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SUMMARY: 
 
A microstructure-based modeling framework for ductile damage and failure has been examined and validated 
with experiments for an AlMgSi aluminium alloy. A limited number of material tests has been used to calibrate 
a porous plasticity model and different fracture models. 
 
The nucleation, growth, and coalescence of voids characterize the mechanisms of ductile damage and 
fracture. Simulations on an initially voided 3D micromechanical unit cell have been conducted to assess the 
growth phase and onset of coalescence. The ductility of the unit cell was found to decrease with increasing 
stress triaxiality. Furthermore, the stress-strain response of the unit cell was used to optimize the Gurson-
Tvergaard model. In general, the softening predicted by this calibrated model was found to be too modest 
compared to experimental data. An examination on coalescence was also performed to assess the critical 
porosity level. 
 
Strain localization analyses have been conducted to evaluate when the strain localizes into a narrow band, 
which is a frequent precursor to failure. An imperfection band approach has been used, where the band 
material was modeled by applying the Gurson-Tvergaard model optimized from both unit cells and 
experiments. Inadequate predictions of the global failure strain were obtained from the model calibrated from 
unit cells. The localization analysis was also utilized to calibrate the material parameters of the band material 
using the failure strain from a single smooth axisymmetric tensile specimen. This approach was found to give 
satisfactory results. 
 
Numerical analyses of a pre-damaged plate subjected to a blast load were conducted to examine how the 
different calibrated failure criteria perform in a large-scale problem. Considerable differences were found 
between the different criteria. The calibration approach of using a smooth specimen test with the localization 
analysis provided the most convincing results. It is suggested that a purely microstructure-based modeling 
framework is ambitious. 
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SAMMENDRAG: 
 
Et mikrostrukturbasert modelleringsramme for duktil skade og brudd har blitt undersøkt og validert med 
eksperimenter for en AlMgSi aluminiumslegering. Et begrenset antall materialtester har blitt brukt til å 
kalibrere en porøs plastisitetsmodell og forskjellige bruddmodeller. 
 
Kjernedannelse, veksten og koalesering av hulrom karakteriserer mekanismer for duktil skade og brudd. 
Simuleringer på en 3D mikromekanisk enhetscelle med innledende hulrom har blitt utført for å vurdere 
vekstfasen og begynnelsen av koalesering. Duktiliteten til enhetscellen ble funnet å synke med økende 
spennings triaksialitet. Videre ble spenning-tøyningsresponsen til enhetscellen brukt til å optimalisere 
Gurson-Tvergaard modellen. Generelt viste det seg at mykningen predikert av denne kalibrerte modellen var 
for beskjeden sammenlignet med eksperimentelle data. En undersøkelse på koalesering ble også utført for å 
vurdere det kritiske porøsitetsnivået. 
 
Tøyningslokaliseringsanalyser har blitt utført for å evaluere når tøyingen lokaliseres i et smalt band, som er 
en hyppig forløper til feil. En imperfeksjonsbåndstilnærming har blitt brukt, hvor båndmaterialet ble modellert 
ved å anvende Gurson-Tvergaard modellen optimalisert fra både enhetsceller og eksperimenter. 
Utilstrekkelige predikeringer av den globale bruddtøyningen ble oppnådd fra modellen kalibrert fra 
enhetsceller.Lokaliseringsanalysen ble også benyttet for å kalibrere materialparametrene til båndmaterialet 
ved å bruke bruddspenningen fra en enkelt glatt aksisymmetrisk strekkprøve. Denne tilnærmingen ble funnet 
å gi tilfredsstillende resultater. 
 
Numeriske analyser av en for-skadet plate utsatt for en eksplosjonslast ble utført for å undersøke hvordan de 
forskjellige kalibrerte feilkriteriene utfører i et stortskala problem. Det ble funnet betydelige forskjeller mellom 
de ulike kriteriene. Kalibreringsmetoden ved bruk av et glatt prøvestykke med lokaliseringsanalysen ga de 
mest overbevisende resultatene. Det foreslås at et rent mikrostrukturbasert modelleringsramme er ambisiøst. 
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Abstract

A microstructure-based modeling framework for ductile damage and failure has been
examined and validated with experiments for an AlMgSi aluminium alloy. A limited
number of material tests has been used to calibrate a porous plasticity model and
different fracture models.

The nucleation, growth, and coalescence of voids characterize the mechanisms of ductile
damage and fracture. Simulations on an initially voided 3D micromechanical unit cell
have been conducted to assess the growth phase and onset of coalescence. The ductility
of the unit cell was found to decrease with increasing stress triaxiality. Furthermore,
the stress-strain response of the unit cell was used to optimize the Gurson-Tvergaard
model. In general, the softening predicted by this calibrated model was found to be
too modest compared to experimental data. An examination on coalescence was also
performed to assess the critical porosity level.

Strain localization analyses have been conducted to evaluate when the strain local-
izes into a narrow band, which is a frequent precursor to failure. An imperfection
band approach has been used, where the band material was modeled by applying the
Gurson-Tvergaard model optimized from both unit cells and experiments. Inadequate
predictions of the global failure strain were obtained from the model calibrated from
unit cells. The localization analysis was also utilized to calibrate the material param-
eters of the band material using the failure strain from a single smooth axisymmetric
tensile specimen. This approach was found to give satisfactory results.

Numerical analyses of a pre-damaged plate subjected to a blast load were conducted to
examine how the different calibrated failure criteria perform in a large-scale problem.
Considerable differences were found between the different criteria. The calibration
approach of using a smooth specimen test with the localization analysis provided the
most convincing results. It is suggested that a purely microstructure-based modeling
framework is ambitious.
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ḟn Rate of change in porosity due to nucleation of voids
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1 | Introduction

Aluminium alloys are frequently used in structures due to their high energy absorp-
tion capabilities, excellent formability, and low weight. They also provide exceptional
durability and low maintenance. It is often essential to use high strength alloys while
fully taking advantage of the ductility when designing lightweight structures. However,
increasing the strength of aluminium alloys comes at the expense of the ductility, en-
hancing the risk of severe damage and failure under deformation. This is why access
to accurate and reliable material models for aluminium alloys is essential in a design
process.

The mechanisms of ductile fracture are characterized by the nucleation, growth, and
coalescence of voids [1]. These mechanisms are often complex and depend on a large
variety of factors such as stress state, strain rate, material hardening, temperature, and
the content, distribution, and shape of secondary particles and voids [2]. Consequently,
a large number of mechanical tests are often required to calibrate material models
adequately. These calibrations are often quite costly and time-consuming in a design
process where it is crucial for the engineers to select the most suitable aluminium
alloy for a given structure. A novel microstructure-based modeling framework might
substitute some of these tests. This involves modeling and simulation at nano-, micro-,
and macroscales. Besides making the design phase more time and cost efficient, such
a framework provides a greater knowledge of the ductile failure processes that occur.
Essentially, this permits the possibility to tailor alloys with ideal strength and ductility
for a particular application, paving the way for an entirely new way to design aluminium
structures.

The FractAl project [3] at the Norwegian University of Science and Technology received
in 2016 a 24.6 MNOK FRIPRO Toppforsk grant to investigate new ways of design-
ing aluminium structures against failure [4, 5]. The project aims to "enable design of
both material and structure in an optimal combination without having to use time-
consuming and expensive mechanical tests" [4]. The FRIPRO Toppforsk scheme of the
Norwegian Research Council aims at developing more world-leading research environ-
ments in Norway [6]. This really emphasizes the interests of a microstructure-based

1
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modeling framework.

The work on ductile fracture is extensive, and a vast variety of models have been
proposed in the literature the past decades. Two widely used ductile damage models
are the Johnson-Cook criterion [7] and the Cockcroft-Latham criterion [8]. Gruben
et al. [9] proposed an extended version of the latter criterion to access better control
on the influence of the Lode parameter and stress triaxiality ratio. Experiments have
shown that the stress state regarding these two parameters significantly influences the
fracture strains [10]. Furthermore, these damage models in their original form are
uncoupled, and the accumulated damage will not affect the load-carrying capacity of
the material. Nor are they based on any physical mechanisms of ductile failure.

McClintock, in 1968, and Rice and Tracey the following year were the first to address
an analytical description of void growth in a porous material. Gurson established in
1977 a constitutive model that accounted for the evolution of voids in a uniformly
voided continuum during plastic deformation [11], thus providing a basic framework
for porous plasticity models. Tvergaard later modified the Gurson model [12, 13] to
obtain better agreements with numerical simulations on voided materials by making it
more flexible. This model is commonly referred to as the Gurson-Tvergaard model and
accounts only for the spherical growth of voids. Extensions to account for nucleation
[14], coalescence [15] and shearing [16] of voids have been proposed in the literature.
A vast variety of other improvements to the Gurson models also exist. Among others;
the inclusion of material anisotropy [17, 18], void size effects [19], the effect of rate-
dependent plasticity [20], kinematic hardening in the matrix material [21], and the
influence of a non-quadratic yield surface [22].

The growth and coalescence of voids on a microscopic level are difficult to observe ex-
perimentally. In order to get a better understanding of these mechanisms, it is desirable
to use micro-scale models. The finite element micromechanical unit cell approach has
proven to be a powerful tool in the improvement of ductile fracture models ever since
it was first introduced by Needleman [23] and Tvergaard [12, 13]. Furthermore, Dæhli
et al. [24, 25] used the unit cell response in a recent study to calibrate the material
parameters in the Gurson-Tvergaard model.

Another approach to ductile failure is the strain localization analysis. A frequent
precursor to failure is the localization of strain in a narrow band [26, 27]. The theory
of Hill [28] and MK-analysis [29] have been applied to predict ductile failure for sheet
metals in plane stress, such as forming applications, for decades. Rice [30, 31] proposed
in 1975 a more general framework on localization in a 3D continuum. Recent work
performed by Morin et al. [32] has shown that the imperfection band approach of strain
localization (See Section 2.3.1) provides similar results to the unit cell simulations, but
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with considerably less computational effort.

A nano-scale material model (NaMo) can be used to predict the strength and work
hardening of tempered aluminium alloys [33, 34], which may entirely substitute ex-
pensive material tests in a design process. The foundation for these predictions is the
chemical composition and thermal history. Several extensive studies have validated the
model for the aluminium 6xxx-series in different tempers [34, 35]. Also, a solidification
and homogenization microstructure model (Alstruc) that can estimate the particle
and solute element content has been developed [36, 37, 38].

The objective of this thesis is to assess a microstructure-based modeling framework
on ductile behavior and fracture of an aluminium alloy. This consists of performing
unit cell analyses based on nano- and microstructure modeling to calibrate a porous
plasticity model. Localization analysis will be used to predict the failure strain for
various loads, and to calibrate different failure criteria.

The ultimate goal is a pure "bottom-up" approach which links the atomic scale to
the macroscopic response through real mechanisms founded on physics and chemistry.
Such an approach may use NaMo and Alstruc to predict the yield stress, isotropic
hardening, and particle content. Unit cell analyses could be used to evaluate the growth
and coalescence of voids, and localization analysis to predict the fracture strain. The
gray, blue and red arrows in Figure 1.1 illustrate such an approach. The calibration
is also done using experimental data on a smooth and various notched axisymmetric
tensile specimens. The difference between the different methods will be discussed
further.

In this thesis, experimental data of a cast and homogenized AlMgSi aluminium al-
loy is used [38, 39]. The yield stress and hardening parameters are determined from
experiments. These variables, however, could have been determined numerically by
NaMo. A 6082 alloy was initially intended for this work, but experiments showed a
rather brittle fracture behavior, making this material unsuited for the objective herein.
Chapter 7 addresses this alloy in greater details. The predictive capabilities of NaMo
are also addressed in this chapter.

An overview is presented in the following.

Chapter 2 – Theory
This chapter explains the theory used. It includes relevant theory in the field of material
mechanics, ductile failure processes, porous plasticity models, the unit cell analysis and
the strain localization analysis.
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Chapter 3 – Material and Experimental Study
Here, the AlMgSi aluminium alloy used for the majority of this thesis is examined. The
particle content from Alstruc, material behavior and results from various tensile tests
are examined. A mesh study on the finite element model for all the tensile specimens are
also performed. The plastic strain, the stress triaxiality ratio and the Lode parameter
along the cross-section elements are evaluated in the end.

Chapter 4 – Calibration of the GT Model
Unit cell simulations are conducted to examine the growth and coalescence of voids.
The material parameters in the Gurson-Tvergaard model are calibrated using both a
unit cell approach and experimental data. A parametric study is performed to evaluate
how different parameters affect the calibration process.

Chapter 5 – Numerical Approach to Fracture
This chapter assesses material failure using the unit cell and the strain localization
analysis. A methodology that can calibrate all material parameters using a single
smooth tensile specimen is presented at the end of this chapter.

Chapter 6 – Case Study - Blast Load
This chapter will use the failure models in Chapter 5 to predict crack growth in a
pre-damaged plate subjected to a blast load. No experiments have been carried out, so
the aim is only to assess the performance of the different failure models in a numerical
simulation.

Chapter 7 – Aluminium Alloy 6082 T6
The work done on the 6082 aluminum alloy is presented in this chapter. This includes
prediction from NaMo, an investigation on the actual geometry, and SEM fractogra-
phies of the failure surfaces.
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Figure 1.1: An overview of the different approaches taken in this thesis. The numbers
inside the circles correspond to the chapter which covers the approach.





2 | Theory

This chapter addresses relevant theory for this thesis. Some fundamental theories in the
field of material mechanics are presented first. This includes the constitute relations in
classical plasticity, experimental measurements of stress and strain, and a section on
important stress invariants for damage in porous metals. Then, the damage and failure
processes in ductile materials are addressed, followed by theories in ductile damage and
porous plasticity. Most of these sections are based on Hopperstad and Børvik [26, 40],
Anderson [1], and on a review paper by Benzerga and Leblond [10].

The fundamental concepts of the 3D unit cell model are presented in Section 2.2, which
is based on the work of Dæhli et al. [24, 25]. Lastly, an overview on the theory of
localization of deformation for a 3D continuum is addressed.

2.1 Material Mechanics

2.1.1 Constitutive Relations

Various constitutive relations are used to describe the behavior of materials. This
section presents a classical elastic-plastic formulation. The theory of plasticity often
neglects the effects of voids, and the equations in this section govern the bulk material
response. Rate and thermal effects will be neglected. It should be mentioned that
the formulation presented in this section is restricted to small deformations. It can,
however, easily be extended to a hypoelastic-plastic formulation, which is adopted in
most finite element codes. In the theory of plasticity, it is accepted to additively split
the strain rate tensor into an elastic and a plastic part

ε̇ij = ε̇eij + ε̇pij (2.1)

where ε̇eij and ε̇pij represent the elastic and plastic part, respectively. The generalized
Hooke’s law governs the elastic response. The material response is assumed to be

7
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isotropic in this study. Thus, the rate form of the generalized Hooke’s law is given
by

σ̇ij = E

1 + ν
ε̇

′e
ij + E

3(1− 2ν) ε̇
e
kkδij (2.2)

where E is the Young’s modulus and ν is the Poisson’s ratio. The deviatoric and
volumetric parts of the elastic strain rate tensor are denoted ε̇′e

ij and ε̇ekk, respectively.
The Kronecker delta, δij, equals 1 for i = j and 0 otherwise. A yield criterion restrains
the stress, which states that

Φ(σ, p) = φ (σ)− σy(p) ≤ 0 (2.3)

Here, φ (σ) = σeq is the equivalent stress and σy(p) is the flow stress of the material.
Elastic domain is indicated by Φ < 0, while Φ > 0 is inadmissible. Plastic deformation
occurs only for Φ = 0. A two-term Voce rule can be used to describe the isotropic
hardening

σy(p) = σ0 +
2∑
i=1

Qi

(
1− exp(−Cip)

)
(2.4)

where, σ0 is the initial yield stress and p is the accumulated plastic strain. The material
constants σ0, Qi, and Ci are normally fitted from experiments. Section 7.4 shows
how these parameters can be obtained numerically using the nanostructure model
NaMo.

A high-exponent yield criterion, known as the Hershey criterion, can be used to define
the equivalent stress in Equation (2.3).

σeq =
(1

2

[∣∣∣σI − σII ∣∣∣m +
∣∣∣σII − σIII ∣∣∣m +

∣∣∣σIII − σI ∣∣∣m]) 1
m

(2.5)

The exponent m ≥ 1 determines the curvature of the yield surface. In the special
case of m = 2, this equation takes the form of the von Mises equivalent stress, which
is represented by a quadratic yield surface. Plasticity that considers the von Mises
equivalent stress is frequently referred to as J2 plasticity. Hosford [41] proposed an
exponent of m = 8 for face-centered cubic (FCC) materials, such as many aluminium
alloys. Consequently, a non-quadratic yield surface is obtained, as shown in Figure 2.1.
A cylinder represents the surface in the case of m = 2, making yielding unaffected by
the third deviatoric stress invariant, J3. The opposite applies to a non-quadratic yield
surface. A user-defined subroutine from the library SIMLab Metal Model (SMM) [42]
has been used to include the Hershey yield criterion in the finite element simulations.
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Figure 2.1: Plot of the yield surface for m = 2 and m = 8 in the Π-plane. The figure
is taken from Dæhli et al. [25].

Furthermore, the plastic strain rate tensor is governed by the associated flow rule,
defined as

ε̇pij = λ̇
∂Φ
∂σij

(2.6)

The flow rule ensures non-negative dissipation. The plastic parameter, λ̇, is a non-
negative scalar (λ̇ ≥ 0) which is determined based on the consistency condition. This
condition states that the stress must stay at the yield surface during plastic deforma-
tion. Mathematically, this is expressed as λ̇Φ̇ = 0, where Φ̇ denotes the rate form
of the yield surface. The accumulated plastic strain is found from the rate of plastic
dissipation, defined as D = ε̇pijσij = ṗσeq. It follows that

p =
∫ t

0
ṗdt, ṗ ≡ λ̇ =

ε̇pijσij

σeq
(2.7)

It can easily be shown that in the special case of von Mises equivalent stress, ṗ equals
to [40]

ṗ =
√

2
3 ε̇

p
ij ε̇

p
ij (2.8)

2.1.2 Experimental Measurements

Section 3 presents tensile tests on different axisymmetric specimens. Some experimen-
tal measurements used later will be defined here. The true, or Cauchy, stress σt and
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logarithmic strain εl are calculated as

σt = F

A
, εl = ln A0

A
(2.9)

The applied force is denoted F , while A0 and A are the initial and current cross-section
area, respectively. Under the assumption of elliptical cross-section, these are defined
as

A0 = π

4D0,xD0,y, A = π

4DxDy (2.10)

where D0,i and Di are the initial and current diameter in the two perpendicular di-
rections x and y. It is assumed that the initial cross-section area is spherical, hence
D0,x = D0,y = D0. The stress and strain might also be expressed with respect to the
initial configuration. These are defined as the engineering stress and engineering strain
and are given here as

σeng = F

A0
, εeng = A0

A
− 1 (2.11)

It follows from Equation (2.9) that σt = σeng(1 + εeng) and εl = ln(1 + εeng). In a
uniaxial tensile state, the plastic strain is defined as

p = εp = ε− εe = ε− σ

E
(2.12)

where ε is the total strain, εe = σ/E is the elastic strain, and E is the Young’s modulus.
In a uniaxial stress state, σeq = σ, where σ is the stress in longitudinal direction. This is
true for an axisymmetric smooth tensile specimen. At large plastic strains, a neck will
form in the gauge section of the specimen. This neck introduces a complex stress state
where the equivalent stress no longer equals to the stress in the longitudinal direction
due to radial and transverse stress components. In contrast, owing the fact that the
strain is determined by the minimum cross-section area in Equation (2.9), the plastic
strain p can be found using Equation (2.12), even after necking. The point of necking
is defined as the point when maximum force is applied, i.e., dF = 0, or equivalently,
dσeng = 0.

Since the formation of radial and transverse stress components will increase the longi-
tudinal stress required for plastic flow, the stress measurement needs to be corrected.
Under certain assumption, defined in [43], the equivalent stress after necking can be
estimated using the Bridgman correction

σeq = σt(
1 + R

a

) [
ln
(
1 + 1

2
a
R

)] (2.13)
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Here, R is the radius of the curvature of the neck and a is the radius of the current
cross-section of the specimen. Le Roy et al. [44] proposed an empirical model for the
a/R-ratio, given as

a

R
= 1.1 (p− εplu) , p > εplu (2.14)

where εplu is the logarithmic plastic strain at necking.

It should be emphasized that the measurements in Equation (2.9) and (2.11) are only
physical meaningful in the case of a smooth specimen before a neck forms. In the
case of the notched specimens, the stresses and strains are not uniform throughout the
cross-section. Thus, these equations are only valid in an average sense. However, they
prove to be useful when comparing numerical simulations with experiments, and will
therefore be adopted here as well.

2.1.3 Stress Invariants

Three important stress invariants can describe the stress state in an isotropic material,
namely the von Mises equivalent stress σVMeq , the stress triaxiality ratio T and the
Lode parameter L. Experiments have shown that these invariants play a crucial role
in describing damage evolution and failure [10]. Studying different combinations of the
stress triaxiality and Lode parameter will give vital insight into the material response
upon ductile failure. Thus, these invariants will be used to impose various proportional
stress states in the unit cell and the localization analysis. They are also important
factors in different fracture criteria, as will be explained later in Section 2.1.5.

An arbitrary stress state σ is plotted in the Haigh-Westergaard space in Figure 2.2a.
The Cauchy stress tensor is divided into a deviatoric and a hydrostatic part by the
following relation

σij = σ
′

ij + σHδij, σH = 1
3σkk = 1

3(σI + σII + σIII) (2.15)

where σ′
ij is the deviatoric stress tensor and σH is the hydrostatic stress. Moreover,

σI ≥ σII ≥ σIII are the principal stresses. The von Mises equivalent stress, which is
the first stress invariant to be presented, is given by

σVMeq =
√

3J2 =
√

3
2σ

′
ijσ

′
ij (2.16)

This relation is equivalent with Equation (2.5) for m = 2. If nothing else is stated, σeq
is defined as the von Mises equivalent stress. The second principal invariant of σ′ , J2,
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is defined as

J2 = 1
2σ

′

ijσ
′

ij = 1
2
[
(σI − σH)2 + (σII − σH)2 + (σIII − σH)2

]
(2.17)

Further, the ratio of the hydrostatic stress to the von Mises equivalent stress expresses
the stress triaxiality T . Hence, T is a non-dimensional measurement defined by the
following equation

T ≡ σH
σVMeq

= Iσ
3
√

3J2
(2.18)

The effect of stress triaxiality on ductile fracture is strongly evidenced by experiments
[10, 45, 46]. The higher the stress triaxiality, the lower the fracture strain. This is
mainly because the stress triaxiality is crucial for the growth of voids. Marini et al.
[47] reported that the fracture strain decreased exponentially with increasing triaxiality
ratio. Moreover, the void growth increased exponentially with T , which corresponds
well with predictions from unit cell simulations. The stress triaxiality can be systemat-
ically varied over a range of specimen geometries, covering most practical applications.
Smooth and notched axisymmetric tensile specimens, plane strain specimens and shear
specimens are commonly used for this purpose. Also, cracked specimens may be used
to obtain high triaxialities.

While the stress triaxiality has an important role on the ductility, studies show that the
Lode parameter L, which is characterized by the deviatoric stress state, also influences
the failure strain. This parameter is commonly expressed as

L = 2σII − σI − σIII
σI − σIII

(2.19)

This effect has, among others, been demonstrated by Bao and Wierzbicki [48], and
Barsoum and Faleskog [49]. It has been reported that the effect of the Lode parameter
is mainly prominent in the lower range of stress triaxialities, where the ductility is found
to be lower in shear dominated stress states than in axisymmetric stress states.

The same invariant might be expressed in terms of the angle θL between the deviatoric
stress tensor σ′ and the main principal stress direction σI in the Π-plane. This is
illustrated in Figure 2.2b. The Lode angle is defined as [40]

cos 3θL ≡
J3

2

( 3
J2

) 3
2

= 27J3

2σ3
eq

(2.20)

where J3 = detσ′ is the third principal invariant of the deviatoric stress tensor. The
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Lode angle ranges from 0 ≤ θL ≤ π
3 . A relation between the Lode parameter and Lode

angle is given by the equation

L =
√

3 tan
(
θL −

π

6

)
(2.21)

The Lode parameter is defined such that L = −1, 0 and 1 correspond to θL = 0◦,
30◦ and 60◦, respectively. These values represent the states of generalized tension
(GT), generalized shear (GS) and generalized compression (GC) in the same order
as above. Figure 2.2b illustrates how these states relate to the Π-plane. From the
relation presented above, one can conclude that the Lode parameter is not affected by
the hydrostatic stress. Thus, it is exclusively related to the deviatoric stress state.

Finally, the ordered principal stresses can be related to these invariant by decomposing
the stress tensor into a deviatoric and hydrostatic part [40]


σI

σII

σIII

 = 2
3


cos (θL)

cos
(

2π
3 − θL

)
cos

(
2π
3 + θL

)
σ

VM
eq + σH


1
1
1


= σVMeq

2
3


cos (θL)

cos
(

2π
3 − θL

)
cos

(
2π
3 + θL

)
+ T


1
1
1




(2.22)

(a) Haigh-Westergaard space (b) Π-plane

Figure 2.2: (a) An illustration of the stress tensor σ and its components (σH and
σ

′) in the deviatoric space, commonly known as the Haigh-Westergaard space. (b) The
principal stress tensor σ′ and the deviatoric angle θL plotted in the Π-plane. The case
of generalized tension (GT), generalized shear (GS) and generalized compression (GC)
are also marked in the figure. The illustration is taken from Dæhli et al. [25].
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2.1.4 Damage and Failure in Ductile Metals

Figure 2.3 illustrates the three most common fracture micromechanisms in metals and
alloys; intergranular fracture, cleavage fracture, and ductile fracture [1]. Cracks will un-
der normal circumstances not form and propagate along the grain boundaries, as shown
in Figure 2.3a. Cleavage, which is defined as rapid crack propagation along particular
crystallographic planes, is generally associated with brittle materials. This process is
shown in Figure 2.3b. The latter case, Figure 2.3c, is associated with ductile materials,
such as many aluminium alloys. Three distinct processes identify the main mechanisms
governing this failure behavior [1]; void nucleation, growth, and coalescence. Figure
2.4 illustrates these processes.

(a) Intergranular fracture (b) Cleavage fracture (c) Ductile fracture

Figure 2.3: The three mechanisms of fracture. From Anderson [1].

