve more accurate results.

• The dispersion curves are highly sensitive to the shear wave velocity, especially
near the surface. This is beneficial for identification of the shear wave velocity.
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However, it is also fairly sensitive to the chosen layer thicknesses and an incor-
rect a-priori choice may be a confounding parameter for a stiffness inversion.
Therefore, it may be unwise to estimate the layer thicknesses from the CPT
measurements, since the surface wave array samples a much larger section of
the soil and the thicknesses which are estimated from the CPT may not be rep-
resentative of the layering in the entire array, especially if there is significant
lateral variability.

• Soil deposits which have a continuous variation of the shear stiffness with
depth exhibit smooth dispersion curves. Sharp bends or kinks in the dispersion
curves are indicative of a layered soil deposit with sharp transitions or jumps
in the shear wave velocity profile.

Stiffness inversion

• The objective function of the genetic algorithm is formulated based on the
determinant of the soil coefficient matrix. Since the determinant can vary by
many orders of magnitude, a normalization was developed for the determinant
which makes the values more comparable, and all within the same order of
magnitude. This allows a wide velocity range to be specified in the inversion.
This normalization is based on finding the characteristic relationship between
the value of the determinant and the phase velocity for every soil profile.

• The modal surface wave inversion method, which uses the genetic algorithm,
is shown to have excellent performance in predicting the stiffness profile from
synthetic measurements. Layer stripping is found to improve the estimate for
the synthetic inversions.

• Modal surface wave inversion results in a reasonable, valid prediction for data
collected from the Westermeerwind offshore wind farm in the IJsselmeer. This
validity of the estimated profile is shown with the predicted dispersion curves
and spectrum agreeing reasonably well with the measured roots and spectrum.
This stiffness profile agrees well with a published SCPT estimate for the same
site, although there is a different profile predicted for the first 7m. The inver-
sion is also subject to some non-unique character and the estimated profile has
a relatively large range within which it could lie. This could be indicative of
high lateral variability at the site or could be due to insufficient quality of the
measured data.

• The modal surface wave inversion method results in an excellent prediction
of the soil stiffness profile at the Gjøa site, with a high degree of certainty for
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the first 15m of soil. The validity of the estimated profile is shown by the very
good match between the fundamental mode of the measured and predicted
dispersion curves, although the higher modes do not directly correspond. The
stiffness profile predictions agree well with already published stiffness inver-
sions for the same site.

Damping inversion

• A method was developed which is successful at retrieving the soil damping pro-
file from a synthetic measurement. This method uses a modified half-power
bandwidth method to calculate the modal damping curve from the measured
response spectrum. An inversion problem is then solved to determine the
damping profile which matches this modal damping curve. The theoretical
modal damping curves of the trial candidates are computed by finding the
complex roots and using the phase damping ratio relationship.

• The damping inversion problem was found to have an high sensitivity to the
damping in the shallowest layer. This degraded the ability to predict the damp-
ing of the lower layers. In order to improve the sensitivity of the objective
function to the lower layers, a wavelet compression is performed on the modal
damping curve. This captures the shape of the modal damping curve efficiently
and retains the points where the highest change occurs. This also makes the
inversion algorithm significantly more efficient as only 5 − 10% of the points
in the original curve are retained, so the computation time is similarly reduced
to 5− 10% of the time it would otherwise take.

• Two synthetic damping inversions are performed. The first case led to an ac-
curate retrieval of the damping profile, especially for the shallowest layers.
The second case suffered from a visually obvious outlier in the theoretical
modal damping curve, which caused a systematic error in the estimation of
the damping in the lower layers. The damping in the upper layers was still
well estimated and the technique would probably also lead to a good estima-
tion if the outlier was removed.

• Modal damping curves were extracted for the Gjøa and IJsselmeer sites. How-
ever, a damping inversion could not be performed for either site because the
complex root finding tool was not robust enough to produce accurate theoret-
ical modal damping curves.
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Chapter 8

Recommendations

The stiffness inversion obtains good estimates of stiffness profiles from measured data
while the damping inversion method shown is very promising based on synthetic inver-
sions. However, both the stiffness and damping inversion processes can be improved.
Certainly, a more robust approach is needed for finding the complex dispersion curves,
in order to allow for the estimation of the damping from the Gjøa and IJsselmeer loca-
tions. This chapter summarizes some improvements which can be made.

