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Abstract

For the transport of gases and liquids, such as CO2, in steel pipelines to be safe, rupture in
the pipe should be avoided. A crack in a pressurized pipe may start to propagate rapidly
along the pipeline and run for long distances. Modern steel pipes are ductile and this
phenomenon is denoted running ductile failure. The crack will propagate as long as the
pressure level at the crack tip is sufficiently high for the ductile failure processes to occur.

In this study, solid element analyses were used to simulate ductile failure and running
ductile failure in a part of a pipeline with an initial crack. The material behaviour of X65
steel was first established by quasi-static tension tests on different notched specimens,
and parameters for a Gurson-Tvergaard-Needleman (GNT) model were calibrated through
inverse modelling in Abaqus. The developed GTN model was then validated for a Kahn
tearing test using the same X65 steel, and the phenomenon of tunneling in the Kahn tests
was studied using X-ray computed tomography (CT). As the GTN model was found able
to represent fracture in the tearing test, it was then used to establish fracture energy and
nominal stress parameters for a Cohesive Zone (CZ) model. This was then used to perform
a solid element analysis on a part of a pipeline using a simplified load case. The CZ model
was found to be able to represent the fracture in a sufficient manner, but the crack length
in the pipe proved to be dependent on the global element size used in the simulations. A
GTN model was also established for a part of the pipeline, and was found to represent the
fracture in a similar manner as the CZ model.

For further studies a numerical model of the pipe could be developed where the pres-
sure is applied as a function of the position of the crack tip, and to validate the model by
comparing it to a fluid structure model. A less mesh-sensitive non-local GTN model could
also be established.
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Abstract

For at transport av gasser og væsker, som for eksempel CO2, i stålrør skal være trygt
bør brudd i røret unngås. En sprekk i røret kan begynne å propagere veldig raskt langsmed
røret og bevege seg over lange avstander. Dette fenomenet betegnes som et duktilt løpende
brudd. Sprekken vil fortsette å vokse så lenge trykknivået ved sprekkspissen er høyt nok
til at den duktile bruddprosessen oppstår.

I denne studien ble elementmetodeanalyser brukt til å simulere duktilt brudd og løpende
duktilt brudd i en liten del av en rørledning med en påsatt liten sprekk. Materialet var
X65 stål, og materialets oppførsel ble først etablert ved kvasi-statiske spenningstester på
forskjellige kjervede prøver, og parametere for en Gurson-Tvergaard-Needleman (GNT)
-modell ble kalibrert gjennom invers modellering i Abaqus. Den utviklede GTN-modellen
ble deretter validert for en Kahn-rivningstest med samme X65-stål, og fenomenet tunnel-
ing i Kahn-testene ble undersøkt ved hjelp av et røntgenbasert datamatografi (CT) -studie.

Siden GTN-modellen ble bevist å kunne representere brudd i rivningstesten, ble den
deretter brukt til å etablere bruddkraft og nominelle stressparametere for en kohesiv sone
(CZ) modell. Dette ble så brukt til å utføre en elementmetodeanalyse på en liten del av
en rørledning ved hjelp av en forenklet belastningssituasjon. Det ble funnet ut at CZ
modellen kunne representere brudd på en tilstrekkelig måte, men sprekklengden viste seg
å være avhengig av den globale elementstørrelsen som ble brukt i simuleringene. En
GTN-modell ble også etablert av en del av rørledningen, og det ble bevist at den kunne
representere bruddet på en lignende måte som CZ-modellen.

For videre studier burde en numerisk modell av røret utvikles der trykket påføres som
en funksjon av sprekkens spiss, og for å validere modellen burde den sammenlignes med en
fluid-struktur modell. En mindre mesh-følsom ikke-lokal GTN modell kan også etableres.
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Chapter 1
Introduction

1.1 Motivation
One of the most significant contributors to climate changes in the world today is the emis-
sion of CO2. A cornerstone of the drive to reduce CO2 emissions is the use of Carbon
Capture and Storage (CCS) (Mahgerefteh et al., 2012). This involves capturing CO2 from
large industrial emitters, such as coal and gas-fired power stations, and transporting it to
permanent storage sites, such as depleted oil or gas reservoirs or saline aquifers. For this,
the most widely recognised mean of transporting vast amounts of captured CO2 are pres-
surised pipelines, and these pipelines may typically cover distances of several hundred
kilometres at high pressures.

However, today’s knowledge of the behaviour of these CO2 pipelines is not sufficient
to safely guarantee that running fractures in the pipelines will not happen. A running
fracture in these pipelines is considered catastrophic failure and involves rapid tearing of
the pipeline that can sometimes run for several hundred meters, which results in the release
of massive amounts of content in a very short space of time. If these pipelines are passing
through or near populated areas, the consequences will be especially fatal, and so a large
number of studies have been devoted to understanding the mechanism of these running
fractures over a span of more than 30 years.

Reasons for the fracture can be defects introduced into the pipe by outside forces such
as mechanical damage, soil movement, corrosion or material defects. These defects will be
subjected to stresses, and when these stresses overcome the fracture toughness of the pipe,
the fracture will propagate. For CO2 especially, which has an unusually high saturation
pressure, pipelines transporting the gas will be more susceptible to fracture propagation,
compared to hydrocarbon pipelines. Current methods, developed about 40 years ago, use
semi-empirical models based on the Battelle Two Curve Method (BTCM). When this ap-
proach is applied to today’s high toughness steels or using non-ideal gases such as CO2,
the results have shown to be unreliable and inaccurate (Nordhagen et al., 2014), and are
therefore non-applicable. The solution: new methods need to be developed.
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Chapter 1. Introduction

1.2 Literature study
Fracture mechanics

The behaviour of metals/alloys is important to understand, as they are widely used as
structural materials. A structural component fails when the material loses its load-bearing
capacity. Failure is commonly classified into either brittle or ductile failure. Brittle ma-
terials experience only elastic deformation before fracture, while ductile materials deform
plastically before fracture. When fracturing, brittle materials shatter, while ductile mate-
rials can be bent and remain in its new shape. Ductile materials require more work than
brittle materials to propagate a crack because the energy is being absorbed by the plastic
deformation. This big difference between brittle and ductile materials is because elastic
deformation stores energy, while plastic deformation dissipates it.

During the fracture process, ductile materials demonstrate a wide range of fracture
behaviour due to the interaction of plastic energy absorption. Material fracture mechanics
involves predicting the fracture behaviour from the material microstructure and material
properties. Most of the early work developed to predict crack-tip conditions were based on
a global approach using energy methods where the material was regarded as a continuum.
These methods used singe parameters to predict the crack-tip conditions and are mostly
used for brittle fracture (Anderson, 2005). In the case of ductile failure and fracture, the
microscopic mechanisms have to be considered.

Modelling of ductile failure and fracture

When structural steel is subjected to high plastic strains, ductile fracture is the most
common fracture initiating mechanism. Ductile fracture is governed by void nucleation,
growth and coalescence. Poro-mechanics is a branch of continuum mechanics, where the
behaviour of a porous media, i.e. a material matrix permeated with micro-voids is studied.
An essential parameter when modelling the behaviour of a porous media is the void vol-
ume fraction. The void volume fraction is essentially a damage parameter employed in the
constitutive equation that interacts with other state variables. Such models are classified
as a coupled approach, as it allows the yield surface to be altered by the damage evolution.

In 1968, McClintock developed a quantitative fracture criterion for fracture by the
growth and coalescence of preexisting holes in plastic materials. This was done by analysing
the expansion of a long circular cylindrical cavity in a non-hardening material, pulled in
the direction of its axis while subjected to transverse tensile stresses. It was found that
in plastic materials, the inverse dependence of fracture strain on hydro-static tension was
very strong (A. McClintock, 1968). In 1969, Rice & Tracey determined another approxi-
mate solution by considering an isolated spherical void in a uniform stress and strain-rate
field (Rice and Tracey, 1969), where the relation between void growth and stress triaxial-
ity was their focus. In 1975 Gurson provided a constitutive relation from a progressively
cavitating solid with void growth based on Rice & Tracey (Rice and Tracey, 1969).

Tvergaard, and later Tvergaard & Needleman made modifications of the Gurson re-
lation to improve void growth modelling and account for coalescence. This resulted in
the Gurson-Tvergaard-Needleman (GTN) model, which is the most widely used coupled
approach for modelling void growth. (Tvergaard, 1981), (Tvergaard, 1982), (Tvergaard
and Needleman, 1984).
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Modelling of running ductile fracture in pipes

When modelling the propagation of a crack in a pipe, the most challenging part is the
modelling of the pressure distribution throughout the pipe and the lack of experimental
data for comparison.

Coupled CFD-FE models have been investigated at SINTEF, where the results have
been compared to experimental data. Nordhagen et al. compared experimental data to
a coupled fluid-structure model in LS-DYNA, pressurised with methane and hydrogen.
Nordhagen et al. used shell elements to model the pipe with X65 steel material. The crack
propagation was described by element erosion with the Cockroft-Latham ductile fracture
criterion that depends on the principal stress and equivalent plastic strain (Nordhagen et al.,
2012). Crucial for the performance of the coupled model was the description of the pres-
sure profile in the vicinity of the crack tip. The pressure profile depended on the position
of the crack tip and the size of the crack opening so that there was a two-way coupling
between the structure model and the fluid. When comparing with full-scale experiments,
it was clear that Nordhagen et al. were successful in describing both the pressure evolution
in front of the running ductile fracture and the crack position.

Nordhagen et al. (Nordhagen et al., 2014) also did a study on the main properties gov-
erning the ductile fracture velocity in pipelines, with a similar CFD-FE model to the one
used in the previous study by Nordhagen et al. (Nordhagen et al., 2012). Compared to the
previous study, the fluid model was more simplified to increase the efficiency of the study.
Strong mesh sensitivity was observed in the numerical model using shell elements. They
proposed to use solid elements to capture necking, as necking might be a driving force
for the fracture velocity. They found that the average crack speed was most sensitive to
pipe thickness, followed by initial pressure, Cockcroft-Latham fracture parameter, decay
length, yield strength, pipe diameter and work-hardening (Nordhagen et al., 2014).

Aursand et al. (Aursand et al., 2016) and Nordhagen et al. (Nordhagen et al., 2017)
developed coupled fluid-structure numerical models especially considering the transporta-
tion of CO2-rich mixtures in steel pipelines. Aursand et al. observed good agreements
for pressures, crack lengths and fracture velocities compared to experimental data. It was
found from simulations that the pressure levels behind the crack tip were different com-
pared to natural-gas pipelines (Aursand et al., 2016). Nordhagen et al. investigated the
effect of the pipes being surrounded by water or buried in soil, as this would decrease
the speed of the running ductile fracture. They achieved good agreements between the
experimental results and the simulations for the pressure along the pipes, while the numer-
ical model gave conservative results of the crack lengths, and varying results for the crack
velocities for the different CO2 mixtures (Nordhagen et al., 2017).

FE models without a fluid coupling, describing the pressure instead as a function of
the position of the crack tip have also been investigated. When combining fluid and struc-
tural models, the challenges concerning mathematical modelling, numerical discretisation,
solution techniques, and realisation as software tools on modern computer architecture are
still huge (Belostosky et al., 2014). Several studies concern the modelling of running duc-
tile fracture using only solid structural models. Modelling the crack path with a cohesive
zone (CZ) is essential in these studies.

Hutchinson & Nielsen analysed a method to characterise the traction - separation be-
haviour of a mode I crack in a 2D plane strain finite element model, and to further find the
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cohesive fracture energy of the entire failure process. They showed how the energy in the
traction - separation curve could be divided into two parts, the dissipated energy between
the onset of necking and the onset of shear localisation, and the dissipated energy after the
onset of shear localisation. The energy dissipated between the onset of necking and the
onset of shear localisation defined the damage evolution in the model. They found that
the damage evolution found from the numerical model was mesh independent up to shear
localisation. When studying the local necking, shear localisation and final slant failure,
they found that the three most important parameters influencing the cohesive energy were
the initial void volume fraction, the shear coefficient and the strain hardening (Hutchinson
and Nielsen, 2012).

Völling et al. developed an FE model of a pipe to investigate crack propagation and
fracture velocity for a BTCM based prediction of crack arrest. A CZ model was used to
simulate ductile failure, where the CZ parameters were determined from laboratory tests
using a tearing test of type drop-weight test (DWT) specimen. The pressure decay behind
the crack tip on the flaps was modelled using a function dependent on the position of the
crack tip, while the pressure in front of the crack tip was kept constant. Völling et al. con-
ducted a parameter study on the relation between global pressure and local pressure decay
on the flaps, and the corresponding crack velocity. It was found that the DWT test speci-
mens were recommended for the calibration of damage parameters, where no adjustments
needed to be done. Völling et al. justified that the behaviour in DTW test specimens and
the pipe had similar stress-strain conditions and that the direct transferability of parameters
between the DTW model and the pipe model was valid (Dr Alexander Völling, 2013).

Nonn & Kalwa compared the use of GTN model and the CZ model to experimental
data in numerical DTW models on X65 and X80 steel, where they characterised the duc-
tile damage behaviour. They calibrated the GTN model from notched tensile tests, where
the parameters found for the GTN model were the void volume fraction, the critical poros-
ity, the volume fraction of secondary voids and the characteristic element size. The CZ
parameters were calibrated and verified from a numerical DTW model. They found that
the most relevant parameters with regards to the GTN model were the volume fraction of
secondary voids and the element size (Nonn and Kalwa, 2013).

Scheider et al. (Scheider et al., 2014) modelled the crack propagation in the pipeline
also applying the pressure as a function of the position of the crack tip. Two numerical
pipe models were used to simulate the crack propagation, one with a GTN model, and one
with a CZ model. The calibration procedure involved notched tensile specimens and the
DWT test, justified by Völling et al. (Dr Alexander Völling, 2013). For the CZ model, the
calibrated parameters were the cohesive strength and the cohesive energy. For the GTN
model, only the two parameters volume fraction of secondary voids and the element size
was calibrated, as Nonn & Kalwa (Nonn and Kalwa, 2013) found these parameters to be
most relevant ones. It was found that both of the CZ model and the GTN model were
suitable to describe the dynamic fracture resistance. The computational efficiency was
low for the GTN model, while the CZ model was found to represent more robust solutions
concerning this matter.

4



1.3 Background

1.3 Background
This thesis is an extension of the thesis of Gry Hellum from 2017 (Hellum). In her thesis,
Hellum studied the main effects and interaction effects of temperature, strain rate and stress
triaxiality on an offshore X65 steel. Hellum performed tensile tests on smooth and notched
specimens using X65 steel. The results were used to calibrate the material parameters for
a Johnson-Cook model, where Power law was used as the hardening model. These were
used in numerical models of the specimens in Abaqus/Standard and Abaqus/Explicit, and
it turned out that the models were able to produce the same results as the experiments for
the smooth specimen, but overestimated the stress level for the notched specimens. This
was not investigated further in Hellum’s thesis.

The experimental results from the smooth and notched tensile tests conducted by Hel-
lum, and the work-hardening parameters, will be used in this thesis. Also, the overesti-
mation of the stress level for the notched specimens will be investigated further by taking
into account void growth by using the GTN yield criterion. Hellum also proposed to use
edge-tracing to find the diameter reduction in order to calculate true stress and logarithmic
strain for the tensile tests. In this thesis, additional tensile tests will be conducted using
high-resolution cameras to be able to perform edge-tracing on the results.

The validation of the found parameters for the GTN model will be done using Kahn
tearing tests. This is a tearing test that resembles the DWT test used in several previous
studies when modelling a pipe, because of the transferability between the stress-strain
conditions of the DWT test and the pipe. The studies done by Völling et al., Nonn &
Kalwa and Schneider et al. used the DWT test as validation of the material model to
calibrate cohesive properties of a CZ model, giving good results (Dr Alexander Völling,
2013), (Nonn and Kalwa, 2013), (Scheider et al., 2014).

Few studies have been done on the use of steel Kahn tearing tests, but the applicability
should be similar to that of the DWT test. If the GTN model is validated by describing
the behaviour in the Kahn test well, a ductile fracture in a pipe may be described by this
model also.

5



Chapter 1. Introduction

1.4 Objectives & scope
Objective

The objective of this thesis is to present a methodology that can be used for the assessment
of pipeline fracture resistance against long-running ductile fracture.

The sub-objectives are as follows:

1. Literature study on experiments and modelling of running ductile failure in steel
pipelines.

2. Completion of an experimental study to characterise the plastic behaviour and the
ductility of X65 pipeline steel, using standard tensile tests, notched tensile tests and
Kahn tearing tests.

