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SUMMARY: 
Glass are one of the main causes of casualties and injuries during terror attacks with explosives, 
due to high-velocity fragments shooting through the air. A common way to increase the blast security in 
windows is to add a laminate or an interlayer between two or more glass panes creating laminated glass. 
One of the goals of the interlayer is to prevent the fragmentation through adhesive properties in the laminate 
glass connection. In the construction of the new governmental complex in Oslo, Norway, laminated glass 
windows are to be used as a measure to increase blast security. 
      The numerical modelling of laminated glass has proven to be challenging. This thesis aims to better 
understand the composite laminated glass and the response during quasistatic and blast loading. A study of 
the possibilities and limitations of numerical modelling of laminated glass in quasi-static and blast loading 
simulations was also conducted in the thesis. Point tracking DIC analysis was used to capture the response 
in the specimens subjected to blast load  
    Experiments were conducted in the SIMLab research facilities at NTNU. Four-point bending tests were 
carried out on laminated glass specimens to study the fracture strength during quasi-static loading, and blast 
tests were conducted on both regular float glass and laminated glass in the SIMLab shock tube to study the 
response during blast loading. The data recorded during the experiments were interpreted, and the results 
were used in the development of numerical models of the experiments. The tests were modelled with an 
explicit non-linear FEM code in IMPETUS Afea Solver, with node splitting used to 
describe fracture. Parameter studies were conducted to examine the effect of e.g. mesh size, element type 
and properties of interaction between PVB and glass.  
     From the quasi-static bending tests, it was found that the fracture stresses in the glass varied due to 
stochastic material properties in float glass. It was found a higher fracture strength in larger samples than the 
small samples. In the blast tests, the fragment size was smaller in the laminated glass than in the float glass. 
In the numerical modelling of the 
glass panes, it was found that node splitting and pentahedron elements gave good results describing crack 
propagation. Material modelling of the PVB in IMPETUS and interaction between glass and PVB proved 
challenging and needs further research. 
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SAMMENDRAG: 
Glassfragmenter i høy hastighet som følge av knuste glassruter er en av hovedårsakene til dødsfall og 
skader under terrorangrep gjennomført med eksplosiver. En vanlig måte å øke sikkerheten til vinduene mot 
trykkbølger er å legge inn et laminat mellom to eller flere glassruter. En av hovedformålene med et slikt 
laminat er å forhindre glasset i å fragmentere ved hjelp av heft mellom glassflatene og laminatet. I utviklingen 
og byggingen av det nye regjeringskvartalet i Oslo er det tenkt brukt laminerte vinduer for å øke sikkerheten 
mot eksplosjoner. 
     Numerisk modellering av laminert glass har vist seg å være utfordrende. Denne oppgaven sikter seg inn 
mot en bedre forståelse av komposittmaterialet laminert glass og hvordan det oppfører seg under påføring av 
kvasi-statiske laster og påført trykklast. DIC-analyse ble brukt til å studere oppførselen i testobjektene under 
testingen. Oppgaven tar også for seg numerisk modellering av laminert glass påført av nevnte laster og 
søker å avdekke muligheter og begrensninger i numeriske verktøy.  
     Eksperimenter ble gjennomført i SIMLabs lokaler på NTNU. Fire-punkts bøyetester ble gjennomført på 
eksemplarer av laminert glass i ulike dimensjoner for å undersøke bruddkriteriet i komponentene. Forsøk ble 
gjennomført i SIMLabs shock tube på prøver av vanlig glass og på prøver av laminert glass for å studere 
responsen under sprenglast. Dataene samlet inn under forsøkene ble analysert og brukt i utarbeidelsen av 
numeriske modeller av forsøkene. Forsøkene ble modellert i den eksplisitte FEM koden IMPETUS Afea 
Solver, med node splitting som teknikk for å beskrive brudd. Parameterstudier ble gjennomført for å 
undersøke effekten av f.eks. mesh størrelse, elementtype og samvirke mellom PVB og glass. 
      Grunnet stokastiske materialegenskaper i glasset ble det funnet at bruddspenningen og maks last 
varierte i fire-punkts bøyetestene. De store prøvestykkene tålte mer enn de små. I sprenglasttesene ble 
fragmentstørrelsen funnet større for de vanlige glassene enn de laminerte glassene. Den numeriske 
modelleringen av glassrutene viste at node splitting og pentahedronelementer gir gode resultater ved 
sammenligning av sprekkpropagering. Materialmodellering av PVB i IMPETUS og samvirke viste seg 
vanskelig og krever mer forskning. 
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Abstract
Flying glass fragments are one of the main causes of casualties and injuries during terror
attacks with explosives, due to fragments shooting through the air. A common way to
increase the blast security in windows is to add a laminate or an interlayer between two or
more glass panes creating laminated glass. One of the goals of the interlayer is to prevent
fragments from loosening, through adhesive properties in the laminate glass connection.
In the construction of the new governmental complex in Oslo, Norway, laminated glass
windows are to be used as a measure to increase blast security. [1]

The numerical modelling of laminated glass has proven to be challenging. This thesis
aims to increase the understanding of laminated glass properties and the response during
quasi-static and blast loading. A study of the possibilities and limitations of numerical
modelling of laminated glass in quasi-static and blast loading simulations was also con-
ducted in the thesis. Point tracking DIC analysis was used to capture the response in the
specimens subjected to blast load

Experiments were conducted in the SIMLab research facilities at NTNU. Four-point
bending tests were carried out on laminated glass specimens to study the fracture strength
during quasi-static loading, and blast tests were conducted on both regular float glass and
laminated glass in the SIMLab shock tube to study the response during blast loading.
The data recorded during the experiments were interpreted, and the results were used in
the development of numerical models of the experiments. The tests were modelled with
an explicit non-linear FEM code in IMPETUS Afea Solver, with node splitting used to
describe fracture. Parameter studies were conducted to examine the effect of e.g. mesh
size, element type and properties of interaction between PVB and glass.

From the quasi-static bending tests, it was found that the fracture stresses in the glass
varied due to stochastic material properties in float glass. It was found a higher fracture
strength in larger samples than the small samples. In the blast tests, the fragment size was
smaller in the laminated glass than in the float glass. In the numerical modelling of the
glass panes, it was found that node splitting and pentahedron elements gave good results
describing crack propagation. Material modelling of the PVB in IMPETUS and interaction
between glass and PVB proved challenging and needs further research.
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Chapter 1
Introduction

1.1 Motivation
Oslo government building was in 2011 exposed by a terror attack in the form of a car
bomb. The blast pressure pulverized nearly all glass windows in the building. Shattered
glass fragments with high velocities were ascertained to be the primary reason for injuries,
with a total of 209 out of 325 injuries associated with glass lacerations [2]. The government
building after the blast event can be seen in Figure 1.1. In the aftermath of this event, the
demand and interest around safety glass have increased significantly. To be able to design
safety glasses properly, a thorough understanding of both the blast load and the material
properties are needed. These aspects will be studied in this thesis.

Figure 1.1: The government building in Oslo after the terror attack the 22nd July 2011 [1]

The conventional safety glass used in these days is laminated glass, which normally
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Chapter 1. Introduction

consists of two glass panes with an interlayer in between. The most commonly interlayer
used is polyvinyl butyral (PVB). This is a highly strain rate dependent rubbery material,
which has its purpose of preventing glass fragments and the actual blast pressure to enter
the building when exposed to a blast loading [3].

In this thesis, there was conducted quasi-static four point bending tests of laminated
glass specimens to estimate the fracture strength during quasi-static loading. Blast tests
carried out on both single float glass, and laminated glass panes were conducted to study
the response during blast loading. The tests were conducted respectively in the laboratory
at the Department of Structural Engineering and the SIMLab shock tube facility at NTNU.

Numerical simulations were carried out of the four point bending tests, a PVB tensile
test conducted by Hopper et al. [3] and the blast experiments to see if the experiments
could be recreated numerically. IMPETUS Afea Solver was used as the numerical tool in
all simulations, and node splitting was applied for the blast simulations. MATLAB were
used for processing of all experimental data.

The thesis is divided into 9 chapters, briefly described under:

Chapter 2 - Theory. In this chapter, the theoretical background of different mathematical
and mechanical theorems are presented.

Chapter 3 - Materials and material modelling. This chapter presents the different mate-
rials used in the experiments. It also covers how some of them are modelled in IMPETUS.

Chapter 4 - Experiments. In this chapter the experimental part of the thesis are pre-
sented. Both experimental setup and results of both the four point bending tests and blast
experiments are presented.

Chapter 5 - Numerical modelling - Four point bending test. This chapter covers the
numerical modelling of the four point bending test.

Chapter 6 - Numerical modelling - PVB tensile test. Inverse numerical modelling in
IMPETUS of the PVB tensile test conducted by Hooper et al. [3] is presented. A best-fit
curve by using the Bergström-Boyce material model is shown.

Chapter 7 - Numerical modelling - Blast Tests. Numerical modelling of both float glass
and laminated glass in IMPETUS is presented. Results from the simulations are compared
to the results of the experiments, and a best-fit model for both glass types is shown.

Chapter 8 - Conclusion. The most important observations and findings from the experi-
mental and numerical work in the thesis are presented in this chapter.

Chapter 9 - Further work. Suggested further work based on the author’s experiences in
the work of this thesis is presented.

1.2 Background
After the increase of terror attacks and the attack in Oslo, there has been an increase in
research on modelling of laminated glass and an increase in the modelling of laminated
glass[2; 4]. Laminated glass consists as mentioned, usually by two glass panes with a PVB
interlayer. The composition of the different materials and the interaction between them

2



1.2 Background

results in several challenges when modelling laminated glass. Some aspects that need
consideration are the glass material model, the PVB material model and the modelling of
the connection between the layers. A literature study was conducted to find a background
past simulations. This section covers the findings.

Material modelling

There are several ways of modelling float glass. Early fracture mechanics as developed by,
e.g Griffith [5], predicts that fracture in brittle materials to be caused by the propagation of
a microcrack leading to failure. Since then, different material models have been developed
and tried. Until recently, a linear elastic material model was used for glass with a fracture
criterion [6; 7; 8]. With the increase of the understanding of glass, new material models
were developed. Material models with dynamic material parameters were introduced, and
dynamic material models were developed. Grujicic et. al [9] and Johnson and Holmquist
[10] developed so-called macro-level models which are popular choices in modelling today
[2].

In their Master thesis, Brekken and Ingier [11] tested a number of material models in
the glass including Johnson-Holmquist 2 material model, SIMLab Metal Model and SIM-
Lab Brittle Materials Model, with varying results. The Johnson-Holmquist Ceramic model
includes the strain rate effects, material damage and the confinement effect [2]. To the au-
thors’ knowledge, LS-DYNA has been the most common codes used in the simulations. A
variation of shell elements and solid elements was used by the different researchers. Good
results have been produced with shell elements when compared to non-failing glass panes
by Larcher [6]. Yankelevsky [12] presented in his paper a new model to account for the
stochastic properties of glass based on statistical distributions of microcracks.

In their study of the fracture mechanics in laminated glass subjected to blast load, Wei
and Dharani [7] used linear solid glass elements in their model. As a material model for
the glass panes, they used a linear elastic model with a failure criterion based on energy
balance. Wei and Dharani conclude that for short duration blast tests, an elastic model
with a fracture criteria is sufficient [8].

The material modelling of PVB has been proven to be complicated [2] due to high
strain rate sensitivity and viscoelastic material bheaviour. A viscoelastic model with a
generalised Maxwell series is often introduced to include the time-dependent shear mod-
ulus [3; 13]. The temperature effects are considered with the Williams-Landel-Ferry [14]
equation as a way to update the shear modulus at different temperatures [3]. In the cases
studied, solid elements were used in the PVB interlayer with either one or two elements
in the thickness. Other material models used were rate-dependent plastic [2], elastoplas-
tic [6; 15], hyperelastic [16], Mooney-Rivlin [17] and a Prony series spring with finite
deformation viscoelasticity [18].

Delamination, adhesion and damage

An important feature of the laminated glass panes is the interaction between the glass and
the PVB. The delamination properties of the laminated glass are accentuated by [19] as an
important feature of energy absorption during a blast. The cohesive bond has in previous

3



Chapter 1. Introduction

works been modelled in LS-DYNA with a contact tiebreak feature [20]. The feature en-
ables the glass to loosen from the PVB when the stress reaches a critical level. The most
used technique used to facilitate crack propagation in finite element method modelling is
element erosion. With this failure modelling technique, the element is eroded when the
damage in the element reaches the critical value. Failure modelling with element erosion
causes a percentage of the elements to erode and affect mass and energy conservation in
the simulation. As pointed out by Brekken and Ingier [11], the eroded mass is highly
mesh size dependent, and the eroded mass in their simulations increased with the element
size. An alternative approach is to model the failure with node splitting as presented by
Olovsson et al. [21]. This technique was tested by Ilseng [22] in his master’s thesis with
success in the IMPETUS Afea Solver. Ilseng modelled float glass panes and laminated
glass windows. With node splitting as failure model, no elements will erode, and thus the
mass balance remains intact.

1.3 Scope
Laminated glass panes subjected to blast load is a complex event with numerous important
aspects that need consideration. Some of the aspects are

• Glass material model

• PVB material model

• Contact modelling between the layers

• Boundary conditions

• Inclusion of the stochastic properties of the glass

• Modelling of the blast load

• Delamination during the response

• Damage criteria and fracturing in numerical simulations

• Dynamic effects

Due the limited time and the limitations of a Masters thesis, a scope was defined.
One of the key areas of focus in this thesis was the PVB material properties and the

interaction between PVB and glass. This includes, the delamination properties and the
effect of delamination was studied. The authors chose IMPETUS Afea Solver as the nu-
merical modelling tool for the simulations, and the possibilities and limitations with this
code in the modelling of float glass and laminated glass panes were of great interest to
the authors. Node splitting is a relatively new way of modelling fracture, and the authors
were interested in which ways the new technique affected crack propagation and fracture
in float glass. Float glass is a brittle material with stochastic material properties. An area
of focus in the thesis was to study how reliable a numerical tool is to recreate the response
recorded in an experiment and investigate the limitations of IMPETUS in describing a
realistic crack propagation, PVB and glass interaction and the fragmentation of the glass.

4



Chapter 2
Theory

2.1 Beam Theory
In this section, a brief introduction to Euler-Bernoulli Beam Theory will be given. The an-
alytical solution will be used as a comparison with the results obtained in the experiments.
The material in this section is mainly adapted from [23].

2.1.1 Euler-Bernoulli Beam Theory
Euler-Bernoulli beam theory stems from the Euler-Bernoulli equation which describes
the relationship between deflection and applied load for a static beam. The differential
equation is derived from looking at an infinitesimal of the beam and finding the equilibrium
of forces and moments. The equation is as follows

d2

dx2

(
EI

d2w

dx2

)
= q (2.1)

w is the deflection as a function of the load q, flexural rigidity EI and the position x in the
beam. E is the elastic modulus of the material, and I is the moment of inertia given by
equation:

I =

∫∫
z2dydx (2.2)

where z is the distance from the neutral axis. For a composite material like laminated
glass the moment of inertia will lie between an upper, Iupper, and a lower limit, Ilower.
The upper limit assumes small strains in the PVB. The lower limit implies transfer of
shear forces between the layers, and thus beam theory is applicable for each glass layer
separately. For the case of the upper limit, the neutral axis will lie in the middle of the
laminate and for the lower limit, the PVB will only separate the plies of glass, and there
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Chapter 2. Theory

will exist a neutral axis in each layer. Figure 2.1 shows the bending deformations and
stress distributions for the different cases.

(a) Upper limit deformation (b) Lower limit deformation

(c) Upper limit stress distribution (d) Lower limit stress distribution

Figure 2.1: Figures showing the deformations and the associated stress distributions for the upper
and lower limit assumptions. Figure adapted from [22]

The stress distributions in Figures 2.1c and 2.1d necessitates two different expressions
to calculate the moment of inertia as shown:

Iupper =
b

12

(
d3tot − d3PV B

)
(2.3)

Ilower = 2× 1

12
bd3glass (2.4)

d in the equations denotes the different thicknesses described in the subscripts, and b is the
width of the sample. The behaviour of laminated glass exposed to bending is found to be
close to the lower boundary [24] and [25].

By differentiating the deflection of the beam with respect to x, the angle between the
beam and the horizontal axis may be found. The curvature κ is obtained by differentiating
the angle with respect to x, as shown:

κ =
d2w

dx2
(2.5)

For small strains the relation between curvature and strain ε is given by:

ε = −κz (2.6)

with z being the distance from the center of inertia. For linear elastic materials, the rela-
tionship between stress σ and strain is given by Hookes Law

σ = Eε (2.7)
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2.1 Beam Theory

E is the Youngs’ modulus of the material. By inserting Equation (2.6) into Equation (2.7)
an expression for the stress in the horizontal direction (x-direction) for a monolithic spec-
imen may be found as a function of curvature:

σx = −Eκz (2.8)

The relationship between the bending moment and the curvature is given by the fol-
lowing expression:

κ =
M

EI
(2.9)

where M is the bending moment. By combining the Equations (2.8) and (2.9) the stress
in x-direction may be written as a function of the applied bending moment:

σx =
M

I
z (2.10)

It is known that the maximum bending moment acting in a four-point bending test as
shown in Figure 2.2, is given by the following expression [26]:

Mmax =
PL

8
(2.11)

Figure 2.2: Moment diagram for a beam subject to two point loads

For a uniform beam with height h and thus zmax = −h2 the expressions for εmax
and σmax may be found by inserting Equations (2.7) and (2.10) to Equation 2.11. The
expressions may be written as:

εmax =
PLh

16EI
(2.12)

and

σmax =
PLh

16I
(2.13)
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The midpoint deflection δc of the beam shown in Figure 2.2 is given by the following
expression:

δc =
11PL3

768EI
(2.14)

From Equation 2.14 it can then be showed that Young’s modulus can be calculated with
the following formula:

E =
11∆PL3

768∆δI
(2.15)

2.2 Blast Mechanics
In this chapter, an introduction to blast loading will be presented. The contents of this
section is mainly an adaptation from [27].

Blast loading is usually characterised by a rapid chemical reaction and release of en-
ergy via supersonic shock waves. The surrounding area of the explosion experiences tem-
peratures up to 3000-4000 ◦C. The air around the blast is highly compressed compared
to the undisturbed air in front of it. Because of this disequilibrium, the compressed air
will propagate outwards from the detonation point to the surroundings in a spherical man-
ner. The blast pressure will decrease in intensity with the cube of the distance due to the
spherical blast distribution and is shown in Figure 2.3 [27].

Figure 2.3: Pressure distance graph [27]

The explosion creates an incident blast wave that almost instantly arises from an ambi-
ent pressure (Pa) to a peak incident pressure (Pso). The pressure intensity decays fast and
returns to the ambient pressure after some milliseconds. This phase is called the positive
phase. After reaching the ambient pressure, a longer negative phase follows. In this phase,
the pressure is below the ambient pressure thus creating a suction into the detonation cen-
tre.

When the shock wave hits a structure that is not parallel to the direction of the wave,
the wave is reflected from the structure and is reinforced. The reflected peak wave pres-
sure (Pr) is always bigger than the incident peak wave pressure at the same distance from
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the detonation point and is therefore also used as the design load when designing struc-
tures. The reflected pressure-time curve from the blast is commonly described with the
Friedlander equation:

P (t) = Pa + Pr

(
1− t

t+

)
exp

(
−bt
t+

)
(2.16)

where b represent the exponential decay coefficient, t+ and t− the positive and negative
phase respectively and ta the reference time. Both the reflected pressure and the peak over
pressure curves calculated with the Friedlander equation are presented in Figure 2.4.

Figure 2.4: Pressure-time history for the reflected and incident pressure wave [27]

The area under the curve shown in Figure 2.4 is defined as the specific impulse i which
is a measure of the total energy transferred to the structure from the explosion. In the
calculation of i, both the positive and negative phase are contributing. Since the reflected
pressure is defined as the actual load on the structure, the positive specific impulse may be
written as

ir+ =

ta+t+∫
ta

Pr(t)dt (2.17)

which can be solved analytically by inserting Equation (2.16)

ir+ =
Prt+
b2

[b− 1 + exp(−b)] (2.18)

An important remark is that the reflected wave varies with the angle of impact, α,
shown in Figure 2.5. However, in this thesis experiments will only be conducted with
perpendicular shock waves. Hence no further work will be done on this part [27].
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Chapter 2. Theory

Figure 2.5: Blast load angle [27]

2.3 Ideal shock tube theory
In this section, a brief introduction to ideal shock tube theory is presented. The content is
mainly adapted from [28].

Blast experiments are commonly conducted by the use of a shock tube. The tube con-
sists of two separated chambers, one high-pressure chamber called Driver with pressure
p4 and one low-pressure chamber called Driven with pressure p1. The two chambers are
separated by a diaphragm where p4 > p1. This is illustrated in Figure 2.6.

Figure 2.6: Schematic representation of the two separated chambers in a shock tube

By increasing the pressure in the Driver to the point where the diaphragm ruptures,
a sudden shock wave is generated, and rarefaction waves are produced in the opposite
direction. The different phases linked to the propagation of the waves is illustrated in
Figure 2.7. From the initial position (Figure 2.7(a)), the high-pressure gas acts as a piston
propagation into the low-pressure chamber with a velocity of us, which is larger than the
sonic velocity of the low-pressure undisturbed Driven gas. By heating, compressing and
acceleration of the driven gas, the shock wave induces a mass motion right behind the
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2.3 Ideal shock tube theory

shock wave with a velocity of u2 with pressure p2. In the Driver, the rarefaction waves
(E) propagates into the high-pressure pressure wave p4 and increases in strength (Figure
2.7(b)). The rarefaction waves are then reflected at the back of the Driver and push in the
same direction as the shock wave (Figure 2.7(c)). Because of the small ratio between the
Driver-length and the Driven-length in the setup, the rarefaction waves catch up with the
shock wave. This leads to a shock wave with lower strength, longer duration and with
a lower velocity, similar to an explosion. (Figure 2.7(d)). When reaching the end of the
shock tube where the test specimen is located (5), the incoming shock wave is reflected
backwards (Figure 2.7(e)). This leads to an overpressure p5 behind the wave that is higher
than the incoming wave. The positive pressure-time curve corresponding to the wave can
be fitted to the Friedlander curve as presented in Section 2.2. [28]

Figure 2.7: Schematic representation of the different phases when a shock wave is generated in the
compressed gas gun. The figure is taken from [28]
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2.4 Fracture Mechanics
To be able to understand how a brittle material like glass behaves during failure, knowledge
about fracture mechanics are necessary. In this section, there will be given a brief intro-
duction to fracture mechanics with emphasis on linear elastic fracture mechanics (LEFM).
The material discussed in this section is gathered mainly from [5].