Stiffness inversion

• Systematic testing of all the inversion algorithm settings should be performed.
There are a lot of factors and settings which go into the inversion and can have
an effect on the level of success achieved by the inversion. This includes the
probability of mutation, the number of generations run, the number of popula-
tion members, the number of contestants, dynamic re-ranging, layer stripping
and many other settings. In order to extract the most from the inversion and
ensure that the best settings are chosen, a series of systematic tests need to be
performed to assess the actual impact that each setting has.

• The best settings should be found for the normalization of the determinant.
Currently, the smoothing is performed over 5 samples (a small number) be-
cause testing found this to produce a normalized determinant with the most
similar magnitude throughout the f-k grid. However, having more variation in
the normalized determinant may actually also improve the ability of the objec-
tive function to distinguish between close and further away candidates. This
may lead to a better fit of the dispersion curves, especially for higher modes.
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Therefore, the settings for normalizing the determinant should be tested, es-
pecially for the number of samples over which the moving average is taken.
It is also possible that the inversion will perform better if the normalization
takes place at fixed radial locations, for example 25, 50, 75% of Rmax rather
than three random locations within the 25− 100% range.

• The classic misfit function discussed in section 3.3.1 should be implemented.
This could either be used as a comparison to the determinant misfit function
or in a combined hybrid approach in order to improve the fit of the higher
modes. Fitting the higher modes is required in order to perform a multi-modal
damping inversion.

• The uncertainty level, once is it reduced as far as possible, should be charac-
terized. It is difficult to characterize the uncertainty [10] because there are
many non-linear steps in the inversion process. For example, how is does the
subjective picking of the roots or the settings used for normalizing the deter-
minant affect the error? A bayesian inversion approach could be performed in
which uses some a priori assumptions about the errors to determine a poste-
rior distribution of errors. However, it may be difficult to make these a priori
assumptions about the error and as in the case of the IJsselmeer, it is not even
clear what the sources of error could be. Errors can be either aleatory (related
to uncertainty in measurements) or epistemic (related to modelling errors)
[10]. Suffice to say, accurately characterizing the uncertainty will be a sig-
nificant challenge but also provides a lot of value in terms of allowing these
measurements to be certified and used for design applications.

Damping inversion

The damping inversion method is promising and work should continue in order
to estimate the damping profiles for the Gjøa and IJsselmeer sites.

• The complex root finding strategy must be improved. The current root finding
tool is not robust enough to allow inversion of the damping. This could be
done in a couple ways:

– The current root finding strategy could be ‘fixed’ and kept. The linear
property of the modal damping curve, shown in Figure 6.5, can be incor-
porated to define a better estimated search region in the complex plane,
leading to a speed-up of the method. This is perhaps the most tempting
approach, especially if an easy ‘fix’ can be found. However, this is not rec-
ommended since it is eventually expected to lead to errors or simply an
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inefficient process. Instead the time should be taken to find a new, more
elegant method for identifying the roots of arbitrary soil systems.

– The equations in the soil system or coefficient matrix could be linearized
around the appropriate point. These linearized equations can be solved
more easily to identify the approximate complex root locations which are
valid for small values of damping [14].

– The method proposed by [14] which is based on the Cauchy residue the-
orem of complex analysis could be implemented. This method is valid for
arbitrary (including very high) values of the soil damping. Hence, in soils
with large amounts of damping this will provide more accuracy than the
linearization approach.

Of these three options, it is recommended to uses the residue theorem, if the
mathematics is manageable. Otherwise, the linearization approach should be
used.

• Sensitivity studies should be performed to test the effect of various disturbing
factors on the inversion results. For example, what is the effect of an iden-
tification error in the stiffness profile and how does this affect the estimated
damping? These are important questions to answer if the process is to be used
for estimating real measurements which are subject to modelling and measure-
ment errors.

• Additional processing could be performed on the Gjøa data in order to remove
the noise in the f-k spectrum. This would improve the quality of the extracted
modal damping curves and give more certainty in the inversion process. Expo-
nential windowing should be applied in order to reduce or remove the effect
of the apparent increase in damping due to the spectral leakage caused by the
rectangular window.