3. To calibrate the GTN model for ductile failure of the X65 steel.

4. To run simulations of the material tests in the laboratory to validate the calibrated
GTN model.

5. To establish a solid element model for running ductile failure in a small part of a
steel pipeline.

6. To apply the solid element model to develop a cohesive law for pipeline steel.

Scope

The scope of this thesis is as follows

1. The experimental study was only performed on X65 steel.

2. The experimental study was only performed on five different specimen geometries;
4 tensile tests and the Kahn tearing test.

3. The experimental tests used were only performed at room-temperature. Other tem-
peratures were not considered for this study.

4. Only quasi-static behaviour was considered, not dynamic.

5. Only an FE model was used in this thesis to simulate a running failure. A CFD-FE
model was not used to represent fluid-structure interaction.

6
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1.5 Overview of thesis
Chapter 2: Material Mechanics

Chapter 2 introduces the plasticity theory used in this thesis and relevant instability damage
and fracture mechanics.

Chapter 3: Material tests and simulations

In chapter 3, parameters for the GTN model were calibrated by developing numerical mod-
els for comparisons with experimental quasi-static tension test performed on X65 steel.
Parameters found were the initial void volume fraction, critical and total void volume frac-
tion as well as mesh size for the GTN model. The geometry of the specimens was proved
to be of great importance for the correlation between numerical and experimental results,
and a Python script was developed with the purpose of tracking the specimen geometry.

Chapter 4: Tearing tests and simulations

In chapter 4, experimental Kahn tearing tests were performed. The force-elongation curve
was measured using Digital Image Correlation (DIC), and X-ray computed tomography
(CT) was performed on the deformed specimens to observe tunnelling in the specimens.
A numerical GTN model was then established for the Kahn-test and compared to experi-
mental data. The GTN model was found to be able to represent the Kahn tearing test.

Chapter 5: Pipe simulation

In chapter 5, a numerical GTN model was established to calibrate parameters for a CZ
model. A numerical GTN model was first used to establish CZ parameters for a Kahn
tearing test for validation. CZ parameters for a pipe were then found, and two numerical
models of a part of a pipe were established. A parameter study was done on these models.
A GTN model of the pipe was also established and compared to the CZ models.

Concluding remarks

In Concluding remarks, the most important results and conclusions are summarised, and
some suggestions for further work are presented.

7



Chapter 1. Introduction

8



Chapter 2
Material Mechanics

In the following sections, some basic theory regarding the material model will be pre-
sented. More specific theoretical aspects will be covered later locally in each chapter
when needed.

2.1 Plasticity
In this section the three parts of plasticity-theory will be covered, the yield criterion, the
flow rule and the work hardening rule. The GTN model, which will be explained in section
2.2.3 is an extension of the von Mises yield criterion and is represented by the von Mises
yield criterion if zero voids and zero nucleation is assumed in the material. The von Mises
yield function will therefore be introduced in the first section of the plasticity theory. The
associated flow rule and the Power Law will then be covered.

2.1.1 Yield criterion
A yield criterion expresses the condition for the onset of plastic deformation, and it is
defined in terms of the stress components. In general, it is formulated as:

f(σ) = ϕ(σ)− σY = 0 (2.1)

where f is the yield function, ϕ is the equivalent stress (represented by a positive
homogenious function of order one) and σY the yield stress which represents the stress at
yielding in uniaxial tension.

The von Mises yield criterion

One of the perhaps simplest and widely used yield criterion is the von Mises criterion. It
is based on the assumption of plastic isotropy and pressure insensitivity, i.e. yielding is
independent of the hydrostatic stress σH . Thus, yielding of the material is only dependent
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Chapter 2. Material Mechanics

on the deviatoric part of the stress state (σ1, σ2, σ3) (Hopperstad and Børvik, 2017a). The
von Mises criterion may be written as:

f(σ) =
√

3J2 − σY = 0 (2.2)

The von Mises yield criterion can be plotted as a surface in the principal stress space.
This is defined as a coordinate system defined by the principal stresses σ1, σ2, σ3, and the
yield surface (f=0) is a circular cylinder centred on the hydrostatic axis. This is defined
by σ1=σ2=σ3=σH . Figure 2.1 illustrates the von Mises yield surface in the principal stress
space (σ1, σ2, σ3).

Figure 2.1: von Mises yield surface in the principal stress strate, Figure from (Hopperstad and
Børvik, 2017a).

2.1.2 Flow rule

ε̇pij = λ̇
∂g

∂σij
(2.3)

The plastic flow rule in equation 2.3 defines ε̇pij in a way that ensures non-negative
plastic dissipation Dp = σij ε̇

p
ij ≥ 0. Here, g = g(σ) ≥ 0 is the plastic potential function

and λ̇ > 0 the plastic parameter.
If g is defined by the yield function f , the plastic flow rule is called associated flow

rule and is defined by equation 2.4.

ε̇pij = λ̇
∂f

∂σij
(2.4)

By assuming the von Mises yield criterion 2.2, and utilising the plastic flow rule 2.4,
the plastic strain rate can be explicitly stated as:

ε̇pij =
3λ̇

2σeq

(
σij −

1

3
σkkδij

)
=

3λ̇

2σeq
σ′ij (2.5)
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2.1 Plasticity

where δij is the Kronecker delta and is defined by:

δij = δji =
{ 1 if i=j

0 if i6= j (2.6)

From the plastic strain rate, equation 2.5, it is evident that the plastic strain rate tensor
is proportional to the stress deviator and is therefore also a deviatoric tensor. The plastic
volumetric strain rate is zero, and as a result there is no volume change due to plastic
deformations of the material, under the assumptions of a von Mises yield criterion.

2.1.3 Work hardening
When materials are plastically deformed, they usually work-harden which means that
the stress carrying capacity increases. The two most common work-hardening rules are
isotropic and kinematic hardening. Kinematic hardening accounts for translation of the
yield surface in space, while isotropic hardening, which is used in this thesis, describes
the growth of the yield surface. Isotropic work hardening was chosen due to the fact that
no simulations were performed using cyclic loading. Thus, there is no need to incorpo-
rate a kinematic work hardening rule. For isotropic hardening, the elastic region expands
while keeping the shape of the yield surface. When accounting for isotropic hardening,
the hardening variable R is introduced, and the yield function becomes

f(σ, R) = ϕ(σ)− σY (R) ≤ 0 (2.7)

σY = σ0 + R is the flow stress and represents the strength of the material and σ0

is the initial yield stress. The equivalent plastic strain p is determined from the plastic
dissipation.

Dp = σij ε̇
p
ij = σeqṗ (2.8)

which makes ṗ = λ̇ for the associated flow rule. The general form of the isotropic
hardening rule is Ṙ = hRλ̇, where the hardening modulus hR depends on the state of the
material. A rather common hardening law is the Power law, which is defined by
equivalent plastic strain. The Power law was chosen as the hardening law in the
numerical simulations performed in this thesis and is formulated as

R(p) = Kpn, (2.9)

where K and n are material parameters calibrated from the experimental data. When
assuming an associated flow rule (ṗ = λ̇), the hardening modulus becomes
hR = Knpn−1.
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Chapter 2. Material Mechanics

2.2 Instability damage and fracture
Material fracture mechanics is about predicting the fracture behaviour from the material
microstructure and material properties. The governing properties of ductile fracture and
the GTN model will be presented.

2.2.1 Diffuse necking
To identify the material behaviour of the X65 steel, cylindrical uniaxial tension tests were
conducted. Based on the force and diameter reduction in two directions, the true stress
versus plastic logarithmic strain curve can be established by the equations below, where A
is the area, Dx and Dy are diameters in x- and y-direction, and F is the force.

A =
πDxDy

4
(2.10) σt =

F

A
(2.11) εl = ln

(A0

A

)
(2.12)

For smaller values of the equivalent plastic strain, the plastic deformation is stable
with a continuously rising external load. However, when experiencing larger plastic defor-
mations, the specimen may either start to experience a deformation instability or simply
fracture due to damage processes, whatever comes first. In the case of an instability, a
local neck or shear band due to localisation of plastic deformations usually occurs. This is
called diffuse necking and is a vital precursor to the final failure. When the deformations
start to localise into a diffuse zone, the external load will begin to decrease. Thus, the
onset of diffuse necking is defined by the equation dF = 0. Under the assumption of a
constant material volume under plastic deformation, the incremental strain becomes

dεl =
dl

l
= −dA

A
(2.13)

and dF = d(σtA) = dσtA+ σtdA = 0 gives

dσt
σt

= −dA
A

= dεl (2.14)

which leads to the expression for diffuse necking in the following equation

dσt
dεl

= σt (2.15)

Another name for the diffuse necking criterion is the Considère criterion. It states that the
straining of the specimen is uniform until the slope of the true stress versus logarithmic
strain curve equals the true stress, or when the force reaches a maximum. Geometric
softening now overtakes the work-hardening. After this point, all plastic deformation
takes place inside the neck, and the rest of the gauge region unloads elastically. Figure
2.2 illustrates where necking occurs on the stress-strain curve.
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2.2 Instability damage and fracture

2.2.2 Ductile damage

The three most common fracture mechanisms in metals are ductile fracture, cleavage and
intergranular fracture (Anderson, 2005). In this thesis, the focus will be on ductile fracture,
but it should be mentioned that when studying pipes for the transportation of CO2 etc, the
ductile-to-brittle behaviour transition is important. Therefore, the cleavage and intergran-
ular fracture mechanisms will be important too and should be considered for future work.
Ductile damage evolution and fracture in metallic materials occur by nucleation, growth
and coalescence of microscopic voids that initiate at inclusions and second-phase articles.
Figure 2.2 illustrates the behaviour of a tensile test when it reaches a maximum force at the
instability point; diffuse necking occurs, and a neck starts to form. It also describes two
alternative stress-strain paths after failure, depending on the percentage of second-phase
particles in the material (Anderson, 2005).

Figure 2.2: Uniaxial tensile behaviour in a ductile material where necking occurs, and two alterna-
tive failure paths after failure is illustrated. Figure from (Anderson, 2005).

Figure 2.3 explains the failure of ductile materials due to void nucleation, growth and
coalescence. A void forms around an inclusion or second-phase particle in the material
when the stress is sufficient enough to split the surface between the particle and the rest
of the matrix. Once the void has been formed, further plastic strain of the matrix and
hydrostatic stress contributes to the growth of the voids. Eventually, there will be localised
plastic deformation and necking between the voids, and failure by void coalescence takes
place. The fracture path orientation is dependent on the stress state. A cup and cone
formation often occurs in uniaxial tensile specimens, because the necking results in a
triaxial stress state in the specimen, with higher hydrostatic stress in the center of the
specimen, which makes the voids coalesce in the center earlier than in the outer ring. This
leaves the center region to have the typical dimpled surface which is common for ductile
fracture, while the outer ring surface is more smooth as a result of a mainly shear dominant
failure mode (Anderson, 2005).
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Chapter 2. Material Mechanics

Figure 2.3: Illustration of void nucleation, growth and coalescence in ductile materials. Figure from
(Anderson, 2005).

2.2.3 Porous plasticity

In an uncoupled damage model in simulations of large-scale structures, the damage vari-
able has no coupling to the elastic-plastic response. Failure occurs at a critical damage
variable. A coupled model, on the other hand, will take the interaction between the dam-
age evolution and the plastic behaviour into account. Then, strain softening may occur if
the damage evolution by void nucleation and growth outrun the work hardening in the rest
of the matrix, and as a result, the strain will localise (Hopperstad and Børvik, 2017b).

One coupled model of porous plasticity is the GTN model, which is valid for isotropic
porous metallic materials by assuming that the material behaves like a continuum. The
Gurson model is based on micromechanics of voided materials. This means that it is
valid for porous isotropic metals. The matrix material in the Gurson model is described
by the von Mises yield criterion, whereas the inclusion of voids is the ingeniousity of
the model. The Gurson model is thus able to describe the pressure sensitivity of porous
materials, as well as describing the coupling of damage in a rather simple as well as a
micro-mechanically based fashion. The voids described in the Gurson model will grow
with increasing plastic strain, resulting in a steadily increasing void volume fraction. In
this way, damage coupling is introduced in the form of void growth.

Gurson’s model has later been modified by many authors, where the most well known
were proposed by Tvergaard and Needleman. They introduced a hydrostatic stress depen-
dence, and today the most used model is the Gurson-Tvergaard-Needleman (GTN) model
and this will also be the one used in this thesis. Tvergaard and Needleman introduced
the material constants q1, q2 and q3 to obtain better description of material data obtained
from experiments. The introduction of these material parameters was proposed mainly
due to the discrepancies resulting from hardening of the matrix material. The original
yield criterion proposed by Gurson (Gurson, 1977) was
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2.2 Instability damage and fracture

f =
(σ2

eq

σ2
Y

)
+ 2qf0cosh

(
q
σkk
2σY

)
− (1 + qf2

0 ) = 0 (2.16)

where f0 is the void volume fraction, σkk = 3σH = σ1 + σ2 + σ3 where σh is the
hydrostatic stress and σY is the flow stress. The equivalent stress σeq = σVM where
σVM is the von Mises stress.

Tvergaard later modified the Gurson model in equation 2.16, giving a more detailed
model of void growth (Tvergaard, 1982), (Tvergaard, 1981), which resulted in the GT
model below

f =
(σ2

eq

σ2
Y

)
+ 2q1f0cosh

(
q2
σkk
2σY

)
− (1 + q3f

2
0 ) = 0 (2.17)

where the constants q1, q2 and q3 typically have the values q1 = 1.5, q2 = 1.0 and q3 = q2
1 .

Figure 2.4 illustrate how the stress carrying capacity is increasing when f0 → 0 and is
decreasing as f0 → 1. When f0 = 0, the material has no voids and is fully dense, resulting
in a pressure insensitive material response. As seen from equation 2.17 and Figure 2.4, the
GT yield criterion reduces to the von Mises yield criterion in equation 2.2 when f0 = 0.
When f0 = 1 the material has no density and thus no load carrying capacity. As a result
of this, the GT and the GTN model usually gives reasonable results for f < 0.1 (Abaqus,
2016). All the above is also the case for the GTN model in equation 2.18, where f∗ is a
modified version of the void volume fraction f0.

Figure 2.4: GT yield surface dependence on σeq/σM vs. σH/σM for different void volume frac-
tions values f0 by equation 2.17. q1 = 1.5, q2 = 1.0 and q3 = q21 and the figure is taken from
(Hopperstad and Børvik, 2017b).

Tvergaard and Needleman modified the GT model by introducing a bi-linear function
for the void volume fraction, through the variable f∗ to account for the accelerated void
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Chapter 2. Material Mechanics

growth that occurs during void coalescence (Tvergaard and Needleman, 1984), and the
resulting GTN model is as follows:

f =
(σ2

eq

σ2
Y

)
+ 2q1f

∗cosh
(
q2
σkk
2σY

)
− (1 + q3f

∗2) = 0 (2.18)

where

f∗ =

{ f0 if f≤fc

fc + f̄F−fc
fF−fc (f0 − fc) if fc < f < fF where f̄F =

q1+
√
q21−q3
q3

f̄F if f ≥ fF
(2.19)

Under the assumption that q3 = q2
1 , f̄F becomes 1

q1
. It should be mentioned that f

in the yield function is not the same f as in equation 2.19. The void volume fraction f0

corresponds to the initial porosity of unloaded and undamaged material. The critical void
volume fraction fc is the porosity at the onset of void coalescence, where the increase
in the void growth rate kicks in. The factor fF is the value of void volume fraction at
which there is a complete loss of stress carrying capacity in the material. The parameters
fc and fF can be derived from unit cell calculations or calibrated on the experimental
data from notched tensile tests (Nonn and Kalwa, 2013), while f0 can be calibrated from
experimental data from smooth tensile tests.
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In order to calibrate the material model, experimental results from the thesis of Gry Hel-
lum (Hellum, 2017) were used. The material under consideration in this thesis was X65
steel, which is common for steel pipes typically transporting oil and gas (Oh et al., 2007).
According to PM international suppliers (PMinternational, 2018), the material has an ap-
proximate chemical composition and material properties as seen in Table 3.1. The steel
pipe that the tension test specimens were taken from was rolled to pipes from plates and
welded longitudinally. Figure 3.1 shows that the specimens are extracted from the opposite
side of the weld, which is the area exposed to the largest deformation during forming of the
pipe. The longitudinal direction of the pipe and the specimens is the same. The material
model can be divided into an elastic and a plastic part. The X65 high-strength steel was
modelled with isotropic elasticity, and the plastic response of the material was modelled
with a GTN model. An associated flow rule has been employed. The strain hardening of
the material is described by the use of a power law. The elasticity parameters, as well as
the plasticity parameters of the hardening model were taken directly from Hellum’s thesis.
The GTN yield criterion was found by inverse modelling. The calibration in total will be
presented in the following sections.