2.4.1 Fracture on an atomic scale
Fracture on an atomic scale happens when the bonds between the atoms are broken as a
result of sufficient stress levels, or amount of work applied. The bonds behave as springs
with a stiffness determined by the attractive forces between the atoms. The equilibrium
between the atoms is defined as when the attractive and repulsive forces are equal, and the
equilibrium distance is denoted x0. When forces are applied to the system, the potential
energy Eb increases according to the following expression: where P is the applied force

Eb =

∫ ∞
x0

Pdx (2.19)

where P is the applied force The cohesive strength of the bonds may be estimated by using
half a sine wave as shown in Equation (2.20). λ is the length of half the sine wave and Pc
is the cohesive force.

P = Pcsin
(πx
λ

)
(2.20)

By assuming small displacements, sin(x) ≈ x, the bond stiffness may be written as:

k = Pc

(π
λ

)
(2.21)

By multiplying both sides of Equation (2.21) with bonds per area and the length, the equa-
tion may be written with respect to Young’s modulus and the cohesive strength. Solved
with respect to the cohesive stress σc:

σc =
Eλ

πx0
(2.22)

At fracture, two surfaces are created. The energy at each surface is equal to one half of the
total fracture energy and is estimated by the following equation:

γs =
1

2

∫ λ

0

σcsin
(πx
λ

)
dx = σc

λ

π
(2.23)

Solved for σc and by substituting Equation (2.22) into the Equation (2.23), the estimate of
the cohesive stress may be written as:
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σc =

√
Eγs
x0

(2.24)

In theory, the fracture in a material occurs when sufficient energy from stress or work is
applied to break the intermolecular bonds, the experimental strengths of brittle materials
have been found experimentally to be four orders of magnitude below the calculated frac-
ture strength. The reasons for the discrepancies were studied by, among others, Inglis in
1913 [29].

The main reason for the gap between the experimental and the theoretical strength of
brittle materials was found to be discontinuities, i.e. flaws and cracks, in the material caus-
ing a concentration of stresses at the edges of the defects. Inglis studied an elliptical hole
with length 2a and width 2b in a flat plate subjected to uniaxial tension stress perpendicu-
lar to the crack and compared the stresses acting on the tip of the crack, with the loading
stress in the plate, see Figure 2.8.

Figure 2.8: Inglis model using an eliptical hole, from [5]

The stress is point A is given by Equation (2.25).

σa = σ

(
1 +

2a

b

)
(2.25)

For thin cracks, when a increases relatively to b, a more convenient way to write the
equation is by expressing the crack stress as a function of the radius of the curvature
ρ = b2

a .
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σa = σ

(
1 + 2

√
a

ρ

)
(2.26)

A problem occurs when the curvature goes toward zero or when a >> b. For an infinitely
sharp crack, with a width close to zero, the stress in the tip goes towards infinity, which
in other words means that the material will fail due to an infinitesimal stress, which is
of course physically impossible. For metals, the initiation of an infinitely sharp crack is
prevented by the plastic deformation of the metal and thus a blunting of the crack which
slows down the crack propagation. For ceramic materials like glass, the atom size stops
the propagation. By substituting the curvature with the inter-atomic distance x0, Equation
(2.26) estimates the tip stress of an atomically sharp crack and may be written as:

σa = σ

(
1 + 2

√
a

x0

)
(2.27)

When σa = σc, the material fractures as a result of torn atomic bonds. By setting Equation
(2.27) equal to Equation (2.24) the failure stress may be estimated to be the following

σf =

√
Eγs
4a

(2.28)

Equation (2.28) is only a rough estimate of the remote failure stress in the material, con-
sidering the assumptions made by Inglis are not valid on an atomic scale.

2.4.2 The Griffith Energy Balance

Based on the work of Inglis [29], Griffith [30] formed a crack theory based on potential
energy in 1920. From the first law of thermodynamics, it is known that a system which
goes from a state of non-equilibrium to equilibrium will decrease in energy. Transferred
into the world of fracture mechanics the equivalent is that a crack can form or grow only
if the formation of the crack causes a decrease in energy or if the energy remains constant.
Hence a definition, based on energy conservation, of the critical condition is when crack
growth occurs in equilibrium with no change in total energy.

The propagation of a crack necessitates sufficient potential energy available to surpass
the surface energy. In Figure 2.9 a plate with thicknessB, crack length 2a and crack width
b << a is shown. The plate is loaded with stress σ and the crack area is denoted A. For
an incremental increase of the crack area, the equilibrium condition may be written as:

14



2.4 Fracture Mechanics

Figure 2.9: Infinitely wide plate subjected to tensile stress perpendicular to crack [5]

dE

dA
=
dΠ

dA
+
dWs

dA
= 0⇒ dWs

dA
= −dΠ

dA
(2.29)

whereE is the total energy, Π is the supplied potential energy andWs is the work required
to create the new surfaces of the crack. By using the expression for crack stresses derived
by Inglis, Griffith showed that:

Π = Π0 −
πσ2a2B

E
(2.30)

where Π0 is the total potential energy in the un-cracked plate, and σ is the remote tensile
stress applied on the plate. a and B are geometrical quantities from Figure 2.9. During
the formation of a crack, two new surfaces are created, which implies that the work done
is given by:

Ws = 4aBγs (2.31)

With γs being the surface energy from Equation (2.23). Hence the two parts of Equation
(2.23) may be written as:

−dΠ

dA
=
πσ2a

E
(2.32)

and

dWs

dA
= 2γs (2.33)

15



Chapter 2. Theory

By merging Equation (2.32) and (2.33) the failure stress σf is found by:

σf =

√
2Eγs
πa

(2.34)

This is the fracture stress applied remotely on the plate which causes cracks to open and
propagate.

As a way to make the work of Griffith more convenient for use in engineering, Irwin
[31] defined an energy release rate, denoted G. G denotes the available energy in an
increment of a crack propagation. Note that G does not refer to the time derivative of the
energy, but to the rate of change in energy with respect to change in the area. G is defined
by Equation (2.35).

G = −dΠ

dA
(2.35)

When G reaches a critical value Gc is given by:

Gc =
dWs

dSA
= 2wf (2.36)

WithWs as defined in Equation 2.31. wf is the fracture energy andG is a material property
fracture toughness

2.4.3 Stress Analysis of Cracks
A crack may be subjected to three different types of loading, or a combination of the three.
As seen in Figure 2.10 mode I is a crack subjected to a load perpendicular to the crack,
mode II is in-plane shear loading and mode III describes out-of-plane shear loading. As
an alternative to the Griffith energy balance method with fracture toughness from Irwin, a
way to analyse stress during crack propagation is to examine the stress concentration in a
micro-crack under loading. Mode I cracks requires the least amount of energy to develop.

Figure 2.10: The three loading modes applicable to a crack [5]

By introducing a stress intensity factor K, the stress concentration in the crack is de-
scribed using the subscripts I, II and III to describe stress concentrations related to the
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different modes of fracture. For the stress intensity factor to be useful, a relation between
the applied remote stress, σ, and the stress in the tip is needed. For a crack in a plate
described in Figure 2.9, KI is derived and found to be:

KI = σ
√
πa (2.37)

For linear elastic materials the parameters K and G are related by the following equation:

G =
K2
I

E′
(2.38)

For plane stress E′ = E and for plane strain E′ = E
1−v2 . When the stress intensity factor

reaches the critical valueKc, the material fractures due to crack propagation. The material
parametersGc andKc may be found by experimental testing done in accordance with e.g.,
ASTM C1421 [32].

2.5 Statistical Treatment of Strength in Brittle Materials
Glass is a brittle material with stochastic material parameters. It may therefore be nec-
essary to describe the strength of glass with statistical parameters from different distribu-
tions. This section will briefly cover Weibull distribution and Weakest Link Theory. The
theory presented in this section is mainly an adaptation from [33] and [34].

2.5.1 Weibull Distribution
Weibull distribution is a statistical distribution presented by Weibull in 1939 [35]. After the
publication Weibull distribution has become one of the most commonly used distribution
when describing strength in brittle materials [12]. Of the Weibull distributions used, the
variants with two and three parameters are the most frequently used. In this section, the
variant with two parameters will be covered. The probability density function of the two-
parameter Weibull distribution with a random continuous variable x is defined as follows:

f(x;α, β) =

{
αβxβ−1e−αx

β

, x > 0

0, elsewhere
(2.39)

β is called the shape parameter and is larger than 0, α is a scale parameter. The corre-
sponding cumulative probability density function is given by:

F (x) =

∫ x

−∞
f(t;α, β)dt = 1− e−αx

β

(2.40)

Figure 2.11 shows a qualitative description of some Weibull distributions with varying
β-vaules and α=1.
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Figure 2.11: A qualitative description of Weibull distribution with varying α and β

As seen in the Figure, for β=1 the distribution is reduced to an exponential distribution
while for β¿1 the distributions resembles a skewed normal distribution. The width of the
skew bell curves are decided by the inverse of β, the higher the value the narrower is the
curve.

For engineering purposes, and especially for interpreting strength testing data, a com-
monly used representation of the Weibull distribution is

f(σ) =
m

σ0

(
σ

σ0

)m−1
exp

(
−
(
σ

σ0

)m)
(2.41)

with the corresponding cumulative density function

F (σ) = 1− exp
(
−
(
σ

σ0

)m)
(2.42)

For this case β has been replaced by the Weibull modulus, m. m is used to describe the
dispersion of measured critical stress, σcr, for a test series. The characteristic strength of
the material, σ0, has in Euquation 2.41 replaced m.

2.5.2 Weakest Link Theory
The following section is adapted mainly from [34].

Weakest link theory and Weibull analysis are often used interchangeably, and some
have stated that Weibull analysis is based directly on or derived from weakest link theory[34].
Zok [34] argues in his paper that the two theories are different and not based on one an-
other. Weakest link theory states that the survival probability of a brittle material is depen-
dent of the survival probabilities of each of the volume elements in the solid according to
the following formula:

S =

N∏
i=1

Si(σ) (2.43)
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Where S is the total survival probability and Si is the survival probability of element with
the corresponding stress σ. N is the number of elements. With a total volume V in the
solid, each element has volume Vi and thus N may be written as N = V/Vi. By taking
logarithms on both sides, Equation (2.43) may be written as:

ln(S) =

N∑
n=1

ln(Si(σ)) (2.44)

Given that Si is a continuous function and by using the relationship between V and N,
Equation (2.44) may be rewritten to:

ln(S) =
1

Vi

∫
V

ln(Si(σ))dV (2.45)

and thus the failure probability F = 1− S is written as:

F = 1− [exp(ln(Si(σ)))]V/Vi (2.46)

Equation 2.46 is a statement of weakest link theory.

2.6 Digital Image Correlation (DIC)
An efficient way of recording data on deformations and strains during experiments is with
the use of Digital Image Correlation or DIC-analysis. Especially for blast tests DIC is cru-
cial to be able to record information during the experiments, due to e.g. the high velocities
and the fast fracture of a glass pane. In this section, a brief introduction of DIC and an
introduction to eCorr, the in-house DIC program used, will be given. The material in this
section is mainly adapted from [36] and [37].

DIC analysis is a non-contact measuring technique based on comparisons between
images taken at different times during an event or experiment. It works by comparing the
pictures and tracking the movement of blocks of pixels or selected subsets from image
to image. From the pixel or subset movement, 2D and 3D vector fields and strain maps
may be generated using DIC software, and the displacement of each pixel or subset is
tracked. For the DIC analysis to work effectively, the specimen or object in focus should
have a random pattern of high contrast and intensity level, often solved with a black and
white dotted spray paint or with black and white stickers. For subset tracking, this is
solved with markers painted on the specimen. With DIC analysis, traditional measuring
devices like extensometers and strain gauges may become excessive. As opposed to an
extensometer and strain gauge, the DIC analysis can record large strains over a big area
which is beneficial when dealing with non-linear analysis and biaxial strains. For glass
fragmentation due to blast loading, DIC analysis is can be a useful tool, as other measuring
equipment,like extensometers or gauges, would most likely be destroyed by the blast or by
glass fragments.DIC analysis is easy to use and, in contrast to a single laser, DIC is able
to track several points during experiments.
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To easier enable the study of crack propagation in the glass, subset tracking is the
preferable choice when tracking blast experiments. The program used for the analysis
in this thesis is a program called eCorr, developed by Dr Egil Fagerholt [36]. In eCorr,
subsets are added and customised to the sample in the reference image. Then a global
finite element formulation is used to track the displacement of the subsets from picture to
picture. After the analysis of the pictures taken during the experiment, displacements may
be exported as .txt files or plotted directly in the program. In Figure 2.12 the interface of
eCorr is shown with the use of subset tracking on a laminated glass pane during a blast
experiment. For a 3D DIC analysis two cameras are needed, and the cameras need to be
calibrated. The calibration process must be done before the tests and may be done with a
checked pattern on a cylinder which is placed at different locations in the focus area of the
cameras. For a more thorough description of DIC, eCorr and the calibration process, the
interested reader is directed to [28].

(a) Interface prior to analysis with two cameras and subsets marked with green

(b) Interface during analysis with tracked subsets marked in green

Figure 2.12: DIC interface
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2.7 Explicit vs. Implicit FEM
The numerical analyses done in this thesis are done with the finite element method (FEM)
solvers. The concepts of FEM will not be presented or discussed in this thesis, and the
interested reader is directed to [38]. In this section, a brief introduction to the explicit
and implicit solution methods will be given, and a comparison with pros and cons will be
presented. The material in this section is mainly adapted from [38] and [39].

The mathematical formulation for a structural problem is given by:

MD̈ + CḊ +Rint = Rext (2.47)

which for FEM has to be on discrete form. The resulting equation is:

[M ][D̈]n + [C][Ḋ]n + [Rint]n = [Rext]n (2.48)

In this section, the notation [] signifies a matrix. [M ] is the mass matrix of the structure,
[C] is the damping matrix and [Rint]n is the internal forces in the system. [Rint]n is often
denoted [K][D] with [K] being the stiffness matrix of the system. [D]n is the displacement
matrix and [Ḋ]n and [D̈]n are the velocity matrix and acceleration matrix respectively at
time t = n. All information before and including time step n is assumed known.

2.7.1 Explicit method
The explicit method solves the equation of motion directly for each step without equilib-
rium check. The displacement at each time step is obtained directly from the equilibrium
conditions at one or more preceding time steps. This makes it fast and computationally
efficient. A common way to solve Equation (2.48) is with the use of the Central Difference
Method with half steps.

By assuming a [M ] that is constant in time, the acceleration matrix of an increment
may be found with the following equation:

[D̈]n = [M ]−1
(
[Rext]n − [Rdmp]n−1/2 − [Rint]n

)
(2.49)

[Rdmp] are the damping forces. With the acceleration at time n known, the velocity may
be found at time n+1/2. By assuming a fixed time step ∆t, the velocity may be calculated
with the following equation:

[Ḋ]n+1/2 = [Ḋ]n−1/2 + ∆t[D̈]n (2.50)

With the velocity known at time n + 1/2 the displacement may be derived at time step
n+ 1:

[D]n+1 = [D]n + ∆t[Ḋ]n+1/2 (2.51)

After finding the displacements at time step n+ 1, the internal forces may be calculated:

[Rint]n+1 = [K][D]n+1 (2.52)
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With Equation (2.52), the algorithm for a time step is finished and the calculations for the
next time step may begin.

As seen in the scheme for the half-step method, no iterations are done in each step,
and there are no checks for convergence. There is no equation solving at each step, and
this makes each step relatively inexpensive. The biggest obstacle of the half step method
is that the method is only conditionally stable. For the solution not to ”blow up” the time
step ∆t must be:

∆t ≤ ∆tcr =
2

ωmax

(√
1− ξ2 − ξ

)
(2.53)

In Equation (2.53), ωmax is the highest natural frequency for any element in the model and
ξ is the corresponding damping ratio in the ωmax mode. Due to the maximum time step
criterion, explicit algorithms may be unfit for quasi-static simulations with a long running
time. Measures to reduce the running time without introducing dynamic effect are time
scaling or mass scaling. For a more thorough introduction to explicit methods, the reader
is directed to [40].

2.7.2 Implicit Method
In the implicit methods, a series of equations are solved at each step of the time integration,
making it computationally expensive relatively to the explicit methods. Both convergence
checks and iterations are done at each step. The displacement [D]n+1 is found indirectly
(implicitly) from the equilibrium equations in the corresponding time step, resulting in
non-linear algebraic equation solving at each time step. The most commonly used implicit
methods are unconditionally stable, but the accuracy of the results increase with the de-
crease of ∆t. In general, an implicit method requires several orders of magnitude fewer
steps than an explicit method.

A commonly used implicit method is the HHT-α method. When using this method the
following equation has to be solved for each time step:

[M ][D̈]n+1 + (1 + αH)[C][Ḋ]n+1 − αH [C][Ḋ]n + (1 + αH)[K][D]n+1−
αH [K][D]n = [Rext]α (2.54)

In Equation (2.54) the notations are the same as in Equation (2.48). For a load varying
linearly over a time step [Rext]α is given by the following equation:

[Rext]α = (1 + αH)[Rext]n+1 − αH [Rext]n (2.55)

In the two previous equations, αH is a constant used to implement algorithmic damping in
the system. For αH = 0 the method reduces to the so-called Newmark method [40] while
for αH < 0 algorithmic damping is introduced. The HHT-α method is unconditionally
stable for:

−1

3
≤ αH ≤ 0 (2.56)

Decreasing αH increases the numerical dissipation while maintaining second order accu-
racy, which makes the HHT-α method more efficient at suppressing high-frequency noise
than the standard Newmark-methods. The interested reader is directed to [40] for a more
thorough description.
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2.7.3 Pros and Cons
As a summary of the two methods the following presents some of the pros and cons of the
two different methods

Table 2.1: Table showing some of the pros and cons of the two discussed methods.

Pros Cons
Explicit Equation solving not necessary. Conditionally stable.

Equilibrium iterations not necessary. Requires small steps.
Computationally inexpensive.
Ideal for high-speed dynamic
simulations, such as blast loading.
Usually reliable for problems involving
discontinuous non-linearities.

Implcit Unconditionally stable. Non-linear equations needs
Fewer increments needed. solving at every step.
Time increment size not limited. Each step computationally

expensive.
Ideal for quasi-static loading where Convergence must be obtained
response period is long. for each increment.

23



Chapter 2. Theory

2.8 Impetus Afea Solver
IMPETUS Afea Solver is an explicit non-linear finite element program, which is designed
for high precision, robustness and user friendliness. The program is based on as few user
defined parameters as possible. As an example, the analyses are restricted to the use of
explicit time integration and fully integrated solid elements. This will in many cases give
a more accurate solution but comes at a price of higher computational cost.

As a measure to reduce the running time of the simulations, IMPETUS Afea Solver
supports GPU acceleration in the simulations. The graphics processing unit (GPU) have
thousands of cores to process parallel workloads efficiently. The GPU offloads compute-
intensive portions of the simulation for itself, while the remaining of the simulation is
carried out in the central processing unit (CPU). This is illustrated in Figure 2.13. [41]

Figure 2.13: GPU have thousands of cores to process parallel workloads efficiently, taken from [41]

In addition to element erosion, node splitting is implemented as a technique to describe
fracturing in IMPETUS Afea Solver. With the element erosion technique, the element is
eroded when the damage reaches a given damage criterion. For brittle materials like glass
or ceramics, the failure of the material is caused by crack propagation. With element
erosion, the model will normally experience an unphysical response where a portion of
the glass elements is removed. This violates the conservation of energy and conservation
of mass. With node splitting, nodes are instead separated when the fracture criteria is
reached, and the elements are not eroded. A downside with node splitting is that it require
higher computational power than element erosion.

IMPETUS supports nine different types of solid elements:

1. Tetrahedrons (linear/ quadratic/ cubic)

2. Pentahedrons (linear/ quadratic/ cubic)

3. Hexahedrons (linear/ quadratic/ cubic)

where the cubic 64-node hexahedron element is illustrated in Figure 2.14.
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2.8 Impetus Afea Solver

Figure 2.14: Cubic hexahedron element used in IMPETUS. Taken from [42]

The interface of IMPETUS Afea Solver contains four different section modes; Assem-
ble, Solve, Post and Editor mode. In the Editor mode, the user defines everything in the
model like the geometry, load and boundary conditions. This is done by using predefined
commands for the different parts. To see how the model looks before simulating it, assem-
ble mode can be utilised. Solver mode is used to run simulations and control the progress
of the simulations. The post-processing mode gives the user a graphical representation of
the completed simulations.
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Chapter 3
Materials and material modelling

3.1 Materials
In this section, a brief introduction to the different materials studied in this thesis will be
given.

3.1.1 Float glass
Window glasses are usually made out of soda-lime glass, also called soda-lime-silica
glass.. These glasses mainly consists of three constituents, SiO2(70− 75%), Na2O(12−
16%) and CaO(10− 15%)[33]. In molten condition, the atoms are in continuous motion
and randomly structured, but at the cooling point the atoms stabilise and form a struc-
tured network, a crystal. If the cooling process is done rapidly in a suitable manner, the
substance will not have time to rearrange into the crystalline state, and only a portion of
the atoms will move. This prevents the formation of crystals, and the elastic solid that is
created is called glass. Glasses are amorphous solids.

Float glass is a brittle material, and a set of glass specimens with identical geometry
and loading may differ significantly from each other. This is due to microcracks that
are randomly distributed on the surface. Fracture is initiated when the one of the first
microcracks opens due to the stress acting on it, ans is defined as the critical microcrack.
Because of these microscopic flaws, the critical microcrack does not necessarily occur at
the place with the highest stress [12]. The strength of float glass has also been proven to be
strain rate dependent, but the Young’s Modulus is shown to be rather insensitive to strain
rate [43].