Void nucleation is associated with the formation of free surface at a second-phase parti-
cle or inclusion. This process is illustrated in Figure 2.4a and 2.4b. Voids will nucleate
when the stress on particles is sufficient to induce particle cracking or decohesion of the
material-particle bond. Many factors govern these processes. For instance, the size and
shape of the particles are important. Decohesion occurs more readily for large particles
than small particles since they contain more surface defects. Moreover, particle crack-
ing is more prominent for a matrix material with a higher yield stress and hardening
exponents. Larger particles are also often more likely to crack since they normally
contain more defects [1]. The stress triaxiality plays an important role, where higher
triaxiality tends to promote decohesion. Void nucleation is often the critical step when
there is a strong bond between the particles and the bulk material, and fracture occurs
shortly after. In the cases where nucleation occurs with ease, growth and coalescence
are the governing mechanisms. Microscopic voids may also already be induced to the
material due to the manufacturing process. There exist numerous models on void nu-
cleation. However, this thesis will mainly focus on the growth and coalescence of voids.

Voids will continue to grow due to plastic strain and hydrostatic stress. Eventually,
coalescence will occur. These processes are illustrated in Figure 2.4c – 2.4f. The co-
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Void nucleation, growth, and coalescence in ductile materials. (a) inclu-
sions in a ductile matrix, (b) void nucleation, (c) void growth, (d) strain localization
between voids, (e) necking between voids, and (f) void coalescence and fracture. From
Anderson [1].

alescence of voids indicates the end of the material lifespan, and fracture occurs soon
after. Void growth is strongly dependent on the stress state, and the stress triaxiality
introduced in Section 2.1.3 plays a vital role. The deviatoric stress state, represented
by the Lode parameter, also plays an important role on the damage evolution in duc-
tile materials, especially at low stress triaxialities. The coalescence can be divided into
three main modes [10]; internal necking, void-sheeting, and necklace coalescence. Inter-
nal necking is the most common coalescence mode and is defined by the necking down
of the inter-void ligament. Void-sheeting and necklace coalescence are more favorable
at low triaxiality ratios.
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2.1.5 Failure Criteria and Ductile Damage Models

The physical damage and failure mechanisms described in Section 2.1.4 must be char-
acterized by some ductile damage model and failure criteria to predict material failure
accurately. The prediction of failure is of particular importance in problems exhibiting
large plastic deformations where the energy absorption is of interest. Some relevant
applications are car bumper systems and protective structures. The literature presents
numerous damage modeling approaches. They can be formulated either coupled or
uncoupled to the constitutive relations of the material.

An uncoupled damage model is convenient due to the simple identification of the dam-
age parameters. Here, the damage variable ω, which is used to keep a measure on the
accumulated damage during deformation, evolves as a function of the stress state and
plastic strain. Failure is assumed to occur when the damage variable reaches a critical
value. An uncoupled approach does not, however, integrate the damage variable into
the constitutive formulation. Consequently, the damage does not affect the material
response. A coupled damage model, on the other hand, will link the damage to the
material response. If the damage evolution exceeds the work hardening, strain soft-
ening occurs. Thus, the damage is related to material degradation, making coupled
damage models more physical trustworthy, but also harder to calibrate.

Damage models may be divided into three categories [26]; (1) criteria defined by a
fracture surface, (2) stress-based criteria, and (3) criteria driven by plastic straining
but amplified by a factor that accounts for the stress state. As discussed in Section
2.1.3, ductile damage and failure are both dependent on the stress triaxiality T and the
Lode parameter L. Hence, a criterion should depend on these two invariants in order
to prescribe damage in a suitable way. Many traditional ductile damage models do not
take the influence of the Lode parameter into account, making them only suitable for
the application they are calibrated to, but too simple to accurately describe the failure
of material for a wide range of loading conditions.

Many finite element codes use an accumulation rule to account for the damage. The
first category follows this. A failure surface p̄f = p̄f (T, L) is assumed to exist for pro-
portional stress paths with constant Lode parameter and stress triaxiality. The damage
is accumulated by the following relation to account for non-proportional loading,

ω =
∫ p

0

dp

p̄f (T, L) (2.23)

Here, p is the accumulated plastic strain and p̄f is the plastic failure strain obtained
under proportional loading. Fracture is normally assumed to occur when ω = 1. Cate-
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gory (2) and (3) can be represented by a fracture surface as well under the assumption
of proportional loading.

This section will examine different uncoupled approaches of defining damage. Three
well-known models will be presented along with some extensions proposed in the lit-
erature to increase versatility. Section 2.1.6 will address a porous plasticity model,
more precisely the Gurson-Tvergaard model. This model is a special branch of coupled
damage models, which couples the damage through physical mechanisms.

Johnson-Cook Fracture Model

The Johnson-Cook (JC) fracture model [7] is a particularly important uncoupled frac-
ture model that also accounts for the effects of rate dependency and temperature. It is
defined as a fracture surface, putting it into category (1). This model does not account
for the Lode dependency in its original form. The modified Johnson-Cook (MJC) frac-
ture model is obtained by introducing the Lode angle into the Johnson-Cook equation
[26] and is defined as

p̄f (T, θL, ṗ,Θ) = [D1 +D2 exp (D3T )] (1 +D4 ln(ṗ∗)) (1 +D5Θ∗) [1−D6κ(θL)]
(2.24)

where D1, ..., D6 are model constants. The dimensionless strain rate ṗ∗ and homologous
temperature Θ∗ are defined as

ṗ∗ = ṗ

ṗ0
, Θ∗ = Θ−Θr

Θm −Θr

(2.25)

Here, ṗ0 is a user-defined reference strain rate, Θr is the ambient temperature and Θm

is the melting temperature of the material. In the case of quasi-static loading under
constant temperature, D4 and D5 can be set to zero without loss of accuracy since
ṗ ≈ ṗ0 and Θ = Θr. Furthermore, the stress-dependent function κ(θL) is defined as
[16]

κ(θL) ≡ 1− cos2 (3θL) , 0 ≤ θL ≤
π

3 (2.26)

where θL is the Lode angle. The last factor in Equation (2.24) will reduce the fracture
strain p̄f for generalized shear, while keeping the case of generalized tension and com-
pression unaltered. Note that 0 ≤ D6 ≤ 1 in order to avoid negative p̄f . It should be
emphasized that the model presented in Equation (2.24) is symmetric about L = 0,
which is generally not the case.
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The Cockcroft-Latham Failure Criterion

Approach (3) assumes that the damage evolution is driven by plastic straining, but
amplified by a factor χ = χ(σ) which accounts for the stress state. Thus, a general
damage evolution rule can be formulated by

ω =
∫ p

0
χ(σ)dp (2.27)

Failure is normally assumed to occur when ω = 1.

The Cockcroft-Latham (CL) criterion [8] is a simple phenomenological one-parameter
model which states that the damage parameter only depends on plastic straining and
stress state through the maximum principal stress

ω = 1
WC

∫ p

0
max(σI , 0)dp (2.28)

Calibration ofWC , which is the only model parameter, is done from a single tensile test.
The Cockcroft-Latham criterion can be expressed by the stress triaxiality, the Lode
angle and the von Mises equivalent stress by substituting σI with the first component
in Equation (2.22)

ω = 1
WC

∫ p

0
max

(
T + 2

3 cos(θL), 0
)
σeqdp (2.29)

Even though the Cockcroft-Latham criterion can display some effects of the triaxiality
ratio and Lode parameter, these effects are only implicit and can not appropriately
describe the trends seen in experiments. A more versatile damage model is the extended
Cockcroft-Latham (ECL) criterion proposed by Gruben et al. [9], which defines the
damage parameter as

ω = 1
WC

∫ p

0
max

(
φ
σI
σeq

+ (1− φ)
(
σI − σIII

σeq

)
, 0
)γ
σeqdp (2.30)

This model consists of two additional model parameters, 0 ≤ φ ≤ 1 and γ ≥ 0.
Note that the extended Cockcroft-Latham reduces to the original criterion by taking
φ = γ = 1.

A fracture surface p̄f (T, L) can be obtained from the extended Cockcroft-Latham cri-
terion by assuming proportional loading. Failure occurs when ω = 1, thus

ω = 1
WC

∫ pf

0
Hσeqdp = 1 (2.31)
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where
H = H(σI , σIII , σeq) = max

(
φ
σI
σeq

+ (1− φ)
(
σI − σIII

σeq

)
, 0
)γ

(2.32)

It can easily be shown that H depends only on the triaxiality ratio and Lode parameter
by using Equation (2.22). Thus H = H(T, L). Consequently, H is a constant function
in the case of proportional loading. Assuming the Voce hardening in Equation (2.4),
Equation (2.31) becomes

Wc

H(T, L) = σ0p̄f +
2∑
i=1

Qi

(
p̄f + 1

Ci
(exp(−Cip̄f )− 1)

)
(2.33)

The fracture surface p̄f (T, L) can be calculated numerically from Equation (2.33) for
a suiting set of model parameters.

The Rice-Tracey Criterion

Rice and Tracey proposed in 1969 an uncoupled fracture criterion that describes the
growth of a spherical void in an infinite medium [50]. The normalized growth rate of
the radius R is defined by

Ṙ

R
= κg exp (ψT )ε̇p (2.34)

where κg and ψ are constants. Theoretically, these equal to 0.283 and 1.5, but might
also be fitted from experiments. Fracture is assumed to occur when the ratio Ṙ/R
reaches a critical limit. Marini et al. [47] reported the same exponential growth.
Rousselier [51] expressed the Rice-Tracey criterion in terms of the void volume fraction
f in the following way

ḟ = 3κgf(1− f) exp (ψT )ε̇p (2.35)

In order to account for softening in shear-dominated stress states for low stress tri-
axiality ratios, an additional term, κs1ωs1(L)f ε̇p, can be added to the growth rate ḟ
(see Gruben et al. [9]). This way, a Lode dependency can be added to the problem.
Moreover, Morin [52] proposed to add a third term to account for the void distortion,
consequently tilting the failure surface. The new criterion will be referred to as the
extended2 Rice-Tracey model (E2RT) and defines the growth rate as

ḟ = 3κgf(1− f) exp (ψT )ε̇p + κs1ωs1(L)f ε̇p + κs2ωs2(L)f ε̇p (2.36)

where κs1 and κs2 are additional fitting parameters. The two functions ωs1(L) and
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ωs2(L) are defined here as

ωs1 = 1− (9L− L3)2

(L2 + 3)3 (2.37a)

ωs2 = 1
2 (1 + cos(3θL)) , θL = arctan

(
L√
3

)
+ π

6 (2.37b)

These functions could also be defined differently to get other variations of the Lode
dependency. A fracture surface is possible to obtain from Equation (2.36) by assuming
proportional loading. The proportional plastic fracture strain, p̄f , is reached at a
critical porosity fc. Hence, by integrating over the plastic strain from Equation (2.36),
we obtain

p̄f =
∫ p̄f

0
dεp =

∫ fc

f0

df

3κgf(1− f) exp (ψT ) + (κs1ωs1 + κs2ωs2) f

= 1
3κg exp (ψT ) + (κs1ωs1 + κs2ωs2) ·

ln fc (3κg(1− f0) exp (ψT ) + κs1ωs1 + κs2ωs2)
f0 (3κg(1− fc) exp (ψT ) + κs1ωs1 + κs2ωs2)

(2.38)

It is further assumed that f0 and fc are small compared with unit, which implies that
1− f0 = 1− fc ≈ 1. Thus, Equation (2.38) becomes

p̄f = ln(fc/f0)
3κg exp (ψT ) + κs1ωs1 + κs2ωs2

(2.39)

Four parameters must be fitted from either experiments or micro-mechanical simula-
tions; ψ, κg/ ln(fc/f0), κs1/ ln(fc/f0), and κs2/ ln(fc/f0).

Figure 2.5 shows how the three terms in the denominator of Equation (2.39) influence
the failure surface. Higher T and the state of generalized shear decreases the fracture
strain. Moreover, the state of generalized tension has a lower failure strain than the
state of generalized compression, as illustrated by Figure 2.5c. Note that the secondary
axis is not in scale.



2.1. MATERIAL MECHANICS 21

0.0 0.5 1.0

Stress Triaxiality, T [-]

F
ai

lu
re

S
tr

ai
n
,
ε̄p f

(a) 3κg exp (ψT )

-1 (GT) 0 (GS) 1 (GC)

Lode Parameter, L [-]

F
ai

lu
re

S
tr

ai
n
,
ε̄p f

(b) κs1ωs1

-1 (GT) 0 (GS) 1 (GC)

Lode Parameter, L [-]

F
ai

lu
re

S
tr

ai
n
,
ε̄p f

(c) κs2ωs2

Figure 2.5: An illustration on how the three terms in the denominator of Equation
(2.39) affect the yield surface. (a) represents the original Rice-Tracey criteria. (b)
illustrates the modification by Gruben et al. [9] due to shear softening. (c) shows the
tilting of the fracture surface.

2.1.6 Porous Plasticity

Porous plasticity models (PPM) are physically-based material models which combine
the underlying physical mechanisms at a microscopic level to the constitutive relations.
Ductile materials experience nucleation, growth and coalescence of micro-cracks and
voids, as presented in Section 2.1.4. Porous models possess the ability to describe such
micro-mechanical processes at a macroscopic scale. A material element is consequently
assumed to consist of a matrix material and voids. The work-hardening of the matrix
increases the strength of the material, while these micro-mechanical mechanisms tend
to soften the material behavior. Consequently, there will be a competition between
these two effects until the localization of strains occurs due to excessive damage. As
a consequence, porous plasticity models couple the damage to the material response.
Additionally, the assumption of pressure insensitive material behavior, which applies
to many material models, is no longer valid.

Even though the processes of ductile failure are categorized into distinct regimes, in
reality, these mechanics are related to several additional factors. Factors such that the
distribution, shape, and size of second-phase particles and voids, stress state, strain rate
and temperature [2] may all contribute to the ductility. Consequently, the employment
of many approximations and simplifications is often necessary to reach a solution.
The material constants are normally determined from experiments, and may therefore
account for such factors in an average sense. Whether or not void-based damage models
are preferable to coupled continuum damage models, as those presented in Section 2.1.5,
is debatable. In the end, the most compelling aspect is if the model can predict real
material behavior or not.

The following section presents the Gurson-Tvergaard model. This model accounts for
the growth of voids, which is the most understood stage of ductile fracture. Void
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growth is a continuum plastic deformation process and, therefore, more convenient to
model than nucleation and coalescence [2]. Extensions that account for nucleation and
coalescence will also be presented here, along with a model for shearing of voids. A
Gurson-type of model for the Hershey yield criterion is presented in the end.

The Gurson-Tvergaard Model

Gurson [11] proposed a porous plasticity model in 1977 which accounts for the growth
of voids in the constitutive relation. The model is based on the upper-bound limit
analysis in the theory of plasticity. Gurson assumed a periodic distribution of voids
in the material and derived a yield criteria based on a thick-walled hollow sphere.
Tvergaard later modified the model to become more adaptable [12, 13], which the
literature frequently refers to as the Gurson-Tvergaard (GT) model. The model is
given in terms of a macroscopic yield criterion and is defined by

Φ(σ, f, σM) =
(
σVMeq
σM

)2

+ 2fq1 cosh
(3

2q2
σH
σM

)
− 1− q3f

2 ≤ 0 (2.40)

where q1, q2 and q3 are the material parameters introduced by Tvergaard. The original
Gurson model was found to be overly stiff. The introduction of these variables encour-
age void growth and serves artificially softening. It is common to assume q3 = q2

1. For
most ductile materials, q1 ≈ 1.25 – 1.50 and q2 ≈ 1.0 [2]. The flow stress of the matrix
material is represented by σM . The Voce rule, given by Equation (2.4), will be utilized
in this thesis. Moreover, σH and σVMeq are the macroscopic hydrostatic stress and the
macroscopic von Mises equivalent stress, respectively. Moreover, the Gurson-Tvergaard
model is, in its original form, independent of the third invariant J3, and thus the Lode
parameter L.

The void volume fraction f , also called porosity, is the only microstructural variable
in the Gurson-Tvergaard model and is defined as [26]

f = Vf
V

= Vf
Vf + VM

(2.41)

where 0 ≤ Vf < V is the volume of voids in a representative volume element (see Section
2.2) and VM is the total volume of matrix material. The Gurson model explicitly
includes the porosity f in the yield function. Consequently, this is a coupled model
where void growth results in softening of the macroscopic response. By using the
underlying assumption of matrix incompressibility, i.e., V̇M = 0, it is possible to express
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Figure 2.6: An illustration on how the different model parameters affect the yield
surface Φ = 0. The surface is plotted in the σH–σVMeq –space and shows the reduction
in macroscopic equivalent stress with the increase in hydrostatic stress for different
(a) porosity levels, (b) q1 and (c) q2. The arrow shows the direction of increasing
parameters. The blue curves represent the same set of parameters for all plots, i.e.,
f0 = 0.01, q1 = 1, and q2.



24 CHAPTER 2. THEORY

the evolution of the porosity as

ḟ = V̇f
V

(
1− Vf

V

)
= (1− f)ε̇pv (2.42)

where ε̇pv = V̇f

V
is the plastic volumetric strain rate. By adopting the associated flow

rule, given by Equation (2.6), the plastic strain rate tensor is found by the relation
[26]

ε̇pij = λ̇
∂Φ
∂σij

= λ̇

[
3
σ2
M

σ
′

ij + fq1q2

σM
sinh

(3
2q1

σH
σM

δij

)]
(2.43)

The first term on the right-hand side is the deviatoric part and the second term is the
volumetric part of the plastic strain rate tensor. By combining Equation (2.42) and the
volumetric part in Equation (2.43), one can finally express the evolution of porosity
due to growth as

ḟ = ḟg = (1− f)ε̇pv = λ̇(1− f)fq1q2

σM
sinh

(3
2q1

σH
σM

δij

)
(2.44)

Some important aspects of the Gurson model will be discussed. Figure 2.6 shows how
the normalized macroscopic equivalent stress varies with increasing hydrostatic stress,
and thus increasing stress triaxiality ratio, for different configurations of the model
parameters. At zero porosity, i.e., f = 0, the yield function reduces to

Φ =
(
σVMeq
σM

)2

− 1 = 0 (2.45)

which is another form of the yield function for the matrix material, given by Equation
(2.3). The horizontal dashed line in Figure 2.6 illustrates this particular case. Obvi-
ously, the von Mises yield criterion is independent on the hydrostatic stress, and thus
the triaxiality ratio. This follows by the definition of a von Mises material, where yield-
ing is only affected by the deviatoric stress state. The macroscopic equivalent stress
is reduced as the porosity increases. The yield function is fulfilled for zero stresses
(σVMeq = σH = 0) at a certain porosity level, defined by f = 1

q1
. Consequently, this

implies that the yield function collapses into a single point and the material losses its
load-carrying capacity. The porosity must therefore stay within f0 ≤ f < q−1

1 .

Increasing all model parameters tends to decrease the yield surface, resulting in a softer
material response. Increasing the porosity, which is the only parameter that changes
during plastic deformation, exhibit the most significant impact on the surface. The
effects of changing q2 are more prominent than changing q1. Changes in q1 does not
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influence the response at zero hydrostatic stress. Also, yielding can take place in the
case of vanishing deviatoric stresses, i.e., σVMeq = 0. It can be seen from Equation (2.40)
that this can result in yielding for a pure hydrostatic stress state, which is not possible
in classical J2 flow theory.

One deficiency with the Gurson model is the assumption that the voids remain spherical
during deformation. This assumption might be acceptable at intermediate to high
stress triaxiality, but void growth is clearly not spherical in the lower triaxiality domain.
Moreover, the model does not account for the effect of the Lode parameter, which is
essential at low triaxiality ratios. Another insufficiency is the assumption of initially
spherical voids. A study on unit cells by Gao and Kim [53] concluded that the shape
of the voids significantly influenced void growth and coalescence. Improvements of the
Gurson model have been proposed, but at the expense of the simplicity of the original
model.

Nucleation of Voids

The Gurson-Tvergaard model, in its original form, accounts only for void growth and
does not include void nucleation or coalescence. Chu and Needleman [14] expressed
the evolution of porosity as

ḟ = ḟn + ḟg (2.46)

to account for void nucleation. Here, ḟn is the change in porosity due to nucleation of
new voids, and ḟg is defined by Equation (2.44). Nucleation is assumed to be either
stress- or strain-driven. In the case of strain-driven nucleation [1, 26]

ḟn = A(p)ṗ (2.47)

where
A(p) = fN

sN
√

2π
exp

[
−1

2

(
p− pN
sN

)2
]

(2.48)

Here, fN is the total volume fraction of void nucleating particles, sN is the associated
standard deviation and pN is the mean plastic strain for nucleation. The introduction
of void nucleation to the Gurson-Tvergaard model results in three additional fitting
parameters.

An alternative strain-driven nucleation model, called the continuous nucleation model,
assumes that a constant fraction of voids is nucleated per strain increment. Then
A(p) = An is assumed to be constant. The nucleation stops once a critical porosity
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is reached. Although this model is quite simple, good results have been reported for
steel and aluminium alloys [54, 55]. It is noted that the continuous nucleation model
is a special case of Equation (2.48) where sN is large.

Coalescence of Voids

Fracture occurs when voids coalesce. A straightforward way of defining a fracture cri-
terion is to assume that void coalescence occurs at a critical porosity fc, at which point
fracture initiates. Rapid void growth tends to happen when the void fraction exceeds
10 to 20 % [1]. Consequently, the material loses its load-carrying capacity rapidly.
Tvergaard and Needleman [15] introduced a phenomenological way of accounting for
this accelerating void growth by replacing f in Equation (2.40) with an effective void
volume fraction f ∗

f ∗ =


f if f ≤ fc.

fc + fu − fc
ff − fc

(f − fc) if f > fc.
(2.49)

where fu = 1
q1
, and ff is the void volume fraction when the material loses its load-

carrying capacity. Note that f ∗(ff ) = fu, which indicates that the yield function
collapses into a single point. The contribution from the hydrostatic stress is amplified
when f > fc, which in turns accelerates the onset of plastic instability. It is probably
sufficient to assume failure when the porosity exceeds fc for all practical purposes, and
the marginal benefit of applying Equation (2.49) is outweighed by the need to define
the additional parameters [1].

Shearing of Voids

A deficiency with the Gurson model is its inability to represent the case of low stress
triaxialities, for example in shear-dominated stress states. The model is founded on
the formulation of spherical void growth. However, the voids will not remain spherical
as the hydrostatic stresses are reduced, eventually resulting in the loss of its physical
foundation.

In order to describe damage evolution for low stress triaxialities, Nahshon and Hutchin-
son [16] proposed an extension to the Gurson model that takes the evolution of damage
ḟs due to shear softening because of void distortion and inter-void linking into account.
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Equation (2.46) is now expressed as

ḟ = ḟn + ḟg + ḟs (2.50)

where the evolution of shear damage fs is defined as

ḟs = ksfκ (θL)
σ

′
ij ε̇

p
ij

σeq
(2.51)

Here, ks is a constant and κ (θL) is a stress-dependent factor, defined as

κ (θL) ≡ 1− cos2(3θL), 0 ≤ θL ≤
π

3 (2.52)

From the definition of the Lode angle in Section 2.1.3, it can easily be shown that κ = 0
in the case of generalized tension and compression, and κ = 1 in the case of generalized
shear. Thus ḟs equals to zero for all axisymmetric stress states while shear-dominated
stress states tend to accelerate the damage evolution. It must be emphasized that the
porosity f no longer represents the volume fraction of voids, given by Equation (2.41).
It can instead be viewed as a damage parameter that accounts for the softening due to
void distortion and growth.

A Gurson-Type Model for the Hershey Yield Criterion

It is possible to obtain a Gurson-type model for isotropic porous solids that obeys the
Hershey yield criterion by heuristically replacing the von Mises equivalent stress with
the Hershey equivalent stress. Such a modification of the model incorporates effects of
the Lode parameter and has been proposed by Dæhli et al. [25] in a recent study. The
Gurson-Tvergaard model takes the form

Φ(σ, f, σM) =
(
σeq
σM

)2
+ 2fq1 cosh

(3
2q2

σH
σM

)
− 1− (q1f)2 ≤ 0 (2.53)

where σeq is the Hershey equivalent stress from Equation 2.5. The other parameters
are the same as in the original Gurson model. This modification is implemented in the
SIMLab Porous Plasticity Model (SPPM) [56].
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2.2 Computational Unit Cell

Unit cell models provide a powerful numerical tool for understanding material behavior
and fracture on a microscopic scale. It consists of modeling the microstructure of
the material by applying assumptions such as a uniform and periodic distribution of
voids, and a homogenized matrix material which does not include any secondary voids
or particles. The voids are often approximated as spheroids. Needleman [23] first
introduced these kinds of analyses in 1972, and they have been extensively used in
the literature ever since. Large-scale experiments can not efficiently calibrate many
material models which build on underlying physical phenomenons. The unit cell can
in such cases generate useful data for the calibration process. Unit cell models may
also give essential insight into mechanisms observed in experiments. The approach
presented in this section is taken from the work by Dæhli et al. [24, 25, 57], and the
reader is referred to these papers if nothing else is cited.

First, the idealization approach of unit cell models and the FE-model used are pre-
sented. The last section gives a brief overview on the definition of macroscopic stress
states and the boundary conditions for the unit cell model.

2.2.1 The Unit Cell Model

Figure 2.7 shows the approximation of a representative volume element (RVE) in a
polycrystalline solid [57]. The microstructure of alloys consists of grains, particles, and
micro-voids, as shown in Figure 2.7a. In the case of randomly ordered grains, which
is true for many polycrystalline materials, the material is expected to exhibit isotropic
behavior on a macroscopic scale [26] and a homogenized matrix can approximate the
microstructure. This process is shown in Figure 2.7b. The microstructure, which
consists of randomly distributed and irregular particles, is further idealized by assuming
a structure of evenly distributed particles of equal shape and size. Figure 2.7c illustrates
this. From this fairly simple idealization, one can extract the resulting unit cell model,
given in Figure 2.7d

Hence the representative volume element consists of a single void or particle embedded
by an isotropic bulk material, which is described by the elastic-plastic constitutive
relations given in Section 2.1.1. The primary purpose of the unit cell in this thesis is
to observe void growth under proportional loading, and to fit the material constants
in the Gurson-Tvergaard model, given in Equation (2.40).
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(a) (b)

(c) (d)

Figure 2.7: The process of simplifying a polycrystalline solid into an RVE. (a) Real-
istic micro-structure consisting of grains, voids, and particles. (b) Homogenized matrix
description. (c) Evenly distributed and equal sized particles. (d) The resulting unit cell
model. From Dæhli [57].
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2.2.2 A Finite Element Approach of the Cell Model

The 3D unit cell model consists of a cube with a spherical void located at the center,
as illustrated in Figure 2.8a. Only normal stress components act on the unit cell and
shear effects are precluded in the simulations. Moreover, the void surface is free from
any traction. Only 1/8 of the cell is model due to the symmetry of the problem. In
this study, the cube sides are of equal size, given by Li = 2L̄, where L̄ is the length
of the 1/8 model. The void is assumed to be initially spherical, hence Ri = R̄. The
initial void fraction is given by

f0 = VV
VRV E

= πR̄3

6L̄3
(2.54)

where VV and VRV E are the volume of the void and RVE, respectively. Axisymmet-
ric tests of smooth and various notched specimens are normally used to fit f0 from
the Gurson model. This thesis, however, mainly uses the non-commercial Alstruc
microstructure solidification model for industrial aluminium to determine the initial
porosity [36, 37, 38]. The external cell boundaries translate as rigid faces in the
perpendicular direction to enforce the requirement of periodic boundary conditions.
Moreover, the symmetry planes are restricted from movement in the perpendicular di-
rection. The 1/8 FE-model is shown in Figure 2.8b. The implicit finite element code
Abaqus/Standard [58] was used to conduct the finite element (FE) simulations.

