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SUMMARY: 
The buckling behaviour of T6-tempered aluminium alloys 6060 and 6082 were analysed for two cylindrical 
cross-sections with r/t relationship 10 and 35. These were studied up to the point of maximum load with 
various lengths, and the effect of inelastic behaviour was discussed. Theoretical approaches including 
Eurocode 9 were compared to conducted compression tests from laboratory and FEA. 
Three types of laboratory setups were conducted: Dog bone specimen tension test, short stub column 
compression tests with lengths two and four times the diameter and compression tests of 2 metres long 
cylinders. In addition, an intended laboratory setup with low-friction spherical BCs was discarded based on 
preliminary FEM analyses of the setup, as results displayed an unachievable strict limit for friction. 
Material behaviour on a basis of tension tests was thoroughly adapted to fit Voce hardening law. Digital 
image correlation was applied to extract strain data, and the material calibration process involved broad data-
treatment due to several challenges in material behaviour and numerical results. Using the results in 
compression tests rendered 2-4 percent underestimation of capacity for 6060T6 and 6-7 percent for 6082T6. 
Challenges and improvements to the FEA model are suggested. Imperfection is thoroughly assessed for 
longer members. Results from laboratory, FEM analyses, analytical solutions and recommendations from 
Eurocode 9 were compared. The Eurocode predicted correct failure mode, but estimations were conservative 
with an underestimation of up to 16 percent. The analytical solutions had higher capacity accuracy and the 
FEM analyses even more so, but both these failed at predicting correct failure mode for some profiles. The 
FEA model predicted correct failure mode on all except the slenderest, longest profile, and less than 7 
percent deviation in capacity compared to the compression tests. 
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of power pylons in aluminium customized for automatic production” led by Hydal Aluminium Profiler. 

The project has been granted 10 million Norwegian Kroner over a time period of three years by 

Forskningsrådet, and is still in its early stages. 

The focus of this thesis is directed to aluminium on a general level rather than its direct appliance to 

power pylons in specific. The purpose is to study the mechanical properties of aluminium, with focus 

on the treatment of instability. 
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Abstract 
This thesis studies the behaviour of axial statically loaded circular hollow cylinders in aluminium and 

is written as a part of the project “Design of power pylons in aluminium customized for automatic 

production”.   

Theoretical approaches regarding mechanics of instability and plasticity, including guidelines from 

Eurocode 9, were expounded. The buckling behaviour was studied up to the point of maximum load for 

cylinders with various lengths, and the effect of inelastic behaviour was discussed. These approaches 

were compared to conducted compression tests from laboratory and finite element analyses (FEA). 

T6-tempered aluminium alloys 6060 and 6082 were analysed for two cross-sections with r/t relationship 

10 and 35. 

The choices behind FEA modelling in the finite element method (FEM) software Abaqus was elaborated 

and discussed. Intended laboratory setup with low-friction spherical BCs was discarded based on 

preliminary FEM analyses of the setup, as results displayed an unachievable strict limit for friction. 

Three types of laboratory setups were conducted: Dog bone specimen tension test, short stub column 

compression tests with lengths two and four times the diameter and compression tests of two metres 

long cylinders. Measurements of geometry were discharged for all sessions and the influence of 

deviations are assessed. 

Material behaviour on a basis of tension tests was thoroughly adapted to fit Voce hardening law. Digital 

image correlation was applied to extract strain data, and the material calibration process involved broad 

data-treatment due to several challenges in material behaviour and numerical results. Using the results 

in compression tests rendered 2-4 percent underestimation of capacity for 6060T6 and 6-7 percent for 

6082T6. 

Calibration of FEA model with a broad parameter study focusing on mesh and imperfections led to a 

partially robust model regarding compression of cylinders with clamped boundary conditions. The 

slenderest cross-section presented a challenge, as introducing a necessary global imperfection to the 

FEA caused it to predict a global buckling mode on cylinders that in laboratory were observed to buckle 

locally.  

Results from laboratory, FEM analyses, analytical solutions and recommendations from Eurocode 9 

were compared. The Eurocode predicted correct failure mode, but estimations were conservative with 

an underestimation of up to 16 percent. The analytical solutions had higher capacity accuracy and the 

FEM analyses even more so, but both these failed at predicting correct failure mode for some profiles. 

The FEA model predicted correct failure mode on all except the slenderest, longest profile, and less than 

7 percent deviation in capacity compared to the compression tests. 
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Sammendrag 
Denne avhandlingen omhandler aksielt statisk belastede hule sirkulære sylindere i aluminium, og er 

skrevet som en del av prosjektet «Design av aluminiummast tilpasset automatisert produksjon». 

Teoretiske tilnærminger angående instabilitet og plastisitet, inkludert retningslinjer fra Eurokode 9, ble 

utdypet. Knekningsoppførselen ble studert frem til maksimal last for sylindere med ulike lengder, og 

effekten av inelastisk oppførsel ble diskutert. Disse tilnærmingene ble sammenlignet med utførte 

trykkforsøk fra laboratorium og finite element analyser (FEA).  

Aluminiumslegeringene 6060 og 6082 med varmeherding T6 ble analysert for to tverrsnitt med r/t-

forhold på 10 og 35. 

Valg bak FEA modelleringen i elementmetode-programmet Abaqus ble utdypet og diskutert. Et planlagt 

laboratoriumsforsøk med en lavfriksjons halvkule som opplagerbetingelse ble forkastet basert på 

innledende FEM-forsøk av oppsettet, da resultatene krevde uoppnåelige friksjonsverdier. Tre nye 

laboratoriumsforsøk ble utført: Dog bone strekktest, kort sylinder i trykk med lengde på to og fire ganger 

diameteren og trykktester for to meter lange sylindere. For hver laboratoriumsøkt ble geometri målt, og 

påvirkningen av avvik ble behandlet. 

Materialoppførsel basert på strekktestene ble grundig tilpasset Voce herdingslov. Digital 

bildekorrelasjon ble brukt for å uthente tøyningsdata, og materialkalibreringsprosessen involverte en 

bred databehandling på grunn av flere utfordringer tilknyttet materialoppførselen og numeriske 

resultater. Resultatene ble brukt i trykkmodellering, og viste 2-4 prosent underestimering av kapasitet 

for 6060T6 og 6-7 prosent for 6082T6. 

Kalibrering av FEA modellen med et omfattende parameterstudie med fokus på elementnett og 

imperfeksjoner, førte til en delvis robust modell for sammentrykking av sylindere med fast innspente 

grensebetingelser. Det tynneste tverrsnittet bød på utfordringer, da en innføring av en nødvendig global 

imperfeksjon førte til at FEA modellen foreslo en global knekningsform for sylindere som i laboratorium 

knakk lokalt. 

Resultater fra laboratorium, elementmetodeanalyser, analytiske løsninger og anbefalinger fra Eurokode 

9 ble sammenlignet. Eurokoden forutså riktig knekningsform for alle profiler, men anslagene var 

konservative med en underestimering på opptil 16 prosent. Analytiske løsninger hadde høyere 

nøyaktighet med tanke på kapasitet, og elementmetodeanalysene var bedre enn disse, men begge anslo 

feil knekkform på enkelte profiler. FEA modellen resulterte i riktig knekningsmode på alle unntatt det 

lengste, slankeste profilet, og hadde mindre enn 7 prosent avvik på alle trykkprøver. 
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1 Introduction  

This thesis investigates the inelastic material and mechanical behaviour of hollow aluminium 

cylinders in axial compression. Theoretic approaches, guidelines from Eurocode 9 and FEM 

analyses are expounded and compared to results from performed compression tests. 

The thesis is written as a part of a research project named “Design of power pylons in aluminium 

customized for automatic production” at the department of structural engineering, NTNU. 

Project Manager Tore Tryland [1] presents the project vision as: “It is expected that high tension 

towers in aluminium based on welded modules in aluminium can replace steel profiles in 

countries with lower cost levels.” 

When creating power pylons, smaller members are put together to form modules which are 

transported by helicopter to the construction site. Module size is restricted by the helicopters’ 

load carrying capacity, and a large number of modules gives rise to both economical and work-

safety issues. According to a presentation by Tore Tryland [1], the existing power pylons in 

steel requires 12 helicopter lifts. With effective utilization of aluminium modules, it is 

anticipated that the number of helicopter rides can be reduced to 5. This prospect stems from 

the low density of aluminium [2], which is roughly one third as dense as steel [3], while still 

exhibiting a high yield stress. The disadvantages of aluminium compared to steel includes high 

price and low stiffness [4]. By establishing numerical FEA models, it is desirable to exploit the 

strength and capability of the material to a larger extent than permitted by the existing 

guidelines. 

The primary focus of this thesis is a literature study of inelastic instability problems, followed 

by modelling of material as well as mechanical stability behaviour through FEM analyses. The 

study is restricted to axially loaded hollow cylinders, with calculations limited to alloys 6060T6 

and 6082T6 combined with two types of cross-section with r/t relationship 10 and 35. The aim 

of these buckling analyses is to study the behaviour of the columns up to the point of maximum 

load, when buckling occurs. The thesis is limited to extruded aluminium profiles without welds 

under quasi-static loading conditions at room temperature. The calculations are purely based 

on accuracy and does not include safety factors necessary for design. 
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The chapters in this thesis are: 

Chapter 2, Software: Shortly summarizes all software used in the thesis. 

Chapter 3, Theoretical Approach: Introduces the mechanical formulas used for data 

treatment and evaluation. Solution to instability problems from different sources are treated. 

Capacity according to Eurocode 9 with material parameters from tension tests are discussed 

with a possible fallacy. This chapter concludes with graphical representations of axial capacity 

of cylinders on different lengths up to 6 metres according to Eurocode 9. 

Chapter 4, Finite Element Method – Modelling in Abaqus: Parameters and choices behind 

the FEM analyses are discussed. Several ways of introducing imperfections to models, a crucial 

aspect of modelling instability, are explained. The choice of elements and solution algorithms 

are discussed. 

Chapter 5, Laboratory Design with Spherical Hinge: A laboratory setup with spherical low-

friction boundary conditions is analysed through FEA 

Chapter 6, Tension Material Test: Based on dog bone tension tests executed in laboratory, 

the material properties are fitted to Voce hardening rule. DIC technology was enabled through 

the laboratory setup. Several aspects and solutions to challenges from the material treatment 

phase are discussed. 

Chapter 7, Hollow Cylindrical Columns in Compression: Compression tests on hollow 

columns of three different lengths are performed. A FEA model is established and a thorough 

parameter study is discharged. The model is extrapolated to other lengths and deviations 

towards laboratory results as well as sensitivity towards imperfections are evaluated. 

Deficiencies of the material model are discussed. The accuracy of Eurocode 9 and theories 

derived in chapter 3 is assessed.  

Chapter 8, Conclusions: A short summary of the results of the thesis is presented, including 

the challenges faced. 

Chapter 9, Future Work: Based on the conclusions, several solutions and improvements are 

suggested. These are partially based on the already planned and ordered tasks, such as a new 

laboratory setup.
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2 Software 

During the course of this thesis, several software were used for different purposes. These are 

listed and briefly explained below. 

Abaqus 

Abaqus is a FEM software written by Dassault Systems and released by Simulia [5]. It was 

chosen as the FEM software for this thesis both because it is renowned as a robust multi-purpose 

FEA software, and because the authors had previous experience using the program. The 

majority of analyses in Abaqus were scripted in Python, using the software Notepad ++. The 

modelling in Abaqus is explained in detail throughout the thesis, in particular in chapter 4. 

Matlab 

Mathworks’ program Matlab is chosen as the main data treatment program. All graphs and plots 

in this thesis were generated in Matlab. Several other tasks were carried out in this versatile 

software, from calculations of results from analyses and laboratory to imposing imperfections 

to some of the FEM models. 

eCorr 

eCorr is a Digital Image Correlation (DIC) software developed at NTNU by Egil Fagerholt. 

This software was used to extract strains from pictures captured at the testing in laboratory. If 

two or more cameras are used in the laboratory, a calibration process can be discharged to 

enable three-dimensional DIC. 

Word 

The thesis is written in Microsoft Office Word with the add-ons EndNote X7 and MathType. 

Excel 

Microsoft Office Excel is used for certain data treatment operations and creation of tables.  

Autocad 

Autodesk’s software Autocad is used to sketch simple figures. 
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3 Theoretical Approach 

3.1 Analytical background 

Axially compressed hollow cylinders of various lengths and failure modes are studied. The goal 

of this chapter is to explore theoretical background as well as different rules and guidelines 

given in literature. The study focus on axial capacity and instability modes. Three main 

literature sources are analysed regarding rules and guidelines as well as analytical and empirical 

derivations. Firstly, reports by NACA (the National Advisory Committee for Aeronautics), 

dated back to 1950-1960 are analysed in the treatment of local instability [6-8]. Secondly, global 

buckling formulas are extended to the plastic domain by Jones [9]. Thirdly, the Eurocodes that 

governs structures of aluminium and aluminium shells structures are discussed, which are part 

1999-1-1 [2] and part 1999-1-5 [10]. 

Three important aspects complicated the analysis of circular hollow cylinders in axial 

compression in this thesis: 

1.  The instabilities may be local or global (figure 1), as different failure modes can be 

observed at different lengths, and these buckling modes can affect each other. 

2. The instabilities are inelastic. The stability problem that relates to slenderness and 

stiffness is therefore related to the capacity problem where yield stress and hardening 

are essential. 

3. The uniaxial compressive loading produces a tri-axial stress field. This complexify the 

calculations on material behaviour. 
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(a) (b)   

 

 

3.2 Mechanics and statics 

3.2.1 Coordinate system 

The cylindrical coordinate system given in figure 2 is used herein, unless specified otherwise. 

The x-direction coincides with the radial direction, the y-direction with the circumferential and 

the z-direction is the longitudinal direction. The 𝑦-coordinate is given in radians. All externally 

applied forces act in the z-direction. The deformation in the respective directions are labelled 

u, v and w. The sub-indices i and j are used as arbitrary coordinate or deformation indices. 

 

Figure 1 Example of (a) global and (b) local buckling patterns of cylinders 

Figure 2 Cylindrical coordinate system 
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3.2.2 Elasticity 

Aluminium on a molecular level consists of many small grains with random orientation. Due 

to very small grains, the metal still exhibits close to isotropic behaviour. Metals are often 

assumed to be plastically incompressible, meaning that no deformation can change the volume 

permanently. The material is also homogenous, and the strength of the material is assumed 

identical in tension and compression. [11] 

An axial force N applied to a material gives rise to internal stresses  

 
N

A
    (3.1) 

These stresses, labelled true stress, relates to the area deformed by the force. Engineering stress 

relates to the initial, undeformed area 

 
0

N
s

A
   (3.2) 

The deformation leads to internal strains in the material, and two measures of strains are used 

in this thesis; the logarithmic strain relating to the current length 

 
0

ln
dL L

L L


 
   

 
   (3.3) 

and the engineering strain, relating to the initial length 

 0

0 0

exp( ) 1
L LdL

e
L L




      (3.4) 

Small strains cause 𝑒 ≈ 𝜀 and 𝑠 ≈ 𝜎. The strain measures e and 𝜀 deviates with increasing 

strains. For larger strains, the volumetric strains are assumed to be zero, keeping the volume 

constant: 

 0 0 0

0

L
AL A L A A

L
     (3.5) 

The relationship between the true- and engineering stress can be written as 

 
0

0

exp( )
1

N N
s

LA e
A

L


     


  (3.6) 

True stress and logarithmic strain are energy conjugates, which means that the strain energy per 

unit volume can be expressed as 
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0U d     (3.7) 

Engineering stress and engineering strain are also energy conjugates. The strain energy is the 

basis for the non-linear finite element method equations. The thesis favours true stress and 

logarithmic strain, not only because it is most accurate at high strains, but also as it is the units 

used in two key software: Abaqus and eCorr. Note that Eurocode relates its formulas to the 

engineering stress and strain. 

For both alloys there exists a unique relationship between 𝜎 and 𝜀. Before yielding, the stress-

strain relationship for uniaxial stress state is given by Hookes’ law through E, Young’s 

Modulus: 

 E    (3.8) 

The elastic strain energy from formula (3.7) can then be written as  

 2

0

1 1

2 2
U E     (3.9) 

3.2.3 Plasticity 

After reaching yield stress, the strains are partially plastic, leading to a non-linear relationship 

between stresses and strains, hence equation (3.8) is no longer valid. The strains are split into 

an elastic and a plastic part: 

 El Pl      (3.10) 

Only the elastic part leads to stresses in the material 

 ElE    (3.11) 

The tangent modulus is introduced as the incremental stiffness modulus, which is the slope of 

the stress-strain curve 

 T

d
E

d




   (3.12) 

The secant modulus is defined as the “mean” stiffness modulus, relating the total stresses to the 

total strain 

 S El Pl
E

 

  
 


  (3.13) 

Note that in the elastic region, 𝜀𝑃𝑙 = 0 and 𝐸𝑇 = 𝐸𝑆 = 𝐸. 
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The plastic moduli can be found by considering only the plastic strains, viz. 

 Pl

T Pl

d
E

d




   (3.14) 

 Pl

s Pl
E




   (3.15) 

Applying a force on the material in one direction causes strains in all three directions. These 

strains are related through the Poisson ratio 𝜈. If the force is applied in the z-direction: 

 x y z       (3.16) 

The Poisson ratio for elastic strains is assumed equal to 0.3, while for the plastic strains, plastic 

volumetric strain is assumed zero 

 0Pl Pl Pl Pl

V x y z         (3.17) 

Inserting plastic strains from (3.16) into equation (3.17) gives 𝜈𝑃𝑙 = 0.5. At a plastic loading 

increment, the strain increment is split into plastic and elastic strain increments: 

 El Pl

pl

T T

d d d
d d d

E E E

  
         (3.18) 

The relationship between the tangent moduli is found by dividing equation (3.18) by 𝑑𝜎 

 
1 1 1

Pl

T TE E E
    (3.19) 

The same relationship is found with secant moduli if the Poisson ratio is assumed to be equal 

0.5 for all strains 

 
1 1 1

Pl

S SE E E
    (3.20) 

3.2.4 Material behaviour 

Tri-axial stress – strain states complexify the mechanics of plasticity, and plays a key role in 

many of the considered analyses. For example, a short cylinder compressed between two plates 

develops compressive strains in the axial (or longitudinal) direction. The circumferential (or 

loop) strain is in tension, and there will also be a tension stain in the radial or thickness direction. 

Close to the plates, frictional forces causes a complex stress state which may alter the buckling 

mode, as the stress state causes yielding at an earlier stage, lowering the stiffness in that area. 

The stress capacity in any one direction is dependent upon the stress in the other two, hence tri-
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axiality must be included in the definition of the yield stress. The stress matrix is defined by 

Hopperstad [12] as 

 

x xy zx

xy y yz

zx yz z

  

  

  

 
 

  
 
 

   (3.21) 

The off-diagonal terms in the stress matrix represent the shear stresses, while the diagonal 

contain the normal stresses in the three directions. The hydrostatic and deviatoric stress matrices 

are defined [12] as 

 

1 0 0
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  (3.22) 

Different yield criteria are indirectly based on the stress matrices presented, by using three 

distinct invariants, defined [12] as 
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       (3.23) 

Note the use of Einstein’s summation convention, which implies that repeated indices are 

summed over all variables, i.e. 

 
11 22 33kk        (3.24) 

The yield criteria can be defined as the stress state when an equivalent stress 𝜎𝑒𝑞 reaches a 

threshold (yield stress) 𝜎0 

 0eq     (3.25) 

Several different yield criteria are defined solely by the definition of the equivalent stress 𝜎𝑒𝑞. 

In section 3.1 the material was assumed isotropic and plastically incompressible as well as 

having identical properties in compression and tension. Any pressure applied in all three 

directions should therefore not influence yielding, and only the deviatoric stress should govern 

the chosen yield criterion. A further assumption is that the isotropy gives equal capacity in each 

of the three directions. With these assumptions, the Von Mises is a natural choice of yield 



13 

 

criterion. The Von Mises yield criterion is often called the 𝐽2 flow criterion [12], defining the 

equivalent stress as 

 
23eq J    (3.26) 

The hardening due to plastic strain is a function of the accumulated plastic strain [12], given as 

 
Pld

p dt
dt


    (3.27) 

The material in this thesis is assumed to follow the Voce hardening rule as defined by 

Hopperstad [12]. This hardening relates the equivalent stress 𝜎𝑒𝑞 to the accumulated plastic 

strain p, or in the uniaxial case, relates the stress 𝜎 to the plastic strain 𝜀𝑃𝑙, as 

  0

1

( ) ( ) 1 exp( )
n

pl Pl

eq i i

i
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       (3.28) 

with the derivative 
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     (3.29) 

The advantage of applying hardening is discussed in chapter 6. 

3.2.4.1 Strength differential effect 

Unpublished work at NTNU by PhD candidate Holmen et al documents higher compressive 

than tensile strength for aluminium alloys. This pressure dependency is previously 

documented for pure titanium by Nixon et al [13], who labelled it the strength differential 

effect. The yield criterion is therefore dependent upon hydrostatic stress 𝝈𝐻, not only the 

deviatoric stress 𝝈′. The reason for this increased strength is believed to be related to the 

plastic strains. Plastic deformation moves dislocations along grain boundaries as shear 

deformation. The tip of the dislocation is a void that deforms and stores strain energy. When a 

sufficient amount strain energy is stored, the imperfection slip past another atom on the grain 

boundary, and plastic deformation takes place. The strength differential effect is believed to 

stem from higher required strain energy to move dislocation lines in materials loaded in 

compression. According to the Holmen et al, the effect in aluminium alloys are greatest for 

T4 tempered alloys, up to 10 percent difference, and around 4-7 percent for T6 tempers. 

Although no official reports have been released per June 2016, the results clearly indicate that 

it is possible that the alloys used in this thesis exhibit greater yield and ultimate strength in 

compression than tension. 
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In order to implement the strength differential effect, a change of yield criterion can be 

discharged. Nixon et al [13] suggested an orthotropic yield criterion which depended on 𝐽3. It 

is beyond the scope of this thesis to explore alternative yield criterions as several formulas 

imply the Mises yield criterion, and there is not enough data to confirm or deny this strength 

differential effect. 

3.3 Stability 

Any structural member subjected to axial compression is prone to stabilisation problems, which 

can be local or global. Local stability problems assess the stability of thin-walled members and 

is only partially dependant on length, while global instability may lower the capacity of long, 

slender structural components. The formulas derived are in both cases a result of solving the 

differential equations for instability. These equations are formed when deformation is imposed 

on a system with applied loads and transverse deformations. If the applied loads (in 

compression) exceeds a certain limit, any transverse deformation will cause system collapse. 

Most stability problems, including those studied herein, cause collapse at low plastic strain. A 

common assumption is therefore that the area and length of the members are approximately 

constant during the pre-buckling phase (until maximum axial force is obtained), viz. 

 
0 0,A A L L    (3.30) 

3.3.1 Global stability 

Global buckling, illustrated in figure 1 (a), can greatly reduce the capacity of long, slender 

structural members. If these members are subjected to an axial load N and deformed 

transversely du as shown in figure 3, the cross-section is loaded with a moment 𝑀 = 𝑁𝑑𝑢. 
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This is the driving moment of the buckle, leading to greater deformations. Sufficiently large 

column stiffness given in terms of E, I and L will bring the column back to equilibrium. The 

load N which causes system collapse is therefore a function of the stiffness of the columns, and 

is named the Euler load. 

 
2

2E

E

EI
N

L


   (3.31) 

The load 𝑁𝐸 serves as an upper bound for the axial capacity. In this equation, I is the second 

moment of area, which for circular cross-sections are given on the form  

 
4 4( )

4

o ir r
I

 
   (3.32) 

𝐿𝐸 is the buckling length of the member. This length is equal to the distance between the points 

of zero moment after applying a deformation 𝑑𝑢. For simply supported columns this is equal 

to the length of the column, while for fully clamped columns the buckling length of the column 

is half its length, increasing the Euler load by a factor of 4, as seen in formula (3.31). The radius 

of gyration, i, and the global slenderness factor 𝜆𝑘 is introduced as 

 2 , E
k

I
i

A

L

i
    (3.33) 

The Euler load can be re-written to find the critical stress leading to global instability and buckle 

 
2

2 2 2 2 2

, 2 2 2 2/

E
E crit

E E E k

N EI Ei E E

A L A iL L





 



       (3.34) 

Figure 3 Globally buckling simply supported column,  
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A column buckles at this stress level, given that the stress is lower than the yield stress defined 

in equation (3.25). Yield stress lower than the buckling stress causes strain hardening as 

described in section 3.2.4, and the instability is inelastic. While loaded in the plastic regime, 

any deformation is resisted by a much lower stiffness than the elastic modulus E. The buckling 

stress after yielding is therefore lower than in the elastic regime. Several different theoretical 

approaches and assumptions aims at solving this problem, such as the Reduced-Modulus 

Theory, the Tangent-Modulus Theory, the Transcendental Plastic Buckling approach as well as 

iterative schemes, all presented by Jones [9]. A simplification deemed to fit well to laboratory 

results for different metals and alloys, according to Jones [9], is the tangent-modulus theory, 

where Young’s modulus in equation (3.34) is exchanged with the tangent modulus defined in 

(3.12) 
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   (3.35) 

As described earlier, the stress – strain relationship will be calibrated to the Voce hardening 

rule in chapter 6. The tangent modulus is found using equations (3.29) and (3.19), as a function 

of the plastic strain. Finding the strain value that gives 𝜎 = 𝜎𝑐𝑟 is therefore an iterative process. 