3.1.2 Polyvinyl Butyral (PVB)
Polyvinyl Butyral (PVB) is an organic polymer with the chemical formula C8H14O2.
PVB is the most used interlayer in the production of laminated glass due to good adhesive
properties [3]. When utilised in a lamination process under the right temperature and
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pressure, the PVB becomes optically clear and binds the two glass plates together. The
material behaviour of PVB is highly non-linear, time dependent and PVB can be extended
to several times its length without fracturing [3]. Several articles have been written on PVB
and its mechanical properties [3; 44; 45]. Tensile tests of PVB have been conducted over
a range of loading speeds, and it has been found that PVB is a highly strain rate sensitive
material. This is shown in Figure 3.1, taken from [3]. As seen, both the magnitudes
of stress and the shape of the stress-strain curve varies significantly with the difference
in strain rates. For this reason, a material model which includes the strain rate may be
necessary to describe the PVB response correctly [44]. The most common material test
conducted on PVB is a uniaxial tension test of a dog-bone specimen before the lamination
process [3; 44], but there is little research on PVB material properties after the lamination.
In his Masters Thesis, Ilseng [22] conducted tensile tests on pre-cracked laminated glass
specimens at different strain rates to determine material properties after lamination, but due
to high delamination during the experiments, no material properties could be extracted.

Figure 3.1: Stress-strain curve for PVB at different strain rates taken from [3]

3.1.3 Laminated glass

In this section, the behaviour of the composite laminated glass will be presented. The
information is mainly an adaption of [6], [22] and [46].

Laminated glass is a form of composite material that is widely used for blast resisting
windows. Laminated glass windows are made out of two or more glass panes laminated
together with one or more polymer interlayers. In the components studied in this thesis,
polyvinyl butyral (PVB) is used as interlayer together with two annealed glass panes as
seen in Figure 3.2).
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3.1 Materials

Figure 3.2: A general setup of laminated glass

There are two main reasons for using laminated glass instead of single layered glass
when designing blast resisting windows. Firstly, the adherent material properties of PVB
prevents shattered glass to fly freely after being subjected to a blast wave . High-speed
glass fragments can cause major damage or can even be deadly, thus holding the glass
together is important. Secondly, the ductile behaviour of PVB gives the window strength
even after glass breakage, preventing high energy blast waves from entering the structure.
Additionally the PVB can dissipate the imposed energy due to large deformations [22].

The adhesion between the PVB and the glasses is of great importance for the laminated
glass when it comes to performance and ductility under blast loads. For the adhesion to
be sufficient, a well performed laminating process is essential. Before the process can
begin, the glasses needs to be purified properly, and the condition of the PVB must be
proved to be at a certain level. The laminating process is carried out in an autoclave under
high pressure and temperatures, and the maximum adhesion level will safely be achieved
if the process is done properly. The adhesion is formed by the combination of chemical
and mechanical bonds between the glass and the PVB. The PVB can be classified as a
copolymer because it is structured up of one non-polar butyral group and one highly polar
vinyl alcohol group, which is highly compatible with water. The glass is dominated by
polar silanol groups (Si−OH) that are formed on the surface of the glass when exposed
to water. When the PVB and the glass are compressed together under high pressure and
temperatures in the autoclave, a dense network of weak hydrogen bonds are formed. This
network is eventually structured to some extent true chemical bonds. [46]

The breakage of a laminated glass pane can be divided into five different phases de-
scribed under. This is also illustrated in Figure 3.3.[6]

1. Elastic behaviour of the glass panes

2. The backside glass pane in tension break - the one in compression is still intact

3. The second glass pane break and the PVB interlayer behaves elastically

4. The PVB interlayer behaves plastically, and the shattered glass is kept together with
the PVB

5. The interlayer fails by reaching its limit strength or rupture caused by glass shards
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Figure 3.3: Phase diagram for laminated glass breakage. Adapted from [6]

3.1.4 Effects of Delamination in Laminated glass

In this section, the effects of delamination of laminated glass are briefly described. De-
lamination of laminated glass panes affects the properties of the laminated glass and is
therefore of importance when designing. The contents of this section is mainly adapted
from [19; 4].

The interaction between the PVB and the two glass layers affects the strength and
durability of the laminated glass. Delamination may be defined as a reduction or a total
loss of the adhesion between glass and the laminate. Delamination may be due to e.g. a
non-proper manufacturing process or careless treatment of the glass, and delamination is
also an important feature during failure of laminated glass. Del Linz et. al [19; 4] found
in their blast load experiments that the delamination in the glass resulted in a plateau
in the force-displacement curve, which resembled a material with plastic properties at
large strains. By studying the reaction forces in the supports during the blast load and
the mid-point deflection of the glass, Del Linz et al. [4] plotted the force displacement
curve for their blast experiment. As seen in Figure 3.4 the glass behaves with an elastic
response until the glass breaks. In the post crack curves, Del Linz et al. argues that the
plateau is a result of a combination of the elastic behaviour of the PVB and the progressive
delamination of the glass. The interested reader is referred to [4] for a more thorough
description of the experiment.
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Figure 3.4: Results showing the different behaviours of laminated glass subjected to blast load,
adapted from [4]

In [19] the delamination properties of laminated glass with PVB and PVB strength
were tried tested by cracking the glass before performing a tensile test. Pre-cracked lami-
nated glass specimens were subjected to tensile stress in a uniaxial tension test. With the
glass cracked on both sides of the PVB, the glass did not contribute to the strength in uni-
axial tension. On the other hand, the glass will contribute indirectly to energy absorption
when the bonds between the glass and the PVB are broken. A diagram showing the de-
lamination is presented in Figure 3.5. As seen, an area close to the crack will delaminate
as a result of the relative elongation between the glass and PVB. The ”delaminated areas”
shown in Figure 3.5 are areas where the cohesive bond between the glass and PVB have
torn. No further analysis will be conducted on the results in this thesis, and the interested
reader is directed to [19].

Figure 3.5: Diagram describing the delamination process, adapted from [19]

3.1.5 Rubber
In the SIMLab shock tube rubber strips are used in the clamping of the glass specimens.
The rubber clamping is affecting the boundary conditions in the shock tube and thus the

31



Chapter 3. Materials and material modelling

results and numerical modelling. A basic understanding of rubber is of importance.
The term rubber is a team applied to any material behaving the mechanical properties

similar to the ones found in natural rubber [47]. The most important physical characteristic
of the materials is the high degree of deformability when loaded with comparatively low
stresses. Due to the non-linear behaviour, Hooke’s law does not apply, and a definite
Young’s modulus may therefore not be defined explicitly for small strains [47]. It has been
found that rubbers are highly strain rate sensitive, and Roland et al.[48] tested rubbers at
strain rates as high as 1620m/s and found that the initial stiffness varies significantly. The
rubber used in the clamping of the glass in the SIMLab Shock Tube is a neoprene rubber.
Neoprene is known for its chemical stability and its ability to maintain flexible in a wide
range of temperatures[47]. In civil engineering, neoprene is often used in bridge supports.
The behaviour of neoprene rubber was studied by Salisbury [49], and the behaviour is
described as hyper-viscoelastic with a significant strain rate dependency when tested at
strain rates ranging from 0.001m/s to 2700m/s.

3.2 Material modelling

3.2.1 Glass material modelling

The glass was in thesis modelled with elastic material properties and a fracture criterion.
The elastic material parameters of interest was Youngs’ moduls, Poissons number, the
material density, fracture strength and the stress intesity factor. As presented in Section
1.2, elastic properties with a fracture may be sufficient when modelling glass [6; 7].

3.2.2 Rubber material modelling

The rubber was in this thesis modelled with elastic material properties. As argued, the
rubber is highly strain rate sensitive, but a simplification with elastic properties only may
be sufficient for small strains. Additionally the elastic material model drastically decreases
the running time of the simulations compared to a more advance model.

3.2.3 Bergström-Boyce

The Bergström-Boyce (BB) model is an advanced material model for describing elastomer-
like materials which are non-linear, time-dependent and with a significant strain behaviour.
In this thesis the BB-model will be used to describe the PVB when modelled in a tensile
test in IMPETUS Afea Solver [42]. The model implemented in IMPETUS consists of
two parallel networks, A and B, with different abilities. Network A is a non-linear hy-
perelastic network which describes the equilibrium response, while network B is purely
non-linear viscoelastic which is sensitive to the strain rate. The network used in IMPETUS
is illustrated in Figure 3.6 [50].
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Figure 3.6: Bergström-Boyce model network used in IMPETUS. Figure taken from [42]

The total stress is defined as the sum of the stress in network A and B:

σ = σA + σB (3.1)

Network A

The hyperelastic network A is set up with stress and damage parameters as shown:

σA = (1− η)· µ
Jλ
· L
−1(λ/λL)

L−1(1/λL)
·Cdev +K· ln(J)I (3.2)

where µ is the initial shear stiffness, λL the locking stretch and K the bulk modulus. L−1

is the inverse of of the Langevin function, J = detF , C = J−2/3F tF and λ is defined as
the network stretch. The network stretch is calculated as:

λ =

√
trC

3
(3.3)

η is a measure of the network damage and grows according to:

η̇ = a0· (ηmax − η)·
(
λ

λL

)a1
· λ̇ (3.4)

where a0 and a1 are a parameter and a exponent for the Mullins damage. ηmax is the
maximum damage.[42]

Network B

For network B, IMPETUS offers two different ways to calculate the relation between the
viscous stress and the deviatoric strain rate. Alternative 1 is calculating the effective vis-
cous stress, σeffB , by using the relation:

ε̇dev = γ̇0(λ
v − 1 + ξ)B ·

(
σeffB

σ0 +Q· (1− exp(−Cεeff )

)m
· σB√

σB : σB
(3.5)

33



Chapter 3. Materials and material modelling

where ε̇dev is a time average deviatoric strain rate :

ε̇dev =
1

cdec

∫ t

0

ε̇deve
(τ−t)/cdecdτ (3.6)

Alternative 2 using the relation [42]:

σeffB = b0(λ− 1)b1 ·
(
ε̇
eff
dev

γ̇0

)b2
(3.7)

3.2.4 Modelling of adhesion and delamination

An important feature of laminated glass is as mentioned the adhesive bonding between the
glass and PVB. When laminated glass plates are exposed to e.g. a blast load, the bonding
strength affects when the glass starts to delaminate and glass fragments lose contact with
the interlayer. To model this adhesive bonding layer between glass and PVB, the feature
called *MERGE FAILURE COHESIVE may be used. During the work of this thesis, the
feature was modified to enable a better representation of the delamination phenomenon.
To use this command, the surfaces need to be merged by the command *MERGE. With
the *MERGE feature, the materials are bonded. As described in the IMPETUS manual
[42], the failure is initiated when:(

ξσ

σfail

)2

+

(
ξτ

τfail

)2

≥ 1 (3.8)

where ξ is a scale factor accounting the inability to resolve stress concentrations at coarse
element grids:

ξ = max(1,
√

∆/∆ref ) (3.9)

∆ is the local characteristic element size of the merge interface. The stress unloading
from failure is a linear function of the crack opening distance. It is defined such that the
consumed energy per unit area of cracking G is:

G =

√(
σ

σfail
GI

)2

+

(
τ

τfail
GII

)2

(3.10)

which is calculated by using the relations presented in Section 2.4.3. The main purpose of
the *MERGE FAILURE COHESIVE feature is to allow for local stretching in the PVB
layer after failure in the glass at the crack tip. For this to happen, the connected nodes
between the glass and PVB need to be separated, but without splitting the nodes in the
PVB layer. This is illustrated in Figure 3.7. It is important that the PVB is modelled with
a finer mesh than the glass so that the PVB-elements between the glass elements remains
merged
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Figure 3.7: Local stretching in the PVB layer when the glass reach its failure criteria. Adapted from
[51]

Froli and Lani [45] conducted shear and compression tests of laminated glass plates,
and found that the adhesive shear strength is around τfail = 10MPa and the tensile strength
lies a place between σfail = 5− 10MPa.

35



Chapter 3. Materials and material modelling

36



Chapter 4
Experiments

4.1 Four point bending test
To study the fracture strength and the static behaviour of laminated glass, a four point
bending test was conducted on laminated glass specimens. The experiments were done
and supervised by the authors, Tore Kristensen from Sintef and PhDc Karoline Osnes in
the laboratory at the Department of Structural Engineering at NTNU.

4.1.1 Setup

Three different specimen sizes were tested, large (300×60 mm), medium (200×40 mm)
and small (100×20 mm). All three sizes had the same layering, i.e 3.8mm glass - 1.52mm
PVB - 3.8mm glass. For each size, 25 specimens were loaded until fracture in both glasses
occurred, resulting in total 75 tests.

The test setup is based on the ASTM International standard C1161 for flexural strength
on ceramics [52]. The test setup consisted of a support and loading member made of steel,
four cylindrical bearings made of steel, a laser measuring the midpoint displacement of
the underside of the test specimens. The tests was performed in an Instron 8985 testing
machine with a 5 kN load cell. The bearings were located at each quarter point of the
test length and were fastened with elastic rubber bands. Though the test standard suggests
the thickness of the steel bearings to be 1.5 times the thickness of the glass specimen,
the diameter of the bearings used in this experiment was 6 mm. The general setup is
illustrated in Figure 4.1. As the lengths of the specimens changed from 100 mm to 300
mm, the dimensions of the setup varied as well, while maintaining the same ratios as
shown. An issue with four point bending tests performed on glass specimens is to apply the
same load to both loading cylinders. To make sure that the loading cylinders hit the glass
horizontally, a fixture securing free rotation was placed together with the loading members
on the glass specimen before the loading started. The fixture and loading members had
caused deflection before loading. The weight was added to the results measured by the
load cell and the laser making the deflection at the start of the tests, non-zero.
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Figure 4.1: Setup of the four point bending test

The weight of the fixture and loading members were measured and calculated as forces
acting on the glass additionally to the load cell. The force from the fixture and loading
member is denoted F0, and the setup data for the different sizes are presented in Table 4.1

Table 4.1: Data for the different setups in the experiments

Large Medium Small
L[mm] d[mm] F0[N ] L[mm] d[mm] F0[N ] L[mm] d[mm] F0[N ]

280 6 60.31 180 6 35.63 80 6 20.87

The measured initial deformation caused by the weight of the fixture was small and
thus neglected in the results. As mentioned in Section 3.1.1, tensile and compression
strength of glass has proven to be strain rate sensitive [43]. The different glass sizes was
therefore tested at the same strain rate, and different loading speeds should was applied.
According to ATSM C1161, the strain rate should be of order 1.0 × 10−4s−1. Loading
speeds were calculated for the three specimens by using the following equation [52]:

ε̇ =
48hs

11L2
(4.1)

Where ε̇ is the strain rate, h is the specimen thickness, s is the loading speed, and L is the
testing span. The ASTM C1161 standard [52] is made for monolithic specimens, and not
for composites. However, the standard was used as a guideline for calculating the loading
speeds for the different sizes. With the assumption that moment of inertia of laminated
glass lies close to the lower limit presented in Section 2.1.1, the thickness h becomes the
thickness of one of the glass layers and not the specimen. The different loading speeds are
presented in Table 4.2

Table 4.2: Table showing loading speeds for the different specimens

Large Medium Small
s [mm/min] 8.6 3.5 0.7
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To validate the dimensions given by the manufacturer, the tested glass specimens were
measured with a micrometre. The key results for the measurements are presented in Table
4.3 and the raw measurement data are found in Tables A.1, A.2 and A.3 in Appendix A.
The specimens were also checked for cracks and flaws visible to the naked eye. Of the
75 specimens tested only 8 had minor imperfections, and the overall quality of the glass
was deemed adequate. The specimens was cut from a glass plate and then the edges were
treated with a rough polish.

Table 4.3: Key dimensions of the specimens tested in the four-point bending test.

Large Medium Small
[mm] d w d w d w
Max 9,180 59,66 9,180 39,67 9,186 19,96
Min 9,047 59,14 9,007 39,39 9,094 19,60

Mean 9,131 59,50 9,125 39,52 9,139 19,70

4.1.2 Results

Force Displacement

The loading force and the displacement at mid point were recorded during the tests. The
raw data was imported to MatLab, and the force was plotted as a function of the deflection.
As described in the previous section, a total of 75 datasets were imported, 25 of each
sample size.The resulting curves are shown in Figure 4.2. As seen in the figure the loading
capacities vary significantly within the same sizes, showing the stochastic nature of the
fracture strength of glass. As pointed out, the fixture and the loading member were placed
on the glass prior to the loading causing the load to start at F0 in the plot. For visual
reasons, a point [0, 0] was added to the graph sets for the curves to start in origin. The
contribution from the PVB layer to the stiffness of the beam is assumed to be close to
negligible in comparison to the stiffness of the glass, as the initial stiffness of PVB at low
strain rates is expected to be several orders of magnitude lower than for glass. Additionally,
the PVB layer is placed in the neutral axis of the specimen making the contribution to the
moment of inertia, Equation 2.2, small. Thus, it may be assumed that the fracture of the
laminated glass beams occurs approximately when the fracture strength of the glass is
reached.
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Figure 4.2: Raw data from the four-point bending experiments

As seen in Figure 4.2, the laminated glass responds linearly elastic. This is because
the glass dominates the behaviour before fracture. As seen in at the start of the force-
displacement curves, the initial behaviour differs from the response after the fixture have
stabilised. Most of the data showed similar behaviour when subjected to loading, except
a medium and a large sample. The reasons for the mentioned inconsistencies of the two
samples was most likely caused by the laser missing the target as the glass fractures and
thus increasing the displacement without a corresponding increase of load. Pictures of the
fractured specimens are shown in Figures A.1, A.2 and A.3 in Appendix A

Moment of Inertia, Young’s Modulus and Fracture Strength

Based on the recorded data from the experiments, the fracture strength of the samples was
calculated. Beam theory was assumed valid and the Iupper and Ilower were determined
with Equations (2.3) and (2.4). From the calculated moments of inertia, beam theory
presented in Equation (2.13) was used to find the fracture stress in the glass for each
specimen. The moments of inertia for the different samples are listed in Table 4.4
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Table 4.4: Calculated lower and upper boundaries of the moment of inertia for the different glass
samples, all values in mm4

Large Medium Small
Iupper Ilower Iupper Ilower Iupper Ilower

3.757e+03 5.441+02 2.490e+03 3.614e+02 1.247e+03 1.801e+02

The upper-limit moments of inertia are found to be seven times higher than the lower
limit, making the glass seven times stiffer and resulting in an unrealistically low critical
strength for the upper limit. With the calculated inertia, the mean value, the maximum and
the minimum fracture stress values were estimated. The results are listed in Table 4.5.

Table 4.5: Table showing the fracture strengths calculated with the different stiffnesses based on the
results from the experiment. Values in MPa

Large Medium Small
σupper σlower σupper σlower σupper σlower

Mean 23.66 163.34 19.82 136.59 16.58 114.76
Max 27.52 190.00 23.81 164.06 20.26 140.24
Min 20.74 143.21 17.37 119.71 13.52 93.57

As seen in Table 4.5 the difference between the lower and the upper boundary limit of
the fracture strength is significant. As argued before, the behaviour of laminated glass is
expected to be somewhere in between the limits, closest to the lower boundary [24; 25].
The fracture strength used for the modelling of float glass is varying. From a Monte Carlo
simulation of 5000 plates, Yankelevsky [12] found the average tensile stress at fracture to
be 47.47MPa, while Larcher [6] and Hooper [53] argues that the fracture strength is 84MPa
and 80MPa respectively. It is emphasised that the strength of glass is expected to increase
with the decrease in sample size due to the effect of microcracks. As presented in Section
3.1.1, the failure of glass is dependent on the locations and sizes of the micro cracks. A
smaller test specimen will naturally have fewer microcracks than a larger sample, and thus
the probability of finding cracks of critical size is reduced. Due to the strong correlation
of specimen size and fracture strength, a direct comparison between the results found in
the experiments and the values found in [12; 6; 53] cannot be done.

The difference in fracture strengths calculated from the experiments contradicts what
was expected. The small samples showed a lower strength than the large samples. The
mean fracture strength for size small was 29% lower than the large samples. The fracture
strength of the medium samples was found to lie between the large and small samples. A
reason for this contradiction may be the influence of edge cracks in the samples, generally
influences the smaller samples to a greater extent than for the larger ones. The edges
constitute a bigger percentage of the smaller samples than the larger ones.

The Youngs’ modulus was calculated with Equation 2.15 from the Section 2.1.1. The
Young’s moduli were estimated based on the middle part of the force-displacements curve.
The results are presented in Table 4.6
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Table 4.6: Calculated Youngs’ modulus from the experimental data. All values in MPa

Large Medium Small
Eupper Elower Eupper Elower Eupper Elower

Mean 17 065 117 830 12 614 86 925 7 906 54 737
Max 19 110 131 960 13 072 90 083 9 887 68 454
Min 14 908 102 940 12 188 83 992 6 662 46 127

The uncertainty of the total stiffness of the laminated glass affects the calculated
Youngs’ Moduli in the same manner as for the σcr, as both equations are dependent on I .
According to findings in literature, [33; 54], the expected Youngs’ modulus for annealed
glass is expected to be between 70 and 74 GPa. As seen in Table 4.6 the findings from the
experiments are not in accordance with the expected value. This difference supports the
belief that the actual inertia is different from the two proposed calculated inertias, however
closer to the lower limit. An additional curiosity regarding the calculated Youngs’ moduli
is that the moduli for the small samples lie below the expected value, while for the large
and medium samples the moduli are higher than anticipated. This inconsistency questions
whether the moment of inertia can be the only cause for the experienced discrepancies.
Another possible explanation for the discrepancy may be the validity of Euler-Bernoulli
beam theory. For the tested laminated glass specimens, the assumption of linear stress dis-
tribution in the glass may not be valid. The dimensions of the small sample may be unfit
for the assumptions made in the derivations in beam theory, i.e the ratio between height
and length may be too high. In addition, the ratio between the height and the length of the
specimens may be too high.

Statistical Treatment of Experimental Results

The fracture strengths were rounded up to the nearest 5 MPa for a statistical representation
of the results. Figure 4.3 shows the distribution of fracture strengths for the large samples.
f(σ) is the probability. The spread in fracture strengths emphasises the stochastic nature
of glass.
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Figure 4.3: Bar plot of the large samples, f(σ) is the probability

As seen in Figure 4.3 the results from the experiments vary significantly. Due to the
high variance, a Weibull analysis was conducted to calculate the Weibull parameters m
and σ0, see Section 2.5.1 for the theoretical background. The procedure for the Weibull
analysis is adapted from ASTM C1239 [55] and was applied separately for the different
specimen sizes.