Figure 3.1: Pipe cross-section illustrating how the tensile specimens were extracted for experiments,
figure taken from (Hellum, 2017).
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3.1 Experimental study
In this section, the calibration of the elastic properties and the hardening model will be
undergone. All the following up until section 3.2 was done by Hellum (Hellum, 2017),
and is now to be explained for the reader.

Table 3.1: Information about the X65 steel composition.

Chemical composition
C Si Mn P S V Nb Ti

0.16 0.45 1.65 0.020 0.010 0.09 0.05 0.06
Yield strength Tensile strength
Min. (KSI) Min. (KSI)

65 77

3.1.1 Tensile tests
Quasi-static tensile tests at room temperature on four different specimens were conducted.
The tests were done with a 100 kN Instron test machine with a velocity of 0.0025 mm/min.
The test machine was screw-driven, and the load adjusts itself to the displacement to get a
constant velocity. Two tests were done on each of the geometries, which are shown in Fig-
ure 3.2. The left side shows the geometry of the longitudinal side of the specimen, while
the right side shows the cross-sections. The outer diameter was 5 mm, while the inner
diameter in the gauge area was 3 mm. The four specimens in Figures 3.2a, 3.2b, 3.2c and
3.2d are from now on called Smooth, R2, R08 and V45 respectively. R2 and R08 had a
notch with radius 2 mm and 0.8 mm respectively. For manufacturing reasons, an angle of
17.5° was made for the R08 specimen, as seen in Figure 3.2c. From Hellum’s experiments
in her thesis, R2 and R08 represent the higher values of triaxiality in the notched speci-
mens, while the Smooth specimen represents a low triaxiality. The V45 specimen with an
angle of 45° represents the highest triaxiality obtained from the experiments.
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(a)

(b)

(c)

(d)

Figure 3.2: Geometry of tensile specimens a) Smooth, b) R2.0, c) R0.8 and d) V45. Figure from
(Hellum 2017 p 41).

3.1.2 Results

Hellum used the smooth uniaxial tensile test to calibrate the hardening model. The force
was measured by the Instron test machine, while the diameter reductions were found by
lasers. Two tests were carried out on the same specimen geometry. The resulting data for
force and diameter reductions were similar and made it acceptable to calibrate the material
model to only one of the tests.

Hellum used the Bridgman (BLR) correction by equation 3.1, where a/R is described
by LeRoy in equation 3.2 after necking. R is the notch radius, and a is the specimen radius
in the neck.

σeq =
σt

(1 + 2R/a)ln(1 + a/2R)
(3.1)

a/R = 1.1(p− εplu) , p > εplu (3.2)
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Chapter 3. Material tests and simulations

Diffuse necking occurs at maximum force by Equation 3.3, as all plastic deformation
now takes place inside the neck.

dσt
dεl

= σt (3.3)

By using the BLR correction, Hellum was able to present the equivalent stress versus
the plastic logarithmic strain. Hellum used least square fit to find the hardening model
parameters, represented by Power law as already mentioned. The resulting parameters are
presented in Table 3.2.

Table 3.2: Constants calibrated by Hellum (Hellum 2017 p 18,64).

Elasticity constants and density
E [MPa] ν ρ [ton]
208E3 0.3 7.8E-9

Hardening model by Power Law
A [MPa] B [MPa] n [-]

652.5 297.8 0.7281

When calibrating the hardening model from the Smooth test, Hellums material model
described by Johnson-Cook hardening is spot on compared to the experimental data. When
running the simulation on the Smooth specimen in Abaqus, the true stress versus logarith-
mic strain matches the experimental data for the yield stress and the slope of the curve in
the beginning. When reaching higher strains, from 0.6 and upwards, the numerical model
starts to overestimate the true stresses, as seen in Figure 3.3. The following sections will
first present the finite element models for the four different tensile tests. Then, an addi-
tional part to the material model by Hellum will be introduced. The hardening model and
the elastic parameters from Table 3.2 will be copied. The plastic flow will now be de-
scribed by the GTN model, as this model may be able to represent the material behaviour
more accurate at higher strains, by taking voids and void growth in the material into ac-
count. The density of the X65 steel will be represented by the void volume fraction f0,
which describes the presence of voids in the material.
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3.2 Numerical study

Figure 3.3: Experiment versus finite element model with Johnson-Cook material model, figure from
(Hellum 2017 p 65).

3.2 Numerical study
In order to calibrate the GNT flow rule, numerical models for the four tensile tests were
needed. As described in chapter 2, the values of the set GTN parameters were q1 = 1.5, q2

= 1.0 and q3 = q2
1 . The constants f0, fc and fF were then calibrated. Before calibrating the

GTN parameters, two studies were performed to find an optimal velocity and a suitable
mesh shape. For this, the GTN parameters were set to f0 = 0.002, fc = 0.1 and fF =
0.5. The element type was also copied from Hellum, the 4-node bilinear axisymmetric
quadrilateral with reduced integration and hourglass control, CAX4R.

3.2.1 Numerical models

Geometry

The parts were modelled as axisymmetric deformable shells in Abaqus. The geometry of
the modelled specimens is shown in Figure 3.4, where 3.4a is Smooth, 3.4b is R08, 3.4b
is R2 and 3.4d is V45.
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(a)

(b)

(c)

(d)

Figure 3.4: Geometry and partitioning of numerical models of tensile specimens a) Smooth, b) R08,
c) R2 and d) V45.

Boundary conditions and loading

To simulate the experiments, the numerical models were fixed against movement in the
longitudinal direction in one end, while a load was uniformly applied on the other end.
The specimen was fixed against movement in the transverse direction along the line of
axisymmetry. When implementing quasi-static behaviour in the dynamic explicit simula-
tions, the analysis was sped up by time scaling since the material model was chosen to be
rate-independent. For the sake of computational time, the time period should be as fast as
possible without inertial forces becoming significant for the structure’s response.
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3.2 Numerical study

Figure 3.5: Illustration of the smooth step function in Abaqus.

For a quasi-static load case, the inertial forces are negligible due to small velocities.
This makes the kinetic energy small, which can be used to validate that the simulation is in
fact quasi-static. If the total time of the simulation were to be set too low, the kinetic energy
could become significant compared to the internal energy, and the deformation would no
longer be quasi-static. The value of the kinetic energy should not exceed 5% of the value
of the internal energy throughout the process. If moving the plate instantaneously, a stress
wave through the model could be induced, giving unwanted results. This was solved by
ramping up the load by using a smooth step amplitude, as seen in Figure 3.5. The chosen
amplitude was 10% of the time period (Abaqus, 2016).

Deformation velocity

Before a mesh study was performed, a suitable velocity was established for the Smooth
model, where the mesh was identical to the one used by Hellum (Hellum 2017, p 20).
When the velocity was increased, the presence of oscillations decreased, as Figure 3.6
shows, while the running time increased. The point of fracture was only slightly affected
by the velocity, but since this behaviour was also to be adjusted by the constants fc, f0

and fF , this did not need to be considered for now. In the analysis, both the viscous and
frictional damping energy is zero. Therefore, the energy balance for the entire model can
be shortened down toEI+EKE−EW = ETOTAL whereEI is the internal energy (elastic
and plastic strain energy), EKE is the kinetic energy, EW the work done by external
forces and ETOTAL the total energy in the system (Abaqus, 2016). The total energy of
the system should remain constant for a stable analysis, and for a quasi-static analysis, the
external forces are close to equal to the internal energy. The artificial strain energy includes
energy stored in hourglass resistance and transverse shear in shell and beam elements. The
artificial energy should be as low as possible as it represents an artificial stiffness in the
model.
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Figure 3.6: Effect of velocity change in gauge area of Smooth simulation, experiment versus simu-
lations.

Table 3.3 shows the relation between internal and kinetic energy and the work done
for the different velocities 3300 mm/s, 1600 mm/s, 1088 mm/s and 653 mm/s. When
decreasing the velocity, the absolute value of the total energy decreased as expected. The
total energy remained constant throughout the analysis for all the different velocities. The
kinetic energy for all velocities was less than 1% of the internal energy. The artificial
energy also remained less than 1% of the internal energy throughout the four analyses.
However, only total kinetic energy was considered and may explain why there are still
oscillations. Due to these oscillations, a step time of 0.002 seconds was chosen, as it gave
a good representation of the data while keeping the running time low.

Table 3.3: Energy balance in simulations for the velocities 3300 mm/s, 1600 mm/s, 1088 mm/s and
653 mm/s.

Velocity [mm/s] EI [mJ] EKE [mJ] EW [mJ] ETOTAL [mJ]
3300 11008433.05 7057.81 11015512.90 -22.04
1600 10953346.42 1726.12 10955084.19 -11.65
1088 10955281.50 767.18 10956056.61 -7.93
653 10959059.87 276.34 10959340.87 -4.66

Mesh

The GTN model is highly mesh sensitive since the void growth eventually introduces strain
softening, and so it was important to establish a suitable mesh size and shape before doing
further studies on the parameters fc, f0 and fF . The mesh size used by Hellum was
considered to be a good solution, and so the mesh-study was mainly focused on finding
the right element shape of the mesh. 28 elements over the thickness were used, while the
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number of elements in the longitudinal direction was changed. Figure 3.7 illustrates the
effect of changing the elements from square to oblong. The oblong elements were made
so that lx were larger than ly , see Figure 3.8 for coordinate system. By doing so, they were
less elongated in the longitudinal direction when stretched, keeping a better aspect ratio of
the elements towards the end of the simulation. A correlation is seen between the shape
of the elements and the shape of the curve, and only the shape of the elements in the area
of fracture influenced the stress-strain behaviour. When changing the elements outside the
zone of fracture, the stress-strain curve was not affected. As the mesh size is set by the
zone of fracture, also called the process zone, this was to be expected when using the GTN
model (Hopperstad and Børvik, 2017b). Therefore, the elements outside the gauge area
were made large to positively affect the running time.

Figure 3.7: Effect of element shape in gauge area of Smooth simulation, experiment versus simula-
tions.

The mesh lx = 0.054 mm and lx = 0.036 mm was chosen. As the stress-strain curve
would be dependent on the parameters fc, f0 and fF , it was difficult to know for certain
whether or not the chosen mesh was the best. However, given the mesh-sensitivity of the
GTN model, a mesh had to be established to be used in all later simulations. If the final
stress-strain curve after calibrating fc, f0 and fF matched, the mesh would be considered
satisfying. Otherwise, it could be necessary to look at the element shape again.

Figure 3.8: Illustration of the mesh used in the Smooth numerical model. The element lengths in
the gauge area were lx = 0.054 mm and lx = 0.036 mm.
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3.2.2 Calibration of Gurson–Tvergaard–Needleman

When calibrating the GTN parameters, the initial void volume fraction parameter f0 was
calibrated first. f0 controls the shape of the true stress - logarithmic plastic strain curve,
and was determined by inverse modelling on the Smooth tensile test in Abaqus. The
parameters critical void volume fraction fc and total void volume fraction fF were then
found. These parameters affects the material behaviour only at fracture. These were also
found by inverse modelling, but by using the notched specimens. As one of the goals
of this project were to be able to simulate a running crack, the critical parameters were
originally mainly fitted to the sharp notch specimen V45, as the behaviour of the sharp
notch were assumed the most similar to a running crack, and the Kahn-test described in
chapter 4.

Initial void volume fraction

For the initial void volume fraction, simulations of the Smooth tensile test were run while
changing only f0 and keeping fc and fF constant at 0.1 and 0.5 respectively. Figure 3.9
shows the response for different values of f0 , and f0 = 0.00095 was found to be the best
fit.

(a) (b)

Figure 3.9: The effect of changing the void volume fraction f0 in the numerical model of the Smooth
simulation, compared to experimental data. Figure b) is the area in the black square in Figure a).

Critical and total void volume fraction

When changing fc in the V45 simulations, fF was kept constant at 0.3. Figure 3.10 shows
that when increasing fc, the true stress - plastic log strain curve converges and stabilises
for higher values. What is also seen in Figure 3.11 is that the value of fF only affects the
shape of the curve after maximum true stress, affecting only the steepness of the curve at
fracture. As this part is not of interest for the behaviour up until fracture, the parameter
was set to 0.3. As for the critical void volume fraction fc, increasing the value seemed
to give better-looking curve, but neither of the parameters gave noteworthy results, so the
parameters were tried fitted to the R2 and R08 notched tests as well.
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Figure 3.10: Results when changing fc for V45
simulation, compared to experimental data.

Figure 3.11: Results when changing fF for V45
simulation, compared to experimental data.

As it was found from Hellum’s results, the true stresses for the numerical simulations
are too high compared to the experimental results. This will be investigated further in
section 3.2.3. The inverse modelling and adjustment of the parameters were therefore
mainly focused on matching the shape of the curve of the experimental results rather than
matching these results completely.

Notches R08 and R2

Figure 3.12: Effect of varying fc and fF for R08
simulation, compared to experimental data.

Figure 3.13: Effect of varying fc and fF for R2
simulation, compared to experimental data.

For the simulations done for the R08 notched and the R2 specimens, the true stresses
were also too high, especially for the R08 notch, as seen in figure 3.12. The R2 notch
with a larger diameter gave true stresses more similar to the experimental data. For all
specimens however, the shape of the curve matched the experiments well, although some
of the numerical simulations showed an earlier point of fracture. This was guessed to be
because of the high stresses. Common for all of the specimens was that changing the values
of fc and fF did not influence the true stress curves noteworthy, as Figures 3.10,3.11,3.12
and 3.13 shows. The stress levels and the point of failure were unchanged as long as fc >
0.1. Due to this, the values of fc = 0.15 and fF = 0.3 were chosen as the coalescence and
fracture criterion values for the material model. This gives a resulting material model seen
in table 3.4. The results of the simulations using these material parameters together with
the experimental data are seen in Figure 3.14.
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Figure 3.14: Final numerical results for Smooth, R08, R2 and V45 simulations with the chosen
GTN parameters described in Table 3.4, compared to experimental data.

Table 3.4: Final GTN model.

Elasticity constants and density
E [MPa] ν ρ [ton]
208E3 0.3 7.8E-9

Work hardening by power law
A [MPa] B [MPa] n [-]

652.5 297.8 0.7281
GTN yield function material parameters

q1 q2 q3

1.5 1 2.25
GTN yield function failure criterion

f0 fc fF
0.00095 0.15 0.3
lx [mm] ly [mm] lz [mm]

0.036 0.054 0.054

3.2.3 Troubleshooting & improved numerical models
In an attempt to find out why the stress levels for the numerical simulations were too high
when the notch radius got smaller, different techniques by trial and error were carried out.
A first thought was pressure sensitivity of the material, something known for steel, and that
our chosen material model was not able to capture the effect due to hydrostatic pressure on
the notch. To try to account for this, analyses were run using the Drucker-Prager material
model.
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Another theory for the results was that there was something wrong with the experi-
mental data or the calibration. Four new experiments were carried out, one test for each
specimen. The specimens were from the same batch as the ones Hellum used, and diame-
ter reduction was measured using Digital Image Correlation in eCorr, while Hellum used
lasers. The GTN model was calibrated again from the force-diameter reduction.

The q-parameters used in the GTN model were also tried changed, as the original
parameters were not initially fitted to the model, but found to be the correct ones from
literature.

At last, the geometry of the numerical model was changed slightly, changing the radius
of the specimens and making small alterations in the existing geometries.

Drucker-Prager

A disadvantage of the GTN model is that is assumed independent of the hydrostatic pres-
sure (Hopperstad and Børvik, 2017a). Therefore, to check the effects of hydrostatic pres-
sure in the model, tests were run using the Drucker-Prager yield criterion. The Drucker-
Prager model is an isotropic and pressure dependent model, where the deviatoric strength
increases with increasing pressure (Holmen et al., 2017). In Abaqus, the linear Drucker-
Prager criterion is written as (ref Abaqus):

f = t− ptanβ − d = 0 (3.4)

Where β is usually referred to as the friction angle of the material and controls the
pressure sensitivity of the material. t is given by equation 3.5, where K is the ratio of
triaxial yield stress in tension vs compression. The variable d represents the cohesion of
the material and is given for uniaxial tension in equation 3.6.

t =
1

2
q[1 +

1

K
− (1− 1

K
)(
r

q
)3] (3.5) d = (

1

K
+

1

3
tanβ)σt (3.6)

A flow potentialG, is also defined for the linear Drucker-Prager criterion. This is given
as:

G = t− ptanψ, (3.7)

where ψ represents the dilation angle in the p-t plane. In Abaqus, a linear model of
Drucker-Prager was used, and inputs for this were the three parameters β, K and ψ. For
this case, it was desired to use an isotropic and volume-conserving version of the Drucker-
Prager criterion, and this was done by setting the flow stress ratio K to 1.0 and the dilation
angle ψ to zero (Holmen et al., 2017). A hardening criterion for tension was also added to
the model, using the values for plastic strain found by Hellum and seen in Table 3.2. As
the use of Drucker-Prager was only done to check pressure sensitivity, only the parameter
β was initially changed in the numerical simulations to simplify the model.

