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SUMMARY: 
Extreme loading may cause failure or damage to structural building members. Redistribution of forces might 
propagate the local failure into a complete or partial progressive collapse of the building. The prevailing 
method for analyzing the potential for such collapse is the alternate path method. One structural member is 
notionally removed to see if the forces are able to find an alternate path. Explosions might cause damage to 
more than one structural member and produce a structural response not included in an alternate path 
analysis. A literature review have been conducted to study analysis methods using both the alternate path 
method and methods incorporating blast loading in the collapse analysis. 
 
It is possible to model building collapse resulting from an explosion with complex models that require large 
computational force. This thesis have tried to use implicit time integration instead of explicit in order to reduce 
computational cost, but this was not found beneficial. 
 
Beam elements are effective, computationally effective and are easy to model. Only a small number of 
studies have used blast loading on beam elements in some way. A steel frame building was analyzed using 
beam elements with an incident wave interaction in Abaqus to model the blast load. This was compared with 
a model using shell elements to model the steel sections with Conwep blast loading. The blast loading on the 
beam elements did not produce a satisfactory response. 
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Abstract
Extreme loading may cause failure or damage to structural building members. Redis-

tribution of forces might propagate the local failure into a complete or partial progressive
collapse of the building. The prevailing method for analyzing the potential for such col-
lapse is the alternate path method. One structural member is notionally removed to see if
the forces are able to find an alternate path. Explosions might cause damage to more than
one structural member and produce a structural response not included in an alternate path
analysis. A literature review have been conducted to study analysis methods using both
the alternate path method and methods incorporating blast loading in the collapse analysis.

It is possible to model building collapse resulting from an explosion with complex
models that require large computational force. This thesis have tried to use implicit time
integration instead of explicit in order to reduce computational cost, but this was not found
beneficial.

Beam elements are effective, computationally effective and are easy to model. Only a
small number of studies have used blast loading on beam elements in some way. A steel
frame building was analyzed using beam elements with an incident wave interaction in
Abaqus to model the blast load. This was compared with a model using shell elements
to model the steel sections with Conwep blast loading. The blast loading on the beam
elements did not produce a satisfactory response.
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Chapter 1
Introduction

Progressive collapse as defined by the American Society of Civil Engineers (ASCE) is
“the spread of an initial local failure from element to element, eventually resulting in the
collapse of an entire structure or a disproportionately large part of it”[1]. The phenomena
first became a topic among researchers and implemented in design codes after a partial
collapse of a 22 story residential building, Ronan Point, in London in 1968 [2]. A gas
explosion caused an entire corner of the building to collapse killing five and injuring 16
residents. More resent examples include the partial collapse of the Alfred P. Murrah Fed-
eral Building in Oklahoma City in 1995, caused by a car bomb [3]. The World Trade
Center in New York in 2001, caused by impact of a plane and the subsequent fire [4]. In
Norway the Government quarter was bombed with a car bomb in 2011. The 18 story high
‘Høyblokka’, built in 1958, was extensively damaged but no collapse occurred.

Both the US and the UK have developed detailed guidelines on design against pro-
gressive collapse and the Eurocodes also contains some regulations regarding this. The
criteria in existing guidelines are mostly threat independent based either on tying forces or
by analysis of an alternate path for forces after notional removal of a structural member.
The effects on a structure from an explosion is difficult to take fully into account with these
approaches. With large computational resources becoming more available, more detailed
direct simulation of threat scenarios, including explosions, are becoming possible.

Progressive collapse does not only happen in very tall buildings. According to DoD
[5] all buildings with three stories or more should take progressive collapse into account,
but the taller and larger the building is, the larger the consequences of a collapse will be.
Norway does not have a strong tradition for tall buildings. Excluding masts the tallest
structures in Norway are offshore platforms like Troll A (472 m, 169 m above sea level)
and towers like the bridge towers of the Hardagner bridge (202 m), Tyholt Tower in Trond-
heim and Nexans Tower in Halden (both about 120 m). The highest building in Norway is
Oslo Plaza with 37 stories at 117 m. Most tall buildings are located in Oslo. The city has
more that 100 buildings or 12 stories or more stories.

There are no national restrictions on building height, but the local government usu-
ally restricts the height of buildings. Traditionally there has not been much need for tall
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Chapter 1. Introduction

buildings and height restrictions are often in place for aesthetic reasons. Buildings heights
in a city have often been restricted by the height of the church spire. The height of new
buildings is a political topic in many Norwegian cities, but more are being build today than
before.

According to Krauthammer [6], there has been more progressive collapse research
related to concrete structures than steel frames. The most common multi-story buildings
in Norway are steel frames and prefabricated concrete structures. Moment stiff frames are
uncommon for multi-story buildings and stiffness for steel frames is achieved with truss
bracing or walls acting as plates. Composite action between concrete slabs and steel beams
or plates are not common [7]. Wood is a very common building material for residential
buildings in Norway, but they are usually limited to two or three stories. Recently, higher
wooden buildings have been developed. For example a 51 m 14 story residential building
in Bergen, which is the worlds tallest wooden building, or student housing blocks in Ås
and in Trondheim with respectively eight and nine stories.

This thesis will focus on simulation methods that are able to predict progressive col-
lapse resulting from a blast loading. A review of resent research on both progressive
collapse in general, and incorporating blast effects will be presented. Finite element mod-
eling techniques will be studied with a focus on the practicability of incorporating a blast
load in a progressive collapse simulation of a steel frame building. The focus will be on
computational time, modeling techniques and how to apply the blast load. The goal for this
study is not to create a realistic model of an actual structure, but to test different modeling
techniques to see if they are able to recreate the physical phenomena. Certain important
modeling aspects like material modeling and joint modeling will not be in focus.
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Chapter 2
Approach

This thesis has two main parts. One part is a literature review of analyses methods for
progressive collapse, blast loading on buildings and a possible combination of these. The
other part is trying to create a finite element (FE) model that is able to model progressive
collapse caused by a blast load.

2.1 Literature review
In the literature review about 100 different articles, books and reports have been col-
lected. They have mostly been found using the web services of Science Direct and Google
Scholar. Search therms used includes among others: Abaqus, blast, implicit integration,
progressive collapse, CONWEP, collapse, nonlinear, steel frame. In addition to articles
and reports, books by Fu [8] and Krauthammer [6] and governmental guidelines by the
U.S. Department of Defense and Eurocodes have been studied.

2.2 FEM-modeling
The modeling have been done using Abaqus, by Dessault Systemès [9]. Abaqus is a com-
mercial multi-physics software capable of nonlinear FE analyses. It is cumbersome to
create large building geometries with the graphical user-interface in Abaqus. The models
where therefore created using the Abaqus Scripting Interface. With this interface, input
to Abaqus is given using Python scripts. Python is a free high level general purpose pro-
graming language. Since the geometry of the building is regular, it is relatively easy to
program the geometry using a script. Other benefits of using a script is the possibility
to easy parametrize properties of the model and to automate post processing to generate
the desired output. MATLAB by The MathWorks, Inc. was used for further process-
ing and plotting of data. 7.2 contains a Python script and two modules that runs a blast
analysis of a steel building using beam elements for the frame and shell for the slabs.
All scripts used to generate input, models and processes output are available online at

3



Chapter 2. Approach

https://github.com/fsdalen/ProgressiveCollapse. The analyses were
ran on a cluster at NTNU SIMLab, using 8 CPUs for each analysis.

The aim is not to correctly predict collapse of an actual structure, but to study different
possibilities of implementing blast loading in progressive collapse analyses, and the practi-
cability of these methods. Aspects like material modeling and bracing of the structure have
been greatly simplified. The absolute results of the analyses are not valid by themselves,
but differences in response and computational time between different modeling techniques
will be studied and reported.

4
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Chapter 3
Theory

3.1 Finite Element Analysis
Finite element analysis is an approximate way of solving a field problem, i.e. solving a
distribution of dependent variables. In a structural analysis, the variable is displacement.
Other values such as strains and stresses may be derived from the displacements. The
structural problem is discretized into elements of a finite size. Displacement is measured
at the nodes between the elements and interpolated within the element. In a linear FE
analysis the problem consists of finding the stiffness K and the external loads R of the
system and solving the following equation for the displacement D.

KD = R

When doing a nonlinear FEA. K and R may now be functions of D and nonlinear con-
straints may be imposed.

K(D)D = R(D)

It is generally not possible to solve this equation directly, it has to be solved incrementally.
This greatly increases the computational cost, and the analysis becomes more complex.
The principle of superposition is no longer valid. Some possibilities with a nonlinear FE
analysis compared to a linear:

• Nonlinear material behavior

• Post buckling analysis

• Nonlinear contact constraints

• Large deformations

• Dynamic response

• Finding the ultimate capacity

5



Chapter 3. Theory

3.1.1 Explicit time integration
With implicit solution methods equilibrium is established at each step in the analysis. This
allows for large time increments as long as it is possible to establish the correct equilibrium
at the next step. Each step is computationally costly because it involves equation solving
with inverting the stiffness matrix, and it may need to be done multiple times in order to
achieve convergence. Explicit methods on the other hand does not require inverting the
stiffness matrix and each step is computationally cheap. It requires a small time increment
in order to be stable. This makes it suitable for nonlinear problems where convergence is
difficult to obtain with larger time steps.

The method of explicit time integration is here shown for a single degree of freedom
(DOF) system, but it may easily be generalized to multi-DOF systems. The equation of
motion for a single DOF system with mass m, damping coefficient c, stiffness k, load P ,
acceleration ü, velocity u̇ and displacement u is

mü+ cu̇+ ku = P (3.1)

The common method used for explicit time integration is the central difference method
[10]. It uses Taylor series expansion for the displacements un+1 and un−1 about time n.
By neglecting terms higher than second order you get the following

un+1 = un + ∆tu̇n +
∆t2

2
ün (3.2)

un−1 = un − ∆tu̇n +
∆t2

2
ün (3.3)

By using these approximations it is possible to solve the equation of motion for un+1. The
expression will only contain known values at time n and n-1 and will therefore be explicit.
If lumped mass and mass-proportional damping is applied for a multi DOF-system, it is
not necessary to invert any matrices and each time step will have very low computational
cost. It is often desirable to use both stiffness and mass proportional damping. In order to
still achieve low computational cost, the half-step central differences method is used. The
velocity term in the equation of motion is left lagging half a step behind

mün + cu̇n−1/2 + kun = Pn (3.4)

By using these approximations for velocities

u̇n−1/2 =
1

∆t
(un − un−1) (3.5)

u̇n+1/2 =
1

∆t
(un+1 − un) (3.6)

and Taylor series expansions for the displacement, the equation of motion may be written
as

m

∆t2
un+1 = Pn − kun +

m

∆t2
(un + ∆u̇n−1/2) − cu̇n−1/2 (3.7)

6



3.2 Blast loading

When mass lumping is used, the mass matrix becomes diagonal and the computational
cost is very low for each time increment.

The explicit method is only conditionally stable. That means that if the time step ∆t of
each increment is larger than the critical time step ∆tcr, the solution will become unstable.
The physical interpretation of the critical time step is that information should not propagate
between two adjacent nodes within one time step. ∆tcr is then proportional to the size of
smallest element and inverse proportional to the dilatation wave speed of the material. For
a one-dimensional problem

∆tcr =
Le√
E
ρ

(3.8)

Where Le is the characteristic element length and
√

E
ρ is the dilatation wave speed of the

material.

3.2 Blast loading
An explosion is defined as “a sudden, loud and violent release of energy” [11]. The ef-
fects on structures from explosions are due to blast pressure, impact of fragments and
ground shock waves. Impacts and ground wave can damage buildings, but their effect on
the structural response is limited compared to the blast pressure. Unless otherwise spec-
ified the theory of this section is from UFC 4-340-02: Structures to Resist the Effects of
Accidental Explosions from the US DoD [12].

3.2.1 Categorization of explosions
Explosive material

Explosions can either be mechanical, chemical or nuclear. Mechanical explosions may
be the sudden release of confined pressure. A chemical (conventional) explosion is the
sudden combustion or detonation of a chemical compound. A nuclear explosion is the
result of large amounts of energy released from fusion or fission of atoms. The blast load
from nuclear explosions are similar to conventional, except the magnitude, but this thesis
focuses on conventional explosions.

A conventional explosion is a stable chemical reaction called a detonation. In a deto-
nation, the reaction always happens at a supersonic rate. Large amounts of gas is produced
and this causes the blast pressure. Most solid explosives are high-explosives where all the
energy is released in the detonation process. In low explosive solids and gases only part of
the energy is released in the detonation, while the rest is a combustion at subsonic speed
called a deflagration. Deflagration does not significantly affect the blast pressure because
of the big difference in speed.

TNT-equivalence

Data about explosions effects are often presented in relation to the weight of a spherical
trinitrotoluene (TNT) charge. In order to relate this to other materials and shapes an ef-
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fective charge weight may be calculated. The weight of the charge is usually of more
importance than the shape, and can be related to TNT-equivalent weight by

We =
H

HTNT
W (3.9)

where We is the effective charge weight. H and HTNT is the heat of the explosion and a
TNT-explosion with the same weight W as the charge. Table 3.1 and 3.2 shows examples
of TNT-equivalent weights of materials and bomb sizes.

Explosive TNT-equivalent
TNT 1.00
Liquid nitroglycerin 1.45
C4 1.64
60 % nitroglycerin dynamite 0.6

Table 3.1: TNT-equivalent of some explosives [13]

Type
Effective charge weight

(kg TNT-equivalent)
Mail bomb 1
Car bomb 20-50
Small truck (2 tons) 250
Large truck (5 tons) 900

Table 3.2: Typical bomb sizes [1]

Location of explosion

The location of the explosion with regards to the surroundings greatly affects how the
blast wave propagates. Explosions can be categorized into confined and unconfined. Un-
confined explosion can further be subcategorized:

• Free air burst: spherical blast with no amplification of the pressure.

• Air burst: the blast wave is reflected against the ground before it hits the structure,
causing an amplification of the pressure.

• Surface burst: the blast wave is reflected at the source of the explosion causing a
hemispherical blast.

3.2.2 Blast pressure
The shock front from a blast travels radially out from the source of the explosion at super-
sonic speed. The particles behind the shock front have subsonic speed. The pressure at a
given distance from the source can be described as in figure 3.1. It consists of a positive
phase first, and then a negative phase. There is first a violent increase from the ambient
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pressure P0 up to the peak incident pressure PS0. The pressure then decreases back to
the ambient pressure before the negative phase follows. The negative phase is longer, and
the peak incident negative pressure is lower than the positive. During the negative phase
the particle velocity behind the shock front reverses. The positive and negative impulse,
iS and i−S , is the integral of the positive and negative curve respectively. The negative
impulse is less important to the structural response and is often neglected, but might not
be negligible for flexible structures like steel frames. When the blast wave hits a surface it
reflects and the pressure is amplified. The reflected pressure is a function of the incident
pressure, the reflective surface and the angle of incident. The red curve in figure 3.1 shows
a typical reflected pressure curve.

Figure 3.1: Pressure-Time curve [12]

Propagation of the blast wave

For a free air burst explosion, the propagation of the blast wave is purely spherical. For an
air burst explosion, a the blast wave reflects off the ground, joins the original blast wave
and creates a Mach front as shown in figure 3.2. The Mach front has a vertical front that
grows higher further away from the blast source. The pressure over the height of the Mach
front is almost uniform and it may be considered a plane wave in the vertical direction.
The point at the intersection between the incident wave, the reflected wave and the Mach
front is called the triple point. Typical pressure-time curves above and below the triple
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point is shown in figure 3.3.

Figure 3.2: Air burst with Mach wave [12]

Figure 3.3: Pressure time variation for air burst [12]

When the detonation happens close to the ground, the wave reflecting off the ground
joins the original wave from the source combining to one hemispherical wave. For build-
ings with a low number of stories, the front of the wave might be assumed plane if the
standoff distance is large enough. The pressure curve is similar to that of the free air burst
except all parameters are magnified.

Blast parameters

There exists analytical and empirical values for a variety of blast parameters. Figure 3.4
shows parameters for a hemispherical surface explosion at sea level. In addition to pres-
sures, impulses and duration of the blast wave, arrival time t0, velocity of the shock front
U and the wave length LW . The standoff distance is taken into account as a scaled dis-
tance Z. It is a function of distance R, and equivalent TNT weight W and is defined by
the Hopkinson-Cranz scaling law [14, 15] that is based on conservation of momentum and
geometric similarity

Z =
R

W 1/3
(3.10)
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Figure 3.4: Positive blast wave parameters for a hemispherical TNT explosion [12]
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Modeling of the time pressure-curve

Given parameters PS0 and ts the simplest way to model the positive pressure-time curve
is a linear decay valid from the arrival time until t0

P (t) = P0 + PS0(1 − t

t0
) (3.11)

This equation may be fitted by keeping the correct peak pressure and impulse and varying
the phase time t0. A more complex equation that allows to keep the correct phase time, is
the modified Friedlander equation [16]

P (t) = P0 + PS0(1 − t

t0
)e

−bt
t0 (3.12)

Here, the parameter b is fitted to the other parameters.
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Chapter 4
Literature Review

There are literature readily available on both progressive collapse and structural members
response to blast loading. But most of the literature on blast loading is limited to structural
members or smaller structures. There are only a limited number of studies applying blast
loading to multi-story buildings in order to study the collapse potential of the building.
In this chapter, design guidelines and studies on progressive collapse will be presented in
addition to studies on how to incorporate blast loading in progressive collapse analysis.

4.1 Rules, guidelines and design codes

The UK was the first to create regulations regarding progressive collapse. It started af-
ter the Ronan Point accident and the first regulation is from 1972 according to Lui et al.
[17]. Today the UK have a paragraph regarding disproportionate collapse in their building
regulations with accompanying guidance [18]. In the US much have happens regard-
ing building security after the terrorist attacks on the World Trade Center in 2011. The
U.S. Department of Defense have Unified Facilities Criteria for a variety of topics in-
cluding minimum antiterrorism standards, accidental explosions and progressive collapse
[19, 5, 12]. NITS issued a report ‘Best Practices for Reducing the Potential for Progressive
Collapse in Buildings’ in 2007 [20]. Some are publicly available and some are for official
use only.

4.1.1 Eurocodes

In Norway the building regulations does not specifically mention progressive collapse or
explosions but the Eurocodes includes some of this. Eurocode 0, Basis for Design [21],
paragraph 2.1(4) states the following: “A structure shall be designed and executed in such
a way that it will not be damaged by events such as: explosion, impact, and the conse-
quences of human to an extent disproportionate to the original cause”. Eurocode 1 part
1-7 [22] covers loads caused by accidental actions. It does specifically not cover “external
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explosions, warfare or terrorist activities”, but it does covers strategies for limiting the ex-
tent of localized failure caused by an unspecified cause. It states the following approaches
for mitigation in section 3.3(2):

a) Designing key elements to withstand a specified accidental load level. This approach
is not to be used according to the Norwegian National Annex

b) Alternative path approach. Notional removal of a structural member should not cause
collapse of more than 100 m2 or 15 % (whichever is less).

c) An indirect approach by prescriptive design rules to achieve sufficient tying forces and
ductility.

It further gives recommendations on what approaches to use based on consequence classes
that takes building type and number of stories. Annex A proposes ways to implement the
approaches. It gives specific values for tying forces and it purposes to remove one column,
beam or nominal section of a load-bearing wall at a time for the alternate path approach. It
states that in the medium consequence class an equivalent static analyses may be adopted,
while for the high consequence class nonlinear, dynamic analysis should be considered.

4.2 Approaches to design for Progressive Collapse
According to Marjanishvili [23] the approaches may be divided into one indirect method
and two direct methods. The indirect method is a simple method prescribing general de-
sign rules to increase the robustness of the structure. This may be done by a prescribing
a certain level of tying capabilities and ductility of joints and members. The simplest di-
rect method is designing major structural components to be strong enough to withstand
the loads that may initialize collapse. The other direct method is the alternative path (AP)
method, where major structural elements are nominally removed and then the structure is
analyzed for progressive collapse.

The alternative Path Method is only able to say if the building is able to withstand a
nominal member removal. It gives a simple yes or no answer. Attempts have been made at
creating a method for quantifying the robustness of a building. Khandelwal and El-Tawil
[24] came up with the concept of an Overload Factor and Fascetti et al. [25] expanded this
concept to the Local Robustness Evaluation method.

A third direct method would be a collapse analysis based on direct loads such as a blast
loading. This method will further be described in section 4.4

4.2.1 Analysis methods for the Alternative Path Method
The progressive collapse analysis may be either linear or nonlinear and either static or
dynamic.

Linear Static

In order to account for the dynamic effects when a member is suddenly removed, the loads
have to be scaled by a dynamic amplification factor. The factor is often set to two, and may
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be derived from energy balance as shown by Powell [26]. The method is only valid for
simple systems and if an amplification factor of two is used, the method is almost certainly
conservative [26]. The disadvantage is that it will often be overly conservative and in more
complex systems it might not capture the necessary effects.

Nonlinear Static

This method is often used in seismic analyses and is often called a push-over analysis. For
the purpose of progressive collapse it may be called a push-down analysis [25].The vertical
loads are increased step by step until failure occurs. The load may be increased globally
for the whole structure or locally. The method includes nonlinear effects like catenary
effects and ductility. A dynamic amplification factor is necessary to take dynamic effects
into account.

Linear Dynamic

With this method the members are removed real-time and the correct dynamic effects are
accounted for. First a static analysis is performed. Then a structural member is removed
and replaced by the equivalent static forces. The forces are removed and a dynamic anal-
ysis is performed. The forces should be removed within 1/10 of the characteristic natural
period of the floor [8]. Direct time integration is preferred in order to account for all vi-
bration modes [27]. This method might become nonconservative if the structure exhibits
large deformations [23].

Nonlinear Dynamic

Same as linear dynamic, but also accounts for nonlinear effects like nonlinear materials,
catenary effects and inelastic buckling. This is the most realistic analysis, but it is also the
most difficult to validate and verify and requires the most computational power. Due to
the complexity of the analysis, modeling errors are not easily recognized.

4.3 Nonlinear Dynamic analysis

4.3.1 Global modeling approach
When analyzing global models, especially for larger buildings, the level of detail and what
assumptions and simplifications to make, that is still practical, depends a lot on computa-
tional cost, modeling expertise and what type of results is sought.

