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Abstract 
 

Telecommunication service systems have been developing rapidly during 
the last five decades. The service architectures as well as the technologies 
for design, implementation, deployment, execution, and management of 
the services have been under continuous development. The focus of this 
thesis is mobility management in adaptable service systems. Adaptable 
service systems are service systems that adapt dynamically to changes in 
both time and position related to users, nodes, capabilities, status and 
changed service requirements and mobility management is the handling of 
movements of the various components that can potentially move. As ex-
amples persons, services, terminals, nodes, capabilities, data and pro-
grams can move. Mobility management allows services to find locations, 
and to deliver certain content to the users or terminals regardless of their 
location. This thesis is focusing on the movement of persons, services, 
programs and terminals. 

The thesis is related to TAPAS (Telematics Architecture for Play-
based Adaptable Service Systems) research project.  This project started 
in 1997 and has been founded by the Norwegian Research Council and 
the Department of Telematics at NTNU.   

The thesis has four main parts: 1) a generic terminology framework, 2) 
a mobility management architecture, 3) a design model for the basic 
mechanism used to specify and realize the services, i.e. the role-figure 
model, and 4) a formal model and analysis of the role-figure model.   

The terminology framework is the basis for the mobility management 
architecture. Three main mobility types are handled. These types are per-
sonal mobility, role-figure mobility, and terminal mobility. For each of 
these mobility types a set of generic concepts, definitions, and require-
ment rules are presented.   

The mobility management architecture defines the structure and the 
functionality of the entities needed to handle the various mobility types. 
The mobility management architecture is worked out within the context of 
TAPAS. 

The role-figure model is an abstract model for the implemented role-
figure functionality. It has parts such as behaviour, capabilities, interfaces, 
messages, and executing methods. By using an ODP (Open Distributed 
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Processing) semantic framework and the rewriting logic, the structure of 
the cooperating role-figures and their behaviour is defined.  

This model will be used as the basis for a formal model specified in 
Maude, which is a language and tool supporting specification and analysis 
of rewriting logic theories. It is used to reason about the structure and the 
behaviour of the role-figures and the proposed solution for role-figure 
mobility. 

 



 
 

 

v 

Acknowledgement 
 

The work presented in this thesis has been done at the Department of 
Telematics, Norwegian University of Science and Technology, where 
Prof. Finn Arve Aagesen was my supervisor. 

I am truly grateful to Finn Arve for the scientific guidance he assisted 
me with throughout the entire period of my PhD studies. He has always 
been a support, both professionally and spiritually, whenever I faced dif-
ficulties. I am thankful for the inspirations he used to give me to conduct 
my research. Our intensive discussions during the last several months 
have been really comprehensive and exhaustive, sometimes painful. 
However, he guided me in a most friendly, competent, and patient man-
ner. He, beyond doubt, taught me how to be comprehensive, consistent, 
and, most importantly, efficient in my work. So thank you Finn Arve. 

I am equally grateful and thankful to my soul mate, the most wonderful 
human being in my heart, my lovely wife. Erika has always been there for 
me. The amount of support and backing she gave me over the years was 
always needed. She never let me down, and always made me feel home 
even when I am thousands of miles away from my homeland, family, and 
friends. 

I am greatly indebted to my colleague Cyril Carrez. Cyril has really 
been a great help. His patient readings of my thesis, and his valuable 
comments were always supportive. I would also thank Paramai Supadul-
chai. Discussions with Paramai provided me with needed feedbacks, and 
he really was a nice roommate during the last two years. 

Also, I would thank Shanshan and Humberto for their comments on 
my early draft versions of this thesis. Equally, I would like to thank Randi 
for her administrative help and advices, not only regarding my PhD stud-
ies and teaching assistance work, but also for her kind help during my 
early days here in Trondheim. Thanks also to all my colleagues at the de-
partment with whom I shared wonderful and productive five years of my 
life. 

The thesis is dedicated to my parents, whose love was always of the 
best. To the memory of my father who always dreamed about the moment 
I get this far, and my mother who has always been praying for me. Also to 
my older sister Maysoon, my brother Muhannad, and my little sister 
Maali, all have been supporting me with their wishes and thoughts. They 



 
 

 

vi 

have been the fuel that got me started and kept me going to the finish line, 
although they all live far away from me in three different countries in 
three different continents. 

 



 
 

 

Contents 
 
1. Introduction ...................................................................................................... 1 

1.1 Background.................................................................................................... 1 
1.2 Technologies related to Mobility Management ............................................. 3 

1.2.1 Code mobility technologies....................................................................... 4 
1.2.2 Active Networks and Programmable Networks ........................................ 6 
1.2.3 Mobile Telephony Systems....................................................................... 7 
1.2.4 Mobile IP .................................................................................................. 8 
1.2.5 Mobility management in TINA................................................................. 9 
1.2.6 Technologies and mobility types............................................................... 9 

1.3 The Considered Context for Mobility Management .................................... 10 
1.4 The TAPAS architecture.............................................................................. 13 

1.4.1 General .................................................................................................... 13 
1.4.2 The Computing Architecture................................................................... 13 

1.4.2.1 Overview ....................................................................................... 13 
1.4.2.2 TAPAS Core Platform................................................................... 16 

1.4.3 The System Management Architecture ................................................... 17 
1.4.4 TAPAS status related to the thesis work ................................................. 18 

1.5 Outline of the Thesis.................................................................................... 19 
1.6 List of Publications ...................................................................................... 20 

2 Terminology Framework ............................................................................... 23 
2.1 Introduction.................................................................................................. 23 
2.2 Personal mobility related definitions ........................................................... 24 

2.2.1 Conceptualisation of personal mobility................................................... 24 
2.2.2 User mobility related definitions and requirement rules ......................... 25 

2.2.2.1 Definitions ..................................................................................... 25 
2.2.2.2 Requirement rules.......................................................................... 28 

2.2.3 User session mobility related definitions and requirement rules............. 29 
2.2.3.1 Definitions ..................................................................................... 29 
2.2.3.2 Requirement rules.......................................................................... 30 

2.3 Role-figure mobility related definitions and requirement rules ................... 31 
2.3.1 Definitions............................................................................................... 31 
2.3.2 Requirement rules ................................................................................... 36 

2.4 Terminal mobility related definitions and requirement rules....................... 37 
2.4.1 Definitions............................................................................................... 37 
2.4.2 Requirement rules ................................................................................... 38 

2.5 Discussion.................................................................................................... 39 
2.5.1 Virtual Home Environment (VHE) ......................................................... 39 
2.5.2 Open Service Access (OSA) ................................................................... 40 
2.5.3 Parlay ...................................................................................................... 42 

3 The Mobility Management Architecture ...................................................... 43 
3.1 Introduction.................................................................................................. 43 
3.2 The functional structure ............................................................................... 44 
3.3 Personal mobility ......................................................................................... 46 

3.3.1 Introduction............................................................................................. 46 
3.3.2 Login phase ............................................................................................. 46 



 
 

 

3.3.3 User mobility........................................................................................... 49 
3.3.3.1 Concept.......................................................................................... 49 
3.3.3.2 User mobility management procedures ......................................... 51 
3.3.3.3 User mobility design rules ............................................................. 55 

3.3.4 User session mobility .............................................................................. 56 
3.3.4.1 Concept.......................................................................................... 56 
3.3.4.2 User session mobility management procedures............................. 58 
3.3.4.3 User session mobility design rules................................................. 59 

3.3.5 Databases for personal mobility .............................................................. 60 
3.4 Role-figure mobility .................................................................................... 62 

3.4.1 General .................................................................................................... 62 
3.4.2 Issues related to role-figure mobility....................................................... 65 

3.4.2.1 The moving role-figure.................................................................. 65 
3.4.2.2 The mobility manager.................................................................... 68 
3.4.2.3 The mobility strategy..................................................................... 71 

3.4.3 Role-figure mobility management mechanisms...................................... 72 
3.4.3.1 RMM1: the centralized mechanism............................................... 74 
3.4.3.2 RMM2: the proxy mechanism....................................................... 75 
3.4.3.3 RMM3: the locator mechanism ..................................................... 77 
3.4.3.4 RMM4: the persistent mechanism ................................................. 78 

3.4.4 Role-figure mobility management design rules ...................................... 79 
3.5 Terminal mobility ........................................................................................ 82 

3.5.1 Concept ................................................................................................... 82 
3.5.2 The mobility management procedures .................................................... 83 
3.5.3 Terminal mobility management design rules .......................................... 85 

3.6 Mobility management architecture implementation .................................... 86 
4 The Role-figure Model ................................................................................... 89 

4.1 Introduction.................................................................................................. 89 
4.1.1 Motivation............................................................................................... 89 
4.1.2 Modelling aspects ................................................................................... 90 

4.2 Related work ................................................................................................ 91 
4.2.1 The Java class semantics ......................................................................... 91 
4.2.2 The SDL agent semantics........................................................................ 93 
4.2.3 The ODP semantics................................................................................. 96 
4.2.4 The Actor language model ...................................................................... 97 
4.2.5 Rewriting Logic ...................................................................................... 99 
4.2.6 Others.................................................................................................... 101 

4.3 The Operational Model .............................................................................. 102 
4.3.1 Behaviour and methods......................................................................... 102 
4.3.2 Role-sessions and interfaces.................................................................. 103 
4.3.3 Implementation model for role-figures ................................................. 104 

4.4 The Role-figure Model Semantics ............................................................. 105 
4.4.1 Role-figure components ........................................................................ 106 
4.4.2 Interface definition ................................................................................ 110 
4.4.3 Behaviour definition.............................................................................. 111 
4.4.4 Behaviour evolution .............................................................................. 112 

4.5 The Role-figure Model Dynamics ............................................................. 118 
4.5.1 Behaviour evolution .............................................................................. 118 



 
 

 

4.5.2 Communications ................................................................................... 118 
4.5.3 Adaptability functionality ..................................................................... 120 

4.6 The Role-figure Model Properties ............................................................. 125 
4.7 Discussion.................................................................................................. 131 

5 The Formal Analysis .................................................................................... 135 
5.1 Introduction................................................................................................ 135 
5.2 The Maude Specification ........................................................................... 135 

5.2.1 Preliminaries on Maude ........................................................................ 136 
5.2.2 Assumptions and simplifications .......................................................... 138 
5.2.3 The Role-figure Model Specification.................................................... 139 
5.2.4 Service Specification............................................................................. 148 

5.3 Formal analysis and validation .................................................................. 153 
5.3.1 Model executions .................................................................................. 153 
5.3.2 Exhaustive executions........................................................................... 158 
5.3.3 Role-figure mobility validation............................................................. 159 
5.3.4 Experiences ........................................................................................... 162 

6 Conclusion ..................................................................................................... 165 
6.1 Results........................................................................................................ 165 
6.2 Perspectives ............................................................................................... 168 

REFERENCES............................................................................................................ 171 
APPENDIX I TAPAS Architecture........................................................................... 181 

Appendix I.1  TAPAS – The Service Management Architecture ............................ 181 
Appendix I.1  TAPAS – The Dynamic Configuration Architecture ........................ 183 

APPENDIX II Rewriting Logic ................................................................................. 187 
APPENDIX III The full Role-figure Model semantics............................................. 189 
APPENDIX IV The Maude specification.................................................................. 193 
 



 
 

 

 
List of Figures 
 
Figure 1-1 Some technologies related to mobility management ....................................... 4 
Figure 1-2 Mobile IP architecture in IPv4 and IPv6 [PER97] .......................................... 9 
Figure 1-3 Mobility types related to system types. ......................................................... 10 
Figure 1-4 The TAPAS Computing Architecture ........................................................... 14 
Figure 1-5 Play View and Network View – some details................................................. 15 
Figure 1-6 Example view of the TAPAS core platform.................................................. 17 
Figure 1-7 TAPAS system management architecture components. ................................ 18 
Figure 1-8 Research contributions and research cycle.................................................... 19 
Figure 2-1 Concepts related to personal mobility ........................................................... 24 
Figure 2-2 Illustration of user profile and user profile base............................................ 26 
Figure 2-3 Illustration of user sessions and user session base......................................... 29 
Figure 2-4 Demonstration of the actor role-figure relationship ...................................... 32 
Figure 2-5 An illustration of concepts related to role-figure........................................... 33 
Figure 2-6 Application access Service Capability Features in OSA [OSA03] ............... 41 
Figure 3-1 Functional structure of the mobility management architecture ..................... 44 
Figure 3-2 Implementation class of LoginAgent ............................................................. 47 
Figure 3-3 Use cases for LoginAgent .............................................................................. 48 
Figure 3-4 Sequence diagram for a loginHomeUser....................................................... 48 
Figure 3-5 Sequence diagram for a loginVisitorUser ..................................................... 49 
Figure 3-6 Illustration of the realization of user mobility ............................................... 50 
Figure 3-7 Implementation classes of UserAgent and VisitorAgent ............................... 52 
Figure 3-8 Use cases for user mobility ........................................................................... 52 
Figure 3-9 Sequence diagram for a loginHomeRemote................................................... 53 
Figure 3-10 Sequence diagram for a loginVisitorRemote ............................................... 53 
Figure 3-11 Sequence diagram for a logoutUser at home domain.................................. 54 
Figure 3-12 Sequence diagram for a logoutUser at visitor domain ................................ 54 
Figure 3-13 Sequence diagrams for a plugin and plugout............................................... 55 
Figure 3-14 Illustration of user session mobility ............................................................ 56 
Figure 3-15 Use cases for user session mobility ............................................................. 58 
Figure 3-16 Sequence diagram for a suspendSession and updateSession use cases ....... 59 
Figure 3-17 Sequence diagram for a resumeSession use case......................................... 59 
Figure 3-18 A possible data structure model for user session base................................. 60 
Figure 3-19 A possible data structure model for user profile base.................................. 61 
Figure 3-20 Illustration of role-figure mobility............................................................... 63 
Figure 3-21 Illustration of role-sessions and interfaces .................................................. 66 
Figure 3-22 Example realization of a multi mobility management hierarchy................. 69 
Figure 3-23 Advertisement examples of mobility managers .......................................... 70 
Figure 3-24 RMM1......................................................................................................... 74 
Figure 3-25 RMM2......................................................................................................... 76 
Figure 3-26 RMM3......................................................................................................... 77 
Figure 3-27 RMM4 using role-figure locator ................................................................. 79 
Figure 3-28 An illustration of terminal characterization................................................. 83 
Figure 3-29 Illustration of the terminal mobility ............................................................ 84 
Figure 3-30 Sequence diagram for a terminal move ....................................................... 84 



 
 

 

Figure 3-31 An illustration of the mobility management architecture implementation .. 86 
Figure 4-1 Class diagram of the role-figure implementation in Java.............................. 92 
Figure 4-2 Class diagram of the SDL concepts [Ped00] ................................................. 94 
Figure 4-3 The concept of Interface in SDL [Ped00]...................................................... 95 
Figure 4-4 Implementation model for role-figures ....................................................... 104 
Figure 4-5 The implementation of a role-figure system................................................ 105 
Figure 4-6 Example of mobility management............................................................... 131 
Figure 4-7 A message sequence diagram of the example ............................................. 131 
Figure 5-1 An example of a client server configuration. .............................................. 149 
Figure 5-2 An example message diagram of the client/server configuration................ 149 
Figure 5-3 Illustration of the revised role-figure mobility. ........................................... 164 
Figure i Dynamic Service Management Framework. ................................................... 182 
Figure ii Architectural framework for dynamic configuration...................................... 184 

 



 
 

 



 
 

 

CHAPTER 1 
 

1.Introduction 
 

 

 

1.1 Background 

 TELECOMMUNICATION SERVICE is a functionality offered to 
a service-user by a service-provider. A service user can be a human 
user, software functionality, or hardware functionality. A service 

provider can be an enterprise offering services, but it can also be software 
functionality or hardware functionality. Services offered to a human user 
are denoted as the user services, and an enterprise offering services to a 
user is denoted as a telecommunication service provider. 

During the last five decades the service architectures as well as the 
technology for design, implementation, deployment, execution, and man-
agement of the services have been under continuous development. But it 
is also important to notice that the relational structure of business actors 
involved in telecommunication service provision has changed dramati-
cally. In addition to telecommunication service providers we have actors 
such as network providers, service brokers, service creators, and service 
subscribers. A service subscriber can order a service from a service crea-
tor that is offered by a telecommunication service provider. A telecom-
munication service provider can use the service of a network provider for 
the connectivity between users, subscribers, and service creators. Tele-
communication services are already an important infrastructure for the 
society. However, the business as well as the technology landscape is 
more complex than ever. 

In the 60’s the main user service was the fixed line telephony service. 
This service was only concerned with the establishment of connections 
between two users. In the 70’s the Signalling System No. 7 was devel-
oped. One aim was to separate the call setup information and the talk 

A 



Chapter 1. Introduction 
 

 

2 

path. But this signalling system also was a basis for more profound ser-
vices. In the 80’s, more advanced telecommunication services were de-
veloped. These services were classified as basic services, related to the 
basic call, and supplementary services, e.g. call forwarding and call wait-
ing. The problem faced, however, was the time needed to implement a 
new service. Typical time to implement a new service could be one year, 
because a change involved new versions of software to be installed in all 
switches of the network. 

To handle this problem, the concept of Intelligent Networks (IN) was 
developed from the middle of the 80’s [IN92]. The aim for IN was to 
separate the service-related functionality from the basic switching and 
transmission functionality and to consider the service-related functionality 
as a programmable tool box for easy and fast implementation of new ser-
vices. The IN architecture, nevertheless, was politically biased in the 
sense that the switches still played an important role with respect to the 
service design and execution. 

Telecommunications Information Networking Architecture (TINA) 
was developed between 1995 and 1997, [TINA95] and [TINA97]. It was 
initialised to develop the politically biased IN model further. It was aimed 
to put together the best of telecommunications and information technolo-
gies aiming at providing solutions to the challenges of developing net-
work information services combining the fixed line as well as mobile te-
lephony and data terminal services [BDD99]. TINA included platform for 
distributed processing such as CORBA [CORBA98]. 

An important technology component used in the IN architecture is the 
database. The database is also an important technology component in the 
systems for provision of mobile telephony services that was developed 
from the late 70’s. The database was a crucial component for realising 
various aspects of flexibility. One such aspect is the handling of mobility. 
Mobility is the ability for a component to move or for a component to be 
moved. Mobility management is the handling of movements of the vari-
ous components that can potentially move. In this mobility context com-
ponents can be persons, services, terminals, nodes, capabilities, data and 
programs. Mobility management allows services to find locations, and to 
deliver certain content to the users or terminals regardless of their loca-
tion. 

During the 90’s the volume of the Internet traffic exceeded the volume 
of the telephony traffic. The use of the Internet exploded and initiatives 
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within the Internet community resulted in concepts such as Active Net-
works, Mobile IP, and later Semantic Web. These are all initiatives that 
increase the power of flexibility within the Internet. 

Starting from the fixed line telephony service the nature of the intelli-
gence of the service providing system has changed. During the era of the 
automation of the telephone switches, the intelligence was associated with 
the amount of automatic tasks performed responding to varying user de-
mands. Later it was associated with the network operator’s ability to de-
velop, deploy and manage services more rapidly and efficiently. Nowa-
days, one important aspect of intelligence is adaptability. 

Adaptability is a concept widely used in the science of Biology to de-
scribe the organism’s ability to adapt: “Adaptation or Adaptability is the 
process by which populations of organisms respond to long-term envi-
ronmental stresses by permanent genetic change. Populations adapt by 
evolving” [DO04]. Adaptable service systems are service systems that 
adapt dynamically to changes in both time and position related to users, 
nodes, capabilities, status and changed service requirements. 

In 2004 the European Commission call for initiatives within the field 
of Autonomic Communication [Smi04] was launched. The work in this 
area was started by the IBM Autonomic project [IBM05]. The vision is a 
service providing system with “its own life” like a biological system, but 
made up of independent distributed components. While autonomic com-
munication both put objectives regarding the external behaviour of the 
system and also restriction on how this functionality is made possible, in 
this thesis we only consider objectives regarding the external behaviour of 
the system. In that sense autonomic communication is a subset of adapt-
able service systems. 

This thesis addresses mobility management in adaptable service sys-
tems. The thesis is related to TAPAS (Telematics Architecture for Play-
based Adaptable Service Systems) research project. This projected started 
in 1997 and has been founded by the Norwegian Research Council and 
the Department of Telematics at NTNU.   

1.2 Technologies related to Mobility Management 

There are several technologies that can be related to mobility manage-
ment. Figure 1-1 illustrates the history of some technologies related to 
mobility management.  
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Figure 1-1 Some technologies related to mobility management 

Some of the technologies in the figure are discussed in the following 
subsections with respect to various mobility types and contexts. The mo-
bility types addressed are code, terminal, node, service and personal mo-
bility. 

The precise definition of the context and the mobility types to be used 
in this thesis will be given in Sec. 1.3. TAPAS will be presented in Sec. 
1.4. The technologies VHE, OSA and Parlay, which also are in Figure 
1-1, will be discussed in Sec. 2.5, because this discussion needs concepts 
that will be defined in Chapter 2. 

1.2.1 Code mobility technologies 
Code mobility is the mobility of the instantiated code among different 
execution environments. In the following, we briefly discuss mobile agent 
systems, code-on-demand, process migration, and remote evaluation. 
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Mobile Agent systems 
 A mobile agent is a program, script or package that physically travels 
around a network, and performs operations on hosts that have agent capa-
bilities. These agents, which operate autonomously, usually have very 
specific tasks, such as fetching prices of merchandise from on-line stores. 
Apart from interacting with all sorts of operating systems, databases and 
information systems, mobile agents can also interact with other agents, 
meeting in agent-gathering places to exchange information. There are 
many different mobile agent architectures, e.g. SOMA architecture 
[BCS00] and KQML architecture [Mar04]. One research project 
[WPB99] has been dealing with the installation, extension, and modifica-
tion of services based on mobile agents. In this architecture, with the ca-
pability to receive code from other parties, any service can be installed 
and made available for subsequent requests. The self-repairing aspect has 
also been addressed here. The idea is to inject all sorts of mobile code into 
the network that would be intelligent enough to take care of most of the 
problems by activating recovery routines or by planning other required 
activities. 

Mobile agents have also been used in resource and networks manage-
ment. One of the promising applications of agents is their employment in 
distributed resource allocation. An example is MIT Challenger system 
[MIT04]; which is a multi-agent system that performs distributed resource 
allocation. 

With mobile agents, the flow of control actually moves across the net-
work, instead of using the request/response architecture of the cli-
ent/server communication. In effect, every node is a server in the agent 
network, and the agent (program) moves to the location where it may find 
the services it needs to run at each point in its execution. However, Mo-
bile agents face many problems such as security concerns, bandwidth sav-
ing, limited agent capabilities, high development costs, dependency on 
expensive and local communications hardware or resources, high costs of 
infrastructure management, and the lack of integration with legacy appli-
cations. 

Code-on-demand 
Code-on-demand is a technique by which a code is downloaded and exe-
cuted whenever a need for it arises. Although code-on-demand does not 
involve the mobility of the instantiated code, it achieves code mobility by 
re-instantiating the code. In [RPM00] it is argued that code on demand is 
probably the most widely used code mobility concept at this time. They 
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call the mobility type achieved by code-on-demand logical mobility 
(which involves moving units of code and state) as opposed to physical 
mobility (which involves moving hosts or nodes). Web based services as 
well as Web Services [GGK02], and based on the widespread usage of 
XML, may be exploited to further enhance the concept of code-on-
demand. Service descriptions and service requests can all be specified in 
XML and be sent to service clients and servers no matters what is the tar-
get environment, underlying communication platform, etc. 

Process Migration 
Process migration is a technique by which a currently executing process is 
transferred from one computer to another. There have been many efforts 
to handle process migration, e.g. the paper [TH91] uses the so-called het-
erogeneous process migration concept to achieve process migration. Het-
erogeneous means that the two computers can have different architec-
tures, that is different CPU instruction sets and different data formats. The 
paper [TH91] also covered many issues related to dynamic configuration 
of networks using process migration. 

Remote EValuation (REV) 
Remote EValuation (REV) [SG90] is a technique by which a computer 
can send another computer a request in the form of a program. A com-
puter that receives such a request executes the program in the request and 
returns the results to the sending computer. [SG90] discusses the flexibil-
ity of REV as compared to remote procedure calls. [SG90] argues that 
REV reduces the amount of communications between computers, and as a 
result improves the performance of distributed systems. 

1.2.2 Active Networks and Programmable Networks 
Active and programmable networks are aimed at simplifying the deploy-
ment of services. These technologies also support service creation and 
service deployment by moving code among network routers and switches. 
The paper [TSS97] gives a survey of active networks, while the paper 
[CKV01] discusses the main principles of these networks. 

Active and programmable networks have been a research area for long 
time, and may be classified in several ways. We follow the classification 
presented in [CMK99], which states that active and programmable net-
works may follow one of two approaches: open signalling and active net-
works. Open signalling focuses on Programmable Switches, while active 
networks focus on the so-called Capsules. Open signalling supports the 
idea that new service is provided by a virtual network. All kinds of primi-
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tives are installed on routers in the networks, i.e. nodes with needed 
primitives are visited by packets of a stream in a certain order. Active 
routers process the data in packets and then re-wrap processing results 
and pass it to the next active node for further computation. 

Active networks think that packets transport not only data, but also 
code itself; what they call “capsule”. In active nodes, the content of cap-
sules is evaluated to decide whether the code should be executed at run 
time. The first capsule of a stream might change the processing environ-
ment of this stream. This environment will be kept until the end capsule 
of the stream is processed [CMK99]. Several active network and pro-
grammable network architectures have been developed, e.g. the Genesis 
project [GEN05], Smart Packets project [BS00], DARPA [DoD05], Net-
Script [YSF99], and SwitchWare [PEN05]. 

There are however major concerns with respect to efficiency and secu-
rity of the network. Efficiency in active networks is compromised as exe-
cuting a program contained in a packet at a router would typically take 
longer than processing a fixed format packet header. Also, with programs 
being injected into the network on the fly, another concern is the safety 
and security of the network. A program can cause disproportionate con-
sumption of resources at a router, or can disrupt/crash a router thus affect-
ing the core network function [VS04]. 

1.2.3 Mobile Telephony Systems 
The history of mobility management can be traced back to the early days 
of the mobile telephony. The first analogue cellular system was the Nor-
dic Mobile Telephone (NMT) in 1981. European Telecommunications 
Standards Institute (ETSI) targeted the mobility management by the 
Global System for Mobile communications (GSM) in 1991. It also devel-
oped the Universal Mobile Telecommunications System (UMTS). ETSI 
also tried to adopt the concepts of IN in its standards for mobility. These 
generations of mobile telephony systems have evolved from the basic 
mobile voice service, to the advanced mobile telephony services, and now 
to the mobile data communication services. The shift has been from sup-
porting terminal mobility (as in GSM), to supporting terminal and per-
sonal mobility (as in UMTS). Personal mobility within the UMTS context 
handles both the movement of the user across different terminal devices, 
as well as the personalization of the user operating environment. 

Mobile telephony systems can provide a variety of voice and multime-
dia services to the mobile users. The GSM system delivers advanced 
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voice services, and to some extent data communication services. The 
GSM system provides mobility for the users and their terminals in and 
through enterprise-based domains. In GSM, the Home Location Register 
(HLR) and the Visitor Location Register (VLR) ensure the terminal mo-
bility between different domains [GSM92]. HLR and VLR are databases 
at the home network and at the visiting network to maintain subscription, 
location, and charging data. 

Mobility management in GSM is achieved by allowing the users to 
change terminals by means of a Subscriber Identity Module (SIM) card. 
In GSM, each terminal also has an IMEI (International Mobile Equipment 
Identity), and each mobile subscriber has two identifiers: IMSI (Interna-
tional Mobile Subscriber Identity) and TMSI (Temporary Mobile Sub-
scriber Identity). The mobility management in GSM leads to the coupling 
between the user or subscriber and its terminal. There is no possibility to 
address the user or the terminal separately in GSM. As a result, GSM only 
supports terminal mobility. 

1.2.4 Mobile IP 
In the internet architecture prior to the mobile IP, a computer is allocated 
an IP address when it is connected to a specific network. When that com-
puter moves to another network it gets a new IP address. Other nodes that 
are not aware of the computer’s new address cannot, for instance, access 
files or resources on that computer. 

Mobile IP provides a transparent scheme, so that computing continues 
as normal when a host is moved from one subnet to another. Mobile IP 
identifies a node uniquely by using distinct IP addresses, while allowing it 
to seamlessly change its point of attachment on the internet. The mobility 
type supported by mobile IP is node mobility. 

Mobile IP achieves node mobility by applying routing mechanisms be-
tween two agents, the home agent (HA) and the foreign agent (FA). When 
the mobile host leaves its home domain, the HA is informed of this move, 
and the FA of the visited domain relays back to the HA that the host is 
available in that domain. The HA then operates as a proxy, relaying all 
traffic to the mobile host through the visited domains FA. 

