

Humberto Nicolás Castejón,
Gregor von Bochmann and Rolv Bræk

Investigating the Realizability of
Collaboration-based Service
Specifications

Avantel Technical Report

DEPARTMENT OF TELEMATICS, NTNU
ISSN 1503-4097

NTNU
Norwegian University of Department of Telematics
Science and Technology

AVANTEL TECHNICAL REPORT
3/2007

ISSN-no:
1503-4097

TITLE

DATE

Investigating the Realizability of Collaboration-based
Service Specifications

2007-09-01

 NO. OF PAGES/APPENDICES
87

AUTHOR(S)

Humberto Nicolás Castejón, Gregor von Bochmann and Rolv Bræk

ABSTRACT

This report is concerned with compositional specification of services using UML 2 collaborations,
activity and interaction diagrams. It provides formal syntax and semantics for so-called choreography
graphs, used to describe the complete behavior of composite collaborations. It then addresses the
problem of realizability: given a global specification, can we construct a set of communicating state
machines whose joint behavior is precisely the specified one? We approach the problem by looking at
how collaboration behaviors may be composed using UML activity diagrams-based choreographies.
We classify realizability problems from the point of view of each composition operator, and discuss
their nature and possible solutions. This brings a new look at already known problems. We show that
given some conditions, some problems can already be detected at an abstract collaboration level,
without needing to look into detailed interactions. We present algorithms to detect some of the
discussed problems.

KEYWORDS
Service engineering, service-oriented development, model-driven development, UML 2 collaborations,
choreography, realizability, race conditions

-

1 Introduction

For several decades now it has been common practice to specify and design reactive
systems in terms of loosely coupled components modeled as communicating state
machines [Boc78, Bræ79], using languages such as SDL [IT00] and UML [OMG07].
This has helped to substantially improve quality and modularity, mainly by provid-
ing means to define complex, reactive behavior precisely in a way that is understand-
able to humans and suitable for formal analysis as well as automatic generation of
executable code.

However, there is a fundamental problem. In many cases, application/service
behavior is not performed by a single component, but by several collaborating com-
ponents. This is referred to as the “crosscutting” nature of services by different au-
thors [RGG01, FK01, KM03]. Often each component takes part in several different
services, so in general, the behavior of services is composed from partial component
behaviors, while component behaviors are composed from partial service behaviors.
By structuring according to components, the behavior of each individual component
can be defined precisely and completely, while the behavior of a service is frag-
mented. In order to model the global behavior of a service more explicitly one needs
an orthogonal view where the collaborative behavior is in focus. Interaction se-
quences such as MSC [IT99], and UML Sequence diagrams [OMG07] are commonly
used for this purpose, but normally only to describe typical/important use cases
and not complete behaviors. Normally when using interaction sequences, it is very
cumbersome to define all the intended scenarios. In addition, there are problems
related to the realizability of interaction scenarios, i.e. finding a set of local compo-
nent behaviors whose joint execution leads precisely to the global behavior specified
in the scenarios. The realizability of MSC-based specifications has been extensively
studied by different authors (e.g. [AEY00, UKM04, AEY05, BS05]). Conditions
for realizability have been proposed for HMSCs [HJ00] and Compositional MSCs
[MRW06], as well as restricted classes of HMSCs that are known to be always real-
izable [GMSZ06]. Some authors have studied pathologies in HMSCs [BAL97, Hél01]
that prevent their realization. Other authors have considered realizability notions
that allow additional message contents [BM03, GMSZ06].

A promising step forward is to adopt a collaboration-oriented approach, where
the main structuring units are collaborations. This is made practically possible by
the new UML 2 collaboration concept [OMG07]. The underlying ideas, however,
date back to before the UML era [RAB+92, RWL96]. Collaborations model the
concept of a service very nicely. They define a structure of partial object behaviors,
called roles, and enable a precise definition of the service behavior using interaction
diagrams, activity diagrams and state machines as explained in [SCKB05, CB06a,
CB06b]. They also provide a way to compose services by means of collaboration
uses and to bind roles to components. In this way, UML 2 collaborations directly
support (crosscutting) service modeling and service composition. As we shall see
in the following, this opens many interesting opportunities. Figure 1 illustrates the
main models involved in the collaboration oriented approach being discussed in the
following:

2 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

C 1 C 2 C 3 C 4

Collaboration-oriented
Service Models

Design synthesis

Code generation

S1.1 S1.2

Service2

Service1

Service3

State Machine-based
Design Models

Implementation

Figure 1: Collaboration oriented development

• Service models are used to formally specify and document services. Collabora-
tions provide a structural framework for these models that can embody both
the role behaviors and the interactions between the roles needed to fulfill the
service.

• Design models are used to formally specify and document system structure
and components realizing the services. They are expressed in terms of com-
municating state machines, using UML 2 active objects. Each of these will
realize one or more collaboration roles.

• Implementations are executable code automatically generated from the design
models.

This paper is concerned with the crucial first steps of expressing service models
using UML 2 collaborations and deriving well-formed design models expressed as
communicating state machines. The ensuing steps from design component models
to implementations and dynamic deployment on service platforms can be solved in
different ways, see for instance [San00, BM05], and are not discussed further here.

An important property of collaborations is that it is possible and convenient to
compose/decompose collaborations structurally into sub-collaborations, by means
of collaboration uses. These refer to separately defined collaborations and provide
a mechanism for collaboration reuse. In order to define the behavior of collabo-
rations, we have found it useful to distinguish between the behavior of composite
collaborations and elementary collaborations (collaborations that are not further de-
composed into sub-collaborations). The elementary collaborations that result from

3

the decomposition process are often quite simple, reusable and possible to define
completely using interaction sequences. Binary collaborations can in many cases be
associated with interfaces and their sub-collaborations with features of the interface.
The question then is how to define the overall behavior of composite collaborations
in terms of sub-collaboration behaviors? In the web service domain this kind of be-
havior is called “choreography” [Erl05], a term we will use in the following. Several
notations may be used to define the choreography of sub-collaborations (i.e. their
global execution ordering). We have found UML 2 Activity diagrams a good can-
didate, as they provide many of the composition operators needed for the purpose.
While HMSCs normally describe collection of scenarios, and therefore represent in-
complete and existential behavior, our choreographies describe the exact behavior
of a service according to the service designer’s intentions (i.e. the service should
behave exactly as described, no other behaviors are allowed). The local behavior for
a given component of the choreography can be obtained by applying the ordering
defined by the choreography’s activity diagram to the role behaviors bound to the
component in question.

We say that a choreography is directly realizable if the joint execution of the
local behaviors of all components leads precisely to the global behavior specified by
the choreography. Note that some choreographies that are not directly realizable
may still be realized by adding extra coordination messages or additional data in
messages. We consider these measures as solutions to realization problems, which
could be adopted by the designer depending on the context and service domain. Note
also that the realizability of a choreography depends not only on the ordering defined
by the activity diagram of the choreography, but also on the characteristics of the
underlying communication service used for the transmission of messages. Important
characteristics of the communication service are the type of transmission channels,
and the type and number of input buffers of each component. We assume there is
no message loss, and distinguish between channels with out-of-order delivery (i.e.
messages sent from a given source to a given destination may be received in a different
order than they were sent) and channels with in-order delivery. Components may
have either a single input FIFO buffer (i.e. one buffer for all received messages) or
separate input FIFO buffers (i.e. one buffer for messages received from each different
peer).

In the rest of the paper we study the direct realizability of a choreography from
the point of view of the operators used to compose the sub-collaborations. In our
discussion we assume that each sub-collaboration of a choreography is directly re-
alizable. Then, for each composition operator (i.e. sequential, alternative, parallel,
interruption) we study the problems that can lead to difficulties of realization. We
investigate the actual nature of these problems and discuss possible solutions to
prevent or remedy them.

1.1 Outline

The paper is structured as follows. In Section 2 the proposed service modeling
approach is illustrated with help of an example, and the syntax and semantics of

4 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

choreographies is presented in Section 3. The problem of realizability of choreogra-
phies is discussed in Section 4. Section 5 presents a set of algorithms to detect some
of the realizability problems discussed in the previous section. We finally conclude
with Section 6.

2 Service Specification Approach: An Example

We exemplify our service specification approach by means of a simple shuttle ser-
vice (inspired by a case study from [UKM04]) in which one vehicle transports one
passenger at a time between two terminals. Figure 2 depicts this service as a UML
2.0 collaboration. This collaboration identifies three roles, namely P (Passenger),
T (Terminal) and V (Vehicle); as well as seven sub-collaborations representing in-
terfaces and features of the service. These sub-collaborations are specified as UML
collaboration-uses, whose roles are bound to the ShuttleService’s roles (e.g. BuyT-
icket ’s role Tbt is bound to ShuttleService’s role T). For the sake of clarity, in the
following we will refer to P, T and V as service-roles, and to Tbt,Td and the like as
sub-roles (of T, P or V). The ShuttleService’s sub-collaborations have been identi-
fied from the following service requirements. In order to travel, a passenger must
buy a ticket at one of the terminals (collaboration-use BuyTicket). When this hap-
pens, if the vehicle is waiting at the terminal, the departure gate is indicated, and
the passenger can enter the vehicle (EnterVehicle). The terminal then dispatches
the vehicle (VehDeparture) and, after arriving at the second terminal (VehArrival),
the passenger disembarks (ExitVehicle). If the vehicle is not at the terminal where
the passenger buys the ticket, that terminal requests the vehicle from the other ter-
minal (ReqVehicle), which dispatches the vehicle towards the requesting terminal.
When the vehicle arrives, the departure gate is displayed and the service continues
as explained before.

The complete and exact behavior of each elementary sub-collaboration is de-
scribed by means of sequence diagrams. Figure 3 shows the sequence diagrams
describing BuyTicket, VehDeparture and VehArrival.

What remains is to specify the overall cross-cutting behavior of the ShuttleSer-
vice collaboration, that is, the choreography describing how its sub-collaborations
are ordered and interact. We use UML 2 activity diagrams to describe the chore-
ography of collaborations. They capture the liveness aspects of composite service
collaborations by describing the execution order of their sub-collaborations. The
choreography for ShuttleService is depicted in Fig. 4. Note that we have annotated
each activity with a pictorial representation of the collaboration-use the activity
refers to.

3 Syntax and Semantics of Choreographies

A choreography graph specifies the full behavior of a composite collaboration by
defining the global execution ordering of its sub-collaborations. We consider here
choreography graphs represented by means of UML activity diagrams, and assume
that the sub-collaborations referred to by the choreography are elementary collab-

5

:P

:V

Pev

Vev Vd

Td

Pexv

Vexv

Ta

Va

ShuttleService

Pbt

Tbt

TreqedTreqer

:BuyTicket

:EnterVehicle

:ExitVehicle

:VehArrival

:VehDeparture

0..1

1 :T[2]

:ReqVehicle

Figure 2: UML collaboration for the ShuttleService

sd VehDeparture

departureReq

setDestination

:Td :Vd

{vehicleLeft}

arriveReq

arrived

alert100

arriveAck

:Ta :Va

{vehicleArrived}

sd VehArrival

departureAck

sd BuyTicket

displayGate

buyTicket

:Pbt :Tbt

{tickectBought}

{tickectReqed}

Figure 3: Sequence diagrams describing some elementary collaborations of Shuttle-
Service

orations whose behavior is described by means of UML sequence diagrams. In the
following we describe the syntax and semantics of choreography graphs. Before that
we describe the syntax and semantics of sequence diagrams.

3.1 Syntax and Semantics for Sequence

Diagrams

We consider here a restricted version of UML 2 sequence diagrams, which we use to
specify the behavior of elementary collaborations. We used the syntax proposed in
the UML standard, but provide a semantics based on partially ordered sets (posets).
In the following we define and provide a semantics to basic sequence diagrams.
Thereafter, we focus on composite sequence diagrams.

6 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

vehicleReqed

vehicleLeft

vehicleArrived

ticketBought

passengerEntered

vehicleArrived

passengerLeft

vehicleLeft

ticketReqed

[T1.vehAtTerminal=false]

[T1.vehAtTerminal=true]

Pbt
Tbt

b:BuyTicketP:P T1:T

P:P V:V
Pev

Vev
ev:EnterVehicle

VdTd

vd2:VehDepartureT1:T V:V

T2:TV:V
Va Ta

va2:VehArrival

V:VP:P
Pexv Vexv

exv:ExitVehicle

T2:TT1:T
Treqer Treqed

r:ReqVehicle

T2:TV:V
Vd Td

vd1:VehDeparture

T1:TV:V
Va Ta

va1:VehArrival

Figure 4: Choreography of ShuttleService

Definition 3.1 (Basic Sequence Diagram). A basic sequence diagram defines a
labeled directed acyclic graph that can be described by a tuple bSD = (E,<e,<m,
P,M ,Σ, loc, lbl,rcv,snd), where:

• E = S∪R∪Φ is a set of events partitioned into sending events (S), receiving
events (R) and predicate events (Φ)

• P is a set of lifelines

• M is a set of messages

• Σ = Σc ∪Σp is a set of communication actions (Σc) and predicates (Σp). El-
ements of Σc are of the form 〈!m, p,q〉 or 〈?m, p,q〉, with p,q ∈P,m ∈M .
We read 〈!m, p,q〉 as “p sends message m to q”, and 〈?m, p,q〉 as “p receives
message m from q”

• loc : E→P is a mapping that associates each event with a lifeline

• lbl : E → Σc∪Σp is a labeling function associating each event with a commu-
nicating action or a predicate

7

R1 R2

sd Example2

e6

a b

dc

e1

e5

e7

e4

e3e2

e8

(a) (b)

R1

a

R2

sd Example4

c

R3

e2

e6 e5

e4 e3

e1

b

paralt

R1

a

R2

sd Example3

c

R3

e1

e6 e5

e4e3

e2

b

(c) (d)

R1

a

R2

sd Example1

b

c

R3

e1

e5 e6

e4e3

e2

(e)

R1

a

R2

sd Example5

b

c

R3

e1

e4 e3

e6e5

e2

Figure 5: Some basic sequence diagrams (with conflicts)

• rcv : S→ R and snd : R→ S are bijective functions that respectively match each
sending event with its corresponding receiving event, and each receiving event
with its corresponding sending event. We have snd ≡ rcv−1

• <e⊆ E×E is an acyclic relation between events, called the visual order, that
satisfies:

<e= (
⋃

p∈P
<p)∪{(s,rcv(s)) : s ∈ S}, where for each p ∈P,<p is a total order

(i.e. an antisymmetric, transitive and total binary relation) on Ep = {e ∈ E :
loc(e) = p} (i.e. events on a lifeline are totally ordered)

• <m⊆ S× S is a total order on sending events, called the message order. To
construct <m we imagine a vertical line L aligned with the sequence diagram
and project each sending event on L. We say s1 <m s2 if s1 is located on L
higher than s2. To ensure that <m is a total order, two sending events cannot
be drawn on the same imaginary horizontal line.

For any sequence diagram we require the following property:

Property 3.1.1 (Non-crossing messages). Messages do not graphically cross
each other. That is:

(i) Messages exchanged between different lifelines are represented by horizontal
arrows.

(ii) Messages sent by a lifeline p ∈P to itself (self-receiving messages) satisfy this
condition: ∀e1 = 〈!m, p, p〉 ,e2 = rcv(e1), 6 ∃e such that e1 <p e <p e2

1.

In this property, condition (i) is required to avoid cycles that could lead to
causal relations where a sending message is indirectly dependent on its receiving
event. Condition (ii) is required because, in general, a specification with an order
〈!m, p, p〉 <p e1 <p . . .en <p rcv(〈!m, p, p〉) is not directly realizable. As an example
consider the diagram in Fig. 5(a). Here R1 first sends message a to itself and before
receiving it, it sends message b to R2. This specification does not satisfy condition
(ii) in Property 3.1.1, since we have e1 = 〈!a,R1,R1〉<p e2 <p e4 = 〈?a,R1,R1〉. It is
easy to see that, in general1, this order cannot be guaranteed by any directly realized

1This order can only be guaranteed if the design is such that the two sending events e1 and e2
are performed in an atomic transition.

8 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

system, since the reception of message a cannot be controlled, and may therefore
happen before the sending of message b. In the lower part of the diagram a similar
situation happens between messages c and d.

Both the visual order (<e) and the message order (<m) can be obtained form
the graphical representation of the sequence diagram. The visual order captures the
order of events on each lifeline, as well as the order induced by message transmissions.
The message order captures the vertical order of messages. For example, in Fig.
5(b) the visual order is <e= {(e1,e5),(e2,e3),(e4,e6),(e1,e2), (e3,e4),(e5,e6)}, while
the message order is <m= {(e1,e3),(e3,e5),(e1,e5)}, which indirectly describes the
vertical order between messages a, b and c.

The ordering of events dictated by the visual order does not necessarily reflect the
semantics of the sequence diagram. The visual order may impose ordering between
events that cannot be guaranteed in a directly realized system. To describe the
semantics of sequence diagrams we use a weaker partial order, called the causal
partial order (or causal poset), which only orders two events if they necessarily
happen in that order in any execution of the directly realized system. The causal
order takes into account the particularities of the communication architecture to be
used in the realized system, in particular whether channels with out-of-order delivery
or channels with in-order delivery are to be used.

Definition 3.2. A causal order for channels with out-of-order (or non-
fifo) delivery (≺nf) is the reflexive-transitive closure of the immediate precedence
relation <nf (i.e. ≺nf= (<nf)∗), where e <nf e′ if any of the following holds:

• e ∈ S∧ rcv(e) = e′ (i.e. e’ is the receiving event associated to the sending event
e)

• e′ ∈ S∪Φ∧ e <p e′, for p ∈P (i.e. e′ is a sending event, or a predicate event,
and e is a visual predecessor of e′ on the same lifeline)

The above definition reflects that in a channel with out-of-order delivery, the
order in which messages are received (at a certain input buffer) may not be the
same as the order in which message were sent (i.e. messages may overtake each
other on the channel). With out-of-order delivery channels, only two classes of
event orderings can be guaranteed. First, a receiving event will always happen after
its sending event. Second, a system component may always control when to perform
a sending event. This means that a sending event s will always happen after any
other events that precede s on the same lifeline have been performed.

Definition 3.3. A causal order for channels with in-order (or fifo) delivery
(≺f) is the reflexive-transitive closure of the immediate precedence relation <f (i.e.
≺f= (<f)∗), where e <f e′ if one of the following holds:

• e <nf e′ (i.e. e is an immediate predecessor of e′ under out-of-order semantics)

• e,e′ ∈R∧e <p e′∧snd(e) <q snd(e′), for p,q∈P (i.e. messages cannot overtake
each other on the channel, so any two messages sent by a system component
to another will arrive in the correct order)

9

We can now define two semantic functions that assign a Σ-labeled causal poset
to a basic sequence diagram.

Definition 3.4. The semantics of a basic sequence diagram bSD = (E,<v,<m,P,M ,Σ,
loc, lbl,rcv,snd) can be described with a semantic function [[]]xbSD, with x ∈ {nf, f},
such that

• [[bSD]]nf
bSD = (E,≺nf, lbl), in the presence of out-of-order delivery channels

• [[bSD]]fbSD = (E,≺f, lbl), in the presence of in-order delivery channels.

In general, when the specific type of channel is not important for the discussion,
we will use [[]]bSD as a generic semantic function for basic sequence diagrams.

Basic sequence diagrams can be composed to obtain more complex behaviors. In
UML 2 this is possible by means of interaction operators. We consider four opera-
tors: seq (for weak sequential composition), alt (for alternative composition), par
(for parallel composition) and loop (for iterative composition). The weak sequential
composition of two sequence diagrams consists in their lifeline-by-lifeline concatena-
tion, such that for each instance, the events of the first diagram precede the events
of the second diagram. Events on different lifelines are interleaved. In the parallel
composition of two sequence diagrams their events are interleaved. The alternative
composition of two sequence diagrams describes a choice between them, such that
in any run of the system events will be ordered according to only one of the dia-
grams. That is, alternative composition introduces alternative orderings of events.
The semantics of an alternative composition of basic sequence diagrams is therefore
defined by a set of posets. The iterative composition of a sequence diagram can be
seen as the weak sequential composition of a number of instances of that sequence
diagram.

The syntax of a composite sequence diagram (SD) is defined by the following
BNF-grammar:

SD
de f
= bSD | (SD1 seqSD2) | (SD1 altSD2) | (SD1 parSD2) | loop(min,max) SD1

We describe the semantics of a composite sequence diagram by means of a set of
causal posets (one for each possible alternative behavior described by the sequence
diagram). As we did for basic sequence diagrams, we consider two semantic func-
tion [[]]nf

SD and [[]]fSD that assign a set of Σ-labeled posets to a composite sequence
diagram.

We introduce now two operations on posets that we need for the definition of
[[]]xSD, with x∈ {nf, f}. The first one is weak sequencing of two Σ-labeled posets (over
P,M), which results in a new Σ-labeled poset where, for each lifeline, the events
of the first poset precede the events of the second poset. The second operation is
concurrence of two Σ-labeled posets, which results in a new poset with interleaved
events.

10 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Definition 3.5 (Weak sequencing). Let p1 = (E1,≺1, lbl1) and p2 = (E2,≺2, lbl2)
be two Σ-labeled posets (over P,M) with disjoint sets of events2. Their weak
sequencing, p1 ◦w p2, is a new Σ-labeled poset defined as p1 ◦w p2 = (E1∪E2,≺1◦w2,
lbl1∪ lbl2), where ≺1◦w2= (≺1 ∪ ≺2 ∪{(e1,e2) ∈ E1×E2 : loc(e1) = loc(e2)})∗.

Definition 3.6 (Concurrence). Let p1 = (E1,≺1, lbl1) and p2 = (E2,≺2, lbl2) be
two Σ-labeled posets (over P,M) with disjoint sets of events2. Their parallel com-
position, p1 ‖ p2, is a new Σ-labeled poset defined as p1 ‖ p2 = (E1 ∪E2,≺1 ∪ ≺2,
lbl1∪ lbl2).

Now we can define the semantics of a composite sequence diagram, along the
lines in [KL98], as follows:

Definition 3.7. The semantics of a composite sequence diagram SD can be de-
scribed with a semantic function [[]]xSD, with x ∈ {nf, f}, such that

[[bSD]]xSD
de f
= {[[bSD]]xbSD}

[[SD1 seqSD2]]xSD
de f
= {p1 ◦w p2 : p1 ∈ [[SD1]]xSD, p2 ∈ [[SD2]]xSD}

[[SD1 parSD2]]xSD
de f
= {p1 ‖ p2 : p1 ∈ [[SD1]]xSD, p2 ∈ [[SD2]]xSD}

[[SD1 altSD2]]xSD
de f
= [[SD1]]xSD

⋃
[[SD2]]xSD

[[loop(min,max) SD]]xSD
de f
=

⋃
min≤i≤max

[[∆i.SD]]xSD

where

∆0.SD
de f
= {(/0, /0, /0)}

∆n.SD
de f
= SDseq∆n−1.SD,n > 0

In general, when the specific type of channel is not important for the discussion,
we will use [[]]SD as a generic semantic function for sequence diagrams.

For the analysis of sequence diagrams it is useful to distinguish their initiating
and terminating events. For a sequence diagram SD, we denote its multi-set of
initiating events as init(SD) = {min(ps) : ps ∈ [[SD]]SD}, where min(ps) = {e ∈ E :
6 ∃e′ ∈ E,e′ ≺ e} is the set of minimum events (i.e. events non-causally dependent
on other events) of the Σ-labeled poset ps. The initiating events of SD will be the
minimum sending events for each possible alternative described by the sequence di-
agram. Similarly, we denote multi-set of terminating events for a sequence diagram
SD as term(SD) = {max(ps) : ps ∈ [[SD]]SD}, where max(ps) = {e ∈ E :6 ∃e′ ∈ E,e≺ e′}
is the set of maximum events (i.e. events that do not precede any other events)

2If they are not disjoint, they are renamed

11

of the Σ-labeled poset ps. The terminating events of SD will be the maximum re-
ceiving events for each possible alternative described by the sequence diagram. Fi-
nally, we denote the multi-set of terminating sending events of SD as termsnd(SD) =
{maxsnd(ps) : ps ∈ [[SD]]SD}, where maxsnd(ps) = {s ∈ S :6 ∃s′ ∈ S,s ≺ s′} is the set of
maximum sending events (i.e. sending events that do not precede any other sending
events, just receiving events) of the Σ-labeled poset ps. The terminating sending
events of SD will be the maximum sending events for each possible alternative de-
scribed by the sequence diagram.