The first major consideration is whether to model the whole building or just part of
it. Several studies have concluded that for progressive collapse it is insufficient to model
a 2D frame [28, 25]. A 2D frame produce collapse at a lower load than 3D because the
slabs help to distribute the forces to other frames when columns are removed. A 2D plane
frame will therefore become unstable in the plane direction. It is not possible to conclude
that a plane 2D frame is conservative either. The reason is that the 2D frame might show
only localized collapse in a limited number of bays, while 3D effects might actually cause
a complete collapse of the building as showed by Alashker et al. [28].
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The next major consideration is the type of elements to use. Floors are mostly modeled
using shell elements, but solid elements is also possible. Beams and columns can be
modeled using beam elements or shell elements for steel members and solid elements for
concrete members. In the study done by Alashker et al. [28] a 10 story steel frame building
was modeled in different ways. One model using shell elements for both concrete slabs and
the steel members in the frame, the other using beam elements for the steel frame. Part
of the frame was verified against experimental bending studies and the building models
were analyzed for progressive collapse using the AP method. Both models where able to
reproduce the bending experiment and showed similar response in the AP studies. The
shell model was able to capture local effects, but the global response was similar. The
shell model consisted of almost 800 000 elements while the beam model about 30 0000.
The computational time of the shell model was 57 hours and the beam model 1.5 hours.
It was concluded that a well calibrated beam element model gave satisfactory results at a
much lower computational cost.

Kwasniewski [29] modeled a steel frame building with composite slabs using shell
elements for both steel members in the frame and the composite action concrete slabs.
The building was eight stories and the model had a total number of 1.1 million elements.

The remaining capacity after column removal was also studied. If collapse did not
occur from the column removal, the loading was increased linearly until collapse after
vibrations from the column removal had stabilized. This meant running the simulation
time for as long as up to 15 seconds. Only a part of the model extending two bays out
from the column removed was analyzed. The simulations took up to 19 days using 60
processors in parallel.

For reinforced concrete (RC) buildings, solid elements have also been used globally
[30] or locally [31].

4.3.2 Modeling joints
There are a lot of ways to model joint behavior. For steel frames, that are more flexible
than RC frames, joint flexibility could have a large impact on the global response of the
building. A problem with modeling detailed joints while using explicit time integration is
that the elements might become much smaller than for the structural members, decreasing
the critical time step. Some methods used in progressive collapse analyses for steel frames
are presented here.

Joints in shell models

Assuming the welds of a rigid joint do not fracture, joints can be modeled by taking care
that column and beam mesh line up and have them share nodes. If the mesh do not line
up, the beam elements can be connected to the surface of the column shells as done by
Alashker et al. [28]. For non rigid, shear tab joints Alashker et al. [28] used a single row
of shell elements, and varying the section thickness and material properties to achieve the
correct behavior of the joint. Kwasniewski [29] modeled bolted end plates using shell
elements for the end plates, beam elements for the bolts and single sided contact between
the end plate and column. This produced a nonlinear response that matched well with
planar bending experiments. A parameter study showed the joint model was sensitive to
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mesh size of the end plate shells, the failure strain in the bolts and the contact algorithm
used.

Joints in beam models

Pinned and fixed joint are fairly simple, by tying the correct DOFs in the beam end and
column. Many different approaches are used in the literature for modeling semi-rigid
joints beam element frames. Fu [32] used pinned connections while having a composite
action concrete slab continuous over the joint so the overall behavior was as a semi-rigid
joint. Alashker et al. [28] used a modified beam element at the ends of the beams. The
integration points corresponded to the location of bolts in a shear tab joint and the stiffness
of the element was adjusted to produce the correct response. The length of the beam
element was artificially long compared to the actual joint in order to avoid a very short
critical time step. A nonlinear spring element was used to simulate contact between the
beam and column for large rotations.

Jeyarajan et al. [33] developed bi- and tri-linear moment-rotation curves for steel frame
joints with composite action slabs using Eurocode spring models and simplified joint mod-
els in Abaqus. The non linear semi-rigid joint behavior was implemented using an axial
and rotational connector element in the building model.

Another modeling consideration frequently addressed in the literature was that of how
to model composite action concrete slabs in steel frame buildings. As it is not common
practice to use composite action slabs in Norway, this topic was not in focus for this thesis.

4.3.3 Material modeling
Progressive collapse is a highly nonlinear event that requires nonlinear material models.
This has not been throughly studied in this thesis. Steel models needs to incorporate plas-
ticity for large deformations and concrete needs to take into account plasticity, reinforce-
ment and cracking. In order to predict collapse, damage have to be taken into account.
Two main approaches used in progressive collapse studies were found. Either material
damage with element deletion [34, 31] or running the analysis in steps checking the ca-
pacity of member in between [33, 32]. The design criteria may be either design strength,
rotations or strains. The members exceeding the criteria are removed in subsequent analy-
ses. In blast analyses, dynamic material properties could be implemented in order to take
into account large strain rates caused by the blast loading. This has been shown to have
significant influence on the global response [33, 35].

4.3.4 Verification of model
In nonlinear analysis it might be difficult to judge the validity of the results without com-
paring them to results that are assumed correct. Results from a model may either be com-
pared to experimental results, a numerical model that is assumed more correct or analytical
results. Some methods used in the literature are reported here.

Luccioni et al. [30] modeled a real concrete building that had partially collapsed after
car bomb in Buenos Aires in 1994. The damage the model produced was compared with
photos of the building after the attack. Kwasniewski [29] modeled a steel frame structure

17



Chapter 4. Literature Review

that was build in the Cardington Large Building Test Facility in the UK for fire tests. Nat-
ural frequencies of the model where compared to measurements on the real test building in
order to verify mass and stiffness distribution and the flexibility of joints. The mass of the
model was also verified against the real test building. Alashker et al. [28] compared a beam
element model with a shell element model with a much higher number of elements. Shi
et al. [36] verified their purposed analytical SDOF method for blast progressive collapse
analysis by creating a global model using solid elements applying the blast load directly
to the building. Their purposed method is reported in section 4.4.1.

It is highly impractical to do full scale experiments on progressive collapse and detailed
global models are highly computationally costly. Therefore, most often only local parts
of the model is verified. Kwasniewski [29] verified joint behavior against experimental
Moment-rotation relationships of similar joints and verified a shell element composite
action slab by creating a local model with a finer mesh and using solid elements for the
concrete. Several others have also used local experimental [32, 33] and numerical [34]
verification approaches. There are a number of ways to verify the material models, but
this is not a topic for this thesis.

4.4 Blast analysis
The AP method is a good tool for testing general threat independent robustness of a build-
ing. When using the AP method usually only one column is removed as required by
guidelines and codes [37, 22]. However, this does not take into account the possibility of
full or partial damage of multiple columns or the global response of the building to the
blast. The global response might include overturning forces, uplift of floors and horizontal
displacements. Several studies have concluded that the AP method is not always conser-
vative for blast loading [34, 33]. However, Fu [35] concluded that as long as the blast is
not large enough to severely damage beams or shear-off multiple columns, the AP method
could be considered sufficient and conservative. This conclusion was based on a study
with a package bomb of 15 kg TNT close to a column. The vertical forces of the blast on
the floors caused less axial forces in the columns on the floor while higher shear forces
compared to an AP approach. This section will present different methods found in the
literature on how to incorporate blast loading in progressive collapse analyses.

4.4.1 Applying the blast pressure on a structure
There are several ways to take blast into account. The blast wave itself may be modeling
the propagating of the blast wave through the air using Eulerian elements and the interac-
tion between air elements and structural Lagrangian elements.

A much used approach for this is the Conwep loading that is available in Abaqus and
LS-Dyna. Conwep loading applies a surface load on shell and solid elements, but is unable
to apply load to beam or truss elements. The pressure and propagation of the blast wave is
based on unobstructed free air or surface bursts. It calculates the pressure load on a surface
based on the charge-weight, distance and angle of incident. [9]

Elsanadedy et al. [34] applied Conwep loading to solid concrete elements on a local
column model and then used the results to determine what elements to remove in the
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global analysis. The global model used beam elements for the structural frame so it was
not possible to apply the Conwep load to the frame in LS-Dyna. The global model was ran
with the damaged columns removed at the same time as Conwep blast load was applied to
the shell elements in the masonry and glass facade. The facade will then transfer loading
to the structure, but this approach does not fully capture the global response generated
by the blast load. This is because the deformation and shattering of the facade dissipates
much of the energy from the blast.

Fu [35] and Jeyarajan et al. [33] converted blast pressure into line loads and applied
them to the frame beam elements. Fu [8] created a Visual Basic program in order to do
this for the entire frame. Jeyarajan et al. [33] simulated an explosion 20 m away from
the building and assumed constant blast pressure over the height over the building. The
pressure was then converted to line loads only for the front of the building.

Shi et al. [36] purposed a very different method in order to apply the blast load and
take into account both partial damage and global response. Initial velocities are obtained
for columns by assuming a deflection shape for the columns and solving a single degree
of freedom (SDOF) dynamic system. For simplicity a deflection shape with plastic hinges
at top, middle and bottom is assumed. Acceleration is assumed constant during the blast
duration and by applying a blast impulse, velocities and displacement can be calculated.
The time period of the blast is so small that the displacement is ignored and only the
velocities is used as initial conditions in the global analysis. Damage is obtained from
pressure impulse diagrams. These are analytically and/or numerically derived for each
type of column. Using the maximum pressure and impulse from the blast loading a damage
parameter from zero to one can be obtained from the pressure impulse diagram. Both
initial velocities and damage have to be calculated separately for columns with different
standoff distances. The damage is applied as reduces stiffness and yield strength in the end
zones of the columns. The end zones are chosen based on the assumption that the columns
will have shear failure.

In the study the method is applied to a small building with thee stories and two bays.
For comparison a direct blast modeling by applying calculated reflected pressure directly
to the column faces and an AP approach. The comparison shows that the purposed method
shows a similar collapse response as the direct blast model, while the APM did not predict
collapse. The method is highly efficient regarding computational cost compared to direct
modeling of the blast. Is has more simplifications and for larger buildings it requires solv-
ing SDOF systems and P-I diagrams, as well as applying these results to all the columns
in the global model.

Incident wave loading in Abaqus is intended to be used for modeling acoustic wave
propagation through fluid elements that interact with structural elements, but it is possi-
ble to not model the fluid and apply the acoustic wave directly to solid, shell and beam
elements. This will method will is explored and reported in chapter 5 and 6.

4.4.2 Modeling propagation of the blast wave

As the blast wave from an explosion propagates through air, it will be affected by reflec-
tions as it impinges on surfaces. This might increase the pressure as multiple waves are
formed and joins, or the pressure might be decreased by shadowing surfaces. These effects
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can either be ignored, accounted for by factoring the blast pressure or directly model the
propagation of the wave. Conwep does not take these effects into account.

Eulerian approach

In order to correctly model how the blast propagates through a building it is necessary to
model the blast wave through the air using Eulerian elements. Conwep does not take into
account shadowing or reflections [9].

In probably one of the most extensive blast progressive analyses done, Luccioni et al.
[30] modeled an actual terrorist attack on a six story RC building. The RC frame and slabs
was modeled using solid elements, the masonry facade with shell elements, and the air with
Eulerian elements. A 400 kg TNT explosion was modeled just inside the building at the
first floor. The analysis was conducted with the hydrocode AUTODYN The total number
of elements was not reported. This approach clearly has a very high computational cost,
but comparing the results of the analysis with photographs of the actual partial collapse of
the building, it shows that it was able to reproduce the correct collapse of the building.

Shi et al. [38] compared reflected pressure off a concrete column using an Eulerian ap-
proach, to empirical values of TM 5M 5-855-1 [39]. It was found that for smaller columns
(less than 1.6 m for rectangular and 3.0 m for circular) the empirical values overestimates
the reflected pressure because of diffraction around the corner. Only 10 m standoff dis-
tance was tested. Al-Salloum et al. [40] compared the effects of modeling blast propaga-
tion though air on a local scale by modeling blast loading on one RC column. An Alternate
Lagrangian Eulerian method was used for modeling a column of air surrounding the struc-
tural column. The RC column was modeled with solid elements and reinforcement with
beam elements. The column was circular with about 0.5 m in diameter. The blast load
was applied to the front face of the surrounding air column using Conwep loading in LS-
DYNA. The same local model was also analyzed without modeling the air and applying
the Conwep loading directly to the solid concrete elements. The study shows a negligible
difference between the two methods. This points to that the difference in overestimation
of reflected pressure from the empirical values found by Shi et al. [38] is negligible when
comparing the structural response.

Confinement

If the explosion takes place inside the building the expansion of gases will build up a
confined pressure in addition to the pressure of the shock front. This pressure load is much
lower than the shock pressure but lasts longer. In a perfect confinement the gas pressure
can be considered quasi-static. In real buildings the confinement is vented and the pressure
will decay based on the amount of ventilation.

Al-Salloum et al. [40] included the effects of confinement by an internal explosion
effect in the model by multiplying the Conwep blast pressure by a factor depending on an
assumed level of venting. By assuming an opening of 36 m2 in a 7056 m3 floor an internal
explosion factor of 1.7 was used No further verification or study of this assumption was
made.
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Adjacent buildings

No literature was found that takes into account reflections of surrounding buildings. If the
adjacent buildings and the air in-between also were to be modeled in an Eulerian approach,
this would further increase the already high computational cost. The blast pressures could
be factorized by trying to take the surroundings into account. This could potentially be
very uncertain, but could be necessary if large adjacent buildings are close.

4.4.3 Modeling the blast pressure
Characteristics of the blast wave, such as peak pressure, impulse and duration, may either
be modeled directly by a thermodynamic equation of state or taken from empirical data
based only on TNT-equivalent mass and stand-off distance.

In the extensive model of Luccioni et al. [30], the explosion was modeled in two stages.
The explosion was modeled first with a 1D model using the Jones-Wilkins-Lee equation
of state to generate a spherical blast wave. The blast wave was then mapped into 3D and
the propagation of the blast wave was modeled using Eulerian air elements as described in
above.

The most utilized method found, is implementing data from TM 5-855-1 [39] that is
now replaced by UFC 4-010-02 DoD [12]. These data are based on analytical and exper-
imental values and gives a variety of parameters for free air, air and surface explosions.
Parameters may be read graphically from plots, and time-pressure curves can be fitted
to these parameters as shown in. The same pressure curves can also be generated using
commercial software like ATBLAST used by Fu [35].

4.4.4 Other physical effects from explosions
Explosions might cause more than just the shock wave and gas pressure mention earlier.
It might propel fragments and create a ground shock wave. While these effects could
do great damage on buildings and human life, they are less relevant when considering
the structural response that could lead to progressive collapse. No search regarding these
topics where conducted and no progressive collapse studies where observed taking these
effects into account. However, there have been studies on progressive collapse caused by
impact 1. Electromagnetic Impulse (EMP) and radiation might also be caused by nuclear
explosions, but this does not affect the structural response.

Weather conditions like atmospheric pressure, air flows and temperature will affect the
pressure wave from an explosion. However these effects are only significant when the blast
is so small or so far away from the building that they will likely not cause any significant
structural damage [5].

One effect which is not related to the blast loading, but may be caused by explosions
or other incidents, are fires. As seen in 2 fires may greatly reduce the capacity of structural
members leading to collapse. Temperature effects was not researched in this study.

1ref WTC and nuclear cooling tower
2WTC
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Chapter 5
Modeling

In order to study various analysis methods for progressive collapse and blast loading, FE
models of a simple building where created.

5.1 Geometry
The building was a steel frame building with one-way reinforced concrete slabs. It consists
of four by four bays, each 7.5 by 7.5 m. It had 5 stories, all three meters high with the
same beam and column layout as shown in figure 5.1. As a simplification all columns were
HFRHS300 and all beams HEB300. Section dimensions are shown in figure 5.2. Concrete
slabs were 200 mm thick with 20 mm rebars with 120 mm spacing in both directions. The
20 mm were placed from the bottom of the slab. Slabs are the size of one bay and span in
x-direction.
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Figure 5.1: Plan view showing column and beam layout

(a) HFRHS300 (b) HEB300

Figure 5.2: Section dimensions
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5.2 FEM-model

As a simplification all beam-column connections were modeled as fixed. This is not
common for this type of building, but it simplifies the modeling as there is no need for
lateral bracing. A more realistic approach would be to model the connections as pinned
or with rotational stiffness and incorporate lateral bracing. The column bases are assumed
fixed. Slabs are pinned along the beams.

5.2 FEM-model
Two different three-dimensional FE-models of the building was modeled. One model used
beam elements to model the steel frame while the other used shell elements. They will be
referred to as the ‘beam model’ and the ‘shell model’. Only the steel frame and slabs were
modeled. Both used shell elements for the slabs. Contact was not modeled. The analyses
are only able to model the onset of collapse and not how it propagates as structural member
make contact with each other or the ground.

5.2.1 Beam Model
Columns and beams were modeled with B31 elements. The B31 element is a three-
dimensional linearly interpolated beam elements. It is a Timoshenko element, meaning
it does include shear flexibility and stiffness [9].

The beams are connected to the columns with tie multi-point constraints. Both dis-
placement DOFs and rotational DOFs are tied creating a fixed joint. The slabs are con-
nected to the beams with tie connections only tying displacement DOFs.They are only
tied on two opposite sided creating a one-way slab. The slabs where modeled in the same
height as the beams without any offset. This is a simplification as the slabs should be
resting on top of the beams. The slabs are assumed to be properly tied as to not slide off
the beams. The slabs were modeled using the same element type as in the shell model.
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Figure 5.3: Beam model

5.2.2 Shell Model
All members were modeled using a basic reduced integration shell element, S4R [9].
This is a four-node general-purpose shell element with hourglass control, finite membrane
strains and reduced integration. Default numerical integration through the shell section, 5
point Simpson’s rule, was used. General purpose means that the element may be used for
both thin and thick shells. The element includes shear strains (Mindlin/Reissner theory)
which is necessary for shells that are not thin [41]. The definition of a thin shell is that
the thickness is less than about 1/15 of the typical structural dimension. The slabs and
column section are thin, but the beam is not.

The reduced integration reduces the computational cost, but gives rise to unphysical
hourglass deformation modes. These modes allow deformation without strain energy in
the element. For the S4R element these hourglass modes may propagate through the model
giving large errors. Therefore artificial strain energy is introduced in order to control this.

The beam column connection is modeled by making sure that the beam and column
mesh aligns and having them share nodes. This models a fixed joint. The slabs edges
are pinned to the top center line on the beam sections using tie connections without tying
rotational DOFs.
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(a) Detail of shell frame model (b)

Figure 5.4: Shell model

5.3 Materials

5.3.1 Steel
The steel was modeled with nonlinear isotropic hardening and damage. The yield strength
was 355 MPa, Young’s modules 210 000 MPa, Poisson’s ratio 0.3, and density 7.8 kg/m3.
Hardening parameters were K = 772 and n = 0.1733. An initial yield plateau until a strain
of 0.024 was used before hardening started. The stress strain curve was created in Matlab
and imported to Abaqus. Initiation of damage was also calculated using the Matlab script
and equivalent plastic strain ε̄pl as a function of stress triaxiality was inputed to Abaqus.
Linear damage based on effective plastic displacement with failure at 0.001 was used. [9].
As a simplification the rebar steel was taken to be the same as the frame steel. 0.05 mass
proportional damping was used as in similar studies [35] [33].
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Figure 5.5: Steel model

5.3.2 Concrete

The concrete damaged plasticity model in Abaqus was first used, but this produced an
error in several of the analyses. As the material modeling is not in focus of this thesis
this was not explored further, but a very simple concrete model was used. The concrete
was modeled as linear perfectly plastic with yield strength 30 MPa, Young’s modules 35
000 MPa, Poisson’s ratio 0.3, and density 2.5 kg/m3 No difference between tension and
compression was made. The reinforcement was modeled as layers equivalent in the shell
section. The same damping was applied as for the steel material.

5.4 Loading

The U.S. General Services Administration (GSA) recommends that the building is loaded
with dead load (DL) and 25 % of the live load (LL) when conducting an AP analysis [37].
DL was taken as the weight of the materials and the LL was set to 2.0 kN/m2. No other

loads, such as wind and snow, was included. All slabs was loaded with 0.25 ∗ LL =
0.5kN/m2 including the roof slabs.
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5.4 Loading

5.4.1 Blast loading

An explosion equivalent of one ton TNT was modeled 10 m in x-direction from column
D4 at ground level. The blast loading was modeled in two different ways, using an incident
wave interaction and Conwep blast loading.

Figure 5.6: Plan view showing location of explosion

Conwep

Conwep (Conventional Weapons) is subtype of incident wave interaction in Abaqus. It
models the blast wave of a spherical air blast or a hemispherical surface air blast without
modeling the air. Hemispherical surface blast was used. The wave parameters are empir-
ical data from TM 5-885-1 [39]. The only input parameters required for the interaction is
the location of the blast source, the TNT-equivalent charge weight, and the surfaces that
the blast acts on. It does not model shadowing effects or reflected waves. A limitation
with Conwep is that it can only be applied to the surfaces of shells and solids, not beam
elements. The Conwep model was therefore only used on the shell model.

Incident Wave Interaction

Even though Conwep is a type of incident wave interaction, the term incident wave inter-
action will be used excluding Conwep. It is used to simulate wave propagation through
a fluid and interaction with structures. Since density of air is relatively low as a fluid it
is possible to neglect the effect of the air and only model the structural components. The
blast wave then propagates as a free air burst without any reflections or shadowing from
surfaces.

Density of air is set to 1.225 kg/m3 and speed of sound to 340.29 m/s. Since the fluid
medium is not modeled, beam fluid inertia have to be specified for the beam sections in
order to take drag into account. This is done by setting the density of the fluid ρf , drag
coefficient of the section shape CA and an effective radius of the section r. The added
inertia of the section is then given by: πr2ρfCA. The effective radius is set equal to the
width of the beams and columns, 300 mm. A square section with rounded corners with
radius/width = 0.2 has a theoretical drag coefficient of 1.2 for laminar flow [42]. This
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was used as an initial value. The incident wave load is not intended for use on open-section
profiles, but was still used on the H-section beams.