Mobile IP is described in RFC2002 [PER96] and RFC3344 [PER02]. 
Mobile IP defines mobility functionality for IPv4 [POS93] and IPv6 
[DH95]. Mobile IP functionality for IPv4 and IPv6 are very similar, see 
Figure 1-2. 
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Figure 1-2 Mobile IP architecture in IPv4 and IPv6 [PER97] 

The addressing scheme for IPv4 is topologically hierarchical and an IP 
address represents a physical location in the network topology. IPv6 pro-
vides several additional features that enhance and simplify mobility. Simi-
lar to IPv4, two IP addresses and a home agent are needed, but not a for-
eign agent. Through neighbourhood discovery and auto configuration of 
IP addresses, a mobile node can obtain a local care-of address, and in-
forms the correspondent nodes of its new location through the source 
routing headers present in the IPv6. 

1.2.5 Mobility management in TINA 
A TINA deliverable [TINA98] highlighted the issue of mobility manage-
ment in TINA. It discusses that service session mobility has been sup-
ported by allowing service sessions to be suspended and resumed. It is 
also argued that the personal mobility is provided by the TINA service 
architecture. Personal mobility in TINA is however defined as the ability 
of end users to originate and receive calls and access subscribed tele-
communication services on any terminal in any location, and the ability of 
the network to identify end users as they move. Regarding terminal mo-
bility, [TINA98] concludes that TINA does not support terminal mobility, 
as the terminal mobility aspects are hidden from the service. Therefore 
designing a service that requires explicit terminal mobility and location 
management is not trivial, e.g. by incorporating legacy networks in TINA. 
Beside this deliverable, some other efforts have been conducted to ad-
dress other issues of the mobility management in TINA, e.g. [Tir98], 
[TLL99], and [Tha97]. 

1.2.6 Technologies and mobility types 
Figure 1-3 illustrates mobility types related to some of the technologies 
considered. TAPAS mobility management architecture, to be elaborated 
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in this thesis, supports multi mobility types. It is important, however, to 
notice the context for the mobility type when comparing different tech-
nologies. As an example, the definition of personal mobility is different in 
TINA, UMTS and TAPAS.  

 
Figure 1-3 Mobility types related to system types 

1.3 The Considered Context for Mobility Management 

We are considering service systems consisting of services realized by ser-
vice components. A service is realized by the structural and behaviour 
arrangement of service components, which by their inter-working provide 
a service in the role of a service provider to a service user. These defini-
tions comprise any network based application service, including Web 
based services, telecommunication services as defined by TINA and ITU, 
network management services, and also other services provided by the 
OSI layers 2-7. 

Service components are executed in nodes, which are different kinds of 
physical processing units such as servers, routers, switches and user ter-
minals. A terminal is a node operated by a human user. Human users are 
associated with a node when using a service. A user is connected to a 
node at an access point and has a user session for each service in use. 

Service components are executed as software components. The soft-
ware components are generic components, which are able to download 
and execute different functionality depending on the need. Such generic 
components are denoted as actors. The name actor is chosen because of 
the analogy with the actor in the theatre metaphor where an actor plays a 
role in a play defined in a manuscript. We use the role-figure as a generic 
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concept for the actor which is playing a role. So services and service 
components are mapped to role-figures.   

To utilise the flexibility potential of this metaphor, the attributes of 
services, service components and nodes must be appropriately formalised, 
stored and made available. As a first step towards this formalisation, the 
concepts status and capability are introduced. 

Status is a measure for the situation in a system with respect to the 
number of active entities, traffic situation and Quality of Service (QoS). 
Capability is the inherent properties of a node or a user, which defines the 
ability to do something. An actor executes a manuscript. However, to 
execute this manuscript, capabilities in the node may be needed. A capa-
bility in a node is a feature available to implement services.  A capability 
of a user is a feature that makes the user capable of using services. Capa-
bilities are classified into: 

• functions (pure software or combined software/hardware compo-
nents, which perform particular tasks, e.g. encryption functions or 
special programs available for general use),  

• resources (physical hardware components with finite capacity, e.g. 
processing resources, storage resources, and communication re-
sources), and  

• data (just data, the interpretation, validity and lifespan of which de-
pend on the context of the usage, e.g. user login and access rights). 

Adaptability is modelled as property consisting of three property 
classes [AHJ01]: 

(a) Rearrangement flexibility    
(b) Failure robustness and survivability 
(c) QoS awareness and resource control  

Rearrangement flexibility means that the system structure and the 
functionality is not fixed (adding, moving, removing nodes, users, re-
sources, services and service components according to the needs.) Also, 
there is a continuous adaptation to changed environments and operation 
strategies/policies (new services and service components functionality, 
new management functionality, new policy functionality.) 

Failure robustness and survivability means that the architecture is 
dependable and distributed (Replicated resources and functionality, inhib-
iting malicious and unauthorized components.) This means also that the 
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system can reconfigure itself in the presence of failures, and that the sys-
tem can provide continuous operation. 

QoS awareness and resource control means that there is a function-
ality for negotiation about QoS and optimum resource allocation. Moni-
toring of resource utilization and actions and reallocation of resources is 
also part of this property class. 

Mobility management was defined in Sec. 1.1 as the handling of move-
ments of the various components that move. Mobility management is by 
definition one aspect of the rearrangement flexibility property class de-
fined above. 

This thesis focuses on the mobility of persons, services, service com-
ponents, role-figures and terminals. Because services and service compo-
nents are realised by role-figures, role-figure mobility is the basic mecha-
nism to attain service component mobility. So the focus will be on the fol-
lowing three types of mobility:     

 Personal mobility  
 Role-figure mobility  
 Terminal mobility 

These mobility types handle the mobility of the three main components 
of the architecture: the person, the service and service components, and 
the terminal. Personal mobility is further decomposed into user mobility 
and user session mobility. 

Personal mobility is the utilization of services that are personalized 
with end user’s preferences and identities independently of both physical 
location and specific equipment. This type of mobility comprises the mo-
bility of the user together with all of its data and information across dif-
ferent terminals. These data and information can be related to the user or 
can be related to the user session, defined as the representation of the user 
interactions with the service system. User mobility is the seamless access 
of the subscribed services at different user interfaces and terminals, while 
user session mobility is the re-instantiation and resumption of the user 
suspended sessions.  

 Role-figure mobility is the movement of the instantiated service func-
tionality. In adaptable service systems, service functionality can be 
moved, due to the move of the user, or to optimize the system resource 
utilization. This requires that the service functionality be re-instantiated at 
a new location.  
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Terminal mobility is the movement of terminals while maintaining ac-
cess to services and applications. 

Notice that security is not defined as a property of an adaptable service 
system. This does not imply that it is claimed that an adaptable service 
system can be insecure. Security must be included in a real-world adapt-
able service system, but is out of the scope of the work presented in this 
thesis.   

1.4 The TAPAS architecture 

1.4.1 General 
TAPAS aims at fulfilling the adaptability properties defined in Sec. 1.3. 
In accordance with TINA architectural framework, TAPAS is separated 
into a computing architecture and a system management architecture as 
follows: 

• The computing architecture is a generic architecture for the mod-
elling of any service system. 

• The system management architecture is the structure of services 
and service management components. 

These architectures are not independent and can to some extent also be 
seen as architectures at different abstraction layers. The system manage-
ment architecture has focus on the functionality independently of imple-
mentation, while the computing architecture has focus on the modelling 
of functionality with respect to implementation. The nature of the com-
puting as well as the system management architecture is described briefly 
in the following. 

1.4.2 The Computing Architecture 

1.4.2.1 Overview 
The computing architecture is illustrated in Figure 1-4 and Figure 1-5. It 
has three views: the service view, the play view, and the network view. 
Figure 1-5 is a more detailed version of the play and the networks views. 
TAPAS Core Platform supports the play view concepts by a set of proce-
dures and is described in Sec. 1.4.2.2. 

The service view concepts are rather generic and should be consistent 
with any service architecture. A service system consists of service com-
ponents that further can be service systems. A service component that is 
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not longer decomposed into new service components is denoted a leaf 
service component.  Likewise, the network view concepts are generic and 
should be consistent with any corresponding physical architecture. The 
network view concepts are the basis for implementing the play view con-
cepts, which again are the basis for implementing the service view con-
cepts. 

 
Figure 1-4 The TAPAS Computing Architecture 

The play view concepts are founded on a theatre metaphor as already 
described in Sec. 1.3. The play view intends to be a basis for the design-
ing functionality that can meet the requirements related to Rearrangement 
flexibility, the Failure robustness and survivability, and the QoS aware-
ness and resource control. 

The play view has the concepts already presented with some additions 
such as director, role-session and domains. The director, which acts ac-
cording to a special role, is an actor managing and controlling the overall 
performance and execution of different role-figures that are involved in a 
certain play. A director also represents a play domain. Role-session is the 
projection of the behaviour of a role-figure with respect to one of its in-
teracting role-figures. The different roles have different requirements on 
capabilities and status of the executing system. The ability to play roles 
depends on the defined required capability and the matching offered ca-
pability in a node.  

A service system is constituted by a play. A leaf service component is 
constituted by a role-figure. 
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Figure 1-5 Play View and Network View – some details 

In the network view, capability is provided by a node or is owned by a 
user. The capability residing in a node in the network view is the basis for 
providing the play view capability. User, node, and capability have status 
information. A network domain is a set of nodes. A play domain may be 
related to one or more network domain, as a play may be distributed over 
several network domains. 

The play view concepts allow service components to be installed into 
the network and execute services according to the available capabilities in 
the network. The play view concepts also facilitate the handling of dy-
namic changes in the installed service components, which occur due to 
changing capabilities, changing functionality, changing locations, etc. Ex-
amples of the handling of dynamic changes can be replacing the complete 
play definition by another, changing a specific role played by an actor, 
moving a role-figure from one node to another, etc. The handling of dy-
namic changes is needed to cope with the dynamic, heterogeneous, and 
rapidly evolving service systems. Also the handling of dynamic changes 
enable installed service components to adapt to changes in their environ-
ment without changing the definitions of the service system. The play 
view concepts introduce an extra complexity. However, this added com-
plexity achieves adaptability.  
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1.4.2.2 TAPAS Core Platform 
TAPAS core platform is a platform supporting the play view concepts of 
the computing architecture by a set of support procedures. These proce-
dures are classified as play management procedures and actor basic sup-
port procedures. A third class of procedures will be introduced in Chapter 
3 for mobility management. These are denoted as mobility management 
procedures. 

The play management procedures are procedures for managing the 
availability of plays. These are: PlayPlugIn, PlayChangesPlugIn, and 
PlayPlugOut. These procedures will not be used in the thesis. It will be 
assumed that the play definitions are always available at the director. The 
actor basic support procedures are procedures for: 

1) managing the existence of actors,  
2) dynamic redefinition of role-figure behaviour, 
3) role-figure movement, and  
4) interactions between role-figures, actor capability change and 

monitoring. 
There are quite many actor basic support procedures that cover these 

four purposes. We will only focus on certain procedures. The support 
procedures that we will use in this thesis are the following: PlugInActor, 
PlugOutActor, CreateInterface, BehaviourChange, CapabilityChange, 
and RoleFigureMove. These procedures are implemented as public meth-
ods in the software components in the prototype implementation of the 
TAPAS architecture. These methods can be invoked by the following in-
vocation requests:  

• pluginActor (name, location, behaviour, capability): is used to plug in an 
actor with a Role-Figure name, at a certain location, with a behaviour 
specification, and with required capabilities; 

• plugoutActor (name): plugs out an instantiated Role-Figure;  
• createInterface (interfaces): creates interfaces in a Role-Figure (inter-

faces will be discussed later); 
• behaviourChange (behaviour, state): instantiates a new behaviour for a 

Role-Figure, and sets its current state; 
• capabilityChange (capabilities): changes the capability definitions, or 

adds new capability definitions to a Role-Figure; 
• rolefigureMove (location): initiates the move of a Role-Figure to a new 

location. 

The arguments of these requests are included within the parentheses. 
The detailed specification of these requests is not included in this thesis.  



1.4. The TAPAS architecture 
 

 

17 

Figure 1-6 gives an example view of the TAPAS core platform execut-
ing in three nodes and a web server. The core platform executes a node 
execution support in every node to facilitate the communication between 
nodes through the communication network. A web server is used to store 
the TAPAS support system and the play repository. The Actor Environ-
ment Execution Module (AEEM) is a system process or thread that can 
execute a collection of actors (AEEM is further explained in the terminol-
ogy framework in Chapter 2). 

 
Figure 1-6 Example view of the TAPAS core platform 

1.4.3 The System Management Architecture 
The TAPAS system management architecture comprises several function-
ality components. Figure 1-7 illustrates the main functionality compo-
nents that must be part of the system management architecture. Beside the 
executing service functionality, there are: 

o Service management: is deployment and invocation of services 
and service components.  

o Configuration management: is the optimization of service systems 
initial configurations and reconfigurations with respect to capabili-
ties and status  

o Capability management: is the installation and de-installation of 
capabilities, updating a view of the offered capabilities, and the 
dynamic capability allocation. 

o Status monitoring:  is the provision of a view of the offered status 
in the system. 
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o Mobility management: is the functionality of handling the move-
ments of the components of the service systems. 

 
Figure 1-7 TAPAS system management architecture components 

To fulfil the failure robustness and survivability requirements, the ar-
chitecture must be dependable and distributed. This means that replication 
of resources and functionality is needed. The dependability aspect is be-
yond the scope of the illustration given in Figure 1-7 and also this thesis. 
The various functionality components are defined as being part of a cen-
tralized architecture. 

1.4.4 TAPAS status related to the thesis work 
The TAPAS architecture has undergone numerous revisions, and several 
extensions. The original concept of the architecture itself, and its core 
platform, were first presented in [AHW99] and then in [AHJ01]. A status 
of the project was presented later in [AHA03]. The configuration man-
agement architecture was introduced in [AAS02] and later in [ASA05]. 
The service management architecture was presented in [SJS04]. [JA03] 
gave an implementation of the architecture based on a state machine role 
specification. The mobility management architecture has been presented 
in several increments, [SA102], [SL02], [SA202], and [Shi03], respec-
tively. These increments presented the evolution of the concept and its 
functionality. Most of the TAPAS mobility management architecture has 
been implemented (see [Lil03], [Luh03], [Hen04] and [Smi04]). 
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1.5 Outline of the Thesis 
The thesis has four main parts: 1) a generic terminology framework, 2) a 
mobility management architecture, 3) a design model for the basic mecha-
nism used to specify and realize the services, i.e. the role-figure model, 
and 4) a formal model and analysis of the role-figure model. 

The terminology framework is presented in Chapter 2. This terminol-
ogy provides a generic and platform-independent framework for mobility 
management. The mobility management architecture is presented in 
Chapter 3. It is elaborated based on the terminology framework. In this 
architecture all types of mobility are considered as a whole without apply-
ing external systems or additional middleware supporting mobility. The 
design model for the implementation of the role-figure is presented in 
Chapter 4. This model will provide the means to formalise and analyse 
role-figure mobility. The formal analysis of the role-figure model, which 
is aimed to increase the confidence of the proposed solution for the role-
figure mobility, is presented in Chapter 5 

Figure 1-8 illustrates the lifecycle of the research contributions result-
ing from the work presented in this thesis.  

 
Figure 1-8 Research contributions and research cycle 
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In this figure there are five contributions. There are four main contri-
butions within the context of the mobility management in accordance with 
the four main parts of the thesis. Besides, there is a contribution to the 
TAPAS computing architecture, system management architecture, and 
prototype implementation. 

1.6 List of Publications 

During the fulfilment of the PhD study, I have contributed to the follow-
ing papers as an author or co-author. The corresponding contributions 
presented in Figure 1-8 are indicated at each of these papers: 

1. Mazen Malek Shiaa, Finn Arve Aagesen, and Cyril Carrez, “Formal 
Modelling of an Adaptable Service System”, IFIP International Confer-
ence, INTELLCOMM 2005, Montreal, Canada, October 2005 (submitted). 
[Contribution: role-figure model, formal model and analysis] 

2. Finn Arve Aagesen, Paramai Supadulchai, Chutiporn Anutariya, and 
Mazen Malek Shiaa, “Configuration Management for an Adaptable Ser-
vice System”, IFIP International Conference on Metropolitan Area Net-
works MAN’05, Ho Chi Minh city, Viet Nam, April 2005. [Contribution: 
TAPAS Computing Architecture and System Management Architecture] 

3. Mazen Malek Shiaa, Shanshan Jiang, Paramai Supadulchai and Joan 
J. Vila-Armenegol, “An XML based Framework for Dynamic Service 
Management”, IFIP International Conference, INTELLCOMM 2004, 
Bangkok, Thailand, November 2004. [Contribution: TAPAS System Man-
agement Architecture] 

4. Shanshan Jiang, Mazen Malek Shiaa and Finn Arve Aagesen, “An 
Approach for Dynamic Service Management”, IFIP WG 6.3 Workshop 
and EUNICE 2004 on "Advances in fixed and mobile networks", Tam-
pere, Finland, June 14 - 16, 2004. [Contribution: TAPAS System Man-
agement Architecture] 

5. Finn Arve Aagesen, Chutiporn Anutariya, Mazen Malek Shiaa, Bjarne 
E. Helvik and Paramai Supadulchai, “A Dynamic Configuration Architec-
ture”, IEEE/IFIP Network Operations and Management Symposium 
NOMS'2004, Seoul, South Korea, April 2004. [Contribution: TAPAS 
Computing Architecture and System Management Architecture] 

6. Mazen Malek Shiaa, “Mobility Support Framework in Adaptable Ser-
vice Architecture”, IFIP - IEEE Conference on Network Control and En-
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gineering for QoS, Security and Mobility, NetCon'2003, Muscat-Oman, 
October 2003. [Contribution: Terminology Framework for mobility man-
agement, Mobility Management Architecture, and Role-Figure Model] 
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Communication PWC2002, Singapore, October 2002. [Contribution: Mo-
bility Management Architecture] 
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Eunice Summer School on Adaptable Networks and Teleservices, Trond-
heim, Norway, September 2002. [Contribution: Mobility Management 
Architecture] 
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Bjarne E. Helvik. “Capability Specification and Selection in TAPAS”, 
IFIP WG6.7 Workshop and Eunice Summer School on Adaptable Net-
works and Teleservices, Trondheim, Norway, September 2002. [Contribu-
tion: TAPAS System Management Architecture] 

11. Mazen Malek Shiaa and Finn Arve Aagesen. “Mobility management 
in a Plug and Play Architecture”, IFIP TC6 Seventh International Confer-
ence on Intelligence in Networks, Saariselka, Finland, April 2002. [Con-
tribution: Mobility Management Architecture]. 
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CHAPTER 2 
 

2 Terminology Framework 
 

 

 

2.1 Introduction 

HE TERMINOLOGY FRAMEWORK provides generic concepts 
and definitions for mobility management for the three main mobility 
types defined in Chapter 1. The definitions in this chapter are organ-

ised in groups. Each group contains the definitions related to one mobility 
type. These groups are:  

− Personal mobility related definitions 
− Role-figure mobility related definitions 
− Terminal mobility related definitions 

These groups of definitions are presented in Sec. 2.2, Sec. 2.3, and Sec. 
2.4, respectively. In these sections we also give propositions and require-
ment rules for every group of definitions. Propositions will state which 
definitions are required in the handling of the defined mobility types. The 
requirement rules will give the overall requirements and conditions re-
garding these definitions. Mobility management solutions for the defined 
mobility types must satisfy these requirement rules. 

 The definitions, propositions, and requirement rules in these sections 
will be generic. However, certain discussions will be presented within the 
context of TAPAS. In these discussions the definitions that are specific to 
TAPAS concepts will be explicitly mentioned. 

Sec. 2.5 gives a discussion on the terminology framework. In this sec-
tion we give a discussion on some concepts of the terminology framework 
related to similar concepts and standards. 

T 
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2.2 Personal mobility related definitions 

2.2.1 Conceptualisation of personal mobility 
In any service system the user is a very essential concept. Services are 
based on a service-provider to a service-user relationship. In this section 
the user is the human user or the person. 

In Chapter 1, we defined the personal mobility as the utilization of 
services that are personalized with end user’s preferences and identities 
independently of both physical location and specific equipment. This type 
of mobility comprises the mobility of the user together with all of its data 
and information across different terminals. These data and information 
can be related to the user or can be related to the user session. A user can 
move with or without its user session. In this section we give the personal 
mobility related definitions in two groups: 

− User mobility related definitions 
− User session mobility related definitions 

In this respect, we decompose the personal mobility into user mobility 
and user session mobility. The issues of the personalization of the user 
environment, user applications, user profile, etc. are parts of the user mo-
bility. The issues related to the suspension and resumption of user ses-
sions are parts of the user session mobility. 

Figure 2-1 illustrates concepts related to personal mobility. 

 
Figure 2-1 Concepts related to personal mobility 
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In this figure, a user has user capabilities, e.g. its identification, pass-
words, personal settings, preferences, personal data, phone books, buddy 
lists, etc. A user is related to a terminal (a user can also be related to a set 
of terminals instead of one single terminal). A user has a user session 
through the terminal (A user also can have multiple user sessions through 
the same terminal). Figure 2-1 shows that a user is represented within the 
architecture by a set of software components, which execute in user ses-
sions that execute in terminals and nodes.  This set of software compo-
nents is called the user representation. A software component, called user 
interaction handler, controls this user representation and handles the user 
interactions with the service system. A user may interact with the system, 
or services, within a specific user session. A software component, which 
is called user session handler, controls this user session. A user can ac-
cess services using different terminals. The user capabilities can be 
moved among these terminals. There are two physical access points or 
interfaces: 

− User interface 
− Terminal interface 

These concepts provide a flexible mechanism to represent users and 
terminals independently of each other. A user may be identified by a 
name, while a terminal may be identified by a network address. 

In Sec. 2.2.2 we give the user mobility related definitions and require-
ment rules, while in Sec. 2.2.3 we give the user session mobility related 
definitions and requirement rules. 

2.2.2 User mobility related definitions and requirement rules 

2.2.2.1 Definitions 
User mobility is the seamless access of the subscribed services at differ-
ent user interfaces and terminals. This comprises the mobility of the data 
and information that are related to the user. As a starting point, the han-
dling of the user mobility requires the handling of the user capabilities 
defined earlier. These capabilities may be partly included in the user ter-
minals, but mainly they are stored and maintained centrally in the service 
system. A user profile may be used to include the user’s capabilities. Be-
sides, a user profile may include other user-related information. Such in-
formation can be the user location, terminal-related data, subscribed ser-
vices, access permissions, and authorization constraints. The user profile 
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may also include the set of optional preferences and setting attributes of 
the services associated with the user. 

User profiles are stored in databases, or user profile bases. One main 
assumption regarding the management of user profile bases is needed.  In 
the service system where user profiles are used and maintained a compo-
nent of the service system must be responsible for the management func-
tionality of these bases. We call such a component a supervisory object. 

Figure 2-2 illustrates a user with a terminal, its corresponding user pro-
file, and a user profile base. The data and information of this user profile 
may be updated and accessed throughout the service execution. Beside 
this basic arrangement of user profiles it is possible to apply any other 
organization of user profiles, e.g. there can be terminal-based, applica-
tion-based, or network-based user profiles. 

 
Figure 2-2 Illustration of user profile and user profile base 

User mobility requires user-terminal independence. For this purpose a 
software component that handles the user login is needed, so that different 
users can use the same terminal. A user starts interacting by sending a 
login request to this software component. The login request must contain 
the user identification and it is password. We call such a component 
Login Agent. 

Furthermore, the user representation illustrated in Figure 2-1 must be 
different for users who have user profiles in the system, and for users who 
do not have such profiles. The main difference between these two repre-
sentations is concerning the access rights and privileges assigned to the 
users. Accordingly, there can be two user interaction handlers: 

− Visitor Agent to handle users having user profiles in the service 
system, or being at home domain (we call such a service system 
the use’s home domain, where a user profile for the user exists); 
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− User Agent to handle users without user profiles, or being at visi-
tor domain (we call such a service system the user’s visitor do-
main, where a user profile for the user doesn’t exist).  

In the discussion above, we presented concepts related to user mobil-
ity. The following list gives precise definitions: 

User is the human user that accesses the services via terminals. Each user 
has service subscription information that is stored in a database in 
the system (user profile base). A user of a service, who is perform-
ing the interactions with the service instance, is the subscriber of the 
service, who owns the subscription contracts. 

User Capabilities are the set of user-related data and resources that are 
not part of the service system, but can be used or needed in the ser-
vice interactions. 

User Representation is the way a user is represented and the way its in-
teractions are handled in the service system. 

User Interface is the access point between a user and a terminal. 
Terminal Interface is the access point between a terminal and the other 

nodes. 
User Session is the representation of the user interactions with the service 

system. 
Person is a user with user capabilities and user sessions. 
Login Agent is the software component that handles the user login to the 

service system. It also handles the user initial interactions with the 
service system. It is responsible for the initialization of the service 
instances under managed permissions, constraints, and optional 
preferences, as described in the user profile. Login agent executes in 
the user terminal. 

User Agent is the user interaction handler (software component) respon-
sible for controlling the user interactions with the user’s home do-
main. 

Visitor Agent is the user interaction handler (software component) re-
sponsible for controlling the user interactions with the user’s visitor 
domain. 

Supervisory Object is a component (software component) that has a cen-
tral role and is responsible for a management functionality in the 
service system. 

User Profile is the representation of the user capabilities and the user in-
formation relevant to the provision of services. 



Chapter 2. Terminology Framework 
 

 

28 

User Profile Base is the informational or knowledge base where the user 
profile information is maintained. User profile base is managed by a 
supervisory object. 

User profile Update is a request to update the user’s maintained profile. 
User profile Access is a request to ask for the user’s maintained profile. 

These definitions constitute a self-contained set. The following propo-
sition states the definitions required for the handling of user mobility:  

Proposition-1 The handling of user mobility needs the definitions of the 
following: user, user capabilities, user representation, user inter-
face, terminal interface, user session, person, login agent, user 
agent, visitor agent, supervisory object, user profile, user profile 
base, user profile update, and user profile access. 

2.2.2.2 Requirement rules 
The definitions related to the user mobility need to be related to each 
other. For example the definition of user profile must be related to the 
definition of user, i.e. it must be specified whether or not a user is re-
quired to have a user profile to execute services. The requirement rules 
presented below, UR1-UR6, show the overall requirements and conditions 
regarding the user mobility definitions. They are based on the concepts 
presented in Sec. 2.2.2.1. These rules must be satisfied to achieve the 
management functionality associated with the user mobility. Further re-
quirement rules, however, may be specified based on the used application 
platforms and service systems. In the rules “MUST” is used to signify that 
these rules are required.  

UR1 requires the relationship between the user and its user profile. 
UR2 specifies a requirement on the update of the user profile. UR3 and 
UR4 are used for requirements on the user profile bases. UR5 and UR6 
describe how the user must interact with the service system, and how the 
user interaction must be handled. 

UR1. A user with subscribed services in the service system MUST have at 
least one user profile. 

UR2. A user in its home domain MUST be able to update its profile. 
UR3. User profiles MUST be maintained in user profile bases. 
UR4. A supervisory object MUST exist in the service system, which is 

responsible for administrating the user profile bases. 
UR5. A user in its home domain MUST start interacting by sending a 
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login request that contains its user identification and password. The 
supervisory object MUST check if the user identification is valid and 
if the password is correct. 

UR6. Interactions of any user MUST be controlled by a user interaction 
handler (which can either be a UserAgent or a VisitorAgent). 

 

2.2.3 User session mobility related definitions and requirement 
rules 

2.2.3.1 Definitions 
User session mobility is the re-instantiation and resumption of the user 
suspended sessions. This means the movement of the user session from 
one access point to another possibly at different time instances. User ses-
sion mobility comprises the mobility of the data and the information that 
are related to the user session. Similarly to the user mobility, in order to 
maintain a user session, a user session profile must be properly described 
and maintained. User session profiles are maintained to facilitate the re-
sumption of suspended sessions. User session profiles are stored in data-
bases, or user session bases. Similarly to user profile bases, we assume 
user session bases to be managed by a supervisory object in the service 
system. 

Figure 2-3 demonstrates a user with a terminal, its corresponding user 
sessions, and a user session base. Beside this basic arrangement of user 
session profiles it is possible to apply any other organization of user ses-
sion profiles, e.g. there can be terminal-based, application-based, or net-
work-based user session profiles.  

 
Figure 2-3 Illustration of user sessions and user session base 

In the brief discussion above, we used user session profile, user session 
base, access and update of user sessions to describe the concept of user 
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session mobility. In the following we give precise definitions for these 
terms: 

User Session Profile is the representation of the user session information 
relevant to the maintenance of the user sessions. 

User Session Base is the informational or knowledge base where the user 
session information is maintained. User session base is managed by 
a supervisory object. 

User session Update is a request to update the user’s maintained sessions. 
User session Access is a request to ask for the user’s maintained sessions. 

These definitions constitute a self-contained set. The following propo-
sition states the definitions required for the handling of user session mo-
bility: 

Proposition-2 The handling of user session mobility needs the definitions 
of the following: user session profile, user session base, user ses-
sion update, and user session access. 

2.2.3.2 Requirement rules 
The definitions related to the user session mobility need to be related to 
each other. We must specify whether a user must have a user session pro-
file maintained in the service system. Also we must specify the relation-
ship between a UserAgent or a VisitorAgent and the user session, i.e. 
which agent must handle the suspension and resumption of user sessions. 
The following requirement rules, SR1-SR8, must be satisfied to achieve 
the management functionality associated with the user session mobility. 
Further requirement rules may be specified if a more elaborated concept 
for the user session is used.  