3.2 Syntax and Semantics for Choreography

Graphs

We present now the syntax and semantics for choreography graphs.

3.2.1 Choreography Syntax

Each of the activities in the activity diagram of a choreography can be seen as a
phase in the execution of a service collaboration C. In each phase or activity, a
specific sub-collaboration of C is active (so-called activity’s active collaboration).
This is represented by adorning the activity with a collaboration-use, whose roles
are bound to instances of C ’s roles. For example, in Fig. 4, the BuyTicket collabora-
tion is active in the first activity. This is expressed by adorning that activity with a
b:BuyTicket collaboration-use, whose roles (i.e. Pbt and Tbt) are bound to instances
of ShuttleService’s roles (i.e. P:P and T1:T). The solid circles and bars beside
the roles are respectively used to identify the role that initiate and terminate each
collaboration. Each activity has one input pin representing the starting execution
point of the activity’s active collaboration, and one or more output pins representing
alternative end-of-execution points of the active collaboration. These pins are rep-
resented as small empty rectangles attached to the boundary of the activity node.
If several alternative end-of-execution pins exists, each of them is surrounded by an
additional rectangle (see Fig. 12 on page 32 for an example). Activities may have
additional output pins, describing execution points where the active collaboration is
suspended to invoke another collaboration, as well as additional input pins, describ-
ing execution points at which a previously suspended active collaboration is to be
resumed. Pins used for invoking and resuming an activity’s active collaboration are
represented as small rectangles with an arrow inside. Both input and output pins
represent execution points at which an activity’s active collaboration interact with
other collaborations. They are labeled with predicates describing goals of the active
collaboration.

Edges (i.e. directed connections between activities) and control-flow nodes (i.e.
decision, merge, fork, join, initial and final nodes) are respectively used to allow
and coordinate the flow of control among activities. An activity can only have one
incoming edge, so multiple incoming edges must be AND- or OR-joined.

12 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

According to the concrete syntax just described, the formal syntax of goal se-
quences can be defined as follows:

Definition 3.8 (Choreography). A choreography of the sub-collaborations of a
collaboration C is a directed graph defined by the tuple CH = (V,E ,Rint,↘ch,ge,
mexp−a,RCH,AC,ma−ac,mp−a, pin, lpred, ptype) where

1. V is a set of nodes. It is partitioned into an initial node (v0) and sub-sets
of activities (VA), input pins (VInP), output pins (VOutP), control flow nodes
(VFLOW), accept event actions (VEA) and final nodes (VFI). In turn, VFLOW is
partitioned into decision (VD), merge (VM), fork (VF) and join (VJ) nodes.

2. E ⊆ (VOutP ∪VFLOW ∪VEA ∪{v0})× (VA ∪VInP ∪VFI ∪VEA ∪VFLOW) is a set of
directed edges between nodes, which is partitioned into normal edges (En) and
interrupting edges (Eint).

3. Rint is a set of interruptible regions (i.e. regions containing nodes that can be
interrupted).

4. ↘ch⊆Rint×(Rint∪V) is a hierarchy relation among interruptible regions and
nodes. We write reg↘ x if x is a node or an interruptible region that is directly
contained by the interruptible region reg .

5. ge is a guard function for edges. It is defined from En into boolean expressions.

6. RCH = {(id, type) : type ∈ RC} is a set of role instances, with RC being the set
of roles of collaboration C.

7. AC is a set of active collaborations, that is, a collaboration-use representing a
specific occurrence of one of C’s sub-collaborations. For each (id, type,B) ∈
AC, id is the name of the collaboration-use; type is the name of the col-
laboration that actually describes the collaboration-use (i.e. one of C’s sub-
collaborations); and B⊆ Rtype×RCH is a set of role bindings, where Rtype is the
set of roles of the sub-collaboration named type.

8. ma−ac : VA→ AC is a non-injective function that maps active collaborations to
activities.

9. mp−a : VInP∪VOutP→VA is a function mapping input and output pins to activ-
ities, and pin : VA→P(VInP∪VOutP) is a function that returns the set of pins
attached to a given activity.

10. lpred : VInP∪VOutP→ Pre is an injective function labeling each input and output
pin of an activity with a state predicate of the activity’s active collaboration.

11. ptype :VInP∪VOutP→{START ,END ,INVOCATION ,RESUMPTION } is a func-
tion that classifies pins as either starting, end-of-execution, invocation or re-
sumption ones.

13

3.2.2 Choreography Semantics

The semantics of a choreography can be intuitively understood in terms of a token-
game. At a high level of abstraction, when an activity receives an input token, its
active collaboration is enabled. If the token is received on the activity’s starting
input pin, the active collaboration can begin execution from its initial state. Other-
wise, if the token is received through a resuming input pin, the active collaboration
can resume execution from the state represented by the event-goal labeling the pin.
The active collaboration in reality begins or resumes its execution when one of its
roles takes the appropriate initiative. Thereafter, it evolves until an interaction
point with other collaborations is eventually reached. That is, the active collab-
oration runs until the predicate of one of its activity’s output pins holds. When
this happens, the control token is passed on to the next activity or control node.
According to this semantics, the intended behavior of the ShuttleService collabora-
tion, as specified by its choreography (see Fig. 4), closely reflects the requirements.
Initially the BuyTicket collaboration is started and thereafter suspended after the
ticket is requested. At that point, a check is performed to determine if the vehicle
is at the terminal (i.e. at T1). If the result is positive, BuyTicket is finished and
EnterVehicle is enabled, followed by VehDeparture, VehArrival and ExitVehicle. If
the vehicle was not at T1, this role initiates ReqVehicle to request the vehicle from
T2. VehDeparture is then executed, followed by VehArrival, which allows BuyTicket
to be resumed. Thereafter the service progresses as explained before.

The above high-level semantics, which describes the intended behavior of a ser-
vice collaboration from the point of view of the service designer, was formalized in
[CB06b]. This semantics abstract away from individual roles, and implicitly consid-
ers that the sequencing between collaborations is strong. That is, when a collabora-
tion passes the control token to the next collaboration through an end-of-execution
pin, the behavior of the former collaborations is assumed to be completely finished,
for all its participating roles. In the present work we consider a weak sequencing
semantics, since it better reflects the actual behavior. Instead of assuming only one
control token, we may think that there is one specific token for each role instance
appearing in the choreography graph. In order to perform a sending or receiving
event, a role needs its token. As soon as a role is finished with its participation on
an activity’s active collaboration, its token can be sent out to the next activity and
the role can start participating in the active collaboration of the new activity. This
means that, at any point in time, the execution of two active collaborations may
partially overlap. This behavior can be described with a Petri net. However, we
will not use Petri nets to formalize the semantics of choreography graphs. Instead
we will use partial orders, as we did for sequence diagrams. We note that runs of a
Petri net can be described as partial orders over events, where the events correspond
to the firing of the net transitions [Kie97].

Paths that start at the initial node of a choreography graph and end at any of
the final nodes correspond to finite executions of the service collaboration modeled
by the choreography. Infinite paths (due to loops) starting at the choreography’s
initial node correspond to infinite executions of the service collaboration. A labeled
poset can be obtained for each of the finite and infinite execution paths of the

14 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

(a) (b)

C1

C2

C1 C2

C3

C4

Figure 6: Example of sequential and parallel composition of activities in a choreog-
raphy graph.

choreography. The semantics of a choreography is then defined as the (possibly
infinite) set of labeled posets obtained from all the choreography’s finite and infinite
executions paths.

The execution paths of a choreography can be obtained using a depth first search
technique. The labeled poset corresponding to a given execution path can be ob-
tained by applying some simple guidelines. We detail those guidelines for each of the
possible ways in which activities (i.e. collaborations) can be composed or ordered
in the choreography graph3. In the explanation we consider that the behavior of an
activity Ci is described by a collaboration, whose behavior is in turn described by a
sequence diagram SDi.

Sequential composition

When the end-of-execution pin of an activity C1 is connected (directly, or via one or
more control nodes) to the starting pin of an activity C2, C1 and C2 are composed
in weak sequence. This is the case for activities C1 and C2 in Fig. 6(a), and C3
and C1 in Fig. 6(b). When the activities are directly connected (e.g. Fig. 6(a)),
or connected through decision and merge nodes, the semantics of the composition
corresponds to the seq operator defined for sequence diagrams. The semantics for
the composition in Fig. 6(a) is thus [[SD1 seqSD2]]SD.

3We do not consider here alternative composition, which just defines several execution paths.
Decision and merge nodes in the choreography graph are used to select one or another path, but
they are otherwise ignored in order to build the labeled poset for the selected execution path.

15

Parallel composition

Activities inside a fork-join pair are composed in parallel (i.e. they are executed
concurrently). Since we require proper nesting of fork and join nodes4, the se-
mantics of such composition corresponds to the par operator defined for sequence
diagrams. The semantics for the composition of C1 and C2 in Fig. 6(b) is thus
[[SD1 parSD2]]SD. The semantics for the whole composition presented in Fig. 6(b) is
[[(SD3seq(SD1parSD2))seqSD4]]SD. We note that fork-join pairs are first processed,
and then composed with any preceding and/or succeeding activities.

Interruption composition

In this kind of composition an activity C2 interrupts another activity C1. It is
represented as in Figures 7(a) and 7(b). In Fig. 7(a) an accept event action is
enabled whenever C1 reaches a point in its execution where predicate pred holds.
From that point of time on, if the event e associated to the accept event action is
observed, activity C1 is interrupted and activity C2 starts execution. We assume
that event e is an external stimulus from the environment observed by the role(s)
initiating C2. If C1 finishes execution before event e is observed, the interruptible
region (i.e. the dashed rectangle) is abandoned via a normal edge. The accept event
action is then disabled (i.e. interruption is no longer possible) and activity C4 is
started. In the case of Fig. 7(b), activity C1 may be interrupted as soon as it starts
execution, since the accept event action becomes enabled as soon as the interruptible
region is entered.

(a)

e
C1 C2eC1

C3

C4

C2

pred

(b)

Figure 7: Examples of interrupting composition of activities in a choreography
graph.

To define the semantics of interruption we need to introduce the notion of prefix,
and prefix with a fixed part, of a labeled poset.

4All outgoing edges of a fork node should lead to the same join node, and all incoming edges
of a join node should come from the same fork node. An exception is the following. If the join
node is connected to a final node, the former could be removed, and let all outgoing edges of the
fork lead to final nodes.

16 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Definition 3.9 (Prefix). A labeled poset (E ′,≺′, lbl′) is a prefix of a labeled poset
(E,≺, lbl) describing the semantics of a sequence diagram SD iff the following con-
ditions hold:

• E ′ ⊂ E

• if e ∈ S′, then rcv(e) ∈ E ′ (i.e. if the prefix contains a sending event, it also
contains its corresponding receiving event)

• ∀e, f , if e ≺ f ∧ f ∈ E ′, then e ∈ E ′ (i.e. if an event f is part of the prefix, all
the events that precede f in the original poset are also in the prefix)

• ≺′=≺ ∩(E ′×E ′)

• lbl′ = lbl � E, where �denotes restriction

Note that the empty poset [ε] is a prefix of each poset. Note also that this
definition differs from the one in [KL98] in two respects. First, we require the set of
events of the prefix to be strictly included in the set of events of the original poset.
This means that a poset cannot be a prefix of itself. Second, for each sending event
contained in the prefix we require its matching receiving event to be also contained
in the prefix. For a poset ps we denote the set of all its prefixes as prefix (ps).

Definition 3.10 (Prefix with fixed part). A labeled poset (E ′,≺′, lbl′) is a prefix
with a fixed part of a labeled poset (E,≺, lbl), with upper limit for the fixed part
a predicate event epred with label pred (i.e. lbl(epred) = pred), iff the following
conditions hold:

• (E ′,≺′, lbl′) is a prefix of (E,≺, lbl)

• epred ∈ E ′ and ∀ f ∈ E, f ≺ epred , we have f ∈ E ′

A prefix with a fixed part cannot be an empty poset. It will always contain a
fixed part consisting of the predicate event epred and all its predecessor events in the
original poset. For a poset ps and a predicate pred labeling one of ps’s events, we
denote the set of all its prefixes with a fixed part as fprefix (ps, pred).

We let C2 intC1 informally mean that activity C2 interrupts activity C1 from
the beginning of C1 (as in Fig. 7(b)). The semantics for this type of interrupting
composition is defined as follows:

[[C2 intC1]] = {ps1 ◦w ps2 : ps′ ∈ [[SD1]]SD, ps1 ∈ prefix (ps′), ps2 ∈ [[SD2]]SD}

Valid posets for the interruption are those formed by the weak sequencing of a
prefix of one of C1’s posets and one of C2’s posets.

We now let C2 int(pred)C1 informally mean that activity C2 interrupts activity
C1 from the point in the execution of C1 where predicate pred holds (as in Fig. 7(a)).
We also let epred be the predicate event with label pred (i.e. lbl(epred) = pred). The
semantics for this type of interrupting composition can then be defined as follows:

[[C2 int(pred)C1]] = {ps1 ◦w ps2 : ps′ = (E,≺, lbl) ∈ [[SD1]]SD such that epred ∈ E,

ps1 ∈ fprefix (ps′, pred), ps2 ∈ [[SD2]]SD}

17

Since SD1 may have several associated posets (in case it contains alternatives or
loops), we select those ps′ posets that contain epred . Valid posets for the interruption
are those formed by the weak sequencing of a prefix with a fixed part of ps′ and one
of C2’s posets. The fixed part is the behavior the needs to be executed in order for
predicate pred to hold.

We note that the above semantics describe cases where the interruption actually
happens, that is, where an interrupting edge is traversed. The semantics for the
choreography in Fig. 7(a) would be

[[(SD3 seqSD1)seqSD4]]SD∪ [[SD3 seq (C2 int(pred)C1)]]

Invocation composition

In the most general case, this type of composition implies that while in the middle
of its execution, C1 invokes C2. Thereafter, the behaviors of C1 and C2 may pro-
ceed independently. Here we consider a more specific case of invocation (so-called
invocation with feedback), where C1, after reaching a point in its execution where a
predicate pred holds, invokes C2. C1 then is suspended and waits for C2 to execute all
or part of its behavior before resuming. This normally represent a goal dependency
between C1 and C2, such that C1 can only achieve its own goal if C2 achieves its
corresponding one. An example is shown in Fig. 8(a).

C1 C2

pred

pred

(a)

C1
C2

p11

p11

(b)

p21

p12

p21p12

Figure 8: Examples of invocation composition of activities in a choreography graph.

Invocation composition is achieved with help of invocation and resumption pins.
For each invocation output pin labeled with a predicate pred, there should be a
corresponding resumption input pin labeled with the same predicate (see Fig. 8).
These pins correspond to execution points that are represented by means of pred-
icate events in the sequence diagram of the invoking activity. For each pair of
invocation/resumption pins of an invoking activity that are labeled with a predicate
pred, the sequence diagram describing the behavior of that activity should contain a
predicate event labeled with the same predicate pred. Since the invoking activity is
required to get suspended after the invocation, such predicate event may not appear
inside an operand of a par combined fragment.

To define the semantics of invocation we need to introduce the notion of segment
of a labeled poset.

18 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Definition 3.11 (Segment). A labeled poset (E ′,≺′, lbl′) is a segment of a labeled
poset ps = (E,≺, lbl) with predicates pred1 and pred2 as lower and upper limits
(written seg(ps, pred1, pred2)), iff the following conditions hold:

• Let e1,e2 ∈ E such that lbl(e1) = pred1 and lbl(e2) = pred2, and let Epr = { f ∈
E : f ≺ e2} and Esc = { f ∈ E : e1 ≺ f},

– if pred1 = start , then E ′ = {e2}∪Epr (i.e. the segment contains e2 and all
events of the original poset that are predecessors of e2)

– if pred2 = end, then E ′ = Esc (i.e. the segment contains all events of the
original poset that are successors of e1)

– if pred1 6= start∧pred2 6= end, then E ′= {e2}∪(Esc∩Epr) (i.e. the segment
contains e2 and all events of the original poset that are successors of e1
and predecessors of e2)

– if pred1 = start∧pred2 = end, then E ′= E (i.e. the segment is the original
poset)

• if e ∈ S′, then rcv(e) ∈ E ′ (i.e. if the segment contains a sending event, it also
contains its corresponding receiving event)

• ≺′=≺ ∩(E ′×E ′)

• lbl′ = lbl � E, where �denotes restriction

In the above definition, start and end are special purpose predicates that should
not label any of the predicate events of the original poset.

We let C1 inv(Ψ1,Ψ2)C2 informally mean that activities C1 and C2 invoke each
other (with C1 performing the first invocation) at the execution points indicated
by the predicates in Ψ1 and Ψ2. Ψ1 (resp. Ψ2) is an ordered set containing the
predicates that hold at execution points where C1 (resp. C2) invokes C2 (resp. C1).
We now explain how to obtain Ψ1 for each ps′1 ∈ [[SD1]]SD (the same procedure can
be used to obtain Ψ2):

1. Get the predicates labeling the invocation pins of C1 that are connected to pins
of C2, that is, Pr = {lpred(ip) : ip∈ pin(C1), ptype(ip) = INVOCATION ,(ip,x)∈
E ,mp-a(x) = C2}

2. Get the total ordered set tpred of predicate events in ps′1 = (E ′1,≺′1, lbl′1) that are
labeled with predicates from Pr (i.e. events e ∈ E ′1 such that lbl′1(e) ∈ Pr, and
their order relations). Note that it is a total order since the predicate events
denoting invocation points cannot appear inside par combined fragments of
C1’s sequence diagram to enforce suspension.

3. Replacing each event in tpred with its label, and adding the special purpose
predicates start and end as first and last elements, respectively, we obtain Ψ1

19

For the invocation composition in Fig. 8(a) we would have Ψ1 = {start ,pred ,end}
and Ψ2 = {start ,end}, while for the invocation composition in Fig. 8(b) we would
have Ψ1 = {start , p11, p12,end} and Ψ2 = {start , p21,end}.

In general, we assume that Ψ1 = {pred1
1, . . . ,predn

1} (with pred1
1 = start and

predn
1 = end) and Ψ2 = {pred1

2, . . . ,predn−1
2 } (with pred1

2 = start and predn−1
2 = end),

where n > 1. The semantics for C1 inv(Ψ1,Ψ2)C2 can then be defined as follows:

[[C1 inv(Ψ1,Ψ2)C2]] = {seg(ps′1,pred1
1,pred2

1)◦w seg(ps′2,pred1
2,pred2

2)◦w . . .

. . .seg(ps′2,predn−2
2 ,predn−1

2)◦w seg(ps′1,predn−1
1 ,predn

1) :
ps′1 ∈ [[SD1]]SD, ps′2 ∈ [[SD2]]SD}

4 Realizability of Choreographies

In the following sections we study the direct realizability of a choreography from
the point of view of the operators used to compose the sub-collaborations. In our
discussion we assume that each sub-collaboration referred to in a choreography is
directly realizable. Starting from single messages and applying the operators and
rules described in the following will ensure this. For the sequential, alternative,
parallel and interruption composition operators we study the problems that can
lead to difficulties of realization. We investigate the actual nature of these problems
and discuss possible solutions to prevent or remedy them.

4.1 Sequential Composition

Sequential composition imposes a causal dependency or partial order between the
events of the composed sub-collaborations. In the following the notions of strong
and weak sequential composition are discussed.

Strong Sequencing

Strong sequencing between two collaborations C1 and C2, written C1 ◦s C2, requires
C1 to be completely finished, for all its components, before C2 can be initiated. It
requires a direct precedence relation between the terminating action(s) of C1 and
the initiating action(s) of C2, so that the latter can only happen after the former are
finished. This leads to the following:

Proposition 4.1. The strong sequential composition of two directly realizable col-
laborations C1 and C2, C1 ◦s C2, is directly realizable if all terminating actions of C1
and all initiating actions of C2 are located at the same component.

The above proposition requires C1 to terminate at the component initiating C2.
This is the only way the initiator of C2 can know when C1 is completely finished. If
this condition is not satisfied, coordination messages must be added from C1’s termi-
nating components to C2’s initiating components, in order to guarantee the strong
sequencing. This could be done automatically by a synthesis algorithm [BG86].

20 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

(a) (c)(b)

(e)(d)

R1

a

R2 R4

sd Weakly Causal Composition

b

d

R3

e

C1

C2

c

C1
aC1 cC1

A B

C2
aC2 cC2

A B

C1A B

C3B E

C2A D

C1R1 Rx

C2R1 R2

CnRm Rx

m=n-1, n>2 (if FIFO channels)

C1

Rn-1R2

n>2

C2 Cn

R1 Rx

: Terminating role

: Initiating role

Figure 9: Weak Sequence Problems

Weak Sequencing

Weak sequencing of two sub-collaborations C1 and C2, written C1 ◦w C2, does not
require C1 to be completely finished before C2 can be initiated. Any component
can start participating in C2 as soon as it has finished with C1 (without waiting
for the other components to finish as well), which means that the actions from
both collaborations are sequenced on a per-component basis. This is the sequential
composition semantics used in HMSCs and UML Interaction Overview Diagrams,
but not in standard UML activity diagrams. The semantics of choreography graphs
presented in the previous section assumes weak sequencing.

Weak sequencing introduces a certain degree of concurrency, since the executions
of the composed collaborations may partially overlap. Although such concurrency
may be desirable for performance or timing reasons (i.e. a component may initiate a
new collaboration if the actions in that collaboration were independent of the actions
that have yet to be executed in the first collaboration), it comes at a price, since it
may lead to specifications that are not directly realizable and even counter-intuitive.
The specification in Fig. 9(a) is an example of a counter-intuitive composition.
According to the weak sequence semantics, component B may initiate collaboration
C3 as soon as it has finished with C1. As a result, collaborations C2 and C3 may
be executed in any order in the realized system. This is counter-intuitive to the
specification, which we assume reflects the designer’s intention (i.e. that C3 should
be executed after C2, with some allowed overlapping). If the designer’s intention
was that the collaborations should be concurrently executed, this should rather be
explicitly specified by means of parallel composition.

21

To avoid the aforementioned problem, when two collaborations are composed in
weak sequence the component initiating the second collaboration should participate
in the first collaboration (e.g. as in the composition of C1 and C2 in Fig. 9(a)). We
say a sequential composition with this property is weakly-causal:

Definition 4.2 (weak-causality). The weak sequential composition of two collab-
orations, C1 ◦w C2, is weakly-causal if the initiator of C2 participates in C1.

A weak sequential composition without the weak-causality property (e.g. the
composition of C2 and C3 in Fig. 9(a)) can be made weakly-causal by means of a
synchronization message sent from one of the participants of the first collaboration
to the initiator of the second collaboration5.

Weak-causality is a necessary condition for direct realizability of weak sequential
composition. However, it is not strong enough to be a sufficient condition. For
example, consider the weak sequential composition of C1 and C2 in Fig. 9(b). This
composition is weakly-causal, but it is not directly realizable. Component R1 may
initiate collaboration C2 just after sending message a in C1. Therefore, the actions
in C1 that follow the sending of message a may overlap with those performed in C2
by the same components. For example, message e may be received at R2 before
message c, or even before message a. Obviously, this message reception order has
not been explicitly specified. We note that weak-causality is enforced in the so-called
local-HMSCs of [GMSZ06].