Due to the assumption of an initially voided material, the effects of nucleation and
matrix-particle interaction are neglected. This is reasonable for matrix-particle systems
that exhibit low cohesive energy, and at intermediate to high triaxiality stress states.

(a) (b)

Figure 2.8: Illustration of the unit cell. (a) shows the unite with a spherical void
located in the center. The macroscopic stresses are given as Σi. (b) illustrates an
FE-model of the 1/8 unit cell. From Dæhli et al. [25].
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At negative or low stress triaxiality, however, closing of the void occurs. Consequently,
including a particle is necessary.

2.2.3 Macroscopic Stress States

The unit cell is normally restricted to proportional macroscopic loads in order to sys-
tematically evaluate the cell response under different stress states. Due to the nature of
the stress triaxiality T and the Lode parameter L on ductile damage and failure, these
parameters will be kept constant during deformation. Thus, the translation of the rigid
faces must be enforced by a set of equations to ensure correct stress state.

As indicated in Figure 2.8a, the cell is subjected to macroscopic stresses and strains.
Capital letters are used to denote these variables here. The von Mises equivalent stress
measurement is exploited, which is given by

ΣVM
eq =

√
3
2Σ′

ijΣ
′
ij (2.55)

where Σ′
ij is the macroscopic deviatoric stress tensor. Accordingly, the macroscopic

work conjugate equivalent von Mises strain is defined as

EVM
eq =

√
2
3E

′
ijE

′
ij (2.56)

where E ′
ij is the macroscopic deviatoric logarithmic strain tensor. Further, Equation

(2.22) can be expressed in terms of the macroscopic stresses


ΣI

ΣII

ΣIII

 = ΣVM
eq

3
2


cos (θL)

cos
(

2π
3 − θL

)
cos

(
2π
3 + θL

)
+ T


1
1
1


 (2.57)

The Lode angle, θL, and the stress triaxiality, T , are defined by

θL = arctan
(
L√
3

)
+ π

6 , L = 2ΣII − ΣI − ΣIII

ΣI − ΣIII

(2.58a)

T ≡ ΣH

ΣVM
eq

, ΣH = 1
3(ΣI + ΣII + ΣIII) (2.58b)

As indicated by Equation (2.57), the ratios between the different principal stress com-
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ponents are functions of only θL and T . The stress state can, therefore, be imposed
simply and concisely. The normalized principal stress ratios are expressed on the form
[24, 59]

ψ1 = ΣI

Σmax

, ψ2 = ΣII

Σmax

, ψ3 = ΣIII

Σmax

(2.59)

where Σmax = max(ΣI ,ΣII ,ΣIII), and thus ψi = ψi(T, θL) ≤ 0. These ratios are the
only quantities needed in the kinematic constraints used to ensure proportional loading
of the cell. Dæhli et al. [24] showed that, under the assumption of uniform boundary
conditions, the three orthogonal boundary displacement components of the rigid faces
could be connected to a single fictitious node through the following sets of equations

∆U1 = l1
(
β1∆Ũ1 + β2∆Ũ2 + β3∆Ũ3

)
(2.60a)

∆U2 = l2

(
β2∆Ũ1 −

β2
3 + β1β

2
2

β2
2 + β2

3
∆Ũ2 + β2β3(1− β1)

β2
2 + β2

3
∆Ũ3

)
(2.60b)

∆U3 = l3

(
β3∆Ũ1 + β2β3(1− β1)

β2
2 + β2

3
∆Ũ2 −

β2
2 + β1β

2
3

β2
2 + β2

3
∆Ũ3

)
(2.60c)

Here, ∆Ui are the displacement components of the rigid faces for a given set of ψi,
li denotes the current length of the unit cell edges, and ∆Ũi are the displacements of
the fictitious node located outside of the model. These connectivity equations can be
imposed by using a multi-point constraint (MPC) subroutine in Abaqus/Standard.
The βi parameters are explicitly given by the normalized principal stress ratios

β1 = ψ1

ψ
, β2 = ψ2

ψ
, β3 = ψ3

ψ
, ψ =

√
ψ2

1 + ψ2
2 + ψ2

3 (2.61)

2.3 Localization of Strains

Experiments show that ductile fracture is frequently preceded by the localization of
strains [26]. The localization may take place due to softening from damage evolution or
adiabatic heating, which results in non-unique solutions of the boundary value problem.
In such cases, other solutions than the fundamental solution are possible, eventually
leading to localized plastic deformation within a narrow band. By the assumption
that localization initiates material failure, this theory can, to an extent, be a reliable
tool for calibration different failure criteria. This assumption is often reasonable since
intense deformation in a confined region is usually followed by local crack initiation
and propagation [25].
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Two cases of the localization analysis exist; bifurcation analysis and imperfection band
analysis [26]. In the bifurcation analysis, localization occurs in a homogeneously de-
formed solid due to instabilities in the constitutive equation leading to the possibility
of bifurcation modes. In contrast, the imperfection band analysis introduces a planer
band of initial imperfection to the material. The material properties inside the band
differ slightly from the surrounding material properties, which reduces the strength of
the band material. It must be emphasized that the localization theory is not a ductile
fracture model by itself. Studies show, however, good correlations between unit cell
simulations and the imperfection band analyses. The bifurcation analysis, on the other
hand, tends to over-predict the strain at localization [25, 32]. Moreover, the strain
localization analysis is superior to the unit cell when concerning the computational
effort [32].

2.3.1 The Imperfection Band Analysis

The governing idea of the imperfection band analysis, proposed by Rice in 1976 [31],
is that a small portion of the material has slightly different properties from the sur-
rounding material, permitting concentrated deformation within this inhomogeneity. A
homogeneous and homogeneously deformed solid body will be considered, in which
there exists an initial narrow band of imperfections. This is illustrated in Figure 2.9.
Properties outside and inside the band will be denoted (•) and (•), respectively.

The stress and deformation rates, as well as the constitutive relations, inside this band,
are allowed to take values which differs from the surrounding material. It is assumed
that some of the material properties will vary slightly inside the band, which is used

Figure 2.9: Illustration of the strain localization approach. From Dæhli et al. [25].
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to explain the reason for this discontinuity, or non-uniformity, in the material. The
requirement of equilibrium and compatibility, however, must be enforced across the
band.

It is assumed that non-uniformities in the velocity gradient field inside the planar band
may occur, while the velocity field v outside the band remains continuous and the par-
tial derivatives of v in the direction parallel to the band remain uniform. Compatibility
requires that the velocity gradient field Lij only vary along the normal direction to the
band. Thus, the compatibility equation becomes [26]

Lij = Lij + q̇inj (2.62)

where n denotes the unit normal vector to the planer band. The band orientation
rotates due to the global deformation of the body. Hence, n is not fixed. The vector
q̇ ≡ ∂∆v/∂ξ represents the rate of deformation non-uniformity, and ∆v(ξ, t) is the
non-uniformity of the velocity field inside the band. Note that the only directional
coordinate for v, and therefore q̇, is ξ, which is defined as the coordinate along n, as
illustrated in Figure 2.9.

The unit vector m parallel to the vector q̇ is used to define the localization mode. If m
is orthogonal to n, i.e., m · n = 0, the band is a shear band. In contrary, if m · n = 1,
the two vectors are parallel and a dilatation band is obtained. Everything in between
these two extremes are a mixed mode of localization.

The continuing equilibrium of the traction across the band can be expressed as [32]

niṖ ij = niṖij (2.63)

where Ṗ is the rate of the nominal stress tensor. Equation (2.62) and (2.63) are the two
governing equations in the imperfection band analysis. Also, the constitutive relations
defining the material response inside and outside the band are included. By combining
these equations, an equation for the rate of deformation non-uniformity vector q̇ can
be derived [25, 32] (

niC
t

ijklnl
)
q̇k = ni

(
Ct
ijkl − C

t

ijkl

)
Lkl (2.64)

where Ct is the tangent modulus defined as [25, 32]

Ct
ijkl = Cep

ijkl −
1
2σikδjl + 1

2σilδkj −
1
2σjlδik −

1
2σjkδil + σijδkl (2.65)

Here, δij is the Kronecker delta, σij is the Cauchy stress tensor, and Cep
ijkl is the elastic-
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plastic tangent modulus tensor. It follows that strain localization occurs when the
acoustic tensor, defined as At(n) = n ·Ct · n, becomes singular, hence

det
(
niC

t

ijklnl
)

= 0 (2.66)

This condition implies that the rate of deformation non-uniformity vector q̇ is no longer
uniquely defined. Localization of the strains is normally not possible in materials un-
dergoing associative plastic flow unless strain softening is present in the constitutive
response of the material inside the band. As mentioned in the introduction, materials
prone to ductile damage or thermal softening often experience strain softening. Ac-
cordingly, a natural way to account for softening in the constitutive relations is to use
a porous plasticity model. The Gurson-Tvergaard model presented in Section 2.1.6 will
be used herein.

In the imperfection analysis, a proportional load path is prescribed outside the band.
The proportional load path can be defined by the stress triaxiality T and Lode pa-
rameter L. The constitutive relations determine the stress and internal variables.
Localization is assumed to occur when the determinant of the acoustic tensor At(n)
becomes negative for the first time. Since this loss of ellipticity can arise for several
band orientations, it is essential to search for the orientation for which the ductility is
lowest [32]. The initial unit normal vector to the band is defined in terms of spherical
coordinates

n0 =


cosφ0

cos θ0 sinφ0

sin θ0 sinφ0

 (2.67)

where the θ0 ∈ [0, 2π] and φ0 ∈ [0, π] are the initial azimuthal angle and polar angle,
respectively. Figure 2.10 illustrates the normal vector and corresponding angles. The

Figure 2.10: The normal vector n0 to the imperfection band. From Morin et al. [60].
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band orientation vector at time t is calculated by,

n(t) = n0 · F−1(t)
|n0 · F−1(t)| (2.68)

where F(t) is the deformation gradient outside the imperfection band.

2.3.2 The Bifurication Analysis

In the bifurcation analysis, a homogeneous and homogeneously deformed body is also
considered. The imperfection band, however, is not initially present in the un-deformed
body. The body is subjected to a uniform stress field σ, and we search for conditions
"for which continued deformation may result in an incipient non-uniformity field in
which deformation rates vary with position across a planar band but remain uniform
outside the band" [30].

The bifurcation approach is obtained by setting Ct = Ct in Equation (2.69). Hence,
bifurcation occurs when [32]

det
(
niC

t
ijklnl

)
= 0 (2.69)

As for the imperfection band, some sort of softening mechanism must be included in
the constitutive material relations in order for localization to occur.



3 | Material and Experimental Study

A cast and homogenized aluminium alloy in the AA6xxx-series is used in this study.
Westermann et al. [38] reported this particular alloy, where the microstructure, strength,
work-hardening, and ductile failure were extensively investigated. The experimental
data from smooth and notched axisymmetric specimens used herein are taken from
this paper. The same material has been examined subsequently in [38, 61, 62]. Hol-
men et al. [39] were investigating the prediction of failure in the same particular alloy
using a numerical approach. This article also presents experimental data from a plane
stress tension test which will be used in this thesis to investigate the effect of the Lode
parameter.

3.1 Material

The material samples were taken from a DC-cast ingot produced at the laboratory
casting facilities at Hydro Aluminum R&D Sunndal. The chemical composition is
0.2 Fe, 0.5 Mg, 0.4 Si and Al balanced, all in wt%. TiB was also added as grain
refiner to control the grain size and avoid abnormal grains during casting. The ingot
was homogenized using a laboratory furnace to ensure isotropic plastic flow. The
homogenization procedure is given in Table 3.1. Pedersen et al. [61] could report a
constant strain ratio (r-value) equal to unity for the cast and homogenized material.
Thus, the material will hereafter be assumed isotropic. For consistency, the aluminium
alloy will be referred to as AlMgSi.

Calculation from Alstruc estimated a particle content of 0.452% [38]. The Alstruc
code is based on standard solidification and diffusion theory. The reader is referred to
Dons et al. [36, 37] for more information about the code. More detailed information
about the material and microstructure can be found in Westermann et al. [38].

37
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3.2 Axisymmetric Tensile Tests

Westermann et al. [38] performed tensile tests on a smooth and two types of notched
axisymmetric specimens. Tests were conducted on three samples, orientated along the
longitudinal axis of the ingot, of each type. The geometries of the specimens are given
in Figure 3.7 – 3.9. All tests were performed at room temperature with a cross-head
velocity of 1.2 mm/min. This corresponds to an average strain rate of 5 · 10−4 s−1

before necking for the smooth specimens.

The tensile force and diameter of the minimum cross-section of the specimen were
continuously measurement until failure. A AEROEL XLS13XY laser micrometer with
1 µm resolution was used to measure the diameter in two perpendicular directions,
denoted here as Dx and Dy. A 13× 13× 0.1 mm3 box of laser light was created by two
perpendicular lasers around the cross-section of the specimen. The laser micrometer
was mounted on a mobile frame which can move in the vertical direction. This is to
ensure that the minimum cross section is always measured. The samples were scanned
with a frequency of 1200 Hz during elongation.

The Cauchy stress versus the logarithmic strain curves for all 9 samples are plotted in
Figure 3.1, which have been calculated using Equation (2.9) and (2.10). It must be
emphasized that for the notched tests, the stress and strain measurements represent
an average value over the minimum cross-section. The same holds true for the smooth
specimen after incipient necking. Moreover, plastic incompressibility was assumed in
order to obtain the logarithmic strain, which might not be true at large strains since
void formation and growth may introduce change in the volume.

The measured stress after necking can be corrected using the Bridgman correction in
Equation (2.13) with the Le Roy’s empirical model in Equation (2.14). Both stresses
are plotted in Figure 3.2. The plastic strain is calculated using Equation (2.12). The
Young’s modulus is given in Table 3.2.

Table 3.1: Homogenization procedure for the AlMgSi-alloy [38].

Heating rate Holding temperature Holding time Cooling rate to RT
100 ◦C/h 585 ◦C 2.5 h 300 ◦C/h

Table 3.2: Young’s Modulus, E, and Poisson’s ratio, ν, for a typical AA6xxx alu-
minum alloy.

Young’s Modulus, E Poisson’s ratio, ν
70,000 MPa 0.30
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Figure 3.1: Cauchy stress, σt, versus the logarithmic strain, εl, for all axisymmetric
specimens. The post-processed data is obtained from Westermann et al. [38].
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Figure 3.2: Measured and corrected stress versus the plastic strain, εpl , for a smooth
specimen. The blue curve represents the material curve when Voce rule is fitted to the
corrected stresses using the Bridgman correction with Le Roy’s model for the a/R-ratio.
The red curve is obtained using the work-hardening parameters from Westermann et
al. [38]. All work-hardening parameters are given in Table 3.3.
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The hardening parameters Qi and Ci in Equation (2.4) have been fitted using the
experimental data from the smooth specimens. For this purpose, the minimize function
in the Python SciPy package [63] is utilized with the following cost function

e = 1
3

3∑
i=1

∫ pf

0
|σmes − σmodel|i dp∫ pf

0

1
2 (σmes + σmodel)i dp

(3.1)

where pf is the equivalent plastic strain at failure. The measured stress and the
stress predicted from Voce rule are denoted σmes and σmodel, respectively. The model-
parameters that result in the lowest error e are given in Table 3.3.

Westermann et al. [38] fitted the work-hardening parameters using an inverse modeling
approach. These work-hardening parameters are given in Table 3.3 as well. This
approach is believed to be more accurate since it captures the equivalent stress state in
the neck more accurately, whereas the direct approach, using the Bridgeman correction,
is based on several assumptions. Figure 3.2 compares both models with the corrected
flow stress. The work-hardening is accurately captured in either case. However, the
parameters given byWestermann et al. gives saturation at a slightly higher stress, 254.7
MPa compared to 247.89 MPa. The work-hardening parameters given by Westermann
et al. will be used in this thesis from this point on. The logarithmic strain at fracture
for all tests are summarized in Table 3.4.

Table 3.3: Work hardening parameters found using curve fit and the parameters given
by Westermann et al. [38].

σ0 Q1 C1 Q2 C2 σ0.2
Curve fit 68.55 MPa 58.25 MPa 32.90 121.09 MPa 4.66 -

Westermann 66.26 MPa 62.00 MPa 32.36 126.46 MPa 4.21 71.21 MPa

Table 3.4: The fracture strain for all axisymmetric specimen tests. The strains are
given as logarithmic strains.

Specimen type Test #1 Test #2 Test #3 Average value
Smooth 0.6717 0.6761 0.6441 0.6640
R2 Notch 0.3424 0.3324 0.3148 0.3299
R08 Notch 0.3292 0.3365 0.3267 0.3308
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3.2.1 Numerical Model and Mesh Study

Simulations of the smooth and notched specimens have been conducted using the finite
element code Abaqus/Standard [58]. A mesh study on three different mesh sizes has
been done to ensure convergence. The meshes are denoted M24, M48, and M96, which
corresponds to 24, 48 and 96 elements over the minimum cross-section, respectively.
This corresponds to a characteristic element size of 0.125, 0.0625 and 0.0313 mm. The
models are discretized using a reduced 4-node axisymmetric element type (CAX4R)
with hourglass control. The different meshes are illustrated in Figures 3.7–3.9. The
results using classical J2 flow theory are presented here. The Gurson-Tvergaard model
yields similar results regarding the mesh sensitivity.

As shown in Figure 3.3, convergence of the global response was obtained for the smallest
mesh size. Some minor deviations were found between M24 and M48 for the notched
specimens. This disparity is rather small, and the M24 model is preferred due to the
computational efficiency. The same conclusion holds true for the local response when
considering the triaxiality ratio and the Lode parameter across the minimal cross-
section, as illustrated in Figure 3.4. These figures plot the Lode parameter and stress
triaxiality ratio against the plastic strain in the element. The elements at the center,
at the boundary surface, and in between have been used, denoted center, outer, and
middle element, respectively. Some differences can be found between the different
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Figure 3.3: Cauchy stress, σt, as a function of the logarithmic strain, εl, obtained
for the M24 and M48 mesh for the different specimens in Figure 3.2 when applying J2
flow theory. Mesh M48 and M96 showed indistinguishable results. M96 is therefor not
included in the figure.
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meshes for the outer element at large strains. The invariants are sampled at the center
of each element, at the integration point. Consequently, they are not measured in the
same location, which may explain the differences. The coarsest mesh provides sufficient
accuracy and will be used hereafter.

The Lode parameter and stress triaxiality are essential factors for void growth and
ductile fracture, as mentioned in Section 2.1.3. General knowledge on how these values
evolve across the cross-section during a tensile test is important. In the case of a
smooth specimen, these invariants are constant across the cross-section up to incipient
necking. In uniaxial tension, σI > 0 and σII = σIII = 0. Consequently, Equation
(2.18) yields a triaxiality ratio equal to 1/3. Figure 3.4a shows the same result. The
stress triaxiality will rapidly increase in the center of the cross section once the neck is
formed, as illustrated by the blue line in Figure 3.5b. A slight decrease of the triaxiality
ratio occurs near the surface.

In contrast, the stress triaxiality is not the same over the cross-section for the notched
specimens. Moreover, the triaxiality ratio is somewhat unstable in the lower strain
regime. The state after this transient phase is plotted as dashed green and red lines
in Figure 3.5 and is slowly transforming into a parabolic curve as one approaches
maximum force. The triaxiality is found to be largest in the center of the cross-section
for the majority of the deformation process. This is especially clear in Figure 3.4, where
the triaxiality ratio is almost exclusively largest in the center element for all plastic
element strains. A similar response is obtained for either of the notched specimens, but
the triaxiality ratio is somewhat higher for the R08 geometry. It should be emphasized,
as Figure 3.5a illustrates, that the largest plastic strains are located in the outermost
element in the case of the notched specimens.

The Lode parameter remains negative unity, i.e., the state of generalized tension, in
the center element for all specimens, even after necking. This is predicted by Equation
(2.19) in the case where σII = σIII and σI > 0

L = 2σII − σI − σII
σI − σII

= −1

The Lode parameter increases as one approaches the surface of the specimen. In the
case of a smooth specimen, the Lode parameter remains −1 up to necking. Subse-
quently, the Lode parameter increases slightly in the outer region, as shown by Figure
3.5c. The notched specimens experience an opposite effect, where L was found to
decrease as the plastic straining increases.

The von Mises yield criterion, given by Equation (2.5) with m = 2, has been used in
all simulations so far. In general, it is assumed that axisymmetric tensile bars have a
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(b) Notched specimen with R = 2.0 mm
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Figure 3.4: Evolution of the triaxiality ratio, T , and Lode parameter, L, as a function
of the plastic strain p in different elements of the tensile specimens. The element at
the mid-section, at the surface and in between have been used, denoted center, outer
and middle element, respectively. The plastic strain, p, is given as the plastic strain in
the element and is most likely different in each element at a certain point in time.
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Figure 3.5: Evolution of different measures over the cross-section. Note that the ratio
R/R0 = 0 corresponds to the center of the specimen, whereas R/R0 = 1 represents the
specimen surface. Solid lines show the state at the fracture strain in Table 3.4. Dashed
lines show the state at necking in the case of a smooth specimen, and right after the
transient phase for the notched specimens.
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stress state with a Lode parameter equal to −1. As Figure 2.1 illustrates, Equation
(2.5) predicts the same equivalent stress σeq for all m in this state. Nevertheless, as
discussed herein, the state of L = −1 only applies to the center element. Elements
further away from the center experience larger L. Consequently, yielding will occur
at lower stresses for these elements if a Hershey yield surface with m = 8 is assumed.
Figure 3.6 shows how the yield surface influences the response of the three different
test specimens. The smooth specimen is not affected by the change in yield surface,
most likely due to small variations in L. On the other hand, the R08 notched specimen
shows notable softening. This specimen type also experienced the largest deviation
in L. Despite this, the von Mises yield surface will be used for all the axisymmetric
tensile bars hereafter.
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Figure 3.6: Cauchy stress, σt, versus the logarithmic strain, εl, from simulations of
all specimen types when the Hershey yield criterion in Equation (2.5) is applied. A
user-defined subroutine from the SIMLab metal model (SMM) library has been used to
include a Hershey yield surface in the simulations.
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Figure 3.7: Smooth specimen Geometry and mesh. All measurements are in mm.
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Figure 3.8: Notched specimen with radius R = 2.0. Geometry and mesh. All mea-
surements are in mm.
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Figure 3.9: Notched specimen with radius R = 0.8. Geometry and mesh. All mea-
surements are in mm.
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3.3 Plane Strain Tension Tests

A plane strain tension test (PST) can be used in order to investigate the effect of the
Lode parameter. Holmen et al. [39] considered such a test in a separate study using the
same material. Figure 3.13 on page 52 shows the specimen geometry. The force was
measured using a calibrated load cell. The displacement was found using digital image
correlation (DIC) analyses, where a 5 – 6 mm long virtual extensometer was placed
in the gauge area. Moreover, a 3D-DIC study confirmed the plane strain assumption
[39]. Figure 3.10 plots the force-displacement curve from the experiments.

The specimen was simulated in Abaqus/Standard using 8-node linear continuum el-
ements (C3D8R) with reduced integration and hourglass control. Symmetry was ex-
ploited for all three planes to reduce the computational time. Hence, only 1/8 of the
model was simulated. The problem was discretized using 4, 8 and 12 elements over
the thickness of half the gauge area, corresponding to a characteristic element size of
0.25, 0.125 and 0.063 mm, respectively. The numerical results are plotted in Figure
3.10, where the displacement was extracted in the same manner as done in the experi-
ments. Minor differences were found between the different mesh sizes within reasonable
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Figure 3.10: Force versus displacement plot for the PST tests and simulations. The
black lines correspond to the results from experiments. The blue colored plots show the
results from simulations when J2 flow theory is applied. The red curve illustrates the
results for a Hershey yield surface with m = 8 using the coarsest mesh. A user-defined
subroutine from the SIMLab metal model (SMM) library has been used to include a
Hershey yield surface in the simulation.
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displacement.

Classical J2 flow theory overestimated the force by more than 10%. A Hershey yield
surface with m = 8 tends to decrease the strength in plane strain tests compared to the
von Mises yield surface due to the introduction of the third deviatoric invariant J3. The
red line in Figure 3.10 illustrates this. The majority of the cross section experiences
a stress state with Lode parameter between −0.5 and 0, as indicated in Figure 3.12b.
The FE-model still predicts too large force. However, the results are greatly improved
by considering the influence of the third deviatoric invariant on the yield surface.

It can be readily shown that σI = 2σII in plane strain tension where σIII = 0 using
the associated flow rule. Assuming von Mises equivalent flow stress, Equation (2.18)
and (2.19) yield T =

√
3/3 ≈ 0.577 and L = 0. Figure 3.12b and 3.12c show the Lode

parameter and stress triaxiality across the cross-section of the gauge area at three
distinct cases; at yielding, at maximum force and at the end of the simulation. The
Lode parameter is approximately −1 at the outer edges of the gauge area during the
whole deformation process. At the start, L ≈ −0.5 in the center of the specimen, but
will increase rapidly as the strain increases. Figure 3.11 shows how the Lode parameter
increases with the plastic strain in the center element. As the strain increases, L
approaches the state of generalized shear. The red × in the figure indicates the point
of maximum force where L is approximately −0.17.

The triaxiality is found to be largest in the center of the specimen at all time, as shown
in Figure 3.12c. Moreover, the triaxiality ratio is initially 0.5 in the center element,
and linearly increasing with the plastic straining. At the maximum force T ≈ 0.553,
which is slightly below the analytical solution.
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Figure 3.11: The Lode parameter, L, and stress triaxiality ratio, T , as a function of
the plastic straining in the center element. The point of maximum force is marked by
a red ×. The vertical dashed line represents the point in which T =

√
3/3 ≈ 0.577
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Figure 3.12: Contour plots of (a) the equivalent plastic strain p, (b) the Lode param-
eter L and (c) the triaxiality ratio T over the cross-section of the gauge area for three
distinct cases; at yielding, at maximum force, and at the end of the simulation.



52 CHAPTER 3. MATERIAL AND EXPERIMENTAL STUDY

Figure 3.13: The geometry of the PST tensile specimen. All measurements are in
mm.