Presented formulas in the previous paragraphs impose several simplifications regarding the 

geometry and material. One such simplification is that the column or structural member is 

assumed initially straight. This simplification leads to a model that assumes no transversal 

deflection below the critical stress and infinitely high deflection at any stress above the critical 

stress. In reality, imperfections from production and heat treatment, transport and montage or 

in some cases self-weight will give rise to a transverse deformation at low stress. If the initial 

deformation 𝑎0 is assumed to have the shape of the main buckling mode (for a simply supported 

column: the shape of a half sine wave), Larsen [3] shows that the mid-span sideways 

deformation of the column when loaded with a force N can be written as  

 0

1
E

a
a

N

N





  (3.36) 

Where a is the transverse mid-span deformation of the cross-section. The resulting moment 

from this eccentricity can be written as  

 0

1
E

Na
M Na

N

N

 



  (3.37) 
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As 𝑁 → 𝑁𝐸, the moment becomes infinitely large. The buckling problem is now presented as a 

capacity problem of the mid-span cross-section, loaded with axial force and bending moment. 

Design cases with both bending moment and axial force is often expressed on the form  

 1.0
R R

N M

N M

 
   

    
   

  (3.38) 

The subindex R represents the resistance and 𝛼 and 𝛽 are factors that account for the interaction 

of the forces, typically larger than 1. This equation in combination with (3.37) can be re-written 

as 

 0 1.0
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  (3.39) 

Eurocode 9 part 1-1 [2] assumes 𝛽 = 1.0 and allows 𝛼 > 1.0, depending on the local 

slenderness of the section. In the case of 𝛼 = 𝛽 = 1.0 
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  (3.40) 

Note that because 𝑎0 ≠ 0 for all real columns, formula (3.40) states that 𝑁 never reaches 𝑁𝑅 . 

However for short columns, 𝑁𝐸 can be large enough for the reduction of axial capacity to be 

negligible. 

To account for inelasticity in global buckling of members with imperfections, 𝑁𝐸 given in (3.31) 

can be augmented as shown previously, exchanging 𝐸 with 𝐸𝑇. 

When analysing an axially loaded member through a non-linear FEA software, the stiffness of 

a member is dependent upon the axial force. Loading in tension increases bending stiffness, 

while loading in compression reduces it. The tangent modulus can according to Cook [14] be 

written as 

    t m g
    K K K   (3.41) 

Here, 𝑲𝑡 is the tangent stiffness matrix of the member, relating externally applied forces and 

moments to the displacements. 𝑲𝑔 adjusts the tangent stiffness according to the axial force, 

typically through a linear relationship. The buckling problem can be analysed by solving for 
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the axial force that cause the stiffness of the system to become singular. Analysing a system 

with several degrees of freedom (dofs) this way gives a numerical solution to more complex 

buckling problems that is hard to solve analytically. The solution of this buckling problem for 

the j’th eigenmode (buckling shape)   and buckling load 𝜆 is given [14] as 

      0m j g j
    K K φ   (3.42) 

This approach is applied for eigenmode analyses described in section 4.1.1 and applied in 

section 7.3.2.4. 

3.3.2 Local stability 

Slender cross-sections can buckle locally, as seen in figure 1 (b). Local buckling patterns for 

cylinders varies depending on the r/t and L/r ratios. Local buckling of cylinders is defined by 

the deformation in the radial or circumferential directions or in both, and the centre of the cross-

section is not moved transversely. While the global buckling relates to the global slenderness 

defined in (3.33), local buckling is related to the local slenderness parameter, which for hollow 

cylinders is defined in Eurocode 9 [2] as 

 
2

3 mr

t
   (3.43) 

Structural members with slenderness factor higher than a certain limit buckles locally before 

reaching yield stress. This limit depends upon the geometry of the member, the hardening of 

the material and whether or not the cross-section is welded. Slenderness lower than this limit 

causes some plastic hardening, however the slenderness close to this limit still reduces the 

capacity of the member. For thick members, local slenderness will not reduce the capacity. 

The complexity of solving the differential equations of a local slenderness problem exceeds that 

of the global case. The global stability problems require solving the connection between 

stiffness and applied force, a second-degree differential equation. For local buckling the 

differential equation is of eighth order [8]. Both the local and the global solution present an 

upper bound to the capacity.  

3.3.2.1 Theoretic derivations according to NACA 

In the following paragraphs, solutions to the local buckling problem are presented. The validity 

of the solutions improves as inelasticity is included, and the focus is shifted from analytical to 

empirical solutions. 
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The National Advisory Committee for Aeronautics (NACA) released several reports in the 

period 1940 – 1960 regarding thin-walled aluminium shells and their behaviour. At the time, 

the computer technology was limited, causing the reports to rely on theoretic derivations to a 

greater extent than more recent studies.  

Three reports are studied in this thesis governing local buckling of cylinders. The first report is 

technical note 3783, part III – Buckling of curved plates and shells [8]. In this report, the theory 

of thin and intermediate thick shells is derived, analysed and compared with empirical results. 

The basis of the theory is Donnell’s equation, an eight order differential equation of the 

displacement in the radial direction (x-direction, as described in section 3.2.1), along with two 

fourth order differential equations, one with respect to y and the other to z. The equations are 

only fully valid in the elastic region, but can be modified to describe inelastic effects. 

With the results from Donnell’s equation [8], the critical stress that gives local instability in an 

elastic material can be written as 
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  (3.44) 

The scaling factor 𝑘𝑐 is taken as a function of the geometry and the number of buckles 
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  (3.45) 

In this equation, m is the number of buckles in the longitudinal direction and n is the number of 

buckles in the circumferential direction, both variables taking integer values. The combination 

of m and n that gives the lowest 𝑘𝑐 represents the buckling stress. 

The length parameter 𝑍𝐿 plays an important role in classifying the cylinders as well as finding 

the factor 𝑘𝑐 
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Three different ranges based on length are defined by the value of 
21

LZ


   [8]. 

The short-cylinder range 
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     (3.47) 

The transition-length range 
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       (3.48) 

The long-cylinder range 
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     (3.49) 

Cylinders classified as short get a buckling factor that is constant with respect to 𝑍𝐿 due to m=1 

and 𝜃 = 0 in equation (3.45). Long cylinders obtain the correct buckling factor 𝑘𝑐 by 

minimizing formula (3.45) with respect to 
2 2 2

2

( )m

m


, resulting in a linear relationship with 𝑍𝐿 
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   (3.50) 

The critical stress from equation (3.44) for long cylinders can then be written as 
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  (3.51) 
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  (3.52) 

This local buckling stress is not directly a function of the length of the cylinders, in contrast to 

the cylinders in the short and transition ranges. For cylinders in the long-cylinder range the 

boundary conditions is found to have negligible influence on the buckling stress for local 

buckling. This makes up the majority of the cylinders considered in this thesis. Note that the 

influence of BC will dominate for longer cylinders that display a global buckling pattern 

(described in section 3.3.1). 

The validity of formula (3.52) is assessed in NACA report 1343, and it is stated that the formula 

overestimates capacity by 15-40 percent [6]. Note that this claim holds for very thin-walled 

cylinders, with r/t relationship between 500-3000. The figures describing these claims are 

shown in Appendix A, where figure a1 suggests that formula (3.52) does not overestimate the 

critical stress for low values of r/t. Furthermore, figure a1 displays that setting 𝑍𝐿 > 10 gives 

the theoretical answer in formula (3.52).  

Note that formula (3.52) is only valid for the elastic buckling, as all solutions based on equation 

(3.44) scales with Young’s modulus. If the estimated elastic buckling stress is higher than the 

yield stress, the plastic strains causes a decrease of the resistance towards local instability. 
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Formula (3.52) is a result from a series of differential equations simplified by assuming 

elasticity. Substituting 𝐸 with 𝐸𝑇 in formula (3.52), as was done with the global buckling in 

formula (3.34) is therefore not permitted. 

The plastic behaviour of the material is crucial in determination of the capacity in inelastic 

buckling. The slope of the stress – strain curve largely defines the buckling resistance through 

the plastic tangent (3.14) and secant (3.15) moduli. 

In NACA technical note 3726 [7], G. Gerard suggested a plasticity-reduction factor defined as 
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This reduction factor is applied directly to formula (3.52), and the new critical inelastic stress 

becomes  
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  (3.54) 

One assumption behind this result is axisymmetric buckling shape, which will be shown in 

chapter 7 to be the valid for the governing failure modes on cylinders that buckle locally. The 

axisymmetric assumption means setting 𝑛, and therefore 𝜃, equal to 0 in equation (3.45). The 

buckling length was further calculated in NACA technical note 3726 [7] and from this the 

number of buckles in the longitudinal direction was found: 
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The buckling mode that occurs on the lowest stress gives m buckles. In the case where formula 

(3.56) yields decimal values, a slight increase in stress is required to enforce the buckling 

pattern with an integer number of buckles, as m has to take integer values. 

Gerard’s derivation further assumed that all strains are plastic. At low plastic strains the 

capacity is somewhat overestimated due to large plastic secant modulus calculated with formula 

(3.15). The theory simplifies by assuming 𝜈 always to be equal to the plastic value, however it 

can be regarded as adequate for modelling inelastic buckling at high plastic strains. Gerard’s 
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derivation also assumes uniaxial stress state in the pre-bucking phase, which is equivalent to 

assuming no friction between the cylinder and its BCs. 

3.4 Geometry and material 

Numerous extruded 5 metres long cylinders with two types of cross-sections are used for all 

laboratory tests. One of the two cross-sections were cast in two different alloys. Consequently, 

three combinations of alloy and cross-section are analysed. The alloys were 6060T6 and 

6082T6, the cross-sectional diameters were roughly 100 and 127 mm. When referencing to the 

combinations of cross-section and alloy, their names signify these properties: A6060D100, 

A6060D127 and A6060D100 (figure 4). 

 

The geometry was studied in order to get reliable geometrical measurements. The thickness and 

diameter was measured for one cylinder of each of the three types (table b1 and table b2). The 

measurement of the cylinder thickness was discharged using an ultrasonic thickness gauge from 

DeFelsko named PosiTector. 

Each cylinder was measured every 500 mm longitudinally and at four different locations around 

the circumference. At each of these points, data was sampled four times to reduce the effect of 

“noise”, the term used to describe random numerical deviations. The random error (figure 5, 

[15]) was therefore reduced. In total, each cylinder was measured 𝑛 = 10 ∗ 4 ∗ 4 = 160 times. 

The ultrasonic gauge measures differences of 0.01 mm, leading to three significant digits for 

the thicknesses studied. The scatter in results might in part stem from inaccuracy from the 

instrument, as it is based on the speed of sound through the material. This wave speed is 

dependent upon the density and stiffness of the material, which may cause a systematic error 

(figure 5). The ultrasonic gauge sensor is flat, making it difficult to correctly measure the 

thickness of an object with curvature, leading to further systematic error. A slight angle between 

the sensor and the surface may lead to overestimation of the thickness. Through the measuring 

Figure 4 Notation for profiles 

Alloy and cross-section of the profile 

«Aluminium» «Diameter» «Length» 

Length of the profile: integer times diameter 
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process, the measuring technique was most likely improved, which may have reduced this error 

and somewhat reduced the random error of the measurements as well.  

 

 

The mean (3.57), standard deviation (3.58) and coefficient of variance (3.59) was calculated 
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Similar measurements were made for the outer diameter, using an electronic caliper, albeit only 

endpoint measurements were discharged. The coefficient of variance was low for both t and D 

(table 1), and the results were deemed satisfactory. The mean thickness and diameter were 

slightly rounded off (table 1), which increased the thickness less than 0.2 percent. The diameter 

was also increased, and the difference in area is calculated to be less than 1 percent (table 1) 

Figure 5 Schematic representation of systematic and random error 
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Table 1 Chosen and calculated mean thickness and diameter with corresponding covariance. 

 

 A6060D100 A6060D127 A6082D100 

𝑡̅ [𝑚𝑚]  4.696 1.773 4.696 

𝑠𝑡 [𝑚𝑚]  0.054 0.055 0.048 

 𝐶𝑜𝑉𝑡 [%] 1.15 3.10 1.03 

𝑡𝑐ℎ𝑜𝑠𝑒𝑛  4.70 1.77 4.70 

�̅� [𝑚𝑚]  99.87 126.78 99.49 

𝑠𝐷 [𝑚𝑚]  0.163 0.159 0.654 

𝐶𝑜𝑉𝐷[%]  0.163 0.126 0.658 

𝐷𝑐ℎ𝑜𝑠𝑒𝑛  100 127 100 

Δ𝐴

𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 [%] 

0.218 0.009 0.620 

T6 tempered alloys includes heat treatment and then artificial ageing, leading to high strength 

and good corrosion resistance, according to Borrego et al [16]. The 6xxx-series alloys obtain 

these properties in part from their major alloy elements Mg and Si, and other elements such as 

Mn, Fe and Cr. The amount of Mn and Cr can affect the crack growth of the material, and 6082 

typically contain 5-100 times larger amounts of the these elements [16]. This causes the 6082 

alloy to exhibit a more brittle fracture pattern than 6060T6. Brittle fracture mechanisms are 

expected to have a larger scatter in fracture stress and strain compared to ductile fracture. Later 

in this thesis, the covariance is calculated from executed compression tests in laboratory in 

order to give a measurement of this scatter. 

The profiles are extruded, and due to the closed cross-section, some seam welds were formed. 

These are assumed to not alter the properties of the material. After extrusion, the cylinders were 

cooled. Due to a lower thickness the D127 cross-section cooled faster than its thicker 

counterpart, which is anticipated to cause a slight relative decrease in stress capacity.  

Eurocode 9 part 1-1 gives conservative values for the material strength. The characteristic stress 

or proof stress labelled 𝑓0 is defined as the stress that is obtained by loading the material to 0.2 
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percent plastic strain [2]. A large amount of the safety margins built in to the Eurocode is 

introduced in this stress, as these values are often lower than what is found from material tests. 

Conducted material tests (described in chapter 6) resulted in a modelled proof stress of 192 

MPa and 315 MPa for 6060T6 and 6082T6, respectively.  

The geometric and mechanical properties of all three types of profile properties are shown in 

table 2. The table also includes the radius of gyration and local slenderness factors, given in 

(3.33) and (3.43) respectively, as well as the buckling class according to Eurocode 9 [2]. 

3.4.1 Imperfections 

Imperfections are small unintended deformations, defects or irregularities that are present in 

structural members to some degree. The imperfections are deviations from the mathematically 

perfect circular and straight cylinder. Three imperfection categories are assessed: 

Table 2 Material and geometry properties for the cylinders studied 

Reference name A6060D100 A6060D127 A6082D100 

Aluminium alloy EN-AW 6060T6 EN-AW 6060T6 EN-AW 6082T6 

𝑓0 [𝑀𝑃𝑎]  192 192 315 

Buckling class [2] A A A 

Outer diameter [mm] 100 127 100 

Thickness, t [mm] 4.70 1.77 4.70 

Middle radius, rm [mm] 47.65 62.62 47.65 

r/t 10.14 35.38 10.14 

𝛽 (3.43) 13.51 25.23 13.51 

A [mm2] 1407.2 696.4 1407.2 

I [mm4] 1.601 ∗ 106  1.365 ∗ 106  1.601 ∗ 106 

i [mm] 33.735 44.280 33.735 
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1. Longitudinal, bend-like imperfections mainly affect the global stability, as discussed 

in section 3.3.1. These imperfections are assumed to be shaped as a half sinus wave, 

governing the main buckling mode (figure 6 c) 

2. The radius and thickness of the section can vary with respect to the z coordinate. 

This gives a vase-like shape, governing the deformation shape prebuckling (figure 

6 b) 

3. The radius and thickness of the section can vary with respect to the y coordinate 

(loop direction). This causes an out-of-roundness and may correspond to the first 

eigenmode (section 3.3.1) of cylinders of certain lengths (figure 6 a) 

 

(a) Eigenmode imperfection (b) Vase imperfection (m=7) (c) Global imperfection 

 

The inelastic failure mode for short, locally unstable cylinders is shown to be independent of 

length, as seen in formula (3.54), while the longer, globally buckling cylinders are dependent 

upon length through the tangent-modulus formula (3.35). As a consequence of this, the local 

imperfections (figure 6 a, b) governing local buckling are mainly given as a multiple of the 

thickness and the global imperfections (figure 6 c) governing global failure modes as a multiple 

of the length. 

The longitudinal imperfections in extruded profiles are anticipated to be small. A conservative 

measurement for the imperfections assumed to be present in a cylinder was given by Mazzolani  

Figure 6 Examples of the three types of imperfections 
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as 
1000

L
a    albeit a more accurate estimate from a broad data base estimates this imperfection 

to be
2000

L
a   [17].  

The measurements from the previous section displayed a low covariance, which suggests that

2000

L
a   will be the best estimate. 

3.5 Eurocode 

The Eurocodes are a series of ten European standards for constructing structures, released in 

the time period 2000-2010. In light of project “design of power pylons in aluminium”, there 

exists no specific Eurocode. Eurocode 3 part 3-1 [18] is specifically designed for power pylons 

in steel. Due to a high degree of generalization in this Eurocode, applying this code leads to 

models that are too conservative and uneconomical to be competitive. In Eurocode 1990 [19], 

which governs structures in general, section 1.4 (5) allows alternative ways of design. The code 

specifies that “relevant principles of design and that the bearing constructions safety, usability 

and resistance must be at least equivalent to expected quality of the design from the Eurocode” 

[19]. This is now the leading way of practise regarding power pylons in steel. As a consequence 

of the lack of Eurocodes for power pylons in aluminium, and lack of fit for the existing code 

for steel, it is assumed that design of power pylons by todays Eurocodes in aluminium are 

neither economical nor competitive. In the later phases of this project, generation and 

verification of alternative rules and formulas might be necessary in order to create a competitive 

power pylon in aluminium. 

Eurocode 9 contains the rules and guidelines for constructing aluminium structures. It consists 

of five parts, of which two are relevant for the objective of this thesis: part 1-1 for general 

aluminium structures [2]  and part 1-5 for shell structures[10]. 

In this theses only design of individual components are considered. Hollow circular cylinders 

in compression with the idealization of clamped boundary condition are designed according to 

Eurocode 9. 

3.5.1 Eurocode 9 Part 1-1: General structural rules 

Eurocode 9 part 1-1 provide rules and formulas for structural components and connections with 

various loads. Members in exposed to pure compression are described by Part 1-1 in chapter 

6.3.1: Buckling resistance of members in compression [2]. A calculation algorithm for circular 
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hollow cross-sections according to this code is presented in 0. It assesses basic material and 

capacity problems, as well as global and local stability problems. 

In order to ensure sufficient safety of aluminium structures, several safety margins are 

introduced. Firstly, the codes do not directly allow hardening of the material, hence a lower, 

characteristic proof stress marks the limit of the allowable stresses. This was introduced in 

section 3.4 as the engineering stress obtained at 0.2 percent plastic engineering strain. The 

characteristic yield stress is then further reduced by a partial safety factor 𝛾𝑀1 = 1.10 (C.12). 

This factor is neglected in all calculations because a conservative design recommendation is 

not of interest in this thesis. Characteristic proof strength as given by Eurocode 9 [2] are 

presented in table 3. 

Table 3 Characteristic value of 0.2 % proof strength from Eurocode 9 

 Thickness [mm] EC6060T6 EC6082T6  

𝑓0 [𝑀𝑃𝑎] 𝑡 ≤ 5   250 

𝑓0 [𝑀𝑃𝑎] 𝑡 ≤ 15  140  

 

Material parameters in table 2 displays a 26 percent increase in 𝑓0 for 6082T6 and 37 percent 

larger for 6060T6. 

Different tempers affect the amount of residual stresses found in the profiles, and this affects 

the resistance towards local and global buckling. In Eurocode 9, alloys are categorized into one 

of two buckling classes, and the T6 tempered alloys are of buckling class A, which are the least 

influenced by residual stresses. 

Slenderness may reduce the capacity of a member due to local buckling, as discussed in section 

3.3.2. The Eurocode classifies cross-sections into four classes according to their local 

slenderness. Classification criteria and class property are presented in table 4 [2, 11]. 
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Table 4 Cross-sectional classes according to Eurocode 9 Part 1-1 

 Cross-sectional behaviour Requirement Method of calculation 

Class 1 Can create plastic hinge 

with sufficient rotation 

𝛽/𝜀 ≤ 𝛽1  Load effect: plastic or elastic 

Capacity: plastic or elastic  

Class 2 Can achieve full 

plasticization, but is 

limited by rotational 

capacity.  

𝛽1 ≤ 𝛽/𝜀 ≤ 𝛽2   Load effect: elastic 

Capacity: plastic or elastic 

Class 3 Cannot be plasticized, but 

can achieve proof strength 

in the outermost fibre 

without local buckling 

𝛽2 ≤ 𝛽/𝜀 ≤ 𝛽3   Load effect: elastic 

Capacity: elastic 

Class 4 Local buckling will take 

place before proof strength 

occurs in the cross-section  

𝛽/𝜀 ≥ 𝛽3   Load effect: elastic 

Capacity: elastic, but must 

account for local buckling in 

compressed components.  

 

The slenderness factor 𝛽 is given in formula (3.43) and the limit values  𝛽1, 𝛽2 and 𝛽3 are shown 

in table c2. The factor 𝜀 (table c2) takes into account that materials with different strength may 

buckle differently. High-strength alloys in class 4 members may to a lesser degree obtain 

characteristic stress. Classification according to Eurocode for geometry in table 2 and materials 

defined in table 2 and table 3 is displayed in table 5. 

 

Table 5 Classification of cross-section according to Eurocode 9 

 A6060 A6082 EC6060T6 EC6082T6 

D100 Class 2 Class 2 Class 1 Class 2 

D127 Class 4 - Class 3 - 
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The thick-walled cross-sections analysed in this thesis buckles inelastic according to Eurocode 

9 (table 4 and table 5). They obtain some plastic hardening while loaded in axial compression, 

but buckle before reaching their maximum true stress because of stability problems.  

Note that the elevated value of 𝑓0 due to material testing caused A6060D127 to be a class 4 

cross-section, its thickness has to be reduced with a factor 𝜌𝑐 (C.4). The fact that the Eurocode 

uses conservative values for 𝑓0 may cause it to predict the wrong failure mode, as the 

classification with a conservative 𝑓0 can lead to a non-conservative cross-sectional class. This 

effect is now studied. 

In the following derivation, 𝛽/𝜀 is denoted 𝜙. The cross-section is further assumed to be thin-

walled, so that the reduction in area can be assumed equal to the reduction in thickness, with 𝜌𝑐 

given in formula (C.5) and (C.6). Assuming 𝜌𝑐 < 1.0 (class 4), axial capacity of the member 

without considering global stability or shell buckling can be written as 

 0 0R eff cN f A f A    (3.60) 

Any change of characteristic proof stress, e.g. as a results of performing material tests, causes 

a change in the axial capacity: 
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𝐶1 and 𝜙 are both positive, thus 
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 . Although an increased value of 𝑓0 can initiate or 

propagate the reduction of effective area, this reduction effect is smaller than the increase in 

characteristic stress. Increased proof strength always leads to increased capacity for members 
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in cross-sectional class 3 and 4, according to Eurocode 9 part 1-1. The transition from class 3 

to class 4 is smooth for Eurocode 9 part 1-1. The elevated 𝑓0 that transformed A6060D127 into 

a class 4 cross-section caused a thickness reduction factor of 𝜌𝑐 = 0.997. 

If the cross-sectional class is increased from 1 or 2 to 2 or 3 because of an increment in 𝑓0, the 

transition is less smooth. This change of cross-sectional class may disable calculations with 

plastic hinges or plasticization, possibly resulting in a great reduction in capacity (table 4). In 

the case of axially loaded cylinders, the reduction of capacity from cross-sectional class 1 to 3 

is small. Eurocode gives low values for 𝑓0, but this is not always a conservative approach. 

Establishing an upper bound of the material strength may improve the code.  

3.5.2 Eurocode 9 Part 1-5: Shell structures 

Eurocode 9 part 1-5 [10] gives guidelines in calculations regarding shell buckling similar to the 

theory presented in section 3.3.2. The calculations according to this code is shown in Appendix 

D, while some of its features are presented and discussed in this chapter. 

The code defines a buckling resistance, which serves as an upper bound for the capacity of the 

stress, hence the lowest capacity of part 1-5 and 1-1 is chosen. In the simple case of axially 

loaded circular un-welded cylinders, the code assumes a multiplicative relationship between 

global and local reduction of capacity. The axisymmetric failure mode, labelled meridional 

buckling, is in good accordance to the formulas derived by NACA (section 3.3.2.1). Through 

the formulas given in Eurocode, the buckling resistance is calculated (D.2) based on the 

parameters reducing capacity due to local and global buckling, 𝛼𝑥 and 𝜒𝑥. 

