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Abstract

The main objective of this thesis was to investigate experimentally and numeri-
cally the main e�ects and interaction e�ects of temperature, strain rate and stress
triaxiality on an o�shore X65 steel.

During preliminary simulations smooth test specimens, and specimens with
di�erent round and sharp notches, were modelled using Abaqus/Standard and
Abaqus/Explicit. The models were implemented with Johnson-Cook material
model, and material parameters from a material expected to have similar values
as the X65 steel of this thesis. Tension tests were run at quasi-static and dynamic
simulations. The stress triaxiality and stress intensi�cation factor (R = σ1/σ0)
were found, and used to decide which specimens to use in the experimental work.

Further, a MATLABmodel implemented with the Johnson-Cook material model,
the Cockcroft-Latham failure criterion and the Ritchie-Knott-Rice brittle fracture
criterion was made. Here the stress triaxiality, strain rate and maximum stress
intensi�cation were varied to see how this a�ected the ductile to brittle transition
temperature.

Tension tests were performed experimentally to study the behaviour of the steel.
Smooth specimens, specimens with round notches of radii 2.0 mm (R2) and 0.8 mm
(R0.8) and sharp-notched specimens were used to see the e�ect of stress triaxiality.
The e�ect of strain rate was studied trough quasi-static tests and dynamic tests
using split-Hopkinson tension bar. Tests were run at room temperature, −30◦C,
−60◦C and −90◦C. The specimens that showed the least ductile behaviour, were
studied using Scanning Electron Microscope, but none of them had fractured due
to cleavage.

The Johnson-Cook material parameters were calibrated for the steel, and sim-
ulations imitating the experimental tests were performed using Abaqus/Standard
and Abaqus/Explicit. The stress and strain of the experimental and numerical
results were compared. It turned out that the model was able to produce the same
results as in the experiments for the smooth specimen and R2, but it overestimated
the stress level for R0.8 and the V-notch.

At last the graphs with stress triaxiality, Cockcroft-Latham failure criterion and
Ritchie-Knott-Rice fracture criterion were made and compared with the prelimi-
nary simulations.

The material turned out to have a higher yield strength and a higher ductility
than the material from the preliminary work. The results showed that it obtained
a less ductile behaviour for low temperatures, high strain rates and high values of
stress triaxiality. A combination of the factors seemed to lead to interaction e�ects,
giving even lower ductility. Although the material showed a less ductile behaviour
with lower fracture strains, cleavage did not occur. Further studies are needed to
�nd the maximum stress intensi�cation, and to �nd the ductile to brittle transition.

ii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 5

2.1 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Von Mises Yield Criterion . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Engineering and True Stress and Strain . . . . . . . . . . . . 6

2.1.3 The Notch E�ect . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Work Hardening . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 The Johnson-Cook Material Model . . . . . . . . . . . . . . . 8

2.2 Fracture Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Ductile Fracture . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Cleavage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Ductile to Brittle Transition . . . . . . . . . . . . . . . . . . . 12

2.3 Failure Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 The Johnson-Cook Fracture Criterion . . . . . . . . . . . . . 14

2.3.2 The Cockcroft-Latham Failure Criterion . . . . . . . . . . . . 14

2.3.3 Ritchie-Knott-Rice Fracture Criterion . . . . . . . . . . . . . 15

3 Preliminary Simulations 17

3.1 Abaqus Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Analytical MATLAB Model . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Establishing the Model . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Transition Temperature . . . . . . . . . . . . . . . . . . . . . 32

iii



Contents

4 Experimental Work 39

4.1 Quasi-Static Tension Tests . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 High Strain Rate Tension Tests . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Scanning Electron Microscope . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Numerical Simulations 63

5.1 Calibrating the Johnson-Cook Material Model . . . . . . . . . . . . . 63
5.1.1 Strain Hardening Term . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Strain Rate Sensitivity Constant . . . . . . . . . . . . . . . . 64
5.1.3 Temperature Sensitivity Constant . . . . . . . . . . . . . . . 67

5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 68

6 Concluding Remarks 77

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

References 80

A Appendix 83

A.1 Analytical MATLAB Model . . . . . . . . . . . . . . . . . . . . . . . 83

iv



Contents

v





Nomenclature

βTQ Taylor-Quinney coe�cient
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Chapter1

Introduction

1.1 Motivation

Under normal circumstances, most steels have a ductile behaviour. This means
that they can obtain large amounts of plastic deformation before fracture occurs.
At lower temperatures steels behave less ductile, and at a given temperature the
material has a transition where the predominant fracture mode changes from duc-
tile to brittle. A brittle fracture is a fracture that occurs with almost no plastic
deformation, and therefore without any warning. This fracture mode is therefore
important to prevent.

O�shore pipelines are from time to time subjected to impact loads from anchors,
trawl gear, etc. The Petroleum Safety Authority Norway has published a list of
reports on damage to and incidents in connection with pipeline systems the North
Sea and the Norwegian Sea (Petroleumstilsynet, 2017). In the Arctic regions, the
temperatures may stabilize at very low values. An anchor hitting a steel pipe in
these regions, may lead to a brittle fracture if the wrong material is used.

Another example where low temperatures may occur is when transporting liquid
nitrogen. Liquid nitrogen has a boiling temperature of −196◦C. Spilling it leads
to a huge temperature decrease in the material hit, and may lead to a temporary
brittle behaviour.

Other parameters that a�ects the ductile to brittle transition are the strain rate
and the stress state. Large strain rates reduce the ductility, and may be obtained
from collisions or explosions. A triaxial state of tensile stress also reduces the
ductility, and may be obtained from cracks due to defects.

1.2 Objective

The objective of this thesis is to investigate experimentally the main e�ects and
interaction e�ects of temperature, strain rate and stress triaxiality on the ductility
of an o�shore steel.

The sub-objectives are as follows:

1. Literature study on fracture of steels with emphasis on the ductile-brittle
transition, including models for ductile and brittle fracture.

1



1.3. Scope

2. Numerical study with ABAQUS to design the tensile specimens with the
desired levels of stress triaxiality.

3. Experimental study on the main e�ects and interaction e�ects of temperature,
strain rate and stress triaxiality on the ductility of an o�shore steel.

4. Parameter identi�cation of material model (elastic/plastic) and failure crite-
ria (ductile/brittle) based on the experimental data.

5. Numerical study on the in�uence of the model parameters on the predicted
ductility.

1.3 Scope

1. The experimental work was performed on only one material, namely the X65
steel.

2. The experimental tests were only performed on four di�erent geometries.
Geometries with fatigue cracks were not used.

3. Only tension tests were performed. No fracture mechanics tests (e.g Charpy
V-notch tests) or component tests were executed.

4. The tests were only done at a given set of temperatures. The lowest tem-
perature at the quasi-static test was −90◦C. At dynamic tests, the lowest
temperature was −60◦C.

1.4 Overview of Thesis

A brief description of each chapter of this thesis is found below.

Chapter 2: Theory Chapter 2 gives an overview of the plasticity theory used
in this thesis, and describes ductile and brittle fracture mechanisms and fracture
criteria.

Chapter 3: Preliminary Simulations In Chapter 3 quasi-static and dynamic
tensile tests were simulated using Abaqus. A MATLAB script implemented with
ductile and brittle fracture criteria was created to study the e�ects of stress triax-
iality, strain rate and temperature. The material data used was expected to have
similar properties as the material studied in this thesis.

Chapter 4: Experimental Work Chapter 4 explains the procedure, and dis-
cuss the results of the quasi-static and dynamic tension tests carried out in this
thesis.

2



Chapter 1. Introduction

Chapter 5: Numerical Simulations In Chapter 5 the parameters of the
Johnson-Cook Material Model are calibrated and used to simulate the experimental
work using Abaqus. The results of the simulations are compared with the experi-
mental results. The triaxiality and di�erent fracture criteria are also studied.

Chapter 6: Concluding Remarks In Chapter 6 the most important results
and conclusions of the thesis are summarised, and further work is suggested.

3





Chapter2

Theory

2.1 Plasticity

Figure 2.1.1 shows a typical engineering stress versus engineering strain curve from
a tension test. In the start, the material behaves elastic, and the stress increases
linearly. When the stress reaches the yield stress, the material gets a plastic be-
haviour. The stress continues to increase until di�use necking. Henceforth it is
implied that necking means di�use necking. At necking, the deformation starts to
localize, resulting in a no longer uni-axial stress state. Afterwards the force needed
to deform the test specimen will decrease until fracture.

2.1.1 Von Mises Yield Criterion

The deformation of a specimen is elastic until the stresses reach the yield stress,
and plastic deformation occur. As long as the response is elastic, the specimen
returns to it's original form when it is unloaded. A general formulation of the yield
criterion is

f = ϕ(σij)− σ0 = 0 (2.1.1)

where f is the yield function, ϕ is the equivalent stress and σ0 is the yield stress.
If f < 0, the material is in the elastic domain. When f = 0 the material responds

O�set yield strength

Necking

Fracture

Strain

S
tr
es
s

Figure 2.1.1: Typical engineering stress versus engineering strain curve
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2.1. Plasticity

plastically.
For a situation of combined stresses, the yielding can be related to a combination

of the principal stresses. Von Mises suggested that yielding occur when the second
invariant of the stress deviator J2 exceeded some critical value (Dieter, 1988). This

led to ϕ =
1√
2

[(σ1−σ2)2+(σ2−σ3)2+(σ3−σ1)2]
1
2 , giving von Mises yield criterion:

σ0 =
1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]
1
2 (2.1.2)

This criterion is independent of the component of hydrostatic stress, and the square
terms makes it independent of the sign of individual stresses.

In a state of uniaxial tension the stress state is (σ11, 0, ..., 0). If the equivalent
stress is de�ned as the von Mises stress, the yielding starts when σ11 = σ0.

2.1.2 Engineering and True Stress and Strain

After a tensile test, the results are often given as force and displacement. The
engineering stress and engineering strain can be found by using the formulas below:

σe =
F

A0
(2.1.3)

εe =
∆L

L0
(2.1.4)

Where σe is the engineering stress, F is the force in the test machine, A0 is the ini-
tial cross-section area of the gauge area of the test specimen, εe is the engineering
strain and L0 is the initial length of the gauge area. The engineering stress versus
engineering strain curve is used to provide basic design information on the strength
of materials. Yield strength, ultimate tensile strength, breaking stress and engi-
neering strain at fracture are examples of parameters found from the engineering
stress-strain curve.

In most materials, there is a gradual transition from elastic to plastic behaviour,
and it can be hard to decide the yield strength. A common technique is to use
the o�set yield strength. This strength is determined by �nding the stress at the
intersection of the stress-strain curve and a line parallel to the elastic part of the
curve o�set by a speci�ed strain (Dieter, 1988).

σ0 =
F(strain o�set=0.002)

A0
(2.1.5)

The engineering stress versus engineering strain curve does not give a true
indication of the characteristics of the material, since it is based on the materials
original dimension. The true stress σt and logarithmic (true) strain εl are based
on the actual cross-section area, and are given by:

σt =
F

A
(2.1.6)

εl = ln(
L

L0
) = ln(

A0

A
) (2.1.7)
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Chapter 2. Theory

2.1.3 The Notch E�ect

Some of the test specimens used in this thesis have a notch in the gauge area.
According to Dieter (1988) a notch has four important consequences that increases
the probability of brittle fracture. It creates a local stress concentration at the
root of the notch. It creates a triaxial tensile state of stress. It creates a locally
concentrated strain and strain hardening that can lead to ductile void formation
where the voids can be converted into brittle cracks. It creates a local strain rate
that is much higher than the average strain rate. More about ductile and brittle
fracture can be read in section 2.2 Fracture mechanisms.