SR1 describes the relationship between the user and the user session 
profile. SR2 and SR3 specify requirements on the maintenance of user 
session bases. SR4 specifies a requirement on the control of user sessions. 
SR5 requires the handling of the suspension and resumption of user ses-
sion. SR6, SR7, and SR8 are used to require the handling of suspension 
and resumption of user sessions for users at home domain, considering 
that users at visitor domain may or may not be offered such functionality. 

SR1. A user accessing services in the service system MUST have at least 
one user session profile. 
SR2. The user session profiles MUST be maintained in user session bases. 
SR3. A supervisory object MUST exist in the service system that adminis-
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trates the user session bases. 
SR4. User sessions MUST be controlled by either a UserAgent or a Visi-

torAgent. 
SR5. Suspension and resumption of user sessions MUST be handled by 

the UserAgent. 
SR6. A user in its home domain MUST be able to resume a session, and 

suspend a session. 
SR7. If a user in its home domain suspends its session the UserAgent 

MUST save the user session profile of the user. 
SR8. If a user in its home domain resumes a suspended session the 

UserAgent MUST access the user session profile of the suspended 
session. 

 

2.3 Role-figure mobility related definitions and 
requirement rules 

2.3.1 Definitions 
The service components collaborate to achieve the goals associated with 
the service functionality. These service components will be realized by 
software components denoted as role-figures. Role-figure is a generic 
concept and this section focuses on the mobility of role-figures. The soft-
ware components – actors – that execute role-figures are also generic 
components capable of executing in the network nodes and terminals. 
Role-figure mobility is the movement of instantiated role-figures. To 
handle this type of mobility we need a model with appropriate concepts. 
We will to some extent use TAPAS concepts for this elaboration, and re-
call the following definitions from the TAPAS computing architecture: 

Actor is a generic object with a generic behaviour.  
Role-figure is an actor with a specific behaviour. It realizes service-

components. It behaves and performs according to the role it is as-
signed. Each role-figure executes a particular role as part of an 
overall functionality. This role is described in a manuscript. 

Director is a supervisory actor that is responsible for the management of a 
domain.  It interacts with actors and role-figures, and keeps an up-
date of their availability. 

Role-session is the projection of the behaviour of a role-figure with re-
spect to one of its interacting role-figures. It represents a relation-
ship between two role-figures. 
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Interface is the means to gain access to object instances from other ob-
jects. Interfaces define also the access point between the objects and 
their environments. 

Role-figure Capability is a property of the node where the role-figure 
executes. It is consumed or used by the role-figure. 

Play Domain is a domain managed by one director. It relates to one or 
more network domains and includes the nodes and terminals where 
actors and role-figures execute. Play domains are used to manage 
the federation of responsibility between different directors (the play 
domain is denoted as domain). Sub-domain is a subset or part of a 
specific domain. 

Actor Environment Execution Module (AEEM) is the run-time system 
process or thread that is capable of instantiating actor instances, and 
is eventually responsible for the execution of the architecture func-
tionality. AEEMs can execute concurrently in the same node. 

Role-figure plug in is the instantiation of an actor with specific behav-
iour. Only role-figures can behave according to roles, consume capabili-
ties, and have role-sessions with other role-figures. Figure 2-4 demon-
strates the relationship between an actor and a role-figure (or RF). 

 
Figure 2-4 Demonstration of the actor role-figure relationship 

Figure 2-5 gives an illustration of concepts related to role-figure in. In 
this example an instantiated role-figure executes in Node1. It consumes 
certain part of the node’s capability set, e.g. domain name, terminal loca-
tion, memory, processing power. The role-figure has its own session, de-
noted as child-session. This means that it instantiates role-figures to per-
form certain tasks. The role-figure interacts with other role-figures via 
role-sessions. It interacts also with the domain’s director and some spe-
cial-purpose role-figures, which are certain role-figures that have domain-
specific functionality, e.g. domain servers, name servers, directory serv-
ers, capability managers. 
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Figure 2-5 An illustration of concepts related to role-figure 

Role-figures move between execution environments, e.g. between two 
terminals. Role-figures need to move due to several reasons, e.g. changed 
capability requirements, change in the role-figure functionality, changes 
in the service functionality, etc. It is crucial to ensure that the role-figure 
is capable of continuing its execution after the movement. Intuitively, cer-
tain characteristics of the role-figure need to be preserved, e.g.:  

− The role-figure’s instantiated behaviour and current state 
− The role-figure’s consumed capabilities 
− The role-figure’s established role-sessions and interfaces 
− The role-figure’s child-session if any 

The structure or the model of the role-figure needs to be defined. This 
structure or model will be the basis for decisions on the characteristics of 
the role-figure that will be preserved during the movement. As a conse-
quence, there can be different role-figure mobility realizations based on 
how these characteristics will be preserved. Additionally a set of domain-
based rules indicating the conditions and requirements of moving role-
figures must also be defined. 

When a role-figure moves from one execution environment to another 
a supervisory object in the system is responsible for managing this move. 
The role-figure must report its new location information to this supervi-
sory object upon the move. Other role-figures can discover the new loca-
tion of the moving role-figure by consulting the supervisory object. 
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The movement of a role-figure needs to be transparent to other role-
figures. Role-figures must be identified and addressed as they execute in 
terminals and nodes. These terminals and nodes have identities and ad-
dresses. It is important at this stage to discuss certain requirements on the 
definitions of the identity and address of role-figures, terminals, and 
nodes. Given that one of these entities (role-figure, terminal, and node) 
has an identity or address, given also that this identity/address belongs to 
a range of identities/addresses, the following requirements should hold in 
any adaptable service system: 

− The entity should be identifiable by other entities; 
− The entity’s identity/address should be unique in its range of iden-

tities/addresses. 

It is possible, however, to introduce flexibility measures as well. As an 
example, a set of identities/addresses can be invisible by other sets, reus-
ability can be applied in identities/addresses if they are freed up, and sev-
eral entities may share identities/addresses if an additional mechanism is 
provided to resolve them. 

In the following precise definitions for the concepts related to role-
figure mobility are given: 

Role-figure Child-session is the representation of the role-figure’s instan-
tiated role-figures with their respective data, role-sessions, settings, 
etc. 

Special-purpose Role-figure corresponds to a role-figure whose avail-
ability and accessibility is only defined and relevant in a given node, 
sub-domain, or domain. 

Role-figure Model is the design model to represent the structure and the 
behaviour of the role-figure. A role-figure, according to this model, 
comprises the following parts: the behaviour described by a specifi-
cation, the consumed capabilities in the node, the role-sessions with 
other role-figures, the queue of incoming messages, and the execut-
ing methods (or the role-figure active tasks). 1 

Mobility Strategy is a set of domain specific rules and conditions that 
govern the role-figure mobility procedures. 

Role-figure State-information is the information of the role-figure instan-
taneous run-time conditions including program variables, stack of 
call requests, and queued messages. 

                                                 
1 The role-figure model and its parts will be discussed in detail later in Chapter 4. 
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Execution Environment is the environment where a role-figure executes 
and consumes capabilities. Execution environment is defined by a 
domain, a node, and a system process. 

Role-figure Location-of-performance is the location information that is 
associated with a role-figure, and reflects its execution environment. 

Role-figure Identity is the information that uniquely identifies a role-
figure in an execution environment. 

Role-figure Address is the information that facilitates the communication 
from and to a role-figure. Role-figure address is derived from the 
role-figure identity and its location-of-performance2. 

State-information Mobility is the ability to move the state-information of 
a moving role-figure. 

Role-session Mobility is the re-instantiation of the role-sessions of a mov-
ing role-figure. 

Capability Mobility is the reclamation of the acquired or consumed set of 
capabilities by a moving role-figure. 

Child-session Mobility is the re-establishment of a moving role-figure’s 
child-session, including the instantiation of all role-figures of its 
child-session with their respective data and role-sessions.  

 These definitions constitute a self-contained set. The following propo-
sition states the definitions required for the handling of role-figure mobil-
ity: 

Proposition-3a The handling of role-figure mobility needs the definitions 
of the following: role-figure child-session, special-purpose role-
figure, role-figure model, mobility strategy, role-figure state-
information, execution environment, role-figure location-of-
performance, role-figure identity, role-figure address, state-
information mobility, role-session mobility, capability mobility, and 
child-session mobility. 

The role-figure mobility is a special type of mobility that is partly de-
fined based on the concepts of TAPAS. Certain definitions that are spe-
cific to role-figures are not needed for the handling of service component 
mobility in general, e.g. role-figure model and role-figure state-
                                                 
2 A role-figure is given a location-of-performance that reflects its AEEM process. A 
role-figure identity in this case is the name given to that role-figure that reflects its role. 
This identity distinguishes it from other role-figures within the same play. The address of 
this role-figure is composed from the address of the actor instance that executes it and 
the location of the node it resides in. 
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information. Role-figure location-of-performance, role-figure identity, 
and role-figure address can be substituted by service component location 
that shows where a service component resides. A generic terminology for 
the service component mobility can be given by the following proposi-
tion:  

Proposition-3b The handling of service component mobility needs the 
definitions of the following: service component child-session, spe-
cial-purpose service component, mobility strategy, execution envi-
ronment, and service component location. 

2.3.2 Requirement rules 
The requirement rules presented here, RR1-RR6, show the overall re-
quirements and conditions regarding the definitions of role-figure mobil-
ity. These rules are based on the role-figure definitions in Sec. 2.3.1. 

The requirement rules RR1, RR2, and RR3 specify requirements on the 
supervisory object that handles the role-figure mobility. RR4 specifies a 
requirement on the mobility strategy, but no requirements are given on the 
content of this strategy. RR5 and RR6 specify requirements regarding 
role-figure mobility between several domains or sub-domains.  

RR1. A domain or a sub-domain MUST have at least one supervisory ob-
ject responsible for managing role-figure mobility. 

RR2. Role-figures that can move MUST be supervised by at least one 
such supervisory object. 

RR3. The supervisory object managing role-figure mobility MUST main-
tain a record of the moving role-figures under its supervision. 

RR4. Mobility management architecture for role-figure mobility MUST 
have a mobility strategy. 

RR5. After a role-figure move to another domain or sub-domain the mov-
ing role-figure MUST be supervised by another supervisory object that 
exists in the other domain or sub-domain. 

RR6. If more than one supervisory object manages the mobility of role-
figures in one domain or in one sub-domain the relationship between 
these supervisory objects MUST be defined. 
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2.4 Terminal mobility related definitions and requirement 
rules 

2.4.1 Definitions 
Terminal mobility is the movement of terminals while maintaining ac-
cess to services and applications. This implies the change of the terminal 
location as well. Terminal mobility can be conducted within one domain 
or across different domains. 

Terminal moves with the human user that is associated with it. Termi-
nal mobility introduces implications on the user mobility. From the per-
sonal mobility related definitions we have concluded that services can 
only be accessed when the logged in user has the appropriate subscrip-
tions and access rights. However, when moving the terminal used by the 
user to a different domain these subscribed services may or may not be 
accessible. The terminal must be identified, addressed, and accepted by 
the new domain so that the user can access the subscribed services. Tak-
ing this argument into account, the user and the terminal are not inde-
pendent anymore. 

Terminal mobility also has implications on the role-figure mobility. 
Terminal mobility could influence the functionality of the instantiated 
role-figures in a moving terminal, and initiate the mobility of some of 
these role-figures. Two typical examples of this influence are:  

− The limited capabilities of a terminal in a new location. 
− The limited access rights of a user in a new domain. 

For the purpose of handling terminal mobility, terminals must be iden-
tified and addressed in the service system. The identification and the ad-
dressing need to have validity over a period of time. Also, terminals have 
locations, and when terminals move their locations change. 

A terminal executes a software component that is responsible for track-
ing its location, e.g. its network address or its geographical location. We 
call this software component mobility agent. The domain the terminal re-
sides in executes another software component that is responsible for up-
dating the terminal’s location. We call this software component mobility 
manager. The mobility manager, also considered as a supervisory object 
of the service system, needs to be known by all terminals in a domain. If 
there exist several mobility managers in a domain, the delegation of re-
sponsibility should be clarified. Also the domain-to-domain relationships 
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must be defined. The update and the discovery of terminals locations need 
also be handled. 

The brief discussion above showed the concept of terminal mobility. 
Our focus is on terminal mobility issues that implicate and affect the other 
mobility types, i.e. personal and role-figure mobility. The handling of 
terminal mobility is limited to the following set of definitions: 

 Terminal Location is the location information that is associated with a 
terminal, and reflects its physical location.  

Terminal Identity is the information that uniquely identifies a terminal, 
either globally or within a specific domain. 

Terminal Address is the information that facilitates the communication 
from and to a terminal. Terminal address can be derived from the in-
tegration of the terminal identity and its location3. 

Mobility Agent is a software component responsible for managing the 
terminals location. 

Mobility Manager is a software component responsible for managing the 
mobility of terminals. 

The handling of terminal mobility can be described by these defini-
tions. These definitions are self-contained. The following proposition 
states the definitions required for the handling of terminal mobility: 

Proposition-4 The handling of terminal mobility needs the definitions of 
the following: terminal location, terminal identity, terminal address, 
mobility agent, and mobility manager. 

2.4.2 Requirement rules 
The set of terminal mobility related definitions we presented above need 
to be related to each other. For example it must be stated whether a termi-
nal is managed by one mobility agent or several ones. The requirement 
rules presented below, TR1-TR6, show the overall requirements and con-
ditions regarding terminal mobility definitions and must be satisfied to 
achieve the terminal mobility management functionality. These require-

                                                 
3 In the case of the mobile phone terminal, for instance, the terminal location is its geo-
graphical location. This is used to locate the terminal and assign it with a specific base 
station within a mobile operator domain. Its terminal identity could be the mobile phone 
Equipment Identity. However, the terminal address is usually extracted from the SIM 
card identity and the user phone number. 
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ment rules are based on the concepts presented in Sec. 2.4.1, and further 
rules may be specified to handle more elaborated terminal mobility issues. 

In TR1 we give a requirement on the terminal identification, location 
and address. TR2, and TR3 specify requirements on the mobility manager 
that handles the terminal mobility. TR4 specifies a requirement on the 
mobility agent. TR5 and TR6 specify requirements regarding the update of 
terminal locations. If any of these rules is not satisfied by a mobility man-
agement architecture, then the role-figure mobility functionality cannot be 
completely handled. 

TR1. Every terminal MUST have a unique identification in the domain. 
Every terminal must have location and address information. 

TR2. A domain or sub-domain MUST have at least one mobility manager. 
TR3. Every terminal MUST be supervised by at least one mobility man-

ager. 
TR4. A terminal MUST execute a mobility agent. 
TR5. Mobility agent MUST be responsible for sending updates regarding 

the terminal location information to the mobility manager. 
TR6. The mobility manager MUST maintain a database with information 

on the terminals identifications and their locations. 

2.5 Discussion 

In this section we give a discussion on some concepts of the terminology 
framework related to similar concepts used in some standards related to 
mobility management. These standards are VHE, OSA, and Parlay, which 
are made by 3GPP (3rd Generation Partnership Project), and ETSI. 

2.5.1 Virtual Home Environment (VHE) 
Virtual Home Environment (VHE), defined in [VHE02] and [GUP03], 
allows users to be consistently supported with their personalized features, 
customizable user interfaces, and service preferences regardless of the 
network terminal and location. VHE is meant for populating the use of 
future telecommunication services by pursuing the idea of service univer-
sality, which allows a user to transparently access services at anytime 
from anywhere [LYB02]. The key requirement of the VHE is to provide a 
user with a personal service environment, which consists of personalized 
services, personalized user data, and consistent set of services from the 
user's perspective. So far, VHE as a concept has gained a wide accep-
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tance. However, a viable architectural solution to allow for flexible ser-
vice development, deployment and management still lacks. 

In the following we highlight the main definitions of VHE that have 
similar or counterpart definitions in the terminology framework. 

VHE  
definitions 

Terminology Framework 
definitions 

Home Environment is the part of 
VHE responsible for the overall 
provision and control of the per-
sonal service environment of the 
subscribers. 

Home domain and UserAgent rep-
resent the control of the user’s in-
teractions within its home domain 
and its operating environment, i.e. 
its terminal. 

Personal Service Environment con-
tains personalized information de-
fining how subscribed services are 
provided and presented towards the 
user. Each subscriber of the Home 
Environment has its own personal 
service environment, defined in 
terms of one or more user profiles. 

User Profile and User Session Pro-
file represent the service-
application and user customizabil-
ity. User may personalize their ser-
vices and applications in the user 
profile, as well can have different 
user sessions in different user ses-
sion profiles. 

User Service Profile contains iden-
tification of subscriber services, 
their status and reference to service 
preferences. This is part of the user 
profile information. 

User Profile includes the service 
subscription information. However, 
the services themselves may have 
sessions, which can be maintained 
separately. 

User Profile is a set of information 
necessary to provide a user with a 
consistent, personalized service en-
vironment, irrespective of the user 
location or the terminal used. 

User Profile maintains the informa-
tion necessary to provide a user 
with personalized services. 

2.5.2 Open Service Access (OSA) 
Open Service Access (OSA) [OSA03] (also [SSC02] and [SRO04]) is a 
service toolkit that enables applications to implement the services and ac-
cess the network functionality. Network functionality offered to applica-
tions is defined in terms of a set of Service Capability Features (SCFs). 
These SCFs provide functionality of network capabilities, which is acces-
sible to applications through the OSA interface upon which service devel-
opers can rely on when designing new services, as in Figure 2-6. 
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Figure 2-6 Application access Service Capability Features in OSA [OSA03] 

The aim of OSA is to provide a standardized, extensible and scalable 
interface that allows for the inclusion of new functionality in the network 
with a minimum impact on the applications using the OSA interface. 
OSA aim at developing an open framework to provide services and appli-
cations controlled access of network resources based on the concept of 
service capability. 

The OSA approach is based on the concept of service capability. Simi-
larly the terminology framework is based on the concept of role-figure 
capability. The terminology framework discusses the role-figure mo-
bility based on this capability concept. Role-figure mobility can be de-
ployed to achieve better utilization of system resources when role-figure 
capabilities deteriorate. 

There are also other similarities between the OSA and the terminol-
ogy framework. For instance, OSA defines policy as a formalism that 
may be used to express business, engineering or management criteria, and 
is represented by a set of rules that may be created, modified, activated, 
deactivated, etc. In the terminology framework mobility strategies are 
the sets of domain-based rules that control the mobility procedures and 
can be similar to the policies of OSA. OSA also defines event notification 
function similar to the user profile update and the user session update 
events. Among the handled events by OSA are: “the user’s status is 
changed”, “the user’s location is changed”, and “terminal capabilities are 
changed” which are similar to the way how we handle the user profile and 
the concept of user representation in the terminal. Other 3GPP standards 
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that are related to the OSA have addressed issues regarding the mobile 
equipment, which we denote terminal. In [MEE02] core requirements for 
a mobile execution environment are discussed, while in [PME02] func-
tional specifications of features to personalise the mobile equipment are 
defined. These two specification handle similar issues to the one dis-
cussed in the personal mobility related definitions. 

2.5.3 Parlay 
The Parlay Group is an open multi-vendor consortium formed to develop 
open application programming interfaces (APIs), enabling enterprises to 
develop applications that operate across multiple networking platform en-
vironments [Par03]. 

It defines the Service Capability Server (SCS), and offers certain APIs 
to utilize pre-existing network-independent functionality such as those for 
call control and location management. Both, the SCS and the APIs, en-
able hosting applications outside specific networks while giving them 
controlled access to the network resources. Parlay is based on the main 
principles of the OSA, and its APIs standardize the application interfaces. 
Therefore Parlay is often called Parlay/OSA. The Parlay group has devel-
oped a set of Parlay specifications along their corresponding standardized 
interfaces. Examples of such specifications handle mobility management, 
terminal capabilities, data session control, and account management.  

Similar to the OSA approach, the Parlay approach is in-line with 
many definitions of the terminology framework. However, both OSA 
and Parlay are aiming for the service development and service 
openness rather than the service adaptability. They provide services 
with open and technology-independent interfaces. Terminology frame-
work, instead, focuses on providing services with mobility management 
support. On the other hand, Parlay/OSA has relevance in the Mobility 
Management architecture. The Parlay APIs for mobility and terminal ca-
pabilities provide similar support to service instance as those mobility 
management procedures for personal and terminal mobility. 
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3.1 Introduction 

HE TERMINOLOGY FRAMEWORK presented in Chapter 2 pro-
vided the definitions that we use as a basis for the mobility manage-
ment architecture. The architecture consists of functional structure 

and mobility management functionality to handle the personal, role-
figure, and terminal mobility. 

In the functional structure we introduce functional entities to handle 
these mobility types. These functional entities are introduced in Sec. 3.2. 
The specific functionality of these is based on the needs of the various 
mobility types. The functionality is presented by mobility management 
procedures, mechanisms, and design rules. 

The mobility management procedures are procedures supporting the 
management functionality for the defined mobility types. Mobility man-
agement mechanisms are combinations of TAPAS basic support proce-
dures and mobility management procedures. The design rules give several 
options for the implementation of the mobility management functionality. 
The design rules complement the requirement rules, presented in the ter-
minology framework, by giving various possibilities to handle the mobil-
ity types.  

The procedures and mechanisms have been implemented. Concerning 
the design rules, some have not been implemented. 

 

T 
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The mobility management architecture is divided into three main parts. 
The handling of the personal mobility is presented in Sec. 3.3, the han-
dling of the role-figure mobility is presented in Sec. 3.4, and the handling 
of the terminal mobility is presented in Sec. 3.5. Sec. 3.6 gives a discus-
sion on some of the implementation issues. 

3.2 The functional structure 

Entities are needed for the handling of the movements of persons (users 
and user sessions), role-figures, and terminals. We introduce the follow-
ing functional entities: UserSessionBase, UserProfileBase, MobilityMan-
ager, MobilityAgent, UserAgent, VisitorAgent, and LoginAgent, which are 
highlighted in Figure 3-1. This diagram shows the functional structure of 
our mobility management architecture. It is an extension to the computing 
architecture presented in Figure 1-5 with emphasis on mobility manage-
ment. The introduced functional entities are databases and software com-
ponents (role-figures) needed to handle the mentioned mobility types. 

 
Figure 3-1 Functional structure of the mobility management architecture 

In this figure we consider the following concepts from the computing 
architecture:  

• Director manages one play domain and many role-figures 
• Play domain relates to one or more network domains (the play 

domain is denoted as domain that may consist of sub-domains) 
• Role-figure can move to another play domain 
• Network domain consists of nodes 
• Terminal is one type of node 
• Users have access points at terminals 
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We extend the computing architecture with the following functional 
entities:  

• UserSessionBase is a database that corresponds to the user session 
base definition in the terminology framework. UserSessionBase is 
used to maintain the user session profile information. 

• UserProfileBase is a database that corresponds to the user profile 
base definition in the terminology framework. UserSessionBase is 
used to maintain the user session profile information. 

• MobilityManager is a software component (a supervisory object 
with a central role) that corresponds to the mobility manager defi-
nition in the terminology framework. MobilityManager is used to 
mange the mobility of role-figures, as well as, it manages the mo-
bility agents. One or several mobility managers manage a play 
domain. 

• MobilityAgent is a role-figure that corresponds to the mobility 
agent definition in the terminology framework.  MobilityAgent is 
used to handle the mobility of a terminal. 

• UserAgent is a role-figure that corresponds to the user agent defi-
nition in the terminology framework. UserAgent handles the inter-
actions of a user at a home domain. 

• VisitorAgent is a role-figure that corresponds to the visitor agent 
definition in the terminology framework. VisitorAgent handles the 
interactions of a user at a visitor domain. 

• LoginAgent is a role-figure that corresponds to the login agent 
definition in the terminology framework. LoginAgent handles the 
login of users at a terminal. 

Personal mobility will be handled by three role-figures: LoginAgent 
(one LoginAgent executes in every terminal), UserAgent (one UserAgent 
handles one user in a home domain), and VisitorAgent (one VisitorAgent 
handles one user in a visitor domain). UserAgent and VisitorAgent exe-
cute in the terminals associated with the user. In this diagram it is also 
shown that the domain director, which is a supervisory object in a TAPAS 
play domain, is responsible for the maintenance of the databases UserSes-
sionBase and UserProfileBase. Role-figure mobility will be handled by 
MobilityManager. Terminal mobility will be handled by the Mobility-
Manager and the MobilityAgent role-figures. 
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3.3 Personal mobility 

3.3.1 Introduction 
Personal mobility as defined in Chapter 2 comprises two types of mobil-
ity: user and user session mobility. The following assumptions are made:  

 User is referred to by a name (user identification or user ID) and a user 
profile 

 User is interacting with the system through a user interface (at a termi-
nal through a terminal interface) 

 Relationship between a user and a terminal is defined at login phase and 
controlled by a LoginAgent. 

 A domain-based supervisory object (e.g. domain director) maintains the 
user profiles in the UserProfileBase 

 A domain-based supervisory object (e.g. domain director) maintains the 
user sessions profiles in the UserSessionBase 

 UserAgent and VisitorAgent control the user interactions with the sys-
tem, and maintain a user session for each login phase 

 UserAgent and VisitorAgent keep track of all role-figure instances that 
belong to a user session 

The discussion on personal mobility is presented in five parts. In Sec. 
3.3.2 we briefly discuss the login phase. Sec. 3.3.3 and Sec. 3.3.4 present 
the user mobility and the user session mobility, respectively. In these two 
parts the discussion is carried out in three steps: the concept, the mobility 
management procedures, and the design rules. Sec. 3.3.5 presents the da-
tabases for personal mobility. These are the user profile base and the user 
session base. 

3.3.2 Login phase 
The start-up of a user session is a central function in the personal mobility 
management. This user session can be terminal-based, application-based, 
or network-based user sessions. The login phase determines if a user ses-
sion can be initiated or not. This phase also determines the access rights a 
user is assigned during the session, e.g. what services and file systems a 
user is allowed to access. In the mobility management architecture Logi-
nAgent that executes in every terminal handles all the issues related to the 
login phase. This role-figure ensures that users can login to the terminals 
and can access their subscribed services. 
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During the login phase the service system must verify and accept the 
identification of the user in order to start a user session. An authentication 
process usually takes place during this phase. This process may various 
methods to authenticate users: password, pin code, magnetic card, or con-
text-information (e.g. location information), etc. 

The authentication process may be followed by the so-called authoriza-
tion process, where a user may or may not be granted the rights to pro-
ceed with the session establishment. Even though a user is authenticated, 
it is not necessarily authorized to access certain services. The access 
rights of the user may be limited by time, payment, or security restric-
tions. As part of the session establishment process, certain information 
about users and terminals can also be registered, e.g. their location. 

The login phase is not presented in detail to allow for different han-
dling mechanisms in different service systems and application platforms, 
which may have quite different interpretations for the login phase. We 
limit our discussion on this phase to three main cases: login at home do-
main, login at visitor domain, and login remotely to home domain. Figure 
3-2 gives an overview of the functionality of the implementation class of 
LoginAgent. It contains one public method to handle the login request, 
and this class must be initiated at every terminal. 

 
Figure 3-2 Implementation class of LoginAgent 

Figure 3-3 illustrates three use cases handling the behaviour of Logi-
nAgent. The use cases loginHomeUser, loginVisitorUser, and login-
HomeRemote describe the following cases: login at home domain, login 
at visitor domain, and login remotely to home domain, respectively. The 
first two cases will be handled here, while the third login case (login re-
motely to home domain) will be presented in the following section as it is 
considered part of the user mobility. 
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Figure 3-3 Use cases for LoginAgent 

Two possibilities for user login to the system via the LoginAgent are 
shown in Figure 3-4, for the login at home domain, and Figure 3-5, for the 
login at visitor domain. In these two figures a user logs in to the system 
via the user interface with a userID and a password that arrives at the 
LoginAgent as a login request. Accordingly, LoginAgent sends a 
loginRequest to the director of the domain domainDirector. Until this 
point Figure 3-4 and Figure 3-5 are similar. 

The director will decide on granting the required access to the user. In 
the case of the home domain user with user profile in UserProfileBase, a 
UserAgent is instantiated at the user’s terminal, as shown in Figure 3-4. If 
there is no user profile in the UserProfileBase, a VisitorAgent is 
instantiated instead, as shown in Figure 3-5. 

 
Figure 3-4 Sequence diagram for a loginHomeUser 
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Figure 3-5 Sequence diagram for a loginVisitorUser 

In both figures, the director proceeds with sending a result request to 
the user, which is forwarded to the user interface. The director also issues 
plug out to the LoginAgent from the user terminal. It is assumed that a 
LoginAgent plugs in again in the following cases: when the user session is 
terminated, when the user logs out, when the terminal is reset, etc. This 
ensures that there is always a LoginAgent that runs in the terminal. 

The UserAgent and the VisitorAgent will then start a session. The 
session is started by the request session issued by the director, which 
indicates the access type granted to the user: local for home domain users, 
or visitor for visitor domain users. Note that the requests pluginActor and 
plugoutActor in the figures in this section are simplified, i.e. no 
arguments are shown. 