From formula (D.1) it is specified that cylinders need not be checked against meridional shell 

buckling if they satisfy 
0

0.03   
r E

t f
 which in terms of 𝛽 and 𝜀 can be written as  
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 12.30



   (3.61) 

In this derivation, the value for 𝛽 is given for hollow cylinders and tubes from formula (3.43). 

The value 12.30 means that class 2 cross-sections (that allows plasticization of the cross-
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section) might be subjected to meridional buckling. With the materials and cross-sections 

defined in table 2, A6060D127 and A6082D100 needs to be calculated with reduction due to 

meridional buckling, while A6060D100 does not – neither for the material data given in part  

1-1 nor for the data from the material tests.  

Annex A in part 1-5 is used to find a critical (elastic) meridional buckling stress defined in 

formula (D.9). Note the close resemblance to formula (3.52). The parameter 𝐶𝑥 is defined 

according to the value of 
𝑍𝐿

√1−𝜈2
. For cylinders with 

𝑍𝐿

√1−𝜈2
≥ (0.5

𝑟

𝑡
)

2

, 𝐶𝑥 takes on values 

between 0.6 and 1 (table d2). When 𝐶𝑥 < 1.0, the code yields lower values than the report by 

NACA claimed (section 3.3.2.1, formula (3.52)). 

Point 6.2.3.2(3) in Eurocode 9  part 1-5 [10] mentions two approaches for calculating the critical 

buckling stress 𝜎𝑥,𝑐𝑟 and therefore the slenderness �̅�𝑥 through formula (D.8). The calculations 

can be based on annex A in the code, as discussed in the previous paragraph, or they can be 

carried out by (a series of) linear elastic bifurcation analyses (LBA). These analyses give the 

eigenvalue of the first buckling modes under several assumptions, such as negligible 

imperfections, conservative loading, no yielding or dynamic effects, and thus give a linear-

elastic estimate of the capacity. 

On short cylinders, the eigenvalue corresponds to the critical stress from the analytical solution, 

calculated in annex A. The critical stress is close to 𝜎𝑥,𝑐𝑟, resulting in similar slenderness �̅�𝑥 

and thus similar 𝛼𝑥 and 𝜒𝑥. For long specimens with an elastic global failure mode, the 

slenderness  �̅�𝑥 acquired from the LBA stress are closely corresponding to the �̅� given in 

Eurocode 9 part 1-1. The global reduction factor 𝜒𝑥 therefore takes the same values in the two 

codes, with the application of this alternative approach for 𝜎𝑥,𝑐𝑟. The only difference between 

the two codes is that part 1-5 includes a further reduction through 𝛼𝑥. This factor gives a 

reduction for local buckling on clearly globally buckling columns. The validity of this 

alternative approach is therefore flawed on longer specimens. 

Formula (D.9) leads to higher stresses than those allowable by Euler buckling, given a long 

enough specimen. Its range of validity is not given directly from the code, but the lower capacity 

of part 1-1 and part 1-5 is used, hence its faulty values are never applied. 

In section 3.5.1 it was shown that using actual values of 𝑓0 could cause a change of the cross-

sectional class. For A6060D127, the cross-sectional class was changed from 3 to 4, which 

introduced a negligible reduction of the thickness. In part 1-5, however, the parameter Q  (table 

d5), which affects the local reduction factor 𝛼𝑥 (D.11), is increased from 40 to 60, lowering the 
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capacity of the cylinder. For a length of two times the diameter, this change of capacity is 2.6 

percent. 

When treating cylinders through Eurocode 9 part 1-5, increasing the characteristic yield stress 

may induce meridional buckling. Similarly as changing cross-sectional class form 3 to 4 in part 

1-1, increasing 𝑓0 past the limit of meridional buckling (criterion (D.1)) will always cause an 

increased axial capacity: 
0

0RN

f




 .  

3.5.3 Characteristic load according to Eurocode 9 

The characteristic load for the three combinations of cross-section and alloy in table 2 is 

calculated for all lengths up to 6000 mm. Calculations on the same cross-section are also done 

with material strength defined in table 3 labelled EC6060T6 and EC6082T6.  

Three approaches have been discussed in order to calculate the stress leading to buckle or failure 

of a cylinder subjected to meridional shell buckling. These three approaches are compared in a 

series of graphs in the case of clamped boundary conditions (figure 7-figure 9). These 

approaches are the Eurocode part 1-1, Eurocode part 1-5 (analytical solution) and part 1-5 

(alternative method with LBA). For A6060D100, only Eurocode part 1-1 limits the capacity, 

rendering a smooth graph (figure 7). A6060D127 and A6082D100 have reduced capacity due 

to meridional buckling on certain lengths (figure 8, figure 9), which displays three distinct 

ranges where the relationship between capacity and length is different. These ranges are 

presented in figure 10, where the characteristic capacity based on material tests are displayed. 

For very short lengths 𝐿 ≪ 𝑟, the capacity is higher, as the cylinder then is in the short-cylinder 

range defined in (3.47). This range is not studied any further. 

In the first range in figure 10, the capacity is reduced as 𝐶𝑥 takes on lower values for longer 

specimens. In this range the columns buckle locally. On intermediate lengths, the local buckling 

strength is independent upon length, giving a constant capacity. The buckling pattern is still 

local, as this failure mode gives a lower capacity than the globally instable mode. The third 

range of failure mode is the globally buckling failure mode (figure 10). Here, the capacity from 

part 1-1 decreases below that of 1-5, and will continue to decrease as length increases. The 

Eurocode does not predict any smooth transition between the second and third range, although 

some interaction possibly takes place. 
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When comparing the Eurocode material to the material based on tension tests, the difference in 

strength in the first two ranges is approximately equal to the change in 𝑓0, despite changes in 

cross-sectional class. 

In subsequent analyses and calculations, the alternative method based on LBA is discarded due 

to its invalidity on globally buckling columns, and the lowest capacity from Eurocode part 1-1 

and part 1-5 is used. The material data from Eurocode 9 is also discarded in favour of the results 

from the material tests. The characteristic capacity according to Eurocode 9 is presented in 

figure 10. 

 

 

 

 

 

 

 

 

Figure 7 Characteristic load according to Eurocode 9 for material A6060D100 and EC6060T6 with clamped BCs. 
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Figure 8 Characteristic load according to Eurocode 9 for material A6060D127 and EC6060T6 with clamped BCs. 
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Figure 9 Characteristic load according to Eurocode 9 for material A6082D100 and EC6082T6 with clamped BCs. 
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Figure 10 Characteristic capacity according to Eurocode 9 with clamped BCs. 
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3.6 Comparison buckling resistance from theoretical approaches 

In this chapter, different measurements of capacity of cylinders have been assessed. The 

formulas are given for elastic and inelastic buckling taking into account both local and global 

inelasticity. 

This section is meant to clarify the predicted failure modes at different lengths. The theoretical 

background from NACA and Jones gives one set of limits for the different buckling modes, and 

after these are derived, the sets of lengths from Eurocode 9 are explained. 

Short and transition range cylinders (according to (3.47) and (3.48)) has not been assessed, as 

almost all cylinders considered are long by the definition by NACA (3.49). The length required 

to fulfil this claim is labelled 𝐿𝐿 in table 6. The elastic buckling stress is shown in table 6, and 

is much higher than 𝑓0. The instability is therefore inelastic with capacity according to formula 

(3.52). The resistance towards local buckling is constant, regardless of length. This creates a 

distinctive plateau of lengths with identical capacity. 

When the cylinders become longer than the length 𝐿𝐺  (table 6), global buckling is introduced 

according to Jones [9]. The length is found by solving the following equation (from (3.54) and 

(3.35)): 
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The tangent and secant moduli are functions of the plastic strain causing instability, which again 

is a function of the length. Because of a high radius of gyration and as well as a high local 

slenderness compared to the other cross-sections, A6060D127 has a larger value of 𝐿𝐺 . The 

failure mode is globally inelastic until the length causes the buckling stress to decrease below 

the yield stress. The buckling formula is then replaced by the elastic Euler buckling (3.34) if   
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  (3.63) 

The length corresponding to 𝜆𝑘 is labelled 𝐿𝐸
𝐸𝑙 in table 6. 

According to Eurocode 9, the cylinders behave differently than claimed by NACA and Jones, 

partially because no hardening is allowed. Any cylinders that buckle meridionally are largely 

defined by the 𝐶𝑥 factor (figure 10, range 1)  given in table d2. At a length 𝐿𝐶𝑥 (table 6), this 
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factor becomes constant, initiating the plateau of local bucking according to the Eurocode. At 

this plateau (or range of cylinder lengths), all cylinders have the same capacity (figure 10, range 

2). When the cylinders increase above the value 𝐿𝐺
𝐸𝐶 , global instability given in part 1-1 is 

governing for the capacity, giving an elastic buckling load (figure 10, range 3). This capacity is 

lower than the Euler load, especially on short cylinder lengths, due to the safety margin built 

into formulas in the Eurocode to take residual stresses and imperfections into account. 

For lengths between 𝐿𝐺  and 𝐿𝐺
𝐸𝐶(table 6), theoretical approaches claims local failure modes are 

governing, while Eurocode says it is global.  

 

 

  

Table 6 Limit values for different failure modes 

Formula A6060D100 A6060D127 A6082D100 

𝐿𝐿 [𝑚𝑚]  150 105 150 

𝜎𝑐𝑟
𝑒 [𝑀𝑃𝑎] (3.52) 4221 1252 4221 

𝜎𝑐𝑟
𝑝𝑙[𝑀𝑃𝑎]  ((3.54) with material 

parameters from chapter 6) 

206.4 192.4 325.4 

𝐿𝐺  [𝑚𝑚]  410 680 320 

𝐿𝐸
𝐸𝑙  [𝑚𝑚]   2024 2656 1580 

𝐿𝐶𝑥[𝑚𝑚] (table d2) (constant 

𝐶𝑥=0.6) 

(no meriodinal 

buckling) 

2421 986 

𝐿𝐺
𝐸𝐶[𝑚𝑚] (figure 10) 406 4000 1736 

Reduction factor 𝜌  1.0000 0.9972 1.0000 
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4 Finite Element Method – Modelling in Abaqus 

During the last few decades, the finite element method (FEM) has been developed, improved 

and widely implemented to solve various engineering challenges, leading to new ways of design 

and provides possibilities of solving larger and more complex problems. Applying FEM 

includes introducing simplification of reality through discretization of several parameters, such 

as geometrical simplifications, element selection and material modelling.  

Simulas’ program Abaqus is chosen as FEA software. It is assumed that the reader has some 

knowledge of how this software is built up, as well as some basic knowledge of the FEM.  

Three different types of models are created. This chapter aims at establishing the implications 

of several options in Abaqus, and the benefits and disadvantages of choices made are discussed. 

All models created in relation to this project were scripted in python. This way, instead of saving 

a model and its possible fallacies, only the script was saved; consequently, the computer 

generated the model from scratch instead of loading a saved database file. This increased the 

robustness of the models and made the program behave more smoothly. 

This chapter aims to describe how the models were created, what options were available and 

which consequences each choice would impose.  

4.1 Geometry and boundary conditions 

All cylinders modelled are based on the cross-sections and alloys described in table 2. The 

length of the cylinders span from short column tests with local failure modes at lengths down 

to 50 mm to longer tests with global failure modes, with lengths of 2000-4000mm. The only 

non-cylindrical geometry considered is the tension material tests, which were cut out from the 

cylinders, giving them a curvature. By altering lengths as well as altering between the two cross-

sections and the two materials, the goal is to create a robust model that explores the elastic and 

inelastic global and local buckling of the cylinders. 

The cylinders were in general modelled as three-dimensional cylinders, defining the outer and 

inner radius and applying volumetric elements. In some analyses, however, only the middle 

radius was defined, and a shell was implemented, having a middle surface at this radius. These 

analyses required using shell elements, a topic to be discussed in section 4.4. 

In Abaqus, the models are loaded through the BCs, hence the tests are displacement-based (not 

force-based). Consequently, after maximum load is reached, the model can predict behaviour 

into the post-buckling area instead of collapsing. The models also better represent the 
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displacement-based testing done in laboratory, and the strain rates, which is closely linked to 

inertial effects, are controlled. While this type of BC is labelled “displacement-based”, it was 

modelled by applying a velocity to the desired parts of the model, ensuring a constant load rate. 

By recommendation of Simula through their Advanced Topics documentation [20], the quasi-

static loading state was ensured by applying an amplitude. The velocity of the BC components 

was originally zero, then over the course of roughly one-tenth of the time span of the analysis, 

it was smoothly increased to its maximum value, where it was kept constant for the remainder 

of the analysis. This was implemented using the “smooth step” option in Abaqus, in which a 

fifth-order polynomial enforces zero acceleration at the start and end point of the interval while 

increasing the velocity the desired value. This technique for ramping up the velocity was 

applied to all analyses. 

Boundary conditions may be established by a reference point (RP). These can be tied to nodes 

or analytically rigid surfaces, and applying deformation to the RP will therefore impose the 

boundary condition to all restrained nodes.  

Two types of interactions are applied in the models created: Constraints and contacts. 

Constraints include tying together certain dofs of nodes, such as with the BCs established by a 

RP. Contact is a special kind of constraint which only activates once a certain criterion is 

fulfilled, such as two surfaces colliding. 

4.1.1 Introducing imperfections to the FEA model 

One important aspect in the modelling of cylinders, especially thin-walled cylinders, is the 

implementation of imperfections. Without any imperfections, the model is mathematically 

perfect and straight, which may cause it to obtain artificially high resistance against instability. 

For the cylinders considered, 𝑟/𝑡 varies between 10 and 35.  

There are many ways to introduce imperfections to the Abaqus model. One way is to run a 

preliminary linear buckling analysis (LBA) to obtain the eigenmodes for the model as explained 

in Abaqus Analysis User’s Manual v6.13, section 11.3.1 [21]. These eigenmodes are then 

introduced to the model as imperfection with a specified amplitude, before the desired, 

nonlinear analysis is run. This technique is effective when the elastic buckling mode 

(represented by the eigenmode) is the similar to the actual (inelastic) failure mode. Another way 

to introduce imperfections is make the mesh irregular or to introduce a small force or 

displacement at some point in the model, but these methods are hard to regulate in order to 

study the behaviour and impact of imperfections. 
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A third option is to manipulate the input files before running the job in Abaqus. First, the model 

is written to an .inp (input) file. This file is then opened in a data treatment software (such as 

Matlab) that allows altering of the coordinates of the nodes to implement the desired buckling 

modes. Note that these coordinates are Cartesian, not cylindrical. The assumed global 

imperfection could be introduced as  

 ( ) sing

z
x f z a

L

 

    
 

  (4.1) 

In order to introduce local imperfections in the “vase-shape”, each x and y coordinate can be 

magnified by the factor F defined as  
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Here, 𝑎𝑔 and 𝑎𝑣 is the amplitudes of the global and vase-shaped (local) imperfection. The 

translation of the cross-section in the x-direction with the given z-coordinate is represented by 

𝑓(𝑧), and three different amplitudes 𝑎𝑔 are analysed: 

 1 2 3, , 0
1000 2000

L L
a a a     (4.3) 

In order to give the cylinder a vase-like radial (axisymmetric) imperfection as seen in figure 11, 

the magnification factor 1 + 𝐹(𝑧) is multiplied with the radius.  

 

Note that the local imperfection chosen modifies the radius of each node in the cross-section 

with the same factor. Because the outer radius is greater than the inner radius, these nodes are 

moved further than their inner counterpart. The thickness of the cylinder is therefore changed 

slightly by imposing this imperfection. The area is consequently somewhat increased or 

decreased depending on the sign of 𝐹(𝑧). The imperfection is meant to induce a buckling, not 

Figure 11 Local imperfections imposed by changing node coordinates 
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just alter the capacity due to a change of area, and the change of area should therefore be 

controlled. The smallest value of the area, which is found for the z-value that gives 𝐹(𝑧) =

−
𝑎𝑣

𝑟
, can be calculated as: 
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2 2
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  (4.4) 

4.2 Material data 

While only two alloys are studied, namely 6060T6 and 6082T6, these are treated as three 

different materials; the thin-walled and thick-walled 6060T6 alloys are treated as two different 

materials. The materials have three sets of properties: Elastic, plastic and physical. The elastic 

and physical properties found in Eurocode 9 [2] are common for all alloys, while the plastic 

behaviour varies, and is modelled with Voce hardening rule. Note that as the basic units kg, s 

and mm are chosen for the model, the density used in modelling in Abaqus is given in tonnes 

per cubic millimetre (table 7). In the FEA model which included detailed BC parts of steel, no 

yield stress was defined and the material was purely elastic. The elastic properties of steel in 

table 7 are taken from the book by Larsen [3]. 

 

Table 7 Elastic and physical properties of aluminium and steel 

 
 

 Aluminium Steel 

E 70 000 𝑀𝑃𝑎  210 000 𝑀𝑃𝑎  

𝜈  0.3  0.3  

𝜌  
2.7 ∙ 10−9

𝑡𝑜𝑛𝑛𝑒𝑠

𝑚𝑚3
 7.85 ∙ 10−9

𝑡𝑜𝑛𝑛𝑒𝑠

𝑚𝑚3
 

The plastic properties of the material was modelled to the Voce hardening law shown in 

equation (3.28). In the early stages of the work with this thesis shown in chapter 5, values for 

the parameters for alloy 6082T6 were taken from the preliminary thesis work report by Nesje 

[22]. In chapter 6 new parameters found for both alloys were established and verified. The 

material was modelled as a pure elastic-plastic material without viscous or temperature-

dependant properties. 
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4.3 Solution algorithm and scaling 

The highly non-linear behaviour of a buckling column, as well as yielding, constraints, contact 

and friction requires a robust solution algorithm. After some initial attempts with static solution 

algorithms, it is chosen to dedicate the full attention to the dynamic algorithms, as well as LBA. 

The dynamic solvers are divided in two categories, according to Abaqus Analysis User’s 

Manual, section 6.3.1 [21]: explicit and implicit solvers. Both methods are based on the 

equation of motion: 

           dd Fd   M C K   (4.5) 

Here, d are the dofs of the system, M, C and K are the mass, damping and stiffness matrices, 

respectively, and F is a vector containing the external loads acting on or in the direction of the 

dofs. 

4.3.1 Implicit solution algorithm 

Implicit solution algorithms solve the equation (4.5) of motion for the next time step in order 

to find the dofs for the current time step. This makes the method unconditionally stable, 

meaning that it is stable for any time step Δ𝑡. Note that stability is not the same as accuracy, 

and with large time steps it is possible to miss bifurcation points. Bifurcation points are the 

points on the load-displacement curve of which the capacity of the structure changes from one 

path (the original, stable path) to another (i.e. the buckling path with decreasing capacity as 

deformation increases) as seen in figure 12 taken from a report by Ion Leahu-Aluas [23]. 

 

Missing a bifurcation point means that the model continues on the fundamental path and thereby 

predict an artificially stable solution and a too high load capacity (figure 12). Because the 

Figure 12 Main path and bifurcated (buckling) path cross at a bifurcation point 
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buckling of the cylinder is of interest, a maximum time step Δ𝑡 must be chosen so small that 

the bifurcation point is not missed. 

The biggest drawback with the implicit method is that the stiffness matrix has to be inverted for 

every time step, making every time step computationally expensive. The implicit method is 

advantageous for analyses with long time steps and with smooth changes in stiffness, e.g. to 

model a material that is hardening after yielding. Implicit methods are also efficient when 

assessing quasi-static problems. Despite that the model is considered quasi-static and includes 

a hardening material, applying this algorithm can be cumbersome with regards to the local and 

global buckling behaviours. When buckling occurs, the implicit solver may fail because the 

system experiences the sudden change of stiffness. 

4.3.2 Explicit solution algorithm 

Explicit algorithms solve the equation of motion for the current time step. The big advantage 

with explicit solvers is that only the mass and damping matrix has to be inverted for every time 

step. Lumped mass matrix is used in place of a consistent mass matrix, giving a mass matrix 

that only has non-zero entries along the diagonal. This property greatly lowers the 

computational effort in inverting the mass matrix. Using lumped mass matrix also lowers the 

error in oscillation frequency displayed by the explicit solver. The damping matrix is usually 

represented with Rayleigh damping, meaning that it is a weighted sum of mass-proportional 

and stiffness-proportional damping. This can according to Cook [14] be written as: 

      1
oa

a 


 C( ) M K   (4.6) 

Here, 𝜔 is a given frequency, and 𝑎0 and 𝑎1 are constants. Inverting the damping matrix above 

means inverting both the mass and the stiffness matrices. It is undesirable to invert the stiffness 

matrix, but setting 𝑎1 = 0 nullifies the damping of higher frequencies, which leads to high-

frequency noise. It can be shown that this problem can be avoided by letting the damping lag 

behind half a time step, so for the n’th time step the equation of motion becomes 

          1

2

n n n
n

d d d F


 
   

 
M C K   (4.7) 

Because of this modification, sufficient damping is included in the algorithm, and the only 

matrix that has to be inverted is the diagonal mass matrix, meaning that each time step is 

calculated exceptionally rapid compared to the implicit increments. 
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One of the largest disadvantages with the explicit solution algorithm is that it is only 

conditionally stable. The time step is only stable if it is too short for information to progress 

from one node to an adjacent node within a single time step. This requirement can according to 

Cook et al [14] be written as 

 2

max

2
( 1 )cr et t L

E


 


         (4.8) 

Here, 𝜔max  is the highest eigenmode frequency and 𝜉 is the damping related to that mode, 

meaning that more damping slows down the information propagation speed, allowing bigger 

time step. The latter expression (named the CFL condition) is often easier to applicate for non-

flexural elements (elements without rotational dofs). In this expression, 𝐿𝑒 is the shortest 

characteristic element length in the model, and the density 𝜌 and Young’s modulus E gives an 

expression for the wave propagation speed. The values for the critical time step in the simplest 

analyses considered varied between 10−5 to 10−7. Because of the short Δ𝑡, some analyses have 

millions of time steps. When the amount of time steps become large, the number of significant 

digits can highly affect the outcome of the analysis. Therefore, all explicit analyses discharged 

have twice the normal amount of significant digits, which is the highest setting allowable in 

Abaqus, and considered sufficient even for the longest analyses. 

4.3.3 Scaling of the analysis 

In order to achieve quasi-static results in the laboratory, the loading speed must be low, in the 

order of magnitude of 0.1-1 mm/s. The buckle then occurs seconds or even minutes into the 

analysis. If this was to be modelled in Abaqus with an explicit solver, each analysis would last 

for an unacceptably long time. Therefore, one of two kinds of scaling are used. The first, 

obvious choice is to increase the loading speed. The critical time step when scaling velocity 

remains the same, but the duration of the analysis in terms of seconds modelled is reduced. 

Higher loading speed means greater acceleration, which leads to inertial forces. The drawback 

of velocity scaling is that the critical time step of the whole mesh still is defined by the most 

critical element, consequently one tiny element (or an element with low density 𝜌 and high 

stiffness modulus E) may greatly affect the analysis in terms of scaling required. All models 

contained a mesh that was to some degree irregular, hence velocity was discarded. 

The other kind of scaling is mass scaling (MS), explained in section 11.6.1 of Abaqus Analysis 

User’s Manual [21]. MS targets a given (desired) time step, e.g. 10−5𝑠. The critical time step 

is calculated for each element using formula (4.8). For the elements that has a shorter critical 
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time step than the target time step, the density is increased. If an element has a critical time step 

of 10−6𝑠, the density has to be increased by a factor of 100 in order to obtain Δ𝑡𝑐𝑟 = 10−5𝑠. 

The drawback of using this method is that large densities give rise to large inertial forces, hence 

much scaling creates a dynamic system. 

Mass scaling is used so that each element is scaled differently, according to how much that 

element needs to be scaled, rather than the whole model being (in practice) scaled equally 

toward the worst-case element. In this sense, mass scaling is more effective than velocity 

scaling, and the difference increases for more irregular meshes. When MS is applied, it is 

denoted by its target time increment, thus it has unit [s]. The element mass scaling factor can 

then be calculated as  
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target

e

t E
EMSF
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  (4.9) 

It is crucial to access to which degree the quasi-static loading is preserved when applying mass 

scaling. If the speed reaches a threshold defined partially by the length of the specimen, 

dynamic oscillations will alter the behaviour and capacity of the cylinder. When buckling 

occurs, especially globally, parts of the cylinder are moved in a transverse direction. This often 

rapid movement requires great acceleration of the masses to be moved, which leads to inertial 

forces. If the scaling is too large, these inertial forces can prevent the buckle, giving artificial 

high capacity to the cylinder against that governing buckling mode. 

Even though explicit solution algorithms excel at finding bifurcation points due to the very low 

time steps, implicit solution algorithm has to be chosen for the longest cylinders analysed as 

they do not rely on any scaling. On the other hand, smaller models, such as the dog bone tension 

test, has such a low mass that even an enormous EMSF still will ensure a quasi-static solution, 

as seen in chapter 6. 