The notch e�ect is also found at the di�use neck of a smooth specimen in a
tensile test. The radial and the transverse stresses in the triaxial stress state raise
the value of the longitudinal stress required to cause plastic �ow. The longitudinal
true stress is not equal to the equivalent stress, and needs to be corrected for the
triaxial e�ect. Bridgman (1944) made a mathematical analysis that makes this
correction. The equivalent stress after necking is given by

σeq =
σt

(1 + 2R/a) ln(1 + a/2R)
(2.1.8)

where R is the notch radius and a is the specimen radius at the neck. Le Roy et al.
(1981) proposed an empirical expression for a/R where

a/R = 1.1(p− εplu), p > εplu (2.1.9)

In this expression p is the equivalent plastic strain, and εplu is the equivalent plas-
tic strain at the onset of necking. Bridgman's analysis is based on the following
assumptions (Dieter, 1988):

• The contour of the neck is approximated by the arc of a circle.

• The cross section of the necked region remains circular trough the test.

• The von mises' criterion for yielding applies.

• The strains are constant over the cross section of the neck.
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2.1. Plasticity

Figure 2.1.2: Stress versus strain curve showing the work hardening, (Hopperstad
and Børvik, 2015)

2.1.4 Work Hardening

Figure 2.1.2 shows how steel can harden when deformed plastically. The yield
criterion below (Hopperstad and Børvik, 2015) describes this behaviour:

f = σeq − (σ0 +R) = 0 (2.1.10)

R is a hardening variable. For a uniaxial tension test, von Mises yield criterion is
simpli�ed to f = |σ1| − (σ0 +R) which leads to |σ1| = σ0 +R.

Power law and Voce rule, are two frequently used rules describing the work-
hardening. Power law is given by

R(p) = Bpn (2.1.11)

where p is equivalent plastic strain, and B and n ar constants. Voce rule is given
by:

NR∑
n=1

Qi(1− exp(Cip)) (2.1.12)

where Qi and Ci are constants.

2.1.5 The Johnson-Cook Material Model

Equation (2.1.10) gives a description of the work hardening of metals, but does
not take into account the e�ect of rate dependence and temperature. The faster a
material is loaded, the stronger it becomes, see Figure 2.1.3. The rate dependence
increases with temperature, but the temperature also a�ects the yield stress and
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Chapter 2. Theory

Figure 2.1.3: E�eckt of rate dependence, (Hopperstad and Børvik, 2015)

work hardening. These values decrease with increasing temperature. At the melting
temperature the yield stress is zero, and the material has lost its load-carrying
capacity.

Johnson and Cook (1983) suggested an empirical constitutive relation for metals
subjected to large strains, high strain rates and high temperatures:

σeq = (A+Bpn)(1 + C ln ṗ∗)(1− (T ∗)m) (2.1.13)

A, B, C, n and m are constants to be determined. Further, p is the equivalent
plastic strain. ṗ∗ = ṗ/ṗ0 is the dimensionless plastic strain rate, where ṗ0 is the
reference strain rate. T ∗ is the homologous temperature given by T ∗ = (T −
T0)/(Tm−T0), where T is the temperature, Tm is the melting temperature and T0
is the reference temperature. The �rst bracket in the model represents the strain
hardening, where A denotes the yield stress, and Bpn the work hardening described
by power law. The second bracket describes the strain-rate sensitivity, and the
third represents the temperature softening. This implies that the Johnson-Cook
model assumes that the strain hardening, strain-rate hardening and temperature
softening are independent of each other.

In processes with high strain rate the heat generated by plastic dissipation does
not have time to di�use. There is no thermal loss to the surroundings, and the
temperature will increase locally at regions with high deformation (Hopperstad and
Børvik, 2017). This is called adiabatic conditions, and the temperature increase is
called adiabatic heating. The adiabatic heating is given by the di�erential equation

dT =
βTQ

ρcε
dWp =

βTQ

ρcε
σeqdp (2.1.14)

where ρ is the mass density, cε is the heat capacity and dWp is the plastic work
increment per unit volume and can be written as the equivalent stress multiplied
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2.2. Fracture Mechanisms

(a) (b) (c)

(d) (e) (f)

Figure 2.2.1: Void nucleation, growth and coalescence in ductile metals: (a) inclu-
sions in a ductile matrix, (b) void nucleation, (c) void growth, (d) strain localization
between voids, (e) necking between voids, and (f) void coalescence and fracture.
Adapted from Anderson (2005).

with the strain increment. βTQ is the Taylor-Quinney coe�cient. This value varies
with the strain rate, and it is normal to give it the value βTQ = 0 for low strain
rates and βTQ = 0.9 for high strain rates. By dividing the deformation into strain
increments, the temperature, Tk+1, at the next strain increment can be found by
using the trapezoidal rule for numerical integration

Tk+1 = Tk +
1

2

βTQ

ρcε
(σeq,k+1 + σeq,k)(pk+1 − pk) (2.1.15)

where σeq,k is the equivalent stress at strain increment k. Assuming small plastic
strain increments, σeq,k+1 can be given by

σeq,k+1 = (A+Bpnk+1)
(

1 + C ln
( ṗ
ṗ0

))(
1−

( Tk − T0
Tm − T0

)m)
(2.1.16)

By using this method, the temperature lags one step behind the equivalent stress
and the equivalent plastic strain. This is su�ciently accurate for small plastic
strain increments.

2.2 Fracture Mechanisms

2.2.1 Ductile Fracture

According to Anderson (2005), ductile fracture is characterized by void nucleation,
growth and coalescence. The process is illustrated in Figure 2.2.1. When materials
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Chapter 2. Theory

Figure 2.2.2: SEM fractograph of ductile fracture in a low carbon steel. (Anderson,
2005)

that contain impurities are applied a su�cient load, the interfacial bonds between
the particles/inclusions and the matrix breaks or the particles crack. This forms
voids, and if the particles are well-bounded to the matrix, fracture will follow soon.
Otherwise the fracture properties are controlled by void growth and coalescence.
Plastic strain and hydrostatic stress causes the voids to grow. As the voids grows,
neighbouring voids interact, local necking occurs between the voids, they coales-
cence and the material fractures.

The fracture surface after a ductile fracture is typically a dimpled surface, see
Figure 2.2.2. The "cup and cone" is also commonly observed after an uniaxial
tensile test. Here the neck produces a triaxial stress state in the centre of the
specimen. This leads to a penny-shaped ductile fracture in the middle. At the
outer ring, there are fewer and smaller voids due to lower hydrostatic stress. Here
the cross section will fail due to shear fracture, resulting in a fracture surface
oriented 45◦ from the tensile axis.

2.2.2 Cleavage

Anderson (2005) de�nes cleavage, or brittle fracture, as a rapid propagation of a
crack along a particular crystallographic plane. Under normal circumstances steel
fail as a consequence of ductile fracture. If the plastic �ow is restricted, it is harder
for the steel to behave ductile, and cleavage may occur. The susceptibility to
cleavage is increased by almost any factor that increases the yield strength. Some
of the factors are low temperature, a triaxial stress state, radiation damage, high
strain rate and strain aging.

To initiate cleavage, the local stress ahead of the crack must be su�cient to
overcome the cohesive strength of the material. The macroscopic crack does not
provide su�cient stress concentration alone, so there must be a local discontinuity
ahead of the crack that provides su�cient stress. An example of a local discontinu-
ity is a sharp microcrack. A microcrack can for instance form by intersecting slip
planes by means of dislocation, interaction or if an inclusion or second-phase par-
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Figure 2.2.3: SEM fractograph of cleavage in a low-alloy steel. (Anderson, 2005)

ticle crack as a consequence of the plastic strain in the surrounding matrix. Since
the location of a particle large enough to nucleate cleavage is random, a critical
stress over a �nite volume ahead of the macroscopic crack is necessary to nucleate
cleavage. This volume is equal to the volume of two grains.

Figure 2.2.3 shows the fracture surface after cleavage fracture. The surface is
multifaceted, and each facet corresponds to a single grain. The picture also shows
a river-pattern, which also is characteristic for cleavage fracture. The pattern looks
like multiple lines that convert into a single line.

2.2.3 Ductile to Brittle Transition

The probability of brittle fracture in steels can change drastically over a small
temperature range. This change is called the ductile - brittle transition, and is
illustrated in Figure 2.2.4. For low temperatures, the fracture will be pure cleavage.
As the temperature increases and enter the transition region, both ductile and
brittle fracture can occur in the same specimen. In the upper part of the region,
the crack will start to grow by ductile tearing. While the crack is growing, more
material is sampled near the crack tip. Eventually, the crack samples a critical
particle, and cleavage occurs. For high temperatures the fracture will be ductile.

The temperature where the fracture changes from ductile to brittle is called the
transition-temperature. Figure 2.2.4 shows the various de�nitions of this temper-
ature according to Dieter (1988).

• Fracture transition plastic (FTP) is based on T1 and is the most conservative
criterion. At this value, the fracture changes from partly brittle to pure
ductile.

• Fracture-appearance transition temperature (FATT) is based on T2. Here the
fracture is 50 % brittle and 50 % ductile.

• The criterion based on T3 is found by taking the average of the upper and
lower shelf values, T1 and T5.
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Upper shelf

Figure 2.2.4: Various criteria of transition temperature (Dieter, 1988)

• Ductility transition temperature is a common criterion that is based on T4.
At this temperature the energy absorbed, Cv, must be equal to an arbitrary
low value. For instance, a 20 J Cv transition temperature is an accepted
criterion for low-strength ship steels.

• Nil ductility temperature (NDT) is a well-de�ned criterion based on T5. This
is the temperature where the fracture becomes pure brittle.

According to Dieter (1988) there are many factors a�ecting the transition tem-
perature of steel. Some of these are mentioned below. The chemical composition
has a great in�uence. The largest changes are found by varying the amount of
carbon and manganese. The 20 J transition temperature for a specimen can for
instance be raised by 14◦C for each increase of 0.1 % carbon. Increasing the man-
ganese by 0.1 % raises the transition temperature about 5◦C. By going to higher
Mn:C ratios, it is possible to decrease the transition temperature with about 50◦C.
Extending the Mn:C over 7:1 can lead to problems due to other factors, and should
be avoided. The content of phosphorus also has a great in�uence on the transition
temperature. It is raised by 7◦C for each 0.01 %. Nickel in amounts up to 2 %
lowers the transition temperature, while silicon and molybdeum raise it. Increasing
the oxygen level increases the transition temperature, while deoxidizing the steel
by silicon and aluminium gives a transition temperature around -60◦C.

The grain size is another important factor. Increasing the ferrite grain size
decreases the transition temperature. Decreasing the austenite grain size also lower
the transition temperature.
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2.3. Failure Criteria

2.3 Failure Criteria

2.3.1 The Johnson-Cook Fracture Criterion

Johnson and Cook (1985) presented a fracture criterion that considers stress triax-
iality, strain rate sensitivity and temperature softening. In this criterion, a damage
D is de�ned, and fracture is assumed to occur when D reaches a critical value; Dcr.
Most often, the value Dcr = 1 is used. The damage is de�ned as:

D =

∫ p

0

1

pf
dp (2.3.1)

where pf is the strain at fracture and is given by

pf = [D1 +D2 exp(−D3σ
∗)][1 +D4 ln ṗ∗][1 +D5T

∗] (2.3.2)

D1, D2, D3, D4, D5 are constants to be determined. σ∗ = σH/σeq is the stress
triaxiality where σH = 1

3 (σ1 + σ2 + σ3) is the hydrostatic stress. Note that in the
original model D3 is positive. Here a negative version is used, since it is given as
negative in the Abaqus implementation of the model.

