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Background 
 
This thesis is intended to construct a framework for identifying bunkering operations, and utilise statistical 
analysis to establish an index to quantify such operations. Bunker is a generic term given to any fuel used 
to power ships, and a bunker operation is a process where a vessel is supplied with fuel for operational 
purpose. The bunker industry encompasses numerous suppliers and buyers, and is characterised by large 
volumes of fuel transitioning rapidly between owners. Traditionally, this industry has been subject to 
concealment and little public insight. This lack of transparency prevents regulation and integrity of the 
bunker industry. 
 
Objective 
 
The thesis is divided into two objectives; create a framework for identifying bunkering operations and 
establish an index to quantify bunkering operations. Embedded in the objectives is the sub-objective of 
conducting statistical analysis of bunkering operations. 
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The candidate shall/is recommended to cover the following tasks in the project thesis: 
 

a. Describe the problem and why it is of interest. 
b. Review state-of-the-art within the topic, focusing on previous studies on Automatic Identification 

Systems (AIS) data.  
c. Create a framework for identifying bunkering operations. 
d. Analyse identified bunkering operations by applying statistical methods.  
e. Develop a quantifying index. 
f. Apply the index on a selection of operations to verify its purpose.  
g. Evaluate results and discuss methodology and shortcomings.  

 
General  
In the thesis the candidate shall present his personal contribution to the resolution of a problem within the 
scope of the thesis work. 
 
Theories and conclusions should be based on a relevant methodological foundation that through 
mathematical derivations and/or logical reasoning identify the various steps in the deduction.  
 
The candidate should utilize the existing possibilities for obtaining relevant literature. 
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Summary

This thesis is a result of utilising Automatic Identification System data to construct a frame-

work for identifying bunkering operations and conducting a statistical analysis of identi-

fied operations. The two objectives of the project are to identify bunkering operations and

derive a benchmark that can quantify operation performance. Three relevant fields are

studied to gain fundamental knowledge prior to attempting to achieve the objectives. 1)

A brief study of the bunker supplier industry, 2) a literature review, and 3) a study of the

basics of AIS data.

Knowledge on the bunker industry is to a great extent obtained from industry experts. Ef-

fects from lack of transparency are described - focusing on how this prevents monitoring

and evaluation of the bunker process. Furthermore, reasons for increasing awareness are

recognised. Literature was reviewed in previous work and is divided in two parts. First,

literature is categorised according to topics and methods. Second, the most relevant lit-

erature is further assessed, where studies related to topics Risk assessment and AIS data

handling are considered the most relevant. Two additional studies regarding mapping of

traffic patterns and benchmarking were appraised at later stages. The conclusion of the

literature study is that no studies explore the use of AIS data to evaluate bunkering opera-

tions, thus forming an unexplored academic field.

Three sub-problems attempt to achieve the objectives of the thesis. The first objective is

covered by problem 1 in which a framework for identifying bunkering operations is con-

structed - resulting in a matching algorithm that matches ships with the barge that most

likely performed a bunkering operation. Inputs are AIS data, measured fuel quality data

from bunkerings and a list of officially approved bunker barges, restricted to Singapore.

Output from the algorithm is bunkering operations that can be verified with high likeli-

hood based on a certainty measure composed by proximity and alignment between ship

and barge.

The second objective consists of problems 2 and 3. In problem 2, statistical analysis of

identified bunkering operations is conducted. Aggregation and visualisation of data are

done in the programming language Python, yielding numerous plots. This has mainly

been restricted to scrutinising distributions of time spent at different stages during oper-

ations. In problem 3, results from the statistical analysis are utilised to establish an index

that quantifies each bunkering operation with time spent before and after the bunkering

operation as decisive parameters.

In conclusion, the algorithm is a "proof of concept" which proves that AIS data can be

utilised to identify ship-to-ship operations. The index is a guide to evaluate operations,
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though insufficient to quantify performance by suppliers. Recommendations for further

work are that a Geohashed AIS table should be implemented in the matching algorithm

to filter nearby vessels more efficiently, and the algorithm should be expanded to identify

perpendicular operations. Parallel data with known fuel quality from bunkering opera-

tions should be compared with results from the proposed index. Hence, index parameters

can be optimised, and validity be verified. Lastly, methods used in this thesis can be ex-

panded to other types of ship-to-ship operations.
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Sammendrag

Denne oppgaven er et resultat av å bruke Automatic Identification System data til å lage et

rammeverk for å identifisere bunkringsoperasjoner og utføre statistisk analyse av identifis-

erte operasjoner. De to målsettingene i prosjektet er å identifisere bunkringsoperasjoner,

og utlede et mål for å karakterisere gjennomføringen av bunkringer. Tre relevante felt er

studert for å få grunnleggende kunnskap før målene er forsøkt nådd; studie av 1) bunker-

leverandørbransjen, 2) litteratur, og 3) grunnleggende kunnskap om AIS data.

Kunnskap om bunkringsindustrien er hovedsakelig hentet fra industrieksperter. Effek-

ter av manglende innsyn i bransjen er beskrevet – med fokus på hvordan dette forhin-

drer overvåkning og evaluering av bunkringsprosessen. Interessen for å øke innsikten in

bunkeringsbransjen er også utdypet. Litteratur ble gjennomgått i tidligere arbeid og er

delt i to deler. Første del omfatter å kategorisere litteraturen etter omhandlende emner og

metoder. I andre del er den mest relevante litteraturen nøyere gjennomgått, hvor studier

relatert til Risikoanalyse and Behandling av AIS data er vurdert som de viktigste. I tillegg

ble to studier vedrørende kartlegging av trafikkmønstre og måling av kvalitet gjennomgått i

senere stadier. Konklusjonen er at ingen studier undersøker bruken av AIS data for å eval-

uere bunkringsoperasjoner eller andre skip-til-skip operasjoner, som medfører at denne

oppgaven danner et nytt fagfelt.

Tre delproblemer forsøker å oppnå oppgavens målsettinger. Det første målet dekkes av

problem 1 der et rammeverk for å identifisere bunkringsoperasjoner er konstruert – hvor

resultatet er en matching-algoritme som matcher skip med det bunkringsskipet som mest

sannsynlig har levert drivstoff til skipet. Input til algoritmen er AIS data, målt bunkerk-

valitetsdata fra bunkringer og en liste over offisielt godkjente bunkerskip, hvor dataen er

begrenset til Singapore. Output fra algoritmen er bunkringsoperasjoner som kan verifis-

eres med høy sannsynlighet, basert på et mål estimert fra avstand og vinkel mellom skip

og bunkringsskip.

Det andre målet dekkes av problem 2 og 3. I problem 2 utføres en statistisk analyse av

identifiserte bunkringsoperasjoner. Gruppering og visualisering av data gjøres i program-

meringsspråket Python og resulterer i en mengde figurer. Analysen har i hovedsak vært

begrenset til å undersøke fordeling av tid brukt på ulike stadier under operasjonen. I prob-

lem 3 blir resultater fra statistisk analyse benyttet for å etablere en indeks som kvantifiserer

(gir en karakter til) hver bunkringsoperasjon, med tid brukt før og etter operasjonen som

avgjørende parametere.

Oppgaven konkluderer med at algoritmen et «bevis av konsept» som viser at AIS data

kan benyttes for å identifisere skip-til-skip operasjoner. Indeksen er en veiledning for
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å evaluere operasjoner, men er ikke omfattende nok til å kvantifisere troverdigheten til

leverandører. Anbefalinger for videre arbeid er at en Geohashed AIS-datatabell imple-

menteres i matching-algoritmen for å filtrere nærliggende fartøy mer effektivt, og algo-

ritmen burde utvides til å identifisere perpendikulære operasjoner. Parallelle data med

kjent drivstoffkvalitet fra operasjoner burde sammenlignes med resultater fra den fores-

låtte indeksen, for å optimalisere indeksparametere og bekrefte at indeksen gir resultater

som kan brukes i beslutningstaking. Avslutningsvis kan metoder brukt i denne oppgaven

utvides til andre skip-til-skip operasjoner.
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Chapter 1

Introduction

1.1 Background

In commercial shipping, bunker expenditure can constitute a large fraction of operational

costs (OPEC). Bunker is a generic term given to any fuel used to power ships, and a bunker

operation is a process where a vessel is supplied with fuel for operational purpose. The

bunker industry encompasses numerous suppliers and buyers, and is characterised by

large volumes of fuel transitioning rapidly between owners. Traditionally, this industry has

been subject to concealment and little public insight. This lack of transparency prevents

regulation and integrity of the bunker industry.

In general, fuel is delivered in volume but paid per mass. The conversion is done based on

the fuel density. The majority of delivered fuel is Heavy Fuel Oil (HFO) with a density rang-

ing from approximately 800 to 1010 kg/m3 is delivered to vessels. Density is stated by the

supplier, and the ship owner/charterer can take fuel samples and have them analysed in

a lab for true density. Research suggests a bias towards overstatement of the density. Sys-

tematic over-reporting is well known within the shipping industry and is assumed to have

been practised since the late 1980s (BunkerWorld (2018)). Over-reporting of bunker den-

sity leads to reduction in delivered bunker, meaning that the supplier receives payment

for a greater amount than supplied. This is offered limited attention from shipping com-

panies and charterers as the fraudulent amount is assumed to be negligible. Nonetheless,

the aggregated amount of lost bunker is of significant value (DNV Research & Innovation

(2012)), hence the reduction in OPEC is potentially high. This highlights the need for in-

creasing awareness and knowledge about the bunker industry.

Automatic Identification System (AIS) was originally developed as a tool to avoid vessel

collision. It has become increasingly prevalent as a multipurpose tool with a wide poten-

1
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tial of use. AIS data contains ship movement and technical data transmitted at irregular

intervals, and is an aid for vessel monitoring.

The motivation for this thesis is to investigate the possibility of using AIS data to identify

bunkering operations and characterise the integrity of bunker suppliers. With the ability

to track vessel movement it may be possible to identify bunker operations, and a statisti-

cal analysis may identify normal behaviour during bunker operations and any deviations.

This may launch a new application area for AIS data. However, it is worth emphasising that

to the knowledge of the author, no attempt has been made to utilise AIS for this purpose,

and it is not given that the objectives of this thesis can be reached.

Problem Formulation

This is essentially a two-part study which can be divided into the following problems.

1. Identifying potential bunker operations:

This problem encompasses identification of bunkering operations based on AIS data, fuel

quality data from Veritas Petroleum Services (VPS) and a list of bunker barges which are

officially approved by the port authority of Singapore. Identification shall be accomplished

through a matching algorithm.

2. Rating of bunker fuel delivery times:

The primary goal of this problem is to derive a benchmark that quantifies bunker delivery

time with respect to anchoring time, i.e. characterising delivery times within the interval

of [0,1]. Based on this measure, ratings can be given for single bunker barges, barge com-

panies with several barges or entire ports. This would constitute a measure of credibility

of bunker suppliers.

What Remains to be Done

The literature review showed that the number of AIS-related studies has expanded rapidly

over the last years, although AIS data is mostly utilised on a low-resolution level, e.g. on

movement patterns from one position to another. Available research on a higher reso-

lution level is limited, which leaves the author to confirm or reject that this data can be

utilised in analysis of ship-to-ship operations.

Impeded transparency in the bunker business and lack of data prevent investigation of this

industry. Research specifically focusing on deviating bunker operations is basically non-

existent, in this respect this thesis attempts to explore a new academic branch. Due to lack



CHAPTER 1. INTRODUCTION 3

of research and restricted time, this thesis merely scratches the surface of possibilities of

could be further developed.

1.2 Previous Research

As of today, no studies are conducted to investigate bunkering operations nor ship-to-ship

operations through AIS. However, numerous studies have been published on use of AIS

data. The literature review has therefore been devoted to these studies, especially those

regarding risk assessments, providing a basis for further utilisation of AIS data. Bole et al.

(2014) has been studied to get a general understanding of the regulation around and tech-

nical aspects of AIS data.

AIS data is sampled at varying time intervals, and data gaps may be present due to sev-

eral reasons. Shelmerdine (2015) proposes to close these gaps by linear interpolation.

Goldsworthy (2017) has also investigated the accuracy of interpolating, and based on his

results Dijkstra’s algorithm should be used to improve the accuracy. However, this is pro-

posed to avoid generating points on land, and the AIS data under survey in this thesis will

be enclosed to small areas with no risk of interpolating values crossing land, hence linear

interpolation will be sufficient for identification of bunkering operations.

Ferrà et al. (2018) propose a method for mapping fishing activity within a defined geo-

graphical scope based on filtering data and applying K-means cluster analysis. Combin-

ing a similar approach with results obtained by Wu and Aarsnes (2017) will contribute

to constructing the framework for a matching algorithm identifying bunkerings. Cluster

analysis will not be implemented in the framework for identifying bunkering operations,

but filtering the data by operational restrictions and other parameters is considered ben-

eficial.

Identified operations will be subject to statistical analysis. Kernel Density Estimation as

suggested by Ristic et al. (2008) will be implemented by Python functions. Using Grid-

Based Analysis (Altan and Otay (2017)) is deemed inexpedient for this thesis. Furthermore,

results from the analysis will contribute to establishing a quantifying index. Pan et al.

(2012) and Qu et al. (2011) have proposed two methods for quantifying risk in maritime

shipping areas. This was done by incorporating parameters such as speed and rate of

turn into an index that can indicate relative dangerous shipping areas, which can be of

inspiration in this thesis.

Benchmarking methodology as presented by Anfindsen et al. (2012) is not transferable to

this thesis, as they base their approach on measured parameters obtained from supplied
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fuel. It is however an important contributor of knowledge regarding bunkering business

practises, as well as providing insight to alleged bunkering malpractice. In addition, im-

portant contributors to knowledge regarding bunker operations and the industry are DNV

GL and VPS.

1.3 Objectives

The main objectives of this thesis are

1. Develop a framework for identifying potential bunker operations.

2. Perform data exploration on bunkering data.

3. Propose criteria for a benchmark quantifying bunker delivery time with respect to

lay time.

1.4 Approach

A matching algorithm initiated and further developed as a cooperation between the au-

thor, student Daniel Wu and Thomas Mestl from DNV GL is used to identify bunkering

operations with high certainty, based on proximity between vessels and length of time in

proximity. Inputs to the algorithm are AIS data, fuel sample data from VPS and a list of

bunker barges officially approved by the port authority of Singapore. Output data from

the algorithm are Comma-Separated Values files containing data for identified bunkering

operations. The data is aggregated and visualised in various forms, and statistical meth-

ods such as Kernel Density Estimators are applied to conduct an analysis. The result from

the statistical analysis is the establishment of an index quantifying each bunkering oper-

ation with regards to waiting time and post bunkering time recorded for each bunkering

operation. A flow chart of the approach can be found in appendix B.

Emphasising ethical issues related to this thesis, it is worth mentioning that a few arise

when dealing with vessel identities. First and foremost, analysing motion patterns and

possible bunker deviations with known International Maritime Organization (IMO) num-

bers may incriminate actors without proper evidence. Therefore, no information that can

lead to identification of vessels or other involved parties will not be included. Secondly,

AIS data used for this project thesis is provided for ships and barges without their knowl-

edge. These parties may not grant permission to use the data, and therefore data is merely

included for illustrative purposes without possibility of tracing the data back to respective
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vessels or owners. In addition, due to confidentiality, neither the matching algorithm nor

VPS fuel sample data are included in the thesis.

1.5 Contributions

The thesis will hopefully contribute to increasing knowledge and awareness about the

bunker industry, along with emphasising the need of establishing integrity between sup-

pliers and buyers. In addition, this is, to the knowledge of the author, the first time bunker-

ing activities have been scrutinised with regards to deriving lengths of anchorage and

bunkering.

On a technical level, this thesis investigates the possibility of utilising AIS data on a high-

resolution level to assess ship-to-ship operations. AIS data has previously primarily been

exploited on a low-resolution level, whereas this thesis takes a leap into investigation on a

micro level.

1.6 Limitations

Limitations associated with this study are mainly related to availability of data. Key in-

puts of this work are fuel quality data from VPS and AIS data provided by DNV GL from

a geographic area surrounding Port of Singapore. The data spans over one year (2017),

and together yield data for approximately 19 000 bunker samples. Collected VPS samples

are restricted to bunker operations involving bunkering of HFO, hence bunkering of other

fuel types are not investigated. In addition, all operations are performed by bunker barges

officially approved by the port authority of Singapore.

Fuel samples and AIS data utilised in this thesis originate from two individual parties, and

consequently the full data is not a complete set of bunkering operations and measured

quality. Operations subject to data exploration are therefore restricted to operations avail-

able in VPS data.

1.7 Outline

• Chapter 2 - Problem Description: Establishes the motivation behind the thesis through

an elaboration of the bunker business and various methods for under-supplying
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bunker. The reader is also presented with an industry perspective which under-

scores the importance of increased knowledge within this field.

• Chapter 3 - Literature Review: Presents literature reviewed for the purpose of es-

tablishing the advancement within the field of this thesis and identify relevant fields

of study for the work. A major part of the literature was revised during the autumn of

2017. Relevant articles are elaborated with a discussion of potential use of methods

they suggest.

• Chapter 4 - Data Sources: Addresses fundamentals of AIS and the basic concepts

for use of AIS data. The AIS data foundation utilised in this thesis is described, and a

brief discussion of quality issues related to AIS data is given. Furthermore, data from

VPS and officially approved bunker barges are explained.

• Chapter 5 - Data Exploration: Introduces methods applied for creating the match-

ing algorithm, and in the statistical analysis of bunkering operations retrieved by the

algorithm.

• Chapter 6 - Problem 1: Identifying Bunker Operations: Lays the foundation for the

analysis conducted in the thesis. Assumptions and framework laid to ground are

presented, and the matching algorithm is outlined. The purpose of the matching

algorithm is to identify bunkering operations. The algorithm was created as a coop-

eration between the author, student Daniel Wu and co-supervisor Thomas Mestl.

• Chapter 7 - Problem 2: Analysis: Operations identified by the matching algorithm

are aggregated and visualised in various forms.

• Chapter 8 - Problem 3: A Quality Index for Bunkering Times: Presents the quality

index derived for characterising bunker operations, in addition to calculation of the

index for a selection of operations.

• Chapter 9 - Discussion: Presents an overall discussion, in addition to the more spe-

cific discussions in chapters 4, 5 and 6.

• Chapter 10 - Conclusions: Outlines the conclusion of the thesis, and recommends

approaches for further work.



Chapter 2

Problem Description

This chapter outlines the general bunkering operations and creative bunker practices that

deviate from standard procedure. In addition, it presents the academic interest in inves-

tigating this field, and the scope of the study is narrowed down. Finally, questions this

thesis aims as answering are presented. Theory is mainly based on statements by industry

experts and the project thesis An Introduction to Assessing Bunkering Operations Through

AIS Data by Wu and Aarsnes (2017). In addition, the study by Anfindsen et al. (2012) has

provided helpful insight.

2.1 The Bunker Operation

Bunker operations involve two parties, namely the supplier and the receiver. The opera-

tion is initiated by a demand from the receiver in which the shipowner or the charterer of

the ship places an order specifying type and amount of fuel. A commitment between the

parties is established, and a time slot and location for the bunkering is usually appointed

where the receiver anchors up and waits for the supplier. When the supplier arrives at

the predetermined location, it connects to the receiving vessel and initiates bunkering. A

quality sample is sometimes taken from the supplied bunker, and both parties must sign a

document stating that the operation is completed as agreed before the supplier detaches

from the receiver.

The operation can take place while the ship is either at anchor or at berth as displayed in

figure 2.1, and the bunker procedure can be summarised as follows:

• Bunker barge moves alongside the ship

• Bunker barge hose connects with fuel tank manifold

7
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• Measuring of bunker quantities at barge and ship before bunkering start

• Commencement of bunkering

• Completion of bunkering

• Measuring of bunker quantities at barge and ship at end of bunkering

• Paperwork and related procedures confirm agreement of transferred bunker quan-

tity

• Disconnection of barge hose

• Bunker barge leaves the ship

Figure 2.1: Satellite images showing examples of bunkering at berth (Google (2017a)) and
at anchorage (Google (2017b))

Paperwork and related procedures are in place to ensure documentation of supplied bunker

and compliance with requirements. IMO requirements oblige vessels to document bunker

operations through Bunker Delivery Notes (BDN). Wärtsila (2017) describes bunker deliv-

ery notes as follows:

The standard document required by Annex VI of MARPOL which contains information on

fuel oil delivery: name of receiving vessel, port, date, data of a supplier, quantity and char-

acteristics of fuel oil. Every BDN is to be accompanied by a representative sample of the fuel

oil delivered. Fuel oil suppliers are to provide the bunker delivery note. The note is to be

retained on the vessel, for inspection purposes, for a period of three years after the fuel has

been delivered.

2.1.1 Involved Parties

Involved parties of a bunker operation can be grouped into a supplying side and a receiv-

ing side. The receiving side is the shipowner or the charterer. If the ship is chartered, the
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charterer normally orders and finances the fuel. The supplying side is the bunker sup-

plier who either privately owns or charters bunker barges to deliver fuel from refineries

to customers. Chartered barges are often owned by independent bunker barge compa-

nies.

2.2 Creative Bunker Practices

DNV Research & Innovation (2012) emphasises the lack of performance benchmarks for

fuel suppliers. Benchmarks that exist are of fail or pass format, and it is suggested that

more nuanced criteria can reflect the quality range among bunker suppliers in a more

transparent manner. Among the bunker suppliers there are major refineries involved in

a wide range of the value chain, but also smaller actors that operate in the end of the

value chain. DNV Research & Innovation (2012) mentions instances where fuel from small

bunker providers has been of poor technical quality. The current state of regulation and

benchmarking can be said to impede transparency, and some methods exploiting this are

presented in the following.

Delivered in Volume, Paid in Weight

Bunker is delivered in volume, but paid in weight. This makes fuel density one of the most

essential properties when determining the monetary value. The conversion in equation

2.1 creates an opportunity for one of the parties to gain on the transaction by stating an

inaccurate fuel density.

densi t y · vol ume = mass (2.1)

For each delivery the fuel mass is calculated based on the fuel density stated in the BDN.

An overstatement of the actual density will favour the supplier as the buyer will pay for

more bunker than received - density short-lifting. Occurrence of the opposite, an under-

statement of fuel density, density long-lifting, will favour the buyer.

Split Interests

The main interest of the crew and shipowner is to be on schedule to get paid by the char-

terer. Bunker is ordered and paid by the charterer, and consequently the crew on board

might have limited interest in monitoring the bunker procedure or having a dispute with
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the bunker barge regarding the amount that was supplied, as long as the supplied quantity

is sufficient for the next leg and the quality is acceptable.

Short-Lifting - Stated Bunker Density Deviates From Delivered Density

Fuel is sampled during bunker operations by filling a container attached to the fuel tank.

Short-lifting can be practised by pumping high density fuel at a low rate to fill the sam-

ple. When the sample is sufficiently filled, the pump capacity can be raised to pump low

density fuel into the customer tank. Thus, the density of the drip sample will not be repre-

sentative for the density of the received fuel.

DNV Research & Innovation (2012) suggests that if oil density was measured with the

intention to give accurate density measurements (unbiased), over-reporting and under-

reporting would balance out. However, after systematic analysis of the DNV Petroleum

Service (DNVPS) fuel sample database, DNV Research & Innovation has discovered ongo-

ing systematic over-reporting of the density since the late 1980s. Seemingly small inac-

curacies in density reporting can result in a significant difference in monetary terms, as

illustrated in DNV Research & Innovation (2012):

A slight over-reporting of the density quickly leads to a financial gain for the seller. For

instance, reporting 977 kg /m3 instead of the actual 960 kg /m3 with a bunkering volume

of 2000 m3 gives rise to a difference of about 34 Metric Tonnes, worth about US$ 20,000 at

price of US$ 600/MT in 2010.

Analysis of over 50,000 samples of fuel oil tested by DNVPS in 2011 concluded with an av-

erage over-reporting of 0.6 kg /m3. With a global average bunkering of 965 Metric Tonnes

(MT) per lift1, over-reporting can equal an average loss of about 0.6 MT per 1,000 MT

lifted.

There is no consensus figure for global fuel oil consumption, but assuming the total is 350

million tonnes per annum, and 80% was heavy fuel oil (HFO), that would be 280 million

MT of HFO. Using a global average price of 641 USD/MT for 2011, and a loss of 0.6 MT per

1,000 MT, that would add up to 107.7 million USD of HFO paid for, but not delivered.

Questionable Fuel Origins

Some suppliers may alter the composition in fuel delivered to ships. An example is supply-

ing low value products from refineries posing as HFO. In some cases, the suppliers reach

1Per bunkering
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beyond this and mix the fuel with waste from pharmacies, cooking oil or used lubricants.

Even remnants from car tires have been discovered in supplied fuel Mestl (2015). A grow-

ing concern in Asia is the increase in piracy with the aim of stealing fuel, mixing it with

legally obtained fuel and selling it to buyers. As stated by McCauley (2018):

Pirated oil is often mixed with legally obtained oil at sea in vessels referred to as mother

ships, and it is difficult — if not impossible — to discern whether a given oil supply has been

illegitimately obtained. The mixed oil, then, is resold to buyers whose owners, captains or

crews may be ignorant of the fuel questionable origin.

Deviation in Stated Delivered Volume From Actual Delivered

Other documented methods of over-reporting involve inaccurate reporting of quantity of

delivered volume. Methods include tilting the bunker barge to obtain various tank read-

ings as displayed in figure 2.2a, using tampered measure devices or delivering cappuccino

bunker, one of the most common and widely used ‘malpractice’ in the bunkering indus-

try to-date. The Cappuccino effect may be described as frothing or bubbling effect caused

by compressed air blown through the delivery hose causing the fuel to foam. The aerated

bunkers will give the impression that the fuel is delivered as ordered, but when the en-

trapped air in suspension settles out - visible by bubbles on the surface (see figure 2.2b), -

tank measurements will show significantly lower fuel levels (MarineInsight (2015)). There

is a lack of quantitative data documenting such methods, thus there are no benchmarks

to regulate delivered volume.

(a) Tilted bunker barge (b) Visible bubbles from Cappuccino effect

Figure 2.2: Illustration from Mestl (2015) (left) and MarineInsight (2015) (right) of methods
for under-supplying fuel
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Time as Leverage

Another feature impeding transparency is using time as leverage. Ships or charters are of-

ten subject to time pressure due to deadlines for shipment, and maintaining a time sched-

ule is more important than avoiding short-lifting. A supplier can use time pressure to their

advantage by deliberately arriving late to a scheduled operation or prolonging it.

In the case of suspicion of over-reporting, the chief engineer of the receiving vessel can

refuse to sign the BDN. However, the bunker barge can in turn refuse to detach itself from

the ship to prevent it from continuing its journey. In this case, time pressure can make

the crew accept and neglect suspicions of over-reporting to maintain schedule. Breaking

off an uncompleted operation leaves the receiver to pay for a larger amount than sup-

plied.

2.3 Barges in the Centre of Attention

The methods for impeding transparency presented above, all involve the supplier as the

deceiver of the supplied fuel quantity and quality. Some suppliers systematically exploit

these methods for monetary gain, but it is worth emphasising that individuals on both the

supplier and receiver sides can gain by reporting incorrect supplied amounts. For exam-

ple, individuals on each party can receive a kickback2 for confirming the integrity of the

operation by signing required documents.

The supplier is not the sole actor motivated to achieve monetary gain, but it is the supplier

that will be at the centre of attention in this thesis. The supplier serves as a bottleneck for

supplied bunker, and combining this with utilising time as leverage forms the core of the

thesis.

2.4 From an Academic to an Industry Perspective

In general, bunker suppliers are hesitant to give information to both industry and academia

regarding their operations. Data on bunker prices is a scarce resource, and usually one

can only find average prices in ports. Prices stated by individual bunker suppliers are only

available on request and often unreliable, and; what may seem as a bargain can be the

opposite, if either density or quality of the fuel is poorer than claimed. This lack of data

2Commission paid to the bribe-taker in exchange for services rendered
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prevents general industry and academia from gaining access to information, making this

an interesting field to explore.

From an academic point of view, this thesis may provide insight to the feasibility of and

methods for using AIS data to identify ship-to-ship operations. In addition, this thesis

shall investigate if this can be used to analyse bunkering operations. Along with analysis

of these operations, it aims at analysing resulting data and proposing an index to quantify

bunker delivery time with respect to anchoring time on a scale ranging from 0 - (bad) to 1

- (good).

From an industry perspective, the thesis can provide an aid to obtain a more compre-

hensive understanding of such operations, in addition to addressing consecutive steps in

the process of further utilisation. Potential actors in the industry are presumably not inter-

ested in methods or aggregated data utilised to obtain the index, but rather the usage areas

and how it can be operationalised. An index quantifying the time and thereby the bunker

suppliers may be used in decision making, and transparency in the bunkering process can

be enhanced. Long term effects of this may be reduced operational costs and increased

time efficiency which can reduce delays in shipping schedules.

2.5 Constraints

2.5.1 Geographical Area and Time Restriction

Bunkering operations in Asia induce higher loss for ship owners than any other continent.

Figure 2.3 illustrates general gain and loss for ships in bunkering operations, in which it is

evident that bunkerings in Asia have the highest loss of 56%.