The friction angle β can be determined from uniaxial tension and compression tests
as:

β = tan−1

(
3
|σc| − |σt|
|σc|+ |σt|

)
, (3.8)
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where |σc| is the stress in uniaxial compression, and |σt| is the stress in uniaxial tension.
In this case, only the stress in uniaxial tension was known, and a pressure coefficient α
was used instead to find β using equation 3.9:

α =
tanβ

(3 + tanβ)
↔ β = tan−1

(
3ασt

1− ασt

)
(3.9)

From Spitzig and Richmond (Spitzig and Richmond, 1984), α for different types of
steel seemed to be laying at a value around 20, and based on this a value of β was found
to be 2.3, given the yield stress previously found by Hellum to be 652.5 MPa.

Figure 3.15: True stress vs logarithmic strain for R08 simulation varying the Drucker-Prager pa-
rameters, compared to experimental data.

As seen in Figure 3.15, a β value of 2.3 had little effect on the stress-strain curve,
proving that the high difference between the numerical model and experimental results
were not due to hydrostatic pressure sensitivity. A parameter study of the β value was
also done to check the effects of the friction angle in Abaqus, as seen in Fig.3.15. It was
found that a higher friction angle leads to lower stress-levels in Abaqus and less pressure
sensitivity. Still, a β of 5, close to the pressure coefficient for aluminium 6070-T6 (Holmen
et al., 2017) was still not enough to lower the stress levels to match the experimental data.
The model in Abaqus was also run changing dilation angle ψ and triaxial stress ratio K,
but these changes did not improve the results, and further studies on these parameters were
not pursued.

New material experiments

In her thesis, Hellum did not use edge-tracing to measure diameter reduction on the tensile-
tests, but rather lasers. Due to the deviation in the numerical results, a validation of the
experimental results from Hellum was desired. Four tensile tests, one smooth and three
notched specimens from the same batch as Hellum were performed, but this time using
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high-resolution cameras to be able to perform edge-tracing on the edges to measure di-
ameter reduction. An Instron machine with a 100 kN load cell, similar to the original
experiments was used, with a velocity of 0.15 mm/min. The edge-tracing was performed
by Egil Fagerholt using the software eCorr, measuring the diameter from two different an-
gles, and the force was measured by the Instron machine. The results were then processed
in Matlab to get stress-strain curves for the four tests. The results are presented together
with the original experiments in Figure 3.16.

Figure 3.16: Experimental results from old versus new experiments conducted for Smooth, R08, R2
and V45.

These results verify the experimental results from Hellum, as all of the curves from
the four tests are coincident with each other. A calibration of the elastic properties and the
hardening law was also conducted from the experimental results, to verify the parameters
used by Hellum. The recalibration gave the same results as Hellum, given in Table 3.3.

Parameter and geometry studies

• In the previous models run using the GTN model, the material parameters q1, q2 and
q3 were set to the standard set by Tveergard (Tvergaard, 1982). To find out if the
value of q could have any effect on the results, a simulation of the V45 specimen
was run putting q1 = q2 = q3 = 1. The results are seen in Figure 3.17. When us-
ing Gurson’s original model where q1 = q2 = q3 = 1, but then the coalescence and
fracture criterion was removed (Gurson, 1977), this gave the same results as q1 = q2

= q3 =1. As changing the material parameters did not affect the yield point of the
curve, a further analysis of the values of q1, q2 and q3 was not done.
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Figure 3.17: Effect of changing the material parameters q1, q2 and q3 on V45 simulation, compared
to experimental data.

• As the V45 specimen was supposed to be sharp, but still has a notch of 0.2 mm, the
radius of the notch was tried changed. When changing the radius to 0.1 mm and
0.3 mm, the magnitude of the stresses was not dramatically changed, as shown in
Figure 3.18. When the radius was made smaller, the stress magnitude was decreased,
but the results were still not satisfactory. There was no point in making the radius
smaller, as this was not possible due to machining.

Figure 3.18: Effect of varying the notch radius on V45 simulation, from 0.1 mm to 0.3 mm, com-
pared to experimental data.

• Since changing the radius in the V45 specimen did not give helpful results, the
geometry needed to be investigated further. Therefore, the geometry of the R08
specimen was studied. When investigating some undeformed specimens, it looked
like the bottom of the notch was more flat, and not completely circular. Therefore,
the geometry was changed, so that the bottom of the notch was flattened out. Not
completely flat, but with a tiny curving to make the specimen fail in the middle, like
the experiments. It showed that introducing even a very small flat area in the notch
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had a huge effect on the stress-strain curve. Given the small size of the specimens
used in the test, and the apparent deviation in results for small changes in the ge-
ometry for the R08 notch, it was decided to run a proper analysis to find the exact
geometry of the specimens used in these tests.

Edge-tracing

Using the pictures from the new test performed in section 3.2.3, a Python script was de-
veloped by Sondre Bergo (personal communication, 13.03.18), with the purpose of edge-
tracing the pictures in order to get the notch geometry as exact as possible (Appendix 1).
This was done for the specimens V45 and R08, and the results were imported into Abaqus,
creating a 2D axisymmetric model of the specimens in Abaqus. The same conditions as
the previous numerical models were then applied and simulations were run.

The results were rather extraordinary. After running the first R08 test, the stress-
strain curve seemed to follow the experimental curve almost precisely, and accounting
for Drucker-Prager as well put the curve even closer to the original experimental results,
as seen in Figure 3.19. The same was seen for the V45 test, the resulting true stress-strain
curve was a lot closer, as seen in Figure 3.20. An edge-tracing analysis was also done on
the R2 specimens, giving little improvement to the results. This was expected as the R2
original simulations fit the true stress-strain curve quite well, and the large diameter of the
specimens was easier to machine. No edge-tracing was done on the Smooth specimen.

Figure 3.19: Numerical results for R08 with
edge-tracing, compared to experimental data.

Figure 3.20: Numerical results for V45 notch
with edge-tracing, compared to experimental
data.

The results from the geometry studies were rather surprising and proved that the ge-
ometry of the specimens was more important than previously thought. The results were
extremely sensitive to the geometry of the notch. For specimens of the size in these exper-
iments, a small imperfection will have more effect on the results than a crack of similar
size on a larger specimen. The machining is therefore especially important for specimens
of this scale.

Another factor to consider for such small samples is the possible presence of inho-
mogeneities. The risk of inhomogeneity is with few exceptions present in any material
(Pauwels et al., 1998), and for such small tests, inhomogeneities will have a more signifi-
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cant effect on the material response, than tests on larger specimens.

Figure 3.21: Final numerical results for Smooth, R08, R2 and V45 simulations with the chosen GTN
parameters described in Table 3.4, after improving the geometry of R08 and V45 using edge-tracing,
compared to experimental data.

3.2.4 Evaluation of results
After getting the exact geometry of the tensile test, the GTN parameters found in this chap-
ter proved to be able to represent the experimental results quite well, as seen in Figure3.21.
However, the geometry of the specimens and precise machining proved to be way more
important than previously thought, and for further studies, this is something that needs to
be considered when calibrating material models from small specimens.

Of the GTN parameters calibrated, the initial void volume fraction f0 was found to be
the most influential for the results. The critical and total void volume fraction were found
to have little effect on the stress-strain curves for this study, but further analyses could be
done using the new geometry found in edge-tracing to investigate these parameters further.
This may be important as previous studies by (Nonn and Kalwa, 2013) found that the most
relevant parameters with regards to the GTN model were the volume fraction of secondary
voids fF , and element size.

The GTN model also proved to be highly mesh-sensitive, and for the notched speci-
mens, it was impossible to recreate the exact dimensions of the element shape used in the
smooth calibrations at the notch bottom. This was due to the geometry of the notch, and
this could be the reason the failure occurs earlier in the numerical model for the notched
specimens. For further use of the calibrated GTN parameters, the mesh geometry and
shape in the zone of fracture should be as close as possible to the mesh found in this
chapter for the best possible results.

34



Chapter 4
Tearing tests and simulations

To validate the GTN parameters found in chapter 3, Kahn tearing tests were performed
using specimens taken from the same steel pipe as the four tensile tests, where the crack
direction of the specimens represents the crack direction of the pipe. Using Digital Im-
age Correlation (DIC), a force-elongation curve for the experiments was found. An X-ray
Computed Tomography (CT) scan of the specimens after the tests was also carried out.
A numerical model was then established and compared to the experimental results. The
crack tunnelling was also studied using the CT scans of the Kahn test and the numerical
model.

The Kahn tearing test follows the same principle as the DWT, explained in the literature
study. This tearing test was conducted by Völling et al. and it was found that the DWT
specimens and a pipe had similar stress-strain conditions and that the direct transferability
of the parameters between the DWT model and a pipe was valid (Dr Alexander Völling,
2013). The DWT was also used by Scheider et al. (Scheider et al., 2014) and Nonn &
Kalwa (Nonn and Kalwa, 2013) because of the results found by Völling et al.. Because of
this, it is reasonable to assume a transferability between the Kahn tearing test and a pipe
also.
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4.1 Experimental study

Figure 4.1: Picture of the Kahn specimen. Figure 4.2: Dimensions of the Kahn specimen.

The Kahn tests were performed using a 250 kN Instron test machine. The specimens
had dimensions as seen in Figure 4.2, and a specimen is seen in Figure 4.1. The radius of
the neck was approximately 0.02 mm, but a variation of ± 0.01 mm might occur. Before
running each test, each of the specimens were painted with a speckle-pattern, using white
spray paint and black paint applied with an airbrush. This was done so that the DIC anal-
ysis performed after would be able to track the material deformation. Two high-resolution
cameras were set up at each side of the machine perpendicular to the specimen, and dur-
ing the tests, pictures were taken with a frequency of 1 Hz. All of the tests were run at
a velocity of 1 mm/min. Force and displacement were measured continuously during the
tests, and each of the tests were run until a different load after necking. In total five Kahn
tests were performed, and the tests were stopped at respectively 2, 1, 15, 10 and 5 kN after
necking. The set up of the tests can be seen in Figures 4.3 and 4.4.

Figure 4.3: Set-up of Kahn text. Figure 4.4: Set-up of Kahn test.
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4.1.1 DIC - Digital Image Correlation
As the crosshead displacement of the Instron machine could be affected by the machine
stiffness and give unprecise results, the displacement measured during the tests was not
used for comparisons with the numerical model. Instead, the force was used together with
vector elongation found from a Digital Image Correlation Analysis (DIC). To perform the
DIC analysis, the pictures taken during the tests were analysed using the software eCorr.

The first step in the DIC analysis was to apply the mesh. A mesh of Q4 elements was
applied to the first picture obtained before any displacement. The elements used in the
mesh had a 20*20 pixel size, and the mesh was applied so that it followed the shape of the
specimen in the zone of the predicted crack-path as seen in Figure 4.5. An analysis was
then run for each test, applying gray value normalisation as well as element erosion for
high strains over 1.2. This turned out quite well when using the camera with the highest
resolution, Camera 1, but for the other camera, Camera 2, these settings made it difficult to
run an analysis due to small lighting changes and instabilities in the pictures. After some
troubleshooting, it was found that removing the gray value normalisation and applying two
multilayers with 100 and 70 Q4 elements worked for the other camera.

The element erosion applied during the analysis was necessary as DIC only works as
long as fracture has not occurred, so elements over the fracture surface were deleted during
the analysis. Without element erosion, the elements that crossed the crack-path would get
distorted. An appropriate element strain was found to be 1.2.

Figure 4.5: Illustration of the mesh used i eCorr for DIC.

After the analysis was done, a field map was applied to show element strain for each
picture taken during the test, as seen in Figure 4.6. The effective principal strain, εeff , was
the chosen field map in eCorr. This is based on the von Mises norm (eCorr, 2018) as:

εeff =

√
2

3
(ε2

1 + ε2
2 + ε2

3) (4.1)

where ε1 and ε2 are the two in-plane principal strain of the two-dimensional Q4 elements
of the mesh. The third principal strain component ε3 (i.e., the through-thickness strain)
can also be found in eCorr but is only valid where negligible elastic strains and plastic
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incompressibility can be assumed (eCorr, 2018). ε3 is found from conservation of volume
to be:

ε3 = −(ε1 + ε2) (4.2)

(a) (b) (c)

Figure 4.6: Field maps of effective strain for different stages of the Kahn-test.

The vector elongation used for the force-elongation curve was found by specifying
a vector over the notch of the specimen of a given length and then exporting the vector
elongation (vElong) for every picture. The vector was defined perpendicular to the crack-
tip, and the length of the vector was the same as the vector used in the numerical Abaqus
model, which will be explained in section 4.2.1. This was ensured using the ruler function
in eCorr to measure pixels over a known distance and then translating this to mm. A
shorter vector was also defined and compared to a similar one in the numerical model,
proving that the vector elongation was dependent of the vector length and that both vector
lengths corresponded to the numerical model. Therefore only the first vector length, as
seen in Figure 4.7, was used for further studies.

Figure 4.7: Vector used in eCorr.

Analyses for the vector elongation were run for all tests, but only the results for test
2,3,4 and 5 are presented in Figure 4.8, as the first test was run with a different speckle
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pattern and cameras and required different settings. The force-elongation curve shows that
the results follow each other with slight variations. The tests were stopped at different
forces in the experiments for the CT scan in the following section, and the figure shows
Kahn test 3 stopping at 15 kN, Kahn test 4 at 10 kN, Kahn test 5 at 5 kN and Kahn test
2 at 1 kN. The behaviour of the curve is similar for all tests, and therefore only the result
from Kahn test 2 is used for later comparisons with the numerical model.

Figure 4.8: Force-elongation curves for the four different Kahn-tests.

The DIC analysis was done from two sides to get a better idea of the behaviour of the
fracture. In Figure 4.9, the strain measured from both cameras for Kahn tests 2-5 are seen.
As the figure shows, the strains for the two different sides are not identical, but they follow
each other closely, indicating that the tearing test reacts similarly on both sides.

Figure 4.9: Force-elongation curve for the four Kahn tests measured from both sides, using pictures
from Camera 1 and Camera 2.
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4.1.2 X-ray computed tomography (CT) study
After performing the Kahn tests, the specimens were sent to for CT scanning at the Physics
Department at NTNU. This was to get a better idea of how the fracture occurred, and
especially to study the phenomenon of tunnelling in the specimens due to the triaxiality.
According to Mathur et al. (Mathur et al., 1996), crack growth occurs by tunnelling in the
central part of the plate and shear lip formation at the free surface. Tunnelling in crack
growth refers to the situation in crack-growth through-thickness where the crack front
grows faster in the center section of the specimen than closer to the specimen surfaces
(Lan et al., 2010). This is a phenomenon much observed in ductile fracture experiments
on specimens made of steel, and is due to the fact that the fracture criterion is first satisfied
in the middle of the crack-front. A likely cause for this is that the specimen’s center section
is subjected to a state of high stress triaxiality. This promotes void nucleation, growth and
coalescence, leading to crack growth. The GTN model is known to be a good model to
explain this, and has been shown to be effective in predictions of crack growth in both two-
dimensional plane strain conditions and three dimensional conditions, predicting that the
crack will grow first in sections near the center of the specimens due to high triaxiality (Zuo
et al., 2004). The results from the CT scan will therefore be compared to the numerical
results using GTN in section 4.2.4.

As is seen in the Figures 4.10 - 4.13, crack tunnelling can be observed for Kahn tests
2-5. Kahn test 1 has not been studied. The red line in the left photos represents the location
of the cross-section seen in the right photos. The photos show that voids exist in the centre
of the section while the side surfaces have yet to fracture.

(a) (b)

Figure 4.10: a) Side view and b) cross-section of Kahn 2 CT scan.
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(a) (b)

Figure 4.11: a) Side view and b) cross-section of Kahn 3 CT scan.

(a) (b)

Figure 4.12: a) Side view and b) cross-section of Kahn 4 CT scan.

(a) (b)

Figure 4.13: a) Side view and b) cross-section of Kahn 5 CT scan.
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Figure 4.14 shows Kahn tests 2-5 a short time before the side surfaces close in the tests.
The fracture behaviour varies a bit, where Kahn test 3 and 4 show a cup fracture, and Kahn
test 5 a more slant fracture. Kahn test 2 is something in between. From experiments done
by Zuo et al. (Zuo et al., 2004) in regards to tunnelling, both flat and slant crack-growth
can be observed in stable tearing tests, and this seems to be the case in this study also. The
behaviour of the crack may also be dependent on the length of the crack, as a more slant
fracture is observed for the specimens with the longest crack. This is also observed by Zuo
et al. (Zuo et al., 2004). The relation between tunnelling and the length of the crack will
be explained further in section 4.2.4 .