The properties of the blast pressure is set by defining a source point and a reference
point. A pressure amplitude is defined at the reference point. Parameters for the Friedlan-
der equation (3.12) was taken from UFC 4-340-02 [12], and the b parameter was fitted in
Matlab so that the impulse was correct. The Friedlander equation was then used to gen-
erate a pressure amplitude that was inputed to Abaqus. The propagation of the incident
wave is spherical as of a free air burst. Since the explosion is at ground level, parameters
for a surface burst is used. Since the propagation of a surface burst is hemispherical, this
will be the same.

Blast pressure

A solid cube element, fixed at all nodes was applied Conwep loading in order to compare
the Conwep blast pressure with Friedlander curve created. The single C3D8R cube solid
element was placed with one side perpendicular to the blast source, and one of the other
sides parallel. By using the output parameter IWCONWEP from Abaqus the pressure
loading on a surface face is outputted. Reading this parameter on the perpendicular and
parallel face of the element gives the maximum reflected pressure and the incident pres-
sure. Figure 5.7 shows the incident pressure from the Conwep loading in Abaqus and the
pressure curve the author has created from [12]. They show good correspondence.
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Figure 5.7: Incident pressure from Conwep loading and UFC [12]
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5.5 Analyses

5.5.1 Alternate Path Analyses
Explicit time integration is often used in highly nonlinear problems because it is more
stable than implicit integration. Analyses using explicit and implicit integration was com-
pared to see if implicit integration may reduce computational cost. Nonlinear dynamic
alternate path analyses where conducted using both implicit and explicit time integration,
beam and shell models. First the DL and LL was applied static or quasi-static, then col-
umn D4 was removed and a dynamic step of two seconds to study the response. In Abaqus,
implicit integration analysis was part of the Abaqus/Standard program, while Abaqus/Ex-
plicit was a separate program. Both are accessed within the same user interface, but their
capabilities and limitations are different. Because of this, different modeling techniques
have to be used for the implicit and explicit analyses.

Implicit Analysis

First a static step was conducted applying the DL and 0.25 LL. Then a column was deacti-
vated using a model change interaction during a short dynamic step of 20 ms. During the
model change the forces in the elements are linearly transfered to adjacent elements during
the step. The column was removed by removing all but the top elements where the beams
are connected in order not to remove the connection between the beams as purposed by
GSA [37]. After that a two s dynamic step follows.

Explicit Analysis

The element removal interaction was not available in Abaqus/Explicit and manual removal
of elements it not straight forward. The following approach was adopted: First a static
analyses was done in Abaqus/Standard and moments and forces in the top of the column
was extracted. A model in Abaqus/Explicit was created without the column but with the
moments and forces extracted from the static analysis applied. A quasi-static step was ran
applying the DL and LL. The step was ran for thee s with the load being applied with
a smooth step amplitude over the first two s to avoid dynamic effects. Then the same
procedure as the implicit analysis was done. Then the forces and moments applied from
the static step was removed linearly over a period of 20 ms before a two s dynamic step.

5.5.2 Blast Analyses
Blast analyses were mainly done using explicit time integration. First a quasi-static anal-
ysis applying the DL and LL as in the AP analysis. Then the blast load was applied at the
beginning of a dynamic step of two seconds.

5.5.3 Output
In order to be able to compare CPU times of implicit and explicit analyses, care had to
be taken to make sure that they output about the same amount of data. Abaqus has two
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different output types, namely field and history output. Field output stores variables over
a field for the entire model, or a select section of it. This data is typically used to produce
spacial deformed or undeformed plots of the model with contour or symbol plots. History
output stores data only for selected nodes or elements and are typically used to plot graphs
or extracted for other operations.

Outputting field data for models with a large number of elements generates larges
amounts of data. The amount of field data extracted was therefore limited to only defor-
mations and status of element deletion.

For the implicit analysis the data was requested every increment. The explicit analysis
uses a very large number of increments so the field output was requested at the same rate
as the for the implicit analysis.

History was requested more frequent as it does not generate as much data as the field
output. About 500 times during the analysis for the explicit analyses.

32



Chapter 6
Results

6.1 Alternate Path Models
The beam model was analyzed using the alternate path method, removing column D4. The
difference between using implicit and explicit time integration was studied. The analyses
was ran using different element sizes and a models with 10 stories in stead of 5 to see how
this affected the results.

6.1.1 Response
Figure 6.1 shows vertical displacement above the removed column using explicit and im-
plicit integration. The implicit curve is shifted to the right so the column removal happens
at the same time as the end of the removal in the explicit analysis (t=3.02s). The response
of the explicit is dampened out quicker but other than that they fit well. The explicit curve
is more smooth because it has a higher frequency of history output, while the implicit
outputs every increment. Figure 6.2 shows the same response, but zoomed in on the quasi-
static and static loading step. There is a difference in deformation after loading because the
forces added in place of the reaction forces in the removed column in the explicit model
is not able to exactly balance applied load. But the quasi static solution is stable before
the column removal showing that the quasi-static step is long enough to avoid dynamic
effects. Similar results are observed for the 10 story model.
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Figure 6.1: Vertical displacement above removed column in implicit and explicit beam model.
Implicit curve is shifted so that column removal happens at the same time.

0 0.5 1 1.5 2 2.5 3
Time [s]

-0.8

-0.6

-0.4

-0.2

0

D
is

pl
ac

em
en

t [
m

m
]

Explicit
Implicit

Figure 6.2: Vertical displacement above removed column in implicit and explicit beam model.
Implicit curve is shifted so that column removal happens at the same time.
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6.1.2 Seed
As shown in figure 6.3 there is not much difference in response with the tested element
sizes with explicit integration. Both the frame and the slabs where meshed with the same
seed. A 1 500 mm seed gives a slightly more flexible response but, not much. This
corresponds to two beam elements for the columns and five for the beams. Similar small
variations in response is observed with implicit integration.
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Figure 6.3: Vertical displacement of explicit analysis above removed column using different global
seed

6.1.3 Ability to produce collapse
In order to verify that both the implicit and explicit analysis was able to reproduce collapse,
the LL was increased linearly four seconds after column removal. Figure 6.4 shows the
explicit model at t = 11.55 s. The collapse is initiated by plasticity and buckling of the
interior columns followed by the exterior columns closest to the removed column. Since
no contact and no ground was modeled the whole building starts falling indefinite until
the analysis is stopped. Figure 6.5 shows vertical displacement, normalized total vertical
reaction force, internal work and kinetic energy of the explicit analysis. The building does
not collapse until about thee times the total load is applied after the column removal. The
reason it is able to withstand so much is because the fixed joints are able to transfer a lot of
force. The concrete is also overly stiff in tension because no cracking model is included.
The buckling of the interior columns happens around 10 s and corresponds to the ‘bump’
that is observed in the kinetic energy at that time.

The response of the implicit and explicit model is very similar. The only difference
is that the explicit dampens out vibrations faster, but the global response is the same as
shown in 6.6.
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Figure 6.4: Collapse after removal of D4 and increasing the LL
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Figure 6.5: Vertical displacement, normalized total vertical reaction force, internal work and kinetic
energy of collapse for the explicit analysis.
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Figure 6.6: Vertical displacement at top of column removed in collapse analysis

38



6.1 Alternate Path Models

6.1.4 Computational time

Computational cost is presented as CPU times normalized with respect to an explicit anal-
ysis with a 750 mm global seed. CPU times with varying seeds are presented in table 6.1.
The explicit analysis is a little faster for the coarser mesh while the implicit is faster for
the fines mesh with 300 mm elements. The reason for this is that the biggest influence
on the explicit CPU time is the stable time increment which decreases with decreasing
element size. If just increasing the size of the model while keeping the same element
size the implicit CPU time increases more than the explicit. This is shown in table 6.2 by
varying the building height. For the 15 story building the deformations had not stabilized
within the prescribed time interval of the analyses. Running the analyses further reviled
that the deformations did stabilize without any collapse, but it was close as all four interior
columns had buckled in the ground floor. Since there was a lo of plasticity and buckling
in the 15 story analysis the implicit analysis required a large number of increment in order
to converge. This shows that the explicit analysis is often faster for nonlinear problems.

Table 6.1: Normalized CPU times with varying seed, 1 = 3 min

Explicit integration Implicit integration
Seed [mm] Elements

[103]
CPU time Stable increment

[10−6 s]
CPU time Increments

1 500 2 0.5 120 0.9 40
750 6 1 70 1.9 45
500 12 2 50 3.0 58
300 32 10 30 7.5 68

Table 6.2: Normalized CPU times, 1 = 3 min

Explicit integration Implicit integration
Stories Elements

[103]
CPU time Stable increment

[10−6 s]
CPU time Increments

5 6 1.0 70 1.9 45
10 11 1.4 70 4.2 58
15 17 9 70 35 202

For the collapse analyses the explicit was a lot faster. The implicit analysis was ter-
minated when reaching 500 increments for the last loading step, 556 increments in total.
The CPU time was then 1 h 45 min while the explicit finished in 8 min using about 70
000 increments. Because of the large deformations when the building starts to collapse a
small time increment is needed and since every increment is costly because of the matrix
factorization in the implicit integration, the analysis becomes very slow. When the implicit
analysis was terminated 1.6 s after column removal, the explicit ran for two seconds. The
last 300 implicit increments had only advanced the analysis 0.2 s.
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6.1.5 Alternate Path analysis with the shell model
Implicit and explicit AP analyses was done on the shell model as well. As with the beam
analyses, there was not a significant difference in the response between the explicit and
implicit analyses. Figure 6.7 and 6.8 compares the response of the beam and shell model
using explicit time integration. The response is similar but the beam model is stiffer. The
shell initially has a larger displacement, but dampens out faster. The reason could be that
since the shell model is modeling the beam and column section in 3D, this allows for local
deformation of the column where the beam is joined. This will cause the joint to not be
completely fixed as the beam element joints are. The total reaction force is similar. The
reason for the difference in total vertical reaction force during the quasi-static loading is
because of a difference in how the column is removed. In the beam model forces static
forces are applied in stead of the column. In the shell model the column is there during
quasi-static loading, and the fixation of the column support is removed instantaneously.
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Figure 6.7: Vertical displacement at top of removed column for explicit shell model

Table 6.3: Normalized CPU times, 1 = 3 min

Explicit integration Implicit integration
Stories Elements

[103]
CPU time Stable increment

[10−6 s]
CPU time Increments

Beam 6 1.0 70 1.9 45
Shell 47 9 24 19 91

40



6.2 Blast Loading on single Column

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

0

0.5

1

1.5

2
F

or
ce

 [N
]

#107

Shell
Beam

Figure 6.8: Total vertical reaction force for explicit shell model

6.2 Blast Loading on single Column
Before comparing the global beam and shell model, blast analyses on a single column was
conducted. The column was the same as in the global building models, three meters high,
300 mm square steel section and fixed at both top and bottom. Both used the same element
size, 150 mm. Verification of results against experimental results was not conducted.

6.2.1 Beam section parameters
Varying the drag coefficient and effective radius for the beam fluid inertia has a large
impact on the response. 6.9 shows the lateral deflection of using drag coefficients of 0.9,
1.0 and 1.2. In later analysis 1.0 was used in the beam model as it was closer to the
response of the shell model using Conwep loading. The other parameter affecting the
blast loading on the beam elements is the effective radius of the section. The other section
properties of the beam elements does not affect the incident wave load, only the response.
This show that if a beam model is to be used to model blast with incident wave loading,
it is important to calibrate the beam fluid inertia and effective radius against experiments
or models that are assumed correct. Especially for sections more complex that circular or
square.
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Figure 6.9: Lateral deformation at mid beam with varying drag coefficient

6.2.2 Comparing incident wave with Conwep loading
Beam incident wave vs shell Conwep

Figure 6.10 and 6.11 shows the response of the column for the beam model using incident
wave loading and the shell model using Conwep loading. The deformation at the middle
is not the same but similar. The reaction force is not similar. The response is visualized
in figure 6.12. It shows how the deformation propagates as the blast hits the column from
the bottom left corner. The beam model initially has a more local response only in the the
lower part while the shell model starts deforming over the whole hight from the beginning.
This causes a ‘whipping’ effect in the beam model that can be seen as a negative spike in
the reaction force in figure 6.11. This also causes the beam model to have several hi-
frequent deformation modes, while the shell model mostly oscillates in a global mode.

The cause of this difference in response is mainly because the incident wave and the
Conwep wave travels with different velocity. The shock front of the incident wave loading
travels at the speed of sound, while Conwep shock front travels at a varying supersonic
speed determined from empirical data in the Conwep model. The correct velocity is that
of the Conwep model. The velocity is always supersonic, and tends towards the speed of
sound as the scaled distance Z gets increases. This means that this effect should become
less as the distance increases of the charge weight decreases.
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Figure 6.10: Horizontal deformation at middle of column.

0 0.002 0.004 0.006 0.008 0.01 0.012
Time [s]

-12

-10

-8

-6

-4

-2

0

2

4

F
or

ce
 [N

]

#106

Beam - Incident Wave
Shell   - Conwep

Figure 6.11: Total reaction force from top and base of column.
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(a) (b) (c)

Figure 6.12: Deformation of column scaled by a factor of 30. Beam model is shown in blue and fig
a), b) and c) is in chronoligical order. The blast comes directly from the left.
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Incident wave load on shell elements

Figure 6.13 shows that by using incident wave loading the shell model gives substantially
lower response. The incident wave blast load is not large enough to practice the column so
the response oscillates around the initial configuration. The reason for this was found to
be because the incident wave loading does not take into account the incident angle when
it the blast wave impinges on a shell surface. The reflected pressure is supposed to have
a maximum when the wave hits the surface perpendicular and the incident and reflected
pressure should be equal when it hits parallel.

A simple test with analysis with shell elements perpendicular and parallel to the blast
at three different distances was conducted. The reflected pressures is shown in figure 6.14.
The pressure decreases as it hits a shell further away at a later time. The reflected pressure
from the innocent wave loading does not depend on the angle of incident, but is always
equal to the incident pressure. The time it takes for the incident blast wave to hit the shells
is larger than for the Conwep blast wave and therefore the pressure is also lower for the
same distance.
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Figure 6.13: Horizontal displacement at center of column in shell model
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Figure 6.14: Horizontal displacement at center of column in shell model

6.2.3 Element size
Figure 6.15 and 6.16 shows the lateral deformation at the center of the column for different
element sizes for both the beam and the shell model respectively.

For the beam model the response is somewhat smaller for a finer mesh and the high-
frequency vibrations become less pronounced and becomes even more high-frequent. The
is because each element is vibrating.

For the shell model the response becomes less stiff for a finer mesh. This is because
more of the energy is taken up as local deformation of the section. Figure 6.17 shows how
the section deforms different with different element sizes at the center of the column. If
local buckling of the section is a possibility this deformation is very important to capture.
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Figure 6.15: Displacement at middle of column with different element sizes for beam model.
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Figure 6.16: Displacement at middle of column with different element sizes for shell model.
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(a) 300 mm (b) 150 mm (c) 75 mm

Figure 6.17: Deformation of column section at middle of column with different seed. Blast wave
directly from left
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6.2.4 Implicit time integration
Attempts where made to use implicit time integration to solve the beam model using im-
plicit time integration in stead of explicit. The author was not successful at getting a
convergent solution. For the very small part that did converge the time increment became
so small (10−7) that the method provides no benefit over explicit time integration.

6.3 Global blast models
Blast loading was applied to global building models. Only explicit integration was used
and both beam and shell elements where tested for modeling the frame.

6.3.1 Response beam vs shell model
Figure 6.18, 6.19 and 6.20 shows some of the response of the blast model using beam
or shell elements to model the frame. As seen the two models does not show the same
response. Figure 6.19 shows that the global displacement response is larger for the shell
model. Figure 6.18 shows that there is more energy in the beam model and 6.20. As
seen in figure 6.19 the top of the beam model it displaced towards the blast side of the
building, while the shell first is displaced away before it starts to swing back and forth.
This is a similar response as seen for the single column model in sec 6.2 where the beam
model deflects only locally first causing the top to come the other way, while the shell
model the whole building deflects more together. In both models the sum of the reaction
forces in the column bases become negative right after the blast meaning that the building
is experiencing lift.
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Figure 6.18: Internal work and kinetic energy of global beam and shell blast models
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Figure 6.19: Vertical displacement in x direction at top of building in column D4
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Figure 6.20: Total vertical reaction force
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6.3.2 Large blast loading
To see how the models behaved under large blast loading various standoff distances and
charge weight where tested. The results clearly show that the beam and the shell model do
not produce the same result. A one ton explosion at two meters from the building is shown
in figure 6.21 with the beam model on the left and the blast model on the right. The shell
model lost one column, but no other severe damage. The beam analysis terminated 0.5 s
after the blast because of extreme deformations in the slab. This is because the concrete
material is perfectly plastic and does not include any damage.

A 15 ton explosion 10 m from the building is shown in figure 6.22, again with the
beam on the left and the shell model on the right. Here the beam model showed much less
damage than the shell model. It lost two columns and where still standing. Large parts of
the shell model was lifted several meters up as seen in the figure, and the building collapsed
afterwards. Again the lack of damage in the concrete material makes this response rather
unrealistic. If the concrete would have been damaged, the building would not have been
lifted up that much.

(a) Beam model 50 ms after blast (b) Shell model two second after blast

Figure 6.21: Damage from one ton TNT with two m standoff distance
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(a) Beam model two second after blast (b) Shell model 50 ms after blast

Figure 6.22: Damage from 15 ton TNT with 10 m standoff distance

6.3.3 CPU time
Table 6.4 shows normalized CPU time for blast analysis with both the beam and the shell
model. The slab seed was kept constant at 750 mm for all models generating 100 elements
per slab. This is because the response of the columns and beams are more interesting and if
the same mesh size was used the finer models would have a very high number of elements
because the are of the slabs is much larger than the frame. The longest CPU time was the
shell model with seed 37.5 mm with over 30 hours.

Table 6.4: Normalized CPU times, 1 = 2 min

Seed [mm] Elements
[103]

CPU time Stable increment
[10−6 s]

Beam model 750 6 1 70
300 8 4 30
150 10 9 15

75 17 25 8
37.5 29 80 4

Shell model 300 20 8 26
150 43 15 23

75 160 95 12
37.5 626 885 5
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Chapter 7
Conclusion and Further Work

7.1 Conclusion
The main approach to collapse analysis today is the alternate path method. A column is
notionally removed in a structural analysis to see if the forces can be relocated to alternate
paths. In order to correctly model the response of multi-story buildings, a global, three-
dimensional, nonlinear, dynamic analysis have to be conducted. This may lead to large
complex models, that have a high computational cost. One method so simplify the model
and reduce computational cost is to use beam elements instead of shell or solid elements
to model the frame of the building. It has been shown in the literature that this can predict
an acceptable response. This fits with the results of this thesis.

Using implicit time integration instead of explicit have been studied to see if it could
reduce computational cost. Modeling a steel frame building using both beam elements and
shell elements did not show significant benefit of using implicit integration.

The alternate path method does not capture the structural response from an explosion
or damage of multiple structural members. Other studies have concluded that this method
is not always conservative for blast loading. Other studies have shown that it is possible
to correctly model collapse of a building using large complex analyses with a very high
computational cost. This thesis has tried to use the incident wave interaction in Abaqus in
order to apply the correct blast load on beam elements. The method was compared with
Conwep blast loading shell elements. Analyses was conducted on a moment stiff steel
frame building with concrete slabs. The beam element model was unable to produce a
satisfactory response compared with the shell element model using Conwep.
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Chapter 7. Conclusion and Further Work

7.2 Further work
No experimental verification was conducted in this thesis. Verification against blast exper-
iments on structural steel members may be conducted. This may be done in order to study
what conditions are necessary for the incident wave loading to produce a correct response.
Other blast loading approaches with beam member suggested in the literature may also be
further studied or novel approaches may be adopted. Another thing that may be done is
avoiding the quasi-static loading step. Computational cost may be saved by importing the
results of a static analysis in stead of using a quasi-static step to apply the initial loads.

There are several topics not covered in this thesis relevant to blast and collapse analy-
ses, and considerable simplifications were made in the analyses. Some suggestions about
what may be included in a more realistic analysis are:

• Modeling of joints. They should be modeled as pinned or semi-rigid and realistic
lateral bracing should be included in the model.

• Better material models. A proper concrete model is necessary and strain rate depen-
dence may be included for the steel material.

Some suggestions on further topics to cover:

• Fire. An explosion might cause a fire that will weaken the materials.

• Facade. Many studies, including this thesis, does not model the facade of the build-
ing. This may affect the response.