In the literature about MSCs, the possibility that messages may be received in a
different order from the one specified is usually called a race condition [AHP96].
In general, race conditions can occur when a receiving event is specified to happen
before another event (i.e. either a receiving or a sending one), and both events
are located on the same component. The reason lies in the controllability of events.
While a component can always control when its sending events should happen (e.g. it
can wait for one or more messages to be received before sending a message), it cannot
control the timing of its receiving events. The occurrence of races highly depends on
the underlying communication service that is used. If no assumption is made about
the communication service, races can only be prevented if all message transmissions
are strongly sequenced. This condition might be quite restrictive. We now present
a less restrictive condition that does not prevent all races, but reduces their number
and facilitates their detection, compared with weak-causality. This condition, which
we call send-causality, requires all sending events to be ordered, except those that
have been explicitly specified (with parallel composition) to happen concurrently.

Definition 4.3 (send-causal composition). C1◦wC2 is send-causal if 1) C1 and C2
are send-causal, and 2) the component initiating C2 is the one that performs either
the last sending event of C1 or the receiving event corresponding to that sending
event.

5The component sending this message should be chosen among the components that participate
in both collaborations (if any), in order to minimize the risk of introducing race conditions.

22 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

An elementary collaboration is send-causal if can be decomposed into a choreog-
raphy of sub-collaborations, each of them consisting of exactly one message, where
all sequential compositions in the choreography are send-causal. We can give a more
formal definition based on sequence diagrams as follows:

Definition 4.4 (send-causal elementary collaboration). An elementary collab-
oration is send-causal if its associated sequence diagram is send-causal.

Definition 4.5 (send-causal sequence diagram). A sequence diagram is send-
causal if any of the following conditions is satisfied:

(i) If the diagram is a basic sequence diagram, the following holds: ∀s,s′ ∈ S, if
s <m s′∧ 6 ∃s′′ ∈ S,s <m s′′ <m s′ then loc(s′) = loc(s)∨ loc(s′) = loc(rcv(s)).

(ii) If the diagram is a composite sequence diagram, the following holds:

• All its basic sequence sub-diagrams are send-causal

• Whenever two sub-diagrams SD1 and SD2 are composed in weak sequence
(i.e. SD1 seq SD2), the following is satisfied: ∀TS ∈ termsnd(SD1),∀I ∈
init(SD2),∀st ∈TS,∀si ∈I , loc(si) = loc(st)∨ loc(si) = loc(rcv(st)).

Note that in condition (ii) of Definition 4.5 we have implicitly considered the
possibility that a composite sequence diagrams may describe alternative or parallel
behaviors. In such situation, for each alternative behavior, or each parallel behavior,
we require that the send-causality property holds.

It can be shown that when send-causality is enforced, races may only occur
between two or more consecutive receiving events (i.e. not between a sending event
and a receiving event).

Proposition 4.6. In a send-causal composition race conditions may only exist be-
tween two or more consecutive receiving events.

Proof. See Appendix A.

Corollary 4.7. A send-causal composition is directly realizable over a communica-
tion service with in-order delivery and separate input buffers.

One of our motivations is to provide guidelines for constructing specifications
with as few conflicts as possible and whose intuitive interpretation corresponds to
the behavior allowed by the underlying semantics. We therefore propose, as a gen-
eral specification guideline, that all elementary collaborations be send-causal. Weak
sequencing of collaborations should also be send-causal, unless there is a good reason
to relax this requirement. In the following we assume that all elementary collabora-
tions are send-causal.

A potential race condition exists between two weakly sequenced collaborations,
C1◦wC2, if there is a component that participates in both collaborations playing roles

23

that may partially overlap. Due to Proposition 4.6, if the sequencing is send-causal
this may only happen when the role that the component plays in C1 ends with a
message reception (i.e. it is a terminating role) and the role it plays in C2 starts with
another message reception (i.e. it is a non-initiating role). Whether a potential race
condition is an actual race or not depends on the underlying communication service,
and on whether messages are received from the same or from different components.
For example, in Fig. 9(c) a potential race condition exists at component B between
the receptions of the last message in C1 and the first message in C2, but it is only
actual in the case of out-of-order delivery.

We note that race conditions may not only appear between directly composed
collaborations (Fig. 9(c)), but also between indirectly composed ones, as shown in
Fig. 9(d). In this specification it is the weak sequencing between C1 and C2 that
makes the potential race between C1 and Cn possible. We therefore say that there
is indirect weak sequencing between C1 and Cn. This “propagation” of weak
sequencing makes it more difficult to avoid races.

We have the following result:

Proposition 4.8. The send-causal weak sequential composition of a set of directly-
realizable collaborations is directly realizable

• over a communication service with in-order delivery if the following condition
is satisfied: if a component plays a terminating role in a collaboration C1
followed by a non-initiating role in another collaboration Cn, then the last
message it receives in C1 and the first one it receives in Cn are sent by the
same peer-components.

• over a communication service with out-of-order delivery only if no component
plays a terminating role followed by a non-initiating role.

Working with binary collaborations we can easily know which component sends
the first and last messages of a collaboration, if we know which components play
the initiating and terminating roles. Due to Proposition 4.8, actual races can then
be detected at an early specification stage, when the detailed behavior of each col-
laboration has not yet been specified, but only the selection of their initiating and
terminating roles has been done. In the case of n-ary collaborations, we can perform
the same early analysis, but only potential races can be discovered.

One interesting thing of the specification with collaborations is that we can
get information about potential races from the diagram describing the structural
composition of collaborations (see e.g. Fig. 9(d)). In such diagram we can see
whether a component participates in several collaborations, and whether it plays
at least one terminating and one non-initiating role in them. If that is the case, a
potential race exists. This information could then be used to direct the analysis of
the behavioral specification (i.e. the choreography).

Resolution of Race Conditions. Race conditions can be resolved in several
ways. Some authors [Mit05, CKS05] have proposed mechanisms to automatically
eliminate race conditions by means of synchronization messages. We note that when

24 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

the send-causality property is satisfied, the synchronization message should be used
to transform the weak sequencing leading to the race into strong sequencing. If
synchronization messages are added in other places new races may be introduced.

Other authors tackle the resolution of race conditions at the design and im-
plementation levels. They differentiate between the reception and consumption of
messages. This distinction allows messages to be consumed in an order determined
by the receiving component, independently of their arrival order. We call this mes-
sage reordering for consumption. In general, this reordering may be implemented
by first keeping all received messages in a (unordered) pool of messages. When the
behavior of the component expects the reception of one or a set of alternative mes-
sages, it waits until one of these messages is available in the message pool. Khendek
et al. [KZ05] use the SDL Save construct to specify such message reordering. This
technique can be used to resolve races between messages received from the same
source (i.e. in the case of channels with out-of-order delivery), as well as races be-
tween messages received from different sources. In the latter case, a communication
service with separate input buffers would also resolve the races. Finally, races may
also be eliminated if an explicit consumption of messages in all possible orders is
implemented (i.e. similar to co-regions in MSCs).

We believe that the resolution of races heavily depends on the specific application
domain and requirements, as well as in the context which they happen in. In some
cases the addition of synchronization messages is not an option, and a race has to
be resolved by reordering for consumption. In other cases, such as when races lead
to race propagation problems (see Section 4.2) a strict order between receptions is
required, so components should be synchronized by extra messages. At any rate, all
race conditions should be brought to the attention of the designer once discovered.
She could then decide, first, whether the detected race entails a real problem (e.g.
in Fig. 9(d) there is no race if all channels have the same latency). Then, she
could decide whether reordering for consumption is acceptable or synchronization
messages need to be added or the specification has to be revised.

Loops

Loops can be used to describe the repeated execution of a (composite) collaboration,
which we call the body collaboration. A loop can therefore be seen as a shortcut
for strong or weak sequential composition of several executions of the same body
collaboration. This means that the rules for strong/weak sequencing must be ap-
plied. We note that all executions of a loop involve the same set of components
(weak-causality property is thus always satisfied). This fact makes the chances for
races high when weak sequencing is used. Strong sequencing should therefore be
preferred for loop bodies in the general case.

Loops may give rise to so-called process divergence [BAL97], characterized by a
component sending an unbounded number of messages ahead of the receiving com-
ponent. This may happen if the communication between any two of the participants
in the body collaboration is unidirectional (i.e. only happens in one direction).

As we will see in the next section, loops may also affect the realizability of choices.

25

4.2 Alternative Composition

Alternative composition is specified by means of choice operators, and describes al-
ternatives between different execution paths. In a choice one or more choosing com-
ponents decide the alternative of the choice to be executed, based on the (implicit or
explicit) conditions associated with the alternatives. The other non-choosing com-
ponents involved in the choice follow the decision made by the choosing components
(i.e. execute the alternative chosen by the later ones). It is therefore important that:

1. The choosing components, if several, agree on the alternative to be executed.
We call this the decision-making process.

2. The decision made by the choosing components is correctly propagated to the
non-choosing components. We call this the choice-propagation process.

In the following we study how each of these aspects affect the realizability of a
choice. We assume that the set of choosing components is the union of the initiating
components of all the choice alternatives.

Decision-making Process

The intuitive interpretation of a choice is that only one of the alternative behaviors is
to be eventually executed. Deciding which alternative to be executed becomes simple
if there is only one choosing component, and the conditions for the alternatives are
local to that component (i.e. they are expressed in terms of observable predicates).
Choices with this property are called local. It is easy to see that local choices are
realizable (up to the decision-making process), since the decision is made by a single
component based only on its local knowledge.

The decision-making process gets complicated when there is more than one choos-
ing component. This is the case in the choice of Fig. 10(a), where there are two
choosing components, namely A and B. From a global perspective, we may think
that once the decision node is reached, either component A initiates collaboration
disc1 with B, or component B initiates collaboration disc2 with A. We are assuming
then that there is an implicit synchronization between A and B, which allows them
to agree on the alternative to be executed. However, in a directly realized system,
components A and B will not be able to synchronize and they may decide to initiate
both collaborations simultaneously.

Choices involving more than one choosing component are usually called non-
local choices [BAL97]. They are normally considered as pathologies that can lead
to misunderstanding and unspecified behaviors, and algorithms have been proposed
to detect them in the context of HMSCs (e.g. [BAL97, Hél01]). Despite the ex-
tensive attention they have received, there is no consensus on how they should be
treated. We believe this is due to a lack of understanding of their nature. Some
authors (e.g. [BAL97]) consider them as the result of an underspecification and
suggest their elimination. This is done by introducing explicit coordination, as a
refinement step towards the design. Other authors look at non-local choices as
an obstacle for realizability and propose a restricted version of HMSCs, called local

26 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

(b)

A B

invite
disc1
invite
disc2

(a)

disc2A Bdisc1A B

inviteA B

Figure 10: Competing-initiatives choice

HMSCs [HJ00, GMSZ06], that are always realizable. These HMSCs forbid non-local
choices. Finally, there are authors [GY84, MGR05] that consider non-local choices
to be almost inevitable in the specification of distributed systems with autonomous
processes. They propose to address them at the implementation level, and propose
a generic implementation approach of non-local choices.

The problem with non-local choices is the existence of several uncoordinated com-
ponents that have the possibility to make an independent decision in the directly
realized system. As a solution, we may think of making the choice local by coor-
dinating these components (i.e. either with additional messages or with additional
message contents), so that they make a common decision. Such coordination may
however not be feasible in all contexts and application domains. Consider, for ex-
ample, the specification of a personal communication service where both end-users
can take the initiative to disconnect. This could be specified as a non-local choice
between two disconnection collaborations, each of them initiated by a different com-
ponent (see Fig. 10(a)). The decision made by any of the components to initiate
one of the disconnection collaborations is not totally controlled by that component,
but it is triggered by the respective end-user. It makes therefore little sense to
coordinate the components in order to obtain a local choice, since this would im-
ply the coordination of the end-users’ initiatives. Such non-local choice is simply
unavoidable.

We refer to non-local choices where the coordination of the choosing components
is not feasible as competing-initiatives choices. A characteristic of them is that
all the alternative collaborations are simultaneously enabled, and will be triggered
by events that cannot be controlled by the initiating components, such as an end-
user initiative or a time-out. As a result, the alternative collaborations cannot
be prevented from being simultaneously triggered. If this happens, it should be
detected as soon as possible and resolved by means of a proper conflict resolution.
Any component involved in two or more alternatives may be potentially used to
detect the initiative conflict and initiate the resolution. For such components, the
competing initiatives reveal themselves in the components’ role sequences as choices
between an initiating and a non-initiating role, or between two non-initiating roles
played in collaborations with different peers.

A side effect of competing-initiatives choices is the existence of orphan mes-
sages. Consider again the specification in Fig. 10(a), which describes the repetitive

27

execution of collaboration invite followed by either disc1 or disc2. Now imagine that
each collaboration consists only of one message. Then the scenario in Fig. 10(b)
is possible, where message disc2 is sent as a response to the first invite message,
but it is received by A after having sent the second invite. Component A may then
consume message disc2 as a response to the second invite message, leading to an
undesired behavior. In this scenario the collaboration occurrence where disc2 is sent
is considered finished while disc2 is still in the system (i.e. not consumed). This
message becomes thus orphan, with the danger of being consumed in a latter occur-
rence of the same collaboration. To avoid this messages should be marked (e.g. with
a session id), so they are only consumed within the right collaboration instance.

Competing-initiatives choices correspond to the non-local choices discussed by
Gouda et al. [GY84] and Mooij et al. [MGR05]. These authors propose some reso-
lution approaches. In the domain of communication protocols, Gouda et al. [GY84]
proposes a resolution approach for two competing alternatives (i.e. two choosing
components), which gives different priorities to the alternatives. Once a conflict is
detected, the alternative with lowest priority is abandoned. With motivation from a
different domain, where Gouda’s approach is not satisfactory, Mooij et al. [MGR05]
propose a resolution technique that executes the alternatives in sequential order (ac-
cording to their priorities), and is valid for more than two choosing components. We
conclude that the resolution approach to be implemented depends on the specific
application domain. We therefore envision a catalog of domain specific resolution
patterns from which a designer may choose the one that better fits the necessities of
her system. We note that any potential resolution should also address the problem
of orphan messages, which is not considered in either [GY84] or [MGR05].

Choice-propagation Process

The fact that a choice is local does not guarantee its realizability. The decision
made by the choosing component must be properly propagated to the non-choosing
components, in order for them to execute the right alternative. In each alternative,
the behavior of a non-choosing component begins with the reception of a sequence
of messages, which we call the triggering trace. Thereafter, the component may
send and receive other messages. It the triggering traces that enable a non-choosing
component to determine the alternative chosen by the choosing component. In some
cases, however, a non-choosing component may not be able to determine the decision
made by the choosing component. As an example, we consider the local choice in
Fig. 11(a). For the component R3, the triggering traces for both alternatives are
the same (i.e. the reception of message x). Therefore, upon reception of x, R3
cannot determine whether R1 decided to execute collaboration C1 or C2. That is,
R1 ’s decision is ambiguously propagated to R3. We say a choice has an ambiguous
propagationif there is a non-choosing component for which the triggering traces
specified in two alternatives have a common a prefix6. Choices with ambiguous

6Note that this definition considers that there is ambiguous propagation with the following
triggering traces: {?x,?y} and {?x,?z}. This is true in any directly realized system, since the choice
cannot be made immediately after ?x. An easy solution in this case would be to delay the choice

28 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

R1
a

R2 R3

x
b

R1
c

R2 R3

x
d

R1 R2 R3

b c
d

a
R1 R2 R3

fg

c

R1 R2 R3

b c

a
f

(a)

(c)(b)

e

g

C1 C2

C1 C2

Figure 11: (a) Non-deterministic and (b) Race choice propagation; (c) Behavior
implied by (b)

propagation are not directly realizable. They are similar to the non-deterministic
choices defined in [MRW06].

Now consider the choice in Fig. 11(b). It is a local choice and, according to
the triggering traces specified for any of the two non-choosing components, the
propagation should not be ambiguous. Still, this choice is not directly realizable.
A race condition between messages a and c in C1 may lead to the scenario of Fig.
11(c), where R1 and R2 execute C1, while R3 executes C2. This example shows that
in the presence of race conditions the triggering trace observed by a non-choosing
component may differ from the specified one. Therefore, whenever race conditions
may appear in any of the alternatives, we need to consider the potentially observable
triggering traces in the analysis of choice propagation (e.g. {?a, ?c} and {?c, ?a}
for R3 in collaboration C1 – Fig. 11(b)). We say a choice has a race propagation
if there is ambiguous propagation due to races. Choices with race propagation are
not directly realizable. They are similar to the race choices defined in [MRW06].

To resolve the problem of race propagation we need to eliminate the race(s) that
lead to it. However, if we try to remove the race conditions by means of message
reordering for consumption (e.g. by means of separate input buffers), the race propa-
gation problem may still persist. This is because, in general, a component would not
be able to determine whether a received message should be immediately consumed
as part of one alternative, or be kept for later consumption in another alternative
(e.g. race propagation in Fig. 11(b) cannot be solved with separate input buffers).
To make the message reordering work, we need to mark the messages with the col-

(i.e. extract ?x from the choice). Note, however, that this solution would not always be appropriate
(e.g. with the following triggering traces: {?x} and {?x,?z}).

29

laboration instance7 they belong to [BG86]. This not only avoids race propagation,
but also ambiguous propagation in general. In [GMSZ06], although choice prop-
agation is not explicitly discussed, the authors propose marking all messages (i.e.
not only those involved in a race propagation) as just explained, in order to realize
local-HMSCs specifications. Components then have to check the data carried by
messages upon each reception. We believe this unnecessarily increases the amount
of processing that each component has to do upon message reception. We would
prefer to detect the cases of race propagation and either remove the race condition(s)
by transforming the responsible weak sequencing into strong sequencing, or apply
message reordering together with marking only to the messages involved.

Neither ambiguous nor race choice propagation can be detected at the collab-
oration level8, we need to consider the detailed behavior of the sub-collaborations
involved in the choice.

A choice without ambiguous or race propagation is said to have proper decision
propagation. A local choice with proper decision propagation is directly realizable.

4.3 Interruption

The interruption semantics requires a collaboration C be interrupted once another
preempting collaboration Cint is initiated. In a distributed asynchronous system the
interruption may take some time to propagate to all participants in the interrupted
collaboration. This means that certain components may still proceed executing their
behavior in C for some time after Cint has been initiated. For example, a client may
send a request to a server and, shortly after that, decide to send a cancellation
message. While this message is on the way, the server would continue processing
the request, and may even send a response back to the client before it receives the
cancellation message. The client would then receive a response message that it does
not expect. Similarly, the server would receive a non-awaited cancellation message.

As competing-initiatives choices, interruption compositions suffer from a problem
of initiatives (from the interrupted and the interrupting collaborations) that compete
with each other. They are therefore not directly realizable, in the general case. Note,
however, that the presence of competing initiatives is visible with interruptions, and
so the detection is easy at the choreography level. We refer to Section 4.2 for a
discussion on resolution of competing initiatives situations and related problems.

4.4 Parallel Composition

A parallel composition is directly realizable as long as the composed collaborations
are completely independent (i.e. their executions do not interfere with each other).
Unfortunately, sometimes there are implicit dependencies that may lead to unspec-
ified behaviors. This is the case if a component participates in several concurrent

7If the choice is part of the body of a loop, the iteration number should be considered
8In the case of race propagation we may detect the existence of a race at the collaboration

level, but could not determine if that race affects the propagation.

30 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

collaborations that use the same message types. Messages belonging to one collab-
oration may then be consumed within a different collaboration.

Implicit dependencies may also exist through shared resources. In this case,
appropriate coordination has to be added between the collaborations, which will
normally be service-specific. In [CB06b] we discussed the automatic detection of
interactions, due to shared resources, between concurrent instances of the same
composite service collaboration. This detection approach makes use of pre- and
post-conditions associated with sub-collaborations, and could also be used to detect
interactions between collaborations composed in parallel with forks.

Forks, Joins and Sequential Composition.

We note that the rules for (weak/strong) sequential composition should be applied,
as in any other context, in the presence of forks and joins. If strong sequencing
is required, all the collaborations immediately following a fork should be initiated
by the component terminating the collaboration preceeding the fork. Similarly, all
the collaborations immediately preceding a join should terminate at the component
initiating the collaboration following the join. If weak sequencing is required, each
collaboration immediately following a fork should be initiated by a component partic-
ipating in the collaboration preceeding the fork. Likewise, the component initiating
the collaboration following a join should participate in each of the collaborations
immediately preceding the join.

We also note that if synchronization behavior is needed in order to guarantee the
strong or weak sequencing as explained above (or to remove race conditions), such
behavior should be added to the affected branch after the fork, or before the join,
in order to prevent interactions with the collaborations in the other branches.

4.5 Conflicts between Concurrent Collaboration

Instances

So far we have discussed the conflicts that may appear when sub-collaborations are
composed within the scope of an enclosing collaboration. In a running system there
will normally be many collaborations executing in parallel. One will normally not
define the complete system behavior explicitly as one collaboration, but rather let
it be implied from the binding (and composition) of roles to components. Here we
briefly discuss the problem of undesired interactions between concurrent instances
of the same composite collaboration (e.g. concurrent sessions of a service).

If several instances of a collaboration are executed at the same time, and they
involve disjoint sets of components (i.e. the roles of each collaboration instance are
bound to different components), they will run independently, without interactions.
The situation is however different if one component participates in two or more
collaboration instances. In that case, undesired interactions between the collabora-
tions may arise if the roles played by the component in those collaborations need
to access shared resources. To avoid such interactions the roles should be properly

31

coordinated. Depending on the kind of resource and on the concrete service re-
quirements, a different mechanism may be needed for their coordination. One may
also distinguish between static role binding, which is resolved at design time, and
dynamic role binding, which is resolved at runtime. For example, an FTP server
may maintain concurrent sessions with different clients. Since the memory at the
server is a shared and limited resource, the total number of such concurrent sessions
should be restricted to a maximum. A session manager could then be used that
would dynamically bind new session roles or reject session requests once the max-
imum was reached. In a telephone service, where a user may receive a call while
already talking to someone, a call-waiting functionality may be a better solution.

In [CB06a, CB06b] we showed that the detection of conflicts between concurrent
instances of a composite collaboration can be automatized. This is not elaborated
further here, and we just explain the main lines behind the proposed analysis ap-
proach. It is based on the fact that a component participates in a composite col-
laboration instance by playing a certain sequence of sub-roles (i.e. one sub-role for
each sub-collaboration in the collaboration choreography the component participates
in). When the same component participates in several collaboration instances, it
plays several sequences of sub-roles. Undesired interactions may then arise between
sub-roles belonging to different sequences (i.e. played in different collaboration in-
stances) due to shared resources. In the proposed analysis approach, collaboration
pre-conditions are used to specify the status and availability of the resources needed
to execute a collaboration. Post-conditions describe the status and availability of
resources after the collaboration execution. The analysis of interactions between
the sequences of sub-roles played by a component is performed by constructing all
possible interleavings of such sequences. If an interleaving contains two consecu-
tive sub-roles such that the post-condition of the first one contradicts/falsifies the
pre-condition of the second one, an interaction is reported.

5 Algorithms

In the following we present algorithms for the detection of race conditions and choice
propagation problems. The input for these algorithms is a slightly modified version
of the choreography graph. In a choreography an activity may describe two or more
alternative behaviors, each one of them given by a different poset. Depending on
the behavior that is executed, a different output pin may be used to pass on the
focus of control to another activity (see left side of Fig. 12). Activities with these
characteristics are replaced with a choice node and a set of new activities. Each
new activity will be associated to one of the posets of the original activity. The
interconnection of these new activities with the other activities in the graph is made
according to the original interconnections (see right side of Fig. 12).

We also assume that the choreography graph does not contain interrupting and
invocation compositions.