First, the fracture strength for each sample was calculated and then ranked in ascend-
ing order. The probability of failure in each test was then calculated with the following
formula:

Pf (σi) =
i− 0.5

N
(4.2)

where Pf (σ) is the probability for the given failure stress σi and N is the number of the
specimens in the test series. The Weibull parameters were found using linear regression
on a scatter plot with ln(σi) on the x-axis and ln(ln( 1

1−Pf )) on the y-axis. For the small
and medium samples, all 25 tests were used in the series while for the large samples
the results from the first and second test were neglected. The first two tests of the large
samples showed signs of an error in the fixture mounted to the load cell. As pointed out in
the standard a minimum of 30 specimens is recommended for each test series to achieve a
good approximation of the fracture strength. The lack of specimens in this experiment may
therefore affect the accuracy of the results and increase the error. In the Weibull analysis,
the σcr corresponding to the lower boundary moment of inertia were used, σlowercr . As this
is the lower boundary limit, the results from the Weibull analysis will be non-conservative.
The results are shown in Table 4.7

Table 4.7: Table containing the results from the Weibull analysis, stresses in MPa

Large Medium Small Average
m̂ 15.48 14.03 10.82 13.44
σ̂0 157.43 131.11 111.49 133.34
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As seen in the results both parameters vary with different sample sizes. The correla-
tion between experiments and the calibrated values are acceptable while the discrepancies
between the sample sizes are worth noting.

A graphic display of the regression done with the curve fitting tool for the large samples
is presented in Figure 4.4. Similar figures for the small and medium samples are found in
Figures B.1 and B.2 in Appendix B.
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Figure 4.4: Linear regression done in accordance with ASTM C1239 [55], large samples

In addition to the linear regression, the fitted probability density and the cumulative
cumulative distribution function was compared to the experimental results. The results for
the large samples are presented in Figure 4.5 while the figures from the medium and small
samples are found in the Appendix B.

(a) Probability density function (b) Cumulative probability density function

Figure 4.5: Weibull distributions, large samples

As mentioned, the larger samples had a greater fracture strength than the smaller ones,
and the results may be caused by the influence of edge treatment. To study the edge effect
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of the specimens, a second round of experiments were conducted with the same setup.
The second series of tests consisted of 24 small samples, nine medium samples and ten
large specimens. The force-displacement curves from the second round of experiments
are presented in Figure 4.6. The edges of samples tested in the first round of experiments
were roughly polished after they were cut out. The samples tested in the second round of
experiments were not treated, and the edges were noticeably sharper. It was seen on the
specimens after the experiments that the cracks had initiated on the edges of the specimen,
which was the same as for the specimens with polished edges tested in the first round.
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Figure 4.6: Force displacement curves from the second round of experiments

As seen in the force-displacement plot i Figure 4.6, the results from the second round
did not differ significantly from the first experiment shown in Figure 4.2, and due to time
limitations no further analysis of the results were conducted.

4.2 Blast testing

Blast tests on laminated and monolithic glass were conducted in the SIMLab shock tube,
which is a good way to test glass panes in a controlled and safe environment. The shock
tube generates blast waves similar to the ones created during an explosion, and the experi-
ments are easy to repeat. The blast waves creates a uniform pressure on one side of the test
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specimen. In this section, the setup and the experimental shock tube results are presented.
There will also be given a short introduction to the shock tube at SIMlab.

4.2.1 The SIMLab shock tube

The contents in this subsection is mainly adapted from [28], where the interested reader
may find additional information on the topic. The SIMLab shock tube consists of the
driver section, the firing section, the driven section and the dump tank. The driver is
the section where the desired pressure is built up, and the firing section consists of two
pressure chambers that are separated by membranes. When the pressure in the driver
section reaches the total capacity of the membranes, they rupture. The sudden increase
in the pressure, generates a shock wave propagating through the driven section up to the
end. In the SIMLab shock tube, pressure sensors are installed along the driven section and
right before the fixed test specimen. Outside of the tank, high-speed cameras are mounted
to capture the behaviour of in the test specimen when subjected to the blast load. Figure
4.7 shows the setup of the SIMLab shock tube. The lasers depicted in the Figure were not
used.

Figure 4.7: Setup of the shock tube at SIMLab NTNU, figure adapted from [28]

4.2.2 Setup

Glass panes with the dimensions of 400 mm × 400 mm were fastened and clamped at the
end of the driver. To fasten the laminated glass plates, a steel frame with an interlayer of
rubber was utilised. For the monolithic tests, a lighter aluminium frame was used. The
frame was bolted to the driven end such that the glass pane was fastened with a rubber
layer on each side. Due to the higher pressures in the laminated glass tests, the increased
stiffness of the steel frame was desired to ensure the relative displacement of the frame to
be as low as possible. To check the effect of the fastening torque, two different torques
were used, 100Nm and 150Nm. As seen in Figure 4.8 there are 24 holes for bolts, but for
all cases 12 bolts were used. The rubber strips prevented the metal touching the glass and
bolt stoppers ensured that the glass was not fractured by the clamping torque.
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Figure 4.8: End of the driven section, where the test specimen is placed

Figure 4.9: Point-tracking dots on the glass (1) and point-tracking stickers on the frame (2) for the
DIC-analysis
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For monitoring, two high-speed cameras were utilised. The camera type was Phantom
v1610 with a recording rate of 24 000 frames per second. The cameras were installed
to capture the response in the glass during the experiments and the images were used in
a DIC-analysis of the glass. For the high-speed cameras to measure the displacement at
different locations at the glass panes during the tests, 25 point-tracking dots were spread
out on the glass. The dots were made with white painting as a first layer, and a black marker
for smaller dots inside them. To measure the relative displacement of the frame, white and
black stickers were glued to the frame. The glass and frame setup are showed in Figure
4.9. The 3D-DIC model was then calibrated with a 80 tall cylinder with a checkerboard
pattern. The squares had the dimensions 6.527×6.527 mm. According to Aune et. al [28],
this implies a maximum error in the DIC analysis of 0.07 mm compared the real plate
displacement.

The pressure was measured in the sensors along the tube. From the two sensors closest
to the test specimen, Friedlander fitting of the reflected pressure was found using a MAT-
LAB script made by PhDc Karoline Osnes utilising the Friedlander equation presented in
Section 2.2. The peak reflected pressure was estimated by extrapolating the Friedlander
curve to the time of impact and the time of the positive phase as shown in Figure 2.4.
The parameters needed to describe the pressure load in a numerical simulation, Pr, Pa, b
and t+ were found using curve fitting and iteration as described in Section 2.2. For the
experiments where the monolithic glass fractured, a linear extrapolation curve was used
instead. The peak reflected pressure is dependent on a surface to reflect on, and when the
glass breaks, this surface disappears.

Test specimens

The blast experiments were conducted using 3.8 mm single layered glass pane for the float
glass tests, and the laminated glass was made of one PVB-layer laminated between two 3.8
mm glass panes. All test specimens were measured using a micrometre at eight different
locations around the edge to ensure reliable results. The measured mean values for the
different tests are presented in Table 4.8 and Table 4.9. The overall mean value for the
float glass panes was measured to 3.80mm and the laminated glass 9.12mm. This gave a
laminated glass setup as seen in Figure 4.10. All glass panes were also thoroughly checked
for flaws and imperfections before tested, and the specimens showed a sufficient quality
all over.

Table 4.8: Measured mean value of the float glass specimens

Test t [mm]
FG 01 3.82
FG 02 3.81
FG 03 3.79
FG 04 3.81
FG 05 3.80
FG 06 3.81
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Table 4.9: Measured mean value of the laminated glass specimens

Test t [mm]
LG 01 9.13
LG 02 9.13
LG 03 9.10
LG 04 9.12
LG 05 9.13
LG 06 9.12

Figure 4.10: Cross section of the laminated glass panes tested

4.2.3 Results

In this section, the experimental results conducted on float glass and laminated glass will
be presented and analysed. A summary of the key results of the tests are shown in Table
C.1 in Appendix C.

Float Glass

The tests conducted on the monolithic float glass were conducted over two days. The first
three glasses, denoted FG-01, FG-02 and FG-03, were tested on 10th of March 2017 with
the temperature being 20.7◦C and with a humidity of 25%, while the rest of the glass
panes were tested 13th of March 2017 at 20.8◦C and 31.3% humidity. The first three
glasses were tested with the desired driving pressure of 1.5 bar. The fastening torque were
150Nm for all three glass panes. Based on previous experiments conducted in the shock
tube, [11], the authors expected the glass panes to withstand the pressure in the tests, but all
the glass panes failed. The resulting firing pressures, Pf and calculated reflected pressures,
Pr are listed in Table 4.10 together with the deflection of the mid-point at fracture, ∆M .
As seen in Figure 4.11 the initiation of the cracks were different in all three tests. The
deflections were extracted from the DIC-analysis at the time where the first visual crack
appeared in the images.
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Table 4.10: Pressures recorded during the tests of FG-01 to FG-03.

Test Pane Pf [bar] Pr [bar] ∆M [mm] Fracture initiaton
FG-01 01 1.526 0.637 3.594 Close to the middle
FG-02 02 1.563 0.660 5.519 At the edge
FG-03 03 1.285 0.516 5.132 At the edge

(a) FG 01 (b) FG 02 (c) FG 03

Figure 4.11: Crack initiation on the monolithic glass panes tested 10/3-17

As none of the panes stayed intact during the first series of blast experiments, Fried-
lander fits would not give accurate results. When the glass fractures, the shock wave does
not have a surface to reflect on and this leads to an unrealistic Pr. For the cases where the
glass fractured, the Pr was found by linear interpolation from the fracture pressure. The
reflected pressures tabulated in Table 4.10 are found by linear interpolation. To enable
modelling of the glass panes that fractured, a function describing the pressure load was
derived. The pressure load was defined with the following expression:

P (t) = Pr −
Pr − Pf
tf

· t (4.3)

where Pr is the reflected pressure, Pf is the fracture pressure and tf is the time at fracture.
The midpoint deflection in the three glass panes was, as seen in Table 4.10, varying

from 3.594 mm to 5.519 mm in the three experiments. The glass panes with the initial
fracture on the edges fractured at a higher mid-point deflection than the pane with crack
initiation in the middle. To evaluate the severeness of the fracture, the velocity of the
fragments after impact was calculated. For the calculation to be possible, the DIC program
needed to be able to track a subset on a fragment with both cameras after the shattering of
the glass pane. For the glasses FG-01, FG-02 and FG-03 the subset in the middle remained
more or less intact for the DIC analysis to track the fragments, and therefore this subset
was used for the velocity calculations for all three panes. The resulting fragment velocities
were estimated to be 23.441 m/s, 16.516 m/s and 12.688 m/s respectively. The velocities
calculated were average velocities of the mid point subset, and not the maximum velocity.
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Figure 4.12 and 4.13 shows the fracture propagation in test FG-03. t = 0 ms is defined as
when the initial cracks appear in the pane.

(a) t=0.00 ms (b) t=0.16 ms

(c) t=2.29 ms (d) t=3.91ms

Figure 4.12: The failure propagation of the glass pane FG 03
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(a) t=5.95 ms (b) t=8.41 ms

(c) t=10.03 ms (d) t=13.67ms

Figure 4.13: The failure propagation of the glass pane FG 03

To evaluate the shape of the glasses at fracture initiation, a surface plot was made.
Figure 4.14 shows the displacement of glass FG-01 and FG-02 in 3D at the time of fracture.
The colour bar in both plots is set to the same limits for an easier comparison. As also
stated in Table 4.10, the displacement of FG-01 is significantly lower than FG-02. This is
due to the crack initiation in the middle of the glass pane in test FG-01 and the initiation in
the edge in test FG-02. If the critical microcrack is located in the centre of the specimen,
the fracture will happen at an earlier point than if the critical microcrack is in the edge due
to stress concentrations in the middle.
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Figure 4.14: Glass displacement at the time of fracture for FG-01 and FG-02

Rest of the float glasses were tested 13th of March 2017. Four blast experiments were
conducted on three panes, FG-04, FG-05 and FG-06. For the glass panes tested in this
series, the fastening torque was reduced to 100 Nm. This was to check if the boundary
conditions may have affected the experiments conducted in the previous series. The first
test was run with the same desired driver pressure as for the first three experiments, 1.5
bar, and this caused the glass to fail. The fracture was initiated in at the edge of the glass.
The second experiment, FG-05-1 was run with the same conditions as the previous, but
this time the glass refrained from fracturing. Glass pane 05 was then tested again with an
increased desired driver pressure, 2.1 bar, which resulted in a fracture with initiation in the
lower edge. This test is denoted FG-05-2. Before the second test, the glass was checked
for cracks, and none were found. Though no cracks were visible to the naked eye, micro
cracks may have grown or formed in the glass pane during the first experiment. Thus the
use of the same pane in several tests is not recommended. Experiment FG-06 was run with
the desired driver pressure of 1.5 as for the first two tests and fractured at the edge of the
pane. The reflected pressures recorded during the experiments conducted March 13th are
presented with the maximum displacements in Table 4.11. In the case of FG-05-01, the
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∆M is the maximum midpoint deflection of the glass, since it did not fracture. In Figure
4.15, the crack initiation in the fractured glasses are shown.

Table 4.11: Pressures recorded during experiments FG-04 to FG-06

Test Pane Pf [bar] Pr [bar] ∆M [mm] Fracture initiation
FG-04 04 1.599 0.655 5.676 At the edge

FG-05-1 05 1.569 0.625 5.446 No fracture
FG-05-2 05 2.057 0.734 5.966 At the edge
FG-06 06 1.322 0.530 4.644 At the edge

(a) FG-04 (b) FG-05-02 (c) FG-06

Figure 4.15: Crack initiation on the monolithic glasses tested 13/3-17

As for the first test series, the reflected pressures in the cases where the glass pane
failed was found with linear interpolation from the fracture point. From the results, it may
be seen that the variance in the mid-point deflection at fracture, or at maximum, is lower
than in the first three experiments. The lowest maximum displacement was 4.644mm, and
the largest was 5.966mm. The maximum and minimum reflected pressures, Pr, coincides
with the extremes in displacement. Compared to the tests ran in the previous series, the
deflections are in the same order of magnitude. This may signify that the fastening torque
did not affect the results significantly. The bolt stoppers used in the clamping of the plate
may decrease the effect of the fastening torque.

From thin plate theory, it is known that the highest effective stress in a thin plate sub-
jected to uniform pressure is in the centre, and thus the fracture should most likely happen
there. As seen in the results, this is not the case for these experiments. This may be due to
the distribution of microcracks in the glass. As described in Section 2.4, microcracks are
the reason for failure in brittle materials. The authors suspect that the a large microcrack in
glass pane LG-01 was close to the centre and due to the stress concentration in the middle,
the failure happened at a lower midpoint deflection than the other samples. Glass panes
with large micro cracks in the centre of the pane will fail at a lower displacement than glass
panes with large cracks in the perimeter when subjected to loading as in this experiment.
By studying the image with the first crack from test FG-02, it may look like the crack is
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propagating from within where the glass is clamped. See Figure 4.16. Several of the glass
panes investigated showed the same tendency. Of the float glass panes tested, three of the
glass panes had the failing crack initiated in the middle of the lower boundary of the pane.
This may be a coincidence and be due to large occurring microcracks in that area, or it may
signify that the boundary conditions are not hundred percent uniform around the panes.

Figure 4.16: Crack propagation from within the clamped zone of glass FG-02

The fragment velocities were calculated for the tests in this series in the same man-
ner as for the previous serie. The resulting velocities were 15.291m/s, 19.142m/s and
13.604m/s for tests FG-04, FG-05-2 and FG-06 respectively. The fragment velocity in
test FG-05-02 was slightly higher than the other two, and the authors suspect this to be a
result of the increased reflected pressure. This being said, the fragment velocity in FG-01
is higher than the velocity in FG-05-02 even though Pr is lower. The difference in the
results are caused by the location of the fracture initiation. When the glass pane fractures
at the edges the whole pane accelerates at approximately the same rate. When the fracture
is initiated in the middle, the fragments accelerates at a higher rate than the rest of the
glass pane resulting higher velocity. The fracture of glass panes FG-01 and FG-05-2 are
shown in Figure 4.17. The difference in shape and fracture pattern may cause the different
fragment velocities
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(a) FG-01

(b) FG-05-02

Figure 4.17: Failure comparison between FG-01 and FG-05-2

As a control of the boundary conditions, a DIC-analysis of the frame was performed
for the test with the highest driver pressure, FG-05-02. By extracting the DIC data from
the point-tracking stickers on the frame, a 3D plot of the frame at three different times was
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made, shown in Figure 4.18. The times of the plots are defined as the time before the blast
hits the glass at t = 0.0 ms, the maximum displacement of the frame at t = 4.5 ms and
an intermediary time at t = 3.625 ms. As seen in the figure the displacement is small, and
the authors deemed them as negligible in comparison to the displacement of the panes. As
earlier mentioned, the error in the 3D DIC analysis may be up to 0.07 mm, and thus the
results have to be interpreted with caution. Figure 4.18 is therefore a more qualitative than
a quantitative representation of the behaviour of the frame during the blast. The shape of
the displaced frame matches the expected response. As seen in Figure 4.8 the distance
from the bolts to the glass longer on the sides of the frame than in the corners. So a stiffer
response in the corners was expected.
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Figure 4.18: DIC analysis of the frame at three different times with use of FG-05-02

Laminated Glass

As for the monolithic glasses, the experiments conducted on the laminated glasses were
spread over the same two days with the same conditions. The first day with experiments
three tests were run on the same specimen, denoted LG-01. The laminated glass pane did
not fracture during the two first experiments, but fractured during the third. The driving
pressure was increased from experiment to experiment and this was done to gain an ini-
tial impression of the capacity of the laminated glass. The desired firing pressures for the
different experiments were 6.7, 7.7 and 8.6 bar for the respective experiments. The Fried-
lander parameters were calculated with the MATLAB script used for the float glass panes
and the deflections were found with DIC analysis. Unfortunately, the membranes in the
driver failed prematurely in test LG-01-3 causing the blast to go off before the recording
had started. As a result, there were no pressure recordings or images taken during this
experiment. Between the tests, the pictures of the glass panes were examined to check
for damage inflicted during the previous trials, but none were found. The pressure data
along with the maximum midpoint deflection are listed in Table 4.12. As mentioned, the
aluminum frame used in the clamping of the float glass panes was replaced with a steel
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frame. For the three tests run in this series the fastening torque was 150Nm.

Table 4.12: Pressure data from the tests LG-01-1 to LG-01-3

Test Pane Pf [bar] Pr [bar] ∆M [mm] Fracture initiation
LG-01-1 01 6.317 1.697 3.695 No fracture
LG-01-2 01 7.669 2.014 4.793 No fracture
LG-01-3 01 8.142 No data No data No data 1

The parameters of the Friedlander curve fit for the experiments conducted during the
first series are tabulated in Table 4.13:

Table 4.13: Friedlander parameters for blasts experiments on laminated glass panes

Experiment Pr [bar] t+ [ms] b [-]
LG-01-1 1.6965 19.371 1.1803
LG-01-2 2.0144 20.833 1.3205
LG-01-3 No data No data No data

The laminated panes were able to withstand a greater pressure than the float glass,
which also was expected. As a way to describe the response in the panes when subjected
to the blast, the pressure recorded in the sensor closest to the specimen and displacements
have been plotted together in Figure 4.19. At firing pressure 8.142 bar, both glass panes
fractured, but due to the lack of data, the experiment could not be plotted.
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Figure 4.19: Correlation between pressure and displacement during blast tests

It may be seen in the Figure 4.19 that the displacement curves and the pressure data
match the values presented in Table 4.12. The overall displacement of the midpoint is
larger in test LG-01-2 than in LG-01-1 due to the higher loading pressure. t = 0.0 have

1Based on an examination of the pane after the experiment, the authors believes the fracture was initiated in
the middle
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been set to the time when the first impact of the blast wave hit the sensor closest to the
glass, denoted P1-01.

The second test series was conducted 13th of March. During this day experiments
LG-02-1, LG-03-1, LG-03-2, LG-03-3 and LG-04 were conducted. In series of tests, the
fastening torque of the bolts were 100Nm, and the steel frame was used. The desired firing
pressure for the first experiment this day, LG-02, was 6.7 bar, as for experiment LG-01-1.
This time the glass pane fractured. For test LG-03-1 the same desired firing pressure was
tried, but in this experiment, the glass did not fracture. Pane LG-03 was then examined for
damage before it was tested again. Between test LG-03-1 and LG-03-2, the bolts fastening
the frame were checked and the fastening torque had not changed and was still 100Nm.
For test LG-03-2 the desired firing pressure was increased to 7.7 bar, but the glass did
not fracture. In test LG-03-3 the desired firing pressure was increased to 8.6bar, and it
resulted in the fracture of the pane. In experiment LG-04 the desired firing pressure was
8.6 bar. The reflected pressure and midpoint deflection at fracture, ∆Mcr is presented in
Table 4.14.

Table 4.14: Pressure data recorded the experiments. (*) shows the maximum displacement of the
glass without fracture.