• The negative blast impulse. This phase of the blast load was neglected in this study.
This may be taken into account for steel frame buildings with flexible joints to see
if it as an effect.
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Appendix

Appendix

Selected Python Scripts

This appendix contains some of the scripts used in the thesis. blastBeam.py is an example
of a script used to run explicit blast analyses with the beam model. The other two scripts
lib/func.py and lib/beam.py are modules that must be placed in a folder called lib in the
working directory of Abaqus. It imports an input file containing a steel material from
a folder called inputData blastBeam.py then imports functions from the other two mod-
ules in lib. Module lib/func.py contains common functions used by all analysis. Module
lib/beam.py contains functions related to the beam model. Similar modules was created for
the shell model, and the single column models. All scripts used in this thesis are available
online at https://github.com/fsdalen/ProgressiveCollapse.

blastBeam.py

1 # Abaqus modules
2 from abaqus i m p o r t ∗
3 from a b a q u s C o n s t a n t s i m p o r t ∗
4
5
6 #=======================================================#
7 #=======================================================#
8 # CONTROLS #
9 #=======================================================#

10 #=======================================================#
11
12
13 modelName = ’ b las tBeam ’
14 cpus = 8 #Number o f CPU ’ s
15
16 run = 0
17
18 p a r a m e t e r = 0
19 r u n P a r a = 0
20
21
22
23 #=========== Geometry ============#
24 # S i z e 4x4 x10 ( 5 )
25 x = 4 #Nr of columns i n x d i r e c t i o n
26 z = 4 #Nr of columns i n z d i r e c t i o n
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blastBeam.py

27 y = 5 # nr o f s t o r i e s
28
29
30 #=========== Step ============#
31 quas iT ime = 3 . 0
32 b l a s t T i m e = 0 . 1
33 f r e e T i m e = 2 . 0
34
35 qsSmoothFacor = 0 . 7 5 #When smooth s t e p r e a c h e s f u l l a m p l i t u d e d u r i n g QS

s t e p
36
37 b l a s t C o l = ’COLUMN D4−1 ’
38 blastAmp = ’ blastAmp . t x t ’
39
40 p r e c i s i o n = SINGLE #SINGLE / DOUBLE/ DOUBLE CONSTRAINT ONLY /

DOUBLE PLUS PACK
41 noda lOpt = SINGLE #SINGLE or FULL
42
43
44 #=========== G e n e r a l ============#
45 m o n i t o r = 0 # Wr i t e s t a t u s o f j o b c o n t i n u s l y i n Abaqus CAE
46
47 # Live l o a d
48 LL kN m = −0.5 #kN /mˆ2 (−2.0)
49
50 #Mesh
51 seed = 150 .0 #Frame seed
52 s l a b S e e d = 750 .0 # S lab seed
53 s t e e l M a t F i l e = ’ mat 7 . 5 . i n p ’ #Damage p a r a m e t e r i s a f u n c t i o n o f e l e m e n t

s i z e
54
55 # P o s t
56 d e f S c a l e = 1 . 0
57 p r i n t F o r m a t = PNG #TIFF , PS , EPS , PNG, SVG
58 animeFrameRate = 5
59
60 q s I n t e r v a l s = 100
61 b l a s t I n t e r v a l s = 100
62 f r e e I n t e r v a l s = 200
63
64 q s F i e l d I n t e r v a l s = 6
65 b l a s t F i e l d I n t e r v a l s = 22
66 f r e e F i e l d I n t e r v a l s = 22
67
68
69
70 #==========================================================#
71 #==========================================================#
72 # P e r l i m i n a r y #
73 #==========================================================#
74 #==========================================================#
75
76 i m p o r t l i b . func as func
77 i m p o r t l i b . beam as beam
78 r e l o a d ( func )
79 r e l o a d ( beam )
80
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81
82 mdbName = ’ b las tBeam ’ #Name of . cae f i l e
83
84
85 s t e e l = ’DOMEX S355 ’
86 c o n c r e t e = ’ C o n c r e t e ’
87
88 # S e t up model wi th m a t e r i a l s
89 func . p e r l i m i n a r y ( moni to r , modelName , s t e e l M a t F i l e )
90
91 M=mdb . models [ modelName ]
92
93
94
95
96 #==========================================================#
97 #==========================================================#
98 # B u i l d model #
99 #==========================================================#

100 #==========================================================#
101
102 # B u i l d geomet ry
103 beam . buildBeamMod ( modelName , x , z , y , seed , s l a b S e e d )
104
105
106
107 #=========== Quasi−s t a t i c s t e p ============#
108
109 o l d S t e p = ’ I n i t i a l ’
110 stepName = ’ q u a s i S t a t i c ’
111 M. E x p l i c i t D y n a m i c s S t e p ( name=stepName , p r e v i o u s = o l d S t e p ,
112 t i m e P e r i o d = quas iT ime )
113
114
115 # C r e a t e smooth s t e p f o r f o r c e s
116 M. SmoothStepAmpl i tude ( name= ’ smooth ’ , t imeSpan =STEP , d a t a =(
117 ( 0 . 0 , 0 . 0 ) , ( qsSmoothFacor∗quas iTime , 1 . 0 ) ) )
118
119 # G r a v i t y
120 M. G r a v i t y ( comp2 =−9800.0 , c r ea t eS tepName =stepName ,
121 d i s t r i b u t i o n T y p e =UNIFORM, f i e l d = ’ ’ , name= ’ G r a v i t y ’ ,
122 a m p l i t u d e = ’ smooth ’ )
123
124 #LL
125 LL=LL kN m ∗ 1 . 0 e−3 #N/mmˆ2
126 func . addSlabLoad (M, x , z , y , stepName , LL , a m p l i t u d e = ’ smooth ’ )
127
128
129
130 #=========== B l a s t s t e p ============#
131 # C r e a t e s t e p
132 o l d S t e p = stepName
133 stepName = ’ b l a s t ’
134 M. E x p l i c i t D y n a m i c s S t e p ( name=stepName , p r e v i o u s = o l d S t e p ,
135 t i m e P e r i o d = b l a s t T i m e )
136
137 # J o i n s u r f a c e s t o c r e a t e b l a s t S u r f
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138 l s t = [ ]
139 f o r i n s t i n M. roo tAssembly . i n s t a n c e s . keys ( ) :
140 i f i n s t . s t a r t s w i t h ( ’BEAM’ ) o r i n s t . s t a r t s w i t h ( ’COLUMN’ ) :
141 l s t . append (M. roo tAssembly . i n s t a n c e s [ i n s t ] . s u r f a c e s [ ’ s u r f ’ ] )
142 i f i n s t . s t a r t s w i t h ( ’SLAB ’ ) :
143 l s t . append (M. roo tAssembly . i n s t a n c e s [ i n s t ] . s u r f a c e s [ ’ b o t S u r f ’ ] )
144 b l a s t S u r f = t u p l e ( l s t )
145 M. roo tAssembly . Sur faceByBoo lean ( name= ’ b l a s t S u r f ’ , s u r f a c e s = b l a s t S u r f )
146
147 # C r e a t e b l a s t
148 d i c = { ’A’ : 0 , ’B ’ : 1 , ’C ’ : 2 , ’D’ : 3 , ’E ’ :4}
149 x B l a s t = d i c [ b l a s t C o l [ 7 ] ]
150 z B l a s t = f l o a t ( b l a s t C o l [ 8 ] )−1
151 func . add Inc iden tWave ( modelName , stepName ,
152 AmpFile= blastAmp ,
153 sourceCo = ( 7 5 0 0 . 0∗ x B l a s t + 1 0 0 0 0 . 0 , 0 . 0 , 7500 .0∗ z B l a s t ) ,
154 re fCo = ( 7 5 0 0 . 0∗ x B l a s t + 1 0 0 0 . 0 , 0 . 0 , 7500 .0∗ z B l a s t ) )
155
156
157 #Remove smooth s t e p from o t h e r l o a d s
158 M. l o a d s [ ’ G r a v i t y ’ ] . s e t V a l u e s I n S t e p ( stepName=stepName , a m p l i t u d e =FREED)
159 func . changeSlabLoad (M, x , z , y , stepName , a m p l i t u d e =FREED)
160
161
162 #=========== Free s t e p ============#
163 # C r e a t e s t e p
164 o l d S t e p = stepName
165 stepName = ’ f r e e ’
166 M. E x p l i c i t D y n a m i c s S t e p ( name=stepName , p r e v i o u s = o l d S t e p ,
167 t i m e P e r i o d = f r e e T i m e )
168
169
170 #=====================================================#
171 #=====================================================#
172 # Outpu t #
173 #=====================================================#
174 #=====================================================#
175
176
177 # D e t e t e d e f a u l t o u t p u t
178 d e l M. f i e l d O u t p u t R e q u e s t s [ ’F−Output−1 ’ ]
179 d e l M. h i s t o r y O u t p u t R e q u e s t s [ ’H−Output−1 ’ ]
180
181
182 # D i s p l a c e m e n t f i e l d o u t p u t
183 M. F i e l d O u t p u t R e q u e s t ( name= ’U’ , c r ea t eS t epName = ’ q u a s i S t a t i c ’ ,
184 v a r i a b l e s =( ’U’ , ) )
185
186 # S t a t u s f i e l d o u t p u t
187 M. F i e l d O u t p u t R e q u e s t ( name= ’ S t a t u s ’ , c r ea t eS t epName = ’ q u a s i S t a t i c ’ ,
188 v a r i a b l e s =( ’STATUS ’ , ) )
189
190
191 # H i s t o r y o u t p u t : en e r g y
192 M. H i s t o r y O u t p u t R e q u e s t ( name= ’ Energy ’ ,
193 c rea t eS tepName = ’ q u a s i S t a t i c ’ , v a r i a b l e s =( ’ALLIE ’ , ’ALLKE ’ ) )
194
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195 #R2 a t a l l co l−b a s e s
196 M. H i s t o r y O u t p u t R e q u e s t ( c r ea t eS tepName = ’ q u a s i S t a t i c ’ , name= ’R2 ’ ,
197 r e g i o n =M. roo tAssembly . s e t s [ ’ co l−b a s e s ’ ] , v a r i a b l e s =( ’RF2 ’ , ) )
198
199
200 #U2 a t t o p o f column c l o s e s t o b l a s t
201 M. H i s t o r y O u t p u t R e q u e s t ( name= b l a s t C o l + ’ t o p ’+ ’U’ ,
202 c rea t eS tepName = ’ q u a s i S t a t i c ’ , v a r i a b l e s =( ’U1 ’ , ’U2 ’ , ’U3 ’ ) ,
203 r e g i o n =M. roo tAssembly . a l l I n s t a n c e s [ b l a s t C o l ] . s e t s [ ’ co l−t o p ’ ] , )
204
205
206 # Change f r e q u e n c y of o u t p u t f o r a l l s t e p s
207 func . c h a n g e H i s t o r y O u t p u t F r e q ( modelName ,
208 q u a s i S t a t i c = q s I n t e r v a l s , b l a s t = b l a s t I n t e r v a l s , f r e e = f r e e I n t e r v a l s )
209 func . c h a n g e F i e l d O u t p u t F r e q ( modelName ,
210 q u a s i S t a t i c = q s F i e l d I n t e r v a l s , b l a s t = b l a s t F i e l d I n t e r v a l s ,
211 f r e e = f r e e F i e l d I n t e r v a l s )
212
213
214 #===========================================================#
215 #===========================================================#
216 # Save and run #
217 #===========================================================#
218 #===========================================================#
219 M. roo tAssembly . r e g e n e r a t e ( )
220
221
222 # C r e a t e j o b
223 mdb . Job ( model=modelName , name=modelName , numCpus=cpus , numDomains=cpus ,
224 e x p l i c i t P r e c i s i o n = p r e c i s i o n , n o d a l O u t p u t P r e c i s i o n = noda lOpt )
225
226 #Run j o b
227 i f run :
228 # Save model
229 mdb . saveAs ( pathName = mdbName + ’ . cae ’ )
230 #Run model
231 func . run Jo b ( modelName )
232 # Wr i t e CPU t ime t o f i l e
233 func . r e a d S t a F i l e ( modelName , ’ r e s u l t s . t x t ’ )
234
235
236
237 #===================================================#
238 #===================================================#
239 # P o s t #
240 #===================================================#
241 #===================================================#
242
243 p r i n t ’ P o s t p r o c e s s i n g . . . ’
244
245 #Open ODB
246 odb = func . open odb ( modelName )
247
248 # Contour p l o t s
249 func . c o u n t o u r P r i n t ( modelName , d e f S c a l e , p r i n t F o r m a t )
250
251 # Animat ion
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252 func . a n i m a t e ( modelName , d e f S c a l e , f r ameRa te = animeFrameRate )
253
254 # Energy p l o t s
255 func . x y E n e r g y P l o t ( modelName )
256
257 #R2 a t c o l ba se
258 beam . xyColBaseR2 ( modelName , x , z )
259
260 #U a t t o p o f c o l c l o s e s t o b l a s t
261 beam . xyUtopCol ( modelName , b l a s t C o l )
262
263 p r i n t ’ done ’
264
265
266
267
268
269 #==============================================================#
270 #==============================================================#
271 # PARAMETER STUDY #
272 #==============================================================#
273 #==============================================================#
274 ’ ’ ’
275 C r e a t e s and r u n s m u l p i p l e models and j o b s v a r y i n g a p a r a m e t e r .
276 ’ ’ ’
277
278 oldMod = modelName
279 i f p a r a m e t e r :
280
281 #=========== Seed ============#
282 p a r a L s t = [ 1 5 0 0 , 500 , 300]
283
284
285 f o r p a r a i n p a r a L s t :
286
287 #New model
288 modelName = ’ beamBlas tSeed ’+ s t r ( p a r a )
289
290 mdb . Model ( name=modelName , ob jec tToCopy =mdb . models [ oldMod ] )
291 M = mdb . models [ modelName ]
292
293
294 #=========== Change p a r a m e t e r ============#
295 beam . mesh (M, seed = para , s l a b S e e d F a c t o r = 1 . 0 )
296
297 M. roo tAssembly . r e g e n e r a t e ( )
298
299
300
301 #=========== C r e a t e j o b and run ============#
302
303 # C r e a t e j o b
304 mdb . Job ( model=modelName , name=modelName ,
305 numCpus=cpus , numDomains=cpus ,
306 e x p l i c i t P r e c i s i o n = p r e c i s i o n , n o d a l O u t p u t P r e c i s i o n = noda lOpt )
307
308
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309 i f r u n P a r a :
310 #Run j o b
311
312 mdb . saveAs ( pathName = mdbName + ’ . cae ’ )
313 func . run Jo b ( modelName )
314 func . r e a d S t a F i l e ( modelName , ’ r e s u l t s . t x t ’ )
315
316
317
318 #=========== P o s t p r o c c e s i n g ============#
319
320 p r i n t ’ P o s t p r o c e s s i n g . . . ’
321
322 # Energy
323 func . x y E n e r g y P l o t ( modelName )
324
325 #R2 a t c o l ba se
326 beam . xyColBaseR2 ( modelName , x , z )
327
328 #U a t t o p o f c o l c l o s e s t o b l a s t
329 beam . xyUtopCol ( modelName , b l a s t C o l )
330
331
332
333
334
335
336 p r i n t ’ ########### END OF SCRIPT ########### ’
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lib/func.py

1 # Abaqus modules
2 from abaqus i m p o r t ∗
3 from a b a q u s C o n s t a n t s i m p o r t ∗
4 from p a r t i m p o r t ∗
5 from m a t e r i a l i m p o r t ∗
6 from s e c t i o n i m p o r t ∗
7 from o p t i m i z a t i o n i m p o r t ∗
8 from assembly i m p o r t ∗
9 from s t e p i m p o r t ∗

10 from i n t e r a c t i o n i m p o r t ∗
11 from l o a d i m p o r t ∗
12 from mesh i m p o r t ∗
13 from j o b i m p o r t ∗
14 from s k e t c h i m p o r t ∗
15 from v i s u a l i z a t i o n i m p o r t ∗
16 from c o n n e c t o r B e h a v i o r i m p o r t ∗
17 i m p o r t odbAccess
18 i m p o r t x y P l o t
19 from jobMessage i m p o r t ANY JOB , ANY MESSAGE TYPE
20 i m p o r t a n i m a t i o n
21
22 # Python modules
23 i m p o r t csv
24 from d a t e t i m e i m p o r t d a t e t i m e
25 i m p o r t g lob
26
27
28
29
30
31
32 #===============================================================#
33 #===============================================================#
34 # PERLIMINARY #
35 #===============================================================#
36 #===============================================================#
37
38
39
40
41 d e f p e r l i m i n a r y ( moni to r , modelName , s t e e l M a t F i l e = ’ mat 75 . i n p ’ ) :
42 #Makes mouse c l i c k s i n t o p h y s i c a l c o o r d i n a t e s
43 s e s s i o n . j o u r n a l O p t i o n s . s e t V a l u e s ( r e p l a y G e o m e t r y =COORDINATE,
44 re cove r Geome t ry =COORDINATE)
45
46 # P r i n t b e g i n s c r i p t t o c o n s o l e
47 p r i n t ’\n ’∗6
48 p r i n t ’ ########### NEW SCRIPT ########### ’
49 p r i n t s t r ( d a t e t i m e . now ( ) ) [ : 1 9 ]
50
51 # P r i n t s t a t u s t o c o n s o l e d u r i n g a n a l y s i s
52 i f m o n i t o r :
53 p r i n t S t a t u s (ON)
54
55 # C r e a t e t e x t f i l e t o w r i t e r e s u l t s i n
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56 wi th open ( ’ r e s u l t s . t x t ’ , ’w’ ) a s f :
57 None
58
59
60 #=========== S e t up model ============#
61
62 # C r e a t e model based on i n p u t m a t e r i a l
63 p r i n t ’\n ’∗2
64 mdb . Mode lF romInpu tF i l e ( name=modelName ,
65 i n p u t F i l e N a m e = ’ i n p u t D a t a / ’+ s t e e l M a t F i l e )
66 p r i n t ’\n ’∗2
67
68 # D e l e t e s a l l o t h e r models
69 de lMode l s ( modelName )
70
71 # Close and d e l e t e o l d j o b s and ODBs
72 d e l J o b s ( e x e p t i o n = s t e e l M a t F i l e )
73
74
75 #=========== M a t e r i a l ============#
76 # M a t e r i a l names
77 s t e e l = ’DOMEX S355 ’
78 c o n c r e t e = ’ C o n c r e t e ’
79
80
81 M=mdb . models [ modelName ]
82 c r e a t e M a t e r i a l s (M, mat1= s t e e l , mat2= c o n c r e t e )
83
84
85
86 #=========== Simple m o n i t o r ============#
87 ”””
88 s i m p l e M o n i t o r . py
89
90 P r i n t s t a t u s messages i s s u e d d u r i n g an ABAQUS s o l v e r
91 a n a l y s i s t o t h e ABAQUS/CAE command l i n e i n t e r f a c e
92 ”””
93 d e f simpleCB ( jobName , messageType , da t a , u s e r D a t a ) :
94 ”””
95 Th i s c a l l b a c k p r i n t s o u t a l l t h e
96 members o f t h e d a t a o b j e c t s
97 ”””
98 f o r m a t = ’%−18s %−18s %s ’
99 p r i n t ’\n ’∗2

100 p r i n t ’ Message t y p e : %s ’%(messageType )
101 members = d i r ( d a t a )
102 f o r member i n members :
103 i f member . s t a r t s w i t h ( ’ ’ ) : c o n t i n u e # i g n o r e ” magic ” a t t r s
104 memberValue = g e t a t t r ( da t a , member )
105 memberType = t y p e ( memberValue ) . n a m e
106 p r i n t f o r m a t %(member , memberType , memberValue )
107
108 d e f p r i n t S t a t u s ( s t a r t =ON) :
109 ”””
110 Swi tch message p r i n t i n g ON or OFF
111 ”””
112
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113 i f s t a r t :
114 moni torManager . addMessageCa l lback (ANY JOB ,
115 STATUS , simpleCB , None )
116 e l s e :
117 moni torManager . r emoveMessageCal lback (ANY JOB ,
118 ANY MESSAGE TYPE, simpleCB , None )
119
120
121
122
123 #=========== Model i o n s ============#
124
125 d e f de lMode l s ( modelName ) :
126 ”””
127 D e l e t e s a l l models b u t modelName
128
129 modelName= name of model t o keep
130 ”””
131 i f l e n ( mdb . models . keys ( ) ) > 0 :
132 a = mdb . models . i t e m s ( )
133 f o r i i n r a n g e ( l e n ( a ) ) :
134 b = a [ i ]
135 i f b [ 0 ] != modelName :
136 d e l mdb . models [ b [ 0 ] ]
137
138 d e f d e l J o b s ( e x e p t i o n ) :
139 ”””
140 −C l o s e s open odb f i l e s
141 −D e l e t e s j o b s
142 −D e l e t e s . odb and . imp f i l e s
143 ( Because r u n n i g Abaqus i n P a r a l l e l s o f t e n c r e a t e s
144 c o r r u p t e d f i l e s )
145
146 e x e p t i o n = . i n p f i l e n o t t o d e l e t e
147 ”””
148 # Close and d e l e t e odb f i l e s
149 f l s = g lob . g lob ( ’ ∗ . odb ’ )
150 f o r i i n f l s :
151 i f l e n ( s e s s i o n . odbs . keys ( ) ) >0:
152 s e s s i o n . odbs [ i ] . c l o s e ( )
153 os . remove ( i )
154 # D e l e t e o l d i n p u t f i l e s
155 i n p t = g lob . g lob ( ’ ∗ . i n p ’ )
156 f o r i i n i n p t :
157 i f n o t i == e x e p t i o n :
158 os . remove ( i )
159 # D e l e t e o l d j o b s
160 j b s = mdb . j o b s . keys ( )
161 i f l e n ( j b s )> 0 :
162 f o r i i n j b s :
163 d e l mdb . j o b s [ i ]
164 p r i n t ’ Old j o b s and ODBs have been c l o s e d . ’
165
166
167
168
169
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170
171 #=========== M a t e r i a l s ============#
172
173
174 d e f c r e a t e M a t e r i a l s (M, mat1 , mat2 ) :
175 ’ ’ ’
176 Adds damping t o i m p o r t e d s t e e l model
177 C r e a t e s c o n c r e t e and r e b a r s t e e l
178
179 M: model
180 mat1 , mat2 , mat3 : Name of m a t e r i a l s
181 ’ ’ ’
182
183 damping = 0 . 0 5 #Mass p r o p o r t i o n a l damping , same f o r a l l m a t e r i a l s
184
185 # C o n c r e t e
186 m a t 2 D e s c r i p t i o n = ’ E l a s t i c−p e r f e c t p l a s t i c ’
187 mat2 dens = 2 . 5 e−09 # D e n s i t y
188 mat2 E = 35000 .0 #E−module
189 mat2 v = 0 . 3 # P o i s s o n
190 m a t 2 y i e l d = 3 0 . 0 # Y i e l d s t r e s s i n c o m p r e s s i o n
191
192
193
194
195
196 #=========== S t e e l ============#
197 # S t e e l i s a l r e a d y i m p o r t e d b u t needs damping
198 M. m a t e r i a l s [ mat1 ] . Damping ( a l p h a =damping )
199
200 #================ C o n c r e t e ==================#
201 M. M a t e r i a l ( d e s c r i p t i o n = m a t 2 D e s c r i p t i o n , name=mat2 )
202 M. m a t e r i a l s [ mat2 ] . D e n s i t y ( t a b l e = ( ( mat2 dens , ) , ) )
203 M. m a t e r i a l s [ mat2 ] . E l a s t i c ( t a b l e = ( ( mat2 E , mat2 v ) , ) )
204 M. m a t e r i a l s [ mat2 ] . P l a s t i c ( t a b l e = ( ( m a t 2 y i e l d , 0 . 0 ) , ) )
205 M. m a t e r i a l s [ mat2 ] . Damping ( a l p h a =damping )
206
207
208
209
210
211
212
213
214 # C o n c r e t e p l a s t i c i t y model , d i d n o t c o n v e r g e i n s t a t i c s t e p s : (
215
216 # m a t 2 y i e l d T e n s i o n = 2 . 0 # Y i e l d s t r e s s i n c o m p r e s s i o n
217 # M. m a t e r i a l s [ mat2 ] . C o n c r e t e D a m a g e d P l a s t i c i t y (
218 # t a b l e = ( ( 3 0 . 0 , 0 . 1 , 1 . 1 6 , 0 . 0 , 0 . 0 ) , ) )
219 # # D i l a t a t i o n ang le , E c c e n t r i c i t y , fb0 / fc0 , K, V i s c o s i t y p a r a m e t e r
220 # M. m a t e r i a l s [ mat2 ] . c o n c r e t e D a m a g e d P l a s t i c i t y .