• Once the damping inversion process works reliably for the Gjøa site fundamen-
tal mode, the approach should be extended to perform inversion for the higher
modes. The Gjøa dataset is remarkably good with many modes clearly visible
in the response spectrum. Having this data affords the opportunity to identify
the actual frequency dependency of the damping. To the knowledge of the
author, the frequency dependency of damping has never been identified from
surface wave measurements, so this would offer a unique and very interesting
contribution to research if it could be done.
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• The damping profile should be estimated for the IJsselmeer site. This will be
tricky due to the lower quality of the data as compared with the Gjøa data,
so this should only be attempted if the Gjøa damping inversions are consid-
ered successful. It may be required to try other damping inversion methods
in order to successfully estimate the damping profile. It may also be possible
that a successful inversion is not possible due to the data quality and that new
measurements should be taken with a more appropriate experimental setup.

• As with the stiffness inversion, the uncertainty or error associated with the
damping profile should be characterized. Since an inversion has not been suc-
cessfully completed on real measurements, it is too early to discuss the meth-
ods for characterizing the uncertainty. However, it is again not expected to be
a trivial task, although, it is certainly important for the long term adoption of
this method for industry use.
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Appendix A

Complex Stiffness and
Damping Ratio

Single Degree of Freedom

We can derive a damping ratio for a soil system with an analogy to a single degree
of freedom mass spring damper system. In a single degree of freedom we have the
well known governing equation

mü+ cu̇+ ku = F (A.1)

If a harmonic load is considered, then it can be shown that such a system has a
harmonic response which is out of phase with the input but occurs with the same
frequency. The assumed forms for the force and displacement are then given as:

F = Foe
iωt u = uoe

iωt−φ u̇ = uoiωe
iωt−φ ü = −uoω2eiωt−φ (A.2)

The work done per cycle is the closed loop integral of the force over the cycle.

∆W =

∮
c

Fdu =

∫ T

0

F
du

dt
dt =

∫ T

0

(mü+ cu̇+ ku)u̇dt (A.3)

The displacement and its derivatives in A.2 are substituted into A.3.

∆W =

∫ T

o

((k − ω2m) + iωc)(uoe
iωt−φ)(iωuoe

iωt−φ)dt (A.4)
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The mass and stiffness terms integrate to zero, which is expected as they do not
remove energy from the system. This is shown by considering that the integral of
two orthogonal harmonics over one cycle is zero.∮

sin(ωt)cos(ωt)dt = 0 and hence also
∮
eiωtieiωt = 0 (A.5)

Thus

∆W = −ω2cu2
o

∫ T

0

eiωt−φeiωt−φdt (A.6)

The integral of a squared harmonic over its period is known to be∫ T

0

cos2(ωt)dt =

∫ T

0

e2(iωt)dt =
T

2
(A.7)

Hence, equation A.6 becomes A.8 which is the work energy lost due to damping
in one cycle.

∆W = −ω2cu2
o

T

2
= −πcu2

oω (A.8)

The maximum energy stored in one cycle is given by:

W =
1

2
ku2

o (A.9)

∆W

W
=
πcu2

oω
1
2ku

2
o

=
4πω2m

k

c

2ωm
= 4πζ = 4πD (A.10)

Hence, we can see that the damping ratio, ζ, for a single degree of freedom
system is given by:

ζ =
1

4π

∆W

W
(A.11)

Soil system

The soil system damping ratio is derived in the same way, using the knowledge of
equation A.11. The derivation below shows hysteretic damping using the complex
stiffness principle where the loss factor η defines the ratio of the imaginary stiffness
(ie damping) to the real stiffness and the shear strain is given by γ = γoe

iωt−φ.

τ = τoe
iωt = µ∗γoe

iωt−φ where µ∗ = µ+ iµ = µ(1 + iη) (A.12)
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The work extracted per cycle

∆W =

∮
c

τdu =

∫ T

0

τ u̇dt =

∫ T

0

µ(1 + iη)(γoe
iωt−φ)(iωγoe

iωt−φ)

= −µηωγ2
o

∫ T

0

e2(iωt)dt = −µηωγ2
o

T

2
= −µηπγ2

o

(A.13)

The maximum energy stored per cycle

W =
1

2
µγ2

o (A.14)

The damping ratio

D = ζ =
1

4π

∆W

W
=
ηπµγ2

o

4π 1
2

µγ2
o =

η

2
(A.15)

Hence, we see that the loss factor (or complex stiffness ratio) is directly related
to the soil damping ratio.