Test Pane Pf [bar] Pr [bar] ∆Mcr[mm] First fracture
LG-02 02 6.258 1.673 3.307 Close to the middle

LG-03-1 03 6.345 1.631 3.666* No fracture
LG-03-2 03 7.593 1.989 4.541* No fracture
LG-03-3 03 9.101 2.188 4.985 Close to the middle
LG-04 04 8.628 2.079 2.993 Close to the middle

The parameters of the Friedlander curve fit for the experiments conducted during the
second series are tabulated in Table 4.15:

Table 4.15: Friedlander parameters for blasts experiments on laminated glass panes

Experiment Pr [bar] t+ [ms] b [-]
LG-02-1 1.6732 19.393 1.1495
LG-03-1 1.6317 19.188 1.0032
LG-03-2 1.9893 21.273 1.3997
LG-03-3 2.1876 24.000 1.6923
LG-04-1 2.0786 22.409 1.4579

As seen in Table 4.14 the displacement of the mid-point at fracture varies significantly.
Additionally, both LG-03-01 and LG-03-02 have a larger mid-point deflection than LG-02
and LG-04, but without failure. These results emphasise the difficulties estimating the
fracture strength when studying glass and laminated glass panes. When comparing to the
regular float glass tests, the displacement at failure for the float glass panes was generally
larger than for the laminated ones. This implies that the laminated glass panes are stiffer
than the float glass panes. The initial fracture patterns for the panes that fractured are
shown in Figure 4.20.
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(a) LG-02

(b) LG-03-03 (c) LG-04

Figure 4.20: Crack initiation on the laminated glass panes tested 13/3-17

From the images of crack initiations, it may be seen that for the laminated glass panes
the fracture occurred close to the middle in all three tests. This is in contrast to the float
glass tests where the majority of the glass panes fractured close to the edge of the glass.
With the number of experiments ran being this low it may be a coincidence, but worth
mentioning. Another possible explanation for the difference in crack initiation may be the
stress distributions in the different specimens. A reason for the cracks being centred in the
middle may be that the laminated glass pane consists of two glass layers with a different
distribution of microcracks. The probability of the critical microcrack being in the same
place in both the glass panes is small, and therefore a fracture in the middle may be more
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likely as the stress concentration is at its maximum in this area. As for the glass panes
tested in the previous series, a plot showing the correlation between pressure and displace-
ment was made for these experiments. In Figure 4.21 the pressure and displacement graphs
are presented with the fracture point for the glass panes that failed.
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(b) LG-03-2
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(c) LG-02
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(d) LG-03-03
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Figure 4.21: Correlation between pressure and displacement during blast tests 13/05-17
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The pressure plotted in Figure 4.21 is the recorded pressure from sensor P1-01. The
maximum displacements for the specimens that failed are much higher than for the ones
that did not. An exception is LG-02 where one glass pane fractured, but with a displace-
ment curve following the same pattern as the samples that withstood the blast. By looking
at the images at maximum displacement, it is clear that glass LG-02 has significantly less
damage than the specimens LG-03-03 and LG-04. When examined after the experiments
it was seen that only one of the glass layers fractured. As seen in Figure 4.22 the size of
the glass shards in the pane are much smaller for LG-03-03 and LG-04 than for LG-02.
This may signify that the loading in LG-02 was close to the resistance of the laminated
glass pane, while the loading in LG-03-03 and LG-04 was far over the limit of strength.
The PVB did not rupture in any of the experiments conducted in wither of the series.

(a) LG-02

(b) LG-03-03 (c) LG-04

Figure 4.22: Damage in the glass at maximum recorded displacement
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4.2 Blast testing

For LG-02 the glass had the same post fracture behaviour as the specimens that did
not fail, oscillations in the midpoint displacement. The post-fracture behaviour of LG-03-
03 and LG-04 had a bigger displacement during the experiment and a larger permanent
deflection at the end of the test. For completely fractured panes as LG-03-03, a possible
failure propagation during the blast is shown in Figure 4.23 and 4.24. In the case of these
figures, t = 0 ms is defined as the time when the first crack appears in the glass pane.

(a) t=0.00 ms (b) t=0.625 ms

(c) t=1.708 ms (d) t=2.542ms

Figure 4.23: The failure propagation of the glass pane LG-03-3
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(a) t=3.458 ms (b) t=5.500 ms

(c) t=6.500 ms (d) t=9.417 ms

Figure 4.24: The failure propagation of the glass pane LG-03-3

The effect of the PVB interlayer becomes clear when comparing the failure of a float
glass pane with the failure of a laminated glass pane, i.e. Figures 4.13 and 4.24. In the
failure propagation of the laminated glass pane the glass shards are small and still fastened
to the PVB while in the float glass case, large glass shards accelerate after the blast and
could potentially do damage to objects or people close to the blast. In Figure 4.24d it
may be seen that glass dust is spreading from the glass pane, and compared to the shards
from float glass blast response, this dust is several orders of magnitude smaller than the
float glass fragments and is naturally less dangerous. On the images from the experiments
conducted on laminated glass panes, no shards of glass were seen loosening from the PVB
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4.2 Blast testing

only ”powder” as seen in Figure 4.24d
As discussed in Section 3.1.2, PVB is a highly strain rate sensitive material. With

that in mind, a study was conducted to estimate the strain rates in the PVB during the
shock tube test. For the study, the experiment with the largest displacement and pressure
was selected, in order to find the highest strain rates. The experiment selected was LG-
03-3. To estimate the strain rates, a DIC analysis of the markers shown in Figure 4.25a
was conducted to export the displacements in x-, y- and z-direction. Then, the relative
displacements between point 3 and point 1, 2, 4 and 5 were calculated to find how the
middle point moved compared to the surrounding points. With the relative displacements
found, Pythagoras theorem in 3D was used to find the resulting engineering strain between
points 1-3, 2-3, 4-3 and 5-3. The original distances, L0, from the surrounding points to
the midpoint were all 60 mm. The calculated engineering strain was then averaged to find
an estimate of the strain in the area as a function of time. Due to big variations in strains
between the different points, the authors chose to average the strains. By numerical differ-
entiation, the strain rate was then calculated. In Figure 4.25b the results of the estimation
is presented with the mid-point displacements and fracture point.
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(b) Strain rate and displacement

Figure 4.25: Selected markers and the results of the strain rate estimation

As the glass pane fractured and the displacement grew, the DIC program eCorr lost
track of some of the subsets. The strain rate estimation was therefore stopped when the
software lost track of one of the selected markers. This happened at approximately t =
12.5ms. It is emphasised that this is a rough estimate as the strains are calculated from a
small number of discrete points.

As for the case of the float glass panes, a control of the boundary conditions was
performed for the laminated glass blast tests. The frame used in the blast tests of lami-
nated glass was made of steel which should imply less relative displacement in the frame
compared to the frame made of aluminium. However, the increase in loading pressure was
expected to increase the deflection. The experiment with the highest loading pressure, LG-
03-3, was chosen because of the highest expected displacements. A DIC analysis of the
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Chapter 4. Experiments

point-tracking markers on the frame was conducted to obtain the corresponding displace-
ments during the tests. Displacements at three different times were plotted in MATLAB,
and the resulting 3D plot is presented in Figure 4.26. t = 0 ms is the time at impact,
t = 6.29 ms the time with maximum displacement in the pane and t = 5.04 ms is an
intermediary point
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Figure 4.26: Frame displacement during LG-03-3

As for the boundary condition control conducted for the float glasses, the results have
to be interpreted with caution due to the inaccuracy of the DIC measurements. As seen
in the figure the displacement of one of the corners at t = 5.04s is negative which makes
no sense. This may be due to relative movement in the entire shock tube. Additionally,
the maximum measured displacements are under 0.25mm, which makes the displacement
negligible when compared to the glass pane displacements. With a possible error up to
0.07mm, the results may only be used as a qualitative representation of the behaviour of
the frame.

A study was conducted to compare the displacements of the frame with different fas-
tening torques. Neither of experiments LG-01-2 or LG-03-2 fractured during the tests and
the reflected pressure in both the experiments were approximately 2 bar. The only differ-
ence between the experiments was the fastening torque. The displacements of the frames
were plotted together for comparison, but the displacements were low. No clear pattern
was seen and the results were thus excluded from the thesis.
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Chapter 5
Numerical Modelling - Four point
bending test

In this section, the numerical modelling of the four point bending test will be presented.
The modelling will be limited to the large specimens.

5.1 Standard model

In the numerical modelling of the large specimen (300×60 mm), various numerical pa-
rameters were assumed from the start to achieve a standard model for a further parameter
study. Symmetry was used in both x- and y-direction, as seen in Figure 5.1. Thus only
a quarter of the beam was modelled. Both the glass and the PVB was modelled with
10×10 mm-mesh with one element over the thickness. To capture the bending effect
properly, the 3rd order solid hexahedron element shown in Figure 2.14 was used in both
the glass and the PVB. The adhesion of the PVB to the glass panes was done by using the
*MERGE-function. Both the glass and the PVB were simplified and modelled as linear
elastic materials with the use of three parameters; Young’s modulus (E), Poisson ratio
(ν) and density (ρ). The PVB was assumed linear elastic to reduce the complexity and
since the PVB does not contribute notable to the strength before fracture takes place in the
glass, in a quasi-static test. Since the experimental results for Young’s modulus tabulated
in Table 4.6 dispersed significantly due to a component test instead of a material test, E
for glass was taken from the literature. The standard beam was modelled within the elastic
area and without any fracture criteria. The total time was sat to t = 0.1s. The material
parameters are listed in Table 5.1.
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Chapter 5. Numerical Modelling - Four point bending test

Table 5.1: Material parameters for PVB and Glass

E [MPa] ν ρ [kg/m3]
PVB 2.36 [56] 0.45 [56] 1100 [3]
Glass 70000 [24] 0.23 [24] 2500 [12]

Rigid pipe-sections were used to model the supports and loading cylinders. To obtain
a smooth surface, the *SMOOTH MESH-function was utilized. The density was sat to ρ =
7800 kg/m3 [57] as it was made of stainless steel. The two supports was constrained from
translation movement in all directions, while the loading cylinders only were able to move
orthogonally to the laminated glass (z-direction). All cylinders were able to rotate freely,
which was also the case in the experiment. A general contact formula was used, where
all surfaces were allowed to be in contact. The load was applied by using the integrated
smooth displacement function:

smooth d(dmax, t0, t1) (5.1)

which gave a smooth displacement increasing from 0 at time t0 to dmax at time t1. Since
the experimental specimens had a mid-span deflection within a range between 2.2-3.2 mm,
the dmax was given a value of 3 mm, which assured a curve through the experimental data.
A general representation of the numerical standard model is shown in Figure 5.1.

Figure 5.1: General setup of the numerical 4 point bending-model made in IMPETUS. Symmetry
was used in both x- and y-direction.

After the standard model had been established, the simulation was conducted. In Fig-
ure 5.2 the resulting force-displacement curve plotted in MATLAB is presented. The ex-
perimental results are presented with the black scatter plot, which represents the fracture
point for each test specimen. It can be seen that the results from the standard beam were
found to be a bit softer than the experiments, but as a first simulation, the curve was found
sufficient. Further parameter studies were conducted to find a better fit to the experiments
later in this chapter. Another thing to notice is the shape of the curve. Some explicit noise
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5.2 Parameter study without fracture criteria

appears in the results due to the short simulation time. This issue will be checked later in
the chapter using an extended total time with a slower loading speed, which should give
smaller dynamic oscillations. The kinetic energy was under 0.1% of the internal energy,
so no inertial effects were added.

0 0.5 1 1.5 2 2.5 3 3.5

Displacement [mm]

0

100

200

300

400

500

600

700

F
o
rc

e
 [
N

]

Standard model

Experiment

Figure 5.2: Resulting force-displacements curve for the standard model implemented in IMPETUS

5.2 Parameter study without fracture criteria
To attain a better standard model for further studies, a parameter study of the total time
and Young’s modulus was conducted without the use of fracture criteria in the glass. The
standard model presented in Figure 5.2 was used as template in this study.

5.2.1 Total time
As mentioned in Section 2.7.1, explicit methods are not fitted for quasi-static simulations
with long total times due to the maximum time step criterion. With the use of the standard
model, the critical time step was found directly from IMPETUS to be approximate ∆tc =
2 × 10−7 s. From the four point bending experiment of the large samples, the loading
speed was sat to v = 8.6 mm/min. For a cylinder displacement of 3 mm, the simulation
would have required more than 104 million time steps. To avoid lengthy simulations, it
is evident with time scaling on the cost of some dynamic oscillations. Four simulations
with different total times were conducted. With resulting force-displacement curves in the
same graph, the differences were not shown adequately, so the curves are separated into
four different graphs presented in Figure 5.3. The corresponding time steps and running
times are tabulated in Table 5.2.
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(b) t=0.15s
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(c) t=0.20s
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Figure 5.3: Force-displacement curve for different total times

Table 5.2: Different total times with corresponding time steps and running times

Total time [s] Time steps Running time
0.10 496 610 41min 37s
0.15 744 914 55min 53s
0.20 993 218 1h 17min
0.25 1 241 522 1h 34min

The fluctuations are decreasing with the use of longer total times. For the simulations
with t = 0.10s and t = 0.15s, it is shown areas with visibly higher fluctuations at the
beginning and the end compared to the middle area. The fluctuations are too large and
inconsistently in these simulations. The simulations with t = 0.20s and t = 0.25s also
have fluctuations, but they are smaller and more consistently stable in their behaviour. To
reduce the computational cost and since both curves showed satisfactory results, t = 0.20s
is the preferred choice of time and is being used for further parameter studies. The kinetic
energy is small in all simulations compare to the internal energy, and the slope is well
represented inn all the simulations.
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5.2 Parameter study without fracture criteria

5.2.2 Young’s modulus

As earlier mentioned in Section 3.1.1, float glass is shown to be insensitive to strain rate
when it comes to Young’s modulus. Also from the literature [19; 24; 12], the Young’s
modulus for glass is consistently being defined as Eglass = 70 GPa. Therefore, the Eglass
was defined as constant in this thesis as well, being 70 GPa. The PVB, on the other
hand has shown to be highly strain rate dependent, mentioned in Section 3.1.2, and was
found to be a suitable parameter to being modified. Epvb-values of 2.36, 5, 8 and 10 MPa
were applied, and the resulting force-displacement curve together with the corresponding
experimental fracture points from the large samples is shown in Figure 5.4.
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Figure 5.4: Force-Displacement curve for different Young’s moduli applied in IMPETUS, large
samples

The resulting graphs were as expected. With a larger Young’s modulus, the model
got a stiffer behaviour. The curve with the use of Epvb = 5 MPa showed a different shape
compare to the other curves with longer steps between the oscillation tops and with slightly
bigger oscillations. The authors could not find the logic behind it considering that only the
E-modulus was changed, but the elastic slope was clearly in good agreement with what
was expected.

Looking at Figure 3.1, the initial stiffness of PVB is shown to lie around 10-12 MPa
for the curve with ε̇ = 0.2s−1. The strain rate in the four point bending experiment was
below ε̇ = 1.0· 10−4s−1, discussed in Section 4.1.1. Since PVB has a softer behaviour at
lower strain rate, the numerical results looked reasonable with the lowest value of 5 MPa
and the highest value of 10 MPa. The best fit was in the author’s opinion the model using
Epvb = 8 MPa, and this was also used for further parameter studies.
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Chapter 5. Numerical Modelling - Four point bending test

5.3 Parameter study with fracture criteria

In this section, a failure criterion was added to the model to see how different mesh sizes
and different critical stresses contributes to the simulation output. It is noted that for
larger thin plate models, symmetry should be used with caution while simulating brit-
tle materials like glass due to cracks occurring randomly over the specimen. The au-
thors considered the test specimen to be small enough and because no initial damage
was added in the model, symmetry was found to be suitable. Shorter computational time
was also taken into account when symmetry was chosen. The fracture criteria feature
*PROP DAMAGE BRITTLE consisted of the critical stress (σc) and the critical stress
factor for crack propagation (Kc), and are tabulated under in Table 5.3. Node splitting was
used instead of element erosion as erode method.

Table 5.3: Fracture criteria for glass

σc [MPa] Kc [MPa
√
mm]

47.47 [12] 23.72 [12] 1

5.3.1 Mesh size

Elements over the specimen face

To examine the effect of the mesh size, four different element sizes were tried out over
the specimen face in both the glass and PVB. Mesh sizes of 15 × 15, 10 × 10, 5 × 5 and
3× 3mm were simulated and compared. Other parameters from the previous section were
held constant. The resulting force-displacement curve is presented in Figure 5.5, while the
corresponding Number of elements (NOE) and running times can be seen in Table 5.4.

Table 5.4: Different mesh sizes with corresponding time steps and running times

Mesh size [mm] NOE Running time
15×15 2620 1h 19min
10×10 2695 1h 36min

5×5 3100 5h 41min
3×3 4060 15h 20min

1Value converted from 0.75MPa
√
m
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Figure 5.5: Force-displacement curve with different mesh sizes in both the glass and PVB

It may be seen from Figure 5.5 that neither the force-displacement curve or the fracture
points are changing noteworthy. The fracture point varies within a displacement value of
0.035 mm between Mesh 15 × 15 and Mesh 3 × 3, which is considered negligible. It
is however noted that the fracture strength shows the trend of being slightly larger for
coarser meshes. This is presented in the zoomed-in-box in Figure 5.5. The initial fracture
pattern seen from underneath the specimen is shown in Figure 5.6. It indicates that all the
meshes have a fracture pattern mainly in the middle part of the specimen, which also was
expected. All in all, the study indicates that the model is insensitive to mesh size in the
elastic area, which may be caused by the 3rd order element choice. These elements are as
earlier mentioned able to capture the bending well and may be more insensitive to mesh
sizes. The running time with smaller elements increased significantly, shown in Table 5.4.
With the coinciding results and the big difference in running times, the authors chose to
use the 10× 10-mesh for further studies.
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(a) 15×15 mm (b) 10×10 mm

(c) 5×5 mm (d) 3×3 mm

Figure 5.6: Initial fracture pattern seen from underneath the specimen for different mesh sizes

Elements through the glass thickness

Three different number of elements (1, 2 and 3 elements) were simulated through the
thickness of each glass pane. The PVB layer was held constant with the use of one element
through the thickness, and the standard mesh of 10 × 10 mm was used on the faces of all
layers. Rest of the model used parameters as given earlier in this section. The resulting
force-displacement curve is plotted in Figure 5.7. The corresponding running times are
tabulated in Table 5.5.
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Figure 5.7: Force-displacement curve for a different number of elements applied through the thick-
ness of each glass pane
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Table 5.5: Elements through thickness of glass panes with corresponding running times

Elements through glass thickness Running time
1 element 1h 36min
2 elements 6h 3min
3 elements 10h 14min

As in the mesh size study, the curves up to the first fracture point is shown to have the
same shape, which gives a consistent bending stiffness for all three simulations. The point
of fracture, on the other hand, occurred earlier with more elements through the thickness.
It is believed to happen because the stress concentration gets bigger with a finer mesh, and
will therefore reach the fracture criteria faster.

When a crack starts to propagate through a thin glass pane, it requires a small amount
of energy for the crack to propagate through the whole thickness. With the use of more
elements in the numerical model, the crack propagation may suddenly stop in the middle
of the pane, see Figure 5.8, which is a nonphysical behaviour. The initial fracture pattern
seen from underneath the specimen is shown in Figure 5.9. With use of more elements,
less cracks occurs over the longitudinal direction, which also is case for in the experimental
specimens shown in Figure A.3 in Appendix A. This being said, none of the fracture
patterns shows any particular good compliance compare to the experiments. With a notable
lower running time and from the authors opinion a more realistic setup, 1 element (3rd

order) through the thickness was used for further studies.

Figure 5.8: The cracks do not propagate throughout the upper glass pane when 3 elements are used
in the glass thickness.
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(a) 1 element

(b) 2 elements (c) 3 elements

Figure 5.9: Initial fracture pattern seen from underneath the specimen for a different number of
elements through the glass thickness

5.3.2 Critical stress
For this parameter study, five different critical stress values were used. From earlier results,
the standard model with use of σc = 47.47 MPa showed to lay within the experimental
results, but a little bit higher than the mean value. With this in mind, one higher and
three lower σc-values were tried out, ranging from 30MPa to 50MPa. The critical crack
propagation factor (Kc) was held constant as given in Table 5.3. The resulting force-
displacement curve is shown in Figure 5.10.
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Figure 5.10: Force-displacement curve for a different number of critical stress-values
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5.4 Summary and Discussion

From the figure, the five simulations showed to be located on top of each other until
each of them fractured, which naturally means that the critical stress does not influence the
bending stiffness. The fracture strength, on the other hand, showed to be highly affected
by the critical stress, which also was expected. The models have the same stress buildup,
but fractures at different stress values. The running times were approximately the same for
all simulations and did not show any systematically change with different σc-values.

The different simulations were able to represent the whole experimental set, from low-
est value of 35MPa up to 50MPa. The model with use of 30MPa was the only test outside
the experiments. The mean value and best fit seemed to be located around 43-44MPa.

5.4 Summary and Discussion
To summarise the numerical modelling of the four-point bending test, it is natural to com-
pare the results of the simulations with the results of the experiment. With the use of
elastic beam theory, no trustworthy material parameters were calculated from the exper-
imental results. Material parameters were taken from the literature. The explicit code
in IMPETUS was able to describe the behaviour of the glass up to cracking. As seen in
Figure 5.2 showing the force-displacement curve for the standard beam, the graph did not
intercept the scattered area representing failure in the experiment. Only elastic properties
were given to the materials and a fracture criteria was given to the glass when mesh size
and critical stress studies were conducted. As seen in the results, the curves are oscillating
as a consequence of numerical noise. This is a direct effect of the essential time scaling.
When neglecting the noise, the numerical results showed the expected linear relationship
between the force and displacement.

As discussed in the results, the different parameters affected the graphs in different
ways. The increase of total running time decreased the magnitude of the fluctuations,
but at the price of higher computational cost. The Young’s modulus of PVB affected the
flexural strength as assumed, and the higher Young’s modulus, the higher stiffness the
specimen got. As seen in Figure 5.5 and 5.7, different mesh sizes in the over the specimen
face did not affect either the flexural or fracture strength, while extra elements in the glass
thickness decreased the fracture strength. The running time went significantly up with
the use of both smaller and more numerous elements. The results from the critical stress
parameter study were as expected; no changes in the stiffness or any noteworthy graphical
appearance, just earlier fracture of the glass.

As a concluding remark, the IMPETUS code was in the author’s opinion able to de-
scribe the elastic behaviour of the laminated glass adequately. It had some numerical
noise but showed the expected linear response. In Section 2.7.3, it is stated that the ex-
plicit method is ideal for high-speed dynamic simulations while the implicit method is the
preferred choice in quasi-static simulations. When large non-linearities are involved, ex-
plicit method is the best choice. For the four point bending simulation, an implicit method
would have been the best option, but since IMPETUS Afea Solver only operates with an
explicit method, this was not possible. This led to longer running times.
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Chapter 6
Numerical Modelling - PVB tensile
test

PVB and the properties of PVB plays an important role in laminated glass exposed to blast
loading, and it is important to be able to model the material correctly. A ”reverse engi-
neering” approach was used to calibrate a material model aimed to work at the different
strain rates the PVB is subjected to during a blast experiment. The experimental data used
for comparison was adapted from Hooper et. al [3]. In this chapter, a numerical model of
a PVB tensile test will be presented.