C o n c r e t e C o m p r e s s i o n H a r d e n i n g (
221 # t a b l e = ( ( m a t 2 y i e l d , 0 . 0 ) , ) )
222 # M. m a t e r i a l s [ mat2 ] . c o n c r e t e D a m a g e d P l a s t i c i t y .

C o n c r e t e T e n s i o n S t i f f e n i n g (
223 # t a b l e = ( ( m a t 2 y i e l d T e n s i o n , 0 . 0 ) , ) )
224
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225
226
227
228
229
230
231
232
233
234
235 #====================================================#
236 #====================================================#
237 # OTHER #
238 #====================================================#
239 #====================================================#
240
241
242
243 d e f s e t O u t p u t I n t e r v a l s ( modelName , stepName , i n t e r v a l ) :
244 ’ ’ ’
245 Changes t h e number o f o u t p u t i n t e r v a l s f o r
246 f i e l d and h i s t o r y o u t p u t f o r a s t e p
247 ’ ’ ’
248 M=mdb . models [ modelName ]
249
250 f o r key i n M. f i e l d O u t p u t R e q u e s t s . keys ( ) :
251 M. f i e l d O u t p u t R e q u e s t s [ key ] . s e t V a l u e s I n S t e p (
252 stepName=stepName ,
253 n u m I n t e r v a l s = i n t e r v a l )
254
255 f o r key i n M. h i s t o r y O u t p u t R e q u e s t s . keys ( ) :
256 M. h i s t o r y O u t p u t R e q u e s t s [ key ] . s e t V a l u e s I n S t e p (
257 stepName=stepName ,
258 n u m I n t e r v a l s = i n t e r v a l )
259
260
261 d e f c h a n g e H i s t o r y O u t p u t F r e q ( modelname , ∗∗kwargs ) :
262 ’ ’ ’
263 Changes t h e h i s t o r y o u t p u t f r e q u e n c y f o r i n a l l h i s t o r y o u t p u t s
264
265 I n p u t :
266 modelName
267 stepName= f r e q , stepName2= f r e q 2 . . .
268 ’ ’ ’
269
270 M=mdb . models [ modelname ]
271
272 f o r s t e p i n kwargs :
273 f o r h s t O t p t i n M. h i s t o r y O u t p u t R e q u e s t s . keys ( ) :
274 M. h i s t o r y O u t p u t R e q u e s t s [ h s t O t p t ] . s e t V a l u e s I n S t e p (
275 stepName= s t e p , n u m I n t e r v a l s =kwargs [ s t e p ] )
276
277 d e f c h a n g e F i e l d O u t p u t F r e q ( modelname , ∗∗kwargs ) :
278 ’ ’ ’
279 Changes t h e f i e l d o u t p u t f r e q u e n c y f o r a l l f i e l d o u t p u t s
280
281 I n p u t :
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282 modelName
283 stepName= f r e q , stepName2= f r e q 2 . . .
284 ’ ’ ’
285
286 M=mdb . models [ modelname ]
287
288 f o r s t e p i n kwargs :
289 f o r f i e l d O t p t i n M. f i e l d O u t p u t R e q u e s t s . keys ( ) :
290 M. f i e l d O u t p u t R e q u e s t s [ f i e l d O t p t ] . s e t V a l u e s I n S t e p (
291 stepName= s t e p , n u m I n t e r v a l s =kwargs [ s t e p ] )
292
293
294
295
296
297
298 #======================================================#
299 #======================================================#
300 # LOADING #
301 #======================================================#
302 #======================================================#
303
304 #=========== Slab l o a d i o n s f o r beam model ============#
305
306
307 d e f addSlabLoad (M, x , z , y , s t e p , load , a m p l i t u d e =UNSET) :
308 ’ ’ ’
309 Adds a s u r f a c e t r a c t i o n t o a l l s l a b s
310
311 P a r a m e t e r s :
312 M: Model
313 l o a d : Magni tude o f l o a d ( p o s i t i v e y )
314 x , z , y : Nr o f bays
315 S tep : Which s t e p t o add t h e l o a d
316 Ampl i tude : d e f a u l t i s UNSET
317 ’ ’ ’
318
319 # C r e a t e c o o r d i n a t e l i s t
320 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
321 numb = map ( s t r , r a n g e ( 1 , z +1) )
322 e t g = map ( s t r , r a n g e ( 1 , y +1) )
323
324 f o r a i n r a n g e ( l e n ( a l p h )−1) :
325 f o r n i n r a n g e ( l e n ( numb )−1) :
326 f o r e i n r a n g e ( l e n ( e t g ) ) :
327 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ]+ ”−”+ e t g [ e ]
328 M. S u r f a c e T r a c t i o n ( c r ea t eS t epName = s t e p ,
329 d i r e c t i o n V e c t o r = ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ( 0 . 0 , 1 . 0 , 0 . 0 ) ) ,
330 d i s t r i b u t i o n T y p e =UNIFORM, f i e l d = ’ ’ , f o l l o w e r =OFF ,
331 l o c a l C s y s =None , magn i tude = load ,
332 name= i n s t ,
333 r e g i o n =M. roo tAssembly . i n s t a n c e s [ i n s t ] . s u r f a c e s [ ’

t o p S u r f ’ ] ,
334 t r a c t i o n =GENERAL, a m p l i t u d e = a m p l i t u d e )
335
336
337 d e f changeSlabLoad (M, x , z , y , s t e p , a m p l i t u d e ) :
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338 ’ ’ ’
339 Change
340
341 P a r a m e t e r s :
342 M: Model
343 l o a d : Magni tude o f l o a d ( p o s i t i v e y )
344 x , z , y : Nr o f bays
345 S tep : Which s t e p t o add t h e l o a d
346 Ampl i tude : d e f a u l t i s UNSET
347 ’ ’ ’
348
349 # C r e a t e c o o r d i n a t e l i s t
350 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
351 numb = map ( s t r , r a n g e ( 1 , z +1) )
352 e t g = map ( s t r , r a n g e ( 1 , y +1) )
353
354 f o r a i n r a n g e ( l e n ( a l p h )−1) :
355 f o r n i n r a n g e ( l e n ( numb )−1) :
356 f o r e i n r a n g e ( l e n ( e t g ) ) :
357 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ]+ ”−”+ e t g [ e ]
358 M. l o a d s [ i n s t ] . s e t V a l u e s I n S t e p ( stepName = s t e p ,
359 a m p l i t u d e = a m p l i t u d e )
360
361
362
363
364
365
366
367
368 #=========== B l a s t i o n s ============#
369
370
371 d e f addInc iden tWave ( modelName , stepName , AmpFile , sourceCo , re fCo ) :
372 a i r D e n s i t y = 1 .225 e−12 # 1 .225 kg /mˆ3
373 soundSpeed =340.29 e3 # 340 .29 m/ s
374
375 M=mdb . models [ modelName ]
376
377 # P r e s s u r e a m p l i t u d e from f i l e blastAmp . csv
378 f i r s t R o w =1
379 t a b l e = [ ]
380 wi th open ( ’ i n p u t D a t a / ’+AmpFile , ’ r ’ ) a s f :
381 r e a d e r = csv . r e a d e r ( f , d e l i m i t e r = ’\ t ’ )
382 f o r row i n r e a d e r :
383 i f f i r s t R o w :
384 f i r s t R o w =0
385 e l s e :
386 t a b l e . append ( ( f l o a t ( row [ 0 ] ) , f l o a t ( row [ 1 ] ) ) )
387 b l a s t T i m e = f l o a t ( row [ 0 ] )
388 t p l = t u p l e ( t a b l e )
389 M. T a b u l a r A m p l i t u d e ( name= ’ B l a s t ’ , t imeSpan =STEP ,
390 smooth=SOLVER DEFAULT, d a t a =( t p l ) )
391
392
393 # Source P o i n t
394 f e a t u r e = M. roo tAssembly . R e f e r e n c e P o i n t ( p o i n t = sourceCo )
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395 ID = f e a t u r e . i d
396 sourceRP = M. roo tAssembly . r e f e r e n c e P o i n t s [ ID ]
397 M. roo tAssembly . S e t ( name= ’ Source ’ , r e f e r e n c e P o i n t s =( sourceRP , ) )
398
399 # S t a n d o f f P o i n t
400 f e a t u r e = M. roo tAssembly . R e f e r e n c e P o i n t ( p o i n t = re fCo )
401 ID = f e a t u r e . i d
402 s t a n d o f f R P = M. roo tAssembly . r e f e r e n c e P o i n t s [ ID ]
403 M. roo tAssembly . S e t ( name= ’ S t a n d o f f ’ , r e f e r e n c e P o i n t s =( s t ando f fRP , ) )
404
405
406 # C r e a t e i n t e r a c t i o n p r o p e r t y
407 M. I n c i d e n t W a v e P r o p e r t y ( name= ’ i n c i d e n t W a v e ’ ,
408 d e f i n i t i o n =SPHERICAL , f l u i d D e n s i t y = a i r D e n s i t y , soundSpeed=

soundSpeed )
409
410
411 # C r e a t e i n c i d e n t Wave I n t e r a c t i o n
412 M. Inc iden tWave ( name= ’ i n c i d e n t W a v e ’ , c r ea t eS t epName =stepName ,
413 s o u r c e P o i n t =M. roo tAssembly . s e t s [ ’ Source ’ ] ,
414 s t a n d o f f P o i n t =M. roo tAssembly . s e t s [ ’ S t a n d o f f ’ ] ,
415 s u r f a c e =M. roo tAssembly . s u r f a c e s [ ’ b l a s t S u r f ’ ] ,
416 d e f i n i t i o n =PRESSURE , i n t e r a c t i o n P r o p e r t y = ’ i n c i d e n t W a v e ’ ,
417 r e f e r e n c e M a g n i t u d e = 1 . 0 , a m p l i t u d e = ’ B l a s t ’ )
418
419
420 # S e t model wave f o r m u l a t i o n ( does n o t m a t t e r when f l u i d i s n o t modeled

)
421 M. s e t V a l u e s ( waveFormula t ion =TOTAL)
422
423
424
425 d e f addConWep ( modelName , TNT, b l a s t T y p e , c o o r d i n a t e s , t i m e O f B l a s t , stepName

) :
426 ’ ’ ’
427 b l a s t T y p e = AIR BLAST SURFACE BLAST
428 name of s u r f must be b l a s t S u r f
429
430 t i m e o O f B l a s t , NB: t o t a l t ime
431 TNT i n t o n n s
432 ’ ’ ’
433 M=mdb . models [ modelName ]
434
435 # C r e a t e i n t e r a c t i o n p r o p e r t y
436 M. I n c i d e n t W a v e P r o p e r t y ( d e f i n i t i o n = b l a s t T y p e ,
437 massTNT=TNT,
438 m a s s F a c t o r =1 .0 e3 ,
439 l e n g t h F a c t o r =1 .0 e−3,
440 p r e s s u r e F a c t o r =1 .0 e6 ,
441 name= ’ conWep ’ , )
442
443 # Source P o i n t
444 f e a t u r e = M. roo tAssembly . R e f e r e n c e P o i n t ( p o i n t = c o o r d i n a t e s )
445 ID = f e a t u r e . i d
446 sourceRP = M. roo tAssembly . r e f e r e n c e P o i n t s [ ID ]
447 M. roo tAssembly . S e t ( name= ’ Source ’ , r e f e r e n c e P o i n t s =( sourceRP , ) )
448
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449
450
451 # C r e a t e i n e r a c t i o n
452 M. Inc iden tWave ( c r ea t eS tepName =stepName , d e f i n i t i o n =CONWEP,
453 d e t o n a t i o n T i m e = t i m e O f B l a s t , i n t e r a c t i o n P r o p e r t y = ’ conWep ’ ,
454 name= ’ conWep ’ ,
455 s o u r c e P o i n t =M. roo tAssembly . s e t s [ ’ Source ’ ] ,
456 s u r f a c e =M. roo tAssembly . s u r f a c e s [ ’ b l a s t S u r f ’ ] )
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475 #==================================================#
476 #==================================================#
477 # APM #
478 #==================================================#
479 #==================================================#
480
481
482 d e f h i s t o r y S e c t i o n F o r c e s (M, column , stepName ) :
483 # S e c t i o n f o r c e s and moments o f t o p e l e m e n t i n column t o be d e l e t e d
484 elmNr = M. roo tAssembly . i n s t a n c e s [ column ] . e l e m e n t s [−1] . l a b e l
485 elm = M. roo tAssembly . i n s t a n c e s [ column ] . e l e m e n t s [ elmNr−1:elmNr ]
486 M. roo tAssembly . S e t ( e l e m e n t s =elm , name= ’ topColElm ’ )
487
488 M. H i s t o r y O u t p u t R e q u e s t ( name= ’ S e c t i o n F o r c e s ’ , c r ea t eS t epName =stepName ,
489 v a r i a b l e s =( ’ SF1 ’ , ’ SF2 ’ , ’ SF3 ’ , ’SM1 ’ , ’SM2 ’ ,
490 ’SM3 ’ ) , r e g i o n =M. roo tAssembly . s e t s [ ’ topColElm ’ ] , )
491
492
493
494
495
496 d e f r e p l a c e F o r c e s (M, x , z , column , o ldJob , o l d S t e p , stepName , a m p l i t u d e ) :
497 ’ ’ ’
498 Remove co l−base BC or co l−c o l c o n s t r a i n t
499 and add f o r c e s and moments from s t a t i c a n a l y s i s t o t o p of colum
500 M = Model
501 column = column t o be d e l e t e d i n APM
502 o l d J o b = name of s t a t i c j o b
503 o l d S t e = name of s t a t i c s t e p
504 a m p l i t u d e = name of a m p l i t u d e t o add f o r c e s wi th
505 ’ ’ ’
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506
507
508
509
510
511 # D e l e t e co l−base BC or co l−c o l c o n s t r a i n t
512 i f column [−1] == ’ 1 ’ :
513 # D e l e t e s i n g l e BC f o r a l l column b a s e s
514 d e l M. b o u n d a r y C o n d i t i o n s [ ’ f i x C o l B a s e s ’ ]
515 # C r e a t e one BC f o r each column
516 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e

l e t t e r s
517 numb = map ( s t r , r a n g e ( 1 , z +1) )
518 f o r a i n a l p h :
519 f o r n i n numb :
520 c o l S e t = ’COLUMN ’ + a + n + ”−” + ” 1 . co l−base ”
521 M. DisplacementBC ( a m p l i t u d e =UNSET, c rea t eS t epName =
522 ’ I n i t i a l ’ , d i s t r i b u t i o n T y p e =UNIFORM, f ie ldName = ’ ’ ,

f i x e d =OFF ,
523 l o c a l C s y s =None , name= c o l S e t , r e g i o n =
524 M. roo tAssembly . s e t s [ c o l S e t ] , u1 = 0 . 0 , u2 = 0 . 0 , u3 =0 .0
525 , u r1 = 0 . 0 , u r2 = 0 . 0 , u r3 = 0 . 0 )
526 # D e l e t e one BC
527 d e l M. b o u n d a r y C o n d i t i o n s [ column+ ’ . co l−base ’ ]
528 e l s e :
529 topColNr = column [−1]
530 botColNr = s t r ( i n t ( topColNr )−1)
531 constName = ’ C o n s t c o l c o l ’+ column [−4:−1]+ botColNr + ’− ’+ topColNr
532 d e l M. c o n s t r a i n t s [ constName ]
533
534 #Open odb wi th s t a t i c a n a l y s i s
535 odb = open odb ( o l d J o b )
536
537 # Find c o r r e c t h i s t o r y O u t p u t
538 f o r key i n odb . s t e p s [ o l d S t e p ] . h i s t o r y R e g i o n s . keys ( ) :
539 i f key . f i n d ( ’ Element ’+column ) > −1:
540 his tName = key
541
542 # C r e a t e d i c t i o n a r y wi th f o r c e s
543 d i c t = {}
544 h i s t O p t = odb . s t e p s [ o l d S t e p ] . h i s t o r y R e g i o n s [ his tName ] . h i s t o r y O u t p u t s
545 v a r i a b l e s = h i s t O p t . keys ( )
546 f o r v a r i n v a r i a b l e s :
547 v a l u e = h i s t O p t [ v a r ] . d a t a [−1] [1 ]
548 d i c t [ v a r ] = v a l u e
549
550 #Where t o add f o r c e s
551 r e g i o n = M. roo tAssembly . i n s t a n c e s [ column ] . s e t s [ ’ co l−t o p ’ ]
552
553 # C r e a t e f o r c e s
554 M. C o n c e n t r a t e d F o r c e ( name= ’ F o r c e s ’ ,
555 c rea t eS tepName =stepName , r e g i o n = r e g i o n , a m p l i t u d e = a m p l i t u d e ,
556 d i s t r i b u t i o n T y p e =UNIFORM, f i e l d = ’ ’ , l o c a l C s y s =None ,
557 c f 1 = d i c t [ ’ SF3 ’ ] , c f 2=−d i c t [ ’ SF1 ’ ] , c f 3 = d i c t [ ’ SF2 ’ ] )
558
559 # C r e a t e moments
560 M. Moment ( name= ’ Moments ’ , c r ea t eS tepName =stepName ,
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561 r e g i o n = r e g i o n , d i s t r i b u t i o n T y p e =UNIFORM, f i e l d = ’ ’ , l o c a l C s y s =None ,
562 a m p l i t u d e = a m p l i t u d e ,
563 cm1= d i c t [ ’SM2 ’ ] , cm2=−d i c t [ ’SM3 ’ ] , cm3= d i c t [ ’SM1 ’ ] )
564
565
566
567
568
569
570 d e f getElmOverLim ( odbName , var , stepName , v a r i n v a r i a n t , l i m i t ,
571 e l se tName =None ) :
572 ”””
573 R e t u r n s l i s t w i th v a l u e and o b j e c t f o r a l l e l e m e n t s ove r l i m i t
574 odbName = name of odb t o r e a d from
575 e l se tName = None , ( may be s e t t o l i m i t what p a r t o f t h e model
576 t o r e a d )
577 v a r = ’PEEQ ’ or ’S ’
578 stepName = L a s t s t e p i n odb
579 v a r i n v a r i a n t = ’ mises ’ i f v a r = ’S ’
580 l i m i t = v a r l i m i t f o r what e l e m e n t s t o r e t u r n
581 ”””
582 e l s e t = e l e m s e t = None
583 r e g i o n = ” ove r t h e e n t i r e model ”
584 odb = open odb ( odbName )
585
586 #Check t o s e e i f t h e e l e m e n t s e t e x i s t s i n t h e assembly
587 i f e l se tName :
588 t r y :
589 e l e m s e t = odb . roo tAssembly . e l e m e n t S e t s [ e l se tName ]
590 r e g i o n = ” i n t h e e l e m e n t s e t : ” + e l se tName ;
591 e x c e p t KeyError :
592 p r i n t ’An assembly l e v e l e l s e t named %s does ’ \
593 ’ n o t e x i s t i n t h e o u t p u t d a t a b a s e %s ’ \
594 % ( else tName , odbName )
595 odb . c l o s e ( )
596 e x i t ( 0 )
597
598 # Find v a l u e s ove r l i m i t
599 s t e p = odb . s t e p s [ stepName ]
600 r e s u l t = [ ]
601 f o r f rame i n s t e p . f r a me s :
602 a l l F i e l d s = frame . f i e l d O u t p u t s
603 i f ( a l l F i e l d s . h a s k e y ( v a r ) ) :
604 v a r S e t = a l l F i e l d s [ v a r ]
605 i f e l e m s e t :
606 v a r S e t = v a r S e t . g e t S u b s e t ( r e g i o n = e l e m s e t )
607 f o r v a r V a l u e i n v a r S e t . v a l u e s :
608 i f v a r i n v a r i a n t :
609 i f h a s a t t r ( varValue , v a r i n v a r i a n t . l ower ( ) ) :
610 v a l = g e t a t t r ( varValue , v a r i n v a r i a n t . l ower ( ) )
611 e l s e :
612 r a i s e V a l u e E r r o r ( ’ F i e l d v a l u e does n o t have

i n v a r i a n t %s ’ % ( v a r i n v a r i a n t , ) )
613 e l s e :
614 v a l = v a r V a l u e . d a t a
615 i f ( v a l >= l i m i t ) :
616 r e s u l t . append ( [ va l , v a r V a l u e ] )
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617 e l s e :
618 r a i s e V a l u e E r r o r ( ’ F i e l d o u t p u t does n o t have f i e l d %s ’ % (

r e s u l t s f i e l d , ) )
619 r e t u r n ( r e s u l t )
620
621
622
623 d e f d e l I n s t a n c e (M, elmOverLim , stepName ) :
624 ’ ’ ’
625 Takes a l i s t o f e l e m e n t s and d e l e t e s t h e c o r r e s p o n d i n g columns and

beams .
626 M = model
627 elmOverLim = l i s t o f e l e m e n t s
628 s tepname = In what s t e p t o d e l e t e i n s t a n c e s
629 ’ ’ ’
630
631 ins tOve rL im = [ ]
632 # C r e a t e l i s t o f a l l i n s t a n c e names
633 f o r i i n r a n g e ( l e n ( elmOverLim ) ) :
634 ins tOve rL im . append ( elmOverLim [ i ] [ 1 ] . i n s t a n c e . name )
635
636 # C r e a t e l i s t w i th un iqu e names
637 i n s t = [ ]
638 f o r i i n in s tOve rL im :
639 i f i n o t i n i n s t :
640 i n s t . append ( i )
641
642 #Remove s l a b s so t h e y a r e n o t d e l e t e d
643 i n s t F i l t e r e d = [ ]
644 f o r i i n i n s t [ : ] :
645 i f n o t i . s t a r t s w i t h ( ’SLAB ’ ) :
646 i n s t F i l t e r e d . append ( i )
647
648 #Merge s e t o f i n s t a n c e s t o be d e l e t e d
649 s e t L i s t = [ ]
650 f o r i i n i n s t F i l t e r e d :
651 s e t L i s t . append (M. roo tAssembly . a l l I n s t a n c e s [ i ] . s e t s [ ’ s e t ’ ] )
652
653 s e t L i s t = t u p l e ( s e t L i s t )
654 i f s e t L i s t :
655 M. roo tAssembly . SetByBoolean ( name= ’ rmvSet ’ , s e t s = s e t L i s t )
656 e l s e :
657 p r i n t ’No i n s t a n c e s exceed c r i t e r i a ’
658
659 #Remove i n s t a n c e s
660 M. ModelChange ( a c t i v e I n S t e p = F a l s e , c r ea t eS t epName =stepName ,
661 i n c l u d e S t r a i n = F a l s e , name= ’INST REMOVAL ’ , r e g i o n =
662 M. roo tAssembly . s e t s [ ’ rmvSet ’ ] , r e g i o n T y p e =GEOMETRY)
663
664
665
666
667
668
669
670
671