Figure 2.3: Value for money based on short-lifting of bunker fuel (HFO) per continent
(Mestl (2015)). Note that 56% of bunkering operations in Asia and Oceania are considered
as loss of money.
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Port of Singapore is located on the southern end of the Malay Peninsula in Asia, and is the

largest publicly owned port in the world. The port offers connectivity to more than 600

ports in 123 countries (Kable (2018)) serving as a gateway for the East-West trading area.

It is one of the busiest ports in the world in terms of total shipping tonnage, total cargo

tonnage handled and as a transshipment port.

Figure 2.4: Map of Singapore (Google (2018))

As one of the largest marine refuelling hubs in the world, the port has been the scene for

a significant amount of documented bunker fraud according to John Stirling from World

Fuel Services (WFS). As a result, the port authorities have increased regulation of bunker-

ings performed in the port area. It became the first port to mandate use of mass-flow-

meters in 2017, making them mandatory for marine fuel bunker barges licensed by the

Maritime Port Authority (MPA). Along with a crackdown on short deliveries to bunker fuel

customers, the meters where made mandatory to enhance transparency in the bunkering

process (Roslan Khasawneh (2018)). The very fact that Singapore is the only bunker port

in the world which has mandated the use of mass flow meters on bunker barges may give

a clue that volume cheating is indeed a widespread and serious issue.

Traffic flow passing the Port of Singapore is confined into concentrated areas in the Sin-

gapore Strait, which narrows down the geographical scope of the study. The geograph-

ical area is restricted by a square surrounding Port of Singapore as illustrated in figure

2.5.
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Figure 2.5: Restricted geographical area

Activity, or AIS messages, registered over a time period of one year spanning from 2017.01.01

to 2017.12.31 within the geographical scope form the basis of the thesis. Only IMO num-

bers from ships that have submitted HFO fuel samples in 2017 and Singapore as bunker

port (and are registered by AIS data in this area at the bunkering date) were considered.

2.5.2 Operational Restrictions

AIS messages do not indicate if a ship has been engaged in a bunkering operation. Con-

sequently, registered activity will be filtered by several criteria in a matching algorithm,

resulting in a data set containing only AIS data from bunkering operations. Firstly, a ship

engaged in a bunkering operation is normally anchored up or at berth and subsequently

its registered speed should be low. To account for wind and drifting during bunkering at

anchorage (open sea), a maximum registered speed of 1 knot is required during an opera-

tion. This means that all in-voyage operations with higher Speed Over Ground (SOG) are

omitted.

Secondly, the bunkering procedure consists of several steps such as connecting and mea-

suring quantities as introduced in section 2.1. To account for time required to complete

necessary activities before commencement of bunkering, a minimum span of two hours

of subsequent AIS messages with reported speed of 1 knot and below is further required.

Correspondingly, since the average bunkering time is usually not more than 7-8 hours the

maximum allowed time span is set to 37 hours to account for some lay time 3 before and

after bunkering.

3The amount of time allowed to a ship in a voyage charter for loading and unloading of cargo at a port
(Kantharia (2015)). In this thesis the term refers to time when the ship is not in-voyage.
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2.5.3 Officially Approved Bunker Barges

Bunker operations are determined based on registered proximity between a ship and a

bunker barge. Only bunker barges officially approved by the Singapore port authority

are considered, meaning that bunkering operations with other suppliers are not consid-

ered.

2.5.4 Fuel Quality Samples

VPS has provided data on fuel quality samples taken during bunkering operations. How-

ever, not all bunkering operations are sampled, and the amount of sampled operations is

in the range of 40-60%. Hence, a maximum of 40-60% of performed bunker operations

can be identified and analysed. In addition, only HFO fuel samples are considered. VPS

data includes date, IMO number of ship and fuel parameters, but not which bunker barge

delivered fuel.

2.6 Problem Formulation

The incentives of the supplier, from now on called bunker barge, influences the behaviour

during a bunker operation. It is assumed that this behaviour is reflected in AIS mes-

sages broadcasted from the bunker barge combined with AIS messages from the receiving

ship.

AIS data from Singapore will be used in a matching algorithm. The algorithm will iden-

tify ships at berth or anchor for a predetermined period of time, and attempt to identify

bunker barges that have interacted with these ships. Each match will be characterised as

an operation, and identified operations will be scrutinised through statistical analysis to

evaluate normal operational behaviour. Results from analysis can be utilised to establish

a benchmark that characterises the integrity of bunker barges.

The thesis will attempt to answer the following questions:

• Is it possible to use AIS data to identify bunkering operations?

• Is it possible to characterise bunkering operations with respect to time usage?

• Is it possible to prove an index of quality?

• Is this feasible with AIS data or are we at the limit of what can be done with AIS data?



Chapter 3

Literature Review

Literature was reviewed during the work of the project thesis An Introduction to Assess-

ing Bunkering Operations Through AIS Data (Wu and Aarsnes (2017)) to outline previous

studies of AIS data and the bunker business. AIS data have been utilised in a wide spec-

tre of research fields, but none specifically explore the use of AIS data for monitoring of

bunkering or similar vessel-to-vessel operations. Some additional literature was reviewed

as necessary when conducting this thesis.

45 articles were studied in cooperation with five students working with other AIS related

projects. Moreover, the articles were categorised and assessed based on assumed rele-

vance for this thesis. Only a small fraction of these were deemed applicable for the study,

and a discussion of these is presented in section 3.2. Figure 3.1 illustrates the approach of

the literature review.

Figure 3.1: Approach of literature review

17
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3.1 Overview of Literature on AIS Data

Articles reviewed in cooperation with students Daniel Wu, Erik Grundt, Patrick Næss, Jør-

gen Jensen Axelsen and Simon Drønen were grouped according to topic and methods. An

example of the groupings is given in Appendix D. One article can comprise multiple top-

ics or methods, and the majority of these considers safety, environmental or economic

aspects as presented in figure 3.2. None of them address bunkering operations.

Figure 3.2: Distribution of topics

The topics are further defined in the following:

• Safety: Literature focusing on collision avoidance based on various models for pat-

tern recognition, traffic estimation and route planning.

• Environmental/Emissions: Literature on calculation of emissions from traffic pat-

terns.

• Economy: Literature that utilises traffic estimation and speed selection to increase

operational efficiency.

• Data Handling and Review of Methods: Literature that specifically focuses on han-

dling and utilising AIS data, for instance visualisation of AIS data.

The literature is also categorised by methods assessed for the various objectives of the

studies. This categorisation is presented in figure 3.3.

Figure 3.3: Distribution of methods
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3.1.1 Appointing Relevant Fields of Research

The method categories are self-explanatory, so any further elaboration of these is deemed

unnecessary. In the work with the project thesis, the most relevant topic was considered to

be Collision Avoidance with focus on the methods Pattern Recognition and Collision Pre-

diction due to the similarities between utilisation of traffic patterns in collision avoidance

and behaviour during bunkering operations. This topic is also considered relevant for the

current problem formulation.

3.2 Assessment of Relevant Literature

A more comprehensive study of literature was performed on work within maritime traffic

risk assessment, as the studies focus on an appropriate scope. This scope is regarded as

micro resolution, as opposed to other AIS related fields that conduct studies with lower

fidelity on a more macro perspective. For instance, motion pattern analysis for individual

ships is a prominent element in these studies, in contrary to other fields that calculate traf-

fic flow based on a vast number of vessels. In addition, these articles focus on detection

of anomalies in vessel motion patterns and establishing indices or other metrics to pre-

dict the level of risk in maritime traffic situations. Therefore, the methodology from this

research field have been of inspiration for this thesis.

In the following, some assumed relevant studies are presented. These are grouped accord-

ing to type of studies, and their potential contribution is discussed in the end of the chap-

ter. Three additional studies by Ferrà et al. (2018), Wu and Aarsnes (2017) and Anfindsen

et al. (2012) have been reviewed and elaborated.

3.2.1 Treating Data and Data Gaps

Article: Teasing Out the Detail: How Our Understanding of Marine AIS Data Can Better

Inform Industries, Developments, and Planning

Shelmerdine (2015) demonstrates a procedure for processing, analysing and visualising

AIS data with outputs and potential uses. Tools used include density mapping, vessel

tracks, interpolation and ship type analysis. Density maps were created using ArcGIS1

for AIS data from a land-based receiver on Shetland, and point data was interpolated at a

resolution of 500 meters for vessel dimensions. Higher concentration of data points within

1Online mapping tool
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a 12 NM limit around Shetland yielded the need for a resolution of 50 m. This was further

used to analyse vessel types and temporal variation.

The analysis outputs were density maps and vessel tracks which can be used to identify

fishing ground and vessel routes, but not anchorage points. The interpolation provided

an additional level of querying and could be broken down to be analysed at sector specific

level. Within 12 NM limit, interpolations were found to be informative due to increased

density of data.

Article: Spatial and Temporal Allocation of Ship Exhaust Emissions in Australian Coastal

Waters Using AIS Data: Analysis and Treatment of Data Gaps

Goldsworthy (2017) focuses on allocating emission gaps in coastal regions, that is spatial

gaps in the collected AIS data. In several coastal regions, the reports transmitted by the

vessels are not collected by the terrestrial network due to absence of ground stations. The

boundary regions of the data gaps are identified by specifying the duration (less than but

close to the average duration of a gap) and speed at specified levels, and then applying

clusters associated with the boundaries so that tracks that span the gaps can be exam-

ined.

Further procedure involves generating interpolated vessel tracks that both span the gaps

and avoid coming too close to land using a simple shortest path or linear line interpo-

lation. Where these do not produce acceptable results, vessel tracks are steered around

land on shortest available paths using a combination of visibility graphs and Dijkstra’s al-

gorithm. Goldsworthy (2017) found that this method improved the findings compared to

only using a shortest path interpolation.

3.2.2 Analysis of Data

Article: Statistical Analysis of Motion Patterns in AIS Data: Anomaly Detection and Mo-

tion Prediction

Ristic et al. (2008) devoted the study to statistical analysis of vessel motion patterns in

ports and waterways using AIS ship self-reporting data. Motion patterns are extracted

from real historic AIS data and used to construct corresponding motion anomaly2 detec-

tors through the framework of adaptive kernel density estimation. The anomaly detector

2Anomalous vessel behaviour refers to vessel movement behaviour that differs from the typical or normal
vessel movement behaviour (Sidibé and Shu (2017))
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is then sequentially applied to real incoming AIS data to detect anomalies. Motion of ves-

sels is predicted using Gaussian sum tracking filter.

The paper presents some preliminary results using AIS broadcasts. A simple and fast

anomaly detector is proposed based on the adaptive kernel density estimation, and the

probability of false alarm of this detector can be evaluated numerically. This provides a

quantitative measure of performance. The prediction of vessel motion attempts to com-

pute the density of the vessel state in the future. The study concludes that if training data

is effectively used, the method of motion prediction is quite straightforward.

Article: Maritime Traffic Analysis of the Strait of Istanbul Based on AIS Data

Altan and Otay (2017) have investigated navigation patterns using AIS date collected from

309 000 moving vessels over a period of one year in the Istanbul Strait. The data is stored

in a Structured Query Language (SQL) database, and grid-based analysis is used to track

parameters such as position, heading and course over ground. The study focuses on in-

vestigating the effect from local traffic on maritime risk, where speed and course are used

as indicators to substantiate whether there is a significant risk.

The grid-based analysis method divides the observed area into sectors. Characteristics of

the area are found by analysing the data at the entrance and exit of the area. The size of

each sector is decided by introducing a limit for change in the navigational patterns so

that the pattern within a sector is assumed to be constant. Vessels registered within a set

distance from another sector is assumed to be entering or exiting this sector. Transiting

and crossing traffic in the strait has been analysed to obtain the number of vessels sailing

in the strait, the main ship types, ship dimensions, SOG and Course over Ground. Altan

and Otay (2017) conclude that long-term traffic analysis can be used to understand the

complexities of navigation patterns.

3.2.3 Utilising AIS Data

Article: Ship Collision Risk Assessment for the Singapore Strait

Qu et al. (2011) proposes three ship collision risk indices derived from AIS-data to quanti-

tatively assess the vessel collision risk in the Singapore Strait. The study divides the Strait

into 15 legs and calculates the indices for each leg. The first index measures the degree

of speed dispersion in each leg, that is the variance of the mean speed of each vessel sail-

ing in the leg. Correlation between speed variance and likelihood of vessel collisions was

confirmed by vessel captains.
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The second index measures the deceleration and acceleration in each leg. As vessels strive

to navigate with constant speed to reduce fuel consumption, a sudden change in speed

can relate to a potential collision situation. Such situations emerge where vessels are about

to cross, overtake, meet or turn. Thus, degree of deceleration and acceleration can be

considered as a metric for collision risk. By calculating the acceleration and deceleration

of each vessel in a given leg, and their average squared values, an index is obtained. The

third index, vessel domain and collision risk, measures the degree of overlapping vessel

domain for each leg. Definition of vessel domain was formulated by Goodwin (1975) as

"the surrounding effective waters which the navigators of a ship want to keep clear of other

ships or fixed objects".

The conclusion of the research points out, based on the three indices, the most high-risk

legs in the Strait. They were also able to unveil that a significant portion (around 25%) of

the cargo vessels has a sailing speed beyond the speed limit.

Article: An AIS data Visualisation Model for Assessing Maritime Traffic Situation and its

Application

Pan et al. (2012) proposes a novel visualisation model to appraise the maritime traffic sit-

uation based on the AIS of a ship. The rate of turn, speed acceleration and ship encounter

parameters are incorporated into a new index to indicate relative dangerous shipping ar-

eas.

The rate of ship encounters indicates the maritime traffic situation. If there are many po-

tential dangers in the waters, the ship will have an incentive to change its course rapidly

and the rate of turn and the speed can therefore also provide indication on the actual traf-

fic situation. The sum of these values, weighted according to research area, constitute the

Index of Maritime Traffic Situations (IMTS).

The new model was applied to analyse the maritime traffic situations in Xiamen Bay and

Meizhou Wan, and proved to be practical and useful for maritime traffic decision-making

and management of marine authorities and mariners. However, it is worth mentioning

that the study emphasises the necessity of more theoretical analysis and experiment eval-

uation.

Article: Expanding the Possibilities of AIS Data with Heuristics

Smestad et al. (2017) propose heuristics to identify different ship types from AIS data and

evaluate the performance of heuristics applied on respective types. The heuristics can be
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an alternative to external ship databases. The article emphasises why categorisation of

ship type and size is essential when conducting studies on fields such as operational ef-

ficiency and greenhouse-gas emissions. For instance, assumptions regarding typical fea-

tures (block coefficient, design speed) of given ship types can be applied when the ship

type is identified.

Satellite-AIS (S-AIS) data consisting of messages from 85,108 ships and a database pro-

vided by The Clarksons Group were matched by ship names - forming a candidate group of

ships presents in the both S-AIS data and the database. This candidate group was cleaned

for erroneous matches, for instance removing vessels classified as Panama ships when the

width or draught exceeded the maximum dimension of the canal. The cleaned candidate

group was used for heuristic training, which resulted in parameter sets that act as con-

straints. These parameters constrained features such as maximum speed and draught for

a given vessel type.

The heuristics were evaluated through testing for different ship types and their accuracy

was listed. In the discussion it is stressed that parameters such as maximum speed and

constraints of draught are dependent on operating conditions that again are affected by

market forces. Since the S-AIS data spans over 16.5 months, the developed heuristics may

have lower accuracy when used on data sets from other time periods. On the other hand,

as the time span of the AIS database lengthens, the likelihood of ships exceeding con-

strains will be greater.

Article: Mapping Change in Bottom Trawling Activity in the Mediterranean Sea Through

AIS Data

Growing concern about depletion of marine resources due to over-exploitation and degra-

dation of ecosystems prompted Ferrà et al. (2018) to map the fishing activity from the

Mediterranean Sea. Raw AIS data from fishing vessels operating in the sea from 2012 to

2014 was used. The data was filtered by requiring each vessel to have a minimum of 300

recorded AIS messages per four months. Speed profiles from vessels were used to define

speed profiles for different métiers. A K-means cluster analysis was performed to iden-

tify vessels using bottom trawl gears, thus impacting the seabed. Spatial filters from the

ArcGIS software were applied to exclude false positives.

Subsequently, unique vessel identification numbers were used to create tracking layers

from fishing pings, and duration and speed were calculated from the difference of succes-

sive pings. The process finally yielded fishing activity maps. Although the available time

series data was relatively short, the analysis carried out confirmed the potential of AIS data

to map fishing activity over time, resulting in a useful tool to improve marine sciences and
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management.

3.2.4 Benchmarking

Project Thesis: An Introduction to Assessing Bunkering Operations Through AIS Data

Wu and Aarsnes (2017) described potential parameters for identifying bunker operations

through AIS messages broadcasted from ships and bunker barges. AIS data from Singa-

pore was filtered by requiring speed below 0.5 knots, which led to identifying sector-like

shapes in geographical coordinates. These shapes indicate ships at anchor drifting around

their fixation point, with potential of being bunkering operations. From this they estab-

lished idle times - sequences of AIS messages with a reported SOG of e.g. 1 knot and be-

low and a minimum duration of e.g. four hours. Bunker barges with close proximity to

idle times were retrieved to identify the barge potentially engaged in a bunkering opera-

tion with the associated ship. Speed restriction, a limit for idle times and maximum dis-

tance (between ship and candidate) were thereby suggested as parameters for identifying

bunker operations. The project thesis is more thoroughly elaborated in section 6.3.

Article: Benchmarking of Marine Bunker Fuel Suppliers: the Good, the Bad, the Ugly

Anfindsen et al. (2012) propose a methodology to construct a realistic best practice bench-

mark and develop a methodology for comparison of individual suppliers of marine bunker

fuel based on the difference between stated and actual density of supplied fuel. Unfair

business behaviour in the bunker market is not uncommon, resulting in financial loss for

the buyers. The benchmark is established using the concept of membership functions

from fuzzy set theory, a score can be derived from a best practice benchmark histogram.

The main advantages of this method are its relative independence both of sample size and

of the underlying distribution, as well as being computationally efficient. Based on best

practise, Anfindsen et al. (2012) were able to estimate induced loss, gain and loss neutral-

ity for buyers. The presented benchmark methodology is extendable to other (quality and

economical) bunkering parameters like viscosity, sulphur or water content, as well as a

series of physical and chemical properties.

3.3 Conclusion of the Literature Survey

Shelmerdine (2015) used interpolation to increase the informative level of density maps

from AIS data for vessels detected by a land-based stations on Shetland. Although density
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maps will not be produced for vessel tracking, distance between vessels will be calculated.

This requires synchronised time stamps in the AIS data sets, and thereby the proposed

interpolation approach can be useful when generating data for gaps. Goldsworthy (2017)

achieved improved results when using Dijkstra’s algorithm when interpolating over spatial

gaps to avoid generating vessel tracks crossing land. Bunkering operations in this mas-

ter thesis scope will be confined into a smaller geographic area, and linearly interpolated

tracks will unlikely cross land. Thus, linear interpolation is regarded as sufficient for clos-

ing spatial gaps in data sets.

A matching algorithm will identify bunkering operations, and data from these will be vi-

sualised in various forms which requires a method for analysis. Altan and Otay (2017)

used a grid-based analysis method to analyse the navigation patterns in the Strait of Istan-

bul. The results from this study show that long-term data analysis can provide an insight

into the complexity of the patterns. However, navigational patterns will not be analysed

in this thesis, thus grid-based analysis will not be implemented. Ristic et al. (2008) con-

ducts statistical analysis of motion patterns to detect anomalies based on a kernel density

estimation. Investigating anomalies is part of the approach in this thesis, and statistical

methods will be applied for analysis. Furthermore, kernel density estimation may be ap-

plied in the analysis as an aid, but will in that case be implemented through functions in

Python.

Pan et al. (2012) illustrates a method for constructing an index to indicate relatively dan-

gerous shipping areas. Qu et al. (2011) demonstrates how different parameters based on

AIS data can be computed for the same purpose. The degree of acceleration and ship do-

main can be applied in a bunker barge context. An analogy of the procedures proposed

in these papers may be implemented to obtain an index expressing the degree of relia-

bility of each bunker provider. Such indices will give bunker purchasers more nuanced

insight when selecting bunker providers, than the binary benchmarks described in sub-

section 2.2. To achieve these metrics on quality/reliability of bunker providers, heuristics

as described by Smestad et al. (2017) can be implemented to distinguish types of receiving

vessel. Bunker operations for different vessel types can then be scrutinised separately to

assign weight to each operation.

Ferrà et al. (2018) propose a method for mapping fishing activity within a defined geo-

graphical scope. The method is based on filtering data and applying K-means cluster anal-

ysis. Cluster analysis will not be implemented in the framework for identifying bunker-

ing operations, but filtering the data by operational restrictions has proven beneficial by

Ferrà et al. (2018). Combining a similar approach with results obtained by Wu and Aarsnes

(2017) will contribute to constructing the framework for a matching algorithm identifying

bunkerings.
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Methodology as presented by Anfindsen et al. (2012) is not transferable to this thesis, as

they base their approach on measured parameters obtained from supplied fuel. It is how-

ever an important contributor of knowledge regarding bunkering business practises, as

well as providing insight to alleged bunkering malpractice.



Chapter 4

Data Sources

In this chapter, a brief introduction to AIS data and other key elements essential for this

project thesis are given. First, a basic introduction to AIS is outlined, followed by require-

ments regarding the use of AIS and a general overview of some utilisations and quality

issues regarding AIS data. A brief overview of various elements included in AIS messages

is presented, and AIS data components used in this thesis are outlined. Furthermore, VPS

data and officially approved bunker barges are explained. Some parts of this chapter are

based on the project thesis An Introduction to Assessing Bunkering Operations Through AIS

Data (Wu and Aarsnes (2017)).

4.1 AIS Data

4.1.1 AIS Basics

Automatic Identification System (AIS) is a communication system that utilises Very High

Frequency (VHF) system to transmit ship movement and technical data at irregular in-

tervals (Smestad et al. (2017)). AIS data can be recorded by ground stations at ports and

around the coasts, terrestrial AIS data, or by specially equipped satellites, (S-AIS) data,

(Goldsworthy (2017)).

A protocol for the communication system specifies what technological equipment shall

be utilised and the type of information that shall be transmitted. The data is divided into

static data which includes navigational details such as the ship name, ship identification

number and dimensions and dynamic data from ship sensors which includes voyage re-

lated information such as speed, position, heading and time (Smestad (2015), Smestad

et al. (2017)). Semi-static data may be destination and estimated time of arrival.

27
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4.1.2 Guidelines for Use of AIS

Regulation 19 of SOLAS Chapter V – Carriage requirements for ship borne navigational

systems and equipment – defines what navigational equipment must be carried on board

ships according to their type.

Carriage of AIS is mandatory for ships of 300 Gross Tonnage (GT) and upwards engaged

on international voyages, cargo ships of 500 GT and upwards not engaged on international

voyages and all passenger ships built after 2002 or operated after 2008 irrespective of size.

Smaller vessels may also use AIS on a voluntary basis (Goldsworthy (2017)). From May

31st of 2013 fishing vessels of more than 15 meters are also required to install AIS (Euro-

peanCommission (2011)). The AIS shall be maintained in operation at all times except

where international agreements, rules or standards provide the protection of navigational

information (SOLAS (2017)).

4.1.3 Use of AIS Data in Industry

The development of AIS was initiated in 1994 as a joint project between several parties

such as the International Maritime Organization (IMO) and the International Association

of Marine Aids to Navigation and Lighthouse Authorities (IALA). In 1998, IMO 11 amended

regulations about use of AIS to the International Convention for the Safety of Life at Sea

(SOLAS) (IMO, 1974).

AIS was originally designed as an aid for collision avoidance, and utilises frequencies from

the VHF band to broadcast messages. Land based AIS receivers can detect AIS messages

up to 40-50 nautical miles offshore. Traffic further offshore will not be detected by these

receivers. However, a follow-up study by (Hoye et al. (2008)) found that AIS signals can be

detected by satellite-based AIS receivers positioned in altitudes of up to 1000 km (Smestad

et al. (2017)). With the capability of gathering data through satellites, the use of AIS data in

studies on maritime transportation has become increasingly prevalent. In addition to us-

ing it for fleet and cargo tracking and by port control to manage traffic, it can be utilised in

estimation of shipping emissions from fuel consumption and gaining insight on technical

and operational energy efficiency in shipping (Smith et al. (2014)).

The literature review presented in chapter 3 illustrated a wide range of AIS data utilisation.

This underscores that multiple actors are realising the potential of the immense amount

of data gathered from maritime traffic. Applying suitable methods can drastically advance

shipping as it is known today.



CHAPTER 4. DATA SOURCES 29

4.1.4 AIS Data Used in Bunkering Matching Algorithm

Satellites move in orbits around the globe and receive AIS data from the area which they

travel above. Consequently, the sampling rate of S-AIS data is characterised by larger time

intervals. This thesis requires AIS data with a high-resolution level, i.e. small time inter-

vals. Thus, S-AIS data sampling rate is insufficient, and terrestrial AIS data serve as the

basis for this work. This also imply that bunkerings occurring outside the range of land-

based stations cannot be detected.

Samples from raw AIS data with a time interval of ten minutes, meaning that each AIS

sample is chosen as the one with time difference closest to ten minutes from the last AIS

data sample. Raw AIS data is transmitted with varying time intervals depending on the

navigation status. For example, when the vessel is anchored or at berth the raw data trans-

mission rate can be four minutes, while it can be ten seconds when the vessel is underway.

Since investigation of bunker operations requires data on a high-resolution level the rate

is adjusted so it is sufficient for this purpose.

AIS messages broadcasted in a rectangular area surrounding Port of Singapore over pe-

riod from 01.01.2017 to 31.12.2017 are used in a matching algorithm to identify potential

bunkering operations, see chapter 6. The port is chosen due to its position as one of the

busiest bunker ports in the world as it is a gateway for the East-West trade area. It has been

the scene for a significant amount of documented bunker cheating according to John Stir-

ling from WFS, which makes this an interesting port to investigate.

Figure 4.1: Geographical area under consideration

AIS messages contain technical and operational data, and the data is both manually and

automatically logged. Some of the most common components are listed in table 4.1.
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Table 4.1: AIS message components and description

AIS message component Description

Message ID number Excerpt from raw AIS message

IMO number International Maritime Organization identification system

SOG Speed Over Ground in knots

COG Course Over Ground in degrees

UTC Port Time Time given in time zone at zero degrees longitude

Unixtime Number of seconds elapsed since 01.01.1970

Latitude Horizontal geographic coordinate

Longitude Vertical geographic coordinate

Drought Vessel specification, drought in meters

Rot Circular movement

Heading Course (cardinal direction)

Navigational status At anchor, under way or not under command

Message components used as input to the algorithm are listed in table 4.2. Some of these

are further elaborated below.

Table 4.2: AIS message components used in matching algorithm

Data type Component Used

Dynamic

Coordinates (latitude, longitude)

SOG

Time

Heading

Static

IMO

MMSI

Ship name

Ship type

Length

Width

Location of GPS antenna

IMO number

The IMO vessel identification number scheme was introduced through adoption of the

IMO Resolution A.600(15) IMO (1987) as a measure aimed at enhancing maritime safety,

and pollution prevention to facilitate the prevention of maritime fraud (IMO (2017)). It

aimed at assigning a permanent number to each vessel for identification purposes, which
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would remain unchanged upon transfer of the ship to another flag.

The Resolution was made mandatory through SOLAS regulation XI/3 IMO (1974). All ves-

sels over 100 GT, with exception to vessels engaged solely in fishing, vessels without me-

chanical means of propulsion, pleasure yachts, vessels engaged on special service, hipper

barges, hydrofoils and hovercrafts, floating decks, vessels of war and wooden vessels, shall

be identified with an IMO number. The number is required to be permanently marked on

the superstructure or the hull itself, and can be found in Static AIS Messages as a seven-

digit number (IMO (2017)).

SOG

Measured speeds in the AIS messages are recorded by the Global Positioning System (GPS)

as Speed Over Ground (SOG) in knots. Speed through water does not consider the resis-

tance on the vessel or the speed of the vessel relative to the currents of the surrounding

water. Speed through water will be different from SOG when there is a tidal stream. For

example, a vessel sailing at a speed of 14 knots with a tidal stream acting in the opposite

direction at a speed of two knots will experience a speed through water of 16 knots.

Latitude

Latitude is a geographic coordinate that specifies the north-south position of a point on

the surface of the Earth. It is an angle ranging from 0 degrees at the Equator to 90 degrees

at the poles. Lines of equal latitude run east-west parallel to each other and the Equator,

and are often referred to as parallels (UNL (2017)).

Longitude

Longitude specifies the east-west position on the surface of the Earth. Meridians are lines

of equal longitudes running north-south, of which one of these passes thought the Royal

Observatory in Greenwich, England. This meridian has been allocated as the position of

zero degrees in longitude (UNL (2017)).

Location of GPS antenna

Vessels are equipped with GPS receivers, and their antenna location is given by dimen-

sions A, B, C and D which are static components in AIS messages. In figure 4.2 the red

circle illustrates the location of the GPS antenna, with the respective recorded distances.

In some cases vessels have more than one GPS antenna, thus the antenna location is no

longer unique.
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Figure 4.2: Location of antenna given by parameters A, B, C and D in AIS messages

4.1.5 Quality Issues

AIS systems were originally designed as a ship-to-ship communication, and not for space-

based receivers. Since a satellite has a much larger coverage area than AIS receivers were

designed for, interference problems between the ship AIS signals can occur (Smestad et al.