4.4 Element type and mesh  

In FEM, the choice of element is crucial as it induces several assumptions. 

There are two feasible element categories available to model these axially loaded cylinders: 

shell elements and volumetric elements. Defining the cylinder as a shell rather than a compact 

volumetric element enables elements with rotational dofs, describing more detailed deformation 

patterns while reducing the computational time dramatically. The drawback of the shell 

elements is twofold: Volumetric elements are by far preferable when modelling contact, 
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especially when the geometry is circular/spherical. Also, when the mesh is refined and the 

element size gets small compared to its thickness, the solution for shell elements will not 

converge, but rather display a slightly different failure mode. Shell elements may sometimes be 

a good fit for preliminary analyses because of their low computational cost and higher-order 

deformation patterns. 

The shell and volumetric elements used in this thesis are quadrilateral and brick elements, no 

triangular or tetrahedral elements are used. Triangular and tetrahedral elements have the 

advantage of being computationally less expensive, hence a more refined mesh can be created 

to allow a better discretization of complex stress and strain states. As all loading scenarios are 

uniaxial, with no externally applied bending forces, and most geometry modelled is regular, the 

authors see no motivation in modelling with these elements.  

Finite Element Method only satisfies force equilibrium on an average sense, which gives a poor 

stress and strain distribution accuracy when the stress is sampled at the nodes of each element. 

To increase the accuracy of the stresses and strains, these are sampled at given integration points 

not located at the element nodes. All elements considered in all analyses exhibit reduced 

integration as explained by Cook et al [14]. This means that while displacement is measured at 

the all m nodes at an edge, the stresses and strains are sampled at 𝑚 − 1 points in that direction, 

creating stress and strain fields of polynomial order 𝑚 − 2. The accuracy is greatly increased 

because of this, but the reduced integration allows zero-energy-modes: deformation modes that 

occur without causing strain energy, representing a deformation field which is erroneous. 

Artificial stiffness is then introduced to the elements to give stiffness against said modes, 

damping the effect but adding artificial strain energy to the model. This parameter is recorded 

and evaluated, and if it is too high compared to the external work of the model, the mesh needs 

to be refined in order to reduce the artificial energy.  

The choice of elements is strongly affected by the chosen solution algorithm. When applying 

an explicit solver, it is beneficial to apply lower order elements of two reasons. Because these 

have fewer dofs, their natural frequency is lower, increasing the critical time step. Explicit 

solvers tend to overestimate frequencies of dynamic oscillations, and lower-order elements tend 

to underestimate it, so the effect of the two partially cancel each other out, as pointed out by 

Cook et al [14]. For these reasons, only lower order elements are used in explicit solution 

algorithms. 

For implicit method, the effects are reversed: The solver tend to underestimate natural 

frequency, hence applying higher order elements which overestimate frequency is generally 
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beneficial. Higher order elements require more computational effort to invert, but they generally 

produce higher accuracy results.  

4.4.1 Shell elements  

Shell elements are flexural elements, as they include rotational as well as translational dofs, 

according to Abaqus Analysis User’s Manual, section 29.6.1 [22]. The shell elements produce 

excellent results when the length-to-thickness ratio is not too low, however no single strict limit 

exists for this ratio. As a rule of thumb 𝐿𝐸 ≥ 4𝑡 can be used, but Abaqus will run the analysis 

with even shorter (or thicker) elements. If 𝐿𝐸 ∗ 0.6 < 𝑡, however, Abaqus has problems 

simulating contact problems with the shell elements.  

Shell elements represent a simplification through assuming that one direction (here: the x-

direction) is much smaller than the other two. The limit for how much thinner this dimension 

should be is discussable, both for the validity of shell elements and for the deviation between 

results using shell elements and volume elements. A report from Sadowski and Rotter [24] 

studies this deviation for cylinders subjected to global buckling and bending. In that report, 

Sadowski and Rotter claims that shell elements perform just as good as volume elements for 

r/t=10 and that the difference is small at r/t=25, both values close to the r/t relationships 

considered in this thesis, shown in table 2.  

The lower-order shell element S4R is a four-noded element with reduced integration, a standard 

choice for explicit simulations. This is a general-purpose element that works well with thick 

and thin shell elements. In implicit analyses, the more complex S8R element is used, with three 

nodes per edge.  

4.4.2 Volume elements 

Three dimensional volume elements studied are C8R and C20R [22]. These contain only 

translational dofs. An advantage with volume elements is that refining the mesh makes the 

model converge towards a solution, both with respect to capacity and deformed shape. 

4.4.2.1 C8R 

C8R is an 8-noded brick with one node at each corner and three translational dofs at each node. 

The element exhibits reduced integration, and with two nodes per edge it only has one 

integration point. The strain and stress field within a single element is therefore constant. This 

element is chosen for all explicit analyses. Because of the simplicity of this element, many 

elements are required to obtain sufficient accuracy. As a rule of thumb, three elements through 
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the thickness of the cylinder is chosen. This way, any bending moment from an initiating buckle 

can be described. 

4.4.2.2 C20R 

C20R is a higher-order volume element which in addition to the 8 nodes in C8R also has one 

mid-side node on each of the 12 edges of the brick. This element is only available in the implicit 

solution algorithms of Abaqus, and it describes more detail C8R, although it is more 

computationally costly. Three elements per edge gives 3(3 1) 8  integration points, and 

linearly varying stresses and strains in all three directions, which gives a much better 

representation of the distribution of forces through the model. When an element edge with three 

nodes is slightly curved, for example on a cylindrical surface, the geometry is represented as a 

second degree polynomial rather than a straight line. 

4.4.3 Mesh 

The meshes in the models created are partially defined by the element length, which for this 

thesis is defined as the length of each element edge in the y- and z-directions. Defining the 

element length is therefore sufficient to describe the whole mesh if shell elements are applied. 

For volumetric elements, the number of elements through thickness is labelled ETT. A mesh 

with cylinder thickness of 1.77, element length of 5 mm and 2 ETT will span 5.6 further in the 

y- and z-directions than in the x-direction. An ideal brick element (volumetric element) should 

have equal element lengths in its three directions. Volumetric elements with far from quadratic 

shape may cause ill-conditioned elements, which can lead to erroneous results. It is therefore 

crucial, especially for the most thin-walled cross-section, to conduct analyses of mesh 

sensitivity. These may establish whether or not the shape of the chosen elements leads to results 

deviating from that with regular elements. 

4.5 Validation of analyses 

Abaqus is an effective software to obtain large amounts of results. It is a purely analytical 

program relying on user-specified input, and does not always detect errors or deviations from 

the assumptions behind the model. It is the user’s responsibility to ensure that the results are 

correct. Sensitivity analyses are one way to validate the model. 

A sensitivity analysis is discharged by altering one parameter in the FEA model and noting how 

certain results are affected by this change. A robust model should not display large changes in 

results as a consequence of small changes in parameters. The results studied are the force – 
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displacement relationship, the axial capacity, the failure mode (local, global) and the amount of 

energy contained as artificial energy as well as the change of total energy in the system. 

This thesis focuses on four types of sensitivity analyses: 

Mesh analyses establish to what degree at change of element type, element length and (in the 

case of volumetric elements) change of ETT cause the simulations to render different results. 

Imperfection analyses assess to what degree imperfections cause a change of failure mode. 

Frictional coefficient studies assess to what degree the friction of the BCs affect the simulation. 

Mass scaling analyses assess the effect of scaling up the density of the elements in order to 

speed up the run time of explicit analyses. The main focus is the prevention of dynamic 

oscillations in the reaction forces of the model. 

The sensitivity analyses are focused on achieving stable results with sufficient accuracy without 

increasing the analysis run time needlessly. 

4.6 Output data    

The output data from the analyses is the basis of most plots and graphs presented. There are 

two types of output data available from Abaqus: field output, which saves a given variable to 

each node or element in the whole model at a given frequency, and history output, in which a 

set of nodes are chosen to record a given series of variables, at a typically higher frequency. 

While the former gives intuitive qualitative and quick information for validation of the model, 

the latter is chosen for extracting forces and displacements to give mathematical conclusions. 

The history is often extracted from RPs which easily track displacements and reaction forces, 

two key variables from most analyses. Creating graphs and manipulating data can be 

cumbersome in Abaqus, and Matlab is chosen for this task. 

Firstly, a python script created by Marius Andersen at NTNU is used to extract all the history 

output data from a given analysis. These data were written into two text files, one containing 

the data itself and another containing the name of the variables. These files, having a general 

ASCII format, were then imported in Matlab as matrices and vectors. Scripts in Matlab were 

used for plotting graphs, for validating the model by controlling that the desired energy 

measurements or calculating the different responses between similar analyses or between an 

analysis and the laboratory test it attempted to simulate. 
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5 Laboratory Design with Spherical Hinge 

The first FEA model created in relation to this thesis simulates the behaviour of long, globally 

slender cylinders in axial compression. The motivation was to compute the capacity and 

behaviour of a laboratory setup with spherical boundary conditions. Both forces and 

displacements should be estimated, and any hazards considering the execution should be 

predicted. In order to study the global buckling of a column without the interaction of local 

buckling patterns, the column has to be of significant length. From the formula for the Euler 

load (3.31)  it follows that the buckling length is crucial. It is desirable to model the column 

with hinged BC to double the buckling length compared to clamped BC. 

The laboratory equipment consisted of three parts made out of steel (figure 13), labelled the 

cup, the bowl and the endplate. All components in the model has an axisymmetric geometry, 

albeit full axial symmetry of the model in terms of forces and deformations cannot be assumed 

because of the global buckling. Figures in this chapter are cut with a 180-degree angle. 

The endplate had two 10 mm deep circular slots customized for the two geometries considered. 

This piece was fitted in an opening in the bowl, which had a spherical underside. The third 

component, the cup, was to be bolted to the testing machine. The top of the cup had a glass 

fibre reinforced PTFE polymer coating and was shaped like a slot for the matching spherical 

underside of the bowl. The low-friction polymer surface has a coefficient of friction between 

0.05 and 0.20 in connection to steel, according to the producer, SKF [25]. If required, 

lubrication could be applied to lower the friction even further. Because the bowl could glide 

more or less freely with respect to the cup, a hinged effect was ensured, according to the 

hypothesis behind the laboratory setup. 

The point of rotation was 27.5mm from the edge of the cylinder (figure 13 (a)). Theoretically, 

this means that a cylinder of length L in this setup should buckle as a simply supported Euler 

column with length 𝐿 − 2 ∗ 27.5𝑚𝑚. The radius of the spherical surfaces was 98.5 mm. 
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(a) Sketch of all three components (b) Bowl and cup components 

Figure 13 Laboratory setup with SKF GX 80 F components and a customized endplate. 

5.1 FEA model 

The process of modelling this laboratory equipment in Abaqus was an iterative process, and it 

is presented as examples of how complex modelling should and should not be executed. Due 

to the length of the cylinders (2-4 metres), shell elements were chosen. The laboratory 

equipment was first modelled as three separate parts, using volumetric elements. The boundary 

conditions were a constant velocity applied at the cup, which was held in place in the transverse 

directions. This model was established for A6082D100. 

Implicit solution algorithm was unable to conduct the analysis, possibly because of the 

complexity related to the numerous contact constraints, the size of the model and the 

challenging geometries. Explicit solution algorithm was then chosen as it is more robust, 

although this led to problems with scaling, and the inertial effects described in section 4.3.3 

caused the cylinder to gain an erroneous capacity for the desired amount of mass scaling.  

5.1.1 Troubleshooting and improvement of the model 

The contact between different parts led to two challenges. Firstly, the contact between the bowl 

and the cup consisted of two discretized sphere-like surfaces, as shown for a rough mesh in 

figure 14. These were modelled as low-friction surfaces (𝜇 = 0.05). Because the surfaces were 

discretized as several straight elements, the contact was not smooth, as marked with circles in 

figure 14. This led to high dependency between the element size and the behaviour of the 

connection.  The components needed to be apart at the start of the analysis to ensure that 

overlapping did not occur. This distance was hard to calculate analytically for the spherical 

surfaces. Troubleshooting was frequently done by running the analysis without any load (zero 

velocity) to confirm that the model was stress-free.  
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The second contact problem was between the cylinder and the endplate component, modelled 

as a rough high-friction contact (𝜇 = 0.60). The number of nodes around the circumference of 

the cylinder and endplate was set equal, hence the parts were discretized similarly. Higher 

number of nodes resulted in more circular mesh. Abaqus required 0.6𝐿 > 𝑡 for shell-to-

volumetric-contact, which restricted the number of nodes around the circumference to 36. The 

slots should work as a clamped boundary condition, ensuring that the rotation occurs in the 

contact between the cup and the bowl. Because the slots of the endplate were 10 mm deep, 

contact could be initiated between the shell elements and the steel slot in the endplate. This 

contact constrained the transverse movement of the shell elements. The contact between the 

bowl and the endplate were also modelled, however this connection did not lead to any 

modelling challenges other than to further complexify the model. 

Mass scaling towards a critical time step of 10−5𝑠 pushed the limit of acceptable run time as 

each analysis required 10-30 hours to complete. The element mass scaling factor (EMSF) was 

103 − 106, which significantly increased the mass of the laboratory equipment from a few kg 

to several tonnes. As the model was loaded, inertial effects caused the BC parts to bounce back 

and forth, and the results were useless. 

The scaled-up mass might have worked as a rotation stiffness at the end of the cylinder, since 

a rotation of the bowl and endplate component would require some acceleration of mass. These 

inertial forces would work as a rotation spring at the ends of the cylinder, causing the BCs to 

be less degree free to rotate. It was also evident that the model was too complex, and a 

Figure 14 Spherical surfaces discretized by straight elements 
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simplification was to model the endplate and bowl as one solid component, eliminating the 

contact between the two. In order to reduce the mass scaling and the computational effort of the 

model, this part was made analytically rigid. Abaqus does not easily accept contact between 

analytically rigid parts, hence the cup component was kept deformable. Rigid parts are not 

meshed with elements, which in this case made an impact in two ways. Firstly, MS scales the 

mass of elements, and the rigid part is consequently unmodified by the scaling of the model. 

Secondly, as there are no elements, the spherical and circular surfaces and edges are not 

discretized, but represented exactly. The spherical connection was improved, its results in terms 

of stresses and reaction forces contained less noise and dynamic oscillations. Discretization of 

the cylinder and not the now-rigid slots of the endplate gave rise to unlike geometry. With its 

36 nodes, the circumference of the cylinder was modelled as a polygon with 170 degree angles. 

Reducing the amount of nodes led to kinematic (fitting) problems, and the mesh, despite 

possibly being too fine, was retained. 

With the simplifications included, the complexity of the model was greatly reduced. 

Consequently, implicit solution algorithm became an option. A change of solution algorithm 

results in removing the MS. The mass of the laboratory equipment was therefore reduced from 

several tonnes to their correct weight, and the erroneous inertial effects were avoided. 

5.1.2 Sensitivity analyses 

Changing the solution algorithm permitted employing higher-order shell elements. A mesh 

sensitivity study was carried out with both lower and higher order elements as well as variations 

in mesh refinement. As pointed out in section 4.4.1, refining the mesh of shell elements does 

not lead to a convergence of failure mode. As a consequence of this property, it was difficult to 

establish what results the correct solution should display. In addition to varying meshes in the 

cylinder, the volumetric element mesh of the cup component was also altered. This cup mesh 

refinement modified at what point contact with the rigid body was made, which turned a mesh 

analysis challenging, as the discretization of the spherical surface of the cup was modified.  

A new, simplified model was created in an attempt to establish a “correct” solution to the 

analyses. This model consisted of only a cylinder with shell elements and a reference point (RP) 

placed at 27.5 mm from each end of the cylinder. The length of 27.5 mm is meant to represent 

the centre of rotation from figure 13 (a). The nodes along the edges of the cylinder were then 

tied to that RP using an MPC-constraint, enforcing that their distance to the point was kept 

constant. This means that each node could rotate about the RP. It was discovered that this 
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simplified model gave lower capacity than the complex laboratory equipment model. The 

failure mode of the simplified model was also slightly different, with less localizations of 

deformation close to the ends of the cylinder. Because of this finding, focus was shifted towards 

friction. 

Attempts were made to find an analytical solution to the friction problem between the two 

spherical surfaces. When the column deflected transversely, the end of the cylinder was rotated 

an angle 𝜃. A moment 𝑀1 = 𝑁𝐿𝑎cos (𝜃) would act as a driving force for a rotation of the end 

point of the cylinder, where 𝐿𝑎 is the radius of the spherical surfaces. The friction would 

counteract this rotation with a force 𝑀2 = 𝜇𝑐𝑁𝐿𝑎, where 𝜇 is the frictional coefficient and c is 

the amount of the normal force transferred by normal stresses rather than tangential stresses. 

This way, the friction, normal force and geometry will act as a rotational spring, adding stiffness 

against rotation of the endpoint of the cylinder (figure 16 (b)). Setting 𝑀1 = 𝑀2 gives the limit 

value for the frictional coefficient that can resist the external force N. Dividing by NLa on both 

sides gives an equation that is to a greater extent a geometrical problem than a mechanical one, 

and the limit value of the frictional coefficient is not directly a function of the axial force. No 

analytical solution was found due to the free variables c and 𝜃, and focus was shifted to the 

FEM solution of the problem. 

In the Abaqus model, both 2- and 4-metre-long cylinders were analysed. The friction coefficient 

of the PTFE polymer – steel contact was varied in order to establish at what point the friction 

was high enough to serve as a clamped BC rather than a simply supported one. The results 

indicated a lower limit frictional coefficient than anticipated (figure 16 (a)). Increasing the 

frictional coefficient from 0 to 0.60 for the longest column increased the capacity with a factor 

3.40. This is close to the factor 4 anticipated by changing from simply supported to clamped 

boundary conditions, according to the formula for Euler buckling (3.31). With frictional 

coefficient set to zero, the shortest column had 3 percent higher capacity than the twice-as-long, 

high-friction column. As the frictional coefficient of the shorter column was increased, the 

capacity only increased by a factor of 1.63, indicating that the friction led to an inelastic buckle. 

It is concluded that zero friction of the spherical surfaces closely represents simply supported 

BC, while high friction closely represents clamped BC (figure 16 (a)). The limit coefficient for 

simply supported representation is in the range 0.005-0.03, depending on the length of the 

column. The failure mode was also slightly different because of the rotational resistance in the 

high-friction scenarios (figure 15).  
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(𝑎) 𝜇 = 0.60  (𝑏) 𝜇 = 0.00   

 

 

 

(a) (b) 

 

Figure 15 Failure mode with different frictional coefficients. 

Displayed deformation scaled with factor 3, rigid bowl-endplate component is not shown. 

Figure 16 (a) Relation between capacity and frictional coefficient (b) Mechanical model including rotational 

stiffness from friction 

𝑘(𝑁, 𝜇) 
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5.1.3 Conclusions 

Discovering the dependency upon the frictional coefficient and its low limit values led to the 

conclusion that the laboratory setup was inadequate for its purpose. The equipment was 

discarded and the plans for laboratory testing were cancelled, as it was deemed unrealistic to 

obtain sufficiently low frictional coefficients in the laboratory.  

Working with the laboratory setup described served as an introduction to further FEA 

modelling. In the subsequent models, any new mechanical problems and assumptions will be 

assessed. When initiating the design of a new FEA model, it is beneficial to start with a simple 

model, possibly verified by hand calculations. Knowledge of how the chosen software operates 

can be vital, as seen in this chapter for discretizing of complex geometries in contact. In 

hindsight, it is evident that the frictional coefficient should have been assessed at an early stage, 

which would save the great amount of time that were spent on this model. 

The preliminary plan for the project was to focus on globally buckling cylinders. Because the 

equipment was left unused and the plans abandoned, the focus was shifted to the behaviour of 

shorter stub column tests, which buckle locally. These are described in chapter 7, where 

attempts are later made to extrapolate results to the globally buckling region. In order to 

estimate the behaviour with sufficiently accuracy, the material is thoroughly studied in chapter 

6.
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6 Tension Material Test 

In this chapter, the details regarding the material tests are explained and discussed in three 

phases. The first phase is the execution phase, where the laboratory tests are performed and raw 

data is generated. In the second phase, data are extracted and analysed, and several sources of 

error and noise are assessed. This phase results in an initial material model. In the third phase, 

FEM is applied to adjust and validate the material model, and alternative validations are 

suggested. 

6.1 Phase one: Laboratory setup and DIC 

The dog bone material tension test was chosen for its simplicity, as it is an accurate test with a 

unidimensional stress state up to necking. The dog bone test is named from the shape of the 

specimen, which in this case was cut out of the cylinders (figure 17 and figure 18). The cut was 

performed using a technique called Wire Electrical Discharge Machining (EDM), using a hot 

wire and water cooling. The geometry of the specimen is shown in figure 19. 

The goal of these tests was to establish a true stress – logarithmic plastic strain relationship for 

the materials in a quasi-static state. The relationship should define yielding as well as the plastic 

properties. This material behaviour would later be used both as input to the FEM analyses to 

analyse the buckling behaviour and to calculate the axial capacity theoretically. Three series of 

tests were performed, one for each combination of material and cross-section. In each series, 

three specimens were tested. Unless written otherwise, all figures and graphs presented are 

taken from the same specimen, which is of type A6060D127. The two sets of cross-sections 

with alloy 6060T6 were treated as two different materials. This was because of the different 

behaviour of the tests, which is in part believed to stem from different cooling rates during 

extrusion due to different thicknesses. This effect is also accounted for in table 3.2 in Eurocode 

9 [2]. 

A hydraulic Instron testing machine with 100 kN capacity was used to test the specimens. The 

tensile force and displacements was recorded by the testing machine, and a set of pictures of 

the tests was captured correlating to the logging frequency of the testing machine, 4 Hz (figure 

20). Speckled dots were sprayed on the specimen (figure 21), which allowed the use of digital 

image correlation (DIC), using the program eCorr. Two cameras were used, but an error with 

the calibration process between the two cameras prevented the use of 3D DIC.  
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Figure 19 Geometry of the UT 110 dog bone tension specimen 

Figure 18 The specimens were cut out of the cylinders Figure 17 The dog bone specimens were slightly curved. 

Figure 21 Typical speckled 

paint applied to the dog 

bone 

Figure 20 Camera setup to allow 

usage of DIC technology Figure 22 Rectangle and arc 
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In eCorr, a mesh covering the part of interest is generated from the initial picture of the 

specimen, in an unloaded state, as shown in figure 23. When the specimen is deformed in the 

subsequent images, the movement of the painted dots are traced by the program. This movement 

creates a displacement field, and from this field the logarithmic strains in two directions are 

calculated, as shown in figure 24 and figure 25. The mesh consists of constant-strain 

quadrilaterals (Q4 elements), which is the standard element choice in eCorr. These elements 

have four nodes with only translational degrees of freedom, giving a constant strain distribution 

within each element. The strains are then interpolated to create a strain field of higher 

polynomial order for the images presented, while the raw data is used in the data treatment later 

on. In the treatment of the DIC results, the term “column of elements” is often used. This 

notation is used to label the set of elements spanning across the width of the gauge. 

 

Figure 23 Mesh applied before analysis, on undeformed specimen 

 

Figure 24 Deformed mesh at final stage of the test 

 

Figure 25 From the deformation, an interpolated strain field was created 

 



66 

 

When a specimen was loaded in tension, the load-displacement relationship went through four 

distinct stages (figure 26). Firstly, the slack between the specimen and the testing machine leads 

to recorded displacements without any resistance, which is assessed in section 6.3. After this, 

the elastic loading commences, with a linear relationship between load and displacements. 

When the yield stress is reached, the plastic stage and its plastic hardening initiates, increasing 

the stresses even further as the plastic strains are accumulated. The area of the cross-section 

will be reduced while the stresses are increased, and the total force will increase to the point of 

necking. At this point, somewhere along the length of the specimen, the cross-sectional area is 

reduced at a greater rate than what the strain hardening increase. This localization reduces the 

capacity of the specimen: dF changes sign from positive to negative. In this final stage, all 

specimen elongation will be taken up in the neck, which has a tri-axial stress state. The stage 

and the test ends when the specimen fails, often from a fracture in the middle of the neck. 

 

6.2 Theoretic calculations of stresses and strains 

The goal of the material tests was to establish the material properties, relating stresses to strains 

in the elastic and plastic region. Voce hardening rule was chosen, the hardening rule as well as 

its derivative are stated in equations (3.28) to (3.29). From these equations as well as the 

formula for the plastic tangent modulus (3.19), it is seen that the stress – strain relationship as 

Figure 26 The four stages of tension tests 
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well as its slope is continuous for 𝜀𝑝𝑙 > 0. At the point of yielding there is a drop in the slope 

of the stress – strain curve, unless Pl

TE   as 0Pl  . 

In order to fit the laboratory tests to the chosen function, two parameters must be calculated 

from the results of the test specimen: true stress and logarithmic plastic strain. 

The true stress from the tests is given in equation (3.1), where N is the axial force and A is the 

deformed cross-sectional area of the gauge of the specimen. While the geometry of the tests is 

shown in figure 19, the curved shape shown in figure 17 complexify the calculations of the 

initial area. 