2.3.2 The Cockcroft-Latham Failure Criterion

Cockcroft and Latham (1968) presented a ductile fracture criterion which takes
both the stress triaxiality and the Lode parameter into account. In this criterion,
the damage is given by:

D =
W

Wc
=

1

Wc

∫ p

0

max(σ1, 0)dp (2.3.3)

By expressing σ1 in terms of invariants, the damage becomes

D =
1

Wc

∫ p

0

max

(
σ∗ +

3− L
3
√

3 + L2
, 0

)
σeqdp (2.3.4)

where Wc is the fracture parameter. The fracture parameter is said to be the
"plastic work" to failure, and is calculated using the maximum principal stress. In
the equation above, σ∗ is the stress triaxiality and L is the Lode parameter given
by

L =
2σ2 − σ1 − σ3

σ1 − σ3
(2.3.5)

In a uni-axial tension test L = −1, while it is 1 in a state of compression and 0 in
a state of shear (Hopperstad and Børvik, 2017).

By using the Johnson-Cook constitutive relation to decide σeq, the criterion will
depend on strain rate and temperature. The criterion has only one parameter to
determine, Wc. This makes it easy to calibrate and widely used.
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2.3.3 Ritchie-Knott-Rice Fracture Criterion

Ritchie et al. (1973) found a criterion for brittle fracture, where the material had
to have a critical tension, σf , over a volume of two grain diameters ahead of a
macroscopic crack tip for cleavage to occur. The magnitude of the maximum
achievable stress depends on the yield stress and hardening properties. If the
maximum achievable stress is less than σf , cleavage will not occur. Ritchie et al.

(1973) de�ned the stress intensi�cation R =
σ1
σ0

. If the maximum possible stress

intensi�cation was equal to a given value, σ1 would be close to σf , and cleavage
would occur. For their material Rmax = 5 lead to cleavage.
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Chapter3

Preliminary Simulations

In this thesis, tensile tests with di�erent specimens were used to study the e�ects
temperature, strain rate and stress triaxiality have on the ductility of a o�shore
steel. Before the experimental work, preliminary numerical simulations were per-
formed to see which impact the geometry of the test specimen, the temperature
and the strain rate had on the triaxiality and the stress intensi�cation factor. This
would be used to decide which specimens that would be used in the experimental
work.

In the �rst part of the preliminary simulations, various test specimens were
studied using Abaqus/Standard for quasi-static simulations and Abaqus/Explicit
for dynamic simulations. In the second part, a MATLAB script implemented with
ductile and brittle fracture criteria was made.

3.1 Abaqus Simulations

3.1.1 Material Model

The material used in this thesis is a X65 grade steel, which is a steel often used in
o�shore pipes. It is quite similar to the material used by Kristo�ersen (2014), but
while his tests were taken from pipes that were manufactured seamlessly using the
Mannesmann e�ect, these specimens were taken from pipes that were formed from
plates rolled into pipes and welded longitudinally. In this chapter, it is assumed
that the material has the same properties as the material used by Kristo�ersen
(2014). These are shown in Table 3.1.1. The values of D5, m and Tm were not
given, and were assumed to be D5 = 1, m = 1, Tm = 1800 K. The reference
temperature T0 was set to 293 K.

In the quasi-static simulations, the material was described using the density
ρ, the elastic constants Young's modulus E and Poisson's ratio ν and with the
Johnson-Cook material model. In the Johnson-Cook material model the values
of A, B and n were used. The dynamic model also had these properties, but
it was described with some additional properties. In the Johnson-Cook material
model the temperature sensitivity constant m, the melting temperature Tm and
the transition temperature T0 were included. The material was modelled as a rate
dependent material with strain rate sensitivity C and reference strain rate ṗ0. The
speci�c heat cε and the inelastic heat fraction (Taylor-Quinney coe�cient) βTQ
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Table 3.1.1: Constants for the material model

Elastic constants and density
E [MPa] ν ρ [kg/m3]
208 000 0.3 7 800

Johnson-Cook hardening
A [MPA] B [MPa] n C ṗ0 [1/s]
456.6 410.8 0.4793 0.0104 0.000806

Fracture strain constants
D1 D2 D3 D4 D5

0.42 2.25 1.87 -0.00239 1

Adiabatic heating and temperature softening
cε [mm

2/s2K ] βTQ Tm [K] T0 [K] m
452 · 106 0.9 1 800 293 1

were de�ned and the Johnson-Cook failure criterion was used with the constants
D1, D2, D3, D4 and D5 and the values Tm, T0 and ṗ0.

3.1.2 Geometry

Figure 3.1.1 illustrates the geometry of the tensile specimens studied in the simula-
tions. All the specimens were cylindrical, but to reduce the computational running
time, they were modelled as axisymmetric deformable shells. This simpli�cation
made it possible to only draw a section of the specimens. Abaqus only had to do
computations on this section, and then use axisymmetry to get the right values.
This simpli�cation assumed that all the loads and deformations were symmetric.

The specimens had an outer diameter of 5 mm and a diameter of 3 mm in
the gauge area. Because an aim of these simulations was to study the e�ect of
triaxiality, di�erent specimens were modelled. The smooth specimen in Figure
3.1.1a was expected to have low triaxiality, while the specimens with round notches
were expected to have high triaxialities and the specimens with sharp notches even
higher. The round notches had radiuses of 0.4 mm, 0.8 mm and 2.0 mm. Henceforth
these will be called R0.4, R0.8 and R2.0. The sharp notch will be called V-notch
in some of the results. For manufacturing reasons the side faces of the notches in
specimen R0.4 and R0.8 were inclined with a angle α = 17.5◦. In Abaqus, the
sharp notches were studied with di�erent angles α. The original length of the
specimens was 35 mm, but 9 mm on each side was used to clamp the specimens
to the testing-machines. In addition to this most of the deformation happened at
the middle of the specimen's length, were the cross-section was smaller. Because of
this, and to reduce the computational running time, the specimens were modelled
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Figure 3.1.1: Geometry of the tensile specimens modelled.

with shorter lengths. For the specimens with sharp notches symmetry was used to
reduce the length, and computational running time even more.

3.1.3 Mesh

The models were meshed as illustrated in Figure 3.1.2. To make the mesh struc-
tured and the elements in approximately quadratic shape, the models were par-
titioned as in Figure 3.1.1 and a structured mesh was used. The elements were
modelled as 4-node bilinear axisymmetric quadrilateral with reduced integration
and hourglass control (CAX4R).

To decide the mesh size, parameter studies concerning the e�ect the mesh has on
the force versus displacement curves and on the stress intensi�cation R = σ1/σ0,
where σ0 = 478 MPa, were performed. Figure 3.1.3 shows the force versus dis-
placement curve for dynamic tests of notched R0.4 specimens with 5, 15, 25 and
35 elements over the thickness in the gauge area. The mesh in the gauge area is
illustrated in Figure 3.1.4. There is a big change between the force versus displace-
ment curve of 5 and 15 elements over the thickness. More elements led to longer
computational time but also more accurate results. 25 and 35 elements have almost
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(a)

(b)

(c)

(d)

(e)

Figure 3.1.2: Mesh of tension test specimens: (a) smooth specimen, (b) R2.0, (c)
R0.8, (d) R0.4 and (e) sharp notch.
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Figure 3.1.3: Force versus displacement for dynamic simulations of a R0.4 specimen
with varying mesh.
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(a) (b)

(c) (d)

Figure 3.1.4: Mesh-study of R0.4 specimen. Inner radius divided into: (a) 5 ele-
ments, (b) 15 elements, (c) 25 elements and (d) 35 elements.
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Figure 3.1.5: Stress intensi�cation versus equivalent plastic strain for dynamic
simulations of a R0.4 specimen with varying mesh.

the same curves, and a mesh with 25 elements over the thickness was chosen. This
gave an element size of approximately 0.06× 0.06 mm2 = 0.0036 mm2.

In the studies concerning the e�ect the mesh has on the stress intensi�cation,
5 to 45 elements over the thickness in the gauge area were tested, see Figure 3.1.5.
5 elements gave lower stress intensi�cation than the other curves, but the rest of
the curves looked almost identical. 25 elements over the thickness were decided to
be a reasonable size of the mesh.
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Figure 3.1.6: Force versus displacement curves for smooth specimen and specimen
R2.0, R0.8 and R0.4 for (a) quasi-static and (b) dynamic analyses.

3.1.4 Boundary Conditions

Boundary conditions giving axisymmetric properties were used in the symmetry
axis to be sure that the specimens would deform the right way. In one end the
specimen was �xed against displacement in the longitudinal direction and rotation.
For the specimens with sharp notch, symmetry was used in the end representing the
specimen instead. At the other end a load was applied. For quasi-static analyses
this load was applied as a displacement in the longitudinal direction. By adjusting
the time step for this displacement, the velocity of the load was set to 4 mm/s.
In the dynamic analyses the load was applied as a velocity of 5000 mm/s. In
explicit simulations, abrupt changes of velocity will introduce stress waves. These
are arti�cial unless the velocity is the same as in the experiment. To avoid this,
the velocity was ramped up at the start of the simulation. 10 % of the time period
was used to ramp up the velocity. In the dynamic simulation, adiabatic heating
was included. A prede�ned temperature �eld of 293 K was also added.

3.1.5 Results and discussion

Force displacement

Figure 3.1.6 shows force versus displacement curves for the smooth specimen and
specimen R2.0, R0.8 and R0.4 for (a) quasi-static and (b) dynamic analyses. For
the dynamic simulations, a fracture criterion was used, and the curves were stopped
at fracture. The quasi-static simulations were used without a fracture criterion, and
the curves were stopped at approximately the same displacement as the fracture in
the dynamic simulations. The curves show that the force is higher for the dynamic
simulations than the quasi-static simulations. The notched specimens have higher
force than the smooth, and when the notch radius decreases, the force increases.
The notched specimens are also less ductile than the smooth.

Figure 3.1.7 shows the same curves for the specimens with sharp notches. The
simulations were performed with notches of α = 25, α = 35 and α = 45. These
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Figure 3.1.7: Force versus displacement curves for specimens with sharp notches of
angle α = 25◦, α = 35◦ and α = 45◦ for (a) quasi-static and (b) dynamic analyses.
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Figure 3.1.8: The four elements where the stress intensi�cation factor and the stress
triaxiality were studied.

curves also indicate that sharper notches leads to a stronger and less ductile re-
sponse.

Stress intensi�cation factor

The stress intensi�cation factor Rmax = σ1/σ0 , where σ0 = 478 MPa, was found
in four elements spread over the cross-section of the gauge area. These elements
are illustrated in Figure 3.1.8. Element number 1 is at the centre of the cross
section, and element 4 is at the surface of the specimen. The factor was found for
equivalent plastic strain up to 0.5, since cleavage was expected to happen at low
values of strain.

Figure 3.1.9 shows the stress intensi�cation factor R for the smooth speci-
men and specimen R2.0, R0.8 and R0.4 for quasi-static and dynamic simulations.
These results show higher values for dynamic simulations than quasi-static, and
the notched specimens have higher values than the smooth specimens. R is highest
in the middle of the cross-section. The maximum value of element number 1 varies
from approximately 2 for a smooth specimen in a dynamic simulation to nearly 4
for a R0.4 notched specimen at a dynamic simulation. The value Rmax that leads
to cleavage, is not determined for this material. A value of 3 would have resulted in

23



3.1. Abaqus Simulations

cleavage in both R0.8 and R0.4. If the value is about 4, specimen R0.4 would not
be far away from cleavage at a dynamic simulation. If the value is about 5, fracture
would not have been predicted by the chosen fracture model. At the surface of the
specimen the highest value of R varies from 1.5 to 2. These are much lower values
than in the centre of the specimen, and for tension tests corresponding to these
simulations, cleavage was not expected to be initiated around element number 4.