(2017)). This problem is especially prominent in areas with high traffic density, where

interference can prevent the identification of individual signals of a vessel, which in turn

can give an erroneous tracking of the vessel. An example is displayed in figure 4.3 where

three bunkering operations occur in close proximity to each other. Also, in areas where

vessels are covered by multiple base stations, the stations can sample AIS data from the

same vessel but return different time stamps for the same position.

Figure 4.3: Ships and bunker barges with close proximity (Mestl (2015)) which can cause
interference

Vessel identifiers used in AIS messages include IMO number, MMSI number, Call Sign

and/or Vessel Name. Approximately 50% of AIS Static Data transmissions have errors, and

1/3 of these have at least one incorrect vessel identifier (Winkler (2012)). Winkler states
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that no single legal identifier meets the criteria that it is available and issued to every vessel

for the purpose of unique tracking, which also complicates the tracking of the history of

the vessel. Broadcasting under the identity of another vessel creates safety issues when

multiple vessels use the same IMO number in the same area.

Erroneous data come in multiple forms, and a frequent issue is that a data set contains

large time or space distances between successive AIS records. This can be caused by turn-

ing off the AIS transmitter or sailing in areas with poor terrestrial or satellite coverage.

When sailing in open sea the sampling of raw data is done by satellites, and the sampling

rate depends on the ship density and number of satellites an AIS provider uses. This can

cause large gaps in the data. Erroneous data can also be caused by high proximity between

a VHF antenna and the AIS, as the antenna will affect the AIS if they broadcast on the same

spectre.

Furthermore, recording of vessel heading may be incorrect. In some instances, this has

been observed in the data set used for this thesis. Reasons for this may be incorrect settings

on the heading recorder, or that the recorder may be connected to SOG and is restricted

from logging heading until the speed reaches a specified limit.

A component in AIS data is specification of GPS antenna location on the vessel. Vessels

usually have an AIS antenna for transmitting the AIS signal, in addition to a GPS antenna

which receives time signals from GPS satellites. However, if the stated position in the AIS

message is not the GPS, but the AIS antenna position, the recorded geographic position of

the vessel will be shifted relative to the actual position.

Figure 4.4: GPS and AIS antenna positions

In addition, manually logged data such as draught can be incorrectly recorded by vessel

personnel, as they must manually feed the draught into the AIS data. The reliability of

manually logged data also depends on the equipment setup on-board.

When using AIS data, several obstacles must be considered in the thesis. For instance, AIS
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data may be erroneous or incomplete due to data gaps. Interpolation has been suggested

by Goldsworthy (2017) and Wu and Aarsnes (2017) to reduce these, and will be imple-

mented to create data sets with synchronised time stamps. However, in cases of bunkering

operations the reported speed of involved vessels are close to zero. Consequently, inter-

polating over a data set from a ship at berth will yield no new information. For a ship

at anchorage, currents and wind should also be accounted for when interpolating due to

drifting, but such data was not available while conducting this thesis.

4.2 VPS data

VPS has provided fuel sample data taken by ship crew during bunkering. Samples marked

with Singapore as location have been extracted, but no information is available to indi-

cate if a bunkering occurred within or outside the geographical area defined in section

2.5.1.

Fuel quality samples are marked with date of bunkering, location and IMO number when

submitted. All specifications in the data are manually recorded by crew, and recorded

date is subject to uncertainties. Date may indicate appointed time of bunkering, start of

bunkering, end of bunkering or date when the sample was submitted. Only bunkerings

involving Heavy Fuel Oil (HFO) are considered, other fuel types are not analysed.

4.3 Officially Approved Bunker Barges

Bunker barges licensed for 2018 by Maritime and Port Authority of Singapore (Singapore

(2018)) are addressed. Common for these bunker barges is that they installed mass flow

meters on board. Not approved bunker barges are not included in the data.



Chapter 5

Applied Methods

This chapter aims to describe the method applied to treat AIS data from bunker oper-

ations. Furthermore, it introduces methods used for statistical analysis to interpret the

data. The term Statistical Analysis encompasses collection, examination, summarising,

manipulation and interpretation of quantitative data to discover underlying causes, pat-

terns, relationships and trends (BusinessDictionary (2018)). These methods are outlined

in a generalised manner, and utilised in the case study presented in chapter 7. Theory is

primarily based on knowledge obtained previously by the author.

5.1 Interpolation

Data sets containing significant gaps between successive AIS records can produce less re-

liable results. This is especially evident when plotting the traces of a ship and a barge

engaged in a bunkering operation, where the coordinates in the plots do not match. The

simplest form of interpolation assumes linear relation between succeeding time stamps.

Gaps in the data can be filled by equation 5.1 (Wu and Aarsnes (2017)).

f (x) = f1 + ( f2 ° f1)
x °x1

x2 °x1
(5.1)

Here, f (x) is the unknown value which is calculated from known values f1, f2, x, x1 and x2.

When comparing the traces of a ship and a bunker barge, coordinates will be generated by

interpolation to create time synchronised sets of AIS messages. The f values can be e.g.

latitude or longitude, and the unknown of these will be obtained by interpolating between

already sampled values, thus interpolated values will be entirely based on sampled val-

ues. Replacing f with latitude l at (or longitude lon) and x with time stamp t yields the
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following.

l at = l at1 + (l at2 ° l at1)
t ° t1

t2 ° t1

Synchronised lists can be used to calculate distance between ship and barge, and inter-

polation will be applied in the matching algorithm to generate missing data for the barge

from known ship data.

5.2 Statistical Analysis

5.2.1 Summarising

Grouping

The data foundation for this thesis is information that represents qualitative and quan-

titative attributes of a set of variables for a given entity, here bunkering operations. It is

initially an ungrouped list of numbers and labels - or raw data, which is not categorised,

classified or otherwise grouped.

Figure 5.1: Illustration of mapping data into two groups

Grouped data is data that has been organised into smaller groups, where each group has

certain properties. Each group has a certain width referred to as length which is an impor-

tant parameter in the process of visualising the data. In this thesis, data will be grouped

based on properties such as vessel length, vessel type, anchorage time length, bunkering

time length and bunkering type.

Visualisation

Visualisation can be viewed upon as a branch of Descriptive Statistics and involves the cre-

ation and study of visual representations of data. It will serve as an aid to make the com-

plex data set more accessible and understandable to effectively analyse the data. Plotting

will serve as the visualisation aid in this thesis, and restricted to histograms, scatter plots

and line plots.
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5.2.2 Kernel Density Estimation

Kernel Density Estimators (KDE) are generalisations and improvements over histograms.

In statistics, it is a non-parametric data smoothing method utilised to estimate the proba-

bility density function of a random variable, which can serve as an aid in the data analysis.

The mathematical formulation for a histogram as illustrated in figure 5.2 is established in

equation 5.2, where b is the bin size and N is the number of observations.

f̂ hi st (x) = 1
N

Number of xi in same bin as x
width of bin containing x

= 1
N

NX

i=1

1
b

1
n

xi 2
h

x ° 1
2 b, x + 1

2 b
io (5.2)

Figure 5.2: Illustration of a histogram

The KDE is based on some of the same intuition as histograms in the sense that it is an av-

erage and divided by some bandwidth b which is regarded as equivalent to the bin width.

The average is multiplied with a key function K (·) that weights the observations xi depend-

ing on their respective distances from x and sums them up. As opposed to equation 5.2,

the key function applies continuous weight which decreases the further xi is positioned

from x. K denotes the chosen kernel, and the choice of kernel throughout the thesis will

be the Gaussian - the Probability Density Function (PDF) of the Normal distribution.

f̂ K er nel (x) = 1
N b

NX

i=1
K

≥xi °x
b

¥
(5.3)

Creating the KDE yields a trend line showing the distribution of the initial histogram where

the total area beneath the line is equal to one. This will be applied by a built-in function in

Python in further analysis, resulting in distribution plots as illustrated in figure 5.3.
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Figure 5.3: Kernel Density Estimation

Gaussian Kernel

The Gaussian distribution kernel is the most used kernel, and is presented in equation 5.4

(Romeny (2018)).

K = 1

æ
p

2º
e° 1

2æ2 x2

(5.4)

æ determines the width of the Gaussian kernel, i.e. variance of the data.



Chapter 6

Problem 1: Identifying Bunker

Operations

This chapter presents the framework and a matching algorithm created for identifying

bunker operations used for further analysis. The work with this algorithm was initiated as

a cooperation between Wu and Aarsnes (2017) and Thomas Mestl (DNV GL), and resulted

in the project thesis An Introduction to Assessing Bunkering Operations Through AIS Data.

Thomas Mestl has further developed the algorithm.

6.1 Defining the Bunkering Operation

From now on, the term Bunkering Operation encompasses all stages from the ship anchors

up and until it withdraws its anchor and leaves the anchorage position.

6.1.1 Bunker Operation Time Line

A bunkering operation time line is illustrated in figure 6.1. The start point is defined by the

ship anchoring up at a certain position, preparing for bunkering. When the ship is ready,

the bunker barge approaches and connects to the ship. This initiates the bunkering time

which includes all steps of a bunkering operation listed in section 2.1. When the operation

is completed the barge disconnects from the ship and leaves. After hoisting the anchor, the

ship leaves its position which marks the end of anchorage.
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Figure 6.1: Bunkering time line. Note that there may be some Waiting Time and time after
bunkering; Post Bunkering Time

Waiting Time is the time from start of anchorage to start of bunkering, Bunkering Time

lasts from start of bunkering to end of bunkering and Post Bunkering Time is the final

phase from end of bunkering to end of anchorage.

6.1.2 Waiting Time, Bunkering Time and Post Bunkering Time

Time spent during a bunkering operation depends on several factors. First and foremost,

the amount of supplied fuel dominates bunkering time. Bunkering a full tank or several

tanks will require more time than filling half a tank. In addition, bunkering time is pro-

longed if signing documents, or other, is time demanding. Bunkering time will also de-

pend on the pump rate of the bunker barge.

Waiting Time is also subject to variations. Crew must prepare the ship prior to bunkering,

and the barge cannot connect to the ship until approved by ship crew. In case the ship

requires several hours to prepare for bunkering, the bunker barge may accept another

mission and return later. In this case, Waiting Time will be increased. Also, the ship may

have arrived early but ordered bunkering for a later time.

Post Bunkering Time depends on whether the ship is at anchorage or at berth. In case of

bunkering at berth, the ship can be delayed by traffic in port. With high traffic density,

ships risk queuing which prevents them from leaving port. In other cases, the barge may

deny the ship from leaving by not detaching.

6.1.3 Bunker Operation as Seen by AIS Data

Bunkering operations are not directly reflected through any AIS message components, but

comparing series of data from ships and bunker barges may provide insight to when the

ship may have been engaged in such operations. Not-in-voyage bunkering operations will

usually have low recorded SOG, typically below 1 knot. In addition, variations in coordi-

nate parameters latitude and longitude will be low due to low speed. AIS data from a ship

and a bunker barge engaged in bunkering will have similar geographical coordinates and

speed.



CHAPTER 6. PROBLEM 1: IDENTIFYING BUNKER OPERATIONS 41

Operations may be distinguished between bunkering at anchorage and at berth. At berth,

SOG will be zero, and due to the ship being moored at harbour the variation in latitude

and longitude will also be zero. In contrast, a ship at anchorage usually has a non-zero

speed (below 1 knot) due to wave, wind and current effects. In addition, it will be subject

to varying SOG, latitude and longitude. These variations will be detected by calculating

the variation in SOG, latitude and longitude of succeeding AIS messages.

Table 6.1: Parameters distinguishing bunkering at anchorage and berth

SOG Latitude Longitude

At berth Var(SOG) º 0 Var(lat) º 0 Var(lon) º 0

At anchorage |SOG| … 1 knot Var(lat) 6= 0 Var(lon) 6= 0

6.2 Uncertainties in the Bunkering Process

As mentioned in chapter 2, the shipowner or the charterer orders bunker for a predeter-

mined time and place. The schedule of ship and bunker barge may be affected by delays,

causing a shift in both time schedules. This can cause the ship or the bunker barge to ar-

rive at the predetermined position later than agreed. A delay in either schedule will delay

the scheduled bunker operation, meaning that either the ship or the bunker barge must

wait for the other party to arrive.

Secondly, when a ship is anchored up at the bunker position, the barge will attempt to

approach the ship. If the ship is not ready for bunkering, the barge may distance itself

from the ship and wait until the ship is ready within a reasonable time otherwise take an-

other assignment. This process may repeat itself until both parties are ready for bunker-

ing.

Thirdly, the bunker barge may alter its position several times during one bunker operation.

This can happen if the ship has several fuel thanks requiring filling at different locations

on the ship. The bunker barge may for example begin the bunker process on one side of

the ship, and sequentially move to the other side to finish the process. Bunkering is not a

one-size-fits-all approach, it is ship-specific.
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6.3 Matching Algorithm

6.3.1 Previous Work

Wu and Aarsnes (2017) described potential parameters for identifying bunker operations

through AIS messages.

AIS data from ships sailing near Port of Singapore was visualised in the map plotting de-

vice Tableau. As ship speed during bunkering is typically low, the coordinates were filtered

by requiring a reported SOG of 1 knot and below. Through further inspection, sector-

like shapes were identified in the plots. These shapes emerge when the ship is anchored

up, and currents and wind force the ship to move in circles or sectors around a fixation

point.

Ships are either anchored up or at berth during bunkering, and sector-like shapes that

stem from the coordinates of the ship can indicate that there has been a bunkering op-

eration. This led to the establishment of idle times - sequences of AIS messages with a

reported SOG of e.g. 1 knot and a minimum duration of e.g. two hours. Filtering the AIS

data with this requirement yielded several idle times for ships under consideration, and

bunker barges registered within 200 meters of the idle time positions were retrieved.

Figure 6.2: Illustration of area surrounding a ship with radius of 200 meters from which
barge candidates are retrieved

Bunker barges recorded within 200 meters of the idle times windows may have engaged in

a bunker operation with the chosen ship. The variation in latitude and longitude should

be similar if both ship and candidate have been anchored up at the same position. How-

ever, Wu and Aarsnes (2017) found that these coordinates could be coinciding due to cur-

rent and weather conditions in the same area, see figure 6.3. Hence, it was concluded
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that distance between the vessels should be included as a parameter. Speed restriction,

limited time window and maximum distance between ship and a candidate were thereby

suggested as parameters for identifying bunker operations.

(a) Sector-like patterns from vessels at anchorage

(b) Similar variations in latitude and longitude although different geographical
location

Figure 6.3: Movement for one bunker barge and six ships in the same geographical area
(Wu and Aarsnes (2017))

Only bunker operations at berth or at anchorage are considered. The simplest case is while

the ship is at berth as its speed will be zero, and the position of the ship will be unchanged.

At anchorage in open sea however, the ship will be exposed to currents and winds. which

will move the ship in circle-like patterns around the point of fixation depending on sea

conditions, see figure 6.3a. In this case, the position of the ship will not be constant.

6.3.2 Algorithm Structure

The algorithm reduces the original 4-dimensional problem (lat, lon, SOG, t) to a 2-dimensional

problem (CM , t) where effects of weather and current variations are removed.

The matching algorithm was developed into an alpha prototype which matches bunker

barges with ships within a specified geographical area and time frame. During the ini-
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tial identification of bunker operations, the algorithm was restricted to a smaller square

surrounding Singapore. It was later expanded to include a larger area in case some ships

have bunkered outside this area, but reported Singapore as location. A flow chart of the

algorithm structure is displayed in figure 6.4.

Figure 6.4: Flow chart of the algorithm

Inputs to the algorithm are AIS data, IMO number and dates from VPS and a list of offi-

cially approved bunker barges (Singapore (2018)). The algorithm loops through all ship

IMO numbers for the aforementioned time limit and geographical location. First, it iden-

tifies idle times for ships of minimum 2 and maximum 37 hours where recorded speed is

equal to or less than 1 knot, with a slack of +/- 2 days. Minimum 2 hours is set due to

investigating solely operations involving bunkering of HFO which usually involves trans-

ferring of larger fuel amounts. Second, bunker barges registered with maximum 1 nauti-

cal mile (NM) in distance from the ship with the same speed and lay time requirements

are retrieved from the Application Programme Interface (API) VesselTracker, where these

IMO numbers were filtered with respect to the official bunker barges list. Each identified

bunker barge is then treated separately. It then calculates a theoretical speed between

succeeding AIS messages from ship and barge to detect and remove outliers1, i.e points
1Unusually large or small observations (Anfindsen et al. (2012))
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with sudden jumps between geographical points which would require a significantly high

speed when theoretical speed of preceding and succeeding messages are much lower. Dis-

tance calculation must be done at matching time stamps, so lacking barge AIS messages

are obtained through interpolation using time stamps from ship AIS messages. A confi-

dence measure is calculated for each barge candidate which requires aligned coordinated

systems and an area computation. From the area computation, the most likely barge can-

didate can be extracted.

All identified operations are filtered by requiring that a fuel quality sample has been sub-

mitted to VPS and that the bunker barge involved is officially approved by the port au-

thority of Singapore. Positive matches from the algorithm will be regarded as (bunkering)

operations.

Table 6.2: Algorithm restrictions and values

Restriction Value

Geographical point 1 (lat, lon) (1.166278, 103.598484)

Geographical point 1 (lat, lon) (1.348818, 104.084556)

Start date 2017-01-01

End date 2017-12-31

Minimum lay time 2 [hours]

Maximum lay time 37 [hours]

Maximum speed 1 [knots]

Maximum distance 1 [NM]

6.3.3 Matching Methodology

The sector-like patterns observed in AIS data when anchorage complicates the process of

determining if a bunker barge is alongside a ship. However, a sensible transformation of

coordinate systems, i.e. from a global (lat,lon) to a local (x,y) coordinate system, will re-

move these unwanted variations. With the local coordinate system, the heading of the ship

is aligned with the y-axis with the origin at the ship position. The barge is transformed into

the same coordinate system, as shown in figure 6.5. Distance between ship and barge is

thereby no longer just a distance between AIS coordinates, which allows for computation

of hull to hull distance. Aligning the coordinate systems is illustrated in figure 6.6 (Mestl

(2015)).
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Figure 6.5: Alignment of ship (white) and barge (grey) by a local coordinate system

Figure 6.6: Effects from aligning coordinate systems. Global coordinate (left) to local co-
ordinate (right)

Sampling times of AIS messages are usually different for ship and bunker barge, i.e. not

synchronised. This may not be an issue for operations at berth, but yields complications

when calculating the distance between ship and bunker barge at anchorage due to the

drifting which constantly alters the position of each actor. Calculation of the distance be-

tween ship and barge at anchorage must therefore be done for coordinates with matching

time stamps. This can be solved by applying linear interpolation to fill the data gaps.

Distance between ship and barge is not the distance between their AIS positions, but dis-

tance between their hulls when aligned parallel to each other. With the new local coordi-

nate system, this hull-to-hull distance can easily be read from the data. During bunkering,

this distance should be small or zero. At berth the ship and barge will be positioned close

to each other, but in open sea both vessels will drift during the operation. The movements

of ship and barge will not be identical. Consequently, the distance between them will be
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different at various points of the process. When setting a maximum distance between the

actors during the operation, one must consider the change in distance between vessels in

open sea. If a conservative maximum is set, the risk is that bunker operations with large

variations in inter-vessel distance will be rejected as bunker operations.

Figure 6.7: Ship aligned with barge

In some cases, the ship can be bunkered by several barges at the same time. These can be

positioned on opposite sides of the ship as in figure 6.8a. The bunker barge can also be

bunkered by another barge, while simultaneously supplying bunker to a ship. In this case,

the second bunker barge will usually be positioned on the outer side of the first barge as

illustrated in figure 6.8b.

(a) Ship aligned with two barges (b) Barge aligned with one ship and one barge

Figure 6.8: Ship aligned with several barges

To calculate the distance between all actors, the sampled headings are manipulated to

point in the same direction. This simplifies the process of distance calculation, but the

certainty depends on a correctly reported positioning of the AIS antenna on each vessel.

An incorrectly reported position can result in e.g. a distance of zero meters, i.e. that the

vessels are positioned on top of each other.



CHAPTER 6. PROBLEM 1: IDENTIFYING BUNKER OPERATIONS 48

6.3.4 From Distance to Certainty

Instead of using hull-to-hull distance to determine if a bunker barge and a ship engaged in

bunkering, a different approach is used, resulting in a reference measure [0,1]. Alignment

area, ASB is defined as an area around the ship scaled up by the width of the barge and

some slack as defined in figure 6.9.

Observe that if there is a bunkering alongside the ship, the bunker barge is fully contained

in the ASB area. Activity is measured from 0 (no activity) to 1 (fully within required dis-

tance). Figure 6.9 illustrates two barges registered within close proximity to the ship (200

meters). Barge 1 (B1) is fully within the enclosing limit, whereas barge 2 is completely

outside the limit.

Figure 6.9: Definition of ship and barge alignment area used to calculate the certainty
measure. AB1 if fully within the area, while AB1 is fully outside.

To obtain a measure of certainty of a bunkering, the intersection of the barge area AB and

alignment area ASB relative to barge area is computed.

CM =
ASBi \ ABi

ABi

(6.1)

The certainty measure indicates proximity and alignment between ship and barge, and is

continuous between 0 and 1. A fully aligned (parallel) positioning will receive a high score,

whereas a perpendicular positioning as illustrated rightmost in figure 6.10 will receive a

low score.



CHAPTER 6. PROBLEM 1: IDENTIFYING BUNKER OPERATIONS 49

Figure 6.10: Ship and barge alignments with respective certainty measures CM

Finally, the certainty measure yields a score between 0 and 1. A score of 0 indicates that

the distance between the bunker barge was outside the alignment area, i.e. bunker barge

and ship most likely not engaged in bunkering, and/or that the vessels were not aligned.

In contrast, a score of 1 indicates that the bunker barge was fully within the alignment

area and aligned with the ship, i.e. bunker barge and ship likely engaged in bunkering.

Figure 6.11 shows three examples of ship-and-barge positionings, and table 6.3 lists their

respective scores and reasons for the score.

Figure 6.11: Barge positioning. B1 is fully aligned with the ship and fully within the align-
ment area, while B3 is positioned perpendicularly to the ship.
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Table 6.3: Certainty measure for three barges

Barge Score Reason Conclusion

1 1 Aligned and fully within the limit Bunkering

2 <1 Aligned, but partly within the limit Undetermined

3 0 Not aligned No bunkering

Note, a certainty measure can be given to any ship-barge AIS pair with equal time stamps.

This means that the original problem consisting of six fluctuating variables - latitude, lon-

gitude and SOG for both ship and barge - is now reduced to a one dimensional problem,

i.e. when CM is 1.

Figure 6.12: Reducing the problem from geographical coordinates with speed to identify-
ing when CM is equal to 1

6.3.5 Limitations

Due to the structure of the algorithm, the output data will be subject to a few limitations

as listed below:

• It is not given that there was an actual bunkering operation; matches are merely

based on what the algorithm has proved. However, an identified operation may be a

ship-to-ship operation without bunkering.

• Errors in recorded heading can prevent detection.

• The data solely exists of bunkerings that have occurred alongside, meaning that per-

pendicular bunkerings such as performed by barge 3 in figure 6.11 will be excluded

due to low certainty measures.

• Operations involving two bunker barges on each side of the ship are detected as two

individual operations.

• All bunkerings are performed at anchorage or berth, excluding all in-voyage bunker-

ings i.e. recorded SOG above 1 knot.
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• The data is limited to operations performed by barges officially approved by the port

authorities of Singapore, hence operations performed by other barges or suppliers

are not included in the data.

6.3.6 Output Data

The output from the algorithm is a Comma-Separated Values (CSV) file containing data for

bunker barges within 200 meters proximity. The data spanning a time period of one year

yielded approximately 19900 bunker operations performed by officially approved suppli-

ers on a wide variety of ships, and for the first time in history one can actually see where

the bunkering has occurred. The port authorities have officially designated bunker areas,

but where the bunkering has happened in reality is not known - at least not to the public.

Figure 6.13 shows the bunker operations identified by the algorithm, distributed over 866

ships and 32 barges.

Figure 6.13: Identified bunker operations in Singapore (2017) plotted in Tableau
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The following figure displays designated anchorage areas in Singapore.

Figure 6.14: Designated anchorage areas in Singapore (MPA (2017)). Note that identified
bunkering operations are concentrated in the designated areas.

Comparing the figures above shows that most identified operations are located in the des-

ignated areas.

Each row in the CSV file represents one bunker operation, and contains components as

shown in table 6.4. An excerpt of one file is given in appendix C, but the IMO numbers and

dates removed due to confidentiality reasons of VPS data. The data is not a complete set of

all bunker operations performed in Port of Singapore, but will serve its purpose as to map

generalities and deviations in bunker operations.
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Table 6.4: Bunker barge matching result: components and description from algorithm
output

Component Description

Bunkering number Numeration of bunker operation

IMO number International Maritime Organization identification system

Type Vessel type

Length Length of vessel [m]

Width Width of vessel [m]

Ship name Registered name of ship

VPS sample number Number of fuel sample taken by VPS

Unixtime Number of seconds elapsed since 01.01.1970

Bunkering length Length of bunkering operation [hours]

Median AIS distance Median distance between AIS antennas [m]

Median hull to hull distance Median distance between ship and barge hulls [m]

Std. dev. of hull to hull distance Standard deviation [m]

Anchoring length Length of ship anchoring [hours]

Time before bunkering Time from start of anchoring to start of bunkering [hours]

Time after bunkering Time from end of bunkering to end of anchoring [hours]

Latitude Horizontal geographic coordinate

Longitude Vertical geographic coordinate

Bunkering type At berth or at anchorage

Confidence mean Mean value of certainty measure

Confidence median Median value of certainty measure

6.3.7 Discussion of Algorithm Structure

Output from the algorithm is referred to as identified operations. However, each identified

operation is not necessarily a bunker operation. The algorithm can only to a certain ex-

tent confirm a bunker operation through the established certainty measure which is based

on alignment and proximity between ship and barge. No data is available to the author

to confirm that bunker was actually supplied. We can only assume that identified oper-

ations with high certainty measures were bunkering operations. Although an identified

operation with a certainty measure of 1 could simply have been a "coffee meeting", such

operations will be treated as bunkering operations during analysis. In addition, the mini-

mum required lay time of 2 hours assumes that minimum 2 hours is required to complete

bunkering HFO. Shorter lay times are considered as cases where the bunker barge comes

alongside the ship but must leave again as the ship was not ready for bunkering.
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The matching algorithm utilises data from three different sources; AIS data, VPS data and

officially approved bunker barges. Output from the algorithm is restricted by the data

sources in different forms. AIS data may be subject to errors due to reasons such as in-

terference or incorrectly calibrated logging equipment, see section 4.1.5. In addition, the

algorithm bases its output on operations registered in VPS data. Due to this, the algorithm

is not able to identify all operations that have occurred within set geographical and time

limits. In addition, VPS fuel quality samples do not contain specifications on which barge

performed the operation, thus the algorithm may assign a VPS sample to an incorrect op-

eration or barge. For instance, if two barges bunkered one ship and two samples where

submitted, the barges may be matched with the sample submitted on behalf of the other

barge. Operations performed by non-approved barges or with missing fuel quality sam-

ples will not be identified. Also, an API is used to extract IMO numbers within a certain

distance from the ship, and performance of the API is unkown.

Outlier detection in the algorithm is also subject to shortcomings. Not all outliers in re-

trieved AIS data will be detected. For example a too liberal speed difference restraint be-

tween succeeding AIS messages. Undetected outliers in idle times can cause incorrect

interpolation between these points, causing interpolated points to receive higher theoret-

ical speed and incorrect geographical coordinates. If interpolated coordinates exceed the

distance limit from the ship in the certainty measure, a bunkering operation may be dis-

carded by the algorithm. For example, if a barge is alongside a ship for 3 hours, but AIS

messages from this time have an outlier at 1.5 hours, the algorithm will detect this as 2

idle times lasting 1.5 hours each, and not accept them as bunkering operations due to the

requirement of minimum 2 hours lay time.



Chapter 7

Problem 2: Analysis of Matching Data

This chapter examines the output data from the matching algorithm presented in chapter

6. The output data consists of 19900 assessed bunkering operations. Treatment of data and

methods for statistical analysis were implemented in Python. Codes and pseudo codes are

included in appendix E. The aim of this chapter is to aggregate data and present results

with respect to bunkering time and other parameters.

7.1 Introduction

The aim of this case study is to analyse bunkering operations and obtain results which can

be used to derive a benchmark that quantifies bunkering operations. Output data from

the matching algorithm, presented in section 6.3, is a data frame given as a CSV file where

each row represents one bunkering operation, see section 6.3.6 and appendix C.

Expressions

To increase the understanding of the reader, expressions used in the thesis must be es-

tablished. Some of these are self-explanatory, but definitions may be useful for further

reading. All necessary expressions are summarised in table 7.1.

55
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Table 7.1: Expressions and definitions

Expression Description Acronym

Lay time Time from start of anchorage to end of anchorage of ship

Bunkering time Time from start of bunkering to end of bunkering BT

Waiting time Time from start of anchorage to start of bunkering WT

Post bunkering time Time from end of bunkering to end of anchorage PBT

Anchorage time Lay time at anchorage

Berth time Lay time at berth

Bunkering Locations

The output provides information on idle times for barges which may be used to inves-

tigate which barges are most preoccupied. In addition, it provides information regard-

ing which barge bunkered which ship, when it occurred and for how long. One barge

can bunker several ships, and figure 7.1 shows all identified operations performed by one

bunker barge.