The cross-sectional area is calculated as the area between the outer and inner radius of the part 

of the circle considered. The y-coordinate of a circle in a Cartesian xy coordinate system can be 

written as 

 2 2 2y r x    (6.1) 

The cross-section is considered to lie along the y-axis, so that the area can be integrated with 

respect to the x-coordinate. Note that this notation differs from the cylindrical coordinate system 

used in general in this thesis. The specimens were cut so that the edges were parallel to the y-

axis, not to the radius of the circle, as seen in figure 17. This justifies integrating between two 

constant x-values. 

 
/2 /2

2 2 2 2 2 2 2 2

0

/2 0

( ) 2 ( )

w w

w

A r x r t x dx r x r t x dx


             (6.2) 

Solving the integral, the area is given as 
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Here, r denotes the outer radius of the cylinder, t its thickness and w is the width of the 

specimen. The impact of curvature on the area is implemented in the x terms, as a flat cross-

section would have the area  
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The width of each specimen were measured to be 7.90 mm, which corresponds to roughly 2 

percent of the circumference of the cylinder, or 7-9 degrees. The area is therefore close to that 

of a rectangle with area wt, where w is the width and t is the thickness of the specimen (figure 

22). However, the difference of roughly 0.2 percent is still large enough to have an impact on 

the stresses calculated, and the simplification is discarded.  

In the laboratory, an electronic caliper was used to measure the geometry of each specimen 

(table 8). There was some difference in the thicknesses measured on each specimen, which may 

stem from differences between the individual specimens or an error in measurements, for 

example from chippers in the material from the Water EDM cut. The largest deviation in 

thickness is 0.03 mm, leading to 1.7 percent larger area for specimen 3-3 compared to 1-3 and 

2-3. The thickness measured has a great deviation from the thicknesses found using ultrasonic 

thickness gauge (table 1), which is either a systematic measuring error form due to a change of 

measuring equipment or wrong measuring technique, or the cylinder that is thicker than those 

which table 2 is based upon. This thickness deviation causes the area of the thick-walled 

specimen to be at most 4.0 percent and the thin-walled to be 2.5 percent larger than if they were 

calculated from table 2. The measured thicknesses are assumed to be correct, and the data from 

table 8 is used henceforth. 

Table 8 Measured geometry of the dog bone specimens 

 

Specimen ID 1-1 2-1 3-1 1-2 2-2 3-2 1-3 2-3 3-3 

𝑤 [𝑚𝑚]  7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90 

𝑡 [𝑚𝑚]  4.80 4.82 4.82 4.81 4.81 4.81 1.81 1.81 1.84 

𝑟𝑜 [𝑚𝑚]  50 50 50 50 50 50 63.5 63.5 63.5 

𝐴 [𝑚𝑚2]  37.96 38.12 38.12 38.04 38.04 38.04 14.31 14.31 14.55 

The deformed area is calculated based on the now known initial area. Because the DIC in these 

series of tests are two-dimensional, only strains in two directions are known. These strains are 

in the longitudinal and circumferential directions. Three assumptions were made regarding the 

strains: Firstly, the strain within a cross-section was assumed to be constant, and could thus be 

averaged over all elements in the width of the specimen. The strains did vary within the cross-

section, but the variations were either random or were caused by “strain bands”, to be discussed 



69 

 

later. Secondly, the radial strains, which were not observable by the camera, were assumed to 

be equal to the circumferential strain. This assumption is equivalent to assuming that the 

material is isotropic, as both these directions are unloaded before necking. Thirdly, the 

circumferential strains were assumed equal to the transversal strains, that is, the strains in along 

the circumference were assumed to describe the change of the width of the gauge. The strains 

in the cross-section was given as 

 exp( )o y

o

x y

w
ln w w

w
  

 
   

 
   (6.5) 

The width was calculated from these strains. The deformed area of the arc is given as the initial 

area times the exponent of the logarithmic strains in the two directions. This is easy to see for 

a rectangular cross-section: 

 exp( ) exp( ) exp(2 )y y yo o oA wt w t A       (6.6) 

While the initial area is calculated exactly (opposed to simplified as a rectangle), as shown in 

equation (6.3), the relationship with the deformed area is still the same, under the assumption 

of equal strains along the cross-sectional axes (6.6). 

Note that the stress state after necking will be tri-axial with principal stresses not necessarily in 

the axial direction. As a simplification, the stress state can be assumed approximately uniaxial 

also after necking. 

Because the logarithmic strains in the longitudinal direction is given directly from eCorr, the 

logarithmic plastic strain is given in equation (3.10). In an ideal case, all required data would 

now be available and fit to insert into the formulas. It is seen in the following section, however, 

that data from laboratory and in particular eCorr introduces several challenges. 

6.3 Phase two: Data analysis and extraction 

One problem using DIC is the inevitable numerical noise, giving small random variations in the 

measurements in every data point in every frame. This noise in part arises from the quality of 

the camera equipment, from any changes in lightning (e.g. if a car with powerful headlights 

drives by outside the laboratory), from the size and type of the mesh chosen and from the type 

of paint used to spray the specimen. This noise was assessed and treated to give the FEM 

software a smooth, continuous stress-strain relationship.  

In order to improve the results and remove noise, the data is smoothed over different variables. 

The strain field of the constant-strain-quadrilaterals (Q4 elements) is discontinuous across 
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elements. These strain values are averaged to one constant value over all the elements 

considered. The noise within each time step is removed and the noise between time steps are 

greatly reduced (figure 27). In the longitudinal direction, strain oscillations are observed at 1-3 

percent strain; these are treated later in this section. The assumption of constant strain is a 

necessity as formula (6.6) requires one unique value for the whole cross-section at any given 

time of the test. After this pre-processing, smoothing with respect to time is done in Matlab. 

Several smoothing techniques were assessed, such as first and second degree local regressions, 

but in the end the simpler “moving average method” yielded the best results. In the moving 

average method, an odd integer (a span) is selected and the data at any point is then chosen as 

the mean of the data points within that span, equally weighted. For example, if span 5 is chosen, 

any data point after the smoothing has one fifth of the sum of the values of the current, two 

previous and two subsequent data points. Because each test consisted of between 2500 and 3500 

frames, a rather large span could be chosen without the loss of key material characteristics. 

Nevertheless, smoothing data without assessing which parameters will alter the results can lead 

to erroneous conclusions. 

Choice of mesh in the DIC software altered the results and the amount of noise. If the mesh in 

the DIC program was refined, the lack of pixels gave rise to numerical noise. It was also possible 

for some nodes to get distorted extensively out of their position, ruining the results for the rest 

of the analysis (figure 30). On the other hand, if the mesh was made coarser, data could get lost 

in the low-order constant-strain elements. In the mesh shown in figure 29 the maximum strain 

at the last frame before fracture was 0.15, down from 0.60 in finer meshes. Any localization, 

such as necking, will be underestimated if the width of the localization is smaller than the width 

of the element. During the data treatment phase, several different meshes were tested. Both fine 

and coarse meshes were tested out, these were either localized at necking or covering the whole 

specimen. At some point using one longitudinal and one transversal vector to extract strains 

were attempted without success. A mesh with 20x20 pixel elements was chosen, although 

10x10 and 40x40 pixel elements were explored and compared. Initially it was stressed that one 

column of elements was placed where the neck would form, as seen in figure 25. All data was 

then taken from this column alone. 



71 

 

  

 

Figure 28 Typical strain bands at 1-2 % strain 

 

 

 

Figure 27 Strain averaging over 10 elements 

Figure 29 Very rough mesh 

Figure 30 Very fine mesh 
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For many specimens, “strain bands” formed and dominated the test at low plastic strains (figure 

28). These strains have similar characteristics as the Portevin-Le Chatelier effect, which gives 

serrations at high strain rates according to Chihab et al. [26]. However, as the strain rates are 

low, these strain bands stem from another effect. According to an informal report by Petter 

Henning Holmstrøm [27], these oscillations of longitudinal strain, named strain bands, can 

disturb the data around 1-2 percent strain. The source of this effect, which resemble aliasing, is 

not documented. One possibility is that there is a loss of data in the tiny void between the pixels 

in the camera sensor matrix. Only 60 percent of the lens used were covered with light-sensitive 

nodes, which usually is not a problem, but in this case could give rise to some aliasing. It is 

likely that the speckled paint as well as the ratio between deformation speed and logging 

frequency can give rise to further aliasing. The software and choice of elements or mesh might 

also be the reason why this phenomenon occurs, and some findings supported the latter claim: 

If the mesh was refined, the strain bands would take longer to die out, although the initial point 

of strain bands, their amplitude and period remained unchanged (figure 31). Rougher mesh also 

shortened the number of oscillation periods. 

The strain bands had to be assessed, and three options were proposed: Change software or 

element type, use a wider mesh smoothing data over the whole specimen gauge, or just smooth 

the effect of the strain bands away. Regardless, some smoothing of the data was necessary, 

which favoured the latter approach. For each of the 9 tests, the period of the strain oscillations 

was recorded and used as span for the smoothing. The spans were of magnitude 15-65 frames, 

corresponding to 4-15 seconds, but this was deemed unproblematic due to the large amount of 

data. The smoothness of the results seemed satisfactory. Figure 32 shows that span 33 was 

adequate for this specimen, removing the impact of the strain bands. However the results using 

an entirely different set of elements (placed outside the neck) yielded a different set of strains 

in the first three stages of the test, as did the columns with finer or rougher meshes (figure 33). 

Choosing a column of elements placed in the middle of the neck is the only way to analyse the 

strains in the in the last stage of the tension test. Nevertheless, if the results in the first stages 

are dependent upon which column of elements is chosen then this is an unacceptable source of 

errors. Instead of exploring the source of the deviation of results, the strains from the last stage 

of the test were discarded and focus was shifted towards a broader approach. The reason for 

this rather significant discarding of data is that the thesis focuses on pre-buckling behaviour, 

hence the plastic strains of interest are unlikely to reach the strains observed at necking. 
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Figure 31 Dependency of element size. 

Figure 32 Smoothing of the average 𝜀𝑧 for a column of elements in the neck. 
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Henceforth, the mesh was chosen to cover the whole gauge, although the outer-most elements 

(close to the attachment points of the machine) were often discarded due to noise from the 

edges. All data up to the point of maximum axial force was considered. Because the data was 

extracted from several hundred elements, the noise was greatly decreased. The strain bands 

were also nullified because both the apex and the nadir were included in the mean. The resulting 

curve was a smooth curve giving more trustworthy results than the former approaches (figure 

32). 

2D DIC has some weaknesses. As mentioned in section 6.2 it is incapable of measuring the 

strains in the radial direction as this direction is parallel to the camera, nor can a single camera 

register displacement u in the thickness direction. This inability to model strains overcome with 

the assumption made in the previous section; setting the radial strain equal to the circumferential 

strain. However, when there is displacement normal to the paper plane, a new source of error 

occurs. If for example the specimen is moved away from the camera, each element will look 

smaller (as it is further away), and the DIC software will treat this as compressive strains in 

both directions. In the start of each test, before the loading was applied, the specimen was free 

to move along to the attachment pins of the machine, towards or away from the cameras. This 

initial rigid body motion gave quite erroneous results, which in the worst cases could result in 

a strain error of up to 0.002 and compressive strains occurred at as much as 70 percent of 

   

Figure 33 Smoothed columns of elements with different mesh and placement  
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maximum tensile force (figure 34). As the applied force increased, the test specimen was in 

greater extent held in place, unable to move rigidly. This is also seen in the stress-strain 

diagrams, as the slope is close to that of the elastic solution when the load is large enough.  

  

To get a good estimate of yield stress and stress-strain relationship at small plastic strains it is 

crucial to represent the elastic strains correctly. If the strain error in figure 34 did not occur, a 

natural yield criterion is defining yield as the first point where 
E




 . This cannot be used 

when all registered strains are wrong. A new yield criterion is proposed: Yield occurs at the last 

point ‘n’ where  
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  (6.7) 

Noise is magnified when the stress is differentiated as done in equation (6.7). Because of this, 

a down-sampling was required. A strain tensor with 800 elements is created, ranging from 0 to 

the maximum tensile strain value. Only tensile strains were evaluated. The stresses were 

interpolated to this strain vector, and for all n between 2 and 799, the tangent modulus was 

calculated from (6.7). The stress value corresponding to the last 𝐸𝑇 value above 30 GPa is taken 

as the yield stress. The value 30 GPa was chosen because lower values would estimate yield 

Figure 34 Compressive strains at tensile loading. 
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stress far into the plastic regime while higher values for 𝐸𝑇 risked unclear definition of the yield 

stress as the tangent modulus had several local maxima and could pass the value several times 

(figure 35). 

 

This down-sampling was only applied to find the yield stress. In the original (non-down-

sampled) stress vector, the element closest to this stress is located. The original strain data was 

then shifted so that the strain at yield was exactly equal to the yield stress divided by Young’s 

modulus, E = 70 GPa (figure 36). With this shifting of the strain values, more detailed sources 

of errors with less impact on the results were ready to be studied.  

Camera orientation is one such source of error. It might be difficult to orient the camera so the 

edges of the specimen are exactly horizontal. This could be a problem, as the logarithmic strains 

taken from eCorr were coordinate strains, aligned to the horizontal and vertical edges of the 

pictures. If the camera was slightly rotated with respect to the specimen, the perceived camera 

axes �̂� and �̂� might not have coincided with the longitudinal and circumferential 

Figure 35 Tangent moduls as yield criterion - A6060D127 
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directions y and z. Unless the camera is perfectly aligned, the shear strains 𝜀�̂�𝑧 (not to be 

confused with the engineering shear strains 𝛾𝑦𝑧) would not be zero: 
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z y

 
   

 

 


 
  

This implicates that 𝜀�̂� ≠ 𝜀1. If the shear strains are large, the difference between 𝜀�̂� and the 

desired 𝜀𝑧  might be significant. eCorr allows extracting principal strains directly for each 

element, which in theory would be equal to 𝜀𝑧 up to necking. Due to noise this might not always 

be the case. Calculating the mean of the values of the first principal strains would mean possibly 

adding together values of vectors with different orientation. This is because each element in the 

DIC mesh might have a slight difference in principal strain orientation, thus adding them would 

give invalid results, albeit the error could be small. 

Another approach must be found in order to establish 𝜀𝑦 and 𝜀𝑧. One mathematically correct 

way to solve this problem would be to solve the system of equations 

 
1

2

ˆ ˆ 0
det 0

ˆ ˆ 0

y yz

yz z

    
      
   

  

  
  (6.8) 

Figure 36 Translation of the stress-strain curve - A6082T6D100 specimen 1 
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This system was solved for the unknown principal strains, and the rotation of the principal 

strains with respect to the camera coordinate system is then given as 

 
1 1

ˆ
tan

ˆ
z

yz

 





 

   
 

  (6.9) 

The shear strains in the specimens were not zero (figure 37), however the rotation of the 

specimen stabilized towards a rotation of less than one degree (figure 38). The relative 

difference between 𝜀1 and 𝜀�̂� is of magnitude 0 - 0.05 percent (figure 39). For these figures, 

initial values display noise because the low values of 𝜀�̂� increases the sensitivity of changes in 

𝜀�̂�𝑧. The difference between 𝜀1 and 𝜀�̂� in  figure 39 is neglected, 𝜀�̂� and 𝜀�̂� is treated as equal to 

𝜀𝑧 and 𝜀𝑦, which are equal to 𝜀1 and 𝜀2. 

  

 

 

Figure 37 True strain in different directions for 20x20 pixel mesh. 
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Figure 38 Rotation of principal strains, smoothed with span 33 

Figure 39 Difference between principal and perceived (camera) longitudinal strain 
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6.4 Phase three: Generation and FEM verification of stress-strain relationship 

In the previous sections in this chapter, all figures and graphs (except figure 34, figure 35 and 

figure 36) are based on the same specimen of the type A6060D127. The other eight specimen 

displayed the same effects to the same or lesser extent. With the treatment of data described, 

each specimen was analysed with a 20x20 pixel mesh covering the whole gauge of the 

specimen. The data up to the point of maximum load was used to define the Voce hardening 

law parameters 𝜎0, 𝑄𝑖 and 𝐶𝑖 seen in formula (3.28). This process is described below. 

In Matlab, a data set containing different chosen plastic strain values (henceforth labelled 

“strain vector”) was created on the form  

 

2.5

500

pl

i

i


 
  
 

  (6.10) 

This strain vector was chosen for its focus on low plastic strain values, with 31 data points 

below 0.1 percent plastic strain and 79 data points below 1 percent plastic strain. The high non-

linearity of the strain vector plays a key role in correctly interpolating material behaviour at low 

plastic strain values, and is crucial for modelling buckling behaviour in later analyses. 

The true stress of each specimen is interpolated to this strain vector using the Matlab-function 

“Interp1”. Each series consists of three specimens, and the mean of the three corresponding 

stress vectors could now be calculated as they corresponded to the same plastic strain vector. 

A Voce material law with n = 2 is assumed, meaning that there are five unknown parameters: 

  
2

0
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( ) 1 exp( )pl pl

i i

i

Q C   


      (6.11) 

The Matlab function “lsqnonlin” gives an estimate for the parameters by minimizing the 

function  

  
2

0

1

| 1 exp( ) |pl

i i

i

Q C  


      (6.12) 

In this equation, 𝜎 is the mean stress of the three specimen in a series of tests and 𝜀𝑝𝑙 is the 

stress vector defined in (6.10). The minimization process requires initial parameters as a first 

estimate, and these are chosen so that 𝐶1 > 𝐶2. This way, the element in equation (6.11) 

corresponding to i = 1 will describe the hardening at low plastic strains. 

After the true stress – logarithmic strain-curve was established, an Abaqus model was created 

which included the curvature. The model was simplified in the areas outside where the tension 

force was applied because modelling this part would not improve the model significantly and 
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might give rise to numerical problems (figure 40).  In light of the experience from chapter 5 it 

was decided to rather enforce a displacement to the end surfaces of the model shown in figure 

40. The shape of the dog bone specimen averts stress localization, and the failure stems from 

the uniform stress distribution in the slender gauge of the specimen. This justifies not putting 

manual and computational effort in accurately modelling the outermost parts of the specimen. 

The mesh was a regular cubic brick mesh in the gauge and a rougher, more non-continuous 

mesh near the ends (figure 41). Each end of the modelled dog bone was pulled with a constant 

speed of 0.05 𝑚𝑚/𝑠 in the longitudinal direction. This is the same loading speed as in the 

laboratory, to ensure a quasi-static state. The explicit dynamic solution algorithm was chosen 

for its robustness and simplicity. On a small-scale model the accuracy obtained using explicit 

algorithm is often very good compared to implicit solution algorithms. Because the whole 

model had a very low weight, large mass scaling (section 4.3) could be chosen without getting 

undesirable oscillations in the results. The mass scaling applied increased the mass by a factor 

of roughly 106, which only led to minor oscillations after yielding, at low plastic strains. 

In order to compare the FEM analyses to the laboratory tests, the mean longitudinal engineering 

strain of the gauge was measured. In Abaqus, this was done by logging the displacement of the 

end point of the gauge, divided by the gauge length, 45mm (figure 19). In eCorr, a strain gage 

is created by defining the start and end point of a vector on roughly the same spot as the data 

points in the Abaqus model. For the thick-walled specimen, the machine in part covered the 

area where the gauge started, and the vector in eCorr had to cover a smaller part of the gauge. 

The strains would then be approximately the same, but would return larger values after necking 

because the DIC strain gage stretch is divided by a smaller length than the Abaqus 

measurements. This is taken into account when the engineering stress-engineering strain curves 

are compared.  

  

Figure 40 Model with 

curve A6060D127 
Figure 41 Mesh for A6060D100. 
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The Voce parameters calculated by Matlab and used as input for Abaqus did not give 

satisfactory results (figure 42). The engineering stress-engineering strain curves were too 

different, with an increasing deviation for higher plastic strains, and all materials displayed 

wrong capacity and ductility. 

 

A decision was made to manually add two more voce parameters, up to a total of 7. It is 

emphasized that the shape of the stress-strain curve of the material is crucial in modelling 

buckling, as seen in the formula for inelastic buckling stress (3.54). The focus of this 

comparison and correction of curves was therefore the shape of the curve from the FEM 

software. This curve is largely defined by its slope, defined in formulas (3.29) and (3.19). The 

plastic strain vector defined in (6.10) minimized the error of the parameters for low values of 

plastic strain. Yielding and initial hardening was decently modelled (figure 42). The new Voce 

term added would therefore focus on the hardening at high plastic strains. To ensure this, the 

parameter 𝐶3 was chosen to be lower than 𝐶1 and 𝐶2. The laboratory specimen reached 

maximum load at strain ê, and the difference in maximum engineering stress is denoted Δ𝑠. The 

parameter 𝑄3 was then initially estimated as  

 3

1
3 exp( )(1 )C êQ s     (6.13) 

Figure 42 Initial parameters for Voce hardening - A6060D127. 
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With this second estimate for material law established, a vast series of iterations commenced to 

so the FEM analyses would give a satisfying shape of the stress-strain relationship. These 

iterations were carried out using simplified parameter analysis. As an example of the iterations 

carried out, consider the following case: It is desired to elevate the stress from Abaqus by a 

value Δ𝑠1at strain level 𝑒1, while keeping the stress constant at a strain 𝑒2. To solve this 

problem, the voce parameters in (3.28) are altered the following way:  

 
2 2 1 3 3 1 1

2 2 2 3 3 2

(1 exp( )) (1 exp( ))

(1 exp( )) (1 exp( )) 0

Q C e Q C e s

Q C e Q C e

        

       
  (6.14) 

The values Δ𝑄𝑖 (typically one negative and one positive value) were then added to 𝑄𝑖 in formula 

(3.28), often resulting in a more precise behaviour in a new analysis.  

With such iterations as well as parameter studies to study the behaviour of the parameters 𝐶𝑖 

(figure 43) the Abaqus analyses converged towards a satisfactory solution, presented in table 9 

and figure 44. Negative values of parameters were avoided, resulting in only 5 parameters for 

the A6060D127-material. The A6060D100-material exhibited more hardening than its thin-

walled counterpart, although low-hardening stresses were approximately equal. Higher stresses 

for thicker cross-sections are in good agreement with Eurocode 9 [2].  

 

Figure 43 Effect of altering the value of C2 – A6060D127 
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Note that the stress will reach 𝜎0 + 𝑄1 even at rather low plastic strains. These terms could be 

added together as a higher yield stress, removing the parameters 𝑄1 and 𝐶1, however since low 

plastic strain is of particular interest of this thesis, this simplification is avoided. 

As a simplified sensitivity analysis, both rougher and finer meshes were modelled, as well as 

different degrees of mass scaling. The differences both in capacity, force-displacement curve 

and failure mode were close to identical (figure 45). 

The characteristic stress 𝑓𝑜 is defined as the stress obtained at 0.2 percent plastic engineering 

strain, and plays a crucial role in calculations according to Eurocode 9, as explained in section 

3.5. This proof stress is given indirectly with the Voce parameters presented (table 9) as well 

as formulas (3.4) and (3.6), and its values are shown in table 10. Engineering stress-strain curves 

from the FEM software using the chosen Voce parameters is plotted together with the laboratory 

specimen results in figure 47, figure 49 and figure 51. 

   

 

 

 

 

Figure 44 Voce hardening rule for the three material types 
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Table 9 Voce parameters for the materials. 

 

 𝜎0  𝑄1  𝐶1  𝑄2  𝐶2  𝑄3  𝐶3  

A6060D100 175.3 14.48 1677.6 47.678 23 35 2 

A6060D127 176.09 14.378 2326.2 54 18 0 0 

A6082D100 295 22 1080 33 10 85 6 

 

 

 

 

 

 

Table 10 Characteristic stress f0 

 f0 

A6060D100 192 MPa 

A6060D127 192 MPa 

A6082D100 315 MPa 

 

 

 

Figure 45 Sensitivity of mesh size and MS 
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6.5 Verification through force-displacement correlation 

Up to this point, the displacements recorded by the testing machine have not been used because 

of machine compliance: The machine is not indefinitely stiff, and the recorded displacements 

will therefore be greater than the elongation of the specimen. In order to investigate this effect, 

the deformation is split in two: the elongation of the gauge and the deformation from the 

machine and the end parts of the specimen combined (figure 46). During the elastic loading 

stage, the extension of the gauge of the specimen is estimated as  

 0
1

0

FL
w

A E
   (6.15) 

The machine deformation is then defined as  

 0
2 1

0

FL
w w w w

A E
      (6.16) 

A one-dimensional tensor with displacement values was created. The displacement 𝑤2 of each 

specimen was interpolated to this displacement vector and the mean was calculated. The 

function 𝑤2(𝐹) was then estimated as one linear term and one term with the same shape as the 

elements in Voce hardening law:  

 2

1
(1 exp( ))w Q CF F

k
      (6.17) 

The voce term is included to describe the noise in the initial part of the test, and the spring 

constant k is the elastic deformation of the machine and the end parts of the specimens. 𝑤2 

includes the wider part of each specimen. The spring constant k would consequently differ from 

series to series, as the thickness and material varied. The thin-walled cross-section would 

therefore estimate a softer spring stiffness, as seen in table 11. The force-displacement curves 

based on 𝑤1 are shown in figure 48, figure 50 and figure 52 with the expected difference in 

post-necking strain values. The results are deemed satisfactory. 