3.3.3 User mobility 

3.3.3.1 Concept 
User mobility, as defined in the terminology framework, is the seamless 
access of the subscribed services at different user interfaces and terminals. 
It provides users with greater flexibility in terms of roaming among dif-
ferent terminals and domains. 

Figure 3-6 illustrates the realization of the user mobility. This figure is 
an illustration of the user mobility between two TAPAS domains. It uses 
the definitions described in the user mobility related definitions in the 
terminology framework. The numbered steps give a logical order of ac-
tions to understand the concept of user mobility. 
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Figure 3-6 Illustration of the realization of user mobility 

Assume the following scenario: 
− In (1) UserA has logged in to its home domain, Domain1, and it has 

been assigned access to the subscribed services. This implies that a 
login phase has been carried out successfully (the user terminal and 
the LoginAgent executing in the terminal are not shown for simplic-
ity). 

− In (2) UserAgent, which is instantiated in the user’s terminal, handles 
the user’s interactions in its home domain. It contacts the director of 
the domain, director1, to get all the user profile information from 
UserProfileBase1. The requests accessProfile and updateProfile are 
issued to ask for and change the user’s profile, respectively. ac-
cessProfile and updateProfile correspond to the user profile access 
definition and the user profile update definition in the terminology 
framework, respectively. 

− In (3) the user will move and try to access the same set of services 
from a visitor domain, Domain2. When the user moves, its UserAgent 
in Domain1 can be terminated, but it also can continue executing. Our 
handling of the user move will not be affected by the existing 
UserAgent in the home domain. 

− Upon login phase, (4), this user is assigned a VisitorAgent, which is 
instantiated in the user’s terminal. In this domain there is no user pro-
file for this user, and hence it is granted a limited access to certain 
services – assigned usually to visitor users. 

                                                 
1 It is possible at this point to resume suspended user sessions, as we will describe in the 
user session mobility in Sec. 3.3.4. 
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− to access home domain subscribed services, (5) VisitorAgent needs to 
indicate to director director2 that a home domain access is required; 

− If possible, a director-to-director negotiation in (6) can result in grant-
ing this type of access in (7). 

As indicated by this logic, the login phase determines the access type a 
specific user is given, and therefore whether a UserAgent or a Visitor-
Agent is instantiated. Further details on remotely accessed home domain 
services, access rights, permissions, director-to-director negotiation, etc. 
are all left out to provide a general approach to user mobility.  

User profiles should be highly customizable to reflect the personaliza-
tion of services and applications. The user profile management is highly 
dependent on the used application platform and communication system. 
Moreover, user profile content can vary in different service systems. In 
the terminology framework we listed several information types that might 
be stored, e.g. user location, terminal-related data, subscribed services, 
access permissions, authorization constraints, service preferences, and 
setting attributes. User profile can also contain user specific data, e.g. fa-
vourite links and address book. 

It is important to notice that Figure 3-6 illustrates the concept of the 
user mobility between two domains, possibly, in the simplest way. Fur-
ther complexity may be added to handle issues related to domain security, 
personalized user environments, etc. 

3.3.3.2  User mobility management procedures 
The user mobility has been implemented as part of the TAPAS mobility 
management architecture prototype. We use the user mobility concept 
discussed above to develop the user mobility management procedures, i.e. 
we use the following assumptions: 

− A domain is managed by a director that manages the databases for 
user profiles (also it manages the user session profiles) 

− Users can either be in a home domain or in a visitor domain 

Figure 3-7 gives an overview of the functionality of the implementa-
tion classes of VisitorAgent and UserAgent. 

The parameters of these classes handle the access rights of the user, the 
user session, the child sessions of the role-figures, and the instantiated 
actors. The public methods in these classes handle the tasks associated 
with these role-figures. In VisitorAgent, there are methods for login, log-
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out, session handling (session and plugoutSession), handling role-figures 
(pluginActor and plugoutActor), handling applications (startApplication 
and stopApplication), and a general method to return results. In 
UserAgent, similar methods exist to handle logout, sessions, role-figures, 
applications, return results, as well as methods for session mobility han-
dling (suspendSessionReq and resumeSessionReq). These methods will be 
used in this subsection except the session mobility handling methods, 
which are part of the user session mobility of the next subsection. 

Role-Figure

+login()
+logout()
+session()
+plugoutSession()
+pluginActor()
+plugoutActor()
+startApplication()
+stopApplication()
+result()

-accessRights
-session
-childSession
-actors

VisitorAgent

+logout()
+session()
+plugoutSession()
+pluginActor()
+plugoutActor()
+startApplication()
+stopApplication()
+result()
+suspendSessionReq()
+resumeSessionReq()

-accessRights
-session
-childSession
-actors

UserAgent

 
Figure 3-7 Implementation classes of UserAgent and VisitorAgent 

Figure 3-8 illustrates different use cases handling the behaviour of 
VisitorAgent and UserAgent. These use-cases describe the mobility man-
agement procedures that will achieve the user mobility functionality. Each 
use case describes one mobility management procedure. 

 
Figure 3-8 Use cases for user mobility 
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There are two possibilities for the remote login of a user to its home 
domain. The first possibility was mentioned in Sec. 3.3.2, which is the 
login remotely to home domain or loginHomeRemote. This is one 
possibility that is handled by LoginAgent and is presented in Figure 3-9. 

 
Figure 3-9 Sequence diagram for a loginHomeRemote 

The other possibility corresponds to the login remotely to home do-
main that is handled by VisitorAgent and is presented in Figure 3-10. 

 
Figure 3-10 Sequence diagram for a loginVisitorRemote 

In Figure 3-9 and Figure 3-10, the visiting user may be granted a 
remote login if it provides adequate information on its home domain, 
userID, and password. Following this login request is a director-to-
director interaction and authentication process, which is indicated by the 
requests loginRequest and result between the directors of the two 
domains. This could result in providing the user with home domain 
access. As illustrated in Figure 3-9 and Figure 3-10, a successful remote 
login process results in plugging out the LoginAgent and the VisitorAgent, 
respectively. The reason is that a UserAgent must be instantiated to be 
capable of handling the user’s interactions according to a home domain 
access type. 
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The logout phase can be part of the user move, and hence part of the 
user mobility. The logout phase can be handled by either UserAgent or 
VisitorAgent, and is shown in Figure 3-11 and Figure 3-12 for the local 
and the visitor cases, respectively. After receiving a logout request from 
the User Interface, UserAgent and VisitorAgent will plug out the user and 
its session. Both agents will be plugged out from the terminal after this. 

 
Figure 3-11 Sequence diagram for a logoutUser at home domain 

 
Figure 3-12 Sequence diagram for a logoutUser at visitor domain 

In the proposed solution for handling the user mobility we introduced 
the UserAgent and VisitorAgent to be responsible for controlling the user 
interactions. Accordingly, if a user wants to start an application or termi-
nate an application these agents must be informed. In our solutions we 
only allow the user to start or terminate applications through its assigned 
UserAgent or VisitorAgent. For example if an application started by a user 
requires a role-figure to be instantiated then UserAgent or VisitorAgent 
issue the plugin request for the  role-figure that will execute the applica-
tion. And similarly when an application is terminated, UserAgent or Visi-
torAgent will plugout the corresponding role-figure. Example of plugin 
and plugout sequence diagram is shown in Figure 3-13. applicationStart 
and applicationStop are two requests issued by the User Interface to start 
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and stop an application. UserAgent responds by plug in and plug out the 
corresponding role-figure of the application. 

 
Figure 3-13 Sequence diagrams for a plugin and plugout 

3.3.3.3 User mobility design rules 
In this subsection we give design rules to show the overall behaviour of 
LoginAgent, UserAgent, and VisitorAgent, as well as, the handling of the 
user profile database with regard to user mobility. These design rules, 
UD1-UD6, complement the requirement rules for user mobility by show-
ing different possibilities and options for the management functionality of 
the user mobility. Some of these rules have been implemented, while oth-
ers have been encountered during the implementation and the decision 
was taken not to implement them. 

These design rules will use “MAY” to signify that these rules are op-
tional. UD1 gives an option for the relationship between user and user 
profile. UD2 shows how a user at visitor domain may interact. UD3 and 
UD4 are used as options on the user identification and user profile update. 
UD5 and UD6 give options for handling users at visitor domains. 

UD1. A user, based on its service subscriptions, MAY have more than one 
user profile. 

UD2. A user in a visitor domain MAY start interacting by sending its user 
ID in the login request. 

UD3. A user in a visitor domain MAY be assigned a guest user ID. 
UD4. A user in a visitor domain MAY be able to update its profile. 
UD5. A user in a visitor domain MAY access home domain services from 

a visitor domain based on the policies applied in both domains. 
UD6. A user MAY end its interactions with its home or visitor domain by 

sending a logout request to the supervisory object (a user can end its 
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interactions without a logout request). 

Regarding our proposed solution presented by the user mobility man-
agement procedures we applied the following design rules: UD3, UD4, 
UD5, and UD6.  

3.3.4 User session mobility 

3.3.4.1 Concept 
User session mobility, as defined in the terminology framework, is the 
re-instantiation and resumption of the user suspended sessions. Figure 
3-14 illustrates how a UserAgent manages a user session, and how the 
director maintains the UserSessionBase as well as the UserProfileBase. In 
Figure 3-14 we use a domain of nodes and terminals. 
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Figure 3-14 Illustration of user session mobility 

Terminals execute LoginAgents and users can access these terminals at 
User Interfaces (UI). We assume UserA that access its subscribed services 
at two terminals, TerminalA and TerminalA’. 

Figure 3-14 includes three main parts to show in logical order the suspen-
sion and resumption of a user session: 
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− Part (1): login phase (login UserA at TerminalA), which includes 
the establishment of a user session with role-figures, role-sessions, 
etc.  

− Part (2): moving phase (UserA suspend its session and logs out 
from TerminalA. After that it moves to TerminalA’ and resumes 
its session), where TerminalA and TerminalA’ indicate that they 
both belong to the user UserA. 

− Part (3): login phase (login UserA at TerminalA’), which includes 
the resumption of the suspended user session. 

A user session is described by a user session profile, which is the rep-
resentation of the user session information relevant to the maintenance of 
the user sessions. As such, a user session profile must contain full infor-
mation on every instantiated role-figure, e.g. its data, role-sessions, and 
role-figure child-sessions. In Figure 3-14 we use dotted connectors be-
tween the UserAgent and other role-figures to indicate that they belong to 
one user session that is maintained by this UserAgent. E.g. the user ses-
sion of UserA before the session mobility includes role-figure (with child 
session), Client1, Client2, and Server1. The figure shows an example of 
subscribed services: Service1 and Service2 defined by Play1 (includes the 
Roles for Client1, Client2, and Server1) and Play2 (includes the Roles for 
role-figure and its child session role-figures). Server2 is considered a 
server maintained by the domain, and connected to Client2. Connectors in 
this figure indicate role-sessions between role-figures, e.g. Server1 and 
Client1.  

An example of a user profile and user session profile at the user profile 
base and the user session base are used (these profiles and the contents of 
these bases will be explained in Sec. 3.3.5). 

The handling of user session mobility contains three main functions: 
updating, suspending, and resuming user sessions. A user session is up-
dated by the updateSession request. This request may be sent regularly to 
the director to update the user session profile in the user session base. Al-
so this request can only be sent when a user demands to update its user 
session. A user session may be suspended by the suspendSession request. 
UserAgent sends the suspendSession request to the director to indicate 
that this is a suspended session. resumeSession request is used to resume 
the sessions. updateSession and suspendSession correspond to the user 
session update definition, while resumeSession corresponds to the user 
session access definition in the terminology framework. 
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To resume a user session it is required to re-instantiate all the role-
figures that have been maintained by the UserAgent, however certain 
role-figures (or their child sessions) may not be re-instantiated in the same 
manner as they have been used before the session suspension. In Figure 
3-14 we indicate this by re-instantiating Server1 in different node and re-
instantiating a different child session for the used role-figure. These issues 
can only be addressed using the concepts and the management functional-
ity of the role-figure mobility, which will be handled later in this chapter. 

3.3.4.2 User session mobility management procedures 
Figure 3-15 illustrates different use cases handling the behaviour of 
UserAgent with regard to user session mobility. We assume that only 
UserAgent can handle user session mobility (a visiting user does not have 
a maintained session). These use-cases describe the mobility management 
procedures that will achieve the user session mobility functionality. Each 
use case describes one mobility management procedure. 

UserAgent

resumeSession

suspendUserSession

updateSession

suspendSession«uses»

«uses»

 
Figure 3-15 Use cases for user session mobility 

Figure 3-16 describes a session suspension. A session suspension starts 
with a suspendSessionReq request from the user interface to the 
UserAgent, which accordingly sends a suspendSession request to all role-
figures that have been plugged in by this UserAgent. These role-figures 
send descriptions of their execution status, in a result request. An example 
role-figure is shown in the message sequence diagram. The execution 
status of a role-figure is the full information that is needed to reconstruct 
the session, e.g. its data, role-sessions, and role-figure child-sessions. This 
specific information on individual role-figures is application and platform 
dependent. These role-figures are plugged out by the UserAgent. Any 
suspended session is registered in a UserSessionBase using the 
updateSession request, via the director. 



3.3. Personal mobility 
 

 

59 

 
Figure 3-16 Sequence diagram for a suspendSession and updateSession use cases 

Session resume is presented in Figure 3-17. Upon a new login of a 
user, who asks for a session resume by resumeSessionReq, the UserAgent 
will issue a resumeSession request to the domain director, which will re-
turn the session description to the UserAgent. UserAgent will manage the 
whole process of session reconstruction. The UserAgent will send differ-
ent pluginActor requests to instantiate role-figures that are saved in the 
user session description. This process ends by sending a session request to 
these individual role-figures, with information on their execution status. 

 
Figure 3-17 Sequence diagram for a resumeSession use case 

3.3.4.3 User session mobility design rules 
In this subsection we give design rules to show the overall behaviour of 
UserAgent and VisitorAgent, as well as, the handling of the user session 
base with regard to user session mobility. These design rules, SD1-SD6, 
complement the requirement rules for user session mobility, presented in 
the terminology framework. All of these rules have been implemented, 
except one rule that has been encountered and not implemented. 
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SD1 gives an option for the relationship between user and user session 
profile. SD2 shows an option for the maintenance of role-figures child 
sessions. SD4, SD5, and SD6 give options for handling visiting users. 

SD1. A user MAY have more than one user session profile (in a domain it 
may be allowed to maintain more than one user session). 

SD2. The user session profile MAY include information on the instanti-
ated role-figures and their child-sessions within the user session. 

SD3. Suspension and resumption of user sessions MAY be handled by the 
VisitorAgent. 

SD4. A user in a visitor domain MAY be able to resume a session, and 
suspend a session. 

SD5. If a user in a visitor domain suspends its session the VisitorAgent 
MAY update the user session profile of the user. 

SD6. If a user in a visitor domain resumes a suspended session the Visi-
torAgent MAY access the user session profile of the suspended ses-
sion. 

Regarding our proposed solution for the user session mobility man-
agement we applied the following design rules: SD2, SD4, SD5, and SD6.  

3.3.5 Databases for personal mobility 
XML-based databases and XML-based requests can be proposed as an 
automated, modular, and extendable solution for the user session and the 
user profile bases. Figure 3-18 and Figure 3-19 show possible data struc-
ture models for the user session and the user profile bases, respectively. 

 
Figure 3-18 A possible data structure model for user session base 

The graphical notation used in these figures is proprietary and it shows 
a possible XML schema for the two databases. Some parts of these data 
structures can be extended. A specific UserSession can be extended by 
adding several Services, and a specific Service can be extended by adding 
several Role-Figures. The Role-Session and child-session parts can be de-
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scribed in many different ways, e.g. every role-session and every child-
session is described in an individual data structure. Other data structures, 
e.g. Name, Domain, User, Location, Type, Version, are modelled as 
strings. Similarly, in a user profile base a UserProfile have several Ser-
vice parts, while Setting and Preferences can be described in different 
ways. 
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Figure 3-19 A possible data structure model for user profile base 

Table 3-1 shows an example of UserSessionBase database that corre-
sponds to the scenario presented in Figure 3-14. 
Table 3-1 Example of UserSessionBase specified in XML 

 
 

 

<USER_SESSION_BASE  NAME="USBdomain1"> 
 <DOMAIN>domain1</DOMAIN> 
 <USER_SESSION  NAME="UserSession_A1"> 
   <PROPERTY  NAME="User"> 
     <ID>UserA</ID> 
     <LOCATION>TerminalA</LOCATION> 
   </PROPERTY> 
   <PROPERTY  NAME="Play1"> 
     <TYPE>Chat</TYPE> 
     <VERSION>v1_1</VERSION> 
     <ACTOR_INSTANCE NAME=”Server1” > 
       <ROLE>Role11</ROLE> 
     <ACTOR_INSTANCE> 
     <ACTOR_INSTANCE NAME=”Client1”> 
       <ROLE>Role12</ROLE> 
       <ROLE_SESSION> 
         <COOPERATOR>Server1</COOPERATOR> 
       </ROLE_SESSION> 
     </ACTOR_INSTANCE> 
     <ACTOR_INSTANCE NAME=”Client2”> 
       <ROLE>Role22</ROLE> 
       <ROLE_SESSION> 
         <COOPERATOR>Server2</COOPERATOR> 
       </ROLE_SESSION> 
     </ACTOR_INSTANCE> 
   </PROPERTY> 
   <PROPERTY  NAME="Play2"> 
<TYPE>Debug</TYPE> 

 
<VERSION>v1_2</VERSION> 
     <ACTOR_INSTANCE> 
       <NAME>Role-figure</NAME> 
       <ROLE>RoleA1</ROLE> 
       <CHILD_SESSION> 
         <ACTOR_INSTANCE NAME=”A1”> 
           <ROLE>RoleA11</ROLE> 
           <ROLE_SESSION> 
              <COOPERATOR>ActorA</COOPERATOR> 
           </ROLE_SESSION> 
         </ACTOR_INSTANCE> 
         <ACTOR_INSTANCE NAME=”A2”> 
           <ROLE>RoleA12</ROLE> 
           <ROLE_SESSION> 
             <COOPERATOR>ActorA</COOPERATOR> 
           </ROLE_SESSION> 
         </ACTOR_INSTANCE> 
         <ACTOR_INSTANCE NAME=”A3”> 
           <ROLE>RoleA13</ROLE> 
           <ROLE_SESSION> 
             <COOPERATOR>ActorA</COOPERATOR> 
           </ROLE_SESSION> 
         </ACTOR_INSTANCE> 
       </CHILD_SESSION>  
     </ACTOR_INSTANCE> 
   </PROPERTY> 
 </USER_SESSION> 
</ USER_SESSION_BASE> 

* An example of XML serialization of the UserSession 
Base, where UserA has a session named ‘UserSession_A1’ 
that takes part in two plays. 

 
** UserA runs the following role-figures: Server1, Client1, 
Client2, Role-figure, A1, A2, and A3 
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Table 3-2 shows an example of UserProfileBase database that corre-
sponds to the same scenario (the user profile for UserA, and the user ses-
sion profile UseSession_A1 in Domain1). 

Table 3-2 Example of UserProfileBase specified in XML 

3.4 Role-figure mobility 

Role-figure mobility, as defined in the terminology framework, is the 
movement of instantiated role-figures. The discussion on role-figure mo-
bility will be carried out in four different parts. In Sec. 3.4.1 a general 
role-figure mobility scenario is presented. This illustrates the concept, and 
gives an overall approach to role-figure mobility. In Sec. 3.4.2, we discuss 
several issues regarding moving role-figures, mobility managers, and mo-
bility strategy. In Sec. 3.4.3, we present implementation mechanisms for 
the role-figure mobility management. These mechanisms are based on 
choices taken on the mobility management procedures for moving role-
figures and the applied mobility strategy. Finally, in Sec. 3.4.4 the design 
rules for role-figure mobility are presented. 

3.4.1 General 
A role-figure is moved by re-instantiating the role-figure in conjunction 
with its parts. Based on the discussion presented in the terminology 
framework, an instantiated role-figure comprises the following parts: 

• Role-sessions with other role-figures 
• Consumed capabilities in the node 

 
 

 

<USER_PROFILE_BASE NAME="UPBdomain1"> 
  <DOMAIN>domain1</DOMAIN> 
  <USER  NAME="UserA"> 
    <PROPERTY  NAME="Password"> 
        <VALUE>****</VALUE> 
        <VALID>010106</VALID> 
    </PROPERTY> 
    <PROPERTY  NAME="Location"> 
        <VALUE>local</VALUE> 
    </PROPERTY> 
    <PROPERTY  NAME="Settings"> 
        <ATTRIBUTE NAME=”BGColor”> 
            <VALUE>White</VALUE> 
        </ATTRIBUTE> 
        <ATTRIBUTE NAME=”WSize”> 
            <VALUE>Large</VALUE> 
        </ATTRIBUTE> 
    </PROPERTY> 
    <PROPERTY  NAME="Service1"> 
        <PERMISSIONS> 
            <VALUE>Owner</VALUE> 

 
        </PERMISSIONS> 
        <CONSTRAINTS> 
            <VALUE>LocalAccess</VALUE> 
        </CONSTRAINTS> 
    <PREFERENCES> 
            <VALUE>Empty</VALUE> 
    </ PREFERENCES > 
    </PROPERTY> 
    <PROPERTY  NAME="Service2"> 
        <PERMISSIONS> 
            <VALUE>Temp</VALUE> 
        </PERMISSIONS> 
        <CONSTRAINTS> 
            <VALUE>LocalAccess</VALUE> 
        </CONSTRAINTS> 
        <PREFERENCES> 
            <VALUE>Empty</VALUE> 
    </ PREFERENCES > 
    </PROPERTY> 
  </USER> 
</ USER_PROFILE_BASE> 

*** An example of XML serialization of the UserProfile Base, 
which includes the UserProfile for a single user, UserA.  

*** UserA has a subscription to Service1 (specified by 
Play1), and Service2 (specified by Play2). 
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• Behaviour described by a specification 
• Queue of incoming messages 
• Executing methods (or the role-figure active tasks) 

These parts need be considered when the role-figure moves. Some of 
these parts must be moved with the role-figure to ensure that the moving 
role-figure will continue its execution after the movement. In the follow-
ing sections we will handle in detail the first three parts, i.e. role-sessions, 
capabilities, and behaviour. We will briefly discuss the queue and execut-
ing methods and, later, will give general design rules to handle them in 
the mobility strategy design rules. Figure 3-20 illustrates role-figure mo-
bility between two domains. 

 
Figure 3-20 Illustration of role-figure mobility 

In Figure 3-20 the role-figure, before its move, has behaviour that is at 
a current state, capabilities and status, two role-sessions (RS1 with 
Server1 and RS2 with DomainServer1), and a child session that consti-
tutes of several instantiated role-figures. We illustrate a movement of this 
role-figure from location Node/process1 to location Node/process2 (both 
are considered the role-figure’s location or location-of-performance as we 
defined in the terminology framework). This figure includes three main 
parts to show in logical order a role-figure mobility scenario: 

− Part (1): execution phase (role-figure executes in Node/process1 at 
domain1). 
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− Part (2): moving phase (moving role-figure, with possible child-
session consisting of several role-figures, from Node/process1 at 
domain1 to Node/process2 at domain2). 

− Part (3): execution phase (role-figure executes in Node/process2 at 
domain2 after the move). 

In the terminology framework we stated that when a role-figure moves 
from one execution environment to another a supervisory object in the 
system is responsible for managing this move. In our proposed solution 
for the role-figure mobility we will use the mobility manager for this su-
pervisory object. In Figure 3-20 it is MobilityManager1 and Mobility-
Manager2. We introduce three mobility management procedures to han-
dle the mobility of the role-figure:  

• LocationUpdate 
• RoleFigureMove 
• RFDiscovery 

LocationUpdate procedure is initiated by a role-figure when it moves. 
This procedure results in sending the role-figure new location to the mo-
bility manager. Using this procedure we make sure that mobility manager 
is always updated about the moving role-figure and its current location. 

RoleFigureMove procedure handles the movement of the role-figure 
and its parts. Due to its crucial functionality, this procedure was also con-
sidered as a part of the support functionality of the core platform. In Sec. 
1.4.2.2, we included this procedure in the actor basic support procedures 
and its invocation request was denoted as rolefigureMove. RoleFigure-
Move procedure uses other actor basic support procedures to achieve the 
re-instantiation of a role-figure at a new location:  

− PlugInActor (to instantiate a role-figure at a new location) 
− PlugOutActor (to exit the role-figure at its previous location) 
− CreateInterface (to create interfaces) 
− BehaviourChange (to instantiate behaviour at a current state) 
− CapabilityChange (to update the capability definitions) 

RFDiscovery (Role-Figure Discovery) procedure is initiated by other 
role-figures to get the location of the moving role-figure from the mobil-
ity manager. There are two different ways to use this procedure: 

− Role-figures must initiate this procedure before every communica-
tion with a moving role-figure 
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− Role-figures may maintain a cache of addresses to store recently 
accessed moving role-figures, and only initiate this procedure 
when communicating with an unknown moving role-figure 

These procedures and the requests used in these procedures will be ex-
plained later when we present our role-figure mobility management 
mechanisms in Sec. 3.4.3. 

Mobility strategy is a set of domain specific rules and conditions that 
govern the role-figure mobility procedures. These sets of rules will be 
handled in detail in Sec. 3.4.2.3 and later in the design rules for role-
figure mobility. 

By moving role-figures certain parts may be irrecoverable. E.g. certain 
capabilities may not be available at the new location, or specific role-
sessions are no longer relevant. In this scenario, for instance, the RS2 at 
the new location has been recovered to connect to another special-
purpose role-figure (DomainServer2 that is available in domain2). Also, 
the moved role-figure child-session couldn’t be fully recovered. Certain 
role-figures have been assigned different functionality and/or different set 
of capabilities. 

3.4.2 Issues related to role-figure mobility 
The simple mobility scenario, presented in the previous subsection, illus-
trated the main characteristics of the concept of role-figure mobility. 
However, many issues have not been covered and need further discussion. 
This subsection discusses issues related to the moving role-figure, the 
mobility manager, and the mobility strategy. 

3.4.2.1 The moving role-figure 

Role-session mobility 
Role-session is the projection of the behaviour of a role-figure with re-
spect to one of its interacting role-figures. A role-session between two 
role-figures means the agreement between the two role-figures on the 
terms of their interactions. As defined in the terminology framework, 
role-session mobility is the re-instantiation of the role-sessions of a mov-
ing role-figure. A role-session that cannot be re-instantiated mean that the 
communication with the role-figure referred to by this role-session is not 
possible. 
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Another concept that is related to the concept of role-session is the 
concept of interface. Interface is the means to gain access to object in-
stances from other objects. Interfaces provide a role-figure with adequate 
information on how to reach other role-figures. Figure 3-21 illustrates 
how two role-figures interact with each other via a role-session. RF2 has a 
role-session rs1 with RF1, while RF1 has a role-session rs2 with RF2. The 
communication between these two role-figures, however, is realized via 
the actor objects through their interfaces, i and j. 

 
Figure 3-21 Illustration of role-sessions and interfaces 

To re-instantiate the role-sessions of a moving role-figure we need to 
recreate their interfaces also. The special-purpose role-figures may intro-
duce complexities in the role-session mobility. A role-session with a spe-
cial-purpose role-figure may not be recreated after the move (a role-figure 
may move to another domain where such an interface is not allowed). 
However, it can be possible to find another special-purpose role-figure in 
the new domain that plays a similar role. In this case, the moving role-
figure will create an interface to this special-purpose role-figure. Domains 
may have lists of special-purpose role-figures based on their functionality, 
e.g. name servers and capability managers. Mobility managers can use 
such lists to locate appropriate special-purpose role-figures for the mov-
ing role-figures. These issues of the interface recreation will be handled in 
the mobility management mechanisms and the design rules for mobility 
strategy. 

To handle role-session mobility we need appropriate concepts for role-
sessions, i.e. concepts for the instantiation, re-instantiation, and evolution 
of role-sessions. As these concepts have not been formulated within the 
context of TAPAS, we will only handle the recreation of the interfaces of 
a moving role-figure, and will not handle the re-instantiation of role-
sessions of a moving role-figure. 

Capability mobility 
The reclamation of the consumed set of capabilities by a moving role-
figure is denoted as Capability mobility. The discussion on the capability 
mobility requires a proper architecture that handles capabilities of the 
moving role-figure. Here we consider the TAPAS configuration manage-
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ment architecture (it was mentioned in Chapter 1 and explained in Ap-
pendix I). Similar to role-session mobility, certain capabilities of a mov-
ing role-figure may or may not be reclaimed. Here it is important to dis-
tinguish between two sets of capabilities for a moving role-figure: 

− The required set of capabilities, which are specified in the specifi-
cation of the role played by the role-figure. 

− The requested set of capabilities, which are the capabilities con-
sumed throughout the execution of the role-figure until the arrival 
of the move request. 

The required set of capabilities must be available in the new location to 
instantiate the role-figure. The requested capabilities must be reclaimed to 
achieve the capability mobility, and hence the mobility of the role-figure. 
There are certain situations when some of the requested capabilities can-
not be reclaimed. 