A20



Appendix

672
673
674
675
676
677
678
679
680
681
682 #===========================================================#
683 #===========================================================#
684 # JOB #
685 #===========================================================#
686 #===========================================================#
687
688
689 c l a s s c l o c k T i m e r ( o b j e c t ) :
690 ”””
691 C l a s s f o r t a k i n g t h e w a l l c l o c k t i m e of an a n a l y s i s .
692 Uses t h e py thon i o n d a t e t i m e t o c a l c u l a t e t h e e l a p s e d t ime .
693 ”””
694 d e f i n i t ( s e l f ) :
695 s e l f . model = None
696
697 d e f s t a r t ( s e l f , model ) :
698 ’ ’ ’
699 S t a r t a t i m e r
700
701 model = name of model t o t ime
702 ’ ’ ’
703 s e l f . s t a r t T i m e = d a t e t i m e . now ( )
704 s e l f . model = model
705
706 d e f end ( s e l f , f i l eName ) :
707 ’ ’ ’
708 End a t i m e r and w r i t e r e s u l t t o f i l e
709
710 f i l eName = name of f i l e t o w r i t e r e s u l t t o
711 ’ ’ ’
712 t = d a t e t i m e . now ( ) − s e l f . s t a r t T i m e
713 t ime = s t r ( t ) [ :−7]
714 wi th open ( f i leName , ’ a ’ ) a s f :
715 t e x t = ’%s wal lClockTime : %s\n ’ % ( s e l f . model , t ime )
716 f . w r i t e ( t e x t )
717
718
719
720 d e f run Jo b ( jobName ) :
721 p r i n t ’ Running %s . . . ’ %jobName
722
723 ’ ’ ’
724 Need t o run j o b s wi th an e x e p t i o n i n o r d e r t o c o n t i n u e a f t e r r i k s s t e p

.
725 The s t e p i s n o t comple t ed b u t a b o r t e d when i t r e a c h e d max LPF .
726 Also i f maximum nr o f i n c r e m e n t s i s r e a c h I s t i l l whant t o be a b l e t o
727 do p o s t p r o c c e s i n g ’ ’ ’
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728
729 # C r e a t e and s t a r t t i m e r
730 t i m e r = c l o c k T i m e r ( )
731 t i m e r . s t a r t ( jobName )
732
733 #Run j o b
734 t r y :
735 mdb . j o b s [ jobName ] . subm i t ( c o n s i s t e n c y C h e c k i n g =OFF) #Run j o b
736 mdb . j o b s [ jobName ] . w a i t F o r C o m p l e t i o n ( )
737 e x c e p t :
738 p r i n t ’ run Jo b E x e p t i o n : ’
739 p r i n t mdb . j o b s [ jobName ] . s t a t u s
740
741 #End t i m e r and w r i t e r e s u l t t o f i l e
742 t i m e r . end ( ’ r e s u l t s . t x t ’ )
743
744 #=========== D i s p l a y Job ============#
745 #Open odb
746 odb = open odb ( jobName )
747 #View odb i n v i e w p o r t
748 V= s e s s i o n . v i e w p o r t s [ ’ Viewpor t : 1 ’ ]
749 V. s e t V a l u e s ( d i s p l a y e d O b j e c t =odb )
750 # V. o d b D i s p l a y . d i s p l a y . s e t V a l u e s ( p l o t S t a t e =(
751 # CONTOURS ON DEF, ) )
752 # V. o d b D i s p l a y . commonOptions . s e t V a l u e s (
753 # d e f o r m a t i o n S c a l i n g =UNIFORM, u n i f o r m S c a l e F a c t o r =1)
754
755
756
757
758 d e f r e a d M s g F i l e ( jobName , f i l eName ) :
759 ’ ’ ’
760 Reads CPU t ime and nr o f i n c r e m e n t s from . msg f i l e
761 and w r i t e s t h a t t o f i l eName
762
763 jobName = model t o r e a d CPU t ime f o r
764 f i l eName = name of f i l e t o w r i t e r e s u l t
765 ’ ’ ’
766 #Read . msg f i l e
767 wi th open ( jobName+ ’ . msg ’ ) a s f :
768 l i n e s = f . r e a d l i n e s ( )
769
770 #CPU t ime
771 cpuTime = l i n e s [−2]
772 wi th open ( f i leName , ’ a ’ ) a s f :
773 f . w r i t e ( jobName + ’ ’ +cpuTime+ ’\n ’ )
774
775 #Nr o f i n c r e m e n t s
776 i n c = l i n e s [−22]
777 wi th open ( f i leName , ’ a ’ ) a s f :
778 f . w r i t e ( jobName + ’ ’ + i n c + ’\n ’ )
779
780
781
782 d e f r e a d S t a F i l e ( jobName , f i l eName ) :
783 ’ ’ ’
784 Reads cpuTime and l a s t s t a b l e t ime i n c r e m e n t from . s t a f i l e .
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785 P r i n t s r e s u l t t o f i l eName
786 ’ ’ ’
787 # P r i n t CPU t ime t o f i l e
788 wi th open ( jobName+ ’ . s t a ’ ) a s f :
789 l i n e s = f . r e a d l i n e s ( )
790
791 cpuTime = l i n e s [ −7 ] [ 3 2 : 4 0 ]
792 s t b l I n c = l i n e s [ −7 ] [ 4 1 : 5 0 ]
793 wi th open ( f i leName , ’ a ’ ) a s f :
794 f . w r i t e ( jobName + ’ CPUtime ’ +cpuTime+ ’\n ’ )
795 f . w r i t e ( jobName + ’ S t a b l e Time I n c r e m e n t ’ + s t b l I n c + ’\n ’ )
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813 #===================================================#
814 #===================================================#
815 # POST #
816 #===================================================#
817 #===================================================#
818
819
820 d e f open odb ( odbPa th ) :
821 ”””
822 E n t e r odbPa th ( wi th o r w i t h o u t e x t e n s i o n )
823 and g e t upgraded ( i f n e c e s a r l y )
824
825 P a r a m e t e r s
826 odb = openOdb ( odbPa th )
827
828 R e t u r n s
829 open odb o b j e c t
830 ”””
831 # Allow bo th . odb and w i t h o u t e x t e n t i o n
832 base , e x t = os . p a t h . s p l i t e x t ( odbPa th )
833 odbPa th = base + ’ . odb ’
834 new odbPath = None
835 #Check i f odb needs upgrade
836 i f i sUpgradeRequ i r edForOdb ( upgradeRequ i r edOdbPa th = odbPa th ) :
837 p r i n t ( ’ odb %s needs u p g r a d i n g ’ % ( odbPath , ) )
838 pa th , f i l e n a m e = os . p a t h . s p l i t ( odbPa th )
839 f i l e n a m e = base + ” u p g r a d e d . odb ”
840 new odbPath = os . p a t h . j o i n ( pa th , f i l e n a m e )
841 upgradeOdb ( e x i s t i n g O d b P a t h =odbPath , upgradedOdbPath = new odbPath )
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842 odbPa th = new odbPath
843 odb = openOdb ( p a t h =odbPath , r eadOnly =True )
844 r e t u r n odb
845
846
847 d e f clearXY ( ) :
848 ’ ’ ’
849 C l e a r s xy p l o t s and d a t a i n s e s s i o n
850 ’ ’ ’
851 # C l e a r p l o t s
852 f o r p l o t i n s e s s i o n . x y P l o t s . keys ( ) :
853 d e l s e s s i o n . x y P l o t s [ p l o t ]
854
855 # C l e a r xyData
856 f o r d a t a i n s e s s i o n . x y D a t a O b j e c t s . keys ( ) :
857 d e l s e s s i o n . x y D a t a O b j e c t s [ d a t a ]
858
859
860 d e f XYplot ( modelName , plotName , xHead , yHead , xyDat , r e p o r t F i l e = ’ temp . t x t ’

) :
861 ’ ’ ’
862 Saves xy d a t a t o a t a b s e p a r a t e d . t x t f i l e w i th h e a d e r s
863
864 modelName = name of o d b F i l e
865 plotName = name t o g i v e p l o t
866 xHead = x h e a d e r
867 yHead = y h e a d e r
868 xyDat = xy d a t a t o p l o t
869 ’ ’ ’
870
871
872 odb = open odb ( modelName )
873
874
875 #=========== Rep or t u s i n g Abaqus f u n c t i o n ============#
876 s e s s i o n . wr i teXYRepor t ( f i l eName = r e p o r t F i l e , appendMode=OFF , xyData =(

xyDat , ) )
877
878 #=========== Fix r e p o r t f i l e ============#
879 # C r e a t e new b e t t e r f i l e t h a n t h e s t r a n g e Abaqus o u t p u t
880
881 # C r e a t e f i l eName f o r o u t p u t
882 f i l eName = ’ xyData ’+plotName+ ’ ’+modelName+ ’ . t x t ’
883
884 #Read abaqus r e p o r t f i l e
885 wi th open ( r e p o r t F i l e , ’ r ’ ) a s f :
886 l i n e s = f . r e a d l i n e s ( )
887
888 # Wr i t e f o r m a t e d d a t a t o new f i l e
889 a=None
890 b=None
891 wi th open ( f i leName , ’w’ ) a s f :
892 f . w r i t e ( ’%s\ t%s\n ’ %(xHead , yHead ) )
893 f o r l i n e i n l i n e s :
894 l s t = l i n e . l s t r i p ( ) . r s t r i p ( ) . s p l i t ( )
895 i f l s t :
896 t r y :
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897 a = f l o a t ( l s t [ 0 ] )
898 b = f l o a t ( l s t [ 1 ] )
899 e x c e p t :
900 p a s s
901 i f t y p e ( a ) and t y p e ( b ) i s f l o a t :
902 f . w r i t e ( l s t [ 0 ] )
903 f . w r i t e ( ’\ t ’ )
904 f . w r i t e ( l s t [ 1 ] )
905 f . w r i t e ( ’\n ’ )
906 a=None
907 b=None
908
909
910 d e f f i x A l l T x t F i l e s I n F o l d e r ( ) :
911
912 f i l e s = g lob . g lob ( ’ ∗ . t x t ’ )
913
914 f o r f i n f i l e s :
915 xHead = ’ Time [ s ] ’
916 yHead = ’ D i s p l a c e m e n t [mm] ’
917 d o t = f . f i n d ( ’ . t x t ’ )
918 name = f [ : d o t ]
919 r e p o r t F i l e = f
920
921 # C r e a t e f i l eName f o r o u t p u t
922 f i l eName = ’ xyData ’+name+ ’ . t x t ’
923
924 #Read abaqus r e p o r t f i l e
925 wi th open ( r e p o r t F i l e , ’ r ’ ) a s f :
926 l i n e s = f . r e a d l i n e s ( )
927
928 # Wr i t e f o r m a t e d d a t a t o new f i l e
929 a=None
930 b=None
931 wi th open ( f i leName , ’w’ ) a s f :
932 f . w r i t e ( ’%s\ t%s\n ’ %(xHead , yHead ) )
933 f o r l i n e i n l i n e s :
934 l s t = l i n e . l s t r i p ( ) . r s t r i p ( ) . s p l i t ( )
935 i f l s t :
936 t r y :
937 a = f l o a t ( l s t [ 0 ] )
938 b = f l o a t ( l s t [ 1 ] )
939 e x c e p t :
940 p a s s
941 i f t y p e ( a ) and t y p e ( b ) i s f l o a t :
942 f . w r i t e ( l s t [ 0 ] )
943 f . w r i t e ( ’\ t ’ )
944 f . w r i t e ( l s t [ 1 ] )
945 f . w r i t e ( ’\n ’ )
946 a=None
947 b=None
948
949
950 d e f c o u n t o u r P r i n t ( modelName , d e f S c a l e , p r i n t F o r m a t ) :
951 ’ ’ ’
952 P l o t s c o u n t o u r p l o t s t o f i l e .
953

A25



lib/func.py

954 modelName = name of odb
955 d e f S c a l e = Defo rma t ion s c a l e
956 p r i n t F o r m a t = TIFF , PS , EPS , PNG, SVG
957 ’ ’ ’
958
959 #Open odb
960 odb = open odb ( modelName )
961 # C r e a t e o b j e c t f o r v i e w p o r t
962 V= s e s s i o n . v i e w p o r t s [ ’ Viewpor t : 1 ’ ]
963 #View odb i n v i e w p o r t
964 V. s e t V a l u e s ( d i s p l a y e d O b j e c t =odb )
965 V. o d b D i s p l a y . d i s p l a y . s e t V a l u e s ( p l o t S t a t e =(
966 CONTOURS ON DEF, ) )
967 V. o d b D i s p l a y . commonOptions . s e t V a l u e s (
968 d e f o r m a t i o n S c a l i n g =UNIFORM, u n i f o r m S c a l e F a c t o r = d e f S c a l e )
969
970 # P r i n t p l o t s a t t h e l a s t f rame i n each s t e p
971 s e s s i o n . p r i n t O p t i o n s . s e t V a l u e s ( vpBackground=OFF , compass=ON)
972 f o r s t e p i n odb . s t e p s . keys ( ) :
973 V. o d b D i s p l a y . s e t F r a m e ( s t e p = s t e p , f rame =−1)
974 # VonMises
975 V. o d b D i s p l a y . s e t P r i m a r y V a r i a b l e (
976 v a r i a b l e L a b e l = ’S ’ , o u t p u t P o s i t i o n =INTEGRATION POINT ,
977 r e f i n e m e n t =(INVARIANT , ’ Mises ’ ) , )
978 s e s s i o n . p r i n t T o F i l e ( f i l eName = ’ Cont VonMises ’+ s t e p ,
979 f o r m a t = p r i n t F o r m a t , c a n v a s O b j e c t s =(V, ) )
980 #PEEQ
981 V. o d b D i s p l a y . s e t P r i m a r y V a r i a b l e (
982 v a r i a b l e L a b e l = ’PEEQ ’ , o u t p u t P o s i t i o n =INTEGRATION POINT , )
983 s e s s i o n . p r i n t T o F i l e ( f i l eName = ’ Cont PEEQ ’+ s t e p ,
984 f o r m a t = p r i n t F o r m a t , c a n v a s O b j e c t s =(V, ) )
985
986
987
988
989 d e f a n i m a t e ( modelName , d e f S c a l e , f r ameRa te ) :
990 ’ ’ ’
991 Animates t h e d e f o r m a t i o n wi th Von Mises c o n t o u r p l o t
992 Each f i e l d o u t p u t f rame i s a f rame i n t h e a n i m a t i o n
993 ( t h a t means t h e a n i m a t i o n t ime i s n o t r e a l t ime )
994
995 modelName = name of j o b
996 d e f S c a l = d e f o r m a t i o n s c a l e
997 f r ameRa te = f rame r a t e
998 ’ ’ ’
999

1000 #Open odb
1001 odb = open odb ( modelName )
1002 # C r e a t e o b j e c t f o r v i e w p o r t
1003 V= s e s s i o n . v i e w p o r t s [ ’ Viewpor t : 1 ’ ]
1004
1005 #View odb i n v i e w p o r t
1006 V. s e t V a l u e s ( d i s p l a y e d O b j e c t =odb )
1007 V. o d b D i s p l a y . d i s p l a y . s e t V a l u e s ( p l o t S t a t e =(CONTOURS ON DEF, ) )
1008 V. o d b D i s p l a y . commonOptions . s e t V a l u e s (
1009 d e f o r m a t i o n S c a l i n g =UNIFORM, u n i f o r m S c a l e F a c t o r = d e f S c a l e )
1010 V. o d b D i s p l a y . s e t P r i m a r y V a r i a b l e (
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1011 v a r i a b l e L a b e l = ’S ’ , o u t p u t P o s i t i o n =INTEGRATION POINT ,
1012 r e f i n e m e n t =(INVARIANT , ’ Mises ’ ) , )
1013
1014 # C r e a t e and save a n i m a t i o n
1015 s e s s i o n . a n i m a t i o n C o n t r o l l e r . s e t V a l u e s ( an ima t ionType =TIME HISTORY ,
1016 v i e w p o r t s =(V. name , ) )
1017 s e s s i o n . a n i m a t i o n C o n t r o l l e r . p l a y ( )
1018 s e s s i o n . imageAnima t ionOpt ions . s e t V a l u e s ( f r ameRa te = f rameRate ,
1019 compass = ON, vpBackground=ON)
1020 s e s s i o n . w r i t e I m a g e A n i m a t i o n ( f i l eName =modelName , f o r m a t =QUICKTIME ,
1021 c a n v a s O b j e c t s =(V, ) ) # f o r m a t = QUICKTIME or AVI
1022
1023 # Stop a n i m a t i o n
1024 s e s s i o n . a n i m a t i o n C o n t r o l l e r . s t o p ( )
1025
1026
1027
1028 d e f x y E n e r g y P l o t ( modelName ) :
1029 ’ ’ ’
1030 P r i n t s E x t e r n a l work , i n t e r n a l en e rg y and k i n e t i c e ne rg y f o r
1031 whole model
1032
1033 modelName = name of odb
1034 ’ ’ ’
1035
1036 #Open ODB
1037 odb = open odb ( modelName )
1038
1039 # I n t e r n a l Work
1040 xyIW = x y P l o t . XYDataFromHistory ( odb=odb ,
1041 o u t p u t V a r i a b l e N a m e = ’ I n t e r n a l e ne rg y : ALLIE f o r Whole Model ’ ,
1042 s u p p r e s s Q u e r y =True , name= ’xyIW ’ )
1043 XYplot ( modelName , plotName= ’ I n t e r n a l W o r k ’ ,
1044 xHead= ’ Time [ s ] ’ , yHead= ’Work [ mJ ] ’ , xyDat=xyIW )
1045
1046 # K i n e t i c Energy
1047 xyKE = x y P l o t . XYDataFromHistory ( odb=odb ,
1048 o u t p u t V a r i a b l e N a m e = ’ K i n e t i c e ne rg y : ALLKE f o r Whole Model ’ ,
1049 s u p p r e s s Q u e r y =True , name= ’xyKE ’ )
1050 XYplot ( modelName , plotName= ’ K i n e t i c E n e r g y ’ ,
1051 xHead= ’ Time [ s ] ’ , yHead= ’Work [ mJ ] ’ , xyDat=xyKE )
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lib/beam.py

1 # Abaqus modules
2 from abaqus i m p o r t ∗
3 from a b a q u s C o n s t a n t s i m p o r t ∗
4 from p a r t i m p o r t ∗
5 from m a t e r i a l i m p o r t ∗
6 from s e c t i o n i m p o r t ∗
7 from o p t i m i z a t i o n i m p o r t ∗
8 from assembly i m p o r t ∗
9 from s t e p i m p o r t ∗

10 from i n t e r a c t i o n i m p o r t ∗
11 from l o a d i m p o r t ∗
12 from mesh i m p o r t ∗
13 from j o b i m p o r t ∗
14 from s k e t c h i m p o r t ∗
15 from v i s u a l i z a t i o n i m p o r t ∗
16 from c o n n e c t o r B e h a v i o r i m p o r t ∗
17 i m p o r t odbAccess
18 i m p o r t x y P l o t
19 from jobMessage i m p o r t ANY JOB , ANY MESSAGE TYPE
20 i m p o r t a n i m a t i o n
21 i m p o r t x y P l o t
22
23 # Python modules
24 from d a t e t i m e i m p o r t d a t e t i m e
25 i m p o r t csv
26
27
28 i m p o r t func
29
30
31
32
33 #===============================================================#
34 #===============================================================#
35 # B u i l d beam model #
36 #===============================================================#
37 #===============================================================#
38
39
40 d e f buildBeamMod ( modelName , x , z , y , seed , s l a b S e e d ) :
41 ’ ’ ’
42 B u i l d s a beam model w i t h o u t s t e p
43 ’ ’ ’
44
45 c o l h e i g h t = 3000 .0
46 beam len = 7500 .0
47
48 s t e e l = ’DOMEX S355 ’
49 c o n c r e t e = ’ C o n c r e t e ’
50 r e b a r S t e e l = s t e e l
51
52 M=mdb . models [ modelName ]
53
54
55 #=========== P a r t s ============#
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56 # C r e a t e Column
57 c rea t eCo lumn (M, h e i g h t = c o l h e i g h t , mat= s t e e l , partName= ’COLUMN’ )
58
59 # C r e a t e Beam
60 crea teBeam (M, l e n g t h =beam len , mat= s t e e l , partName= ’BEAM’ )
61
62 # C r e a t e s l a b
63 c r e a t e S l a b (M, t = 2 0 0 . 0 , mat= c o n c r e t e , dim=beam len ,
64 r e b a r M a t = r e b a r S t e e l , partName= ’SLAB ’ )
65
66 #Add beam f l u i d i n e r t i a t o beams and columns
67 a i r D e n s i t y = 1 .225 e−12 # 1 .225 kg /mˆ3
68 M. s e c t i o n s [ ’HEB300 ’ ] . s e t V a l u e s ( u s e F l u i d I n e r t i a =ON,
69 f l u i d M a s s D e n s i t y = a i r D e n s i t y , c r o s s S e c t i o n R a d i u s = 3 0 0 . 0 ,
70 l a t e r a l M a s s C o e f = 1 . 0 )
71
72 M. s e c t i o n s [ ’ HUP300x300 ’ ] . s e t V a l u e s ( u s e F l u i d I n e r t i a =ON,
73 f l u i d M a s s D e n s i t y = a i r D e n s i t y , c r o s s S e c t i o n R a d i u s = 3 0 0 . 0 ,
74 l a t e r a l M a s s C o e f = 1 . 0 )
75
76 #=========== S e t s and s u r f a c e s ============#
77 #A l o t o f s u r f a c e s a r e c r e a t e d wi th t h e j o i n t s
78 c r e a t e S e t s (M, c o l h e i g h t )
79 c r e a t e S u r f s (M)
80
81
82 #=========== Assembly ============#
83 c r e a t e A s s e m b l y (M, x , z , y ,
84 x d = beam len , z d = beam len , y d = c o l h e i g h t )
85
86
87 #=========== Mesh ============#
88
89 mesh (M, seed , s l a b S e e d )
90
91
92 #=========== J o i n t s ============#
93 c r e a t e J o i n t s (M, x , z , y ,
94 x d = beam len , z d = beam len , y d = c o l h e i g h t )
95
96
97 #=========== Fix column base ============#
98 mergeColBase (M, x , z )
99 M. DisplacementBC ( c rea t eS tepName = ’ I n i t i a l ’ ,