4 | Calibration of the GT Model

This chapter will present a micromechanical approach of calibrating the Gurson-Tverg-
aard material model from Section 2.1.6. For this purpose, the computational unit cell
model introduced in Section 2.2 will be utilized to assess the mechanics of void growth
and coalescence that occur on a microscopic level. The response of a single material
element can then be matched to these cell simulations by choosing a suitable set of
parameters for the Gurson-Tvergaard material model. The aim is to use this model
to describe the macroscopic material response through these micromechanisms for dif-
ferent proportional load cases with constant Lode parameter L and stress triaxiality
T .

Then, the performance of this unit cell approach of calibrating the Gurson-Tvergaard
model will be evaluated by calibrating the same set of material constants using experi-
mental data. An outline of the results will be presented at the end of this chapter.

4.1 Unit Cell Simulations

In order to study the mechanics of void growth on a microscopic level, a series of
unit cell simulations have been conducted using the implicit solver Abaqus/Standard
[58]. The theoretical background for the unit cell model used in this chapter is given
in Section 2.2. It is desirable to investigate a wide range of stress states since void
growth and damage evolution are dependent on both the Lode parameter, L, and
stress triaxiality ratio, T . Proportional macroscopic stress states with constant L and
T have therefore been imposed to the unit cell simulations.

As discussed in Chapter 3, the Lode parameter in the center of all axisymmetric tensile
specimens was found to be equal to −1. Higher values of L were observed towards the
specimen surface of the minimal cross-section. The same parameter in the center of
the plane strain tensile specimen approaches 0 as the straining increased. However,
the Gurson-Tvergard model, in its original form, does not depend on L. Due to this

53
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fact, the state of generalized tension will be the main subject of discussion in this
study.

The stress triaxiality ranged from 0.33 to 1.5 for the different specimen geometries
used. A sharper notch yields higher triaxiality. Consequently, V-notched and cracked
specimens might experience even larger stress triaxiality ratio. The stress triaxiality
may not exceed ∼ 4.0 under realistic circumstances due to the decrease in strain-
hardening rate at considerable plastic strain found in real materials [10]. Four stress
triaxiality ratios, corresponding to 2/3, 1, 5/3 and 3, will for these reasons be imposed
to the unit cell.

Investigating stress states of lower triaxialities would be beneficial. However, lower
triaxialities will result in closing of voids and cannot be represented by the initially
voided unit cell. This effect is illustrated in Figure 4.1, where the red shaded area
represents the void surface before and after deformation. A remedy is to include a
particle inside the void, but this will be omitted in this thesis. Moreover, the Gurson-
Tvergaard model tends to overestimate the rate of void growth when the triaxiality
becomes low [10] due to the assumption of spherical void evolution. This assumption
becomes less true in the lower triaxiality domain. Consequently, the Gurson-Tvergaard
model is better suited for intermediate to high stress triaxialities [25].

Figure 4.1: Deformation of a unit cell under generalized tension when T = 1/3.
Notice how the void is closing as the unit cell is deformed.

Figure 4.2 displays the 1/8 computational cell model used in this thesis. It was estab-
lished using a Python script provided by postdoctoral researcher Lars Edvard Dæhli
[64]. A mesh study was carried out to ensure convergence. The details from this study
are presented in Section 4.1.1. Based on these results, a unit cell mesh discretization
consisting of 1580 linear 8-node brick elements (C3D8) was employed.

The initial unit cell length was chosen to be L̄0 = 1. Alstruc estimated an initial void
fraction of f0 = 0.00452. Thus, from Equation (2.54), the radius of the spherical void
is R̄0 = 0.205. Symmetry conditions were employed to the three inner faces of the unit
cell as shown in Figure 4.2b. A red color marks these faces. Further, a user-defined
multi-point constraint (MPC) subroutine was utilized to ensure proportional loading of
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(a) (b)

Figure 4.2: The 1/8 unit cell model used in this thesis. Red color marks the inner
faces of the unit cell. Symmetry conditions are employed on these faces, as shown in
(b). Turquoise and blue color mark the outer faces and the void surface, respectively.
The rigid point just outside the unit cell is denoted as RP.

the cell. This constraint connects the three outer faces of the cell model to a rigid point
(RP), located just outside of the unit cell. A turquoise color marks the outer faces in
Figure 4.2. To ensure the assumption of a periodic array of unit cells, these faces must
remain straight and move as rigid planes. Equation (2.60) describes the relationship
between the displacement of the rigid point and the boundary displacements.

The macroscopic stress of the unit cell can be found by taking the volume average of
the stress at the integration points for all elements by the following equation

Σ = 1
Vmat

nintnels∑
j=1

σjVj, Vmat =
nintnels∑
j=1

Vj (4.1)

where Vmat is the material volume, nint is the number of integration points for each
element and nels is the number of elements. Moreover, σj and Vj are the microscopic
stress tensor and volume associated with integration point j, respectively. Lastly, Σ is
the macroscopic stress tensor of the unit cell. The macroscopic von Mises equivalent
stress ΣVM

eq can then easily be calculated using Equation (2.55).

Furthermore, the macroscopic principal logarithmic strains are found by

Ei = ln
(

1 + ∆Di

L̄i

)
(4.2)
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where ∆Di and L̄i are the boundary displacement and unit cell length in direction i,
respectively. Moreover, Ei is the principal strain in direction i. The work conjugate
macroscopic strain to the von Mises stress, EVM

eq , can then be calculated using Equation
(2.56).

The matrix material has been modeled using the Voce work-hardening rule given by
Equation (2.4). To this end, the material constants given in Table 3.3 for the AlMgSi
alloy have been used. Accordingly, it is assumed that the voids have only minor effects
on the work-hardening at the low triaxialities that occur in the smooth specimen [38,
65].

4.1.1 Mesh Convergence Study

A mesh convergence study was conducted on the unit cell model to ensure adequate
results within a reasonable amount of computational effort. The mesh density was
increased by doubling the number of elements at the edges of the cell. The three
meshes, denoted mesh 1, 2 and 3, are shown in Figure 4.4. All meshes were simulated
using a linear 8-node brick element (C3D8). Only mesh 2 was simulated using a reduced
integrated quadratic 20-node brick element (C3D20R). The case of generalized tension
is presented herein. However, the findings for generalized compression and shear were
similar to that of generalized tension. Figure 4.3 presents the results as a plot of the
normalized von Mises stresses and porosity as a function of the equivalent strain.

The discrepancies between the four different cases of discretization are small, especially
at high triaxiality ratios. The computational cost was, however, heavily increased with
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Figure 4.3: (a) Normalized macroscopic von Mises equivalent stress and (b) normal-
ized porosity as a function of the macroscopic equivalent strain for the different meshes.
Only the case of generalized tension is included. The triaxiality ratio ranges from T = 3
in the left to T = 3/2 in the right.
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 4.4: The three meshes used in the mesh convergence study. Mesh 1 consists
of 172 elements, Mesh 2 of 1580 elements and Mesh 3 of 11070 elements.

the refinement of the mesh. The average wall clock time for mesh 1 was 26 seconds,
whereas the average wall clock time for mesh 2 and 3 was 167 and 1686 seconds,
respectively. Despite this, mesh 2 is not too computationally expensive and can easily
be carried out on a laptop. Due to the deviation between Mesh 1 and 2 at large strains,
and the fact that a coarse mesh cannot represent the void volume accurately, mesh 2
with C3D8 elements is the preferred discretization of the unit cell.

4.1.2 Unit Cell Results

The case of generalized tension will be considered. Figure 4.7 on page 60 illustrates
the deformation and void evolution of the unit cell in the case of T = 2/3 and T = 3
at three different stages; initial condition, at maximum stress and at the point of void
coalescence. The effect of the stress triaxiality on the cell response can be seen in
Figure 4.5.

Figure 4.5a shows how the macroscopic equivalent stress versus the equivalent strain
response is affected by the triaxiality ratio. The higher the triaxiality, the lower the
straining. Furthermore, Figure 4.5b illustrates how the porosity evolves as the cell
deforms. As the porosity grows, the macroscopic response softens. A clear competition
between the effect of the strain hardening of the matrix material and the softening
induced by void growth is visible. The latter effect is more prominent at high triaxi-
alities. This observation corresponds well with the main response seen experimentally,
where the ductility decreases with increasing stress triaxiality due to extensive void
growth [26].

Figure 4.5c illustrates how the principal strain EII in Y-direction, and thus the principal
strain EIII in Z-direction, evolves with the macroscopic equivalent strain EVM

eq . At
one point, marked by a red ×, the homogeneous deformation terminates, and the
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deformation proceeds in a uniaxial deformation mode in the X-direction. This mode
is illustrated by the rightmost cell configuration in Figure 4.7. Localization of the
deformation in the inter-void ligament in the Y- and Z-direction occurs after this point,
while the material outside the ligament unloads elastically. Physically, this represents
the link-up with a neighboring void from an adjacent unit cell [2]. This transition has
been referred to as the onset of coalescence in other literature [66]. As shown in Figure
4.5a and 4.5b, at this point the void volume fraction f increases rapidly and the cell
starts to lose its load carrying capacity. This point is especially prominent at lower
triaxiality ratios.

The stress triaxiality ratio also influences the change in aspect ratio w of the void
shape, as illustrated in Figure 4.5d. The aspect ratio is defined as

w = Rx

Ry

(4.3)

where Rx and Ry are the radius of the void in X- and Y-direction, respectively. The
void will evolve into a prolate shape in the case of T = 2/3 and T = 1. Figure 4.7a
illustrates this. On the contrary, an oblate shape is obtained for T = 3, as shown
in Figure 4.7b. It is rather counterintuitive that the void grows laterally when the
principal loading direction is vertical. At high triaxiality, however, the hydrostatic
stress is sufficient to cause this behavior. Moreover, an almost spherical void growth is
obtained for T = 5/3 before coalescence. Note that all these findings correspond well
with the results for the axisymmetric cell model used by Benzerga et al. [10].

The macroscopic equivalent strain and porosity at the onset of void coalescence as a
function of the stress triaxiality ratio are shown in Figure 4.6a and 4.6b, respectively.
Clearly, higher triaxialities decrease the critical strain Ec

eq. This is due to the rapid
void growth at large T , as already discussed. The critical void volume fraction fc seems
to be somewhat unaffected by the triaxiality, revealing an almost constant fc. It must
be emphasized that the porosity f increases rapidly once coalescence starts, making
the critical void volume fraction hard to evaluate accurately. A constant fc is, however,
favorable for practical purposes.
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Figure 4.5: Plots of the unit cell response under generalized tension showing the
effect of the stress triaxiality ratio T . The onset of coalescence is marked by a red ×.
(a) Normalized equivalent von Mises stress versus equivalent strain, EVM

eq . The initial
yield stress of the matrix is denoted σ0. (b) Normalized void volume fraction versus
EVM
eq , where f0 is the initial porosity. (c) Principal strain E22 versus EVM

eq . (d) Void
aspect ratio, w = R1/R2, versus EVM

eq .
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eq, and (b) critical porosity, fc, versus the

triaxiality ratio T for L = −1.
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(a) T = 2/3

(b) T = 3

Figure 4.7: Void growth for (a) T = 2/3 and (b) T = 3 under generalized tension
in the XY- and YZ-plane. The leftmost figures represent the initial conditions. The
middle figures represent the deformation at maximum stress. The rightmost figures
represent the deformation at void coalescence.
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4.2 Calibration of the GT-Model Using Unit Cells

4.2.1 Calibration Procedure

Assuming that the results from the unit cell analyses presented in Section 4.1.2 provide
an adequate representation of material response and void growth on a microscopic level,
these curves can be used to calibrate the material constants in the Gurson-Tvergaard
model. The initial porosity, f0, is known from before. Thus, only the two model
parameters q1 and q2 need to be determined. The main essence is that a material
element should be able to render the cell response accurately when a porous plasticity
model is applied to this element. Thus, one can determine the optimal set of qi by
comparing the response of a single element with the unit cell response under different
proportional loading cases.

The two residuals eΣ and ef will be introduced to evaluate the discrepancies between
the porous plasticity model and the unit cell model concerning both stress-strain history
and evolution of porosity. These residuals are defined as a weighted averages in the
same manner as done by Dæhli et al. [24]

eΣ = 1
NSS

NSS∑
i=1

∫ Emax
eq

0

∣∣∣ΣPPM
eq − ΣUC

eq

∣∣∣
i
dEeq∫ Emax

eq

0

1
2
(
ΣPPM
eq + ΣUC

eq

)
i
dEeq

= 1
NSS

NSS∑
i=1

i

i

(4.4a)

ef = 1
NSS

NSS∑
i=1

∫ Emax
eq

0

∣∣∣fPPM − fUC ∣∣∣
i
dEeq∫ Emax

eq

0

1
2
(
fPPM + fUC

)
i
dEeq

= 1
NSS

NSS∑
i=1

i

i

(4.4b)

Here, NSS is the total number of stress states. The equivalent stress Σeq, equivalent
strain Eeq and porosity f are defined in the same manner as earlier. The shaded squares
is defined by the area under the graph in Figure 4.8. Data from the porous plasticity
model and unit cell are denoted PPM and UC, respectively. The integral limit Emax

eq is
defined as the point when the stress in the unit cell is reduced by 5% of its maximum
value due to softening, i.e., Emax

eq = Eeq(0.95Σmax
eq ). This point is indicated by a red dot

in Figure 4.8. The maximum stress is achieved when Σ̇VM
eq = 0. This way both void

growth and material softening are accounted for in the calibration. Figure 4.8 shows
an example of the macroscopic stress-strain relation and porosity evolution from a UC
and a PPM simulation. To put the errors in Equation (4.4) into scale, the errors in
this particular case are eΣ = 0.17 and ef = 0.36. The error due to void growth was in
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Figure 4.8: The macroscopic stress and porosity as a function of the macroscopic
strain for a unit cell (UC) and a porous plasticity model (PPM) analysis. The nu-
merator and denominator from Equation (4.4) are shaded with a blue and green color,
respectively. The error in this example was found to be eΣ = 0.17 and ef = 0.36.

general found to be the largest. Furthermore, the total error is defined as

e = wΣeΣ + wfef = wΣeΣ + (1− wΣ)ef (4.5)

where wΣ and wf are the weight of the error due to the stress response and void growth,
respectively. Equal weight has been utilized in this thesis, i.e., wΣ = wf = 1/2. Only
minor differences in the calibrated q1 and q2 values were found when varying these
weights.

Only the state of generalized tension has been accounted for in this calibration process.
All triaxiality ratios covered in Section 4.1 are used. Contour plots of the total error
are displayed in Figure 4.9 for different ranges of q1 and q2. These plots have been
obtained by running numerous single element simulations over a certain domain in the
qi-space. A Python script has been used to pre-process the data from the simulations
and to make the error plot. This script can be found in Appendix B.1. Figure 4.9a
shows a broad spectrum of qi-values. From this, one can conclude that there exist a
large number of sets with qi-values which will result in a low error. This low error
region, which stretched over the qi domain, will from now on be referred to as the
band of minimum error. Values in the lower center domain of the plot predict the best
fit between the unit cell and porosity simulations. Figure 4.9b shows a more refined
domain with higher resolution of data points. The total error was found to increase
more rapidly in the upper right domain from the band of minimum error. This is
believed to do with extensive softening of the PPM model.

A sequential least-square optimization procedure has been employed to determine the
set of qi-values which is related to the lowest error. The SLSQP minimization solver in
the Scipy Python package [63] has been used for this purpose. It must be emphasized
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(a) Global error plot
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(b) Local error plot

Figure 4.9: Contour plots of the error in the qi-space. In (a), q1 ∈ [1.0, 2.5] and
q2 ∈ [0.5, 1.5] with a resolution of 31×21 points. In (b), q1 ∈ [1.5, 2.0] and q2 ∈ [0.7, 0.9]
with a resolution of 51× 21 points. This corresponds to ∆qi = 0.01 and a total of 4284
single element simulations. The domain of figure (b) is marked by a black square in
figure (a). Red × corresponds to the case of [1.843, 0.768] (rigth ×) and [1.644, 0.800]
(left ×). The error at these two points is given in Table 4.1.
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that the error-surface in the qi-space is not entirely smooth, and there exist many
local minimums as q1 and q2 are refined. This makes the iteration process somewhat
ambiguous. Nevertheless, q1 and q2 down to three decimals have been determined.

Moreover, as the low error region spans over the qi-space it might be sufficient to only
vary one of the variables. This will make the calibration process less laborious. Figure
4.10 shows the error versus q1 when q2 = 0.8. The results from these two procedures
are given in Table 4.1. The set of qi-values are marked by a red × in Figure 4.9b.
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Figure 4.10: Error as a function of q1 when q2 is kept constant, equal to 0.8.

Table 4.1: Results from the fitting process when optimizing in the qi-space and along
the q2 = 0.8 line with corresponding errors.

q1 q2 eΣ ef e
Global calibration 1.843 0.768 0.0151 0.1440 0.0795
q2 = 0.8 calibration 1.644 0.800 0.0136 0.1482 0.0809

Figure 4.11 compares the porous plasticity model with the unit cell model. The Gurson-
Tvergaard material model is obviously able to represent the unit cell response. However,
the cases of T = 5/3 and T = 2/3 yield the most significant discrepancies. Moreover,
the porous plasticity model softens too much in the case of T = 2/3 and too little in
the case of T = 5/3 and 3. The same trend appears in the void growth, where the
lowest triaxiality ratio experience too extensive void growth. A stress triaxiality equal
to unity yields good result in terms of the stress-strain response. Additionally, only
minor differences are found between the two sets of optimized qi-values. Figure 4.11b
shows a somewhat better fit in the lower triaxiality domain, but the differences are
probably negligible.
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(a) Global calibration; q1 = 1.843 and q2 = 0.768
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(b) q2 = 0.8 calibration; q1 = 1.644 and q2 = 0.800

Figure 4.11: The normalized macroscopic von Mises equivalent stress and porosity
versus equivalent macroscopic strain in the case of (a) a global calibration and (b) when
q2 = 0.8 is kept constant. Black lines represent the unit cell response.
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Figure 4.12: The Cauchy stress, σt, versus the logarithmic strain, εl, for the smooth
and notched specimens. The dashed lines represent the results obtained from J2 flow
theory, i.e., when the initial void content is 0. Solid lines show the results when a
porous plasticity material model is used with the constants in Table 4.1.
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Figure 4.12 shows the response of the tensile specimens from Section 3.2 when the
Gurson-Tvergaard model is used. The specimens experience some softening compared
to the results obtained by the classical J2 flow theory. Furthermore, the softening is
more prominent in the notched specimens as expected. The two sets of qi-parameters
in Table 4.1 give almost indistinguishable results.

Figure 4.13 compares the porous plasticity model for five different configurations of
the model parameters. The q1 and q2 parameters are linearly increased towards the
far right and upper plot, respectively. The softening effect is more prominent as the q1

and q2 increase. Moreover, the PPM simulations reveal somewhat similar response for
the very left and lower plot. The same can be said for the very right and upper plot as
well. Consequently, there may exist many configurations of q1 and q2 that give almost
the same response. This can be related to the change in yield surface shown in Figure
2.6. As discussed in Section 2.1.6, a change in q2 yields a greater influence on the yield
surface compared to a change in q1. The same trend is visible in the figure below as
well. This also explains why a band of minimum error occurs in the qi-space.
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Figure 4.13: The PPM response for different configurations of q1 and q2. The q1 is
increased from 1 to 2 (from left to right plot) and q2 is increased from 0.8 to 1.2 (from
lower to upper plot). Solid lines represent the results obtained from unit cell simulations
and are the same in all plots. Dashed lines show the result from PPM simulations.
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4.2.2 Parametric Study

The approach of calibrating the Tvergaard parameters taken in the previous section
is rather straightforward. This section will examine some important parameters and
how these will influence the error in qi-space. Parameters directly associated with
the calibration process, such as the stress states and the influence of non-proportional
loading path, will be investigated using the hardening parameters and initial void
content as previously. Moreover, a study of the initial void content and the matrix
material response will be presented afterward.

Influence of Stress States

The range of stress triaxialities covered herein is quite extensive. Many practical ap-
plications may not experience triaxialities as high as 2. As Figure 4.14 indicates, the
error plot depends on the stress states used in the calibration process. Figure 4.14a
and 4.14b show the error when only T equal to 1 and 3 is considered, respectively. The
orientation and position of the band of minimum error are different in the two cases.
A correlation between the orientation of the band and the stress triaxiality ratios used
in the calibration could not be obtained. However, the qi-values will be optimized in
a more average sense by including a large range of stress triaxialities, consequently
making the optimization process less prone to the stress state.
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Figure 4.14: Contour plots of the error in qi-space when proportional loading with
(a) T = 1 and (b) T = 3 have been used in the calculation of the error. Only the state
of generalized tension has been considered in both cases.

The method used herein can easily be extended for a range of Lode parameter L as
well. Figure 4.15 illustrates the unit cell response for different L, which shows that
the unit cell is less prone to softening in generalized compression. Including these
three L values in the calibration process of q1 and q2 will shift the band of minimum
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error in the negative direction of q2. However, the change is not too significant since
only the stress-strain response up to a 5% softening in stress has been used in the
calibration.

As discusses earlier, the Gurson-Tvergaard model is independent of the Lode parameter.
Fitting this model to a wide range of the Lode parameter is therefore somewhat point-
less. An effect of L could be obtained heuristically by modifying the Gurson-Tvergaard
model by replacing the von Mises equivalent stress with the Hershey equivalent stress.
Such a modification is given in Equation (2.53).
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Figure 4.15: (a) The normalized macroscopic equivalent stress and (b) normalized
evolution of porosity as a function of the macroscopic strain, EVM

eq , for the case of
L = −1, 0 and 1.

Non-Proportional Loading Path

A material element experiences in general non-proportional loading as shown in Figure
3.4. Calibration of the q1 and q2 parameters from a proportional loading path might
provide incorrect results. The effect of a non-proportional loading path will be inves-
tigated here by imposing the triaxiality history T (p) from the center element of the
smooth and notched specimens to the unit cell and PPM analyses. It should be noted
that L = −1 in all center elements.

Figure 4.16 illustrates the response of the unit cell model. A red cross marks the
point when coalescence occurs. The smooth specimen experience void closing since the
majority of the stress triaxiality ratio is small, i.e., 1/3. Consequently, no coalescence
occurs within reasonable deformation of the cell. A remedy for this is to include
a particle inside the void. The macroscopic plastic strain, Ec

eq, at coalescence for the
R08 and R2 notch was found to be 0.411 and 0.594, respectively. Moreover, the critical
porosity, fc, was found to be approximately 0.056 in both cases.
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The error plot in the qi-space is shown in Figure 4.17. The band of minimum error
is somewhat shifted in the positive q2 direction compared to the case of proportional
loading. Since the error plot is somewhat dependent on the triaxiality ratios included
in the calibration, as shown in Figure 4.14, this discrepancy is most likely not due to
the proportional loading by itself.
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Figure 4.16: (a) The normalized macroscopic equivalent stress and (b) normal-
ized evolution of porosity as a function of the macroscopic strain, EVM

eq , when non-
proportional loading path is imposed to the unit cell and PPM analyses. The load
history of the center element has been used. The triaxiality as a function of the plastic
strain, T (p), is plotted in Figure 3.4.
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(a) Non-proportional Loading
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Figure 4.17: Contour plot of the error in qi-space when proportional and non-
proportional loading paths are imposed. Figure (b) is the same as Figure 4.9a.
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Initial Porosity

The initial porosity of 0.00452 was based on the prediction from Alstruc. How
well this estimate corresponds to the actual void content is unknown. It should be
emphasized that the result from Alstruc is not a prediction of initial porosity per se,
but rather an estimate of the average particle content that potentially can form voids.
How the initial porosity affects the cell response and the calibrated q1 and q2 values
will be investigated in the following.

Three different porosity levels have been considered; f0 = 0.001, 0.00452 and 0.01.
The cell response under generalized tension is plotted with solid lines in Figure 4.19
for the case of T = 2/3, 1, 5/3 and 3. A larger initial void fraction results in a softer
response of the unit cell and more extensive void growth. Moreover, coalescence occurs
at lower strains as the size of the void is increased, thus resulting in lower ductility.
This corresponds well with what one would expect.

The dashed lines in Figure 4.19 show the material response of a single element when the
Gurson-Tvergaard model is used with q1 = 1.65 and q2 = 0.8. Evidently, the material
becomes softer with increasing f0. Additionally, the change in response of the porous
plasticity model follows the same trend as the cell model when f0 is altered. This is
particularly evident from the error plot in Figure 4.18. The band of minimum error
spans over the same region despite the significant difference in porosity. The response
of the porous plasticity model was found to be somewhat similar for parameters within
this band. Thus, the initial porosity is believed to not affect the calibration of q1 and
q2 too much.
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(b) f0 = 0.010

Figure 4.18: Contour plot of the error in qi-space when f0 = 0.001 and 0.01.
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Figure 4.19: (a) The normalized macroscopic equivalent stress and (b) normalized
evolution of porosity as a function of the macroscopic strain, EVM

eq , for three different
initial porosity levels. Solid lines represent the cell response. Dashed lines show the
results from the Gurson-Tvergaard model where q1 = 1.65 and q2 = 0.8
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Matrix Material Response

The last parameter studied is the response of the matrix material, more particular the
point of yielding and rate of work hardening. For this purpose, the 6082 aluminium
alloy in Chapter 7 has been used as the matrix material. The material parameters
can be found in Table 7.2 on Page 135. Figure 4.20 shows the equivalent stress as
a function of the plastic strain for the AlMgSi and 6082 aluminium alloy. While the
AlMgSi aluminium alloy exhibits extensive work hardening, but low yield stress, the
peak-aged 6082 alloy experience much larger yield stress, but a lower hardening.
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Figure 4.20: An illustration on how the AlMgSi and 6082 aluminium alloy work
hardens. The material parameters can be found in Table 3.3 and 7.2.

The error between the unit cell simulations and PPM is plotted in Figure 4.22. Figure
4.22a shows the results for the AlMgSi alloy and is the same plot as given in Figure
4.9a. The peak-aged 6082 alloy, represented by Figure 4.22b, has been calibrated using
an initial porosity of 0.00922. However, the effect of initial porosity was found to be
small.