Behaviour recovery 
The role-figure behaviour is specified in an extended finite state machine 
specification, with states and state transitions. States are used to logical 
represent the evolution of the role-figure behaviour. The role-figure be-
haviour evolves by state transitions, in which the role-figure processes the 
arriving messages. A state transition is triggered by the consumption of a 
message that is defined as a triggering event at the current state. 

When a role-figure moves its behaviour must be recovered to ensure 
that the role-figure will continue its execution after the move. Role-figure 
behaviour recovery has two elements: to capture the state information be-
fore the move, and to recover the state information after the move. 

A role-figure operates on the main memory and uses the heap for proc-
essing data. Role-figure behaviour recovery does not mean to recover all 
sorts of data in the heap, or to recover the access rights and information of 
the local file system. These are only relevant at the role-figure’s current 
location, and have no meaning in another location. 

The specification of the role-figure behaviour plays an important role 
in achieving role-figure behaviour recovery. The manner how a specifica-
tion is written can highly affect the possibilities for the behaviour recov-
ery and the state information mobility. We consider a set of states in the 
specification of the role-figure behaviour where a move is allowed. We 
call this set as stable states. This means that the behaviour change, and 
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consequently the role-figure mobility, is only allowed when the role-
figure behaviour current state is a state in this set.  

Further elaboration on the issues regarding behaviour recovery will be 
handled in Chapter 4 and Chapter 5.  

3.4.2.2 The mobility manager 

The role of the mobility manager 
The mobility manager needs to know which role-figures it is handling. 
Also role-figures need to know which mobility manager is handling their 
mobility. We consider two cases for relating role-figures to mobility man-
agers: 

− A role-figure is required to establish a role-session with mobility 
manager during its plug in 

− A role-figure is not required to establish a role-session with mobility 
manager during its plug in, but may be instructed to do so later 

In the first case, we require in the specification of the role played by 
the role-figure to connect this role-figure to a mobility manager. The sec-
ond case allows the connection with a mobility manager to be carried out 
after the plug in. The difference between these two cases is that the first 
case does not allow role-figures to be instantiated without the connection 
with the mobility manager, while the second case allows that. Also, in the 
first case the role-figure is connected with the mobility manager of the 
domain or the sub-domain where the role-figure executes, while in the 
second case the role-figure may be connected with any specific mobility 
manager. 

A mobility manager, in the first case, is responsible for all role-figures 
in its domain or sub-domain, while a mobility manager, in the second 
case, is responsible for some of these role-figures. 

The organization of mobility managers 
Several mobility managers may be needed within a single domain to in-
crease the reliability and simplify the management of the domain. Several 
mobility managers in a single domain can cooperate to manage different 
sets of role-figures, distribute responsibility over different network do-
mains, contain backup information, etc. For seek of simplicity, we assume 
a simple case; a domain is decomposed into sub-domains and each sub-
domain is managed by one mobility manager. To delegate responsibility 
between mobility managers leads to a hierarchy of such managers. 
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Mobility manager to mobility manager relationship and their commu-
nications, e.g. inquiring about role-figures, are defined. In Figure 3-22 an 
example of a general mobility manager hierarchy is sketched. The rela-
tionships between these mobility managers determine the interactions and 
communications between these mobility managers. These relationships 
are denoted as: cooperate, supervise, control, update, and co-supervise. 
Note that several mobility managers may cooperate to supervise the same 
sub-domain, MM1 and MM11. Also several mobility managers, MM31 and 
MM32, may supervise one mobility manager, MM321. 

MM1

MM2

MM31 MM32

MM3

MM11

MM321

supervise

control

control

supervise supervise

co-superviseco-supervise

Sub-domain1

Sub-domain32

Sub-domain3

Sub-domain31

Sub-domain2
Sub-domain321

main-domain

MM12

update

supervise Sub-domain12

cooperate

 
Figure 3-22 Example realization of a multi mobility management hierarchy 

Following is a brief description of these relationships (the detailed de-
scription and realization of these relationships are not handled in the the-
sis): 
− Cooperate stands for the collaboration and assistance among mobil-

ity managers to achieve certain goals. It may be used to split respon-
sibility in large domains. 

− Supervise means that a mobility manager supervises the operations 
of another mobility manager. This provides a general coordination 
and synchronization between the sub-domains.  

− Control relationship allows for the close management of mobility 
managers own functionality and databases. This relationship is 
stronger than supervise, and indicates a full power on decision-
making process.  
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− Update makes it possible to regularly update a mobility manager 
about the mobility aspects of another sub-domain. This may be used 
to assure security, or to realize a composite business model.  

− Co-supervise is meant to provide a more reliability in supervising 
mobility managers of a highly dynamic or critical environment. It is 
also beneficial in cases of shared resources and infrastructure that 
necessitate a high degree of coordination. 

There are several ways to inform a role-figure about the mobility man-
ager. One possible way can be an initial setting for mobility managers in a 
domain (e.g. via a URL). However, sometimes it is needed to apply cer-
tain mechanisms to advertise and discover mobility managers. In Figure 
3-23 we show two examples to advertise mobility managers. 

MM1

MM21 MM22

mobility manager
configuration

Sub-domain22

Sub-domain2

Sub-domain21

Sub-domain1

main-domain

RF7

RF1

RF3RF2

RF4 RF5 RF6

 
Figure 3-23 Advertisement examples of mobility managers 

− In Sub-domain1 the mobility manager broadcasts information re-
garding its availability to: 

 All role-figures in its sub-domain (RF1, RF2, and RF3)  
 Other mobility managers in its domain (MM21 and MM22) 

− In Sub-domain2 mobility manager configuration file is sent to role-
figures in the sub-domain (RF4, RF5, RF6, and RF7). This configu-
ration informs role-figures about their corresponding mobility man-
agers. Role-figures obtain this file: 

 During their plug in phase 
 After their plug in phase if they request it 

The lists of role-figures and mobility managers in a domain or sub-
domain are maintained by the director of the domain. Mobility managers 
can have similar lists that may be used when a mobility manager resets.  
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Finally, there are several issues regarding mobility managers that must 
be resolved in order to achieve the role-figure mobility. Some of these 
issues are listed here: 

− In case a role-figure moves between two domains or sub-domains, 
which have different mobility managers, how will this role-figure be 
registered at the new mobility manager? 

− What are the alternatives for instantiating a moving role-figure that 
cannot establish a role-session with a mobility manager?  

Such questions need to be addressed in the comprehensive set of rules 
that controls the mobility procedures, which we call the mobility strategy.  

3.4.2.3 The mobility strategy 
Mobility strategy is a set of domain specific rules and conditions that 
govern the role-figure mobility management procedures. The following 
gives a list of issues that will constitute the rules and conditions of the 
mobility strategy: 

(a) Discard or handle the content of the message queue of the moving 
role-figure. 

(b) Forward the content of the queue to the newly instantiated role-figure 
with or without further requirements on the arrival (i.e. order of arri-
val) and loss (i.e. forwarding with confirmation.) 

(c) Allow or disallow two replicas of the same role-figure to function si-
multaneously, while the mobility process is handled. 

(d) Keep or destroy replicas of the role-figure as it moves. 
(e) In the case of keeping the replicas of a moving role-figure, how to 

forward the content of the queue to the moving role-figure, is it to the 
next one in the chain of replica or to the latest moved-to location. 

(f) What is considered as an atomic event? Is it the whole sequence of 
events in the move process, or just a plug in request? This can result 
the role-figure to be totally suspended while it is moving. 

(g) Priorities among strategy rules, so if there is more than one executable 
rule in the strategy, which one is to choose. 

(h) What if a mobility strategy is not available in a domain? 
(i) Many rules may be specified to cope with the question of special-

purpose role-figures, e.g. if the moved role-figure cannot connect to a 
special-purpose role-figure. 

(j) Many rules may be specified on the construction of role-sessions in 
general, how strict it should be, and what if certain role-sessions can-
not be constructed. 
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(k) Many rules may be specified on the reclamation of capabilities, and 
what if certain capabilities cannot be reclaimed. 

(l) Many rules may be specified on the re-instantiation of behaviour 
specification, and what if the current state cannot be recovered. 

(m) Certain rules may be specified to handle the active tasks of a role-
figure, whether to discard them or to wait until they execute. Active 
tasks of a role-figure may be remote method calls and local computa-
tions. Here we define a mobility management procedure to be either 
preemptive (to stop active tasks) or non-preemptive (to allow active 
tasks to execute). 

Mobility strategies may be specified in a program-like manner, as a set 
of algorithms, or in a machine understandable format. These forms of 
specifications may be routines of a programmable language, algebraic ex-
pressions, or extensible notations, such as XML. 

In the case of a moving role-figure between two domains or sub-
domains, which possibly have two mobility strategies, it is important to 
define relationships between the strategies as well. The reason is that a 
mobility manager of one of these domains or sub-domains only accom-
plishes part of the job. The other part is accomplished by the other mobil-
ity manager. If the other mobility manager has a different set of rules in 
its mobility strategy then conflicts may occur. To resolve this issue we 
may apply the relationships between mobility managers that we handled 
in Sec. 3.4.2.2. For example role-figure mobility handled by two mobility 
managers with a control relationship between them may give a higher 
precedence to the rules of one mobility strategy over the other. Also, the 
mobility strategies of two mobility managers with a co-supervise relation-
ship between them may require that these two strategies be exactly the 
same. This issue is a very interesting one, and could be handled in future 
development of our mobility management architecture. 

3.4.3 Role-figure mobility management mechanisms 
As we have mentioned earlier, the role-figure mobility is a special type of 
mobility and its management functionality encounters many issues. These 
issues are complex and dependent. Mechanisms are needed to deploy the 
presented role-figure mobility management procedures, and resolve those 
issues. Based on the discussions in Sec. 3.4.1 and Sec. 3.4.2, we assumed 
a general case of role-figure mobility that is controlled and managed by a 
mobility manager or several mobility managers. The mobility manager in 
this general case plays a central role so that every moving role-figure 
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must be supervised by this mobility manager. This case turned out to be 
very restrictive and introduced a lot of traffic between the nodes. During 
the implementation and the experimentation of the different role-figure 
mobility scenarios, e.g. within the same node, within the same domain, 
among two domains, etc., we investigated the possibility of simplifying 
the role of the mobility manager. We encountered that the role of mobility 
manager can be simplified and associated with the moving role-figure. 

We propose four implementation mechanisms to achieve role-figure 
mobility. They are denoted role-figure mobility management mecha-
nisms, or RMM1 (the centralized mechanism), RMM2 (the proxy mecha-
nism), RMM3 (the locator mechanism), and RMM4 (the persistent 
mechanism). 

RMM1 implements the general case. RMM2, RMM3 and RMM4 in-
troduce different mechanisms that simplify the role of the mobility man-
ager. The mobility strategies have been incorporated as part of the role of 
the mobility manager. The role-figure mobility management mechanisms 
will take choices and decisions on the issues discussed in the mobility 
strategy. These mechanisms are specified using sequence diagrams. The 
abstraction will be kept at a high level, so that sequence diagrams don’t 
get complex. The emphasis is on the interactions between the main com-
ponents of the architecture. 

In the role-figure mobility management mechanisms we will use the 
following invocation requests, as explained in Sec. 1.4.2.2: 

• pluginActor (name, location, behaviour, capability) 
• plugoutActor (name) 
• createInterface (interfaces) 
• behaviourChange (behaviour, state) 
• capabilityChange (capabilities) 
• rolefigureMove (location) 

The role-figure mobility management mechanisms will also use the 
following invocation requests to initiate the LocationUpdate and RFDis-
covery procedures mentioned earlier: 

• locationUpdate (name, location), which is used to update the 
location of a role-figure  

• rfDiscovery (name), which is used to get the location of a role-
figure 
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Other requests will be used, and will be explained when they are used. 
The detailed description and semantics of these requests, as well as the 
corresponding public methods, are not included in the thesis. 

3.4.3.1 RMM1: the centralized mechanism 
The first mechanism is based on a centralized mobility manager, as shown 
in Figure 3-24. A role-figure responds to a move request, denoted rolefig-
ureMove (location), by re-instantiating itself at the new location specified 
in this move request. The role-figure will transfer all the necessary infor-
mation about its current capability set, role-sessions, behaviour to this 
newly instantiated role-figure, and update its location. 

Figure 3-24 shows an example of a mobile role-figure (denoted RF1-
L1) with the following information; it executes at location L1, performs 
according to behaviour specification Beh (denoted RF1.beh = Beh), its 
current state is cState (denoted RF1.beh.st = cState), has a capability set 
Cap (denoted RF1.cap=Cap), and has two interfaces corresponding to 
role-sessions R1 and R2 (denoted RF1.int = (RS1, RS2)). This role-figure 
will move to another location, which is L2. The locations L1 and L2 are 
abstraction of the role-figure executing environments. 

RF1-L1
MobilityManager

RF1-L2

RF1plugout result(L2)

RF3RF2

plugoutActor(RF1)

locationUpdate(RF1,L2)

behaviourChange(Beh,cState)

createInterface(RS1,RS2)

capabilityChange (Cap)

pluginActor(RF1,L2,Beh,nil)

rolefigureMove(L2)

rfDiscovery(RF1)

RF1 is at location L1.
RF1.beh=Beh

RF1.beh.st=cState
RF1.cap=Cap

RF1.int={RS1,RS2}

 
Figure 3-24 RMM1 

Upon receiving a rolefigureMove (L2) from RF2 the role-figure starts 
the move to location L2. It initiates a pluginActor (RF1, L2, Beh, nil) re-
quest to plug in another role-figure at location L2, with behaviour Beh, 
and for simplicity no required set of capabilities. A role-figure is instanti-
ated at L2 (denoted RF1-L2). The mobility mechanism continues with 
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initiating the following requests: capabilityChange (Cap), createInterface 
(RS1, RS2), and behaviorChange (Beh,cState) to update the capabilities, 
role-sessions, and the behaviour of the role-figure at L2, respectively. 

RF1-L1 then sends a locationUpdate (RF1, L2) request indicating the 
change of its location to the mobility manager, which plugs out the role-
figure from L1. Other role-figures (e.g. RF3) aiming at communicating 
with the moving role-figure should send a rfDiscovery (RF1) request, and 
wait for a result(L2) in order to get the location of the role-figure. In this 
mobility mechanism, the discovery request must always be sent before 
any communication with a moving role-figure. 

Advantages of RMM1 To increase the robustness of this mechanism it 
is only needed to ensure that the centralized mobility manager is robust. It 
suits service systems that don’t require role-figures to move frequently. 
Also, role-figure discovery request can be sent to the mobility manager 
unaware of the fact that the role-figure is moving. A moving role-figure 
may signal the start of its movement, so that the mobility manager can 
mark this role-figure with a special flag, e.g. moving. By this manner the 
mobility manager delays sending information about the role-figure’s loca-
tion until it is moved. 

Disadvantages of RMM1 This mechanism may imply heavy processing 
load for the mobility manager if there are many mobile role-figures with 
many movements. If the number of role-figures assigned to a mobility 
manager increases, or their movement becomes more frequent the per-
formance of the mobility manager degrades. Also, as it is based on a cen-
tralized supervisory object a possible fail of the mobility manager would 
stop and role-figure mobility. 

3.4.3.2 RMM2: the proxy mechanism 
This mechanism is called the proxy mechanism as one role-figure acts as 
a proxy to a mobile role-figure. Basically, the first instance of a mobile 
role-figure acts as its proxy, and therefore it is not plugged out when this 
role-figure moves. This instance will handle all the requests of the role-
figure, and forward them to the location where the role-figure moves to. 

Figure 3-25 illustrates an example where a role-figure (RF1-L1) moves 
to a new location (RF1-L2), and then moves to another location (RF1-
L3). It follows the same request used in RMM1 to initiate a move from 
L1 to L2. It uses pluginActor request to plug in a role-figure at L2. It uses 
the requests capabilityChange (to update capabilities Cap1), createInter-
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face (to create the role-sessions (RS1, RS2)), and behaviorChange (to 
change the behaviour to (Beh1, cState1)) in locations L2. The move from 
L2 to L3 may be described in a similar manner. 

RF1-L1

RF1-L2

RF2

behaviourChange(Beh1,cState1)

createInterface(RS1,RS2)

capabilityChange (Cap1)

pluginActor(RF1,L2,Beh1,nil)

rolefigureMove(L2)

RF1plugout

RF1 is at location L1
RF1.beh=Beh1

RF1.beh.st=cState1
RF1.cap=Cap1

RF1.int={RS1,RS2}

RF1-L3

rolefigureMove(L3)

RF1 is at location L2
RF1.beh=Beh2

RF1.beh.st=cState2
RF1.cap=Cap2

RF1.int={RS3,RS4}

pluginActor(RF1,L3,Beh2,nil)

capabilityChange (Cap2)

createInterface(RS3,RS4)

behaviourChange(Beh2,cState2)
plugoutActor(RF1)

request()

request()

request()

request()

rolefigureMove(L3)

result()

 
Figure 3-25 RMM2 

When the role-figure RF1-L2 moves from L2 to L3 it performs the 
move and then RF1-L1 uses plugoutActor request to plug out the role-
figure at L2 (this ensures that only a single replica of the role-figure exists 
besides its proxy). To show how other role-figures can communicate with 
this role-figure, RF2 sends a request to the role-figure proxy. The role-
figure proxy, in this case, is the first instance of the role-figure, or RF1-
L1. This proxy forwards the request it receives to RF1-L2 and to RF1-L3, 
based on where the role-figure exists at a given point. Also, Figure 3-25 
demonstrates how other role-figures in the architecture are unaware of the 
movement itself. 

Advantages of RMM2 This mechanism does not rely on a centralized 
mobility manager as it was in RMM1. It suits service systems that are 
highly distributed, so the location updates don’t need to be centrally main-
tained. It can support a large number of role-figures – as no role-figure 
discovery is required. 
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Disadvantages of RMM2 The scalability of this mechanism depends on 
the distribution nature of the architecture. If role-figures need to move 
among nodes that are at large distances, long delays may be generated. At 
the same time role-figures can only send requests to the proxy object, so 
there will always be an additional traffic in the network. 

3.4.3.3 RMM3: the locator mechanism 
This mechanism is based on dedicating a reliable entity to keep an up-
dated role-figure location, while allowing the role-figure itself to move. 
We will call this entity as the role-figure’s locator. Assume role-figure 
locator is realized by a special purpose object in the service system, 
which is a light weight implementation with very limited functionality. 
Each mobile role-figure will have a single locator. Other role-figures 
communicating with the mobile role-figure can obtain the moving role-
figure’s location from its locator. Figure 3-26 demonstrates the main as-
pects of this mechanism in an example. 

RF1-L1

RF1-Locator

RF1-L2

RF3RF2

rfDiscovery(RF1)

locationUpdate(RF1,L2)

behaviourChange(Beh,cState)

createInterface(RS1,RS2)

capabilityChange (Cap)

pluginActor(RF1,L2,Beh,nil)

rolefigureMove(L2)

RF1plugout

RF1 is at location L1.
RF1.beh=Beh

RF1.beh.st=cState
RF1.cap=Cap

RF1.int={RS1,RS2}

result(L2)

request()

 
Figure 3-26 RMM3 

Figure 3-26 uses exactly the same requests as in the example of 
RMM1. The only difference is that the mobility manager is substituted 
with the locator object. RMM3 differs also slightly from RMM2. While 
RMM2 maintains a fully functioning instance of the mobile role-figure to 
act as proxy, RMM3 creates only a locator object for it. 
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Advantages of RMM3 This mechanism suits service systems with large 
number of mobile role-figures with frequent moves. 

Disadvantages of RMM3 The disadvantages of this mechanism are 
similar to the disadvantages of RMM2. Additionally, as locator objects 
get updates of the mobility of the role-figure only after the move, they 
may give non-updated location information while a role-figure is moving. 

3.4.3.4 RMM4: the persistent mechanism 
This mechanism is based on using a role-figure locator to get updated in-
formation about the mobile role-figures. Additionally, moving role-
figures don’t plug out their instances at previous locations. All instances 
of a mobile role-figure should exist even after receiving and performing a 
move request (be persistent over the lifespan of a role-figure). These in-
stances of the mobile role-figure, however, stop executing any tasks. They 
only forward requests, which exceptionally arrive to them, to where the 
mobile role-figure exists at a given point. Another important aspect, when 
a role-figure is moved it will free up all resources it has seized, e.g. its 
capabilities. This increases the efficiency of the solution.  

Figure 3-27 demonstrates this mechanism. It uses a combination of the 
requests used in the examples for RMM2 and RMM3. In this figure RF1-
L1 executes in location L1, and its location is available in its locator RF1-
Locator. RF2 issues a move request to RF1-L1 to move to RF1-L2. The 
most interesting part of this example is RF3. This role-figure gets the lo-
cation of the mobile role-figure RF1 from its locator, while RF1 is mov-
ing. RF3 keeps sending requests to RF1’s original location. This method 
makes this communication reliable by allowing all instances of RF1 to 
exist after the movements. The different instances of RF1 get a location 
update from the locator once a new movement is performed. 

Advantages of RMM4 This mechanism can adapt to the highly dy-
namic network topologies, for instance ad hoc networks. In these net-
works parts of the network may split up, connect, disconnect, or be cre-
ated or isolated dynamically. Such situations raise the issue of reliability 
in terms of the mobility manager maintained database, role-figure instan-
taneous movement status, and deliverability of requests to mobile role-
figures. As such, it is highly possible that a mobility manager does not 
have up-to-date information about the role-figures, role-figures and mo-
bility managers alike may be unaware of the mobility procedure current 
status, and requests aimed to mobile role-figures be sent to the wrong lo-
cation. 
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Figure 3-27 RMM4 using role-figure locator 

Disadvantages of RMM4 This mechanism scales down to the move-
ment of the individual role-figures, as we don’t plug out old instances of a 
moving role-figure. Certain situations can decrease the efficiency of this 
mechanism. For instance, when role-figures have very frequent move-
ments. Besides, as it is using locator objects, the limitations of RMM3 
affect it as well. 

3.4.4 Role-figure mobility management design rules 
In this subsection we give design rules to show the overall behaviour of a 
moving role-figure and MobilityManager with regard to role-figure mo-
bility. These design rules, RD1-RD9, complement the requirement rules 
for role-figure mobility, presented in the terminology framework. These 
rules will be divided into two groups: general design rules (RD1-RD8) 
and design rules for the mobility strategy (RD9 (a) - RD9 (r)). 
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The rules RD1, RD2, RD3, RD4, and RD5 give options on the supervi-
sion of role-figures by mobility managers. RD6, RD7, and RD8 show op-
tions for a moving role-figure between different domains that are man-
aged by different mobility managers. 

RD1. If a single mobility manager exists in a domain or sub-domain, then 
it MAY be required that a role-figure is supervised by the domain or 
the sub-domain mobility manager. 

RD2. If several mobility managers exist in a domain or sub-domain, then 
it MAY be required that a role-figure is supervised by a specific mobil-
ity manager. 

RD3. A role-figure MAY be supervised by more than one mobility man-
agers at the same time. 

RD4. Mobility manager MAY supervise all role-figures created in its do-
main or sub-domain. 

RD5. Mobility manager MAY supervise only those role-figures that it was 
instructed to supervise (these instructions may be issued by the super-
visory object of the domain that controls the plug in phase). 

RD6. In the case of mobility between two domains or sub-domains with 
different mobility strategies, the relationship between these strategies 
MAY be provided. 

RD7. After a movement a moving role-figure MAY register itself at an-
other mobility manager. 

RD8. After a movement a mobility manager where a mobile role-figure 
has moved to MAY register it. 

With regard to RD7 and RD8, these rules are options of the require-
ment rule RR5, which stated that a moving role-figure must be supervised 
after it moves to another domain or sub-domain. All the design rules pre-
sented here handle the role of the mobility manager. Therefore we only 
regard them to RMM1 that deploys this mobility manager. In RMM1 we 
implemented RD1, RD4, and RD7. 

Regarding the content of the mobility strategy we give the rules RD9 
(a) – (r) as options to be included. (a), (b), and (c) give options regarding 
the queue handling. (d) and (e) handle the multiple copies of a moving 
role-figure. (f) shows the plug out of a moving role-figure, while (g) sets 
an option for priorities among mobility strategy rules. (h), (i), (j), and (k) 
give options for the handling of role-sessions. (l), (m), and (n) give op-
tions for handling the capabilities. (o) and (p) handle the behaviour, while 
(q) and (r) handle the executing methods of a moving role-figure. 
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(a) In mobility strategy rules, mobility manager MAY discard the queue 
contents of a mobile role-figure. 

(b) In mobility strategy rules, mobility manager MAY forward the queue 
contents of a mobile role-figure to its new location without confirma-
tion of the arrival (confirmation of the arrival or confirmation of the 
order of arrival). 

(c) In mobility strategy rules, mobility manager MAY forward the queue 
contents of a mobile role-figure to its new location with confirmation 
of arrival (confirmation of the arrival or confirmation of the order of 
arrival). 

(d) In mobility strategy rules, mobility manager MAY allow two copies of 
a mobile role-figure to exist simultaneously at two different locations. 

(e) In mobility strategy rules, mobility manager MAY disallow two copies 
of a mobile role-figure to exist simultaneously at two different loca-
tions. 

(f) In mobility strategy rules, mobility manager MAY plug out a mobile 
role-figure once it has been instantiated at another location. 

(g) In mobility strategy rules, priorities MAY be set among mobility strat-
egy rules to resolve conflicts. 

(h) In mobility strategy rules, mobility manager MAY discard re-
instantiation of all role-sessions. 

(i) In mobility strategy rules, mobility manager MAY require the re-
instantiation of all role-sessions. 

(j) In mobility strategy rules, mobility manager MAY discard the recrea-
tion of role-sessions to special-purpose role-figures only. 

(k) Mobility strategy MAY include a list of special-purpose role-figures 
and their functionality (this list may be used to locate appropriate spe-
cial-purpose role-figures for moving role-figures). 

(l) In mobility strategy rules, mobility manager MAY discard the reclama-
tion of all capabilities. 

(m) In mobility strategy rules, mobility manager MAY require the recla-
mation of all capabilities. 

(n) In mobility strategy rules, mobility manager MAY require the reclama-
tion of certain types of capabilities. 

(o) In mobility strategy rules, mobility manager MAY require the recovery 
of the behaviour specification. 

(p) In mobility strategy rules, mobility manager MAY require the recovery 
of the state-information. 

(q) In mobility strategy rules, mobility management procedure MAY be 
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preemptive (to stop the role-figure active tasks and discard the execut-
ing methods). 

 (r) In mobility strategy rules, mobility manager MAY be non-preemptive 
(to allow the role-figure active tasks to execute). 

As these design rules handle the role of the mobility manager, we will 
only regard them to RMM1. In RMM1 we implemented (q), (d), (f), (i), 
(m), (o), (p), and (q). RMM2, RMM3, and RMM4 have been imple-
mented using similar design rules but they have been incorporated in the 
role of role-figure proxy and locator. 

3.5 Terminal mobility 

Terminal mobility as defined in the terminology framework is the move-
ment of terminals while maintaining access to services and applications. 
This implies the change of the terminals location as well. 

The terminal mobility will be discussed in three parts. Sec. 3.5.1 illus-
trates a terminal characterization to distinguish between nodes and termi-
nals. Sec. 3.5.2 presents the mobility management procedures for terminal 
mobility. Sec. 3.5.3 gives a set of design rules. 

3.5.1 Concept 
A terminal has been defined as a node that is associated with human us-
ers. In the personal mobility management procedures, we have encoun-
tered that terminals and nodes both can execute services and instantiate 
role-figures. Terminals have typically limited set of capabilities (regard-
ing resources, computational and processing power) when compared to 
nodes. Therefore role-figure functionality will execute and perform dif-
ferently in node and terminal execution environments. In Figure 3-28 we 
illustrate a terminal characterization that will be used as a basis for the 
terminal mobility management procedures. 

A terminal in our mobility management architecture is characterised by 
the following entities: User Interface (UI), Terminal Interface (TI), User 
Agent (UA), Mobility Agent (MA), and constrained role-figures (cRF). 
cRF is a role-figure with constraints in terms of its capabilities, child-
session, mobility, etc. These constraints are determined by the terminal’s 
capabilities. 
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Figure 3-28 An illustration of terminal characterization 

3.5.2 The mobility management procedures 
In the terminology framework we discussed that terminal(s) execute Mo-
bilityAgent(s) responsible for tracking their location, while MobilityMan-
ager is responsible for updating these locations. Based on the topology of 
the network, domains and sub-domains may exist, and therefore several 
mobility managers may be required. To illustrate terminal mobility we 
assume a simple case of a single mobility manager per domain. 

There are two main terminal mobility management procedures: Loca-
tionUpdate and TerminalDiscovery. A MobilityAgent initiates a Loca-
tionUpdate procedure when the terminal changes its location. Terminals 
and nodes initiate a TerminalDiscovery procedure when a communication 
with a terminal is demanded. TerminalDiscovery may be realized in two 
different ways: 

• Nodes and terminals must initiate this procedure before every com-
munication with any other terminal 

• Nodes and terminals may maintain a cache of addresses that they 
use to store recently accessed terminals, and only initiate this proce-
dure when communicating with an unknown terminal 

Figure 3-29 illustrates a general case of terminal mobility. This figure 
includes three main parts to show in logical order a terminal mobility sce-
nario: 

− Part (1): access phase (Terminal at domain1); 
− Part (2): moving phase (moving Terminal from domain1 to do-

main2), MobilityAgent ensures that MobilitManager is updated on 
this movement. Meanwhile, when the terminal reaches the so-
called out-of-coverage area, it is inaccessible; 

− Part (3): access phase (Terminal at domain2). 
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Figure 3-29 Illustration of the terminal mobility 

In parts (1) and (3), requests from other nodes addressed to the termi-
nal should use a TerminalDiscovery procedure, which is executed through 
the corresponding MobilityManager in the domain. Domain specific set of 
information and requirements might be used to control the privileges, ac-
cess rights, roaming, etc. of users and terminals. For seek of generality, 
we don’t consider these requirements in the terminal mobility procedures. 