Figure 3.1.10 shows the results for the V-notched specimens. The quasi-static
results are not much higher than the results of R0.4, but the dynamic test reaches
a stress intensi�cation of 5. This is a value that was expected to lead to cleavage.
The specimens were simulated at angles α of 25◦, 35◦ and 45◦. At the quasi-static
simulations α = 25◦ gives the highest R while for dynamic simulations α = 45◦

gives the highest value. The values for the di�erent angles are almost the same, and
due to manufacturing reasons specimens with α = 45◦ was chosen to be produced
to the experimental tests. A large angle would also make it easier to use lasers and
other techniques to measure the diameter of the specimens during the tests.
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Figure 3.1.9: Stress intensi�cation factor versus equivalent plastic strain for the
di�erent specimens at quasi-static and dynamic analyses.
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Figure 3.1.10: Stress intensi�cation factor versus equivalent plastic strain for the V-
notched specimens with an angle α of 45◦, 35◦ and 25◦ at quasi-static and dynamic
analyses.
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Table 3.1.2

Specimen Maximum stress triaxiality
Quasi-static Dynamic

Smooth 0.53 0.55
R2.0 0.99 0.99
R0.8 1.34 1.32
R0.4 1.55 1.60
V, α = 45 1.52 2.43
V, α = 35 1.62 2.43
V, α = 25 1.75 2.40

Stress triaxiality

Figure 3.1.11 shows the stress triaxiality for the smooth specimen and specimen
R2.0, R0.8 and R0.4 for quasi-static and dynamic analyses. Figure 3.1.12 shows
similar graphs for the specimens with sharp notches. The highest triaxiality from
each graph is given in Table 3.1.2. For the specimen with α = 25◦, the high
triaxiality value of 2.72 at the beginning of the dynamic simulation was ignored,
since the value did not follow the tendency of the graph. This was obviously due
to noise in the simulation. The triaxiality of the specimens increases as the notch
radius decreases, but it is almost the same for the quasi-static and dynamic analyses
for the smooth specimen and specimen R2.0, R0.8 and R0.4. For the quasi-static
analyses of the sharp notches, the triaxiality increases some when α decreases. It
also seems like the strain rate has a much greater impact on the triaxiality for these
specimens.

Henceforth, the geometry of the specimens will be used to study the e�ects of
triaxiality. The smooth specimens will represent a low triaxiality. R2 and R0.8
will represent higher values. The V-notched specimen will represent the highest
triaxiality obtained in the experiments.
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Figure 3.1.11: Stress triaxiality versus equivalent plastic strain for the di�erent
specimens at quasi-static and dynamic analyses.
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Figure 3.1.12: Stress triaxiality versus equivalent plastic strain for the V-notched
specimens with an angle α of 45◦, 35◦ and 25◦ at quasi-static and dynamic analyses.
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3.2. Analytical MATLAB Model

3.2 Analytical MATLAB Model

In this study, an analytical MATLAB model implemented with the Cockcroft-
Latham failure criterion for ductile fractures and Richie Knott Rice fracture crite-
rion for brittle fractures was made. The model takes in the material parameters as
input, and gives the strain at ductile and brittle failure as a function of tempera-
ture, strain rate and stress triaxiality. The model can also show the stress state in
the material for di�erent combinations of the factors mentioned above.

3.2.1 Establishing the Model

Both the ductile and brittle fracture criterion contains the highest principal stress
σ1. This stress can be calculated from σeq, which in this model is found using
Johnson-Cook material model (Johnson and Cook, 1983).

σeq = (A+Bpn)(1 + C ln ṗ∗)(1− (T ∗)m) (3.2.1)

The reader is referred to Chapter 2 for a more thorough description of the formulas
and theory used in this section. The constants used in the MATLAB model is
given in Table 3.2.1. Since the MATLAB model is for temperatures from 0 K and
higher, A is set to be the yield stress at 0 K. This is found as shown in equation
(3.2.2) where Tr = 293 K is the room temperature.

A =
σ0

1− ( Tr−T0

Tm−T0
)m

(3.2.2)

Table 3.2.1: Constants for the material model

Johnson-Cook hardening
σ0 [MPA] B [MPa] n C ṗ0 [1/s]
456.6 410.8 0.4793 0.0104 0.000806

Constants for fracture criteria
Wc [Nmm/mm

3] L σcr
1562 -1 4A

Adiabatic heating and temperature softening
cε [mm

2/s2K ] βTQ Tm [K] T0 [K] ρ [kg/m3] m
452 · 106 0.9 1 800 0 7 800 1
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ṗiso ṗad

Figure 3.2.1: Illustration of the weighting function ω (Roth and Mohr, 2014).

To implement the Johnson-Cook material model in MATLAB, user-de�ned vec-
tors for temperature, strain, strain rate and stress triaxiality are made. Loops are
used to �nd σeq for a given combination of the variables. The equivalent stress at
a given index in the strain vector pi is σeq,i and the equivalent stress for the next
step is σeq,i+1. Ti is T at a given index in the strain vector. The adiabatic heating
is included by the function below (Hopperstad and Børvik, 2017)

Ti+1 = Ti +
1

2

ωβTQ

ρcε
(σeq,i+1 + σeq,i)(pi+1 − pi) (3.2.3)

where

σeq,i+1 = (A+Bpni+1)
(

1 + C ln
( ṗ
ṗ0

))(
1−

( Ti − T0
Tm − T0

)m)
(3.2.4)

This is the same equations as in section 2.1.5, but instead of βTQ changing from 0
to 0.9 at a given strain rate, βTQ is set to 0.9 and is multiplied by the weighting
function ω (Roth and Mohr, 2014). ω varies from 0 to 1 and is given by equation
(3.2.5).

ω(p) =


0 , ṗ < ṗiso
(ṗ−ṗiso)

2(3ṗad−2ṗ−ṗiso)
(ṗad−ṗiso)3

, ṗiso 6 ṗ 6 ṗad
1 , ṗad < ṗ

(3.2.5)

Figure 3.2.1 illustrates ω. For strain rates below ṗiso, ω is zero, and the material
deforms under isothermal conditions. For higher strain rates, ω has a smooth
transition until it reaches 1 at ṗ > ṗad and the material deforms under adiabatic
conditions. In the MATLAB model ṗiso was set to 10 [1/s] and ṗad was set to 100
[1/s]. These values commonly used for steel (Mescall and Weiss, 1983).

31



3.2. Analytical MATLAB Model

The ductile criterion implemented in the model is the Cockcroft-Latham fail-
ure criterion (Cockcroft and Latham, 1968). By applying the trapezoidal rule for
numerical integration, the damage is given by

Di+1 = Di +
1

2Wc
max

(
σ∗ +

3− L
3
√

3 + L2
, 0

)
(σeq,i+1 + σeq,i)(pi+1 − pi) (3.2.6)

where σ∗ is the triaxiality, and the Lode parameter L is set to -1. Wc is found
from the results of tension tests for smooth specimens by Kristo�ersen (2014). The
model is set to �nd the strain when the damage becomes greater than unity for all
combinations of triaxialities, strain rates and temperatures.

Ritchie-Knott-Rice fracture criterion is used as a brittle criterion. Fracture
happens when σ1 reaches the critical value

σcr = RmaxA (3.2.7)

The maximum stress intensi�cation factor Rmax is an empirical value and is not
known prior to the experimental work. In the basic model Rmax is set to 4, but
other values will be tested in a parameter study. σ1 is given by Equation (3.2.8).

σ1 =

(
σ∗ +

3− L
3
√

3 + L2

)
σeq (3.2.8)

The model is set to �nd the strain when σ1 reaches σcr for all combinations of
triaxialities, strain rates and temperatures.

A copy of the MATLAB script is given in Appendix A.1.

3.2.2 Transition Temperature

In this section, the behaviour of the transition temperature was studied by varying
di�erent parameters. A basic model was used where ṗ = 10−3s−1, σ∗ = 2.00 and
Rmax = 4.

Consequence of strain rate

Figure 3.2.2 and Figure 3.2.3 shows the strain at failure for varying stress tri-
axialities and temperatures for strain rates of 10−3s−1 and 103s−1. Ductile and
brittle failure are plotted together, and the fracture which requires the least strain
will occur. The transition between ductile and brittle fracture happens in the line
where the fracture planes intersect. For a strain rate of 10−3s−1 the transition
happens at triaxialities between approximately 1.7 and 2.3. For a strain rate of
103s−1 it happens at values between approximately 1.6 and 2.2. Both transition
lines occur at a strain of approximately 0.8 and have the lowest triaxiality values
for low temperatures and the highest for high temperatures. These results seems
plausible since the tendency to brittle failure is expected to grow with the higher
triaxialities, lower temperatures and higher strain rates.
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Figure 3.2.2: Stress triaxiality versus temperature and strain at failure for a strain
rate of 10−3s−1.
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Figure 3.2.3: Stress triaxiality versus temperature and strain at failure for a strain
rate of 103s−1.
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(a) (b)

Figure 3.2.4: σ1/A versus stress triaxiality and strain for a temperature of 293 K.
a) Strain rate = 10−3s−1 b) Strain rate = 103s−1
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Figure 3.2.5: Temperature versus strain at failure for a strain rate of a) 10−3s−1

b) 103s−1 .

Looking at Figure 3.2.3 for ṗ = 103s−1 it may seem like the brittle fracture
plane behaves in the same way as in Figure 3.2.2 and that the failure strain has so
high values that they are not shown in the graph. This is not the case. Figure 3.2.4
shows σ1/A and the brittle fracture plane that is set to σ1/A = 4 for varying stress
triaxialities and strains. The strain where the planes cross is the brittle fracture
strain at a given triaxiality. In Figure 3.2.4a for ṗ = 10−3s−1 the fracture strain
increase with decreasing triaxialities and fracture happens at all strains. In Figure
3.2.4b for ṗ = 103s−1 the strain also increases with decreasing triaxialities until it
reaches a maximum strain of 1.28 at a triaxiality of 2.06. For triaxialities lower
than this, fracture does not happen.

Figure 3.2.5 shows the transition temperature for strain rates of 10−3s−1 and
103s−1. The transition temperature is the temperature where the fracture lines
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cross. At ṗ = 10−3s−1 the transition temperature is 184 K, while for ṗ = 103s−1 it
is 223 K. This is an increase of 39 K. This transition is based on a stress triaxiality
of 2.00. According to the results from the Abaqus simulations, this triaxiality will
only be obtained with a sharp notched specimen at a dynamic simulation. This
means that a sharp notched specimen at a dynamic simulation is expected to have
a transition temperature higher than 223 K.

Consequence of stress triaxiality

As mentioned earlier fracture happens at triaxialities between approximately 1.7
and 2.3 for low strain rates. In Figure 3.2.6 the transition temperatures for triaxi-
alities from 1.75 to 2.25 at a strain rate of ṗ = 10−3s−1 is found. The results are
presented in the Table 3.2.2. Low triaxialities gives low transition temperatures,

Table 3.2.2: Transition temperature

σ∗ 1.75 2.00 2.05 2.10 2.15 2.20 2.25
Kelvin 16 184 213 242 270 296 322

Degrees Celsius -257 -89 -60 -31 -3 23 49

and the �rst relevant result is at a triaxiality of 2.00, where the transition temper-
ature is 184 K. When triaxialities increases with 0.05, the transition temperature
rise with about 27 K. For low triaxialities it rises more, and for high triaxialities it
rises less. The transition happens at room temperature for a triaxiality of 2.20.

Consequence of the stress intensi�cation factor

Figure 3.2.7 shows the transition temperature when varying the maximum stress in-
tensi�cation Rmax with a strain rate of 10−3s−1 and a triaxiality of 2.00. Rmax = 3
is a conservative assumption which requires low equivalent stress for brittle frac-
ture. At this factor, the fracture is brittle for all temperatures, and the fracture
strain is less than 0.25. The curves for ductile failure strain is the same for all
values of Rmax. For Rmax = 4 the brittle failure strain has increased, and the
transition temperature is 184 K at a strain of 0.8. When Rmax = 5, the equivalent
stress needed for brittle fracture is so high that ductile fracture happens before
brittle for all temperatures.