 

 

 

 

 



87 

 

Table 11 Spring stiffnesses to account for machine compliance 

 
k from (6.17) 

A6060D100 10794 N/mm 

A6060D127 6348 N/mm 

A6082D100 12831 N/mm 

 

 

 

 

                             
1

2
𝑤2, 2𝐾                               𝑤1                                           

1

2
𝑤2, 2𝐾 

 

 

 

 

  

Figure 46 Mechanical model including machine compliance 
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Figure 47 Chosen Voce hardening and laboratory results - A6060D100 

Figure 48 Force-displacement comparison - A6060D100 
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Figure 49 Chosen Voce hardening and laboratory results - A6060D127 

Figure 50 Force-displacement comparison - A6060D127 
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Figure 51 Chosen Voce hardening and laboratory results - A6082D100 

Figure 52 Force-displacement comparison - A6082D100 
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7 Hollow Cylindrical Columns in Compression  

The behaviour of hollow cylindrical columns in axial compression are assessed in this chapter. 

The objective is to use results from compression tests executed in laboratory to determine the 

accuracy of theoretical estimates and numerical simulations at three different lengths. The main 

focus is the ability of the calculation method to correctly represent the axial capacity, buckling 

shape and force – displacement (stress – strain) relationship obtained for compression tests. 

Compression tests are executed for profile A6060D100, A6060D127 and A6082D100 for 

lengths of 2 and 4 times the diameter and 2000 mm (noted L2D, L4D and L2000).   

Obtained results for L2D and L4D are used to establish a robust FEM model at these lengths, 

which is extrapolated to lengths of 30 times the diameter. Numerous FEM analyses establish a 

representation of the transition from the plateau of local buckling (defined in section 3.6) to 

global buckling. The result of the compression test for L2000 is used to validate these 

extrapolated models. 

The accuracy of the capacity and failure mode according to theoretical estimates and Eurocode 

9 is assessed in comparison to the compression test results at L2D, L4D and L2000. 

Finally, data from all sources are compared and discussed for lengths up to 30 times the 

diameter. 

7.1 Compression test for L2D and L4D 

The main objective for the first laboratory tests is to verify the behaviour of local buckling.  

Based on calculations from section 3.6 is anticipated that L2D and L4D buckles locally. The 

only exception is A6082D100L4D, which according to Jones is long enough for global buckling 

to affect the capacity, as 𝐿𝐺 = 320 < 400 𝑚𝑚 (table 6).  

According to Eurocode 9, A6060D127 and A6082D100 have a slight decline in capacity as the 

length is increased from L2D to L4D, because 𝐿 < 𝐿𝐶𝑥(table 6). Theoretical derivations 

disagree on this claim for the 6060T6 alloy. Preliminary analyses in the FEM model displayed 

negligible decline in capacity as the length was increased from L2D to L4D, regardless of 

material and cross-section. 

7.1.1 Laboratory setup and geometry 

The column compression tests on L2D and L4D were carried out the 30th of March 2016 in the 

Structural Impact Laboratory (SIMLab), at NTNU. Six series of compression tests were 
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conducted (table 12), and three specimens were tested in each series. The 3x6 specimens are 

named and numbered in the tables of Appendix E. A hydraulic Dartec compression test machine 

with capacity of 500 kN is used. The force is applied by displacement of the upper plate seen in 

figure 53. In order to track the relative displacement an Opto NCDT 1700 (2 - 50 mm) laser is 

used. The laser is placed on a non-movable surface near the bottom plate, while an additional 

steel plate is mounted on to the upper moveable plate (shown to the right in figure 53). As in 

chapter 6, all profiles are sprayed with speckled paint (figure 54), and in order to use 3D IDC 

two cameras of type Nikon AF Nikkor 35-70mm are utilized. 

The cameras, laser and compression machine were calibrated. This calibration gave one data 

point for each set of pictures, with data logging frequency given in table e2. The calibration 

allowed changing the load velocity or data frequency between and during tests without losing 

the correlation. The loading velocity was never change during testing, but varied between 0.1 

and 0.5
𝑚𝑚

𝑠
 for different lengths (table e2).  A low engineering strain rate was chosen to ensure 

quasi-static loading. In the post-buckling phase, the data frequency was reduced from 5 to 1 

frames per second to decrease the amount of output data and pictures inn a less important part 

of the test. A mistake done in the laboratory resulted in one test with a constant frequency of 1 

frame per second (ID 2-6, table e2). Plots for this test therefore contains fewer data points and 

give a less smooth curve than the rest. The maximum load is however rather close to the 

specimens in the same test series (A6060D127L2D, figure 58).  

The output data from the laboratory setup is time, force, displacement and laser displacement, 

as well as two sets of pictures to enable DIC. It is desirable to compare laboratory testing results 

with FEM analysis results. In order to do this, the displacement form the laser is used, as the 

displacements logged by the Dartec is erroneous due to machine compliance. The force and 

laser displacement are extracted as text documents, logging all data with 9 significant digits. 

 L2D [mm] L4D [mm] 

A6060D100 200 400 

A6060D127 254 508 

A6082D100 200 400 

 Table 12 Material and length of column specimen      
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Figure 53 Setup in the laboratory before testing, with laser and mounted steel plate to the right 

Figure 54 Setup in laboratory during testing with visible speckled paint 
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The geometry was measured prior to the execution of the tests. Length and outer diameter were 

gauged by an electronic caliper, while the thickenss was measured by an ultrasonic thickness 

gauge named PosiTector. The thickness and outer diameter was measured every 90 degrees on 

the cross-section in both ends of the profile, as shown in figure e1 and all corresponding 

measurements are displayed in table e1. 

The mean values (table 13) of all the thickness measurements (table e1) display little deviation 

from the values calculated chosen in table 2. The covariance calculated according to formulas 

(3.57) to (3.59), is lower than for the first measurements (table 1), despite a relatively low 

amount of measurements. This is believed to come from improved measuring technique, due to 

difficulties using the gauge on circular cross-sections, as mentioned in section 3.4. 

The diameter was measured at the same locations as the thickness (table e1). Each of the three 

combinations of cross-section and alloy had 24 diameter measurements, a significant increase 

in the amount of data from the previous measurements (section 3.4). The mean diameter was 

similar, the value of the covariance was lower, in part because of the large amount of data (table 

13).  

Table 13 Measured thickness for laboratory tests on L2D and L4D 
 

 A6060D100 A6060D127 A6082D100 

𝑡̅ [𝑚𝑚]  4.703 1.764 4.680 

𝑠𝑡 [𝑚𝑚]  0.045 0.028 0.045 

𝐶𝑜𝑉𝑡  0.965 % 1.577 % 0.970 % 

�̅� [𝑚𝑚]  99.94 99.91 126.96 

𝑠𝐷 [𝑚𝑚]  0.055 0.121 0.325 

𝐶𝑜𝑉𝐷  0.055 % 0.121 % 0.256 % 

In calculations of the data from the compression test, the mean of the measurements for each 

specimen is used rather than the generalized geometry of table 2. Consequently, each specimen 

within a series of tests might have a slight difference in area (figure e3). The lengths of the 

cylinders deviated less than 0.1 percent (figure e2). This deviation is neglected and its intended 

length (table 12) is applied in all calculations. 
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7.1.2 Compression test results 

Laboratory settings for each specimen with corresponding measurements and calculations are 

given in Appendix E. Table 14 contains a brief summary of mean values for each test series. 

The results are presented in two types of graphs: force – displacement (figure 55, figure 58 and 

figure 61) and engineering stress – engineering train (figure 56, figure 59 and figure 62).  

eCorr is used with its 3D DIC calibration to estimate the transverse movement of points on the 

cylinders. DIC images for one representative specimen from each test series at maximum load 

is shown in figure 57, figure 60 and figure 63. The final deformed shape (figure e5 to figure 

e10) and transversal movement (figure e2 to figure e4) for all specimens (except ID 2-4) is 

shown are Appendix E. 

 

 

Profile 

𝑡̅  

[𝑚𝑚] 

�̅�𝑜  

[𝑚𝑚] 

�̅�  

[𝑚𝑚2] 

�̅�𝑚𝑎𝑥  

[𝑘𝑁]  

𝐶𝑜𝑉𝑁  

[%] 

𝑆�̅�𝑎𝑥 

[𝑀𝑃𝑎] 

A6060D100L2D 4.70 99.9 1407.12 311.41 0.67 221.16 

A6060D100L4D 4.70 99.9 1407.12 311.48 0.56 221.55 

A6060D127L2D 1.76 127.0 693.81 138.15 0.31 199.98 

A6060D127L4D 1.76 127.0 693.81 138.23 0.40 198.32 

A6082D100L2D 4.68 99.9 1400.13 505.58 0.57 360.74 

A6082D100L4D 4.68 99.9 1400.13 499.34 1.13 357.01 

  

Table 14 Results from compression tests for L2D and L4D profiles 
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7.1.2.1 A6060D100 

  

 

  

 

Figure 55 Force – displacement curves from compression tests of profile A6060D100L2D and A6060D100L4D 

Figure 56 Stress – strain curves from compression tests of profile A6060D100L2D and A6060D100L4D   
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(a) (b) (c) 

 

 

 

  

Figure 57 Deformation in transverse direction (towards camera) at maximum load. Pictures generated in eCorr, (a) 

A6060D100L2D (b) A6060D100L4D (c) scale [mm] 
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7.1.2.2 A6060D127 

 

 

 

 

 

Figure 58 Force – displacement curves from compression tests of profile A6060D127L2D and A6060D127L4D 

Figure 59 Stress – strain curves from compression tests of profile A6060D127L2D and A6060D127L4D   
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(a) (b) 

 

 

 

 

 

  

Figure 60 Deformation in transverse direction (towards camera) at maximum load. Pictures generated in 

eCorr, (a) A6060D127L2D with scale [mm] (b) A6060D127L4D 
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7.1.2.3 A6082D100 

 

 

 

 

Figure 61 Force – displacement curves from compression tests of profile A6082D100L2D and A6082D100L4D 

Figure 62 Stress – strain curves from compression tests of profile A6082D100L2D and A6082D100L4D   
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(a) (b) 

 

 

 

 

Figure 63Deformation in transverse direction (towards camera) at maximum load. Pictures generated in eCorr, 

(a) A6082D100L2D (b) A6082D100L4D 
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7.1.2.4 Comparison of compression test results of L2D and L4D 

A6060D100 and A6082D100 display two major buckles, one close to each cylinder end at 

maximum load. In the post-buckling phase, one of these buckles absorbs all additional 

deformation (figure e5 to figure e10). 

The two series of A6060D127 did not display any major buckle before reaching maximum load, 

but rather many small ones (figure 60). 

The variation in capacity within each series was adequately low (table 14). This coincides with 

the assumption of small variation of imperfection (section 3.4.1). A6082D100L4D has the 

largest scatter in capacity with a distinct deviation in CoV compared to the other five series. 

The brittle alloy properties discussed in section 3.4 may partly explain this difference.  

It is seen from the force – displacement curves (figure 55, figure 58 and figure 61) that columns 

with twice the length require approximately twice the deformation to reach the capacity. The 

differences in the mean capacity for the two lengths were negligible 

 4 2

2

L D L D

L D

N N

N


   (7.1) 

 6060 100

311.48 311.41
*100% 0.023%

311.41A D


    

 6060 127

138.23 138.15
*100% 0.058%

138.15A D


    

 6082 100

499.39 505.58
*100% 1.2%

505.58A D


     

These results indicate that L2D and L4D are at the plateau of local buckling mentioned in 

section 3.6. A slight reduction of capacity is displayed for A6082D100, which might indicate 

that L4D is at the initiation of the transition towards the global buckling range, as predicted by 

the theories of NACA and Jones. 

The slope of the force – displacement curves for L2D and L4D are different. The elastic axial 

stiffness defined as 

 
EA

k
L

   (7.2) 

gives a steeper curve for shorter specimens. In the elastic range the relationship between the 

force and deformation is given as  
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    (7.3) 

The engineering strain (3.4) can then be written as  

 
w N

e
L EA

    (7.4) 

Note the assumption of 
0L L . The engineering strain is not a function of the length of the 

cylinder, hence the engineering stress – strain curves (figure 56, figure 59 and figure 62) display 

yield stress at the same engineering strain, corresponding to twice the deformation. However, 

L4D reaches maximum load at lower engineering strain for all series. It is believed that this 

effect stems from the amount of strain energy. Longer columns has approximately twice the 

amount of strain energy, as the volume is twice as large and the strain energy per volume given 

in equation (3.7) is approximately the same. 

The engineering strain of the thick-walled cross-sections at maximum load is approximately 6 

times larger than for thin-walled cross-sections. The internal energy is lower in A6060D127 

than A6060D100, but the energy required to initiate buckling is also much lower as the cross-

section is slenderer. 

Pictures of the post-buckling shape off all specimens are displayed in Appendix E.  

7.2 Compression test for L2000 

The laboratory tests on two metres long cylinders were performed the 26th of May 2016, only 

two weeks before the delivery of this thesis. The results are discussed and analysed, but the 

consequence of the findings were only partially implemented due to the lack of time. DIC was 

discarded due to the large amount of data and long processing time. 

The laboratory setup was similar to the previous laboratory session (figure 64). Three specimens 

of each series led to 3x3 tests, which are labelled in Appendix G. The failure mode of 

A6060D100 and A6082D100 were anticipated to be global, as seen by both 𝐿𝐺  and 𝐿𝐺
𝐸𝐶  in table 

6. For A6060D127, 𝐿𝐺
𝐸𝐶  (based on Eurocode 9) claimed local instability failure up to four 

metres, while estimates by the tangent-modulus global buckling predicted global buckling for 

all lengths above 𝐿𝐺 = 680 𝑚𝑚. 
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The cylinders tested in the laboratory were measured similarly to L2D and L4D, albeit a 

technical error with the ultrasonic thickness gauge resulted in the use of electronic calipers for 

thickness measurements. Measuring circular shapes with flat caliper jaws causes a slight 

overestimation of the thickness. The width of the caliper jaws was measured (with another 

electronic caliper) to be 3.4 mm, and a correction to the thickness is taken as 

 
2 (0.5*3.4 )

1 2cos
2

mm
t r

r





  
      

  
  (7.5) 

Despite correlating for this error, the measured geometry (table g1) exhibited a thickness 

deviation of more than 2 percent compared to earlier measurements (table 2 and table 13) 

indicating a systematic error (figure 5). The covariance was small (0.4-1.5 percent), hence the 

random error was acceptable. The measurements were discarded because of the systematic 

error, in favour of the simplified geometry in table 2. 

Of reasons unknown, the laser displacement measurements rendered erroneous results with 

noise. These data had to be discarded, and all force – displacement data (and hence the stress – 

strain data) is taken from the recorded machine displacement. Modification due to machine 

Figure 64 Laboratory setup for L2000mm 
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compliance is necessary, and this is done in a similar, yet simpler manner than in section 6.5. 

The total stiffness of the system can be written as 

 
1 1 1

tot m sk k k
    (7.6) 

where 𝑘𝑚 is the machine stiffness and 𝑘𝑠 is the specimen stiffness. The relationship between 

any stiffness i and their corresponding deformation is 

 
i iN k w   (7.7) 

The stiffness of the specimen in the elastic region is given in equation (7.2). One data point was 

chosen from the force – displacement graph in the early part of the elastic regime and one at 

the end. These points gave a measure of the total stiffness: 

 2 1

2 1

tot

N N
k

w w





  (7.8) 

Through equation (7.6) the machine stiffness was estimated. Each of the 9 series rendered 

different values for the machine stiffness (in the range between 252 kN/mm and 614 kN/mm). 

This scatter is large, perhaps an indication that the assumption of a linear spring was not 

necessarily a good enough fit. The error in machine compliance could lead to a steeper or flatter 

force-displacement relationship than the correct one. Nevertheless, as this error is assumed to 

be low, the algorithm is kept. Since the machine compliance should be the same regardless of 

test specimen, the mean value was used. In later comparisons to simulations, the curves are 

slightly shifted so that a straight line between the two mentioned points – with a stiffness given 

in (7.2) – will end up in the origin. The initial slack of the tests will therefore cause the force-

displacement graphs to start at 𝑤 = 0, 𝑁 > 0 (figure 100).   

7.2.1 Compression test results 

All laboratory settings, obtained capacities and corresponding stresses are shown in table g2. 

The force – displacement curves and stress – strain curves from the laboratory are shown in 

figure 65 to figure 70. The buckling shape of A6060D100 and A6082D100 was a slowly 

progressing global instability, while the buckling shape of A6060D127 was local and the 

buckling propagation was sudden, possibly due to the excessive stored internal energy. The 

post-buckling shape of the specimens is shown in Appendix G.   
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7.2.1.1 A6060D100 

 

 

 

 

 

 

Figure 65 Force – displacement curves from compression tests of profile A6060D100L2000 

Figure 66 Stress – strain curves from compression tests of profile A6060D100L2000 
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7.2.1.2 A6060D127 

 

 

 

 

Figure 67 Force – displacement curves from compression tests of profile A6060D127L2000 

Figure 68 Stress – strain curves from compression tests of profile A6060D127L2000 
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7.2.1.3 A6082D100 

 

 

 

 

Figure 69 Force – displacement curves from compression tests of profile A6082D100L2000 

Figure 70 Stress – strain curves from compression tests of profile A6082D100L2000 
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7.2.1.4 Comparison of compression tests 

Table g2 shows that A6060D127 has the highest covariance (3.22 percent). The local buckling 

mode is induced when the internal strain energy 𝑈0 from formula (3.9) exceeds a certain limit 

in order to make an imperfection propagate into a buckle. It is believed that the imperfections 

of the cylinders to some extent can dictate at which load the cylinders fails, leading to a slight 

increase in covariance for this series.  

Table g2 displays a noticeable high covariance for A6082D100 (2.88 percent). This covariance 

comes in part because one of the cylinders (specimen 3-3) was cut 19 mm shorter than the target 

length of 2000mm. The capacity against global buckling (which is the failure mode observed 

in laboratory), scales against the length squared (3.31). The change in length should therefore 

lead to an increased capacity: 

 

2

1981 2000 2000

2000
1.02

1981
N N N

 
  

 
  (7.9) 

As the length was increased from L4D to L2000, the reduction of mean capacity in each series 

was 19 percent for both thick-walled cross-sections, while A6060D127 only exhibited a 

reduction of 3.6 percent (table 14 and table g2). One specimen of the latter series had larger 

capacity than any of the L4D specimens, hence this reduction might be partially due to scatter 

in results. Local instability dominates the failure mode, but at this length, some interaction with 

global buckling can affect the result, giving a slight reduction of capacity. 

Note that the covariance in table 13 and table g2 are based on the standard deviation given in 

(3.58), which might be a bad measurement for deviation when the number of samples is low. 

The sample size of each series of tests was 3. In order to ensure consistency and due to the low 

scatter of results, the measurement for standard deviation is not altered. 

7.3 The FEA model for compression tests 

The main objective for the Abaqus modelling is to create a robust FEA model that can represent 

results (force – displacement and buckling shape) up to maximum load for all three profiles for 

lengths up to 30 times the diameter. The procedure is an iterative process that started in section 

6.4 with correct representation of the material. Laboratory results from compression tests at 

L2D and L4D are used to optimize and validate the FEA model. Results from the compression 

test at L2000 are only used as a validation as the tests were executed two weeks before the 

delivery of this thesis.   
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7.3.1 Basis for the FEA model 

7.3.1.1 Solving algorithm 

The dynamic implicit solving algorithm is selected in order to ensure quasi-static loading by 

avoiding scaling. Choosing an implicit solver is justified by the simple geometry as well as the 

possibility to extend the model to long columns. 

When implicit solution algorithm is applied to bifurcation problems, a strict time limit has to 

be set for the maximum time step. If not, the bifurcation point initiating the buckle might not 

be detected by the solver. In all analyses except in section 7.3.2.1, identification of the 

bifurcation point was ensured by defining a maximum time step corresponding to 0.05 𝑚𝑚 

deformation. Finer time step increment was found to not alter the result. 

Because implicit solution algorithm was chosen, it was possible to employ higher-order 

elements S8R and C20R in addition to the lower-order S4R and C8R. 

7.3.1.2 The assembly 

The cylinder is modelled between two analytical rigid plates (figure 71), with the geometry 

given in table 2. In order to impose and track the displacement, each plate contains a rigid 

connected reference point with a given initial velocity. The RP placed at z = 0 is used to track 

the total reaction force and deformation of the system. A surface-to-surface contact is 

established between the plates and the column. Because the post-buckling behaviour was not 

of interest, self-contact was not modelled.  

7.3.2 Sensitivity analyses 

To ensure that the models are able to represent a correct solution, sensitivity analyses of mesh, 

friction and imperfection are conducted.   

 

Figure 71 Assembly in Abaqus model used  for compression test 
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7.3.2.1 Mesh analysis - L2D  

Selection of element type, shape and size can affect the solution to the FEA. In order to ensure 

that the mesh is able to represent the correct resistance, deformation and buckle pattern up to 

reached capacity, three mesh-related parameters are studied: element length, ETT and element 

type. Criteria used for validation are: force – displacement curves, axial load capacity, buckling 

shape and amount of artificial energy up to the point of maximum axial load. In order to assure 

a robust model, it is chosen that the mesh should exhibit the same properties and capacity as a 

refined mesh. 

The analyses are conducted on the profiles A6060D100L2D and A6060D127L2D. Material 

hardening is assumed to not alter the mesh sensitivity of the model. Due to long processing time 

of the material data from chapter 6, mesh sensitivity for A6060D100L2D and A6060D127L2D 

was analysed with preliminary material parameters. The results for A6060D100 are 

extrapolated to A6082D100.  

As a simplification of the model in the early stages of the parameter study, the volumetric 

elements are analysed with a maximum time step of 1 second. This corresponds to 1 mm 

deformation, and causes the represented data to appear less smooth. In subsequent analyses, the 

maximum time step is adjusted down to 0.05 seconds. It is assumed that the mesh sensitivity of 

the model is unaffected by this down-adjustment. 

The shell elements S4R and S8R and volume element C8R and C20R are evaluated. The volume 

elements are analysed with 1 and 3 ETT, and the higher-order elements are also studied with 2 

ETT. The element lengths analysed are 2.5, 5, 10 and 20 mm. 

The behaviour of the analyses were dependent upon the mesh, as seen in the force – 

displacement graphs in Appendix F. For some element types, the axial capacity of the cylinder 

also differed as the mesh was refined, as seen in figure 72 and figure 73 for A6060D100 and 

figure 74 and figure 75 for A6060D127. In these figures it is seen that the capacity of the shell 

elements converges to a different, slightly lower value than the volume elements. From figure 

f1, figure f2 (A6060D1100) and figure f8, figure f9 (A6060D127) it is observed that the shell 

elements do not well display the force-displacement relationship observed in laboratory, and 

that refining the mesh for A6060D100 leads to worse representation of force – displacement 

relationship. The C8 elements do not converge with 1 ETT (figure f3 and figure f10) and has a 

very low rate of convergence for 3 ETT (figure f4 and figure f11). C8 1 ETT is also unable to 

represent the correct buckling mode for all meshes.  
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Figure 72 Sensitivity of mesh for A6060D100L2D 

Figure 73 Sensitivity of mesh for A6060D100L2D (zoomed) 

 

Next figure 
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Figure 74 Sensitivity of mesh for A6060D127L2D 

Figure 75 Sensitivity of mesh for A6060D127L2D (zoomed) 

 

Next figure 
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As 20-noded C20R higher-order elements are introduced, a linear stress gradient is modelled 

within every element, and 1, 2 and 3 ETT gives good results even for the coarsest mesh. With 

3 ETT the A6060D127 elements becomes very distorted for the roughest mesh, with a length-

to-thickness-ratio of 34. This ill-conditioning gives rise to artificial stiffness, but is drastically 

reduced as the element length shortens. The amount of elements needed for a robust model, 

however, is so large that the computational cost far exceeds what is preferable, and 3 ETT for 

this cross-section is therefore discarded. It is desired, although not an absolute necessity, to 

have the same number of ETT for the two different cross-sections.  

In order to quantify the effect of ill-conditioning on A6060D127L2D, mesh with element length 

2.5 mm 1 ETT is compared to element length 10 mm 2 ETT (figure 76). Their respective length-

to-thickness-ratios are 1.4 and 11.3. The force-displacement curves were similar up to the point 

of maximum load, which deviated by 0.77 percent.  Element length 5 mm 2 ETT is introduced 

(figure 76), with a length-to-thickness-ratio of 5.6. Its deviation in maximum load is reduced to 

0.28 percent. Based on this information, ill-conditioning is assumed to affect the capacity only 

in a negligible way as long as the length-to-thickness ratio is kept below 10. 

