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Abstract

The oil and gas industry is continuously working to improve safety and minimise risk.
Numerous offshore activities involve risks that may lead to accidents with serious con-
sequences. The risk of accidental dropped objects, e.g. related to crane operations, is
one of the most common threats during offshore operations. A falling object is of con-
cern due to human safety, the environment and dangers related to damage to subsea
structures and operational equipment.

The purpose of this thesis was to analyse and investigate slender cylindrical objects be-
haviour, for instance drill pipes, when falling through air, entry into the water phase
and their travelling through the water column. Main focus however, were on the fully
submerged condition. The velocity and trajectory of falling cylindrical objects into and
through the water column have been investigated through numerical calculations and
experiments. The control parameters were the cylinder’s physical parameters (length
to diameter ratio, centre of gravity location and open or closed ends) and the initial
drop conditions (drop angle and drop position).

Experiments were carried out in a 5 meter deep tank, with breadth and length equal
to 6 and 12 meter. Seven 1:20 cylindrical scale models, made of steel pipes, were used.
The three dimensional motion of the falling cylinders in still water were measured
by the use of an under water Oqus camera system. From the experiments, six dif-
ferent trajectory types were found, and it was demonstrated that the centre of gravity
location and the initial drop angle were the most critical factors determining the trajec-
tories. The influence from changing the length to diameter ratio or from dropping the
cylinders with open or closed ends, were also found to have an impact. For instance,
it was found that cylinder excursion decrease with increasing diameter and that open
end cylinders had a smaller radial excursion than cylinders with closed ends. The
largest radial excursion, of approximately six meter, was found for cylinders with a
small displacement in centre of gravity. This excursion was one meter larger than the
water depth. The cylinder velocities were found dependent on the cylinder orienta-
tion, that showed that the viscous forces were more dominant in the lateral, than in
the axial direction. Comparing the experimental results to the recommended indus-
try practice, DNVGL-RP-F107, the recommendations for calculating object excursions
were in several cases found to be non conservative.

Results from the experiments were compared to the numerical simulations that were
performed based on a two dimensional maneuvering theory corrected for viscous ef-
fects. Good agreements were observed, but the similarities were found extremely
dependent on the chosen value for the effective trailing edge position and the drag
coefficient in the transverse cylinder direction. Several possible error sources in the
experiments and weaknesses in the theory were detected. But, even though some dis-
agreements between the simulations and the experiments were found, the simple two
dimensional method gave good indications of the trajectory and velocity of cylindrical

iii



objects falling through the water column.
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Samandrag

Olje og gass industrien arbeider kontinuerleg med å forbetre sikkerheita og minimere
risikoen. Dei fleste offshoreaktivitetar inneber risiko for ulykker med alvorlege kon-
sekvensar. Ein av dei vanlegaste uønska hendingane i samband med offshore op-
erasjonar er fallande gjenstandar, til dømes i forbindelse med løfte operasjoner. Ein
fallande gjenstand kan vere til fare for folks sikkerheit og miljøet, og kan føre til skade
på undervansskonstruksjonar og driftsutstyr.

Formålet med denne oppgåva var å analyser og undersøke oppførselen til slanke
sylinderforma objekt, til dømes borerøyr, når dei fell frå luft, gjennom vassoverflata
og vidare gjennom vassøyla. Hovudfokuset vil vere retta mot den fullt neddykka
tilstanden. Hastigheita og fallbanen til sylinderforma objekt som fell i vatn vart un-
dersøkt med numeriske berekningar og forsøk. Kontrollparameterane var dei fysiske
sylinderparameterane (lengde diameter forholdet, plasseringa av gravitasjonssenteret
og opne eller lukka ender) og dei initielle dropp forholda (dropp vinkel og dropp po-
sisjon).

Det vart utført forsøk i ein 5 meter djup tank, med bredde og lengde på 6 og 12
meter. Sju sylinder modeller laga av stålrøyr i skala 1:20 vart brukt. Den tredimen-
sjonale bevegelsen til dei fallande sylindrane, i stille vatn, vart målt med eit Oqus
undervansskamera system. Frå forsøka vart det funne seks forskjellige typar fall-
baner. Dei faktorane som hadde størst innverknad påfallbanen viste seg å vere po-
sisjonen til gravitasjonssenteret og dropp vinkelen til sylindrane. Det vart også funne
ein påverknad på fallbanen avhengig av lengde diameter forholdet, og om sylinderen
hadde opne eller lukka ender. Det vart til dømes funne at avstanden frå droppunk-
tet til punktet der sylindrane landa på botnen minka med aukande sylinderdiameter,
og at sylindrane med opne ender gjekk kortare enn dei med lukka ender. Dei sylin-
drane som landa på botnen med størst avstand frå droppunktet var dei med ein liten
forskyving av gravitasjonssenteret, der den radielle avstanden var sirka seks meter, ein
meter meir enn djupta i tanken. Sylinderhastigheita vart funne å vera avhengig av ori-
enteringa til sylinderen, noko som viste at dei viskøse kreftene var meir dominerande i
den perpendikulære sylinderretninga, enn i den langsgåande. Den radilelle ekskursjo-
nen funne frå forsøka vart samanlikna med anbefalt industri praksis for objektek-
skursjon, DNVGL-RP-F107, og det vart funne at dei etablerte anbefalingane i fleire
tilfelle ikkje var spesielt konservative.

Resultata frå forsøka vart samanlikna med dei numeriske simuleringane, som var
basert på todimensjonale manøvrerings teori justert for viskøse effektar. Det vart
funne gode overeinsstemmelsar, men likskapane avhenger av dei valde verdiane for
posisjonen til den effektive avløysingskanten og dragkoeffisienten i tverrgåande sylin-
der retning. Fleire moglege feilkjelder i forsøka og svakheiter i teorien vart avdekka,
men sjølv om det vart funne nokon avvik mellom simuleringa og forsøka så såg det
ut til at den forenkla todimensjonale metoden som blei presentert, kan gje gode in-
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dikasjonar på fallbanen og hastigheita for sylinderforma objekt som fell gjennom vassøyla.
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1 Introduction

The oil and gas industry is continuously working to improve safety and minimise
risks. Numerous offshore activities involve risks that may lead to accidents with seri-
ous consequences. One of the most common challenges are accidental drops. Dropped
objects are among the top ten causes of fatalities and serious damages in the oil and gas
industry (DROP , 2016). A falling object is of concern due to human safety, the environ-
ment and dangers related to damage to subsea structures and operational equipment.
By definition, a dropped object is an item that falls from its previous position. Dropped
objects can be categorised in two ways, static or dynamic. A static dropped object is
«any object that falls from its previous position under its own weight (gravity) with-
out any applied force» and a dynamic dropped object is «any object that falls from its
previous position due to applied force, e.g. collisions involving travelling equipment
or loads» (OES , n.d.).

1.1 Background and motivation

According to dropped objects statistics, a significant part of offshore accidents are
caused by free falling objects (DROP , 2016). In other words, objects relatively fre-
quently fall accidentally from platforms or vessels during lifting, hoisting or any other
offshore operations. The Petroleum Safety Authority’s report about risk trends in the
Norwegian petroleum industry, gives clear indications that this still is a challenge
(Carlsen , 2017). In the report, falling objects having a potential developing in to an
accident, are categorised in objects falling either to deck or into the ocean. Based on
reported events from year 2013 to 2016, The Petroleum Safety Authority has outlined
the following diagram (see Figure 1). The diagram shows the number of free falling
accidents split in fixed and mobile facilities. The total and the normalised number of
events are shown. The normalisation is based on working hours related to drilling and
well operations and number of hours worked within construction and maintenance.
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Figure 1: Number of events and events per. million working hours classified as falling item, distributed
between fixed and mobile facilities, in the period 2013-2016. (Carlsen , 2017)

The causes of dropped objects are many, but the most frequently occurring ones are
(DROP , 2016):

• Inadequate securing

• Failed fixtures and fittings

• Corrosion

• Poor housekeeping

• Procedures not followed

Small objects falling into the ocean during offshore operations, as for instance scaffold-
ing bars and tools, often drops without major consequences. The critical situations are
related to larger objects such as drill pipes, containers, templates, subsea modules and
GRP covers, due to the high impact energy involved. When objects fall in to the ocean,
they are a concern to safety of subsea installations, pipelines, mooring systems, plat-
form jackets and for instance ROVs close to the platform.

In order to protect underwater structures and equipment and to avoid unnecessary
safety measure, it is of vital importance to have good knowledge about dropped ob-
jects trajectory and impact energy. It is necessary to investigate possible hit points to
ensure operating in an acceptable risk zone. DNV-GL has developed a recommended
practice for risk assessment for pipeline protection. In the risk assessment, the object’s
excursions onto the seabed are assumed to follow a normal distribution as illustrated
in Figure 2 (DNVGL , 2017).
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Figure 2: Object excursion and hit probability (Awotahegn , 2015)

The recommendations from DNV-GL claims that object excursion is extremely depen-
dent on shape and weight of objects and that the fall pattern for pipes depend on the
water entry angle. DNV-GL assume that the object excursions onto the seabed are
normal distributed with a standard deviation depending on the water depth and the
shape and weight of the falling object (DNVGL , 2017).

In order to meet challenges associated with falling objects and to assure operating
within acceptable risk zones, it is important to understand motions and dynamics of
free falling objects. The dropped object study involves a wide range of subjects, such as
nonlinear dynamics, manoeuvring theory, fluid dynamics, probability and statistical
methods and will therefore have a wide significance and application. In general, three
phases will affect the projection of a falling object. These are are the object’s drop
through the air, through the free water surface and through the water column. It is
necessary to gain knowledge about forces that affect the motion patterns in all these
phases to investigate the projection of the object.

1.2 Objectives and scope

The purpose of this thesis was to analyse and investigate the trajectory and velocity
of slender cylindrical objects falling in air, entry into the water surface and it’s travel
through the water column. The main focus has however been on cylindrical objects in
fully submerged condition. Seven different cylinder types were investigated with re-
spect to several control parameters. The control parameters were the cylinder’s phys-
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ical parameters (length to diameter ratio, centre of gravity location and open or closed
ends) and the initial drop conditions (drop angle and drop position). The investiga-
tions are performed through numerical calculations and experiments.

Experiments were carried out in Dokka, a tank owned by SINTEF Ocean. The depth
of the tank is 5 meter while breadth and length is 6 and 12 meter. The experiments
were based on falling drill pipes. Seven 1:20 simplified scale models were used. The
models used were different cylindrical steel pipes. The three dimensional motions of
the cylinder’s drop through the still water to the tank bottom, were measured by use
of an under water Oqus camera system.

A general fundamental two dimensional theory for falling cylinders was studied. For
the drop through the water column phase, a simple two dimensional theory based on
manoeuvring equations corrected for viscous effects is presented. This two dimen-
sional theory was implemented in MATLAB and the simulation program was used
to calculate the trajectory and the velocity of the cylinders, numerically. To find the
validity of the two dimensional theory and the sensitivity of the different parameters
involved, the numerical calculations were compared to the experimental results.

The excursions of the falling cylindrical objects were also compared to DNVGL-RP-
F107, that gives DNV’s recommended practice for object excursion. The recommen-
dations provides a simplified method to estimate the excursion of an accidentally
dropped object.

1.3 Literature review

Some experiments with free falling cylindrical objects have been performed in the past,
but few experiments have been performed with slender bodies. In this section, some
relevant results and experimental procedures in the open literature are presented.

Awotahegn (2015) performed model tests with 8 and 12 inch (open ends) drill pipes, in
model scale 1:16.67 and 1:33.3. The specifications in scale 1:16.67 are given in Table 1.
The model tests were performed to investigate the trajectory and the seabed distribu-
tion. The experiment was performed in a 3 meter deep pool. The pipes were dropped
with a clip from a position over the water surface, at 0, 30, 45, 60 and 90 degree initial
drop angle. The motion was recorded in a visual manner with use of underwater cam-
eras. The maximum pipe excursions were found for drop angels between 60 and 80
degree in both scales. After comparing the experimental data with DNV’s recommen-
dations for object excursion and hit probability (DNVGL , 2017), Awotahegn conclude
that the methodology recommended is generally conservative (Awotahegn , 2015).
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Table 1: Scale 1:16.67 Awotahegn

Length Mass/Length Outer diameter
Pipe 8 0.5374 m 0.325 kg/m 0.0132 m
Pipe 12 0.5374 m 0.864 kg/m 0.0194 m

Aanesland (1986) performed two model tests. The first experiment with initial drop
position over the water surface and the second experiment with initial drop position
under the water surface. Aanesland used 1:9.54 and 1:20.32 scaled drill tubes and
weight tubes with closed ends for the experiment. The specifications in scale 1:20.32
are given in Table 2. The cylinders were mounted in a clip, and dropped with initial
drop angels at 0, 30, 45, 60 and 90 degrees into a 5 meter deep pool. The model tests
were performed in order to investigate what happens when a drill tube is dropped
from offshore platforms. The test was also used to verify a computer program simu-
lating the motion of a freely dropped cylinder in water. The equations of motion were
based on manoeuvring equations, corrected for viscous effects, using slender body
theory.

Table 2: Scale 1:20.32 Aanesland

Length Mass/Length Outer diameter
Drill tubes 0.45 m 0.079 kg/m 0.006 m
Weight tubes 0.45 m 0.548 kg/m 0.010 m

From the model test, Aanesland observed an interesting case related to directional sta-
bility of the motion. The cylinders were moving close to the vertical plane between
the vertical global Z-axis and the cylinder axis, see Figure 8. Figure 4 clearly shows
the phenomenon that the cylinder is pointing towards the centre of the target, indi-
cating the actual plane of motion. This phenomenon strengthen the assumption that
using two dimensional equations, a surge-heave-pitch equation system, to describe
the cylinder trajectory, is reasonable (Aanesland , 1986).
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Figure 3: Touchdowns on the bottom, α =
60◦, drop height=1.48 m and water depth=
2.46 m (Aanesland , 1987)

Figure 4: Touchdowns on the bottom, α =
90◦, drop height=1.48 m and water depth=
4.92 m (Aanesland , 1987)

Aanesland (1987) also observed how sensitive the cylinder touchdown point was to
small changes in the conditions when it hit the water surface. This is illustrated in
Figure 3 and Figure 4. The spreading of the touch down points illustrate the prob-
lem. It was observed that the cylinder was particularly sensitive to the angle between
the cylinder axis and water surface, β (see Figure 8). In the model tests, Aanesland
also observed a large time difference between a pure axial and a pure lateral motion.
The time until the cylinder hit the bottom was significantly longer for the cylinders
dropped with an initial angle β = 0◦ compared to drops at higher initial angles. This
showed that the viscous forces were more dominant in the lateral direction, than in
the axial direction. From the experiments Aanesland (1986) also observed a number
of different trajectories from the variety in initial drop angles, illustrated in Figure 5
(Aanesland , 1986).

Figure 5: Different paths followed by the cylinder (Aanesland , 1986)
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Aanesland (1986) compared the observed experimental touchdown points, the max-
imum excursions and the time until the cylinders hit the bottom, to the numerical
calculations. A fairly good agreement between the experimental data and the equa-
tions of motion was found.

Yasseri (2014) and Chu et al. (2005) did experiments with cylinders (closed ends)
dropped from an initial position over the water surface, by passing them through a
tube. Three, non slender, cylindrical shapes which had a diameter of 4 cm, and lengths
of about 9 cm, 12 cm and 15 cm, were used. The cylinders were dropped with three
different centre of mass locations, and the initial drop angles were 15, 30, 45, 60 and
75 degrees. Six trajectory patterns were detected from the experiments. It was found
that the transition between the patterns depended on the initial conditions, the initial
angle, velocity and the physical parameters, such as length to diameter ratio and the
centre of mass position. The centre of mass position had the largest influence of the
trajectory of the cylinders. The experiments showed that the cylinders flipped only
once for initial centre of mass positions located above the geometric centre. It was also
found that the centre of mass position had the highest influence on the impact attitude
on the bottom. This was due to the centre of mass affect if the cylinder hit the bottom
in a parallel or vertical position (Chu et al. , 2005). Yasseri found that a lognormal dis-
tribution described the distance between the landing point and drop point fairly well.
Summing up the data from several similar experiments, it was found that about 98%
of the time objects land within 50% of the water depth (Yasseri , 2014).

1.4 Preparation of the experiments

In the experiment it was chosen to use cylinder dimensions that coincided with down
scaled drill pipes. The model scale 1:20 was chosen because it was comparable with
Aaneslands (1986) experiments and because it was the largest possible cylinders that
could be tested according to the dimensions of the tank. It was preferable to keep the
cylinders as large as possible considering the scaling effects. To ensure a controlled
mechanism to drop the cylinders, it was decided to make a drop-rig with a magnet to
release the cylinders. The magnet made the cylinders fall instantly without rotation,
and it helped avoid possible undesirable influences, that e.g. passing the cylinder
through a tube or dropping using a clip could have caused.

To track the position of the falling cylinders a three dimensional camera, based mea-
surement system, was chosen. A Oqus camera system that made it possible to track
the three dimensional cylinder trajectory and velocity at a quite high accuracy, was
used. Compared to some of the earlier experiments, where more visual measurement
systems were used, the Oqus camera system allowed for cylinder position tracking at
a higher degree of accuracy and made it possible to find the cylinder velocity. The
amount of experimental drops performed was also quit high, providing a wider un-
derstanding of the cylinder motion.
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In the past, few experiments with slender cylindrical bodies with different centre of
gravity locations have been performed. As studied by Yasseri (2014), for non slender
cylindrical bodies, it was experienced that the centre of mass position had the highest
influence on bottom impact attitude. The combination of a long slender body, that
travels further than a not slender body, and a displaced centre of gravity were there-
for found interesting to investigate in a worst case risk assessment study. Very few
experiments comparing cylinders with closed and open ends have been performed in
the past. Experiments on those two types of cylinders were found interesting since
numerous offshore operations includes handling of drill pipes with and without end-
caps.
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2 Theory

This section gives an introduction and description of basic two dimensional theory of
forces that affect a falling cylinder through the air phase, the water penetration and
the water column phase. Main focus though, is on the fully submerged phase were
a detailed theory is presented. For the air phase and the water penetrating phase, a
simplified theory is outlined. The falling through the water column phase is described
by using maneuvering equations corrected for viscous effects. This theory is presented
for a cylinder with closed and open ends, and for cylinders with displaced centre of
gravity. Finally, a method for scaling theory and similarity to experimental design is
shared and DNV’s simplified method for object excursion is presented.