6.1 Results from Hooper et.al

Hooper et. al performed tensile tests on dog-bone specimens cut from a sheet of PVB. The
specimens had the dimensions according to Type 2 as recommended in the ISO 37:2011
[58] with a thickness of 0.76 mm, see Figure 6.1. The tests were run at different loading
rates to check how PVB reacted when stretched at various strain rates. The strain rates
tested were 0.2s−1, 2s−1, 20s−1, 60s−1 and 400s−1.
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Chapter 6. Numerical Modelling - PVB tensile test

Figure 6.1: Dimensions of the dog-bone specimen tested in the PVB tensile tests by Hooper et. al
[3]

To convert the engineering stress-strain-curve from Hooper’s papir into numbers, the
plot extract program ”Web Plot Digitizer” was used. The picture of the stress-strain graph
from Hopper’s experiment was uploaded in the program, and four reference points were
set so the software could define a coordinate system. Each curve was then established
through 70-100 points. Web Plot Digitizer provided a text file with all the coordinates so
they easily could be plotted in MATLAB. Both plots are shown in Figure 6.2.
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Figure 6.2: a Procedure of the extraction of stress-strain data from Hooper et al. [3] in Web Plot
Digitizer b Engineering stress-strain curve

When considering large strains as ε > 2, a non-negligible reduction in cross-sectional
area is often introduced. This leads to higher stress concentration and needs to be taken
into account. The true stress, σt, uses the current cross-section instead of the original cross-
section. For rubbery materials where the Poisson ratio lies close to 0.5, which implies an
incompressible material, the volume is constant for any change in the cross-sectional area.
With this assumption, the relation:

σt = σ(1 + ε) (6.1)

applies where ε is the engineering strain and σ is the engineering stress. The stretch ratio,
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λ, is defined with use of the engineering strain by the relation:

λ = 1 + ε (6.2)

Using these relations, a true stress-stretch ratio graph from Hooper’s et. al was calculated
using MATLAB. The resulting plot is shown in Figure 6.3.
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Figure 6.3: MATLab plot of the true stress vs. stretch ratio from Hooper et. al [3]

6.2 Model of specimen
To recreate the tests conducted by Hooper et. al [3] the specimen was modelled in IMPE-
TUS. This was to ensure that the material models available in IMPETUS were properly
calibrated before the numerical simulations of the blast tests. As pointed out initially this
was the goal of the PVB stretch modelling.

A preliminary study was conducted to determine which geometry should be used in
the numerical simulations. The computational most efficient way to simulate the tensile
test would be to only model the 20 × 4 × 0.76 mm gauge in the middle of the dog-bone
sample instead of the whole specimen. To verify whether or not a simulation with only the
gauge was applicable, the results from a model of the whole specimen was compared to
the results from a model of only the gauge.

The dog-bone specimen was modelled with the dimensions as pictured in Figure 6.1. A
mesh file was generated in ABAQUS and then imported to IMPETUS. In order to capture
the deformations in the gauge properly, the mesh in this area was refined. Additionally,
the polynomial order of the elements in the exposed zone was changed in the IMPETUS
code to 3rd order. The meshed dog-bone is shown in Figure 6.4a.
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(a) Dog-bone model

(b) Simple model

Figure 6.4: Dog-bone and simple model used in the preliminary study of PVB tensile test

The dog-bone was loaded at one end with the *smooth d-function used in Chapter 5,
and was fixed at the other end. In the preliminary study, for simplicity, the PVB was set as
linear elastic with material parameters as listed in Table 6.1

Table 6.1: PVB material data for the preliminary study

E [MPa] ν ρ [kg/m3]
2.36 [56] 0.45 [56] 1100 [3]

The model with just the gauge was simplified to a minimum. The gauge was modelled
with one 8-node hexahedron element with the dimensions described above. The boundary
conditions were the same as for the dog-bone mode, as was also the material data tabulated
in Table 6.1, the strain rate and the maximum displacement. The comparison, in the form
of a stress-strain curve, was conducted with the maximum strain rate of 400 s−1. The
effects of the geometry and size of the specimen were assumed more significant at higher
strain rates as the consequences of the stress wave propagation through the specimen was
assumed to be larger than for the lower strain rates. As seen in Figure 6.5 the stress-strain
curve are more or less the same for the two geometries. Based on this control, the authors
continued with the simple model to save computational power.

82



6.3 Bergström-Boyce material model

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Stretch ratio,  [-]

0

0.5

1

1.5

2

2.5

3

T
ru

e
 S

tr
e
s
s
, 

t [
M

P
a
]

Dogbone

Simple

Figure 6.5: Stress strain comparison between the fully modeled dog-bone and the simplified model

6.3 Bergström-Boyce material model

To describe the behaviour found in the experiments done by Hooper et. al, shown in
Figure 6.3, the Bergström-Boyce (BB) material model was calibrated. As mentioned in
Section 3.2.3, BB is a constitutive model with two networks, one that gives the equilibrium
response and the other contributing to the viscoelastic behaviour. For high strain rates, as
tested by Hooper et. al, the viscoelastic contribution is significant and thus making the
pure elastic model unable to capture stresses in the material accurately. By manipulating
the material parameters in IMPETUS, the authors aimed to find parameters creating the
same curves as shown in Figure 6.3. A trial and error approach was used to test how the
different material parameters in the model affected the resulting true stress-stretch ratio
plot.

The initial parameter study that was conducted using the BB-model with and without
the viscous network, σB , to see how this network affected the true stress. The numerical
simulations were run with an average strain rate of 400s−1 to get the highest viscous stress,
and compared with the coherent experimental result from Hooper et al. The resulting true
stress-stretch ratio curve from the initial parameter study is shown in Figure 6.6,.
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Figure 6.6: Comparison between Bergström-Boyce material model with and without the viscous
stresses

As seen in the results, the viscous stresses are dominant in the simulation with a strain
rate this high. As the material is stretched the viscous stress increases exponentially while
the elastic stress, shown in blue, increases almost linearly. As the strains in a blast exper-
iment are assumed to be high, up to 120s−1, the behaviour of PVB at high strains is of
importance. The parameters used in the simulation run with the viscous part are listed in
Table 6.2:

Table 6.2: Values used in the numerical simulations with the viscous stress network activated

ρ [kg/m3] K [MPa] µ [-] λL a0
1100 1000 1.0 2.72 0

a1 ηmax γ̇0 ξ B
0 1 1 0 0

σ0 Q C m cdec
0 0 0 0 1

β Wc b0 b1 b2
0 0 2.58 1 0.33

For the simulation run without the viscous stress, the parameters used were the ones
affecting network A: ρ, K, µ and λL. The numerical values used in the parameters in
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6.3 Bergström-Boyce material model

network A were the same for both the numerical simulations, but the simulation with
viscous stresses also included the parameters listed in Table 6.2. The parameters listed
were used as the basic material model for a parameter study performed to find the best
fit. Based on previous blast tests performed at SIMLab, the expected strain in the PVB
during a blast test is between 10 s−1 - 120 s−1, thus making the experiments performed
by Hopper [3] at strain rate 60 s−1 the most relevant for this exercise.

It should be noted that the original BB-model [50] have a different setup compared to
the model used in IMPETUS. The original model has a network A consisting of a hypere-
lastic spring, and a network B with a hyperelastic spring in series with a viscoelastic-flow
element. The IMPETUS-model has the same network A, but misses this hyperelastic
spring in network B. Both models are illustrated in Figure 6.7.

(a)

(b)

Figure 6.7: Model setup of Bergström-Boyce-model in (a) IMPETUS [42], and (b) Original setup
from [50]

6.3.1 Best fit parameter study

There are 20 different parameters in the Bergström-Boyce material model available in IM-
PETUS, which makes the trial and error approach with the isolation of parameters a tedious
task. The parameters initially tried were suggested by Professor Odd Sture Hopperstad,
from the Department of Structural Engineering at NTNU, and from there a trial and error
approach was used to tweak the parameters to fit with the results from Hoopers [3] experi-
ments. By Hopperstads suggestion, the parameters regarding the Mullins damage were set
to 0, see Section 3.2.3. The density was taken from [3], and the bulk modulus was adapted
from [59]. The b0 value was fitted with linear regression by Hooper. Additionally to the
curve fit accuracy, the authors was interested to how the running time was affected by the
different parameters. The model was to be used in the blast simulations, and a material
model with an exceptionally long running time would not work when scaling to a whole
laminated glass window. The maximum running time with a single 8-node element was
41 min, making it unfitted for a simulation with several thousands PVB elements. The
final result of the parameter study had a running time of 2 min and seemed to be more
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applicable for the blast load. The best fit curve is shown in Figure 6.8.
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Figure 6.8: Best fit PVB material model with Bergström-Boyce

The nominal strain rate during the simulation was calculated to control if this curve lay
the expected area. Seen in Figure 6.9, the strain rate was constant positioned just above 60
s−1, which was a good result.
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Figure 6.9: Best fit PVB material model with Bergström-Boyce

As seen in Figure 6.8 the best fit curve does not represent the experimental curve in a
good way. Though the model has more or less the same stress at the end of the simulation,
the curve does not have the same shape as the experimental results. The authors were not
capable of tweaking the parameters to get the initial rise in stress. As pointed out there are
20 different parameters, and with the lack of sufficient experimental data, the authors failed
to find a good fit with the reverse engineering approach. If the BB-model in IMPETUS
was modelled as the original type, the curve fit might have been better.
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6.4 Discussion
During the study of PVB for this thesis, it became clear that the PVB material properties
is complex. PVB is a highly strain rate sensitive material with a great dependence of
viscoelastic stresses. Additionally, to the authors’ knowledge, no previous paper has been
written on the topic of material modelling of PVB with the BB material model. This being
said, papers have been written about the material properties of PVB but with other material
models. The reason for using the BB-model and not one of the other more investigated
models was because this was the only model which included viscous stress contributions
in IMPETUS. The interested reader is referred to the papers discussed in Section 1.2 for
other PVB material models.

The spread in approaches and material models may signify that there is no practice
agreed upon when it comes to numerical modelling of PVB. Due to the time limitations
of this thesis, the only material model explored was Bergström-Boyce and a linear elastic
material model. As seen from the best fit curve, the model does not look applicable for
modelling of PVB. Additional research and parameter studies might have yielded better
results.

The authors experienced, during the parameter study, a strong codependency between
the different material parameters in the BB material model. To the authors’ knowledge, the
effect of a change in one of the parameters was dependent on the values in one of the other.
This resulted in a tedious process of deciphering how the different parameters affected the
curve and the stress-stretch relationship. Based on the results and the experiences from this
thesis, the authors would not recommend the same approach, but a direct calibration from
experimental results. There are no guarantee that the parameters found in this parameter
study are applicable to different loading situations or strains larger than the ones tested in
this study.

As mentioned earlier in this chapter, the BB-model have a different setup in IMPETUS
then how the model originally is modelled. The lack of the hyperelastic spring in series
with the viscoelastic-flow element in network B, may be a crucial factor that could have
affected the best fit for the PVB material model (Figure 6.8) in a positive way. For a strain
rate of 60 s−1, there is an initial rise in stress level in the experimental data from Hooper
et. al [3]. This detail may have been captured with a modification of the material model in
IMPETUS.

Another uncertainty of calibrating the PVB material based on a tensile test of ”un-
touched” PVB may be that the PVB has a different behaviour before and after lamination.
The authors were made aware of this issue from Professor Tore Børvik, from the Depart-
ment of Structural Engineering at NTNU.
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Chapter 7
Numerical Modelling - Blast Tests

The third and last numerical study of the blast experiment conducted in the SIMLab shock
tube at NTNU. Both failing and non-failing single float glass panes and laminated glass
panes were investigated. To capture the qualitative failure mechanism from the blast ex-
periments was a main goal for the numerical simulations. For all simulations, IMPETUS
was used as the numerical tool.

7.1 Float Glass

In Figure 7.1 shows the general setup of the numerical float glass model is illustrated. The
float glass was modelled with one 3.8 mm float glass layer, and with a rubber sealant on
each side to support it. In the experiments, the glass panes were fastened by an aluminium
frame with 12 bolts tightening it up. In the IMPETUS model, the frame was neglected,
and the outer part of the rubber sealant was instead fixed from translational movement in
all directions. As discussed in Section 4.2.3, the frame displacement was small compared
to the glass displacement, thus the assumption with with fixed edges. Both the rubber and
the glass were simplified as elastic materials (*MAT ELASTIC) with parameters given in
Table 7.1. It is important to notice that rubbery materials usually have a different behaviour
when exposed to high strain rates, like in a blast situation [48], but it was not conducted any
test on the rubber for this thesis, so the material properties were given from PhDc Karoline
Osnes as she had experience from previous simulations. The geometry of each rubber
frame was made out of 4 rectangular components that were merged and had a thickness
of 4 mm. The load was applied by a Friedlander pressure-curve discussed in Section 2.2,
where the parameters were calculated in MATLAB for the different experiments. In the
cases where a Friedlander fit would provide inaccurate results, linear interpolation was
used, as discussed in Section 4.2.3.
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Table 7.1: Elastic material parameters for rubber and glass

ρ [kg/m3] E [MPa] ν
Rubber1 1400 2 0.46

Glass 2500 [12] 70000 [24] 0.23 [24]

Table 7.2: Friedlander parameters for FG-05-1

Pr [bar] t+ [ms] b
62.74E-2 11.818 7.265E-1

Figure 7.1: Model of the float glass experiment, modelled in IMPETUS

7.1.1 Elastic behaviour

Initially, the model was simulated without fracture criteria as a way to understand the
boundary conditions. The model was given the material parameters presented in Table 7.1
and the load was modelled with a Friedlander curve with the parameters tabulated in Table
7.2. Both the glass and the rubber were modelled with 5×5mm hexahedron elements. The
elements in the rubber was set to polynomial order 1 and the elements in the glass was set
to polynomial order 3, see Figure 2.14. A parameter study was conducted to evaluate the
effect of different Youngs’ moduli in the rubber, and how the different values affected the

1Material parameters for rubber given from PhD Candidate Karoline Osnes
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7.1 Float Glass

boundary conditions. The different Young’s moduli used in the simulations were 1, 2, 3,
5 and 10 MPa. The results from the parameter study is shown in Figure 7.2. Experiment
FG-05-1 was used as benchmark.

With Erubber set to 2 MPa, the behaviour of the glass pane was too soft. With the
increasing Youngs’ modulus in the rubber, the response in the glass pane increased in
stiffness and the displacements were reduced. The initial stiffness of rubbers subjected to
loading and small strains, is as presented in 3.1.5 highly strain rate sensitive. Due to the
high strain rate sensitivity, a Youngs’ modulus of 5 MPa is plausible when the rubber is
simplified with an elastic material model. Due to the best fit with the experimental results,
Erubber was set to 5 MPa. A standard model was defined to perform additional parameter
studies, and the parameters chosen for the standard model is tabulated in Table 7.3.

Table 7.3: Parameters for the standard model

Erubber [MPa] Element type Mesh size [mm]
5 Cubic hexahedron 5x5
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Figure 7.2: Response of different E-moduli for rubber. E = 5 MPa is set as the standard model

During the post processing of the simulations, the maximum strain of the rubber was
found to be 0.035, which are sufficiently small for the elastic material model to be valid.

Polynomial element order

The polynomial element order was changed to see how the number of integration points
in the elements affected the pre-failure elastic behaviour of the glass pane. An increase in
the polynomial order of the elements was expected to decrease the stiffness of the glass
pane as each element gets an increase in bending capability. As discussed in Section 2.8
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hexahedron elements in IMPETUS may be linear, quadratic or cubic, and during this pa-
rameter study, the effect of the different orders was studied. From Figure 7.3 the resulting
displacement-time curve is presented. Up to 1 ms, all simulations followed each other and
the experimental test curve almost perfect. Reaching maximum displacement, the curves
with polynomial order two and three showed similar behaviour, while order one had a
different shape. As earlier mentioned, a first order element is not capable of describing
bending adequately and may be the reason for the different contour. Even though the run-
ning time was increased, the authors wanted to use the most authentic model compare to
experiment and decided to keep the 3rd order element for further studies.
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Figure 7.3: Effect of polynomial order of glass elements

7.1.2 Failure response
To enable fracture in the glass panes and simulation of the experiments that fractured, a
fracture criterion was added to the glass material model. The same feature as in the mod-
elling of four-point bending was used, *PROP DAMAGE BRITTLE. The parameters was
the same as in 5.3, σc set to 47.47 MPa,Kc set to 23.72 MPa

√
mm and node splitting was

used at failure. A thorough parameter study was conducted, to see how different param-
eters affected the strength and failure pattern for the glass pane. Parameters investigated
in this section are the element size, random initial damage in the glass and different type
of elements. For each parameter study, the parameter in question was isolated and tested,
while the remaining parameters were fixed.

As described in Section 2.4, the critical point for the initial crack is determined by the
critical micro crack. In a blast situation, the maximum remote stress will be concentrated
in the middle of the plate, which means that if a critical micro crack with maximum size
occurs both in the middle and at the boundary of the glass, the result will be a crack
initiation in the middle. Without any initial damage in the glass, the numerical model of
the blast test will also have the initial crack close to the middle. Showed in Section 4.2.3,
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test FG-01 was the only float glass experiment that got the initial failure in the centre of the
pane, so the numerical results will in this section be compared to this experiment. For the
experiments that failed (ex. FG-01), the Friedlander curve does not describe the blast load
in a satisfactory manner, as mentioned in Section 4.2.3. The blast load was thus modelled
with a pressure-time curve given by Equation 4.3. The parameters used for the modelling
of experiment FG-01 are tabulated in Table 7.4.

Table 7.4: Pressure curve parameters for FG-01

Pr [bar] Pf [bar] tf [ms]
6.370E-1 5.433E-1 0.991

Element size

To see how the element size affected the strength and crack propagation, three different
mesh sizes were simulated and compared. The simulations were run to 2ms to evaluate
the crack propagation. The displacement curve was also compared to the experiment for
additional control. Mesh sizes with corresponding NOE and running times are tabulated
in Table 7.5.

Table 7.5: Different mesh sizes used in the parameter study

Element size [mm] NOE Running time
10× 10 3000 5min 16s
5× 5 7800 20min 51s
2× 2 41400 3h 16min

The resulting graph from the study is presented in Figure 7.4. All of the numerical
simulations displayed a larger initial mid-point displacement compared to the experiment,
but after the point of fracture, the experimental model showed a faster-growing curve. As
expected, all the numerical models had the same response before fracture as the elastic
parameters were the same. After fracture, the models responded almost the same, but with
some deviations. The model with the coarsest mesh of 10× 10 mm resulted in the stiffest
stiffest behaviour, while the 5 × 5 mm mesh gave the softest. This being said, all curves
were more or less the same and showed a suitable curve fit around the experimental test
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Figure 7.4: Parameter study of different mesh sizes compared to Test FG-01

In Figure 7.5, a visualization of the different crack propagations is shown. When com-
pared, there are some significant qualitative differences between the results. The model
with the coarsest mesh with 10 × 10 elements showed tendencies of crack propagation
from the middle towards the corners. It does not capture the diagonal crack propagation
from the centre to the corners. The model with mesh size 5×5 mm does capture the crack
propagation towards the sides better, but are limited to only a few cracks compared to the
experiment that had 20-30 to each side. It does not have any crack propagation towards
the left top corner and does also miss the transverse cracks in the corners. The model with
the finest mesh, 2× 2 mm, has cracks towards all four corners. Although it does not have
as many cracks as seen in the experiment, it shows a qualitatively good result. It also cap-
tures the transverse cracks in the corners. All meshes had the first crack propagation from
the middle of the pane. In the case of this model with the loading modelled as described,
the glass proved to be highly mesh sensitive when evaluating the crack propagation. The
finer the mesh, the more realistic was the crack pattern. The mesh size did not affect the
mid-point displacement significantly.
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(a) Experiment FG-01 (b) 10× 10

(c) 5× 5 (d) 2× 2

Figure 7.5: Crack propagation comparison between experiment FG-01 and the numerical model
with use of hexahedron elements of different mesh sizes. t = 2 ms

Initial random surface damage

As earlier mentioned, the strength of glass plates is dependent on the size and location
of the critical microcrack. In IMPETUS Afea Solver this brittle material property has
been attempted included with the feature *INITIAL DAMAGE SURFACE RANDOM.
The feature contains some areas on the glass surface with initial non-zero damages. The
distribution and magnitudes of the initial defects are distributed by a probability function
with statistical parameters as input. For a more thorough description of the feature, see
[42].

The *INITIAL DAMAGE SURFACE RANDOM feature in IMPETUS requires Weibull
parameters as input to describe the stochastic properties of the material. The Weibull pa-
rameters calculated in Section 4.1.2 was based on the component test conducted, and may
thus not be valid in describing for the glass. Therefore, the Weibull parameters used in the
study of this feature was adapted from Ilseng’s masters thesis [22].
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In the study of the feature, it was found to have no significant effect on either crack
propagation or displacement curve for the tested inputs. The feature was thus not included
in the remaining models for either the float or the laminated glass panes.

Element type

As presented in Section 2.8 there are several types of elements available in the solver. A
sensitivity study was conducted to evaluate the impact of a change of element type. The
element type tested was the pentahedron element. The pentahedron element was chosen to
see how the strength and the crack propagation were affected by the increase of possible
directions for the crack to develop. As illustrated in Figure 7.6 the crack may propagate in
eight directions with the use of pentahedron elements, while it may only propagate in four
different directions by utilizing the standard hexahedron elements. The authors suspected
a more realistic recreation of the fracture pattern with the pentahedron element than with
the standard hexahedron elements.