(a) (b) (c) (d)

Figure 4.14: Cross-section of a) Kahn test 2 b) Kahn test 3 c) Kahn test 4 and d) Kahn test 5 during
the CT scan.

Another interesting phenomenon observed for the second Kahn test, the test with the
largest final crack length, is that an increasing thickness could be observed over the end of
the crack-path. This is seen in Figure 4.15.

(a) (b)

Figure 4.15: a) Side view and b) cross-section of Kahn 2 CT scan at the end of the experiment.
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4.2 Numerical study

4.2.1 Numerical model
The Kahn tearing test was modelled in Abaqus with the dimensions as shown in Figure
4.2, while the material properties are given in Table 3.4. The Kahn specimen was modelled
using 8-node linear brick elements with reduced integration, C3D8R. The simulations
were run using the explicit solver, where the velocity was increased to 1500 mm/s to save
computational time. The velocity of the analysis was first optimised so that in combination
with ramping up the load by a smooth step as shown in Figure 3.5, the dynamic effects
were negligible. A constraint of type kinematic coupling in the bolt holes was used to
simulate the bolts of the 250 kN Instron test machine, inspired by the thesis by Sævareid
(2017). The load was applied in Y-direction at the centre of the coupling, see Figure
4.16 for coordinate system. The coupling was fixed in all other directions except in radial
direction, to ensure that the part was allowed to rotate around the Z-axis.

To decrease computational time, the part was modelled symmetric over the XY and the
XZ-plane. The fracture was expected to go along the x-axis, and a fine mesh was therefore
used along that path, as seen in Figure 4.16. The size of the smallest elements modelled
was 0.05 mm in all directions for simplicity.

During the analysis, the energy balance for the numerical model was checked. The
amount of kinetic energy was found sufficiently low for a quasi-static behaviour, while the
increase of the velocity kept the computational time low. The amount of artificial energy
was also low, and the measured total energy was constant during the analysis indicating a
stable analysis. This was considered satisfactory to go on with the model.

Figure 4.16: Illustration of mesh and coordinates of numerical Kahn model.

Results numerical model

The numerical model was validated using a force-vector elongation curve compared to the
results from the experimental data. The force was taken from the XZ-symmetry plane.
The vector elongation was found by specifying a vector corresponding to the vector used
in the DIC analysis. This was done by measuring the deformation at a given point in the
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model and dividing it by the initial distance between the point and the symmetry plane.
The distance was half of the length of the DIC vector to account for symmetry. As the
vector elongation was found to be dependent on the vector length, a shorter vector was
also defined corresponding to a shorter vector in the DIC analysis. The relation between
the results was the same, proving that the vector elongation from the DIC results and the
numerical model corresponded as long as the vector length was the same. The points
chosen for the two vectors can be seen in Figure 4.17. For further studies, only the longest
vector was chosen, and the force-vector elongation compared to Kahn test 2 is seen in
Figure 4.18. What is observed is that the numerical results nearly follows the shape of the
experimental results, but the force is too high. This will be investigated in the parameter-
study in section 4.2.3.

Figure 4.17: Mesh in the notch, details from Fig-
ure 4.16.

Figure 4.18: Results from experiments and sim-
ulation of Kahn specimen.

4.2.2 Numerical model troubleshooting

In an attempt to find out why the forces in the numerical Kahn simulations were too high
compared to experimental data, different changes to the numerical model were carried
out. A first thought was that the use of boundary conditions and symmetry might have
influenced the results, so this was investigated.

Further on, the pressure sensitivity of the material was considered by using the Drucker-
Prager material model, as this decreased the stress levels a bit for the tensile tests in the
material simulations. The reason why the stress levels were too high for the tensile spec-
imens was the geometry of the notch. Therefore, this was also investigated as a possible
reason for the not so good results in the simulation.

Another possibility was that the loading could be applied differently in the simulations.
Instead of using a coupled constraint in the bolt holes, a rigid part was made to simulate
the bolts, and the displacement was applied to the rigid part. The shape of the elements
was also considered a source to the slightly wrong shape of the force - vector elongation
curve.

The investigation of the numerical Kahn model did not cause the forces to decrease
although the shape of the response curve was slightly improved. As the numerical model
seemed to have no severe faults, further investigations of the test specimens were done,
both on an undeformed and the deformed specimens. It was found that plastic deformation
had taken place around the bolt holes after deformation on all specimens. These should
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not be able to deform as all the plastic deformation should take place inside the notch. The
reason for this was investigated, and new simulations were conducted.

Simulation

• The numerical model of the Kahn specimen had XY and XZ-symmetry. To be cer-
tain that this did not affect the results, new models were made. Figure 4.19 shows
the results when removing the symmetry in the XY-plane. The only consequence
was a little change in the shape of the curve. When modelling the part without
XZ-symmetry, or with no symmetry at all, the results were identical to the simula-
tion without XY-symmetry. It was concluded that this was not a problem with the
numerical model.

Figure 4.19: Effect of no XY-symmetry on Kahn simulation, compared to experimental data.

• When applying the Drucker-Prager criterion with β=2.3, K=1 and ψ=0 the effects
were the same as for the tensile tests. The force level was only decreased by approx-
imately 1%.

• In the simulations of the tensile tests, the problem was clearly the notch geometry.
Therefore, this was investigated for the numerical model of the Kahn specimen too.
The bottom of the notch was therefore flattened out so that the radius in the bottom
of the notch was larger than 0.2 mm. This did not contribute to decrease the force
magnitude for the simulation of the Kahn specimen, and so the geometry of the
notch was not further examined.

• In the numerical model, the load was applied to the centre of the coupled constraint
in the upper bolt hole. In an attempt to make the simulations more similar to the
experiments, the coupled constraint was replaced with rigid bolts. A velocity was
applied to the bolt going through the upper bolt hole. The bolts were made as an-
alytical rigid parts with a radius of 3.99 mm. Surface-to-surface contact with a
frictionless behaviour was applied between the bolts and the bolt holes walls. The
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bolts were free to rotate. The result is presented in Figure 4.20, where the displace-
ment is shorter than for the original simulation to reduce computational time. The
shape of the curve was affected, but the difference is minimal.

Figure 4.20: Effect of applying the load to the upper rigid bolt in the simulation, compared to using
coupled constraint and experimental data.

• The mesh in the numerical model was made quadratic, like Sævareid did in his
thesis (Sævareid, 2017). The same element shape as used in the numerical model
of the Smooth tensile test was applied to the Kahn numerical model, so that lx =
lz = 0.0054 mm and ly = 0.035 mm. The result is shown in Figure 4.21, with a
shorter elongation than the original to reduce computational time. The different
element shape affects the shape of the curve a little, making it more similar to the
experimental data. The curve is shifted more to the right, and the vector elongation
at maximum force is more aligned.

Figure 4.21: Effect of changing the element shape on Kahn simulation, compared to experiments.
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Specimen geometry

In the previous study, no obvious faults in the material model were found. It was there-
fore decided to examine the experimental specimens once more, and the deformed and
undeformed specimens were both inspected carefully.

• An undeformed test specimen was examined first. Using a micrometre, the thickness
variation in the specimen was measured. The different values are shown in Figure
4.22. It is clear that the thickness is not uniformly equal to 2.54 mm, as the machine
drawing in Figure 4.2 states. The effect of the varying thickness was investigated by
running two simulations with thickness 2.52 and 2.56 mm. The results are seen in
Figure 4.23.

Figure 4.22: Measured thickness of
the undeformed Kahn specimen using
a micrometer.

Figure 4.23: Force - vector elongation for the Kahn simu-
lation with thickness 2.54, 2.525 and 2.51 mm, compared
to experimental data.

• When investigating the deformed specimens, it was observed that the bolt holes
were deformed into a slightly oval shape. Also, some of the parts were deformed
plastically in Z-direction around the holes and at the crack path. The far ends from
the notch were especially deformed in the tests with the largest displacement. Some
thickness values were measured and written down for comparisons with the numer-
ical model, and these are seen in Table 4.1.

The holes were concluded to be deformed because of the size of the bolts, which
must have had a different size than the holes during the experiments. This was
controlled, and the bolts were confirmed to have a 0.1 mm smaller diameter than the
holes. The diameter of the bolts was found to be 8 mm, while the diameter of the
undeformed bolt holes was 8.1 mm.

4.2.3 Improved numerical model
The previous findings meant that both the geometry and the mesh of the original numerical
model had to be changed. As seen in Figure 4.16, the mesh at the far end from the notch
was fine in the original numerical model, and from the previous simulations, it was found
that the representation of the deformation in Z-direction was satisfactory. To be able to
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represent the plastic deformation in Z-direction around the bolt holes, the mesh close to
the bolt holes was made considerably finer.

When changing the shape of the elements, from lx = ly = lz = 0.05 mm in the original
numerical model to lx = lz = 0.0054 mm and ly = 0.036 mm, the shape of the response
curve seemed to improve when comparing it to the experimental data, as shown in Figure
4.21. Hence, the shape of the elements was changed so that lx = lz = 0.0054 mm and ly =
0.036 mm.

A previous analysis also revealed that when modelling a rigid part instead of using a
coupled constraint in the bolt holes, the shape of the force - vector elongation curve was
slightly improved, as Figure 4.20 shows. Therefore, this was investigated after changing
the original numerical model as described above. The bolts were given the same diameter
as in the experiments, 8 mm, while the bolt holes were expanded to 8.1 mm. Figure
4.24 shows the force - vector elongation curve for the different scenarios, and it is clear
that when modelling the rigid bolts, the shape of the curve matches the experimental data
better.

Figure 4.24: Effect of modelling the bolts as rigid parts, versus using a coupled constraint in the
bolt holes, compared to experimental data.

The updated mesh and geometry of the improved numerical model are shown in Figure
4.25 and 4.26, respectively. Figure 4.25 also shows the modelled rigid bolt through the bolt
hole. General contact with surface pairs was applied between the bolts and the inner side
of the bolt holes, as it gave the same results as applying surface-to-surface contact. The
upper bolt was moved in Y-direction with a velocity of 1000 mm/s, while the lower bolt
was fixed. Both the bolts were free to rotate. To reduce computational time, the improved
numerical model was modelled with XY and XZ-symmetry.
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Figure 4.25: Mesh of the improved numerical
model.

Figure 4.26: Geometry of the improved numeri-
cal model.

The force - vector elongation curve for the improved numerical model, the experimen-
tal data and the original numerical model is presented in Figure 4.27. The curve for the
improved numerical model oscillates after maximum force. This could be improved by
decreasing the velocity of the applied load, but in order to keep the computational time
acceptably low the results are found satisfactory. The shape of the curve for the improved
numerical model followed the experimental data better than the original numerical model
before maximum force, but the estimated force was still too high. In the following section,
a parameter study on the improved numerical model will be carried out. Here, the velocity
of the simulations is 1500 mm/s to reduce computational time. It was controlled that when
decreasing the velocity from 1500 mm/s to 1000 mm/s for the improved numerical model,
the response curve was unchanged. The only effect of the velocity increase was a tiny
increase in oscillations after maximum force, which was found acceptable.

Figure 4.27: Response of the improved numerical Kahn model compared to experimental data and
the original numerical Kahn model.
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Parameter study

As presented in section 4.2.2, the thickness of the Kahn specimen is not uniform, as shown
in Figure 4.22. The largest difference found from measurements were 0.048 mm. The
thickness along the crack path only differs with 0.007 mm from 2.54 mm, which is accept-
able. However, as the bolt holes deform plastically, the thickness there might have been
of importance. The thickness of the bolt holes was measured to be 2.51 mm. For that
reason, a study on the effect of changing the thickness of the improved numerical model
was carried out. Figure 4.28 shows the response when changing the thickness to 2.525 and
2.51 mm, compared to the improved numerical model with thickness 2.54 mm. When the
thickness was decreased, the resulting force was decreased, while the shape of the curves
was similar. The reduction in force was expected since the area in which the force was
applied to was decreased.

The effect of mesh size around the bolt holes was also investigated, to make sure that
the plastic deformation of the holes was represented properly. In the improved numerical
model, the mesh size at the holes was 0.3 mm. The mesh size was decreased to 0.1 mm
around the holes, and the results are presented in Figure 4.29. The mesh modification leads
to a modest decrease of the force level.

Figure 4.28: Effect of changing the thickness
from 2.54 mm to 2.525 mm and 2.51 mm for
Kahn in the numerical model, compared to ex-
periments.

Figure 4.29: Effect of finer mesh at the bolt holes
for Kahn in the improved numerical model, com-
pared to the improved numerical model, the orig-
inal numerical model and experiments.

To further investigate the relationship between the experiments and the simulation,
the plastic deformation in the thickness direction was considered. The thickness of the
deformed Kahn specimens was measured at the far end from the notch and at the bolt
holes with a micrometre, position B and A in Figure 4.30, respectively. The thicknesses
measured are presented in Table 4.1. It was found that the thickness at A was consistently
larger for one of the holes, in all experimental tests. The values for A in Table 4.1 are
therefore the thicknesses measured at the hole with the largest thickness.

Table 4.1 also presents the thickness at position A and B in the simulation of Kahn.
The maximum elongation for the different Kahn tests was listed, and the thicknesses at
point A and B were measured for the same elongations in the simulation. The thickness at
the far end from the notch increases the longer the crack goes both in the simulation and
the experiments. The thickness change at the bolt holes does not behave consistently in
the experiments, while in the simulations it slightly decreases.
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Figure 4.30: Positions A and B of measurements on Kahn specimens.

Table 4.1: Measured thickness in deformed Kahn specimens for both simulations and experiments.
The tests are presented in ascending order, considering the displacement.

Thickness A - bolt holes Thickness B - end
Experiment Simulation Experiment Simulation

[mm] [mm] [mm] [mm]
Kahn 3 2.83700 3.28444 2.61400 2.60770
Kahn 4 2.86900 3.28399 2.74656 2.65420
Kahn 5 2.83500 3.28349 2.79700 2.93200
Kahn 2 2.88000 3.26671 3.15800 3.39320

4.2.4 Tunnelling in CT scans and improved numerical model
As mentioned in section 4.1.2, tunnelling is a phenomenon that often occurs in ductile
fracture, and a good model to predict tunnelling is the GTN model as it uses accumulated
damage along the crack front as a growth criterion. A problem with the GTN model is that
it relies upon high levels of triaxialities to drive the damage process. This makes it less
applicable for thinner specimens, where the void growth and coalescence process more
typically occurs along bands of large plastic strain (Gullerud et al., 1999).

Many studies have been done on the phenomenon of tunnelling, and other approaches
have also been proven to be effective in regards to this. A growth criterion that has been
successful in predicting tunnelling is the Crack Tip Opening Angle (CTOA). This is an
approach that controls the crack growth by advancing the crack front a prescribed distance
when the CTOA reaches a specific critical value, and the crack will typically extend one
element size at a time through node release procedure (Gullerud et al., 1999).

This method was extended to 3D by Gullerud et al. (Gullerud et al., 1999) by checking
CTOA at each node along the crack front, and they were successful in predicting the
tunnelling profile of an aluminium deep-notch single-edge specimen under mode I loading.

Zuo et al. (Zuo et al., 2004) have also done studies on this, focusing on the effect of
the stress constraint on the CTOA value, and results proved that the Crack Tip Opening
Displacement (CTOD) value decreased as the stress constraint increased.

Many studies have also been done on the effect of crack tunnelling on deformation
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fields and structural response. Dawicke et al. (Dawicke et al., 1995) compared variations
of the CTOA and a global constraint factor on straight and tunnelled cracks. This indicated
that the effect the shape of the crack-front had on the global constraint factor was small,
but had a stronger influence on the through-thickness CTOA. This was especially seen in
the early stages of crack growth.

James & Newman (James and Newman, 2003) studied the effect of crack tunnelling on
a predicted load-crack extension curve, and proposed a method based on the area average
to calculate the effective crack extension. In this method, the average crack length was
calculated using a formula to describe the measured surface crack length as well as the
tunnelling magnitude. This produced a load-crack extension curve that corresponded well
with the experimental measurements after the maximum load, but less with the early stages
of crack growth.

Lan et al. (Lan et al., 2010) carried out three-dimensional elastic-plastic finite element
analyses for tension-torsion specimens with straight and tunnelled cracks under remote
mode I loading conditions. If was found that crack tunnelling raised the levels of CTOD,
the effective stress and the effective plastic strain on the specimen surfaces, and also low-
ered the mean stress and the stress constraint levels on the specimen’s mid-plane.

In this thesis, the main focus is to investigate the GTN model further, and in this sec-
tion, the results from the CT scan and the numerical results using GTN will be studied
more closely to investigate the tunnelling and the relation between crack length and tun-
nelling. The amount of tunnelling for different crack lengths will be studied.