2.1 Numerical investigation

2.1.1 Objects falling through air

Gravity forces make objects fall. Newton’s 2nd law implies that the gravity force on a
falling object is given by:

Fgrav = mg (1)

where m is the mass of the object and g the gravitational acceleration. The force due to
air resistance works in the direction opposite to the motion and is proportional to the
speed squared:

Fair = −kv2 = −1
2

ρCD Av2 (2)

where k is a constant that collects the effect of the density, drag and area. ρ is the air
density, CD is the drag coefficient, A is the area and v is the velocity of the falling object
(Serway and Jewett , 2014). The total force acting on the falling object is given by:

Ftot = Fgrav + Fair (3)

However, for a relatively heavy object falling from lower heights, the air resistance
is not of significance compared to the gravitational force. The velocity when the ob-
ject hits the water surface, can therefore be expressed considering the conservation of
kinetic- and potential energy. For an object falling from height h over the free water
surface, the free water surface impact velocity is given by:

v =
√

2gh (4)

2.1.2 The water entry face: 2D slamming theory

When a falling cylinder hits the free water surface, impulse loads will occur with high
pressure peaks. These impulse loads, working during the cylinder impact with the
water surface, are called slamming. It is assumed that the cylinder is in horizontal
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position when going through an initially calm water surface with the constant velocity
V (Faltinsen , 1990). An illustration of the model is shown in Figure 6.

Figure 6: Definition of parameters in the Wagner slamming model (Faltinsen , 1990)

The submergence of the body is Vt, where t is the time variable. The wetted area
of the cylinder is between the x-values −c(t) ≤ x ≤ c(t). The wetted area due to
spray is excluded because the pressure in the spray area is close to the atmospheric
pressure. It is assumed that the fluid acceleration is much larger than the gravitational
acceleration g, hence the problem is analysed using the free surface conditions φ = 0
at z = 0. To solve the problem irrotational flow and incompressible fluid are assumed,
and the cylinder is replaced by a flat plate with width 2c(t) in the mean free surface.
Using the the body boundary condition for a flat plate and assuming that Vt/c(t) is
small, then the boundary value problem is as illustrated in Figure 7 (Faltinsen , 1990).

Figure 7: Boundary value problem in simplified analysis of impact between a two dimensional body
and water (Faltinsen , 1990)

The velocity potential for the body can then be written as:

φ = −V(c2 − x2)
1
2 , |x| < c(t) (5)

Then using the Bernoulli’s equation, the pressure on the body can be found. Slamming
occurs in a small time instant, meaning that the rate of change of φ with respect to x
and z can be neglected because it is small compare to the rate of change of φ with time.
The term Vt/c(t) is also assumed to be small. Since the submergence of the body is
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small, the hydrostatic pressure therm −ρgz is neglected. The hydrodynamic pressure
can then be written as (Faltinsen , 1990):

p = −ρ
∂φ

∂t
= ρV

c

(c2 − x2)
1
2

dc
dt

(6)

The vertical force on the body is:

F3 =

c∫
−c

pdx = ρVc
dc
dt

c∫
−c

dx

(c2 − x2)
1
2
= V

d
dt

(
ρ

π

2
c2
)

(7)

To find the wetted body length (≈ 2c(t)) for a circular cylinder, the Wagner’s approach
is used. Defining that R is the cylinder radius, that gives the following expression for
the wetted body length on a circular cylinder (Faltinsen , 1990):

c = 2
√

VtR (8)

2.1.3 2D theory of cylinders falling trough water

There are several methods describing how to treat a falling cylinder in water theo-
retically, not only two dimensional methods, but also three dimensional methods. In
this report a two dimensional method based on maneuvering equations, corrected for
viscous effects will be considered. The theory will be based on how Aanesland (1987),
Faltinsen (2005) and Hui and Faltinsen (2013) has presented it.

Figure 8 illustrates the coordinate systems used. The global coordinate system with
X − Y for the still water surface and Z vertically downwards, is used. The local coor-
dinate system x, y, z, is fixed on the cylinder, with origin in in the centre of gravity. The
x-axis is along the cylinder length. The two coordinate systems will coincide when the
cylinder is horizontal at the water surface. β is the cylinder angle during the motion
through the water, hence the angel between the local and the global x-axis. The cylin-
der geometry is defined by length L and diameter D. The X and Z-coordinates of the
centre of gravity of the cylinder are denoted XG and ZG and xT is the longitudinal
position of the effective trailing edge (Faltinsen , 2005).

Figure 8: Definition sketch of the local and global coordinate system.
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In the following equations, Equations 9, 10 and 11, it is assumed that the cylinder
is moving as a rigid body, is slender, is symmetric about the centre of gravity and
that the mass distribution is uniform (Aanesland , 1986). To describe the motions of
the cylinder, two dimensional maneuvering equations based on slender body theory
(Newman , 1977), corrected for viscous effects are used. Therefore only motions in the
X-Z-plane will be considered. The velocity components are U1 (surge), U3 (heave) and
Ω2 (pitch) (Faltinsen , 2005), see Figure 9.

Figure 9: Definition sketch for force and velocity direction.

The equations of motion are given as (Hui and Faltinsen , 2013):

M
dU1

dt︸ ︷︷ ︸
Inertial forces

= Fdx︸︷︷︸
Viscous force

− (Mg− ρg∇) sin β︸ ︷︷ ︸
Gravity and buoyancy force

− MU3Ω2︸ ︷︷ ︸
Coriolis force

(9)

M(
dU3

dt
−Ω2U1)︸ ︷︷ ︸

Inertial forces

=− |U1|U3a33 + U1Ω2xTa33︸ ︷︷ ︸
Lifting forces

− A33
dU3

dt︸ ︷︷ ︸
Added mass force

+ Fdz︸︷︷︸
Viscous force

+ (Mg− ρg∇) cos β︸ ︷︷ ︸
Gravity and buoyancy force

(10)

I55
dΩ2

dt︸ ︷︷ ︸
Inertial moment

= U1U3xTa33 − |U1|Ω2x2
Ta33︸ ︷︷ ︸

Lifting moment

− A55
dΩ2

dt
+ A33U1U3︸ ︷︷ ︸

Added mass moment

+ Mdy︸︷︷︸
Viscous moment

(11)

Where the variables are defines as follows:

β = instantaneous rotational angle between the cylinder axis and the free surface
M = cylinder mass
g = acceleration of gravity
ρ = density of water
∇ = volume of the cylinder
a33 = 2D added mass coefficient in heave direction at the trailing edge
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xT = longitudinal position of effective trailing edge
A33 = added mass in heave direction from strip theory
A55 = added mass in pitch direction from strip theory
I55 = moment of inertia in pitch direction

The motion equations above, referred to the body fixed coordinate system. The first
equation, equation 9, is the force equilibrium in x-direction and the second equation,
equation 10, is the force equilibrium in z-direction. Equation 11 is the moment equi-
librium about the y-axis. xT is introduced because the ends of the cylinder are not
pointed. In slender body theory, smoothly varying geometries are assumed. The end
of the cylinder dose not satisfy this assumption. An additional force component is
therefore included to consider the trailing edge effect. The trailing edge effect is de-
termined by the position of the effective trailing edge, xT and the mass distribution
coefficient at the trailing edge in 2D, a33 (Aanesland , 1986). The two dimensional
added mass in heave and pitch direction from strip theory and the moment of inertia
in pitch direction can be defined as follows (Pettersen , 2007):

a33 = ρπ
D2

4
(12)

A33 =
∫
L

a33dx = a33T L (13)

A55 =
∫
L

x2a33dx = a33T
L2

12
(14)

I55 = M
L2

12
(15)

According to Faltinsen (2005), the longitudinal viscous force can be expressed as in
Equation 16, where CF is the friction coefficient assuming turbulent axis symmetric
flow along a smooth surface. The expression of the friction coefficient is based on
White (1972), assuming 106 < Rn < 109 for a purely longitudinal motion.

Fdx = −0.5ρCFπDLU1|U1| −
ρ

8
πCdxD2U1|U1| (16)

CF = 0.0015 + (0.30 + 0.015(
2L
D

)0.4)Rn−1/3 (17)

The remaining viscous force and moment can be elevated from the following equa-
tions (Aanesland , 1987):
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Fdz = 0.5
∫
L

ρCdzDuz(x)|uz(x)|dx (18)

Mdy = −0.5
∫
L

ρCdzDxuz(x)|uz(x)|dx (19)

where

D = diameter of the cylinder
ν = kinematic viscosity of water
L = length of the cylinder
Cdx = 2D drag coefficient in x-direction
Cdz = 2D drag coefficient in z-direction
Rn = Reynolds number : U1L/ν

The viscous drag in z-direction, and the moment about the y-axis are estimated using
Morisons formula (Aanesland , 1987). The relative velocity normal to the cylinder axis,
Uz(x), can be expressed as (Xiang , 2017):

Uz(x) = −(U3 −Ω2x),−0.5L < x < 0.5L (20)

When inserting Equation 20 into Equation 18 and 19 the following equations are ob-
tain:

Fdz = 0.5
∫ 0.5L

−0.5L
ρCdzDUz(x)|Uz(x)|dx = −0.5ρCdzD

∫ 0.5L

−0.5L
(U3 −Ω2x)|U3 −Ω2x|dx

(21)

Mdy = −0.5
∫ 0.5L

−0.5L
ρCdzDxUz(x)|Uz(x)|dx = 0.5ρCdzD

∫ 0.5L

−0.5L
x(U3−Ω2x)|U3−Ω2x|dx

(22)

Then the positions of the centre of gravity for the cylinder, according to the global
coordinate system, can be expressed by the following relationships (Faltinsen , 2005):

dXG

dt
= U1 cos β + U3 sin β (23)

dZG

dt
= U3 cos β−U1 sin β (24)

dβ

dt
= Ω2 (25)
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2D theory for cylinders falling through water with displaced centre of gravity

The two dimensional method based on maneuvering equations can also be extended
to describe the behaviour of a falling cylinder with displaced centre of mass, as illus-
trated in Figure 10.

Figure 10: Definition sketch of the local and global coordinate system for cylinder with displaced centre
of gravity.

Due to the displaced centre of mass the lifting force and lifting moment can be ex-
pressed as (Hui and Faltinsen , 2013):

Fl
3 = U1U3[a33(x)]xN

xT −U1Ω2[xa33(x)]xN
xT (26)

Fl
5 = −U1U3[xa33(x)]xN

xT −U1Ω2[x2a33(x)]xN
xT (27)

According to witch cylinder end that is the foremost the two dimensional added mass
coefficient in heave direction can be expressed as:

U1 > 0 :

{
a33(xN) = 0
a33(xT) = ρπ D2

4
(28)

U1 < 0 :

{
a33(xN) = ρπ D2

4
a33(xT) = 0

(29)

where xN and xT are x-coordinates of the head and rear end of the cylinder respec-
tively. Due to the displaced centre of gravity one also gets an additional moment due
to buoyancy force. This additional moment is given as:

B5 = ρg∇ cos β∆CB (30)

15



where ∆CB is the distance from the cylinder volume centre to the centre of gravity. The
Added mass forces and moment becomes equal:

F1 = −A33U3Ω2 − A35Ω2 (31)

F3 = −A33
dU3

dt
− A35

dΩ2

dt
(32)

M5 = −A53
dU3

dt
− A55

dΩ2

dt
+ A33U1U3 + A35U1Ω2 (33)

where the added mass in heave and pitch due to motion in pitch is given as follows:

A35 = −
∫
L

xa33dx = −a33∆CB (34)

A55 = a33T
L2

12
+ L∆2

CBa33 (35)

Then the equations of motion for a cylinder with displaced centre of gravity is given
as:

M
dU1

dt︸ ︷︷ ︸
Inertial forces

= −A33U3Ω2 − A35Ω2
2︸ ︷︷ ︸

Added mass forces

+ FDx︸︷︷︸
Viscous force

−(Mg− ρg∇) sin β︸ ︷︷ ︸
Gravity and buoyancy force

− MU3Ω2︸ ︷︷ ︸
Coriolis force

(36)

M(
dU3

dt
−Ω2U1)︸ ︷︷ ︸

Inertial forces

=U1U3[a33(x)]xN
xT −U1Ω2[xa33(x)]xN

xT︸ ︷︷ ︸
Lifting forces

−A33
dU3

dt
− A35

dΩ2

dt︸ ︷︷ ︸
Added mass force

+FDz︸ ︷︷ ︸
Viscous force

+(Mg− ρg∇) cos β︸ ︷︷ ︸
Gravity and buoyancy force

(37)

I55
dΩ2

dt︸ ︷︷ ︸
Inertial moment

=−U1U3[xa33(x)]xN
xT −U1Ω2[x2a33(x)]xN

xT︸ ︷︷ ︸
Lifting moment

−A53
dU3

dt
− A55

dΩ2

dt
+ A33U1U3 + A35U1Ω2︸ ︷︷ ︸

Added mass moment

+MDy︸ ︷︷ ︸
Viscous moment

+ρg∇ cos β∆CB︸ ︷︷ ︸
Buoyancy moment

(38)
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2D theory of cylinder with open ends falling in water

The two dimensional method based on maneuvering equations has also been sug-
gested in order to describe the behaviour of a cylinder with open ends falling in water.
Two changes to the theory for a closed cylinder described above are suggested. First,
there will be an increase in the added mass and lift forces and moment, due to the
water flowing through. This is suggested to be modelled by increasing the two di-
mensional added mass coefficient, described as follows:

a33 = ρπ
(Dout + Din)

2

4
(39)

where Dout and Din is the outer and inner cylinder diameter. Secondly CF, the friction
coefficient, is increased due to a larger wet surface.

2.2 Similarity to experimental design

When performing model tests, the physical models are intended to represent the full
scale system as close as possible, but in a much smaller scale. To achieve similarity
in forces between model and full scale, there must be geometric similarity, kinematic
similarity and dynamic similarity (Steen , 2014).

2.2.1 Geometric similarity

Geometrical similarity means that the structure in model and full scale has the same
shape. Then a constant length scale exists:

λ =
LF

LM
(40)

Where LF and LM is any dimension of the structure in full and model scale respec-
tively. It is not just for the structure, equal length ratio is required, but also for the
surrounding environment (Steen , 2014).

2.2.2 Kinematic similarity

Kinematic similarity requires that the length-scale and the time-scale ratios are equal
for model and full scale. The result is that the ratio between the velocity in model scale
has to be equal the corresponding velocity ratio in full scale. If dynamic and geometric
similarity is achieved, kinematic similarity is also achieved (Steen , 2014).
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2.2.3 Dynamic similarity

Dynamic similarity is achieved if the length-scale, time-scale and force-scale ratios are
the same for model and full scale (Steen , 2014). For a falling cylinder in water the vis-
cous forces will be most important. Equality in Reynolds number between full scale
and model scale will ensure that the viscous forces are correctly scaled. The scaling
factors for Reynolds similarity are given in Table 3.

Viscous forces and moments depend on the drag coefficient (see equations 16, 18 and
19). Cdx, the drag coefficient in the along-cylinder direction depends less on the axial
Reynolds number. For a cylinder falling trough the water column the drag coefficient
in the along-cylinder direction depends more on the length to diameter ratio, δ =
L/D. The drag coefficient across the cylinder, Cdz, depends on the Reynolds number
(Equation 41). V is the velocity, D is the cylinder diameter and ν is the water viscosity
(Chu et al. , 2005).

Re =
VD

ν
(41)

Table 3: Scaling factors for Reynolds similarity (Kirkegaard et al. , 2011)

Parameter Reynolds
Length, Diameter- LM

LF
1
λ

Time- tM
tF

1
λ2

Velocity- UM
UF

λ

Mass- mM
mF

1
λ3

Force- FM
FF

1

According to Aanesland (1986), the drag coefficient in z-direction is supposed to be in
the Subcritical area of Reynolds numbers in model scale, from about 1000 to 10000, see
Figure 11. This results in a drag coefficient between 0.8 and 1.4. In full scale conditions
the Reynolds number will, for most cases, be in the Post-super critical flow range. This
implies that the viscous drag forces are in many cases significantly over-predicted in
model tests. The Reynolds dependency will in general be different for different cases,
meaning that the scaling method can only give a rough estimate of the scale effects.
In general conditions no accurate procedure for scaling of drag forces exists (Steen ,
2014).
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Figure 11: Drag coefficient for circular cylinder in steady incident flow (Steen , 2014)

2.3 DNV’s simplified method

The DNV’s recommended practice for dropped object risk assessments is given in
DNVGL-RP-F107 (DNVGL , 2017). The recommended practice present a simplified
and analytic approach to define the dropped object’s lateral deviation, impact damage
and hit probability. Simplified shapes are used in the method, as specified in Table
4. A normal distribution given in Equation 42 is used to describe the object excursion
onto the sea bed for each of the object categories. It is stated that for shallower water
depths, current has a limited effect on the object excursion and therefore does not has
to be taken into account. At deeper water depths, it says that the effect of currents
becomes more pronounced.

p(x) =
1√
2πδ

e
1
2 (

x
δ )

2
(42)

An angular deviation, α, is assigned based on object shape and weight. Based on this
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values the lateral deviation, δ, can be found for the given water depth d (see Figure
12).

Figure 12: DNV’s simplified method for calculation of lateral deviation of dropped objects (DNVGL ,
2017).

Table 4 gives the angular deviations related to weight and shape for objects that are
recommended for use in calculations of object excursion onto the seabed. A spread on
the surface before the objects sinks is included.

Table 4: DNV’s recommended angular deviation for the different object categories (DNVGL , 2017).