32 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

A
(psok, psnok)

 nok {Av=false}{Av=true} ok

CB

{Av=false}{Av=true}

A.ok
(psok)

CB

A.nok
(psnok)

Figure 12: Replacement of collaborations with behavior described by several posets

5.1 Detection of Race Conditions

For the detection of races it is useful to know when a role p gets synchronized at a
sending event s, so that no races may happen at p between a visual predecessor of s
and any of its visual successors. Formally, given a visual order < and its associated
causal order ≺, we say that a role p gets synchronized at a sending event s ∈ Sp if
for any e1 ∈ {e ∈ Ep : e <p s} and any e2 ∈ {e ∈ Ep : s <p e}, it holds that e1 ≺ e2.

In an MSC, a race condition exists when two events are related by the MSC’s
visual order but not by its causal order. Building the visual and causal orders
requires a transitive closure operation that has quadratic complexity on the number
of events. Unfortunately, the detection of races in HMSCs is not so simple. Since an
HMSC describes a collection of possible scenarios, it may happen that a race exists
in one execution of the HMSC but it is compensated in another execution. That
is, two events may be said to happen in one order in one of the HMSCs executions,
and in the opposite order in another execution. As a result, the events are not in
race. For the general class of HMSCs, the race detection problem is undecidable
[MP00, Mus00].

A choreography of collaborations describes exact behavior, rather than existential
behavior. Therefore, a race condition will exist in a choreography if it exists in
any of its executions. The straightforward approach for the detection of races in
a choreography requires to construct the visual and causal orders for all possible
execution sequences, which might be computationally costly. In the following we
present a set of algorithms for the detection of race conditions that do not require
building the visual and causal orders for all possible execution sequences. We assume
that all elementary collaborations are send-causal, that is, that their behaviors are
described by sequence diagrams satisfying the send-causality property.

In the main algorithm (see Algorithm 1), we first look for races between events
of the same elementary collaboration. For each elementary collaboration c, we con-
struct the causal order of its events (≺c). We then check, for each role p, if there
exist any pair of receiving events that are ordered by the total order associated to
p (i.e. r1 <p r2) but they are unordered according to the causal order of the col-
laboration (i.e. r1 6≺c r2). If that is the case, a race exist between r1 and r2 (lines
1-4 of Algorithm 1). In case the sequence diagram of the elementary collaboration

33

contains loops, we consider just one iteration of the loop. If an event inside a loop
is in race, we proceed according to the GetRaceType procedure (see page 41). Note
that we only check for races between receiving events. This is because we assume
that all elementary collaborations are send-causal, and according to Proposition A.3,
a receiving event cannot be in race with a sending event when the send-causality
property is satisfied. We may have actually used the results of Propositions A.5 and
A.6 to detect race conditions without constructing the causal order of each elemen-
tary collaboration. We nevertheless built the causal orders since they will be needed
in other parts of the race detection process.

Once all elementary collaborations have been analyzed, we search for races in
the choreography graph, between events that belong to different collaborations. We
propose two techniques to detect races in a choreography graph. One is used to
detect races when the weak sequencing of collaborations in the choreography graph
is send-causal, while the other is used when the weak sequencing is weakly-causal.
We discuss these two techniques in the following.

Algorithm 1: DetectRaces
Data: A composite collaboration C; A choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2
foreach elementary sub-collaboration c of C do1

Construct causal order ≺c for c2

foreach role p of c and each pair of receiving events r1,r2 ∈ Ec
p do3

if r1 <p r2∧ r1 6≺c r2 then EventsInRace[r1][r2]←{c}4

DetectRacesWithSendCausality()5

DetectRacesWithWeakCausality()6

DetectRacesInChainedActSeqs()7

5.1.1 Races with Send-causal Weak Sequencing

When the weak sequencing of collaborations is send-causal, no sending event may be
involved in a race condition (see Propositions A.1 and A.3). Only receiving events
may be in race with other receiving events. Moreover, based on Propositions A.5
and A.6, only the visual order of events specified for a role p (i.e. <p) needs to
be considered in order to detect races between the receiving events performed by
that role. That is, with send-causality the detection of races can be performed on a
per-role basis, without taking into account the global causal order.

Propositions A.5 and A.6 show that two receiving events from the same role p,
r1 and r2, may be in race only if, according to p’s visual order, p does not perform
any sending event between the two receiving events (i.e. if r1 <p r2, and there is not
a sending event s such that r1 <p s <p r2). Therefore, if a choreography describes a
sequence of activities9 v1 ·v2 · . . . ·vn (1 < n), a race between r1 ∈ Rv1

p (i.e. a receiving

9For the sake of simplicity we will use the terms activity and (sub-)collaboration interchange-
ably, since activities in the choreography refer to occurrences of sub-collaborations

34 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

event performed by role p in v1) and rn ∈Rvn
p may only be possible if the two following

conditions are satisfied:

• p plays a terminating sub-role in v1 (i.e. p finishes its participation in v1
with a receiving event) and a non-initiating sub-role in vn (i.e. p starts its
participation in vn with a receiving event); and

• for each activity vi, with 1 < i < n, either p does not participate in vi (i.e.
Rvi

p = /0) or p only executes receiving events in vi (i.e. Svi
p = /0).

We propose to detect races in two steps. First, algorithm DetectRacesWithSend-
Causality (on page 43) traverses the choreography graph and finds activity sequences
of the form v1 · v2 · . . . · vn (n > 1), where v1 ◦w v2 is send-causal10 and p only partici-
pates in v1, playing a terminating sub-role, and in vn, playing a non-initiating sub-
role in vn. For each of these sequences, a check is performed to detect potential races
between v1 and vn at role p11. Thereafter, algorithm DetectRacesInChainedActSeqs
(on page 57) tries to “chain” the activity sequences obtained by DetectRacesWith-
SendCausality. That is, given a sequence of activities v1 · v2 · . . . · vn (n > 1), where
p has no sending event in vn

12, the algorithm looks for any other sequences that
starts with vn. If a sequence vn · vn+1 · . . . · vm (m > n) is found, a check is performed
to find races between the events of v1 and vm. After that, the process starts again,
taking now the concatenated sequence, that is, v1 · v2 · . . . · vn · vn+1 · . . . · vm, as the
initial sequence. To better understand the detection process, consider the sequence
diagram in Fig. 13, which illustrates a sequence of collaborations13. For role R2,
the DetectRacesWithSendCausality algorithm would find two sequences of collabo-
rations with the aforementioned characteristics, namely v1 · v2 · v3 and v3 · v4 (note
that R2 plays a terminating sub-role in v4, but v4 ◦w v5 is not send-causal). It would
then check for races between the events of v1 and v3, and between the events of v3
and v4. Assuming communication channels with in-order delivery, a race would be
detected between ?m4 (in v3) and ?m6 (in v4). The DetectRacesInChainedActSeqs
algorithm would determine that sequences v1 ·v2 ·v3 and v3 ·v4 can be chained (note
that R2 has no sending event in v3). It would then check for races between the
events of v1 and v4. As a result, a race between ?m1 (in v1) and ?m6 (in v4) would
be detected.

In the following we explain in more detail each of the procedures that are used
as part of the DetectRacesWithSendCausality algorithm.

Algorithm DetectRacesWithSendCausality (on page 43). This algorithm
performs a separate analysis of the choreography graph for each role p that may be

10The sequencing of the other activities might be either send-causal or weakly-causal.
11For the sake of brevity, we will talk about races between two activities v and w at a role p.

This should be understood as races between an event ev ∈ Ev
p and an event ew ∈ Ew

p .
12This is a requisite to chain sequences obtained by the DetectRacesWithSendCausality algo-

rithm. However, as we will see, sequences where p performs a sending event in vn may be chained
with sequences obtained by the DetectRacesWithWeakCausality algorithm.

13The dashed rounded-rectangles are included just for illustration purposes, but are not standard
UML

35

R2 R4

sd Races

v4

v5

m6

m7

m5

R1 R3

m9

v6
m10

m11

m12m13

m8

m14

m15

v8

v7

m4
v3

m1
v1

v2

m3

m2

Figure 13: Races with send-causal and weakly-causal compositions

subject to potential races, that is, any role that plays a terminating sub-role in at
least one sub-collaboration, and a non-initiating sub-role in at least other (possibly
the same) sub-collaboration. Roles that play terminating sub-roles, but do not play
non-initiating sub-roles, or roles that do not play any terminating sub-role are not
subject to races14, so they are not considered during the analysis of the choreography.
This information can be obtained from the collaboration diagram.

For each role p that is subject to potential races, and from each activity v1
where p plays a terminating sub-role, the algorithm invokes the VisitSuccessorSC
procedure (on page 44) to perform a depth-first search (DFS) [AHU74] on the chore-
ography graph. The idea is to find sequences of activities v1 ·v2 · . . . ·vn (n > 1) where
p only participates in v1 and vn and, thereby, check if there is any race between v1
and vn at role p.

Procedure VisitSuccessorSC (on page 44). This is a recursive procedure
that performs a depth-first search [AHU74] on the choreography graph to find se-
quences of activities v1 · v2 · . . . · vn (n > 1) where p only participates in v1 and vn.
Once such a sequence is found, that is, once an activity vn where p participates is
found, procedure CheckRacesSC is invoked (line 5). This procedure checks whether

14They may actually have races inside a given collaboration, but not between two collaborations.

36 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

there is any race between v1 and vn at role p (see details on page 41). When Check-
RacesSC returns, the backtracking process is initiated until a node with unvisited
successors is found.

We note that, for a given activity v1 and a role p, a possibly infinite number of
activity sequences v1 ·v2 · . . . ·vn (n > 1), where p only participates in v1 and vn, may
be found in the choreography graph. Fortunately, only a subset of these sequences
is of interest for our purposes. We note the following:

1. In order to detect a race between two activities v1 and vn at role p, it is
sufficient to find one sequence of the form v1 · v2 · . . . · vn (n > 1), where p only
participates in v1 and vn. This has a positive implication on loops: we just
need to traverse the body of a loop once, thus avoiding infinite sequences.
Therefore, during each traversal of the graph, each activity is visited as most
once. For example, in the case of the choreography in Fig. 14(a) the algorithm
would only return the sequence v1 · v2 · v3, which is sufficient to detect races
between v1 and v3.

2. Given a sequence of activities v1 · v2 · . . . · vn, a race between v1 and vn is only
possible if v1 and v2 are composed in weak sequence. Making strong the se-
quencing between v1 and v2 would eliminate any potential race between v1
and vn, but only when vn is reached via v2. The race may still be possible
if vn is reached through another path. This means that, given two activities
v1 and vn, we are interested in the set of all sequences that start at v1, end
at vn, and have a second activity that is different from the second activity of
any other sequence in the set. For example, in the choreography of Fig. 14(c)
we are interested in two sequences, namely v1 · v2 · v3 and v1 · v′2 · v3, while in
the choreography of Fig. 14(b) we are only interested in one sequence, either
v1 · v2 · v3 · v5 or v1 · v2 · v4 · v5.
To obtain the set of desired sequences, procedure VisitSuccessorSC allows de-
cision nodes to be revisited multiple times, while merge nodes may be revisited
only in certain cases. Whenever a merge node is visited, its visited flag is set
to true. In a traditional DFS algorithm, such flag would be reset during back-
tracking. This does not happen in the proposed algorithm (line 45). Instead,
when a decision node is visited, and before visiting any of its successor nodes,
the algorithm checks whether AuxSeq (i.e. the ordered set of visited activities
in the current path) contains only one element (i.e. v1). If that is the case,
a different “second activity” will be visited. It is then that the visited flag of
merge nodes is set to false (lines 13-15), so that vn can be visited again (if
that is possible through the new path). For example, in the choreographies of
Figs. 14(a) and 14(b), the visited flag of m1 would not be reset when visiting
d1, since AuxSeq = {v1,v2} at that point. In the case of the choreographies in
Figs. 14(c) and 14(d), AuxSeq = {v1} when visiting d1, so the visited flag for
m1 would be reset.

The treatment of fork and join nodes by the VisistSuccessorSC procedure de-
serves some explanation. In the following we assume that fork and join nodes are
properly nested. That is, all outgoing edges of a fork node lead to the same join
node (in the following called the companion join), and all incoming edges of a join

37

v2 v2'

m1

d1

v1

v3

v1

v2

m1

d1

v3

v1

v2 v2'

m1

d1

v3

v2

v3 v4

m1

d1

v1

v5

(a) (b) (c) (d)

Figure 14: Examples of combinations of merge and decision nodes in a choreography
graph

node come from the same fork node15. We note that each branch of a fork (corre-
sponding to each of the fork’s outgoing edges) may define several execution paths.
For example, in Fig. 15 the fork’s right branch defines two execution paths, namely
v4 · v5 and v4 · v6.

v7

v4v2

v1

v3 v5 v6

Figure 15: Properly nested fork and join nodes in a choreography graph

When a fork node is visited, a search is performed in each of the fork’s branches
for activities where p participates. This is done by invoking the TraverseForkBranch
procedure for each of the fork’s successor nodes (line 25). This procedure returns
three values:

• continue: it is a boolean predicate that is true when p does not participate
in one or more (possibly all) of the execution paths of the traversed branch,

15An exception is the following. If the join node is connected to a final node, the former could
be removed, and let all outgoing edges of the fork lead to final nodes.

38 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

and gets synchronized16 in the remaining paths. For example, consider that
p does not participate in any of the activities inside the fork-join pair in Fig.
15. Then continue would be true for both branches of the fork. If p only
participates in v6 and gets synchronized, continue would still be true for the
right branch, but if it does not get synchronized, then continue would be false
for the right branch.

• auxSynch: it is a boolean predicate that is true when p gets synchronized in
all execution paths of the traversed branch.

• lastPMRs : it is a set containing, for each of the execution paths of the traversed
branch, the index of the last entry created in PMRSeqssc. Note that Tra-
verseForkBranch invokes VisitSuccessorSC, which may in turn invoke Check-
RacesSC, where new entries can be added to the PMRSeqssc table.

Once all the branches of the fork has been traversed, and if contAfterFork is true
(this only happens if continue was true for all the fork’s branches – see line 28),
VisitSuccessorSC continues traversing the choreography graph from the fork’s com-
panion join node (line 41). Otherwise, if contAfterFork is false, VisitSuccessorSC
starts the backtracking process. This may happen in two cases:

a) p gets synchronized in one or more of the fork’s branches (i.e. auxSynch is
true for each of those branches and synch is true – see line 27). No races are
then possible between activities that precede the fork and activities that suc-
ceed the fork’s companion join. In this case the DetectRacesInChainedActSeqs
algorithm should not try to chain activity sequences whose first activity pre-
cedes the fork with activity sequences whose last activity succeeds the fork’s
companion join. For example, consider that, after analysing the graph in Fig.
15, VisitSuccessorSC stores three activity sequences in PMRSeqssc, namely
v1 · v2, v2 · v3 and v3 · v7. Assume also that p gets synchronized in the fork’s
right branch. Now, the DetectRacesInChainedActSeqs algorithm would chain
the v1 · v2 and v2 · v3 sequences, but should not try to chain the resulting se-
quence (i.e. v1 · v2 · v3) with v3 · v7. This is because p gets synchronized in
one of the fork’s branches, and no races can thus happen between events of
v1and events of v7. To ensure that DetectRacesInChainedActSeqs behaves as
expected, the last entries created in PMRSeqssc for each of the fork’s branches,
whose indexes are stored in lastPMRs, are “marked”. In the previous example
the entry containing v2 · v3 in would be marked. This is done with help of
the table synchPMR, which associate each element in lastPMRs with the first
activity in AuxSeq, which precedes the fork (lines 32-34).

b) p does not get synchronized in any of the fork’s branches, and p participates
in at least one of the activities of one of the fork’s branches. In this case races

16A role gets synchronized at a sending event if no races may happen between events preceding
and succeeding that sending event. See the explanation of procedure GetsSynchronized on page 39
for more details.

39

between activities preceding the fork and activities succeeding the fork’s com-
panion join are possible, but will be detected by the DetectRacesInChainedAct-
Seqs algorithm. Consider the example in Fig. 15 and imagine that p plays
initiating sub-roles in v1, v2 and v7 (p does not participate in the other activi-
ties). Starting from v1, VisitSuccessorSC would traverse the fork’s left branch,
find the sequence v1 · v2, and check for races between v1and v2. Then it would
traverse the fork’s right branch. After that, since continue would be false for
the left branch, it would start the backtracking process. Thereafter, starting
from v2, VisitSuccessorSC would find the sequence v2 · v3 · v7, and check for
races between v2and v7. Potential races between v1 and v7 would be found by
the DetectRacesInChainedActSeqs algorithm when chaining the two sequences
v1 · v2 and v2 · v3 · v7.

Procedure TraverseForkBranch (on page 45). This procedure first invokes
the VisitSuccessorSC procedure in order to find an activity in a fork’s branch where
a role p participates. There situations can then be differentiated:

• p does not participate in any of the execution paths of the fork’s branch. Then
joinFound will be true and k = 0. TraverseForkBranch will thus return with
(true, false, /0).

• p does not participate in some of the execution paths of the fork’s branch, and
gets synchronized in the other paths. Then joinFound will be true and k > 0.
TraverseForkBranch will again return with (true, false, /0), since F will be an
empty set.

• p participates in some of the execution paths. For each of those paths an
entry in the PMRSeqssc table should have been created by the CheckRacesSC
procedure, and the index of such entry should have been stored in the forkPMR
array. Then, for each entry in PMRSeqssc, TraverseForkBranch is recursively
invoked, but this time starting from the successor node of the last activity
of the activity sequence stored in PMRSeqssc. As a result of the recursion,
all the execution paths of the branch will be traversed until either the fork’s
companion join node or an activity where p gets synchronized is found. At the
end of this process, lastPMRs will contain the index of the last entry created
in PMRSeqssc in each of the execution paths. synch will be true if p got
synchronized in all execution paths, and contAfterFork will be true if p did
not participate in one or more (possibly all) of the execution paths, and got
synchronized in the remaining paths.

Procedures GetsSynchronized (on page 47) and SynchronizedRoles (on
page 47). We say that a role p gets synchronized at a sending event s, if no
races may happen at p between a visual predecessor of s and any of its visual
successors. More formally, given a visual order < and its associated causal order
≺, we say that a role p gets synchronized at a sending event s ∈ Sp if for any
e1 ∈ {e ∈ Ep : e < s} and any e2 ∈ {e ∈ Ep : s < e}, it holds that e1 ≺ e2. Intuitively,

40 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

procedure GetsSynchronized determines whether a role p gets synchronized, at a
specific point, in some of the execution paths described by the choreography graph.

Consider that the choreography describes a sequence of activities v1 · . . . ·vi ·vi+1 ·
. . . (i > 0). In general, this sequence of activities defines several alternative execution
paths, since each activity may describe several alternative behaviors. Each of those
execution paths is represented by a visual order (E,<) and a causal order (E,≺
) = ps1 ◦w . . .◦w psi ◦w psi+1 ◦w . . . (where each psi is one of the causal partial orders
associated with activity vi). A given activity may appear in several sequences of
activities, and each of these sequences may define several execution paths. Given an
activity vi, a causal order psi = (Ei,≺i), and a role p, procedure GetsSynchronized
returns true if p gets synchronized at a sending event s∈ Ei in all the choreography’s
execution paths that contain the behavior described by psi. Otherwise, it returns
false.

We explain in the following the process of checking whether a role gets synchro-
nized in a given execution path whose visual order is (E,<) and its causal order is
(E,≺) = ps1 ◦w . . .◦w psi ◦w psi+1 ◦w . . .◦w psn. Recall that we assume that the sequen-
tial composition of activities in the choreography graph is weakly-causal, and that
each individual activity is send-causal. This means that any psi in (E,≺) is send-
causal, and any psi ◦w psi+1 is weakly-causal. We consider initially the case where
activities describe sequential behaviors. Later, we generalize the result to consider
the possibility of concurrent behaviors.

Assume that role p executes at least one sending event in the behavior described
by psi (otherwise p does not get synchronized). Let sp ∈ Ei be the minimum sending
event of role p in psi (i.e. there is no other sending event s′ ∈ Ei such that s′ ≺i sp).
Consider now two events located at p, e1 and e2, such that e1 < sp (i.e. e1 is a visual
predecessor of sp) and sp < e2 (i.e. e2 is a visual successor of sp). We know that
e1 ≺ sp, since a role will not execute a sending until all events that are specified to
happen before that sending have been processed. Therefore, to determine whether
e1 ≺ e2 (and thereby determining whether p gets synchronized at sp), we just need
to check whether sp ≺ e2. Two cases can be differentiated. If e2 ∈ Eu, given that psi
is send-causal, and according to Proposition A.3, we have that sp ≺ e2. If otherwise
e2 6∈ Ei, then it should be the case that e2 ∈ Ei+1∪ . . .∪En. Let us take a closer look
at this case. Let smin

j be the minimum sending event in ps j (1≤ j≤ n). Let now q be
the initiating role of ps j+1, that is, the role executing the minimum sending event in

ps j+1 (i.e. loc(smin
j+1) = q), and let emax−q

j be the maximum event in ps j of q17. Since

ps j is send-causal we have that smin
j ≺ e, for any e∈ E j, and therefore smin

j ≺ emax−q
j or

smin
j = emax−q

j . Now, since emax−q
j ≺ smin

j+1 (due to the definition of weak sequencing),

we have that smin
j ≺ smin

j+1 ≺ e′, for any e′ ∈ E j+1. It is easy then to see that smin
j ≺ ex,

for any ex ∈ E j ∪ . . .∪En and any j ∈ {1 . . .n}. In particular, it must be the case

that emax−q
i ≺ smin

i+1 ≺ e2, where loc(emax−q
i) = loc(smin

i+1) = q. Therefore, to determine

whether sp ≺ e2, we just need to check whether sp ≺ emax−q
i or sp = emax−q

i . This is
what procedure SynchronizedRoles does.

17We note that q will always participate in ps j, since ps j ◦w ps j+1 is weakly-causal

41

Procedure SynchronizedRoles takes also into account that the causal orders may
describe concurrent behaviors. In general, p may have a set Min of minimum sending
events in psi. There might also be a set I of initiating roles in psi+1, and each of
them may have a set Maxq of maximum events in psi. Then, in order for role p to get
synchronized, it is necessary that for each role q ∈ I, there is at least one minimum
sending sp ∈Min and one maximum event emax−q

i ∈Maxq such that sp ≺ emax−q
i or

sp = emax−q
i . This ensures that sp ≺ smin

i+1 for each role q.

Procedure GetRaceType (on page 47). In case the behavior of an activity
contains loops, procedure CheckRacesSC considers only one iteration for each of the
loops. When a race is detected between two events and one of the events, or both,
are inside a loop, a question arises whether all potential instances of those events
(when several loop iterations are considered) will be in race. Procedure GetRaceType
answers that question by classifying a race as type1 and/or type2. This procedure
assumes send-causality (i.e. for any loop, the sequential composition of its body
with itself, and with the preceding and succeeding behaviors, is send-causal) and,
given a receiving event r1 that is in race with another receiving event r2 (i.e. r1 <p r2
but r1 6≺ r2), differentiates two main cases:

a) r1 is a loop event. If there is a sending event inside all loops that contain r1,
then only the instance of r1 corresponding to the last iteration of the loops will
be in race with r2. Otherwise, each instance of r1 will be in race with r2, and
the race between r1 and r2 is said to be a type1 loop-race (i.e. type1 = true).

b) r2 is a loop event. If there is a sending event inside all loops that contain r2,
then r1 is in race only with the instance of r2 corresponding to the first iteration
of the loops. Otherwise, r1 will be in race with all instances of r2, , and the
race between r1 and r2 is said to be a type2 loop-race (i.e. type2 = true).