The band of minimum error shifts in positive q2 direction for the 6082 aluminium alloy.
A higher softening rate in the Gurson-Tvergaard model is preferred to obtain a good
correlation with the unit cell simulations. This is especially true in the intermediate to
high stress triaxiality region, as indicated by Figure 4.21. From the plots in this figure,
the overall most accurate results are obtained when q1 = 1.5 and q2 = 1.0. In the
lower triaxiality domain, however, smaller q1 and q2 values give best agreements with
the unit cell response. The black curves indicate this in the leftmost and lowermost
plot. It is also worth mentioning that Figure 4.21 displays the same trends seen by
the AlMgSi alloy in Figure 4.13. More extensive softening is achieved by increasing q1
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and q2. Several qi configurations are also believed to yield similar material behavior. A
separate study showed that both the rise in yield stress and change in work hardening
contribute to this shift of the minimal error band. Evidently, the matrix material
response influences the calibration of the Tvergaard parameters more than the other
parameters investigated herein.
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Figure 4.21: The PPM response for different configurations of q1 and q2 when the
matrix material for a 6082 aluminium alloy is used. The q1 is increased from 1 to 2
(from left to right plot) and q2 is increased from 0.8 to 1.2 (from lower to upper plot).
Solid lines represent the results obtained from unit cell simulations and are the same
in all plots. Dashed lines show the result from PPM simulations.
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Figure 4.22: Contour plots of the error. Figure (a) is the same as Figure 4.9a.
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4.3 Calibration of the GT Model From Tests

Experimental data from various types of test specimens can also be used to calibrate the
Gurson-Tvergaard model. Smooth and different types of notched axisymmetric tensile
specimens are usually used for this purpose. It is convenient to fit as few variables
as possible due to the limitation of data from tests. One way is to match the initial
porosity f0 for a given set of q1 and q2 variables, usually the Tvergaard constants, i.e.,
q1 = 1.5 and q2 = 1. In this section, however, q1 and q2 will be fitted by assuming the
initial porosity from Alstruc. The following cost function defines the discrepancies
between the simulations and the measured stress

e = 1
NTT

NT T∑
i=1

∫ εmax
l

0

∣∣∣σPPMt − σEXPt

∣∣∣
i
dεl∫ εmax

l

0

1
2
(
σPPMt + σEXPt

)
i
dεl

(4.6)

Here, NTT is the total number of tensile test. The true stress from simulations and
experiments are denoted σPPMt and σEXPt , respectively. The logarithmic strain at
fracture is defined as εmaxl . Section 2.1.2 defines these measurements. Equation (4.6)
is equivalent to the cost functions given in Equation (4.4). A total of nine experiments
have been carried out on the three specimen types presented in Section 3.2, and all of
them are utilized in the optimization process. Thus NTT = 9.

Figure 4.23 illustrates how the error evolves in the qi-space. A similar band of minimum
error spans across the contour plot. The band is, however, shifted and does not resemble
the result in Figure 4.9 using the unit cell approach to calibrate the same variables.
Figure 4.24 shows the stress-strain response for different sets of q1 and q2. Evidently,
increasing one of these parameters results in a softer behavior. This softening is rather
modest at small strains. The point at which the strain starts to localize, indicated by
the rapid decrease in stress, is more affected by the change in q1 and q2. The error is
greatly influenced if this extensive softening occurs before the fracture strain. This is
indicated by a black region in the upper-left corner of Figure 4.23.

The softening in the tensile specimens before localization occurs may resemble the same
trends seen in the unit cell approach in Figure 4.13. Even so, the unit cell approach
experiences more extensive softening, and thus a more significant error, as q1 and q2

are changed. This approach also favors lower q1 and q2 values.

It is more convenient to only fit q1 by keeping q2 constant. Figure 4.25 shows the error
plot for q2 = 0.8, 1.0 and 1.2. All local minima are listed in Table 4.2. It should
be noted that the q1 parameter is much larger than values proposed in the literature
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Figure 4.23: Contour plot of the error in the qi-space for q1 ∈ [1.0, 2.4] and q2 ∈
[0.8, 1.2]. The resolution of data points is 36× 11, which corresponds to a ∆qi = 0.04.
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Figure 4.24: A comparison of the tensile experiments to the simulations using the
Gurson-Tvergaard model with different sets of q1 and q2, where q1 is increased from 1
to 2 (from left to right plot) and q2 is increased from 0.8 to 1.2 (from lower to upper
plot).
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Figure 4.25: The error as a function of q1 for three different constant q2 values.

[2]. Figure 4.26 compares the axisymmetric tensile test results using the optimized
q1 values for q2 = 0.8 and q2 = 1.0. The difference in error is only about 0.22%.
However, this results in considerable deviations in the predicted stress-strain response
since the softening mainly takes place at higher strains. No rapid loss of load-carrying
capacity is observed for the plane strain tensile specimen simulations in Figure 4.27.
Consequently, the two different sets of q1 and q2 variables do not give too different
results.

It is evident that the finite element simulations can predict the global stress-strain re-
sponse from experiments more accurately once softening due to void growth is included.
The predictions for the axisymmetric specimens are quite good. However, the force is
still overestimated in the PST simulations. A Lode dependent porous plasticity model
might correct this. As shown in Figure 4.15, the softening in the unit cell simulation
is less in generalized shear than in generalized tension. This observation suggests that
additional softening terms in the constitutive relation should also be considered. More-
over, the approach of using experimental data to fit the model parameters gives much
better agreements with the real stress-strain response than the unit cell approach in
Figure 4.12, which is rather obvious. A discussion about this will follow in Section 4.4.

Table 4.2: Local minima in Figure 4.25 with corresponding error.

f0 q1 q2 e [%]
q2 = 0.8 0.00452 2.46 0.80 1.468
q2 = 1.0 0.00452 2.06 1.00 1.246
q2 = 1.2 0.00452 1.41 1.20 1.162
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Figure 4.26: The Cauchy stress, σt, and porosity, f , in the center element versus
the logarithmic strain, εl, for the smooth and notched specimens. Solid black lines show
the results from experiments. The colored lines show the results from simulations with
different sets of q1 and q2.
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Figure 4.27: The force and porosity f in the center element versus the displacement
for the plane strain tensile test. The solid black lines show the results from experiments.
The dashed black line shows the results from simulation when the effect of voids are
neglected. Colored lines show the results from simulations with different sets of q1 and
q2. Here, the Gurson model has been heuristically modified with a Hershey yield surface
(m = 8) as described by Equation (2.53).
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4.3.1 Influence of Initial Void Volume Fraction

The optimized parameters for the porous plasticity model revealed almost no depen-
dency on the initial porosity in the unit cell calibration approach. Figure 4.28 shows
the error in the qi-space for an initial porosity of 0.01 when using the approach in
this section. The optimization approach using experimental data is obviously strongly
dependent on the initial porosity. In the unit cell approach, the response of the unit
cell and the porous plasticity model are affected by the change in initial porosity in a
similar fashion. However, this is not the case here since the chosen porosity does not
influence the experimental data.

Figure 4.29 illustrates that more extensive softening occurs as the porosity is increased.
Thus, increasing any of the three parameters in the Gurson-Tverrgaard model results
in higher softening rate due to the evolution of damage. Even though there perhaps
exists a set of material parameters that results in the lowest error, it might be sufficient
only to optimize one parameter as long as the other parameters are within reasonable
limits.
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Figure 4.28: Contour plot of the error in the qi-space when the initial porosity, f0,
equals to 0.01 for q1 ∈ [1.0, 2.4] and q2 ∈ [0.8, 1.2]. The resolution of data points is
36× 11, which corresponds to ∆qi = 0.04.
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Figure 4.29: True stress-strain response for all specimens with different initial poros-
ity f0. q1 and q2 are 1.5 and 1.0, respectively.

4.4 Discussion

A unit cell approach for optimizing the parameters in the Gurson-Tvergaard model
has been used and compared with the same parameters optimized from material tests
for an AlMgSi alloy. The two methods yield some clear differences. For instance, the
unit cell approach underestimates the softening compared to real material response.
Moreover, while the unit cell approach does not show any large dependency on in the
initial porosity, calibration from material tests is very sensitive to this parameter.

It should be emphasized that the unit cell approach used herein is simplified with
respect to the micromechanical mechanisms that occur in a real material. First, the
material is assumed to be initially voided and the effect a particle has on the void
growth due to contact and friction is neglected. Moreover, no cohesion between the
matrix and particles is assumed, thus ignoring the bonding energy. The voids are
also considered to be of even size and distribution within the bulk material. They
are also initially modeled as spheres. Other studies have found that the initial void
shape will influence the unit cell response [2, 10]. In general, the softening effect
appears to be more prominent as the initial aspect ratio of the void is decreased,
i.e., as the void become more oblate. Consequently, the point of coalescence occurs
at lower macroscopic strains. Very oblate voids, also known as penny shape cracks
[1], can be important in cases where the material is exposed to particle cracking.
These assumptions presented above may not be accurate for a real material. Moreover,
it is probably impossible to account for the random size and distribution of voids
in a unit cell approach. To further complicate matters, the changes in void shape
induce anisotropy to the material. The original Gurson model maintains isotropic by
assuming spherical void growth, and can therefore not account for the non-spherical
void evolution observed for low triaxialities. Calibration of the material parameters
from physical tests may account for all these factors in an average sense in a way the
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unit cell approach will never accomplish.

It has been reported that the evolution of porosity is lower for a 3D unit cell model
than an axisymmetric unit cell model since the 3D model contains more material to
constrain the void growth, and thus delay coalescence [2]. Therefore, an axisymmetric
model could provide a higher softening rate. It should be emphasized, however, that
this effect alone will probably not correct for all the discrepancy seen between the two
approaches taken here.

The material may also experience other softening effects. A higher mesh density and
the use of a Hershey yield surface result in slightly softer response for the notched
specimens as shown in Figure 3.3 and 3.6. This softening would properly shift the
band of minimum error in Figure 4.23 in the direction of decreasing q1 and q2.

A fracture criterion can be calibrated based on the occurrence of coalescence in the
unit cells under generalized tension. One can either find a critical porosity level fc,
or generate a failure strain locus pf (T ). This is shown in Figure 4.6. The approach
herein only considers localization in one orientation. However, localization can occur
in different orientations depending on the load. Consequently, the predictions will be
non-conservative.

Lastly, it may be sufficient to only calibrate one of the three parameters in the Gurson-
Tvergaard model, as long as the other two are within reasonable limits. In the unit
cell approach, q1 may be fitted while q2 is kept constant, say q2 = 1. The optimized
parameters that will be used in the following chapter are listed in Table 4.3

Table 4.3: A summary of the optimized material parameters for the Gurson-Tvergaard
model used in the following chapter.

f0 q1 q2 q3 = q2
1

Unit cell approach (Table 4.1) 0.00452 1.843 0.768 3.397
Material test approach (Table 4.2) 0.00452 2.060 1.000 4.244
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In this part, the results from Chapter 4 will be used to calibrate fracture criteria for the
AlMgSi aluminium alloy. Different approaches are examined and compared with the
experimental results. First, the occurrence of coalescence from the unit cell analysis
will be used to define the onset of fracture. Next, the strain localization analysis from
Section 2.3 will be used with the calibrated porous plasticity model to identify a failure
strain surface in the space of stress triaxiality and Lode parameter. An approach that
utilizes only a smooth specimen test to calibrate all material and fracture parameters
is discussed in greater details in Section 5.3. In the end, some of the fracture criteria
in Section 2.1.5 will be calibrated to illustrate how well they can resemble the fracture
surface obtained from localization analysis.

5.1 Unit Cell Approach

Section 4.1.2 defines the occurrence of coalescence in the unit cell as the point in which
homogeneous deformation is terminated. The advantage with a coalescence approach
to fracture is that it is based on physical mechanisms that can be identified in numerical
simulations of void evolution. The unit cell in this thesis only considers coalescence
in one orientation. Other orientations may result in earlier coalescence, making this
approach non-conservative. Also, the occurrence of coalescence, as defined in Section
4.1.2, cannot be easily identified for other stress states than generalized tension. An
approach that accounts for the orientation of the localization and other stress states
is proposed in the literature [25, 67]. However, the unit cell approach becomes quite
tedious and computational expensive once an extensive range of orientations must be
analyzed, which is a significant disadvantage.

Two ways of defining material failure in a finite element analysis for a porous ma-
terial will be examined in the following; using a critical porosity level and damage
accumulation from a fracture surface.

81
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5.1.1 Critical Porosity

The unit cell analyses indicated that the critical porosity, fc, remains approximately
constant over the vast specter of stress triaxiality examined. Figure 4.6b shows that
the average critical porosity at coalescence is 0.0544. The exact porosity is somewhat
difficult to accurately determine due to rapid void growth upon coalescence, especially
for high T . Figure 4.5b illustrates this problem more clearly.

Figure 5.1 plots the global engineering stress and evolution of porosity in the critical
element as a function of the engineering strain. Blue and red lines show the results
using the material parameters calibrated from unit cell and experimental data, respec-
tively. The parameters from the unit cell approach yield lack of growth in porosity.
Consequently, the fracture strain is significantly overestimated. No reasonable critical
porosity returns good results using this set of qi-parameters. The same holds true for
the PST specimen in Figure 5.2.

In contrast, the optimized q1 and q2 from experiments give somewhat reasonable agree-
ments with the notched specimens. This is because extensive void growth occurs near
the point of specimen failure. Thus, a small change in critical porosity will not impact
the fracture strain too much. The point of failure for the smooth specimen, however,
is overestimated. Since the void growth, in this case, is not as prominent, the fracture
strain is more affected by the critical porosity.

The experiments indicate that the fracture strain for the R2 and R08 notched specimen
is almost the same. Figure 5.1 shows that the porosity level in the critical element for
these two specimens is the same when the strain is approximately 0.38. Even if the
stress triaxiality ratio is higher in the R08 notched specimen, the plastic strain in the
center evolves more slowly. Consequently, the rate of void growth is initially lower.
Figure 5.3 and 5.4 show the results when fc = 0.03 for the axisymmetric and PST
specimens, respectively. The qi parameters optimized from experiments are used in
these simulations. From these plots, a constant critical porosity yields good prediction
of the failure strain as long as the porous plasticity model predicts sufficient growth in
porosity with the increase in strain. It should be emphasized that these results have
been determined purely by fitting the material constants to experimental data.

It should be emphasized that the PST specimen in this current section has been mod-
eled with a Gurson-type model that has been heuristically modified with a Hershey
yield surface. Equation (2.53) describes such a model. A Hershey exponent of m = 8
is used as previously suggested. This has been done in order to induce additional soft-
ening to the PST specimen response. The qi-parameters have been calibrated to a von
Mises matrix material, making this approach somewhat non-consistent.
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Figure 5.1: Global engineering stress, σeng, and porosity ratio in the critical element,
f/fc, versus engineering strain, εeng, up to failure. The critical porosity is fc = 0.0544,
as shown in Figure 4.6b. A marker at the end of the graph differentiates the different
specimens and indicates the point of failure of the critical element. Separate colors
represent the different combination of q1 and q2.
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Figure 5.2: Global force and porosity ratio in the critical element, f/fc, versus the
displacement up to failure. The critical porosity is fc = 0.0544, as shown in Figure
4.6b. It must be emphasized that the Gurson model has been heuristically modified with
a Hershey yield surface (m = 8) as described by Equation (2.53).
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Figure 5.3: Global engineering stress, σeng, and porosity ratio in the critical element,
f/fc, versus engineering strain, εeng, up to failure. The critical porosity is fc = 0.03.
A marker at the end of the graph differentiates the different specimens and indicates
the point of failure for the critical element. Only the case where q1 = 2.06 and q2 = 1.0
is included here.
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Figure 5.4: Global force and porosity ratio in the critical element, f/fc, versus the
displacement up to failure. The critical porosity is fc = 0.03. Only the case where
q1 = 2.06 and q2 = 1.0 is included here. In this simulation, the Gurson model has been
heuristically modified with a Hershey yield surface (m = 8) as described by Equation
(2.53)
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Figure 5.5 illustrates how the porosity evolves as a function of the engineering stress
in the outmost and center element. The critical element for the R2 notched specimen
is located in the center for almost any critical porosity. The same holds true for the
smooth and PST tests. In contrast, the R08 notched specimen shows a higher growth
rate of voids in the elements near the specimen surface initially. This is due to the
extensive plastic deformation at the outer surface of the specimen, as illustrated in
Figure 3.5a. Consequently, the critical element is located near the specimen outer
surface in the case of fc = 0.03.
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Figure 5.5: Porosity, f , as a function of the global engineering strain, εeng, for the
outer and center element when q1 = 2.06 and q2 = 1.0. In general, the porosity is larger
in the center element for the R2 notched specimen, as seen in (a). The center element
for the R08 notch specimen (b) experience only highest void content for larger strains,
whereas the outer element is more prone to void growth in the lower strain domain.

5.1.2 Critical Fracture Strain

The critical strain from Figure 4.6a has been used to calibrate the Johnson-Cook frac-
ture model in Equation (2.24). The effects of temperature, strain-rate, and Lode
parameter have been neglected, reducing the model to a simple exponential law with
respect to the stress triaxiality. Figure 5.6 compares the model with the data from the
unit cell simulations. The damage ω is linearly accumulated using Equation 2.23.

Figure 5.7 shows the results from finite element simulations of the axisymmetric spec-
imens. The classical J2 flow theory represents the material in these simulations. The
damage is not coupled to the constitutive equations. Consequently, no softening oc-
curs due to increase in material damage. The same applies to the rest of the plots in
this chapter. Again, the strain at fracture is overestimated. Moreover, the damage
evolution in the critical element is nearly linear, compared to the exponential increase
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in porosity observed in Figure 5.1 – 5.4. This is most likely because the damage is
linearly accumulated and uncoupled to the material response.
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Figure 5.6: Johnson-Cook fracture model calibrated to the strain at coalescence in
the unit cell simulations in Figure 4.6a. Note that the temperature, rate dependency,
and the effect of Lode parameter are ignored, i.e., D4 = D5 = D6 = 0.
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Figure 5.7: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to failure. The Johnson-Cook fracture
model from Figure 5.6 is used. Classical J2 flow theory is utilized to represent the
material in the finite element simulations.
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5.2 Strain Localization Analysis

The imperfection band analysis in Section 2.3.1 will be used to generate a fracture
surface. A separate FORTRAN code provided by professor David Morin [52] is used
for this purpose. The reader is referred to Morin et al. [32] for more information about
the numerical implementation. The Gurson-Tvergaard model in Chapter 4 represents
the imperfection band material to induce material softening, and thus localization of
deformation. Classical J2 flow theory is used to model the material outside the band,
and it is assumed that any voiding mechanism taking place in here is negligible. The
input cards for the FORTRAN code used are listed in Appendix C.

First, a fracture surface will be generated in a straightforward fashion by assuming
an initial porosity. The effect of using a continuous nucleation model and softening in
shear will also be examined. Another approach is to calibrate the initial porosity, f0,
or the nucleation rate, An, to the fracture strain from a smooth axisymmetric specimen
test. This method has been proven to give good results by Morin et al. [68], and will
be covered in Section 5.3.

5.2.1 Initial Porosity

The material inside the band is represented by the Gurson-Tvergaard model with the
material constants in Table 4.3. Contour lines of the fracture surface with respect to
the triaxiality ratio and Lode parameter are plotted in Figure 5.8 and 5.9. The former
shows the surface when q1 and q2 are optimized from unit cell simulations. Apparently,
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Figure 5.8: Plastic failure strain, p̄f , obtained from proportional loading in the lo-
calization analysis when initially voided band material is used with q1 = 1.843 and
q2 = 0.768. The proportional fracture strain, p̄f , is presented for (a) various triaxiality
ratios in L-space and (b) various Lode parameter in T -space.
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Figure 5.9: Plastic failure strain, p̄f , obtained from proportional loading in the local-
ization analysis when initially voided band material is used with q1 = 2.06 and q2 = 1.0.
The proportional fracture strain, p̄f , is presented for (a) various triaxiality ratios in
L-space and (b) various Lode parameter in T -space.

the predicted fracture strain p̄f = p̄f (T, L) is quite affected by the material constants
in the Gurson-Tvergaard model. A higher material softening was obtained when the
model was fitted to experimental data. Consequently, the fracture strain p̄f is reduced,
as shown in Figure 5.9.

For comparison, the predicted failure strain from the unit cell analysis is included in
Figure 5.8b and 5.9b. As shown previously, such strains heavily overestimate the point
of fracture for all test specimens. As a result, using the fracture surface in Figure 5.8
will result in too large fracture strain as well. This is verified in Figure 5.10 by the red
curves. Moreover, the fracture surface from Figure 5.9 yields good predictions for the
R2 notch, whereas the estimated fracture strain for the smooth specimen is too large.
Failure occurs too early in the R08 notched specimen. On top of that, the fracture is
initiated in the element near the outer surface of the R08 notch.

Figure 5.11 shows how the damage is accumulated in the center element, represented
by solid lines. The color code is the same as in Figure 5.10. The dashed lines repre-
sent either the outmost element or, in the case of the blue line in Figure 5.11b, the
critical element. Clearly, the critical element is located in the center of the R2 notched
specimen. The largest triaxiality is also located in this element, as indicated by Figure
3.4b, and the plastic strain near the specimen surfaces is not accumulated fast enough
to cause extensive damage in this location.

The R08 notched specimen yields a different behavior. The critical element is located
in the third position from the specimen outer surface when the fracture surface from
Figure 5.9 is used. This is not the case when the fracture surface in Figure 5.8 is applied
in the simulation. According to Equation (2.23), more damage will be accumulated
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for a smaller increment of plastic strain dp since the fracture strain p̄f (T, L) is lower.
Consequently, the higher stress triaxiality in the center is not enough to overcome the
effect of more extensive plastic straining near the surface. The trend is different for
the red curve. The damage at the surface starts to saturate, whereas the damage in
the center increases with a steady state.

It must be emphasized that it is not uncommon for the fracture to initiate outside the
center for strongly notched specimens [52]. Westermann et al. [38] reported that the
main global fracture appearance was a cup-and-cone fracture mode. This often implies
that the fracture starts in the center. However, it is unknown if this is the actual case.
Only the case where the Gurson-Tvergaard parameters are optimized from tensile tests
will be used in Section 5.2.2 and 5.2.3, i.e., q1 = 2.06 and q2 = 1.0.
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Figure 5.10: Global engineering stress, σeng, versus engineering strain, εeng, up to
failure when using the failure surface in Figure 5.8 (red color) and 5.9 (blue color).
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5.2.2 Softening in Shear

Equation (2.51) presents an extension to the Gurson-Tvergaard model that takes the
evolution of damage ḟ due to shear softening into account. This contribution also
influences the predicted fracture surface from the localization analysis. Figure 5.12
illustrates that the critical plastic strain p̄f is decreased as the shear contribution
constant ks is increased. The Tvergaard parameters are here optimized from tensile
tests, i.e., q1 = 2.06 and q2 = 1.0. The effect of shear is more prominent as one
approaches the case of generalized shear, i.e., L = 0. Furthermore, the softening effect
is less notable at intermediate to high stress triaxiality ratios.
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Figure 5.12: Plastic failure strain, p̄f , obtained from proportional loading in the
localization analysis for different shear contribution factors ks. The band material is
initially voided with q1 = 2.06 and q2 = 1.0.

Figure 5.13 and 5.14 show the effect of shear contribution on the simulation of the
tensile specimens. Minor effects are observed for the smooth and R2 notched speci-
mens, since the Lode parameter equals to −1 in the center element during the whole
deformation process. The point of fracture for the R08 notched specimen, however, is
more affected by the shearing effect. The critical element for the R08 notch is located
at the specimen outer surface where the Lode parameter ranges from −0.25 to −0.5, as
shown in Figure 3.4c. Consequently, this makes the global fracture strain more prone
to damage contribution due to shear softening.

The plane strain tensile test is also more affected by the shear contribution since the
Lode parameter is closer to zero at the specimen center. Figure 5.14 shows that the
predicted displacement at fracture is better represented compared to the majority of
the test results. Consequently, some influence of softening in shear may be beneficial.
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Figure 5.13: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to failure when using the failure surface
in Figure 5.12 for ks = 0 and 2. Classical J2 flow theory is used to represent the
material in the finite element simulations.
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Figure 5.14: Global force and accumulated damage in the critical element, ω, versus
the displacement up to failure when using the failure surface in Figure 5.12 for ks = 0
and 2. Classical J2 flow theory is used to represent the material in the finite element
simulations.
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5.2.3 Continuous Nucleation Model

So far, the effect of void nucleation has been neglected by assuming an initially voided
material. The effect of nucleation will be included here using the continuous nucleation
model presented in Equation (2.46). The rate of nucleation to plastic strain p depends
on the constant An. The Gurson-Tvergaard parameters optimized from experiments
are used, and 0.00452 is the maximum volume fraction that can be nucleated based on
the prediction from Alstruc. Softening due to shear is not included, i.e., ks = 0.

Figure 5.15 shows how the critical plastic strain p̄f is increased when An = 0.01 is used.
Accordingly, all voids have been nucleated when the plastic strain p = 0.00452/0.01 =
0.452. The effect of nucleation on the Lode parameter is somewhat small and the shift
in L-pf -space is rather continuous. Furthermore, the critical plastic strain is increased
significantly with respect to the stress triaxiality ratio T once nucleation is included, as
illustrated for generalized tension in Figure 5.16a. Lower An results in higher ductility.
The fracture surface approaches the results of an initially voided material as An →∞.
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Figure 5.15: Plastic failure strain, p̄f , obtained from proportional loading in the
localization analysis. The band material is modeled as both initially voided and with
a continuous nucleation law with An = 0.01. The porous material is represented with
q1 = 2.06 and q2 = 1.0.

The tendency of overestimating the fracture strain in the case of a smooth specimen,
while underestimating the fracture strain for the notched specimens, is a repeating
pattern. The blue curves in Figure 5.10 highlight this more clearly, ignoring the fact
that fracture occurs near the surface for the sharpest notched specimen. Consequently,
it will be beneficial to increase the ductility at intermediate to high stress triaxiali-
ties without rising the ductility in the lower triaxiality region. Figure 5.16b illustrates
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the increase in critical plastic strain compared to the initially voided case. Here, p̄An
f

and p̄initf are the critical plastic strain for a given An and for an initially voided band
material, respectively. The difference in ductility is more prominent for higher triaxi-
alities.

The global response for the axisymmetric specimens is plotted in Figure 5.17. The
increase in fracture strains is notable. Using a higher initial porosity could account for
this increase, as shown in Section 5.3. Moreover, the fracture is still initiated near the
specimen surface for the R08 notched specimen.
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Figure 5.16: (a) The plastic failure strain for different values of An under generalized
tension, and (b) the ratio between the fracture strain obtained for the nucleation band
material p̄An

f and the initially voided band material p̄initf , as a function of T .
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Figure 5.17: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to failure when using the failure surface
for continuous nucleation in Figure 5.15, represented by dashed lines.
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5.3 A Localization Approach to f0 and An

The fracture strain of the smooth tensile specimen has been overestimated in all the
previous studies. The lack of softening in the imperfection band is believed to cause
this discrepancy. Figure 5.8 and 5.9 in Section 5.2.1 clearly illustrate the effect of a
material with higher softening rate in the imperfection band. The higher the q1 and q2

parameters, the lower the fracture strain p̄f . Another way of obtaining higher softening
is to increase the initial porosity f0 or nucleation rate An. These parameters can, for
instance, be fitted using the localization analysis together with the fracture strain from
a single smooth specimen. This method has been shown to give good results for a
medium-carbon A572 Grade-50 steel by Morin et al. [68].