(a) Hexahedron elements (b) Pentahedron elements

Figure 7.6: Possible crack propagation directions with the different element types

The number of elements is doubled with the use of pentahedron elements as each hex-
ahedron element is split into two pentahedron elements. Due to the increase of elements,
the element size was increased in the sensitivity study. The elements tested had the sizes
20 × 20mm, 8 × 8mm and 4 × 4mm, where the lengths referred to are the shorter sides
of the triangle. All the simulations run in the element type sensitivity study were run with
one element in the thickness of the pane and polynomial order three. When analysing the
results, the crack propagation and displacement function were analysed. The displacement
functions from the different analyses are shown in Figure 7.7.
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Figure 7.7: The effect of the pentahedron element with different element sizes

The element type accounts for minor changes in the displacement function where the
shape of the curve and the magnitude of the displacements are the same. An exception
is the analysis run with 20 × 20 mm elements, which are too big elements to capture the
fracture of the glass properly. The NOE and the total running times were also affected
by the change of element type. The running time and the NOE for each simulation is
presented in Table 7.6

Table 7.6: Simulation data from the element type sensitivity study

Element type Element size NOE Running time
Hexahedron 5× 5mm 6408 20min 7sec
Pentahedron 4× 4mm 20008 1h 25min
Pentahedron 8× 8mm 5008 18min 33sec
Pentahedron 20× 20mm 808 5min 27sec

The crack propagation in all of the simulations are shown in Figures D.1, D.2, D.3 and
D.4 in Appendix D and a comparison between pentahedron and hexahedron elements is
shown in Figure 7.8. It may be seen that the pentahedron elements can describe the cracks
in the experiment in a better way. As in the mesh sensitivity study, smaller elements
enables crack propagation in a more realistic manner than the larger elements. As seen
in Appendix D, the model with 20 × 20 mm elements looks unrealistic, while the model
with 4 × 4 mm elements describes the crack propagation with a better accuracy. As seen
in Figure 7.7 the simulations with both hexahedron and pentahedron elements fracture at
approximately the same time, and follows the same displacement function.
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(a) Experiment

(b) Pentahedron elements 4× 4mm (c) Hexahedron elements 5× 5mm

Figure 7.8: Crack propagation in simulations with different types of elements compared to FG-01
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As a result of the mesh sensitivity and element type study, the pentahedron elements
were found by the authors to give the best results when compared to experiment FG-01.
It has to be emphasised that the blast simulations conducted on float glass have only been
compared to one experiment. The other tests conducted during the work of this thesis
gave different results, and as mentioned initially, FG-01 was chosen due to the initial
failure in the middle of the glass. There are no guarantees that the same parameters and
element types found best for FG-01 can recreate the corresponding behaviour of the other
experiments conducted. Extra parameter studies may be necessary to fit the parameters to
the remaining experiments.

Two simulations were run with longer total times to compare the fragmentation in the
simulations with the fragmentation of the glass in the experiment. The standard glass
pane, with fracture criteria and 5× 5mm hexahedron elements and a model with 4× 4mm
pentahedron elements were run to a total time of 12ms. These are the same simulations
as depicted in Figures 7.8b and 7.8c but with the increased simulation time. Another goal
of the study was to calculate the fragment velocities after the complete failure of the glass
and compare the results with the measured fragment velocities in experiment FG-01. As
presented in section 4.2.3 the fragment velocity in experiment FG-01 was estimated to
23.441 m/s after failure of the pane. From the simulations, it was found that the fragment
velocity in the simulation with 5 × 5 mm hexahedron elements was 24.62 m/s and the
fragment velocity in the simulation with 4 × 4 mm pentahedron elements was 25.36 m/s.
With the measurement errors and calculation inaccuracies taken into account, the results
were deemed as good. The post-failure response in the glass in both simulations was
studied and compared to the experiment at the same time after the blast. The results are
shown in Figure 7.9 and 7.10.
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(a) Experiment

(b) Pentahedron elements 4× 4mm (c) Hexahedron elements 5× 5mm

Figure 7.9: Comparison of the fragmentation of the glass 6.62 ms after the experiment and simula-
tions at the same time
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(a) Experiment

(b) Pentahedron elements 4× 4mm (c) Hexahedron elements 5× 5mm

Figure 7.10: Comparison of the fragmentation of the experiment 9.84 ms after the blast and simu-
lations at the same time

As seen in the Figures 7.9 and 7.10 the pentahedron elements gave a better representa-
tion of the crack propagation and acceleration of the glass fragments out of the frame than
the hexahedron. With the hexahedron elements, the cracks have only four different ways
to propagate, and this results in the serrated shape of the cracks seen in 7.10c. The serrated
edges require more energy to propagate than the smooth edges. The glass panes tested had
all smooth edges after failure, and thus the pentahedron elements were chosen as the most
favourable choice.

101



Chapter 7. Numerical Modelling - Blast Tests

7.1.3 Summary and discussion

In Section 7.1, simulations with modelled float glass have been run with two different
blast loads as an attempt to recreate the behaviour recorded in the experiments presented
in Section 4.2.3. The elastic response before fracture and the post-fracture response in
the glass pane have been studied separately to investigate different aspects of float glass
simulations. In the pre-fracure part, the aspects investigated were the boundary conditions,
polynomial order of the glass elements and Young’s modulus in the rubber. In the post-
fracture investigation, the focus of the parameter study was element size, element type and
fragmentation of the glass after breakage. The goal of the numerical modelling was to find
parameters and ways of modelling to enable simulation of a glass pane subjected to a blast
load.

In the elastic material modelling, the simulations were run with only elastic material
properties to investigate the significance of the rubber boundary conditions and the poly-
nomial order of the elements. This was helpful in deciding how the glass pane should be
modelled to best coincide with the response recorded with DIC. The E-modulus of float
glass was not changed in the parameter study as the value was assumed known. It was
found that the Young’ modulus for the rubber was of great importance concerning the
boundary conditions and the stiffness of the window system. The polynomial order of the
elements was of less significance in the elastic domain of the response but was considered
to be more important when modelling with a fracture criterion. Thus the polynomial order
of three was chosen.

The parameters found in the elastic material part were utilised in the simulations of the
panes with fracture criteria included. Experiment FG-01 was the only glass pane with the
initial fracture in the centre, which made it the favourable choice for comparison with the
simulations. The effect of different element sizes was studied with attention on crack prop-
agation and similarity with the images taken during the experiment. Pentahedron elements
were found to be the most fitting element type due to the increased number of possible
crack propagation directions. The element size was found to be of great importance to
enable the crack propagation similar to the one found in the experiments. With the use of
hexahedron elements, an unrealistic amount of energy was needed for the crack to propa-
gate in the diagonal directions from the centre, and the crack shape ended up serrated. For
design purposes, the fragmentation was studied, and the fragment velocity after breakage
was calculated. The results were within good when compared to the fragment velocities
calculated from the experiments. In the fragmentation study, the pentahedron elements
showed the highest level of similarity when compared to the experiment images. The fail-
ure criterion used were the same as the ones utilised in the simulation of the four-point
bending tests.

It is emphasised that the results from the numerical simulations conducted on the float
glass panes have only been compared to a single experiment and there are no guarantees
that the model can recreate the behaviour of other experiments. Based on the experiences
at SIMLab at NTNU, glass panes fracture in different ways and at different loads and
displacements due to the shape and location of micro-cracks in the glass. Uncertainties in
the experimental setup do also affect the outcome. This impedes the validation of a single
model when compared to different experiments.
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7.2 Laminated Glass
As for modelling of the float glass experiments, a preliminary numerical study on the
numerical model of the laminated glass was done. Laminated safety glass is more complex
than modelling a single glass pane, and the experiences gained in the float glass section
were used as a place to start. Additionally to the mesh sensitivity, boundary conditions,
element type and initial surface damage, the PVB-glass connection and modelling are
of great importance. As discussed in Section 3.1.4, the delamination properties of the
laminated glass plays a significant role in energy absorption and post-fracture behaviour of
laminated glass. From the simulations run on float glass, the boundary conditions, element
size, element type and element polynomial order were chosen. The rubber was modelled
using 5×5 mm cubic hexahedron elements, and the glass panes were modelled using 4×4
mm pentahedron elements. During the numerical modelling of the laminated glass pane,
several parameters and features regarding the glass-PVB interaction in IMPETUS were
studied. This interaction was the main focus of this section, as the glass parameters were
studied in Section 7.1. The numerical model of the laminated glass window is shown in
Figure 7.11. Spacing has been added between the layers for visual effects. The layers in
the model are in contact with a numerical tolerance of 10−6mm.

Figure 7.11: Numerical model of the laminated glass modelled in IMPETUS

7.2.1 Standard model
Initially, a standard model of the laminated glass was established based on the results of the
float glass parameter study, the PVB tensile test (Chapter 6) and the experiences gathered
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when modelling the four-point bending test (Chapter 5). The thickness of the glass panes
and the PVB-layer was calculated based on the measurements conducted prior to the blast
tests and set to 3.8mm for the glass and 1.52mm for the PVB-layer. The dimensions of the
glass and rubber were the same as for the float glass, 400×400 mm. The load was applied
with a corresponding Friedlander fit calculated in Section 4.2.3 and tabulated in table 4.13.
The DIC data and Friedlander parameters from LG-01-2 were chosen for comparison in
the preliminary study because the pane did not fracture. In the preliminary study, the
pre-fracture behaviour of the laminated glass pane was studied to verify the boundary
conditions found when simulating float glass. In the standard model, the contact surfaces
between the PVB and glass panes were merged using the standard *MERGE function in
IMPETUS (with the PVB layer as slave part). The boundary conditions were the same as
in the float glass simulations, i.e. the outer sides of the rubber were fixed. The materials
were given elastic material properties only. By trial and error approach the parameters
producing the best fit compared to test LG-01-2 was found. Some key parameters are
tabulated in Table 7.7. The simulations were run with an end time of 2.5 ms, and the
time-displacement curve for the standard model and test LG-01-2 is shown in Figure 7.12.

Table 7.7: The resulting standard model parameters found in the preliminary study

Material E-modulus ν Density Element type/size P-order
Glass 70 000 MPa 0.23 2500 kg/m3 Pentahedron 4×4 mm 3
PVB 8 MPa 0.45 1100 kg/m3 Hexahedron 4×4 mm 3

Rubber 150 MPa 0.46 1400 kg/m3 Hexahedron 10×10 mm 1
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Figure 7.12: Comparison between experiment LG-01-2 and the simulation of the standard model

104



7.2 Laminated Glass

The Young’s modulus of the rubber had to be changed significantly from the float glass
tests to the laminated glass tests due to a too soft behaviour of the boundary conditions.
In the post processing of the simulation of the standard model, the glass was observed
moving too freely in the rubber clamping, changing the boundary conditions from clamped
to almost simply supported. Simulations were run both with and without the *MERGE
between rubber and glass. In the simulations run without the *MERGE criteria, the glass
moved in the face plane relatively to the rubber, which was unrealistic. In the simulations
run with the same Young’s modulus for the rubber as in the float glass simulations, the
mid-point displacement was recorded to be close to twice as big as in the experiment.
When increasing the Young’s modulus for the rubber, the authors noticed a reduction in
mid-point displacement and thus a behaviour more alike the one recorded during the tests.
As mentioned in Section 7.1, the behaviour of rubber at high strain rates is hard to predict,
and the higher the strain rate, the stiffer is the behaviour [48]. The strain rate in the rubber
during the laminated glass simulation was found to be as high as 200 s−1. By studying
the initial stiffness of the rubber at high strain rates in [48], it may be argued that Young’s
modulus of 150 MPa is within reason. Additionally to Young’s modulus, the Poisson
ratio was studied. A parameter study was run with ν varying from 0.4 to 4.9 without any
significant change in the displacement curve. There were some slight variations but no
clear tendency towards a stiffer or softer behaviour of the boundary conditions.

Models with the PVB modelled with the The Bergström-Boyce material model was
created to study the effect of the PVB material model. Unfortunately, the The Bergström-Boyce
model was too complex to be used in a blast simulation, and the simulation failed to start
running. Therefore, the PVB was modelled only with elastic material properties.

As mentioned, experiment LG-01-2 was used for comparison when finding the elastic
parameters and boundary conditions. With the parameters found for the standard model,
rest of the laminated glass experiments were simulated for an additional comparison and
verification of the laminated glass model. The simulations of the other panes had the
same input as the standard model, but the Friedlander parameters were changed to the
ones calculated for each experiment respectively. The Friedlander parameters used are
tabulated in Table 4.13. The results from the simulations are plotted with the respective
experiments in Figure 7.13
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(b) LG-01-2
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(c) LG-03-1
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Figure 7.13: Comparison of the simulations and experiments when modelled with elastic material
properties

As seen, all the simulations showed a lower stiffness and bigger mid-point displace-
ment than the experiments. Additionally, the simulations with elastic material parameters
failed to capture the permanent experimental mid-point displacement. All the experimen-
tal results showed a displacement larger than zero at t=2.5 ms while the simulations had a
displacement equal to zero or in some cases below zero at this time. If the laminated glass
panes tested had responded like a perfectly elastic material, the displacement after the blast
should have been zero. The permanent deformation in the experiment may indicates that
either the rubber is simplified too much or that the steel plate clamping the specimen has
moved during the test.

7.2.2 Fracture criterion
A fracture criterion was added to the glass material model to enable the simulation of
the glass panes that fractured. The fracture criterion was the same as used in the simu-
lation of float glass, with σmax=47.47 MPa, Kc=23.72 MPa

√
mm and node splitting as

erode method. To compare the simulations, a laminated glass that fractured during the
experiment had to be chosen as benchmark, and LG-03-3 was chosen because this was the
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experiment with the highest recorded loading pressure. With the fracture of the glass, the
authors expected the material parameters of the PVB interlayer to dominate the behaviour
because the fractured glass would not contribute to any significant stiffness. Thus the PVB
was the main focus in the preliminary simulations run with a fracture criteria in the glass.
To capture the post-fracture behaviour of the PVB, the simulation time was increased to
10 ms. At 10 ms after the blast, the mid-point displacement in the experiment had stabi-
lized around a value of 90 mm, thus making it a natural time to end the simulation. For
comparison, the mid-point displacement and crack propagation during the blast were set
as control parameters.

The first simulations were run with PVB as an elastic material with only Young’s
modulus, density and Poisson ratio as input parameters. A parameter study was done
on Young’s modulus to see how it affected the post-fracture behaviour. With its elastic
material parameters, the PVB was expected to behave in a rubbery way with no permanent
deformation. It was anticipated that the fractured glass would prevent the PVB to recover
back to the initial state, but with elastic material parameters only, the effect was expected
to be small. The different Young’s moduli for PVB tested in the elastic material study was
8, 50 and 100 MPa. The mid-point deflection as a function of time for each simulation and
the experiment is plotted in Figure 7.14
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Figure 7.14: Effect of different Young’s moduli in the PVB inter-layer

As seen in the Figure, the elastic material model was not able to capture the permanent
displacement observed in the experiment. The fractured glass did not prevent the retrac-
tion of the PVB as expected from the experimental results. The displacement returned
to zero after the blast, signifying that the PVB was allowed to respond perfectly elastic.
The window tested in the experiment, on the other hand, ended up with a permanent dis-
placement of approximately 90 mm after the blast. Since the PVB eventually would have
shrunk back to its initial state without the glass, the permanent displacement recorded is
believed to be caused by the retaining glass fragments holding the contraction back. The
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PVB might use The simulation with Epvb=8 MPa ended up with a max displacement of
360 mm, but the plot window was set as is for a better visual presentation. Based on the
simulations with elastic PVB material properties, Young’s modulus of 50 MPa was chosen
for the PVB. The crack propagation in the simulation differed somehow from the images
taken during the experiment. Figure 7.15 shows the crack propagating in the simulation
compared to the experiment LG-03-3. As seen in the Figures, the crack in the simulation
is initiated on the edges of the pane, while the initiation observed in the experiment was in
the middle. The reason for the discrepancy is to the authors’ knowledge unknown, and dif-
ferent measures were tried without success to achieve crack propagation from the centre.
A possible reason may be the boundary conditions and the merging between the rubber and
glass which may cause unrealistic internal stresses. At t = 1.2ms the crack propagation in
the simulation resembles the experiment while at t = 3.6ms most of the glass nodes have
been split and the glass fragments in the simulation have become small compared to the
experiment. When comparing the crack propagation with the displacement curve, it may
seem that the complete failure in the simulation happens at an earlier stage of the response
than in the experiment and thus the mid-point deflection increases earlier in the simulation
than in the experiment. This supports the belief that the elastic PVB material model is not
able to describe the correct response.

108



7.2 Laminated Glass

(a) t=0.0ms (b) t=0.0ms

(c) t=1.2ms (d) t=1.2ms

(e) t=3.6ms (f) t=3.6ms

Figure 7.15: Crack propagation in the simulation compared to the crack propagation in experiment
LG-03-3. t=0.0 is the time of the first visible crack
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A study on the effect of the element type in the PVB was done to see how the ele-
ment type affected the displacement curve, crack propagation and running time. The two
elements tried in the study was the standard hexahedron 4 × 4mm and a 4 × 4mm penta-
hedron element. For the standard model, the PVB did not have a fracture criteria, and the
element type was thus not expected to affect the crack propagation or displacement curve
significantly. With the decrease in the number hexahedron elements, the running time was
expected to increase. In contrast, the running time with pentahedron elements was shorter
than with the hexahedron elements, and the crack propagation differed significantly with
the use of hexahedron elements, as seen in Figure 7.16. The displacement curve was also
affected by the change in PVB element type. The stiffness of the window system with
hexahedron elements in the PVB was higher than when modelled with pentahedron ele-
ments. This may be due to the change in fracture pattern and the less energy consuming
crack propagation during the blast.

(a) Hexahedron 4×4 mm (b) Pentahedron 4×4 mm

Figure 7.16: Comparison of the crack propagation with different element types in the PVB inter-
layer

Cohesive failure criteria

An attempt was made to include the properties of delamination to the model. This was
done by including a failure criterion to the merging between the glass panes and the
PVB. 4×4 mm pentahedron elements were used in both the glass and PVB. As pre-
sented in Section 3.2.4 this was recently implemented in IMPETUS with the command
*MERGE FAILURE COHESIVE, see Section 3.2.4. During the deformation of the lam-
inated glass windows in the blast experiments, the glass fractures and to some degree
loosens from the PVB. This enables local strains in the PVB.

With the regular *MERGE function in IMPETUS, the PVB elements are merged
with the glass elements, and the glass elements cannot loosen from the PVB layer. The
*MERGE FAILURE COHESIVE feature allows the glass elements to loosen completely,
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or to some degree, from the PVB, which resembles the delamination seen in the experi-
ments. With the Young’s modulus for the PVB found in the previous section, simulations
were run to compare the effect of the new feature. Three simulations were compared,
the one without the additional feature from previous Section with use of EPV B=50 MPa,
shown in Figure 7.14, and two simulations with different parameters. The parameters
tested in the first simulation were suggested by Lars Olovsson, a developer at IMPETUS
Afea [42] (Test 1), and the second combination of parameters was calculated based on the
equations in Section 2.4 and values found in a paper by Yankelevsky [12] (Test 2). The
parameters tested are tabulated in Table 7.8. With the failure criteria included in the merg-
ing feature, the glass was expected to loosen from the PVB, and an increase in fragments
was expected.

Table 7.8: Parameters used in the study of *MERGE FAILURE COHESIVE

Simulation σfail τfail GI GII ∆ref

Test 1 10 MPa 10 MPa 1 MPa mm 1 MPa mm 0
Test 2 10 MPa 10 MPa 0.00804 MPa mm 0.0 MPa mm 0

As expected, there was an increase in the fragmentation of the glass, see Figure 7.18.
Some glass fragments loosened from the PVB during test 1, while nearly all the glass el-
ements loosened in test 2. The displacement curves of the simulations also differed from
identical simulations without the cohesive failure criteria activated. As seen in Figure 7.17
the glass pane had an increase in maximum displacement during the simulation. Addition-
ally, the deflection at the end of the simulation was larger in the simulations with failure
criteria than the simulations run without the feature. This may be due to loose or deformed
glass elements preventing the PVB from completely retracting after the initial deforma-
tion. As seen in 7.17, the test run with the lowest failure criteria, test 2, experience the
highest displacement. This may be caused by the number of elements loosening from the
PVB. In Figure 7.18 the deformed windows at maximum displacement are shown for a
comparison of the glass fragmentation. It can be seen that almost all the glass elements
in the glass have loosened in test 2, while in test 1, most of the glass elements remain
fastened to the PVB.
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Figure 7.17: Effect of cohesive failure criterion on mid-point displacement curve
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(a) Test 1 (b) Test 2

(c) Test 1 (d) Test 2

Figure 7.18: Fragmentation for Test 1 and 2 seen from two different angles at the time of maximum
displacement

With the cohesive failure criterion included in the simulations and with the relatively
small elements, the running time increased drastically. In the two last simulations, the
running times were 27h 24min and 25h 23min respectively. Due to the time limitations of
the study, the feature was not studied further.

By tracking the displacement of the elements that loosened from the PVB, an es-
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timate of the fragment velocities was calculated based on the average velocity in ten
fragments.The mean velocity was calculated from the time the elements loosened from
the PVB to the end of the simulation. The calculated average fragment velocity was
17.172m/s in simulation test 1. In the experiments, no fragment velocity was calculated
because the glass fragments that loosened from the window was too small for the DIC to
track. Thus no comparison is possible.

As done with the experimental results, the strain rate in the PVB was studied for com-
parison. Test 1 from the study of cohesive failure was deemed as the best model at simu-
lating the experiments. The PVB strain rate was thus studied for this simulation. An area
with elements was selected in IMPETUS to compare with the selected subsets used in the
calculation of strain rate in Section 4.2.3. The strain rate was calculated by numerically
differentiating the average strain in a selected area of elements in the centre of the PVB.
The selected area of elements is shown in Figure 7.19 next to the results in the form of
a curve showing the effective strain rate as a function of time. An attempt was made to
export the strain rates directly from IMPETUS, but due to an unknown error the results
were unrealistically high and are thus excluded from the thesis.

(a) Selected elements in the PVB
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(b) Strain rates during the simulation

Figure 7.19: (a) The selected elements used in the comparison of strain rates and (b) the strain rate
average in the selected elements during the simulation

The shape of the strain rate curve differs from the experimental strain rates estimated
and shown in Figure 4.25b, but the order of magnitude of the strain rates coincide. The rea-
son for the discrepancy in shape is to unknown, but may be due to inaccurate calculations
in section 4.2.3, incorrect material modelling of the PVB or a combination of both.

The model used in Test 1 was then used to simulate the other laminated glass panes that
fractured in the experiments. The Friedlander parameters for the blast load was changed
to match the respective experimental data, but the rest of the model remained unchanged.
The experiments that were simulated additionally to LG-3-3, was LG-02-1 and LG-04-1.
The results of the two simulations in the form of displacement curves are shown in Figure
7.20
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Figure 7.20: Comparisons between the recorded data from the experiments and the simulations with
the same applied pressure load.