Figure 3-30 illustrates a sequence diagram for the terminal mobility. 

 
Figure 3-30 Sequence diagram for a terminal move 

A node (N), a terminal (T represented by its mobility agent Mobil-
ityAgent_T), and locations (L1 and L2) in this sequence diagram are 
shown as an illustration of a general terminal move within one domain. 
The node is used to communicate with the moving terminal. Mobil-
ityAgent_T updates the mobility manager about the terminal movement to 
the new location L2 (using the invocation request locationUpdate (termi-
nal, location)). N gets the location from the mobility manager by request-
ing a terminal discovery procedure (using the invocation request termi-
nalDiscovery (terminal)). 
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3.5.3 Terminal mobility management design rules 
Terminal mobility has been dealt with to a great extent by many mobile 
systems, e.g. mobile telephony systems. Issues such as mobile unit identi-
fication, user subscription, network handover and roaming are few exam-
ples of the issues that were deeply covered. We only focus on the issues 
of terminal mobility that implicate and affect personal and role-figure 
mobility types. 

In this subsection we give design rules to show the overall behaviour 
of MobilityManager and MobilityAgent with regard to terminal mobility. 
These design rules, TD1-TD7, complement the requirement rules for ter-
minal mobility, presented in the terminology framework. We only imple-
mented few of these rules that were adequate to experiment with the func-
tionality of terminal mobility. The other design rules have been encoun-
tered during the implementation as alternatives to our implementation. 

For the terminal mobility management we limit our discussion to the 
following set of design rules. Options for terminal location information 
handling in the mobility agent are given in TD1 and TD2 (which are op-
tions of the requirement rule TR5), and options for terminal location in-
formation handling in the mobility manager are given in TD3 and TD4 
(which are options of the requirement rule TR6). TD5 and TD6 specify 
options regarding the update of terminal locations. TD7 give an option for 
handling user terminals in visitor domains. 

TD1. The mobility agent MAY send the information location updates at 
regular intervals.  

TD2. The mobility agent MAY send the information location updates 
whenever the location changes. 

TD3. The mobility manager MAY maintain the information on terminals 
identifications and their locations locally in the node where it exe-
cutes. 

TD4. The mobility manager MAY maintain the information on terminals 
identifications and their locations locally in a central database. 

TD5. A node or a terminal MAY always ask for the location of a terminal 
by sending a terminal discovery request to the mobility manager. 

TD6. A node or a terminal MAY store locations of terminals and access 
these terminals directly, and only sends a terminal discovery request if 
no information on the location of a terminal is stored. 

TD7. A terminal MAY be granted access to services when entering a visi-
tor domain (if the visitor domain permits visitor terminals and if the 
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visitor domain authorizes this terminal to access services). 

Regarding our proposed solution for terminal mobility management we 
have applied the following design rules: TD2, TD3, and TD5.  

3.6 Mobility management architecture implementation 

The major concern of the implementation of the mobility management 
architecture was the implementation of the role-figure. The issue at this 
point is the mapping of the role-figure parts into the real programming 
environment. In other words describing in detail how it is possible to: ac-
complish the inter-object communication, represent the registry elements, 
handle the queuing of messages, etc. 

The implementation of the mobility management architecture has been 
based on the TAPAS core platform. It has a support functionality based 
on Java RMI, socket interface, and web services as means for service dis-
covery and service execution. Figure 3-31 presents an illustration of the 
implementation of the mobility management architecture. 

 
Figure 3-31 An illustration of the mobility management architecture implementation 

Figure 3-31 shows a TAPAS domain, with nodes, terminals, data-
bases, users, supervisory objects, and role-figures. The director controls 
the user session base and the user profile base. The director can have 
connections to other directors in other domains. The play repository and 
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the TAPAS support system are available for downloading from a web 
server. 

To experiment with the personal mobility, a platform for personal mo-
bility was developed. In the implementation of the management function-
ality for personal mobility we implemented the following: LoginAgent, 
UserAgent, and VisitorAgent. Also we have implemented the databases 
UserSessionBase and UserProfileBase. This management functionality 
implemented the mobility management procedures for the user mobility 
using the following design rules from the user mobility management: 
UD3, UD4, UD5, and UD6. Also it implemented the mobility manage-
ment procedures for the user session mobility using the following design 
rules from the user session mobility management: SD2, SD4, SD5, and 
SD6. The main characteristics of this platform have been presented in 
[SL02]. The implementation details of this platform have been worked 
out by [Lil03]. In this platform experiments with moving users and user 
sessions have been conducted in different terminals and domains. 

Another platform for role-figure and terminal mobility has been devel-
oped, which was based on the mobility management procedures and 
mechanisms presented in this chapter. Regarding role-figure mobility, we 
implemented moving role-figures, MobilityManager, and mobility strate-
gies. Terminal mobility has been handled by MobilityManager and Mobil-
ityAgent role-figures. This implementation used the following design 
rules for role-figure mobility: RD1, RD4, and RD7, in addition the options 
(q), (d), (f), (i), (m), (o), (p), and (q) from the design rule RD9 have also 
been implemented. Regarding terminal mobility management we have 
applied the following design rules: TD2, TD3, and TD5. This platform has 
been implemented and demonstrated in both fixed and wireless environ-
ments with a number of mobile applications. These applications have 
been specified in plays each with a set of role-figure specifications. Sev-
eral test cases have been demonstrated. This platform is subject to con-
tinuous improvements, and more applications are being developed based 
on its functionality. The main characteristics of this platform have been 
presented in [Shi03]. Several implementation versions of this platform 
have been developed and experimented, see [Luh03], [Hen04] and 
[Smi04] for the implementation details. 
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CHAPTER 4 
 

4 The Role-figure Model 
 

 

 

4.1 Introduction 

N THIS CHAPTER, an abstract model for the implemented role-figure 
functionality is presented. This model is called the role-figure model. 
This model will be used to reason about the structure and the behaviour 

of role-figures with regard to the role-figure mobility. In Sec. 4.2 five 
modelling techniques relevant to our modelling effort are presented. 
These are general techniques that have been used in the description and 
specification of service systems and communicating systems. 

The role-figure model is discussed in four parts. In Sec. 4.3 we give an 
operational model that shows how role-figures can be implemented. In the 
operational model we informally discuss the structure and the 
implementation of role-figures. In Sec. 4.4  we present the role-figure 
model semantics. These semantics give structural and behavioural semi-
formal semantic rules used to outline the structure and the behaviour of 
role-figures. Based on these semantics we further elaborate on the role-
figure model. In Sec. 4.5 we handle the dynamics of role-figures, and in 
Sec. 4.6 we discuss certain properties of role-figures. These four levels 
will be called the operational model, the semantics, the dynamics and the 
properties of the role-figure model. We conclude this chapter by giving 
an example of our semantics in Sec 4.7. 

4.1.1 Motivation 
The mobility management architecture, have been specified using various 
UML diagrams that have served as the basis for the specification of the 
prototype implementation (some of these diagrams have been presented in 
chapter 3).  The implementation and demonstration of the architecture 

I 



Chapter 4. The Role-figure Model 
 

 

90 

helped gaining knowledge of the applicability and validity of the 
proposed solutions for mobility management. This is a typical research 
process that involves certain extent of prototype implementation. On the 
other hand, a model as a basis for formal understanding and reasoning 
was also needed. There was both a need for a non-ambiguous compact 
specification of the generic parts of the computing architecture, as well as 
a model that could be used as a basis for reasoning about various issues 
related to mobility. Formal approaches can add value to the limited 
analytic power of architectural notations based on non-formal notations 
such as UML. 

Regarding the construction of the role-figure model, two main 
challenges have been encountered: 

The first challenge The role-figure model needs to be programming 
language and implementation platform independent. At the same 
time it should be abstract enough, service oriented, and capable of 
capturing the features and properties of the role-figure mobility. 

The second challenge The formalism that we base our role-figure model 
on needs to be simple to understand, provide various levels of 
abstraction of the system specifications, has been used in similar 
activities, and has a good language and tool support.  

We handle these challenges in this chapter. We construct a role-figure 
model that is platform independent, abstract, and service oriented. We use 
a simple and compact formalism that is capable of handling role-figure 
mobility at different levels of detail. The role-figure model also will be 
the basis for the formal specification, analysis, and validation of role-
figures, which will be presented in Chapter 5. 

4.1.2 Modelling aspects 
Thus far in the thesis, a role-figure has been defined as an actor with a 
specific behaviour that realizes the service-components. As such it is the 
behavioural element of the service system. In the terminology framework 
we sketched a general structure of the role-figure and only outlined its 
parts. Also, the role-figure mobility has been handled based on 
simplifications regarding the role-figure’s behaviour and role-session 
definitions. Both the general structure and the simplified definitions were 
necessary to avoid handling details, and therefore generating exhaustive 
diagrams, e.g. message sequence diagrams. 



4.2. Related work 
 

 

91 

In this chapter we present a concrete description of the role-figure 
structure and behaviour. In the role-figure model we will consider the 
following aspects of role-figures: 

(i) Role-figures are realized by actors. 
(ii) Role-figures can be dynamically created. 
(iii) Role-figures instantiation and execution are dependent on the 

availability of the system capabilities. 
(iv) Role-figures comprise behaviour, which is an extended finite state 

machine. 
(v) Role-figures interact with each other via role-sessions, and role-

figures are connected to each other via interfaces.  
(vi) Role-figures interact with each other via asynchronous messages. 

These messages are the only means to interact with a role-figure 
from the outside. 

(vii) Role-figures comprise methods (well-defined sets of tasks that 
correspond to the actor basic support procedures), which are used 
for managing and controlling the actor object of the role-figure. 

(viii) The main role-figure methods are: 

PlugInActor instantiates role-figures 
PlugOutActor terminates role-figures 
CreateInterface creates interfaces in role-figures 
BehaviourChange changes role-figure behaviour 
CapabilityChange adds or modifies capabilities 
RoleFigureMove changes role-figure locations 

4.2 Related work 

In this section five different modelling approaches will be discussed. 
These approaches reflect four totally different viewpoints. Each one has 
different concepts and goals. These choices are: the Java class semantics, 
the SDL agent semantics, the ODP semantics, the Actor language model, 
and the Rewriting Logic. These choices give a broad picture of modelling 
in terms of design, specification, implementation and realization. We 
conclude this section with a discussion on our choice for the modelling 
approach of the role-figure. 

4.2.1 The Java class semantics 
Role-figures are mapped to software components as means for 
implementing the services. The Java programming language has been 
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used in the implementation for role-figures. Figure 4-1 shows a class 
diagram for the java implementation of a role-figure, which is part of the 
prototype implementation of the TAPAS Computing Architecture 
[AHJ01]. It includes the classes Actor (with two interfaces: ActorInterface 
and ControlInterface), CapabilitySet, and ContextInformation. A role-
figure is implemented as a hierarchy of classes with methods, which can 
execute in a java platform to realize the functionality of a given service. 

 
Figure 4-1 Class diagram of the role-figure implementation in Java 

As a preliminary assumption, we considered building our role-figure 
model based on a framework of semantics for Java. Based on the study 
conducted by Wallace [Wal97], operational semantics of the Java class 
will be presented. Java is a class-based, object-oriented high-level 
programming language. In a java program, actions have the form of 
operations performed on objects, which are instances of user-defined 
classes with named state variables (fields) and procedures (methods) 
[Wal97]. The Java class semantics has a rather lengthy specification; we 
will focus on two main issues that are relevant to role-figures: the state 
specification and the method specification. 

The semantics of a java class can be specified using the Abstract State 
Machine (ASM) [Gur95]. A state S of an ASM M with vocabulary γ 
consists of a nonempty set X, called the super-universe of S, and an 
interpretation of every function name in γ over X. These two parts define 
the state location (l): l = (f, x), where f is an r-ary function name and x is 
an r-tuple of elements of S. An ASM changes states by a state update, 
which is a change in the interpretation of a single function name for a 
given tuple of arguments. The update itself is expressed within the 
definition of S. An update of S is a pair (l, y), where l is a location and y is 
an element of S. This update is equivalent to the pair (current state, next 
state). A transition according to this terminology is a set of terms that 
change variable values. A term can be a variable name, function name, 
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etc. Each change in a state is an apparent change in a variable. An ASM 
performs controlled state updates through transition rules. For a given 
state S, a transition rule can be an update using assignment or conditional 
statements for instance. 

The java method declaration is the other issue we focus on. A method 
declaration consists of a method header and a method body. In general, a 
method has an identifier, a list of parameters, a return type, a list of 
thrown exceptions, and may have certain attributes, e.g. access status and 
static attributes. A method is invoked by an invocation request that 
contains: the invoker, the invoked method identifier, and an argument list. 
When such an invocation is encountered, the execution of the invoker or 
the current method is suspended, while the execution of the invokee 
(invoked method) starts. Before this takes place, information about the 
invoker is recorded: the target object, argument values, and the point to 
which control returns after termination of the invokee. As methods may 
be invoked recursively, a stack of method invocations is maintained, 
whose top element corresponds to the current invocation. 

Using the Java class semantics to model role-figure aspects may be 
advantageous as these semantics give a clear sighting of the role-figure 
java implementation, particularly the programs that will execute them. 
Also, java method semantics can be used to model methods in the role-
figures. We can use the java method requests (with a list of parameters) 
and return type semantics to model the role-figure method request 
invocation and return. We can also apply the java semantics for the stack 
of invocation to model the recursive method invocation of role-figures. 

However, the java class semantics may not be the most appropriate 
choice to model other aspects of the role-figure. The Java class semantics 
is too detailed to be used for this purpose. For instance the behaviour part 
of the role-figures, which is an extended finite state machine 
specification, may be modelled using other semantics. It is also 
emphasized that modelling a role-figure is not intended to be a 
programming language dependent. Our conclusion is that stand-alone java 
semantics does not seem to give a comprehensive solution for the 
semantics of our role-figure model. 

4.2.2 The SDL agent semantics 
Specification and Description Language (SDL) is a standard language for 
specifying and describing systems. It has been developed by ITU in 
several standards. Its major versions that are in use nowadays are SDL-92 
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[ITU93] and SDL-2000 [ITU99]. SDL was envisaged for use in all kinds 
of real-time systems, especially telecommunications. The most important 
property defined by an SDL specification is the behaviour of the system. 
It shows how a system reacts to events in the environment, and 
communicates with it via signals. Pederson stated in [Ped00] that SDL, as 
opposed to UML, has a concrete and complete semantics focusing on the 
object and state machine views of the system. It is this particular view that 
we will focus on. An SDL system consists of agents that are connected by 
channels and gates. Agents can communicate via signals, and request 
other agents to perform procedures. An agent may have both a state 
machine and composite agents. An agent, accordingly, may be a process 
or a block. In [Ped00] a UML conceptual model of the SDL was 
presented (see Figure 4-2.) 

 
Figure 4-2 Class diagram of the SDL concepts [Ped00] 

As SDL is an object-oriented language, an agent type can be the 
specialization of another agent type. All sorts of virtuality constraints, 
redefinition, finalization, and property adding may be applied in SDL to 
provide a powerful object orientation methodology. The state machine of 
an agent, as in Figure 4-2, is a composite state. This means that it has 
states and transitions between these states. The states themselves may be 
composite states as well. State machines in SDL have first-in-first-out 
(FIFO) buffers called the input queue. Signals are stored in these buffers 
and consumed by the state machines in their order of arrival. These 
signals may trigger state transitions. In a transition various actions may 
happen: variables are assigned values, agents are created, signals are sent, 
procedures are called, etc. A state machine is either waiting for a stimulus 
event (input, signal, exception handling, spontaneous event, etc.), or is in 
a transition at any given moment. 
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Procedures in SDL are meant as patterns of behaviour specification 
that can be used by agents as part of their transitions. Procedures have 
signatures defining their calling mechanisms. 

In SDL, agents may have a number of required and implemented 
interfaces. Interfaces define signals (the signals and data an agent may 
send), variables, and remote procedures (procedure signatures an agent 
may use to request remote procedures from other agents), as in Figure 
4-3. 

 
Figure 4-3 The concept of Interface in SDL [Ped00] 

Bræk in [Bræ00] discussed the methodology of using the SDL and 
UML languages in the development process. In [San00] a wide range of 
SDL implementation issues were studied. Among these issues is the ideal 
perception of the SDL of the world surrounding it. Examples of such 
idealism are that state transitions take insignificant time, input queues are 
infinite, and that each state machine is executing in an independent 
processor. Proposals to implement SDL state machines as software 
processes on CPUs was also given. 

It has been very clear at the beginning of the thesis work that SDL-
2000 is a major candidate for modelling role-figures. In particular, the 
behaviour specification and the role-sessions of role-figures may be 
modelled using the SDL-2000 terminology. The extensions to SDL-2000 
in Floch’s thesis [Flo03] may be of a very particular usage in our 
modelling efforts also. Actually, as we will see in the role-figure 
semantics, the behaviour specification of the individual role-figures will 
rely on an extended finite state machine specification, which can adopt 
the SDL agent semantics. However, by the time when the modelling and 
formalization work of this thesis started a tool support for SDL-2000 
lacked. Decision needed to be taken on either using a tool that only 
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supports SDL-96, or search for a formal tool based on other formalism. 
The latter was the choice we took. 

4.2.3 The ODP semantics 
The formal semantics of the computational model of ODP was worked 
out by Najm and Stefani, and presented in [NS95]. Further elaborations 
on this model have been studied by Dutszadeh and Najm in [DN96] and 
[DN97]. Objects in the ODP computational model have states and can 
interact with their environment through operations on interfaces. The 
object interfaces and operations provide an abstract view of the state of 
the object. Objects can have multiple interfaces, so that it is possible to 
have separate views of the object by its cooperating objects. Access to the 
object is only possible through invocations of its advertised operations on 
a designated interface. Interfaces in ODP are strongly typed, which yield 
interface types and subtypes. Essentially, an interface type is the 
specification of the operation signatures available on that interface. These 
signatures define the name of the operations, the number and type of their 
argument parameters, and a set of termination signatures to specify the 
outcome of the operations. Operations are called and executed 
asynchronously. 

A formal interpretation of the ODP computational interface, according 
to [NS95] is shown in Table 4-1. 
Table 4-1 Syntax of ODP interface definition 
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Where m1, .., mn denote operation names with operation signatures, 
Opsig. Operations in ODP as thus are units of interactions between 
objects. There can be two kinds of operations: Interrogation or Int (a two-
way interaction between two objects, invoked by a call request and 
returns a result in the form of termination, or Term), and Announcement 
or Ann (a one-way interaction, which does not return any result to the 
caller). According to this kind of interface type definition, an interface is a 
record of operations that can be invoked on instances of that type. The 



4.2. Related work 
 

 

97 

type associated with an operation name is a function type whose domain 
is the Cartesian product of argument types, and its range is either a Nil for 
announcement or a union of all possible terminations for an interrogation 
operations. To better understand the interface type definition we highlight 
the following example found in [NS95]: 

[ ] [ ]fokNilfactoryNilnokNiloktopdef ::,:,:: →→=α  

This interface type defines two operations op and factory. The 
operation op takes an argument that is a reference to an interface of type t, 
and returns either ok or nok. The operation factory takes no argument and 
returns a reference to an interface of type f.  

The formal operational semantics of the ODP were built based on the 
conditional rewriting logic [Mes92]. Several customization efforts have 
been applied to fit the needs of the ODP terminology, e.g. the interface 
type theory mentioned above.   

Generally speaking, the ODP computational model has several features 
that can be considered when modelling role-figures. Among these features 
are the dynamic creation of object interfaces, the definition of interfaces 
as procedural abstractions, and the distributed operation invocation. Also, 
we can apply the definition for the ODP computational terms in our role-
figure model. The considered computational terms in ODP are either 
distributed computations or computational elements. These computational 
elements are ODP computational objects, invocation requests, or 
responses. These features of the ODP computational model are similar to 
the main aspects of the role-figure, in Sec. 4.1.2. Role-figures can be 
modelled as ODP computational objects and their interactions can be 
modelled as requests and responses. These similarities have convinced us 
to use these ODP semantics as the basis for our model. 

4.2.4 The Actor language model 
Another approach that was studied was the actor language model, by 
Agha, Hewitt and Talcott in [AH88], [Agh90] and [Tal96]. The name 
actor here is coming from the nature of the object as an active entity, 
which takes actions1. Actors have intensions, resources, messages and a 
scheduler. Actors are considered to be independent computational agents 
that interact solely via message passing. An actor can create other actors, 
send messages, and modify its local state. An actor can only affect the 

                                                 
1 This actor term should not be confused with the concept of actor in TAPAS. 
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local state of other actors by sending messages, and it can only send 
messages to its acquaintances − addresses of actors it was given upon 
creation, received in a message, or actors it created itself. The semantic 
framework for the actor language model was defined in an actor rewriting 
theory, RtA, [Tal96]. The rewriting logic was chosen to give the behaviour 
of the actors in the form of rewriting rules. The paper [Tal96] formalized 
the actor language model using rewriting logic, while [DG94] formalized 
the actor language model using linear logic. The equations abstracting the 
states of the actors gave also computational paths, and allowed the 
treatment of the actor computations at many levels of detail. 

An actor rewriting theory is basically a rewriting theory, Rt = (Eth, 
Rules), that consists of an equational theory, Eth = (Signature, Equations) 
over a given set of variables, Var, together with a labelled set of rewriting 
rules, Rules. An actor system is a collection of actors interacting with 
each other and with their environment via asynchronous messages.  The 
behaviour of the individual actors is given by the following Abstract 
Actor Structure (AAS)2:  

Sorts: A, V, S, and oF, with A ⊆ V. 
Relations: End ⊆ A × S × V, Enex ⊆ A × S  
Operations: (some of the operations) 

_  _ : A × V → oF 

Deliv : End → oF 
Ex : Enex → A → oF 
#new : Enex → Nat 

sort definition 
predicates 
operations 

message  

message delivery 

single execution 

created actors 

A is a countable set of actor addresses, V is a set of values that can be 
communicated between actors, and S is a set of actor states. oF is the 
multisets of actors and messages, in which no two actors have the same 
address. Let a range over A, v range over V, and s range over S. End (a, s, 
v) is a predicate that holds if actor a at state s (noted (s)a) is enabled for 
delivery of message v (delivery here stands for the consumption of the 
message). Enex (a, s) is a predicate that holds if actor a at state s (noted 

                                                 
2 This is a shortened specification of the Abstract Actor Structure that is relevant to the 
role-figure model. The detailed specification in [Tal96] handles an actor system compo-
nent to be an encapsulation of actors and messages with only certain actors (the recep-
tionists of the component) to receive messages from outside the component. 
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(s)a) is enabled for execution (execution stands for the evolution from a 
given state to another state). a  v is a message with target a and content 
v. If End (a, s, v) then Deliv (a, s, v) gives an actor with address a in a 
state resulting from delivering the message. Ex ((s)a) specifies the result 
of a single execution step of actor (s)a. #new (s) is the number of new 
actors that will be created by actor (s)a. 

A simple example of an actor system, an actor always at state idle 
enabled for execution but not delivery: 

#new(idle) = 0 and Ex((idle)a)[] = (idle)a 

The actor rewriting theory extends the AAS and defines two layers of 
computations: internal computations, and interaction of an actor system 
with its environment. 

This actor language model has been intensively studied and used by 
many researchers as a framework to model concurrent objects as 
communication interactions between messages and objects, using mainly 
mathematical structures and focusing on the computational semantics. 

We have closely studied this model, together with its formalization 
using the rewriting logic theory. We have also looked at examples of 
actor system applications and experiences, [AH88], [Agh90], [DG94] and 
[Tal96]. This kind of formalism has shown us the applicability and 
advantages of formal methods in actor-based systems. The rewriting rules 
applied in this model have inspired us to use a similar approach in the 
role-figure model. The principles of the actor language model are similar 
to the role-figure concept. However, handling adaptability aspects, such 
as role-figure mobility, using this model does not seem a trivial task. To 
handle these aspects we need to apply certain modifications and 
extensions to this model. 

4.2.5 Rewriting Logic 
The ODP semantics and the actor language theories used rewriting logic 
as a formalization framework for their concepts. In this subsection, we 
briefly present the main elements of the rewriting logic theory, which was 
first introduced by Meseguer in [Mes92]. A rewriting theory R, see 
Appendix II, as was introduced and elaborated in [MM93], is a pair R 

=((Ω, Γ), R) where (Ω, Γ) is an equational specification with signature of 
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operations Ω and set of equational axioms Γ, and R is a set of labelled 
rewriting rules. The equational specification describes the static structure 
of the system, while the dynamic parts of the system are described by 
rules in R. 

According to [MM93], an object, in our case a role-figure, in a given 
state is represented as a term <O : C | a1 : v1 , a2 : v2 , … an : vn >, where 
O is the object’s name, C is its class, the ai’s are the object’s attribute 
identifiers, and the vi’s are the corresponding values. Each rewriting rule 
will have the form: 
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where r is the rule’s label, x~ is a list of variables occurring in the rule, the 
M’s are message expressions, i1,…, ik are different numbers and between 
1,…, m , and C is the rule’s condition. This form suggests that a number 
of objects and messages can participate in a transition in which certain 
objects can change state (those indexed by i1, …, ik) new objects may be 
created, those indexed by (1, …, p), and some new messages may be 
created (the M’s on the right hand side of the rule). Some objects may 
also be removed (those indexed by 1,…, m and do not appear in i1, …, ik). 
If exactly one object and at most one message appear on its left hand side 
then these rules are considered as asynchronous, otherwise they are 
synchronous. 

Rewriting logic is a logic of concurrent change that can naturally deal 
with state and highly nondeterministic computations. It supports very well 
concurrent object oriented computations. Rewriting logic has fundamental 
properties as a logical and semantic framework to specify systems. It does 
so by providing a great deal of expressiveness while maintaining and 
securing a fully abstract and generic description of concurrent systems. In 
this context, the so-called concurrent rewriting logic provides a general 
model of concurrency from which many other models can be obtained by 
specialization. Another advantage of this kind of formalism is that it is 
reflective, i.e. system verification and formal analysis may be expressed 
using the same formal language. This is achieved by regarding the system 
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specification as a first-class entity to be used by the verification process at 
meta-level. The rewriting logic research program has shown a good deal 
of progress and solid results [Mau04]. Using rewriting logic many 
systems were specified and verified formally. In this direction we may list 
the following formalizations efforts: actor languages [Tal96], active 
networks [DMT00], the PLAN algorithms [WMG00] and meta-objects 
and composable distributed services [DMT04]. 

In the rewriting logic, specifying the behaviour of the individual role-
figures as well as the configurations of role-figures can be described using 
rewriting rules. A role-figure in the rewriting logic is considered as a first-
class entity. This level of abstractness and detail is just adequate for us. 

At the same time equations, in the rewriting logic, will abstract the 
states of the role-figures and the states of the role-figure configurations. 
The abstraction of the computational actions, using equations also, will 
allow treating role-figure actions at many levels of detail depending on 
the particular need. 

4.2.6 Others 
Besides these five different modelling approaches we also looked at other 
formal methods as a choice for semantic framework. In the literature one 
can find many formal notations and specification languages of different 
orientation and background. There are also guidelines for selecting and 
comparing formal methods, e.g. [BH95-1] and [BH95-2]. We looked at 
one family of formal methods – process algebras. Process Algebras, such 
as CSP [Hoa85], CCS [Mil89], and π-calculus [MPW92], view any 
system as abstract communicating processes. A system specification that 
is based on process algebra is a representation of the communication 
primitives, the input/output ports, and the communicating pairs of 
processes. The main focus of these algebras is on the sequence of inputs 
and outputs. Process algebras are very powerful and have gained a lot of 
popularity. However, using them to formalize the computing architecture 
and the role-figure model was not our choice. The knowledge of many 
systems (e.g. systems discussed in subsections 4.2.3 and 4.2.4) that are 
similar to TAPAS and have been formalized using rewriting logic 
[Mes92] encouraged us to choose this kind of formalism over process 
algebras. We were also encouraged by the success and popularity of the 
rewriting logic in the recent years, as well as the several research efforts 
and dedicated conferences on its topics. 



Chapter 4. The Role-figure Model 
 

 

102 

4.3 The Operational Model 

Part of the modelling of role-figures is the modelling of their structural 
arrangement. This shows how role-figures can be logically mapped into 
the implementation domain. In this section we give an operational model 
that shows the structural arrangement of role-figures and their 
implementation. The operational model provides an informal discussion 
on the following: behaviour and methods, role-sessions and interfaces, 
and implementation model for role-figures. 