5.3.1 Methodology

Figure 5.18 illustrates the method used in this section. First, unit cell analyses will be
used to optimize the material parameters in the Gurson-Tvergaard model. Section 4.2
proposes an approach for such a process. The matrix material response is calibrated
to the smooth tensile test. The predicted particle content from Alstruc will be used
as a first estimate for the porosity f0. A new porosity level will be calibrated later on.
However, the optimization of the qi parameters do not depend too much on the initial
porosity, as discussed in Section 4.2.2.

Finite element simulations of the tensile bar are executed to access the deformation
gradient F(t) in the center, which will then be imposed to the material outside the
imperfection band in the strain localization analysis. The material properties in the
imperfection band, here f0 and An, can then be iteratively adjusted. The optimized
parameter is obtained once the plastic strain in the material outside the band at local-
ization equals the plastic strain in the center element at fracture, named pf .

The deformation gradient, F(t), from the critical element in the notched specimens can
then be enforced to the material outside the imperfection band with the new material
parameters to estimate the plastic failure strain in this current element. Since material
failure can occur in other locations than the center element, all elements over the
cross-section must be examined. A failure surface for proportional loading may also be
constructed in the same manner as before with the new parameters.
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Figure 5.18: A methodology for predicting the plastic failure strain, pf , from local-
ization analysis using the experimental result from a single smooth tensile specimen.
The global fracture strain εf and material response (σ0, Qi and Ci) are obtained from
the experiment. Finite element simulation is used to find the deformation gradient and
plastic failure strain in the critical element. The q1 and q2 parameters from unit cell
analyses in Section 4.2 will be used.
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5.3.2 Optimization of f0 and An

The material parameters in Table 3.3 will be imposed to the material both inside and
outside the band in the strain localization analysis. Softening in the imperfection band
is modeled using the Gurson-Tvergaard model with the qi parameters obtained from
unit cell simulations. All parameters are summarized in Table 5.1. The deformation
gradient F(t) in the center element is imposed to the localization analysis.

The plastic strain in the center element at fracture is 0.724 for one of the smooth
tensile specimens. The red curve in Figure 5.19 shows that the initial porosity must
be 0.01727 to get localization for the same plastic strain outside of the band in the
localization analysis. This level of porosity is relatively high compared to the particle
content of 0.00452 predicted by Alstruc. Other mechanisms than spherical void
growth will most likely also contribute to the fracture process. Consequently, using a
meaningful physical porosity might be inadequate, whereas calibrating this parameter
to experiments may account for other contributions in an average sense. Moreover,
the rate of softening in the material inside the band is low. Using larger q1 and q2

parameters will also reduce the initial porosity needed, as later shown in Table 5.3.
Figure 5.20a illustrates how the stress and porosity evolve inside the band as a function
of the plastic strain in the outside material for the optimized and predicted porosity
level. The difference is noticeable.

Figure 5.19 also shows the optimization of the nucleation rate An, represented by the
blue curve, which was found to be 0.03470. A maximum void volume fraction of 0.05 is
allowed be nucleated. The dashed line in Figure 5.20b represents the volume fraction of
nucleated particles. From this figure, the main contribution to the increase in porosity
comes from nucleation up to an equivalent strain of 0.45 – 0.5. Growth dominates
subsequently until localization occurs.

The stress response inside the band is similar for the initial porosity and nucleation
approaches of modeling. The softening is more prominent at lower strains for the
initially voided band. However, the discrepancy becomes smaller once the rate of void
growth becomes more prominent.

Table 5.1: Material parameters used in this section. The Tvergaard parameters are
found from unit cell simulation in Section 4.2. The Voce hardening rule constants are
given in Table 3.3.

GT Parameter Voce Hardening rule
q1 q2 q3 = q2

1 σ0 Q1 C1 Q2 C2
1.843 0.768 3.397 66.26 MPa 62.00 MPa 32.36 126.46 MPa 4.21
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Table 5.2: Calibrated initial porosity, f0, and nucleation rate, An, from localization
analysis. The calibration process is shown in Figure 5.19.

Initial porosity f0 Nucleation rate An
0.01727 0.03470
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Figure 5.19: Calibration of the nucleation rate An (primary horizontal axis/blue
graph) and initial porosity f0 (secondary horizontal axis/red graph). The calibrated
values are given in Table 5.2. The dashed horizontal line represents the plastic failure
strain in the center element of the smooth specimen.
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Figure 5.20: Equivalent stress, σeq, and porosity, f , inside the band material. The
solid black line represents the J2 plasticity response which the material outside the band
encounters. Two different initial porosities are shown in (a); the optimized f0 from
Table 5.2 and the predicted f0 from Alstruc. The dashed blue line in (b) represents
the porosity nucleated.
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5.3.3 Fracture Strain From Localization Analysis

The deformation gradient in the integration point of the critical element can be imposed
to the localization analysis together with the calibrated initial porosity f0 or nucleation
rate An to predict the critical plastic strain pf in this element. The approach is identical
to that of before. Once the plastic failure strain of the critical element is obtained, the
global failure strain εf of the specimen can be determined.

All elements over the cross-section must be checked for the notched axisymmetric
specimens since the critical element is unknown a priori. It is safe to assume that the
critical element in the plane strain tension test is located in the center. As earlier
shown in Figure 3.12, the center element is prone to the highest triaxiality ratio and
plastic strain. Furthermore, this element also experiences Lode parameter closest to
generalized shear.

Figure 5.21 shows the predicted global failure strain εf over the cross-section. Here,
R/R0 equal to 0 and 1 corresponds to the center and outer surface of the specimen,
respectively. The center element experiences the lowest fracture strain in the case
of a R2 notched specimen. On the contrary, the lowest strain at localization occurs
at the surface for the R08 notched specimen. This is the same behavior as earlier
observed. Moreover, the use of nucleation predicts more ductile behavior in both cases.
The disparities between the blue and red curves, however, is less near the specimen
surface. Larger plastic strains are allowed in these outer elements since the triaxiality
is less compared to the center of the specimen, making the void growth phase not
as dominant. Consequently, more particles are nucleated before localization occurs,
making the differences less outstanding. Also, the predicted failure strain is almost the
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Figure 5.21: Predicted global fracture strain, εf , from localization analyses across the
cross-section of the notched asymmetric specimens for initial voids and void nucleation
in the band material. Fracture is initiated where εf is at its lowest point. Consequently,
fracture is initiated in the center for the R2 and at the surface for the R08 specimen.
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Figure 5.22: Global engineering stress, σeng, and porosity in the critical element, f ,
versus engineering strain, εeng, up to failure when the deformation gradient F(t) of the
critical element is imposed to the strain localization analysis. The red color represents
an initially voided band material. The blue color shows the results when a continuous
nucleation law is used. The dashed red line shows the predicted results if the center
element is assumed to be the critical element for the R08 notched specimen.

same in the center for both specimens. This can be supported by the fact that the
global fracture strain from experiments is similar for these specimen types.

Figure 5.22 shows that excellent prediction is obtained for the R2 notched specimen
using an initial porosity, whereas the results for the R08 notched specimen is somewhat
conservative. This is because fracture is initiated at the specimen surface. If the
occurrence of localization in the center element is used instead, good prediction is
achieved for this specimen type as well. The red dashed line in Figure 5.22 illustrates
this.

Non-conservative results are obtained for the R2 notch when using void nucleation,
whereas the prediction for the sharper notched specimen is conservative. As previously
discussed, the fracture process starts at the specimen outmost element, which has been
proven to provide conservative estimates. Compared to the initially voided band ma-
terial approach, the predicted fracture strain is increased when a nucleation approach
is used to model the imperfection band. This is expected since An is calibrated from
the smooth specimen, which experiences large plastic strains before localization. Con-
sequently, more voids are allowed to nucleate before void growth becomes the main
contributor to the increase in f . Once the stress triaxiality is increased, void growth
becomes more extensive, and the plastic failure strain decreases. Thus, fewer particles
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are nucleated in the notched specimens before the occurrence of localization, resulting
in a higher failure strain compared to the initially voided material.

Figure 5.23 shows the results for the plane strain tension specimen. The prediction is
good in either case, but the initially voided band predicts failure earlier. The difference
in fracture strain between the two approaches is less than for the notched specimens.
The observed plastic failure strain in the center element is higher, and more particles
are allowed to nucleate before void growth takes over.
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Figure 5.23: Global force and porosity in the critical element, f , versus the displace-
ment up to failure when the deformation gradient F(t) of the center element is imposed
to the strain localization analysis. A localization band modeled with initially voided and
continuous nucleation material are shown in this figure.
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5.3.4 Fracture Surface in FE-Simulations

A fracture surface should be constructed for finite element purposes. Such a surface
can be obtained in the same way as done in Section 5.2 by imposing proportional
loads in the localization analysis. Figure 5.24a shows the plastic failure strain p̄f as a
function of the Lode parameter for different triaxiality ratios for the optimized f0 and
An. The shape of the curves is similar in the intermediate to high stress triaxialities.
Larger differences are found in the low triaxiality domain, and the initial void approach
of modeling the band material appears to be more Lode dependent. Moreover, this
approach predicts higher ductility in the low triaxiality domain, as shown in Figure
5.24b. This figure shows the critical plastic strain as a function of T for the case
of generalized tension, i.e., L = −1. Evidently, using a nucleation law in the band
material predicts more ductile response in the vast majority of triaxiality ratios.
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Figure 5.24: Plastic failure strain, p̄f , obtained from proportional loading in the
localization analysis. The band material is modeled as both initially voided and with
a continuous nucleation law with the optimized parameters in Table 5.2. Figure (a)
shows p̄f for different T in L-space. Figure (b) shows the case of generalized tension
for increasing triaxiality ratio.

The two curves in Figure 5.24b cross at a slightly higher plastic failure strain than
0.724, as predicted in the center element of the smooth specimen. This is natural
since these curves have been constructed using a proportional loading path, whereas
f0 and An have been obtained using the actual loading path of the center element.
Consequently, both fracture surfaces predict almost the same fracture strain for the
smooth tensile test, as shown in Figure 5.25. The point of failure for the smooth
specimen is, however, somewhat overestimated. It should be emphasized that the
approach of predicting failure in the localization analysis and finite element simulation
is different. In the imperfection band analysis used herein, failure is connected to
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instability in the constitutive law due to imperfections in the material. Consequently,
deformation is concentrated to this slightly softer material once it reaches a critical
level. On the contrary, a linear damage accumulation rule is applied to the finite
element simulations, as explained in Section 2.1.5. No physical mechanisms are directly
associated with this approach. A non-linear approach of accumulating damage might
correct this, but would also be harder to calibrate.

The differences between these two approaches are particularly prominent when com-
paring the void growth inside the band material in Figure 5.22 and the accumulated
damage in Figure 5.25. Whereas the damage accumulates rather continuously, the
porosity inside the band material experiences rapid changes upon failure. The ductil-
ity is also somewhat higher for the two notched and plane strain specimens compared
to the prediction from localization analyses, as indicated in Figure 5.25 and 5.26. The
differences are, however, small.
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Figure 5.25: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to material failure for the axisymmet-
ric specimens when the fracture surfaces in Figure 5.24 is used in the finite element
simulations.
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Figure 5.26: Global force and accumulated damage in the critical element, ω, versus
the displacement up to material failure for the plane strain specimen when the fracture
surfaces in Figure 5.24 is used in the finite element simulations.
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5.3.5 Parametric Study

A parametric study has been performed to determine how different parameters affect
the performance of the procedure presented in this section. The case of initially voided
band material will be used in this study. The nucleation approach of modeling the
band material will be included in the investigation of the effect of q1 and q2.

Influence of Shear Modification

The effect of ks due to softening in shear has been documented in Section 5.2.2. This
contribution was found less prominent at intermediate to high stress triaxiality ratios
but tends to reduce the ductility in the lower triaxiality domain. Moreover, the effect
of the Lode parameter is stronger for higher ks values. Figure 5.27 shows the fracture
surface for ks equal to 0 and 2 when the optimized f0 from Table 5.2 is used. The
fracture strain p̄f for generalized tension is reduced by 21.0% and 4.7% for T = 0.3 and
1.0, respectively. This reduction is beneficial since the global fracture strain for the
smooth specimen was overestimated when using a fracture surface in the finite element
simulations. Hence, including some shear contribution will reduce the fracture strain
for the smooth specimen without affecting the notched tests too much.
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Figure 5.27: Plastic failure strain, p̄f , obtained from proportional loading in the
localization analysis. The band material is modeled with no shear contribution and a
shear factor ks = 2. The initial porosity f0 is 0.0173 in both cases. Note that the plot
is similar to Figure 5.12, but with a different initial porosity.

The stress-strain response of all axisymmetric test are plotted in Figure 5.28 for the
two different values of ks. The smooth specimen fails earlier, whereas the R2 notch is
barely affected. Furthermore, the R08 notch fails at a much lower strain as well. This
is rather expected since the critical element is located at the specimen surface where
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the Lode parameter is closer to 0. The plane strain element is, in general, more affected
by the ks for the same reason. Figure 5.29 shows that the displacement at fracture
is underestimated. Quickly summarized, including some softening due to shear yields
more conservative estimations.
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Figure 5.28: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to material failure when the failure
surfaces in Figure 5.27 are used in the finite element simulations.
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Figure 5.29: Global force and accumulated damage in the critical element, ω, versus
the displacement up to material failure when the failure surfaces in Figure 5.27 are
used in the finite element simulations.
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Influence of q1 and q2

It has previously been shown that the porous plasticity parameters q1 and q2 govern
the rate of softening. The higher the values, the higher the void growth and softening.
Chapter 4 demonstrates that q1 and q2 found from unit cell simulation did not corre-
spond well with experiments. It is thus interesting to examine how these parameters
affect the prediction of fracture. The optimized q1 and q2 from experiments and unit
cell are compared below. Moreover, the original Gurson model, i.e., q1 = q2 = 1, and
the parameters proposed by Tvergaard [15], i.e., q1 = 1.5 and q2 = 1, are also included
in this study.

Table 5.3 summarizes the corresponding f0 and An for all models. They are sorted
from least to most soft according to the trend seen in Figure 4.24. In general, higher
softening due to q1 and q2 results in lower f0 and An. This result is rather obvious
since increasing both f0 and An tends to soften the material response. It is also
noteworthy that the predicted parameters from experiments yield only slightly higher
initial porosity compared to the particle content from Alstruc. This similarity does
not indicate whether the estimate on initial porosity is good or not, since q1 and q2

are dependent of the initial porosity when experiments are used to calibrate them,
as indicated in Figure 4.28. However, it might highlight the very nature of the band
imperfection analysis in the sense that the band material has properties that yield a
slightly softer material response.

Figure 5.30 and 5.31 show that the different sets of q1 and q2 predict similar global
fracture strain when the localization analysis is used to predict the failure strain. Only
the case of initially voided material is shown herein. The void nucleation approach of
modeling the band material yields similar results.

Table 5.3: Optimized initial porosity f0 and nucleation rate An for different combi-
nations of q1 and q2. The different models are sorted from most to least soft.

q1 q2 q3 = q2
1 f0 An

Optimized from Experiments 2.06 1.0 4.244 0.00529 0.01330
Tvergaard Parameters [15] 1.5 1.0 2.25 0.01174 0.02565
Optimized from Unit Cells 1.843 0.768 3.397 0.01727 0.03470
Gurson Parameters 1.0 1.0 1.0 0.02874 0.05206
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Figure 5.30: Global engineering stress, σeng, versus engineering strain, εeng, up to
failure for the axisymmetric specimens. The fracture strain is predicted by imposing
the deformation gradient F(t) from the critical element to the localization analysis.
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specimen. The point of fracture is predicted by imposing the deformation gradient F(t)
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Influence of the Lode Parameter

As previously observed, the fracture process is initiated in the outer element for the
R08 notched specimen. This element experiences both a Lode parameter closer to
zero and higher plastic strains, resulting in a very conservative estimate of the global
fracture strain. Studies also yield excellent prediction if the center element is assumed
as the critical element, as indicated by the red dashed line in Figure 5.22. Many
fracture models do not include any dependencies of the Lode parameter, which could
result in less accumulated damage closer to the specimen boundaries where the Lode
parameter deviates from generalized tension. Therefore, it is interesting to see how well
the calibrated fracture surface performs when removing the Lode dependency. The case
of generalized tension of the initially voided band material from Section 5.3.2 will be
used for this purpose.

As Figure 5.32 and 5.33 suggest, removing the Lode dependency of the yield surface
increases the predicted fracture strain of the R08 notched and PST specimens, while
keeping the results unchanged for the other two test specimens. This is as expected
since the critical element in the smooth and R2 notched specimens is located in the
center where L = −1. However, the fracture is still initiated near the outer surface
of the R08 specimen. Moreover, the predicted fracture strain for the PST specimen
becomes non-conservative once the Lode dependency is removed, suggesting that the
effect of L should not be ignored.
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Figure 5.32: Global engineering stress, σeng, and accumulated damage in the critical
element, ω, versus engineering strain, εeng, up to material failure when the fracture
surfaces for L = −1 in Figure 5.24b is used in the finite element simulations.
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Figure 5.33: Global force and accumulated damage in the critical element, ω, versus
the displacement up to material failure when the fracture surfaces for L = −1 in Figure
5.24b is used in the finite element simulations.

5.4 Failure Models

Experimental data from various specimen geometries are commonly used to calibrate
different fracture models. Section 2.1.5 presented some common criteria that have been
extensively reported in the literature, along with extensions to make them more versa-
tile to the Lode dependency. It is from an engineering standpoint beneficial to restrain
the number of model parameters to reduce the number of material test necessary in the
calibration process. For instance, the original Cockcroft-Latham criterion in Equation
(2.29) can be calibrated from only a single test. It follows that the model is restricted
to a limited range of applications, depending on the test used in the calibration.

It is rather obvious that no simple model can describe the complex fracture surfaces
predicted from the localization analysis in this chapter. Figure 5.34–5.36 illustrate
the fracture loci for the Extended Cockcroft-Latham (ECL), Extended2 Rice-Tracey
(E2RT), and Modified Johnson-Cook (MJC), respectively. These surfaces have been
obtained using a least-square optimization procedure from the L-BFGS-B solver in
the Scipy Python package [63]. The surface in Figure 5.24 for an initially voided
band material has been used as the reference. Only T between 0.4 and 2.0 have been
weighed, whereas the whole range of Lode parameters is included. A better fit was
obtained by excluding triaxialities lower than 0.4. Moreover, excluding the lower range
of triaxialities is beneficial since it will correct some of the discrepancies observed using
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a linear accumulation of damage rule in the finite element simulations.

Both the ECL and E2RT criteria represent the failure surface accurately in the inter-
mediate to high triaxiality domain, whereas the MJC criterion exhibits too large Lode
dependency. More substantial differences emerge at low triaxiality, i.e., T = 0.4. The
MJC criterion is the least accurate model in this particular case and the only model
that is not tilted in the L-plane. This could be corrected by adding an additional
term to Equation (2.24). Moreover, the ECL criterion is accurate for positive values of
the Lode parameter, but too conservative at generalized tension. The E2RT criterion
might be the best model for this particular fracture surface. Still, the case of general-
ized tension and compression are not well represented at lower T due to the way ωs1(L)
is defined. A parabolic function might be a better option in this case.
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Equation (2.33) fitted
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in Figure 5.24 with an
initially voided band
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lines represent the fit-
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Figure 5.35: The
Extended2 Rice-Tracey
model in Equation
(2.39) fitted to the frac-
ture surface in Figure
5.24 with an initially
voided band material.
The sold lines represent
the fitted model and
the dots are the actual
surface.
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5.5 Discussion

This section will address the performance of a micro-mechanical framework to fracture.
The prediction from coalescence in unit cell simulations results in an overestimation of
the global fracture strain, both when using fc and p̄f . This over-prediction is expected
since the necking down of material between voids, and thus localization of deforma-
tion, can occur in other directions than the one investigated. Satisfactory results were
obtained by using a constant critical porosity calibrated from experiments. This ap-
proach was also able to capture the coinciding fracture strain for the R2 and R08
notched specimens. Figure 5.3 and 5.4 highlight this. It should be noted that neither
fc nor q1 and q2, were calibrated using a micro-mechanical framework in this particular
case.

The strain localization approach based on the framework of Rice [50] showed reasonable
results when using the Gurson-Tvergaard model calibrated from experiments. Again,
this is not a purely micro-mechanical approach, but the complex failure surface ob-
tained is still an accomplishment considering the limited number of tests conducted.
Further, including the shear softening in the constitutive relations gave more conser-
vative results and enhanced the accuracy of the plane strain specimen simulation. A
recurring trend in both the unit cell and strain localization approach is that the use of
f0 from Alstruc together with the q1 and q2 calibrated from unit cell simulations give
unsatisfactory fracture strains. This conclusion suggests that a pure micro-mechanical
framework, where any form of material test is precluded, is somewhat ambitious. Con-
sequently, some sort of material testing must be done to account for the complex
mechanisms of failure in an average sense.

A methodology where only one single smooth tensile specimen is necessary to calibrate
the initial porosity or nucleation rate is proposed in Figure 5.18. This approach, which
is analogous to the work of Morin et al. [68], showed good results when an initially
voided imperfection band was assumed. This is illustrated in Figure 5.22. Failure
was found to be initiated at the surface of the R08 notched specimen, consequently
resulting in too conservative estimates on the global failure strain. In fact, almost
all predictions of failure for the R08 notched specimen were too conservative due to
this, and the few approaches that anticipated the onset of failure in the center of
this specimen overestimated all the fracture strains as well. It is unknown from the
experiments if the fracture actually started at the specimen surface. However, the
reoccurring underestimations of the global fracture strain for the R08 notch and the
excellent prediction of the fracture strain for the center element using the localization
analysis (dashed line in Figure 5.22) suggest otherwise.
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It has been proven that excluding the effect of the Lode parameter does not influence
where the fracture commences. This suggests that plastic strain must be accumulated
faster in the center and slower at the surface to initiate failure in the specimen center of
the R08 specimen. Section 7.5 reveals that the real geometry can be markedly different
from the requested geometry. It is suggested from Figure 3.5a that a less sharp notch
results in an increase of plastic strain in the center element, whereas the elements near
the surface exhibit a decrease in p. If the geometry deviates significantly, this may help
to explain why fracture is not initiated in the center in the simulations. It should be
emphasized that a greater radius of the notch also decreases the triaxiality and the exact
outcome of a slightly larger radius is unknown. Moreover, the deformation gradient
imposed to the localization analysis was determined using J2 plasticity, which has been
proven to give a too stiff material response. A higher plastic strain rate in the center
might be obtained by including softening, for instance, due to material damage. Marini
et al. [69] found that "a reduction in the work-hardening capability of the material gave
rise to an increase in the stress triaxiality ratio" in the center of notched specimens. A
higher stress triaxiality ratio results in an increase in accumulated damage, but it is
unclear how this would affect the stress state near the surface.

A "best practice" approach for a numerical framework to fracture should probably use
some sort of material test to calibrate the necessary material parameters. The fracture
surface from localization analysis predicts, however, too large failure strain at low
stress triaxialities when used in a finite element application with a linear accumulation
of damage to account for non-proportional loading. This deficiency could be corrected
by including some softening in shear or by excluding the lowest triaxiality domain when
constructing a failure surface.





6 | Case Study - Blast Load

Applications such as protective structures against blast loads and projectiles, car
crashes, and other impact problems are often prone to material failure. The fracture
loci constructed in Chapter 5 could be implemented in simulations of such large-scale
problems.

This chapter will investigate how the different failure criteria perform for a pre-damaged
plate subjected to a blast load. No experiments have been carried out. Thus, this chap-
ter will only examine how the models compare to each other. It should be emphasized
that the calibrated material models in this thesis do not account for rate effects and
temperature softening due to adiabatic heating. A study by Vilamosa et al. [70] illus-
trated that a 6060 aluminium alloy "exhibited negligible strain-rate sensitivity (SRS)
for temperatures lower than 200◦C”. A similar result was reported by Chen et al. [71],
where they concluded that a 6060 T6 aluminium alloy "could probably be modeled as
rate-insensitive with good accuracy". These articles do not, however, say how the strain
rate and temperature affect the failure strain. Furthermore, studies on plates subjected
to blast loads have indicated that the plastic strain rate is not too extensive, and the
rise in temperature due to adiabatic heating is believed to be neglectable. Therefore,
this simplified material model is expected to describe the problem adequately for the
purpose herein.

6.1 Problem Definition

A 300× 300 mm plate with a thickness of 1.5 mm will be investigated in this chapter.
Ph.D. candidate Henrik Granum [72] provided the model. Four X-shaped slits are
initially located on the plate to initiate crack growth, as shown in Figure 6.2a. Due to
the symmetry of the problem, only 1/4 of the plate is modeled. The red surfaces in
Figure 6.2b are prohibited from displacement and rotation in all directions. Symmetry
conditions have been applied to the two blue surfaces.

115
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The blast load is represented by a uniform pressure P (t) applied to one of the faces. The
pressure-time curve is represented by the Friedlander equation [73], defined as

P (t) = Pr

(
1− t

t+

)
exp

(
−b t

t+

)
(6.1)

Here, Pr is the peak reflective pressure, t+ is the duration of the positive phase, and
b is the exponential decay coefficient. Figure 6.1 plots the pressure-time curve used in
this case study.

It should be pointed out that the pressure acts perpendicular to the plate surface at all
time. This assumption is not entirely correct after the slits open since the pressure will
try to wrap the plate back into itself. An interaction between fluid and structure must
be accounted for to represent the problem accurately. Such a model will, however, make
the problem overly complicated for the current purpose and is omitted herein. The
model also excludes the clamping system which could be a source of error [74].

The mesh is generated using a sweep method, which gives a somewhat random distri-
bution of the elements. This might be beneficial concerning crack growth compared to
a structured mesh. Figure 6.3 illustrates how the mesh looks initially and after a crack
has formed. Three elements are used over the thickness, resulting in an approximate
element size of 0.5 mm. It should be taken into account that the fracture criteria have
been calibrated to an element size of 0.125 mm. Ideally, these criteria should be cali-
brated using the same element size as the large-scale problem. The simulation was run
in Abaqus/Explicit using reduced 8-node linear continuum elements (C3D8R) with
hourglass control. An element erosion technique is utilized to represent crack growth.
Once the integration point of an element reaches a critical value, the element is eroded,
and its stress tensor is set to zero. This integration point can no longer carry any load.
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Figure 6.1: Pressure-time plot of the load P (t).



6.1. PROBLEM DEFINITION 117

(a) Measurements of the model

(b) Boundary condition (c) Load

Figure 6.2: (a) Plate geometry, (b) 1/4 model, and (c) pressure load. Fixed bound-
ary conditions have been applied to the red surfaces, whereas symmetry conditions are
enforced to the blue surfaces.