D = ζ =
η

2
(A.16)
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Appendix B

Modified Half Power
Bandwidth Derivation

This Appendix shows the derivation of the half-power bandwidth method, including the
modification for the amplitude ratio at which the spectral width is measured. It is
also derived for hysteretic damping. The symbolic computations were performed using
Maple.

The half-power bandwidth or Q-factor method is a method for determining the
damping ratio of a dynamic system. The damping ratio of the system is directly
related to the width of the energy spectrum and is measured at half the height of the
peak or at 1√

2
for the amplitude spectra since energy is proportional to the square of

the amplitude.

First, the half power bandwidth method will be derived for a single degree of
freedom mass-spring-damper system with viscous damping. Then, the modification
will be performed for the relationship not at the half-power height. Finally, the
derivation will be extended to use hysteretic damping instead of viscous damping.
Although the shape of the theoretical response spectra are different, it is shown that
viscous and hysteretic damping have the same Q-factor formulation.

Half-power bandwidth

A single degree of freedom mass-spring-damper system with viscous damping
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has governing equation given by

mẍ+ cẋ+ kx = F (B.1)

The amplitude response function is squared to give the power spectrum function

E =
F 2

(−Ω2 + ω2
o)2 + 4Ω2ω2

oζ
2

(B.2)

This can be differentiated, in order to find the peak

dE

dΩ
= −F

2(−4(−Ω2 + ω2
o)Ω + 8Ωω2

oζ
2)

((−Ω2 + ω2
o)2 + 4Ω2ω2

oζ
2)2

(B.3)

We find the value of the resonant frequency solving where B.3 is equal to zero
and take the positive root:

Ω =
√
−2ζ2 + 1 ωo = ωres (B.4)

The peak energy is then

Emax =
F 2

(−(−2ζ2 + 1)ω2
o + ω2

o)2 + (4(−2ζ2 + 1))ω4
oζ

2
(B.5)

We then solve the Ω at which E = 1
2Emax and get two positive roots

Ω =

√
−2ζ2 + 1− 2

√
−ζ4 + ζ2 ωo ,

√
−2ζ2 + 1 + 2

√
−ζ4 + ζ2 ωo (B.6)

Then we can compute the Q-factor

Q =
ωres
∆ω

=

√
−2ζ2 + 1√

−2ζ2 + 1 + 2
√
−ζ4 + ζ2 −

√
−2ζ2 + 1− 2

√
−ζ4 + ζ2

(B.7)

We can then solve the relationship between the damping ratio and the Q-factor.
We ensure that the correct root is chosen by taking the root which is positive and
has Q decreasing as ζ increases.

ζ =

√√
−Q4+4Q2+4−2√
−Q4+4Q2+4√

2
(B.8)
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If the Q-factor is small then using a series expansion around Q = 0 we can
approximate this as

ζ =
1

2Q
=

∆ω

2ω
(B.9)

Amplitude γ

The derivation is very similar, except we consider that the ratio of the amplitude
where the width is measured to the height of the peak is left as an undetermined
parameter γ so that an analytic expression can be derived for the relation of the
damping ratio and the width for an arbitrary height. We derive it with the energy
spectrum using γE but should note that we may prefer to evaluate the damping from
the amplitude response spectra and use γA.

γE =
E

Emax
and γA =

A

Amax
such that γE = γ2

A

We recompute B.6 instead substituting in E = γEEmax and we get

Ω =

√
γE(−2γEζ2 + 2

√
γ2
Eζ

4 − γEζ4 − γ2
Eζ

2 + γEζ2 + γE)

γE
ωo ,√

−γE(2γEζ2 + 2
√
γ2
Eζ

4 − γEζ4 − γ2
Eζ

2 + γEζ2 − γE)

γE
ωo

(B.10)

We calculate the Q-factor just as we did in equation B.7, although now the Q-
factor has a different meaning since it needs the accompanying amplitude correc-
tion. Solving for ζ results in an extremely long expression which is not shown here.
However, the series simplification becomes:

D = ζ =

√
γE

2Q
√
−γE + 1

=
1

2Q

1√
γ−1
E − 1

=
1

2Q

1√
γ−2
A − 1

(B.11)

Hysteretic

If we instead represent the damping of the system as a complex stiffness or hys-
teretic damping then the governing equation changes to

mẍ+ k(1 + iη)x = F (B.12)
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The power spectrum is then

E =
F 2

(−Ω2 + ω2
o)2 + 4ω2

oζ
2

(B.13)

This can be differentiated, in order to find the peak

dE

dΩ
= − 4F 2(−Ω2 + ω2

o)Ω

((−Ω2 + ω2
o)2 + 4ω2

oζ
2)2

(B.14)

We solve where B.14 is equal to zero and find that the resonant frequency is the
natural frequency. This should not be that surprising since the damping is frequency
independent.

Ω = ωo = ωres (B.15)

The peak energy is then

Emax =
1

4

F 2

ω4
oζ

(B.16)

We then solve the Ω at which the E = γEEmax and get two roots

Ω =

√
γE(γE + 2

√
−γ2

Eζ
2 + γEζ2)

γE
ωo ,√

−γE(−γE + 2
√
−γ2

Eζ
2 + γEζ2)

γE
ωo

(B.17)

Then we can compute the Q-factor

Q =
ωres
∆ω

=

√
−γE(−γE + 2

√
−γ2

Eζ
2 + γEζ2)

γE
−

√
γE(γE + 2

√
−γ2

Eζ
2 + γEζ2)

γE
(B.18)

We then solve the relationship between the damping ratio and the Q-factor and
we can use a series expansion to approximate it as

D = ζ =

√
γE

2Q
√
−γE + 1

=
1

2Q

1√
γ−1
E − 1

=
1

2Q

1√
γ−2
A − 1

(B.19)

CONFIDENTIAL



157

Hence, we see that although the formulations are different for hysteretic and vis-
cous damping, the amplitude correction terms for the Q-factor relationship remains
the same for both cases.
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Appendix C

Hankel Transformations

The derivation given in Chapter 2 is continued here in order to show the detailed
steps of the Hankel Transformation of the displacement, stress and the governing
equations.

Throughout this appendix, it is assumed that a few basic rules for integrating and
differentiating Bessel functions are known. dx denotes a differentiation operation
with respect to x, full written out as d()

dx . This is similarly related to the partial
differentiation with respect to x, which is ∂x = ∂()

∂x . The differentiation rules for
Bessel functions are [28]:

dx(xnJn(x)) = xnJn−1(x)

dx(x−nJn(x)) = −x−nJn+1(x)

Note also, that since the Bessel function in the integrand of the Hankel transfor-
mation uses krr we must also apply the chain rule:

∂f

∂r
=
∂f

∂x

∂x

∂r
where x = krr so

∂x

∂r
= kr

Hence, it logically follows

dr(r
nJn(krr)) = krr

nJn−1(krr)

dr(r
−nJn(krr)) = −krr−nJn+1(krr)
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To be specific and absolutely clear, we can show that the first expression is used
for transforming from J1 to J0 while the second is used for transforming from J0 to
J1.

dr(rJn(krr)) = krrJ0(krr)

dr(r
0Jn(krr)) = dr(Jn(krr)) = −krJ1(krr)

C.1 Displacement

The displacement equation 2.53 is shown below.uruθ
uz

 =

 ∂rφ− ∂zψ
0

∂zφ+ 1
r∂r(rψ)

 (C.1)

Since there is no time dependence in the displacement equations the Fourier trans-
formation does not add any additional terms

(
ũr
ũz

)
=

∫ ∞
0

(
∂rφ− ∂zψ

∂zφ+ 1
r∂r(rψ)

)
ei(ωt−k1x1)dt =

(
∂rφ̃− ∂zψ̃

∂zφ̃+ 1
r∂r(rψ̃)

)
(C.2)

Notice that the vertical displacement contains a 1
r term while the radial displace-

ment does not. In order to get the simplest form of the final equations ur will be
transformed with first order Hankel transformation while uz will be transformed
with a zero order Hankel transformation.