Figure 7.1: Bunkering operations identified for one barge plotted in Tableau

7.2 Requiring Minimum Confidence Measure

Distribution of certainty measure, from now on called confidence measure, listed in the

output is shown by the histogram in figure 7.2. When a ship and a barge are alongside,

the confidence measure will be close to 1. However, when these are not alongside the

confidence will be close to 0. Confidence measures will be either close to 0 or close to 1

because one can with high certainty confirm or reject a bunkering operation. This explains

the two peaks visible in the plot.
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Figure 7.2: Distribution of confidence mean. Several operations have values close to 0.

9468 of the identified operations have a certainty measure of less than 0.1, which is equiv-

alent to 49.8% of all identified operations. The reason why these could not be identified

with a higher certainty can be various reasons:

• The ship was bunkered by a not officially approved bunker barge.

• The ship was bunkered outside the geographical scope, but has a few registered AIS

messages within the scope with SOG and distance from barge within the required

limits.

• The ship and the barge were positioned perpendicular to each other.

Prior to initiating the analysis, the data is filtered by requiring a minimum recorded con-

fidence mean of 0.7. The reason is that operations with lower confidence are with high

likelihood not bunkering operations, but rather anchored up with close proximity to each

other. Filtering reduces the CSV file 19900 to 10231 operations, which is approximately

51% of the initial data amount.

Figure 7.3a shows the distribution of confidence mean after filtering, while figure 7.3b il-

lustrates confidence mean normalised over number of operations, i.e. 10231 equals 100%,

see appendix E.1. Normalised plots are created by sorting the data frame by relevant pa-

rameter in ascending or descending order, and enumerating each operation accordingly

(from 1 to length of data frame).
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(a) Histogram of confidence mean (b) Normalised distribution of confidence mean

Figure 7.3: Distribution of confidence mean above 0.7, 95.3% of all operations have a cer-
tainty measure of more than 0.9

Note that a majority of operations in the filtered data have a certainty measure of approx-

imately 1. Lower confidence mean may occur by misalignment or due to quality issues in

antenna location.

7.3 Ship Types

Each bunkering operation listed in the CSV file includes one ship (receiver) and one bunker

barge (supplier). Along with IMO number and vessel length, the vessel types of both actors

are specified. 32 vessel types are registered among the receivers and distributed over 10231

bunkering operations with certainty above 0.7. Figure 7.4 illustrates the distribution of the

receiver vessel types in descending order, Python code is found in appendix E.2. It is worth

noting that the distribution does not consider that 3516 unique IMO numbers are regis-

tered, meaning that several IMO numbers are registered with multiple bunkerings.

Figure 7.4: Distribution of ship types. The three first ship types constitute 67% of the
bunkerings
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From the figure it is evident that Bulk Carriers, Container Ships and Crude Oil Tankers are

the most prominent types. Several vessel types have fewer than 100 registered bunkering

operations and will be excluded from further analysis, as a lower number of operations is

insufficient for proper analysis. The data frame will from this point be restricted to include

ship types as listed in table 7.2, i.e. vessels to the left of Bitumen Tankers in the figure

above, reducing the data to 9929 operations. Median values are listed rather than mean

values, as medians are less sensitive to outliers. Note that oil products tankers can be both

ship and barge. If it acts as a barge in any of the identified operations, there was a barge-

to-barge operation where fuel was transferred from one barge to another. This is known

due to the fuel sample submitted to VPS.

Table 7.2: Ship types used in analysis

Ship type Num of regist. operations % of total Median ship length

Bulk Carrier 2919 29.4 % 229

Container Ship 2273 22.9 % 294

Crude Oil Tanker 1724 17.4 % 276

Chemic./Oil Prod. Tanker 626 6.3 % 183

Vehicles Carrier 605 6.1 % 199

LPG Tanker 582 5.9 % 225

General Cargo Ship 481 4.8 % 180

Oil Products Tanker 318 3.2 % 185

Ore Carrier 214 2.2 % 327

LNG Tanker 187 1.8 % 288

Figure 7.5 shows the distribution of ship lengths for ship types with minimum 100 reg-

istered bunkerings, see appendix E.3 for Python code. The lengths are not evenly dis-

tributed, although most lengths are concentrated around 150-300 meters. Median ship

length for all ships is 230 meters.

Figure 7.5: Distribution of ship lengths, median = 230 meters
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As previously established, bunkering operations can be divided into two categories; at an-

chorage and at berth. It is assumed that time at berth is longer than at anchorage due to

additional operations such as loading and unloading of goods. To investigate whether this

assumption holds, the bunkering operations are divided into type of bunkering. From ini-

tial visualising, it was found that several bunkering operations had registered anchorage

time of up to 1400 hours. It is reasonable to assume that ships associated with opera-

tions with excessive lay times have been engaged in other missions parallel with bunker-

ing, such as repair or lay off. Operations with anchorage time of more than 150 hours are

therefore segregated from the data. The distribution of the truncated data is plotted in fig-

ures 7.6, 7.7 and 7.8, in which the segregated operations are represented as one individual

bin in the rightmost position of the plots (see appendix E.4 for code).

Figure 7.6: Histogram (left) and normalised plot (right) of lay time all ships. Observe that
75% of all ships had lay time of 23.55 hours or less.

Figure 7.7: Histogram (left) and normalised plot (right) of anchorage time. Observe that
75% of ships at anchorage had anchorage time of 23.22 hours or less.
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Figure 7.8: Histogram (left) and normalised plot (right) of berth time. For comparison,
anchorage time was superimposed in the normalised plot. Observe that 75% of ships at
berth had berth time of 27.42 hours or less, and that anchorage and berth follow a similar
pattern with more short stays at anchorage.

As seen from the figures above, no operations with registered anchorage time of less than

two hours are plotted. This is a result from requiring minimum two hours lay time in the

matching algorithm. As anticipated, the concentration of short anchorage periods (less

than 30 hours) is slightly higher for ships at anchorage. No obvious outliers are observed in

the histogram of figure 7.7. The blue line represents the KDE, which follows the histogram

closely. This indicates that the lay time has a top at approximately 16-17 hours, with a large

tail to the right. For ships at berth there is a top at 16-17 hours, and a second small peak

close to 80 hours. Table 7.3 display median lay time, anchorage time and berth time. Note

that median time at berth is longer than at anchorage.

Table 7.3: Median lay time

Parameter Value

Median lay time 16.6 [hours]

Median anchorage time 16.6 [hours]

Median berth time 17.7 [hours]

The plots to the right in figures 7.7 and 7.8 display normalised distributions of time at an-

chorage and berth respectively. Further inspection shows that 75% of ships at anchorage

have a lay time of 35 hours or less, and 75% of ships at berth lie less than 25 hours, under-

scoring that ships at berth lie longer than ships at anchorage.

From figure 7.5 it was found that most ships engaged in bunkering operations have lengths

exceeding 150 meters. The ships are therefore divided by this limit, creating two groups of

ships characterised as small and large ships. The following figures display lay time for

ships at anchorage and at berth. Code is found in appendix E.8.
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Figure 7.9: Histogram (left) and normalised plot (right) of anchorage time for small and
large vessels

Figure 7.10: Histogram (left) and normalised plot (right) of berth time for small and large
vessels. Note that the normalised plot is transversed from the equivalent plot at anchorage.

Distributions of lay time for large ships at anchorage and berth are similar. On the con-

trary, the distributions for small ships are influenced by spikes at e.g. 40 and 76 hours.

Further inspection shows that dominating ship types with more than 70 hours lay time

are distributed between general cargo ships and different tankers at berth, and between

chemical/oil products tankers, general cargo ships and LPG tankers at anchorage. Small

ships with lay time around 40 hours at anchorage are distributed between all ship types

under scrutiny. At berth, the dominating ship types are vehicles carriers, general cargo

ships and container ships.

7.4 Bunkering Time

Bunker barges are the suppliers in a bunkering operation. Among the 9929 registered

bunkering operations, 184 individual IMO numbers are distributed over 6 vessel types (re-

duced from 198 IMO numbers and 7 vessel types in the unfiltered data output). Further
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inspection showed that one of these types are towing vessels, meaning that (some) tow-

ing vessels have been approved by the port authority of Singapore to also deliver fuel, but

probably only relatively small quantities. Therefore, towing vessels are included in fur-

ther analysis. The distribution of the vessel lengths for all bunker barges (left), and barge

lengths normalised over number of operations (right) are visualised in figure 7.11 to form

an impression of the general bunker barge length. Code is found in appendix E.5.

Figure 7.11: Histogram (left) and normalised plot (right) of barge lengths. Median barge
length = 90 meters.

No obvious distribution pattern is seen from the barge lengths, although there is a slightly

higher concentration around 90-104 meters. Approximately 70% of the 184 bunker barges

have lengths of more than 90 meters. Furthermore, the general bunkering time is visu-

alised for barges in figure 7.12.

Figure 7.12: Histogram (left) and normalised plot (right) of bunkering time for all barges.
Median bunkering time = 6.5 hours. Note that 90% of all barges have bunkering times of
less than 14 hours

Due to the requirement of minimum bunkering time in the matching algorithm described

in section 6.3, no bunkering operations in the data set have registered bunkering time

of less than this limit. Lay time for bunker barges is equivalent to bunkering time. It is

evident from the figure that most bunkering times are centred around 2-10 hours, and
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the KDE graph is smooth suggesting normal distribution. Of 9929 operations, 9234 were

performed at anchorage and 625 at berth. Figures 7.13 and 7.14 display the equivalent

plots for bunkering at anchorage and berth, respectively.

Figure 7.13: Histogram (left) and normalised plot (right) of bunkering time at anchorage

Figure 7.14: Histogram (left) and normalised plot (right) of bunkering time at berth. For
comparison, anchorage time was superimposed in the normalised plot. Note that bunker-
ing time at anchorage is usually longer than at berth.

Bunkering time lengths are centred around five hours both at anchorage and at berth.

However, fewer operations at berth have bunkering lengths exceeding 20 hours, and the

distribution at anchorage is wider. One reason for this may be that operations at anchor-

age are incorrectly identified by the algorithm due to for example the interpolation.

Another reason may be that ships at berth in general have shorter ship lengths than those

at anchorage, due to for example length restrictions at berth where larger ships must bunker

at anchorage so larger bunker barges can perform the operation. Time spent connecting

ship to barge is generally equal independent of bunkering type, but can be longer at an-

chorage due to wind and currents. Table 7.4 displays median bunkering time for all opera-

tions, operations at anchorage and operations at berth. Note that median bunkering time

at anchorage is longer than at berth.
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Table 7.4: Bunkering

Parameter Value

Median bunkering time 6.5 [hours]

Median bunkering time at anchorage 6.5 [hours]

Median bunkering length at berth 5.7 [hours]

Lay time and bunkering time for all operations, operations at anchorage and operations at

berth restricted to maximum lay time of 60 hours are plotted in figure 7.15, 7.16 and 7.17

for comparison, see appendix E.6.

Figure 7.15: Histogram (left) and normalised plot (right) of lay time and bunkering time
for all operations

Figure 7.16: Histogram (left) and normalised plot (right) of lay time and bunkering of an-
chorage time. Note that the distribution is almost identical to general lay time for all ves-
sels in the figure above.
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Figure 7.17: Histogram (left) and normalised plot (right) of lay time and bunkering of berth
time

In total, 93% of all operations were performed at anchorage, which results in the distribu-

tions of time for all operations and at anchorage being quite similar. A larger fraction of the

distribution at berth has lay time of more than 20 hours. Bunkering time at berth is how-

ever shorter. Median lay and bunkering time at anchor and berth differ with maximum 1.2

hours. The difference is sufficiently small to disregard the separation of bunkering oper-

ations at anchorage and berth. Therefore, operations can be analysed without separating

them according to bunkering type.

Figure 7.18: Scatter plot of lay time vs bunkering time for all operations. Most operations
are located in the lower left corner.
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7.5 Bunkering Ships

Bunkering times for all ships are identical to bunkering times for all bunker barges pre-

sented in figures 7.13 and 7.14 for barges. As for lay time, bunkering times for small and

large ships at anchorage and berth are plotted in figures 7.19 and 7.20, respectively. As

expected, bunkering time for large ships is in general longer than for small ships, which is

evident in the figures.

Figure 7.19: Histogram (left) and normalised plot (right) of bunkering time for small and
large vessels at anchorage.

Figure 7.20: Histogram (left) and normalised plot (right) of bunkering time for small and
large vessels at berth. Note that distributions for anchorage and berth are quite similar,
but bunkering time is longer for large ships.

Bunkering lengths for the three dominating ship types are further scrutinised to evalu-

ate whether difference between these may have any impact on the bunkering operation.

Figures 7.21a, 7.21b and 7.21c illustrate the distribution of bunkering times for ship types

bulk carriers, container ships and crude oil tankers respectively, see appendix E.7.
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(a) Bulk Carriers (b) Container Ships

(c) Crude Oil Tankers

Figure 7.21: Bunkering time for three ship types. Crude Oil Tankers have have a longer tail
towards longer bunkering time.

As can be seen from the plots above, the distributions of bunkering lengths vary according

to ship type. Bulk carriers and containers ship have similar bunkering time distributions.

A slightly larger fraction of bulk carriers also has bunkering times of more than 12 hours.

Crude Oil Tankers have a longer tail towards long bunkerings. However, it is reasonable to

conclude that the variability in bunkering lengths between these three ship types are small

relative to each other. Median bunkering time for each ship type is listed in table 7.5.
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Table 7.5: Median bunkering time per ship type

Ship type Num of samples Med. lay time [hours] Med. bunk. time [hours]

Bulk Carrier 2919 14.5 6.2

Container Ship 2273 17.0 6.6

Crude Oil Tanker 1724 22.6 8.2

Chem/Oil Prod. Tank. 626 16.2 5.3

Vehicles Carrier 605 12.8 5.8

LPG Tanker 582 16.1 6.3

General Cargo Ship 481 15.3 5.1

Oil Products Tanker 318 16.8 5.7

Ore Carrier 214 24.0 10.1

LNG Tanker 187 24.9 8.7

Median bunkering time per ship type is distributed from 5.1 - 10.1 hours. Ore Tankers

possess the highest median, followed by LNG Tankers with a median of 8.7 hours. Higher

median bunkering time can be caused by larger ship lengths demanding larger supplies

of fuel, meaning that bunkering will require more time. Median bunkering times for ships

with most registered operations are spread within a narrow interval, hence, ship lengths

for these are plotted in the following figures to investigate whether the assumption of

longer ship lengths require longer bunkering operations.

Figure 7.22: Lay time for container ships, bulk carriers and crude oil tankers. Note that
LNG tankers have the longest lay time.
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Figure 7.23: Bunkering time for container ships, bulk carriers and crude oil tankers. Note
that distributions of lay time and bunkering time per ship type is similar.

(a) Bulk Carriers (b) Container Ships

(c) Crude Oil Tankers

Figure 7.24: Distribution of ship length for three ship types. Note that bulk carriers have
three dominating ship lengths; 190, 240 and 300 meters. Crude oil tankers are generally
long, with a group of smaller vessels around 250 meters.

Ship length distributions for bulk carriers, container ships and crude oil follow no spe-

cific patterns. From the figures it seems as the increasing median bunkering time follows

median ship length. Conferring with table 7.2 rejects this.
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7.6 Time Before and After Bunkering

Time before bunkering, or Waiting Time (WT), is defined as time from start of lay time to

start of bunkering. Time after bunkering, or Post Bunkering Time (PBT), is defined as time

from end of bunkering to end of lay time. Recorded anchorage start time and bunkering

start time were used to calculate WT and PBT for each operation as per equation 7.1.

WT = Unixtime Bunkering Start°Unixtime Lay Start

PBT = Unixtime Lay End°Unixtime Bunkering End
(7.1)

Figures 7.25, 7.26a and 7.26b display the distribution of WT for all operations, operations

at anchorage and operations at berth respectively, see appendix E.11. No obvious differ-

ences can be seen from the plots as the distribution of WT is similar, although WT at berth

seems to have fewer registrations exceeding 10 hours. Other than that, it is clear from the

distribution that WT for most operations is less than 5 hours.

Figure 7.25: Waiting Time for all ships

(a) Waiting Time at anchorage (b) Waiting Time at berth

Figure 7.26: Waiting Time per bunkering type. Note that waiting time is similar indepen-
dent of bunkering type.
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Figures 7.27 and 7.28 show PBT for all operations, operations at anchorage and operations

at berth respectively to investigate whether these are similar to the WT distributions.

Figure 7.27: Post Bunkering Time for all ships

(a) Post Bunkering Time at anchorage (b) Post Bunkering Time at berth

Figure 7.28: Post Bunkering Time per bunkering type. Note that post bunkering time is
usually longer at berth.

Figures 7.28a and 7.28b display clear differences. Both decrease with time, but PBT at

berth has a long tail towards longer bunkering time than at anchorage. A larger fraction of

operations at anchorage have shorter PBT than at berth. Primary reasons for being at berth

is loading and unloading. If a bunkered ship is not finished unloading, it will stay at berth

for a longer time. In contrast, the primary reason for being at anchorage is bunkering, i.e.

after bunkering the ship will leave as soon as possible. Median WT and PBT are displayed

in table 7.6 underscoring the plots.

Table 7.6: Median Waiting Time (WT) and Post Bunkering Time (PBT)

Parameter WT [hours] PBT [hours]

Median time for all operations 1.8 4.5

Median time at anchorage 1.8 4.4

Median time at berth 1.9 7.0
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Merging WT and PBT into one plot yields figure 7.29. Code for the normalised plot is found

in appendix E.12.

Figure 7.29: Normalised distribution of WT and PBT. Note that Post Bunkering Time gen-
erally is longer than Waiting Time.

Focusing on the section of WT and PBT less than 200 hours shows that WT in general is

longer than BPT. This indicates that ships usually wait longer to be bunkered than they

remain in position post bunkering. Figure 7.30 illustrates the 25% and 75% quantiles of

WT and PBT.

Figure 7.30: 25% and 75% quantiles of Waiting Time and Post Bunkering Time

It is evident from the figure that 75% of all operations have less than hours 5.55 WT and

10.58 hours PBT. Equally, 25% of all operations have less than 1 hour WT and 1.8 hours

PBT. Bunkering time and WT were initially the main focus in this thesis. Bunkering time

as a parameter is less useful in terms of quantifying bunkering operations as the amount

of tranferred fuel is unknown. Median WT and PBT for all operations are 1.8 and 4.5 hours

respectively, indicating that ships wait for the barge and leave relatively soon post bunker-

ing. It is therefore concluded that these parameters should be implemented in a quality



CHAPTER 7. PROBLEM 2: ANALYSIS 74

index. According to John Stirling from WFS, 2 hours WT is usually accepted in the bunker-

ing industry, thus more than 50% of the identified operations are within this limit.

7.7 Discussion of Analysis

The analysis is based on data from operations that have been confirmed with a certainty

measure of minimum 0.7 by the matching algorithm.

As previously mentioned, reasons for any late arrivals are not known to the author. Both

ship and bunker barge can arrive late to a predetermined bunkering operation, which de-

lays the operation. If a ship arrives late, the barge can choose to prioritise another bunker-

ing operation before returning to the initial appointment.

Statistical analysis conducted in this chapter is also based on plots found reasonable to

investigate by the author. Numerous plots were constructed to conduct a comprehensive

analysis, and the most appropriate and describing plots have been presented.

Dividing between bunkering at anchorage and at berth was regarded as unnecessary due

to little differences between plots. However, it is worth noting that operations at anchorage

constituted 93% of all identified operations, which means that operations at berth have

little impact on the distribution of the data. Identifying more operations at berth would

increase the basis for statistical analysis which could yield different results.



Chapter 8

Problem 3: A Quality Index for Bunkering

Times

This chapter presents a suggested quality index for quantifying bunkering operations and

justifications for the structure of the index. Calculation of the index is performed on a

selection of operations.

8.1 Bunkering Process Time Line

Each bunkering operation is different with regards to time spent before and after bunker-

ing during anchorage. Figure 8.1 illustrates three bunkering operations of different charac-

teristics. The blue lines represent anchorage time for each ship, and the red lines represent

bunkering time. Code is found in appendix E.9.

Figure 8.1: Bunkering and anchorage time lines for three operations: Bunkering at the end,
middle and start of anchorage.
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Operation 1

As opposed to operations 1 and 2, the waiting time prior to operation 3 is very large rela-

tive to time after bunkering. The plot shows that the ship has left the location immediately

post-bunkering. With regards to the waiting time, this can indicate that the bunker barge

or ship arrival was delayed, and the ship was under pressure to maintain a time sched-

ule.

Operation 2

Operation 2 is characterised by approximately equal waiting time and time after bunker-

ing. Although the ship waits more than 10 hours for the bunker barge to arrive, it seems to

be in no rush to continue its journey as it has a long post-bunkering period. Due to this,

operation 2 is also a good bunkering.

Operation 3

Operation 1 may be characterised as a good bunkering. The bunker barge arrives for

bunkering shortly after the start of anchorage, hence the waiting time is short. The ship

also remains anchored for a long period of time after bunkering is completed, and the

relationship between time after bunkering and waiting time is high.

8.2 Waiting Time and Post Bunkering Time

To get an overview of the general WT-PBT relationship, these parameters are plotted in a

scatter plot. Figure 8.2 illustrates a general scatter plot of WT with respect to PBT. In the

figure, four sections are marked and characterised from good (sections 1 and 2) to bad

(sections 3 and 4). Short WT with short PBT is considered the optimal outcome, while a

long WT followed by a short PBT is the worst outcome. Figure 8.3 shows the equivalent

scatter plot for the bunkering operations, see appendix E.11.

Figure 8.2: General scatter plot
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Figure 8.3: Scatter plot of Waiting Time vs Post Bunkering Time. Note that most operations
are located in the sections characterised as good. The linear graph is subject to larger
variability at longer Waiting Time and Post Bunkering Time. Pearsonr = 0.2 indicates low
correlation between points.

Scatter plots of WT and PBT offer a much more grained view of the underlying data. From

the scatter plot it is evident that a majority of the operations have WT and PBT in the good

sections of the plot, which indicates that most operations are performed within acceptable

time frames.

8.3 Proposing an Index

Several aspects of bunkering operations were analysed in chapter 7. WT and Bunkering

Time were initially regarded as parameters that could beused to derive an index quantify-

ing bunkering operations. If an operation is evaluated merely based on WT, the index can

provide a low score due to long WT without considering that the ship can also have a long

PBT.
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A long WT followed by a long PBT indicates that the ship was in no rush to leave its loca-

tion. The operation can neither be regarded as good nor bad due to this, since planned

time for bunkering cannot be confirmed. However, long PBT indicates that the bunker

barge arrived within reasonable time, and it can be assumed that the time frame of the

operation was within reasonable limits, qualifying for a high score. On the other hand, a

long WT followed by a short PBT can indicate that the operation was delayed either by the

barge or the ship arriving later than agreed, which qualifies to a lower score.

The questions are how long it is appropriate to wait prior to bunkering, and at which value

WT goes from good to bad. Rather than specifying some arbitrary value, the data decides

itself. Quantiles will be used to decide when WT is accepted and not. Quantile values de-

fine the maximum or minimum registered value of a parameter within a fraction of the

operations when sorting the data according to ascending or descending order of the pa-

rameter. Based on this, the 75% quantile values of WT and PBT are retrieved from the

analysis and listed in table 8.1. For example, the 60% quantile of WT specifies the maxi-

mum WT registered when arranging all operations by ascending WT, and segregating the

first 60% of the data. Table 8.1 displays the 25% and 75% quantiles of WT and PBT.

Table 8.1: Waiting Time (WT) and Post Bunkering Time (PBT) parameters

Parameter Parameter Value [hours]

WT
25% quantile 1

75% quantile 5.55

PBT
25% quantile 2.1

75% quantile 10.58

75% quantiles represent the upper bounds for WT and PBT respectively. This implies that

5.55 hours WT or more is regarded as the worst outcome in a bunkering operation, and

10.58 hours PBT or more is regarded the best outcome. Not all loss is due to late arrivals,

so assuming that 25% of bunkering operations are affected by late arrivals yields the lower

bound of WT qualifying for a score of zero. The opposite reasoning is laid to ground for

limit of PBT. Short WT is desirable while long PBT indicates no rush, and since a 75%

quantile yields the lower limit for WT, the equivalent quantile yields the upper limit for

PBT.

Contrarily, 25% quantiles should indicate lower bounds for WT and PBT. The 25% quan-

tile for WT is 1 hour. However, according to John Stirling from WFS, a WT of 2 hours is

usually accepted, and the lower bound of WT is set accordingly. That is, a WT<=2 hours

is equivalent to a character of 1, and a WT larger than the 75% quantile qualifies for char-

acter 0. Since 25% of all operations have WT within reasonable limits, the lower bound of
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PBT should be set accordingly, i.e. lowest acceptable PBT is 2.1 hours. . Similarly, all PBT

below the 25% quantile qualify for a character of 0. Code for the following plots are found

in appendix E.13. A simple mapping function from WT/PBT to a score could be linearised

between the quantiles yielding the following plot, where the x-axis denotes time and y-axis

denotes a score from 0 to 1.

Figure 8.4: Index plot illustrating the linearised relationship between good and bad WT
and PBT

Based on the figure above, one can for each operation obtain a score for WT and PBT.

A final score should take both parameters into account, to avoid a barge from receiving

a penalty based on only one of them. The index should yield high scores if WT or PBT

receives character 1. This is justified by the fact that if the ship has a high PBT, i.e. stayed

long in port after bunkering, one cannot confirm that the barge arrived later than agreed.

Equally, a low WT suggests that the barge arrived on time, and a short PBT should not

affect the final score. Therefore, the index should only give penalty when neither of the

parameters are scored as 1, yielding the following expression.

QBT = TW T + (1°TW T ) ·TPBT (8.1)

Here, the term QBT (Quantifying Bunkering Time) is the index per bunkering operation,

TW and TPBT are the WT and PBT scores retrieved from figure 8.4.
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8.4 Quantifying Operations

A selection of bunkering operations is quantified by the index to investigate whether it

scores the operations reasonably or not. First, linear equations for increasing and decreas-

ing parts of figure 8.4 are obtained on the form displayed in equation 8.2.

y = a +bx (8.2)

Following equations are obtained for WT and PBT respectively:

WT: IW T = 111
71

° 20
71

W T

PBT: IPBT = °105
424

+ 50
424

PBT
(8.3)

Scores are calculated in Python, see appendix E.14, and a selection is displayed in table

8.2. Code for calculation is found in appendix E.14.

Table 8.2: Calculated index (QBT)

Operation number WT PBT IW T IPBT QBT

1 1.1 3.6 1 0.1865 1

2 1.6 1.2 1 0 1

3 10.7 0 0 0 0

4 1 24.1 1 1 1

5 11.1 13.5 0 1 1

6 0.9 68 1 1 1

7 2.7 5.8 0.8028 0.4363 0.8888

8 0.4 4.7 1 0.3066 1

9 1.2 21.3 1 1 1

10 2.4 1.3 0.8873 0 0.8873

11 8.3 0 0 0 0

12 2.6 51.3 0.8309 1 1

13 14.7 3.8 0 0.2005 0.2005

14 2.5 42.4 0.8592 1 1

It is evident from the table that score of PBT becomes effective when the score of WT is

between 0 and 1. In all other cases, the score of WT determines the calculated index. These

results show that the proposed index is satisfying for quantifying the bunkering time line,
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but cannot be used to quantify suppliers without additional verification data. Figure 8.5

displays a histogram of scores for operations at anchorage and at berth.

Figure 8.5: Histogram (left) and normalised plot (right) of QBT. Note that a larger fraction
of operations at anchorage have lower scores than at berth.

It is evident from the figures that operations at berth in general receive higher scores than

operations at anchorage. This suggests that operations at berth are more often performed

within reasonable time limits.

8.5 Discussion of Index

WT and PBT was a result from the analysis conducted in chapter 7. Based on the analysis

it is evident that a quality index should consider both WT and PBT. The reason for this is

that if an operation is evaluated merely based on WT, the index can provide a low score due

to long WT without considering that the ship can also have a long PBT. WT and PBT are

seemingly sufficient for characterising bunkering operations, as the parameter Bunkering

Time itself may be inadequate for quantifying operations.

Long WT can be caused by the ship arriving late for the bunkering, leading the bunker

barge to prioritise another bunkering appointment before returning to the initial ship. In

this case, the barge will receive a low score due to a long WT. A long WT can occur if the ship

arrives too early for bunkering, also leading to a low score. It it important to underscore

that it is not necessarily the barge that receives a bad score, it is the bunkering event that

is quantified - that is both ship and barge.

An index should in theory comprise all aspects necessary for quantification. No fuel qual-

ity data is implemented in the index, but expanding the index to comprise these elements

should be assessed to achieve a comprehensive decision making parameter. Whether time

consumption or fuel quality has the most impact is disputable. Poor fuel quality reduces
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the life cycle of machinery, while delays can prevent a ship from completing its missions

on time - both inducing higher costs.

Finally, the bunkering time line is subject to variations in each operation. An operation

may be performed as planned although the data registers long WT and short PBT. There-

fore, the index merely quantifies operations based on set parameters, without verifying

any delays. Nonetheless, the innovative benchmarking has proven useful to score opera-

tions in general, in forms a framework for further development.