 

 

 

Figure 76 Study of the effect of ill-conditioning for different ratios of element length to element 

thickness A6060D127L2D, C20R elements 
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Only one ETT could be sufficient for tests with linear variation in stress. Two ETT is preferred 

in order to create a robust FEA that can model local and global buckling modes of cylinders 

with different lengths. Especially short column tests are believed to be better modelled by 2 

ETT due to the tri-axial stress state close to the frictional plates. One ETT may lead to numerical 

problems, which for A6060D127L2D caused the artificial energy to take up over 10 percent of 

the energy of the whole mode, even for fine meshes. 1 ETT is therefore discarded and 2 ETT is 

chosen for all meshes.  

The element length 5 mm is chosen based on the convergence of the solutions seen in figure 73 

and figure 75. The deviation from the results for 10 mm mesh and 2.5 mm mesh indicates that 

the model with this mesh is robust with respect to element size. The thickness-to-length ratios 

of the elements are 5.6 and 2.1 for A6060D127 and A6060D100 respectively, and are 

considered adequately low. An element size of 10 mm might have been sufficient (if ill-

conditioning did not void the results), but in order to extrapolate the model to different lengths, 

a safety margin is included in the choice of element length. 

As a result of the mesh parameter study, element type C20R is chosen and all cylinders are 

modelled with an element length of 5 mm and two elements through the thickness. 

7.3.2.2 Validation of mesh - L2000 

The mesh is validated for a length corresponding to the last laboratory session, in order to ensure 

that a change of length and possibly a change failure mode do not affect the robustness of the 

model. This validation is done for some chosen meshes with C20R elements, and the objective 

is solely to confirm that small changes in element size do not cause significant changes in 

capacity or buckling mode. The results presented in table 15 and figure 77 show that the model 

is robust and that a change of mesh is unlikely to alter the behaviour up to the point of maximum 

load for the most slender cross-section. The artificial energy was also adequately low. The 

previously chosen mesh of C20R elements with 2 ETT and element length 5 mm is judged 

robust and validated. 
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Table 15 Axial capacity [kN] from mesh sensitivity analyses at L2000 

ETT 1 2 3 

Element length [mm] 5 20 10 5 2.5 5 

A6060D100L20D 247.6 247.6 247.6 247.6 247.6 247.6 

A6060D127L20D 124.0 124.1 124.1 124.0 124.0 124.0 

 

 

7.3.2.3 Friction coefficient analysis - L2D 

The analytically rigid end plates apply the load to the cylinder, and it is desirable to achieve 

clamped BCs by applying friction to the contact. In light of chapter 5, the frictional coefficient 

is analysed in order to define whether or not the laboratory setup will give fully clamped BCs. 

The frictional coefficient between aluminium and steel on untreated surfaces is typically close 

to 0.61 [28]. From figure 78 and figure 79 it is concluded that slight deviations from 𝜇 =

0.6 will not alter the capacity or behaviour of the cylinder significantly. Frictional coefficient 

of 0.61 is chosen for the model. 

Figure 77 Mesh sensitivity - A6060D127L20D 
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Figure 78 Sensitivity tests of friction - A6060D100L2D 

Figure 79 Sensitivity tests of friction - A6060D100L2D (zoomed) 

Next figure 
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7.3.2.4 Imperfection analysis - L2D 

In this section, the imperfection types shown in figure 6 are introduced to the FEM model as 

described in section 4.1.1. The objective is to establish to what degree different types of 

imperfections influence the force – displacement relationship and failure mode. Note that the 

analyses were carried out on L2D, and discharged before the execution of the compression tests 

of L2000.  

The capacity without imperfections were lower than what observed in compression tests, and 

the buckling shape was correct, but as mentioned, modelling a mathematically straight and 

geometrically perfect cylinder can reduce the robustness of the model and may give rise to 

erroneous buckling resistance. 

In order to introduce eigenmode imperfections, the first eigenmode from an LBA analysis in 

the FEA model is calculated and imposed on the model with a given amplitude. In addition to 

eigenmodes from LBA, tests with the vase-shaped imperfection and the global imperfection 

from section 4.1.1 are discharged. In order to implement the vase-shaped imperfections, the 

number of buckles is calculated from equation (3.56) and rounded to the nearest integer. The 

results from (3.56) and the change of area according to formula (4.4) is shown in table 16. 

 

The results displayed in figure 80 and figure 81 show that the eigenmode imperfection barely 

alters the capacity unless unrealistically large imperfections were introduced. The eigenmodes 

at L2D were not axisymmetric, and predicted an elastic buckling load much higher than the 

actual capacity. Amplitude increased to 0.1 times the thickness did not cause significant 

changes in failure mode or force – displacement relationship. 

Table 16 Basis for introducing vase-shaped imperfections  

  

𝐸𝑇
𝑝𝑙  [𝑀𝑃𝑎] 

 

𝐸𝑆
𝑝𝑙[𝑀𝑃𝑎] 

 

𝑚 

 
𝐴

𝐴0
 

(a=0.5t) 

 
𝐴

𝐴0
 

(a=0.1t) 

 
𝐴

𝐴0
 

(a=0.15mm) 

A6060D100 810 12149 7 0.908 0.981 0.994 

A6060D127 1160 89495 9 0.972 0.994 - 

A6082D100 777 31477 5 0.908 0.981 0.994 
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Figure 81 Influence of imperfection for the profile A6060D127L2D 

Figure 80 Influence of imperfection for the profile A6060D100L2D 
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The FEM model was sensitive towards vase-shaped imperfections, which lowered the capacity 

even for small imperfections (figure 80 and figure 81). This type of imperfection caused the 

failure mode of the model (figure 82) to deviate from what was seen in the laboratory (Appendix 

E). The difference between the resulting shapes might stem from the assumptions made in the 

NACA report [7], described in section 3.3.2: No friction in the BC plates, axisymmetric 

deformation pattern and no elastic strains. The assumption of no friction affects the assumed 

buckling shape upon which the formulas are derived. This may be the cause of the erroneous 

buckling shape exhibited when introducing the imperfection through this theory. No further 

inspection of the vase-shaped imperfection is discharged. 

 

 

 

 

 

 

 

 

 

 

 

One last imperfection was attempted. The cylinder was modelled as the area between two 

circles, and the inner circle was moved relatively to the outer circle (figure 83). When this 

movement was 0.15 mm, A6060D100L2D showed no change of capacity but a slight 

localization of deformation on the most thin-walled side. The imperfection was increased to 

2.35 mm = t/2, hence the “cylinder” had a varying thickness, from t/2 on the thin side to 3t/2 on 

the thick side, where t denotes the original thickness. This is much more than what was 

measured in from the laboratory specimens. Introducing this imperfection altered the failure 

mode to a more one-sided buckle, but the capacity was only reduced by 2 percent, despite the 

amplitude of the imperfection. This imperfection was discarded similarly to the other two local 

imperfection types.  

 

 

  

 

 

 

(a) A6060D100, m=7, a=0.15 mm (b) A6060D127, m=9, a=0.177 mm 

 Figure 82 Failure mode from vase-shaped imperfection 
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The global imperfection was assumed to not affect the capacity or behaviour of the cylinder, 

both because the imperfection given as a multiple of the length was low and because the failure 

modes were assumed local. The difference was negligible, albeit the global imperfection was 

not discarded as it was believed to be important for longer cylinders. 

The consequence of not inducing local imperfections on longer specimens, as well as the impact 

from the compression test results at L2000, is assessed and discussed in section 7.4.3. 

 

7.4 Comparison of FEA model and executed compression tests 

7.4.1 FEM Analyses of L2D and L4D  

As the chosen parameter studies are discharged and the choices of the model is established, 

FEM analyses on the laboratory lengths are discharged for L2D and L4D. The mesh is chosen 

as 5 mm long C20R elements, with depth corresponding to two elements through thickness. 

In section 7.3.2.4, the deviation with different imperfections for L2D and L4D was small, hence 

only imperfections 𝑎1 and 𝑎3 from (4.3) is presented. The stress – strain curves from laboratory 

tests and their FEA counterpart are shown in figure 84 to figure 86 and the corresponding force 

– displacement graphs are shown in Appendix H. 

Figure 83 Cross-section with translated inner circle 
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Figure 84 Stress – strain graphs from compression tests and FEA analyses for A6060D100L2D and A6060D100L4D 

Figure 85 Stress – strain graphs from compression tests and FEA analyses for A6060D127L2D and A6060D127L4D 



125 

 

The general trends displayed are that the FEA results yields at slightly lower capacity compared 

to the compression tests (table 17), and the imperfections caused negligible differences in 

capacity. The plastic hardening spans across the same strain values, and buckling occurs at 

roughly the same strain but at lower stress (figure 84 to figure 86). The reasons for this 

underestimation of force may stem from wrong material modelling.  

Table 17 Capacity of short column compression tests [kN] 

FEA model with different imperfections and compression test results 

 

 A6060 

D100L2D 

A6060 

D100L4D 

A6060 

D127L2D 

A6060 

D127L4D 

A6082 

D100L2D 

A6082 

D100L4D 

FEA, 𝑎1 305.3 302.8 132.7 132.3 472.0 465.1 

FEA, 𝑎3 305.3 305.5 132.7 132.7 472.1 472.5 

Compression 

tests 

311.41 311.48 138.15 138.23 505.58 499.34 

 

  

Figure 86 Stress – strain graphs from compression tests and FEA analyses for A6082D100L2D and A6082D100L4D 
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With no imperfections introduced to the FEA model, the deformation pattern at maximum load 

(figure 87) was similar to that seen in the laboratory for all profiles. Up to the point of maximum 

load, the deformation of the laboratory specimens was more or less symmetric, similar to the 

FEA solution. In post-buckling the largely symmetric FEA models deviated, as laboratory 

specimens buckled only on one end of the cylinder. Post-buckling behaviour is assumed to not 

affect capacity or pre-buckling behaviour, and is neglected herein. 

7.4.1.1 Tracking of radial displacement 

A new way of comparing FEA results with laboratory tests is suggested: comparison of radial 

displacement. By applying 3D DIC to the tests, it is possible to compute the movement towards 

the camera for each node. One row of nodes spanning across the length of the cylinder is 

analysed – the row closes to the camera is chosen, so that any movement towards the camera is 

a radial displacement. At each end of the cylinder, there was an area that only one camera could 

observe throughout the test. The mesh in eCorr could only cover the part which was visible to 

both cameras, hence the outer-most parts of the mesh was not included. No marks were made 

on the specimen to specify where the mid-point of the specimen were, so there was no way to 

know if the mesh was placed symmetric or not. In order to plot the deformation of the surface 

an assumption was made: The pre-buckling deformations were symmetric, so that the two major 

buckles had equal distance to their closest end plates. With this correction, the deformation 

from eCorr could be plotted, and an example of this is shown in figure 88. The top and bottom 

buckle is of similar magnitude up to the point of maximum load.  

One key finding in this figure is that the cylinder displays many tiny buckles before maximum 

load, as assumed in the derivations behind local buckling formulas in section 3.3.2. At 

 

Figure 87 FEM contour plot of logarithmic strain at maximum load for A6060D100L2D 
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approximately 50 percent of the deformation of at maximum load, when the load was 97 percent 

of maximum, the major buckles at the ends of the cylinder started forming. 

 

As the post-buckling shape as well as the deformation of the equivalent nodes in Abaqus is 

introduced, it is seen that the FEM model is unable to represent the distance between the major 

buckles and the ends of the cylinder, however the buckle amplitude from DIC and FEA is of 

similar magnitude (figure 89). Greatly refining the mesh as well as lowering the friction 

coefficient did not cause a noticeable change of deformation pattern. 

This type of graphs may in future work be helpful in assessing to what degree imperfections 

succeed at representing the correct failure mode from laboratory testing. High-quality cameras 

and a large variation in imperfection types could improve this process. For this thesis, however, 

these radial graphs are not used any further. 

Figure 88 Radial displacement from DIC - A6082D100L2D. 
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7.4.2 FEA model extrapolation 

The established FEA model is extrapolated to find the capacity for lengths up to thirty times 

the diameter. This extrapolation into the globally buckling range (figure 10, range 3) requires 

the introduction of imperfections, as mentioned in section 4.1.1. These imperfection amplitudes 

are 𝑎1 to 𝑎3 from formula (4.3), implemented as global sinusoidal imperfections according to 

(4.1) for all series considered. 

The relationship between the capacity of the FEM analyses and the length of the cylinders is 

shown in figure 90 and figure 91 for A6060D100, figure 93 and figure 94 for A6060D127 and 

figure 96 and figure 97 for A6082D100. These figures also show the capacity of the cylinders 

tested in the laboratory. Tabular data is shown in table h1. 

For imperfection 𝑎1, the obtained deformed shape at maximum load is shown in figure 92, 

figure 95 and figure 98. The deformations are scaled up in the transverse directions. In order to 

give a good representation of the failure modes, different scaling is chosen for each analysis.  

Figure 89 Radial displacement from DIC and FEA - A6082D100L2D 
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Figure 90 Maximum load from tests and FEA for A6060D100 for lengths 1D to 30D 

Figure 91 Maximum load from tests and FEA for A6060D100 for lengths 1D to 5D 

 

Next figure 
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Figure 93 Maximum load from tests and FEA for A6060D127 for lengths 0.5D to 30D 

Figure 94 Maximum load from tests and FEA for A6060D127 for lengths 0.5D to 12D 

 

Next figure 
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Figure 96 Maximum load from tests and FEA for A6082D100 for lengths 1D to 30D 

Figure 97 Maximum load from tests and FEA for A6082D100 for lengths 1D to 5D 

 

Next figure 



134 

 

 

 

 

 

    

   

    

  

(a
) 

L1
D

 
(b

) 
L2

D
 

(c
) 

L4
D

 
(d

) 
L8

D
 

(e
) 

L2
0

D
 

 
F

ig
u

re
 9

8
 B

u
ck

li
n
g

-s
h
a

p
e 

a
t 

m
a

xi
m

u
m

 l
o
a

d
 f

o
r 

A
6

0
8

2
D

1
0
0

 w
it

h
 i

m
p

er
fe

ct
io

n
 a

 =
 L

/1
0

0
0
 



135 

 

The failure modes from the FEM analyses for L4D are local, but global imperfection still affect 

the capacity. A6060D100L4D has 1.6 percent lower capacity for L/1000 than for no 

imperfection, although both failure modes are dominated by local instability modes. 

The FEA model generally fails at obtaining as much compression resistance as the laboratory 

specimens for L2D and L4D. For thick-walled cylinders, the accuracy of the FEA model was 

highest at L2000, indicating a good simulation of globally buckling columns. Local failure is 

largely dependent upon the plastic material properties, such as yield stress and hardening, while 

the global failure to a greater extent is dependent upon stiffness and geometry, and occurs at 

low plastic strains. The cause of the lack of accuracy on short columns therefore might be due 

to deficits in material modelling. 

In figure 99 it is seen that the engineering yield stress for A6082T6 is lower for the tension test 

than the compression test, an indication that the material model based on tension test results is 

not well suited for modelling compression. The difference is roughly 5 percent, which is of the 

same magnitude as the capacity error for 6082D100L2D.  

   

 

  

Figure 99 Comparison of stresses. Tension test results have been 

down sampled (fewer frames) for easier graph comparison 
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There are at least 5 sources of errors that might have caused this deviation: 

1. As mentioned in section 3.2.4.1, the alloys might exhibit a strength differential effect 

which increases the strength in compression by several percent compared to tension. 

If this is the case, the tension tests are not suited for modelling compression properties. 

2. Wire EDM was used to cut the tension test specimens. The area close to the cut might 

have been heat affected by the cut. Heat affecting lowers the ductility and strength of 

aluminium. If a heat affected zone was established during the cut, the mean strength 

measured from the tension test would be slightly lower than from a non-cut specimen. 

3. The thickness of the tension specimens was measured by electronic calipers, which 

may have resulted in an overestimation of thickness, and consequently an 

underestimation of stress. The correction described in (7.5) was not applied, hence 

some overestimation took place.  

4. The amount of tension tests was low, making the model prone to scatter among 

specimens. The seam welds may have affected some specimens, increasing the 

random error, thus leading to a deviation between the measured mean strength and 

the actual behaviour. 

5. Some degree of human error might have affected the results. Great effort was put in 

double-checking calculations, derivations, scripts and measurements, but this source 

of error cannot be completely ruled out. 

From figure 92 and figure 98 it is seen that the thick cross-sections display a pure global 

buckling shape at L8D, while L4D has a combined failure mode, indicating that this length is 

in the transition range for the FEA model. For A6060D127, the pure global buckling pattern is 

obtained for L20D, while L8D seems to be in the transition range (figure 95). 

As insinuated in section 7.3.2.4, not introducing imperfections to the model can alter its 

behaviour. As seen in table 6, it was anticipated that A6060D127 would buckle locally for 

slightly longer specimens than the thick-walled cross-sections. The FEA model is highly 

dependent upon global imperfection for longer specimens. These imperfections were seen to be 

crucial for correct representation of A6060D100 (figure 90 and figure 91) and A6082D100, but 

caused faulty representation of A6060D127, which estimated global buckle prematurely. This 

effect is further studied in section 7.4.3.2. 
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7.4.3 FEM analyses of L2000 

7.4.3.1 Analyses of A6060D100L2000 and A6082D100L2000 

For L2000, the force-displacement graphs from laboratory tests is shown in figure 100 and 

figure 101, together with FEA results with imperfections 𝑎1, 𝑎2 and 𝑎3.  

 

A6060D100 and A6082D100 managed to accurately imitate the laboratory behaviour at L2000 

with an imperfection of 𝑎2 = L/2000 = 1 mm, which is in good accordance to the 

recommendation from Mazzolani (section 3.4.1). The buckling mode of the model with 

imperfections was global, and the FEA results showed close resemblance to the behaviour of 

the test specimens. Before reaching maximum load there is a deviation in the force – 

displacement relationship, where the FEA solution is stiffer than the laboratory test specimen 

(figure 100 and figure 101). This effect is most noticeable on A6060D100, which has a lower 

yield stress than A6082D100. 

Figure 100 Force – displacement from compression tests and FEA, A6060D100L2000 
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An important discovery is the large deviation between low imperfection and no imperfection. 

Without any imperfection for A6060D100, the axial capacity was estimated 21.9 percent higher 

with 𝑎3 than for 𝑎2, and this load was reached at 9.6 times as much deformation. The thick-

walled cross-sections therefore require imperfection in order to correctly model global 

buckling. 

Note that specimen 3-3 is somewhat stiffer and reaches a slightly higher capacity than the other 

specimens and analyses of type A6082D100 (figure 101). This might be because the length of 

this specimen was 1981 mm, not 2000 mm. 

7.4.3.2 Imperfection analysis – A6060D127L2000 

Compression tests of the profiles A6060D127L2000 exhibited local instability. FEA with 

imperfections 𝑎1 and 𝑎2 led the model to exhibit global buckle (similar to figure 95 (e)) and 

slight underestimation of capacity (figure 102). Analyses with no imperfection (𝑎3) gave 

buckling shape localized close to the end of the cylinder, closely corresponding to the observed 

failure mode from the compression tests. This analysis closely followed the force – 

displacement relationship seen in compression tests (figure 102). Modelling without any 

imperfection is not a robust solution, as any bifurcation (local or global) is hard to determine. 

Figure 101 Force – displacement from compression tests and FEA, A6082D100L2000 
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This is readily seen from the lack of reduction of capacity in figure 93. In order to predict the 

correct buckling shape, the slender A6060D127 would perhaps require a lower imperfection 

than the thick-walled cross-sections, due to a lower value of 
t

r
 . 

  

 

 

New analyses with global imperfections , ,
5000 10000 20000

L L L
and

100000

L
  are carried out. All 

imperfections led to global buckling pattern, underestimating capacity and predicting failure at 

a lower deformation (figure 103). Lowering the amplitude of the imperfection resulted in higher 

capacity (figure 104), but the model is far from robust when an imperfection of  
100000

L
 can 

change the failure mode into an erroneous one. 

In order to improve the model for A6060D127, another measure of imperfection could be 

implemented. A modification of the vase-shaped imperfection can perhaps solve this problem. 

Global imperfection seems to be necessary to model global failure modes correctly, but as 

displayed in figure 103, the global mode can override the local mode erroneously. In section 

7.3.2.4 it was seen that small local imperfections did not alter the capacity at L2D. For longer, 

locally buckling columns such as A6060D127L2000, these imperfections (in combination with 

Figure 102 Force - displacement from compression tests and FEA, A6060D127L2000 
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the necessary global imperfection) may supress premature estimations of global buckling, 

possibly leading to the correct failure mode but not increasing the capacity. This interaction 

might require a thorough study of the mechanisms occurring in cylinders up to the point of 

buckling. This may be complex as the governing imperfection mode is not necessarily identical 

to the post-buckling shape, hence finding a good imperfection from compression test results 

may be difficult. After the longest compression tests were carried out, there was not enough 

time for the authors to test out this new hypothesis on imperfections.  

 

 

 

Figure 103 Global imperfection amplitude study for A6060D127L2000 

Figure 104 Reduction of global imperfection in FEA model for A6060D127L2000 
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Premature global instability in the FEA model was only observed for the thin-walled cross-

section for the lengths tested in laboratory. In order to establish whether or not this occurs for 

the thicker cross-sections, more laboratory tests in the transition range (5-8 times the diameter) 

could be carried out. 

It is possible that the interaction between local and global buckling modes on thin cross-sections 

is best carried out with flexural shell elements, such as S8R. Explicit solution algorithm would 

perhaps improve the simulations due to its short time increments. These topics are not further 

investigated. 

7.5 Comparison of Eurocode 9 and laboratory 

The capacity estimates from Eurocode 9 were lower than the observed capacity from 

compression tests. The deviation was largest on the shortest cylinders; this lack of accuracy is 

assumed to stem from two sources. Firstly the Eurocode does not allow stresses above 𝑓0. This 

constraint can cause significant underestimations on cross-sections that obtain he most plastic 

strain. From figure 56, figure 59 and figure 62 as well as the cross-sectional slenderness factor 

𝛽, it is concluded that this underestimation affect A6060D100 and A6082D100 the most. 

The second source of underestimation on short lengths is the conservative formulas in Eurocode 

9 part 1-5, predicting a very low membrane buckling stiffness for shells. Its main deviation 

from other theoretical sources is the reduction factor 𝐶𝑥, causing a reduction of the critical 

meridional buckling stress by up to 40 percent. This led to estimated capacity of the cylinders 

to be slightly lower than observed in laboratory (table 18). This underestimation is most 

prominent in the cross-section which is most prone to meridional buckling, which is the cross-

section with the highest local slenderness factor 𝛽: A6060D127.  

Eurocode 9 anticipates only a low reduction of capacity as the length is increased from L2D to 

L4D, in good accordance to laboratory tests. The lack of accuracy is similar on L2D and L4D 

(table 18).  

The globally buckling cylinders do not obtain as much hardening, which may explain why the  

underestimation from Eurocode 9 (table 18) is lower than for the other predictions. 

The accuracy of the Eurocode varies with length; hence it is not only caused by a constant safety 

margin. This reduces the precision of the Eurocode, which at short lengths cause the code to 

exploit only an amount of the strength of the structural member.  
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Table 18 Axial capacity and buckling mode according to Eurocode 9 part 1-1, part 1-5 and compression tests 

 

 A6060D100 A6060D127 A6082D100 

Length L2D L4D L2000 L2D L4D L2000 L2D L4D L2000 

Nb,rk,part1-1 [kN] 270.2 270.2 245.3 133.3 133.3 125.3 443.3 440.9 381.2 

Nx,rk,part1-5 [kN] - - - 119.2 118.5 112.1 420.0 415.2 394.7 

EC 9 predicted 

buckling mode 

X X G L L L L L G 

N̅laboratory[kN] 311.4 311.5 252.6 138.2 138.2 133.2 505.6 499.3 405.4 

Laboratory test 

buckling mode 

L L G L L L L L G 

 

The buckling modes assumed from Eurocode 9 and the compression tests are also seen in table 

18 (based on 𝐿𝐺
𝐸𝐶  from table 6) where G indicates global buckling mode, L a local mode and X 

indicates that buckling does not affect capacity. In the latter case, Eurocode assumes that the 

cross-section reaches its capacity, and that buckling occurs in the subsequent deformation, 

which does not increase the axial resistance of the cylinder. The post-buckling mode of this 

model is corresponding to the local failure mode. Eurocode 9 therefore predicts correct failure 

mode for all laboratory specimens. 

7.5.1 Local slenderness 

The local slenderness according to Eurocode 9 defined in formula (C.6), with 𝐶1 = 32 and 𝐶2 =

220 (table c1). For short thin-walled cylinders without welds, the axial capacity can be written 

as  

 
0 0R cN f A   (7.10) 

For the laboratory tests at L2D and L4D, this reduction factor is estimated by 

 
0.2 0.2

cr

eff cr
c

N

A

f f


     (7.11) 
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Note that this reduction factor is only valid when global instability does not reduce the capacity. 

The results are shown in figure 105, the difference between the laboratory results and the 

Eurocode is explained mainly by the inability of plastic hardening in the code. 