No Description Weight [tonnes] Angular deviation α [deg]
1

Flat/Longed shaped
<2 15

2 2 - 8 9
3 >8 5
4

Box/round shaped
<2 10

5 2 - 8 5
6 >8 3
7 Box/round shaped >>8 2

Considering object excursions in deep water, DNV refers to the Katteland and Øygar-
den (1995) report that states that from 180 meter depth and further down, the spread-
ing will not increase significantly and may conservatively be set constant. It is also
remarked that at deep water depths, the spreading of objects on the seabed will not
necessarily follow the normal distribution.
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3 Method and test set-up

3.1 Experiments

This section describes the experimental set-up, how the experiment was performed
and the different cylindrical models used in the experiment.

3.1.1 Experimental set-up

The experiments were carried out in Dokka, a tank owned by SINTEF Ocean. The di-
mensions of the tank are 6 meter width, 12 meter length and 5 meter water dept. This
is illustrated in Figure 13 and 14 representing the experimental set-up for cylinders
with closed and open ends, respectively (see also Figure 15 and 16). The cylinders
were dropped from the drop-rig at two different initial positions, one over and one
under the free water surface. The cylinders were dropped from 65 centimetre height
in horizontal position over the water surface. Under the water surface, the cylinders
were dropped from a fully submerged position. The cylinders were dropped from the
drop-rig with initial drop angles of 15, 30, 45, 60 and 75 degrees so that the cylinders
in Figure 13 travelled away from the cameras and the cylinders in Figure 14 travelled
in the direction normal to cameras. Zero degrees is when the cylinder is parallel to the
water surface.

As illustrated in Figure 13 and 14, the cylinder trajectory and velocity were tracked by
four Oqus cameras placed at the right hand side of the tank on two bars. The camera
positions were 1.25 and 3.75 meter respectively over the tank floor at both bars, and
the distance between the bars were 2.13 meter in Figure 13 and 2.40 meter in Figure
14. Oqus are high-speed motion capture cameras that track a marker position through
a three dimensional motion. The Oqus cameras emit light at a frequency of 179 hertz,
and pick up reflections from the marker. If two cameras can see the marker, the cylin-
der position can bee tracked. In this experiment the markers were placed at the rear
cylinder end, witch was the cylinder end pointing towards the cameras for the exper-
imental set-up in Figure 13.
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Figure 13: Description of the experimental set-up for the cylinders with closed ends.

Figure 14: Description of the experimental set-up for the cylinders with open ends.
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Figure 15: Picture of the experimental set-up
for cylinders with closed ends. The drop-rig
is mounted for initial drop positions over the
water surface.

Figure 16: Picture of the experimental set-up
for cylinders with open ends. The drop-rig is
mounted for initial drop positions under the
water surface.

The drop-rig mounted for drops over and under the water surface is illustrated in Fig-
ure 17 and 18. To release the cylinder a magnet was used, the mechanism is illustrated
in Figure 19. The magnet consists of a bar, with a magnet attached to the end of the
bar. As illustrated in the figure, the magnet was placed through a pipe. Pulling the
magnet in the direction indicated in the figure, made the cylinder drop without any
rotation. The pin to adjust the drop angle is also indicated in the figure.

Figure 17: Drop-rig mounted for initial drop
position over the water surface

Figure 18: Drop-rig mounted for initial drop
position under the water surface
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Figure 19: Description of the drop-rig

Seven different cylinder types were used through the experiments. All cylinders used
were at the same length, 0.45 meter. Different cylinder diameters and centre of gravity
locations were tested. 10, 16 and 19 millimetre cylinder diameters were used in the
experiments. For the 10 millimetre diameter cylinders, tests were the centre of gravity
was displaced by 1.4 and 3.0 centimetre from the volume centre were also performed.
The cylinders used were steel pipes. Both pipes with open ends and hence water flow
through and pipes with sealed ends with air inside, were used. An overview of the
cylinder types is showed in Table 5 and a detailed description specifying weight and
dimensions is given in Table 6.

Table 5: Description of the seven different cylinder types tested during the experiment.

Description of the cylinder type
Cylinder 1 A 10 millimetre diameter cylinder with closed ends
Cylinder 2 A 16 millimetre diameter cylinder with closed ends
Cylinder 3 A 19 millimetre diameter cylinder with closed ends

Cylinder 4 A 10 mm diameter cylinder with closed ends
and the centre of gravity displaced 1.4 cm from the cylinder volume centre

Cylinder 5 A 10 mm diameter cylinder with closed ends
and the centre of gravity displaced 3 cm from the cylinder volume centre

Cylinder 6 A 10 mm diameter cylinder with open ends. Wall thickness 1 mm
Cylinder 7 A 19 mm diameter cylinder with open ends. Wall thickness 1.25 mm
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Table 6: Specifications of the cylinders. The COG column describes the position of the centre of gravity
indicating the distance from the cylinder volume centre.

Model scale 1:20 Full scale
Mass Length Diameter COG Mass Length Diameter COG

Cylinder 1 97 g 45 cm 10 mm 0 cm 776 kg 9 m 0.20 m 0 m
Cylinder 2 203 g 45 cm 16 mm 0 cm 1624 kg 9 m 0.32 m 0 m
Cylinder 3 240 g 45 cm 19 mm 0 cm 1920 kg 9 m 0.38 m 0 m
Cylinder 4 105 g 45 cm 10 mm 1.4 cm 840 kg 9 m 0.32 m 0.28 m
Cylinder 5 114 g 45 cm 10 mm 3 cm 912 kg 9 m 0.32 m 0.6 m
Cylinder 6 94 g 45 cm 10 mm 0 cm 750 kg 9 m 0.20 m 0 m
Cylinder 7 231 g 45 cm 19 mm 0 cm 1848 kg 9 m 0.38 m 0 m

Figure 20 shows the cylinders used in the experiments, one 10, one 16 and one 19
millimetre diameter cylinder is pictured. The cylinder marker tape can be seen on the
right hand side of the cylinder. There were also a circular marker attached to the right
cylinder ends.

Figure 20: The cylinders used in the experiment.

In full size dimensions the experiments will approximately coincide with 8, 122
3 and

131
3 inches drill pipes dropped drop from 13 meter above the sea surface, or at a po-

sition under the surface. In full scale the water depth will correspond to a sea depth
equal 100 meter.

3.1.2 Test matrix

The experiments were performed with seven different cylinder types, as specified in
Table 6 and Table 5. For the closed end cylinders with different diameters, Cylinder 1,
2 and 3, drops over and under the water surface were performed, at 15, 30, 45, 60 and
75 degree initial drop angle. For cylinders with displaced centre of gravity, Cylinder 4
and 5, the initial drop positions were under the water surface, and they were dropped
at 15, 30, 45, 60 and 75 degree angle. The cylinders with open ends were also dropped
from an initial position under the water surface, at 15, 30, 45, 60 and 75 degrees drop
angle.
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The number of drops that were executed for each drop angle is given in the Table
7, which shows the test matrix. In general, at least eight drops at each drop condi-
tion were performed, but as can bee seen from the table, some conditions have fewer
drops. This is because of some poor measurements. For some initial conditions where
large variations were observed, some additional drops were performed. For each of
the two centre of gravity displaced cylinders, Cylinder 4 and 5, two set of tests were
performed. First a set with the initial centre of gravity positioned above the volume
centre and then a set with the initial centre of gravity positioned under the cylinder
volume centre. For each cylinder type, at least four cylinders were used. This was
done to detect if some of the cylinders behaved different to the others.

Table 7: The test matrix. The table shows the number of measurements for each initial drop condition.
Cylinder 4 and Cylinder 5 is dropped in two series, with the initial position of the centre of gravity
placed over and under the cylinder volume centre.

Drop under the
water surface

Drop over the
water surface

15◦ 30◦ 45◦ 60◦ 75◦ 15◦ 30◦ 45◦ 60◦ 75◦

Cylinder 1 8 7 8 8 8 8 8 8 8 8
Cylinder 2 8 8 7 14 8 8 8 8 8 16
Cylinder 3 8 8 8 15 15 6 8 8 16 16
Cylinder 4 8 8 7 8 8
Cylinder 4 8 8 8 8 8
Cylinder 5 8 8 8 8 8
Cylinder 5 8 8 8 8 8
Cylinder 6 8 8 8 8 8
Cylinder 7 0 7 8 8 8

3.1.3 Post-processing

The Oqus camera system saved the measured data in structured arrays in MATLAB
format. The raw data were X-, Y- and Z-cylinder marker position data, sampled with
a sample frequency of 179 hertz. These data were plotted by use of MATLAB. The po-
sition plots are presented in Appendix A. By studying the graphs, it can be observed
that some of the graph lines are quite smooth, while others are more jagged. This is be-
cause the smooth-function in MATLAB was used for some of the plots. For some plots
though, the notches in the measurements were so large that using the smooth-function
would have changed the trajectories. The smooth-function was hence not used for these
plots. For the X-Z-plots in Appendix A, the X-coordinates are transformed from the
X-Y-plane, so that that the X-position in these plots represents the actual cylinder trav-
elling distance in the X-Y-plane (This is referred to as radial excursion).

The velocity plots in Appendix B were calculated by dividing the distance between
two measurements by the time between each measurement. This is expressed by the
blue colour in Figure 21. In the velocity calculations, some illogical peaks were de-
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tected. The largest peaks were identified and removed. They were identified by com-
paring each point with values two steps to the left and two steps to the right. If the
difference was larger than 0.2, the point was replaced by the mean of the two values
the point was compared to. This is illustrated by the red colour in Figure 21. The
MATLAB smooth-function was used to draw a line through the data, shown as a green
line in Figure 21.

Figure 21: Example illustrating the Post-processing of the velocity plots. Blue colour illustrates the
calculated velocity from the position data, red colour is the calculated velocity with the largest peaks
removed and green colour is a line fitted to this data in order to draw a line for the velocity development.

3.2 Numerical calculations

The numerical calculations were performed for some of the cylinder types as described
in Table 6, using the model scale 1:20 with the drop angels, β, set to 15, 30, 45, 60 and
75 degrees. This corresponded to the experiments performed as described in Section
3.1. The numerical calculations were done implementing and solving the equations
present in Section 2.1.3, in this report, in MATLAB. Thereby the calculated trajectories
and velocities are for cylinders dropped from a fully submerged condition, staring at
rest without velocity and acceleration. The time step used were 0.01 seconds. To inte-
grate over the differential equations Runge Kutta’s 4th order method was used. This
is a method that uses numerical integration to solve ordinary differential equations
(Kreyszig , 2006). The acceleration of gravity was set to 9.8085 m/s2, the water vis-
cosity to 1.14 · 10−6m2/s and the density equal to 1000 kg/m3. The longitudinal drag
coefficient, Cdx, was set to 0.65 according to Hoerner (1958).
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The drag coefficient in z-direction, Cdz, will for a dropped cylinder vary with time.
According to experiments performed by Sarpkaya (1966) the drag coefficient will first
increase rapidly to about 1.5 and then decrease slowly to about 1.2. Figure 22 shows
experimental data for the lateral drag coefficient for a circular cylinder with nearly
impulsively started laminar boundary layer flow as a function of non-dimensional
time. The effect from using values from 0.6 to 1.4 will be shown.

Figure 22: Lateral drag coefficient, Cdz, for a circular cylinder in nearly impulsively started laminar
flow. The particle motion s of the ambient low is defined by s

R =
∫ t

t0
U3dt/R. R is the radius and U3 is

the velocity of cross flow. (Sarpkaya , 1966).

Further, the influence of the tail effects will be investigated using different positions
,xT, of the effective trailing edge. The upper limit investigated is xT = 0.5L which is
the geometric trailing edge and the lower limit investigated is xT = 0.3L, which is a
value often used in maneuvering of ships with a blunt aftbody (Aanesland , 1986).
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4 Results and discussion

This section presents the results found from the experiments and from the numerical
calculations. First the experiment findings will be discussed and compared to DNV’s
recommended practice for calculation of object excursion. Further the numerical cal-
culations will be compared to the experimental results and then the validity of the
numerical calculations will been discussed.

4.1 Experimental results

The Appendix gives a complete overview of the experimental results. Here the trajec-
tories found form the experimental data is represented from a X-Y-view, a X-Z-view
and a three dimensional view. Equal colour in the X-Y-view, the X-Z-view and the
three dimensional view indicates the same drop, but showed from different directions.
The X-axis in the X-Z-view plots show radial coordinates (travel length) from the X-Y-
plane. First drops of 10, 16 and 19 millimetre cylinders with closed ends, dropped from
under and over the water surface, are represented in Appendix A.1-A.3 and Appendix
A.4-A.6. Then drops of 10 and 19 millimetre cylinders with open ends, dropped from
under the water surface, are given in Appendix A.6 and A.7. Further, drops of 10
millimetre cylinders with the centre of gravity displaced with 1.4 and 3 centimetre,
dropped with the initial centre of gravity positions over and under the cylinder vol-
ume centre are presented in Appendix A.9-A.12. In each of the figures in Appendix
A, eight drops are represented, with some deviations. The current initial condition is
specified in the figure caption. The trajectories given in Appendix, shows in general
the position of the rear cylinder end, with some exceptions. The exceptions are for the
cylinder with the centre of gravity displaced 1.4 cm, dropped with the gravity centre
upward at 15, 30 and 45 degrees drop angle. Here the leading cylinder end position
were measured.

Appendix B gives the total velocity of the rear cylinder end as a function of time and
depth. Each plot line in the figures represents an example of the total velocity devel-
opment for the relevant cylinder and drop angle. The velocity plots for 10, 16 and 19
millimetre diameter cylinders with closed ends, dropped from under and over the wa-
ter surface, are given in Appendix B.1-B.3 and Appendix B.4-B.6. The velocity plots for
the 10 and 19 millimetre diameter cylinders, with open ends, are given in Appendix
B.7 and B.8. Finally the velocity of 10 millimetre cylinders with the centre of gravity
displaced with 1.4 and 3 centimetre, with initial centre of gravity positions over and
under the cylinder volume centre, are presented in Appendix B.9-B.12.
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In Appendix C, tabled position data is given for the different cylinders dropped. The
mean value and the associated standard deviations are given for the radial excursion
(x-position), the depth (z-position) and the y-position at different positions. Position
data are given for the first and second turn in the trajectory, and at three and four
meter depth. Appendix D gives tabled data for the average maximum velocity with
associated standard deviation for the different drop angles.

By studying the graphs, it is observed that some are not totally smooth, but are a bit
jagged. There is also some graphs that are broken and have some illogical peaks. This
is due to some poor measurements. It could be expected that the actual motion pattern
for these graphs followed the same trends as indicated by the smooth graph lines. In
addition quite many measurements did not reach the tank floor, this is mainly due to
the orientation of the marker relative to the Oqus cameras. It could also be useful to
note that several of the cylinders that turned much in the X-Y-plane has shorter mea-
surements because of the marker orientation and the fact that some of the cylinders hit
the tank walls.

4.1.1 The trajectories observed from the experiment

Cylinders with no displacement of the centre of gravity

Typical trajectories observed from the experiment for closed and open end cylinders
with centre of gravity placed in the cylinder volume centre are shown in Figure 23.
These are trajectories that were observed at 15, 30, 45, 60 and 75 degree drop angles in
a five meter deep tank. If the cylinders were dropped at 0 or 90 degrees, an additional
trajectory would have been observed. The cylinders would have fallen straight to the
bottom, either with the longitudinal axis parallel with the vertical axis in water or with
the longitude axis oriented horizontally.
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Figure 23: Two dimensional X-Z-view: Trajectories of cylinders with centre of gravity placed in the
cylinder volume centre found from the experiments.

Trajectory A, in Figure 23, were observed for drops from an initial position under the
water surface at 15 degree initial angle for a 19 millimetre diameter closed end cylin-
der. It was also found for drops from an initial position over the water surface at 15
degree initial angle, and for 19 and 16 millimetre cylinders with 30 degree drop an-
gle (see Appendix A.3.5, A.4.1, A.5.1, A.6.1, A.5.2 and A.6.2). The cylinder angle and
velocity will decrease almost immediately and the cylinder angel will go to zero and
rotate further to an increasingly negative angle. When the longitudinal velocity is zero
the cylinder will change the direction of motion and start to fall towards the bottom
with an oscillatory horizontal motion, like a “falling leaf in air”. This oscillating mo-
tion between the positive and negative x-direction (see Figure 8 for the axis system)
will continue until the cylinder hits the bottom at an orientation close to horizontal.
An illustration of the cylinder orientation during the oscillating motion can be seen
in Figure 24 after a drop through approximately 2.5 meter water column. During the
oscillatory motion the cylinders will go back to x-positions approximately equal to
or smaller than the initial x-value, hence the cylinder excursion will be small. The
velocity will also be quite low, due to the orientation of the cylinder in water. The
orientation is close to horizontal during the entire motion, giving a high viscous re-
sistance. Graphs illustrating the velocity as function of time and depth are given in
Appendix B.3, B.4, B.5 and B.6.
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The cylinder trajectory B, in Figure 23, was observed for initial drop potions under the
water surface at 15, 30, 45 and 60 degree initial angles for closed cylinders. For open
cylinders the same trajectory was also found for 75 degree initial drop angles. For ini-
tial drop positions over the water surface, the same trajectory was observed at initial
drop angles equal to 15, 30, 45, 60 and 75 degrees (see Appendix A.1-A.8). During the
experiment, several different variations of this trajectory were observed. It were found
variations in the radial excursion to the position where the oscillating motion devel-
oped and therefore also in the total travelling distance. Trajectory B is characterised
by that the cylinder moves a distance before it starts to oscillate between motion in
the positive and negative x-direction. An illustration of the cylinder orientation for
this trajectory type is given in Figure 24. The distance the cylinders travels before it
starts to oscillate depends on the initial drop angle. A higher drop angle makes the
cylinder move further away from the drop position and closer to the bottom before it
starts oscillating. A higher drop angle also results in less oscillations since the oscil-
lating motions starts at a position closer to the tank floor. Because of the oscillating
motion, the cylinder hits the bottom close to horizontally. The peak velocity for this
type of trajectory, is reached somewhere between the release position and the first turn
into the oscillating motion. During the oscillating motion, the cylinder velocity settles
around a lower velocity (see Appendix B.1-B.8).
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Figure 24: An illustration of the orientation of cylinders with the centre of gravity placed in the cylinder
volume centre found from the experiment. The figure illustrates the orientation of a 19 millimetre
cylinder with closed ends dropped with 45 degree angle. The vertical axis shows the depth, and the
horizontal axis shows the radial excursion.