4.3.1 Behaviour and methods 
The behaviour of a role-figure is given by the specification of its role as 
part of an overall service functionality. Role-figures also rely on the 
functionality of the computing architecture. This functionality provides 
support procedures for communication, control, and management. In Sec. 
1.4.2.2 we denoted these procedures as actor basic support procedures. 
The functionality of the computing architecture is implemented as 
methods in the actor objects that will execute the role-figures. These 
methods can be invoked and executed. 

To give an operational model for role-figures we need to handle both 
the behaviour of role-figures and the methods of the computing 
architecture. The behaviour is considered the unit of functionality, so that 
role-figures can change their functionality by changing their behaviour. 
Methods are considered the unit of operation, so that the actor objects of 
the role-figures can execute operational and housekeeping tasks needed 
for the management of the service system. 

The role-figure behaviour may be considered as a special method. It 
defines the functionality of the role-figure as a whole. It is active 
throughout the lifespan of the role-figure. It is an extended finite state 
machine based specification. The behaviour specification includes 
signature and state transition rules. The signature of the behaviour 
specification contains the type definitions, the axioms on these types, and 
the variable definitions. State transitions rules define how the behaviour 
of the role-figure will evolve. 

Methods can handle a variety of tasks. A typical method can return the 
current state of the role-figure. Other methods can achieve initialization, 
synchronization, resetting, connecting, suspending, and destroying role-
figures. For these example methods the following names are usually used: 
init(), synchronize(), reset(), bind(), pause(), and halt(), respectively. The 
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parentheses show that these methods may have formal parameters, i.e. 
values to be passed upon invocation. The send and receive tasks can also 
be realized by methods, e.g. send() and receive(). Upon a method 
invocation, a method is activated and executed. Return result may be sent 
back to the invoker to indicate how the method execution terminates. 

The execution of methods requires higher priority than the execution 
of the behaviour of a role-figure, in terms of queued requests and 
scheduled tasks. This priority however will not be discussed in this thesis. 

4.3.2 Role-sessions and interfaces 
Role-figures interact with each other via role-sessions, and are connected 
to each other via interfaces. Ideally the specification of a role-figure, and 
its current state, is the specification of all its role-sessions and interfaces. 
A role-figure based service system can be described at any time as a set of 
connected role-figures that interact with each other using messages. The 
system evolves when the role-figures consume these messages. In 
TAPAS the interface concept and the role-session concept are related and 
dependent. In Sec. 3.4.2.1 we discussed this dependency, and concluded 
that without appropriate concepts for role-sessions we can only handle the 
creation and recreation of interfaces. In this chapter we focus on the 
specification aspects of interfaces. 

Regarding interfaces, we have seen the concept of ODP interface used 
in [NS95]. We adopt this concept in our role-figure model to constitute 
our interface-based semantics. Using this concept imply that the role-
figures only access the correct methods on the given interfaces. For 
instance, interfaces connecting the director and other role-figures in a 
domain would include all the actor basic support procedures for control 
and management. On the other hand, an interface connecting two role-
figures in two domains may prohibit the plug out or the behaviour change 
functionality between these two role-figures. 

Another interesting interface concept was presented by Carrez, 
Fanatechi, and Najm in [CFN03], where they introduced an interface type 
theory. This interface type theory has been used as the basis for 
behavioural contracts of an assembly of components (configuration of 
components). The interface compatibility rules, defined as part of the 
contracts, guarantee certain safety and liveness properties of an assembly 
of components. Some of the concepts of this interface type theory may be 
used in our role-figure model semantics to guarantee the compatibility 
between interfaces, in particular the interfaces of a moving role-figure. 
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The incorporation of such interface type theory into our semantics will 
not be handled in this thesis. 

4.3.3 Implementation model for role-figures 
We need a general implementation model for role-figures to logically map 
them into the implementation domain. Implementation models can vary a 
lot based on the used computing architecture, communication 
infrastructure, etc. We focus on giving an implementation model that is 
general enough to be used as the basis for our role-figure semantics and 
dynamics. This implementation model should handle at least the 
following issues: the interpretation of the role-figure actions, the 
communication between role-figures, and the role-figure operations that 
involve the operating memory. The operating memory is used to 
instantiate role-figures, and to provide the data space for the role-figure 
state information. Figure 4-4 sketches an implementation model for role-
figures. An interpreter process activates role-figures and passes on 
messages to them. It is also responsible for scheduling their actions. A 
role-figure executes based on its behaviour definition. The methods 
provide the means for control, management, and maintenance by the 
architecture. The data space is used to store all the data required in the 
operation of the role-figure, e.g. variables, capability information, and 
interface information. The role-figure behaviour, methods, and data space 
are considered to exist in the operating memory. A role-figure interacts 
with the rest of the architecture via asynchronous messages received from 
and sent to the message delivery system, which is an abstraction of the 
underlying communication system. 

 
Figure 4-4 Implementation model for role-figures 
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To illustrate the operational principles of this implementation model 
we show how role-figures execute in a TAPAS domain. Figure 4-5 shows 
a system that executes two role-figures, a and b, in a domain of one node, 
node1. The system as a whole is administered by a director dir. There are 
also two software modules execute in the node. The Node Execution 
Support (NES) facilitates the communication between nodes, while the 
Actor Environment Execution Module (AEEM) can be regarded as the 
interpreter process of role-figures. An execution run of role-figure a is 
shown as a chain of actions running from top to bottom. These actions 
can be receiving a message, accessing the data space, invoking a method, 
behaviour interaction, or sending a message. 

This role-figure gets messages from a queue, where incoming 
messages are queued. It sends messages to a message delivery system, 
where outgoing messages can be sent. The queue is associated with 
AEEM, while the message delivery system is associated with NES. In 
Figure 4-5 interfaces are shown as thick lines around role-figures, e.g. 
interface between role-figure a and dir. Interfaces connecting two role-
figures are connected by a line. 

 
Figure 4-5 The implementation of a role-figure system 

The operational model will provide the basis for the semantics and 
dynamics of the role-figure model. 

4.4 The Role-figure Model Semantics 

This section presents the semantics of the role-figure model, which are 
semi-formal semantic rules outlining the structure and the behaviour of 
role-figures. These semantic rules are inspired by the semantics of the 
ODP computational model presented in [NS95]. The semantic rules 
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outlining the behaviour of role-figures are rewriting rules that are based 
on the rewriting logic theory presented in [Mes92] and [MM93]. 

The semantics will be divided into four subsections: role-figure 
components, interface definition, behaviour definition, and behaviour 
evolution. These subsections will use the following notations: 

 a, b, f, g, h denote role-figure names; 
 RoleFigures denotes the set of all existing role-figures in a given 

system; 
 A,A′,…  B,B′,… denote role-figures a and b as they evolve, 

respectively; 
 i, j denote interface names; 
 α, α° denote interface types; 

 〈w1=ν1,w2=ν2〉  denotes the record containing two fields named w1 

and w2 and having the values ν1 and ν2, 
respectively; 

 r.w1  stands for the value of the w1 field in record r; 
 =def  stands for equality by definition; 
 || denotes the asynchronous parallel operator; 
   denotes an infix insert operator; 

 
n

i 1=
  denotes applying the operator  n times 

  denotes an infix remove operator. 

The operators ||,  and  are commutative, associative, and have ∅ as 

a neutral element. The insert operator “a b” only executes if its left-hand 
side argument, a, is not in its right-hand side argument, b. Otherwise it 
does nothing. The remove operator “a b” only executes if its left-hand 
side argument, a, is in its right-hand side argument, b. Otherwise it does 
nothing. 

4.4.1 Role-figure components 
To develop the semantics for the role-figure model we need to define the 
syntax to denote the various elements of a set of cooperating role-figures, 
or a Role-Figure Configuration (RFC). Inspired by the semantics of the 
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ODP computational terms, we define an RFC as a set of asynchronously 
interacting role-figures. RFC is either an Empty computation ∅, Role-
Figure Configuration Element (RFCE), or parallel RFC-s, as in Table 4-2. 
Table 4-2 Main syntax components of the role-figure model. 

RetSigReqMSG
MetQueCapBehIntRF

MSGRFRFCE
RFCRFCRFCERFC

||::
,,,,::

|::
||||Ø::

=

======

=
=

µωπβγ
 

Where: 

 RFC  denotes a role-figure configuration that may be empty, 
RFCE, or parallel RFC-s. 

 RFCE denotes an RFC Element that may be a role-figure, RF, or 
a message, MSG. 

 RF denotes a role-figure, and is defined by: Int (set of 
interfaces), Beh (behaviour), Cap (set of capabilities), Que 
(queue of messages), and Met (set of executing methods). 

 MSG denotes a message that may exist in the configuration, 
which can be a method invocation request Req, 
communicating signal between role-figures Sig, or a 
method return result Ret. 

A role-figure a is defined by the instantaneous state and structure of its 
parts, i.e. Int, Beh, Cap, Que, and Met. These parts may evolve and 
change as the role-figure consumes messages from the role-figure 
configuration. We use the following notation to represent the role-figure 
evolution of role-figure a:  

A = < µωπβγ ===== MetQueCapBehInta ,,,,|RoleFigure: > 

where A.Int, A.Beh, A.Cap, A.Que, and A.Met are its interfaces, 
behaviour, capabilities, queue of messages, and executing methods, 
respectively. This notation is used by rewriting logic to represent objects. 
The class definition is given by (a:RoleFigure), while the attributes are 
defined by Int, Beh, Cap, Que, and Met (see Sec. 4.2.5). We use role-
figure names to distinguish different role-figures, e.g. role-figure a 
evolves through A,A′,… while role-figure b evolves through B,B′,… As 
a simplification, we will omit the class definition in the rest of the chapter 
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and assume A,A′,… always stand for role-figure a (similarly, B,B′,… 
always stand for role-figure b, etc.). 

Met in the role-figure definition denote the executing methods, which 
execute in the operating memory. In our semantics we only consider the 
executing methods that have invoked other methods and are waiting for 
return values from other role-figures. The methods that are included in 
Met constitute the active tasks of a moving role-figure that we discussed 
throughout chapter 3. 

In Table 4-3 the definitions of the role-figure are given. 
Table 4-3 The definitions of the role-figure. 

Interface 

Behaviour 

Capabilities 

Queue 

Method 

Invocation 
request 

Signal 

Return 

Argument list 

[ ] [ ]

[ ] [ ]
[ ] [ ]
[ ] [ ]

):,,:(::~
~,:,,:::

~,,,:::

~,,:
,:,,:

::

:|:|Ø::
||Ø::

:|:|Ø::
)4.4.3Sec.indefined(

:|:|Ø::

11 nn tptpp
pargmnnrefasrcjtarRet

pargsignameasrcjtarSig

pargrretmnnref
mnmmetasrcjtar

Req

mnmmnm
qq

cnccnc

jj

=

=====

=====

===
===

=

=
=
=

=

α

α

α
µµµ

ωωω
πππ

β
αγαγγ

 

The intuitive interpretation of these constructs is as follows: 

 γ denotes the interface part definition, which takes the form of a 
list of interface references tagged by their types (Sec. 4.4.2) 
An interface j of type α, denoted [j: α], may: 

− be added to this list by the “ ” operator:         γ [j: α] 

− be removed form this list by the “ ” operator: γ [j: α] 
 β denotes the behaviour part definition. This definition has a 

very distinctive structure, which will be handled in detail later. 
 π denotes the capability part definition, which takes the form of 

a list of capability identifiers, denoted c, tagged by 
corresponding capability name, denoted cn (capability name 
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stands for the class or type of a capability, while the capability 
identifier is an instance or value of that class). Capabilities 
may be inserted to or removed from π using the insert operator 
“ ” and the remove operator “ ”, respectively. 

 ω denotes the queue part definition, which takes the form of a list 
of messages. Messages can be request messages, signal 
messages, or return messages, and are denoted q. Messages 
may be inserted to or removed from ω using the insert operator 
“ ” and the remove operator “ ”, respectively. 

 µ denotes the method part. This part specifies the executing 
methods, and takes the form of a list of method identifiers, m, 
tagged by the name of the corresponding method name, e.g. 
mn (Methods have names, as well as method identifiers. These 
identifiers are used to identify the running instances of these 
methods. Several instances of the same method may be 
executed simultaneously and might be waiting for return 
results). Methods may be inserted to or removed from µ using 
the insert operator “ ” and the remove operator “ ”, 
respectively. 

 Req  denotes a method invocation request that is a record containing 
the following fields: target interface tar (an interface to the 
receiving role-figure), source role-figure src (the name of the 
sending role-figure), invoked method met, invoking method 
ref, return type ret (the return type of the invoking method), 
and argument list arg (may be used to pass the parameters to 
the invoked method). 

 Sig  denotes a signal that is a record containing the following 
fields: target interface tar, source role-figure src, signal name 
name, and argument list arg. 

 Ret  denotes a return that contains the following fields: target 
interface tar, source role-figure src, invoking method ref, and 
argument list arg. 

 p~  denotes an argument list of parameters p1, …, pn with types t1, 
…, tn, respectively. 

In the syntax and the definitions of the role-figure model we have 
applied the following changes and extensions to the ODP semantics 
[NS95]: 
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 The ODP interface definition has been extended with signals, which 
can be considered as announcement methods (described in Sec. 4.4.2). 

 We have added capabilities to the definition of the role-figure object. 
 We use names to identify capability, message, and method in a role-

figure definition. 

4.4.2 Interface definition 
The interface definition is based on the type language and typing rules 
used in [NS95], especially the subtyping relation . [NS95] gives a list of 

inference rules to define a type theory that has a subtyping relation. These 
inference rules define type equality rules and subtyping rules. This type 
definition and type relations will be adopted in our role-figure model with 
minor modifications. 

An interface type in the role-figure model will include signal definition 
and method signature definition, i.e. a record of several fields defining 
method signatures and signals accessible at this interface. In the role-
figure model we will use the notation: (α  β), which means α is a 

subtype of β, and implies that the method and signal definitions of α are 
included in β. 

An interface connects a role-figure to another role-figure. There are 
two sets of methods in an interface definition: the offered methods and the 
required methods. To understand these sets of methods assume α is an 
interface in role-figure a, and that α connects a to role-figure b. The 
offered methods are the methods offered by a and can be invoked by b. 
The required methods are the methods required by a that b can perform. 
In our semantics, all role-figures offer the same set of methods, as these 
methods are the implementation of the support procedures that must exist 
in every actor object. Accordingly the two sets of methods in every 
interface type are similar.  

Similarly, there are two sets of signals in an interface definition: the 
offered signals (signals that may be received) and the required signals 
(signals that may be sent). These sets of signals however can be different, 
as role-figures can send and receive different sets of signals with regard to 
different role-figures. In our semantics, as well as in the formal analysis 
we will not handle in detail behaviour and signal interactions. The 
example service functionality that we will experiment with will use few 
role-figures and few signals. For simplicity, we assume the two sets of 
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signals in an interface definition are similar, i.e. a role-figure via this 
interface can send and receive the same set signals.  

The implications of this simplification will not affect the correctness of 
our semantics and analysis regarding the mobility management. However, 
if the semantics will be aimed for analysing and validating the service 
functionality this simplification must be reconsidered. We believe that 
considering a more accurate subtype will only involve minor changes in 
the handling of role-figure communications and properties of role-figure 
configurations, which will be handled later in this chapter. Table 4-4 
gives the syntax for interface definition, or α, which can be regarded as 
another interpretation of Table 4-1. 

Table 4-4. Syntax of Interface definition 

):,,:(::~
~|::

::
,,,:,:::

11

11

nn

kn

tptpp
pNilargument

returnargumentmethsig
sigsigmethsigmmethsigm

=
=

→=

=α

 

Where: 

 m1, .., mn  denote method names; 
 methsig  denotes method signature, which specifies an argument 

list argument, which might be a list p~  (of parameters 
p1,…,pn of types t1,…,tn) or empty, and a return type 
return; 

 sig1, .., sigk  denote signals with possible arguments, similar to 
those defined in the signal definition Sig, in Sec. 4.4.1, 
excluding the source and the target fields. 

4.4.3 Behaviour definition 
We have seen in Sec. 4.2.2 how the SDL semantics handle the behaviour 
definition in the SDL agent semantics. Also, in the TAPAS architecture 
an XML-based Extended Finite State Machine (EFSM) model has been 
both specified and implemented in [JA03]. In [SJS04] this EFSM has 
been used in the Service Management Architecture. In the SDL and the 
TAPAS approaches the behaviour definition is based on the operational 
semantics of the state machine model. During the execution of such state 
machine model the following information are required: current state 
information, state transition rules, triggering events at every state, tasks 
performed during state transitions (tasks are performed on the defined 
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variable by the specification), signals sent during state transitions, and the 
corresponding next states in every state transition. In our role-figure 
model we handle the behaviour definition in a rather abstract way, and 
allow for different ways to specify the role-figure behaviour. 

A behaviour definition β, as outlined in Table 4-5, has the following 
structure: a reference to a behaviour specification B (that contains the 
state transition rules including triggering events, tasks performed, signals 
sent, and next states), current state St, set of input signals Sg (trigger 
events for state transition at the current state), set of successor states Sc 
(the next states after the firing of the input signals), and set of stable states 
Ss (states where behaviour change is permitted). The behaviour 
specification B can be specified in an external module that is imported 
into the role-figure semantics. This importation of behaviour specification 
is the key point to handle behaviour change and role-figure mobility by 
our semantics. As a role-figure behaviour evolves and transits from one 
state to another all the St, Sg, Sc, and Ss change and reflect the status of 
the role-figure behaviour. For example, if the current state of a role-figure 
behaviour changes then both the set of input signals Sg and the set of 
successor states Sc change. Also, if a new behaviour specification B is 
imported then the current state is set to the initial state of this 
specification, as well as changing the set of stable states to the one 
specified in this specification. This level of detail is adequate to reason 
about the behaviour change and role-figure mobility management. 

Table 4-5. Syntax of Behaviour definition 

( )
( )f

f

sigsigg

statestates
sssSssscScgsgSgstatestStbehaviourbB

,,::~
,::~

~:,~:,~:,:,:::

1

1

=

=

======β

 

Where: 

 B   EFSM behaviour specification  
 s~   Set of state names state1,…,statef 
 g~   Set of signal names sig1,…,sigf 

4.4.4 Behaviour evolution 
The behaviour of a role-figure is specified by a set of rewriting rules, each 
of which specifies a state transition. A general rewriting rule, indicated by 
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♣, will be used as a basis for this set of rewriting rules. This general 
rewriting rule specifies the state transitions of role-figure a: 

♣        l:  A || T || Q || M → A′ || Σ || T ′ || Q′ || M′ if  C  

In this rule l is used as a label. A and A′ stand for role-figure a that 

evolves from A to A′. Σ is the role-figures created in this rewriting rule, 

e.g. Σ can be B meaning that role-figure b was created. T and T ′ are 

return sets, Q and Q′ are signal sets, M and M′ are request sets, and C 
is a condition. 

This general rewriting rule could be used to handle the transitions of 
any role-figure configuration. As such, a number of role-figures and 
messages (signals, requests and returns) can come together and participate 
in a transition in which some new role-figures and new messages may be 
created. 

In this general rewriting rule, A, T , Q, M, A′, Σ, T ′, Q′, and M′ 
should satisfy the following set of conditions (we will call these 
conditions the ♣|conditions): 

(i) T ∩ T ′ = Q ∩ Q′ = M ∩ M′ = Ø  

returns, signals, and requests on the left hand side of the 
rewriting rules are all consumed in a transition. 

(ii) A ∉ Σ 

Role-figures are unique throughout a rewriting rule, as well as 
globally if explicitly defined in an additional rule. 

(iii) Assume: 
s = · pargrretmnnrefmnmmetasrcitar ~,,:,:,,: ====== α Ò is a 

request sent by role-figure a (to apply ♣ assume: a evolves from A 

to A′ after the sending, and s ∈ M′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b 
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 The signature of the invoked method m is included in the 
definition of α. 

 If the invoked method m has the following method signature 
(methsigm ::= argumentm → returnm)  
THEN     (r =def returnm)   AND    ( p~  =def argumentm)   

 n ∈ A′.Met 
(Sending a method invocation request means to suspend the 
invoking method until a return is received at the sending role-
figure) 

A method invocation request must be sent to an existing role-
figure. Moreover, it must refer to an interface i that has the invoked 
method as part of its interface definition. This requires a matching in 
the argument list and return type. The matching is performed at the 
invoker’s interface. The request will also carry a reference to the 
invoker (src and ref stand for source role-figure and method, 
respectively). 

Assume now that role-figure b receives this request in another 
rewriting rule (to apply ♣ assume: b evolves from B to B′ after the 

receiving, and s ∈ M) then the following hold: 

 ∃ [j : α°], j∈B.Int and α α°  

 s ∈ B′.Que 

 If the invoked method m has the following method signature 
(methsigm ::= argumentm → returnm)  
THEN     (r =def returnm)   AND    ( p~  =def argumentm)   

Receiving a method invocation request means to put this request 
into the queue of the role-figure (using the operation B.Que s). 
Moreover, it should refer to an interface j that has the invoked 
method as part of its interface definition. This requires a matching in 
the argument list and return type at the invokee’s interface. 

(iv) Assume: 
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s = · pargsignameasrcitar ~,,,: ==== α Ò is a signal sent by role-
figure a (to apply ♣ assume: a evolves from A to A′ after the 

sending, and s ∈ Q′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b  
 The signal name and its arguments are included in the definition 
of α. 

A signal must be sent to an existing role-figure. Moreover, it 
must refer to an interface i that have the signal name and its 
arguments as part of its interface definition. The matching is 
performed at the invoker’s interface. Also, when sending a signal 
we match the interfaces of the role-figures. 

Assume now that role-figure b receives this signal in another rewriting 
rule (to apply ♣ assume: b evolves from B to B′ after the receiving, 

and s ∈ Q) then the following hold: 

 ∃ [j : α°], j∈B.Int and α° α  

 s ∈ B′.Que 

When receiving a signal we match the interfaces of the role-
figures. Receiving a signal means putting it in the role-figure queue 
(using the operation B.Que s). 

(v) Assume: 

s = · pargmnnrefasrcitar ~,:,,: ==== α Ò is a return sent by role-
figure a as a response to an invocation request received from 
another role-figure (to apply ♣ assume: a evolves from A to A′ after 

the sending, and s ∈ T′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b  
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When sending a return we only match the interfaces of the role-
figures. The arguments of the return have already been matched by 
the method invocation request semantics in condition (iii). 

Assume now that role-figure b receives this return in another rewriting 
rule (to apply ♣ assume: b evolves from B to B′ after the receiving, 

and s ∈ T) then the following hold: 

 ∃ [j : α°], j∈B.Int and α° α  

 n ∈B.Met 

 s ∈ B′.Que 
When receiving a return we match the interfaces of the role-

figures. Also, when receiving a return it must be checked against the 
list of executing methods that have been suspended and are waiting 
for a return. Receiving a return means putting it in the role-figure 
queue (using the operation B.Que s). 

(vi) A request, signal, or return may be consumed from the queue of a 
role-figure: 

A.Que s  

Consuming a request, signal, or return means to remove them 
from the queue of the role-figure. 

(vii) In the rewriting rule ♣: 
− Either (A.Int⊆A′.Int), (A.Int =A′.Int), or (A′.Int ⊆A.Int)  

hold in one rewriting transition. 
− Either (A.Met⊆A′.Met), (A.Met =A′.Met), or (A′.Met ⊆A.Met) 

hold in one rewriting transition. 
− Either (A.Que⊆A′.Que), (A.Que=A′.Que), or (A′.Que⊆A.Que) 

hold in one rewriting transition. 
− Either (A.Cap⊆A′.Cap), (A.Cap=A′.Cap), or (A′.Cap⊆A.Cap) 

hold in one rewriting transition. 

A role-figure’s set of interfaces may increase (when the role-
figure creates another role-figure, or creates an interface to existing 
role-figure), remain the same (e.g. when the role-figure sends signal 



4.4. The Role-figure Model Semantics 
 

 

117 

or request), or decrease (when the role-figure destroys another role-
figure). A role-figure’s list of running methods may increase (when 
the role-figure sends an invocation request), remain the same, or 
decrease (when the role-figure receives a return result). A role-
figure’s queue may increase (when the role-figure receives a 
message), remain the same, or decrease (when it consumes a 
message). Similarly, a role-figure’s capabilities may change (by 
adding or removing capabilities) or remain the same. 

(viii) In the rewriting rule ♣, if BehaviourChange (discussed later) is not 
applied then the following hold: 

 Either (A.Beh.St = A′.Beh.St)  or   (A′.Beh.St ∈A.Beh.Sc) 
A role-figure may remain at the same state or carry out a state 

transition, in which its state will be one of the successor states. 

(ix) If ℵ = RoleFigures ∪ ∑    and      ℑ = ∪
ℵ∈A

Int.A   

then     

 ∀i:α, i ∈ ℑ     and     ∀a, a ∈ ℵ 

 ∀r:Req, r.tar ∈ ℑ    and     r.src ∈ ℵ 

 ∀s:Sig, s.tar ∈ ℑ    and     s.src ∈ ℵ 

 ∀r:Ret, r.tar ∈ ℑ    and     r.src ∈ ℵ 

At any instance of our rewriting rules, a reference to a role-figure 
(e.g. a) or a reference to an interface (e.g. i) in any Req, Sig or Ret 
must be to an existing role-figure and to a defined interface. 

(x) ∀B ∈ ∑, then  B.Met = Ø  and B.Que = Ø  

Newly created role-figures will have neither suspended methods, 
nor messages in their queues. Behaviour, interfaces, and capabilities 
may be specified as part of the creation process, or the plug in 
phase. 

The conditions (i) – (x) will constitute the semantic basis for the 
dynamics in the following section. 
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4.5 The Role-figure Model Dynamics 

This section provides a discussion on various scenarios of the proposed 
role-figure model. The rewriting rules and their conditions throughout 
subsections 4.5.1 - 4.5.3 will be denoted: Dynamics| rules, conditions. 

These rewriting rules will handle the following: behaviour evolution 
(state transitions), communications (sending, receiving, and consuming of 
messages), and adaptability functionality (plug in, plug out, create 
interface, behaviour change, capability change, and role-figure move). 
These rewriting rules will apply conditions (i)-(x) from the previous 
section, and will further strengthen these conditions – references to these 
conditions will be explicitly included in the rules. 

4.5.1 Behaviour evolution 
A role-figure may perform a spontaneous transition. In our model we 
consider two such transitions, i.e. one that occurs due to an internal 
action, and another that takes place as a result of an interaction with other 
role-figures. In this section we consider the first one, while the latter will 
be dealt with in sections 4.5.2. A spontaneous transition, in this regard, 
may be expressed by the following instance of our general rewriting rule: 

A → A′ 

Applying the conditions (i)-(x) gives: 

 (vii) A.Cap⊆A′.Cap  

 (vii) A.Int =A′.Int, A.Que =A′.Que, A.Met =A′.Met 

  (viii) ∃s:state, s∈{A.Beh.Sc ∪ A.Beh.St } so that A′.Beh.St = s 
These conditions suggest that at a spontaneous transition, a role-figure 

may change its capability definition as well as perform a state transition. 
However, interface, queue, and method definitions remain unchanged. 

4.5.2 Communications 
In this subsection we handle the communications of role-figures, i.e. 
sending, receiving, and consuming of messages. The conditions (iii), (iv), 
(v), and (vi) we presented earlier gave the semantics of sending and 
receiving requests, sending and receiving signals, sending and receiving 
returns, and consuming messages, respectively. Receiving meant to put 
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the message (request, signal or response) into the role-figure’s queue (e.g. 
A.Que s). Consuming a message meant to remove it from the queue (e.g. 

A.Que s). The distinction between receiving and consuming messages is 
crucial in the handling of the content of the queue of a moving role-figure. 
In our role-figure mobility management in chapter 3 we did not handle the 
queue content. As a simplification we will implicitly consider the 
consuming of a message as a part of receiving it in our dynamics, 
meaning that the message will be put into the queue and consumed 
immediately. To extend our dynamics and handle the queue content in the 
role-figure mobility this simplification must be reconsidered. 

Also, in the remaining part of the dynamics the equality of the role-
figure definition parts on the two sides of the rewriting rule will be 
assumed if not otherwise mentioned, i.e. the parts of A and A′ are 
unchanged in a rewriting rule if not explicitly changed. 

Sending and receiving requests 
A role-figure (invoker) may invoke a method in another role-figure 
through sending a method invocation request via the appropriate interface. 
The invoking method will be suspended and a reference is added to the 
role-figure’s method definition. Requests, denoted req, may be sent and 
received by the following rewriting rules: 

Sending: A → A′ || req 

Receiving: A || req → A′ 

Applying the conditions (i)-(x) gives: 

 (iii) Sending: A′.Met = A.Met  req.ref  
 (vii) Sending: 
A.Int=A′.Int,A.Beh=A′.Beh,A.Cap=A′.Cap, A.Que=A′.Que 

 (vi) Receiving: A′.Que = A.Que  req  
 (vii) Receiving: 
A.Int=A′.Int,A.Beh=A′.Beh,A.Cap=A′.Cap,A.Met=A′.Met 

Sending and receiving signals 
Similar to the sending and receiving of requests, signals, denoted sig, may 
be sent and received by the following rewriting rules: 
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Sending: A → A′ || sig 

Receiving: A || sig → A′ 

Applying the conditions (i)-(x) gives: 

 (vi) Receiving: A′.Que = A.Que  sig  

When a signal is received and (sig ∈ A.Beh.Sg) it triggers a state 
transition: 
 (viii) Receiving: A′.Beh.St ≠ A.Beh.St AND A′.Beh.St ∈A.Beh.Sc 

 

Sending and receiving returns 
Returns, denoted ret, may be sent and received by the following rewriting 
rules: 

Sending: A → A′ || ret 

Receiving: A || ret → A′ 

 (vi) Receiving: A′.Que = A.Que  ret  

 (v) Receiving: if ret.ref ∈ A.Met and ret.ref ∈R={ ∪
Quer

refr
.