Chapter 9

Discussion

This chapter outlines a summarising discussion of each problem presented in previous

chapters.

A framework was constructed to identify bunkering operations. Inputs to the matching

algorithm are AIS data, VPS data and a list of officially approved bunker barges. AIS data

is utilised for identifying idle times for ship and bunker barge and calculate distance be-

tween the actors. However, AIS data may be prone to errors due to various reasons, thus

yielding incorrect interpolation and hence incorrect identification of idle times and dis-

tances. Unsatisfactory results from this identification may lead the algorithm to discard

bunkering operations.

Furthermore, initially identified operations match with approximately 60% of operations

listed in VPS data, excluding 40% of possible bunkering operations. Since VPS data and

officially approved bunker barges are implemented to filter identified operations, bunker-

ings lacking VPS samples or performed by unapproved suppliers are excluded from the

output data. These operations would be valuable to investigate, as the aforementioned

factors contribute to reducing the integrity of the suppliers. However, the algorithm has

proven useful to identify ship-to-ship operations, and can potentially be developed to

identify bunkering operations with higher certainty.

Analysis is based on output data from the algorithm, thus the analysis is only as good as

the data itself. Lack of information regarding requested fuel amount, in addition to time

and location for the bunkering, complicates the analysis. Hence, the author has relied on

guidance from industry experts and assumptions based on visualisation of data. Reasons

for late arrivals may be several, and intentional late arrivals can neither be confirmed nor

rejected.

WT and PBT were deemed suitable for quantifying bunkering operations. The established
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index is based on scoring these parameters according to acceptable and unacceptable val-

ues. However, the index quantifies each operation without taking fuel quality into account.

Quantifying cannot be done for individual suppliers with this method, but benchmarking

can be implemented in industries if access to data of higher quality is provided.

Bunker barges (or suppliers) have been in the centre of attention through analysis and

discussions, condemning barges as responsible for malpractices. Nevertheless, ships and

crew may also be responsible for such incidents, and the obtained index quantifies the

bunkering operation itself and not involved parties.



Chapter 10

Conclusions and Recommendations for

Further Work

This chapter presents final conclusions from this study, and gives recommendations for

further work.

10.1 Concluding Remarks

The main objectives for this project were formulated in the introduction as follows:

1. Develop a framework for identifying potential bunker operations.

2. Perform data exploration of bunkering data.

3. Propose criteria for a benchmark quantifying bunker delivery time with respect to

lay time.

This thesis has been able to demonstrate that AIS data can be used to identify bunkering

operations. However, in some cases the matching algorithm performs poorly. For exam-

ple, the alignment area ASB was based on the ship area and scaled by the barge width.

In situations where the bunker barge is longer than the ship, CM can never be 1. In such

cases, ship and barge areas should be swapped. Nevertheless, we were surprised by how

well the algorithm worked.

A large fraction of the VPS samples could not be identified. A reason for this may be that

the AIS transponder was turned off during the operations, in which case an unlicensed

bunker barge can sneak in to perform the operation undetected. Such operations cannot

be analysed as no AIS data will be available.
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An index was proposed based on WT and PBT. It is concluded that these parameters are

sufficient to describe bunkering operations considering the lack of available data such

as supplied fuel and agreed time and place for bunkering. However, the index can at this

stage not quantify suppliers as it is merely based on time distribution, which is insufficient

to assign blame on any actor. Nevertheless, the index can rate the bunkering operations

from 0 to 1, and is an innovative method of quantifying operations.

While conducting the thesis, a potentially new data set of operations has been obtained. It

may thereby contribute to enhance transparency in the bunkering business. The data set

can be utilised to identify when and where an operation occurred, and for how long.

One of the main accomplishments of the thesis is to demonstrate that AIS data, even at a

10 minute time resolution, is sufficient to identify bunkering operations. This thesis has

opened up a completely new field of study and application area. The algorithm is a proof

of concept, in which bunkering operations have been identified with high likelihood. As

the algorithm is still under development, it has wide potential in further development but

with AIS data of better quality, one can for the first time in history identify operations with

high certainty.

10.2 Recommendations for Further Work

The algorithm can be improved to speed up the identification of bunker barges. Use of

Geohashed1 AIS tables can be utilised to check all nearby vessels and not only officially

approved barges. With geohashed AIS tables there is no need for the API VesselTracker,

and it is possible to filter vessels more efficiently.

The algorithm focuses on the ship when identifying nearby barges. In further work, the

algorithm can be expanded to identify whether the ship or the barge is largest and set the

distance limit accordingly. With the current structure, the distance limit is set depend-

ing on the barge width (two times the barge width), but if the barge is larger than the

ship the certainty measure does not work well. Setting the limit according to the small-

est vessel makes the limit more conservative. In addition, along with identifying alongside

bunkering operations, the algorithm may be expanded to identify perpendicular opera-

tions.

As previously mentioned, interpolation in the algorithm is done to create synchronised

time samples for ship and barge AIS data. The interpolation is conducted based on existing

data points without taking weather and current conditions into account. However, if this

1Domain geocoding based on hierarchical spatial data structure which subdivides space into buckets of
grid shape (Finder (2018))
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data is available it can be included to obtain more accurate interpolation results. Where

to retrieve this data is not known to the author, but it could serve as a good basis for a

separate study.

The constructed index can also be improved to be more comprehensive, such as taking

bunkering time and VPS data into account. This could be used to gather data regarding

bunker barges and other suppliers to establish a framework for choosing supplier.

Results from the index calculation should be compared to VPS fuel quality samples to ver-

ify whether barges that receive low scores, also deliver low quality fuel. VPS data is avail-

able, hence a statistical analysis is feasible based on results obtained in this thesis. Due to

time limitations this could not be conducted by the author.

The method used in this thesis can be expanded to other types of ship-to-ship operations,

such as loading/unloading or transfer of oil/fish/cargo to other vessels, as long as AIS data

on a high-resolution level is available. An example is in the fishing industry where ille-

gal amounts are fished and vessels distribute the fish to other actors. This is potentially

feasible close to shore, but on high seas the satellite coverage is lower and may not be of

satisfying quality.
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Appendix A

Acronyms

AIS Automatic Identification System

API Application Programme Interface

BDN Bunker Delivery Notes

BT Bunkering Time

CSV Comma-Separated Values

DNVPS DNV Petroleum Service

GPS Global Positioning System

GT Gross Tonnage

IALA International Association of Marine Aids to Navigation and Lighthouse Authorities

IMO International Maritime Organization

KDE Kernel Density Estimator

MARPOL International Convention for the Prevention of Pollution from Ships

MMSI Maritime Mobile Service Identity

MPA Marine Port Authority

MT Metric Tonnes

NM Nautical Miles

OPEC Operational Costs

PBT Post Bunkering Time

ii
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PDF Probability Density Function

S-AIS Satellite Automatic Identification System

SOG Speed over ground

SOLAS International Convention of Safety of Life at Sea

SQL Structured Query Language

VHF Very High Frequency

VPS Veritas Petroleum Services

WFS World Fuel Services

WT Waiting Time
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Appendix E

Python code

Python codes used in this thesis are listed in this appendix. Each script is independent

of other scripts. All scripts involving reading of the CSV file from the matching algorithm

have the following head:

1 Import packages

2

3 Read CSV file

4

5 Reduce dataframe to specified columns

6

7 Rename columns

8

9 Remove operations with certainty measure below 0.7

10 Reduce data frame to specified ship types

11

12 Specify plot style

Histograms and line plots are created by using Python packages Seaborn and Matplotlib,

which Seaborn is built upon. Number of bins in histograms for a parameter is defined

defined by retrieving maximum and minimum recorded values of the parameter, and di-

viding their difference with a specified bin size. KDE lines are plotted by specifying K DE =
Tr ue in Seaborn histograms.

Normalised plots of a parameter are constructed by sorting the data frame according to

the parameter in ascending order. A new column with normalised values is created with

length equal to the dataframe. Each entry in the column is equal to the entry number

divided by the length of the dataframe - transforming each entry to the percentage of total

length. The sorted parameter and the normalised columns are plotted in a line plot.

x



APPENDIX E. PYTHON CODE xi

E.1 Distribution of Confidence Mean

Confidence_Mean_Plotting.py

1 """

2 Plot histogram and normalised distribution of Confidence Mean ...

(certainty measure)

3 Created: 29. April 2018

4 Author: Marion Aarsnes

5 """

6

7 import pandas as pd # Data analysis tools

8 import seaborn as sns # Library of plots built upon ...

matplotlib

9 import matplotlib.pyplot as plt # Plots

10 import matplotlib.ticker as mtick # Formatting plots

11 import numpy as np # Scientific computation

12

13 # Read CSV file

14 AIS_dataframe = pd.read_csv('filedirectory/filename.csv.csv')

15 print(AIS_dataframe.columns)

16

17 # Clean up dataframe

18 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'confidence_mean']]

19 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

20 "shipType.s": "ShipType",

21 "length.s": "ShipLength",

22 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

23 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

24 "confidence_mean": ...

"ConfMean"})

25

26 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

27

28 # Set plot variables

29 sns.set(style="whitegrid", color_codes=True)

30 sns.despine(left=True)

31

32 # Plot histogram of Confidence Mean from initial algorithm output

33 ax = sns.distplot(AIS_dataframe.ConfMean,
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34 bins=25, kde=False, hist_kws=dict(edgecolor='b', ...

linewidth=2))

35 ax.set(ylabel="Number of operations", xlabel="Confidence mean", ...

title="Distribution of Confidence Mean")

36 plt.legend()

37 plt.show()

38

39 # Plot histogram of Confidence Mean ∏ 0.7

40

41 # Remove rows with Confidence Mean < 0.7 from dataframe

42 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

43

44 # Plot certainty measure

45 ax = sns.distplot(AIS_dataframe.ConfMean,

46 bins=25, kde=False, hist_kws=dict(edgecolor='b', ...

linewidth=2))

47 ax.set(ylabel="Number of operations", xlabel="Confidence mean", ...

title="Distribution of Confidence Mean")

48 plt.legend()

49 plt.show()
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E.2 Distribution of Ship Types

Distribution_Shiptypes.py

1 """

2 Plot distribution of shiptypes in histograms

3 Created: 02. April 2018

4 Author: Marion Aarsnes

5 """

6

7 # Importing packages

8 import pandas as pd # Read CSV

9 import seaborn as sns # Library of plots built upon ...

matplotlib

10 import matplotlib.pyplot as plt # Plots

11 import matplotlib.ticker as mtick # Formatting plots

12 import numpy as np # Scientific compution

13 from matplotlib.pyplot import xticks # Rotate plot

14

15 # Read CSV file

16 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

17 print(AIS_dataframe.columns)

18

19 # Clean up dataframe

20 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'imo.s', ...

'length.s', 'length.b', 'bunkeringLength_hrs', ...

'anchoringLength_hrs', 'bunkeringType', 'confidence_mean']]

21 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

22 "shipType.s": "ShipType",

23 "imo.s": "IMOship",

24 "length.s": "ShipLength",

25 "length.b": ...

"BargeLength",

26 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

27 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

28 "bunkeringType": ...

"BunkeringType",

29 "confidence_mean": ...

"ConfMean"})

30

31 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]
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32 # Rename ship types

33 AIS_dataframe = AIS_dataframe.replace({"FSO (Floating, Storage, ...

Offloading)": "FSO", "FPSO (Floating, Production, Storage, ...

Offloading)": "FPSO"})

34 # Require a minimum confidence mean of 0.7

35 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

36

37 # Set plot style

38 sns.set(style="whitegrid", color_codes=True)

39

40 # Plot number of operations per ship type

41 ax = sns.countplot(AIS_dataframe.ShipType, ...

order=AIS_dataframe['ShipType'].value_counts().index)

42 xticks(rotation=90)

43 plt.show()

44

45 # Count number of registered operations per ship type

46 for shiptype in AIS_dataframe['ShipType'].unique():

47 print(shiptype)

48 print(AIS_dataframe[AIS_dataframe.ShipType == ...

shiptype]['ShipType'].count())
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E.3 Distribution of Ship Lengths

Ships_Length_Distribution.py

1 """

2 Plot histograms and distribution of ship lengths and laying time

3 Created: 11. April 2018

4 Author: Marion Aarsnes

5 """

6

7 import pandas as pd # Read CSV

8 import seaborn as sns # Library of plots built ...

upon matplotlib

9 import matplotlib.pyplot as plt # Plots

10 import matplotlib.ticker as mtick # Formatting plots

11 import numpy as np # Scientific computing

12 from matplotlib.pyplot import xticks # Rotate plot

13

14 # Read CSV file

15 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

16 print(AIS_dataframe.columns)

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'imo.s', ...

'length.s', 'length.b', 'bunkeringLength_hrs', ...

'anchoringLength_hrs', 'bunkeringType', 'confidence_mean']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

21 "shipType.s": "ShipType",

22 "imo.s": "IMOship",

23 "length.s": "ShipLength",

24 "length.b": ...

"BargeLength",

25 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

26 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

27 "bunkeringType": ...

"BunkeringType",

28 "confidence_mean": ...

"ConfMean"})

29

30 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

31 # Require a minimum confidence mean of 0.7
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32 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

33

34 # Reduce dataframe to shiptypes with minimum 100 registrations

35 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

36 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

37 "'Ore Carrier','LNG Tanker',)")

38

39 # Set plot style

40 sns.set(style="whitegrid", color_codes=True)

41

42 # ------------------ Distribution of ship lengths -------------------

43

44 # Define number of bins

45 # Bin size

46 res_len = 10

47

48 # Calculate bin number based on bin size

49 min_slen = min(AIS_dataframe['ShipLength'])

50 max_slen = max(AIS_dataframe['ShipLength'])

51 bsize_slen = int((max_slen-min_slen)/res_len) # bin number must be ...

an integer

52

53 # Plot histogram

54 ax = sns.distplot(AIS_dataframe['ShipLength'],

55 bins=bsize_slen,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1))

56 ax.set(ylabel="Number of registered ship lengths", xlabel="Ship ...

length")

57 plt.xlim(0,450)

58 plt.legend()

59 plt.show()

60

61 # Plot histogram with Kernel Density Line

62 ax = sns.distplot(AIS_dataframe['ShipLength'],

63 bins=bsize_slen, hist_kws=dict(edgecolor="b", ...

linewidth=1))

64 ax.set(ylabel="Density", xlabel="Ship length")

65 plt.xlim(0,450)

66 plt.legend()

67 plt.show()
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E.4 Distribution of Lay Time for Ships

Ships_Time_Distribution.py

1 """

2 Plot distribution of anchorage and bunkering time lengths for ships,

3 and truncated plots normalised over number of operations.

4 Created: 13. April 2018

5 Author: Marion Aarsnes

6 """

7

8 import pandas as pd # Read CSV

9 import seaborn as sns # Library of plots built ...

upon matplotlib

10 import matplotlib.pyplot as plt # Plots

11 import matplotlib.ticker as mtick # Formatting plots

12 import numpy as np # Scientific computing

13 from matplotlib.pyplot import xticks # Get or set the current ...

tick locations and labels of the x-axis

14

15 # Read CSV file

16 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'bunkeringType']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

21 "shipType.s": "ShipType",

22 "length.s": "ShipLength",

23 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

24 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

25 "bunkeringType": ...

"BunkeringType"})

26

27 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

28 # Require a minimum confidence mean of 0.7

29 print(AIS_dataframe['ShipType'].unique())

30

31 # Reduce dataframe to shiptypes with minimum 100 registrations

32 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...
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Products Tanker',"

33 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

34 "'Ore Carrier','LNG Tanker',)")

35

36 # Set plot style

37 sns.set(style="whitegrid", color_codes=True)

38

39 # -------------- Anchorage lasting longer than value a --------------

40

41 # Create new dataframe for longer lasting anchorages

42 a = 150

43 b = 200 # Not used

44

45 # Create one value for all operations lasting longer than value a

46 def fill_values(a):

47 anch_len_x = []

48 bunk_len_x = []

49 for i in range(len(AIS_dataframe.AnchoringLengthHrs)):

50 anch_len_x.append(a)

51 bunk_len_x.append(b)

52 return anch_len_x, bunk_len_x

53

54 anch_len_x, bunk_len_x = fill_values(a)

55

56 # Create column index to dataframe

57 AIS_dataframe['AnchorLengthx'] = AIS_dataframe.index

58 AIS_dataframe['BunkLengthx'] = AIS_dataframe.index

59 # Append new data to dataframe

60 AIS_dataframe.loc[:,'AnchorLengthx'] = pd.Series(anch_len_x, ...

index=AIS_dataframe.index)

61 AIS_dataframe.loc[:,'BunkLengthx'] = pd.Series(bunk_len_x, ...

index=AIS_dataframe.index)

62

63 # ------------------------- Length grouping -------------------------

64

65 # Create new dataframe for operations lasting longer than value a

66 AIS_dataframe_x = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs ∏ a]

67

68 # Create new dataframe for operations lasting less than value a

69 AIS_dataframe_n = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs < a]

70

71 # --------------------- Lay time for all ships ---------------------

72

73 # Define number of bins
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74 # Bin size

75 res_all = 4

76

77 # Calculate bin number based on bin size

78 min_as = min(AIS_dataframe_n['AnchoringLengthHrs'])

79 max_as = max(AIS_dataframe_n['AnchoringLengthHrs'])

80 bsize_as = int((max_as-min_as)/res_all)

81

82 # Plot histogram

83 plt.figure()

84 ax3 = sns.distplot(AIS_dataframe_n['AnchoringLengthHrs'],

85 bins=bsize_as, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Lay time < 150 hours')

86 axb = sns.distplot(AIS_dataframe_x['AnchorLengthx'],

87 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Lay time > 150 hours')

88 ax3.set(ylabel="Density", xlabel="Lay time [hours]", title ='All ...

ships')

89 plt.xlim(0,160)

90 plt.legend()

91 plt.show()

92

93 # Laying length normalised over number of operations

94 # Create new column with normalised values

95 def fill_value_conf():

96 norm = []

97 for i in range(len(AIS_dataframe_n.AnchoringLengthHrs)):

98 norm.append((i+1)/ len(AIS_dataframe_n.AnchoringLengthHrs)*100)

99 return norm

100

101 norm = fill_value_conf()

102

103 # Sort by increasing certainty

104 AIS_dataframe_sortlen = ...

AIS_dataframe_n.sort_values('AnchoringLengthHrs')

105

106 # Append normalised column

107 AIS_dataframe_sortlen['norm'] = norm

108

109 # Plot

110 plt.plot(AIS_dataframe_sortlen.AnchoringLengthHrs, ...

AIS_dataframe_sortlen.norm)

111 plt.title('Lay length normalised over number of operations')

112 plt.xlabel("Lay time [hours]")

113 plt.ylabel("Percentage")
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114 plt.xlim(0,160)

115 plt.show()

116

117 # -------------- Laying time for anchorage and berth ----------------

118

119 # Create new dataframes for bunkering type

120 # Anchorage

121 AIS_dataframe_anchor = ...

AIS_dataframe_n[AIS_dataframe_n.BunkeringType == 'Anchorage']

122 # Berth

123 AIS_dataframe_berth = AIS_dataframe_n[AIS_dataframe_n.BunkeringType ...

== 'Berth']

124

125 # Define number of bins

126 # Bin size

127 res_anch = 4 # bin size at anchorage

128 res_bunk = 1 # bin size at berth

129

130 # Calculate bin number based on bin size for anchorage

131 min_asm = min(AIS_dataframe_anchor['AnchoringLengthHrs'])

132 max_asm = max(AIS_dataframe_anchor['AnchoringLengthHrs'])

133 bsize_asm = int((max_asm-min_asm)/res_anch)

134

135 # Calculate bin number based on bin size for berth

136 min_bsm = min(AIS_dataframe_berth['AnchoringLengthHrs'])

137 max_bsm = max(AIS_dataframe_berth['AnchoringLengthHrs'])

138 bsize_bsm = int((max_bsm-min_bsm)/res_anch)

139

140 # ------------- Plot time at anchor/berth for all ships -------------

141

142 # ---------------------------- Anchorage ----------------------------

143 # Plot histogram for time at anchorage

144 plt.figure()

145 ax = sns.distplot(AIS_dataframe_anchor['AnchoringLengthHrs'],

146 bins=bsize_asm, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Lay time < 150 hours')

147 axa = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType == ...

'Anchorage']['AnchorLengthx'],

148 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Lay time > 150 hours')

149 ax.set(ylabel="Density", xlabel="Anchorage time [hours]", title ...

='At anchorage')

150 plt.xlim(0,160)

151 plt.legend()

152 plt.show()
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153

154 # Normalised laying time at anchorage

155

156 # Deine new dataframe

157 AIS_dataframe_anchor_len = AIS_dataframe_anchor

158

159 # Sort by increasing certainty

160 AIS_dataframe_anchor_len = ...

AIS_dataframe_anchor_len.sort_values('AnchoringLengthHrs')

161

162 # Create new column with normalised values

163 def fill_value_anch():

164 norm_anch = []

165 for i in range(len(AIS_dataframe_anchor)):

166 norm_anch.append((i+1)/ ...

len(AIS_dataframe_anchor.AnchoringLengthHrs)*100)

167 return norm_anch

168

169 norm_anch = fill_value_anch()

170

171 # Append new column to dataframe

172 AIS_dataframe_anchor_len['norm'] = norm_anch

173

174 # Plot

175 plt.plot(AIS_dataframe_anchor_len.AnchoringLengthHrs, ...

AIS_dataframe_anchor_len.norm)

176 plt.title('Lay time at anchorage normalised over number of operations')

177 plt.xlabel("Anchoring time")

178 plt.ylabel("Percentage")

179 plt.xlim(0,160)

180 plt.show()

181

182 # ------------------------------ Berth ------------------------------

183

184 # Plot histogram for time at berth

185 plt.figure()

186 ax3 = sns.distplot(AIS_dataframe_berth['AnchoringLengthHrs'],

187 bins=bsize_bsm, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Berth time < 150 hours')

188 axb = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType == ...

'Berth']['AnchorLengthx'],

189 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Berth time > 150 hours')

190 ax3.set(ylabel="Density", xlabel="Berth time [hours]", title ='At ...

berth')
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191 plt.xlim(0,160)

192 plt.legend()

193 plt.show()

194

195 # Normalised lay time at berth

196

197 # Create new dataframe

198 AIS_dataframe_berth_len = AIS_dataframe_berth

199

200 # Sort by increasing certainty

201 AIS_dataframe_berth_len = ...

AIS_dataframe_berth_len.sort_values('AnchoringLengthHrs')

202

203 # Create new column with normalised values

204 def fill_value_berth():

205 norm_berth = []

206 for i in range(len(AIS_dataframe_berth)):

207 norm_berth.append((i+1)/ ...

len(AIS_dataframe_berth.AnchoringLengthHrs)*100)

208 return norm_berth

209

210 norm_berth = fill_value_berth()

211

212 # Append new column to dataframe

213 AIS_dataframe_berth_len['norm'] = norm_berth

214

215 # Plot

216 plt.plot(AIS_dataframe_berth_len.AnchoringLengthHrs, ...

AIS_dataframe_berth_len.norm)

217 plt.title('Anchoring Length at Berth normalised over number of ...

operations')

218 plt.xlabel("Berth time [hours]")

219 plt.ylabel("Percentage")

220 plt.xlim(0,160)

221 plt.show()

222

223 # Plot anchorage and berth

224 plt.plot(AIS_dataframe_berth_len.AnchoringLengthHrs, ...

AIS_dataframe_berth_len.norm, label='Berth time')

225 plt.plot(AIS_dataframe_anchor_len.AnchoringLengthHrs, ...

AIS_dataframe_anchor_len.norm, '--', color='grey', ...

label='Anchorage time')

226 plt.title('Anchoring Length at Berth normalised over number of ...

operations')

227 plt.xlabel("Berth time [hours]")

228 plt.ylabel("Percentage")
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229 plt.xlim(0,160)

230 plt.legend()

231 plt.show()
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E.5 Distribution of Bunker Barge Lengths and Time

BunkerBarges_Length_and_Time_Distribution.py

1 """

2 Plot histograms and distribution of barge lengths and bunkering time

3 Created: 11. April 2018

4 Author: Marion Aarsnes

5 """

6

7 import pandas as pd # Read CSV

8 import seaborn as sns # Library of plots built upon ...

matplotlib

9 import matplotlib.pyplot as plt # Plots

10 import matplotlib.ticker as mtick # Formatting plots

11 import numpy as np # Scientific computing

12 from matplotlib.pyplot import xticks # Rotate plot

13

14 # Read CSV file

15 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

16 print(AIS_dataframe.columns)

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'imo.s', ...

'length.s', 'length.b', 'bunkeringLength_hrs', ...

'anchoringLength_hrs', 'bunkeringType', 'confidence_mean']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

21 "shipType.s": "ShipType",

22 "imo.s": "IMOship",

23 "length.s": "ShipLength",

24 "length.b": ...

"BargeLength",

25 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

26 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

27 "bunkeringType": ...

"BunkeringType",

28 "confidence_mean": ...

"ConfMean"})

29

30 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

31 # Rename ship types
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32 AIS_dataframe = AIS_dataframe.replace({"FSO (Floating, Storage, ...

Offloading)": "FSO", "FPSO (Floating, Production, Storage, ...

Offloading)": "FPSO"})

33 # Requiring a minimum confidence mean of 0.7

34 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

35

36 # Setting plot style

37 sns.set(style="whitegrid", color_codes=True)

38

39 for shiptype in AIS_dataframe['ShipType'].unique():

40 print(shiptype)

41 print(AIS_dataframe[AIS_dataframe.ShipType == ...

shiptype]['ShipType'].count())

42

43 # Reduce dataframe to shiptypes with minimum 100 registrations

44 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

45 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

46 "'Ore Carrier','LNG Tanker',)")

47

48 # --------------- Distribution of bunker barge lengths --------------

49

50 # Define number of bins

51 # Bin size

52 res_blen = 2

53

54 # Calculate bin number based on bin size

55 min_blen = min(AIS_dataframe['BargeLength'])

56 max_blen = max(AIS_dataframe['BargeLength'])

57 bsize_blen = int((max_blen-min_blen)/res_blen)

58

59 # Plot histogram

60 ax = sns.distplot(AIS_dataframe['BargeLength'],

61 bins=(bsize_blen+3),kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1))

62 ax.set(ylabel="Number of registered barge lengths", xlabel="Barge ...

length [meters]")

63 plt.xlim(0,130)

64 plt.legend()

65 plt.show()

66

67 # Plot histogram with Kernel Density Line

68 ax = sns.distplot(AIS_dataframe['BargeLength'],
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69 bins=bsize_blen, hist_kws=dict(edgecolor="b", ...

linewidth=1))

70 ax.set(ylabel="Density", xlabel="Barge length")

71 plt.xlim(0,130)

72 plt.legend()

73 plt.show()

74

75 # ----- Distribution of bunkering time for all bunkering types ------

76 # Requiring a maximum bunkering time of 24 hours

77 AIS_dataframe = AIS_dataframe[AIS_dataframe.BunkeringLengthHrs ∑ 24]

78

79 #Define bin size

80 res_blenh = 1

81 min_blenh = min(AIS_dataframe['BunkeringLengthHrs'])

82 max_blenh = max(AIS_dataframe['BunkeringLengthHrs'])

83 bsize_blenh = int((max_blenh-min_blenh)/res_blenh) # bin number ...

must be an integer

84

85 # Plot histogram

86 ax = sns.distplot(AIS_dataframe['BunkeringLengthHrs'],

87 bins=bsize_blenh, kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1))

88 ax.set(ylabel="Number of registered time lengths", ...

xlabel="Bunkering time [hours]")

89 plt.xlim(0,35)

90 plt.legend()

91 plt.show()

92

93 # Plot histogram with Kernel Density Line

94 ax = sns.distplot(AIS_dataframe['BunkeringLengthHrs'],

95 bins=bsize_blenh, hist_kws=dict(edgecolor="b", ...

linewidth=1))

96 ax.set(ylabel="Density", xlabel="Bunkering time [hours]")

97 plt.xlim(0,35)

98 plt.legend()

99 plt.show()

100

101

102 # ------ Distribution of bunkering time at anchorage and berth ------

103

104 # Creating new dataframes

105 # Anchorage

106 AIS_dataframe_anchor = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Anchorage']

107 # Berth
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108 AIS_dataframe_berth = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Berth']

109

110 # Define number of bins

111 # Bin size

112 res_blenab = 1

113

114 # Number of bins at anchor

115 min_blena = min(AIS_dataframe_anchor['BunkeringLengthHrs'])

116 max_blena = max(AIS_dataframe_anchor['BunkeringLengthHrs'])

117 bsize_blena = int(((max_blena-min_blena)/res_blenab))

118

119 # Number of bins at berth

120 min_blenb = min(AIS_dataframe_berth['BunkeringLengthHrs'])

121 max_blenb = max(AIS_dataframe_berth['BunkeringLengthHrs'])

122 bsize_blenb = int(((max_blenb-min_blenb)/res_blenab))

123

124 ax = sns.distplot(AIS_dataframe_anchor['BunkeringLengthHrs'],

125 bins=bsize_blena, hist_kws=dict(edgecolor="b", ...

linewidth=1))

126 ax.set(ylabel="Density", xlabel="Bunkering time at anchorage [hours]")

127 plt.xlim(0,35)

128 plt.legend()

129 plt.show()

130

131 ax = sns.distplot(AIS_dataframe_berth['BunkeringLengthHrs'],

132 bins=bsize_blenb, hist_kws=dict(edgecolor="b", ...

linewidth=1))

133 ax.set(ylabel="Density", xlabel="Bunkering time at berth [hours]")

134 plt.xlim(0,35)

135 plt.legend()

136 plt.show()
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E.6 Distribution of Lay and Bunkering Time for All Opera-

tions

Time_Distribution_AllOperations.py

1 """

2 Plot distribution of anchorage and bunkering time lengths for all ...

operations,

3 and truncated plots normalised over number of operations.