Figure 3.2.8 shows the strain at failure for varying stress triaxialities and tem-
peratures for a strain rate of 10−3s−1 and Rmax of 3 and 5. Although the material
does not have a transition temperature when the triaxiality is 2.00 and Rmax is
3 or 5, the transition happens at other triaxialities. For Rmax = 3 the transition
happens for triaxialities in the range [1.0 - 1.4] at a fracture strain of 1.1. This
means that the transition will happen for the notched specimens. At Rmax = 5
the transition happens at σ∗ = 2.46 and higher triaxialities. This indicates that it
is hard to obtain cleavage for quasi-static simulations if Rmax = 5.
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Figure 3.2.6: Temperature versus failure strain for triaxialities from 1.75 to 2.25.
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Figure 3.2.7: Temperature versus strain at failure for a strain rate of 10−3s−1, a
triaxiality of 2.00 and a Rmax of a) 3 b) 4 c) 5.
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Figure 3.2.8: Stress triaxiality versus temperature and strain at failure for a strain
rate of 103s−1 and a Rmax of a) 3 b) 5.
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Chapter4

Experimental Work

Tension tests were performed to study the material behaviour of a X65 steel and
in particular the e�ects of triaxiality, strain rate and temperature. The exact
chemical composition of the steel was not available. The specimens used in the
tests were taken from a steel pipe that was formed from plates rolled into pipes
and welded longitudinally. They were taken at 6 o'clock in the cross-section, which
represents the side opposite to the weld, see Figure 4.0.1. This is the side that was
exposed to the largest deformations under the rolling, and this may have led to
anisotropic properties. The longitudinal direction of the specimens corresponds to
the longitudinal direction of the pipe, and the thickness direction of the pipe was
marked at the end of the test specimens.

The specimens are illustrated in Figure 4.0.2. The left side shows the geometry
of the longitudinal direction of the specimens, while the cross-sections are shown
to the right. These �gures shows that the outer diameter was 5 mm, while the
diameter at the gauge area was 3 mm. The red line represents the thickness di-
rection. The smooth specimens had a gauge length of 5 mm, the notched had
notches of 2.0 mm and 0.8 mm radius and the specimens with sharp notches had
notches with an angle of 45◦. Henceforth these specimens will be called smooth,
R2, R0.8 and V. For manufacturing reasons the side faces of the R0.8 notches were
inclined with an angle α = 17.5◦. After manufacturing, a more accurate diameter
of each specimen was found using lasers and each specimen was given names. The

Weld

Specimens

Figure 4.0.1: Cross-section of o�shore pipe. Specimens taken from the side opposite
to the weld.
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smooth specimens were given the names Smooth No.1, Smooth No.2 and so on.
The notched got names like R2 No.1, R0.8 No.1 or V No.1.

The smooth specimens were used to calibrate the material model, while the
notched specimens would show the e�ect of triaxiality. To study the e�ect of strain
rate, both quasi-static and dynamic tests were performed. A temperature chamber
was used to perform tests at lower temperatures. An optical microscope was used to
�nd the gauge diameter after fracture, and a scanning electron microscope (SEM)
was used to study the fracture surface.

4.1 Quasi-Static Tension Tests

4.1.1 Setup

The quasistatic tension tests in room temperature were performed with a 100 kN
Instron test machine (see Figure 4.1.1a) while the tests at low temperatures were
performed with a 250 kN Instron test machine (see Figure 4.1.2a). These machines
are screw-driven, and the load adjusts itself to the displacement to get a constant
velocity.

In the tests at room temperature, the velocity was set to 0.15 mm/min for
the smooth specimens. The notched specimens had a shorter gauge area than the
smooth. This led to a higher strain rate. To get similar strain rate in the smooth
and notched specimens, the velocity was decreased to 0.10 mm/min for the notched
specimens. The test machine registered the force and displacement applied by the
machine. Lasers were used to �nd the diameter reduction, see Figure 4.1.1b. The
laser creates two perpendicular beams. By placing the thickness direction parallel
to one of the laser beams, the anisotropy due to the rolling could be detected.
The height of the laser beams was adjusted during the tests to make sure that the
minimal diameter always was detected.

For tests at lower temperatures the temperature chamber in Figure 4.1.2 was
used. Liquid nitrogen was used to lower the temperature, and thermometers mea-
sured the temperature and controlled the amount of liquid nitrogen added. Due to
the temperature chamber, lasers could not be used to measure the diameter during
these tests. Instead a camera was used, and a mirror with an angle was used to
see the re�ection of the thickness direction and the transverse direction.

Edge-tracing could have been used on the pictures to get the diameter during
the tests and to �nd the true strain and stress. This was not within the scope of
this thesis, but will be done in further studies of the material. In this thesis the
force and displacement data from the machine were used to �nd the engineering
stress and a normalized elongation.
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Figure 4.0.2: Geometry of the tensile specimens. (a) Smooth, (b) R2, (c) R0.8, (d)
V. The red lines represents the thickness direction.
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(a) (b)

Figure 4.1.1: 100 kN Instron test machine.

(a)
(b)

Figure 4.1.2: 250 kN Instron test machine.
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Figure 4.1.3: True stress versus logarithmic strain for the specimens deformed
quasi-statically at room temperature.

4.1.2 Results

Room temperature

The quasi-static tests were conducted by Tore Andre Kristensen, Engineer at SIN-
TEF. The data from the tests were given in spreadsheets containing time, force,
position, diameter Dx and diameter Dy. Dx is the diameter in the thickness direc-
tion, while Dy represents the transverse direction.

During the tests the height of the lasers was adjusted continuously to get the
value of the smallest diameter. This led to a great variation in the diameter and
the data needed to be edited to get the right results. The corrected diameter at a
given time was set to be the smallest of the diameter measured and the previous
corrected diameter. This led to a smooth, decreasing curve.

The cross-section at the neck was assumed to have the shape of an ellipse. The
area at a given time was found by the equation:

A =
πDxDy

4
(4.1.1)

The true stress and logarithmic strain were found by the equations:

σt =
F

A
εl = ln(

A0

A
) (4.1.2)

This gave the results shown in Figure 4.1.3. The curves were cut at fracture
where the stress drops straight to zero. It is evident that the stress level increases
as the notches get smaller and the triaxiality gets higher. The fracture strain on the
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Figure 4.1.4: True strain in x- versus y-direction for the smooth specimens deformed
quasi-statically at room temperature.

other hand, decreases for smaller notches. The R0.8 specimens show a behaviour
where the stress level is not much higher than for the R2 specimen, but the failure
strain is much lower. The V-notched specimen has a stress level approximately
200 MPa higher than R0.8, but the failure strain is actually higher. The fracture
strain of R0.8 is much higher than the failure strain. The strain after failure may
be an example of void growth and coalescence, see Figure 2.2.1d, 2.2.1e and 2.2.1f.
When the voids starts to grow together, the true stress decreases. The growth and
coalescence continues until fracture.

To study if the material has a isotropic behaviour, strains in the thickness
direction εx and transverse direction εy can be compared, see the equations below.

εx = − ln
Dx

D0
εy = − ln

Dy

D0
r =

εy
εx

(4.1.3)

Figure 4.1.4 shows the relation between εx and εy. From the �gure it is clear that
the material deforms much more in the thickness direction. The r-value, which
tells the ratio between the strains in the two directions, has a value between 0.7
and 0.8 for most of the experiment.

Figure 4.1.5 and Table 4.1.1 show the failure strain and the fracture strain for
the quasi-static tests at room temperature. The failure strain is the true strain at
the highest true stress. The fracture strain was found by measuring the diameters
Dx and Dy after fracture using an optical microscope, and using the equations for
areal and true strain below:

A =
πDxDy

4
εl = ln(

A0

A
) (4.1.4)

A0 was found from the diameter measured by a laser before the tests started.
A good way to measure the fracture diameter of the specimen is putting it back

together and measure the diameter from the side. This is a way to ensure that the
smallest diameter is measured. Figure 4.1.6 shows an example where the diameter
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Figure 4.1.5: Failure strain and fracture strain for the quasi-static tests at room
temperature.

Figure 4.1.6: Example of a fracture where it is di�cult to measure the fracture
diameters using an optical microscope.

should be measured from the side. The disadvantage with this technique is that
the fracture surfaces may damage each other. Since these surfaces were going to
be studied with SEM later, this technique was not used. Instead the diameters
were measured while considering the fractured ends. This technique measures the
diameter at the fracture, and as seen in Figure 4.1.6 this is not necessarily the
smallest diameter. Another disadvantage is that it sometimes was hard to see the
boundary of the fracture surface. This led to that some of the diameters, especially
for the notched specimens, were measured to big, leading to smaller fracture strains
than in the reality.

From the results it looks like the fracture strain decreases when the triaxiality
increases. The failure strain also decreases for higher triaxiality, but as seen in the
true stress and logarithmic strain graph, the failure strain is lowest for the R0.8
specimen.
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Table 4.1.1: Failure strain and fracture strain for the quasi-static tests at room
temperature

Specimen Failure strain [-] Fracture strain [-]
Smooth No.9 1.31 1.47
Smooth No.10 1.33 1.53
R2 No.11 0.82 1.00
R2 No.12 0.82 1.00
R0.8 No.11 0.49 0.84
R0.8 No.12 0.57 0.91
V No.23 0.62 0.82
V No.24 0.64 0.83

Low temperature

The quasi-static tests at low temperatures were also conducted by Tore Andre
Kristensen. The plan was to test two of each type of specimen at 243 K and two
of the V-notched specimens at 213 K and 183 K. In the �rst tests, much time was
used to be certain that there was no icing on the gauge area and on the mirror.
After the smooth specimens and some of the notched specimens were tested, it was
decided to open the chamber and let the temperature get back to room temperature
before placing a specimen in the machine between every test. This would prevent
icing from appearing on the specimen when it was placed inside the chamber. This
procedure would make the testing of each specimen take much longer time, and it
was decided to just test one V-notched specimen at each temperature.

The data from the tests were given in spreadsheets containing time, force and
displacement of the machine. The engineering stress and engineering strain are
given by the equations below:

σe =
F

A0
εe =

∆L

L0
(4.1.5)

Since the displacement were taken from the machine, L0 was set to 17 mm, which is
the length of the specimen when the clamped ends are neglected. The engineering
stress and a normalized elongation given by ∆L/L0 mm was found.

The results at 243 K are shown in Figure 4.1.7. The V-notched specimens at
183 K, 213 K and 243 K are compared in Figure 4.1.8. The curves are cut at frac-
ture, where the stress drops to zero. Since normalized elongation is used, and not
logarithmic strain or engineering strain, the deformations of di�erent specimens
are not comparable. The stress of R2 and R0.8 is higher than for the smooth spec-
imens, and the V-notch has even higher stress. From the �gure of the V-notched
specimens, it seams like the only consequence of the decreasing temperature is that
the stress level increases.

Table 4.1.2 gives the fracture strain obtained by using an optical microscope.
This strain is therefore approximately the true fracture strain. Since this is the
local strain in the neck, the value is much higher than the normalized elongation
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Figure 4.1.7: Engineering stress versus normalized elongation for the specimens
deformed quasi-statically at 243 K.
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Figure 4.1.8: Engineering stress versus normalized elongation for the V-notched
specimens deformed quasi-statically at 183 K, 213K and 243 K
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Table 4.1.2: Fracture strain for the quasi-static tests at 183 K, 213 K and 243 K.