Trajectory C, in Figure 23, were observed for closed end cylinders with initial drop
positions under the water surface for drop angles of 60 and 75 degrees, and for drops
from over the water surface at 75 degrees drop angle for the 10 millimetre diameter
cylinder (see Appendix A.1.4, A.1.5, A.2.4, A.2.5,A.3.4, A.3.5 and A.4.5). For this tra-
jectory the cylinders had only motions in the positive x-direction. The peak velocity
developed quite fast (see Appendix B.1-B.4), and the cylinder velocity decreased, as
the cylinder angle decreased during the motion. The cylinder hit the tank bottom with
the nose first, but at a small angle compared to the bottom. The impact angle ob-
served were so small that the cylinder slid a short distance on the tank bottom before
it stopped. Figure 25 illustrates the cylinder orientation during the motion.
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Figure 25: Cylinder orientation for a 19 millimetre diameter cylinder with closed ends dropped with
75 degree angle, illustrating the cylinder orientation during trajectory C. The vertical axis shows the
depth, and the horizontal axis shows the radial excursion.

The cylinder trajectory D were observed for 10 millimetre diameter cylinders dropped
with a 75 degree initial angle from a position under the water surface (see Appendix
A.1.1). The cylinders had only positive motions in x-direction. In this case the cylinder
angle decrease less during the motion, than for trajectory C, and the cylinder hit the
tank bottom with a relatively large angle compare to the bottom. The cylinder lead-
ing edge motion stopped almost immediately after the it hit the bottom. Due to the
relative large cylinder angle, the velocity was quite high during the entire motion (see
Appendix B.1).

Cylinders with displaced centre of gravity

Typical trajectories observed from the experiment for cylinders with displaced centre
of gravity are shown in Figure 26.

34



Figure 26: Two dimensional X-Z-view: Trajectories of cylinders with displaced centre of gravity found
from the experiments.

The cylinder trajectory E, in Figure 26, was found for cylinders dropped from an ini-
tial position with the centre of gravity located above the cylinder volume centre (see
Appendix A.9 and A.11). The cylinders first travelled a distance in the positive x-
direction. During this motion the cylinder angle decreased. At the point were the
trajectory started to make a turn the centre of mass location changed from a position
over the volume centre to a position under. That caused the cylinder to change the
direction of motion and it started to move in the negative x-direction, following a
more or less straight trajectory to the bottom. How fast the cylinder trajectory makes
a curve, depends on the cylinder initial drop angle. For the smallest initial drop angle,
of 15 degrees, the cylinder trajectory made a curve almost immediately. With increas-
ing drop angle the cylinder moved further before the trajectory curved at a position
closer to the bottom. For this type of trajectory the velocities were in general quite
high during the entire motion, except for the point were the trajectory made a turn.
Velocities as function of time and depth are given in Appendix B.9 and B.11.

Trajectory F, in Figure 26, were observed for cylinders with displaced centre of gravity,
with a initial position of the centre of gravity under the cylinder volume centre (see
Appendix A.10 and A.12). The cylinders followed a relatively directional stable mo-
tion with a quite stable orientation to the bottom and the radial excursion decreased
with increasing drop angles. The peak velocity developed after a relatively short time,
and the velocity stabilised at this value. That resulted in the cylinders hitting the bot-
tom with the nose first at a high velocity. Velocities as function of time and depth are
given in Appendix B.10 and B.12.

4.1.2 Tendencies in the results according to the cylinders physical parameters

In this section the governing trends in the results will be discussed according to the
cylinders physical parameters. First the closed end cylinders with 10, 16 and 19 mil-
limetre diameter will be investigated. Then the behaviour of cylinders with two dif-
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ferent displacements of the centre of gravity will be studied. Finally cylinders with
open ends will be studied. The numerical values given in this section are found from
the experiments, and complete tables with average values and related standard devi-
ations are given in Appendix C and D.

Closed end cylinders with different length to diameter ratio

When comparing the trajectories for closed end cylinders dropped from under the
water surface with equal lengths, and diameters equal to 10, 16 and 19 millimetre,
some governing trends were observed. This is illustrated in Figure 27, showing one
drop for each cylinder diameter at 45 degree initial drop angle.

Figure 27: Comparison of closed ends cylinders drop at 45 degree initial drop angle from under the
water surface, with different diameters. The cylinder diameters dropped were 10 mm, 16 mm and 19
mm. The figure shows experimental results.

As can be seen from Figure 27, increasing the cylinder diameter made the cylinders
turn after a shorter time, and at a smaller radial excursion and depth. Increasing the
diameter results in increased cylinder weight, see Table 6 for details, leading to higher
velocities and longer cylinder travel before it starts oscillating. But, it seems like the
increased diameter and frontal area of the cylinder has a larger influence on the cylin-
der trajectory and excursion than the weight increase. The effect of increasing the
frontal area and diameter is among other factors a reduction of the longitudinal veloc-
ity. When the longitudinal velocity is equal to zero the cylinder trajectory will start to
make a turn, and develop the oscillating motion. Hence, increased cylinder diameter
will reduce the radial excursion. The general trends can be seen in Table 8.

36



Table 8: The average radial excursion at four meter depth, and average radial excursion and dept at the
first turn for 10 mm, 16 mm and 19 mm diameter cylinders dropped at 15, 30, 45, 60 and 75 degree
initial drop angle from under the water surface. The table shows experimental results.

Average radial excursion
at four meter depth

Average radial excursion
to the first turn

Average depth to the
first turn

10 mm 16 mm 19 mm 10 mm 16 mm 19 mm 10 mm 16 mm 19 mm
15◦ 0.89 m 0.79 m 0.35 m 0.73 m 0.49 m 0.40 m 1.13 m 0.98 m 0.88 m
30◦ 2.32 m 1.51 m 1.35 m 2.37 m 1.61 m 1.47 m 2.20 m 1.72 m 1.60 m
45◦ 3.67 m 2.79 m 2.58 m 3.79 m 2.89 m 2.76 m 3.63 m 2.93 m 2.84 m
60◦ 2.79 m 2.94 m 2.48 m
75◦ 1.49 m 1.68 m 1.81 m

The table shows the radial excursion at four meter depth and the distance to the first
turn for 10 mm, 16 mm and 19 mm diameter cylinders dropped at 15, 30, 45, 60 and
75 degree initial angle. At 15, 30 and 45 degree drop angle the cylinders developed an
oscillating motion before they reached the tank bottom. Investigating the excursion
at four meter depth for this drop angles in the table, it can bee seen that the radial
excursion decreased significantly with increasing diameter. For 60 and 75 degree drop
angle, were the oscillating behaviour did not have enough time to develop, the radial
excursion is larger for increased diameters. This is because of the curvature of the tra-
jectories. If the tank had been deep enough, the same trend as for the smaller drop
angles would have been observed.

When investigating the velocities for the three cylinder types, it was observed that
the cylinders with the smallest diameter had the largest velocities. So, when studying
the experiment experienced velocities, the increase in diameter dominated over the
weight increase. An increased diameter gave lower maximum velocities, as can be
seen in Table 9 showing the average maximum velocity for 10 mm, 16 mm and 19 mm
cylinders dropped with 15, 30, 45, 60 and 75 degree drop angles. The peak velocities
occurs at a position before the oscillating motions starts, this is showed in the velocity
plots in Appendix B.1, B.2 and B.3.

Table 9: The average maximum velocity for 10 mm, 16mm and 19 mm diameter cylinders dropped at 15,
30, 45, 60 and 75 degree initial drop angle from under the water surface. The table shows experimental
results.

Average maximal velocity
15◦ 30◦ 45◦ 60◦ 75◦

10 mm 0.85 m/s 1.53 m/s 2.17 m/s 2.68 m/s 2.96 m/s
16 mm 0.85 m/s 1.33 m/s 1.92 m/s 2.43 m/s 2.60 m/s
19 mm 0.79 m/s 1.17 m/s 1.70 m/s 2.43 m/s 2.33 m/s
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When the oscillating motion has developed, the total cylinder velocities will vary
around a lower velocity, approximately equal for the three cylinder types and inde-
pendent on the drop angle. For the three cylinder types, these values were approxi-
mately equal to 0.6 m/s. During the oscillating motion, the cylinders will keep a quite
horizontal orientation and the low velocity shows that the viscous forces are more
dominate in the lateral, than in the axial cylinder direction.

Closed end cylinders with displaced centre of gravity

Experiments with 10 millimetre diameter and 0.45 meter length cylinders with dis-
placed centre of gravity were performed. Two different positions for the centre of
gravity were investigated. Studying the results form the experiments, some govern-
ing trends were found. This is illustrated in Figure 28 and Figure 29, which shows
drops from 60 degree initial angle with centre of gravity placed over and under the
cylinder volume centre. The centre of gravity is displaced with 1.4 and 3 cementer,
showed by the green and blue lines.

Figure 28: Comparison of the trajectories of
cylinders with 1.4 and 3 centimetre displaced
centre of gravity, dropped from under the wa-
ter surface at 60 degree initial angle with cen-
tre of gravity over the cylinder volume centre.
The figure shows experimental results.

Figure 29: Comparison of the trajectories of
cylinders with 1.4 and 3 centimetre displaced
centre of gravity, dropped from under the wa-
ter surface at 60 degree initial angle with cen-
tre of gravity under the cylinder volume cen-
tre. The figure shows experimental results.

As can be seen from the figures, the degree of displacement of the centre of gravity
has a significant impact on the radial excursion. If the cylinders were dropped with
initial position of the centre of gravity over the cylinder volume centre, as in Figure
28, increasing the displacement of the centre of gravity makes the cylinder turn after
a shorter distance and the trajectory towards the bottom follows a steeper slope. This
trend can be seen in Table 10 that gives the average values of the turning position, and
the excursion at four meter dept.
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Table 10: The average radial excursion at four meter depth, and average radial excursion and dept for
the direction change for 10 millimetre diameter cylinders with the centre of gravity displaced 1.4 and 3
centimetre. The initial position of the cylinder centre of gravity is over the volume centre. The cylinders
are dropped at 15, 30, 45, 60 and 75 degree initial drop angle from under the water surface. The table
shows experimental results.

Drop of cylinders with the initial position of centre of gravity
over the cylinder volume centre

Average radial excursion
at four meter depth

Average radial excursion
to the direction change

Average depth to the
direction change

COG
dispalced

1.4 cm

COG
dispalced

3 cm

COG
dispalced

1.4 cm

COG
dispalced

3 cm

COG
dispalced

1.4 cm

COG
dispalced

3 cm
15◦ -4.35 m -2.49 m 0.21 m 0.07 m 0.36 m 0.45 m
30◦ -3.43 m -1.66 m 0.65 m 0.41 m 0.57 m 0.84 m
45◦ -1.04 m -0.71 m 1.74 m 1.04 m 1.29 m 1.35 m
60◦ 1.72 m 0.65 m 2.62 m 1.66 m 2.97 m 2.15 m
75◦ 2.73 m 1.80 m 3.04 m 2.14 m 4.31 m 3.17 m

For the cylinders dropped with the centre of gravity placed under the cylinder volume
centre, as showed in Figure 29, an increase in the displacement of the centre of gravity
will cause a smaller radial excursion. Table 11 shows the average radial excursions
at three an four meter depth. For both degree of displacement of the cylinder mass
centre it can bee seen that the relatively slight change in the rate of displacement of the
cylinder centre of gravity had a large impact on the cylinder excursion.

Table 11: The average radial excursion at four and three meter depth for 10 millimetre diameter cylin-
ders with the centre of gravity displaced (COG) 1.4 and 3 centimetre. The initial position of the cylinder
centre of gravity is under the volume centre. The cylinders are dropped at 15, 30, 45, 60 and 75 degree
initial drop angle from under the water surface. The table shows experimental results.

Drop of cylinders with the initial position of
centre of gravity under the cylinder volume centre

Average radial excursion
at three meter depth

Average radial excursion
at four meter depth

COG
dispalced

1.4 cm

COG
dispalced

3 cm

COG
dispalced

1.4 cm

COG
dispalced

3 cm
15◦ 3.55 m 2.26 m 4.65 m 2.81 m
30◦ 2.77 m 1.85 m 3.79 m 2.34 m
45◦ 1.89 m 1.33 m 2.59 m 1.73 m
60◦ 1.19 m 0.84 m 1.70 m 1.14 m
75◦ 0.60 m 0.37 m 0.98 m 0.52 m
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The cylinders with displaced centre of gravity do not experience any oscillations. Dur-
ing most of the motion the longitudinal velocity will probably be higher than the lat-
eral velocity, due to the cylinder orientation. When the centre of gravity was under
the cylinder volume centre the cylinder angle kept quite constant at a relatively high
angle, that made the maximum total cylinder velocities quite high. For the cylinder
with the initial position of the centre of gravity over the cylinder volume centre, the
position of the maximum velocity was either before or after the directional change.
This depended on the depth were the directional change occurred. The maximum
total velocities are given in Table 12.

Table 12: The average maximum velocity for 10 millimetre diameter cylinders with the centre of gravity
(COG) displaced 1.4 and 3 centimetre. The cylinders are dropped at 15, 30, 45, 60 and 75 degree initial
drop angle from under the water surface, with the initial position of the centre of gravity upwards or
downwards. The table shows experimental results.

Average maximal velocity
15◦ 30◦ 45◦ 60◦ 75◦

COG upwards
displaced 1.4 cm 1.88 m/s 1.94 m/s 2.11 m/s 2.39 m/s 2.88 m/s

COG downwards
displaced 1.4 cm 2.03 m/s 2.33 m/s 2.75 m/s 2.98 m/s 3.08 m/s

COG upwards
displaced 3 cm 2.94 m/s 3.04 m/2 3.03 m/s 3.07 m/s 2.82 m/s

COG downwards
displaced 3 cm 3.20 m/s 3.23 m/s 3.27 m/s 3.33 m/s 3.47 m/s

When the cylinders kept the same orientation for a while, it reached a terminal veloc-
ity. Then the drag and buoyancy force balanced the gravity force, and the acceleration
is zero. The terminal velocity increased with increasing cylinder angle. The velocity
plots as function of time and depth are given in Appendix B.9-B.12.

Open end cylinders

Experiments with 10 and 19 millimetre diameter open ends cylinders with length 0.45
meter, was also performed. Compering the trajectories for the two different types of
open cylinders a clear difference was found. Figure 30 shows the difference between
a 10 and 19 millimetre cylinder dropped from under the water surface at 45 degree
drop angle. Increasing the cylinder diameter made the oscillating motion start after a
shorter distance. As a consequence of the earlier oscillation the radial excursion also
became smaller. Table 13 shows this trend, giving the average values for the radial
excursion at four meter depth and the position of the first turn for the two cylinder
types.
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Figure 30: Comparison of trajectories of 10 and 19 millimetre diameter open end cylinders dropped
from under the water surface at 45 degree initial drop angle. The figure shows experimental results.

Table 13: The average radial excursion at four meter depth and average radial excursion and dept at
the first turn for 10 mm and 19 mm diameter cylinders with open ends dropped at 15, 30, 45, 60 and 75
degree initial angle from under the water surface. The table shows experimental results.

Average radial excursion
at four meter depth

Average radial excursion
to the first turn

Average depth to the
first turn

10 mm 19 mm 10 mm 19 mm 10 mm 19 mm
15◦ 0.85 m 0.71 m 1.01 m
30◦ 1.91 m 1.20 m 1.85 m 1.29 m 1.63 m 1.23 m
45◦ 2.57 m 1.38 m 2.63 m 1.98 m 2.31 m 1.70 m
60◦ 3.12 m 2.09 m 3.41 m 2.55 m 3.41 m 2.43 m
75◦ 2.62 m 1.79 m 3.70 m 2.67 m 4.57 m 3.23

The weight of the 19 millimetre diameter cylinder used, was higher than for the 10
millimetre diameter cylinder. Higher weight gave in general a larger radial excursion
and would alone lead to that the first turn occurred at a deeper depth. But, the 19
millimetre diameter cylinder also had a larger surface leading to larger frictional resis-
tance and hence smaller radial excursion. The frontal area was quite small for both of
the cylinders, that had wall thicknesses of 1.0 and 1.25 millimetre, and would thereby
probably not reduce the longitudinal velocity significantly. The fact that the 19 mil-
limetre diameter cylinder developed the oscillating motion earlier, may be explained
by an additional moment; the lift force that attacked the cylinder nose. This can be re-
lated to the effect, stated by Newman (1977), who studied rectangular lifting surfaces
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with small aspect ratios and found that the lift forces were concentrated around the
leading edge, particularly when leading edge separations does not occur. The leading
edge separation will probably be small for cylinders with open ends due to the small
frontal area. The effect of the additional moment seems to increase with increasing
diameter, this can be seen studying Figures 31 and 32, that gives the orientation of one
10 and one 19 millimetre cylinder with open ends dropped at 45 degrees. From the
figures it can be seen that the 19 millimetre cylinder had large differences in cylinder
angle during the oscillating motion. This difference in cylinder orientation between a
10 and 19 millimetre diameter cylinder was not observed for the cylinders with closed
ends.

Figure 31: The orientation of a 10 millime-
tre cylinder with open ends dropped with 45
degree initial drop angle. The figure shows ex-
perimental results.

Figure 32: The orientation of a 19 millime-
tre cylinder with open ends dropped with 45
degree initial drop angle. The figure shows ex-
perimental results.

A comparison of the trajectories of the 19 millimetre open and closed end diameter
cylinders dropped at 45 and 75 degree are given in Figure 33 and Figure 34. The
figures are examples illustrating the general behaviour of the closed versus the open
ends cylinders tested in the experiment. Before starting the comparison, it is important
to keep in mind that the closed end cylinder is filled with air, meaning that submerged
in water it had an additional buoyancy force compared to the cylinder with open ends.
So, in submerged condition the cylinder with open ends was the heaviest.

42



Figure 33: X-Z-view: Comparison of the tra-
jectories for open and closed end cylinders with
19 mm diameter, dropped from 75 degree ini-
tial angle under the water surface. The figure
shows experimental results. The X-axis shows
radial excursion.