(a) Initial mesh (b) Mesh after cracking of plate

Figure 6.3: The mesh at the slit (a) initially and (b) after a crack has formed.
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6.2 Results

6.2.1 Critical Porosity Approach

In this section, the plate material will be represented by the Gurson-Tvergaard porosity
model. An element is eroded once a critical porosity fc is reached at its integration
point. Two different sets of material parameters are used. Figure 6.4a and 6.5a show
the results when q1, q2, and fc are calibrated just from unit cell simulations. Limited
formation of cracks can be observed from this simulation, and the elements become
highly deformed before they get eroded. As shown by the blue curve in Figure 5.1 and
5.2, this particular set of parameters does not predict accurate results for the material
test either. The triaxiality in front of the crack tip was found to be in the range of 0.5
to 1.0, which is in between the smooth and R2 notched specimen. The void growth
in the center element for these specimens is quite modest and the critical porosity of
0.0544 is high.

In contrast, Figure 6.4b and 6.5b show the crack growth and plate deformation when
the same parameters are calibrated purely from experiments. The simulations of the
material test are shown in Figure 5.3 and 5.4. The cracks that occur in this simulation
look more realistic. It should be noted that the growth stops after approximately 15
ms, and the plate is still intact.

Consequently, the numerical approach using only unit cell simulations examined herein
is not adequate to present any realistic material behavior. It should also be noted that
these approaches are independent of the Lode parameter L and the critical porosity is
considered as a constant value. However, the damage is coupled to the stress state, in
particular, the triaxiality ratio, through the constitutive relation.

(a) Calibrated from Unit Cell (b) Calibrated from Experiments

Figure 6.4: An illustration on how the lower right crack propagates for different
material constants and critical porosity.
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(a) Calibrated from unit cell (b) Calibrated from experiments

Figure 6.5: The deformation pattern of the plate for different material constants and
critical porosities. Figure (a) shows the results when the unit cell is used to calibrate
the material parameters. Experimental data is used to calibrate the material model in
figure (b).
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6.2.2 Fracture Surface Approach

A classical J2 plasticity model will be used to represent the plate material in this
section. Some of the fracture surfaces calibrated in Section 5.3 for an initially voided
band material are used to predict material failure and crack growth. To account for
the non-proportional stress state, a linear accumulation rule, given by Equation (2.23),
is utilized to define the total damage as previously. The following four cases will be
considered:

(a) An initially voided band material represented by the solid lines in Figure 5.27 on
page 104. The initial porosity has been calibrated using a single smooth tensile
test.

(b) An initially voided band material with shear softening represented by the dashed
lines in Figure 5.27 on page 104. A shear constant of ks = 2 is used.

(c) The calibrated Extended2 Rice-Tracey criterion shown in Figure 5.35.

(d) An voided band material with initial porosity estimated from Alstruc and
Tvergaard parameters optimized from unit cell simulations. This fracture surface
is represented by Figure 5.8 in Section 5.2.1 and highlights a, more or less, pure
microstructure-based calibration process.

Figure 6.6 – 6.8 show the lower left crack, crack propagation and plate deformation,
respectively. The same letters in the list above apply the figures. The crack growth
appears, in general, to be more severe in the case of a fracture locus compared to the
critical porosity approach in Figure 6.5b, where the plate is still intact at the end of
the simulation. Moreover, the lower right slit is more prone to crack growth, as shown
in Figure 6.4b. The exact reason for this is unknown, but the lack of Lode dependency
in the porous plasticity model could be one possible explanation, making the constant
critical porosity approach somewhat inadequate.

Case (a) and (b) illustrate how softening in shear affects the problem. Including this
softening effect results in higher crack growth rate. This is rather obvious from Figure
5.27, where the fracture strain p̄f is decreased in the lower triaxiality domain. Moreover,
the crack path changes somewhat as shown in Figure 6.7. Consequently, the midsection
of the plate takes a more spherical shape compared to the original case (a). The plate
also fails at the clamping at 9 – 10 ms when shear effects are included, which might
explain the difference in the crack path. The Extended2 Rice-Tracey criterion in case
(c) gives a similar deformation pattern as the original case (a). The lower left crack in
Figure 6.6 is similar as well. However, the lower right crack propagates faster than the
upper one. Consequently, the released midsection takes a different shape, as indicated



6.2. RESULTS 121

by the green shaded part in Figure 6.7c. The reason for this discrepancy is unknown.
Case (d) is based on a failure surface obtained from the localization analysis with q1

and q2 calibrated from unit cell simulations and f0 from Alstruc. The failure strain
was found to be vastly overestimated, as Figure 5.10 illustrates. Consequently, the
plate is less prone to the growth of cracks since less damage is accumulated.

It is somewhat hard to give any conclusion from this brief study without experiments.
The various fracture surfaces give different fracture appearances of the plate, making
the problem particularly sensitive to changes in the failure loci used. Stensjøen and
Thorgeirsson performed experiments on the same type of pre-damaged plate [75]. Even
though they used a 6016 T4 aluminium alloy which exhibits a different material re-
sponse, the deformation pattern and the crack growth they observed are quite similar
to case (a). This is a good indication that the results herein are realistic.

(a) Initially voided band material, ks = 0 (b) Initially voided band material, ks = 2

(c) Calibrated E2RT (d) Initially voided band material from UC

Figure 6.6: Illustrations on how the lower left crack has propagated for the four
different cases in this section.



122 CHAPTER 6. CASE STUDY - BLAST LOAD

(a) Initially voided band material, ks = 0 (b) Initially voided band material, ks = 2

(c) Calibrated E2RT (d) Initially voided band material from UC

Figure 6.7: These figures show how the cracks in the 1/4 model have propagated for
the four different cases in this section. The green shaded area represents the part that
has been torn away from the plate.
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(a) Initially voided band material, ks = 0 (b) Initially voided band material, ks = 2

Figure 6.8: The deformation pattern of the plate for different failure surfaces. Figure
(a) shows the results when the initial porosity has been calibrated from the localization
analysis without contribution due to softening in shear. The shear effects are included
in figure (b). See next page for figure (c) and (d).
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(c) Calibrated E2RT (d) Initially voided band material from UC

Figure 6.8: The deformation pattern of the plate for different failure surfaces. Figure
(c) shows the results when a surface calibrated to the E2RT criteria is used. Figure (d)
shows the results when a failure surface calibrated from the localization analysis with q1
and q2 calibrated from unit cell simulations and f0 from Alstruc. See previous page
for figure (a) and (b).



7 | Aluminium Alloy 6082 T6

A 6082 aluminium alloy in a cast and homogenized state was initially intended for this
thesis. However, as will be shown later, the material experienced a brittle fracture
behavior, and only limited ductility was observed from the tensile tests. The test
material was artificially peak-aged to a T6 temper. This chapter will document this
particular alloy. Details about the material and tempering process will be explained
first. Then, results from tensile tests of various smooth and notched specimens will
be looked into together with an examination of the fracture surface using scanning
electron microscope (SEM). Material response predicted by NaMo will be compared
to the results from experiments. Lastly, some remarks will be made regarding the
inaccuracies of the notched specimen geometry.

7.1 Material and Tempering Process

Hydro aluminium provided the aluminium alloy as a casted and homogenized ingot.
The composition is given in Table 7.1. After machining of the different tensile test
specimens, the material was further peak-aged to a T6 temper. Figure 7.1 illustrates
the tempering process.

The tempering treatment was performed using a laboratory furnace. First, the speci-
mens were solution heat treated by heating them to 540◦C. Holding the samples at that
temperature for an adequate amount of time allows the alloying elements to enter into
a solid solution. This will distribute the alloying elements evenly, making the material
uniform. Water quenching (WQ), represented by the T1-T2 period in Figure 7.1, brings
the specimens rapidly to room temperature, making sure that the constituents stay in

Table 7.1: The composition in wt% of the 6082 aluminium alloy.

Si Mg Fe Cu Mn Zn Ti Cr Al
0.991 0.662 0.204 0.014 0.543 0.003 0.017 0.010 Bal.
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solution. The specimens were stored at room temperature (RT) for 10 minutes before
the artificial aging process. The aging process was performed by leaving the samples
in a furnace heated to 185◦C for 5 hours. This will allow larger particles to form and
increase the number density of precipitates, consequently impeding the movement of
dislocation and increasing the yield strength of the material.
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Figure 7.1: The heat treatment of the 6082 aluminium alloy. The x-axis is not in
scale.

7.2 Tensile Tests

Quasi-static tensile tests were performed on a smooth and various notched axisymmet-
ric tensile specimens to investigate the material behavior for different stress triaxiality
ratios. The geometry of the different specimens is shown in Figure 3.7 – 3.9 and 7.2.
Tests on three specimens of each type were carried out, resulting in a total of 12 tests.
The tensile tests were performed in an INSTRON 5985 universal tensile machine using
a 250 kN load cell. The smooth specimens were stretched with a cross-head velocity
of 1.0 mm/min, corresponding to an initial strain rate of approximately 5× 10−4. The
velocity of the cross-head for the notched specimens was 0.15 mm/s. All experiments
were carried out at room temperature.

Pictures of the specimens were taken during the deformation process with a frequency
of 1 frame per second. A Prosilica GC2450 camera with a Samyang 100 mm f/2.8
ED UMC macro lens was used for this purpose. Two perpendicular directions of the
specimens were monitored using mirrors. The edges of the specimens were track by
digital image correlation (DIC) in the software eCorr [76]. The minimum cross-section
diameter could then be obtained.
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Figure 7.2: V -notched specimen with radius R = 0.2. Geometry and mesh. All
measurements are in mm.
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Figure 7.4 shows the engineering stress-strain curves for all 12 tests. The stress and
strain have been found using Equation (2.11). Limited ductility is observed from this
plot, and the smooth specimens barely surpass the point of maximum force before
failure. As seen in Figure 7.3a, no clear neck is recognized in the gauge area, and
the fracture surface is rather flat. The R2 notched specimen is the only notched
type that reached maximum force before failure. Failure occurs rather soon after this
point. Moreover, the stress-strain response of the smooth and R2 notched specimens is
consistent, but the failure strains diverge somewhat, especially in the case of the smooth
specimens. The R08 and V -notch tests yield, however, more substantial disagreements
in the stress-strain response. Moreover, the material hardening response of the R08 and
V -notched specimens is somewhat similar, but the V -notched specimens fail at lower
strains. The material appears to be very notch sensitive, and the introduction of a notch
increases the applied forces significantly while reducing the strain at failure.

Figure 7.5 shows the r-value, defined here as the ratio between the two perpendicular
diameter D1 and D2, as a function of the strain. The material is surely isotropic.

(a) Smooth specimen (b) Notch, R = 2.0 (c) Notch, R = 0.8 (d) V -notch, R = 0.2

Figure 7.3: The specimens after failure.
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Figure 7.4: Engineering stress, σeng, versus engineering strain, εeng, for all 12 tensile
tests. The point of fracture is marked by a ×.
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Figure 7.5: The r-value, defined here as the ratio D1/D2, as a function of the strain.
The material is considered plastical isotropic if r = 1. Only the one sample of each
tensile test is included in this plot, but all tests confirm the same.
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7.3 Fracture Surface

A fractographic study was performed to get a better understanding of the failure mech-
anisms that occur. A Zeiss Gemini Supra 55 VP Scanning Electron Microscope (SEM)
operation at 20 kV was used for this purpose. This work was done by Ph.D. candidate
Susanne Thomesen [77]. The Scanning Electron Microscope uses a focused electron
beam to make an image of the surface it is scanning. Since electrons have a shorter
wavelength than light, SEM can provide much better resolution compared to the tra-
ditional optical microscopes. The specimens were cleaned beforehand with acetone
and placed in an ultrasound bath for 10 minutes. It is essential to remove any grease
and organic particles since this can disrupt the image. After cleaning, the specimens
were placed in a vacuum chamber while scanning to prevent interactions between air
molecules and the electrons.

Figure 7.6 shows the fracture surface of the smooth and V -notched specimen. The
surfaces of the smooth specimens were flat and minor deformations prior to fracture
were observed. A more rough fracture surface with visible grooves was seen for the
notched specimen types. None of the samples experienced a cup-and-cone fracture
appearance, which is often associated with ductile fracture.

Figure 7.7 shows fractographs of the smooth and V -notched specimens with a magnifi-
cation factor of 700. No evidence of ductile void growth as the main fracture mechanism
is found in these pictures. All specimen types are believed to experience an intergran-
ular fracture, as illustrated in Figure 2.3a, meaning that the grain boundaries are the
preferred path for crack growth. Precipitation free zones form adjacent to the grain
boundaries, consequently resulting in zones that are softer than the matrix material
and thus prone to strain localization [78, 79]. This is especially true if the matrix
material exhibit high strength. SEM photographies of all specimen types at different
magnifications are included in Appendix A.

(a) Smooth specimen (b) V -notched specimen

Figure 7.6: Pictures of the fracture surface of the smooth and V -notched specimen.
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(a) Smooth specimen

(b) V -notched specimen

Figure 7.7: 700x magnified SEM pictures of the fracture surface of the smooth and
V -notched specimen.
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7.4 NaMo

The main objective of this thesis is to model an aluminium alloy using a numerical
framework. The response of the AlMgSi alloy in Chapter 3 was predicted from tensile
tests of a smooth axisymmetric specimen. In spite of that, the material strength could
be estimated numerical using the nano-scale material model NaMo. This section will
address the capability in predicting the yield strength and work hardening for the 6082
aluminium alloy. A summary on the foundation of NaMo will be presented first. The
reader is referred to Myhr et al. [33, 34, 35, 80] for a more comprehensive review.

7.4.1 Theoretical Outline of NaMo

The nano-scale material model NaMo is used to determine the stress response of Al-
Mg-Si alloys based on the chemical composition and thermal history. The model was
developed by Hydro and NTNU, and is fully integrated into a user-friendly computer
code. The stress-strain relation predicted by NaMo may subsequently be used as input
in FE-simulations. NaMo is physically based and proves good predictive capabilities
for the 6xxx series, which has been comprehensively verified and validated in various
papers [33, 34, 35, 80, 81]. Figure 7.8 illustrates the main outline of the model.

The model consists of three sub-models; a precipitation model, a yield strength model
and a work hardening model. These three models are listed in Figure 7.8. The precip-
itation model predicts the particle size distribution (PSD) in the alloy and is the key
component for the other two sub-models. Based on the PSD, essential precipitation
parameters are extracted and transferred to the yield strength and work hardening
models. The user must define the chemical composition and thermal history to pre-
dict the PSD. The precipitation model consists of three components, which eventually
defines the evolution of hardening precipitates [34]

1. A nucleation law is used to predict the number of stable nuclei that form in the
alloy.

2. A nucleated particle will either dissolve or grow. A rate law calculates the dis-
solution or the growth rate of each discrete particle size class, defined by the
particle radius r.

3. A continuity equation keeps a record on the amount of solute being tied up as
precipitates.

The reader is referred to Myhr et al. [33, 34] for a summary of the main constitutive
equations, which are not reported herein.
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Figure 7.8: An illustration on the main outline of NaMo. The figure is inspired by
Johnsen et al. [35].

The yield strength model uses relevant output parameters from the precipitation model,
indicated by the arrow in Figure 7.8, to predict the yield strength of the tempered alloy
at room temperature. The overall macroscopic yield strength is defined as

σy = σi + σss + σp (7.1)

Hence, the model, which is based on dislocation mechanics, considered three distinct
contributions that are individually added [34]

1. σi is the intrinsic yield strength of pure aluminium.
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2. σp is the overall precipitation hardening contribution due to shearing and bypass-
ing of particles.

3. σss is the solid solution hardening contribution from each alloying elements.

The work hardening model is based on the assumption that the work hardening be-
havior of Al-Mg-Si alloys can be evaluated by considering the total dislocation density
ρt as the only internal variable of the system. The total dislocation density is taken as
the sum of the geometrically necessary dislocation density ρg and the statically stored
dislocation density ρs [34]. The total contribution from work hardening on the net
stress, ∆σd, is given by

∆σd = σeq − σy = αMGb√ρt = αMGb
√
ρg + ρs (7.2)

where α is a constant,M is the Taylor factor, G is the shear modulus and b is the mag-
nitude of the burger vector. These parameters are defined by Myhr et al. [34]. In the
same article, they show how to relate the evolution of ρg and ρs to the plastic strain, εp,
based on well-established evolution laws. "The evolution of statistically stored disloca-
tions (ρs) is predicted as the balance between statistical storage and dynamic recovery
of dislocations, while the generation of geometrically necessary dislocations (ρg) dur-
ing plastic deformation is assumed to be associated with non-shearable particles."[35].
Thus, it is possible to determine the rise in stress ∆σd due to work hardening as a
function of the plastic strain. The reader is again referred to the work of Myhr et al.
[33, 34] and references therein for a more comprehensive review of the work hardening
model. Finally, the flow stress, σeq, is calculated as follows

σeq = σy + ∆σd (7.3)

7.4.2 Results From NaMo

The blue curve in Figure 7.9 shows the predicted material response using NaMo with
the composition in Table 7.1 and thermal history in Figure 7.1. The red curve shows
the estimated flow stress when Voce rule is used to extrapolate the data from the
smooth tensile tests. All material parameters are given in Table 7.2. The plastic
equivalent strain p from experiments has been calculated using Equation (2.12). Only
data prior to necking, which is marked by black dots in Figure 7.9, have been used in
the calibration of the material parameters.

The prediction from NaMo is non-conservative and the saturation stress, σsat, is over-
estimated by 3.1% compared to the experimental data. On the other hand, the 0.2%
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proof stress, σ0.2, is almost exact compared to the experiments, as shown in Table 7.2.
It should be emphasized that due to low ductility, the calibrated material model might
be somewhat inaccurate. The increase in flow stress predicted by NaMo suddenly
diminishes when the plastic strain is between 0.12 and 0.13. As the material is plas-
tically deformed, dislocations loop around the precipitates, which contribute to work
hardening and thus increasing the flow stress. This accumulation of dislocations loops
ceases at some critical plastic strain [34]. Consequently, the work hardening stops and
saturation is reached.
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Figure 7.9: The Cauchy stress, σt, as a function of the equivalent plastic strain, p.
The blue curve shows the predictions from NaMo. The calibrated Voce rule is plotted
as a red curve. Black curves show the results from test on the smooth specimens. The
point of maximum force is marked by a black •.

Table 7.2: The 0.2% proof stress, σ0.2, saturation stress, σsat, from NaMo and exper-
iments, and the calibrated material hardening parameters using Voce rule in Equation
(2.4).

σ0.2 σsat σ0 Q1 C1 Q2 C2
Experiment 351.6 MPa 412.0 MPa 341.8 14.4 514.2 55.8 14.9

NaMo 352.8 MPa 424.7 MPa MPa MPa - MPa -
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7.5 Specimen Geometry and Numerical Results

An examination on the actual geometry of the various notched specimens revealed
slightly divergence from the requested, or nominal, geometry in Figure 3.8, 3.9 and
7.2. Figure 7.10 demonstrates this deviation where the blue contour lines represent
the requested geometry, and the red contour lines are the actual geometry. The actual
radius of the notch was found to be approximately 2.25mm, 1.05mm, and 0.23mm for
the R2, R08 and V -notched specimens, respectively. The specimen in Figure 7.10b
experiences the most significant discrepancies, whereas the tolerance of the V -notched
specimen in Figure 7.10c is rather good.

(a) Notch, R = 2.0

(b) Notch, R = 0.8

(c) V -notch, R = 0.2

Figure 7.10: Contour lines of the geometry of the various notched specimen. Blue
and red contour lines represent the requested and actual geometry, respectively.

The influence of this divergence in specimen geometry on the component response has
been studied using a finite element method. A stand-alone python script that evaluates
a picture of the specimen has been used to map the outline of the geometry accurately.
Ph.D. candidate Sondre Bergo [82] provided this code. The specimen shape can then
be imported into a pre-possessing software and discretized into a finite element model.
Reduced 4-node axisymmetric elements (CAX4R) with hourglass control have been



7.5. SPECIMEN GEOMETRY AND NUMERICAL RESULTS 137

used in all simulations. No further symmetry assumptions are applied to the model.
48 elements have been used over the cross-section in all models to represent the sharp
V -notch in Figure 7.2 accurately.

Figure 7.11 shows the global stress-strain response when applying J2 plasticity theory.
The stress and strain have been obtained as described in Section 2.1.2. The R2 and R08
notched specimens experience a notable reduction in stress when the actual geometry
of the notch is used, represented by the red curves. These two specimen types also
experienced the most considerable divergence in notch radius compared to the requested
geometry. The reduction in stress triaxiality ratio, as shown in Figure 7.12a and 7.12b,
is believed to cause this decrease in global stress. The radius of the notch in the actual
geometry model is slightly larger. Consequently, the triaxiality ratio is expected to
be reduced in the center due to less contribution from radial and transverse stress
components. It follows from Equation (2.15) that the longitudinal stress required for
plastic flow is decreased.

The stress triaxiality in the V -notched specimen is only minor affected by the increase
in notch radius as shown in Figure 7.12c, and the two models predict more or less the
same stress-strain response. Furthermore, the stress triaxiality for the element at the
specimen surface is less prone to the divergence in notch radius for all specimen types.
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Figure 7.11: Engineering stress, σeng, versus engineering strain, εeng, for the actual
and requested geometry. Black lines show the results from experiments. The point of
failure is indicated by a black ×.
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(b) Notched, R = 0.8
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(c) V -notched, R = 0.2

Figure 7.12: Stress triaxiality ratio, T , as a function of the plastic strain, p, in
the element at the center and at the specimen surface. Information extracted from the
actual and nominal geometry model is plotted as red and blue curves, respectively.
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7.6 Influence of a Prolonged RT Storage Time

The first batch of tensile specimens was stored at room temperature (RT) for 10 minutes
before the artificial aging. It has been suggested that the short storage time could
make the alloy more prone to intergranular failure. Test on a new smooth specimen
with a 24 hour room storage time has been carried out. As Figure 7.13 indicates,
this does not improve the ductility. Furthermore, the material strength is reduced
by approximately 7%. A prolonged room-temperature storage time will increase the
number density of clusters prior to the aging process. Since these clusters tend to
survive for a certain period during the artificial aging, some of the solutes are tied-up
which would otherwise be used in the formation of β” particles. The nucleation rate
of the β” particles is therefore reduced, consequently lowering the final yield strength
of the material [83].
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Figure 7.13: The engineering stress, σeng, versus the engineering strain, εeng, for the
smooth tensile specimen when the test has been stored for 10 minutes (blue curve) and
24 hours (red curve) before the artificial aging process.
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The primary objective of this thesis was to examine a microstructure-based modeling
framework. Unit cell simulations have been used to investigate the void growth and oc-
currence of coalescence. Strain localization analyses have been performed to determine
when the strain localizes into a narrow band, which is a frequent precursor to failure.
The different failure models have been applied in a blast load problem to access how
well they function in large-scale simulations. This chapter presents the most important
findings and conclusions.

A peak-aged 6082 T6 aluminium alloy was initially intended for this thesis. However,
experiments revealed a brittle behavior. This was confirmed by SEM fractographies
which showed no tendency to void growth and coalescence as the primary failure mode.
Therefore, this thesis mainly concerns an AlMgSi aluminium alloy which has been
reported by Westermann et al. [38] and Holmen et al. [39]. A smooth and two types of
notched axisymmetric tensile specimens, as well as experimental data from plane strain
tension tests, have been used to validate the results obtained from unit cell simulations
and localization analyses.

Unit Cell Analyses

A broad specter of stress triaxiality ratios, ranging from 2/3 to 3, has been imposed
to the unit cell. Lower triaxialities resulted in closing of the void and have not been
examined herein. At a certain strain, homogeneous deformation of the unit cell is
terminated and extensive softening occurs. This point defines the onset of coalescence.
The macroscopic strain at coalescence was found to decrease with increasing triaxiality
ratio. This is in good agreement with experiments, where the introduction of a notch
reduces the fracture strain. The critical porosity at this point was found to be somewhat
constant. Furthermore, the unit cell takes different shapes, depending on the imposed
triaxiality ratio. A prolate shape was obtained in the lower triaxiality region, whereas
the void became oblate when T was increased.

141
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The Gurson-Tvergaard model was calibrated to the unit cell response using an approach
proposed by Dæhli et al. [24]. The estimated particle content from Alstruc [36, 37]
was used as the initial porosity, and only the material parameters q1 and q2 were
calibrated to the unit cell results. The optimization process revealed that a large set
of q1 and q2 parameters would give a minimal discrepancy between the response of the
unit cell and the Gurson-Tvergaard model. Consequently, it should be sufficient to only
calibrate q1 while holding q2 constant, making the calibration procedure less laborious.
A parametric study indicated that the initial porosity level does not influence the
prediction of q1 and q2 very much. Of all the parameters examined here, only the change
in matrix material response gave any notable changes in the predicted qi-values.

The unit cell approach of calibrating q1 and q2 was found to give too limited material
softening compared to the experimental data. The same parameters were optimized
by fitting the Gurson-Tvergaard model to the material tests of the axisymmetric spec-
imens. These results revealed that greater values of q1 and q2 are needed to achieve a
satisfactory accuracy of the stress-strain response. This might suggest that the very
simplified unit cell approach used in this thesis is not adequate.

Numerical Approach to Fracture

The occurrence of coalescence in the unit cell analyses has been used to find both
a critical porosity and a failure strain. In general, using q1 and q2 optimized from
the unit cell did not give an accurate prediction on the global failure strain in either
case. Conservative results were expected since only one orientation of coalescence
was considered in the unit cell simulations. By contrast, a constant critical porosity
showed promising results for all the material tests when the material parameters were
calibrated from experiments.

The strain localization analysis was used to construct a fracture surface by imposing
the calibrated Gurson-Tvergaard model to the band material. The material parameters
optimized from the unit cell did not provide enough softening, resulting in a vastly
overestimated failure strain. On the contrary, the qi-values optimized from experiments
proved promising results. However, the failure strain for the smooth specimen was
somewhat too large, whereas the R08 notch revealed conservative results because failure
was initiated at the specimen surface and not in the center.

The initial porosity f0 and constant nucleation rate factor An were calibrated using the
failure strain and deformation gradient of the center element to the smooth specimen
with the localization analysis. The localization analysis was also used to predict failure
in the other specimens using the same approach with these new calibrated parameters.
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An initially voided band material demonstrated good predictive capabilities. However,
the R08 notch revealed to conservative results since failure was initiated at the specimen
surface. If the center element is assumed to be the critical element, good results were
also achieved for this specimen type. On the other hand, using a continuous nucleation
law in the band material resulted in non-conservative results. A parametric study
on this calibration approach showed that the q1 and q2 parameters did not affect the
failure strain of the different specimens too much. The calibrated f0 and An must,
however, be adjusted to account for the change in softening when different qi-values
are used.

Implementing a failure surface from the localization analysis for proportional loads into
a finite element simulation tends to increase the failure strain for the smooth specimen.
This is believed to do with the way Abaqus linearly accumulate damage. A remedy
could be to include some softening in shear when constructing the failure surface, or
by simply extrapolating the locus in the lower triaxiality domain by only considering
intermediate to high triaxiality ratios.