4 Created: 13. April 2018

5 Author: Marion Aarsnes

6 """

7

8 import pandas as pd # Read CSV

9 import seaborn as sns # Library of plots built ...

upon matplotlib

10 import matplotlib.pyplot as plt # Plots

11 import matplotlib.ticker as mtick # Formatting plots

12 import numpy as np # Scientific computing

13 from matplotlib.pyplot import xticks # Get or set the current ...

tick locations and labels of the x-axis

14

15 # Read CSV file

16 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'bunkeringType', ...

'confidence_mean']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

21 "shipType.s": "ShipType",

22 "length.s": "ShipLength",

23 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

24 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

25 "bunkeringType": ...

"BunkeringType",

26 "confidence_mean": ...

"ConfMean"})

27

28 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]
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29 # Require a minimum confidence mean of 0.7

30 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

31 print(AIS_dataframe['ShipType'].unique())

32

33 # Reduce dataframe to shiptypes with minimum 100 registrations

34 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

35 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

36 "'Ore Carrier','LNG Tanker',)")

37

38 # Set plot style

39 sns.set(style="whitegrid", color_codes=True)

40

41 # -------------- Anchorage lasting longer than value a --------------

42

43 # Create new dataframe for longer lasting anchorages

44 a = 150

45 b = 200 # Not used

46

47 # Create one value for all operations lasting longer than value a

48 def fill_values(a):

49 anch_len_x = []

50 bunk_len_x = []

51 for i in range(len(AIS_dataframe.AnchoringLengthHrs)):

52 anch_len_x.append(a)

53 bunk_len_x.append(b)

54 return anch_len_x, bunk_len_x

55

56 anch_len_x, bunk_len_x = fill_values(a)

57

58 # Create column index to dataframe

59 AIS_dataframe['AnchorLengthx'] = AIS_dataframe.index

60 AIS_dataframe['BunkLengthx'] = AIS_dataframe.index

61 # Append new data to dataframe

62 AIS_dataframe.loc[:,'AnchorLengthx'] = pd.Series(anch_len_x, ...

index=AIS_dataframe.index)

63 AIS_dataframe.loc[:,'BunkLengthx'] = pd.Series(bunk_len_x, ...

index=AIS_dataframe.index)

64

65

66

67 # ---------------------- Create new dataframes ----------------------

68
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69 # Create new dataframe for operations lasting longer than value a

70 AIS_dataframe_x = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs ∏ a]

71

72 # Create new dataframe for operations lasting less than value a

73 AIS_dataframe_n = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs < a]

74

75 # Create new dataframes for bunkering type

76 # Anchorage

77 AIS_dataframe_anchor = ...

AIS_dataframe_n[AIS_dataframe_n.BunkeringType == 'Anchorage']

78 # Berth

79 AIS_dataframe_berth = AIS_dataframe_n[AIS_dataframe_n.BunkeringType ...

== 'Berth']

80

81 # -------------------------- Scatter plot ---------------------------

82

83 plt.scatter(AIS_dataframe_n.AnchoringLengthHrs, ...

AIS_dataframe_n.BunkeringLengthHrs)

84 #plt.xlim(-10,200)

85 #plt.ylim(-10,200)

86 plt.title('Laying Time vs Bunkering Time')

87 plt.ylabel("Bunkering Time [hours]")

88 plt.xlabel("Lay Time [hours]")

89 plt.show()

90

91 grid = sns.jointplot(AIS_dataframe_n.AnchoringLengthHrs, ...

AIS_dataframe_n.BunkeringLengthHrs, kind="reg", ...

joint_kws={'line_kws':{'color':'y'}})

92 grid.set_axis_labels("Lay time [hours]","Bunkering time [hours]")

93 plt.xlim(0,160)

94 plt.ylim(0,35)

95 plt.show()

96

97 # ----------------- Laying time and bunkering time ------------------

98

99 # Define number of bins

100 # Bin size

101 res_all = 4

102

103 # Calculate bin number based on bin size

104 min_as = min(AIS_dataframe_n['AnchoringLengthHrs'])

105 max_as = max(AIS_dataframe_n['AnchoringLengthHrs'])

106 bsize_as = int((max_as-min_as)/res_all)

107

108 # Define number of bins for bunkering time

109 # Bin size
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110 res_bll = 4

111

112 # Calculate bin number based on bin size

113 min_bs = min(AIS_dataframe_n['BunkeringLengthHrs'])

114 max_bs = max(AIS_dataframe_n['BunkeringLengthHrs'])

115 bsize_bs = int((max_bs-min_bs)/res_bll)

116

117

118 # Plot histogram

119 plt.figure()

120 ax3 = sns.distplot(AIS_dataframe_n['AnchoringLengthHrs'],

121 bins=bsize_as, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Laying time < 150 hours')

122 ax4 = sns.distplot(AIS_dataframe_n['BunkeringLengthHrs'],

123 bins=bsize_bs, color='r', ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Bunkering time')

124 #axb = sns.distplot(AIS_dataframe_x['AnchorLengthx'],

125 # kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), label='Laying time > ...

150 hours')

126 #axb = sns.distplot(AIS_dataframe_x['BunkLengthx'],

127 # kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), label='Bunkering time')

128 ax3.set(ylabel="Density", xlabel="Time [hours]", title ='All ships')

129 plt.xlim(0,160)

130 plt.legend()

131 plt.show()

132

133

134

135 # -------------------------- At anchorage ---------------------------

136

137 # Define number of bins

138 # Bin size

139 res_anch = 4 # bin size at anchorage

140

141 # Calculate bin number based on bin size for anchorage

142 min_anch = min(AIS_dataframe_anchor['AnchoringLengthHrs'])

143 max_anch = max(AIS_dataframe_anchor['AnchoringLengthHrs'])

144 bsize_anch = int((max_anch-min_anch)/res_anch)

145

146 min_abunk = min(AIS_dataframe_anchor['BunkeringLengthHrs'])

147 max_abunk = max(AIS_dataframe_anchor['BunkeringLengthHrs'])

148 bsize_abunk = int((max_abunk-min_abunk)/res_anch)

149
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150

151 # Plot histogram

152 plt.figure()

153 ax3 = sns.distplot(AIS_dataframe_anchor['AnchoringLengthHrs'],

154 bins=bsize_anch, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Laying time < 150 hours')

155 ax4 = ax3 = sns.distplot(AIS_dataframe_anchor['BunkeringLengthHrs'],

156 bins=bsize_abunk, color='r', ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Bunkering time')

157 ax3.set(ylabel="Density", xlabel="Time [hours]", title ='At anchorage')

158 plt.xlim(0,160)

159 plt.legend()

160 plt.show()

161

162

163 # ---------------------------- At berth -----------------------------

164

165 # Define number of bins

166 # Bin size

167 res_ber = 4 # bin size at berth

168

169 # Calculate bin number based on bin size for berth

170 min_ber = min(AIS_dataframe_berth['AnchoringLengthHrs'])

171 max_ber = max(AIS_dataframe_berth['AnchoringLengthHrs'])

172 bsize_ber = int((max_ber-min_ber)/res_ber)

173

174 min_bbunk = min(AIS_dataframe_berth['BunkeringLengthHrs'])

175 max_bbunk = max(AIS_dataframe_berth['BunkeringLengthHrs'])

176 bsize_bbunk = int((max_bbunk-min_bbunk)/res_ber)

177

178 # Plot histogram

179 plt.figure()

180 ax3 = sns.distplot(AIS_dataframe_berth['AnchoringLengthHrs'],

181 bins=bsize_ber, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Laying time < 150 hours')

182 ax4 = ax3 = sns.distplot(AIS_dataframe_berth['BunkeringLengthHrs'],

183 bins=bsize_bbunk, color='r', ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Bunkering time')

184 ax3.set(ylabel="Density", xlabel="Time [hours]", title ='At berth')

185 plt.xlim(0,160)

186 plt.legend()

187 plt.show()

188

189
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190

191

192 # ------------ Time normalised over number of operations ------------

193

194 # All operations

195 # Create new column with normalised values

196 def fill_value_all():

197 norm = []

198 for i in range(len(AIS_dataframe_n.AnchoringLengthHrs)):

199 norm.append((i+1)/len(AIS_dataframe_n.AnchoringLengthHrs)*100)

200 return norm

201

202 norm = fill_value_all()

203

204 # Create dataframe for laying length

205 AIS_dataframe_norml = AIS_dataframe_n

206 # Sort by increasing certainty

207 AIS_dataframe_norml = ...

AIS_dataframe_norml.sort_values('AnchoringLengthHrs')

208 # Append normalised column

209 AIS_dataframe_norml['norm'] = norm

210

211 # Create dataframe for bunkering length

212 # Sort by increasing certainty

213 AIS_dataframe_normb = AIS_dataframe_n.sort_values('BunkeringLengthHrs')

214 # Append normalised column

215 AIS_dataframe_normb['norm'] = norm

216

217 # Plot

218 plt.plot(AIS_dataframe_norml.AnchoringLengthHrs, ...

AIS_dataframe_norml.norm, label='Laying time')

219 plt.plot(AIS_dataframe_normb.BunkeringLengthHrs, ...

AIS_dataframe_normb.norm, label='Bunkering time', color='r')

220 plt.title('Lay time and bunkering time normalised over number of ...

operations')

221 plt.xlabel("Time [hours]")

222 plt.ylabel("Percentage")

223 plt.legend()

224 plt.xlim(0,160)

225 plt.show()

226

227 # Anchorage

228 # Create new column with normalised values

229 def fill_value_anch():

230 norm_anch = []

231 for i in range(len(AIS_dataframe_anchor.AnchoringLengthHrs)):
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232 norm_anch.append((i+1)/len(AIS_dataframe_anchor.AnchoringLengthHrs)*100)

233 return norm_anch

234

235 norm_anch = fill_value_anch()

236

237 # Create dataframe for laying length

238 AIS_dataframe_normla = AIS_dataframe_anchor

239 # Sort by increasing certainty

240 AIS_dataframe_normla = ...

AIS_dataframe_normla.sort_values('AnchoringLengthHrs')

241

242 print(len(AIS_dataframe_normla))

243 print(len(norm_anch))

244 # Append normalised column

245 AIS_dataframe_normla['norm_anch'] = norm_anch

246

247 # Create dataframe for bunkering length

248 # Sort by increasing certainty

249 AIS_dataframe_normbl = ...

AIS_dataframe_anchor.sort_values('BunkeringLengthHrs')

250 # Append normalised column

251 AIS_dataframe_normbl['norm_anch'] = norm_anch

252

253 # Plot

254 plt.plot(AIS_dataframe_normla.AnchoringLengthHrs, ...

AIS_dataframe_normla.norm_anch, label='Anchorage time')

255 plt.plot(AIS_dataframe_normbl.BunkeringLengthHrs, ...

AIS_dataframe_normbl.norm_anch, label='Bunkering time', color='r')

256 plt.title('Lay time and bunkering time normalised over number of ...

operations at anchorage')

257 plt.xlabel("Time [hours]")

258 plt.ylabel("Percentage")

259 plt.legend()

260 plt.xlim(0,160)

261 plt.show()

262

263

264 # Berth

265 # Create new column with normalised values

266 def fill_value_ber():

267 norm_ber = []

268 for i in range(len(AIS_dataframe_berth.AnchoringLengthHrs)):

269 norm_ber.append((i+1)/len(AIS_dataframe_berth.AnchoringLengthHrs)*100)

270 return norm_ber

271

272 norm_ber = fill_value_ber()
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273

274 # Create dataframe for laying length

275 AIS_dataframe_normlb = AIS_dataframe_berth

276 # Sort by increasing certainty

277 AIS_dataframe_normlb = ...

AIS_dataframe_normlb.sort_values('AnchoringLengthHrs')

278

279 print(len(AIS_dataframe_normlb))

280 print(len(norm_ber))

281 # Append normalised column

282 AIS_dataframe_normlb['norm_ber'] = norm_ber

283

284 # Create dataframe for bunkering length

285 # Sort by increasing certainty

286 AIS_dataframe_normblb = ...

AIS_dataframe_berth.sort_values('BunkeringLengthHrs')

287 # Append normalised column

288 AIS_dataframe_normblb['norm_ber'] = norm_ber

289

290 # Plot

291 plt.plot(AIS_dataframe_normlb.AnchoringLengthHrs, ...

AIS_dataframe_normlb.norm_ber, label='Berth time')

292 plt.plot(AIS_dataframe_normblb.BunkeringLengthHrs, ...

AIS_dataframe_normblb.norm_ber, label='Bunkering time', color='r')

293 plt.title('Lay time and bunkering time normalised over number of ...

operations at berth')

294 plt.xlabel("Time [hours]")

295 plt.ylabel("Percentage")

296 plt.legend()

297 plt.xlim(0,160)

298 plt.show()

299

300 # -------------------- Less than 60 hours lay time ------------------

301

302 AIS_dataframe_nn = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs<60]

303

304 # Define number of bins

305 # Bin size

306 res_nn = 4

307

308 # Calculate bin number based on bin size

309 min_nn = min(AIS_dataframe_nn['AnchoringLengthHrs'])

310 max_nn = max(AIS_dataframe_nn['AnchoringLengthHrs'])

311 bsize_nn = int((max_nn-min_nn)/res_nn)

312

313 # Define number of bins
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314 # Bin size

315 res_bnn = 4

316

317 # Calculate bin number based on bin size

318 min_bnn = min(AIS_dataframe_nn['BunkeringLengthHrs'])

319 max_bnn = max(AIS_dataframe_nn['BunkeringLengthHrs'])

320 bsize_bnn = int((max_bnn-min_bnn)/res_bnn)

321

322

323 # Plot histogram

324 plt.figure()

325 ax3 = sns.distplot(AIS_dataframe_nn['AnchoringLengthHrs'],

326 bins=bsize_nn, hist_kws=dict(edgecolor="b", ...

linewidth=1), label='Lay time < 60 hours')

327 ax4 = sns.distplot(AIS_dataframe_nn['BunkeringLengthHrs'],

328 bins=bsize_bnn, color='r', ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Bunkering time')

329 ax3.set(ylabel="Density", xlabel="Time [hours]", title ='All ships')

330 plt.xlim(0,160)

331 plt.legend()

332 plt.show()

333

334

335 # Normalised graphs

336 # Berth

337 # Create new column with normalised values

338 def fill_value_nn():

339 norm_nn = []

340 for i in range(len(AIS_dataframe_nn.AnchoringLengthHrs)):

341 norm_nn.append((i+1)/len(AIS_dataframe_nn.AnchoringLengthHrs)*100)

342 return norm_nn

343

344 norm_nn = fill_value_nn()

345

346 # Sort by increasing increasing lay time

347 AIS_dataframe_nnlay = ...

AIS_dataframe_nn.sort_values('AnchoringLengthHrs')

348 # Sort by increasing increasing bunkering time

349 AIS_dataframe_nnbun = ...

AIS_dataframe_nn.sort_values('BunkeringLengthHrs')

350

351 # Append normalised column

352 AIS_dataframe_nnlay['norm_nn'] = norm_nn

353 AIS_dataframe_nnbun['norm_nn'] = norm_nn

354
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355 # Scatter plot

356 plt.plot(AIS_dataframe_nnlay.AnchoringLengthHrs, ...

AIS_dataframe_nnlay.norm_nn, label='Lay time')

357 plt.plot(AIS_dataframe_nnbun.BunkeringLengthHrs, ...

AIS_dataframe_nnbun.norm_nn, label='Bunkering time', color='r')

358 plt.title('Lay time and bunkering time normalised over number of ...

operations')

359 plt.xlabel("Time [hours]")

360 plt.ylabel("Percentage")

361 plt.legend()

362 plt.xlim(0,160)

363 plt.show()
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E.7 Distribution of Time for Ship Types

Time_Distribution_ShipTypes.py

1 """

2 Plot different shiptypes in histograms

3 Created: 11. April 2018

4 Author: Marion Aarsnes

5 """

6

7 # Import packages

8 import pandas as pd # Read CSV

9 import seaborn as sns # Library of plots built upon ...

matplotlib

10 import matplotlib.pyplot as plt # Plots

11 import matplotlib.ticker as mtick # Formatting plots

12 import numpy as np # Scientific calculation

13

14 # Read CSV file

15 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

16 print(AIS_dataframe.columns)

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'confidence_mean']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

21 "shipType.s": "ShipType",

22 "length.s": "ShipLength",

23 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

24 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

25 "confidence_mean": ...

"ConfMean"})

26

27 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

28 # Reduce dataframe to shiptypes with minimum 100 registrations

29 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

30

31 # Print top 5 lines of dataframe

32 print(AIS_dataframe.head(5))

33 # List all unique shiptypes

34 print(AIS_dataframe['ShipType'].unique())
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35

36 # Set plot variables

37 sns.set(style="whitegrid", color_codes=True)

38 sns.despine(left=True)

39

40 # -------------- Anchorage lasting longer than value a --------------

41

42 # Create new dataframe for longer lasting anchorages

43 a = 150

44 b = 35

45

46 # Create column with same value for all operations lasting longer ...

than value a

47 def fill_values(a):

48 anch_len_x = []

49 bunk_len_x = []

50 for i in range(len(AIS_dataframe.AnchoringLengthHrs)):

51 anch_len_x.append(a)

52 bunk_len_x.append(b)

53 return anch_len_x, bunk_len_x

54

55 anch_len_x, bunk_len_x = fill_values(a)

56

57

58 # Create column index to dataframe

59 AIS_dataframe['AnchorLengthx'] = AIS_dataframe.index

60 AIS_dataframe['BunkLengthx'] = AIS_dataframe.index

61 # Insert new data to dataframe

62 AIS_dataframe.loc[:,'AnchorLengthx'] = pd.Series(anch_len_x, ...

index=AIS_dataframe.index)

63 AIS_dataframe.loc[:,'BunkLengthx'] = pd.Series(bunk_len_x, ...

index=AIS_dataframe.index)

64

65 # Create new dataframe for operations lasting longer than value a

66 AIS_dataframe_x = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs ∏ a]

67

68 # Plot tankships, oil products tanker, bunkering tanker and cargo ...

ships in one figure

69

70 # Reduce dataframe to contain only operations lasting shorter than ...

value a

71 AIS_dataframe = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs < a]

72 # Reduce dataframe to contain specified shiptypes

73 AIS_dataframe = AIS_dataframe.query("ShipType in ('Container Ship', ...

'Bulk Carrier', 'Crude Oil Tanker')")

74
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75

76 # Specify plotting colors

77 colors = ['b', 'g', 'r', 'k']

78

79

80 # Plot laying time for shiptypes in one figure

81 i = 0

82 for shiptype in AIS_dataframe['ShipType'].unique():

83 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == ...

shiptype]['AnchoringLengthHrs'],

84 hist_kws=dict(edgecolor=colors[i], ...

linewidth=2), label=str(shiptype))

85 i +=1

86 axa = sns.distplot(AIS_dataframe_x['AnchorLengthx'],

87 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than 180 hours')

88 ax.set(ylabel="Ship density", xlabel="Anchoring time [hours]", ...

title="Anchorage time")

89 plt.legend()

90 plt.show()

91

92

93 # -------- Plot bunkering time for ship types in one figure ---------

94

95 # Laying time

96 # Bin size

97 bin_widthl = 5

98

99 # Define number of bins

100 min_optl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['AnchoringLengthHrs'])

101 max_optl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['AnchoringLengthHrs'])

102 bsize_optl = int((max_optl-min_optl)/bin_widthl) # Number of ...

bins must be an integer

103 min_gcsl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['AnchoringLengthHrs'])

104 max_gcsl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['AnchoringLengthHrs'])

105 bsize_gcsl = int((max_gcsl-min_gcsl)/bin_widthl) # Number of ...

bins must be an integer

106 min_ltl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['AnchoringLengthHrs'])

107 max_ltl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['AnchoringLengthHrs'])
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108 bsize_ltl = int((max_ltl-min_ltl)/bin_widthl) # Number of ...

bins must be an integer

109

110

111 # Plot laying time

112 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == ...

'Container Ship']['AnchoringLengthHrs'],

113 bins=bsize_optl, color='g', ...

hist_kws=dict(edgecolor='g', linewidth=2), ...

label='Oil Products Tanker')

114 ax1 = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['AnchoringLengthHrs'],

115 bins=bsize_gcsl, color='r', ...

hist_kws=dict(edgecolor='r', linewidth=2), ...

label='General Cargo Ship')

116 ax2 = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Crude ...

Oil Tanker']['AnchoringLengthHrs'],

117 bins=bsize_ltl, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='LNG Tanker')

118 axb = sns.distplot(AIS_dataframe_x['AnchorLengthx'],

119 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than 180 hours')

120 ax.set(ylabel="Ship density", xlabel="Lay time [hours]", title="Lay ...

time")

121 plt.legend()

122 plt.xlim(0,160)

123 plt.show()

124

125 # Bunkering time

126 # Bin size

127 bin_width = 1

128

129 # Define number of bins

130 min_opt = min(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['BunkeringLengthHrs'])

131 max_opt = max(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['BunkeringLengthHrs'])

132 bsize_opt = int((max_opt-min_opt)/bin_width) # Number of bins ...

must be an integer

133 min_gcs = min(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['BunkeringLengthHrs'])

134 max_gcs = max(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['BunkeringLengthHrs'])
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135 bsize_gcs = int((max_gcs-min_gcs)/bin_width) # Number of bins ...

must be an integer

136 min_lt = min(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['BunkeringLengthHrs'])

137 max_lt = max(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['BunkeringLengthHrs'])

138 bsize_lt = int((max_lt-min_lt)/bin_width) # Number of bins ...

must be an integer

139

140

141 # Plot bunkering length

142 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == ...

'Container Ship']['BunkeringLengthHrs'],

143 bins=bsize_opt, color='g', ...

hist_kws=dict(edgecolor='g', linewidth=2), ...

label='Oil Products Tanker')

144 ax1 = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['BunkeringLengthHrs'],

145 bins=bsize_gcs, color='r', ...

hist_kws=dict(edgecolor='r', linewidth=2), ...

label='General Cargo Ship')

146 ax2 = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Crude ...

Oil Tanker']['BunkeringLengthHrs'],

147 bins=bsize_lt, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='LNG Tanker')

148 #axb = sns.distplot(AIS_dataframe_x['BunkLengthx'],

149 #kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than 180 hours')

150 ax.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title="Bunkering time")

151 plt.legend()

152 plt.xlim(0,35)

153 plt.show()

154

155 # Separate plots

156 # Container ship

157 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == ...

'Container Ship']['BunkeringLengthHrs'],

158 bins=bsize_opt, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Container Ship')

159 ax.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title="Bunkering time Container Ship")

160 plt.xlim(0,30)
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161 plt.legend()

162 plt.show()

163

164 # Bulk carrier

165 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['BunkeringLengthHrs'],

166 bins=bsize_gcs, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Bulk Carrier')

167 ax.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title="Bunkering time Bulk Carrier")

168 plt.xlim(0,30)

169 plt.legend()

170 plt.show()

171

172 # Crude oil tanker

173 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Crude ...

Oil Tanker']['BunkeringLengthHrs'],

174 bins=bsize_lt, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Crude Oil Tanker')

175 ax.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title="Bunkering time Crude Oil Tanker")

176 plt.xlim(0,30)

177 plt.legend()

178 plt.show()

179

180

181 # --------------- Plot shiplengths per shiptypes --------------------

182

183 # Bin size

184 bin_widthl = 10

185

186 # Define number of bins

187 min_optl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['ShipLength'])

188 max_optl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Container ...

Ship']['ShipLength'])

189 bsize_optl = int((max_optl-min_optl)/bin_widthl) # Number of ...

bins must be an integer

190 min_gcsl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['ShipLength'])

191 max_gcsl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['ShipLength'])

192 bsize_gcsl = int((max_gcsl-min_gcsl)/bin_widthl) # Number of ...

bins must be an integer
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193 min_ltl = min(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['ShipLength'])

194 max_ltl = max(AIS_dataframe[AIS_dataframe.ShipType == 'Crude Oil ...

Tanker']['ShipLength'])

195 bsize_ltl = int((max_ltl-min_ltl)/bin_widthl) # Number of ...

bins must be an integer

196

197

198 # Plot histograms

199

200 # Container ship

201 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == ...

'Container Ship']['ShipLength'],

202 bins=bsize_optl, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Container Ship')

203 ax.set(ylabel="Ship density", xlabel="Ship length [meters]", ...

title="Shiplength Container Ship")

204 plt.xlim(100,450)

205 plt.legend()

206 plt.show()

207

208 # Bulk carrier

209 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Bulk ...

Carrier']['ShipLength'],

210 bins=bsize_gcsl, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Bulk Carrier')

211 ax.set(ylabel="Ship density", xlabel="Ship length [meters]", ...

title="Shiplength Bulk Carrier")

212 plt.xlim(100,450)

213 plt.legend()

214 plt.show()

215

216 # Crude oil tanker

217 ax = sns.distplot(AIS_dataframe[AIS_dataframe.ShipType == 'Crude ...

Oil Tanker']['ShipLength'],

218 bins=bsize_ltl, color='b', ...

hist_kws=dict(edgecolor='b', linewidth=2), ...

label='Crude Oil Tanker')

219 ax.set(ylabel="Ship density", xlabel="Ship length [meters]", ...

title="Shiplength Crude Oil Tanker")

220 plt.xlim(100,450)

221 plt.legend()

222 plt.show()
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E.8 Distributions Divided by Ship Lengths

Dividing_ShipLengths_150m.py

1 """

2 Script for gathering values exceeding a certain length

3 E.g. All anchorage length of more than 150 hours.

4 Plot lay time and bunkering time.

5 Created: 23.april 2018

6 Author: Marion Aarsnes

7 """

8

9 import pandas as pd # Read CSV

10 import seaborn as sns # Library of plots built upon ...

matplotlib

11 import matplotlib.pyplot as plt # Plots

12

13 # Read CSV file

14 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

15 print(AIS_dataframe.columns)

16

17 # Clean up dataframe

18 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'bunkeringType']]

19 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

20 "shipType.s": "ShipType",

21 "length.s": "ShipLength",

22 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

23 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

24 "bunkeringType": ...

"BunkeringType"})

25

26 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

27

28

29 # -------------- Anchorage lasting longer than value a --------------

30

31 # Creating new dataframe for longer lasting anchorages

32 a = 80

33 b = 24

34
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35 # Creating one value for all operations lasting longer than value a

36 def fill_values(a):

37 anch_len_x = []

38 bunk_len_x = []

39 for i in range(len(AIS_dataframe.AnchoringLengthHrs)):

40 anch_len_x.append(a)

41 bunk_len_x.append(b)

42 return anch_len_x, bunk_len_x

43

44 anch_len_x, bunk_len_x = fill_values(a)

45

46

47 # Creating column index to dataframe

48 AIS_dataframe['AnchorLengthx'] = AIS_dataframe.index

49 AIS_dataframe['BunkLengthx'] = AIS_dataframe.index

50 # Inserting new data to dataframe

51 AIS_dataframe.loc[:,'AnchorLengthx'] = pd.Series(anch_len_x, ...

index=AIS_dataframe.index)

52 AIS_dataframe.loc[:,'BunkLengthx'] = pd.Series(bunk_len_x, ...

index=AIS_dataframe.index)

53

54

55 # ------------------------- Length grouping -------------------------

56

57 # Require a minimum confidence mean of 0.7

58 print(AIS_dataframe['ShipType'].unique())

59

60 # Reduce dataframe to shiptypes with minimum 100 registrations

61 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

62 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

63 "'Ore Carrier','LNG Tanker',)")

64

65 # Creating new dataframe for operations lasting longer than value a

66 AIS_dataframe_x = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs ∏ a]

67

68 AIS_dataframe_n = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs < a]

69

70 # Creating new dataframes for bunkering type

71 # Anchorage

72 AIS_dataframe_anchor = ...

AIS_dataframe_n[AIS_dataframe_n.BunkeringType == 'Anchorage']

73 # Berth
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74 AIS_dataframe_berth = AIS_dataframe_n[AIS_dataframe_n.BunkeringType ...