Figure 34: X-Z-view: Comparison of the tra-
jectories of open and closed end cylinders with
19 mm diameter, dropped from 45 degree ini-
tial angle under the water surface. The figure
shows experimental results. The X-axis shows
radial excursion.

When comparing the two dimensional trajectories for the open and closed ends cylin-
ders, shown as black and red lines in the figures, differences were found. Cylinders
with open ends started the oscillating motion at an earlier position and therefore also
reached a smaller radial excursion. The observation that the cylinder started the oscil-
lating motion earlier may be a result of an additional moment in pitch due to a lift force
in the cylinder nose. This is resulted in a difference in the orientation of the cylinders
that can be seen comparing Figure 24 to Figure 32. The figures shows the orientation
of a 19 millimetre cylinder with closed and open ends, respectively. From the figures
it can be seen that the open cylinders had larger variations in cylinder angles through
the oscillating motion.

4.1.3 Drop over versus under the water surface

So far, only the behaviour of cylinders dropped from under the water surface has been
discussed. For a cylinder dropped from air the water impact conditions will be es-
sential to initial conditions at the submerged part of the motion. When a cylinder
penetrates the surface, water-impact loads will occur. The impact loads will initiate
a cylinder rotation and decrease the cylinder angle. In addition buoyancy and drag
forces will act on the submerged cylinder part. The cylinder trajectories will there-
fore be sensitive to small changes in the water impact conditions, because the angle of
the submerged body determines the cylinder trajectory. The trajectories for cylinders
dropped from over the water surface are showed in Appendix A.4-A.6. Comparing
these trajectories to the cylinders dropped from under the water surface, it can bee
seen that the trajectories for cylinders dropped at the same angles does not coincide

43



well, but drops at a smaller angles results in more similar paths.

Another difference between cylinders dropped from over and under the water surface
is air cavities. For the cylinders dropped from air, formation of air cavities were ob-
served both at the front and aft end of the cylinder, as showed in Figure 35. The air
cavity formation was observed for all drop angles larger than 15 degrees. The amount
of captured air at the front and aft cylinder end seemed to increase with increased
drop angle. The air cavities followed the cylinder quite deep into the water, deeper for
larger angles, and may have an influence on the motion and stability. For instance for
lifeboats, it is found that air cavity contributes to retardation in the motion and that
the pressure in a closed cavity oscillates leads to an oscillatory pressure, that results in
an unsteady boat retardation (DNVGL , 2016). As a result of this, the air cavity impact
on cylinder trajectory and velocity should be investigated closer, but this is beyond the
scope of this thesis.

Figure 35: Air cavity formation on the front and back end of a closed end cylinder dropped from over
the water surface observed from the experiment. The cylinder is 19 millimetre dropped with 45 degree
initial angle from over the water surface.
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To illustrate how this air cavities were formed the experiment performed by Ueda
et al. (2010) was studied. Figure 36 shows the water entry of a 12 millimetre diameter
and 300 millimetre length cylinder dropped at 200 millimetre height from the bottom
edge of the cylinder to the water surface. The initial inclination compared to the water
surface is 36 degrees. As can be observed from the figure, the air cavity formed from
the bottom end of the cylinder at the beginning of the water entry, and the cavity is
shed from the cylinder end (Figure 36 b-d). Then the resulting air cavity formed at the
bottom end of the cylinder, breaks of (36 e-f), and the upper end of the cylinder also
formed air cavity when it entered the water (36 g-i) (Ueda et al. , 2010).

Figure 36: Air cavity formation on the front and back end of a cylinder dropped with a 36 degree
inclination entry the water. The cylinder had a 12 millimetre diameter and was 300 millimetre long.
(Ueda et al. , 2010)
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The cylinder drop experiments conducted, during the work with this thesis, were per-
formed in a tank were the water surface only experienced small ripples. However, in
the ocean surface it will be significantly more undulations affecting the angle of the
object, as illustrated in Figure 37. According to Katteland and Øygarden (1995) for
crane accidents, the majority of the falling pipes will fall with an angle between 45
and 90 degrees, as a result of how the pipes are bundled together when lifted. But, the
fully submerged angle may become completely different. If the cylindrical object hit a
wave, the angle may increase or decrease depending on the wave slope and condition.

Figure 37: The effect of an undulating sea surface (Yasseri , 2014).

4.1.4 Worst case scenarios

In order to identify witch cylinder types that can lead to the “worst case scenarios” in
a risk assessment study on accidental drops, investigation the highest values from the
experiments can provide some answers.

The largest radial excursion observed and the object that hit the tank bottom furthest
from the drop position was observed for the cylinder with centre of gravity displaced
1.4 centimetre form the cylinder volume centre dropped at 15 degree angle. The radial
excursion for this objects are given in Figure 38 and Figure 39, which shows the cylin-
ders dropped with the centre of gravity over and under the cylinder volume centre.
The radial excursion on the tank floor for these cases, were found to be approximately
six meter. This means that the radial excursions were found larger than the water
depth. If the tank had been deeper the cylinder would have followed on in the same
direction and the excursion would have increased with depth. This is different to what
happens to a cylinder with no displacements of the centre of gravity, were the radial
excursion reaches a maximum value. This maximum will be around the point were
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the oscillating motion develops, after this the excursion will not change significantly
with increasing water depth. The largest radial excursions for these cylinder types,
was found to occur for initial drop angles around 60 degrees (see Appendix C).

Figure 38: X-Z-view: Drop of 10 millimetre
diameter cylinders with the centre of gravity
displaced 1.4 centimetre from the cylinder vol-
ume centre. Dropped at 15 degree angle with
centre of gravity placed over the cylinder vol-
ume centre. The figure shows experimental re-
sults. The X-axis shows radial excursion.

Figure 39: X-Z-view: Drop of 10 millimetre
diameter cylinders with the centre of gravity
displaced 1.4 centimetre from the cylinder vol-
ume centre. Dropped at 15 degree angle with
centre of gravity placed under the cylinder vol-
ume centre. The figure shows experimental re-
sults. The X-axis shows radial excursion.

As a general trend, the maximum total velocity was observed to increased with in-
creasing drop angles. The largest velocity was observed for the cylinder with the cen-
tre of gravity displaced by 3 centimetre, dropped with the centre of gravity under the
cylinder volume centre (see Figure 40). For the cylinders with the centre of gravity
in the cylinder volume centre, the largest velocity was measured for the 19 millimetre
diameter cylinder with open ends (see Figure 41).
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Figure 40: Velocity development with depth
for 10 millimetre diameter cylinders dropped
with the centre of gravity displaced 3 centime-
tre from the cylinder volume centre. Dropped
with centre of gravity placed under the cylin-
der volume centre from under the water sur-
face. The figure shows experimental results.

Figure 41: Velocity development with depth
for 19 millimetre diameter cylinders with open
ends dropped from under the water surface.
The figure shows experimental results.

By investigating the velocity plots, it can be observed that cylinders with displaced
centre of gravity will reach a relatively high velocity for all drop angles after approx-
imately 2.5 meter depth and keep this velocity to the bottom. The period where the
cylinder with no displacements of the centre of gravity has the highest velocity is quite
small, and the velocity decreased significantly for smaller drop angels. The cylinder
impact force depends on the velocity and mass. In this experiment the highest impact
force was observed for the 19 millimetre diameter cylinder with open ends, dropped
at 75 degree angle at around 1.5-2 meter depth. This special drop case had a high
maximum velocity and the cylinder was the heaviest cylinder in submerged condition
used in the experiment. But, to impact forces on seabed subsea structures at larger
depths, cylinders with displaced centre of gravity will be of larger concern.

4.1.5 Comparison of DNV’s recommended practice with the results obtained from
the experiments

According to the DNV’s recommended practice, DNVGL-RP-F107 (DNVGL , 2017),
object excursion for dropped objects can be found from the simplified approximation
δ = d tan α (see Section 2.3). For these experiments the full scale object can for instance
be drill pipes, which will be under the category longed shaped in Table 4. The weight
of drill pipes in full scale, as specified in Table 6, will be smaller than two tonnes and
the angular deviation, α, will therefore be equal 15. The experiments were performed
at five meter water depth, but since few measurements reached this depth, a water
depth of four meter has been considered. The full scale water depth investigated, was
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therefore 80 meter. Table 14 shows a comparison of DNV’s methodology with the re-
sults obtained for the 10 millimetre diameter cylinder with closed ends (see Cylinder 1
in Table 6) dropped from under the water surface, which was the cylinder (disregard-
ing the cylinders with displaced centre of gravity) that had the largest excursion. The
table shows the mean radial excursion, standard deviation and a value for the radial
excursion given as the sum of the mean and standard deviation value, from the exper-
imental data. The values are given in full scale using the scaling method described in
Section 2.2, meaning a drill pipe with end caps are considered. It is important to also
keep in mined that this is measurements of the rear cylinder end, so the leading pipe
end will probably go further, depending on the orientation of the pipe.

Table 14: Comparison of the excursion found for experiments on a 10 millimetre diameter cylinder with
closed ends dropped from under the water surface with the the DNV’s simplified method. The values are
in full scale.

Fullscale values: 0.2 meter diameter cylinder
Data from the experiments DNV’s simplified method

Depth 80 [m] 180 [m] 300 [m]
mean rad. x-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
δ

[m]
δ

[m]
δ

[m]
15◦ 17.8 3.8 21.6 21.4 48.2 80.4
30◦ 46.4 11.2 57.6 21.4 48.2 80.4
45◦ 73.4 10.2 83.6 21.4 48.2 80.4
60◦ 55.8 7.8 63.6 21.4 48.2 80.4
75◦ 29.8 3.6 33.4 21.4 48.2 80.4

Comparing the radial excursion, from the experiments, with DNV’s estimation of the
excursion at 80 meter water depth, it can bee seen that there is a great mismatch.
DNV’s recommendations assumes a considerable smaller excursion for all drop an-
gles except for 15 degrees. The DNV’s recommendation is based on a report by Katte-
land and Øygarden (1995) that provides dropped object distributions for larger water
depths of 300 meters. It is stated that the maximum excursion is observed before the
object reaches 180 meter and that the distribution will not increase significantly be-
yond this depth. According to the results found at 80 meter water depth the cylinders
dropped from 15, 30 and 45 degrees has started to oscillate, see Appendix A.1. When
the oscillating motion has developed the change in excursion will not be significant,
but oscillate around approximately the same value. The cylinders dropped with 60
and 75 degree angle has at 80 meters depth not achieved the oscillating motion, but it
is likely that the oscillating motion will develop in good time before 180 meters wa-
ter depth is reached. Therefore, the assumption that the maximum excursion occurs
before 180 meter depth appears to be reasonable, but the calculated value for object
excursion, according to DNV’s simplified method, at this depth is to low.

According to Katteland and Øygarden (1995), large water depth is set to 300 meter
and deeper. A clear definition of water depths was not found in DNV’s recommended
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practice. The smallest water depth discussed is an example in appendix A.5 in DNVGL
(2017) that concerns calculations of the excursion of an object in category one, flat or
longed shaped, at 100 meter water depth. As showed in Table 14, the model that DNV
suggest for calculation of excursion, will be fairly reasonable at 300 meter water depth
for 15, 30 and 45 degree drop angle. For 60 and 75 degrees it is likely to believe that
the maximal radial excursion, when the oscillation has developed, will be larger than
for the smaller drop angles. It means that even deeper water depth than 300 meter is
needed for DNV’s simplified method to be valid.

For a pipe with a small displacement of the centre of gravity, equal to Cylinder 6 in
Table 6, dropped with the centre of gravity under the cylinder volume centre, the full
size radial excursion compared to the DNV’s recommendations is given in Table 15.
In DNVGL-RP-F107 (DNVGL , 2017) there are no object specifications beyont that the
object is longed shaped. As can be seen from the table, only drop angles of 75 degrees
will be within the recommendations at 80 meter depth.

Table 15: Comparison of the experimental values for the cylinder with centre of gravity displaced 3
centimetre dropped with the centre of gravity under the volume centre with the the DNV’s simplified
method. The values are in full scale.

Fullscale values: 0.2 m diameter cylinder, COG displaced 0.28 m
Data from the experiments DNV’s simplified method

Depth 80 [m] 180 [m] 300 [m]
mean rad. x-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
δ

[m]
δ

[m]
δ

[m]
15◦ 93.0 4.4 97.4 21.4 48.2 80.4
30◦ 75.8 5.4 81.2 21.4 48.2 80.4
45◦ 51.8 3.4 55.2 21.4 48.2 80.4
60◦ 34.0 3.2 37.2 21.4 48.2 80.4
75◦ 19.6 0.8 20.4 21.4 48.2 80.4

Drops at 15 degrees gives the larges deviations from the recommendations for the
cylinder with displaced centre of gravity. By investigating the trajectory in a X-Z-
view given in Appendix A.10.1, it can be seen that the pipe will follow a more or less
straight line. If there are no disturbances, the pipe will continue in the same direction
until it reach the sea bottom. Figure 42 gives the full scale radial excursion from the
experiments at 80 meter depth for the cylinder, and the appurtenant angular deviation
α. The angular deviation becomes 50.6 degrees, which is 3.4 times higher than the
value given in DNV’s recommended practice for a longed shaped object.
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Figure 42: Angular deviation found from the experiments for a 0.2 meter diameter and 9 meter length,
pipe with the centre of gravity displaced 0.28 meter. The pipe is dropped with the centre of gravity under
the cylinder volume centre from a position under the water surface at 15 degree initial drop angle.

DNV’s recommended practice assumes a normal distribution for the object excursion
on the seabed for all object shapes, as illustrated in Figure 2. Investigating the excur-
sion at four meter dept for the seven different cylinder types used in the experiment,
the distribution given in Figure 43 was found. The distribution shows the absolute val-
ues for the radial excursion at four meter depth for all the cylinder drop measurements
that reach this depth. The amount of data is not sufficient to give a complete statistic
distribution for the radial distribution of dropped cylindrical objects. For instance it
should be noted that no drops at 0 and 90 degrees are performed. According to Kat-
teland and Øygarden (1995), for crane accidents, possible hit angles with the water
surface will be between 0 and 90 degrees. A pipe dropped at 0 and 90 degrees without
any disturbance will fall straight down to the sea floor, with close to zero excursion.
Even though the statistical distribution is far from prefect, it can give an indication.
The distribution of the drops that reach four meter depth indicates that a Rayleigh dis-
tribution can be used to describe the excursion on the sea bed. Lie et al. (2009) has also
studied some experiments with two different types of falling anchors. They conclude
that, for both anchor types, the horizontal excursion can approximately be statistically
modelled by use of the Rayleigh distribution. Hence, the Rayleigh distribution might,
for some type of objects, give a better distribution of the excursion on the sea bed than
the normal distribution assumed in the DNV’s recommended practise.
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Figure 43: Distribution of the absolute value of radial excursion at four meter depth for all drops
performed during the experiment that reached four meter depth.

4.1.6 Directional stability of the cylinder motion

Later in this thesis, two dimensional calculations of the cylinder trajectory and veloc-
ity will be performed. A fundamental assumption for this theory is that the cylinder
moves close to the vertical plane between vertical global Z-axis and the cylinder axis,
as showed in Figure 4 were the cylinders is pointing towards the centre of the target.
From the experiments it seems like this assumption can be reasonable for many cases
investigating the plot of the X-Y-views in Appendix A, but there are some exceptions.
For instance large deviations were observed for the closed end cylinders dropped from
under the water surface at 60 degree drop angle. The deviation observed seams to in-
creases with the cylinder diameter. For the 19 millimetre diameter cylinders dropped,
the X-Y-view are given in Figure 44.
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Figure 44: X-Y-view of a closed end 19 millimetre diameter cylinder dropped at 60 degrees from under
the water surface. The figure shows experimental results.

In order to explain why this unstable motion occurs, it could be relevant to consider
the flow separation on the body. As studied by Werle (1979) an asymmetric cross-flow
separation will occur at a distance from the pointed cylinder nose, depending on the
cylinder diameter and inclination. According to Sarpkaya (1978) the vortices separate
from the cylinder must acquire a certain strength and position relative to the cylinder
in order to reach a state at which they are most susceptible to disturbances. Addition-
ally, as a consequence of the asymmetric cross-flow separation, the falling cylinder will
be affected by a side force (Alsos and Faltinsen , n.d.). In experiments performed by
Lamont and Hunt (1976), an increase in this force, at moderately high angles of incli-
nation, was observed. So, the direction instability observed in the X-Y-plane may be
a consequence of asymmetric cross-flow separation. The direction stability may then
depend on the inclination and diameter. At a certain combination of inclination and
cylinder diameter the vortices probably reach a strength and position relative to the
cylinder were the motion is more sensitive to disturbances. This may be the case for
instance for a 19 millimetre cylinder dropped with 60 degree initial angle.

As indicated above the instability in the motion has a connection to the drop angle,
but a quite large variation depending on the cylindrical object type was also observed.
For instance, for cylinders with open ends, a larger direction stability compared to
closed end cylinders was observed. This can bee seen by comparing Figure 44 and
45 which shows the X-Y-view of a closed and open end 19 millimetre diameter cylin-
der dropped at 60 degree angle. Investigating the motion before the oscillation has
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developed, until approximately 2.5 meter excursion, the cylinder with open ends will
have a quite directional stable motion. Compared to the closed end cylinder there is
a radical difference. For the closed end cylinder trajectory in the X-Y-plane, several
of the cylinders changed direction of motion significantly after less than one meter
excursion. The more directional stable motion may be explained by the fact that the
frontal area is smaller, giving less pressure and velocity reduction in the front part of
the cylinder. How far from the pointed nose the asymmetric cross-flow occurs will
also depend on the frontal area (Werle , 1979). A smaller frontal area may defer the
trigging of the instability and lead to less instabilities in the wake.

Figure 45: X-Y-view of a open end 19 millimetre diameter cylinder dropped at 60 degrees from under
the water surface. The figure shows experimental results.

It was also observed that the cylinders with displaced centre of gravity were quite
directional stable. This is related to the fact that the gravity force will work in the
cylinder centre of mass. Therefore, when the centre of mass is located below the buoy-
ancy centre, the motion of the cylinders will be stable and follow a relatively straight
path to the bottom. This can be seen at the X-Y-plots in Appendix A.9-A.12 consider-
ing the fact that none of the dropped cylinders turned much in this plane compared to
the radial excursion.