A blast load problem of a pre-damaged plate showed deviating response on crack growth
when different fracture models was applied. This indicates that an accurate represen-
tation of the material is essential. Some of the calibrated models revealed reasonable
crack propagation and final deformation of the plate. However, a proper conclusion
can not be given without experimental data.

According to the findings in this thesis, a purely microstructure-based modeling frame-
work to ductile fracture without any material test is believed to be ambitious. There
exist too many uncertainties that will influence the ductile failure processes which can-
not be taken into account by a simple modeling framework. Relating the material
parameters to the real material response from experiments might account for these
uncertainties in an average sense. Moreover, the brittle failure in the 6082 alloy would
be hard to predict without any form of testing. The complex failure surface that
was obtained from just a single smooth tensile test is, however, believed to be a great
achievement in itself. Though, further validations for other ductile materials and stress
states are still necessary.





Future Work

More work needs to be done on a microstructure-based modeling framework for ductile
failure. Many improvements to the Gurson model are proposed in the literature which
could be appealing for such a framework. However, these improvements are usually not
available in standard finite element software and require implementation of complex
subroutines. The following suggestions for further work will therefore only consider
improvements and validations on the job done in this thesis.

• The unit cell approach for optimizing the parameters in the Gurson-Tvergaard
model showed a dependency on the matrix material response. Moreover, the
predicted Tvergaard constants yielded too limited softening compared to experi-
ments. The same optimization procedure should be check for other ductile mate-
rials. Westermann et al. [38] examined three other aluminium alloys which could
be used for this purpose.

• The coalescence analyses of the unit cell simulations revealed too conservative
results of the critical strain since only one orientation of localization was con-
sidered. Other approaches that investigate a broad specter of orientations have
been proposed in the literature (See for instance [25, 39, 49, 68]). Such approaches
would result in a lower failure strain and provide a useful set of data which could
be used to compare the results from the strain localization analysis.

• The Gurson-Tvergaard model does not depend on the Lode parameter in its
original form. Moreover, it has been proposed that aluminium alloys exhibit a
non-quadratic yield surface which can be described by the Hershey yield surface
with m = 8. The Gurson-Tvergaard model in the unit cell calibration approach
could, for instance, be heuristically modified to account for the third deviatoric
stress invariant J3 by replacing the von Mises equivalent stress with the Hershey
equivalent stress.

• The material outside the band in the strain localization analysis has been mod-
eled using classical J2 flow theory, whereas a porous plasticity model represents
the band material. Another approach would be to apply the Gurson-Tvergaard
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model to both materials, where the band has a slightly larger porosity to induce
the softer material response. This approach would also agree more with real ma-
terials. The percentage increase in porosity for the band could, for instance, be
determined using the same method as shown in Section 5.3. Such an approach
could also be used to calibrate the critical porosity fc by evaluate the porosity in
the outside band material at localization.

• It would be beneficial to compare the stain localization procedure proposed in
Section 5.3 to other materials as well. Again, the aluminium alloys reported by
Westermann et al. [38] could be used for this purpose.

• According to the simulations, failure was initiated at the surface of the R08
notched specimen. Consequently, the global failure strain becomes too conser-
vative. A softer material response may reveal failure in the center. One way of
checking this theory is to calibrate the Voce rule to the experimental data of the
R08 notch, which could then be used to find a new deformation gradient F(t) for
the localization analysis.

• The localization analysis herein has only been compared to material tests that
exhibit negative Lode parameter and intermediate stress triaxialities. Other tests
should be performed to verify the results for cases in the positive range of the
Lode parameter and for very low triaxiality ratios.

• The blast load simulations revealed some dependency on the applied failure
model. Without any experimental data, however, it is hard to evaluate the differ-
ence in performance. Therefore, the models should be evaluated to real large-scale
experiments. Moreover, a study on the influence of the Lode parameter on the
crack propagation should be performed.
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A | SEM Photography

A.1 UT90

Figure A.1: Overview of the fracture surface for the smooth specimen.
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Figure A.2: 200x magnification for the smooth specimen.

Figure A.3: 700x magnification for the smooth specimen.



A.2. NT90-2 157

A.2 NT90-2

Figure A.4: Overview of the fracture surface for the R2 notched specimen.
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Figure A.5: 200x magnification for the R2 notched specimen.

Figure A.6: 700x magnification for the R2 notched specimen.
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A.3 NT90-08

Figure A.7: Overview of the fracture surface for the R08 notched specimen.
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Figure A.8: 200x magnification for the R08 notched specimen.

Figure A.9: 700x magnification for the R08 notched specimen.
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A.4 NT90-V

Figure A.10: Overview of the fracture surface for the V-notch specimen.
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Figure A.11: 200x magnification for the V-notch specimen.

Figure A.12: 700x magnification for the V-notch specimen.



B | Python Script

B.1 Calibration of q1 and q2 From Unit Cell

1 import os
2 import sys
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from mpl_toolkits.mplot3d import Axes3D
6 import csv
7 import scipy.optimize as optimization
8 import ast
9 import copy

10 from matplotlib.ticker import FormatStrFormatter
11
12 def file_list(path = '', extension = '.txt'):
13 '''
14 Returns a list with files with extension "extension".
15 Default is '.txt' files.
16 '''
17 files = os.listdir(path)
18 return [f for f in files if f[-4::] == extension]
19
20
21 class simulation:
22 '''
23 Basic class for one simulation.
24 When initiated, the Lode (L) and Triaxiality (T) is found from
25 the first step in the simulation.
26 '''
27 def __init__(self, path, filename):
28 self.file = path+filename
29 self.L = []
30 self.T = []
31 self.Seq = []
32 self.Eeq = []
33 self.f = []
34
35 # Open file

163
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36 with open(self.file) as txtfile:
37 reader = csv.reader(txtfile, delimiter= ',')
38 counter = 0
39 for row in reader:
40 # The first 9 lines do not contain relevant data.
41 if counter > 9:
42 # Set T and L from the first step.
43 if not self.T:
44 self.T = float(row[0])
45 if not self.L:
46 self.L = float(row[1])
47
48 # If T change sign (due to large deformation), stop

importing data.↪→

49 if np.sign(self.T) != np.sign(float(row[0])) or
np.sign(self.L) != np.sign(float(row[1])):↪→

50 break
51
52 # Import Seq and Eeq
53 self.Seq = np.append(self.Seq, float(row[2]))
54 self.Eeq = np.append(self.Eeq, float(row[7]))
55 self.f = np.append(self.f, float(row[11]))
56 counter = counter + 1
57
58 def set_lode(self, L):
59 self.L = L
60 def set_triax(self, T):
61 self.T = T
62
63
64 class cell:
65 '''
66 Class that contains all cell simulation data.
67 '''
68 def __init__(self, path = '', folder = ''):
69 # If no path is given, set path to */CELL/
70 if not path:
71 path = os.getcwd() + '/CELL/'
72 else:
73 if folder:
74 path = path + folder
75 else:
76 path = path + '/CELL/'
77
78 # Find all filenames in path
79 filenames = file_list(path)
80 self.simulations = []
81
82 # Make a new simulation object for all files in path
83 for filename in filenames:
84 self.simulations.append(simulation(path, filename))
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85
86 def return_lode_list(self, L):
87 # Returns a list with all cell simulation with Lode L
88 # Empty list is returned if no simulation is found
89 return_list = []
90 for simulation in self.simulations:
91 if simulation.L == L:
92 return_list = np.append(return_list, simulation)
93 return return_list
94
95 def return_triax_list(self, T):
96 # Returns a list with all cell simulation with Triaxiality T
97 # Empty list is returned if no simulation is found
98 return_list = []
99 for simulation in self.simulations:

100 if simulation.T == T:
101 return_list = np.append(return_list, simulation)
102 return return_list
103
104 def return_simulation(self, L, T):
105 # Returns the simulation with L and T
106 for simulation in self.simulations:
107 if simulation.L == L and simulation.T == T:
108 return simulation
109
110 # If simulation not found, raise an error
111 raise RuntimeError
112
113
114 class ppm:
115 '''
116 Contains all data form one q1-q2-set
117 '''
118 def __init__(self, q1, q2):
119 # Construct ppm when first called.
120 path = os.getcwd() + '/PPM/'
121 self.simulations = []
122 self.q1 = q1
123 self.q2 = q2
124
125 def add_simulation(self, path, filename):
126 # Add a simulation to simulations list
127 self.simulations.append(simulation(path, filename))
128
129 def von_mises(self):
130 # If von Mises is used, only L=-1 is included
131 # This function copies the L=-1 results to
132 # L=0 and L=1
133 temp = []
134 for simulation in self.simulations:
135 GS = copy.deepcopy(simulation)
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136 GS.set_lode(0)
137 temp.append(GS)
138 GT = copy.deepcopy(simulation)
139 GT.set_lode(1)
140 temp.append(GT)
141 self.simulations = self.simulations + temp
142
143 def e(self, cells, m, w, lode, triax):
144 # Counter to keep track of number of simulations.
145 counter = 0
146 # Define errors
147 self.e_S = 0
148 self.e_f = 0
149 self.e
150
151 # Loop throug all simulation in simulations
152 for simulation in self.simulations:
153 # Find current L and T
154 L = simulation.L
155 T = simulation.T
156
157 # If L or T not included in lode and triax list,
158 # go to next step.
159 if L not in lode:
160 #print 'Lode ' + str(L) + ' not included'
161 continue
162 if T not in triax:
163 #print 'Triax ' + str(T) + ' not included'
164 continue
165
166 counter += 1
167
168 # Find the corresponding cell simulation.
169 # If missing file in Cell directory, the process will be

terminated↪→

170 # And an error will be printed
171 try:
172 cell = cells.return_simulation(L, T)
173 except RuntimeError:
174 print 'Missing Cell file. Terimate the prosess'
175 print 'Lode: ' + str(L)
176 print 'Triax : ' + str(T)
177 sys.exit()
178
179 # Interpolate the Eeq_ppm, Seq_ppm, f_ppm data to match up with

cell data↪→

180 Eeq_ppm, Seq_ppm, f_ppm = interpol(simulation.Eeq,
simulation.Seq, simulation.f)↪→

181 Eeq_cell, Seq_cell, f_cell = interpol(cell.Eeq, cell.Seq, cell.f)
182
183 # Cut data according to the rules given.
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184 # See function for better description.
185 Eeq_cell, Seq_cell, f_cell, Eeq_ppm, Seq_ppm, f_ppm =

cut_data_stress(Eeq_cell, Seq_cell, f_cell, Eeq_ppm, Seq_ppm,
f_ppm, m)

↪→

↪→

186
187 # Find error
188 e_S = find_e(Eeq_cell, Seq_cell, Seq_ppm)
189 e_f = find_e(Eeq_cell, f_cell, f_ppm)
190
191 # Add tp total error
192 self.e_S = self.e_S + e_S
193 self.e_f = self.e_f + e_f
194
195 # If 1 then print plot, else do not print plot.
196 if 0:
197 print 'q1: ' + str(self.q1) + '\tq2: ' + str(self.q2)
198 print 'L: ' + str(L) + '\t\tT: ' + str(T)
199 #print 'e_S: ' + str(e_S)
200 #print 'e_f: ' + str(e_f)
201
202 fig, ax1 = plt.subplots(figsize=(7, 4), dpi=150)
203
204 ax2 = ax1.twinx()
205 ax1.plot(cell.Eeq, cell.Seq, 'o', color ='blue')
206 ax1.plot(Eeq_cell, Seq_cell, '-', color ='blue', label =

'Cell data')↪→

207 ax1.plot(simulation.Eeq, simulation.Seq, 'o', color ='red')
208 ax1.plot(Eeq_ppm, Seq_ppm, '-', color ='red', label = 'PPM

data')↪→

209 ax1.plot([Eeq_ppm[-1], Eeq_ppm[-1]], [0, 500], '--', color
='black')↪→

210
211 ax1.set_xlabel('$E_{eq}$')
212 ax1.set_ylabel('$S_{eq}$')
213
214 ax2.plot(cell.Eeq, cell.f, 'd', color ='blue')
215 ax2.plot(Eeq_cell, f_cell, '--', color ='blue')
216 ax2.plot(simulation.Eeq, simulation.f, 'd', color ='red')
217 ax2.plot(Eeq_ppm, f_ppm, '--', color ='red')
218 ax2.set_ylabel('f')
219
220 #ax1.set_xlim([0,0.5])
221 ax1.set_ylim([0,450])
222
223 ax1.legend()
224 ax1.grid(True)
225 plt.show()
226
227 # Find total error
228 self.e_S = self.e_S/counter
229 self.e_f = self.e_f/counter
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230 self.e = w*self.e_S + (1-w)*self.e_f
231
232 # If 1 then print status for this set of qi.
233 if 0:
234 print 'q1: ' + str(self.q1)
235 print 'q2: ' + str(self.q2)
236 print 'e_S: ' + str(self.e_S)
237 print 'e_f: ' + str(self.e_f)
238 print 'e: ' + str(self.e)
239 print '--------------------------------------------'
240 print '--------------------------------------------'
241
242 class ppms:
243 '''
244 Main Class
245 Class that contains the ppm class for all qi-combinations.
246 Note that all PPM simulations (single element simulations) are place in

folder */PPM↪→

247 All cell simulations are placein in folder */CELL
248 '''
249 def __init__(self, VM = True, m = 200, w = 0.5, lode = [-1,0,1],

triax=[0.6667, 1., 1.6667, 3.], path = ''):↪→

250 # Set path
251 if not path:
252 self.path = os.getcwd() + '/PPM/'
253 else:
254 self.path = path + '/PPM/'
255
256 # Get cell simulation data from parameteric file
257 cells = cell(path)
258 self.idents, self.q1s, self.q2s = self.read_parametric()
259
260 # ppms is a dict with ppm
261 self.ppms = {}
262
263 # Make a ppm-class for each qi combination
264 for ident in self.idents:
265 q1 = self.idents[ident]['q1']
266 q2 = self.idents[ident]['q2']
267
268 self.ppms[ident] = ppm(q1,q2)
269
270 # Sort all ppm-simulation into the correct ppm-class
271 folders = os.walk(self.path).next()[1]
272 for folder in folders:
273 path = self.path + folder + '/'
274 files = file_list(path)
275 for file in files:
276 ident = file.split('_')[-1].split('.')[0]
277 self.ppms[ident].add_simulation(path, file)
278
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279 # If von Mises, make GS (L=0) and GC (L=1) simulation based on GT
(L=-1)↪→

280 if VM:
281 for p in self.ppms:
282 self.ppms[p].von_mises()
283
284 # Calculate e for all ppms
285 for p in self.ppms:
286 self.ppms[p].e(cells, m, w, lode, triax)
287
288 def read_parametric(self):
289 # This function reads the summary file from parametric study
290 # The identity (c1, c2, ...) are collected with
291 # Corresponding q1 and q2.
292 with open(self.path+'parametric.var') as varfile:
293 reader = csv.reader(varfile, delimiter= ';')
294 idents = {}
295 q1 = set([])
296 q2 = set([])
297
298 for row in reader:
299 n = row[2].split('_')[-1]
300 qs = ast.literal_eval(row[3].strip())
301 idents[n] = {}
302 idents[n]['q1'] = float(qs[0])
303 idents[n]['q2'] = float(qs[1])
304
305 q1.add(qs[0])
306 q2.add(qs[1])
307
308 return idents, sorted(q1), sorted(q2)
309
310 def find_ident(self, q1, q2):
311 # Returns ident associated the given q1 and q2
312 for n in self.idents:
313 if self.idents[n]['q1'] == q1 and self.idents[n]['q2'] == q2:
314 return n
315 return False
316
317 def interpol(xdata, y1data, y2data, n = 4):
318 '''
319 Interpolate x and y data to match up.
320 n equals number number of desimals to include
321 eq. n=4 gives a e=0.0001
322 '''
323 m = np.floor(max(xdata)*10**n)
324 xret = np.linspace(0, m*10**(-n), m+1)
325 y1ret = np.interp(xret, xdata, y1data)
326 y2ret = np.interp(xret, xdata, y2data)
327
328 return xret, y1ret, y2ret
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329
330 def cut_data_stress(xcell, y1cell, y2cell, xppm, y1ppm, y2ppm, n = 0.95):
331 '''
332 Cut data so they match up. Based on stress.
333 n equals to percentage reduction in stress.
334 '''
335 index = find_stress_index(y1cell, max(y1cell)*n)
336 xcellret = xcell[0:index]
337 y1cellret = y1cell[0:index]
338 y2cellret = y2cell[0:index]
339
340 if xcellret[-1] <= xppm[-1]:
341 xppmret = xppm[0:index]
342 y1ppmret = y1ppm[0:index]
343 y2ppmret = y2ppm[0:index]
344
345 if len(xppmret) != len(xcellret):
346 xppmret = xppmret[0:len(xcellret)]
347 y1ppmret = y1ppmret[0:len(xcellret)]
348 y2ppmret = y2ppmret[0:len(xcellret)]
349
350 else:
351 num = len(xppm)
352 xppmret = xppm
353 y1ppmret = y1ppm
354 y2ppmret = y2ppm
355 xcellret = xcellret[0:num]
356 y1cellret = y1cellret[0:num]
357 y2cellret = y2cellret[0:num]
358
359 return xcellret, y1cellret, y2cellret, xppmret, y1ppmret, y2ppmret
360
361 def find_e(xcell, ycell, yppm):
362 '''
363 Calculate e from formula.
364 '''
365 numerator = np.trapz(abs(yppm-ycell), xcell)
366 denominator = np.trapz(.5*(yppm+ycell), xcell)
367
368 return numerator/denominator
369
370 def find_stress_index(ydata, stress):
371 # Returns index in ydata associated with value "stress"
372 index = 0
373 for i, y in enumerate(ydata):
374 if y >= stress:
375 index = i
376 return index
377
378 def plot_data(data, name = 'test', size=(4.5, 3), text='', domain = [], corr

= 0):↪→
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379 '''
380 Function for plotting countour plot of error in qi-space
381 Data is a ppms object
382 '''
383 x = np.asarray(data.q1s)
384 y = np.asarray(data.q2s)
385 z = np.array([])
386
387 minimum = 10
388 q1 = 0
389 q2 = 0
390
391 ytemp = 0
392 ymin = []
393 zmin = []
394 minitemp = 10
395
396 for i in x:
397 for j in y:
398 ident = data.find_ident(i,j)
399 z = np.append(z, data.ppms[ident].e)
400
401 if data.ppms[ident].e < minimum:
402 minimum = data.ppms[ident].e
403 q1 = data.ppms[ident].q1
404 q2 = data.ppms[ident].q2
405 if data.ppms[ident].e < minitemp:
406 minitemp = data.ppms[ident].e
407 ytemp = j
408 ymin = np.append(ymin, ytemp)
409 zmin = np.append(zmin, minitemp)
410 minitemp = 10
411
412
413 X, Y = np.meshgrid(y, x)
414 if corr == 1:
415 z = (z-min(z))/max(z)
416 Z = np.reshape(z, (len(x), len(y)))
417 plt.figure(1, figsize=size, dpi=300)
418 plt.rc('text', usetex=True)
419 plt.rc('font', family='serif')
420
421 cs = plt.contourf(Y, X, Z, 100, cmap='jet')
422
423 cbar = plt.colorbar(format="%.2f",extend='neither',

spacing='proportional')↪→

424 cbar.ax.set_ylabel('Error [-]', labelpad=8)
425 cbar.ax.tick_params(labelsize=10)
426
427 plt.xlabel('$q_{1}$', fontsize=10)
428 plt.ylabel('$q_{2}$', fontsize=10)
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429 plt.xticks(size = 10)
430 plt.yticks(size = 10)
431 axes = plt.gca()
432 axes.yaxis.set_major_formatter(FormatStrFormatter('%.2f'))
433
434 if domain:
435 print domain[0:2], domain[2::]
436 axes.set_xlim(domain[0:2])
437 axes.set_ylim(domain[2::])
438
439 if not text == '':
440 t = axes.text(.5,0.8, text, horizontalalignment='center',

transform=axes.transAxes, fontsize=10, zorder=20, color='white')↪→

441 t.set_bbox(dict(facecolor='white', alpha=0., edgecolor='none'))
442
443 plt.savefig(name + '.eps', format='eps', bbox_inches="tight")
444 plt.show()
445
446 print str(minimum) + ' ved q1: ' + str(q1) + ' q2: ' + str(q2)

B.2 Process SLM Output Files

1 def file_list(path = '', extension = '.txt'):
2 '''
3 Return a list file files in path that has a given extension
4 '''
5 files = os.listdir(path)
6 return [f for f in files if f[-4::] == extension]
7
8 def print_fracture_locus(Ls, Ts, pfs, name = 'default'):
9 '''

10 Write the failure locus for Abaqus
11 '''
12 with open(name + '.txt', 'w') as txt:
13 txt.write('*Damage Initiation, Criterion = Ductile, lode

dependent\n')↪→

14 for i, L in enumerate(Ls):
15 T = Ts[i]
16 pf = pfs[i]
17 if i > 0 and L != Ls[i-1]:
18 txt.write('**\n')
19 if pf > 0:
20 str = '{:f}, {:f}, {:f}, {:f}\n'.format(pf, T, -L, 0.)
21 txt.write(str)
22 txt.write('*Damage Evolution, type=DISPLACEMENT\n')
23 txt.write('0.,')
24
25 class simulation:
26 '''
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27 Defines one simulation with constant L and T.
28 '''
29 def __init__(self, T, L, p, f, Seq, fout):
30 self.L = L
31 self.T = T
32 self.Seq = Seq
33 self.p = p
34 self.f = f
35 self.fout = fout
36
37
38 class SLM:
39 '''
40 Main class. Read outputfile from SLM, and make a set of simulations

objects.↪→

41 '''
42 def __init__(self, path, filename, filter = True, GT = False, old =

False, exclude = []):↪→

43 self.file = path + filename
44 self.simulations = []
45 self.L = []
46 self.T = []
47 self.p = []
48 self.f = []
49 self.Seq = []
50 self.fout = []
51
52
53 with open(self.file) as txtfile:
54 reader = csv.reader(txtfile, delimiter= ',')
55 for row in reader:
56 if not (float(row[2]) == 0 and float(row[3]) == 0 and

float(row[4]) == 0) or not filter:↪→

57 if (float(row[0]) not in exclude):
58 if GT == False or float(row[1]) == -1:
59 if old:
60 temp = 0
61 else:
62 temp = float(row[5])
63 self.simulations.append(simulation(
64 float(row[0]),float(row[1]),float(row[2]),
65 float(row[3]),float(row[4]),float(temp)))
66 self.T.append(float(row[0]))
67 self.L.append(float(row[1]))
68 self.p.append(float(row[2]))
69 self.f.append(float(row[3]))
70 self.Seq.append(float(row[4]))
71 self.fout.append(temp)
72 elif 0:
73 print 'Triax: ' + str(float(row[0])) + '\tLode: ' +

str(float(row[1]))↪→
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74
75 self.L_list = sorted(set(self.L))
76 self.T_list = sorted(set(self.T))
77
78
79 def extrapolate(self, num = 0):
80 '''
81 Extrapolate failure surface.
82 '''
83 if num == 0: num = (max(self.T))/0.1 + 1
84 triax = np.linspace(0, max(self.T), num)
85 T_ret = np.asarray([])
86 L_ret = np.asarray([])
87 p_ret = np.asarray([])
88
89 for L in reversed(self.L_list):
90 Ts = []
91 ps = []
92 for T in sorted(set(self.T)):
93 if self.return_simulation(L, T):
94 Ts.append(T)
95 ps.append(self.return_simulation(L, T).p)
96 f = interpolate.interp1d(Ts, ps, fill_value='extrapolate')
97
98 p_ret = np.concatenate([p_ret, f(triax)])
99 T_ret = np.concatenate([T_ret, triax])

100 L_ret = np.concatenate([L_ret, np.ones(len(triax))*L])
101
102 return L_ret, T_ret, p_ret
103
104
105 def return_simulation(self, L, T):
106 '''
107 Return a simulation object with given L and T.
108 '''
109 for simulation in self.simulations:
110 if simulation.L == L and simulation.T == T:
111 return simulation
112 return False
113
114 def lode_section(self, L=0):
115 '''
116 Return all simulation objects with L
117 '''
118 ret = []
119 for T in self.T_list:
120 sim = self.return_simulation(L, T)
121 if sim:
122 ret.append(sim)
123 return ret
124
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125 def triax_section(self, T=0):
126 '''
127 Return all simulation objects with T
128 '''
129 ret = []
130 for L in self.L_list:
131 sim = self.return_simulation(L, T)
132 if sim:
133 ret.append(sim)
134 return ret
135
136 def sorted_lists(self):
137 '''
138 Returns a sorted list of L, T and pf.
139 Ls, Ts, pfs can be used with print_fracture_locus(Ls, Ts, pfs) to

print failure surface for Abaqus↪→

140 '''
141 Ls = []
142 Ts = []
143 pfs = []
144 for L in reversed(self.L_list):
145 for T in self.T_list:
146 pf = self.return_simulation(L, T)
147 if pf:
148 Ls.append(L)
149 Ts.append(T)
150 pfs.append(pf.p)
151 return Ls, Ts, pfs
152
153 def GT_lists(self):
154 '''
155 Returns a sorted list L, T and pf where only L=-1 is considdered
156 Ls, Ts, pfs can be used with print_fracture_locus(Ls, Ts, pfs) to

print failure surface for Abaqus↪→

157 '''
158 Ls = []
159 Ts = []
160 pfs = []
161 for T in self.T_list:
162 pf = self.return_simulation(-1, T)
163 if pf:
164 Ls.append(-1)
165 Ts.append(T)
166 pfs.append(pf.p)
167 return Ls, Ts, pfs





C | SLM Input Cards

The input files for the SIMLab Localization Module (SLM) analysis are included in
this appendix. Values that are altered are marked red. Thus, the same card may apply
to several analysis but with different parameters.

• Appendix C.1: Failure Surface - Initially Voided Band Material
This card is used to generate a fracture surface when an initially voided material
is applied to the band. An extensive range of proportional load simulations with
constant Lode parameter and stress triaxiality ratio is simulated.

• Appendix C.2: Failure Surface - Continuous Nucleation of Voids
This card is used to generate a fracture surface when a continuous nucleation
law is applied to the band material. An extensive range of proportional load
simulations with constant Lode parameter and stress triaxiality ratio is simulated.

• Appendix C.3: Proportional Loading - Initially Voided Band Material
This card is used in localization analyses where non-proportional loading is im-
posed to the outside material when an initially voided material is applied to the
band.

• Appendix C.4: Proportional Loading - Continuous Nucleation of Voids
This card is used in localization analyses where non-proportional loading is im-
posed to the outside material when a continuous nucleation law is applied to the
band material.
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