As seen, the difference between the simulation and experiment is significant for LG-
02. In experiment LG-02 it was noted that only one of the two glass panes of the laminated
glass fractured. This may be seen in Figure 4.22a. In the simulation of experiment LG-02
both the glasses fractured completely, and this is the main reason for the discrepancy. As
seen in Figure 4.21c, the displacement curve for LG-02 resembles the curves for the spec-
imens that did not fracture more than the ones that fractured. For the PVB to be activated,
both the glass panes have to fracture. Figures 7.21, 7.22 and 7.23 shows the fracture of
the windows at maximum displacement for both the simulations and the experiments. The
script used to model the laminated glass windows subjected to blast load is attached in
Appendix E.
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(a) Experiment LG-02
(b) Simulation

Figure 7.21: Fracture of the glass at maximum displacement in both the experiment and simulation

(a) Experiment LG-03-3 (b) Simulation

Figure 7.22: Fracture of the glass at maximum displacement in both the experiment and simulation

115



Chapter 7. Numerical Modelling - Blast Tests

(a) Experiment LG-04
(b) Simulation

Figure 7.23: Fracture of the glass at maximum displacement in both the experiment and simulation

7.3 Summary and discussion

Laminated glass panes have been simulated in a blast load situation and compared to ex-
periments conducted in the SIMLab shock tube facilities. The simulations were divided
into two main studies, the response of the glass before fracture and the post-fracture re-
sponse. In the study of the pre-fracture response, a parameter study was conducted to
verify the boundary conditions and investigate the material properties of the PVB layer.
The interaction between the PVB layer and the glass panes was also studied. In the post-
fracture investigations, the focus of the parameter study was the response in the laminated
glass after fracture. Special considerations were how the PVB behaved, and the crack
propagation in the glass. The simulations were then compared to the experimental results.

In the pre-fracture modelling part, the boundary conditions was studied. Based on the
findings in Section 7.1, the Youngs modulus of the rubber and the interaction between
rubber and glass were assumed found. With the increased loading pressure and stiffness
of the window, the rubber was found to respond softer than in the simulations run with
float glass only. This emphasises the difficulties of modelling rubber at high strain rates.
In the simulations with the low Young’s modulus in the rubber, it was found that the
laminated glass moved more than expected and thus changing the boundary conditions.
The rubber was found too soft. As a countermeasure, the Young’s modulus of the rubber
was increased. This may have caused unrealistic stresses in the glass area close to the
rubber and may be the reason for the glass failing in the edges. As argued in Section 7.2.1,
the initial stiffness in rubbers at high strain rates and small strains vary significantly [48]
and thus Young’s modulus of 150 MPa may be valid for these purposes. It is emphasised
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that the rubber should be modelled with a more complex material model for more accurate
results, but in this thesis, the rubber was not the main focus. In the elastic material part
of the simulations the merging between the PVB and glass was done with the *MERGE
function in IMPETUS, and as discussed the *MERGE between the rubber and glass was
a necessity to prevent unrealistic relative displacement of the glass in the rubber.

Based on the findings in the pre-fracture simulations, simulations with higher loading
pressure and increased total time were run. In these simulations, a fracture criterion was
added to the glass material model. In this study, the specimen with the highest loading
pressure was used for comparison, and the Friedlander parameters calculated in Section
4.2.3 were used as loading. Further out in the study, a failure criterion was added to the
*MERGE feature between the PVB and glass to enable delamination of the glass and allow
for small fragments to loosen from the interlayer during the blast. This gave good results,
and the deformation and fragmentation showed some resemblance to the images captured
during the experiment. As a result of long running times and the time limitations of the
thesis, no further studies on different PVB material models were conducted. As seen in e.g
Figure 7.17 the elastic material model is not able to capture the permanent deformation in
the PVB. In the experiments the laminated glass windows deformed permanently due to
fragmented glass preventing the PVB to retract.

It is emphasised that results from simulations have to be interpreted with caution.
There may be assumptions and material parameters used in these simulations that are not
valid. The numerical study of laminated glass panes presented in Section 7.2 points out
and addresses some of the challenges of laminated glass modelling in IMPETUS, but a
complete numerical model should include a more complex material model in the rubber
and PVB. The glass should material model which includes a random distribution of micro
cracks. The model created in this thesis may be limited to the type of glass panes used in
the experiments with the same dimensions.
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Chapter 8
Conclusion

During the work of this thesis, a number of experiments have been conducted to increase
the understanding of the behaviour of monolithic and laminated glass subjected to quasi-
static loading and blast loads. Afterwards, numerical models were created in IMPETUS
Afea to simulate the experiments conducted. This section aims to present conclusions
based on experiences and knowledge gathered during the work.

Four-point bending

From the results found in the four-point bending tests, it is clear that the stochastic mate-
rial properties in glass affect the fracture strengths of the laminated glass component. A
Weibull analysis was conducted on the results of the component tests, but glass material
properties could not explicitly be defined. The influence of and interaction with the PVB
impeded the use of Euler-Bernoulli beam theory for fracture strength calculations. The
edge treatment of the glass is concluded to be of importance as it may explain the higher
calculated fracture strength in the larger specimens than the small.

Blast experiments

No definite blast capacity was found for the float glass panes tested. Only one pane stayed
intact during the experiment, and this pane was loaded with a higher pressure than panes
that fractured. The boundary conditions were found to affect the results as the majority
of the glass panes fractured in the same area at the lower edge. The frame used in the
experiments may have caused the clamping of the glass panes to be uneven. The measured
velocity of the glass fragments in combination with the fragment sizes shows the risk pre-
sented by regular float glass panes subjected to blast loading. Fragment velocities varying
from 12.7m/s to 23.4m/s were calculated.

The laminated glass panes were able to withstand higher loading pressures without
fracturing. The laminated glass panes that fractured, all fractured close to the middle of
the pane. The PVB dominates the response in the composite post fracture and prevents
glass fragments from accelerating freely. The fragments were several orders of magnitude
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smaller than the float glass fragments. The delamination of the glass contributes to energy
absorbing properties, and the PVB did not fracture in any of the experiments. There were
not conducted a sufficient amount of experiments to conclude on a critical loading pressure
due to the spread in fracture pressures from pane to pane. One pane did not fracture
at a peak reflected pressure of 2.014 bar while a different pane fractured at 1.673 bar.
The variation in capacity is expected when working with glass, due to stochastic material
properties.

Numerical modelling

The numerical simulations of the four-point bending experiments yielded good results in
the form of force-displacement curves. The features in IMPETUS were able to describe
the response both with and without a fracture criteria. The parameter studies showed a
sensitivity to element size, total running time, and PVB Young’s modulus. Oscillations
were noted in the simulation due to the time scaling.

The PVB tensile test simulations were conducted to calibrate a material model for
the PVB based on experimental results found in the literature. PVB was found to be a
highly strain rate sensitive material with an initial stiffness varying with several orders of
magnitude. The initial stiffness was increasing with the increase in strain rate. Bergström-
Boyce material model was found to be the best material model available in IMPETUS, but
due to a modification of the implemented model compared to the original, the model was
not able to describe the material response at high strain rates. The running time required
by the Bergström-Boyce material model impedes efficient research when used in more
complex models. Blast load simulations run with the Bergström-Boyce material model in
the PVB was too complex for IMPETUS and the simulations did not start running.

The node splitting technique implemented in IMPETUS in combination with the pen-
tahedron element type showed great results in the float glass simulations. The simulation
showed a similar crack propagation as seen in the images from the experiments. The
model was also able to simulate the chosen experiment both in the elastic domain and af-
ter fracture. The crack propagation in the glass proved to be highly mesh sensitive in both
element size and element type. The fragment velocity in the simulation was measured to
25.36 m/s. Due to fracture along the edges on the majority of the panes, the model was
not tested with other loading pressures nor compared to other experiments than FG-01

The laminated glass simulations yielded qualitative results matching the experiments,
while the quantitative data in the form of a displacement curve did not match. The crack
propagation in the simulations resembled the propagation seen in the experiments when
both the PVB and glass were modelled with pentahedron elements. The node splitting
technique enabled fracture. The merging between PVB and glass and the cohesive failure
criteria enabled the delamination of the glass, and thus the deformation of the PVB. Elastic
material properties in the PVB were found to be insufficient to describe the deformation
in the experiments, more complex material models are needed.

Concluding remarks

Laminated glass windows have been found to increase the blast resistance of windows. The
reduction in fragment size and velocity reduce the risks of fatalities and injuries during a

120



blast. The numerical tool IMPETUS has been used to model the blast with good qualitative
results with the use of node splitting and pentahedron elements. Additional research is
need to enable simulations of laminated glass panes subjected to blast load, due to several
challenging aspects.
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Chapter 9
Further work

Numerical modelling of laminated glass windows has been proven challenging in the work
of this thesis. Especially is the understanding of the PVB and glass interaction hard to
model correctly. A model may enable simulation of a chosen experiment, but will not
necessarily be able to simulate a similar experiment with different loading parameters.
This is due to the numerous factors that affect the strength of the material. In this section,
some further work is suggested based on the experiences and knowledge gathered during
the work on this thesis. The numerical problems are limited to IMPETUS Afea Solver,
which is the tool utilised in the work

Experimental work

• Further studies of the strength and influence of the PVB-layer in laminated glass
panes subjected to blast loading should be conducted. Both the PVB material
strength, but also the adhesive strength between the glass and PVB should be given
attention.

• Quasi-static test of laminated glass specimens using water pressure may give better
understanding around the boundary conditions and how they affect the capacity.

• Quasi static experiments should be conducted on float glass in a manner that re-
moves the uncertainties imposed by the edges. As discussed, the authors suspect the
reason for the discrepancy between the fracture strengths in the different specimen
sizes and the expected fracture strengths is due to the edges. A ring on ring test may
provide better results.

Numerical work

• A thorough study to find a suitable material model for PVB. Further studies on the
*MAT BERGSTROM BOYCE-model in IMPETUS may be an option if the model
is updated with the additional elastic spring.
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Chapter 9. Further work

• The delamination phenomenon between glass and PVB is still challenging to simu-
late. The
*MERGE FAILURE COHESIVE feature in IMPETUS gave good results, but fur-
ther research is needed to calibrate the feature correctly.

• Numerical studies on randomly distributed micro-cracks in glass should be given
attention. The *INITIAL DAMAGE SURFACE RANDOM feature in IMPETUS
did not provide good results, and needs further calibration. The flaw map method
presented by Yankelevsky in his paper [12] should be studied further and should be
implemented in IMPETUS.

• Simulations utilising discrete particles to simulate the blast load should be con-
ducted and compared to loading with the Friedlander equation.
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Appendix A
Four point bending samples

Figure A.1: Small four point bending test samples (100× 20mm)
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Figure A.2: Medium four point bending test samples (200× 40mm)
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Figure A.3: Large four point bending test samples (300× 60mm)

133



Table A.1: Measured dimensions of the small samples. The height was averaged based on three
measurements spread over the length of the specimens

Test Width [mm] Height [mm] Test Width [mm] Height [mm]
1 19.67 9.130 14 19.70 9.110
2 19.60 9.178 15 19.63 9.116
3 19.64 9.115 16 19.92 9.101
4 19.66 9.105 17 19.70 9.182
5 19.63 9.103 18 19.96 9.146
6 19.62 9.098 19 19.66 9.110
7 19.63 9.180 20 19.62 9.172
8 19.63 9.137 21 19.61 9.126
9 19.68 9.172 22 19.90 9.152

10 19.62 9.183 23 19.95 9.157
11 19.68 9.180 24 19.63 9.146
12 19.61 9.099 25 19.64 9.106
13 19.91 9.180

Table A.2: Measured dimensions of the medium samples. The height was averaged based on three
measurements spread over the length of the specimens

Test Width [mm] Height [mm] Test Width [mm] Height [mm]
1 39.67 9.176 14 39.53 9.146
2 39.55 9.172 15 39.62 9.137
3 39.52 9.070 16 39.52 9.165
4 39.54 9.160 17 39.51 9.098
5 39.56 9.168 18 39.44 9.111
6 39.55 9.126 19 39.61 9.139
7 39.46 9.077 20 39.51 9.157
8 39.67 9.137 21 39.50 9.154
9 39.40 9.098 22 39.44 9.094

10 39.56 9.058 23 39.53 9.139
11 39.39 9.086 24 39.45 9.106
12 39.48 9.097 25 39.47 9.089
13 39.53 9.153
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Table A.3: Measured dimensions of the large samples. The height was averaged based on three
measurements spread over the length of the specimens

Test Width [mm] Height [mm] Test Width [mm] Height [mm]
1 59.42 9.093 14 59.55 9.157
2 59.44 9.131 15 59.54 9.160
3 59.41 9.144 16 59.61 9.155
4 59.48 9.130 17 59.46 9.102
5 59.54 9.095 18 59.65 9.170
6 59.63 9.159 19 59.41 9.133
7 59.50 9.087 20 59.48 9.073
8 59.46 9.150 21 59.54 9.167
9 59.46 9.117 22 59.51 9.099

10 59.66 9.135 23 59.62 9.153
11 59.14 9.162 24 59.44 9.172
12 59.53 9.087 25 59.51 9.167
13 59.63 9.087
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Appendix B
Weibull analyses
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(a) Weibull distribution

(b) Cumulative Weibull distribution
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Figure B.1: Results from the Weibull analyses conducted on the small samples
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(a) Weibull distribution

(b) Cumulative Weibull distribution
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Figure B.2: Results from the Weibull analyses conducted on the medium samples
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Appendix C
Blast tests summary

Table C.1: Summary of blast tests

Test Pane Bolt torque [Nm] Pf [bar] Pr [bar] ∆ [mm] Failure1

FG-01 01 150 1.526 0.636 3.594 Middle
FG-02 02 150 1.563 0.660 5.519 Edge
FG-03 03 150 1.285 0.516 5.132 Edge
FG-04 04 100 1.599 0.655 5.676 Edge

FG-05-1 05 100 1.569 0.625 5.446 X
FG-05-2 05 100 2.057 0.734 5.966 Edge
FG-06 06 100 1.322 0.530 4.644 Edge

LG-01-1 01 150 6.317 1.697 3.695 X
LG-01-2 01 150 7.669 2.014 4.793 X
LG-01-3 01 150 8.142 No data No data No data
LG-02 02 100 6.258 1.673 3.307 Middle

LG-03-1 03 100 6.345 1.613 3.666 X
LG-03-2 03 100 7.593 1.989 4.541 X
LG-03-3 03 100 9.101 2.188 4.985 Middle
LG-04 04 100 8.628 2.079 2.993 Middle

1X indicates ”No fracture”
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Appendix D
Crack propagation
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(a) t=0.0ms (b) t=0.0ms

(c) t=0.52ms (d) t=0.52ms

(e) t=1.04ms (f) t=1.04ms

Figure D.1: Crack propagation comparison between experiment and hexahedron elements with size
5× 5mm
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(a) t=0.0ms (b) t=0.0ms

(c) t=0.58ms (d) t=0.58ms

(e) t=1.136ms (f) t=1.36ms

Figure D.2: Crack propagation comparison between experiment and pentahedron elements with size
4× 4mm
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(a) t=0.0ms (b) t=0.0ms

(c) t=0.52ms (d) t=0.52ms

(e) t=1.105ms (f) t=1.105ms

Figure D.3: Crack propagation comparison between experiment and pentahedron elements with size
8× 8mm
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(a) t=0.0ms (b) t=0.0ms

(c) t=0.69ms (d) t=0.69ms

(e) t=1.104ms (f) t=1.104ms

Figure D.4: Crack propagation comparison between experiment and pentahedron elements with size
20× 20mm where t=0.0 is set to first fracture
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Appendix E
IMPETUS script - Laminated glass
blast simulation

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# BLAST LOADED 400 x 400 LAMINATED GLASS PLATE − LG−03−3
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗UNIT SYSTEM
MMTONS
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗PARAMETER
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Pr = 0 . 2 1 8 7 6 ;
t d = 24 .000E−3;
b = 1 . 6 9 2 3 ;
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s ig max = 4 7 . 4 7 ;
Kic = 2 3 . 7 2 ;
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t h = 3 . 8 0 ;
t h r = 4 ;
t h p v b = 1 . 5 2 ;
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e l g x = 5 ;
e l g y = 3 5 ;
e l g z = 1 ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t o l = 0 . 0 0 0 0 0 0 1 ;
t e n d = 0 . 0 1 ;
num imp = 100 ;
n u m a s c i i = 1000 ;
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗TIME
[% t e n d ]
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# GLASS COMPONENTS
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗INCLUDE
mesh 4x4mm . k
1 , 1 , 1
0 , 0 , 0 , 0 , 0 , −1.89999998
∗INCLUDE
mesh 4x4mm . k
1 , 1 , 1 , 1000000 , 1000000 , 1
0 , 0 , 0 , 0 , 0 , −1.89999998−% th pvb −3.8−% t o l
∗CHANGE P−ORDER
P , 1 , 3
P , 2 , 3
∗MERGE
P , 3 , P ,1 , [2∗% t o l ] , 1 2 1 2
P , 3 , P ,2 , [2∗% t o l ] , 1 2 1 2
∗MERGE FAILURE COHESIVE
1 2 1 2 , 1 0 , 1 0 , 1 , 1 , 0 , 1
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# PVB COMPONENT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗INCLUDE
mesh 4x4mm . k
1 , 1 , 0 . 4 , 2000000 , 2000000 , 2
0 , 0 , 0 , 0 , 0 ,−3.8−[% t h p v b ]/2−% t o l
∗CHANGE P−ORDER
P , 3 , 3
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# RUBBER FRONT SIDE
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗COMPONENT BOX
90 , 4 , [% e l g x ] , [% e l g y ] , [% e l g z ]
−200 , 200 , [% t o l ] , −150 , −150 , [% t h r+%t o l ]
∗COMPONENT BOX
91 , 5 , [% e l g y ] , [% e l g x ] , [% e l g z ]
−150 , 200 , [% t o l ] , 200 , 150 , [% t h r+%t o l ]
∗COMPONENT BOX
92 , 6 , [% e l g x ] , [% e l g y ] , [% e l g z ]
150 , 150 , [% t o l ] , 200 , −200 , [% t h r+%t o l ]
∗COMPONENT BOX
93 , 7 , [% e l g y ] , [% e l g x ] , [% e l g z ]
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−200 , −200 , [% t o l ] , 150 , −150 , [% t h r+%t o l ]
∗MERGE DUPLICATED NODES
P , 4 , P , 5 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 5 , P , 6 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 6 , P , 7 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 7 , P , 4 , [% t o l ∗2]
∗SET PART
” Rubber 1”
4567
4 , 5 , 6 , 7
∗MERGE
PS , 4 5 6 7 , P ,1 , [2∗% t o l ]
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# RUBBER BACK SIDE
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗COMPONENT BOX
94 , 8 , [% e l g x ] , [% e l g y ] , [% e l g z ]
−200 ,200 ,[−% th−%th−%th pvb−%t o l−%t o l ] ,−150 ,−150 ,
[−%th−%t o l−%t h r−%th−%th pvb−%t o l ]
∗COMPONENT BOX
95 , 9 , [% e l g y ] , [% e l g x ] , [% e l g z ]
−150 ,200 ,[−% th−%t o l−%th−%th pvb−%t o l ] , 2 0 0 , 1 5 0 ,
[−%th−%t o l−%t h r−%th−%th pvb−%t o l ]
∗COMPONENT BOX
96 , 10 , [% e l g x ] , [% e l g y ] , [% e l g z ]
150 ,150 ,[−% th−%t o l−%th−%th pvb−%t o l ] ,200 ,−200 ,
[−%th−%t o l−%t h r−%th−%th pvb−%t o l ]
∗COMPONENT BOX
97 , 11 , [% e l g y ] , [% e l g x ] , [% e l g z ]
−200,−200,[−% th−%t o l−%th−%th pvb−%t o l ] ,150 ,−150 ,
[−%th−%t o l−%t h r−%th−%th pvb−%t o l ]
∗MERGE DUPLICATED NODES
P , 8 , P , 9 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 9 , P , 10 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 10 , P , 11 , [% t o l ∗2]
∗MERGE DUPLICATED NODES
P , 11 , P , 8 , [% t o l ∗2]
∗SET PART
” Rubber 2”
891011
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8 , 9 , 10 , 11
∗MERGE
PS , 8 9 1 0 1 1 , P ,2 , [2∗% t o l ]
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# GEOMETRIES : BCs & LOAD SURFACE
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗GEOMETRY SEED COORDINATE
” B a c k s i d e r u b b e r ”
10
−175 , −175 , [−%th−%t h r−%th pvb−%th−%t o l−%t o l ]
∗GEOMETRY SEED COORDINATE
” I m p a c t s i d e r u b b e r ”
11
−175 , −175 , [% t h r ]
∗GEOMETRY SEED COORDINATE
” G l a s s f r o n t s i d e ”
12
0 , 0 , 0
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# LOAD
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗LOAD PRESSURE
G, 12 , 111 , 1 , 0 , [% t d ]
∗FUNCTION
” F r i e d l a n d e r Curve [MPa] ”
111
([% Pr ] ) ∗ exp((−%b∗ t ) /% t d )∗ (1− ( t /% t d ) )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# PARTS
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗PART
” G l a s s p l a t e 1”
1 , 1
” G l a s s p l a t e 2”
2 , 1
”PVB”
3 , 3
” Rubber − p t 1 ”
4 , 2
” Rubber − p t 2 ”
5 , 2
” Rubber − p t 3 ”
6 , 2
” Rubber − p t 4 ”
7 , 2
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” Rubber − p t 5 ”
8 , 2
” Rubber − p t 6 ”
9 , 2
” Rubber − p t 7 ”
10 , 2
” Rubber − p t 8 ”
11 , 2
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# DEFINE CONTACT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗CONTACT
” G e n e r a l c o n t a c t ”
696969
ALL, 0 , ALL, 0 , 1 . 9
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# MATERIALS
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗MAT ELASTIC
” G l a s s ”
1 , 2500E−12 , 70E3 , 0 . 2 3 , 9 9
∗MAT ELASTIC
” Rubber ”
2 , 1400E−12 , 150 , 0 . 4 6
∗MAT ELASTIC
”PVB”
3 , 1100E−12 , 50 , 0 . 4 5
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗PROP DAMAGE BRITTLE
99 , 3
[% s ig max ] , [%Kic ]
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# BOUNDARY CONDITIONS
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗BC MOTION
” Motion ”
100
G, 10 , XYZ
∗BC MOTION
” Motion ”
101
G, 11 , XYZ
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# OUTPUT FROM MIDPOINT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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∗OUTPUT SENSOR
” S en so r M1”
1009 , 1 , 0 , 0 , −[%t h ]
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# GENERAL OUTPUT
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗OUTPUT
[% t e n d /%num imp ] , [% t e n d /% n u m a s c i i ]
∗END
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