4.2 Comparison of experimental and numerical results

In this section the sensitivity of the parameters XT/L, Cdz and Cdx will be studied,
for cylinders with closed and open ends, and for cylinders with displaced centre of
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gravity, dropped from under the water surface. The investigation will be performed
comparing the numerical simulations to the experimental results. The numerical cal-
culations are performed as described in Section 2.1.3 using the values given in Section
3.2. The theory described is a calculation of the centre of gravity motion. However, the
following plot shows the simulated position of the same cylinder end as the marker
were located during the experiment.

4.2.1 Cylinder with closed ends

Figure 46 to 55 shows a comparison of trajectories found from experiments and sim-
ulations. The 10 millimetre diameter closed end cylinder, specified as Cylinder 1 in
Table 6, is selected as the dropped cylindrical object. Several trajectories are shown for
drop angle of 15, 30, 45, 60 and 75 degrees which is presented by black lines for the
experiments and coloured lines for the numerical calculations performed as described
in Section 2.1.3.

Figure 46: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 15 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a ten present change in the trailing edge po-
sition. Cdz = 1 and Cdx = 0.65.

Figure 47: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 15 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a twenty present change in the Cdz-value.
xT/L = 0.4 and Cdx = 0.65.
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Figure 48: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 30 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a ten present change in the trailing edge po-
sition. Cdz = 1.0 and Cdx = 0.65.

Figure 49: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 30 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a twenty present change in the Cdz-value.
xT/L = 0.4 and Cdx = 0.65.

Figure 50: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 45 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a ten present change in the trailing edge po-
sition. Cdz = 1.0 and Cdx = 0.65.

Figure 51: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 45 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a twenty present change in the Cdz-value.
xT/L = 0.5 and Cdx = 0.65.
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Figure 52: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 60 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a ten present change in the trailing edge po-
sition. Cdz = 1.0 and Cdx = 0.65.

Figure 53: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 60 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a twenty present change in the Cdz-value.
xT/L = 0.5 and Cdx = 0.65.

Figure 54: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 75 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a ten present change in the trailing edge po-
sition. Cdz = 1.0 and Cdx = 0.65.

Figure 55: X-Z-view: Comparison of the numeri-
cal and experimental results for Cylinder 1 in Table
6 dropped at 75 degree. The numerical calculations
are represented with coloured lines, each colour rep-
resents a twenty present change in the Cdz-value.
xT/L = 0.5 and Cdx = 0.65.

A comparison between X-Z-plane trajectories keeping the Cdz-value constant equal to
1.0 and the Cdx-value equal to 0.65, and variate the position of the effective trailing
edge between xT = 0.3L and xT = 0.5L, are shown in Figure 46, 48, 50, 52 and 54. As
can be seen from the figures, a ten percent changing in the trailing edge position has a
great influence on the calculated cylinder trajectory. It is interesting to observe that the
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cylinder moves a greater distance in the horizontal direction when the position of the
trailing edge is moved towards the geometrical trailing edge. This is a result of that
an increased xT-value will result in a smaller total moment on the cylinder, and that
again will reduce the rotation accordingly (Aanesland , 1986). Studying the figures it
also seems to be a general trend that larger xT-values should be used for greater drop
angles. For instance, at 75 degree drop angle xT = 0.5L seems to give the most similar
trajectory, while at 15 degree drop angle this trailing edge position had the poorest fit.
At smaller drop angles, using 0.5L as the effective trailing edge, the stabilisation effect
seems to be overestimated. Therefore, for further simulations, xT = 0.5L will be used
for cases with drop angles larger than 30 degrees and for drop angles equal 15 and 30
degrees xT = 0.4L.

Trajectories were also simulated with different z directional drag coefficients, Cdz,
given in Figure 47, 49, 51, 53 and 55. The trailing edge position was constant as in-
dicated above and Cdx = 0.65. As can bee seen from the figures, an increased drag co-
efficient, Cdz, results in an increase in the spread in the X-direction. That indicates that
a larger lateral resistance force slows down the falling motion and allows the cylinder
to travel further in X-direction. The effect of changing the Cdz-value was found to be
significant. As showed in the figures a twenty percent change has a significant impact
on the position where the oscillating motion develops and the effect seems to increase
with increasing drop angles. This may be a consequence of that higher drop angles
cause larger velocities before the oscillating motion develops (see Figure 57).

The effect of changing the drag coefficient in the x-direction has also been investigated.
Figure 56 shows the effect of changing the Cdx-value with twenty percent keeping Cdz
and xT/L constant equal to 1.0 and 0.5 for drops with initial angle equal to 45 degree.
As can be seen from the figure, increasing this drag coefficient decreases the amplitude
of the oscillating motion and has a slight impact on the vertical position of the first
turn. But, in general the effect of changing this drag coefficient with twenty percent
was found to be relatively small.
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Figure 56: The numerical calculations for Cylinder 1 in Table 6, dropped at 45 degree. Each coloured
line represents a twenty present change in the Cdx-value. xT/L = 0.5 and Cdz = 1.

As showed in Figure 47 to 55 a relatively good agreement was found between the
numerical and experimental trajectory for the 10 millimetre diameter cylinder with
closed ends. But, the degree of similarity were found to be clearly sensitive to the cho-
sen value of the effective trailing edge and the drag coefficient in z-direction, changing
the values with a magnitude of twenty percent. The impact changing the drag coeffi-
cient in x-direction with this magnitude was found to be significantly smaller. So, by
keeping the drag coefficient in x-direction constant at 0.65, which is a value suggested
by Hoerner (1958), and the drag coefficient in z-direction at 1.0, the numerical calcu-
lation seems to fit quite well before the oscillating motion has developed (see Figure
47, 49, 51, 53 and 55). The position of the first turn from the simulations seams to have
a good fit compared to the trajectories found from the experiment, except for at 15
degrees. But, as the oscillations develop the simulated oscillation period and amplifi-
cation has a larger value than found from the experiment. For instance increasing Cdx
to a high value will give a more equal amplification of the oscillation and decreasing
the effective trailing edge value will reduce the oscillation period, but that will also
have a large influence on for instance the position of the first turn. So, the simulated
trajectories fit quite well to the first turn, but the calculated touch down point may
deviate from the experiments due to the properties of the simulated oscillations.

The velocities of the 10 millimetre diameter cylinder are shown in Figure 57. The solid
lines indicate the velocities found from the experiments and the dashed lines repre-
sent the numerical calculated total velocity. Equal colours means that the cylinders are
dropped from equal initial drop angles. The drag coefficients used were Cdx = 0.65
and Cdz = 1.0. The trailing edge positions used were, as state earlier, in this thesis.
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As can be seen from the figure, significant similarities between the experiment and the
numerical calculations were found. The maximum total velocities seam to be around
the same values and arise at similar depths. When the the oscillating motion has de-
veloped, the velocities decrease and start to vary around similar values. There are
also some deviations, but it should be kept in mind that the plotted velocities from
the experiments only represent one of the drops performed at this particular angle.
Depending one the chosen drop from the experiments, the plotted velocity value will
vary. The similarities observed between the simulations and the experiments empha-
sise that the three parameters chosen for velocity calculations, are fairly reasonable.

Figure 57: Comparison between the total velocity found from the experiment and the numerical calcu-
lations. The solid lines represent the experiment, and the dashed lines the numerical calculations. Equal
colour means equal drop angles. The cylinder is 10 millimetre diameter, equal to Cylinder 1 in Table 6.
Cdz = 1, Cdx = 0.65, xT/L = 0.4 for angles ≤ 30◦ and xT/L = 0.5 for angles > 30◦.

The same three parameters for the drag coefficients and the trailing edge were also
used to find the simulated cylinder orientation. Comparing the orientations of the
cylinders found from the numerical calculations to the experiments, relatively great
similarities were found. Figure 58 and 59 shows the orientation, calculated numeri-
cally and found from the experiments, of the 19 millimetre cylinder with closed ends
dropped with 45 degree initial angle. Comparing the cylinder orientations in the X-Z-
plane during the falling motion, it can be seen that for both cases the largest angle is
the drop angle. After the drop the cylinder angle decreases and for both cases reach a
horizontal position at approximately 0.5 meter above the maximal amplification of the
first turn. Then the cylinder, for both cases, oscillate to the bottom with a small angle
of orientation.
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Figure 58: The orientation, according to the nu-
merical calculations, of a 19 millimetre diameter
cylinder dropped with initial angle of 45 degree.

Figure 59: The orientation, according to the exper-
iment, of a 19 millimetre diameter cylinder dropped
with initial angle of 45 degree.

4.2.2 Cylinder with displaced centre of gravity

Figure 60 to 69 shows a comparison between numerical and experimental results for a
cylinder with displaced centre of gravity, Cylinder 4 in Table 6. The numerical simu-
lations are based on the theory presented in Section 2.1.3, presented by coloured lines.
The figures presents the numerical simulation with constant drag coefficients. The
drag coefficient in x-direction is 0.65 and the drag coefficient in z-direction is 1.0. Fig-
ure 60, 62, 64, 66 and 68 shows the cylinder dropped with the initial centre of gravity
position over the cylinder volume centre and Figure 61, 63, 65, 67 and 69 gives the
trajectories for the cylinder dropped with the initial centre of gravity position under
the cylinder volume centre.
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Figure 60: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 15 degree with the gravity cen-
tre upwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 61: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 15 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represent
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 62: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 30 degree with the gravity cen-
tre upwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 63: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 30 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.
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Figure 64: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 45 degree with the gravity cen-
tre upwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 65: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 45 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 66: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 60 degree with the gravity cen-
tre upwards. The numerical calculation are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 67: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 60 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.
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Figure 68: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 75 degree with the gravity cen-
tre upwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

Figure 69: X-Z-view: Comparison of the numeri-
cal and experimental results for cylinders with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 75 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a ten present change in the trailing edge position.
Cdz = 1.0 and Cdx = 0.65.

By studying Figure 60 to 69, the effect of changing the trailing edge position is illus-
trated. It was found that the chosen value of the trailing edge position has consider-
able influence on the simulated trajectory, especially when the drop angle increases.
In general it seams that the geometrical trailing edge has the nearest similarities to the
experimental results, except for the smallest drop angles, were the centre of gravity
initially were placed over the cylinder volume centre. For these, it looks like a smaller
value of the trailing edge will give a better fit. When travelling to the bottom with
the centre of gravity under the cylinder volume centre, it also looks like the cylinders
dropped during the experiments followed a straighter trajectory than the numerical
calculated trajectory. The calculated trajectory follows a slightly concave path. The
numerical simulations will therefore in general give a more conservative value for the
touch down point.

The effect of changing the drag coefficient in z-direction is shown in Figure 70 and
71, that shows cylinders dropped at 45 degree with the centre of gravity upwards and
downwards. Similar effects as described in Section 4.2.1 were found. A twenty percent
change in the the Cdz-value had an effect on the excursion in the X-direction and the
positions were the cylinder trajectories made a turn. The effect of changing the drag
coefficient in x-direction was also for this cylinder type found to be relatively small
compared to the effect of changing trailing edge position and the drag coefficient in
z-direction.
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Figure 70: X-Z-view: Comparison of the numeri-
cal and experimental results for a cylinder with dis-
placed centre of gravity, equal to Cylinder 4 in Table
6, dropped at 45 degree with the gravity centre up-
wards. The numerical calculations are represented
with coloured lines. Each colour represents a twenty
present change in the Cdz-value. xT/L = 0.4 and
Cdx = 0.65.

Figure 71: X-Z-view: Comparison of the numeri-
cal and experimental results for a cylinder with dis-
placed centre of gravity, equal to Cylinder 4 in Ta-
ble 6, dropped at 45 degree with the gravity centre
downwards. The numerical calculations are repre-
sented with coloured lines. Each colour represents
a twenty present change in the Cdz-value. xT/L =
0.5 and Cdx = 0.65.

Figure 72 and 73 shows the numerical calculated total velocity versus the total velocity
found from the experiments. The dotted lines represents the simulated values and the
solid line represents an example of the total velocity development found from the ex-
periments. Figure 72 shows the total velocity for the cylinder dropped with the centre
of gravity upwards, a trailing edge value equal to 0.4L is used for the three smallest
drop angles and a trailing edge value equal to 0.5L is used for the highest drop angles.
Figure 73 shows the total velocity development for cylinders dropped with the centre
of gravity downwards. For this case, a trailing edge position equal to 0.5L, is used
for all drop angles. The drag coefficients for both cases, Cdz and Cdx, are set equal to
1.0 and 0.65. Studying the figures, great similarities between the total velocity from
the simulation and from the experiments were found. A general difference in velocity
at the tank bottom, was however found. According to the velocity found from the
experiments, it looks like the cylinders will reach a constant terminal velocity prior to
reaching five meter depth, but the simulations does not coincide. The simulated veloc-
ity seams to reach the same value as the terminal velocity from the experiments, but
the velocity does not stabilise at this value. It was found that the simulated velocity
decreases to lower velocity before it reached a constant value. This is illustrated in Fig-
ure 74, that shows the velocity development at larger depths for the cylinder dropped
with the centre of gravity downwards. This observation may be as a consequence of a
miss match between the simulated cylinder orientation and the cylinder orientation in
the experiments. It seams like the cylinder orientation takes longer time to stabilise in
the simulations than in the experiments. This will also lead to a smaller bottom impact
angle for the simulations compared to the experiments.
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Figure 72: Comparison between the total veloc-
ity found from the experiments and the numerical
calculations dropped with the centre of gravity up-
wards. The solid lines represent the experiment, and
the dashed lines is the numerical calculations. Equal
colour means equal drop angles. The cylinder is a 10
millimetre diameter equal to Cylinder 1 in Table 6.
Cdz = 1.0, Cdx = 0.65, xT/L = 0.4 for angles
≤ 45◦ and xT/L = 0.5 for angles > 45◦.

Figure 73: Comparison between the total velocity
found from the experiments and the numerical cal-
culations dropped with the centre of gravity down-
wards. The solid lines represent the experiment, and
the dashed lines is the numerical calculations. Equal
colour means equal drop angles. The cylinder is a
10 millimetre diameter equal to Cylinder 1 in Ta-
ble 6. Cdz = 1.0, Cdx = 0.65, xT/L = 0.4 and
xT/L = 0.5.

Figure 74: Stabilisation of the total velocity, comparing the total velocity found from the experiments
and the numerical calculations dropped with the centre of gravity downwards. The solid lines represent
the experiment, and the dashed lines is the numerical calculations. Equal colour means equal drop
angles.
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4.2.3 Cylinder with open ends

Experiments with open ends cylinders have also been performed. Figure 75 and 76
shows the trajectories for a 10 millimetre diameter cylinder dropped with 45 degree
initial angle, were the black lines represents the experiments. The coloured lines shows
the numerical simulations based on the theory for open cylinders presented in Section
2.1.3. The different colours shows the variation in the effective trailing edge position
and drag coefficient. The effect from changing the trailing edge position and the drag
coefficient in z-direction were found similar, as described for the cylinders with closed
ends. The figures illustrate the general trend comparing the simulations and the exper-
iments. As showed in Figure 76, keeping the trailing edge position equal to 0.5L, does
not match very well to the experiments, as the oscillating motion develops at deeper
water depths. If the effective trailing edge position was set equal to 0.4L, it would have
followed the experimental trajectories until the oscillation motion developed. But, in
this case, the oscillations would have developed too early and would have given a
smaller excursion than found from the experiments. So, in general the suggested the-
ory gives a too small radial excursion or a oscillating motion that develops on too deep
water depths.

Figure 75: X-Z-view: Comparison of the numerical
and experimental results for a cylinder with open
ends equal to Cylinder 6 in Table 6, dropped at 45
degree. The numerical calculations are represented
with coloured lines. Each colour represents a ten
present change in the trailing edge position. Cdz =
1.0 and Cdx = 0.65.

Figure 76: X-Z-view: Comparison of the numerical
and experimental results for a cylinder with open
ends equal to Cylinder 6 in Table 6, dropped at 45
degree. The numerical calculations are represented
with coloured lines. Each colour represents a twenty
present change in the Cdz-value. xT/L = 0.5 and
Cdx = 0.65.

A possible explanation for the larger differences between the simulations and exper-
iments for open cylinders, could be that the viscous forces in x-direction are to high.
The friction coefficient used assumes a turbulent axisymmetric flow, both inside and
outside the cylinder. This was found to be reasonable since the flow mainly will be
inside the turbulent range of Reynolds numbers. For an open cylinder, the front area
is smaller than for a closed end cylinder, reducing the triggering of instabilities. It is
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therefore likely that the flow will be less turbulent, specially on the outer side of the
cylinder. Therefore the fiction coefficient suggested by Aanesland (1987) was also in-
vestigated. He assumed a laminar boundary layer flow, using Blasius formula for the
friction coefficient. The viscous forces in the x-direction are expressed as in Equation
43. Assuming these viscous forces, both inside and outside the cylinder, the simulated
trajectories for a 45 degree drop angle becomes as showed in Figure 77, were the tra-
jectories for laminar and turbulent boundary layer flow are compared. As can be seen
from the figure, assuming a laminar boundary layer seems to give a more similar tra-
jectory. The amplitude and the period of the oscillating motions are still to large, but
the excursion to the first turn seams to be more similar.

Fdx = −0.664πD
√

νρ2LU1

√
|U1| −

1
8

ρπCdxD2U1|U1| (43)

Figure 77: X-Z-view: Comparison of the numerical and experimental results for cylinders with open
ends equal to Cylinder 6 in Table 6, dropped at 45 degrees. The numerical calculations are represented
with coloured lines. The colours indicate if it is assumed laminar or turbulent flow in the simulations,
and the position of the trailing edge. Cdz = 1.0 and Cdx = 0.65.