Procedure CheckRacesSC (on page 46). This procedure checks whether there
is any race at role p between events in v1 (i.e. the first activity in the current sequence
of activities) and events in u (i.e. the first activity after v1 where role p participates).
The procedure takes into account that activities may describe alternative behaviors,
so each activity may have several associated posets, as well as concurrent behaviors,
so p may have several minimum and maximum sendings in each poset. It also takes
into account that activities may describe loops. Only one iteration of each loop is
considered to build the visual orders used to detect races. The effect of multiple
loop iterations is considered by invoking procedure GetRaceType.

For race detection the procedure obtains, for each poset of v1 and each poset of
u, the sets Rv1

race and Ru
race of receiving events that might be in race. Rv1

race (line 4)
contains receiving events from v1 that do not have any sending event as a successor,
while Ru

race (line 13) contains receiving events from u that do not have any sending
event as a predecessor. If non-FIFO channels are used for communication, all these
events will be in race. Otherwise, if FIFO channels are used, a receiving event
r1 ∈ Rv1

race will be in race with a receiving event r2 ∈ Ru
race if their associated sending

events are not located at the same role. Whenever a race is found between two

42 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

events r1 and r2, the value of AuxSeq (i.e. the current sequence of visited activities)
is stored in table EventsInRace (line 18). In addition, procedure GetRaceType is
invoked to determine whether the events that are in race are inside a loop and, if so,
check whether all potential instances of those events (when several loop iterations are
executed) are or not in race. The result of this procedure is stored in the RaceType
table (line 19).

In addition to checking the existence of races between v1 and u, procedure Check-
RacesSC determines whether races may exist at role p between v1 and other activi-
ties that may be executed after u. This information will then be used by procedure
TraverseForkBranch and algorithm DetectRacesInChainedActSeqs.

Races between v1 and any successor activity of u might be possible in the follow-
ing three cases:

a) If u describes several alternative behaviors, and p does not participate in some
of them (line 6).

b) If p only executes receiving events in one of the possible behaviors described
by u (line 20).

c) If p executes a sending event in one of the possible behaviors described by u,
but it does not get synchronized at that sending event18 (line 24).

In the three cases above, procedure CheckRacesSC stores in the PMRSeqssc table
data that will be used by DetectRacesInChainedActSeqs for the actual detection of
races (namely AuxSeq,Rv1

race,Ru
race and a boolean value specifying whether there was

any race between events of v1 and u). In addition, the index of the entry created
in PMRSeqssc is stored in the forkPMR set and in the PMRrcv set (in cases a and
b) or in the PMRsnd set (in case c). Also in the three cases above, a boolean entry
in the synchSB array is created and set to false, meaning that role p does not get
synchronized in the current execution path. Otherwise, if no one of the three above
cases applies, an entry in the synchSB array is created and set to true, meaning that
p gets synchronized in the current execution path.

18Note that this implies that the sequential composition of u with one of its succeeding activities
in the choreography is weakly-causal.

43

Algorithm 2: DetectRacesWithSendCausality
Data: A choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2; Sets PMR and PMRSeqs
that are useful for the detection of races involving several collaboration sequences

foreach role p playing both terminating and non-initiating sub-roles do1

foreach v1 ∈V where p plays a terminating sub-role do2

forall v ∈V do visited[v]← f alse3

i← 0; VisitedMerge← /04

AuxSeq←{v1} // Ordered sequence of activities5

v← successor of v16

VisitSuccessorSC (v, f alse, f alse, /0,0)7

44 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure VisitSuccessorSC(v, forkFound, joinFound,synchSB,k)
visited[v]← true1

if v is an activity node then2

AuxSeq← AuxSeq∪{v}3

if p participates in v then4

(synchSB,k)←CheckRacesSC(v,synchSB,k)5

AuxSeq← AuxSeq−{v}; visited[v]← f alse // Backtrack6

return (joinFound ,synchSB,k)7

else if v is a merge node then8

VisitedMerge←VisitedMerge ∪{v}9

else if v is a decision node then10

visited[v]← f alse // Decision nodes can always be revisited11

foreach u successor of v do12

if |AuxSeq|= 1 then13

forall w ∈VisitedMerge do visited[w]← f alse14

VisitedMerge← /015

if !visited[u] then16

(joinFound ,synchSB,k)←VisitSuccessorSC (u, forkFound , joinFound ,synchSB,k)

return (joinFound ,synchSB,k)17

else if v is a join node ∧ forkFound then18

vjoin← v; visited[v]← f alse19

return (true,synchSB,k) // joinFound is set to true20

else if v is a fork node then21

forkFound ← true; vjoin← null22

synch← f alse; contAfterFork ← true; allLastPMRs ← /0; AuxSeqold← AuxSeq23

foreach successor u of v do24

(continue,auxSynch, lastPMRs)← TraverseForkBranch(u, /0, /0)25

allLastPMRs ← allLastPMRs ∪ lastPMRs26

synch← synch∨auxSynch27

contAfterFork ← contAfterFork ∧ continue28

AuxSeq← AuxSeqold29

forkFound ← f alse; joinFound ← f alse30

if !contAfterFork then31

if synch = true then32

v1← first element of AuxSeq33

forall (u, p, j) ∈ allLastPMRs do synchPMR[u][p][j]← v134

synchSB [k]← true; k ++35

else36

// In case the just visited fork is inside another fork-join pair
foreach (u, p, j) ∈ allLastPMRs do37

forkPMR[k]← (u, p, j); synchSB [k]← f alse; k ++38

visited[v]← f alse // Backtrack39

return (f alse,synchSB ,k)40

AuxSeq← AuxSeq∪{v}41

v← vjoin // Continue traversing graph from companion join42

u← successor of v43

if !visited[u] then44

(joinFound ,synchSB,k)←VisitSuccessorSC (u, forkFound , joinFound ,synchSB,k)
/* Backtrack */
if v is NOT a merge node then visited[v]← f alse45

return (joinFound ,synchSB,k)46

45

Procedure TraverseForkBranch(v, prevPMR, lastPMRs)
/* forkPMR and PMRSeqs sc are global variables whose data is set in the
CheckRacesSC procedure */
synch← true; contAfterFork ← f alse1

(joinFound ,synchSB,k)←VisitSuccessorSC(v, true, f alse, /0,0)2

if joinFound then synch← f alse3

if joinFound∧prevPMR = /0 then contAfterFork ← true4

if !joinFound∨ (joinFound∧ k > 0) then5

lastPMRs ← lastPMRs−prevPMR6

F ←{forkPMR[j] : j ∈ 0 . . .k−1∧ synchSB[j] = f alse}7

foreach (w,q, j) ∈ F do8

lastPMRs ← lastPMRs ∪{(w, p, j)}9

u←last activity of PMRSeqssc[w][q][j].AuxSeq10

AuxSeq←{u}; iold← i; i← 011

x←successor of u12

(continue,auxSynch, lastPMRs)← TraverseForkBranch(x,{(w,q, j)}, lastPMRs)13

i← iold14

synch← synch∧auxSynch15

if !auxSynch then contAfterFork ← f alse16

return (contAfterFork ,synch, lastPMRs)17

46 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure CheckRacesSC(u,synchSB,k)
Data: Activity u with which v1 (first act. in AuxSeq) could be in race
Result: EventsInRace and RaceType are updated if a race is found; Entries in PMRrcv/snd

and PMRSeqssc are created if v1 might be in race with an activity following u (to
be used by the DetectChainRaces algorithm); Entries in f orkPMR and synch are
created for use in the TraverseForkBranch procedure

v1← first element of AuxSeq1

foreach visual order (Ev1
p ,<v1

p) of v1 do2

Sv1
max←{s ∈ Sv1

p :6 ∃s′ ∈ Sv1
p ,s <v1

p s′} // max sending events in psv1
p3

/* Obtain set Rv1
race of receiving events from psv1

p that could be in race
(i.e. all receiving events, except those that according to <v1

p precede
any of the maximum sending events) */
Rv1

race← Rv1
p −{r ∈ Rv1

p : ∃smax ∈ Sv1
max,r <v1

p smax}4

foreach visual order (Eu
p,<

u
p) of u do5

if Eu
p = /0 then /* p does not participate in this alternative of u */6

PMRSeqssc[v1][p][i]← (AuxSeq,Rv1
race, /0, f alse); PMRrcv← PMRrcv∪{(v1, p, i)}7

i ++8

f orkPMR[k]← (v1, p, i); synchSB[k]← f alse; k ++9

else10

race← f alse11

Su
min←{s ∈ Su

p : 6 ∃s′ ∈ Su
p,s
′ <u

p s} // min sending events in psu
p12

/* Obtain set Ru
race of receiving events from psu

p that could be in
race (i.e. all receiving events, except those that according to
<u

p happen after any of the minimum sending events) */

Ru
race← Ru

p−{r ∈ Ru
p : ∃smin ∈ Su

min,smin <u
p r}13

// Check races
foreach rv1 ∈ Rv1

race do14

foreach ru ∈ Ru
race do15

if non-FIFO OR (FIFO AND loc(snd(ev1)) 6= loc(snd(eu))) then16

race← true17

EventsInRace[rv1][ru]← EventsInRace[rv1][ru]∪{AuxSeq}18

/* Check if the race involves events inside loops */
RaceType[rv1][ru]← GetRaceType(rv1 ,ru,S

v1
max,Su

min)19

if Su
min = /0 then // p has only receiving events in Eu

p20

PMRSeqssc[v1][p][i]← (AuxSeq,Rv1
race,Ru

race,race)21

PMRrcv← PMRrcv∪{(v1, p, i)}; i ++22

f orkPMR[k]← (v1, p, i); synchSB[k]← f alse; k ++23

else if NOT GetsSynchronized(p,u, psu) then24

PMRSeqssc[v1][p][i]← (AuxSeq,Rv1
race,Ru

race,race)25

PMRsnd← PMRsnd∪{(v1, p, i)}; i ++26

f orkPMR[k]← (v1, p, i); synchSB[k]← f alse; k ++27

else28

/* Role p gets synchronized. No possibility of race at p
between v1 and any activity following u, so no PMR and
PMRSeqs entries needed. */
synchSB[k]← true; k ++29

return (synchSB,k)30

47

Procedure GetRaceType(rv1 ,ru,S
v1
max,Su

min)

(type1, type2)← (f alse, f alse) // No special race1

if rv1 is inside one or more nested loops then2

/* There will be one instance of rv1 for each loop iteration */
if 6 ∃smax ∈ Sv1

max such that smax is contained by all nested loops that contain rv1 then3

/* All instances of rv1 are in race with ru */
type1← true4

if ru is inside one or more nested loops then5

/* There will be one instance of ru for each loop iteration */
if 6 ∃smin ∈ Su

min such that smin is contained by all nested loops that contain ru then6

/* rv1 is in race with all instances of ru */
type2← true7

return (type1, type2)8

Procedure GetsSynchronized(p,u, psu)
Result: true if p gets synchronized for all successor posets of psu. false otherwise
result← true1

foreach successor activity w of u do2

foreach poset psw of w do3

if SynchronizedRoles(psu, psw,{p}) = /0 then4

result← f alse5

return result6

Procedure SynchronizedRoles(ps1, ps2,R)

/* We assume ps1 = (S1∪R1,≺1) */
Rsynch← /01

/* Get subset Rsnd of roles from R that have a sending event in ps1 */
Rsnd←{loc(s) : loc(s) ∈R ∧ s ∈ S1}2

if Rsnd 6= /0 then3

if ps1 ◦w ps2 is weakly-causal then4

I←{loc(e) : e ∈ min(ps2)} /* Initiating roles of ps2 */5

foreach q ∈ I do6

Max[q]←{e : e ∈ max(ps1)∧ loc(e) = q} /* Max events in ps1 of q role */7

foreach p ∈Rsnd do8

Min←{s : s ∈ min((S1,≺1))∧ loc(s) = p}/* Min sendings in ps1 of p */9

if ∀q ∈ I,∃m ∈Max[q],∃s ∈Min such that s≺1 m∨ s = m then10

Rsych←Rsynch∪{p}11

else /* Send-causal sequencing */12

Rsynch←Rsnd13

14

return Rsynch15

48 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

5.1.2 Races with Weakly-causal Weak Sequencing

When the weak sequencing of collaborations is weakly-causal, the global causal order
of events has to be considered for race detection. Consider again the example in Fig.
13. The sequential composition v4◦w v5 is weakly-causal. It is easy to see that events
happening in v4 after !m5 (i.e. the events performed by R2 and R3) may be in race
with other events in v5,v6,v7 and v8. Let us focus on role R2, which performs three
events in v4 after !m1, namely ?m6, !m7 and ?m8. Just by looking at the local ordering
of events in the lifeline of R2 we cannot determine whether, for example, ?m6 is in
race with ?m10,?m13 or ?m15. To find this out we need to consider the causal order
between the events of R2 and the events performed by the other roles. Fortunately,
the total number of events that we need to consider in order to build such causal
order can be limited. In this case, for example, we do not need to consider the
events of v8 (and of any other collaboration that may succeed v8) in order to detect
races at R2. This is because R2 gets synchronized at sending event !m14 in v7 (see
explanation on page 39), so no races may happen at R2 between events preceding
and succeeding !m14 in R2’s lifeline.

In the following we explain in more detail the DetectRacesWithWeakCausality
algorithm and each of the procedures that are used by this algorithm.

Algorithm DetectRacesWithWeakCausality (on page 51). For each causal
poset ps1 = (E1,≺1) of an activity v1, and each causal poset ps2 of an activity v2, such
that ps1◦w ps2 is weakly-causal, this algorithm finds race conditions involving events
of E1. For that, it first obtains the set R of roles that are subject to potential races,
that is, roles whose events may be in race with other events (lines 4-9). Intuitively,
these are roles that may execute an event from E1 when the behavior described by
ps2 has already been started. Given an initiating-role q of ps2, and a maximum event
m of q in ps1 (if m is a receiving event, its associated sending event is considered
instead), a role may execute an event e ∈ E1 after q has initiated ps2 if e will always
be executed after m (i.e. m ≺1 e), or if e and m may be executed in any order (i.e.
m 6≺1 e and e 6≺ m). We note, however, that the algorithm only considers roles that
may execute a sending event form ps1 when ps2 has already been initiated (line 9).
This is because races affecting a role that may execute receiving events from ps1,
but not sending events, when ps2 has already been initiated, are already detected
by the DetectRacesWithSendCausality algorithm.

Once the set of roles subject to potential races has been obtained, the algo-
rithm invokes the VisitSuccessorWC procedure to perform a depth-first search on
the choreography graph. This procedure returns an array SEQS (via a global vari-
able) whose elements are tuples of the form (seq, ps,R ′), where seq = v1 · v2 · . . . · vn
is a sequence of activities, ps = ps1 ◦w ps2 ◦w . . . ◦w psn (n ≥ 2) is the causal poset
corresponding to one of the execution paths associated to seq, and R ′ ⊆R is the
set or roles that did not get synchronized in any of the posets in ps. Normally,
R ′ will be the empty set, unless a final node or an infinite loop was found in the
choreography (see the explanation of VisitSuccessorWC).

After VisitSuccessorWC returns, the CheckRacesWC procedure is invoked to
detect races with help of the causal posets previously obtained.

49

Procedure VisitSuccessorWC (on page 52). This is a recursive procedure
that performs a depth-first search [AHU74] in the choreography graph.

Control nodes, as well the posets of activity nodes, can be“visited”at most twice.
This avoids infinite sequences in the presence of loops, while it ensures that all com-
binations of activities that are interesting for the detection of races are considered.

Each time an activity node is visited, each one of its posets is visited. The
procedure then checks whether any role in R got synchronized in the previously
visited poset (when that poset is weak sequenced with the current one) and, if so,
it removes the roles that got synchronized from R (line 7). When all roles in R
get eventually synchronized (and if the done flag is false), the current sequence
of visited activities, and the causal poset corresponding to the sequence of visited
posets are stored in the SEQS array (by invoking the ProcessSeq procedure in line
10). The done flag is done to avoid having several equal entries in the SEQS array,
in case R becomes empty for several posets of the same activity. If not all roles got
synchronized, the current activity and poset are added to the sequences of visited
activities and posets, and the traversal of the graph continues by recursively invoking
VisistSuccessorWC (line 13). The backtracking process starts in the following cases:

• If a final node is found or all roles in R get synchronized. In that case,
the ProcessSeq procedure is invoked to store in the SEQS array the current
sequence of visited activities, as well as the causal poset corresponding to the
sequence of visited posets.

• If a join node is found. This is done as part of the special treatment of fork-join
pairs, as it is explained later on.

• In the presence of loops, when a third attempt to traverse the body of the
loop is made. In this case the ProcessSeq procedure might or not be invoked.
Consider the loop in Fig. 16(a). After visiting d1 twice, VisitSuccessorWC
may try to visit m1 a third time with no success. It would then go back
to d1 and continue thereafter to v3 without invoking ProcessSeq. Consider
now the loop in Fig. 16(b). Here, after visiting v2 twice, VisitSuccessorWC
may try to visit m1 a third time. As in the previous example, it would not
succeed and the backtracking process would be initiated. However, before
that, VisistSuccessorWC would invoke the ProcessSeq procedure (line 14). As
a result, the activity sequence v1 · v2 · v2 and the causal poset ps1 ◦w ps2 ◦w ps2
would be stored in the SEQS array.

When a fork node is visited, the MapForkWC procedure is invoked (line 26). This
procedure returns two sets, SynchPaths and UnsynchPaths, whose elements are tu-
ples of the form (seq, ps,R ′) (i.e. the same type of tuples stored in the SEQS array).
The elements in SynchPaths describe execution paths through the fork where all roles
in R get synchronized. For each of these paths the ProcessSeq procedure is invoked
(line 32) and the backtracking process is initiated. The elements in UnsynchPaths
describe execution paths through the fork where not all roles in R get synchronized.
For each of these paths, the VisistSuccessorWC procedure is invoked (line 37) to
continue traversing the choreography graph from the fork’s companion join node.

50 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

(a) (b)

v1

v2

m1

d1

v3

v1

v2

m1

Figure 16: Two examples of loops in a choreography graph

Procedure MapForkWC (on page 53). For each branch of a fork-join pair,
this procedure traverses all the possible execution paths, and generates a causal
poset and a sequence of activities for each of them (lines 1-1). Thereafter, it groups
the paths in sets CP of concurrent paths (the getsComb function, shown below, is
used for this – line 9). For example, two sets of concurrent paths would be generated
for the fork-join pair in Fig. 15, one for v2 ·v3 and v4 ·v5, and another for v2 ·v3 and
v4 · v6. The procedure generates a causal order for each set of concurrent paths, as
well as a corresponding activity sequence, and stores them in the SynchPaths set,
if all roles in R get synchronized in at least one of the concurrent paths, or in the
UnsynchPaths set, otherwise.

getCombs(S) =


/0, if S = /0
{{s} : s ∈ S}, if S = {S}
{{e}∪Comb : e ∈ S∧Comb ∈ getCombs(S′)}, if S = S′∪{S}

Procedure CheckRacesWC (on page 54). This procedure analyzes the causal
posets generated by the VisitSuccessorWC procedure (and stored in the global vari-
able SEQS) in order to find race conditions. Each of those causal posets describes
an execution path through a sequence of activities v1 · v2 · . . . · vn, and is of the form
(E≺,≺) = ps1 ◦w ps2 ◦w . . .◦w psn (n≥ 2), where ps1 ◦w ps2 is weakly-causal.

CheckRacesWC checks whether any event e ∈ E1 (if ps1 = (E1,≺1)) is in race
with any receiving event event r ∈ E≺−E1. This is done by checking whether e is a
causal predecessor of r. If it is not, the events are in race, and the activity sequence
where such race may happen is stored in the EventsInRace table. Note that the
same poset may appear twice in ps1 ◦w ps2 ◦w . . .◦w psn, if its activity is inside a loop
in the choreography graph. In that case the second occurrence of the poset will
have their events relabeled and marked as loop events. This fact is used by the
CheckRacesWC procedure to determine the “type of loop race” (see explanation on
page 41).

51

Algorithm 9: DetectRacesWithWeakCausality
Data: A choreography graph (V,E)
Result: x
foreach pair (v1,v2) of activities whose sequential composition is weakly-causal do1

/* [[SD]]WC
SD instantiates each loop of SD with two iterations */

foreach poset ps1 = (S1∪R1,≺1, t1) ∈ [[SDv1]]WC
SD of v1 do2

foreach poset ps2 ∈ [[SDv2]]WC
SD of v2 such that ps1 ◦w ps2 is weakly causal do3

/* Obtain the set R of roles that are subject to potential races
due to weak causality */
R← /0; MaxEv← /04

foreach initiating-role q of ps2 do5

foreach maximum event m ∈ max(ps1) such that loc(m) = q do6

if m is a receiving event then m← snd(m)7

MaxEv←MaxEv∪{m}8

R←R ∪{loc(s) 6= q : s ∈ S1∧ (m≺1 s∨ (m 6≺1 s∧ s 6≺1 m))}9

if R 6= /0 then10

/* Now we start a DFS on the graph, looking for activities
where roles subject to races participate */
forall v ∈V do11

if v is an activity node then12

visited[psv]← 0, for each poset psv of v13

else14

visited [v]← 015

f orks← 0; i← 0; SEQS← /016

AuxSeqAct←{v1,v2}; AuxSeqPS←{ps1, ps2}17

visited[ps1]++; visited[ps2]++18

seqProcessed ← f alse19

VisitSuccessorWC(u,R, ps2) // u is v2’s successor20

CheckRacesWC (v1,S1∪R1,MaxEv ,R)21

52 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure VisitSuccessorWC(v,R, psprev)

if v is an activity node then1

Rbck←R /* Backup to have fresh data for each poset */2

done← f alse3

foreach poset psv ∈ [[SDv]]WC
SD of v, such that visited[psv] < 2 do4

R←Rbck5

visited[psv]++6

/* Check if any role gets "synch" with a sending event */
R←R−SynchronizedRoles(psprev , psv ,R)7

if R = /0∧!done then8

done← true9

ProcessSeq(AuxSeqPS,AuxSeqAct,R)10

else if R 6= /0 then11

/* NOTE: If visited[psv] = 2, relabel events of psv as loop events */
AuxSeqPS← AuxSeqPS∪{psv}; AuxSeqAct← AuxSeqAct ∪{v}12

VisitSuccessorWC(u,R, psv) // u is v’s successor13

if !seqProcessed then ProcessSeq(AuxSeqPS,AuxSeqAct,R)14

AuxSeqPS← AuxSeqPS−{psv}; AuxSeqAct← AuxSeqAct−{v}15

visited[psv]−−16

else if visited[v] < 2 then17

visited[v]++18

if v is an activity-final or flow-final node then19

ProcessSeq(AuxSeqPS,AuxSeqAct,R)20

else if v is a join node AND f orks > 0 then21

ProcessSeq(AuxSeqPS,AuxSeqAct,R)22

vjoin← v23

else if v is a fork node then24

f orks ++; vjoin← null25

(SynchPaths,UnsynchPaths)←MapForkWC(v,R, psprev)26

f orks−−27

if vjoin = null then28

/* Either all fork branches got synchronized before reaching the
associated join node, or all branches ended up in a final node.
In any case we are finished. */
SynchPaths ← SynchPaths ∪UnsynchPaths29

UnsynchPaths ← /030

foreach (f orkActs, psfork,Rfork) ∈ SynchPaths do31

ProcessSeq(AuxSeqPS∪{psfork},AuxSeqAct ∪{ f orkActs},Rfork)32

vjoin succ←successor of vjoin33

foreach (f orkActs, psfork,Rfork) ∈UnsynchPaths do34

AuxSeqPS← AuxSeqPS∪{psfork}; AuxSeqAct← AuxSeqAct ∪{ f orkActs}35

seqProcessed ← f alse36

VisitSuccessorWC(vjoin succ,Rfork, psfork)37

else38

foreach u successor of v do39

seqProcessed ← f alse40

VisitSuccessorWC(u,R, psprev)41

visited[v]−−42

return43

53

Procedure ProcessSeq(AuxSeqPS,AuxSeqAct,R)

SEQS[i]← (AuxSeqAct,CausalOrderSeq(AuxSeqPS),R)1

i ++2

seqProcessed ← true3

return4

Procedure MapForkWC(vfork,R, psprev)
AuxSeqPSold← AuxSeqPS; AuxSeqActold← AuxSeqAct; iold← i1

Paths ← /0;2

foreach successor u of vfork do3

AuxSeqPS← /0; AuxSeqAct← /0; i← iold4

VisitSuccessorWC (u,R, psprev)5

/* SEQS is a global variable updated by VisitSuccessorWC */
Paths← Paths∪{{SEQS[j] : iold ≤ j < i}}6

AuxSeqPS← AuxSeqPSold; AuxSeqAct← AuxSeqActold; i← iold7

SynchPaths ← /0; UnsynchPaths ← /08

foreach CP ∈ getCombs(Paths) do9

psfork←CausalOrderPar({(ps : (seq, ps,Rp) ∈CP})10

forkActs ←
∣∣ ∣∣

(seq,ps,Rp)∈CP
seq

11

if ∃(seq, ps,Rp) ∈CP such that Rp = /0 then12

/* If roles get synchronized in a path, they do it for the set of
concurrent paths */
SynchPaths ← SynchPaths ∪{(forkActs, psfork, /0)}13

else14

UnsynchPaths ←UnsynchPaths ∪{(forkActs, psfork,{Rp : (seq, ps,Rp) ∈CP})}15

return (SynchPaths,UnsynchPaths)16

54 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure CheckRacesWC(v1,E1,MaxEv,R)

PMRwc← /0; n← 01

foreach j ∈ {0 . . . i} do2

(ActSeq,(E≺,≺),R ′)← SEQS[j]3

Rtail←{e ∈ (E≺−E1) : e is a receiving event}4

foreach p ∈R do5

foreach e ∈ E1, such that loc(e) = p do6

foreach r ∈ Rtail,such that loc(r) = p do7

if e 6≺ r then8

if e or r are marked as a “loop event” then9

/* etype (resp. rtype) is the event type of which e
(resp. r) is an instance */
(type1, type2)← RaceType[etype][rtype]10

if e is marked as a “loop event” then11

type1← true12

if r is marked as a “loop event” then13

type2← true14

RaceType[etype][rtype]← (type1, type2)15

else16

EventsInRace[e][r]← EventsInRace[e][r]∪{SEQS[j].ActSeq}17

PMRSeqswc[v1][p][n]← SEQS[j]18

PMRwc← PMRwc∪{(v1, p,n)}19

n ++20

55

5.1.3 Races in Chained Activity Sequences

Algorithm DetectRacesInChainedActSeqs (on page 57). Given an activity
sequence seq1 = v1 ·v2 · . . . ·vn (n > 1), obtained by the DetectRacesWithSendCausality
algorithm19, the DetectRacesInChainedActSeqs algorithm looks for other activity
sequences whose first activity is vn, that is, sequences of the form seq2 = vn · vn+1 ·
. . . ·vm (m > n). Thereafter, it looks for races between v1 and vm, if seq2 was obtained
by the DetectRacesWithSendCausality algorithm. Otherwise, if seq2 was obtained
by the DetectRacesWithWeakCausality algorithm, it looks for races between v1 and
any of the activities in seq2. In the former case the matching and detection processes
are repeated again, now with seq1 = v1 · v2 · . . . · vn · vn+1 · . . . · vm.