Radial Displacement

ũH1
r =

∫ ∞
0

∂rφ̃rJ1(rkr)dr −
∫ ∞

0

∂zψ̃rJ1(rkr)dr (C.3)

The integral contains two terms. The first must be integrated by parts using the
chain rule while the second can be directly integrated.∫ ∞

0

∂zψ̃rJ1(rkr)dr = ∂zψ̃
H1 (C.4)
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∫ ∞
0

(∂rφ̃)rJ1(rkr)dr = φ̃rJ1(krr)
∣∣∣∞
0
−
∫ ∞

0

φ̃(krrJ0(krr)dr) (C.5)

The first term is zero at r = 0 and r =∞. Hence equation C.5 becomes

EqC.5 = −krφ̃H0

Recombining this gives

ũH1
r = −krφ̃H0 − ∂zψ̃H1 (C.6)

Vertical Displacement

The vertical displacement can be similarly transformed, but with the zero order
Hankel transform.

ũH0
z = ∂z

∫ ∞
0

φ̃rJ0(rkr)dr +

∫ ∞
0

1

r
∂r(rψ̃)rJ0(rkr)dr (C.7)

The first term is directly integrable, while the second must be integrated by parts.

ũH1
z = ∂zφ̃

H0 + rψ̃J0(krr)
∣∣∣∞
0
−
∫ ∞

0

rψ̃(−krJ1(krr))dr

= ∂zφ̃
H0 + krψ̃

H1

(C.8)

C.2 Stress

The stresses from equation 2.57 are shown below.

σzz = (λ+ 2µ)∂z(∂zφ+
1

r
∂r(rψ)) +

λ

r
∂r(r(∂rφ− ∂zψ))

τzr = µ∂z(∂rφ− ∂zψ) + ∂z(∂zφ+
1

r
∂r(rψ))

(C.9)

The compressive stress is transformed using the zero order Hankel transforma-
tion while the shear stress is transformed using the first order Hankel transformation.

Compressive Stress
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The zero order Hankel transformation of the compressive stress is expanded into
four separate terms:

σ̃H0
zz =(λ+ 2µ)∂2

z

∫ ∞
0

φ̃rJ0(rkr)dr + (λ+ 2µ)

∫ ∞
0

1

r
∂r(rψ̃)rJ0(rkr)dr

+ λ

∫ ∞
0

1

r
∂r(r∂rφ̃)rJ0(rkr)dr − λ∂z

∫ ∞
0

1

r
∂r(rψ̃)rJ0(rkr)dr

(C.10)

The first term is a simple integral, following the Hankel transformation definition.
The integration of the second term and fourth term are the same integral and have
already been shown with equations C.8 and C.9. The third term must be integrated
by parts twice.

∫ ∞
0

1

r
∂r(r∂rφ̃)rJ0(rkr)dr = r∂rφ̃J1(krr)φ

∣∣∣∞
0
−
∫ ∞

0

r∂rφ̃(−krJ1(kr))dr

= kr

∫ ∞
0

∂rφ̃rJ0(rkr)dr by parts again

= krrJ1(krr)φ̃
∣∣∣∞
0
− kr

∫ ∞
0

φ̃krrJ0(krr)dr

= −k2
r φ̃

H0

(C.11)

Both of the terms which are evaluated at zero and infinity are zero and are dis-
carded. Therefore, combining the four terms, the compressive stress equation is:

σ̃H0
zz = (λ+ 2µ)(∂2

z φ̃
H0 + kr∂zψ̃

H1)− λ(kr∂zψ̃
H1 + k2

r φ̃
H0) (C.12)

This is the compressive stress equation in the wavenumber domain. In order to
show it in a form more consistent with literature we assume the solution

φ̃H0 = Ae−qpx3 +Beqpx3 where qp =
√
k2
r − k2

p > 0 (C.13)

then

∂2
z φ̃

H0 = qp2φ̃H0 = (k2
r − k2

p)φ̃H0 (C.14)

σ̃H0
zz = (λ+ 2µ)((k2

r − k2
p)φ̃H0 + kr∂zψ̃

H1)− λ(kr∂zψ̃
H1 + k2

r φ̃
H0)

= −(λ+ 2µ)k2
pφ̃

H0 + 2µ(k2
r φ̃

H0 + kr∂zψ̃
H1)

(C.15)