== 'Berth']

75

76

77 # ---------------------- Define number of bins ----------------------

78

79 # Bin size

80 res_anch = 2

81 res_bunk = 1

82 # Ship length grouping

83 length = 150

84

85

86 # Anchor

87 min_asm = min(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ∑...

length]['AnchoringLengthHrs'])

88 max_asm = max(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ∑...

length]['AnchoringLengthHrs'])

89 bsize_asm = int((max_asm-min_asm)/res_anch) # bin size must be an ...

integer

90 min_ala = min(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> length]['AnchoringLengthHrs'])

91 max_ala = max(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> length]['AnchoringLengthHrs'])

92 bsize_ala = int((max_ala-min_ala)/res_anch) # bin size must be an ...

integer

93

94 # Berth

95 min_bsm = min(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ∑ ...

length]['AnchoringLengthHrs'])

96 max_bsm = max(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ∑ ...

length]['AnchoringLengthHrs'])

97 bsize_bsm = int((max_bsm-min_bsm)/res_anch) # bin size must be an ...

integer

98 min_bla = min(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength > ...

length]['AnchoringLengthHrs'])

99 max_bla = max(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength > ...

length]['AnchoringLengthHrs'])

100 bsize_bla = int((max_bla-min_bla)/res_anch) # bin size must be an ...

integer

101

102 # Bunkering at anchorage

103 min_asmb = min(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

∑ length]['BunkeringLengthHrs'])

104 max_asmb = max(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

∑ length]['BunkeringLengthHrs'])
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105 bsize_asmb = int((max_asmb-min_asmb)/res_bunk) # bin size must be ...

an integer

106 min_alab = min(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> length]['BunkeringLengthHrs'])

107 max_alab = max(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> length]['BunkeringLengthHrs'])

108 bsize_alab = int((max_alab-min_alab)/res_bunk) # bin size must be ...

an integer

109

110 # Bunkering at berth

111 min_bsmb = min(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ∑ ...

length]['BunkeringLengthHrs'])

112 max_bsmb = max(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ∑ ...

length]['BunkeringLengthHrs'])

113 bsize_bsmb = int((max_bsmb-min_bsmb)/res_bunk) # bin size must be ...

an integer

114 min_blab = min(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength > ...

length]['BunkeringLengthHrs'])

115 max_blab = max(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength > ...

length]['BunkeringLengthHrs'])

116 bsize_blab = int((max_blab-min_blab)/res_bunk) # bin size must be ...

an integer

117

118

119 # ---------- Plot laying and bunkering time for operations ----------

120

121 #sns.set()

122 sns.set(style="whitegrid", color_codes=True)

123

124 # Anchorage

125 plt.figure()

126 ax = ...

sns.distplot(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

∑ 150]['AnchoringLengthHrs'],

127 bins=bsize_asm, color='b', ...

hist_kws=dict(edgecolor="b", linewidth=1), ...

label='Shiplength ∑ ' + str(length) + ' ...

meters') #kde=True, color="b",

128 ax2 = ...

sns.distplot(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> 150]['AnchoringLengthHrs'],

129 bins=bsize_ala, color="r", ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Shiplength > ' + str(length) + ' ...

meters') # kde=True, color="r",



APPENDIX E. PYTHON CODE xlix

130 axa = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType == ...

'Anchorage']['AnchorLengthx'],

131 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than ' + str(a) + ...

' hours')

132 #ax.axvline(3, color="k", linestyle="--")

133 ax.set(ylabel="Ship density", xlabel="Anchorage time [hours]", ...

title ='Anchorage time')

134 plt.xlim(0,a+5)

135 #plt.ylim(0,0.5)

136 plt.legend()

137 plt.show()

138

139 # Berth

140 plt.figure()

141 ax3 = ...

sns.distplot(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ...

∑ 150]['AnchoringLengthHrs'],

142 bins=bsize_bsm, color='b', ...

hist_kws=dict(edgecolor="b", linewidth=1), ...

label='Shiplength ∑ ' + str(length) + ' ...

meters') # kde=False, color="b",

143 ax5 = ...

sns.distplot(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ...

> 150]['AnchoringLengthHrs'],

144 bins=bsize_bla, color="r", ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Shiplength > ' + str(length) + ' ...

meters') # kde=False, color="r",

145 axb = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType == ...

'Berth']['AnchorLengthx'],

146 kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than ' + str(a) + ...

' hours')

147 #ax3.axvline(3, color="k", linestyle="--")

148 ax3.set(ylabel="Ship density", xlabel="Berth time [hours]", title ...

='Berth time')

149 plt.xlim(0,a+5)

150 plt.legend()

151 plt.show()

152

153

154 # Bunkering time at anchorage

155 plt.figure()
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156 ax0 = ...

sns.distplot(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

∑ 150]['BunkeringLengthHrs'],

157 bins=bsize_asmb, color='b', ...

hist_kws=dict(edgecolor="b", linewidth=1), ...

label='Shiplength ∑ ' + str(length) + ' ...

meters') # kde=False, color="b",

158 ax2 = ...

sns.distplot(AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ...

> 150]['BunkeringLengthHrs'],

159 bins=bsize_alab, color="r", ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Shiplength > ' + str(length) + ' ...

meters') # kde=False, color="r",

160 #axc = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType ...

== 'Anchorage']['BunkLengthx'],

161 #kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than 180 hours')

162 #ax0.axvline(3, color="k", linestyle="--")

163 ax0.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title ='Bunkering time at anchorage')

164 plt.xlim(0,b+5)

165 plt.legend()

166 plt.show()

167

168

169 # Bunkering time at berth

170 plt.figure()

171 ax3 = ...

sns.distplot(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ...

∑ 150]['BunkeringLengthHrs'],

172 bins=bsize_bsmb, color='b', ...

hist_kws=dict(edgecolor="b", linewidth=1), ...

label='Shiplength ∑ ' + str(length) + ' ...

meters') # kde=False, color="b",

173 ax5 = ...

sns.distplot(AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ...

> 150]['BunkeringLengthHrs'],

174 bins=bsize_blab, color="r", ...

hist_kws=dict(edgecolor="r", linewidth=1), ...

label='Shiplength > ' + str(length) + ' ...

meters') # kde=False, color="r",

175 #axd = sns.distplot(AIS_dataframe_x[AIS_dataframe_x.BunkeringType ...

== 'Berth']['BunkLengthx'],



APPENDIX E. PYTHON CODE li

176 #kde = False, color = '.2', ...

hist_kws=dict(edgecolor="k", linewidth=3), ...

label='Anchorage of more than 180 hours')

177 #ax3.axvline(3, color="k", linestyle="--")

178 ax5.set(ylabel="Ship density", xlabel="Bunkering time [hours]", ...

title ='Bunkering time at berth')

179 plt.xlim(0,b+5)

180 plt.legend()

181 plt.show()

182

183

184 # ------------------------ Normalised plots -------------------------

185

186 # Creating new dataframe for operations lasting longer than value a

187 AIS_dataframe_x = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs ∏ a]

188

189 AIS_dataframe_n = AIS_dataframe[AIS_dataframe.AnchoringLengthHrs < a]

190

191 # Creating new dataframes for bunkering type

192 # Anchorage

193 AIS_dataframe_anchor = ...

AIS_dataframe_n[AIS_dataframe_n.BunkeringType == 'Anchorage']

194 # Berth

195 AIS_dataframe_berth = AIS_dataframe_n[AIS_dataframe_n.BunkeringType ...

== 'Berth']

196

197 # ------------------------- All operations --------------------------

198

199 # Create new dataframes

200 AIS_dataframe_above150 = AIS_dataframe_n[AIS_dataframe_n.ShipLength ...

> 150]

201 AIS_dataframe_below150 = AIS_dataframe_n[AIS_dataframe_n.ShipLength ...

∑ 150]

202

203 # Sort dataframes

204 AIS_dataframe_above150l = ...

AIS_dataframe_above150.sort_values('AnchoringLengthHrs')

205 AIS_dataframe_below150l = ...

AIS_dataframe_below150.sort_values('AnchoringLengthHrs')

206 AIS_dataframe_above150b = ...

AIS_dataframe_above150.sort_values('BunkeringLengthHrs')

207 AIS_dataframe_below150b = ...

AIS_dataframe_below150.sort_values('BunkeringLengthHrs')

208

209 # Create list numerating operations

210 # Create new column with normalised values
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211 def fill_value_allabove150l():

212 norm_allabove150l = []

213 for i in range(len(AIS_dataframe_above150l.ShipLength)):

214 norm_allabove150l.append((i+1)/ ...

len(AIS_dataframe_above150l.ShipLength)*100)

215 return norm_allabove150l

216

217 norm_allabove150l = fill_value_allabove150l()

218

219 def fill_value_allbelow150l():

220 norm_allbelow150l = []

221 for i in range(len(AIS_dataframe_below150l.ShipLength)):

222 norm_allbelow150l.append((i+1)/ ...

len(AIS_dataframe_below150l.ShipLength)*100)

223 return norm_allbelow150l

224

225 norm_allbelow150l = fill_value_allbelow150l()

226

227 def fill_value_allabove150b():

228 norm_allabove150b = []

229 for i in range(len(AIS_dataframe_above150b.ShipLength)):

230 norm_allabove150b.append((i+1)/ ...

len(AIS_dataframe_above150b.ShipLength)*100)

231 return norm_allabove150b

232

233 norm_allabove150b = fill_value_allabove150b()

234

235 def fill_value_allbelow150b():

236 norm_allbelow150b = []

237 for i in range(len(AIS_dataframe_below150b.ShipLength)):

238 norm_allbelow150b.append((i+1)/ ...

len(AIS_dataframe_below150b.ShipLength)*100)

239 return norm_allbelow150b

240

241 norm_allbelow150b = fill_value_allbelow150b()

242

243 # Append normalised column

244 AIS_dataframe_above150l['norm'] = norm_allabove150l

245 AIS_dataframe_below150l['norm'] = norm_allbelow150l

246 AIS_dataframe_above150b['norm'] = norm_allabove150b

247 AIS_dataframe_below150b['norm'] = norm_allbelow150b

248

249

250 # Plot laying time

251 plt.plot(AIS_dataframe_above150l.AnchoringLengthHrs, ...

AIS_dataframe_above150l.norm, color='r', label='Shiplength > ' ...
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+ str(length) + ' meters')

252 plt.plot(AIS_dataframe_below150l.AnchoringLengthHrs, ...

AIS_dataframe_below150l.norm, color='b', label='Shiplength ∑ ' ...

+ str(length) + ' meters')

253 plt.title('Laying time normalised over number of operations')

254 plt.xlabel("Laying time [hours]")

255 plt.ylabel("Percentage")

256 plt.xlim(0,a+5)

257 plt.legend()

258 plt.show()

259

260 # Plot bunkering time

261 plt.plot(AIS_dataframe_above150b.BunkeringLengthHrs, ...

AIS_dataframe_above150b.norm, color='r', label='Shiplength > ' ...

+ str(length) + ' meters')

262 plt.plot(AIS_dataframe_below150b.BunkeringLengthHrs, ...

AIS_dataframe_below150b.norm, color='b', label='Shiplength ∑ ' ...

+ str(length) + ' meters')

263 plt.title('Bunkering time normalised over number of operations')

264 plt.xlabel("Bunkering time [hours]")

265 plt.ylabel("Percentage")

266 plt.xlim(0,b+5)

267 plt.legend()

268 plt.show()

269

270

271

272 # -------------------------- At anchorage ---------------------------

273

274 AIS_dataframe_anchor_above150 = ...

AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength > 150]

275 AIS_dataframe_anchor_below150 = ...

AIS_dataframe_anchor[AIS_dataframe_anchor.ShipLength ∑ 150]

276

277 # Sort dataframes

278 AIS_dataframe_anchor_above150l = ...

AIS_dataframe_anchor_above150.sort_values('AnchoringLengthHrs')

279 AIS_dataframe_anchor_below150l = ...

AIS_dataframe_anchor_below150.sort_values('AnchoringLengthHrs')

280 AIS_dataframe_anchor_above150b = ...

AIS_dataframe_anchor_above150.sort_values('BunkeringLengthHrs')

281 AIS_dataframe_anchor_below150b = ...

AIS_dataframe_anchor_below150.sort_values('BunkeringLengthHrs')

282

283 # Create list numerating operations

284 # Create new column with normalised values
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285 def fill_value_anchor_allabove150l():

286 norm_anchor_allabove150l = []

287 for i in range(len(AIS_dataframe_anchor_above150l.ShipLength)):

288 norm_anchor_allabove150l.append((i+1)/ ...

len(AIS_dataframe_anchor_above150l.ShipLength)*100)

289 return norm_anchor_allabove150l

290

291 norm_anchor_allabove150l = fill_value_anchor_allabove150l()

292

293 def fill_value_anchor_allbelow150l():

294 norm_anchor_allbelow150l = []

295 for i in range(len(AIS_dataframe_anchor_below150l.ShipLength)):

296 norm_anchor_allbelow150l.append((i+1)/ ...

len(AIS_dataframe_anchor_below150l.ShipLength)*100)

297 return norm_anchor_allbelow150l

298

299 norm_anchor_allbelow150l = fill_value_anchor_allbelow150l()

300

301 def fill_value_anchor_allabove150b():

302 norm_anchor_allabove150b = []

303 for i in range(len(AIS_dataframe_anchor_above150b.ShipLength)):

304 norm_anchor_allabove150b.append((i+1)/ ...

len(AIS_dataframe_anchor_above150b.ShipLength)*100)

305 return norm_anchor_allabove150b

306

307 norm_anchor_allabove150b = fill_value_anchor_allabove150b()

308

309 def fill_value_anchor_allbelow150b():

310 norm_anchor_allbelow150b = []

311 for i in range(len(AIS_dataframe_anchor_below150b.ShipLength)):

312 norm_anchor_allbelow150b.append((i+1)/ ...

len(AIS_dataframe_anchor_below150b.ShipLength)*100)

313 return norm_anchor_allbelow150b

314

315 norm_anchor_allbelow150b = fill_value_anchor_allbelow150b()

316

317 # Append normalised column

318 AIS_dataframe_anchor_above150l['norm'] = norm_anchor_allabove150l

319 AIS_dataframe_anchor_below150l['norm'] = norm_anchor_allbelow150l

320 AIS_dataframe_anchor_above150b['norm'] = norm_anchor_allabove150b

321 AIS_dataframe_anchor_below150b['norm'] = norm_anchor_allbelow150b

322

323

324 # Plot anchorage time

325 plt.plot(AIS_dataframe_anchor_above150l.AnchoringLengthHrs, ...

AIS_dataframe_anchor_above150l.norm, color='r', ...
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label='Shiplength > ' + str(length) + ' meters')

326 plt.plot(AIS_dataframe_anchor_below150l.AnchoringLengthHrs, ...

AIS_dataframe_anchor_below150l.norm, color='b', ...

label='Shiplength ∑ ' + str(length) + ' meters')

327 plt.title('Anchorage time normalised over number of operations')

328 plt.xlabel("Laying time [hours]")

329 plt.ylabel("Percentage")

330 plt.xlim(0,a+5)

331 plt.legend()

332 plt.show()

333

334 # Plot bunkering time

335 plt.plot(AIS_dataframe_anchor_above150b.BunkeringLengthHrs, ...

AIS_dataframe_anchor_above150b.norm, color='r', ...

label='Shiplength > ' + str(length) + ' meters')

336 plt.plot(AIS_dataframe_anchor_below150b.BunkeringLengthHrs, ...

AIS_dataframe_anchor_below150b.norm, color='b', ...

label='Shiplength ∑ ' + str(length) + ' meters')

337 plt.title('Bunkering time normalised over number of operations at ...

anchorage')

338 plt.xlabel("Bunkering time [hours]")

339 plt.ylabel("Percentage")

340 plt.xlim(0,b+5)

341 plt.legend()

342 plt.show()

343

344

345 # ---------------------------- At berth -----------------------------

346

347 AIS_dataframe_berth_above150 = ...

AIS_dataframe_berth[AIS_dataframe_berth.ShipLength > 150]

348 AIS_dataframe_berth_below150 = ...

AIS_dataframe_berth[AIS_dataframe_berth.ShipLength ∑ 150]

349

350 # Sort dataframes

351 AIS_dataframe_berth_above150l = ...

AIS_dataframe_berth_above150.sort_values('AnchoringLengthHrs')

352 AIS_dataframe_berth_below150l = ...

AIS_dataframe_berth_below150.sort_values('AnchoringLengthHrs')

353 AIS_dataframe_berth_above150b = ...

AIS_dataframe_berth_above150.sort_values('BunkeringLengthHrs')

354 AIS_dataframe_berth_below150b = ...

AIS_dataframe_berth_below150.sort_values('BunkeringLengthHrs')

355

356 # Create list numerating operations

357 # Create new column with normalised values
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358 def fill_value_berth_allabove150l():

359 norm_berth_allabove150l = []

360 for i in range(len(AIS_dataframe_berth_above150l.ShipLength)):

361 norm_berth_allabove150l.append((i+1)/ ...

len(AIS_dataframe_berth_above150l.ShipLength)*100)

362 return norm_berth_allabove150l

363

364 norm_berth_allabove150l = fill_value_berth_allabove150l()

365

366 def fill_value_berth_allbelow150l():

367 norm_berth_allbelow150l = []

368 for i in range(len(AIS_dataframe_berth_below150l.ShipLength)):

369 norm_berth_allbelow150l.append((i+1)/ ...

len(AIS_dataframe_berth_below150l.ShipLength)*100)

370 return norm_berth_allbelow150l

371

372 norm_berth_allbelow150l = fill_value_berth_allbelow150l()

373

374 def fill_value_berth_allabove150b():

375 norm_berth_allabove150b = []

376 for i in range(len(AIS_dataframe_berth_above150b.ShipLength)):

377 norm_berth_allabove150b.append((i+1)/ ...

len(AIS_dataframe_berth_above150b.ShipLength)*100)

378 return norm_berth_allabove150b

379

380 norm_berth_allabove150b = fill_value_berth_allabove150b()

381

382 def fill_value_berth_allbelow150b():

383 norm_berth_allbelow150b = []

384 for i in range(len(AIS_dataframe_berth_below150b.ShipLength)):

385 norm_berth_allbelow150b.append((i+1)/ ...

len(AIS_dataframe_berth_below150b.ShipLength)*100)

386 return norm_berth_allbelow150b

387

388 norm_berth_allbelow150b = fill_value_berth_allbelow150b()

389

390 # Append normalised column

391 AIS_dataframe_berth_above150l['norm'] = norm_berth_allabove150l

392 AIS_dataframe_berth_below150l['norm'] = norm_berth_allbelow150l

393 AIS_dataframe_berth_above150b['norm'] = norm_berth_allabove150b

394 AIS_dataframe_berth_below150b['norm'] = norm_berth_allbelow150b

395

396

397 # Plot berth time

398 plt.plot(AIS_dataframe_berth_above150l.AnchoringLengthHrs, ...

AIS_dataframe_berth_above150l.norm, color='r', ...
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label='Shiplength > ' + str(length) + ' meters')

399 plt.plot(AIS_dataframe_berth_below150l.AnchoringLengthHrs, ...

AIS_dataframe_berth_below150l.norm, color='b', ...

label='Shiplength ∑ ' + str(length) + ' meters')

400 plt.title('Berth time normalised over number of operation')

401 plt.xlabel("Laying time [hours]")

402 plt.ylabel("Percentage")

403 plt.xlim(0,a+5)

404 plt.legend()

405 plt.show()

406

407 # Plot bunkering time

408 plt.plot(AIS_dataframe_berth_above150b.BunkeringLengthHrs, ...

AIS_dataframe_berth_above150b.norm, color='r', ...

label='Shiplength > ' + str(length) + ' meters')

409 plt.plot(AIS_dataframe_berth_below150b.BunkeringLengthHrs, ...

AIS_dataframe_berth_below150b.norm, color='b', ...

label='Shiplength ∑ ' + str(length) + ' meters')

410 plt.title('Bunkering time normalised over number of operations at ...

berth')

411 plt.xlabel("Bunkering time [hours]")

412 plt.ylabel("Percentage")

413 plt.xlim(0,b+5)

414 plt.legend()

415 plt.show()
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E.9 Timeline Plot of Three Operations

Timelineplot_Bunker_Operations.py

1 """

2 Plot anchoring and bunkering for several barges in one plot

3 Created: 12. April 2018

4 Author: Marion Aarsnes

5 """

6

7 # Import packages

8 import pandas as pd # Read CSV

9 import numpy as np # Scientific computation

10 import matplotlib.pyplot as plt # Plotting

11 import matplotlib.ticker as mtick # Formatting plots

12 import seaborn as sns # Library of plots built upon ...

matplotlib

13

14 # Read CSV file

15 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

16 print(AIS_dataframe.columns)

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.b', 'length.b', ...

'shipType.s', 'name.s', 'length.s', 'bunkeringLength_hrs', ...

'anchoringLength_hrs', 'BunkUnixStart',

20 'BunkUnixEnd', 'AnchorUnixStart', 'AnchorUnixEnd']]

21 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

22 "shipType.b": ...

"BargeType",

23 "length.b": ...

"BargeLength",

24 "shipType.s": "ShipType",

25 "length.s": "ShipLength",

26 "name.s": "ShipName",

27 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

28 "bunkeringLength_hrs": ...

"BunkeringLengthHrs"})

29

30 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

31

32 # Set plot variables
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33 sns.set(style="whitegrid", color_codes=True)

34 sns.despine(left=True)

35

36 # Define operation numbers to plot

37 op_list = [3, 4, 10]

38

39 # Create empty matrices for x and y values

40 x_list = np.zeros(shape=(len(op_list),4))

41 y_list = np.zeros(shape=(len(op_list),2))

42

43 # Calculate matrix values - start and end of anchorage and ...

bunkering for each operation

44 for j in range(len(op_list)):

45 i = op_list[j]

46 x_list[j,0] = (AIS_dataframe.AnchorUnixStart[i] - ...

AIS_dataframe.AnchorUnixStart[i])/3600

47 x_list[j,1] = (AIS_dataframe.AnchorUnixEnd[i] - ...

AIS_dataframe.AnchorUnixStart[i])/3600

48 x_list[j,2] = (AIS_dataframe.BunkUnixStart[i] - ...

AIS_dataframe.AnchorUnixStart[i])/3600

49 x_list[j,3] = (AIS_dataframe.BunkUnixEnd[i] - ...

AIS_dataframe.AnchorUnixStart[i])/3600

50 y_list[j,0] = j

51 y_list[j,1] = j+0.1

52

53 # Define colors and line styles

54 colors = ['r', 'b', 'y', 'g', 'm', 'k']

55 linestyle = ['-', '--', ':', '-.']

56

57 # Plot

58 for k in range(len(op_list)):

59 type_s = AIS_dataframe.ShipType[op_list[k]]

60 length_s = AIS_dataframe.ShipLength[op_list[k]]

61 type_b = AIS_dataframe.BargeType[op_list[k]]

62 length_b = AIS_dataframe.BargeLength[op_list[k]]

63 plt.plot([x_list[k,0], x_list[k,1]], [y_list[k,0], ...

y_list[k,0]], '1', color='b')

64 plt.plot([x_list[k,2], x_list[k,3]], [y_list[k,1], ...

y_list[k,1]], '1', color='r')

65 plt.plot([x_list[k,0], x_list[k,1]], [y_list[k,0], ...

y_list[k,0]], linestyle[k], color='b', label='Anchorage ' + ...

str(type_s) + ' ' + str(length_s) + 'm')

66 plt.plot([x_list[k,2], x_list[k,3]], [y_list[k,1], ...

y_list[k,1]], linestyle[k], color='r', label='Bunkering ' + ...

str(type_b) + ' ' + str(length_b) + 'm')
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67 plt.plot([x_list[k,0], x_list[k,0]], [y_list[k,0]+0.1, ...

y_list[k,0]-0.1], '-', color='b')

68 plt.plot([x_list[k,1], x_list[k,1]], [y_list[k,0]+0.1, ...

y_list[k,0]-0.1], '-', color='b')

69 plt.plot([x_list[k, 2], x_list[k, 2]], [y_list[k, 1] + 0.1, ...

y_list[k, 0]], '-', color='r')

70 plt.plot([x_list[k, 3], x_list[k, 3]], [y_list[k, 1] + 0.1, ...

y_list[k, 0]], '-', color='r')

71 plt.text(9.9, 2.2, 'Operation 3')

72 plt.text(14, 1.2, 'Operation 2')

73 plt.text(3.5, 0.2, 'Operation 1')

74

75 plt.title('Time plot anchorage and bunkering')

76 plt.xlabel("Time [hours]")

77 plt.legend()

78 plt.show()
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E.10 Normalised Plots of Various Parameters

Normalised_Plots.py

1 """

2 Create normalised plots

3 Created: 02. May 2018

4 Author: Marion Aarsnes

5 """

6

7 import pandas as pd # Read CSV

8 import seaborn as sns # Library of plots built upon ...

matplotlib

9 import matplotlib.pyplot as plt # Plots

10 import matplotlib.ticker as mtick # Formatting plots

11

12 # Read CSV file

13 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

14 print(AIS_dataframe.columns)

15

16 # Clean up dataframe

17 AIS_dataframe = AIS_dataframe[['imo.b', 'length.b', 'shipType.s', ...

'length.s', 'bunkeringLength_hrs', 'anchoringLength_hrs', ...

'confidence_mean', "bunkeringType"]] #, 'confidence_mean']

18 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

19 "shipType.s": "ShipType",

20 "length.b": ...

"BargeLength",

21 "length.s": "ShipLength",

22 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

23 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

24 "bunkeringType": ...

"BunkeringType",

25 "confidence_mean": ...

"ConfMean"})

26

27 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

28 # Removing rows with Confidence Mean < 0.7

29 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

30

31
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32 # Reducing dataframe to shiptypes with minimum 100 registrations

33 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

34 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

35 "'Ore Carrier','LNG Tanker',)")

36

37 # Set plotting style

38 sns.set(style="whitegrid", color_codes=True)

39

40 # Create new column with normalised values

41 def fill_value_conf():

42 norm = []

43 for i in range(len(AIS_dataframe.ConfMean)):

44 norm.append((i+1)/len(AIS_dataframe.ConfMean)*100)

45 return norm

46

47 norm = fill_value_conf()

48

49 # ---------------------- Normalised certainty -----------------------

50

51 AIS_dataframe_conf = AIS_dataframe

52

53 # Sort by increasing certainty

54 AIS_dataframe_conf = AIS_dataframe_conf.sort_values('ConfMean')

55

56 # Append normalised column

57 AIS_dataframe_conf['norm'] = norm

58

59 # Plot

60 plt.plot(AIS_dataframe_conf.ConfMean, AIS_dataframe_conf.norm)

61 plt.title('Confidence Mean normalised over number of operations')

62 plt.xlabel("Confidence Mean")

63 plt.ylabel("Percentage")

64 plt.show()

65

66 # -------------------- Normalised barge lengths ---------------------

67

68 AIS_dataframe_blen = AIS_dataframe

69

70 # Sort by increasing certainty

71 AIS_dataframe_blen = AIS_dataframe_blen.sort_values('BargeLength')

72

73 # Append new column to dataframe
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74 AIS_dataframe_blen['norm'] = norm

75 print(max(AIS_dataframe_blen.BargeLength))

76

77 # Plot

78 plt.plot(AIS_dataframe_blen.BargeLength, AIS_dataframe_blen.norm)

79 plt.title('Barge Length normalised over number of operations')

80 plt.xlabel("Barge Length [meters]")

81 plt.ylabel("Percentage of operations")

82 plt.xlim(0,130)

83 plt.show()

84

85 # ------------------ Normalised ship lengths ---------------------

86

87 AIS_dataframe_slen = AIS_dataframe

88

89 # Sort by increasing certainty

90 AIS_dataframe_slen = AIS_dataframe_slen.sort_values('ShipLength')

91

92 # Append new column to dataframe

93 AIS_dataframe_slen['norm'] = norm

94 print(max(AIS_dataframe_slen.ShipLength))

95

96 # Plot

97 plt.plot(AIS_dataframe_slen.ShipLength, AIS_dataframe_slen.norm)

98 plt.title('Ship Length normalised over number of operations')

99 plt.xlabel("Ship Length [meters]")

100 plt.ylabel("Percentage")

101 plt.show()

102

103 # ----------------------- Normalised lay time -----------------------

104

105 # Create new dataframes for bunkering type

106 # Anchorage

107 AIS_dataframe_anchor = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Anchorage']

108 # Berth

109 AIS_dataframe_berth = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Berth']

110

111 # ------------------ Normalised time at anchorage -------------------

112

113 AIS_dataframe_anchor_len = AIS_dataframe_anchor

114

115 # Sort by increasing certainty

116 AIS_dataframe_anchor_len = ...

AIS_dataframe_anchor_len.sort_values('AnchoringLengthHrs')
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117

118 # Create new column with normalised values

119 def fill_value_anch():

120 norm_anch = []

121 for i in range(len(AIS_dataframe_anchor)):

122 norm_anch.append((i+1)/ len(AIS_dataframe_anchor.ConfMean)*100)

123 return norm_anch

124

125 norm_anch = fill_value_anch()

126

127 # Append new column to dataframe

128 AIS_dataframe_anchor_len['norm'] = norm_anch

129

130 # Plot

131 plt.plot(AIS_dataframe_anchor_len.AnchoringLengthHrs, ...

AIS_dataframe_anchor_len.norm)

132 plt.title('Anchoring time normalised over number of operations')

133 plt.xlabel("Anchoring time [hours]")

134 plt.ylabel("Percentage")

135 plt.show()

136

137 # -------------------- Normalised time at berth ---------------------

138

139 AIS_dataframe_berth_len = AIS_dataframe_berth

140

141 # Sort by increasing certainty

142 AIS_dataframe_berth_len = ...

AIS_dataframe_berth_len.sort_values('AnchoringLengthHrs')

143

144 # Create new column with normalised values

145 def fill_value_berth():

146 norm_berth = []

147 for i in range(len(AIS_dataframe_berth)):

148 norm_berth.append((i+1)/ len(AIS_dataframe_berth.ConfMean)*100)

149 return norm_berth

150

151 norm_berth = fill_value_berth()

152

153 # Append new column to dataframe

154 AIS_dataframe_berth_len['norm'] = norm_berth

155

156 # Plot

157 plt.plot(AIS_dataframe_berth_len.AnchoringLengthHrs, ...