4.3 Error souses and possible improvements to the theory

The numerical theory presented is a two dimensional theory obviously causing that
there will be some three dimensional effects lost compare to the experiments. For in-
stance, as studied by Werle (1979), an asymmetric cross-flow on the cylinder in the
experiment will occur. In the paper, written by Alsos and Faltinsen (n.d.), it is pro-
posed that the motions in the X-Y-plane is a consequence of non-symmetric vortex
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shedding along the length of the cylinder. The effect of the asymmetric cross-flow,
variate the drop angle between 0 and 90 degrees, were found largest between 60 and
70 degree drop angle. The largest excursion in Y-direction was found to be approx-
imately 0.5 meter. In Aanesland (1987) it is also stated that the axial rotation of the
cylinder will create a small lift force normal to the X-Z-plane, this is called the Magnus
effect. This effect is studied by Xiang (2017) and is claimed to have a significant effect
on the motion in X-Y-plane, with greatest impact between 0 and 45 degree drop angel.

Some adjustments to the two dimensional theory implemented, could also be per-
formed. For instance, as performed by Alsos and Faltinsen (n.d.), a varying drag coef-
ficient in z-direction is used. This is based on the effect found by Sarpkaya (1966), that
an impulsive started flow will not have a constant drag coefficient in z-direction, but
the drag coefficient will variate with time (see Figure 22). Another effect neglected in
the simulations is the influence from the tank bottom. When the cylinder moves close
to the bottom, there will be an increase in the added mass that will cause a reduction
in the vertical velocity (Aanesland , 1987).

Some of the differences between the numerical simulations and experimental results
can also be explained by possible error sources in the experiments. For instance, a
Oqus camera system is sensitive to vibrations and a smaller movement or vibration
can possibly affect the calibration of the cameras. The cylinders were also equipped
with a approximately 0.25 millimetre thick reflective marker tape (see Figure 20). The
markers were placed around the cylinder end and on the rear cylinder side. The
marker could possibly lead to an increase in the drag coefficient and may have an
influence on the vortex shedding. To control this influence, some drop experiments
with an additional symmetric and asymmetric drag at the rear cylinder end was per-
formed. From the experiments with an additional asymmetric drag, large variations
for drops with the same initial drop conditions were found, and an essential increase
in the X-Y-plane spreading compared to the initial experiments were also observed.
This indicates that the marker influence on the spreading is likely to be small. Fore
the experiments with an additional symmetric drag, a 16 millimetre diameter circular
plastic disk was placed at the aft cylinder end of a 10 millimetre diameter cylinder.
Slightly smaller excursions, compared to the initial experiments, were found. But, the
fact that the differences in excursions were relatively small, even though the diame-
ter of the disk were considerable larger than the cylinder diameter, indicates that the
marker influence to the drag may be relatively small. During the experiment it was
also a problem that some of the cylinders with closed ends started to leak water. There-
fore the cylinder weights were measured before every drop. However, the measured
weight had a deviation of ±1 gram. A weight variation could therefore have an effect
on the cylinder trajectory.
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5 Conclusions

Slender cylinders falling in still water has been studied both with a numerical two
dimensional theory based on manuvering equations, and by 1:20 model scale experi-
ments in a water tank. The trajectories and velocities were investigated with respect to
the cylinder’s physical parameters (length to diameter ratio, centre of gravity location
and open or closed ends) and the initial drop conditions (drop angle and drop posi-
tion).

Six different types of trajectories were found through the experiments. The results
showed that the centre of gravity location and the initial drop angle were the most
critical factors determining the trajectories. These parameters also had a significant
influence on cylinder velocity, due to their considerable impact on cylinder orienta-
tion. It was found that the maximum cylinder velocity increased with increasing drop
angle. The total cylinder velocity was found lowest when the cylinder had developed
the oscillating motion with a close to horizontal orientation. This showed that the vis-
cous forces were more dominant in the lateral, than in the axial direction.

The effect of the cylinder physical parameters were studied. It was found that an
increase in cylinder diameter made the oscillating motion develop earlier. Hence,
increased cylinder diameter result in reduced radial excursion. The maximum total
velocities were also found to decrease with increasing diameter and occurred at a po-
sition prior to development of the oscillating motion. When the oscillations had devel-
oped, the velocities were found varying around a smaller value at approximately 0.6
m/s. Studying cylinders with displaced centre of gravity, it was experienced that the
degree of displacement had a significant impact on the excursion. Increasing the dis-
placement of the centre of gravity, made the cylinders that dropped with the centre of
gravity upwards turn after a shorter distance and the cylinders with the initial position
of the centre of gravity downwards got a smaller radial excursion. The largest radial
excursions were found for cylinders with the smallest centre of gravity displacement,
displaced by 1.4 centimetre and dropped at 15 degree angle. The largest excursion was
found to be around six meter, one meter longer than the water depth. For the cylin-
ders with displaced centre of gravity, it was also found that they will reach a terminal
velocity and have relatively large bottom impact velocities. For cylinders with open
ends, it was found that an increase in diameter resulted in an earlier development
of the oscillating motion. When comparing open ended cylinders with closed ended
ones, it was found that the oscillations developed earlier for cylinders with open ends.
This again resulted in shorter radial excursions for open ended cylinders.

Comparing the experimental results to DNV’s recommended practice, DNVGL-RP-
F107, longer excursions were experienced in the experiments than when using DNV’s
simplified method for calculations of object excursion. So, for excursions at sea depths
lower than approximately 400 meter, DNV’s method will in several cases not be con-
servative at all. It was found that an angular deviation for longed shaped objects,
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3.4 times higher than DNV’s recommended value, would have provided a better ap-
proach for the cylinders with the largest excursion.

Studying the directional stability of the cylinders, how much the trajectories turn in the
X-Y-plane, the instability was found to increase with diameter for closed ends cylin-
ders. The directional stability was largest for open cylinders and cylinders with dis-
placed centre of gravity.

Results from the experiments were compared to the numerical simulations. Good
agreements were observed, but the similarities were significantly dependent on the
chosen value for the effective trailing edge position, xT, and the drag coefficient in
z-direction, Cdz. Large xT-values was seemingly better for simulations with large ini-
tial angles. The largest deviations between the simulations and the experiments were
found for cylinders with open ends. To explain the differences between the experi-
ments and the simulations, several causes were detected. First of all, the presented
theory is a two dimensional theory and will obviously cause loss of some three di-
mensional effects compared to the experiments. Further, weaknesses in the numerical
theory and possible error sources during the experiments could also be an explana-
tion. Even though some disagreements between the simulations and the experiments
were found, the simple two dimensional method presented provides good indications
for the trajectory and velocity of cylindrical objects falling through the water column.
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6 Further work

For further work there are several effects that could be interesting investigating, both
through experiments and as further development of the numerical calculations.

• The effect of using a non constant transverse drag coefficient as presented by
Alsos and Faltinsen (n.d.) in the two dimensional numerical calculation should
be considered

• Different shapes and more complex shaped objects, which may accidentally fall
into the ocean during offshore operations should be investigated

• The effect of water impact loads, and air cavities during water penetrating should
be studied closer

• The influence changing the drop height would be of interest to study

• The effect of surface waves and current should be studied

• In order to make a proper statistical distribution for expected excursions, it would
be of interest to perform a higher number of cylinder drops during the experi-
ment. Both a higher number and a larger variation in the physical parameters
would be beneficial in this respect.
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A Position plots

A.1 Drop of 10 mm diameter cylinders under the water surface

A.1.1 15◦ initial drop angle

Figure 1: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.

Figure 2: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the X-Y plane
and each coloured line represents a drop.

Figure 3: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.1.2 30◦ initial drop angle

Figure 4: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 5: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 6: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.1.3 45◦ initial drop angle

Figure 7: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 8: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 9: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.

III



A.1.4 60◦ initial drop angle

Figure 10: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 11: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 12: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.1.5 75◦ initial drop angle

Figure 13: X-Y view: Drop of 10 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 14: X-Z view: Drop of 10 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 15: X-Y-Z view: Drop of 10 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.2 Drop of 16 mm diameter cylinders under the water surface

A.2.1 15◦ initial drop angle

Figure 16: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 17: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 18: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.2.2 30◦ initial drop angle

Figure 19: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 20: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 21: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.2.3 45◦ initial drop angle

Figure 22: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 23: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 24: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.
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A.2.4 60◦ initial drop angle

Figure 25: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 26: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 27: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.2.5 75◦ initial drop angle

Figure 28: X-Y view: Drop of 16 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 29: X-Z view: Drop of 16 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 30: X-Y-Z view: Drop of 16 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.3 Drop of 19mm diameter cylinders under the water surface

A.3.1 15◦ initial drop angle

Figure 31: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 15◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 32: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 15◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 33: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 15◦ initial drop angle. Each
coloured line represents a drop.
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A.3.2 30◦ initial drop angle

Figure 34: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 30◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 35: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 30◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 36: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 30◦ initial drop angle. Each
coloured line represents a drop.
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A.3.3 45◦ initial drop angle

Figure 37: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 45◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 38: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 45◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 39: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 45◦ initial drop angle. Each
coloured line represents a drop.
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A.3.4 60◦ initial drop angle

Figure 40: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 60◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 41: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 60◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 42: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial drop angle. Each
coloured line represents a drop.
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A.3.5 75◦ initial drop angle

Figure 43: X-Y view: Drop of 19 mm diameter cylinders
under the water surface at 75◦ initial drop angle. Each
coloured line represent a drop in order.

Figure 44: X-Z view: Drop of 19 mm diameter cylinders
under the water surface at 75◦ initial drop angle. The
X-coordinates are radial coordinates from the XY plane
and each coloured line represents a drop.

Figure 45: X-Y-Z view: Drop of 19 mm diameter cylinders under the water surface at 75◦ initial drop angle. Each
coloured line represents a drop.
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A.4 Drop of 10mm diameter cylinders over the water surface

A.4.1 15◦ initial drop angle

Figure 46: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 47: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 48: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.4.2 30◦ initial drop angle

Figure 49: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 50: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 51: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.4.3 45◦ initial drop angle

Figure 52: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 53: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 54: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.
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A.4.4 60◦ initial drop angle

Figure 55: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 56: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 57: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.4.5 75◦ initial drop angle

Figure 58: X-Y view: Drop of 10mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 59: X-Z view: Drop of 10mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 60: X-Y-Z view: Drop of 10mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.5 Drop of 16 mm diameter cylinders over the water surface

A.5.1 15◦ initial drop angle

Figure 61: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 62: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 63: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.5.2 30◦ initial drop angle

Figure 64: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 65: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 66: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.5.3 45◦ initial drop angle

Figure 67: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 68: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 69: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.
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A.5.4 60◦ initial drop angle

Figure 70: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 71: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 72: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.5.5 75◦ initial drop angle

Figure 73: X-Y view: Drop of 16 mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 74: X-Z view: Drop of 16 mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 75: X-Y-Z view: Drop of 16 mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.6 Drop of 19mm diameter cylinders over the water surface

A.6.1 15◦ initial drop angle

Figure 76: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 15◦ initial angle. Each coloured
line represents a drop.

Figure 77: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 15◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 78: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 15◦ initial angle. Each
coloured line represents a drop.
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A.6.2 30◦ initial drop angle

Figure 79: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 30◦ initial angle. Each coloured
line represents a drop.

Figure 80: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 30◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 81: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 30◦ initial angle. Each
coloured line represents a drop.
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A.6.3 45◦ initial drop angle

Figure 82: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 45◦ initial angle. Each coloured
line represents a drop.

Figure 83: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 45◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 84: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 45◦ initial angle. Each
coloured line represents a drop.
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A.6.4 60◦ initial drop angle

Figure 85: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 60◦ initial angle. Each coloured
line represents a drop.

Figure 86: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 60◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 87: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 60◦ initial angle. Each
coloured line represents a drop.
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A.6.5 75◦ initial drop angle

Figure 88: X-Y view: Drop of 19mm diameter cylinders
over the water surface at 75◦ initial angle. Each coloured
line represents a drop.

Figure 89: X-Z view: Drop of 19mm diameter cylin-
ders over the water surface at 75◦ initial angle. The X-
coordinates are radial coordinates from the XY plane and
each coloured line represents a drop.

Figure 90: X-Y-Z view: Drop of 19mm diameter cylinders over the water surface at 75◦ initial angle. Each
coloured line represents a drop.
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A.7 Drop of open 10 mm cylinders under the water surface

A.7.1 15◦ initial drop angle

Figure 91: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 15◦ initial drop angle.
Each coloured line represents a drop.

Figure 92: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 15◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 93: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 15◦ initial drop angle.
Each coloured line represents a drop.
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A.7.2 30◦ initial drop angle

Figure 94: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.

Figure 95: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 30◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 96: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.

XXXII



A.7.3 45◦ initial drop angle

Figure 97: X-Y view: Drop of open 10mm diameter cylin-
ders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.

Figure 98: X-Z view: Drop of open 10mm diameter cylin-
ders under the water surface at 45◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 99: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.
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A.7.4 60◦ initial drop angle

Figure 100: X-Y view: Drop of open 10mm diameter
cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.

Figure 101: X-Z view: Drop of open 10mm diameter
cylinders under the water surface at 60◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 102: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.
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A.7.5 75◦ initial drop angle

Figure 103: X-Y view: Drop of open 10mm diameter
cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.

Figure 104: X-Z view: Drop of open 10mm diameter
cylinders under the water surface at 75◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 105: X-Y-Z view: Drop of open 10mm diameter cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.
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A.8 Drop of open 19 mm cylinders under the water surface

A.8.1 30◦ initial drop angle

Figure 106: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.

Figure 107: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 30◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 108: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 30◦ initial drop angle.
Each coloured line represents a drop.
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A.8.2 45◦ initial drop angle

Figure 109: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.

Figure 110: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 45◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 111: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 45◦ initial drop angle.
Each coloured line represents a drop.
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A.8.3 60◦ initial drop angle

Figure 112: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.

Figure 113: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 60◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 114: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 60◦ initial drop angle.
Each coloured line represents a drop.
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A.8.4 75◦ initial drop angle

Figure 115: X-Y view: Drop of open 19 mm diameter
cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.

Figure 116: X-Z view: Drop of open 19 mm diameter
cylinders under the water surface at 75◦ initial drop angle.
The X-coordinates are radial coordinates from the XY
plane and each coloured line represents a drop.

Figure 117: X-Y-Z view: Drop of open 19mm diameter cylinders under the water surface at 75◦ initial drop angle.
Each coloured line represents a drop.
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A.9 Drop of 10mm diameter cylinders under the water surface with COG displaced with
1.4cm (COG over COV)

A.9.1 15◦ initial drop angle

Figure 118: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 119: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 120: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.2 30◦ initial drop angle

Figure 121: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 122: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 123: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.3 45◦ initial drop angle

Figure 124: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this
drop.

Figure 125: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line repre-
sents a drop. NB! The fore end of the cylinder has been
tracked for this drop.

Figure 126: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
NB! The fore end of the cylinder has been tracked for this drop.
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A.9.4 60◦ initial drop angle

Figure 127: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 128: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 129: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.9.5 75◦ initial drop angle

Figure 130: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 131: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 132: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.

XLIV



A.10 Drop of 10mm diameter cylinders under the water surface with COG placed with 1.4
cm (COG under COV)

A.10.1 15◦ initial drop angle

Figure 133: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 134: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 15◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 135: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.2 30◦ initial drop angle

Figure 136: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 137: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 30◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 138: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.3 45◦ initial drop angle

Figure 139: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 140: X-Z view: Drop of 10mm diameter cylin-
ders under the water surface at 45◦ initial angle with
COG displaced 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The X-coordinates are radial
coordinates from the XY plane and each coloured line
represents a drop.

Figure 141: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 1.4 cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.4 60◦ initial drop angle

Figure 142: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 143: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 144: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.10.5 75◦ initial drop angle

Figure 145: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 146: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 147: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 1.4cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.11 Drop of 10mm diameter cylinders under the water surface with COG placed with
3cm (COG over COV)

A.11.1 15◦ initial drop angle

Figure 148: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 149: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 150: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.2 30◦ initial drop angle

Figure 151: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 152: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 153: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.3 45◦ initial drop angle

Figure 154: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 155: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 156: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.4 60◦ initial drop angle

Figure 157: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 158: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 159: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.11.5 75◦ initial drop angle

Figure 160: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of
Volume (COV)). Each coloured line represents a drop.

Figure 161: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG dis-
placed 3cm (Centre of Gravity (COG) over Centre of Vol-
ume (COV)). The X-coordinates are radial coordinates
from the XY plane and each coloured line represents a
drop.

Figure 162: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) over Centre of Volume (COV)). Each coloured line represents a drop.
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A.12 Drop of 10mm diameter cylinders under the water surface with COG placed with
3cm (COG under COV)

A.12.1 15◦ initial drop angle

Figure 163: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 164: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 165: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 15◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.2 30◦ initial drop angle

Figure 166: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 167: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 168: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 30◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.3 45◦ initial drop angle

Figure 169: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 170: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 171: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 45◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.4 60◦ initial drop angle

Figure 172: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 173: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 174: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 60◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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A.12.5 75◦ initial drop angle

Figure 175: X-Y view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). Each coloured line represents a drop.

Figure 176: X-Z view: Drop of 10mm diameter cylinders
under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The X-coordinates are radial coordi-
nates from the XY plane and each coloured line represents
a drop.

Figure 177: X-Y-Z view: Drop of 10mm diameter cylinders under the water surface at 75◦ initial angle with COG
displaced 3cm (Centre of Gravity (COG) under Centre of Volume (COV)). Each coloured line represents a drop.
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B Velocity plots

B.1 Velocity of 10 mm cylinder dropped from under the water surface

Figure 178: Total velocity compared to depth for closed 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 179: Total velocity compared to time for closed 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.2 Velocity of 16 mm cylinder dropped from under the water surface

Figure 180: Total velocity compared to depth for closed 16 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 181: Total velocity compared to time for closed 16 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.3 Velocity of 19 mm cylinder dropped from under the water surface

Figure 182: Total velocity compared to depth for closed 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 183: Total velocity compared to time for closed 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.4 Velocity of 10 mm cylinder dropped from above the water surface

Figure 184: Total velocity compared to depth for closed 10 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 185: Total velocity compared to time for closed 10 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.5 Velocity of 16 mm cylinder dropped from above the water surface

Figure 186: Total velocity compared to depth for closed 16 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 187: Total velocity compared to time for closed 16 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.6 Velocity of 19 mm cylinder dropped from above the water surface

Figure 188: Total velocity compared to depth for closed 19 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 189: Total velocity compared to time for closed 19 mm cylinders. The cylinders are dropped above the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.7 Velocity of open 10 mm cylinders dropped from under the water surface

Figure 190: Total velocity compared to depth for open 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.