The estimates according to Eurocode 9 are somewhat conservative, as seen by A6060D127 

which is of cross-sectional class 4 but obtains 𝜌𝑐 > 1.0. A hypothetical extrapolation of the 

class 4 curve seems to fit with the points plotted, but Eurocode is restricted to 𝜎 ≤ 𝑓0, therefore 

not allowing 𝜌𝑐 > 1.0. 

 

7.6 Comparison of theoretic approaches and compression tests 

Based on the compression tests, the accuracy of the formulas and equations from chapter 3 can 

be studied. Data from table 6 predicts inelastic buckling modes for the cylinder lengths tested 

in laboratory, and the capacity of the cylinders are governed by formulas for local (3.54) and 

global (3.35) buckling. 

Instability is defined as the point where the cylinder stress is equal to the critical stress from 

either one of these two formulas. Because of the inelasticity, both the cylinder stress and the 

buckling stresses are function of the strains. The local buckling criterion relates to the moduli 

based on plastic strains while the global criterion relates to the tangent modulus based on the 

Figure 105 Buckling reduction factor according to Eurocode 9 and estimated from compression tests L2D and L4D 
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total strains. The Voce hardening curve (figure 44) is given as a function of the plastic 

logarithmic strain, but plotted against the total engineering strain. Formula (3.10) is applied to 

calculate 𝜀 from 𝜀𝑃𝑙 and 𝜎, then formulas (3.4) and (3.6) are used to calculate 𝑒 and 𝑠 from 𝜀 

and 𝜎. 

Stresses and strains are calculated from the force and displacement recorded from compression 

tests. Based on these data sets, the plastic secant stiffness was calculated from formula (3.15) 

and a plastic tangent stiffness was calculated similar to that in chapter 6: 

 1 1
,

1 1

Pl n n
T n Pl Pl

n n

E
 

 
 

 





  (7.12) 

From these data points, at any strain Pl

n  a corresponding critical buckling stress , ,cr Pl n  was 

calculated from formula (3.54) for each specimen. These results were smoothed using the 

moving average method, and are shown in figure 106 to figure 108. In these figures, an 

analytical result is shown as well, obtained by using parameters from the Voce hardening rule 

(table 9) and formula (3.29). The global inelastic buckling stress is calculated from the Voce 

parameters as well, but only shown for the lengths L4D and L2000, as L2D rendered too high 

capacity to be shown in the figure. 

The global and local instability formulas relate to the longitudinal stresses and strains. Voce 

hardening rule relates the equivalent Mises stress 𝜎𝐸𝑞 from formula (3.26) to the accumulated 

plastic strain p defined in formula (3.27). In a uniaxial stress state, these would be equal to the 

longitudinal components. Simulations from FEA shows that the loop stress in general is low 

and the radial stress is negligible. For short, locally buckling cylinders, the most critical 

elements (placed in the middle of the buckle) accumulates some loop stress, increasing the 

equivalent stress by 20-30 percent. As a simplification, this effect is neglected. The graph 

displaying Voce hardening stress as a function of plastic strain therefore only relates to the 

longitudinal components. 
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Based on data at the point of maximum load for each specimen tested in laboratory, the stress 

and strain is plotted as points in the graphs. The intersection between the Voce stress curve and 

the smooth theoretical inelastic local buckle is shown with a black filled circle, this stress was 

given as pl

cr  in table 6.  

The full summary of obtained stresses and failure modes (as in section 7.4.3) are shown in table 

19. 

The accuracy in terms of estimated failure strain was best for A6060D127, which missed with 

at most 0.15 percent of the engineering failure strain observed in tests. 

Figure 106 Inelastic instability criteria and laboratory results - A6060D100 
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For the longest specimens, the graph showing the criterion for global buckling crosses the stress 

graph at lower stresses than the local buckling graph. This is the graphical proof that the 

theoretical approaches estimate global buckling at this length. The accuracy regarding capacity 

was high for all L2000 specimens, and for A6082D100 the capacity was overestimated (table 

19). This accuracy is believed to stem from the dependency upon elastic properties rather than 

plastic, as the failure occurs at very low plastic strains. Global buckling was also predicted for 

A6082D100L4D, but the accuracy of this estimate was flawed as it estimated global buckling 

at an engineering strain of 0.8 percent, while the observed failure mode is local with roughly 

2.5 percent. 

The observed failure modes for A6082D100L4D and A6060D127L2000 were local, hence the 

predictions were wrong. 

Figure 107 Inelastic instability criteria and laboratory results – A6060D127 
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The theoretical approach chosen models inelastic local buckling through formula (3.54) and 

gives the most accurate results for the cross-section most prone to local buckling, A6060D127 

(table 19).  The accuracy declines to a deviation of roughly 5 percent as the cross-section 

becomes thicker (A6060D100) and misses by almost 10 percent (table 19). for the strongest 

material (A6082D100). Deviations could indicate wrong material modelling, as mentioned in 

section 7.4.1. Applying formula (3.54) with empirical data from the compression tests by using 

formula (7.12) did not increase the accuracy except for A6082D100. Formula (3.54) therefore 

underestimates capacity for the given laboratory specimens. 

According to NACA (section 3.3.2), the pre-buckling phase is characterized by m small buckles 

(formula (3.56)) spread evenly across the length of the cylinder. At buckling, one of these will 

dominate in an instability failure. Equation (3.56) estimated m = 9 half buckles L2D (4 or 5 

outwards buckles) and twice as many for L4D, but figure 60 show 7-8 buckles for both lengths. 

Figure 108 Inelastic instability criteria and laboratory results - A6082D100 
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This error might be due to the erroneous assumptions behind the formulas derived by NACA, 

such as frictionless BCs. 

Table 19 Estimated and observed capacity and failure mode 

 A6060 

D100 

Estimated 

A6060 

D100 

Observed 

A6060 

D127 

Estimated 

A6060 

D127 

Observed 

A6082 

D100 

Estimated 

A6082 

D100 

Observed 

L2D capacity [kN] 295.5 311.4 134.6 138.2 464.2 505.6 

L2D failure mode X L L L L L 

L4D capacity [kN] 295.5 311.5 134.6 138.2 454.0 499.3 

L4D failure mode L L L L G L 

L2000 capacity [kN] 251.6 252.6 127.7 133.2 416.8 405.4 

L2000 failure mode G G G L G G 

 

7.7 Comparison of all approaches 

7.7.1 Results for L2D, L4D and L2000 

This section aims to analyse and compare the four sources of information: the compression test 

results, theoretical estimates, characteristic capacity from Eurocode 9, and FEA results. The 

engineering stress at maximum load shown in table 20 displays to what degree the different 

approaches succeed in predicting laboratory behaviour. The stresses at maximum load are 

presented in table 20 with an error measurement chosen as: 

 
max, max,

max,

*100%
i lab

lab

i

 




   (7.13) 
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In general, all approaches displayed good accuracy at predicting maximum load. Eurocode was 

the only theoretical source that accurately predicted the buckling mode obtained from the 

compression tests, although the predicted stress was inaccurate compared to FEM analyses and 

the results from theoretical formulas. Its deviation is seen in the local slenderness reduction 

factor from figure 105, hence if the graph for 𝜌𝑐 was extended, the accuracy of the code would 

be greatly improved. 

All sources of predictions gave good estimates of the global buckling pattern and capacity for 

long, thick-walled cylinders (table 20). 

No global buckling shape was observed for A6060D127, and the high local slenderness might 

have been the cause for lower accuracy on this cross-section from all sources except NACA, 

which deviated with only 4.2 percent.  

The largest scatter in capacity estimates are found for A6082D100, which both included the 

least accurate estimate and the only overestimations of capacity (not considering FEA without 

imperfections). The theoretic approach wrongly predicted global buckling at L4D, and all 

estimates for capacity at L2D and L4D missed by more than 6 percent. The material modelling 

was possibly worse for this material than for the other two. 

The highest accuracy is in general found for A6060D100, where FEM simulations displayed 

roughly two percent deviation from compression tests results. 

Table 20 Measured and predicted buckling stress (engineering longitudinal stress) 
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7.7.2 Results for all lengths 

Figure 109 to figure 111 shows the calculated capacity according to Eurocode 9 from section 

3.5.3, and display results from three series of FEM analyses (7.4.2) and the nine laboratory tests 

for each cross-section and alloy, described in 7.1 and 7.2. In these figures, the gap between 

estimates from Eurocode 9 and FEA is initially large on short columns, but as the column length 

increases, the gap shrinks. For the slenderest cross-section, this gap is persisted for lengths 

above two metres, compared to the FEA results which seem to only give a slight 

underestimation of laboratory tests (figure 110). From this figure, if ignoring the L2000-

specimen with highest capacity, it would seem like 2
2000

L
a   is a good fit, underestimating 

the laboratory results with the same amount on all lengths. However, as pointed out in section 

7.4.3 and 7.4.2, the failure mode is global instead of local and the results are therefore not 

reliable.  

  

Figure 109 Comparison of results for A6060D100 
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Figure 110 Comparison of results for A6060D127 

Figure 111 Comparison of results for A6082D100 
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The Eurocode has in general been most accurate in its predictions of buckling mode. Hence, 

any disagreement between Eurocode 9 and the FEA model regarding buckling mode should be 

investigated. It is assumed that the estimate of where the transition range between local and 

global buckling initiates in the FEA model, to some degree should coincide with the Eurocode 

estimations. The Eurocode is not as close to the correct capacity on shorter columns as the FEA 

model (table 20), but it can be used as an indicator of the buckling mode, and for short columns 

an extension of the local slenderness reduction factor 𝜌𝑐 seen in figure 105 into the plastic 

regime could modify the results to become more accurate. 

A6060D100 does not buckle meridionally according to the code. The plateau of local buckling 

(mentioned in section 3.6) ends at roughly the same length for Eurocode and the FEA model. 

For A6060D127 there was no such consistency, as the FEA model initiated global interaction 

of buckling shape at roughly L8D (figure 110 and figure 95) while the Eurocode assumed local 

dominated failure mode on all lengths considered. The same effect is to some degree seen for 

A6082D100 (figure 111) 

In figure 112, the figures presented above are normalized and compared. It is seen from this 

graph that as the Eurocode predictions generally obtain increased accuracy for longer specimens 

with larger global slenderness 𝜆. The low predictions from Eurocode 9 is an indication of its 

safety margins, built into the material model. 

According to the FEA model, decreasing the length of a thick-walled high-strength profile to a 

global slenderness below 10-20 greatly increases its axial capacity (figure 112). This limit 

slenderness may in reality be larger due to premature buckling modes in the FEA model, 

initialized by the chosen global imperfection (as discussed in section 7.4.3). This increased axial 

capacity may be an important aspect in design of modules of truss systems in power pylons in 

order to fully exploit the strength of the structural components. Taking this effect into account 

can increase the utilization of the material by optimizing the length of the members, which may 

to a larger extent enable economically competitive power pylons. Note that in order to apply 

the results from FEA to a design situation, a larger safety margin has to be applied than in the 

Eurocode, as the FEA model may be less documented and contain larger uncertainties. 
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Figure 112 Normalized capacity as a function of global slenderness from compression tests, FEA and Eurocode 9. 
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8 Conclusions 

Material and mechanical behaviour of hollow cylinders in aluminium has been studied under 

inelastic local and global instability. Analytical and empirical theories and guidelines from 

literature has been expounded, their accuracy assessed in comparison with compression test 

results. These compression tests were executed on lengths L2D, L4D and L2000 and displayed 

small scatter in behaviour and capacity. 

A planned laboratory setup with low-friction spherically shaped boundary conditions was 

discarded when FEA modelling revealed a dependency of frictional coefficient which was 

unachievable in laboratory. 

Material inelastic properties of aluminium alloys 6060T6 and 6082T6 are adapted to Voce 

hardening law. This adaption was based on tension tests and only partially succeeded in 

modelling the compressive strength of the materials in FEM analyses, despite a good fit in 

tension modelling. The deviation in compressive capacity was 2-4 percent for alloy 6060T6 and 

6-7 percent for 6082T6. 

The implicit dynamic FEA model representing the axially compressed hollow cylinders from 

laboratory tests simulated the behaviour with high accuracy when modelling short, locally 

buckling columns. Introducing a global imperfection with amplitude L/2000 rendered excellent 

results for the longest columns with thick-walled cross-section, but induced erroneous global 

buckling mode for A6060D127 with imperfections as low as L/100000. 

The thick cross-sections displayed a drastic drop in axial capacity as the global slenderness is 

increased above 10-15. Exploiting this result may enable economically competitive solutions 

to the design of power pylons. 
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9 Future Work 

As of June 2016, the project on power pylons in aluminium is still in its early stages. This thesis 

has created a basis for calculations of material and stability which may be improved by further 

implementation of suggested improvements. 

Regarding the material model, additional tests should be performed, not only to reduce the 

random error, but to explore the possibility of the sources of error discussed. Hopkinson-bar 

tests can assess the compressive and tensile strength of the cylinders, through testing of 

specimen turned out of the cylinder wall. The tension tests from these bars can help assess to 

what degree heat affected zones from the Wire EDM cut affected the previous tension tests. 

The difference between Hopkinson-bar tension and compression tests can assess the strength 

differential effect. Correctly applying DIC calibration during laboratory testing to allow 3D 

DIC might improve the data treatment process of the material tests. Hardness tests on ring 

specimen might identify to which degree seam welds affect the ductility and strength of the 

cylinders. At the time when this thesis was published, both types of tests were planned and 

ordered but not performed. 

Future work on this project should try to exploit the potential of the radial displacement graphs 

comparing 3D DIC with FEM analysis results. These graphs can help the modelling process by 

providing a basis of comparison of the local and, through improvement of the method, global 

failure mode. The modelling of imperfections was found to be an area of challenge. When 

assessing this problem, the radial displacement graphs may be an important tool to help the 

FEM analyses simulate and quantify the correct behaviour.  

Improving the FEA model requires improving how and to what degree imperfections are 

introduced. This may require a combination of global and local imperfections, a study which 

may lead to a deeper understanding of the behaviour of the columns in the last load increments 

leading up to instability and buckle. 

Options to the compression test FEA model that was not thoroughly explored in this thesis 

includes usage of shell elements and explicit solution algorithm. These may improve the 

models’ ability to buckle correctly. 

In chapter 5 the laboratory setup with a spherical hinged connection was analysed but deemed 

unsuited to study the effects of interest. A new laboratory setup is planned, and showed in  

figure 113. This setup might provide additional data to further improve the Abaqus model on 

globally slender columns. 
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The theoretic approaches in this thesis are not necessary the best approximation. Parameters 

such as amplitude and type of imperfection, plastic parameters and ductility may affect to what 

degree formulas succeed in predicting material and geometrical behaviour. In chapter 7 

predicting the correct failure mode was a key aspect in assessing the accuracy of estimates and 

predictions. Based on calculations carried out, it is evident that the criterion in formula (3.35) 

is too conservative, assuming global instability affects the capacity to a greater degree than 

what was found in laboratory. Future work might explore other global instability criterions, 

such as the Reduced-Modulus Theory, the Transcendental Plastic Buckling approach or some 

energy-based iterative schemes, all presented by Jones [9]. The theory behind Gerard’s local 

inelastic buckling formula (3.54) is based on the assumption of no elastic strains, hence it gives 

erroneously high capacity at low plastic strains. Future work may include deriving an improved 

formula for local inelastic buckling, perhaps similarly as done by Jones [9]. 

As the understanding of the behaviour of aluminium is improved, the study might be oriented 

more towards the design of power pylons, for example by optimizing truss systems with respect 

to capacity and economy in compliance with the vision of the project. 

  

 

 

 

(a) (b) 

 Figure 113 New hinged laboratory setup to analyse globally buckling cylinders 
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Appendix A NACA reports 

NACA has given the following figures explaining the relationship between the length parameter 

𝑍𝐿 (also called Z) and the buckling factor 𝑘𝑐. Figures are taken from NACA report 3783 [8]. 

 

 

Figure a1 kc as a function of ZL, different slenderness 
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Figure a2 kc as a function of ZL, different buckling patterns 
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Appendix B Laboratory: Premeasurement of geometry 

 

 

 

 

 

 

 

 

 

Table b1 Measured diameters for initial cylinder measurements  

Figure b1 Points of measurement for diameter 
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Table b2 Measured thickness [mm] for initial cylinder measurements 
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Appendix C  Eurocode 9 part 1-1  

All point references and figures in appendix C are taken from Eurocode 9 part 1-1 [2] unless 

specified.  

Chapter 6 Ultimate limit states for members 

6.3.1 Members in compression 

6.3.1.1(2) The design buckling resistance of a compression member 𝑁𝑏,𝑅𝑑 should be taken as: 

 0
,

1

b Rd eff

M

f
N A


   (C.1) 

0

χ      reduction factor for relevant buckling mode

     factor to allow for the waekening effects of welding

  effective area allowing for local buckling for class 4 cross-section

    characterist

effA

f



1

ic value of 0.2% proof strength

  partial safety factor for ultimate limit stateM

  

however, in order to estimate the accuracy of the Eurocode the only interest is the characteristic 

buckling resistance that don’t include partial safety factor.  

 , 0, 1*b Rk b Rd M effN N fA    (C.2) 

Due to no welding:  

 1    (C.3) 

6.1.5(1) Local buckling in class 4 members is generally allowed for by replacing the true section 

by an effective section. The effective section is obtained by employing a local factor 𝜌𝑐 to factor 

down the thickness, viz. 

 eff ct t   (C.4) 

6.1.5(2) The factor 𝜌𝑐 is given by 
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where 𝐶1 and 𝐶2 are taken from table c1 
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The slenderness factor 𝛽 for hollow circular cross-section is calculated after (3.43) and 

classified with slenderness parameters from table c2. 

 

The area of a circular cross-section then becomes 
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6.3.1.2(1) For axial compression in members the value 𝜒 for the appropriate value of �̅� should 

be determined from the relevant buckling curve according to: 
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where: 
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Table c2  Slenderness parameters β1 / ε , β2 / ε and β3 / ε from table 6.2 in Eurocode 9 

 

Table c1 Constants C1 and C2 from table 6.3 in Eurocode 9 
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Table c 3 Values of α and �̅�0 from table 6.6 in Eurocode 9 

0

   imperfection factor

  the limit of the horizontal plateau

 the elastic critical force for the relevant buckling mode based on the 

       gross cross-sectional properties

crN




  

𝛼 and �̅�0 is taken from table c 3.  

      

 

Ncr are equal to NE given in (3.31) with corresponding critical length for clamped column 

 0.5EL L   (C.11) 

Note that this is a deviation from table 6.8 in part 1-1 [2], which claims that 0.7𝐿 should be 

used to take “various deformations in the connection between different structural parts” [2] 

into account. The mechanical setup in laboratory is assumed to ensure fully clamped boundary 

conditions, justifying formula (C.11). 

The partial safety factor from NA.6.1.3(1) is given as  

 
1 1.10 M    (C.12) 
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Appendix D Eurocode 9 part 1-5 

All point references in appendix D are related to Eurocode 9 part 1-1 [10] unless otherwise is 

specified. 

A.1.2(1) Cylinders need not be checked against meridional shell buckling if they satisfy: 

0

0.03    
r E

t f
   (D.1) 

0

  radius of cylinder middle surface

   thickness of shell

 Y

 characteristic value of 0.

oung

2% p
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t

E
  

6.2.3.2(1) The design buckling resistance should be obtained from: 
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1

      imperfection reduction factor

    reduction factor due to heat-affected zones 

 reduction factor due to buckling of a perfect shell

     partial safety factor 

x

x w
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The buckling resistance force then becomes: 

 , ,x Rd x RdF A   (D.3) 

 , , 1x Rk x Rd MF A    (D.4) 

No welds entails:  

 , 1x w    (D.5) 

6.2.3.2(2) The reduction factor due to buckling for a perfect shell is given by: 
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with: 
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,00.5 (1      x x x x x          (D.7) 

where: 
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,0

 parameterdepending on the allay and loading case

 the squash limit relative slenderness

x

x


  

Both parameters are taken from table d1. 

  

 

6.2.3.2(3) The shell slenderness parameter component should be determined from: 
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   (D.8) 

A.1.2.1(3) The critical meridional buckling stress should be obtained from 

 , 0.605      x cr x

t
EC

r
    (D.9) 

 using values for 𝐶𝑥 in table d2 

A.1.2.1(1) 𝜔 is the length of the shell segment and is characterized in terms of the dimensionless 

parameter: 
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𝐶𝑥𝑏 is given in table d3 with boundary conditions defined in table d4. 

 

Table d1 Values of �̅�𝑥,0 and 𝜇𝑥 for meridional compression from table A.4 in Eurocode 9 

 

Table d2 Values for critical meridional buckling stress 𝐶𝑥 from table A.1 in Eurocode 9 
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A.1.2.2(1) The meridional imperfection factor should be obtained from: 
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 meridional compression tolerance parameterQ as defined in table d5  

 

Table d3 Parameter 𝐶𝑥𝑏 for the effect of boundary conditions for long cylinders from table A.2 in Eurocode 9 

 

Table d4 Boundary conditions for shells from table 5.1 in Eurocode 9 

 

Table d5 Tolerance parameter Q from table A.3 in Eurocode 9 
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Appendix E Executed laboratory test and measurements 

for L2D and L4D 

 

 

 

Figure e1 The location of measurers for thickness and diameters 

Table e1 Measured and calculated geometry of the columns specimens for L2D and L4D 
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Table e2 Laboratory settings and values at maximum load for L2D and L4D 

Table e3 Calculations of β, ε and i for each specimen of L2D and L4D 
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(a) (b) (c) 

(d) (e) (f) 

 

 

Figure e2 Displacement away from camera at maximum load. (a)-(c): 6060D100L2D. (d)-(f): 6060D100L4D 
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(a) (b) (c) 

 

 

(d) 

 

Missing specimen due to loss of data 

 

 

 

 

 

 

 

 

 

 

 

(e) 

(f) 

 

Figure e3 Displacement away from camera at maximum load. (a)-(c): 6082D100L2D. (d),(f): 6082D100L4D 
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(a) (b) (c) 

(d) (e) (f) 

 

 

Figure e4 Displacement away from camera at maximum load. (a)-(c): 6060D127L2D. (d)-(f): 6060D127L4D 
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Figure e5 Post-buckling shape specimen 1-2, 2-2 and 3-2 (A6060D100L2D) 

Figure e6 Post-buckling shape specimen 1-1, 2-1 and 3-2 (A6060D100L4D) 
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Figure e7 Post-buckling shape specimen 1-6, 2-6 and 3-6 (A6060D127L2D) 

Figure e8 Post-buckling shape specimen 1-5, 2-5 and 3-5 (A6060D127L4D) 
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Figure e9 Post-buckling shape specimen 1-3, 2-3 and 3-3 (A6082D100L2D) 

Figure e10 Post-buckling shape specimen 1-4, 2-4 and 3-4 (A6082D100L4D) 
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Appendix F Mesh sensitivity L2D 

 

 

Figure f1 Mesh sensitivity for element S4R – A6060D100L2D 

Figure f2 Mesh sensitivity for element S8R – A6060D100L2D 
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Figure f3 Mesh sensitivity for element C8R with 1 ETT – A6060D100L2D 

Figure f4 Mesh sensitivity for element C8R with 3 ETT – A6060D100L2D 
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Figure f5 Mesh sensitivity for element C20R with 1 ETT – A6060D100L2D 

Figure f6 Mesh sensitivity for element C20R with 2 ETT – A6060D100L2D 
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Figure f7 Mesh sensitivity for element C20R with 3 ETT – A6060D100L2D 
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Figure f8 Mesh sensitivity for element S4R – A6060D127L2D 

Figure f9 Mesh sensitivity for element S8R – A6060D127L2D 
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Figure f10 Mesh sensitivity for element C8R with 1 ETT – A6060D127L2D 

Figure f11 Mesh sensitivity for element C8R with 3 ETT – A6060D127L2D 
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Figure f12 Mesh sensitivity for element C20R with 1 ETT – A6060D127L2D 

Figure f13 Mesh sensitivity for element C20R with 2 ETT – A6060D127L2D 
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Figure f14 Mesh sensitivity for element C20R with 3 ETT – A6060D127L2D 
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Appendix G Laboratory L2000mm 
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Figure g1 Post-buckling shape specimen 1-1long, 2-3long and 3-3long (A6060D100L2000mm) 
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Figure g2 Post-buckling shape specimen 1-2long, 2-2long and 3-2long (A6060D127L2000mm) 
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Figure g3 Closeup post-buckling shape for A6060D127L2000mm 
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Figure g4 Post-buckling shape specimen 1-2long, 2-2long and 3-2long (A6082D100L2000mm) 
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Appendix H Results from FEA 

 

Figure h1 Force - displacement from laboratory and FEA analyses for A6060D100L2D and A6060D100L4D 
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Figure h2 Force - displacement from laboratory and FEA analyses for A6060D127L2D and A6060D127L4D 

Figure h3 Force - displacement from laboratory and FEA analyses for A6082D100L2D and A6082D100L4D 
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Table h1 Axial capacity [kN] from FEA on lengths  L0.5D to L30D 