100 name= ’ f i x C o l B a s e s ’ , r e g i o n = M. roo tAssembly . s e t s [ ’ co l−b a s e s ’ ] ,
101 u1 = 0 . 0 , u2 = 0 . 0 , u3 = 0 . 0 , u r1 = 0 . 0 , u r2 = 0 . 0 , u r3 = 0 . 0 )
102
103
104
105
106
107
108 d e f c rea t eCo lumn (M, h e i g h t , mat , partName ) :
109 ’ ’ ’
110 C r e a t e s a RHS 300 x300 column
111
112 M: model
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113 h e i g h t : h e i g h t o f column
114 mat : m a t e r i a l
115 ’ ’ ’
116
117 sectName = ”HUP300x300”
118
119 # C r e a t e s e c t i o n and p r o f i l e
120 M. B o x P r o f i l e ( a = 3 0 0 . 0 , b = 3 0 0 . 0 , name= ’ P r o f i l e −1 ’ , t 1 = 1 0 . 0 ,

u n i f o r m T h i c k n e s s =ON)
121 M. BeamSect ion ( c o n s i s t e n t M a s s M a t r i x = F a l s e , i n t e g r a t i o n =
122 DURING ANALYSIS , m a t e r i a l =mat , name=sectName , p o i s s o n R a t i o = 0 . 3 ,
123 p r o f i l e = ’ P r o f i l e −1 ’ , t e m p e r a t u r e V a r =LINEAR)
124
125 # C r e a t e p a r t
126 M. C o n s t r a i n e d S k e t c h ( name= ’ p r o f i l e ’ , s h e e t S i z e = 2 0 . 0 )
127 M. s k e t c h e s [ ’ p r o f i l e ’ ] . L ine ( p o i n t 1 = ( 0 . 0 , 0 . 0 ) , p o i n t 2 = ( 0 . 0 , h e i g h t )

)
128 M. P a r t ( d i m e n s i o n a l i t y =THREE D , name=partName , t y p e =DEFORMABLE BODY)
129 M. p a r t s [ partName ] . BaseWire ( s k e t c h =M. s k e t c h e s [ ’ p r o f i l e ’ ] )
130 d e l M. s k e t c h e s [ ’ p r o f i l e ’ ]
131
132 # Ass ign s e c t i o n
133 M. p a r t s [ partName ] . S e c t i o n A s s i g n m e n t ( o f f s e t = 0 . 0 ,
134 o f f s e t F i e l d = ’ ’ , o f f s e t T y p e =MIDDLE SURFACE , r e g i o n =Region (
135 edges =M. p a r t s [ partName ] . edges . f i n d A t ( ( ( 0 . 0 , 0 . 0 ,
136 0 . 0 ) , ) , ) ) , sec t ionName =sectName , t h i c k n e s s A s s i g n m e n t =

FROM SECTION)
137
138 # Ass ign beam o r i e n t a t i o n
139 M. p a r t s [ partName ] . a s s i g n B e a m S e c t i o n O r i e n t a t i o n ( method=
140 N1 COSINES , n1 = ( 0 . 0 , 0 . 0 , −1.0) , r e g i o n =Region (
141 edges =M. p a r t s [ partName ] . edges . f i n d A t ( ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) , ) ) )
142
143
144
145
146 d e f c rea teBeam (M, l e n g t h , mat , partName ) :
147 ’ ’ ’
148 C r e a t e s a HEB 300 beam
149
150 M: model
151 l e n g t h : l e n g h t o f beam
152 mat : m a t e r i a l
153 ’ ’ ’
154
155 sectName = ”HEB300”
156
157 # C r e a t e S e c t i o n and p r o f i l e
158 #HEB 550
159 M. I P r o f i l e ( b1 = 3 0 0 . 0 , b2 = 3 0 0 . 0 , h = 3 0 0 . 0 , l = 1 5 0 . 0 , name=
160 ’ P r o f i l e −2 ’ , t 1 = 1 9 . 0 , t 2 = 1 9 . 0 , t 3 = 1 1 . 0 ) #Now IPE p r o f i l e , s e e

ABAQUS f o r geomet ry d e f i n i t i o n s
161
162 M. BeamSect ion ( c o n s i s t e n t M a s s M a t r i x = F a l s e , i n t e g r a t i o n =
163 DURING ANALYSIS , m a t e r i a l =mat , name=sectName , p o i s s o n R a t i o = 0 . 3 ,
164 p r o f i l e = ’ P r o f i l e −2 ’ , t e m p e r a t u r e V a r =LINEAR)
165
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166 # C r e a t e p a r t
167 M. C o n s t r a i n e d S k e t c h ( name= ’ p r o f i l e ’ , s h e e t S i z e = 100 00 .0 )
168 M. s k e t c h e s [ ’ p r o f i l e ’ ] . L ine ( p o i n t 1 = ( 0 . 0 , 0 . 0 ) , p o i n t 2 =( l e n g t h , 0 . 0 )

)
169 M. P a r t ( d i m e n s i o n a l i t y =THREE D , name=partName , t y p e =DEFORMABLE BODY)
170 M. p a r t s [ partName ] . BaseWire ( s k e t c h =M. s k e t c h e s [ ’ p r o f i l e ’ ] )
171 d e l M. s k e t c h e s [ ’ p r o f i l e ’ ]
172
173 # Ass ign s e c t i o n
174 M. p a r t s [ partName ] . S e c t i o n A s s i g n m e n t ( o f f s e t = 0 . 0 ,
175 o f f s e t F i e l d = ’ ’ , o f f s e t T y p e =MIDDLE SURFACE , r e g i o n =Region (
176 edges =M. p a r t s [ partName ] . edges . f i n d A t ( ( ( 0 . 0 , 0 . 0 ,
177 0 . 0 ) , ) , ) ) , sec t ionName =sectName , t h i c k n e s s A s s i g n m e n t =

FROM SECTION)
178
179 # Ass ign beam o r i e n t a t i o n
180 M. p a r t s [ partName ] . a s s i g n B e a m S e c t i o n O r i e n t a t i o n ( method=
181 N1 COSINES , n1 = ( 0 . 0 , 0 . 0 , −1.0) , r e g i o n =Region (
182 edges =M. p a r t s [ partName ] . edges . f i n d A t ( ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) , ) ) )
183
184
185
186
187 d e f c r e a t e S l a b (M, t , mat , dim , rebarMat , partName ) :
188 ’ ’ ’
189 C r e a t e s a s q u a r e s l a b wi th t h i c k n e s s 200 .0
190
191 M: Model
192 t : T h i c k n e s s o f s l a b
193 mat : M a t e r i a l o f s e c t i o n
194 dim : Diment ion o f s q u a r e
195 r e b a r M a t : M a t e r i a l o f r e b a r s
196 ’ ’ ’
197
198 sectName = ” S lab ”
199
200 rebarDim = 2 0 . 0 #mmˆ2 d i a m e t e r
201 r e b a r A r e a = 3 . 1 4 1 5∗ ( rebarDim / 2 . 0 ) ∗∗2 #mmˆ2
202 r e b a r S p a c i n g = 120 .0 #mm
203 r e b a r P o s i t i o n = −80.0 #mm d i s t a n c e from c e n t e r o f s e c t i o n
204
205 # C r e a t e S e c t i o n
206 M. HomogeneousShe l lSec t i on ( i d e a l i z a t i o n =NO IDEALIZATION ,
207 i n t e g r a t i o n R u l e =SIMPSON , m a t e r i a l =mat , name=sectName , n u m I n t P t s =5 ,
208 p o i s s o n D e f i n i t i o n =DEFAULT, p r e I n t e g r a t e =OFF ,
209 t e m p e r a t u r e =GRADIENT, t h i c k n e s s = t , t h i c k n e s s F i e l d = ’ ’ ,
210 t h i c k n e s s M o d u l u s =None , t h i c k n e s s T y p e =UNIFORM, u s e D e n s i t y =OFF)
211
212 # Add r e b a r s t o s e c t i o n ( bo th d i r e c t i o n s )
213 M. s e c t i o n s [ sectName ] . Reba rLaye r s ( l a y e r T a b l e =(
214 L a y e r P r o p e r t i e s ( ba rArea = r e b a r A r e a , o r i e n t a t i o n A n g l e = 0 . 0 ,
215 b a r S p a c i n g = r e b a r S p a c i n g , l a y e r P o s i t i o n = r e b a r P o s i t i o n ,
216 layerName= ’ Layer 1 ’ , m a t e r i a l = r e b a r M a t ) ,
217 L a y e r P r o p e r t i e s ( ba rArea = r e b a r A r e a , o r i e n t a t i o n A n g l e = 9 0 . 0 ,
218 b a r S p a c i n g = r e b a r S p a c i n g , l a y e r P o s i t i o n = r e b a r P o s i t i o n ,
219 layerName= ’ Layer 2 ’ , m a t e r i a l = r e b a r M a t ) ) ,
220 r e b a r S p a c i n g =CONSTANT)
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221
222 # C r e a t e p a r t
223 M. C o n s t r a i n e d S k e t c h ( name= ’ p r o f i l e ’ , s h e e t S i z e = 1 0 0 0 0 . 0 )
224 M. s k e t c h e s [ ’ p r o f i l e ’ ] . r e c t a n g l e ( p o i n t 1 = ( 0 . 0 , 0 . 0 ) ,
225 p o i n t 2 =( dim , dim ) )
226 M. P a r t ( d i m e n s i o n a l i t y =THREE D , name=partName , t y p e =DEFORMABLE BODY)
227 M. p a r t s [ partName ] . B a s e S h e l l ( s k e t c h =M. s k e t c h e s [ ’ p r o f i l e ’ ] )
228 d e l M. s k e t c h e s [ ’ p r o f i l e ’ ]
229
230 # Ass ign s e c t i o n
231 M. p a r t s [ partName ] . S e c t i o n A s s i g n m e n t ( o f f s e t = 0 . 0 ,
232 o f f s e t F i e l d = ’ ’ , o f f s e t T y p e =MIDDLE SURFACE , r e g i o n =Region (
233 f a c e s =M. p a r t s [ partName ] . f a c e s . f i n d A t ( ( ( 0 . 0 ,
234 0 . 0 , 0 . 0 ) , ) , ) ) , sec t ionName = ’ S l ab ’ ,
235 t h i c k n e s s A s s i g n m e n t =FROM SECTION)
236
237 # Ass ign Rebar O r i e n t a t i o n
238 M. p a r t s [ partName ] . a s s i g n R e b a r O r i e n t a t i o n (
239 a d d i t i o n a l R o t a t i o n T y p e =ROTATION NONE, a x i s =AXIS 1 ,
240 f ie ldName = ’ ’ , l o c a l C s y s =None , o r i e n t a t i o n T y p e =GLOBAL,
241 r e g i o n =Region ( f a c e s =M. p a r t s [ partName ] . f a c e s . f i n d A t (
242 ( ( 0 . 1 , 0 . 1 , 0 . 0 ) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ) , ) ) )
243
244
245
246
247 d e f c r e a t e S e t s (M, c o l h e i g h t ) :
248 ’ ’ ’
249 C r e a t e p a r t s e t s . Wi l l be a v a i l a b l e i n as sembly as w e l l .
250 Naming i n assembly : par tName an−e . setName ( an−e a r e c o o r d i n a t e s )
251
252 M: Model
253 ’ ’ ’
254
255 # Column base / t o p
256 M. p a r t s [ ’COLUMN’ ] . S e t ( name= ’ co l−base ’ , v e r t i c e s =
257 M. p a r t s [ ’COLUMN’ ] . v e r t i c e s . f i n d A t ( ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) ) )
258 M. p a r t s [ ’COLUMN’ ] . S e t ( name= ’ co l−t o p ’ , v e r t i c e s =
259 M. p a r t s [ ’COLUMN’ ] . v e r t i c e s . f i n d A t ( ( ( 0 . 0 , c o l h e i g h t , 0 . 0 ) , ) ) )
260
261 #Column
262 M. p a r t s [ ’COLUMN’ ] . S e t ( edges =
263 M. p a r t s [ ’COLUMN’ ] . edges . f i n d A t ( ( ( 0 . 0 , 1 . 0 , 0 . 0 ) , ) ) ,
264 name= ’ s e t ’ )
265
266 #Beam
267 M. p a r t s [ ’BEAM’ ] . S e t ( edges =
268 M. p a r t s [ ’BEAM’ ] . edges . f i n d A t ( ( ( 1 . 0 , 0 . 0 , 0 . 0 ) , ) ) ,
269 name= ’ s e t ’ )
270
271 # S lab
272 M. p a r t s [ ’SLAB ’ ] . S e t ( f a c e s =
273 M. p a r t s [ ’SLAB ’ ] . f a c e s . f i n d A t ( ( ( 1 . 0 , 1 . 0 , 0 . 0 ) , ) ) ,
274 name= ’ s e t ’ )
275
276
277
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278 d e f c r e a t e S u r f s (M) :
279 ’ ’ ’
280 C r e a t e p a r t s u r f a c e s . Wi l l be a v a i l a b l e i n as sembly as w e l l .
281 Naming i n assembly : par tName an−e . surfName ( an−e a r e c o o r d i n a t e s )
282
283 P a r a m e t e r s
284 M: Model
285 ’ ’ ’
286
287 # S lab t o p and bot tom
288 M. p a r t s [ ’SLAB ’ ] . S u r f a c e ( name= ’ b o t S u r f ’ , s i d e 1 F a c e s =
289 M. p a r t s [ ’SLAB ’ ] . f a c e s . f i n d A t ( ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) ) )
290 M. p a r t s [ ’SLAB ’ ] . S u r f a c e ( name= ’ t o p S u r f ’ , s i d e 2 F a c e s =
291 M. p a r t s [ ’SLAB ’ ] . f a c e s . f i n d A t ( ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) ) )
292
293
294 # C i r c u m f e r e n t i a l beam s u r f a c e s
295 c i rcumEdges = M. p a r t s [ ’BEAM’ ] . edges . f i n d A t ( ( ( 2 0 0 0 . 0 , 0 . 0 , 0 . 0 ) , ) )
296 M. p a r t s [ ’BEAM’ ] . S u r f a c e ( c i rcumEdges =ci rcumEdges , name= ’ s u r f ’ )
297
298
299 # C r e a t e c i r c u m f e r e n t i a l column s u r f a c e s
300 c i rcumEdges = M. p a r t s [ ’COLUMN’ ] . edges . f i n d A t ( ( ( 0 . 0 , 1 0 . 0 , 0 . 0 ) , ) )
301 M. p a r t s [ ’COLUMN’ ] . S u r f a c e ( c i rcumEdges =ci rcumEdges , name= ’ s u r f ’ )
302
303
304
305
306 d e f c r e a t e A s s e m b l y (M, x , z , y , x d , z d , y d ) :
307 ’ ’ ’
308 C r e a t e s an assembly o f columns , beams and s l a b s .
309
310 P a r a m e t e r s :
311 M: Model
312 x , z , y : Nr o f bays and f l o o r s
313 x d : S i z e o f bays i n x d i r e c t i o n
314 z d : S i z e o f bays i n z d i r e c t i o n
315 y d : F l o o r h e i g h t
316 ’ ’ ’
317
318 # C r e a t e c o o r d i n a t e l i s t
319 # L e t t e r s go l e f t t o r i g h t ( p o s i t i v e x )
320 #Number t o p t o bot tom ( p o s i t i v e z )
321 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
322 numb = map ( s t r , r a n g e ( 1 , z +1) )
323 e t g = map ( s t r , r a n g e ( 1 , y +1) )
324
325 # L i s t s o f a l l i n s t a n c e s
326 c o l u m n L i s t = [ ]
327 beamLis t = [ ]
328 s l a b L i s t = [ ]
329
330 #================ Columns ==================#
331 c o u n t=−1
332 f o r a i n a l p h :
333 c o u n t = c o u n t + 1
334 f o r n i n numb :
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335 f o r e i n e t g :
336 i n s t = ’COLUMN ’ + a + n + ”−” + e
337 c o l u m n L i s t . append ( i n s t )
338 # i m p o r t and name i n s t a n c e
339 M. roo tAssembly . I n s t a n c e ( d e p e n d e n t =ON,
340 name= i n s t ,
341 p a r t =M. p a r t s [ ’COLUMN’ ] )
342 # T r a n s l a t e i n s t a n c e i n x , y and z
343 M. roo tAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( i n s t , ) ,
344 v e c t o r =( x d∗ c o u n t , y d ∗ ( i n t ( e )−1) ,
345 z d ∗ ( i n t ( n )−1) ) )
346
347 #================ Beams ==================#
348 #Beams i n x ( a l p h a ) d i r e c t i o n
349 f o r a i n r a n g e ( l e n ( a l p h )−1) :
350 f o r n i n r a n g e ( l e n ( numb )−0) :
351 f o r e i n r a n g e ( l e n ( e t g ) ) :
352 i n s t = ’BEAM ’+ a l p h [ a ]+ numb [ n ] + ”−” + \
353 a l p h [ a +1]+numb [ n ] + ”−”+ e t g [ e ]
354 beamLis t . append ( i n s t )
355 # i m p o r t and name i n s t a n c e
356 M. roo tAssembly . I n s t a n c e ( d e p e n d e n t =ON, name= i n s t ,
357 p a r t =M. p a r t s [ ’BEAM’ ] )
358 M. roo tAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( i n s t , ) ,
359 v e c t o r =( x d∗a , y d ∗ ( e +1) , z d∗n ) )
360
361 #Beams i n z ( numb ) d i r e c t i o n
362 f o r a i n [ 0 , x−1]:
363 f o r n i n r a n g e ( l e n ( numb )−1) :
364 f o r e i n r a n g e ( l e n ( e t g ) ) :
365 i n s t = ’BEAM ’+ a l p h [ a ]+ numb [ n ] + ”−” + a l p h [ a ]+ \
366 numb [ n +1] + ”−”+ e t g [ e ]
367 beamLis t . append ( i n s t )
368 # i m p o r t and name i n s t a n c e
369 M. roo tAssembly . I n s t a n c e ( d e p e n d e n t =ON, name= i n s t ,
370 p a r t =M. p a r t s [ ’BEAM’ ] )
371 # R o t a t e i n s t a n c e
372 M. roo tAssembly . r o t a t e ( a n g l e =−90.0 , a x i s D i r e c t i o n =(
373 0 . 0 , 1 . 0 , 0 . 0 ) , a x i s P o i n t = ( 0 . 0 , 0 . 0 , 0 . 0 ) ,
374 i n s t a n c e L i s t =( i n s t , ) )
375 # T r a n s l a t e i n s t a n c e i n x , y and z
376 M. roo tAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( i n s t , ) ,
377 v e c t o r =( x d∗a , y d ∗ ( e +1) , z d∗n ) )
378
379
380 #================ S l a b s ==================#
381 f o r a i n r a n g e ( l e n ( a l p h )−1) :
382 f o r n i n r a n g e ( l e n ( numb )−1) :
383 f o r e i n r a n g e ( l e n ( e t g ) ) :
384 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
385 s l a b L i s t . append ( i n s t )
386 M. roo tAssembly . I n s t a n c e ( d e p e n d e n t =ON, name= i n s t ,
387 p a r t =M. p a r t s [ ’SLAB ’ ] )
388 M. roo tAssembly . r o t a t e ( a n g l e = 9 0 . 0 ,
389 a x i s D i r e c t i o n = ( 1 . 0 , 0 . 0 , 0 . 0 ) ,
390 a x i s P o i n t = ( 0 . 0 , 0 . 0 , 0 . 0 ) ,
391 i n s t a n c e L i s t =( i n s t , ) )
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392 M. roo tAssembly . t r a n s l a t e ( i n s t a n c e L i s t =( i n s t , ) ,
393 v e c t o r =( x d∗a , y d ∗ ( e +1) , z d ∗ ( n ) ) )
394
395
396
397 d e f mesh (M, seed , s l a b S e e d ) :
398 ’ ’ ’
399 Meshes a l l p a r t s
400 Frame wi th seed and s l a b s wi th s l a b S e e d
401 ’ ’ ’
402
403 #Same seed f o r beam and column
404 seed1 = seed2 = seed
405 seed3 = s l a b S e e d
406
407 a n a l y s i s T y p e = STANDARD # Could be STANDARD or EXPLICIT
408 # Th i s on ly c o n t r o l s what e l e m e n t s a r e a v a i l a b l e t o choose from
409
410 e l e m e n t 1 = B31 #B31 or B32 f o r l i n e a r o r q u a d r a t i c
411 e l e m e n t 2 = e l e m e n t 1
412 e l e m e n t 3 = S4R #S4R or S8R f o r l i n e a r o r q u a d r a t i c
413 # ( S8R i s n o t a v a i l a b l e f o r E x p l i c i t )
414
415 #================ Column ==================#
416 # Seed
417 M. p a r t s [ ’COLUMN’ ] . s e e d P a r t ( m i n S i z e F a c t o r = 0 . 1 , s i z e = seed1 )
418 # Change e l e m e n t t y p e
419 M. p a r t s [ ’COLUMN’ ] . s e t E l e m e n t T y p e ( elemTypes =( ElemType (
420 elemCode= element1 , e l e m L i b r a r y = a n a l y s i s T y p e ) , ) , r e g i o n s =(
421 M. p a r t s [ ’COLUMN’ ] . edges . f i n d A t ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) , ) )
422 #Mesh
423 M. p a r t s [ ’COLUMN’ ] . gene ra t eMesh ( )
424
425 #================ Beam ==================#
426 # Seed
427 M. p a r t s [ ’BEAM’ ] . s e e d P a r t ( m i n S i z e F a c t o r = 0 . 1 , s i z e = seed2 )
428 # Change e l e m e n t t y p e
429 M. p a r t s [ ’BEAM’ ] . s e t E l e m e n t T y p e ( elemTypes =( ElemType (
430 elemCode= element2 , e l e m L i b r a r y = a n a l y s i s T y p e ) , ) , r e g i o n s =(
431 M. p a r t s [ ’BEAM’ ] . edges . f i n d A t ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) , ) )
432 #Mesh
433 M. p a r t s [ ’BEAM’ ] . gene ra t eMesh ( )
434
435 #================ Slab ==================#
436 # Seed
437 M. p a r t s [ ’SLAB ’ ] . s e e d P a r t ( m i n S i z e F a c t o r = 0 . 1 , s i z e = seed3 )
438 # Change e l e m e n t t y p e
439 M. p a r t s [ ’SLAB ’ ] . s e t E l e m e n t T y p e ( elemTypes =( ElemType (
440 elemCode=S4R , e l e m L i b r a r y = a n a l y s i s T y p e , s econdOrde rAccu racy =OFF ,
441 h o u r g l a s s C o n t r o l =DEFAULT) , ElemType ( elemCode=S3R ,
442 e l e m L i b r a r y = a n a l y s i s T y p e ) ) ,
443 r e g i o n s =(M. p a r t s [ ’SLAB ’ ] . f a c e s . f i n d A t ( ( 0 . 0 , 0 . 0 , 0 . 0 ) , ) , ) )
444 #Mesh
445 M. p a r t s [ ’SLAB ’ ] . gene ra t eMesh ( )
446
447 # Wr i t e n r o f e l e m e n t s t o r e s u l t s f i l e
448 M. roo tAssembly . r e g e n e r a t e ( )
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449 nrElm = elmCounte r (M)
450 wi th open ( ’ r e s u l t s . t x t ’ , ’ a ’ ) a s f :
451 f . w r i t e ( ”%s Elemen t s : %s \n ” %(M. name , nrElm ) )
452
453
454
455
456
457 d e f e lmCounte r (M) :
458 ’ ’ ’
459 Counts t h e t o t a l number o f e l e m e n t s i n model M.
460
461 R e t u r n s :
462 Number o f e l e m e n t s
463 ’ ’ ’
464 nrElm = 0
465 f o r i n s t i n M. roo tAssembly . i n s t a n c e s . v a l u e s ( ) :
466 n = l e n ( i n s t . e l e m e n t s )
467 nrElm = nrElm + n
468 r e t u r n nrElm
469
470
471
472
473
474 d e f c r e a t e J o i n t s (M, x , z , y , x d , z d , y d ) :
475 ’ ’ ’
476 J o i n s beams , columns and s l a b s wi th c o n s t r a i n t s .
477 Beams a r e j o i n e d t o columns wi th wi th MPC
478 Columns a r e j o i n e d t o columns wi th MPC
479 S l a b s a r e t i e d t o beams wi th t i e c o n s t r a i n s .
480 S l a b s a r e on ly t i e d t o beams i n x d i r e c t i o n t o c r e a t e one way s l a b s .
481
482 P a r a m e t e r s :
483 M: Model
484 x , z , y : Nr o f bays and f l o o r s
485 x d : S i z e o f bays i n x d i r e c t i o n
486 z d : S i z e o f bays i n z d i r e c t i o n
487 y d : F l o o r h e i g h t
488 ’ ’ ’
489
490 #MPC t y p e f o r beam t o column j o i n t s
491 beamMPC = TIE MPC #May be TIE /BEAM/ PIN ( Tie w i l l f i x )
492 colMPC = TIE MPC
493
494
495
496 # S e t c o o r d i n a t e s t o C a r t e s i a n
497 M. roo tAssembly . DatumCsysByDefaul t (CARTESIAN)
498
499 # C r e a t e c o o r d i n a t e l i s t
500 # L e t t e r s go l e f t t o r i g h t ( p o s i t i v e x )
501 #Number t o p t o bot tom ( p o s i t i v e z )
502 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
503 numb = map ( s t r , r a n g e ( 1 , z +1) )
504 e t g = map ( s t r , r a n g e ( 1 , y +1) )
505
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506 # L i s t s o f a l l i n s t a n c e s
507 c o l u m n L i s t = [ ]
508 beamLis t = [ ]
509 s l a b L i s t = [ ]
510
511
512
513 #=========== Beams t o columns ============#
514
515
516 #Column t o beam i n x ( a l p h a ) d i r e c t i o n
517 f o r a i n r a n g e ( l e n ( a l p h )−1) :
518 f o r n i n r a n g e ( l e n ( numb ) ) :
519 f o r e i n r a n g e ( l e n ( e t g ) ) :
520 c o l = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e ]
521 beam = ’BEAM ’+ a l p h [ a ]+ numb [ n ] + ”−” + \
522 a l p h [ a +1]+numb [ n ] + ”−”+ e t g [ e ]
523 const rName = ’ C o n s t c o l b e a m ’+ a l p h [ a ]+numb [ n ] + ”−” + \
524 a l p h [ a +1]+numb [ n ] + ”−”+ e t g [ e ]
525 #MPC
526 M. M u l t i p o i n t C o n s t r a i n t ( c o n t r o l P o i n t =Region (
527 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l ] . v e r t i c e s . f i n d A t