The matching and detection processes described above are indeed performed
by the CheckChainsSC and CheckChainsWC procedures, which we explain in the
following.

Procedure CheckChainsSC (on page 58). This procedure tries to chain the
activity sequences that were obtained by the DetectRacesWithSendCausality algo-
rithm (so it assumes that the sequential composition of activities is send-causal).
When two or more sequences are chained, the procedure checks for races between
the first and the last activities of the resulting sequence. The procedure also detects
whether the activities in races are inside loops. If two activities v1 and v2, such that
v1 is executed before v2

20, are in race, and v1 is inside a loop, LoopRaceType1[v1][v2]
is set to true. This means that if an event e1 from v1 is in race with and event e2
from v2, all instances of e1 (due to the loop iterations) will be in race with e2. If v2
is inside a loop, LoopRaceType2[v1][v2] is set to true. This means that if an event
e1 from v1 is in race with and event e2 from v2, e1 will be in race with all instances
of e2. To detect the existence of loops, when an activity sequence is considered for
concatenation, its last activity is marked as “visited”, as well as added to the visited-
Seq set, which is an ordered set of visited activities (line 8). Activities inside loops
are stored in the ActInsideLoop set. In addition, the procedure uses the ActInRace
set to keep record of the activities that are in race.

The procedure receives as input an activity sequence seq1, which starts with an
activity v and ends with an activity u. Using the indexes stored in PMRrcv and
PMRsnd, the procedure finds activity sequences that start with u. When a sequence
seq2 starting with u is found, its last activity (in the following w) is extracted. The
procedure then checks whether w has already been visited (line 7). If not, it marks
it as visited and checks whether v and w are the same activity. If that is the case,
v is inside a loop, so it is added to the ActInsideLoop set. If any activity is in
race with v the appropriate LoopRaceType1 flag is set to true (lines 9-11). After
that, the procedure checks whether there are any races between events of v and

19Recall that in the CheckRacesSC procedure (pages 41 and 46), activity sequences (together
with additional data) were stored in the PMRSeqssc table, and that the indexes of the entries
created in that table were stored in either the PMRrcv set or the PMRsnd set. Activity sequences
obtained by the DetectRacesWithSendCausality algorithm can thus be retrieved via the elements
in PMRrcv and PMRsnd.

20If the execution is tarted at the choreography graph’s initial node

56 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

events of w (lines 12-15). If any race is detected, an entry in the EvenstInRace
table is created, and w is added to the ActInRace set (line 16). The LoopRaceType1
flag is also set to true if v is inside a loop. Once the race detection process is
finished, the procedure checks whether it is allowed to chain the activity sequence
resulting from concatenating seq1 and seq2 with other activity sequences (line 18)21.
If allowed, the procedure invokes either CheckChainsSC (i.e. a recursive invocation)
or CheckChainsWC to continue with the chaining process. The former happens if
role p does not execute any sending event in w. In that case, the index (u, p, j)
pointing to seq2 belongs to PMRrcv.

If w was already visited, a loop has been detected. In that case all activities that
were visited after the first visit to w are added to the ActInsideLoop set. Also, if
any of those activities is in race with v, the appropriate LoopRaceType2 flag is set
to true.

Procedure CheckChainsWC (on page 59). Given an activity sequence seq1
(obtained by the DetectRacesWithSendCausality algorithm), which starts with an
activity v and ends with an activity u, this procedure tries to find activity sequences
obtained by the DetectRacesWithSendCausality algorithm that start with u (this
is done using the indexes stored in PMRwc). Given an activity sequence seq2 that
starts with u, and whose causal partial order is (R≺∪S≺,≺), the procedure looks for
races between any receiving event rv from v (i.e. rv ∈ Rv

race) and any receiving event r
from seq2 (i.e. r ∈ R≺). For that, the procedure obtains the set of minimum sending
events of p in seq2 (by construction of seq2 those sending events should belong to
u’s set of events). Role p may have more than one minimum sending event if there
are concurrent sendings. Given a maximum sending event m, and a receiving event
r ∈ R≺, it is easy to see that if m ≺ r, no rv ∈ Rv

race can be in race with r (since
r ≺ m will always be true). Therefore, the procedure only looks for receiving events
r ∈ R≺that have no maximum sending of p as causal predecessor.

21See explanation on page 38.

57

Algorithm 14: DetectRacesInChainedActSeqs
Data: PMR,PMRSeqs from Algorithm 2; Choreography graph (V,E)
Result: A table EventsInRace containing in position (e1,e2) a set of collaboration

sequences that lead to a race between events e1 and e2
foreach role p do ActsInsideLoop[p]← /01

forall (v, p, i) ∈ PMRrcv such that v 6= synchPMR[v][p][i] do2

(seq1,Rv
race,R

u
race,race)← PMRSeqssc[v][p][i]3

visitedSeq← /04

forall u ∈V do visited[u]← f alse // Mark all choreography nodes as5

non-visisted
x←last element of seq16

visited[x]← true; visitedSeq←{x}7

if v = x then8

ActsInsideLoop[p]← ActsInsideLoop[p]∪{v}9

ActsInRace← /010

if race then ActsInRace←{x}11

CheckChainsSC(seq1,v, p,Rv
race)12

forall (v, p, i) ∈ PMRsnd such that v 6= synchPMR[v][p][i] do13

(seq1,Rv
race,R

u
race,race)← PMRSeqssc[v][p][i]14

u←last element of seq115

CheckChainsWC(seq1,u)16

58 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure CheckChainsSC(seq1,v, p,Rv
race)

visitedold← visited; visitedSeqold← visitedSeq;1

u←last element of seq12

forall (u, p, j) ∈ PMRsnd∪PMRrcv, j ≥ 0 do3

visited← visitedold; visitedSeq← visitedSeqold;4

(seq2,Ru
race,R

w
race,race)← PMRSeqssc[u][p][j]5

w←last element of seq26

if !visited[w] then7

visited[w]← true; visitedSeq← visitedSeq∪{w}8

if w = v then9

ActsInsideLoop[p]← ActsInsideLoop[p]∪{v}10

forall x ∈ ActsInRace do LoopRaceType1[v][x]← true11

foreach rv ∈ Rv
race do12

foreach rw ∈ Rw
race do13

if non-FIFO channels OR (FIFO channels AND14

loc(snd(rv)) 6= loc(snd(rw))) then
EventsInRace[rv][rw]← EventsInRace[rv][rw]∪{(seq1−{u})∪ seq2}15

ActInRace← ActInRace∪{w}16

if v ∈ ActInsideLoop[p] then LoopRaceType1[v][w]← true17

if synchPMR[u][p][j] = null∨ (synchPMR[u][p][j] 6= v∧!visited[synchPMR[u][p][j]])18

then
if (u, p, j) ∈ PMRrcv then19

CheckChainsSC((seq1−{u})∪ seq2,v, p,Rv
race)20

else21

CheckChainsWC((seq1−{u})∪ seq2, p,Rv
race)22

else23

X ←{w}∪{x : x appears after w in visitedSeq}24

ActsInsideLoop[p]← ActsInsideLoop[p]∪X25

forall x ∈ ActsInRace∩X do LoopRaceType2[v][x]← true26

return27

59

Procedure CheckChainsWC(seq1, p,Rv
race)

u←last element of seq11

forall (u, p, j) ∈ PMRwc, j ≥ 0 do2

(seq2,(R≺∪S≺,≺),R)← PMRSeqswc[u][p][j]3

M←{m : m ∈ min((S≺,≺))∧ loc(m) = p} // Minimum sending event(s) of p in E≺4

foreach rv ∈ Rv
race do5

foreach r ∈ R≺ such that loc(r) = p∧m 6≺ r,∀m ∈M do6

if non-FIFO channels OR (FIFO channels AND loc(snd(rv)) 6= loc(snd(r)))7

then
if r is marked as a “loop event” then8

/* We assume rtype is the event type of which r is an
instance */
(type1, type2)← RaceType[rv][rtype]9

type2← true10

if v ∈ ActsInsideLoop[p] then type1← true else type1← f alse11

RaceType[rv][rtype]← (type1, type2)12

else13

EventsInRace[rv][r]← EventsInRace[rv][r]∪{(seq1−{u})∪ seq2}14

return15

60 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

5.2 Detection of Ambiguous and Race

Propagation

Ambiguous propagation happens when the triggering traces specified for a non-
choosing component in two different alternatives of a choice have a common prefix.
Race propagation happens if there can be an ambiguous propagation due to the
existence of races. That is, if the triggering traces that may be observed at run-time
in two different alternatives, due to the effect of races, have a common prefix.

Obviously, in order to determine whether two triggering traces have a common
prefix it is sufficient to compare their first elements. This is indeed enough to either
assert or negate the existence of ambiguous or race propagation. However, in case of
a propagation problem, knowing the complete triggering traces and their complete
common prefix helps to determine the most appropriate resolution. For example,
consider these two pairs of triggering traces, both of them giving rise to ambiguous
propagation: {(?a),(?a)} and {(?a,?b,?c),(?a,?b,?d)}. Whit the second pair we may
opt for a design solution where the decision on which alternative to follow is postpone
until the reception of either message c or d. We can do this by “extracting” ?a,?b
from the choice in the local behavior of the non-choosing component. Obviously,
this solution is not valid for the first pair of triggering traces.

We present in the following an algorithm for the detection of both ambiguous
and race propagation problems. In the case of ambiguous propagation, the algo-
rithm is able to obtain the maximum common prefix of two triggering traces leading
to ambiguous propagation, even in the presence of loops. In the case of race prop-
agation, the algorithm considers only one iteration of loops. This means that race
propagation problems will always be detected, but the maximum common prefix
of the triggering traces leading to a race propagation problem may not always be
obtained.

For the algorithms we assume that a single state machine will be synthesized
for each role in the choreography graph, and that such state machine will have one
single input buffer to store the messages received from all the other roles. In the
case that the same role participates in two concurrent collaborations (i.e. inside a
fork-join pair), we consider that the messages received and sent by the role in both
collaborations are interleaved (since we consider one single state machine with one
single buffer for the role). However, a decision could be made to create the role state
machine in such a way that messages belonging to each of the concurrent collabora-
tions are treated by separate orthogonal sub-state machines. In that case, messages
would no longer interleave. The proposed algorithms could be easily adapted to
consider this case. We just need to mark the roles in concurrent collaborations as
implemented by different state-machines. A decision could also be made to provide
state machines with different input buffers for different peer roles. In that case,
to construct correct triggering traces, the algorithm should be modified to consider
only messages that can be received on the same buffer.

Algorithm DetectChoicePropagationProblems (on page 69). For each
choice node vch, and each non-choosing role p on vch, this algorithm invokes the

61

ChoreographyToFSA procedure to convert (a part of) the choreography graph into
an“equivalent”(from the point of view of p) finite state automaton, whose transitions
are labeled by receiving and sending events executed by p. The resulting automaton
may also have ε-transitions (i.e. silent transitions). Those ε-transitions are removed
(see Appendix B.2), and the resulting automaton is split into as many automata as
branches has the choice under analysis. Each of the new automata may be used to
generate the triggering traces of one of the choice’s branches.

These “branch” automata are then passed as input to the DetectAmbiguousProp-
agation and DetectRacePropagation procedures, which will analyse them for the
detection of ambiguous and race propagation problems.

Procedure DetectAmbiguousPropagation (on page 69). This procedure re-
ceives as input a set A of automata, where each automaton Ai ∈ A describes (part
of) the behavior of a non-choosing role p in ith branch of the choice under analysis.
More specifically, Ai describes the behavior of p, up to the its first sending event
(if any), in each of the possible execution paths through the ith branch. That is, Ai
describes p’s specified triggering traces in the ith branch of the choice under analysis.

Given two automata A1 = (Q1,Σ1,δ1,q01,F1) and A2 = (Q2,Σ2,δ2,q02,F2), an
ambiguous propagation will exist if one of the strings accepted by A1 has a common
prefix with one of the strings accepted by A2. This can be easily checked by con-
structing their intersection automaton (Q,Σ,δ ,q0,F) = A1∩A2, where Q = Q1×Q2,
Σ = Σ1∩Σ2, δ = {((q1,q2),e,(q′1,q

′
2)) : (q1,e,q′1) ∈ δ1,(q2,e,q′2) ∈ δ2}, q0 = (q01,q02)

and F = F1×F2.
Note that before intersecting the automata, their transitions are relabeled, so

that instead of events, their associated messages (i.e. the message sent or received)
are used as transition labels.

If the set of transitions of the intersection automaton is non-empty (i.e. δ 6= /0),
there is a problem of ambiguous propagation. To obtain the sequence(s) of events
leading to ambiguous propagation, the intersection automaton is converted into an
equivalent regular expression. Note, however, that the intersection automaton may
have unreachable states. These states should be eliminated before converting the
automaton into a regular expression. In addition, ε-transitions should be added
from each state with no output transitions to a common final state.

Procedure DetectRacePropagation (on page 70). This procedure receives
as input a set A of automata, where each automaton Ai ∈ A describes (part of)
the behavior of a non-choosing role p in ith branch of the choice under analysis.
More specifically, Ai describes the behavior of p, up to the its first sending event, in
each of the possible execution paths through the ith branch. That is, Ai describes
p’s specified triggering traces in the ith branch of the choice under analysis. The
procedure also gets as input the containerNode table, which for each sending event
at the end of a triggering trace stores the activity node where the sending event
can be found, or the fork node of a fork-join pair containing the activity where the
sending event can be found.

62 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

To detect a race propagation this procedure obtains the observed triggering traces
(lines 1-18), that is, the triggering traces observed by p in the presence of races. Once
they have been obtained, the procedure checks whether any two of those traces
(corresponding to different branches of the choice under analysis) have a common
prefix (line 19).

To obtain the observed triggering traces the procedure proceeds as follows. Each
automaton is converted into an equivalent regular expression (line 3), following the
technique described in Appendix 84. The resulting regular expression may describe
loops. The SeparateInAltSubexpressions procedure (line 3) initializes those loops, so
at most one iteration is considered. For that purpose, each sub-expression α1 ·α∗2 ·α3
is replaced with (α1 ·α3|α1 ·α2 ·α3), and each sub-expression α+ is replaced with α .
The new regular expression will consist of the union of several sub-expressions, each
of them describing p’s triggering trace in a given execution path. Each of those sub-
expression will be processed separately. For each sub-expression re, the terminating
sending event s, if any, is extracted. All events in re (except s) are then partially
ordered (line 6): events in race become unordered; otherwise the total order dictated
by re is respected. If re ended with a receiving event (i.e. s = null), it means that a
final node was reached in the execution path described by re. The resulting poset can
thus already be used to generate the observed triggering traces, which correspond
to the labeled-linearizations of the poset22 (line 18). Otherwise, if re ended with a
sending event s, races might be possible between receiving events from the triggering
trace and receiving events that succeed s according to the visual order. The set Eext

of “external” events (i.e. not from the triggering trace) that are in race with events
of the triggering trace can be obtained with help of the EventsInRace table (lines
11-13). However, we still need to determine the causal order between those events,
and between them and the events of the triggering trace. This is done with help of
the GetPosetsForObservedTT procedure, which returns a set of partial orders whose
labeled-linearizations correspond to the observed triggering traces.

Procedure ChoreographyToFSA (on page 71). This procedures returns an
automaton describing the behavior of role p in (part of) the choreography graph.
It also returns a table containerNode, which which stores the choreography nodes
where some events can be found.

Starting from a decision node, this procedure traverses the choreography graph
using a depth-first search technique [AHU74]. For each possible execution path
starting at the decision node, the procedure stops searching when an activity is
found where role p executes a sending event, or when a final node is reached. The
nodes that are visited and the edges that are traversed are mapped into states and
transitions of an automaton A .

When an activity v where p participates is visited, function fsa is invoked to
obtain an automaton describing the behavior of p in v (line 4). This new automaton

22A linearization of a poset (E,<) is a word w = e1 · · · · · e|E| over the alphabet E, such that if
ei < e j then i < j. In [ON05] a technique is described to obtain all possible linearizations of a poset
in an efficient way. A labeled-linearization is a linearization where each event has been replaced
with its associated message (i.e. the message sent or received).

63

is then concatenated with A at certain junction states J (i.e. final states with
incoming transitions that are labeled with a receiving event – see Concatenation on
page 65), and the set of junction states is updated. If the resulting automaton has
any final state with an input transition labeled with a sending event s, an entry in the
containerNode table is created. Thereafter, if all the final states of the automaton
have input transitions labeled with sending events (i.e. the new set of junction
states is empty – see line refjunctionempty), the backtracking process is initiated.
Otherwise, the graph traversal continues.

When a merge node is found (line 9), a new state is added to A and each of
the junction states is connected to the newly added state by means of ε-transitions.
Decision nodes are not explicit mapped into states of A . Instead, the junction
states at the time a decision node is visited will act as “decision” states (i.e. the
automata obtained by traversing each of the branches of the decision node will be
concatenated at those junction states).

When a fork node is visited (line 11) the ForkToFSA procedure is invoked. This
procedure returns an automaton corresponding to the nodes found within the fork
and its companion join node. This automaton is then concatenated with A . If
the set of new junction states is empty (i.e. a sending event was found in all paths
within the fork-join pair) or if a join node was not found (because all the fork’s
branches ended up in a final node), the backtracking process is initiated. Otherwise,
the graph traversal continues from the fork’s companion join node.

Each node in the choreography graph is visited at most once. It may happen that
an attempt is made to re-visit a merge node, or to re-visit the decision node of the
choice under analysis (i.e. the very first node been visited). The latter may happen
if that node is inside a loop, as in the choreography of Fig. 17(a). In the first case ε-
transitions are added from the current junction states to the state corresponding to
the merge node (i.e. the state added the first time the merge node was visited)(line
28). In the second case , ε-transitions are added from the current junction states to
the initial state (line 30).

Figure 17 shows a choreography graph and the automaton created by procedure
ChoreographyToFSA for role R2.

Function fsa. This function takes an expression describing a sequence diagram23

and a role p, and returns an automaton A describing the behavior of p in the given
sequence diagram. It is defined as

fsa(SD, p) =



AbSD , if SD := bSD
fsa(SD1, p) · fsa(SD2, p), if SD := SD1 seq SD2
fsa(SD1, p)∪ fsa(SD2, p), if SD := SD1 alt SD2
fsa(SD1, p)× fsa(SD2, p), if SD := SD1 par SD2
fsa(SD1, p)∗, if SD := loop(0,n) SD1,n > 0
fsa(SD1, p) · fsa(SD1, p)∗, if SD := loop(n,m) SD1,0 < n≤ m

23Recall that a sequence diagram can be described by an expression consisting of basic sequence
diagrams (bSDs) identifiers and a combination of seq, alt, par and loop operators (i.e. an
expression conforming to the BNF-grammar described in Sect. 5)

64 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

(a) (b)

R1 R2 R3

m9
m10

R1 R2 R3

m1

m11

R1
m2

R2 R3

m3

m4

R1 R2 R3

m6

m5

R1 R2 R3
m7

R1

m1

R2

m13

C1

C5

C4

C3

C6C2

ch1

ch3ch2

m1

m8

q0

q3

q2

m1

?m1

"

q1 q4

q7q5

?m8

?m2
?m9

!m10!m3

?m1

q8q6

"

Figure 17: (a) Choice (ch1) with race propagation; (b) Automaton describing the
significant part of R2 ’s behavior in (a) for detection of race propagation

where AbSD is an automaton describing the behavior of p, up to its first sending event
(if any), in the bSD basic sequence diagram. To obtain AbSD, the basic sequence
diagram is first projected onto the lifeline of p. The result is a totally ordered set
of events (E,<). From that set we are only interested in the first sending event (if
any) and all its preceding events. That is, assuming that E = R∪S (with S the set
of sending events), we are interested on the totally ordered set (E ′,<), where

E ′ =
{

E, if S = /0
{e ∈ E : (e < s∨ e = s),s ∈ S∧ 6 ∃s′ ∈ S,s′ < s}, otherwise

The ordered set (E ′,<) is then converted into an automaton AbSD such that:

• If E ′ = /0 (i.e. p does not participate in the basic sequence diagram), AbSD =
A /0, where A /0 = ({q0}, /0, /0,q0,{q0}) is the so-called empty automaton.