CONFIDENTIAL



C.2. STRESS 163

Also, recalling Cp2 = (λ+2µ)
ρ , kp = ω

Cp and Cs2 = µ
ρ

σ̃H0
zz = −ρω2φ̃H0 + 2µ(k2

r φ̃
H0 + kr∂zψ̃

H1) ∗
= µ(−k2

s φ̃
H0 + 2k2

r φ̃
H0 + 2kr∂zψ̃

H1)

= µ((2k2
r − k2

s)φ̃H0 + 2kr∂zψ̃
H1)

(C.16)

Note also that we can manipulate the isotropic stress to only be a function of the
shear modulus µ. This seems strange but is valid as long as we don’t erroneously use
this for an acoustic layer where the shear modulus is zero. Instead we should use
the equation C.16 line marked by an asterix.

σ̃H0
zz = −ρω2φ̃H0 (acoustic) (C.17)

Shear Stress

The shear stress equations are transformed by the first order Hankel transforma-
tion.

τ̃zr =µ
(
∂z

∫ ∞
0

(∂rφ̃)rJ0(rkr)dr − ∂2
z

∫ ∞
0

(ψ̃)rJ0(rkr)dr

+ ∂z

∫ ∞
0

(∂rφ̃)rJ0(rkr)dr +

∫ ∞
0

∂r(
1

r
∂r(rψ̃))rJ0(rkr)dr

) (C.18)

The first and third integrals are the same, and have been previously shown in
equation C.11. The second term is directly integrable while the final term must be
integrated by parts.∫ ∞

0

∂r(
1

r
∂r(rψ̃))rJ0(rkr)dr = rJ1

1

r
∂r(rψ̃))

∣∣∣∞
0
−
∫ ∞

0

1

r
∂r(rψ̃))krrJ0(rkr)dr

= −kr
∫ ∞

0

1

r
∂r(rψ̃))rJ0(rkr)dr

(C.19)

Now the integral in equation C.19 is the same as the integral in equation C.7 and
we can combine all the known integrals into:

τ̃zr = µ
(
− 2kr∂zφ̃

H0 − ∂2
z ψ̃

H1 − k2
r ψ̃

H1

)
= −µ

(
2kr∂zφ̃

H0 + (2k2
r − k2

s)ψ̃H1

) (C.20)
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C.3 Governing Equations

The governing wave equation given in equations 2.62 are shown here. This must also
be transformed. The first equation will be transformed with the zero order Hankel
transform while the second equation will be transformed with the first order Hankel
transform. Both have already been transformed from time to frequency domain with
the Fourier transformation.

−ω
2

C2
p

φ̃ = ∂2
r φ̃+

1

r
∂rφ̃+ ∂2

z φ̃

−ω
2

C2
s

ψ̃ = ∂2
r ψ̃ + ∂2

z ψ̃ +
1

r
∂rψ̃ −

ψ̃

r2

(C.21)

∫ ∞
0

(−k2
pφ̃)rJ0(rkr)dr =

∫ ∞
0

(∂2
r φ̃)rJ0(rkr)dr +

∫ ∞
0

(
1

r
∂rφ̃)rJ0(rkr)dr

+

∫ ∞
0

(∂2
z φ̃)rJ0(rkr)dr

(C.22)

Two terms are combined by recognizing the equivalent forms which can be
proven using the chain rule

1

r
∂rφ̃+ ∂2

r φ̃ =
1

r
∂r(r∂rφ̃) (C.23)

The resulting integrand has already been computed by parts in equation C.8. The
first and last term in equation C.22 can be computed directly, which together results
in:

−k2
pφ̃

H0 = ∂2
z φ̃

H0 − k2
r φ̃

H0 (C.24)

Rearranging we notices this wave equation has the same form as the 2D derived
wave equation

∂2
z φ̃

H0 − (k2
r − k2

p)φ̃H0 = 0

∂2
z φ̃

H0 − q2
pφ̃

H0 = 0 (C.25)

Since the derivations are a bit repetitive, or simply because the author cannot
demonstrate the last one without further struggling, then it will just be given that
when first order Hankel transformation is used the final equation becomes:
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∂2
z ψ̃

H1 − (k2
r − k2

s)ψ̃H1 = 0

∂2
z ψ̃

H1 − q2
s ψ̃

H1 = 0 (C.26)
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