Specimen Temperature [K] Fracture strain [-]
Smooth No.5 243 1.45
Smooth No.6 243 1.47
R2 No.6 243 0.99
R2 No.7 243 1.04
R0.8 No.5 243 0.84
R0.8 No.6 243 0.92
V No.7 243 0.67

V No.8 213 0.69
V No.9 183 0.61

Figure 4.2.1: Outline of split-Hopkinson tension bar at NTNU, measures in mm
(Langseth et al., 2016).

given in Figure 4.1.7 and Figure 4.1.8. The table indicates that specimen geometry
has a great impact on the fracture strain, while the temperature does not in�uence
it that much in quasi-static tests.

4.2 High Strain Rate Tension Tests

4.2.1 Setup

The dynamic tension tests were performed using a split-Hopkinson tension bar
(SHTB). This is a machine used in tension tests at strain rates of order 102 to 104

s−1. The SHTB at NTNU is illustrated in Figure 4.2.1. The machine consists of
two steel bars with a cross-sectional diameters of 10 mm. The input bar ABC has
a length of 8140 mm and the output bar DE a length of 7100 mm. They are made
of steel quality Tibnor 52SiCrNi5 and have a Young's modulus E of 204 GPa and
a yield stress of approximately 900 MPa (Langseth et al., 2016).

At the start of a test, the specimen is attached to the bars between point C and
D. The input bar is locked in point B and the output bar in the end E. Part AB
of the input bar is stretched by applying a load using a hydraulic jack in point A.
To ensure an elastic behaviour of the bar, the load must be less than 70 kN. When
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Figure 4.2.2: Example of data registered by strain gauge 2 and 3 (Langseth et al.,
2016).

the load reaches the value N0, the lock at B is broken manually. The strain energy
stored in AB is released, and a stress wave propagates through bar AC towards the
specimen. The impedance mismatch between the steel bar and the specimen leads
to the stress wave partly being transmitted into the output bar and partly being
re�ected back (Langseth et al., 2016).

The split-Hopkinson tension bar has three pairs of strain gauges placed at point
1, 2 and 3 in Figure 4.2.1. The strain gauge in point 1 monitors the force N0, while
the two others measure the strain-time history. Figure 4.2.2 shows an example of
data registered by strain gauge 2 and 3, where ε2 represents gauge 2 and ε3 gauge
3. εI is the incoming strain, εR the re�ected strain and εT the transmitted strain.
A detailed explanation of how to understand the strain-time history is given in the
Lecture notes of Langseth et al. (2016).

The engineering stress and engineering strain in the specimens are given in the
equations below.

σs =
E0A0

As
εT εs = −2

c

Ls

∫ t

0

εRdτ (4.2.1)

E0A0 is the axial sti�ness of the bar, As is the area of the specimens cross-section
in the gauge area, Ls is the length of the specimen's gauge area, c is the wave
propagation velocity and εR is integrated over the time τ . In this thesis, specimens
with notches were used. These did not have a gauge length. To be able to calculate
a normalized elongation, Ls was set to 17 mm for all the specimens. Ls was the
length of the specimen when the clamped ends were neglected.

Another way to get data from a SHTB test is to use a high-speed camera.
Edge-tracing can be used on the pictures to get the diameter as the specimen
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Figure 4.2.3: Split-Hopkinson tension bar with a high-speed camera and a fractured
specimen.

deforms, and the diameter can be used to get the true stress and strain. Figure
4.2.3 shows the SHTB with a fractured specimen and a high-speed camera. The
white background and the two lights are used to make a better contrast at the
edges of the specimen.

In the tension tests with SHTB in this thesis, a high-speed camera was used,
but edge-tracing was not within the scope, and the results were taken from the
strain gauges. For lower temperatures, the temperature chamber in Figure 4.2.4
was used. Liquid nitrogen was used to lower the temperature. Thermometers
measured the temperature in the chamber and at the input bar, and controlled
the amount of liquid nitrogen added. During this tests, frost mist appeared in the
chamber, frost appeared on the wall of the chamber and icing appeared on the
specimens, see Figure 4.2.5. Various attempts were done to reduce this, but some
of the specimens still got some icing.

4.2.2 Results

Room temperature

The high strain rate tension tests were conducted by Trond Auestad at NTNU.
All tests at room temperature were successful. Figure 4.2.6 gives the engineering
stress versus the normalized elongation described previously in section 4.2. It is
clear that the stress level increases at higher triaxialities. The stress level of R0.8 is
almost the same as R2. Due to the use of normalized elongation, the deformation
of di�erent specimens cannot be compared from this �gure.

Table 4.2.1 gives the average elongation rate and the fracture strain for the
specimens tested. The average elongation rate is for the whole length and found
with the same assumptions as the normalized elongation. Due to these assumptions,
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Figure 4.2.4: Split-Hopkinson tension bar with a temperature chamber.

Figure 4.2.5: Specimen with icing.
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Figure 4.2.6: Engineering stress versus normalized elongation for the dynamic tests
at room temperature.

the average elongation rate can be much higher locally in the specimens. The
fracture strain was found using an optical microscope for the quasi-static test.
Since the fracture strain is the local strain at the neck, the value is much higher
than the elongation given in Figure 4.2.6. The table indicates that the fracture
strain decreases for higher triaxialities.

Table 4.2.1: Average strain rate and fracture strain for the dynamic tests at room
temperature.

Specimen Average elongation rate [s−1] Fracture strain [-]
Smooth No.1 222.7 1.31
Smooth No.2 215.3 1.17
R2 No.1 89.1 1.04
R2 No.2 148.1 0.94
R0.8 No.1 134.6 1.01
R0.8 No.2 140.2 0.87
V No.1 72.5 0.80
V No.2 55.5 0.85
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Table 4.2.2: Average strain rate and fracture strain for the dynamic tests at 213 K
and 243 K.

Specimen Temperature [K] Average elongation rate [s−1] Fracture strain [-]
Smooth No.3 243 190.3 1.26
Smooth No.4 243 190.6 1.33
R2 No.3 243 129.5 0.95
R2 No.4 243 - 0.84
R2 No.5 243 123.1 0.78
R0.8 No.3 243 116.6 0.81
R0.8 No.4 243 100.2 0.43
V No.3 243 28.4 0.40
V No.4 243 58.4 0.12

V No.5 213 50.1 0.30
V No.6 213 52.7 0.20

Low temperature

All tests except of R2 No.4 were successful. The part of the machine collecting
the data was trigged at the wrong time during R2 No.4, and the results were not
saved.

Figure 4.2.7 shows the engineering stress versus normalized elongation for dy-
namic tests at 213 K and 243 K. The results show the same tendency as earlier,
where the stress increases with increasing triaxiality and decreasing temperature,
but there is more variation in the results. Looking at V No.3 and V. No.4, the
maximum strain is almost the same, but it looks like part of the cross section goes
to fracture earlier for V No.4. This may be due to a less ductile behaviour where
small defects can lead to fracture.

Table 4.2.2 gives the average elongation rate and the fracture strain for the
spesimens tested. The specimens fracture at lower strains for high triaxialities and
low temperatures, but the data is scattered, which is often the case for specimens
exhibiting a less ductile behaviour.
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Figure 4.2.7: Engineering stress versus normalized elongation for the dynamic tests
at (a) 243 K and (b) 213 K.
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Figure 4.3.1: Overview of the fracture surface of V-notched specimens deformed
at: (a) Room temperature, (b) 243 K and (c) 213 K.

4.3 Scanning Electron Microscope

Scanning electron microscope (SEM) is a microscope often used to study specimens
with rough surfaces. SEM has a good depth of �eld which makes it a good tool
studying the topography of the fracture surface of the specimens.

A brief description of how SEM works is given below. For a more detailed
description the reader is referred to the book by Hjelen (1989). The machine sends
a focused beam of electrons towards the surface. The electrons interact with atoms
in the surface, and various signals are sent back. These signals give information of
the surface's chemical composition, topography and crystallography.

In this thesis the topography of some of the specimens was studied to see if the
fractures had been ductile, or if it happened due to cleavage. The work was per-
formed by Christian Oen Paulsen at NTNU. He used a Zeiss Gemini SUPRA 55VP.
Since the chance of cleavage was expected to be higher at high strain rates, high
triaxialities and low temperatures, V-notched specimens from the split Hopkinson
tension bar test at 213 K, 243 K and 293 K were studied. Figure 4.3.1 shows an
overview of the fracture surfaces of the three specimens studied. The specimens at
243 K and 213 K have a big crack in the direction transverse to the thickness. This
type of crack was seen on all the V-notched specimens at 243 K, 213 K and 183
K, and on R0.8 No.4, which was deformed dynamically at 243 K. The reason for
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Figure 4.3.2: Fractured surface of V-notched specimens magni�ed 500x, and de-
formed at: (a) Room temperature, (b) 243 K and (c) 213 K.
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Figure 4.3.3: Fractured surface of V-notched specimens, magni�ed 2750x, and
deformed at: (a) Room temperature, (b) 243 K and (c) 213 K.
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this crack is unknown, but a possible reason may be a combination of high stress
triaxiality and low ductility.

Figure 4.3.2 shows a 500x enlargement of the three specimens. In the picture
at room temperature, particles can clearly be seen inside dimples. The pictures
for lower temperatures also have dimples, but these have smaller size. Figure 4.3.3
shows the same tendency. Here the specimens is enlarged 2750x. The �gure at
room temperature shows a big dimple, while the other temperatures has smaller
dimples. It seems like the specimen at room temperature has a ductile behaviour,
where voids grow and coalescence into bigger voids, resulting in Figure 4.3.3a. The
pictures at lower temperatures do not show cleavage, but they show a less ductile
behaviour. The surface is still dimpled, but they are much smaller. Here the voids
have grown much less before fracture.

4.4 Summary and Discussion

The stress from all the tests had lowest values for the smooth specimen. The
specimens with round notches had higher values, and the V-notched even higher.
Figure 4.4.1 shows the engineering stress versus normalized elongation for all the
V-notched specimens. The initial sti�ness of the quasi-static test at room tem-
perature, quasi-static test at lower temperatures and dynamic test are di�erent
due to use of di�erent machines and the machine �exibility. From the graphs it
is clear that the stress level increases with increasing strain rate and decreasing
temperature. Quasi-static tests at 293 K, 243 K, and 213 K have lower maximum
stress than the dynamic test at 293 K. The quasi-static test at 183 K has a max-
imum stress between the maximum stress of a dynamic test at 293 K and 243 K.
According to Anderson (2005) the susceptibility to cleavage is enhanced by almost
any factor that increases the yield strength. The temperature at a quasi-static test
has to be somewhere between 213 K and 184 K to get the same yield strength
as a dynamic test. This implies that the strain rate has a greater impact on the
susceptibility to cleavage. A combination of low temperature and high strain rate
gives an even higher maximum stress.

Figure 4.4.2 shows the fracture strain for all the specimens. These values were
found using an optical microscope, and were assumed to be lower than in reality.
For low triaxialities, the temperature does not seem to have a considerable impact
on the fracture strain. For smooth specimens, one of the dynamic tests at 243 K
actually has a higher fracture strain than both dynamic test at 293 K. Based on the
�gure, it seems like a combination of strain rate, temperature and triaxiality gives
the greatest impact. For a dynamic test at 293 K, the di�erence between R2, R0.8
and V is not that big, but at 243 K the di�erence is large. When combining all
these factors, the results also seem more scattered, which may imply a less ductile
behaviour.

Figure 4.4.3, Figure 4.4.4, Figure 4.4.5 and Figure 4.4.6 show the dynamic tests
of smooth specimen No.2 (293 K), smooth specimen No.4 (243 K), V No.1 (293
K) and V No.4 (243 K). Both smooth specimens show a ductile behaviour, with a
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Figure 4.4.1: Engineering stress versus normalized elongation for the V-notched
specimens from (a) quasi-static tests and (b) dynamic tests.
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Figure 4.4.2: Fracture strain for all specimens.

high strain. For the V-notched specimens, the e�ect of the temperate is di�erent.
The specimen at 293 K has some more strain, but the fracture is totally di�erent.
This fracture is the same type as seen in the SEM-picture in Figure 4.3.1b, and
may be due to a combination of low ductility and high triaxiality.