CT scans and improved numerical model

The Figures 4.31 and 4.32 shows the CT scans of the experiments and the simulation for
the Kahn tests 3 and 5, respectively. Figure 4.31b is taken from the simulation when the
elongation coincides with the elongation of the specimen in Figure 4.31a. This also applies
to the Figures 4.32b and 4.32a. The simulation was not set to write the field output for
every unit of time, and therefore the elongations may not be exactly the same. The red line
in the Figures 4.31a and 4.32a indicates, with a slight margin of error, where the tunnelling
starts. Figures 4.31b and 4.32b are cut in the middle of the XY-plane to demonstrate the
tunneling.

In both Figure 4.31 and 4.32 it is seen that the crack length is longer for the experimen-
tal results, while the tunnelling is longer for the numerical model. Figure 4.33 shows the
relation between the crack length and the length of the tunnelling for the 4 Kahn tests and
different values from the numerical model corresponding to different elongations. Also
here it is observed that the tunnelling lengths are longer for the numerical model, while the
crack lengths are longer for the experimental results. Common for both is that the length
of the tunnelling increases in the beginning and then decreases after a certain point. This
behaviour was also observed by James & Newman (James and Newman, 2003), observing
that tunnelling would initially increase as the fracture region developed, and then decrease
as the shear lips formed with increasing plasticity and stabilise at a constant value.

Another interesting observation is that the crack seems to develop faster at the end of
the experiment. This could be due to less tunnelling making the crack propagate faster.
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(a) (b)

Figure 4.31: Comparisons of experimental and numerical model for Kahn specimen 3.

(a) (b)

Figure 4.32: Comparisons of experimental and numerical model for Kahn specimen 5.

Figure 4.33: The relation between tunnelling length and crack length for the numerical model and
the experimental results. The reference points of the GTN model represents the similar location in
the analysis as the experimental results.
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Figure 4.34 illustrates the tunnelling in the simulation. Figure 4.34a shows the onset
of tunnelling, whereas Figures 4.34b and 4.34c shows the tunnelling at the elongations
similar to the Kahn specimens 3 and 5, respectively.

(a) (b) (c)

Figure 4.34: Illustration of tunnelling in the numerical model in a) the onset of tunnelling, and for
elongations corresponding to Kahn specimens b) 3 and c) 5.

4.2.5 Evaluation of results

Based on the results from the previous section, the final numerical model was slightly
changed from the original numerical model. It was found that during experiments, the
bolts were 0.1 mm smaller than the diameter of the bolt holes. This resulted in plastifi-
cation around the bolt holes, while only the crack path was plastically deformed in the
original simulation. When accounting for this, the results were improved. Even though
the shape of the force - vector elongation curve based on the simulation seemed to match
the experiments perfectly, the maximum force was about 5% higher than the experimental
data.

• The GTN model does not account for pressure sensitivity of the matrix material,
which contribute to the overestimation of the forces due to high triaxialities in the
sharp notch. When applying the Drucker-Prager criterion, the maximum force was
slightly decreased.

• When investigating the undeformed Kahn specimen, it was found that the thickness
was not uniform. By decreasing the thickness of the specimen, the stiffness was
decreased too. The variation of the thickness, and other imperfections such as inho-
mogeneity in the material, may be a reason for the overestimation of the forces in
the simulation.

• It was found that the diameter of the bolt holes was larger than what the machine
drawing stated. For small specimens, there is a higher chance of errors due to ma-
chining, as experienced for the tensile tests R08 and V45 in chapter 3. As the ge-
ometry of the specimens was controlled only manually with a micrometre, small
errors due to the geometry in the numerical model may have occurred. A critical
dimension was the position of the centre of the bolt holes compared to the notch.
If the centre of the bolt holes were to be more aligned with the notch, meaning be-
ing moved a 0.38 mm distance, the crack would initiate earlier due to the increased
value of the moment, and the resulting forces would decrease.
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• When accounting for the different diameter of the bolts and the bolt holes in the
improved numerical model, the shape of the force - vector elongation curve was im-
proved. The displacements in the thickness direction at the bolt holes for both exper-
iments and simulation tend to stay constant after the point where plastic deformation
localises in the notch. However, in the simulation, the maximum displacement was
3.28 mm, while it was 2.88 mm in the experiments. As the plastification around the
bolt holes was too large in the simulations, it may indicate that the relation between
the diameters of the bolts and the bolt holes were inaccurate. In the original numer-
ical model, the plastification at the bolt holes was not accounted for, since the bolts
had close to the same diameter as the bolt holes. The main (and most important
in this case) difference between the two models was the shape of the curve before
maximum force. Lowering the difference between the diameter of the bolts and the
bolt holes would probably result in a curve laying somewhere in between the two
simulations shown in Figure 4.27, which implies that if there were to be some tiny
errors due to the relation, this would not contribute to lowering the forces.

• In the experiments, the crack starts to develop earlier than in the simulation. The
comparison between the simulation and the CT scans shows that the simulation
experiences more bending than the experiments at the same elongation, as the walls
on the left-hand side in the Figures 4.31b and 4.32b indicates. In the experiments,
the crack starts to develop in the neck before the rest of the specimen is deformed,
while in the simulation the deformation outside the notch starts right before the
onset of tunnelling. It appears that the problem regarding the stiffer curve from the
simulation lies at the onset of the crack.

• The maximum thickness at the bolt holes in the simulation is 3.28 mm. At this point
the simulation starts to fail from the middle, behind the notch, as Figure 4.34a shows.
From here, further plastic deformation happens mainly in the notch, and the thick-
ness of the bolt holes slightly decreases, as stated in Table 4.1. In the experiments,
the change of thickness at the bolt holes is not consistent with elongation. This may
be due to the friction between the bolts and the bolt holes. In the simulation, there
is no friction applied between the bolts and the bolt holes, which is probably the
reason for the consistent decrease in thickness after the onset of tunnelling.

• Due to friction in the experiments, restraint forces may occur as the bolts are not
entirely free to rotate, which may be the reason for the earlier onset of cracking in
the experiments, compared to the simulation.

• For both the experimental results and the numerical GTN model, the relation be-
tween the tunnelling and the crack length seems to increase in the beginning of the
analysis, then to decrease after a certain point. A difference in the length of the
tunnelling for the two is that the tunnelling is a bit longer for the numerical model,
while the crack length is longer for the experimental results. This could be con-
nected to the force of the numerical model being too high, and the failure criterion
being reached too soon in the middle of the thickness. The GTN model seems to
predict fracture too soon for high triaxialities, and too late for low triaxialities in the
elements, which leads to increased tunnelling and the fracture propagating too slow.
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Chapter 5
Pipe simulation

5.1 Introduction

In this chapter, the application of CZ in crack-propagation studies for offshore steel will
be investigated more closely. Material properties for the cohesive elements to be used in
the pipe simulations will be calibrated from tensile tests simulated with the same thickness
in Abaqus. These properties will be adjusted for and applied to a numerical model of the
Kahn-test for validation. A numerical model for the pipe will then be established, and a
parameter study will be carried out on the numerical model. A numerical model of the
pipe using solely the GTN damage model will also be established.

If a running fracture were to happen in a pipeline, there are three different main events.
The elastic-plastic deformation of the walls, the gas dynamics, and the inelastic behaviour
of the propagating crack. The FE model of the pipe is relatively simple to create, so the
true challenge is describing the dynamics of the gas and the propagation of the crack in
a good way. In a pipeline, the initiation of the crack is triggered when a critical crack
length is reached. When fracture has occurred, the gas flows rapidly out of the opening.
This flow reduces the pressure around the opening and generates a decompression wave
that propagates away from the opening, inside the pipeline. The speed of the propagating
front depends on initial pressure, temperature, and the mixture of the gas that is inside the
pipeline. The driving force of the crack depends on the global pressure decay in front of
the crack tip, and the distribution of the local pressure at the flaps behind the crack tip. If
this driving force exceeds the material resistance, the structure is unstable, and the crack
will continue to propagate (Cleaver and Cumber, 2000).
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Figure 5.1: Illustration of crack tip pressure and decompression front of at a section of a pipe during
fracture propagation. Figure taken from (Cleaver and Cumber, 2000).

There are several ways that may work when modelling the crack propagation. A math-
ematical model was derived and validated by Cleaver and Cumber (Cleaver and Cumber,
2000), based on known theory from shock tubes and real gas behaviour. They proposed to
use the model to find out whether a crack would propagate or not. A more accurate method
is to couple CFD and FE models, which is what was done by Nordhagen et al. (Nordhagen
et al., 2012). When comparing with full-scale experiments, it is clear that Nordhagen et
al. was successful in describing both the pressure evolution in front of the running ductile
fracture and the crack position.

Scheider et al. (Scheider et al., 2014) modelled the crack propagation using only an FE
model, by applying pressure to two different loading zones, one in front and one behind
of the crack tip. The pressure profile behind the crack was described by an exponential
function derived from full-scale experiments. The function was dependent on the pressure
at the crack tip, the pipe circumference and the location of the crack tip. The pressure in
the front of the crack tip was kept at the same value as the pressure at the crack tip. The
initial pressure was set to 72% of the yield strength, and then the crack tip pressure was
linearly reduced to 40% of initial pressure in 20ms.

In this study, a uniform pressure will be applied, without considering the location of
the crack tip. The initial pressure will be linearly decreased as done by Scheider et al. and
applied to the pipe’s inner surface using one loading zone. Schneider et al. presented the
fracture resistance curves used, which represented the relation between the crack velocity
and the pressure level.

The main focus of this final chapter is to develop a cohesive zone model of the pipe
and find the parameters influencing the wall deformation and the length of the propagated
crack when changing the element sizes, loads and boundary conditions in the simulations.

58



5.2 Cohesize zone in Abaqus

5.2 Cohesize zone in Abaqus

In fracture mechanics, the use of cohesive zone has been an important evolution in the
field and is widely used to simulate crack initiation and propagation in solids when the
crack path is known. A major advantage in the use of the CZ model is that it describes the
crack propagation in a robust and efficient manner over long distances (Nonn and Kalwa,
2013). The cohesive zone does not represent any physical material but rather describes
the cohesive forces that occur when the material elements are being pulled apart (Salve
and Jalwadi, 2015). The cohesive interface elements are defined between the continuum
elements and will open when damage occurs and lose their stiffness at failure, resulting in
continuum elements disconnecting (Scheider, 2018). This way of modelling is different
from using the GNT model as no continuum elements are damaged in the CZ model.

Figure 5.2: Cohesive zone as illustrated by Schwalbe et al. (Schwalbe et al., 2013).

In Abaqus, a way to create a cohesive zone model is to use cohesive elements. Cohe-
sive elements are fully nonlinear elements that can be used with finite strains and rotations
and can also be given a mass in dynamic analyses (Abaqus, 2016). An illustration of co-
hesive elements can be seen in Figure 5.2. The connectivity of these cohesive elements
is like the continuum elements, but it is useful to think of cohesive elements as two faces
separated by a thickness (Abaqus, 2016). The cohesive zone must therefore be discretised
with a single layer of cohesive elements through a small zero-like thickness.

When the cohesive element layer is sufficiently thin, the cohesive behaviour can be
defined in terms of a traction-separation law. This is useful in fracture mechanics when
modelling delamination at interfaces and is defined in Abaqus by choosing a traction-
separation response when defining the section behaviour of the cohesive elements. A
damage initiation criterion is also specified, and the initial response of the cohesive ele-
ment is assumed to be linear until the damage initiation criterion is met. A way to specify
the damage criterion is to specify the maximum nominal stress criterion, which assumes
damage initiation when the maximum nominal stress ratio reaches a value of one, defined
as MAXS in Abaqus.

59



Chapter 5. Pipe simulation

Figure 5.3: Illustration of traction-separation curve for the matrial, inspired by Abaqus Analysis
User’s Manual (Abaqus, 2016).

Figure 5.3 illustrates the traction-separation curve used in MAXS damage in Abaqus,
where t is the traction stress vector, consisting of three components tn, ts and tt which
represents the normal and two shear tractions in a 3D element. The separations corre-
sponding are denoted by δn, δs and δt. ton represents the peak values of the nominal stress.
When using the damage criterion MAXS damage in Abaqus, damage initiates when the
maximum nominal stress ratio, defined in equation 5.1 reaches the a value of one (Abaqus,
2016). For cases of pure compressive deformation or stress damage will not initiate.

max

(
tn
ton
,
ts
tos
,
tt
tot

)
= 1 (5.1)

The damage evolution can also be specified, describing the rate at which the material
stiffness is degraded once the corresponding initiation criterion is reached. A scalar dam-
age variable D represents the overall damage in the material and captures the combined
effects of all the active failure mechanisms. It initially has a value of 0, and as the loading
continues after initiation of damage it evolves to 1.

Damage evolution can be defined based on fracture energy, Gc, which is the energy
dissipated as a result of the damage process. The fracture energy is equal to the area under
the traction-separation for the curve, as can be seen in Figure 5.3 and is specified as a
material property. When the fracture energy is defined, Abaqus ensures that the area under
the damage response is equal to the fracture energy. In Abaqus, this fracture energy is
defined as energy per area to be separated, given as [N/unit].

In this thesis work fracture energy is used as a damage evolution criterion. The idea
is that cohesive elements can be used instead of GTN to simulate the crack propagation,
as this will make the modelling easier and the CPU time smaller as the mesh size required
for CZ can be larger. The fracture energy is then found from simulations using the GTN
model, and the procedure is explained further in the following sections.
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5.2.1 Tensile test to calibrate fracture energy
To find the fracture energy for a plate with a specific thickness, Hutchinson & Nielsen
(Hutchinson and Nielsen, 2012) performed an analysis on a plane strain finite element
model of a tensile test with width like the specified thickness and a constant thickness.
The GTN model was used as material input, and the force-displacement from the analysis
was used to find a traction-separation curve and the dissipated energy from the analysis.
The dissipated energy was found as the area under the traction-separation curve, and both
the dissipated energy due to necking and the dissipated energy due to shear localisation
and fracture was identified. The dissipation generated during necking prior to the onset of
shear localisation was found to be the dominant contribution, and this was found sufficient
to describe fracture energy for most cases. Hutchinson and Nielsen also introduced a
very small asymmetric imperfection in the yield stress distribution to provoke this kind of
fracture, as well as other studies on how to establish the fracture energy.

Figure 5.4: Dimensions and geometry of plane strain tensile test for calibration of fracture energy.

A conclusion for Hutchinson and Nielsen was that the dissipated energy from necking
was sufficient to calculate the fracture energy. As this method proved to be successful for
Hutchinson and Nielsen, the same procedure was done in this study to calibrate the CZ
parameters fracture energy and nominal stress. The parameters were found for two cases,
a 2.54 mm thick Kahn tearing test and a 6 mm thick pipe wall. A tensile test as seen in
Figure 5.4, with material properties and mesh size found in Table 3.4 was run until fracture.
The thickness was 1 mm for both cases, and the width the same as the specimen thickness.
From the force-displacement curve, a traction-separation curve was established. The point
of necking was found as the point of maximum load, and the point of shear localisation
was found as the point of critical failure. Figure 5.7 and Figure 5.9 shows the traction-
separation curve for the Kahn test calibration and the Pipe calibration respectively. The
traction, t, is described by Equation 5.2, while the separation, δ, is described by Equation
5.3.

t =
F

σY ∗A0
(5.2)

δ =
∆−∆0

W
(5.3)

Where ∆ and ∆0 represents the displacement and displacement at maximum force, and
W is the width. The area under the graphs represents the fracture energy for the different
widths and describes the energy it would take for the two continuum parts to separate in a
cohesive zone model. For the input in Abaqus, the fracture energy found was divided by
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the area at which the force was working to find fracture energy per area. As the thickness
was 1 mm, the area, A0 had the same value as the defined width. The fracture energy input
in Abaqus was found by Equation 5.4

Gc =

∫∆max

0
Fd∆

A0
(5.4)

The nominal stress was also found as the force components divided by the original
area as:

σN =
Fmax
A0

(5.5)

The cohesive zones in the following numerical models will be assigned the CZ model
material described by the nominal stresses for the maximum stress damage and the fracture
energy for the damage evolution. The remaining parts of the model will be given the
material Steel, which is described by the elasticity constants, the density, and the work
hardening by Power law described in Table 3.4. As the crack path is known, the CZ will
represent all the failure in the elements, substituting the failure properties of the GTN
model.