• Otherwise, AbSD = (Q,E,δ ,q0,F), with

Q = {q0}∪{qe : e ∈ E}
δ = {(q0,e,qe) : e ∈ E∧ 6 ∃ f ∈ E, f < e}∪{(qe, f ,q f) : e, f ∈ E,e < f∧

∃g ∈ E,e < g < f}
F = {qe : e ∈ E∧ 6 ∃ f ∈ E,e < f}

The operators used by the fsa function to compose the automata are defined as fol-
lows. Let A1 = (Q1,Σ1,δ1,q01,F1) and A2 = (Q2,Σ2,δ2,q02,F2) be two automata with
disjoint sets of states, and let Ji = {q f ∈ Fi : ∃(q,r,q f)∈ δi and r is a receiving event}

65

, i ∈ {1,2}, be the set of junction states of Ai (i.e. the set of final states that have
an incoming transition labeled with a receiving event).We then define the following
four basic operations on automata:

Concatenation. For the concatenation of two automata A1 and A2, for each
output transition with label e from the initial state of A2, new transitions are added,
with the same label e, from the junction states of A1 to the successors of the initial
state of A2. If the initial state of A2 is not a final state, it is removed, together with
its output transitions. More formally, the concatenation A1 ·A2 of two automata
A1 and A2 is an automaton A such that:

• A = A1, if J1 = /0∨A2 = A /0

• A = A2, if A1 = A /0

• Otherwise, A = (Q,Σ1∪Σ2,δ ,q01,F2), with

Q =
{

Q1∪Q2, if q02 ∈ F2
Q1∪Q2−{q02}, otherwise

δ = δ1∪ (δ2∩ (Q×Σ2×Q))∪{(q1,e,q2) ∈ J1×Σ2×Q2 : (q02,e,q2) ∈ δ2}

Union. For the union of two automata, a new initial state is created and con-
catenated with each of the automata. More formally, the union A1 ∪A2 of two
automata A1 and A2 is automaton A , such that:

• A = A1, if A2 = A /0

• A = A2, if A1 = A /0

• Otherwise, A = (Q,Σ1∪Σ2,δ ,q0,F1∪F2), where

q0 is a new state

Q =


Q1∪Q2, if q01 ∈ F1 and q02 ∈ F2
Q1∪Q2−{q01,q02}, if q01 6∈ F1 and q02 6∈ F2
Q1∪Q2−{q0i} if q0i ∈ Fi, i ∈ {1,2}

δ = (δ1∩ (Q×Σ1×Q))∪ (δ2∩ (Q×Σ2×Q))∪{(q0,e,q1) ∈ {q0}×Σ1×Q1 :
(q01,e,q1) ∈ δ1}∪{(q0,e,q2) ∈ {q0}×Σ2×Q2 : (q02,e,q2) ∈ δ2}

Kleene closure. For the Kleene closure of an automaton, the initial state
is also made a final state. The original final states are removed, and their input
transitions are connected to the initial state. More formally, the Kleene closure A ∗

1
of an automaton A1 is an automaton A such that:

• A = A1, if F1 = J1∨A1 = A /0

66 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

• Otherwise, A = (Q,Σ1,δ ,q01,F), with

Q = Q1− J1∪{q01}

δ = δ1∪{(q,e,q01) : (q,e,qj) ∈ δ1,qj ∈ J1}

F = {q01}∪ (F1− J1)

Cross-product. The cross-product A1×A2 of two automata A1 and A2 is
the automaton A returned by the CrossProductFSA procedure. That is, A =
CrossProductFSA(A1,A2). The result is an automaton describing the interleaving
of the transitions of the original automata. The interleaving is however stopped as
soon as a transition labeled with a sending event is found.

Procedure ForkToFSA (on page 72). This procedure returns an automaton
describing the behavior of a role p on the part of a choreography graph included
between a fork node and its companion join node. It also returns a containerNode
table, which for each sending event labeling an input-transition of a final automaton
state (i.e. a sending event at the end of a triggering trace) stores the activity node
where the sending event can be found, or the fork node of a fork-join pair containing
the activity where the sending event can be found.

The procedure converts each branch of the fork into an automaton with help of
the ChoreographyToFSA procedure. The resulting automaton may has several final
states if several execution paths are possible through the fork’s branch. In that case
the SplitFSA procedure is invoked to split the automaton into as many automata
as final states had the former automaton. Each of the new automata will describe
the behavior of p on one of the execution paths through the branch. If any of the
automata has a final state with input-transitions labeled with a sending event, an
entry in the containerNode table is created storing the fork node under analysis.

After all branches have been processed, their associated automata are grouped in
sets of concurrent automata (i.e. automata corresponding to concurrent execution
paths) with help of the getsComb function (see page 50 for details on this function).
A cross-product automaton is then obtained for each group of concurrent automata.
The union of all the cross-product automata, and the containerNode table, are
returned by the ForkToFSA procedure.

Procedure GetPosetsForObservedTT (on page 74). For a given role p, this
procedure takes a poset (Ett,≺tt), describing the causal order between the events of a
certain triggering trace, a set Eext of all“external”events (i.e. not from the triggering
trace) that are in race with events from the triggering trace. Those external events
may not all be executed in the same execution path. For each possible execution
path, this procedure finds out which external events are executed in the given path
and creates a causal poset (in the following OTT poset) relating those events and
the events from the triggering trace. The set of all OTT posets is then returned.

In order to properly group the external events and create the observed triggering
trace’s posets, a choreography node v0 is also provided as input for the procedure.

67

b

P
sd

par

a

s1

c
s2

d

e

alt

Figure 18: Behavior of role p in v0

This node might be either an activity node or a fork node. Let us first look at the
former case.

If v0 is an activity node, v0 is the activity where the sending event triggered
by the triggering trace can be found. Since all external events will be successor
(or concurrent) events of that sending event, the procedure uses v0 as a starting
point to traverse the choreography graph in search of the external events. Since the
behavior of v0 may be described by more than one poset, the procedure first needs to
determine which of those posets should be considered as the actual starting point to
begin searching for external events. The set PSmatch of selected posets will contain
those posets with the highest number of events in common with the triggering trace
(line 3). Consider, for example, that the behavior of p in v0 is the one illustrated
in Fig. 18, and that Ett = {. . . ,?a,?b,?c} (i.e. the triggering trace is, for example,
. . . ·?a·?c·?b and triggers !s1). Then, of the two posets describing the behavior of v0
the procedure will only select the poset that includes events ?c and !s2.

Once the set PSmatch has been obtained, the procedure determines the subset of
external events that may be found in activities succeeding v0 (line 5). If that subset
is not empty, the VisitSuccessorRP procedure is invoked (line 10). That procedure
traverses the choreography graph from v0’s successor using a DFS technique. If an
activity where external events can be found is visited by VisitSuccessorRP, those
external events are added into a poset. VisitSuccessorRP returns a set PStail of
posets, each of them describing the causal order of the external events found on a
certain execution path.

After VisitSuccessorRP returns (if it was invoked), the procedure analyses the
poset in poset PSmatch. For each poset ps0 ∈ PSmatch, the procedure checks whether
any external event can be found in ps0 (line 13). At this point it is important to
note that not all external events that could be found in ps0 should be included in the
OTT poset under construction. Consider again the example in Fig. 18, and imagine

68 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

that ?a is in race with ?e, but that this race can only happen when ?d is executed.
Such race could therefore not happen for the given triggering trace. Although event
?a would be part of Eext, it should not be included in the OTT poset. In general,
for a poset ps0, only external events that are not causal successor of any minimum
sending of ps0 should be included in the OTT poset. To determine the causal order
between such events and the triggering trace events, two cases are considered. For
those triggering trace events that can also be found in ps0, the causal order relations
dictated by that poset are considered (line 14). For each triggering trace event r1
preceding the events of ps0, a causal order relation r1 ≺ott r2 is created for each
selected external event r2, if r1 and r2 are not in race (line 15).

Once ps0 has been processed, the procedure checks whether role p gets synchro-
nized on a sending event belonging to ps0 (line 16). If p does not gets synchronized
(line 5 of UpdatePoset procedure), each of the posets in PStail are concatenated with
the OTT poset. If p gets synchronized, the triggering trace events from activities
preceding v0 will not be in race with events from activities succeeding v0. However,
triggering trace events from v0 might be in race with events from activities succeed-
ing v0. If there is any triggering trace event from v0 in race with some external
events E (line 9), only the parts of the posets in PStail that deal with any of the
E events are concatenated with the OTT poset. If E = /0, the PStail posets are not
considered to create the OTT posets.

As we already said, v0 might also be a fork node. In that case, v0 is the fork
of a fork-join pair that contains the activity where the sending event triggered by
the triggering trace can be found, but that does not contain all the events of the
triggering trace. In this case, procedure MapForkWC (see page 50) is invoked to
obtain a set of causal posets for all the activities contained by the fork-join pair.
After that, the processing is similar as the case where v0 is an activity.

69

Algorithm 17: DetectChoicePropagationProblems

foreach choice node vch ∈V do1

foreach non-choosing role p in vch do2

forall v ∈V do visited[v] = f alse3

q0← NewFSAState()4

A ← ({q0}, /0, /0,q0,{q0})5

(A ,containerNode)← ChoreographyToFSA(p,vch,A ,{q0})6

A ←RemoveEpsilonTransitions(A)7

/* We split A in a set of automata, one for each branch of the
choice. */
forall q ∈ Q such that ∃(q0,e,q) ∈ δ ,e ∈ Σ do8

Qcl← Closure(q) /* All states reachable from q, incl. q */9

F ′← Qcl∩F ; Q′← Qcl∪{q0}; δ ′←{(q1,e,q2) ∈ δ : q1,q2 ∈ Q′}10

A← A∪{(Q′,Σ,δ ′,q0,F ′)}11

DetectAmbiguousPropagation(A)12

DetectRacePropagation(p,containerNode,A)13

end14

Procedure DetectAmbiguousPropagation(A)

RE← /01

foreach A ∈ A do A ← RelabelTransitions(A)2

foreach A1 ∈ A do3

A← A−{A1}4

foreach A2 ∈ A do5

Aprefix←A1∩A2 // Intersection automaton6

if Aprefix.δ 6= /0 then7

/* Eliminate non-reachable states in Aprefix and add ε-transition
from states w/o output transitions to a common final state */
RE← RE ∪{ConvertFSAtoRE(Aprefix)}8

70 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure DetectRacePropagation(p,containerNode,A)

foreach A ∈ A do1

L [A]← /02

RE← SeparateInAltSubexpressions(ConvertFSAtoRE(A))3

foreach re ∈ RE do4

s← sending event at the end of re or null if re ends with a receiving event5

(Ett,≺tt)←events in re (except s) are partially ordered6

if s = null then7

ϒ←{(Ett,≺tt)}8

else9

/* Get set Eext of "external" events in race with events from the
triggering trace */
Eext← /010

foreach e1 ∈ Ett do11

foreach e2 such that EventsInRace[e1,e2] 6= /0∧ e2 6∈ Ett do12

Eext← Eext∪{e2}13

if Eext = /0 then14

ϒ←{(Ett,≺tt)}15

else16

/* Get set ϒ of causal posets describing causal relations
between events in Ett∪Eext */
ϒ←GetPosetsForObservedTT (p,containerNode[s],Eext,Ett,≺tt)17

L [A]←L [A]∪GetLinearizations(ϒ)18

if ∃l ∈L [A1],A1 ∈ A ∧ ∃l′ ∈L [A2],A2 ∈ A such that l and l′ have a common prefix then19

Report race propagation20

71

Procedure ChoreographyToFSA(p,v,A ,J)
containerNode← /01

visited[v]← true2

if v is an activity node where p participates then3

/* Let SDv be the sequence diagram describing v’s behavior */
(A ,J)← ConcatenateFSA(A , fsa(SDv, p),J)4

foreach sending event s such that (q,s,qf) ∈ δ ,qf ∈ F− J do5

containerNode[s]← v6

if J = /0 then7

visited[v]← f alse; return (A ,containerNode)8

else if v is a merge node then9

qv← NewFSAState(v); Q←Q∪{qv}; δ ← δ ∪{(qj,ε,qv) : qj ∈ J}; F← F ∪{qv}; J←{qv}10

else if v is a join node then11

vjoin← v; visited[v]← f alse; return (A ,containerNode)12

else if v is a fork node then13

vjoin← null14

(Afork,containerNode aux)← ForkToFSA(p,v)15

containerNode← containerNode ∪ containerNode aux16

(A ,J)←ConcatenateFSA(A ,Afork,J)17

if J = /0∨ vjoin = null then18

visited[v]← f alse19

return (A ,containerNode)20

/* We continue traversing the graph from the join node associated to the
fork (i.e. vjoin). Note that we assume proper nesting of fork/join
nodes */
v← vjoin21

foreach u successor of v do22

if !visited[u] then23

(A ,containerNode aux)← ChoreographyToFSA(p,u,A ,J)24

containerNode← containerNode ∪ containerNode aux25

else26

if u is a merge node then27

δ ← δ ∪{(qj,ε,qu) : qj ∈ J}28

else29

δ ← δ ∪{(qj,e,q0) : qj ∈ J}30

if v is NOT a merge node then31

visited[v]← f alse32

return (A ,containerNode)33

72 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure ForkToFSA(p,vfork)

Aall← /01

foreach successor v of vfork do2

/* An FSA is built for each branch of the fork */
q0← NewFSAState(v)3

Av← ({q0}, /0, /0,q0,{q0})4

(Av,containerNode)← ChoreographyToFSA(p,v,Av,{q0})5

Av← RemoveEpsilonTransitions(Av)6

/* If Av has several final states, SplitFSA() returns one FSA for each
final state */
if |Av.F |> 1 then7

Aall← Aall∪{SplitFSA(Av)}8

else9

Aall← Aall∪{{Av}}10

foreach s such that (q,s,qf) ∈Av.δ ,qf ∈Av.F and s ∈Av.Σv is a sending event} do11

containerNode[s]← vfork12

Afork← ({q0}, /0, /0,q0,{q0})13

foreach A ∈ getCombs(Aall) do14

Afork←Afork∪CrossProductFSA(A)15

return (Afork,containerNode)16

Procedure CrossProductFSA(A)
Data: Set A of automata
Result: FSA (Q,Σ,δ ,q0,F) corresponding to the cross-product of the FSAs in A
if A = {A } then return A1

A1← any element of A; A← A−{A1}2

while A 6= /0 do3

A2← any element of A; A← A−{A2}4

Qaux←{(q01,q02)}5

while Qaux 6= /0 do6

(qs
1,q

s
2)←Any element of Qaux; Qaux← Qaux−{(qs

1,q
s
2)}7

foreach transition (qs
1,e1,qd

1) ∈ δ1 do8

qnew← (qd
1 ,qs

2); δ ← δ ∪{((qs
1,q

s
2),e1,qnew)}; Q← Q∪{qnew}9

if e1 is a sending event ∨ qnew ∈ F1xF2 then F ← F ∪{qnew}10

else Qaux← Qaux∪{qnew}11

foreach transition (qs
2,e2,qd

2) ∈ δ2 do12

qnew← (qs
1,q

d
2); δ ← δ ∪{((qs

1,q
s
2),e2,qnew)}; Q← Q∪{qnew}13

if e2 is a sending event ∨ qnew ∈ F1xF2 then F ← F ∪{qnew}14

else Qaux← Qaux∪{qnew}15

A1← (Q,Σ,δ ,(q01,q02),F)16

return A117

73

Procedure SplitFSA(A)

/* Assume A = (Q,Σ,δ ,q0,F) */
A← /01

foreach qf ∈ F do2

/* Get set Qrcl of all states from which qf can be reached, incl. qf */
Qrcl← ReverseClosure(qf)3

δ ′←{(q1,e,q2) ∈ δ : q1,q2 ∈ Qrcl}4

Σ′←{e : (q1,e,q2) ∈ δ ′}5

A← A∪{(Qrcl,Σ
′,δ ′,q0,{qf}}6

return A7

74 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure GetPosetsForObservedTT(p,v0,Eext,Ett,≺tt)

ϒ← /01

if v0 is an activity node then2

/* Get the posets of v0 that have the most common events with the
triggering trace. Only one iteration of loops is considered. */

PSmatch←{(E1,≺1) ∈ [[SDv0]]SD : 6 ∃(E2,≺2) ∈ ([[SDv0]]SD−{(E1,≺1)}),
∣∣Ett∩E p

2

∣∣>3 ∣∣Ett∩E p
1

∣∣}
PStail← /04

E ′ext← Eext−{Rp
0 : (R0∪S0,≺0) ∈ PSmatch}5

if E ′ext 6= /0 then6

foreach v ∈V do7

if v is an activity node then visited[psv]← f alse, for each poset psv of v8

else visited [v]← f alse9

PStail←VisitSuccessorRP(p,u,E ′ext,(/0, /0)) // u is v0’s successor10

foreach (R0∪S0,≺0) ∈ PSmatch do11

Min←{s ∈ min((S0,≺0)) : loc(s) = p} // Minimum sendings of p in ps012

F ←{r ∈ Eext∩Rp
0 : 6 ∃s ∈Min,s≺0 r}13

≺ott←≺tt ∪{(r1,r2) ∈≺0: (r1,r2 ∈ F)∨ (r1 ∈ Ett∩Rp
0 ∧ r2 ∈ F)}14

≺ott←≺ott ∪{(r1,r2) : r1 ∈ (Ett−Rp
0)∧ r2 ∈ F ∧EventsInRace[r1][r2] = /0}15

synched ← CheckSynchronization(p,v0,(R0∪S0,≺0))16

ϒ← ϒ∪UpdatePoset(synched ,PStail,≺ott,Ett,F,E ′ext,R
p
0 ,Min)17

else18

/* v0 is a fork node */
vjoin← null // Global variable updated inside VisitSuccessorWC19

(SynchPaths,UnsynchPaths)←MapForkWC (v0,{p},(/0, /0))20

/* Get the posets in PSfork that have the most common events with the
triggering trace */
PSfork← SynchPaths ∪UnsynchPaths21

PSmatch←{(seq,(E1,≺1),R) ∈ PSfork :6 ∃(E2,≺2) ∈ (PSfork−{(seq,(E1,≺122

),R)}),
∣∣Ett∩E p

2

∣∣> ∣∣Ett∩E p
1

∣∣}
PStail← /023

E ′ext← Eext−{Rp
0 : (seq,(R0∪S0,≺0),R) ∈ PSmatch}24

if E ′ext 6= /0 then25

foreach v ∈V do26

if v is an activity node then visited[psv]← f alse, for each poset psv of v27

else visited [v]← f alse28

PStail←VisitSuccessorRP(p,u,E ′ext,(/0, /0)) // u is vjoin’s successor29

foreach (seq,(R0∪S0,≺0),R) ∈ PSmatch do30

Min←{s ∈ min((S0,≺0)) : loc(s) = p} // Minimum sendings of p in ps031

F ←{r ∈ Eext∩Rp
0 : 6 ∃s ∈Min,s≺0 r}32

≺ott←≺tt ∪{(r1,r2) ∈≺0: (r1,r2 ∈ F)∨ (r1 ∈ Ett∩Rp
0 ∧ r2 ∈ F)}33

≺ott←≺ott ∪{(r1,r2) : r1 ∈ (Ett−Rp
0)∧ r2 ∈ F ∧EventsInRace[r1][r2] = /0}34

ϒ← ϒ∪UpdatePoset((R = /0),PStail,≺ott,Ett,F,E ′ext,R
p
0 ,Min)35

return ϒ36

75

Procedure UpdatePoset(synched,PStail,≺ott,Ett,F,Eext,R
p
0 ,Min)

ϒ← /01

if PStail = /0 then2

ϒ← ϒ∪{(Ett∪F,≺ott)}3

else4

if !synched then5

foreach ((Etail,≺tail),synchB) ∈ PStail do6

≺ott←≺ott ∪ ≺tail ∪{(r1,r2) : r1 ∈ Ett∪F ∧ r2 ∈ Etail∧EventsInRace[r1][r2] = /0}7

ϒ← ϒ∪{(Ett∪F ∪Etail,≺ott)}8

else if ∃r ∈ Ett∩Rp
0 such that9

∀s ∈Min,s 6≺0 r and EventsInRace[r][r′] 6= /0, for any r′ ∈ Eext) then
foreach ((Etail,≺tail),synched) ∈ PStail do10

Etail←{r2 ∈ Etail : EventsInRace[r1][r2] 6= /0 for any r1 ∈ Ett ∩Rp
0}11

≺ott←≺ott ∪(≺tail ∩(Etail×Etail))}12

≺ott←≺ott ∪{(r1,r2) : r1 ∈ Ett ∩Rp
0 ∧ r2 ∈ Etail∧EventsInRace[r1][r2] = /0}13

ϒ← ϒ∪{(Ett∪F ∪Etail,≺ott)}14

else15

ϒ← ϒ∪{(Ett∪F,≺ott)}16

return ϒ17

76 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Procedure VisitSuccessorRP(p,v,Eext, psaux)

if v is an activity node then1

if p participates in v then2

psold← psaux; ϒ← /03

foreach poset psv = (Rv∪Sv,≺v) of v such that !visited[psv] do4

psaux← psold; visited[psv]← true5

/* Consider psaux = (Eaux,≺aux) and psv = (Rv∪Sv,≺v) */
F ←{r ∈ Rp

v ∩Eext}6

Eext← Eext−F7

Eaux← Eaux∪F8

≺aux←≺aux ∪{(r1,r2) : r1 ∈ Eaux,r2 ∈ F,EventsInRace[r1][r2] = /0}9

≺aux←≺aux ∪{(r1,r2) ∈≺v: r1,r2 ∈ F}10

if Eext = /0 then11

ϒ← ϒ∪{(psaux, f alse)}12

else13

if CheckSynchronization(p,v, psv) = true then14

ϒ← ϒ∪{(psaux, true)}15

else16

ϒ← ϒ∪VisitSuccessorRP(p,u,Eext, psaux) // u is v’s successor17

visited[psv]← f alse18

else19

ϒ←VisitSuccessorRP(p,u,Eext, psaux) // u is v’s successor20

return ϒ // Backtrack21

else22

/* Control node */
if v is a final node then23

return {(psaux, f alse)}24

else if v is a join node then25

vjoin← v // Global variable used inside MapForkRP()26

return {(psaux, f alse)}27

else if v is a fork node and !visited[v] then28

visited[v]← true29

ϒ← TraverseForkRP(p,v,Eext, psaux)30

visited[v]← f alse31

return ϒ32

else33

psold← psaux34

foreach u successor of v do35

if Eext 6= /0 then36

psaux← psold37

ϒaux←VisitSuccessorRP(p,u,Eext, psaux)38

Eext← Eext−{Eaux : (Eaux,≺aux) ∈ ϒaux}39

ϒ← ϒ∪ϒaux40

return ϒ // Backtrack41

77

Procedure TraverseForkRP(p,vfork,Eext, psaux)

vjoin← null // Global variable updated when a join node is visited1

Enew
ext ← Eext2

foreach successor u of vfork do3

if Enew
ext 6= /0 then4

ϒ←VisitSuccessorRP(p,u,Eext,(/0, /0))5

ϒfork← ϒfork∪ϒ6

Enew
ext ← Enew

ext −{E : ((E,≺),synchB) ∈ ϒ, for any ≺,synchB}7

ϒ← /08

foreach ϒpath ∈ getCombs(ϒfork) do9

(EforkP,≺forkP)← CausalOrderPar({ps : (ps,synchB) ∈ ϒpath, for any synchB})10

≺aux←≺aux ∪ ≺forkP ∪{(r1,r2) : r1 ∈ Eaux∧ r2 ∈ EforkP∧EventsInRace[r1][r2] = /0}11

Eaux← Eaux∪EforkP12

if (vjoin = null)∨ (Enew
ext = /0)∨(∃(ps, true) ∈ ϒpath, for any ps) then13

ϒ← ϒ∪{((Eaux,≺aux), true)}14

else15

vjoin succ←successor of vjoin16

ϒ← ϒ∪VisitSuccessorRP(p,vjoin succ,Eext−EforkP,(Eaux,≺aux))17

return ϒ18

Procedure CheckSynchronization(p,v, psv)

synched ← f alse1

if p has a sending in psv then2

synched ← true3

foreach successor activity u of v do4

foreach poset psu of u do5

/* We assume psv = (Sv∪Rv,≺v) */
I←{loc(e) : e ∈ min(psu)} // Initiating roles of psu6

/* Get max events in psv of I roles */
foreach q ∈ I do Max[q]←{e : e ∈ max(psv)∧ loc(e) = q}7

Min←{s : s ∈ min((Sv,≺v))∧ loc(s) = p}// Min sendings in psv of p8

if ∃q ∈ I such that ∀m ∈Max[q], 6 ∃s ∈Min, s≺v m then9

synched ← f alse10

else11

visited [psu]← true12

return synched13

78 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

6 Conclusions

We have outlined a collaboration-oriented service specification approach, where
UML 2 collaborations are used to specify services. The behavior of elementary
collaborations is described by means of UML sequence diagrams, while the behavior
of composite collaborations is described with help of a choreography graph (following
the notation of UML activity diagrams) that defines the execution order of its sub-
collaborations. We have provided a formal syntax and semantics to choreography
graphs and sequence diagrams in terms of partial orders.