None of the specimens tested failed due to cleavage, but the results show a
reduced ductility when combining di�erent factors.

When studying the results, it is important to remember that most of the test
were only done with two specimens for each geometry. This gives an idea of how
di�erent specimens respond, but if the results are going to be used, more tests have
to be done.
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Figure 4.4.3: Pictures from the dynamic test of smooth specimen No.2 at 293 K.
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Figure 4.4.4: Pictures from the dynamic test of smooth specimen No.4 at 243 K.
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Figure 4.4.5: Pictures from the dynamic test of V No.1 at 293 K.
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Figure 4.4.6: Pictures from the dynamic test of V No.4 at 243 K.
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Chapter5

Numerical Simulations

5.1 Calibrating the Johnson-Cook Material Model

In the preliminary simulations material parameters from the thesis of Kristo�ersen
(2014) were used. This material was also a X65 steel, but while the yield stress of
the material studied in the preliminary simulations was 478 MPa, the results from
the experiments in this thesis gave a yield stress of 659 MPa. The materials seemed
quite di�erent, and the Johnson-Cook material model was calibrated before further
numerical simulations.

5.1.1 Strain Hardening Term

When calibrating the strain hardening term, results from the smooth specimens
tested under quasi-static conditions at room temperature were needed. The two
tests gave quite similar results, and the results of specimen No.10 were used.

In order to calibrate the Johnson-Cook material model, the equivalent plastic
strain p and the equivalent stress σeq were needed. The equivalent plastic strain is
equal to the logarithmic plastic strain εpl during uniaxial tension. This gives the
relation:

p = εpl = εl −
σt
E

(5.1.1)

Due to the neck in the gauge area during the experiment, the longitudinal true
stress was not equal to the equivalent stress. Bridgman-Le Roy correction were
used to get the the equivalent stress after necking. This correction is explained
in section 2.1.3. The true stress and the Bridgman-Le Roy corrected equivalent
stress are compared in Figure 5.1.1a. From the �gure, it is clear that the triaxial
stress conditions at the neck increase the measured stress levels compared to the
equivalent stress.

The Johnson-Cook model was calibrated from the Bridgman-Le Roy corrected
equivalent stress. Since the specimen was deformed under quasi-static conditions,
the strain rate dependent term of the Johnson-Cook model could be neglected. The
reference temperature was set to room temperature which led to the Johnson cook
material model being given by:

σeq = A+Bpn (5.1.2)
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Figure 5.1.1: Curves comparing: (a) the true stress and the Bridgman-Le Roy
corrected equivalent stress (b) the equivalent stress and the Johnson-Cook model.

Table 5.1.1: Material constants for the strain hardening term of Johnson-Cooks
material model.

A [MPa] B [MPa] n [-]
652.5 297.8 0.7281

The parameters A, B and n are given in Table 5.1.1 and were found in Excel
using problem solver to �nd a least square �t. Figure 5.1.1b shows the �tted
Johnson-Cook curve along with the experimental curve.

To test the material parameters, they were used in the implicit smooth Abaqus
model from the preliminary simulations. The force in the end and the diameter at
the neck were used to �nd the true stress and logarithmic strain. In Figure 5.1.2
the true stress versus logarithmic strain from the experiment are compared with
the values from Abaqus. These values are very close, but there are some di�erences
for higher strains. This may be due to weak points or damages in the specimens.

5.1.2 Strain Rate Sensitivity Constant

When �nding the strain rate sensitivity constant C, the results from the high strain
rate tests at room temperature and the quasi-static result of smooth specimen
No.10 were used. To make the quasi-static and dynamic results comparable, the
true stress and strain from smooth specimen No.10 were converted to engineering
values. The temperature dependent term of the Johnson-Cook model was neglected
since the tests were done at room temperature. The term remaining could be
written as:

σdynamic = σquasi−static × (1 + C ln ṗ∗) (5.1.3)

Where ṗ∗ = ṗ/ṗ0. The reference strain rate was set to 10−3s1, and ṗ was set to
the average true strain rate for the dynamic test. C was calculated for both the
dynamic tests, smooth No.1 and smooth No.2. For smooth No.1, σdynamic was set
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Figure 5.1.2: True stress versus logarithmic strain from the experiment and the
numerical simulation of the smooth specimen under quasi-static deformation.
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Figure 5.1.3: Curves used to �nd σdynamic and σquasi−static.
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Figure 5.1.4: Experimental results compared to the numerical results with C =
0.0140 and C = 0.0150

to the maximum stress of smooth No.1, see Figure 5.1.3, while σquasi−static was
set to the value of smooth No.10 at the same elongation. Solving the equation for
C gave C1 = 0.184. Doing the same for smooth specimen No.2 gave C2 = 0.0148.
A parameterstudy was done in Abaqus to see which values of C that gave the
results that were closest to smooth specimen No.1. Force and displacement of the
end of the specimen were taken from the results of the simulations and converted
into engineering stress and normalized elongation in the same way as the dynamic
experiments. To make the results comparable with the experimental results, the
Young's modulus of the experimental results was adjusted to the numerical results
with the formula:

εc = (εm −∆ε)−
(Ec − Em

EcEm

)
σ (5.1.4)

where c represents the corrected values, m the measured values and ∆ε is the
di�erence in normalized elongation at σ = 0. The parameter study indicated that
the stress values are lifted when the value of C is higher. Values around 0.0140
and 0.0150 gave results close to the experiment, see Figure 5.1.4. C was chosen to
be 0.0150.
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Figure 5.1.5: (a) Curves used to �nd σ243 and σ293. (b) Experimental results
compared to the numerical results where m = 0.5145.
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Figure 5.1.6: Value of the temperature dependent term for di�erent temperatures
when the reference temperature is 0 K and m = 0.5145.

5.1.3 Temperature Sensitivity Constant

When deciding the temperature sensitivity constant m, data from quasi-static tests
at room temperature and 243 K were used, see Figure 5.1.5a. As a result of this, the
strain rate sensitive term in the Johnson-Cook material model could be neglected.
The reference temperature was now set to zero. By dividing the maximum stress
at 243 K by the stress at room temperature for the same elongation, the following
equation was obtained:

σ243
σ293

=
A+Bpn

A+Bpn
× 1− (243/Tm)m

1− (293/Tm)m
(5.1.5)

The strain hardening term was the same for both temperatures, and could be
neglected. By inserting the values of σ243, σ293 and Tm = 1800 K, the temperature
sensitivity constant became 0.523 for smooth specimen No.5 and 0.506 for No.6.
The average of these values was m = 0.5145.

The new value of the temperature sensitivity constant led to the values of the
temperature dependent term shown in Figure 5.1.6. The term is 1 at 0 K, 0.643 at
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243 K and 0.607 at 293 K. Since the reference temperature was set to 0 K to �nd
m, A and B had to be calibrated for the new reference temperature. To do this,
the values found from the quasi-static test at room temperature had to be divided
by the temperature dependent term at room temperature:

A =
A293

1− (293/Tm)m
= 1074.9 B =

B293

1− (293/Tm)m
= 490.66 (5.1.6)

The temperature sensitivity constant was tested by inserting it and the new values
of A and B in Abaqus, and running an implicit analysis at 243 K. The force and the
displacement at the end of the specimen were used to �nd the engineering stress
and normalized elongation in the same way as in the experiment. Young's modulus
of the experiment was adjusted in the same way as when testing the strain rate
sensitivity constant. A comparison of the experiment and the numerical simulation
is shown in Figure 5.1.5b. The curves have approximately the same maximum
stress, but do not look exactly alike. This may be because the results were taken
from the machine and not from an extensometer or by using edge-tracing.

5.2 Simulations

In this section, numerical simulations were performed on models representing smooth,
R2, R0.8 and V-notched specimens. The Abaqus models from section 3.1 were used
with some exceptions. The Johnson-Cook material parameters found in section 5.1
were used, and no fracture criteria was added. Simulations were also performed at
243 K for all specimens, at 213 K for the V-notched specimens and at 183 K for a
V-notched specimen.

In the �rst part of the simulations the results from the experiments and the
numerical simulations were compared. The second part studied the Cockcroft-
Latham damage, the stress intensi�cation and the stress triaxiality of the di�erent
specimens.

5.2.1 Results and discussion

Comparison between experimental and numerical results

Figure 5.2.1 shows the true stress versus logarithmic strain for the numerical sim-
ulations and experimental work. The graphs from the simulations were cut at
approximately the same strain as the fracture strain of the experimental graphs.
For the graphs of the smooth specimen and R2, the results from the simulations
and the experiments are almost identical. For R0.8 and the V-notch, the results
from the simulations have higher strain values than in the experiments.

The rest of the �gures in this section show engineering stress versus normal-
ized elongation for the numerical simulations and experimental work. To make
the results comparable with the experimental results, the Young's modulus of the
experimental results was adjusted in the same way as in section 5.1.2.
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Figure 5.2.1: True stress versus logarithmic strain from the quasi-static experiments
and the numerical simulations at 293 K for the test specimens: (a) smooth, (b)
R2, (c) R08 and (d) V.

Figure 5.2.2 shows the results of the quasi-static simulations at 243 K, while
Figure 5.2.3 shows the results for the V-notched specimens at 213 K and 183 K.
The dynamic results at 293 K are in Figure 5.2.4, at 243 K in Figure 5.2.5 and at
213 K in Figure 5.2.6. All the simulations of the smooth specimen and R2 have
approximately the same maximum stress as the experiments. R0.8 and the V-notch
have higher stress values than the experiments for all the simulations.

A reason for this overestimation may be that the numerical simulations were
done using von Mises yield criterion. R0.8 and The V-notch has high hydrostatic
stress values, but Von Mises is independent of hydrostatic stress. This may be one
of the reasons that the simulations started yielding at higher stress values than the
corresponding experiments.
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Figure 5.2.2: Engineering stress versus normalized elongation from the quasi-static
experiments and numerical simulations at 243 K for the test specimens: (a) Smooth,
(b) R2, (c) R08 and (d) V.
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Figure 5.2.3: Engineering stress versus normalized elongation from the quasi-static
experiments and numerical simulations for V-notched specimens at (a) 213 K and
(b) 183 K

70



Chapter 5. Numerical Simulations

0 0.05 0.1 0.15

0

500

1000

(a)

0 0.02 0.04 0.06

0

500

1000

(b)

0 0.02 0.04 0.06

0

500

1000

(c)

0 0.02 0.04

0

500

1000

1500

(d)

Figure 5.2.4: Engineering stress versus normalized elongation from the dynamic
experiments and numerical simulations at 293 K for the test specimens: (a) Smooth,
(b) R2, (c) R08 and (d) V.
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Figure 5.2.5: Engineering stress versus normalized elongation from the dynamic
experiments and numerical simulations at 243 K for the test specimens: (a) Smooth,
(b) R2, (c) R08 and (d) V.
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Figure 5.2.6: Engineering stress versus normalized elongation from the dynamic
experiments and numerical simulations at 213 K for a V-notched specimen.
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Chapter 5. Numerical Simulations

Damage, stress intensi�cation and stress triaxiality

In this section, the Cockcroft-Latham damageD = W/Wc, the stress intensi�cation
R = σ1/σ0 and the stress triaxiality σ∗ = σH/σeq were studied. The values were
found in element 1, at the middle of the cross-section of the specimens. The
obtained R-values may be higher than in reality for R0.8 and the V-notch, since
Abaqus overestimated their stress levels, and σ0 was found from the experiments.

Wc is the plastic work to failure using the maximum principal stress. It was
found using the principal stress from the simulations. The failure strain was not
found for all the experiments, so the fracture strain found using optical microscope
was used instead. Since the elastic strain of the specimens was so low, it was not
subtracted from the fracture strain.