5.3 Validation by Kahn

To validate the use and calibration of the CZ model, a numerical model of the Kahn spec-
imen was made with the geometry given in Figure 4.26. The model was given a velocity
of 1000 mm/s. The bolts were modelled as kinematic couplings in the bolt holes. In-
stead of a coarse mesh close to the crack patch, a 0.001 mm thick section with 8-node
three-dimensional cohesive elements, COH3D8, was created at the XZ-symmetry plane,
as Figure 5.5 shows. The elements were given a stack direction normal to the elements, i.e.
in Y-direction. The tiny band was assigned a cohesive section with a traction separation re-
sponse, and the CZ model material. The rest of the part was assigned the elements C3D8R
and the material Steel which is described at the end of section 5.2.1. The fracture energy
and the nominal stress for the CZ material were found from a tensile test as described in
section 5.2.1, with a thickness the same as the Kahn test, 2.54 mm. The traction-separation
curve is presented in Figure 5.7, and the nominal stress and fracture energy were found to
be 757.9 MPa and 969.1 N/mm, respectively. Figure 5.6 shows how the cohesive elements
deform and then erode when the CZ damage criterion is reached. The computational time
when using CZ elements instead of the GTN model was dramatically decreased.
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Figure 5.5: Mesh of the Kahn numerical model
with element size of 1 mm and the cohesive zone
illustrated as the black line.

Figure 5.6: Illustration of the deformed numeri-
cal model of Kahn with CZ elements.

A mesh study was carried out to see if the size of the elements influenced the response
curve. The numerical model was given three different element sizes of 0.5 mm, 1 mm and
1.7 mm. This was also the size in X and Z-direction for the cohesive elements. The force-
elongation curves for the numerical model with the three different meshes are presented in
Figure 5.8, together with the experimental data and the response from the GTN numerical
model. From the figure, it can be seen that the results of the CZ model are close to identical
even though the mesh size has changed.

Figure 5.7: Traction versus separation curve for
the 2.54 mm tension test.

Figure 5.8: Effect of changing the element size
on the cohesive elements, compared to experi-
mental data and the GTN improved numerical
model.

The cohesive zone is a substitution for the failure properties of the GTN model, so all
the failure should occur in the CZ, meaning the model is not able to capture void nucleation
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and coalescence, but only the elastic and plastic response. As seen in Figure 5.8, the CZ
model is not able to capture the softening at large strains perfectly. This was expected
as the softening behaviour is due to the void growth which the GTN numerical model is
able to describe. Aside from this, the CZ model represented the curve well, despite a 17
% underestimation of the forces compared to the experimental results. The reason for the
conservative results could be due to less local deformation of the specimen outside the
cohesive zone compared to the GTN numerical model.

The overall conclusion is that the CZ model manages to capture the force-elongation
for the Kahn-test in a satisfying manner, and the method for calibrating the CZ parameters
will be used in the same manner for the pipe.

5.4 Pipe simulations
As described in section 5.1 there are several ways to describe a running fracture in a pipe,
where some are more accurate than others. The biggest challenge when simulating gas
flowing through a pipe is how to model the load that appears due to depressurisation once
the crack is initiated and starts to propagate. A coupling between CDF and FE models
is the simulation that will be the closest to reality. However, when trying to simplify
the simulation by using only an FE model, other methods are required. Schneider et al.
modelled the pressure by using two different loading zones, one behind and one in front
of the crack tip (Scheider et al., 2014). The pressure behind the crack tip was described
by a function depending on the position of the crack tip, while the pressure in front of the
crack tip was equal to the pressure at the crack tip. In the following, a simplified numerical
model of a pipe with a running crack will be presented.

Figure 5.9: Traction versus separation curve for the 6 mm tension test.

5.4.1 Calibration of the cohesive material parameters
The calibration of the CZ parameters for the numerical model of the Pipe was done as
described in Section 5.2.1. The pipe modelled had a wall thickness of 6 mm, and the cal-
ibration was done with a width of 6 mm to represent this. Figure 5.9 shows the resulting
traction-separation curve for the tensile test. In the figure, the damage initiation is repre-
sented by zero separation, and the critical damage by a separation of 0.6. The resulting
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nominal stress and fracture energy were 757.9 MPa and 2552.9 N/mm respectively.

5.4.2 Numerical model

Two different approaches for modelling the cohesive zone were tested, one where the
cohesive zone was modelled as a different part and connected to the rest of the pipe using
tie constraint, and one where the pipe was modelled as one part and partitioned to define
the cohesive section. The model using tie constraint will from here on be called model
A, and the model using partitioning will be called model B. The two different approaches
curiously gave quite different results, something that will be discussed in the parameter
study in section 5.5. Besides this, the models were identical and modelled as described
below.

The pipeline dimensions were Do = 267 mm and t = 6 mm, the same as the test
pipes used by Nordhagen et al. The length of the numerical model was set to 6000 mm,
which is half of the test pipe they used (Nordhagen et al., 2012). A cohesive zone of
0.001 mm was modelled through the thickness and along the pipe, as the red and black
lines indicates in Figure 5.10. The cohesive zone was modelled with an 8-node three-
dimensional cohesive element, COH3D8. The black line in Figure 5.10 was assigned
with the cohesive parameters calibrated from the 6 mm tensile test. The cohesive zone
marked with red in Figure 5.10 had a length of one diameter and was meant to initiate
fracture. This was given a material similar to the CZ model, where the difference was
that the fracture energy and the nominal stress constants were 10 % of the calibrated ones
presented in section 5.4.1. The rest of the model was modelled with C3D8R elements of
size 20x20 mm, given the Steel material which is described in the end of section 5.2.1.

Figure 5.10: End of the modelled pipe with mesh. The red and black line illustrate the CZ.
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Loading

Figure 5.11 illustrates the stresses that will occur in a thin-walled vessel or pipe when
applying an internal pressure p, which are the hoop stress σθ and the longitudinal stress
σL. The hoop stress is calculated by equation 5.6, where d is the mean diameter, p the
pressure, and t the thickness (Irgens, 1996). The longitudinal stress in the vessel equals
half of the hoop stress. When using equation 5.6, and a yield stress of 652.5, the pressure
p becomes 29.65 MPa.

σθ =
d

2t
p (5.6)

Figure 5.11: Illustration of the hoop stress and longitudinal stress in a pipe, figure from (Chegg,
2018).

Inspired by Schneider et al., an initial pressure p0 applied in the FE model was 21.35
MPa, 72% of p (Scheider et al., 2014). The pressure was applied uniformly throughout
the pipe. As a result of the cohesive zone marked in red in Figure 5.10, the crack initiated
momentaneously when the pressure was applied, and the crack started to propagate. If the
pressure was kept constant, the pipe started to expand. In the simulations by Schneider
et al., the pressure at the crack tip was decreased to 40% of the initial pressure in 20 ms.
Even though the pressure in the numerical model in this study did not depend on the crack
tip, a pressure decrease was still essential. A study was done to find a suitable amplitude
for the pressure decrease in the numerical model. The pressure was decreased to 40% of
p0, where the time period of the decrease was varied. After the decrease, the pressure was
kept constant at 40% of p0. A time period of 1 µs was found to be a good solution. When
applying this pressure, the pipe did not expand too much, while at the same time the crack
still propagated.

Mesh size

Before carrying out the parameter study in section 5.5, it was desired to find out the im-
portance of the element size in the cohesive elements compared to the rest of the model.
As mentioned in section 5.2, cohesive elements should be close to zero thickness, and
only have one element across the thickness. As having the cohesive elements the same
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size as the rest of the model would save modelling time as well as CPU time, a study was
run with two different cohesive element sizes. 6 meters of the pipe was modelled with an
initial crack with the length equal to the diameter 267 mm, and a global element size of 20
mm. In the first model the cohesive elements had element size 0.5 mm and in the second
model the cohesive element size was the same as the global element size, 20 mm, both
were modelled with three elements over the thickness to represent bending.

(a) (b)

Figure 5.12: The deformed pipe using a) small elements in the cohesive zone b) big elements in the
cohesive zone.

The deformed models with the two different element sizes in the cohesive zone are seen
in Figure 5.12. Some results are shown in Table 5.1. The crack length measured is very
similar for the two models, and the difference is less than one 20 mm element, meaning
the difference in element size could be the reason. The dissipated energy is almost exactly
the same, with a 0.2 percent difference in measured dissipated plastic energy. Perhaps the
most noteworthy are the two different CPU times. The model with bigger elements uses
almost 8 times more CPU time than the model with the smaller elements in the cohesive
model.

Table 5.1: Crack length, disiipated energy and CPU time element sizes 0.5 and 20 mm in the
cohesive zone.

Element size [mm] Crack-length [mm] Dissipated energy [J] CPU time
0.5 424.0 4.78e9 726.2
20 419.9 4.77e9 91.0

These results indicate that it is reasonable to use cohesive elements with the same size
as the global elements instead of smaller elements. The results from two analyses corre-
spond well in crack-length, and the difference in dissipated energy is close to zero. Based
on Abaqus user manual, the damage initiation and failure material properties defined for
the cohesive elements seem to be independent of the mesh size, as both the fracture energy
and nominal stress are found as the fracture energy divided by the total area to be sepa-
rated. The most important is to have only one element over the thickness, something both
models have.
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5.5 Parameterstudy using the CZ model
Two parameter studies, varying the initial pressure and the mesh size, were carried out for
the two cohesive zone models, model A and model B. As these two models gave different
results, the value of the parameters were not completely the same for the two. For the mesh
size, the previous section stated that it was reasonable to use cohesive elements with the
same size as the global elements. No advanced meshing techniques were required to mesh
the FE model, but the element size was found to be crucial. The element sizes studied in
model A were 5, 10, 15, 20 and 30 mm, while in model B the element sizes were 5, 10, 17,
20 and 30 mm. The initial pressure was varied from 0.6 times the original initial pressure
to 2 times the initial pressure for model A. A larger diameter expansion was observed
for model B, and the initial pressure was varied from 0.6 to 1.1 times the original initial
pressure. The results are presented below.

Parameter study model A

Figure 5.13: Expansion of pipe diameter versus
element size model A.

Figure 5.14: Crack length versus element size
model A.

Figure 5.15: Expansion of diameter versus ini-
tial pressure model A.

Figure 5.16: Crack length versus initial pressure
model A.

Figure 5.13 shows the diameter expansion in measured difference in diameter divided
by initial diameter for the mesh sizes 5, 10, 15, 20 and 30 mm. As the figure shows, the
diameter expansion is low for all the element sizes run in the model, all of them showing
an expansion less than 0.5 % of the original diameter.
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The measured crack length for the different element sizes at the end of the analysis is
seen in Figure 5.14. The crack length is measured as the length of the crack minus the
initial crack length of one diameter. An increasing of the crack length is observed when
the element size is increased. As the smaller elements would deform more and lose more
energy to plastic dissipation, this is to be expected. Especially the model with element size
30 mm have deformed very little, and all of the energy is focused on propagating the crack.
When looking at the plastic dissipation energy measured for the different mesh sizes, the
plastic dissipation is highest for the smallest mesh size, and smallest for the biggest mesh
size. This could indicate that the crack has propagated a shorter distance for the smaller
mesh size because it has lost more energy through plastic dissipation.

Figure 5.15 shows the diameter expansion for different initial pressures. The initial
pressures were 0.6, 1, 1.1, 1.5 and 2 times the original initial pressure found in section
5.4.2. It is apparent that the model could handle an increase of pressure for up to 1.5 times
the original pressure found without the diameter expansion becoming too high. However,
for a pressure 2 times the original, the diameter expansion increases rapidly, almost up to
40 %.

The crack length versus initial pressure is seen in Figure 5.16. The increase of the
crack length compared to initial pressure seems to be almost constant, where the initial
pressure leads to a crack length of around 1 meter.

Parameter study model B

Figure 5.17: Pipe diameter versus element size
model B.

Figure 5.18: Crack length versus element size
model B.

Figure 5.19: Pipe diameter versus initial pres-
sure model B.

Figure 5.20: Crack length versus initial pressure
model B.
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For model B, where the cohesive zone was defined using partitioning, the results were
quite different from model A. Both the diameter expansion and the crack length were
larger for this model.

The diameter expansion, defined as the difference in measured diameter divided by
original diameter, is seen in Figure 5.17. The biggest diameter expansion is observed for
element size 10 mm, while a decrease of diameter expansion is observed for increasing
element sizes. Figure 5.18 shows the measured crack length for the different element
sizes, and how the crack propagation increases with increasing element size.

The resulting diameter expansion for varied initial pressure can be seen in Figure 5.19.
The diameter expansion is quite high for all pressures run, but especially when the pressure
is increased. The highest initial pressure run was 1.1 times the original as this lead to a
diameter expansion of almost 30 %. The crack length for the different initial pressures is
seen in Figure 5.20. Like for model A, the crack length seems to increase almost constantly
for increasing pressures. The crack length is longer for this model.

Comparisons of model A and model B

As the results prove, the different models gave quite different results. As the models
are identical apart from the modelling of the cohesive zone, there is no apparent reason
found for this. To investigate this further, the Kahn CZ validation model explained in
section 5.3, was changed so that the cohesive layer was defined in the same way as for
pipe model A, i.e. using a tie constraints. The response was exactly the same as for the
curves representing the CZ simulation in Figure 5.8, so this should be investigated further.

Common for both models is they are both able to simulate a running fracture. The
difference is the length of the fracture and the diameter expansion. Based on the results
from Schneider et al. (Scheider et al., 2014), the pipe should not expand much for the
pressure found in section 5.4.2, and model A seems to represent the crack propagation
best in that regard.

Also observed for both models is that the crack propagation measured is very depen-
dent on the mesh size used in the model. The measured plastic dissipation is higher for
the crack that propagates the shortest and lowest for the crack that propagates the longest,
indicating that energy is lost to plastic dissipation that makes the crack propagate less.
They varying mesh size may also contribute to a varying ability to represent bending. This
limits the element size as it should not be too big, neither too small, in order to represent
the right amount of bending while the plastic dissipation is correct.

A shell element model could also have been carried out. Different attempts were made
to establish a shell element model, both defining a cohesive zone instead of using cohesive
elements, and also connecting cohesive solid elements to shell elements using a shell-to-
solid coupling. These proved difficult to make function properly in Abaqus. However,
when running models with only solid elements, the computational time was actually very
low. The 5 mm model using tie constraint had a CPU time of 1294 seconds, while the 30
element model only took 42 seconds. It was decided that the cohesive zone was consider-
ably easier to define using only solid elements and that the surface connection was better
represented by a solid model. Because of this and low CPU time, the solid element model
was used in the previous parameter study.
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Increasing the running time

Figure 5.21: Model of pipe with element size 20 mm and initial pressure of 21.35 MPa after 2.5
millisecond.

Figure 5.21 shows model A with a mesh size of 20 mm run longer after 0.0025 seconds.
The end of the pipe was locked with Z-symmetry, and the analysis was run for 0.005
seconds instead of 0.001 seconds. The result was that the part where the crack had passed
deformed considerably. This is a weakness with the pressure model used in this study, as
the pressure is put on the surfaces and is constant for the whole model, even after the crack
has passed. Schneider et al. used a pressure decay dependent of the crack tip to describe
the pressure, and for this case that would be a better model of the load case than the
simplification used in this study (Scheider et al., 2014). In the studies done by Nordhagen
et al. (Nordhagen et al., 2012), the crack propagated to a distance of around 1 meter after
0.005 seconds. In this model with mesh size 20 mm, Figure 5.21, the crack has propagated
double that distance. However, when running the model with smaller elements of size 15
mm, the crack propagated close to 1 meter after 0.005 seconds.

5.6 Model of pipe using GTN
A section of the pipe was also modelled using only the GTN material model, using the
material properties of the steel and GTN parameters found in chapter 3. The dimensions
were the same as the dimensions of the CZ model of the pipe presented in Section 5.4.2, but
only 2 meters was modelled. To be able to run the model with GTN without the CPU time
becoming too high, only a small section around the crack path was modelled with small
elements. Still, the mesh size that GTN was calibrated against would lead to a tremendous
amount of elements, and an element size of 0.5 mm was chosen instead of 0.05 mm. This
was considered to be all right in this case, as the simulation was done more to study the
response using GTN rather than getting exact results. The elements in the rest of the model

71



Chapter 5. Pipe simulation

were larger as the failure would not occur here but had three elements over the thickness
to represent bending. The method used to get the different mesh sizes was to model two
different parts and tie them together using tie constraint. One end of the Pipe can be seen
in Figure 5.22a, and a close up of the mesh in the crack path is seen in Figure 5.22b. At the
end of the pipe, a crack of length one diameter was modelled to initiate crack growth. The
applied pressure and step time were the same as for the numerical model using cohesive
elements.

(a) (b)

Figure 5.22: a) End of the modelled pipe using GTN b) Close up of the mesh used in the crack path
of the GTN model, represented by the red frame in a).

Figure 5.23 shows the deformed pipe at the end of the analysis. The model shows that
the crack has started to develop into the pipe and the stress distribution in the model.

Figure 5.23: Deformation of numerical model of pipe using Gurson.