(
528 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,\
529 c s y s =None , mpcType=beamMPC ,
530 name=constrName , s u r f a c e =Region (
531 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ beam ] . v e r t i c e s .

f i n d A t (
532 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
533 userMode=DOF MODE MPC, use rType =0)
534
535 #Column t o beam i n n e g a t i v e x ( a l p h a ) d i r e c t i o n
536 f o r a i n r a n g e ( l e n ( a l p h )−1, 0 ,−1) :
537 f o r n i n r a n g e ( l e n ( numb ) ) :
538 f o r e i n r a n g e ( l e n ( e t g ) ) :
539 c o l = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e ]
540 beam = ’BEAM ’+ a l p h [ a−1]+numb [ n ] + ”−” + \
541 a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
542 const rName = ’ C o n s t c o l b e a m ’+ a l p h [ a ]+numb [ n ] + ”−” + \
543 a l p h [ a−1]+numb [ n ] + ”−”+ e t g [ e ]
544 #MPC
545 M. M u l t i p o i n t C o n s t r a i n t ( c o n t r o l P o i n t =Region (
546 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l ] . v e r t i c e s . f i n d A t

(
547 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
548 c s y s =None , mpcType=beamMPC ,
549 name=constrName , s u r f a c e =Region (
550 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ beam ] . v e r t i c e s .

f i n d A t (
551 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) , userMode=

DOF MODE MPC, use rType =0)
552
553 #Column t o beam i n z ( num ) d i r e c t i o n
554 f o r a i n [ 0 , x−1]:
555 f o r n i n r a n g e ( l e n ( numb )−1) :
556 f o r e i n r a n g e ( l e n ( e t g ) ) :
557 c o l = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e ]
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558 beam = ’BEAM ’+ a l p h [ a ]+ numb [ n ] + ”−” + \
559 a l p h [ a ]+ numb [ n +1] + ”−”+ e t g [ e ]
560 const rName = ’ C o n s t c o l b e a m ’+ a l p h [ a ]+numb [ n ] + ”−” + \
561 a l p h [ a ]+ numb [ n +1] + ”−”+ e t g [ e ]
562 #MPC
563 M. M u l t i p o i n t C o n s t r a i n t ( c o n t r o l P o i n t =Region (
564 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l ] . v e r t i c e s . f i n d A t

(
565 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
566 c s y s =None , mpcType=beamMPC , name=constrName ,
567 s u r f a c e =Region (
568 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ beam ] . v e r t i c e s .

f i n d A t (
569 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
570 userMode=DOF MODE MPC, use rType =0)
571
572 #Column t o beam i n n e g a t i v e z ( num ) d i r e c t i o n
573 f o r a i n [ 0 , x−1]:
574 f o r n i n r a n g e ( l e n ( numb ) −1 ,0 ,−1) :
575 f o r e i n r a n g e ( l e n ( e t g ) ) :
576 c o l = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e ]
577 beam = ’BEAM ’+ a l p h [ a ]+ numb [ n−1] + ”−” +\
578 a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
579 const rName = ’ C o n s t c o l b e a m ’+ a l p h [ a ]+numb [ n ] + ”−” + \
580 a l p h [ a ]+ numb [ n−1] + ”−”+ e t g [ e ]
581 #MPC
582 M. M u l t i p o i n t C o n s t r a i n t ( c o n t r o l P o i n t =Region (
583 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l ] . v e r t i c e s . f i n d A t

(
584 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,\
585 c s y s =None , mpcType=beamMPC , name=constrName ,
586 s u r f a c e =Region (
587 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ beam ] . v e r t i c e s .

f i n d A t (
588 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
589 userMode=DOF MODE MPC, use rType =0)
590
591
592
593
594 #================ Column t o column j o i n t s =============#
595
596 f o r a i n r a n g e ( l e n ( a l p h ) ) :
597 f o r n i n r a n g e ( l e n ( numb ) ) :
598 f o r e i n r a n g e ( l e n ( e t g )−1) :
599 c o l = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e ]
600 c o l 2 = ’COLUMN ’+ a l p h [ a ]+ numb [ n ] + ”−” + e t g [ e +1]
601 const rName = ’ C o n s t c o l c o l ’+ a l p h [ a ]+numb [ n ] + ”−”+ \
602 e t g [ e ] + ”−”+ e t g [ e +1]
603 #MPC
604 M. M u l t i p o i n t C o n s t r a i n t ( c o n t r o l P o i n t =Region (
605 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l ] . v e r t i c e s . f i n d A t

(
606 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
607 c s y s =None , mpcType=colMPC , name=constrName ,
608 s u r f a c e =Region (
609 v e r t i c e s =M. roo tAssembly . i n s t a n c e s [ c o l 2 ] . v e r t i c e s .
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f i n d A t (
610 ( ( a∗x d , ( e +1)∗y d , n∗ z d ) , ) , ) ) ,
611 userMode=DOF MODE MPC, use rType =0)
612
613
614
615
616 #================ S l a b s t o beams =============#
617 # Uses t i e and n o t MPC
618
619
620 # J o i n beam s u r f a c e s t h a t a r e t o be c o n s t r a i n e d
621 f o r a i n r a n g e ( l e n ( a l p h )−1) :
622 f o r n i n r a n g e ( l e n ( numb )−1) :
623 f o r e i n r a n g e ( l e n ( e t g ) ) :
624 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
625 beam1 = ’BEAM ’+ a l p h [ a ]+ numb [ n ] + ”−” + \
626 a l p h [ a +1]+numb [ n ] + ”−”+ e t g [ e ]
627 beam2 = ’BEAM ’+ a l p h [ a ]+ numb [ n +1] + ”−” + \
628 a l p h [ a +1]+numb [ n +1] + ”−”+ e t g [ e ]
629 M. roo tAssembly . Sur faceByBoolean ( name= i n s t + ’ beamEdges ’ ,
630 s u r f a c e s =(
631 M. roo tAssembly . i n s t a n c e s [ beam1 ] . s u r f a c e s [ ’ s u r f ’ ] ,
632 M. roo tAssembly . i n s t a n c e s [ beam2 ] . s u r f a c e s [ ’ s u r f ’ ]
633 ) )
634
635 #=========== Slab edge s u r f a c e s ============#
636 f o r a i n r a n g e ( l e n ( a l p h )−1) :
637 f o r n i n r a n g e ( l e n ( numb )−1) :
638 f o r e i n r a n g e ( l e n ( e t g ) ) :
639 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
640 M. roo tAssembly . S u r f a c e ( name= i n s t + ’ e d g e s ’ , s i d e 1 E d g e s =
641 M. roo tAssembly . i n s t a n c e s [ i n s t ] . edges . f i n d A t (
642 ( ( x d∗a +1 , y d ∗ ( e +1) , z d∗n ) , ) ,
643 ( ( x d∗a +1 , y d ∗ ( e +1) , z d∗n+ x d ) , ) ,
644 ) )
645
646 # Tie s l a b s t o beams ( beams as m a s t e r )
647 f o r a i n r a n g e ( l e n ( a l p h )−1) :
648 f o r n i n r a n g e ( l e n ( numb )−1) :
649 f o r e i n r a n g e ( l e n ( e t g ) ) :
650 i n s t = ’SLAB ’+ a l p h [ a ]+ numb [ n ] + ”−”+ e t g [ e ]
651 M. Tie ( a d j u s t =ON, m a s t e r =
652 M. roo tAssembly . s u r f a c e s [ i n s t + ’ beamEdges ’ ] ,
653 name= i n s t , p o s i t i o n T o l e r a n c e M e t h o d =COMPUTED, s l a v e =
654 M. roo tAssembly . s u r f a c e s [ i n s t + ’ e d g e s ’ ]
655 , t h i c k n e s s =OFF , t i e R o t a t i o n s =OFF)
656
657
658
659 d e f mergeColBase (M, x , z ) :
660
661 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
662 numb = map ( s t r , r a n g e ( 1 , z +1) )
663
664 l s t = [ ]
665 f o r a i n a l p h :
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666 f o r n i n numb :
667 i n s t = ’COLUMN ’ + a + n + ”−1”
668 l s t . append (M. roo tAssembly . a l l I n s t a n c e s [ i n s t ] . s e t s [ ’ co l−base ’ ] )
669
670 t p l = t u p l e ( l s t )
671 M. roo tAssembly . SetByBoolean ( name= ’ co l−b a s e s ’ , s e t s = t p l )
672
673
674
675
676
677
678
679
680
681 #=====================================================#
682 #=====================================================#
683 # Outpu t #
684 #=====================================================#
685 #=====================================================#
686
687
688 d e f xyColBaseR2 ( modelName , x , z ) :
689 odb = func . open odb ( modelName )
690
691
692 #=========== Get xy d a t a f o r each c o l B o t ============#
693 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
694 numb = map ( s t r , r a n g e ( 1 , z +1) )
695 c o u n t = 0
696 l s t = [ ]
697 f o r a i n a l p h :
698 f o r n i n numb :
699 c o u n t = c o u n t + 1
700 i n s t = ’COLUMN ’ + a + n + ”−1”
701 name= ’ R e a c t i o n f o r c e : RF2 PI : ’+ i n s t + ’ Node 1 ’
702 l s t . append ( x y P l o t . XYDataFromHistory ( odb=odb , name= ’ R2colBot−’+

a+n ,
703 o u t p u t V a r i a b l e N a m e =name ) )
704
705
706 #=========== I n d i v i d u a l columns ============#
707 f o r c o l i n l s t :
708 func . XYplot ( modelName ,
709 plotName = c o l . name [ 1 : ] , # ” 1 : ” ” t o n o t i n c l u d e ” ” added by abaqus
710 xHead= ’ Time [ s ] ’ , yHead= ’ Force [N] ’ ,
711 xyDat= c o l )
712
713
714 #=========== T o t a l f o r c e ============#
715 t p l = t u p l e ( l s t )
716 #Compine a l l t o one xyData
717 xyR2 = sum ( t p l )
718 # P l o t
719 func . XYplot ( modelName ,
720 plotName= ’ R2colBot ’ ,
721 xHead= ’ Time [ s ] ’ , yHead= ’ Force [N] ’ ,
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722 xyDat=xyR2 )
723
724
725
726
727
728 d e f xyForceDisp ( modelName , x , z ) :
729 odb= func . open odb ( modelName )
730
731 #=========== R2 a t column base ============#
732 # C r e a t e xy d a t a f o r each c o l ba se
733 a l p h = map ( chr , r a n g e ( 6 5 , 65+x ) ) # S t a r t a t 97 f o r lower c a s e l e t t e r s
734 numb = map ( s t r , r a n g e ( 1 , z +1) )
735 c o u n t = 0
736 l s t = [ ]
737 f o r a i n a l p h :
738 f o r n i n numb :
739 c o u n t = c o u n t + 1
740 i n s t = ’COLUMN ’ + a + n + ”−1”
741 name= ’ R e a c t i o n f o r c e : RF2 PI : ’+ i n s t + ’ Node 1 ’
742 l s t . append ( x y P l o t . XYDataFromHistory ( odb=odb ,
743 o u t p u t V a r i a b l e N a m e =name ) )
744 t p l = t u p l e ( l s t )
745 #Compine a l l t o one xyData
746 xyR2 = sum ( t p l )
747 # P l o t
748 func . XYplot ( modelName ,
749 plotName= ’ R2colBase ’ ,
750 xHead= ’ Time [ s ] ’ , yHead= ’ Force [N] ’ ,
751 xyDat=xyR2 )
752
753
754 #=========== U2 a t c e n t e r s l a b ============#
755
756 xyU2 = x y P l o t . XYDataFromHistory ( odb=odb , o u t p u t V a r i a b l e N a m e =
757 ’ S p a t i a l d i s p l a c e m e n t : U2 PI : SLAB A1−1 Node 61 i n NSET CENTERSLAB

’ ,
758 name= ’xyU2 ’ )
759 func . XYplot ( modelName ,
760 plotName= ’ U 2 c e n t e r S l a b ’ ,
761 xHead= ’ Time [ s ] ’ , yHead= ’ D i s p l a c e m e n t [mm] ’ ,
762 xyDat=xyU2 )
763
764
765 #=========== Force−D i s p l a c e m e n t ============#
766 xyRD = combine(−xyU2 , xyR2 )
767 func . XYplot ( modelName ,
768 plotName= ’ f o r c e D i s p ’ ,
769 xHead= ’ D i s p l a c e m e n t [mm] ’ , yHead= ’ Force [N] ’ ,
770 xyDat=xyRD )
771
772
773
774
775 d e f xyUtopCol ( modelName , column ) :
776 ’ ’ ’
777 P r i n t s U1 , U2 and U3 a t t o p o f column .
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778
779 modelName = name of odb
780 column = name of column t h a t i s removed i n APM
781 p r i n t F o r m a t = TIFF , PS , EPS , PNG, SVG
782 stepName = name of a s t e p t h a t e x i s t i n t h e model
783 ’ ’ ’
784
785
786 #Open ODB
787 odb = func . open odb ( modelName )
788
789 # Find c o r r e c t node number and name of column
790 nodeSe t = odb . roo tAssembly . i n s t a n c e s [ column ] . n o d e S e t s [ ’COL−TOP ’ ]
791 nodeNr = nodeSe t . nodes [ 0 ] . l a b e l
792
793 u1Name = ’ S p a t i a l d i s p l a c e m e n t : U1 PI : ’+column+ ’ Node ’+ s t r ( nodeNr ) +\
794 ’ i n NSET COL−TOP ’
795 u2Name = ’ S p a t i a l d i s p l a c e m e n t : U2 PI : ’+column+ ’ Node ’+ s t r ( nodeNr ) +\
796 ’ i n NSET COL−TOP ’
797 u3Name = ’ S p a t i a l d i s p l a c e m e n t : U3 PI : ’+column+ ’ Node ’+ s t r ( nodeNr ) +\
798 ’ i n NSET COL−TOP ’
799
800 # C r e a t e XY−Data
801 xyU1colTop = x y P l o t . XYDataFromHistory ( odb=odb ,
802 o u t p u t V a r i a b l e N a m e =u1Name , s u p p r e s s Q u e r y =True , name= ’ U1colTop ’ )
803 xyU2colTop = x y P l o t . XYDataFromHistory ( odb=odb ,
804 o u t p u t V a r i a b l e N a m e =u2Name , s u p p r e s s Q u e r y =True , name= ’ U2colTop ’ )
805 xyU3colTop = x y P l o t . XYDataFromHistory ( odb=odb ,
806 o u t p u t V a r i a b l e N a m e =u3Name , s u p p r e s s Q u e r y =True , name= ’ U3colTop ’ )
807
808 func . XYplot ( modelName , plotName= ’ U1colTop ’ ,
809 xHead = ’ Time [ s ] ’ ,
810 yHead = ’ D i s p l a c e m e n t [mm] ’ ,
811 xyDat= xyU1colTop )
812 func . XYplot ( modelName , plotName= ’ U2colTop ’ ,
813 xHead = ’ Time [ s ] ’ ,
814 yHead = ’ D i s p l a c e m e n t [mm] ’ ,
815 xyDat= xyU2colTop )
816 func . XYplot ( modelName , plotName= ’ U3colTop ’ ,
817 xHead = ’ Time [ s ] ’ ,
818 yHead = ’ D i s p l a c e m e n t [mm] ’ ,
819 xyDat= xyU3colTop )
820
821
822 d e f xyAPMcolPr int ( modelName , column ) :
823 ’ ’ ’
824 P r i n t s U2 a t t o p o f removed column i n APM.
825
826 modelName = name of odb
827 column = name of column t h a t i s removed i n APM
828 p r i n t F o r m a t = TIFF , PS , EPS , PNG, SVG
829 stepName = name of a s t e p t h a t e x i s t i n t h e model
830 ’ ’ ’
831
832
833 #Open ODB
834 odb = func . open odb ( modelName )
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835
836 # Find c o r r e c t node number and name of column
837 nodeSe t = odb . roo tAssembly . i n s t a n c e s [ column ] . n o d e S e t s [ ’COL−TOP ’ ]
838 nodeNr = nodeSe t . nodes [ 0 ] . l a b e l
839 varName = ’ S p a t i a l d i s p l a c e m e n t : U2 PI : ’+column+ ’ Node ’+ s t r ( nodeNr ) +\
840 ’ i n NSET COL−TOP ’
841
842 # C r e a t e XY−c u r v e
843 xyU2colTop = x y P l o t . XYDataFromHistory ( odb=odb , o u t p u t V a r i a b l e N a m e =

varName ,
844 s u p p r e s s Q u e r y =True , name= ’ U2colTop ’ )
845
846 func . XYplot ( modelName , plotName= ’ U2colTop ’ ,
847 xHead = ’ Time [ s ] ’ ,
848 yHead = ’ D i s p l a c e m e n t [mm] ’ ,
849 xyDat=xyU2colTop )
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