The results are shown in Figure 5.2.7 (293 K), Figure 5.2.8 (243 K) and Figure
5.2.9 (213 K and 183 K). The curves are stopped at the fracture strain, where
D = 1. The stress intensi�cation factor R shows the same tendencies as in section
3.1.5, where the value increases for high strain rate and high stress triaxiality. For
the smooth specimen at 293 K, R is higher at the quasi-static simulation due to
higher strain before fracture. R in this section is lower than in section 3.1.5 due to
new material properties. In this section the maximum value of R is 3.4. This value
is obtained at a dynamic simulation at 213 K of a V-notched specimen. Since none
of the specimens obtained cleavage, it is clear that Rmax is higher than 3.4.

The triaxiality also varies in the same way as in 3.1.5. The temperature do not
have a great impact on the triaxiality, and the highest triaxiality was obtained for
a V-notch at a dynamic simulation, and had the value 1.76.
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Figure 5.2.7: Damage, stress intensi�cation and stress triaxiality for the quasi-static
and dynamic simulations at 293 K.
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Figure 5.2.8: Damage, stress intensi�cation and stress triaxiality for the quasi-static
and dynamic simulations at 243 K.
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Figure 5.2.9: Damage, stress intensi�cation and stress triaxiality for the quasi-static
and dynamic simulations at 213 K and 183 K.
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Chapter6

Concluding Remarks

6.1 Summary and Conclusions

This chapter summarises the most important results and states the conclusions of
this study.

Preliminary simulations

In the �rst part of the preliminary simulations, Abaqus models simulating tension
tests were made. Material parameters expected to have the same properties as the
material of the thesis were used. Di�erent geometries of test specimens were made
to obtain di�erent states of stress triaxiality. The results showed as expected that
the smooth specimens had the lowest values of triaxiality. The specimens with
round notches had higher values, and smaller notch radius led to higher triaxiality.
The specimens with sharp notches had the highest values. The e�ect of triaxiality
could therefore be studied by using di�erent specimens.

The stress intensi�cation R = σ1/σ0 was plotted for each specimen. σ1 and σ0
were found using Abaqus. Brittle fracture was assumed to happen if R reached the
maximum stress intensi�cation Rmax. If Rmax was set to 5, brittle fracture was
expected to happen for all sharp-notched specimens in the dynamic tension tests.
Due to manufacturing reasons, it was decided to use specimens with notches of
angle α = 45◦ (meaning a notch-angle of 90◦) as the specimens representing high
triaxiality in the experimental work.

In the second part of the preliminary simulations a MATLAB model imple-
mented with the Johnson-Cook material model, the Cockcroft-Latham failure cri-
terion and the Ritchie-Knott-Rice brittle fracture criterion was made. Here the
stress triaxiality, strain rate and maximum stress intensi�cation were varied to see
how this a�ected the ductile to brittle transition temperature. As expected, higher
stress triaxiality, higher strain rates and lower maximum stress intensi�cation led
to higher transition temperatures. Due to a bad choice of parameters for the basic
model, it was di�cult to compare the results with the numerical simulations. The
results did show that the transition would happen for triaxialities between 1.6 and
2.3, and that the transition temperature was expected to be higher than −50◦C
for a dynamic test of a sharp-notched specimen.
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6.1. Summary and Conclusions

Experimental work

The experimental work was performed with smooth specimens, specimens with
round notches of radii 2.0 mm and 0.8 mm and a sharp-notched specimen. Quasi-
static tension tests were performed at room temperature, −30◦C, −60◦C and
−90◦C. Dynamic tests were done using split-Hopkinson tension bar at room tem-
perature, −30◦C and −60◦C. It turned out that the material had a higher yield
stress than the material from the preliminary simulations. Cleavage did not happen
in any of the test even though the preliminary simulations predicted cleavage. It
is assumed that this is because of di�erent material properties.

Even though cleavage did not occur, di�erent fracture strains were obtained for
di�erent tests. As expected higher stress triaxiality, higher strain rate and lower
temperature led to less ductility. Stress triaxiality seemed to have the greatest
impact on the ductility. When combining the factors, interaction e�ects seemed to
give a major addition to the reduction of ductility.

Numerical work

The Johnson-Cook material model was calibrated from the test data. Simulations
with the new material properties were run using Abaqus, and compared with the
experimental work. The results showed that the Johnson Cook-material model was
able to produce the same results as in the experiments for the smooth specimen
and R2. The model overestimated the stress level for R0.8 and the V-notch. This
may be because of the high values of hydrostatic stress in the notches. The Abaqus
model used von Mises yield criterion. This criterion is independent of hydrostatic
stress, which may have led to yield at higher stress values.

Graphs with stress triaxiality, Cockcroft-Latham failure criterion and Ritchie-
Knott-Rice fracture criterion were made. The triaxiality showed the same trends as
in the preliminary simulations, but the highest triaxiality had a value of 1.76. The
stress intensi�cation also showed the same tendencies, but the values were much
lower. Here the highest stress intensi�cation obtained was 3.4. Since the maximum
stress intensi�cation leading to cleavage was unknown, it is di�cult to know how
close the specimens from the experiments were to obtain cleavage. The ductility
is clearly reduced for high triaxiality, high strain rate and low temperature, but
further work is needed to �nd the maximum stress intensi�cation, and to study the
ductile to brittle transition of this material.

From the results, it is clear that if some of the specimens from this thesis are
going to obtain cleavage, it is the notched specimen at a high strain rate, and a
lower temperature. The studies show that the triaxiality has a great impact on the
ductility. A fatigue crack would lead to a higher triaxiality, and may be a good
way to initiate cleavage.
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6.2 Further Work

Based on the results of this thesis, the following work is suggested:

• Perform edge-tracing on the results that are lacking the values of true stress
and logarithmic strain.

• Dynamic tests of the V-notched specimens at lower temperatures.

• Tests of specimens with fatigue cracks at di�erent strain rates and di�erent
temperatures.

• Performing a study in the MATLAB script, where the correct material pa-
rameters are inserted.

• Simulations in Abaqus with other geometries, to �nd a geometry that gives
higher stress intensi�cation.

• Simulations in Abaqus with Drucker-Prager yield criterion, to take into con-
sideration the e�ect of hydrostatic stress.
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AppendixA

Appendix

A.1 Analytical MATLAB Model

Figure A.1.1 and Figure A.1.2 show the MATLAB script from section 3.2.1.
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A.1. Analytical MATLAB Model

close all; clear all; clc;

%% MODEL CONSTANTS 
sigma0      = 465.5; % Yeld stress      [MPa] 
B           = 410.8; % Constant of Johnson-Cook Material model [MPa] 
n           = 0.4793; % Constant of Johnson-Cook Material model [-] 
C           = 0.0104; % Strain rate sensitivity constant  [-] 
p0dot       = 8.06e-4;  % Reference strain rate    [s^-1] 
m           = 1;  % Temperature sensitivity constant  [-] 
Tm          = 1800;  % Melting temperature    [K] 
T0          = 0;   % Reference temperature    [K] 
rho         = 7.8e-9;  % Density        [ton/mm^3] 
c           = 452e6;  % Heat capacity       [mm^2/s^2*K] 
Wc          = 1562;  % Cockcroft-Latham fracture parameter [Nmm/mm^3] 
Lode        = -1;  % Lode parameter     [-] 
pdot_iso    = 10;   % Isothermal limit strain rate  [s^-1] 
pdot_ad     = 10^2;  % Adiabatic limit strain rate   [s^-1] 
betha       = 0.9; % Taylor-Quinney coefficient   [-] 

%% CALIBRATING A  
Tr = 293;                                       
A = sigma0 / ( 1 - ( ((Tr - T0)/(Tm - T0))^m));   
sigma_cr = 4*A;                                   

%% VECTORS 
pdot        = [1e-3  1e-2 1e-1 1 1e1:1:1e2 1e3];  % Strain rate 
T           = [0 40 80 120 160 200 213 233 253 273 293]; % Temperature 
sigma_tri   = [1/3 2/3 1 3/2 3];     % Triaxiality 
p           = [0 : 0.001 : 2.5];     % Equivalent plastic strain 
I           = length(p);              
K           = length(T);           
J           = length(pdot);       
L           = length(sigma_tri); 
sigma_eq    = zeros(I,J,K);   % Equivalent stress 
T_ad        = zeros(I,J,K);   % Temperature increase due to adiabatic 
heating 
w           = zeros(I,J,K,L);   % Cockroft-Latham damage 
pf_ductile  = zeros(J,K,L);   % Gives p at ductile fracture 
pf_brittle  = zeros(J,K,L);   % Gives p at ductile fracture 
pf_brittle(pf_brittle == 0) = NaN; 
pf_ductile(pf_ductile == 0) = NaN; 

% sigma_1(I,j,k,l) is the maximum principal stress 
% v(j) is the weighting function (Roth and Mohr, 2014) 

%% LOOPS 
for l = 1 : L  % loop over triaxiality     
for k = 1 : K  % loop over temperature 
for j = 1 : J  % loop over strain rate 
for i = 1 : I-1  % loop over equivalent strain 

 
T_ad(1,j,k)    = T(k); 

 
sigma_eq(1,j,k)=(A+B.*p(1)^n)*(1+C*log(pdot(j)/p0dot))*(1-((T(k)-T0)/(Tm-T0))^m); 

            
if pdot(j) < pdot_iso % Isothermal condition  
v(j) = 0; 

 
elseif pdot(j) >= pdot_iso && pdot(j) <= pdot_ad % Transition zone 

v(j) = ((pdot(j)-pdot_iso)^2*(3*pdot_ad-2*pdot(j)-pdot_iso))/((pdot_ad -                
pdot_iso)^3); 

 
else % Adiabatic condition   
v(j) = 1; 

end 

Figure A.1.1: MATLAB model, part 1
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sigma_eq(i+1,j,k)=(A+B*p(i+1)^n)*(1+C*log(pdot(j)/p0dot))*(1-((T_ad(i,j,k)-T0)/(Tm-
T0))^m);           

          
T_ad(i+1,j,k)=T_ad(i,j,k)+0.5*(betha*v(j)/(c*rho))*(sigma_eq(i+1,j,k)+sigma_eq(i,j,k))*
(p(i+1)-p(i)); 

sigma_1(1,j,k,l) = (sigma_tri(l)+((3-Lode)/(3*sqrt(3+Lode^2))))* sigma_eq(1,j,k); 

sigma_1(i+1,j,k,l)= (sigma_tri(l)+((3-Lode)/(3*sqrt(3+Lode^2))))* sigma_eq(i+1,j,k); 
 

w(i+1,j,k,l)=w(i,j,k,l)+(1/(2*Wc))*max((sigma_tri(l)+((3-Lode)/(3*sqrt(3+Lode^2))) 
),0)*(sigma_eq(i+1,j,k)+sigma_eq(i,j,k))*(p(i+1)-p(i));  

 

 
if w(i,j,k,l) == 1                  % Ductile failure  

 
pf_ductile(j,k,l) = p(i); 

       
elseif w(i,j,k,l) < 1 && w(i+1,j,k,l) > 1   

 
pf_ductile(j,k,l) = 0.5*(p(i) + p(i+1)); 

 
end 
 
 

 
if sigma_1(i,j,k,l) == sigma_cr      % Brittle failure  

 
pf_brittle(j,k,l) = p(i); 

 
elseif sigma_1(i,j,k,l) < sigma_cr && sigma_1(i+1,j,k,l) > sigma_cr  

 
pf_brittle(j,k,l) = 0.5*(p(i) + p(i+1)); 

 
elseif sigma_1(1,j,k,l) > sigma_cr 

pf_brittle(j,k,l) = 0; 
 

end    
 

end            
end    
end    
end 

Figure A.1.2: MATLAB model part 2
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