AIS_dataframe_berth_len.norm)

158 plt.title('Berth time normalised over number of operations')

159 plt.xlabel("Anchoring time [hours]")
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160 plt.ylabel("Percentage")

161 plt.show()

162

163 # -------------------- Normalised bunkering time --------------------

164

165 # All operations

166 # Create new dataframe and sort by increasing certainty

167 AIS_dataframe_bunk_all= AIS_dataframe.sort_values('BunkeringLengthHrs')

168 # Add new column to dataframe

169 AIS_dataframe_bunk_all['norm'] = norm

170

171 # Plot

172 plt.plot(AIS_dataframe_bunk_all.BunkeringLengthHrs, ...

AIS_dataframe_bunk_all.norm)

173 plt.title('Bunkering time normalised over number of operations')

174 plt.xlabel("Bunkering Time [hours]")

175 plt.ylabel("Percentage")

176 plt.xlim(0,35)

177 plt.show()

178

179

180 # Anchorage

181 # Create new dataframe

182 AIS_dataframe_bunk_anchor = ...

AIS_dataframe[AIS_dataframe.BunkeringType == 'Anchorage']

183 # Sort by increasing certainty

184 AIS_dataframe_bunk_anchor = ...

AIS_dataframe_bunk_anchor.sort_values('BunkeringLengthHrs')

185 # Add new column to dataframe

186 AIS_dataframe_bunk_anchor['norm'] = norm_anch

187

188 # Plot

189 plt.plot(AIS_dataframe_bunk_anchor.BunkeringLengthHrs, ...

AIS_dataframe_bunk_anchor.norm)

190 plt.title('Bunkering time at anchorage normalised over number of ...

operations')

191 plt.xlabel("Bunkering Time [hours]")

192 plt.ylabel("Percentage")

193 plt.xlim(0,35)

194 plt.show()

195

196 # Berth

197 # Create new dataframe

198 AIS_dataframe_bunk_berth = ...

AIS_dataframe[AIS_dataframe.BunkeringType == 'Berth']

199 # Sort by increasing certainty
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200 AIS_dataframe_bunk_berth = ...

AIS_dataframe_bunk_berth.sort_values('BunkeringLengthHrs')

201 # Add new column to dataframe

202 AIS_dataframe_bunk_berth['norm'] = norm_berth

203

204 # Plot

205 plt.plot(AIS_dataframe_bunk_berth.BunkeringLengthHrs, ...

AIS_dataframe_bunk_berth.norm)

206 plt.title('Bunkering time at berth normalised over number of ...

operations')

207 plt.xlabel("Bunkering Time [hours]")

208 plt.ylabel("Percentage")

209 plt.xlim(0,35)

210 plt.show()

211

212 # ---------------- Bunkering time less than 24 hours ----------------

213

214 # Create new dataframe for operations with bunkering of less than ...

24 hours

215 AIS_dataframe_24 = AIS_dataframe[AIS_dataframe.BunkeringLengthHrs ∑ 24]

216

217 # Sort dataframe by increasing bunkering time

218 AIS_dataframe_bunk_all_24= ...

AIS_dataframe_24.sort_values('BunkeringLengthHrs')

219

220 # Create new column with normalised values

221 def fill_value_all_24():

222 norm_24 = []

223 for i in range(len(AIS_dataframe_bunk_all_24)):

224 norm_24.append((i+1)/len(AIS_dataframe_bunk_all_24.ConfMean)*100)

225 return norm_24

226

227 norm_24 = fill_value_all_24()

228

229 # Append new column to dataframe

230 AIS_dataframe_bunk_all_24['norm'] = norm_24

231

232 # Plot normalised plot for all operations

233 plt.plot(AIS_dataframe_bunk_all_24.BunkeringLengthHrs, ...

AIS_dataframe_bunk_all_24.norm)

234 plt.title('Bunkering time normalised over number of operations')

235 plt.xlabel("Bunkering Time [hours]")

236 plt.ylabel("Percentage")

237 plt.xlim(0,27)

238 plt.show()

239
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240

241 # At anchorage

242 # Create new dataframe and sort by increasing bunkering time

243 AIS_dataframe_bunk_all_24a = ...

AIS_dataframe_24[AIS_dataframe_24.BunkeringType == 'Anchorage']

244 AIS_dataframe_bunk_all_24a = ...

AIS_dataframe_bunk_all_24a.sort_values('BunkeringLengthHrs')

245

246 # Create new column with normalised values

247 def fill_value_all_24a():

248 norm_24a = []

249 for i in range(len(AIS_dataframe_bunk_all_24a)):

250 norm_24a.append((i+1)/len(AIS_dataframe_bunk_all_24a.ConfMean)*100)

251 return norm_24a

252

253 norm_24a = fill_value_all_24a()

254

255 # Append new column to dataframe

256 AIS_dataframe_bunk_all_24a['norm'] = norm_24a

257

258 # Plot normalised plot for bunkering at anchorage

259 plt.plot(AIS_dataframe_bunk_all_24a.BunkeringLengthHrs, ...

AIS_dataframe_bunk_all_24a.norm)

260 plt.title('Bunkering time normalised over number of operations')

261 plt.xlabel("Bunkering Time at anchorage [hours]")

262 plt.ylabel("Percentage")

263 plt.xlim(0,27)

264 plt.show()

265

266 # At berth

267 # Create new dataframe and sort by increasing bunkering time

268 AIS_dataframe_bunk_all_24b = ...

AIS_dataframe_24[AIS_dataframe_24.BunkeringType == 'Berth']

269 AIS_dataframe_bunk_all_24b = ...

AIS_dataframe_bunk_all_24b.sort_values('BunkeringLengthHrs')

270

271 # Create new column with normalised values

272 def fill_value_all_24b():

273 norm_24b = []

274 for i in range(len(AIS_dataframe_bunk_all_24b)):

275 norm_24b.append((i+1)/len(AIS_dataframe_bunk_all_24b.ConfMean)*100)

276 return norm_24b

277

278 norm_24b = fill_value_all_24b()

279

280 # Append new column to dataframe
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281 AIS_dataframe_bunk_all_24b['norm'] = norm_24b

282

283 # Plot normalised plot of bunkerings at berth

284 plt.plot(AIS_dataframe_bunk_all_24b.BunkeringLengthHrs, ...

AIS_dataframe_bunk_all_24b.norm)

285 plt.title('Bunkering time normalised over number of operations')

286 plt.xlabel("Bunkering Time at berth [hours]")

287 plt.ylabel("Percentage")

288 plt.xlim(0,27)

289 plt.show()
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E.11 Histogram and Scatter Plot of Waiting Time and Post

Bunkering Time

Histogram_WT_PBT.py

1 """

2 Plot histograms of Waiting Time and Post Bunkering Time

3 Created: 26. April 2018

4 Author: Marion Aarsnes

5 """

6

7 import pandas as pd # Read CSV

8 import seaborn as sns # Library of plots built upon ...

matplotlib

9 import matplotlib.pyplot as plt # Plots

10 import matplotlib.ticker as mtick # Formatting plots

11

12 # Read CSV file

13 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

14 print(AIS_dataframe.columns)

15

16 # Clean up dataframe

17 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'BunkUnixStart',

18 'BunkUnixEnd', 'AnchorUnixStart', 'AnchorUnixEnd', ...

'confidence_mean', 'bunkeringType', ...

'timeBeforeBunkering_hrs', 'timeAfterBunkering_hrs']]

19 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

20 "shipType.s": "ShipType",

21 "length.s": "ShipLength",

22 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

23 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

24 "confidence_mean": ...

"ConfMean",

25 "bunkeringType": ...

"BunkeringType",

26 "timeBeforeBunkering_hrs": ...

"WaitingTime",

27 "timeAfterBunkering_hrs": ...

"PBTime"})

28
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29 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

30 # Removing rows with Confidence Mean < 0.7

31 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

32

33 # Reduce dataframe to shiptypes with minimum 100 registrations

34 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

35 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

36 "'Ore Carrier','LNG Tanker',)")

37

38 # Create new dataframes for bunkering type

39 # Anchorage

40 AIS_dataframe_anchor = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Anchorage']

41 # Berth

42 AIS_dataframe_berth = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Berth']

43

44 # Set plot stylr

45 sns.set(style="whitegrid", color_codes=True)

46

47 # ------------------------- Plot WT vs PBT --------------------------

48

49 # Scatter plot showing waiting time vs anchorage time after bunkering

50 plt.scatter(AIS_dataframe.WaitingTime, AIS_dataframe.PBTime)

51 plt.xlim(-10,200)

52 plt.ylim(-10,200)

53 #plt.title('Waiting time vs time after bunkering')

54 plt.ylabel("Post Bunkering Time [hours]")

55 plt.xlabel("Waiting Time [hours]")

56 plt.show()

57

58 grid2 = sns.jointplot(AIS_dataframe.WaitingTime, ...

AIS_dataframe.PBTime, kind="reg", ...

joint_kws={'line_kws':{'color':'y'}})

59 grid2.set_axis_labels("Waiting Time [hours]","Post Bunkering Time ...

[hours]")

60 plt.xlim(-10,200)

61 plt.ylim(-10,200)

62 plt.show()

63

64 # --------------- Define bin size and number of bins ----------------
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65

66 # All operations

67 b_len = 2.5 # Bin size

68 min_wall = min(AIS_dataframe['WaitingTime'])

69 max_wall = max(AIS_dataframe['WaitingTime'])

70 bsize_wall = int((max_wall-min_wall)/b_len) # Number of bins must ...

be an integer

71

72 # At anchorage

73 b_len = 2.5 # Bin size

74 min_wan = min(AIS_dataframe_anchor['WaitingTime'])

75 max_wan = max(AIS_dataframe_anchor['WaitingTime'])

76 bsize_wan = int((max_wan-min_wan)/b_len) # Number of bins must be ...

an integer

77

78 # At berth

79 b_len = 2.5 # Bin size

80 min_wber = min(AIS_dataframe_berth['WaitingTime'])

81 max_wber = max(AIS_dataframe_berth['WaitingTime'])

82 bsize_wber = int((max_wber-min_wber)/b_len) # Number of bins must ...

be an integer

83

84

85 # -------------------------- Waiting Time ---------------------------

86

87 # Plot Waiting Time for all operations

88 plt.figure()

89 ax = sns.distplot(AIS_dataframe['WaitingTime'],

90 bins=bsize_wall,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...

# kde=False, color="b", 112

91 ax.set(ylabel="Number of operations", xlabel="Waiting time ...

[hours]", title ='All')

92 plt.xlim(0,25)

93 plt.legend()

94 plt.show()

95

96 # Plot Waiting Time at anchorage

97 plt.figure()

98 ax = sns.distplot(AIS_dataframe_anchor['WaitingTime'],

99 bins=bsize_wan,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...

# kde=False, color="b", 112

100 ax.set(ylabel="Number of operations", xlabel="Waiting time ...

[hours]", title ='At anchorage')

101 plt.xlim(0,25)
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102 plt.legend()

103 plt.show()

104

105 # Plot Waiting Time at berth

106 plt.figure()

107 ax = sns.distplot(AIS_dataframe_berth['WaitingTime'],

108 bins=bsize_wber,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...

# kde=False, color="b",

109 ax.set(ylabel="Number of operations", xlabel="Waiting time ...

[hours]", title ='At berth')

110 plt.xlim(0,25)

111 plt.legend()

112 plt.show()

113

114

115 # ----------------------- Post Bunkering Time -----------------------

116

117 # Define bin size and number of bins

118

119 # All operations

120 b_lenp = 2.5 # Bin size

121 min_pall = min(AIS_dataframe['PBTime'])

122 max_pall = max(AIS_dataframe['PBTime'])

123 bsize_pall = int((max_pall-min_pall)/b_lenp) # Number of bins must ...

be an integer

124

125 # At anchorage

126 b_lenp = 2.5 # Bin size

127 min_pan = min(AIS_dataframe_anchor['PBTime'])

128 max_pan = max(AIS_dataframe_anchor['PBTime'])

129 bsize_pan = int((max_pan-min_pan)/b_lenp) # Number of bins must be ...

an integer

130

131 # At berth

132 b_lenp = 2.5 # Bin size

133 min_pber = min(AIS_dataframe_berth['PBTime'])

134 max_pber = max(AIS_dataframe_berth['PBTime'])

135 bsize_pber = int((max_pber-min_pber)/b_lenp) # Number of bins must ...

be an integer

136

137 # Plot Post Bunkering Time for all operations

138 plt.figure()

139 ax = sns.distplot(AIS_dataframe['PBTime'],

140 bins=bsize_pall,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...
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# kde=False, color="b", 112

141 ax.set(ylabel="Number of operations", xlabel="Post Bunkering Time ...

[hours]", title ='All')

142 plt.xlim(0,25)

143 plt.legend()

144 plt.show()

145

146 # Plot Post Bunkering Time at anchorage

147 plt.figure()

148 ax = sns.distplot(AIS_dataframe_anchor['PBTime'],

149 bins=bsize_pan,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...

# kde=False, color="b", 112

150 ax.set(ylabel="Number of operations", xlabel="Post Bunkering Time ...

[hours]", title ='At anchorage')

151 plt.xlim(0,25)

152 plt.legend()

153 plt.show()

154

155 # Plot Post Bunkering Time at berth

156 plt.figure()

157 ax = sns.distplot(AIS_dataframe_berth['PBTime'],

158 bins=bsize_pber,kde=False, ...

hist_kws=dict(edgecolor="b", linewidth=1)) ...

# kde=False, color="b",

159 ax.set(ylabel="Number of operations", xlabel="Post Bunkering Time ...

[hours]", title ='At berth')

160 plt.xlim(0,25)

161 plt.legend()

162 plt.show()
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E.12 Normalise Waiting Time and Post Bunkering Time

Normalise_WT_PBT.py.py

1 """

2 Plot Waiting Time and Post Bunkering Time normalised over number of ...

bunker operations

3 Created: 05. May 2018

4 Author: Marion Aarsnes

5 """

6

7 # Import packages

8 import pandas as pd # Read CSV

9 import numpy as np # Scientific calculation

10 import seaborn as sns # Library of plots built upon ...

matplotlib

11 import matplotlib.pyplot as plt # Plots

12 import matplotlib.ticker as mtick # Format plots

13

14 # Read CSV file

15 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

16 print(AIS_dataframe.columns)

17

18 # Clean up dataframe

19 AIS_dataframe = AIS_dataframe[['imo.b', 'shipType.s', 'length.s', ...

'bunkeringLength_hrs', 'anchoringLength_hrs', 'BunkUnixStart',

20 'BunkUnixEnd', 'AnchorUnixStart', 'AnchorUnixEnd', ...

'confidence_mean', 'bunkeringType', ...

'timeBeforeBunkering_hrs', 'timeAfterBunkering_hrs']]

21 AIS_dataframe = AIS_dataframe.rename(columns={"imo.b": "IMO",

22 "shipType.s": "ShipType",

23 "length.s": "ShipLength",

24 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

25 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

26 "confidence_mean": ...

"ConfMean",

27 "bunkeringType": ...

"BunkeringType",

28 "timeBeforeBunkering_hrs": ...

"WaitingTime",

29 "timeAfterBunkering_hrs": ...

"PBTime"})
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30

31 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

32 # Removing rows with Confidence Mean < 0.7

33 AIS_dataframe = AIS_dataframe[AIS_dataframe.ConfMean ∏ 0.7]

34

35 # Reduce dataframe to shiptypes with minimum 100 registrations

36 AIS_dataframe = AIS_dataframe.query("ShipType in ('Bulk ...

Carrier','Container Ship','Crude Oil Tanker','Chemical/Oil ...

Products Tanker',"

37 "'Vehicles Carrier','LPG ...

Tanker','General Cargo ...

Ship','Oil Products Tanker',"

38 "'Ore Carrier','LNG Tanker',)")

39

40 # Set plot style

41 sns.set(style="whitegrid", color_codes=True)

42

43 # Create new dataframes for bunkering type

44 # Anchorage

45 AIS_dataframe_anchor = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Anchorage']

46 # Berth

47 AIS_dataframe_berth = AIS_dataframe[AIS_dataframe.BunkeringType == ...

'Berth']

48

49 # Create new column with normalised values

50 def fill_value():

51 norm = []

52 for i in range(len(AIS_dataframe.ConfMean)):

53 norm.append((i+1)/len(AIS_dataframe.ConfMean)*100)

54 return norm

55

56 norm = fill_value()

57

58 # --------------------- Normalised Waiting Time ---------------------

59

60 AIS_dataframe_wt = AIS_dataframe

61

62 # Sorting by increasing certainty

63 AIS_dataframe_wt = AIS_dataframe_wt.sort_values('WaitingTime')

64

65 # Appending normalised column

66 AIS_dataframe_wt['norm'] = norm

67

68 # Plot
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69 plt.plot(AIS_dataframe_wt.WaitingTime, AIS_dataframe_wt.norm)

70 plt.title('Waiting Time normalised over number of operations')

71 plt.xlabel("Waiting Time [hours]")

72 plt.ylabel("Percentage")

73 #plt.legend()

74 plt.xlim(0,700)

75 plt.show()

76

77

78 # ----------------- Normalised Post Bunkering Time ------------------

79

80 AIS_dataframe_pbt = AIS_dataframe

81

82 # Sort by increasing certainty

83 AIS_dataframe_pbt = AIS_dataframe_pbt.sort_values('PBTime')

84

85 # Append normalised column

86 AIS_dataframe_pbt['norm'] = norm

87

88 # Plot

89 plt.plot(AIS_dataframe_pbt.PBTime, AIS_dataframe_pbt.norm)

90 plt.title('Post Bunkering Time normalised over number of operations')

91 plt.xlabel("Post Bunkering Time [hours]")

92 plt.ylabel("Percentage")

93 #plt.legend()

94 plt.xlim(0,700)

95 plt.show()

96

97

98 # ---------------------- Normalised WT and PBT ----------------------

99

100 plt.plot(AIS_dataframe_pbt.PBTime, AIS_dataframe_pbt.norm, ...

label="WT", color = "r")

101 plt.plot(AIS_dataframe_wt.WaitingTime, AIS_dataframe_wt.norm, ...

label="PBT", color = "b")

102 plt.title('WT and PBT normalised over number of operations')

103 plt.xlabel("Time [hours]")

104 plt.ylabel("Percentage")

105 plt.xlim(0,200)

106 plt.legend()

107 plt.show()

108

109 # Mark 75% quantile

110 plt.plot(AIS_dataframe_pbt.PBTime, AIS_dataframe_pbt.norm, ...

label="PBT", color = "b")
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111 plt.plot(AIS_dataframe_wt.WaitingTime, AIS_dataframe_wt.norm, ...

label="WT", color = "r")

112 plt.axhline(y=75, color="grey")

113 plt.axhline(y=25, color="grey")

114 plt.plot(5.57,75, 'o', color='grey')

115 plt.plot(10.58,75, 'o', color='grey')

116 plt.plot([5.55,5.55],[0,75], '-', color='grey')

117 plt.plot([10.58,10.58],[0,75], '-', color='grey')

118 plt.text(3.5, 77, 'x = 5.55')

119 plt.text(11, 70, 'x = 10.58')

120 plt.text(32, 76, 'y = 75', color='grey')

121 plt.plot(1,25, 'o', color='grey')

122 plt.plot(2.1,25, 'o', color='grey')

123 plt.plot([1,1],[0,25], '-', color='grey')

124 plt.plot([2.1,2.1],[0,25], '-', color='grey')

125 plt.text(0.1, 26, 'x = 1')

126 plt.text(2.5, 26, 'x = 2.1')

127 plt.text(32, 26, 'y = 25', color='grey')

128 plt.title('WT and PBT normalised over number of operations')

129 plt.xlabel("Time [hours]")

130 plt.ylabel("Percentage")

131 plt.xlim(0,35)

132 plt.ylim(0,105)

133 plt.legend()

134 plt.show()
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E.13 Create Index Plot

Plot_Quantiles.py

1 """

2 Plot quantiles and correlation between quantiles (index plot)

3 Created: 24. May 2018

4 Author: Marion Aarsnes

5 """

6

7 # Import packages

8 import pandas as pd # Read CSV

9 import numpy as np # Scientific computation

10 import matplotlib.pyplot as plt # Plotting

11 import matplotlib.ticker as mtick # Formatting plots

12 import seaborn as sns # Library of plots built upon ...

matplotlib

13

14 # Set plot style

15 sns.set(style="whitegrid", color_codes=True)

16

17 # Define quantiles

18 WTquant_0 = 2 # Maximum accepted WT

19 WTquant_75 = 5.55

20 PBTquant_0 = 2.1 # Minimum accepted PBT

21 PBTquant_75 = 10.58

22

23 # Plot quantiles

24 plt.plot(WTquant_0,1,'o',color='r', label='lower bound WT')

25 plt.plot(WTquant_75,0,'o',color='coral', label='upper bound WT')

26 plt.plot(PBTquant_0,0,'o',color='b', label='lower bound PBT')

27 plt.plot(PBTquant_75,1,'o',color='lightblue', label='upper bound PBT')

28 plt.title('Quantile plot')

29 plt.xlabel('Time [hours]')

30 plt.ylabel('Score')

31 plt.legend()

32 plt.show()

33

34 # Plot linearised relationship between quantiles

35 plt.plot(WTquant_0,1,'o',color='r')

36 plt.plot(WTquant_75,0,'o',color='r')

37 plt.plot(PBTquant_0,0,'o',color='b')

38 plt.plot(PBTquant_75,1,'o',color='b')

39 plt.plot([0,WTquant_0],[1,1], '-', color='r')
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40 plt.plot([WTquant_0,WTquant_75],[1,0], '-', color='r', label='WT')

41 plt.plot([WTquant_75,15],[0,0], '-', color='r')

42 plt.plot([0,PBTquant_0],[0,0], '-', color='b')

43 plt.plot([PBTquant_0,PBTquant_75],[0,1], '-', color='b', label='PBT')

44 plt.plot([PBTquant_75,15],[1,1], '-', color='b')

45 plt.title('Index plot')

46 plt.xlabel('Time [hours]')

47 plt.ylabel('TW/TPBT')

48 plt.xlim(0,12)

49 plt.legend()

50 plt.show()



APPENDIX E. PYTHON CODE lxxx

E.14 Calculate Index

Calculate_Index.py

1 """

2 Calculate index for bunkering operations and plot results

3 Created: 03. June 2018

4 Author: Marion Aarsnes

5 """

6

7 # Import packages

8 import pandas as pd # Read CSV

9 import numpy as np # Scientific computation

10 import seaborn as sns # Library of plots built upon ...

matplotlib

11 import matplotlib.pyplot as plt # Plots

12

13 # Read CSV file

14 AIS_dataframe = pd.read_csv('filedirectory/filename.csv')

15 print(AIS_dataframe.columns)

16

17 # Clean up dataframe

18 AIS_dataframe = AIS_dataframe[['Unnamed: 0','imo.b', 'shipType.s', ...

'length.s', 'bunkeringLength_hrs', 'anchoringLength_hrs', ...

'BunkUnixStart',

19 'BunkUnixEnd', 'AnchorUnixStart', 'AnchorUnixEnd', ...

'confidence_mean', 'bunkeringType', ...

'timeBeforeBunkering_hrs', 'timeAfterBunkering_hrs']]

20 AIS_dataframe = AIS_dataframe.rename(columns={"Unnamed: 0": ...

"OperationNr",

21 "imo.b": "IMO",

22 "shipType.s": "ShipType",

23 "length.s": "ShipLength",

24 "anchoringLength_hrs": ...

"AnchoringLengthHrs",

25 "bunkeringLength_hrs": ...

"BunkeringLengthHrs",

26 "confidence_mean": ...

"ConfMean",

27 "bunkeringType": ...

"BunkeringType",

28 "timeBeforeBunkering_hrs": ...

"WTime",



APPENDIX E. PYTHON CODE lxxxi

29 "timeAfterBunkering_hrs": ...

"PBTime"})

30

31 AIS_dataframe = ...

AIS_dataframe.fillna(value="nan")[AIS_dataframe.ShipType != "nan"]

32

33 # Set plot style

34 sns.set(style="whitegrid", color_codes=True)

35

36 print(AIS_dataframe.head(4))

37 print(AIS_dataframe.ShipLength[4])

38 print(AIS_dataframe.ShipLength[0])

39

40 # Number of operations to be calculated for

41 num = len(AIS_dataframe.ShipLength) # Replace 20 with ...

len(AIS_dataframe.ShipLength) to calculate index for all operations

42

43 # Create empty matrix to store index data

44 index_list = np.zeros(shape=(num,6))

45 index_list_berth = []

46 index_list_anchor = []

47

48 # Define quantiles

49 WTquant_0 = 2 # Maximum accepted WT

50 WTquant_75 = 5.55

51 PBTquant_0 = 2 # Minimum accepted PBT

52 PBTquant_75 = 10.58

53

54 # Calculate index

55 # Array = [Operation nr, Waiting Time, Post Bunkering Time, Score ...

WT, score PBT, index]

56 def calc_index():

57 for i in range(0,num):

58 index_list[i,0] = int(i+1) #int(AIS_dataframe.OperationNr[i])

59 index_list[i,1] = AIS_dataframe.WTime[i]

60 index_list[i,2] = AIS_dataframe.PBTime[i]

61 if AIS_dataframe.WTime[i] ∑ WTquant_0:

62 TWT = 1

63 elif AIS_dataframe.WTime[i] > WTquant_0 and ...

AIS_dataframe.WTime[i] < WTquant_75:

64 TWT = (111/71) - ((20*AIS_dataframe.WTime[i])/71)

65 else:

66 TWT = 0

67 if AIS_dataframe.PBTime[i] ∑ PBTquant_0:

68 TPBT = 0
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69 elif AIS_dataframe.PBTime[i] > PBTquant_0 and ...

AIS_dataframe.PBTime[i] < PBTquant_75:

70 TPBT = (-105/424) + ((50*AIS_dataframe.PBTime[i])/424)

71 else:

72 TPBT = 1

73 index_list[i,3] = TWT

74 index_list[i,4] = TPBT

75 index_list[i,5] = TWT + ((1-TWT)*TPBT)

76 if str(AIS_dataframe.BunkeringType[i]) == "Anchorage" and ...

AIS_dataframe.ConfMean[i] ∏ 0.7:

77 index_list_anchor.append(TWT + ((1-TWT)*TPBT))

78 elif str(AIS_dataframe.BunkeringType[i]) == "Berth" and ...

AIS_dataframe.ConfMean[i] ∏ 0.7:

79 index_list_berth.append(TWT + ((1 - TWT) * TPBT))

80 return index_list, index_list_anchor, index_list_berth

81

82 index_list, index_list_anchor, index_list_berth = calc_index()

83

84 print(index_list)

85

86 # Print array of calculate indexes to .txt-file

87 np.savetxt('maximums.txt', index_list)

88

89 # Plot histogram with Kernel Density Line

90 ax = sns.distplot(index_list_berth,

91 bins=50, color='r', hist_kws=dict(edgecolor="r", ...

linewidth=1), label='At berth')

92 ax = sns.distplot(index_list_anchor,

93 bins=50, color= 'b', hist_kws=dict(edgecolor="b", ...

linewidth=1), label='At anchorage')

94 ax.set(ylabel="Density", xlabel="QBT")

95 plt.xlim(0,1.05)

96 plt.legend()

97 plt.show()

98

99

100 # Normalised plot

101

102 # Berth

103 # Sort list by increasing QBT

104 index_list_berth.sort()

105

106 # Create normalising column

107 def fill_value_b():

108 norm_b = []

109 for i in range(len(index_list_berth)):
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110 norm_b.append((i+1)/len(index_list_berth)*100)

111 return norm_b

112

113 norm_b = fill_value_b()

114

115 # Anchorage

116 # Sort list by increasing QBT

117 index_list_anchor.sort()

118

119 # Create normalising column

120 def fill_value_a():

121 norm_a = []

122 for i in range(len(index_list_anchor)):

123 norm_a.append((i+1)/len(index_list_anchor)*100)

124 return norm_a

125

126 norm_a = fill_value_a()

127

128 # Plot normalised QBT for anchorage and berth operations

129 plt.plot(index_list_anchor, norm_a, color='b', label='At anchorage')

130 plt.plot(index_list_berth, norm_b, color='r', label='At berth')

131 plt.title('QBT normalised over number of operations')

132 plt.xlabel("QBT")

133 plt.ylabel("Percentage")

134 plt.legend()

135 plt.xlim(0,1.05)

136 plt.show()
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E.15 List of Electronic Appendages

• Confidence_Mean_Plotting.py

• Distribution_Shiptypes.py

• Ships_Length_Distribution.py

• Ships_Time_Distribution.py

• BunkerBarges_Length_and_Time_Distribution.py

• Time_Distribution_AllOperations.py

• Time_Distribution_ShipTypes.py

• Dividing_ShipLengths_150m.py

• Timelineplot_Bunker_Operations.py

• Histogram_WT_PBT.py

• Normalise_WT_PBT.py

• Normalised_Plots.py

• Plot_Quantiles.py

• Calculate_Index.py
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