Figure 191: Total velocity compared to time for open 10 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 15o, 30o, 45o, 60o and 75o. Each plot line represent an example of the total
velocity development.
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B.8 Velocity of open 19 mm cylinders dropped from under the water surface

Figure 192: Total velocity compared to depth for open 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 30o, 45o, 60o and 75o. Each plot line represent an example of the total velocity
development.

Figure 193: Total velocity compared to time for open 19 mm cylinders. The cylinders are dropped under the
surface with initial drop angles of 30o, 45o, 60o and 75o. Each plot line represent an example of the total velocity
development.
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B.9 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
1.4 cm (COG above COV)

Figure 194: Total velocity compared to depth for cylinders with COG displaced 1.4 cm (Centre of Gravity (COG)
over Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o,
45o, 60o and 75o. Each plot line represent an example of the total velocity development.

Figure 195: Total velocity compared to time for cylinders with COG 1.4 (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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B.10 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
1.4 cm (COG under COV)

Figure 196: Total velocity compared to depth for cylinders with COG 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.

Figure 197: Total velocity compared to time for cylinders with COG 1.4 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.
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B.11 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
with 3 cm (COG above COV)

Figure 198: Total velocity compared to depth for cylinders with COG 3 cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.

Figure 199: Total velocity compared to time for cylinders with COG 3 cm (Centre of Gravity (COG) over Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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B.12 Velocity of 10 mm cylinder dropped from under the water surface with COG displaced
with 3 cm (COG under COV)

Figure 200: Total velocity compared to depth for cylinders with COG 3 cm (Centre of Gravity (COG) under
Centre of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o,
60o and 75o. Each plot line represent an example of the total velocity development.

Figure 201: Total velocity compared to time for cylinders with COG 3 cm (Centre of Gravity (COG) under Centre
of Volume (COV)). The cylinders are dropped under the surface with initial drop angles of 15o, 30o, 45o, 60o and
75o. Each plot line represent an example of the total velocity development.
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C Position tables

C.1 Position data for drop of 10, 16 and 19 mm diameter cylinders dropped from under
the water surface

Table 1: Position data for closed 10 mm diameter cylinders with closed ends dropped from under the water surface.
The table shows radial x-position, y-position and z-position with the corresponding standard deviations at the
first and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does
not occur for the drop angles in question.

10 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.73 0.08 1.13 0.06 -0.02 0.04 0.62 0.18
30◦ 2.37 0.35 2.20 0.27 -0.13 0.34 2.22 0.37
45◦ 3.79 0.53 3.63 0.56 -0.14 0.70 3.01 0.30
60◦ 0.04 0.18 1.71 0.13
75◦ -0.01 0.08 0.88 0.09

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.46 0.10 1.72 0.08 -0.01 0.05 0.89 0.19
30◦ 2.14 0.40 2.79 0.24 -0.10 0.36 2.32 0.56
45◦ 3.17 0.37 3.83 0.19 -0.04 0.81 3.67 0.51
60◦ 0.06 0.50 2.79 0.39
75◦ 0.02 0.18 1.49 0.18

Table 2: Position data for 16 mm diameter cylinders with closed ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.Empty cells are due to the fact that the first and second turn does not
occur for the drop angles in question.

16 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.49 0.05 0.98 0.04 -0.03 0.05 0.41 0.13
30◦ 1.61 0.23 1.72 0.18 0.05 0.32 1.57 0.30
45◦ 2.89 0.11 2.93 0.10 -0.05 0.27 2.86 0.09
60◦ -0.33 0.26 1.76 0.21
75◦ 0.05 0.08 0.93 0.03

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.26 0.06 1.53 0.04 -0.05 0.04 0.79 0.17
30◦ 1.33 0.30 2.32 0.12 0.07 0.27 1.51 0.35
45◦ 2.56 0.10 3.56 0.14 -0.05 0.27 2.79 0.12
60◦ -0.73 0.59 2.94 0.45
75◦ 0.16 0.26 1.68 0.04
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Table 3: Position data for 19 mm diameter cylinders with closed ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does not
occur for the drop angles in question.

19 mm cylinder dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.40 0.07 0.88 0.06 -0.02 0.08 0.22 0.12
30◦ 1.47 0.09 1.60 0.07 -0.08 0.15 1.40 0.12
45◦ 2.76 0.16 2.84 0.14 -0.18 0.42 2.68 0.23
60◦ -0.47 0.43 1.63 0.33
75◦ -0.05 0.15 0.99 0.07

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.16 0.12 1.41 0.04 -0.02 0.06 0.35 0.18
30◦ 1.12 0.11 2.18 0.12 -0.10 0.14 1.35 0.19
45◦ 2.36 0.16 3.44 0.15 -0.21 0.29 2.58 0.13
60◦ -0.73 1.08 2.48 0.67
75◦ -0.11 0.46 1.81 0.17
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C.2 Position data for drop of 10, 16 and 19 mm diameter cylinders dropped from over the
water surface

Table 4: Position data for 10 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. Empty cells are due to the fact that the first and second turn does not
occur for the drop angle in question.

10 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.17 0.03 0.44 0.03 0.00 0.03 0.32 0.09
30◦ 0.50 0.07 0.63 0.07 0.00 0.08 0.51 0.17
45◦ 1.24 0.11 1.04 0.08 -0.01 0.08 1.14 0.26
60◦ 2.64 0.20 2.09 0.16 0.22 0.23 2.43 0.34
75◦ -0.32 0.42 2.03 0.14

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.03 0.04 0.98 0.04 -0.02 0.03 0.22 0.12
30◦ 0.23 0.18 1.25 0.06 0.01 0.10 0.70 0.25
45◦ 0.89 0.15 1.64 0.05 -0.04 0.15 1.47 0.28
60◦ 2.36 0.34 2.74 0.07 0.20 0.31 2.64 0.57
75◦ -0.28 0.71 3.21 0.24

Table 5: Position data for 16 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.

16 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.17 0.03 0.38 0.06 0.02 0.04 0.29 0.17
30◦ 0.44 0.05 0.57 0.05 0.01 0.05 0.32 0.22
45◦ 0.97 0.08 0.85 0.07 0.09 0.13 0.54 0.19
60◦ 2.03 0.16 1.64 0.11 -0.13 0.18 1.74 0.15
75◦ 3.65 0.57 4.13 0.31 0.24 0.55 2.23 0.24

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.02 0.08 0.92 0.07 0.05 0.11 0.16 0.29
30◦ 0.16 0.13 1.16 0.07 0.04 0.05 0.34 0.26
45◦ 0.44 0.09 1.62 0.09 0.03 0.08 0.90 0.22
60◦ 1.70 0.57 2.35 0.19 -0.15 0.18 1.66 0.14
75◦ 3.46 0.20 4.55 0.26 0.39 1.16 3.40 0.49
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Table 6: Position data for 19 mm diameter cylinders with closed ends dropped from over the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth.

19 mm cylinder dropped from over the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.15 0.01 0.42 0.01 0.00 0.03 0.22 0.13
30◦ 0.34 0.04 0.51 0.05 -0.06 0.08 0.14 0.19
45◦ 0.90 0.06 0.84 0.07 -0.14 0.29 0.48 0.09
60◦ 1.96 0.35 1.68 0.34 -0.32 0.71 1.58 0.44
75◦ -0.37 0.90 2.22 0.27

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ -0.06 0.03 1.04 0.20 -0.03 0.03 0.04 0.15
30◦ -0.05 0.09 1.14 0.17 -0.08 0.13 0.05 0.20
45◦ 0.45 0.07 1.52 0.07 -0.12 0.16 0.64 0.17
60◦ 1.44 0.46 2.35 0.26 -0.36 0.72 1.54 0.54
75◦ 3.46 0.20 4.55 0.26 -0.43 1.50 2.83 0.47
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C.3 Position data for drop of 10 and 19 mm diameter cylinders with open ends dropped
from under the water surface

Table 7: Position data for 10 mm diameter cylinders with open ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. All empty cells are due to the fact that the cylinder does not have a
second turn at 75◦.

10 mm cylinder with open ends dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.71 0.08 1.01 0.04 -0.10 0.04 0.72 0.10
30◦ 1.85 0.09 1.63 0.05 -0.17 0.19 1.90 0.13
45◦ 2.63 0.10 2.31 0.06 -0.18 0.25 2.35 0.14
60◦ 3.41 0.13 3.41 0.11 -0.06 0.18 2.89 0.13
75◦ 3.70 0.04 4.57 0.05 -0.10 0.08 1.30 0.07

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.55 0.07 1.51 0.06 -0.15 0.08 0.85 0.13
30◦ 1.59 0.11 2.21 0.04 -0.19 0.18 1.91 0.14
45◦ 2.33 0.14 2.90 0.03 -0.22 0.28 2.57 0.17
60◦ 3.09 0.10 4.01 0.13 -0.10 0.25 3.12 0.12
75◦ -0.20 0.24 2.62 0.26

Table 8: Position data for 19 mm diameter cylinders with open ends dropped from under the water surface. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. No measurement exist of for drop angle 15◦, hence the empty cells.

19 mm cylinder with open ends dropped from under the water surface
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦

30◦ 1.29 0.05 1.23 0.02 -0.07 0.04 1.08 0.19
45◦ 1.98 0.04 1.70 0.03 -0.06 0.10 1.44 0.10
60◦ 2.55 0.03 2.43 0.03 -0.09 0.14 1.95 0.08
75◦ 2.67 0.02 3.23 0.03 -0.18 0.19 2.37 0.08

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦

30◦ 0.68 0.16 1.93 0.10 -0.06 0.09 1.20 0.37
45◦ 1.15 0.08 2.51 0.05 -0.07 0.14 1.38 0.10
60◦ 1.62 0.12 3.29 0.07 -0.10 0.19 2.09 0.10
75◦ 1.71 0.12 4.10 0.09 -0.14 0.24 1.79 0.09
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C.4 Position data for drop of 10 mm diameter cylinders with centre of gravity displaced
1.4 cm.

Table 9: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 1.4 cm.
The cylinders is dropped with the initial position of the centre of gravity (COG) over the cylinder volume centre
(COV). The table shows radial x-position, y-position and z-position with the corresponding standard deviations
at the first and second turn, and at 3 and 4 m depth. The empty cells are due to the fact that a second turn does
not occur.

10 mm cylinder with COG displaced 1.4 cm dropped from
under the water surface (COG over COV)

First turn Depth: 3mDrop
angle rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.21 0.10 0.36 0.15 0.04 0.66 -3.01 0.33
30◦ 0.65 0.05 0.57 0.03 -0.25 0.46 -2.10 0.11
45◦ 1.74 0.09 1.29 0.08 0.02 0.26 0.09 0.21
60◦ 2.62 0.21 2.97 0.21 0.03 0.28 2.53 0.17
75◦ 3.04 0.03 4.31 0.05 -0.16 0.05 1.26 0.02

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ -0.27 0.94 -4.35 0.41
30◦ -0.57 0.80 -3.43 0.20
45◦ 0.01 0.54 -1.04 0.24
60◦ -0.13 0.14 1.72 0.46
75◦ -0.31 0.15 2.73 0.06

Table 10: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 1.4 cm.
The cylinders is dropped with the initial position of the centre of gravity (COG) under the cylinder volume centre
(COG). The table shows radial x-position, y-position and z-position with the corresponding standard deviations
at the first and second turn, and at 3 and 4 m depth. The empty cells are due to the lack of turns.

10 mm cylinder with COG displaced 1.4 cm dropped from
under the water surface (COG under COV)
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.22 0.81 3.55 0.16
30◦ -0.18 0.54 2.77 0.14
45◦ -0.07 0.32 1.89 0.06
60◦ -0.15 0.17 1.19 0.08
75◦ -0.05 0.03 0.60 0.03

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.20 1.28 4.65 0.22
30◦ -0.43 1.08 3.79 0.27
45◦ -0.16 0.57 2.59 0.17
60◦ -0.22 0.38 1.70 0.16
75◦ -0.09 0.09 0.98 0.04
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C.5 Position data for drop of 10 mm diameter cylinders with centre of gravity displaced 3
cm.

Table 11: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 3 cm.
The cylinders is dropped with the initial position of the centre of gravity over the cylinder volume centre. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. The empty cells are due to the fact that no second turn occur.

10 mm cylinder with COG displaced 3 cm dropped from
under the water surface (COG over COV)

First turn Depth: 3mDrop
angle rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.07 0.01 0.45 0.01 0.03 0.28 -1.81 0.09
30◦ 0.41 0.01 0.84 0.01 -0.04 0.47 -1.10 0.15
45◦ 1.04 0.02 1.35 0.02 0.25 0.17 0.13 0.30
60◦ 1.66 0.03 2.15 0.05 -0.03 0.11 1.18 0.07
75◦ 2.14 0.00 3.17 0.07 0.25 0.87 1.96 0.44

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.07 0.45 -2.49 0.19
30◦ 0.04 0.50 -1.66 0.14
45◦ 0.41 0.29 -0.71 0.15
60◦ -0.12 0.30 0.65 0.15
75◦ -0.03 0.19 1.80 0.14

Table 12: Position data for 10 mm diameter cylinders with closed ends and the centre of gravity displaced 3 cm.
The cylinders is dropped with the initial position of the centre of gravity under the cylinder volume centre. The
table shows radial x-position, y-position and z-position with the corresponding standard deviations at the first
and second turn, and at 3 and 4 m depth. The empty cells are due to the lack of turns in the trajectory of the
cylinders.

10 mm cylinder with COG displaced 3 cm dropped from
under the water surface (COG under COV)
First turn Depth: 3mDrop

angle rad. x-pos.
[m]

st. dev.
[m]

z-pos.
[m]

st. dev.
[m]

y-pos.
[m]

st. dev.
[m]

rad. x-pos.
[m]

st. dev.
[m]

15◦ 0.23 0.24 2.26 0.09
30◦ 0.20 0.23 1.85 0.05
45◦ -0.03 0.23 1.33 0.08
60◦ 0.07 0.11 0.84 0.07
75◦ 0.01 0.04 0.37 0.05

Second turn Depth: 4m
rad. x-pos.

[m]
st. dev.

[m]
z-pos.

[m]
st. dev.

[m]
y-pos.

[m]
st. dev.

[m]
rad. x-pos.

[m]
st. dev.

[m]
15◦ 0.33 0.33 2.81 0.12
30◦ 0.24 0.34 2.34 0.07
45◦ -0.05 0.36 1.73 0.12
60◦ 0.10 0.17 1.14 0.12
75◦ 0.02 0.10 0.52 0.10
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D Velocity tables

D.1 Velocity tables for drop of 10, 16 and 19 mm diameter cylinders dropped from under
the water surface

Table 13: The average maximal velocity and standard deviation for 10, 16 and 19 mm cylinders with closed ends,
dropped from under the water surface.

Cylinders dropped from under the water surface
10 mm 16 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 0.85 0.02 0.85 0.03 0.79 0.02
30◦ 1.53 0.09 1.33 0.09 1.17 0.03
45◦ 2.17 0.09 1.92 0.07 1.70 0.03
60◦ 2.68 0.07 2.43 0.10 2.43 0.10
75◦ 2.96 0.05 2.60 0.02 2.33 0.03

D.2 Velocity tables for drop of 10, 16 and 19 mm diameter cylinders dropped from over
the water surface

Table 14: The average maximal velocity and standard deviation for 10, 16 and 19 mm cylinders with closed ends,
dropped from over the water surface.

Cylinders dropped from over the water surface
10 mm 16 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.91 0.50 1.56 0.19 0.78 0.03
30◦ 1.51 0.15 1.74 0.35 0.81 0.04
45◦ 1.76 0.30 1.66 0.20 1.22 0.04
60◦ 2.13 0.19 2.09 0.20 1.79 0.07
75◦ 2.88 0.14 2.65 0.09 2.39 0.05

D.3 Velocity tables for drop of 10 and 19 mm diameter cylinders with open ends dropped
from under the water surface

Table 15: The average maximal velocity and standard deviation for 10 and 19 mm cylinders with open ends,
dropped from under the water surface.

Cylinders with open ends dropped from under the water surface
10 mm 19 mmDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.05 0.05
30◦ 1.68 0.05 1.66 0.03
45◦ 2.35 0.07 2.32 0.04
60◦ 2.87 0.06 2.89 0.02
75◦ 3.29 0.05 3.30 0.02
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D.4 Velocity tables for drop of 10 mm diameter cylinders with centre of gravity displaced
1.4 cm

Table 16: The average maximal velocity and standard deviation for 10 mm cylinders with closed ends and the
centre of gravity displaced 1.4 cm, dropped from under the water surface. The cylinders is dropped with the initial
position of the centre of gravity (COG) over and under the cylinder volume centre (COV).

Cylinders with COG displaced 1.4 cm dropped from under the water surface
COG over COV COG under COVDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 1.88 0.20 2.03 0.10
30◦ 1.94 0.11 2.33 0.15
45◦ 2.11 0.05 2.75 0.13
60◦ 2.39 0.04 2.98 0.04
75◦ 2.88 0.03 3.08 0.05

D.5 Velocity tables for drop of 10 mm diameter cylinders with centre of gravity displaced
3 cm

Table 17: The average maximal velocity and standard deviation for 10 mm cylinders with closed ends and the
centre of gravity (COG) displaced 3 cm, dropped from under the water surface. The cylinders is dropped with
the initial position of COG over and under the cylinder volume centre (COV).

Cylinders with COG displaced 3 cm dropped from under the water surface
COG over COV COG under COVDrop

angle Average max. vel.
[m/s]

std. dev.
[m/s]

Average max. vel.
[m/s]

std. dev.
[m/s]

15◦ 2.94 0.18 3.20 0.09
30◦ 3.04 0.12 3.22 0.05
45◦ 3.03 0.07 3.27 0.11
60◦ 3.06 0.13 3.33 0.10
75◦ 2.82 0.09 3.47 0.09
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