We have discussed realizability of choreographies in terms of the composition
operators: weak and strong sequence, alternative, interruption and parallel. For
each composition operator we have studied the problems that can lead to difficul-
ties of realization. We have investigated the actual nature of these problems and
discussed possible solutions to prevent or remedy them. The result of our study is
a better understanding of the actual nature of realizability problems. Not surpris-
ingly, we have seen that implicit concurrency and competing initiatives are at the
heart of most problems. The send-causality property identified in this paper helps
to build specifications that are more intuitive and less prone to conflicts, since it
forces concurrency to be explicitly specified (i.e. by means of parallel composition
or interruption). We have shown that some problems can already be detected at an
abstract collaboration level, without needing to look into detailed interactions. We
have also shown that generic solutions to the discussed problems are not valid. The
same type of problem may require different resolutions in different contexts.

Finally, we have presented a set of algorithms for the detection of the problems
discussed in this paper, and are currently working on their implementation.

References

[AEY00] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of
message sequence charts. In 22nd Int. Conf. on Software Engineering
(ICSE’00), 2000.

[AEY05] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability
and verification of MSC graphs. Theor. Comput. Sci., 331(1):97–114,
2005.

[AHP96] Rajeev Alur, Gerard J. Holzmann, and Doron Peled. An analyzer for
message sequence charts. Software - Concepts and Tools, 17(2):70–77,
1996.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design
and analysis of computer algorithms. Addison-Wesley, 1974.

[BAL97] Hanene Ben-Abdallah and Stefan Leue. Syntactic detection of process
divergence and non-local choice in message sequence charts. In Proc.
2nd Int. Workshop on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’97), 1997.

79

[BG86] Gregor Bochmann and Reinhard Gotzhein. Deriving protocol specifica-
tions from service specifications. In Proc. of ACM SIGCOMM Sympo-
sium, pages 148–156, 1986.

[BM03] Nicolas Baudru and Rémi Morin. Safe implementability of regular mes-
sage sequence chart specifications. In Proc. of ACIS 4th Intl. Conf. on
Soft. Eng., Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD’03), pages 210–217, 2003.

[BM05] Rolv Bræk and Geir Melby. Model Driven Service Engineering, chapter of
Model-driven Software Development. Volume II of Research and Practice
in Software Engineering. Springer, 2005.

[Boc78] Gregor Bochmann. Finite state description of communication protocols.
Computer Networks, 2:361–372, 1978.

[Bræ79] Rolv Bræk. Unified system modeling and implementation. In Interna-
tional Switching Symposium (ISS). ISS Committee, 1979.

[BS05] Yves Bontemps and Pierre-Yves Schobbens. The complexity of live se-
quence charts. In Proc. of 8th Intl. Conf. on Foundations of Software
Science and Computational Structures (FoSSaCS ’05), pages 364–378,
2005.

[CB06a] Humberto N. Castejón and Rolv Bræk. A collaboration-based approach
to service specification and detection of implied scenarios. In Proc. of
5th int. workshop on Scenarios and state machines: models, algorithms
and tools (SCESM’06). ACM Press, 2006.

[CB06b] Humberto N. Castejón and Rolv Bræk. Formalizing collaboration goal
sequences for service choreography. In Proc. of the 26th IFIP WG
6.1 Intl. Conf. on Formal Methods for Networked and Distributed Sys-
tems (FORTE’06), volume 4229 of LNCS, pages 275–291, Paris, France,
September 2006. Springer-Verlag.

[CKS05] Chien-An Chen, Sara Kalvala, and Jane Sinclair. Race conditions in
message sequence charts. In Proc. of 3rd Asian Symposium on Program-
ming Languages and Systems (APLAS’05), volume 3780 of LNCS, pages
195–211. Springer, 2005.

[Erl05] Thomas Erl. Service Oriented Architecture: Concepts, Technology and
Design. Number ISBN 0-13-185858-0. Prentice Hall, 2005.

[FK01] Kathi Fisler and Shriram Krishnamurthi. Modular verification of
collaboration-based software designs. In ESEC/FSE-9: Proceedings of
the 8th European software engineering conference held jointly with 9th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 152–163. ACM Press, 2001.

80 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

[GMSZ06] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-
state high-level MSCs: Model-checking and realizability. J. Comput.
Syst. Sci., 72(4):617–647, 2006.

[GY84] Mohamed G. Gouda and Yao-Tin Yu. Synthesis of communicating finite
state machines with guaranteed progress. IEEE Trans. on Communica-
tions, Com-32(7):779–788, July 1984.

[Hél01] Löıc Hélouët. Some pathological message sequence charts, and how to
detect them. In 10th Intl. SDL Forum, volume 2078 of LNCS, pages
348–364. Springer-Verlag, 2001.

[HJ00] Löıc Hélouët and Claude Jard. Conditions for synthesis of communicating
automata from HMSCs. In Proc. of 5th Intl. Workshop on Formal Meth-
ods for Industrial Critical Systems (FMICS’00). GMD FOKUS, 2000.

[HMU00] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison Wesley,
2000.

[IT99] ITU-T. ITU Recommendation Z.Z.120: ”Message Sequence Chart (MSC-
2000)”. ITU, Geneva, 1999.

[IT00] ITU-T. ITU Recommendation Z.100: ”The Specification and Description
Language (SDL)”. ITU, Geneva, 2000.

[Kie97] Astrid Kiehn. Observing partial order runs of petri nets. In Foundations
of Computer Science: Potential - Theory - Cognition, to Wilfried Brauer
on the occasion of his sixtieth birthday, pages 233–238, London, UK,
1997. Springer-Verlag.

[KL98] J. P. Katoen and L. Lambert. Pomsets for message sequence charts.
In H. König and P. Langendörfer, editors, Formale Beschreibungstech-
niken fuer verteilte Systeme, 8. GI/ITG-Fachgespraech, Cottbus, Ger-
many, pages 197–207. Shaker Verlag, 1998.

[KM03] Ingolf H. Krüger and Reena Mathew. Component synthesis from service
specifications. In 2003 Dagstuhl Workshop on Scenarios: Models, Trans-
formations and Tools, volume 3466 of LNCS, pages 255–277. Springer,
2005.

[KZ05] Ferhat Khendek and Xiao Jun Zhang. From MSC to SDL: Overview
and an application to the autonomous shuttle transport system. In 2003
Dagstuhl Workshop on Scenarios: Models, Transformations and Tools,
volume 3466 of LNCS, pages 228–254. Springer, 2005.

[MGR05] Arjan J. Mooij, Nicolae Goga, and Judi Romijn. Non-local choice and
beyond: Intricacies of MSC choice nodes. In Proc. Intl. Conf. on Fun-
damental Approaches to Soft. Eng. (FASE’05), volume 3442 of LNCS.
Springer, 2005.

81

[Mit05] Bill Mitchell. Resolving race conditions in asynchronous partial order
scenarios. IEEE Trans. Softw. Eng., 31(9):767–784, 2005.

[MP00] Anca Muscholl and Doron Peled. Analyzing message sequence charts. In
SAM, pages 3–17, 2000.

[MRW06] Arjan Mooij, Judi Romijn, and Wieger Wesselink. Realizability criteria
for compositional msc. In Proc. of 11th Intl. Conf. on Algebraic Method-
ology and Software Technology (AMAST’06), volume 4019 of LNCS.
Springer, 2006.

[Mus00] Anca Muscholl. Compositional issues on message sequence charts. In
Proc. Workshop on Logic and Algebra in Concurrency, 2000.

[OMG07] Object Management Group (OMG). UML 2.1.1 Superstructure Spec.,
February 2007.

[ON05] Akimitsu Ono and Shin-Ichi Nakano. Constant time generation of linear
extensions. In 15th Intl. Symp. on Fundamentals of Computation Theory
(FCT’05), pages 445–453, 2005.

[RAB+92] T. Reenskaug, E.P. Andersen, A.J. Berre, A. Hurlen, A. Landmark,
O.A. Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A.L. Skaar, and
P. Stenslet. OORASS: Seamless support for the creation and mainte-
nance of object-oriented systems. Journal of Object-oriented Program-
ming, 5(6):27–41, 1992.

[RGG01] Frank Rößler, Birgit Geppert, and Reinhard Gotzhein. Collaboration-
based design of SDL systems. In Proc. of the 10th Intl. SDL Forum,
volume 2078 of LNCS, pages 72–89. Springer-Verlag, 2001.

[RWL96] Trygve Reenskaug, P. Wold, and O. A. Lehne. Working with Objects:
The OOram Software Engineering Method. Prentice Hall, 1996.

[San00] Richard Sanders. Implementing from SDL. Telektronikk, 96(4), 2000.

[SCKB05] Richard Torbjørn Sanders, Humberto N. Castejón, Frank Alexander
Kraemer, and Rolv Bræk. Using UML 2.0 collaborations for compo-
sitional service specification. In ACM/IEEE 8th International Confer-
ence on Model Driven Engineering Languages and Systems (MoDELS),
volume 3713 of LNCS, pages 460–475, Montego Bay, Jamaica, October
2005. Springer-Verlag.

[UKM04] Sebastián Uchitel, Jeff Kramer, and Jeff Magee. Incremental elabora-
tion of scenario-based specifications and behavior models using implied
scenarios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85, 2004.

[Woo87] Derick Wood. Theory of Computation. John Wiley & Sons, Inc., New
York, 1987.

82 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

A Propositions and Proofs

We show here that in sequence diagrams with both the send-causality and the non-
crossing messages properties, race conditions may only occur between two or more
consecutive receiving events. We introduce first some useful propositions, which will
help on the demonstration.

Proposition A.1. In a basic sequence diagram with the send-causality property all
sending events are causally ordered (i.e. there is a total causal order on sending
events).

Proof. We prove it for out-of-order delivery semantics, so the result is also valid for
in-order delivery semantics.

Consider two consecutive sending events according to <m, that is, s,s′ ∈ S,s <m
s′∧ 6 ∃s′′ ∈ S,s <m s′′ <m s′. Then, from the definition of send-causal sequence dia-
gram (Definition 4.5), we have that either loc(s′) = loc(s) or loc(s′) = loc(rcv(s)).
If loc(s′) = loc(s) = p, then s <p s′, and from the definition of causal order with
out-of-order delivery (Definition 3.2), we conclude s ≺n f s′. Otherwise, if loc(s′) =
loc(rcv(s)) = p, then rcv(s) <p s′. Again, by Definition 3.2, we conclude s ≺n f s′.
Since any two consecutive sending events are causally ordered, and by transitivity
of ≺n f , we conclude that all sending events are causally ordered.

Corollary A.2. A send-causal basic sequence diagram has a unique initiating event.

Note that, in the absence of parallel composition, send-causality imposes a total
causal order of sending events for each alternative behavior. If a sequence diagram
describes a parallel composition by means of a par construct, the sending events
within each operand of the construct are related by a total causal order. In addi-
tion, the sending events preceding (resp. succeeding) the par construct are causal
predecessors (resp. successors) of all sending events within the par construct.

Now we demonstrate that in a send-causal sequence diagram, if a receiving event
r ∈ R is specified to happen after a sending event s ∈ S on the same lifeline p ∈P
(i.e. s <p r), then r is always causally dependent on s, with independence of the
communication architecture (i.e. r will always happen after s in a any realized
system).

Proposition A.3. In a send-causal sequence diagram satisfying the non-crossing
messages property, the following is always true: given a sending event s ∈ S and a
receiving event r ∈ R located on the same lifeline p ∈P (i.e. loc(s) = loc(r) = p),
we have that s <p r⇒ s≺n f r∧ s≺ f r.

Proof. We prove it for the out-of-order delivery causal order (≺n f), since it corre-
sponds to a communication architecture without restrictions. The results will then
be valid for any more restrictive order (e.g. ≺ f). We consider first the case where s
and r are located within the same basic sequence sub-diagram. By Proposition A.1,
we know that s≺n f snd(r). We conclude, therefore, that s≺n f r.

We consider now two basic sequence sub-diagrams, SD1 and SD2, such that
SD1 seq SD2. We assume s is located in SD1 and r is located in SD2. We know that:

83

(i) Either s is a maximum sending event of SD1 (i.e. s ∈ Ts,Ts ∈ termsnd(SD1)),
or, by Proposition A.1, we have that s≺n f st ,∀st ∈Ts,Ts ∈ termsnd(SD1).

(ii) Either snd(r) is a minimum event of SD2 (i.e. snd(r) ∈I ,I ∈ init(SD2)), or,
by Proposition A.1, we have that si ≺n f snd(r),∀si ∈I ,I ∈ init(SD2).

By Definition 4.5, we also know that ∀Ts ∈ termsnd(SD1),∀I ∈ init(SD2),∀st ∈Ts,∀si ∈
I , loc(si) = loc(st)∨ loc(si) = loc(rcv(st)). With this information, and applying the
same reasoning as the one used in the proof of Proposition A.1, we conclude that
s≺n f r.

The above results can be easily generalized, by induction on the composite struc-
ture of the sequence diagram, to prove that in all cases s≺n f r.

Given Proposition A.3 and the fact that races may exist between consecutive
receiving events (see, e.g., the race between e4 and e6 in Fig. 5(a)) we have the
result we were looking for:

Proposition A.4. In a sequence diagram satisfying the send-causality property and
the non-crossing messages property, a potential race condition exists between two
receiving events r1 and r2, located at the same lifeline p, if r1 <p r2 and there is not
a sending event s ∈ S such that r1 <p s <p r2.

A.1 Race Conditions in Send-Causal Sequence

Diagrams

We study now the necessary conditions for a race to actually exist in a send-causal
sequence diagram. Such conditions depend on the communication architecture. We
consider two architectures, one with out-of-order delivery channels and other with
in-order delivery channels.

Race conditions with in-order delivery channels

Messages cannot overtake each other in channels with in-order delivery. Therefore,
there are not races between receiving events located on the same lifeline p if their
associated sending events are both located on the same lifeline q. However, a race
exists if the sending events are located on different lifelines and there is no sending
event located on p between the receiving events.

Proposition A.5. Given a sequence diagram satisfying the send-causality property
and the non-crossing messages property, and a communication architecture with in-
order delivery channels, a race condition exists between two receiving events, r and
r′, located on the same lifeline p ∈P, iff r <p r′∧ loc(snd(r)) 6= loc(snd(r′))∧ 6 ∃s ∈
S,r <p s <p r′.

Proof. (⇐=) We assume that r <p r′∧ loc(snd(r)) 6= loc(snd(r′))∧ 6 ∃s∈ S,r <p s <p r′

and prove that there is a race between r and r′ (i.e. r 6≺ f r′). We do this by
contradiction. Let us assume that r≺ f r′. Then we should have that r≺ f snd(r′). We

84 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

recall that, according to Definition 3.3,≺ f = (< f)∗. It is easy to see that r 6< f snd(r′),
since r and snd(r′) do not satisfy any of the conditions on Definition 3.3. Therefore,
there must exist one or more events such that r < f e1 < f . . .en < f snd(r′). Since
loc(snd(r)) 6= loc(snd(r′)), the relation r < f e1 can only be true if e1 ∈ S∧ r <p e1.
This contradicts our initial assumption: 6 ∃s ∈ S,r <p s; so we conclude that r 6≺ f r′.

(=⇒) We consider two receiving events, r and r′, that are located on the same
lifeline p∈P and that are in race, so that r 6≺ f r′. By the definition of race condition,
we know that r <p r′. We also know that in-order delivery semantics do not allow
message overtaking, so if loc(snd(r)) = loc(snd(r′)) there cannot be a race. Therefore
it must be loc(snd(r)) 6= loc(snd(r′)). We just need to prove that 6 ∃s∈ S,r <p s <p r′.
Let us assume that ∃s ∈ S,r <p s <p r′. Then, by Definition 3.3, we have that r≺ f s,
and by Proposition A.3, we have that s ≺ f r′. This implies r ≺ f r′, which is a
contradiction. Therefore 6 ∃s ∈ S,r <p s <p r′.

Race conditions with out-of-order delivery channels.

With out-of-order delivery channels races always exist between receiving events lo-
cated on the same lifeline p if there is no sending event located also p between the
receiving events.

Proposition A.6. Given a sequence diagram satisfying the send-causality property
and the non-crossing messages property, and a communication architecture with out-
of-order delivery channels, a race condition exists between two receiving events, r and
r′, located on the same lifeline p ∈P, iff r <p r′∧ 6 ∃s ∈ S,r <p s <p r′.

Proof. Since the causal order imposed by out-of-order delivery channels is less re-
strictive than the causal order imposed by in-order delivery channels (i.e. ≺n f⊆≺ f),
races will exists with out-of-order delivery channels whenever they exist with in-order
delivery channels. The case of races between between receiving events associated
to messages sent by different lifelines is therefore proved by A.5. We just need to
prove that there are also races between receiving events associated to messages sent
by the same lifeline. This can be easily done following the same reasoning as with
Proposition A.5, and having into account that messages may overtake each other in
an out-of-order delivery channel.

B Automata Theory

A finite state automaton is a tuple A = (Q,Σ,δ ,q0,F), where Q is a finite set of
states, Σ is a set of transition labels, δ ⊆ Q×Σ×Q is a set of transitions, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final (or accepting) states.

B.1 Converting an FSA into a regular expression

There exist several methods for the conversion of an FSA into an equivalent regular
expression (i.e. a regular expression accepting the same language as the FSA). Here

85

we describe the state-elimination technique from [Woo87].
The intuitive idea behind the state-elimination technique is to bypass an state

q ∈ Q−{q0,qf} by replacing that state, together with its incoming, outgoing and
self-looping transitions, with new transitions. These new transitions are labeled with
regular expressions, such that the resulting automaton accepts the same language
as the original one.

As input for the state-elimination process we assume an automaton A = (Q,Σ,δ ,
q0,qf) with the following properties (which facilitate the elimination process):

• A has one single initial state, and this state has no input or self-looping
transitions. If the original automaton does not fulfill this requisite, a new
initial state q′0 can be added and connected to q0 by an ε-transition (i.e.
Q′ = Q∪{q′0}, δ ′ = δ ∪{(q′0,ε,q0)}).

• A has one single final state, and this state has no output or self-looping
transitions. If this is not the case for the original automaton, the original final
states are converted into normal states and connected to a new final state q′f
by ε-transitions (i.e. Q′ = Q∪{q′f}, δ ′ = δ ∪{(q,ε,q′f) : q ∈ F}, F ′ = {q′f}).

• Each state q ∈ Q−{q0,qf} has a unique self-looping transition (q,β ,q) ∈ δ .
This is a merely accessory property and required to ease the explanation below.
Note that if a state q ∈ Q−{q0,qf} has not self-looping transitions, we can
assume a self-looping silent transition (i.e. β = ε). And if q has several self-
looping transitions, we can merge them.

Formally, a step of the state elimination technique can be seen as the transfor-
mation of an automaton A = (Q,Σ,δ ,q0,qf) into a new automaton A ′ = (Q−
{q},Σ′,δ ′,q0,qf), where q ∈ Q−{q0,qf} is the state being eliminated. A ′ is then
used as input for the next step. The elimination process is repeated until we ob-
tain an automaton AE = ({q0,qf},ΣE,{(q0,E,qf)},q0,qf) that consists of exactly two
states, the initial and final ones, and one transition between them. Such transition
is labeled with a regular expression E, which accepts exactly the same language as
the original automaton A .

For the elimination of a state q ∈ Q−{q0,qf} we proceed as follows. For each
input transition (pi,ui,q) ∈ δ , with 1 ≤ i ≤ n and n ≥ 1, each output transition
(q,v j,r j) ∈ δ , with 1≤ j ≤m and m≥ 1, and the self-looping transition (q,w,q) ∈ δ ,
we create a new transition (pi,ui ·w∗ · v j,r j). We then obtain Σ′ and δ ′ as indicated
below:

δ
′ = δ − ({(pi,ui,q),(q,v j,r j) : 1≤ i≤ n∧n≥ 1∧1≤ j ≤ m∧m≥ 1}∪{(q,w,q)})
∪{(pi,ui ·w∗ · v j,r j) : 1≤ i≤ n∧n≥ 1∧1≤ j ≤ m∧m≥ 1}

Σ
′ = Σ∪{ui ·w∗ · v j : 1≤ i≤ n∧n≥ 1∧1≤ j ≤ m∧m≥ 1}

If δ ′ contains more than one transition between any two states, we merge those
transitions. Formally, given two transitions (q1,u,q2),(q1,v,q2)∈ δ ′, we remove them
from δ ′ and add a new transition (q1,u | v,q2). We also add the label u | v to Σ′.

86 REALIZABILITY OF COLLABORATION-BASED SERVICE SPEC.

Figure 19(a) shows the automaton obtained after running the ChoreographyTo-
FSA procedure on the choreography graph of Fig. 17(a). Figures 19(b) and 19(c)
illustrate some steps of the state elimination technique applied to that automaton.
The automaton in Fig. 19(b) results after eliminating states m1,q0,q3,q6 and q8.
Note that since the two first properties discussed above where not satisfied by the
automaton in Fig. 19(a), a new initial state, q′0, and a new final state, qf, were
added. After eliminating all states, except the initial and final ones, the automaton
in Fig. 19(c) is obtained. Merging the transitions of that automaton would give a
new automaton with a single transition, whose label would correspond to a regular
expression accepting the same language as the FSA in Fig. 19(a).

(a) (b) (c)

q'0

q2

?m1

q1 q4

q7q5

?m8

?m2
?m9

!m10

!m3 !m13

?m1

?m1
?m8

qf

?m1
+·?m2·!m3

q'0 qf

?m1
+·?m8·?m9·!m10

?m1
+·?m8·?m1·!m13

?m8·?m9·!m10

?m8·?m1·!m13

!m13

q0

q3

q2

m1

?m1

"

q1 q4

q7q5

?m8

?m2
?m9

!m10!m3

?m1

q8q6

"

Figure 19: (a) FSA for the choreography of Fig. 17(a); (b) FSA resulting after
eliminating all ε-transitions in (a); (c) FSA resulting after eliminating all non-initial
and non-final states in (b)

B.2 Eliminating ε-transitions

To eliminate these ε-transitions the technique described in [HMU00] can be used.
This technique consists of three basic steps:

a) Identify all states Qε with output ε-transitions.

b) For each state p ∈ Qε , find all states Q′ that can be reached using only ε-
transitions (this can be done with a DFS technique). For each state q ∈ Q′, if
there is a transition to state r on input e (i.e. a non ε-transition), then create
a new transition (p,e,r) from p to r on input e. If any state q ∈ Q′ is a final
state, then make p a final state.

c) Remove all ε-transitions and all unreachable states.

87

Notes
1The second condition for the non-crossing messages property was wrongly formulated in the

original technical report. In the original text it could be read

∀e = 〈!m, p, p〉 , 6 ∃e′ 6= rcv(〈!m, p, p〉),e <p e′

We note that such condition would be right if <p was an immediate precedence relation, rather
than a total order.