As the chosen mesh size in the crack path is too big compared to the calibrated mesh
size, the results from the analysis cannot be used for exact results from the analysis. The
GTN model is very mesh-sensitive, and using elements too large will often lead to non-
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conservative results, and different void nucleation. Still, it gives an idea of how the crack
develops in the pipe.

An interesting phenomenon that is observed in the model is the occurrence of tun-
nelling. As described in 4.1.2, cracks will often occur by tunnelling, and some discoveries
about tunnelling are discussed in chapter 4. Figure 5.24 shows close-ups of the crack, cut
in the XY-plane of different stages of the analysis. As the figures demonstrate, tunnelling
does occur all the way through the analysis. The deformation in the rest of the model is
small, and for this load case, a diameter expansion of 0.54% is observed.

(a) (b) (c)

Figure 5.24: Close ups of tunneling in the numerical GNT model of the pipe for a) early in the
analysis, b) middle og the analysis and c) end of analysis.

Figure 5.25: Plot illustrating the relation between the length of the tunneling vs the crack length,
divided by the thickness 6 mm.

Figure 5.25 shows a plot illustrating the measured tunnelling length versus the crack
length of different stages of the analysis. As is seen, the length of the tunnelling varies a
great deal through the analysis, showing less consistent results than the similar plot for the
Kahn tests found in section 4.2.4. Reasons for this could be because of the larger mesh-
size chosen in the analysis, as the GTN model is highly mesh sensitive. The load is also
applied as a pressure on the inside surface here, while for the Kahn test the load is applied
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as a vertical force. Still, the plot in Figure 5.25 does show that the average tunnelling
length is slightly increasing at first and then decreasing. Also for this case, a correlation
between crack tunnelling and the velocity is seen, indicating that tunnelling affects the
propagation of the crack.

Comparing the CZ and the GTN model will be difficult, as the results from the analysis
with the CZ model have proven to be dependent on the global mesh size, and further studies
should be focused on finding the optimal mesh size for the CZ model. The measured crack
length of the GTN model was 288.67 mm, meaning that compared to the crack length of
model A, Figure 5.16, this would correspond to a mesh size of somewhere between 10 and
15 mm.

Scheider et al. (Scheider et al., 2014) also compared CZ to GTN, but the GTN model
was modelled using only one thin layer of GTN, similar to the CZ model with only one
element over the thickness. They found that both were able to represent fracture well, but
some weaknesses for both models were found. Also, modelling GTN with only one layer
of elements would not lead to tunnelling which it was desired to observe in this study.

5.6.1 Evaluation of results
• The fracture energy for the CZ model was first calibrated and validated against the

Kahn-test, and the force-elongation curve was found to represent the experiments
well, even though the force was conservative.

• As no known sources have investigated the use of Kahn tearing tests for validation
of the GTN model and the CZ model in X65 steel structures, no comparison to
other results was done. However, when calibrating the GTN parameters using a
dynamic tearing DWT test, Nonn & Kalwa were successful in describing the load-
displacement curve for both a CZ model and a GTN model when comparing the
results to experimental data (Nonn and Kalwa, 2013). In Figure 5.8 it can be seen
that both the CZ model and the GTN model were able to match the experimental data
of the Kahn tearing test quite well. This may indicate that the use of a Kahn tearing
test may be a good substitute, if further investigated, to the widely used drop-weight
tearing test when investigating the behaviour of X65 steel.

• The CZ model seems to be able to represent a running fracture quite well, the crack
developing along the crack path as desired. The parameters calibrated based on the
GTN model seem like a good starting point for further calibrations of CZ model
parameters, but some refinement could be done in regards to calibration against
the Kahn test. The calibration for the parameters is done based on an article by
(Hutchinson and Nielsen, 2012), and they have done more studies to find the fracture
energy. Further studies could be done on the calibration of the fracture and nominal
stress criterion for the CZ model.

• The two different ways to model the cohesive zone also proved to give very different
results. Common for both models was that the results seemed to be very dependent
on the mesh size. This should be studied further, and the best relation between
the mesh size and plastic deformation should be found. The size of the cohesive
elements alone was proven to have little effect on the final results.
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• For model A, an initial pressure of up to 1.5 times the pressure found from the stud-
ies by Schneider et al. (Scheider et al., 2014) were shown not to affect the diameter
expansion too much. Meaning the pipe could handle cases of higher pressure due
to imperfections in the fluid that would create higher stresses. However, the crack
propagation also increased with increasing pressure.

• For model B, the diameter expansion was larger for all cases of applied pressure, and
the crack-length was higher as well. Further studies should be done on the effect of
using tie constraints versus partition to define the cohesive properties. Model A
seems to correspond well with numerical models made in other studies, and the
same method was used to model the GTN model.

• When comparing model A to the GTN model, model A seems to represent the crack
in a similar way as the GTN model, but further comparisons are difficult because
of the mesh dependency of the CZ model, and the too large elements used in the
GTN model for simplification. The crack length found for the GTN model would
correspond to a mesh size between 10-15 mm for model A.

• The CPU time for the CZ models is very short, meaning there is much potential
using the CZ model if the ultimate mesh-size and loading conditions can be found.
Studies using shell elements could also be carried out.
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Chapter 6
Conluding remarks

The objective of this paper was to present a methodology that can be used for the assess-
ment of pipeline fracture resistance against long-running ductile fracture. This method-
ology consisted of several steps required for the calculation of fracture resistance curves
which represented the relation between the crack velocity and the pressure level.

The GTN model parameters for the X65 steel were calibrated against the experimental
results found by Hellum. It was found that the test specimen geometry was an essential
factor to consider when calibrating the material model. Kahn tearing-tests were then car-
ried out, and the GTN model parameters found were then used in a numerical model of
the Kahn-tearing test. This was compared to the experimental results for validation. The
GTN model parameters were then used to calibrate the fracture parameters for a CZ model,
which was first validated back to the Kahn test. The CZ model parameters were then used
to model a section of a pipe where the crack path was known, and a parameter study on
mesh size and pressure was performed on different CZ models of the pipe. A GTN model
of the pipe was also established and compared to the CZ models.

The following conclusions can be drawn:

Specimen geometry

The GTN parameters found in chapter 3 were well able to capture the behaviour of the
tensile test, being able to capture the void growth. However, with the specimens used,
the results were found to be extremely sensitive to the geometry of the specimens. When
using python to edge-trace the geometry of the specimens, the results were improved a
great deal from the original geometry given. Establishing the correct geometry for small
tensile tests is therefore important.

Validation by Kahn tearing test

Using the calibrated GTN parameters, a numerical model was able to represent a Kahn
tearing-test, with a little overestimation of the forces. The deviation could be due to plas-
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tification other places in the specimens during the experiments, such as around the bolt
holes. As no known sources have investigated the use of Kahn tearing tests for validation
of the GTN model and the CZ model in X65 steel structures, the results were an interesting
part of this thesis.

Tunneling

The phenomenon of tunneling was observed in both the experimental results and the nu-
merical model of the Kahn-test. The tunneling was found to influence the crack propaga-
tion, where more tunneling seemed to make the crack propagate slower. An increase of
the tunneling was observed for the specimens in the beginning, followed by a decrease and
stabilization as the crack velocity increased. The numerical model, however, seemed to
overestimate the tunneling, making the crack propagate slower than the numerical model.

Numerical pipe models

For the CZ models, two parameters were calibrated based on the GTN model, the cohesive
strength and the cohesive energy. Through the Kahn test validation, the CZ models were
concluded to be able to represent a running fracture in a pipeline. The GTN pipe model was
also successful in representing a running ductile fracture. It was found that the numerical
pipe model was independent of the CZ mesh size. However, the model was very sensitive
to the size of the elements outside the CZ. The measured plastic dissipation was higher for
the small elements and lower for the large elements, indicating that energy is lost to plastic
dissipation when the element size decreases. This may be the reason for the varying results
due to element size, and finding an optimal element size that contribute to the right amount
of plastic dissipation, while at the same time being able to represent bending is therefore
required.

6.0.1 Further work
Based on the results found in this thesis, the following work is suggested:

• Create a numerical model of a pipe where the pressure is applied as a function of the
position of the crack tip, where the method used by Schneider et al. may be a good
option (Scheider et al., 2014).

• Validating a numerical pipe model by comparing the results to a fluid-structure
model, as such models seem to describe the crack propagation well, to find whether
the FE model can predict the running ductile fracture behaviour correctly.

• Developing a non-local GTN model to avoid mesh sensitivity.

• Further studies could be done on the calibration of the fracture and nominal stress
criterion for the CZ model.
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Appendix

Appendix 1: Edge Tracing - Python Code
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage as ndi
from skimage import feature
import cv2
import os

work_dir = os.getcwd()
# The specimen image must be provided:
specimen_img = "R2_specimen.PNG"
#specimen_img = "R08_specimen.PNG"
#specimen_img = "Vnotch_specimen.PNG"
# ... other images if so desired...

img_path = work_dir + "\\" + specimen_img

#----------------------------------------------------------------
# User must define the size of the specimen (in e.g. [mm]):
#----------------------------------------------------------------
DIAMETER_R2 = 0.003
#DIAMETER_R08 = 0.003
#DIAMETER_V = 0.003
# ... additional specimens if so desired..
# Choose the current specimen:
DIAMETER = DIAMETER_R2

OUTER_DIAMETER_R2 = 0.005
#OUTER_DIAMETER_R08 = 0.005
#OUTER_DIAMETER_V = 0.005
# ... additional specimens if so desired..
# Choose the current specimen:
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OUTER_DIAMETER = OUTER_DIAMETER_R2

SPECIMEN_LENGHT = 50.

#----------------------------------------------------------------
# Import the image:
#----------------------------------------------------------------
img = cv2.imread(img_path,0)
#plt.figure()
#plt.imshow(img, 'gray')

#----------------------------------------------------------------
# Zoom in on the desired part of the image to edge-trace:
#----------------------------------------------------------------
rows,cols = np.shape(img)
image = img[int(rows//2):int(rows), \

+ int(cols//1.71):int(cols//1.32)]

#----------------------------------------------------------------
# Edge trace the specimen on the image:
#----------------------------------------------------------------
# Tweak these limits for even better results. Depends on the image..
upper_lim_gradient = 100
Lower_lim_gradient = 200

edges = cv2.Canny(img, upper_lim_gradient, upper_lim_gradient)
x_points = []
y_points = []
for x,row in enumerate(edges):

for y,col in enumerate(row):
if col != 0:

x_points.append(x)
y_points.append(y)

# The edge-coordinates are now stored as x- and y-values.

# Plot the points in order to validate:
#plt.figure()
#plt.plot(x_points,y_points)
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#----------------------------------------------------------------
# Split the edge-traced image into an upper and lower part:
#----------------------------------------------------------------
mid_val = np.mean(y_points)
lower = []
upper = []
for x_val, y_val in zip(x_points, y_points):

if y_val > mid_val:
upper.append((x_val, y_val))

else:
lower.append((x_val, y_val))

x = [x for x,_ in lower]
y = [y for _,y in lower]
#plt.plot(x, y, 'r')
x = [x for x,_ in upper]
y = [y for _,y in upper]
#plt.plot(x, y, 'r')

#----------------------------------------------------------------
# Find the diameter, in order to scale the edges:
#----------------------------------------------------------------
y_low_point = min([y for _,y in upper])
low_index = np.argmin([y for _,y in upper])
x_low_point = upper[low_index][0]
y_high_point = max([y for _,y in lower])
high_index = np.argmax([y for _,y in lower])
x_high_point = lower[high_index][0]

#----------------------------------------------------------------
# Scale the specimen:
#----------------------------------------------------------------
scaling = abs(y_high_point - y_low_point) / DIAMETER
# Upper redge:
x = np.array([x for x,_ in lower])
y = np.array([y for _,y in lower])
x_low = x/scaling
y_low = y/scaling
# Lower edge:
x = np.array([x for x,_ in upper])
y = np.array([y for _,y in upper])
x_upper = x/scaling
y_upper = y/scaling
#plt.figure()
#plt.plot(x_low, y_low, x_upper, y_upper)
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#----------------------------------------------------------------
# The specimen are now scaled, but the edges are not smooth.
# In order to obtain a smooth edge, a n'th order polynomial
# is fitted to the specimen edge:
# Here, the upper edge is chosen:
#----------------------------------------------------------------
# Choose the order of the polynomial here:
n_order = 12

edge_val = np.mean(y_upper)
x_new = []
y_new = []
for x_val, y_val in zip(x_upper,y_upper):

if y_val < edge_val:
x_new.append(x_val)
y_new.append(y_val)

# Manual tweaking to ensure that only the desired part of the
# specimen is fitted (the notch):
x_new = x_new[110:-3]
y_new = y_new[110:-3]
x_new = [x_new[0]] + x_new + [x_new[-1]]
y_new = [edge_val] + y_new + [edge_val]
#plt.figure()
#plt.plot(x_new, y_new)

solution_x = list(np.linspace(x_new[0], x_new[-1], 200))
z = np.polyfit(x_new, y_new, n_order)
p = np.poly1d(z)

# CALIBRATED EDGE:
x_high_solution = solution_x
y_high_solution = p(solution_x)
#plt.plot(x_high_solution, y_high_solution)

#----------------------------------------------------------------
# The notched edge has been traced, but the edges of the entire
# specimen is yet to be determined:
#----------------------------------------------------------------
min_val = min(y_high_solution)
y_high_solution = y_high_solution - min_val + DIAMETER/2.
y_high_solution = list(y_high_solution)
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x_high_solution = list(x_high_solution)
max_val_r = y_high_solution[-1]
max_val_l = y_high_solution[0]

# Find the necessary extension of the notch:
diff_right = OUTER_DIAMETER/2. - max_val_r
diff_left = OUTER_DIAMETER/2. - max_val_l

# Center of specimen:
x_ind = np.argmin(y_high_solution)
x_val = x_high_solution[x_ind]

# Create sharp right edge:
slope_right = (y_high_solution[-1] - y_high_solution[-2]) \

+ / (x_high_solution[-1] - x_high_solution[-2])
delta_x = diff_right / slope_right
y_high_solution.append(OUTER_DIAMETER/2.)
x_high_solution.append(x_high_solution[-1] + delta_x)

# Create sharp left edge:
slope_left = (y_high_solution[0] - y_high_solution[1]) \

+ / (x_high_solution[0] - x_high_solution[1])
delta_x = diff_left / slope_left
y_high_solution = [OUTER_DIAMETER/2.] + y_high_solution
x_high_solution = [x_high_solution[0] + delta_x] + x_high_solution

# Create the rest of the specimen:
abaqus_lines = ((x_high_solution[0], y_high_solution[0]), \

+ (x_val - SPECIMEN_LENGHT/2., OUTER_DIAMETER/2.), \
+ (x_val - SPECIMEN_LENGHT/2., 0), \
+ (x_val + SPECIMEN_LENGHT/2., 0), \
+ (x_val + SPECIMEN_LENGHT/2., OUTER_DIAMETER/2.), \
+ (x_high_solution[-1], y_high_solution[-1]))

temp = [(pair[1], pair[0]) for pair in abaqus_lines]
abaqus_lines = tuple(temp)
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#----------------------------------------------------------------
# Write it to a python script ready to run from Abaqus:
#----------------------------------------------------------------
filepath = work_dir + "\\" + "Input_to_Abaqus.py"
with open(filepath,'w') as file:

file.write("from abaqus import *\n")
file.write("from abaqusConstants import *\n")
file.write("from caeModules import *\n")
file.write("from driverUtils import executeOnCaeStartup\n")
file.write("s = "\

+ "mdb.models['Model-1'].ConstrainedSketch(name="\
+ "'__profile__', sheetSize=0.01)\n")

file.write("g, v, d, c = s.geometry, s.vertices, "\
+ "s.dimensions, s.constraints\n")

file.write("s.setPrimaryObject(option=STANDALONE)\n")

# CREATE THE SPLINE POINTS:
points = []
for x,y in zip(x_high_solution, y_high_solution):

points.append((y,x))
points = tuple(points)
file.write("s.Spline(points={0})\n".format(points))
for point1, point2 in zip(abaqus_lines[:-1],\
+ abaqus_lines[1:]):

file.write("s.Line(point1={0},"\
+ "point2={1})\n".format(point1, point2))

file.write("s.ConstructionLine(point1=(0.0, -100.0),"\
+ "point2=(0.0, 100.0))\n")

file.write("p = mdb.models['Model-1'].Part(name="\
+ "'Edge_Traced', dimensionality=AXISYMMETRIC,"\
+ "type=DEFORMABLE_BODY)\n")

file.write("p.BaseShell(sketch=s)\n")
file.write("s.unsetPrimaryObject()\n")
file.write("session.viewports['Viewport: 1'"\

+ "].setValues(displayedObject=p)\n")
file.write("del "\

+ "mdb.models['Model-1'].sketches['__profile__']\n")
file.write("\n"*2)
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