.
A∈

| r:Ret } 

then A′.Met = A.Met  ret.ref 

The second condition implies that if a return reference at a queue 
meets the terms of a suspended method return then this method will be 
removed from Met definition part. 

4.5.3 Adaptability functionality 
In Table 4-6 we define method invocation requests for 6 particular methods 
for the support functionality. 
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Table 4-6. Syntax of method invocation requests 
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Where: 

 mr management request 
 pi PlugInActor request with role-figure name name, location 

loc, behaviour beh, and capability set cap 
 po PlugOutActor request to a role-figure name 
 ci CreateInterface request with interfaces j1,…,jn 
 bc BehaviourChange request with new behaviour beh, and 

current state cSt 
 cc CapabilityChange request with capabilities p1,…,pn 
 mo RoleFigureMove request to new location loc 

We will refer to these arguments by using the record syntax, e.g. the 
name of the role-figure in the plug in request is: pi.arg.name. 

Role-figure Plug in 
This method plugs in a role-figure and gives its location, behaviour, and 
capabilities. It is requested by a role-figure to plug in another role-figure. 
To simplify this request we will hide the complex process of director play 
management, capability allocation, configuration management, etc. and 
describe it by a single rewriting rule. In this rule, we have a pi request 
sent by role-figure a at A, which will evolve to A′. On the right hand 
side, we create a role-figure b to become B: 

A || pi → A′ || B 

Later in the formal specification in chapter 5 we will show the director 
can control this request, as well as the capability management. Applying 
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the conditions (i)-(x), as well as using the definitions of the invocation 
requests in Table 4-6, gives: 

 (ii) B ∈ Σ 

 (vii) A.Int ⊆ A′.Int 
(add an interface in a that is connected to b) 

 B.Beh = pi.arg.beh 
 pi.arg.name  =def  b 
 pi.arg.loc  =def  location (b) 

(assume b’s location is given by location (b)) 
 pi.arg.cap ⊆ B.Cap 
 (x) B.Met = Ø  and B.Que = Ø  

These conditions illustrate that a role-figure that creates another one 
will add an interface to its interface definition. The created role-figure 
will get its behaviour definition from the beh argument in the pi request. 
The created role-figure’s name and location are given in the pi request 
arguments name and loc, respectively. It also adds the cap argument into 
its capability definition. Condition (x) holds for Que and Met parts of the 
newly created role-figure. Based on the arguments of the pi request many 
different conditions could be applied, e.g. a PlugIn request without 
interface arguments leaves the interface definition unchanged. 

Role-figure Plug out 
A role-figure may initiate a request to plug out another role-figure by the 
following rewriting rule. The following rewriting rule implies that the po 
request has been arrived at a role-figure a that is at A: 

A || po → Ø  

A role-figure, which receives and consumes this request, disappears 
and its instance is terminated so all its parts become Ø . Removing 
interfaces to the terminated role-figure should be handled at the connected 
role-figures. The following rewriting rule, on its left hand side, implies 
that a connected role-figure b will evolve from B to B′: 

B → B′ 

Such that by applying the conditions (i)-(x) it gives: 
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 (vii) B′.Int ⊆ B.Int  
(remove an interface in b that is connected to a) 

Create Interface 
This is a request to ask a role-figure to create interface(s) defined in the ci 
argument(s). The following rewriting rule implies that the ci request will 
be consumed by a role-figure a that is at A and will evolve to A′: 

A || ci → A′ 

 A′.Int = A.Int i

n

i
jci.

1=
 

This adds all the interfaces in the ci request to the role-figure’s 
interface definition, Int. Interface creation between two role-figures 
means that they will agree on the terms and conditions of their future 
interactions. The semantics of the interface type theory mentioned 
previously could be used here to further reason about interface creation in 
the role-figure model semantics. 

Behaviour Change 
A behaviour change implies that a role-figure will be assigned a different 
behaviour than its original one, and a different current state than its 
current state. The following rewriting rule implies that the bc request will 
be consumed by a role-figure a that is at A and will evolve to A′: 

A || bc → A′ 

 If Enbc(A, A.Beh.St) then A′.Beh.B = bc.beh  

where Enbc(A, A.Beh.St) ⊆Actors×States 
and Enbc(A, A.Beh.St) = TRUE   if   A.Beh.St ∈ A.Beh.Ss    

else   FALSE 
 If Enbc(A, A.Beh.St) then A′.Beh.St = bc.cSt 

The predicate Enbc(A, A.Beh.St) provides a Boolean expression for 
enabling a behaviour change in the stable states (from Sec. 4.4.3: states 
where behaviour change is permitted). According to this rewriting rule, 
the actor behaviour part definition will be replaced by that one received in 
bc, and the current state A′.Beh.St will be set to bc.cSt. 

Capability Change 
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Capabilities in the role-figure model are meant for providing an overall 
basis for resource management. Allocating capabilities is a function of 
availability at the location of the role-figure where they are requested. 
Capability definition of an instantiated role-figure may be changed by a 
CapabilityChange method. The following rewriting rule implies that the 
cc request will be consumed by a role-figure a that is at A and will evolve 

to A′. 

A || cc → A′ 

 A′.Cap = A.Cap i

n

i
pcc.

1=
 

This adds all the capabilities in the cc request to the role-figure’s 
capability definition, Cap. 

Role-figure Move 
Role-figure mobility is the movement of instantiated role-figures. A move 
method is equivalent to a sequence of pi, cc, ci, bc and po methods. mo 
request supplies the new location to plug in, while its interface, behaviour, 
capability, queue, and method definition are all derived from the original 
role-figure instance. 

The following rewriting rule specifies a role-figure move. We imply 
that the mo request will be consumed by a role-figure a that is at A and 

will evolve to A′: 

A || mo → A′ 
Such that by applying the conditions (i)-(x) it gives: 

 (vii) A′.Int⊆A.Int, A′.Cap⊆A.Cap 

 (viii) A′.Beh=A.Beh 

  (x) A′.Que= Ø  , A′.Met= Ø  

These conditions assume a pi method at the new location using the 
original role-figure’s behaviour obtained by the bc request. Capability and 
interface definitions can be updated by applying the cc and ci methods. 
The role-figure instance at the original location is terminated by a po 
method. On the other hand, queue and method part definitions of the 
moved role-figure will be empty. 
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4.6 The Role-figure Model Properties 

The role-figure model is aimed to reason about the structure and the 
behaviour of role-figures (or the service systems realized by cooperating 
role-figures). In the semantics of the role-figure model, a role-figure 
configuration was defined as a set of asynchronously interacting role-
figures. In such configurations role-figures may be dynamically created, 
interact with each other by sending and receiving messages, change their 
definitions parts (interfaces, behaviour, capabilities, etc.), be terminated, 
or move to new locations. 

In a role-figure configuration there are certain requirements that need 
to be verified to ensure the correct operation of the service system as a 
whole. This verification process takes place at the service system design 
phase. It can identify design errors, and thus can improve the service 
system at early design phases. 

In distributed systems, there are two main correctness requirements: 

 Safety properties: means bad things don’t happen during the execution 
of a program. 

 Liveness properties: means good things that capture the requirements 
of the system do happen during the execution of a program. 

Safety and liveness properties were first introduced by Lamport in 
[Lam77]. A formal definition for safety and liveness properties was 
proposed by Alpern and Schneider in [AS84]. [AS84] states that a 
property (a set of sequences of program states) holds for a program if the 
set of state sequences defined by the program (program executions) is 
contained in the property. Examples of safety properties include mutual 
exclusion, deadlock freedom, and partial correction. The bad thing in 
these properties is: two processes executing in critical sections at the same 
time, deadlock, and terminating in a state not satisfying the postcondition 
after having been started in a state that satisfies the precondition, 
respectively [AS84]. Examples of liveness properties include termination 
and guaranteed service. The good thing in these properties is: completion 
of the final instruction, and receiving and satisfying service requests, 
respectively [AS84]. 

There are also state and path properties defined by Holzmann in 
[Hol04]. A state property proves that a state with property P is reachable 
or not. A path property proves that a certain sequence of states is 
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executable or not. Every property, e.g. path or state, is the intersection of 
a safety property and a liveness property [AS84]. 

We list three main properties that are distinctive in our role-figure 
model. First we elaborate on the role-figure configuration definition 
presented in the semantics of the role-figure model in Sec. 4.4.1. 

 Based on the definitions in Table 4-2 and Table 4-3, a role-figure 
configuration evolves as an assembly of role-figures and messages, such 
that each role-figure is at certain state and that messages are sent and 
consumed by role-figures. Also, every interface in any of the role-figures 
is connected to another interface in another role-figure obeying the same 
interface type definition. Therefore, an elaborated definition of a role-
figure configuration is as follows (in the definition of the role-figure 
configuration and the definitions of its properties we will use the letters 
M, N, O, P to denote the numbers of role-figures and messages, and will 
use the letters i, j, k, l as indices to range over these numbers. The letter Q 
will be used to denote the number of transitions a configuration goes 
through, while the index q will range over Q): 

rfc = {a1,…, aM, g1…,gN} 

Such that          
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rfc is well-formed iff  ♣|conditions ∧ Dynamics| rules, conditions 

This definition specifies role-figure configuration as an assembly of 
role-figures, a1,…,aM, and messages, g1,…,gN. The role-figure 
configuration, rfc, evolves through rfc → rfc1 → … rfcq → …, and in 
every transition it consumes a message that exists in the current 
configuration, e.g. grfc that is one of rfc’s messages. New messages can be 
generated in these transitions, hence no further conditions are applied on 
grfc

1…grfc
q as for grfc, which can only be in g1,…,gN (q gives the number 

of transitions a configuration has gone through at a particular time). 

Every role-figure, ai, evolves through Ai (denoted Ai → 1
iA → 2

iA → 
… where i is used as an index to range over the number of role-figures, 
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M, assuming that it is not plugged out during any of the transitions of the 
configuration so far). For every role-figure configuration, the structure of 
the different role-figure states and the role-figure connections need to be 
valid (the connection between two role-figures at Ai and Aj should obey 

the subtype relation, αl αk, between their connected interfaces, l of type 

α l and k of type αk, [l: αl] and [k: αk], respectively). 

The role-figure configuration is considered well-formed if and only if 
it obeys (behaves and evolves according to) the rules and conditions 
constructed in the role-figure semantics. Well-formedness ensures that 
every role-figure is evolvable, the role-figure configuration has correct 
role-figure connections, and each role-figure has correct structure. 

Following are the three role-figure configuration properties: 
Pluggability, Consummability, and Playability. 

Pluggability This property proves that a role-figure can be plugged in at 
certain location. This property demonstrates a safety property, as a 
role-figure that fails to plug in is considered as a bad thing. The way 
to claim this property is by ensuring that the consumption of a plug 
in request has achieved the plug in of a role-figure at the appropriate 
location. It is also required to prove that the required capabilities 
and behaviour of the created role-figure satisfy the requirements of 
the plug in request. This property is defined by: 

Pluggability: 
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The plugged in role-figure at location loci and rfc′ = {a1,…, aM, 
g1…,gN} constitute together a role-figure configuration after consuming 
the plug in request (the plug in request is consumed according to the rules 
defined in Sec. 4.5). 
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Consummability This property proves that all messages generated by the 
role-figures during the execution of the rewriting rules will 
eventually be consumed. This property demonstrates a liveness 
property, as unconsumed messages don’t generate an erroneous 
situation. This property does not imply that consumed messages are 
consumed by the role-figures they intended for: 

Consumeability: 
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 This is the consummability property with respect to a configuration 
that has only a single message. The configuration consumes messages and 
evolves based on the actions that will occur after the consumption; e.g. 
messages may be generated that will eventually be consumed. This 
process terminates when there will be no messages in the configuration 
(note the number of role-figures O in rfcterminal is different from M in rfc). 
This property examines all system terminal states of a configuration and 
checks if they contain any unconsumed message (system terminal states 
are those states of the system where no rewriting rule could be applied 
any further). The consummability property holds if the terminal 
configuration, rfcterminal, has no messages, and that every role-figure in 
this configuration has no messages in its queue, Aj.Quej = φ. 

Regarding the applicability of the consummability property, it is only 
possible to be verified at terminal states. We added this constraint because 
it is impossible to verify this property without it. This implies that we 
need to execute the system till it terminates, which is sometimes not 
possible. 

Playability This property proves that a role-figure, after its plug in phase, 
is playing or performing according to its predefined role. This 
property also demonstrates a liveness property. This can be achieved 
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by verifying that the role-figure behaviour is progressing, e.g. by 
marking certain states where something desirable happens as 
progress states and examine if an execution of the system reaches 
such states. 

In playability we only consider messages that are signals. Requests and 
returns are not considered since they don’t trigger state transitions. 

There can be two types of this property. Weak Playability proves that a 
role-figure has begun performing once it has been plugged in. So at least a 
single state transition has been performed. Strong Playability requires that 
a role-figure is proved to be free of non-progress cycles. 

In the following definition, the weak playability, Pwplayability, shows that 
a consumption of a signal by a plugged in role-figure has been 
accomplished. This signal, gk, is one of the input signals of the role-
figure, Ai′.Behi.Sgi. Here a signal does not necessarily trigger a transition 
from the current state to another state. A role-figure may remain in the 
same state after consuming such a signal. 

 

Weak Playability: 
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Based on our definition of pluggability and weak playability, it can be 
clearly seen that weak playability implies pluggability, since a role-figure 
that is playing or consuming signals and performing state transitions is 
considered to be plugged in. 

Strong Playability: 

The following definition of the strong playability, Psplayability, adds 
another requirement to the weak playability. It demands that a progression 
is achieved in the behaviour evolution of the role-figure. The difficulty of 
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proving this property is two fold. First, it requires knowledge of the role-
figure state, which cannot be obtained by an external observation. Second, 
it requires knowledge of whether a state in the behaviour specification is a 
progress state or not. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈∈∃

<<→⎯→⎯⎯→⎯

≤≤=

<<⎯⎯⎯ →⎯⎯⎯ →⎯⎯→⎯

=∀

=

−−

ogressBehiiii
Q
iiiii

Q
i

q
iii

i
q

QQq

i

deftysplayabili

stStBehStBehst

Qq

Qqrfc

Qqrfcrfcrfcrfc

rfc

Qrfcqrfc

Pr.
1

1
P1O1

1

N1M1

|},..,,..{

1,

1},,,,,,,,{

 that such

1

},,,,,,,{

1

a

aaa

aaa

AA

AAAA

………

………

gg

gg

gg
P

 

The strong playability shows that a role-figure, which is assumed 
existing throughout a given execution of a configuration, evolves. 
Furthermore, the behaviour of the role-figure is said to have progressed at 
least once – one of its current states has been a progress state. The only 
difference to the weak playability is the denotation, ogressPr.Behi |a , which 
stand for the progress states in the role-figure behaviour. 

Based on our definition for weak playability and strong playability, it 
can be clearly seen that strong playability implies weak playability, since 
a role-figure that evolves through progress states is performing at least 
one state transition. 

The role-figure mobility management mechanisms described in the 
previous chapter come with their own properties. They present a 
mechanism for moving role-figures based on a set of requirements 
maintained in a mobility strategy. The verification of these mechanisms is 
possible using these three basic properties – the property of one of the 
role-figure mobility management mechanisms is an intersection of these 
three properties. We believe that these three basic properties are adequate 
for the discussion on the role-figure mobility management in our 
architecture due to the nature of the role-figure itself (i.e. consume 
messages, plug in roles, and play roles). The proof of this statement is not 
handled here, and left out as an open issue. This proof is believed to be 
derivable in a similar manner to the study on “defining liveness” in 
[AS84]. 
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4.7 Discussion 

In this section we give a discussion on a specific mobility management 
example. This discussion is aimed to show how we can use our semantics. 
Figure 4-6 shows an example of a system that executes a number of role-
figures in a domain of two nodes. It demonstrates a movement of role-
figure a from node2 to node1. The role-figure obtains a different name at 
node1, i.e. a’. This indicates that it is another instance of the same role-
figure. Part of the execution of role-figure a’ is explained. As part of the 
movement process, capabilities and behaviour definition are updated. 
These updates are conducted using methods accessible in the role-figure. 
Also, an example interaction with other role-figure is shown by sending 
and receiving signals. Interfaces, queue, AEEM and NES modules are 
similar to those used in Figure 4-5. 

A message sequence diagram for this system is shown in Figure 4-7. 

 
 Figure 4-6 Example of mobility management 

 
Figure 4-7 A message sequence diagram of the example 
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The signals used in Figure 4-7, in step (6) and step (8), are exchanged 
with role-figure b in the system. In the following we show the application 
of our semantics to specify part of this example. We assume using a role-
figure mobility management mechanism that does not involve a mobility 
manager, e.g. RMM3. We also assume using a mobility strategy that does 
not have requirements regarding queue content and executing methods, 
i.e. applying the design rules RD9 (a) and RD9 (q) from Sec. 3.4.4.2. The 
example semantics includes the director, dir, as well as the other role-
figures, a, b, e, f, g, and h. Only the details of role-figure a are shown. 
The notation jx means an interface to role-figure x. 

dir = <Int = { je ,ja jb ,jf jg ,jh }>  

e = <Int = { jdir }> 

a = <Int = { jdir ,jb }, Beh = <B = bh1, St = st1, Sg = sg1, Sc = sts1, Ss = 
sts2>,  

Cap = {cap1, cap2} , Que = ∅, Met = ∅> 

b = <Int = { jdir ,ja }> 

 f = <Int = { jdir ,jg }>  

g = <Int = { jdir ,jf ,jh }> 

h = <Int = { jdir ,jg }> 

To illustrate the movement of role-figure a, we need to show the 
transition from this configuration of role-figures containing a into another 
configuration of role-figures containing a’: 

mo(a,NES1.AEEM1) || dir || a || e || b || f || g || h  dir || a’ || e || b || f || g || h 

On the left hand side there exists a rolefigureMove request with the 
role-figure instances. Only the target and the argument of this request are 
shown. The other fields of the structure, e.g. the source, are hidden. This 
move request is assumed to be sent by any of the other role-figures. The 
structure of the other requests, pi, cc, ci, and bc, is also hidden in the 
transitions of this example. The move request will instruct role-figure a 
(in NES2.AEEM1) to move to another location of performance (to 
NES1.AEEM1). It will become role-figure a’. This transition consists of 
several applications of the specified rewriting rules (in Sec. 4.5). We 
show the transitions applied by role-figure a in the following path of 
transitions – we simplify the transitions by defining the main parts of the 
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structure of role-figure a in the transitions themselves (the structure of a 
after the first transition is not changed): 

 mo(a,NES1.AEEM1) || a = <Int = {jdir, jb}, Beh = <B = bh1, St = st1>, Cap 
={cap1,cap2}>   

 a ||  pi(a’, NES1.AEEM1, bh1)   

 a  || a’  = <Int = {jdir ,ja}, Beh = <B = bh1>> || cc(cap1, cap2) )   

 a  || a’ = <Int = {jdir ,ja}, Beh = <B = bh1>, Cap = {cap1,cap2} > || ci(jb)   

 a  || a’  = <Int = {jdir,ja,jb},Beh = <B = bh1>,Cap = {cap1,cap2} > || bc(bh1,st1)   

 a  || a’  = <Int = {jdir,ja,jb},Beh = <B = bh1,St = st1>,Cap = {cap1,cap2}> po(a)  

 a’  = <Int = {jdir, ja, jb}, Beh = <B = bh1, St = st1>, Cap = {cap1, cap2} >  
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CHAPTER 5 
 

5 The Formal Analysis 
 

 

 

5.1 Introduction 

HE ROLE-FIGURE model presented in Chapter 4 provided an ab-
stract model for the implemented functionality of role-figures. The 
model was a preliminary step to the formal specification, analysis, 

and validation of role-figures. In this chapter we present the Maude for-
mal specification of the role-figure model. We also use this specification 
to conduct formal analysis and validation of the proposed solution for the 
role-figure mobility management.  

We used Maude, the formal language and tool supporting rewriting 
logic, to achieve two major goals. First, it will be used to formally con-
struct the various viewpoints at various levels of detail of the role-figure 
model. Second, the Maude’s reflective features are deployed to model and 
check the correctness of the proposed solution for the role-figure mobility 
management. 

This Maude specification of the role-figure model is presented in Sec. 
5.2. Experiences with analysing and validating the Maude specification 
are discussed in Sec. 5.3. 

5.2 The Maude Specification 

Maude is based on the rewriting logic principles. In this section we pre-
sent our Maude specification of the role-figure model. This section show 
the main constructs of the Maude language in Sec. 5.2.1. Then, in Sec. 
5.2.2, a set of assumptions on the role-figure model are considered. The 
Maude specification of the role-figure model follows in Sec. 5.2.3. This 
specification includes the specification of the computing architecture 

T 
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functionality, as well as the semantics and the dynamics of the role-figure 
model. The service specification in Maude is presented at the end of the 
section. 

5.2.1 Preliminaries on Maude 
The following is not intended to be a Maude tutorial. It is just a brief in-
troduction to the main syntax elements, which is used to highlight the 
role-figure model formalization efforts, both the structure of the formal 
role-figure model and the conducted formal analysis. The reader is ad-
vised to read the Maude manual [CDE03] for a detailed description, and 
to visit [Mau04] for the tool and a tutorial of the language. 

Maude is a high-performance language and system supporting both 
equational and rewriting logic computations [CEL96]. It has been devel-
oped at SRI International [Mau04]. As a programming language, Maude 
makes it possible to specify programs and routines. In Maude the basic 
units of specification and programming are called modules. A typical 
Maude program consists of a hierarchy of modules. 

In Maude there are three kinds of modules: 
• Functional modules: are theories in membership equational logic, 

which is a sub-logic of the rewriting logic [Mes92]. Maude functional 
modules consist usually of equations and membership assertions. 

• System modules: are pairs (T, R), where T is a membership equational 
theory, and R is the collection of labelled and possibly conditional 
rewriting rules. Evolution of the system, or shortly rewriting of the 
system, happens modulo the equational axioms in T. Controlling and 
effecting the execution of these rewriting rules is achieved by the so-
called strategies. 

• Object-oriented modules: are the Maude specifications for concurrent 
object-based systems. These modules specify predefined configura-
tions that declare sorts representing objects, messages, and the rules of 
interactions. 

Functional, system, and object-oriented modules use the following 
syntax as a definition, respectively (Maude keywords are written with 
boldface):  

fmod REAL-NUMBERS is … endfm 
mod VENDING-MCHINE is … endm 
omod ROLE-FIGURE is … endom 
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The modules are defined between the beginning and the end of this 
declaration. Also modules can be imported by other modules, e.g. using 
the keyword “protecting”. 

The declaration part of a Maude module includes definitions of types, 
operators, and variables. Types in Maude are called sorts, and defined us-
ing the keywords sort and sorts. They are partially ordered via a subsort 
relation, which is denoted by < (period, . , is used to indicate the end of 
each declaration): 

sort A .   *** definition of one sort 
sorts B C .  *** definition of more than one sort 
subsort A < B < C . *** subsort relation 
Operators in Maude are declared with the keyword op and ops (defini-

tion of more than one operator). Operators have name, arguments, and 
return result. An argument may be represented by an underscore, _ , in the 
syntax. The list of arguments may be empty (defining a constant), while 
the operator itself may be declared in prefix or mixfix form, e.g.: 

op null  : -> Nat .  *** null is defined to be a constant 
op add  : Nat Nat -> Nat [assoc] . *** prefix form addition operator on natural numbers 
op _+_ : Nat Nat -> Nat [assoc] .  *** mixfix form addition operator on natural numbers 

assoc is an example of an attribute declaration standing for associativ-
ity. In Maude variables can be defined using the following syntax: 

vars X Y : Nat . 
A term in Maude is either: a constant, a variable, or an application of 

an operator on a list of argument terms, e.g.: 
add X Y .       *** the add operator declared above used to add two variables, X and Y 
X + Y .         *** the + operator declared above used to add two variables, X and Y 

The Maude is based on the membership equational logic. This may be 
simply interpreted by the following two definitions: an equation is a dec-
laration of the form (t = t’), where t and t’ are terms, while membership is 
a declaration of the form (t : s), where t is a term and s is a sort. Equations 
in Maude can be unconditional or conditional (by which a condition is 
provided to control the interpretation and execution of the equations). 
Similarly, memberships can be unconditional or conditional. In both cases 
the conditions can either be a single equation, single membership, or a 
conjunction of equations and memberships. The following show some 
examples of unconditional equation eq, unconditional membership mb, 
conditional equation ceq, and conditional membership declarations cmb, 
respectively. 
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eq X + Zero = X . 
mb add (X Y) : Nat . 
ceq X + Zero = X if X =/= Zero. 
cmb add (X Y) : Nat if X =/= Y. 
The main operating principle of the Maude interpreter regarding the 

functional modules is to reduce or simplify terms by applying the given 
set of equations. By other words, a given term t is matched to every left 
hand side of the equations and memberships, and thereafter simplified or 
rewritten. This process ends when no further rewriting is possible, that’s 
when ground terms are obtained – terms that cannot be simplified. 

Rewriting rules in Maude have the following definition,: 
rl [<label>] :     <term1>  =>   <term2>    [<statement attributes>] . 
crl [<label>] :     <term1>  =>   <term2>    [<statement attributes>]  

if <condition> [<statement attributes>] . 
rl and crl are used to specify the unconditional and conditional rewrit-

ing rules, respectively. Both have a label, which is used to identify and 
trace the execution of the rules, as well as statements of the form: 

<term1>  =>   <term2> . 
The conditional rule is followed by a condition to control the execution 

of the rule, meaning that a rule is only executed if the condition holds. In 
Maude an object in a given state is represented as a term of the form: 

<object : Class | attribute1: value1, … , attributen: valuen > 
An object in an Object-Oriented Maude module is defined as a class 

using the keyword Class, with attributes tagged with their values. Mes-
sages to communicate between objects are defined as Msg, and declared 
using the keyword msg, while a configuration in Maude is defined as Con-
figuration, and it is an assembly of objects and messages, e.g.: 

msg request_ : Oid -> Msg .     *** Oid sort defines an object identifier 
op multimsg__ : Oid Oid -> Configuration . *** a configuration of two objects 

Finally, the tool support for Maude is built around a rewriting engine 
interpreter. By using the Maude interpreter’s rewrite or rew command it is 
possible to rewrite a given initial conditions based on a set of rewriting 
rules given in a module. 

5.2.2 Assumptions and simplifications 
In our Maude specification we apply the following assumptions and sim-
plifications over the semantics and dynamics of the role-figure model:  
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 The behaviour specification is described in Maude modules. These 
modules are imported by the role-figure model specification to plug in 
specific behaviours for role-figures. The current state of a behaviour 
specification is a variable in this specification. 

 We assume a single and generic interface type in TAPAS. The defini-
tion of this interface type in a role-figure is abstracted by the name of 
the connected role-figure. (if different interface types are used between 
role-figures then this abstraction must be removed and the interface 
types must be used instead of the connected role-figures) 

 We apply an abstract capability definition. There is no specialization 
over the different classes of the capabilities of the system (i.e. functions, 
resources, or data). There is a capability type and a capability set type. 
As such a role-figure may consume any capability and may add it to its 
set of capabilities. 

 We use different plug in requests, e.g. plug in request without argu-
ments, plug in request with initial capability and behaviour definitions, 
etc. The director controls the plug in of all role-figures. Similarly, the 
plug out request also is handled by the director. 

 The queue of role-figures is not handled by the Maude specification. 
Therefore, messages in the queue of a moving role-figure will be lost. 
(To handle the queue an ordered set definition, a FIFO model, must be 
used to maintain the arriving messages to a role-figure. If the queue of a 
moving role-figure is handled during the movement, then only signal 
messages can be forwarded to the moved role-figure) 

 The executing methods of a moving role-figure are not handled by the 
Maude specification. Therefore, these methods are always discarded. 
(To handle these methods a replica of the moving role-figure must be 
maintained until all executing methods finish their executions) 

 We will use slightly different structure for the method invocation re-
quests as was presented in the semantics of the role-figure model. In 
some cases the invoking method field will not be used, while the in-
voked method field will be abstracted by the name of the invocation re-
quest. Also in some method invocation requests we will add new argu-
ment. These alterations will be explicitly mentioned. 

 In the role-figure mobility management we use the role-figure name and 
its location as the Location-of-Performance of a role-figure. 

5.2.3 The Role-figure Model Specification 
In this section we only give the main elements of our Maude specification 
(the complete Maude specification for the role-figure model is given in 
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the module RoleFigureModel in Appendix IV. Two extension Maude 
modules are also included. The module Capability handles mainly the is-
sues related to the allocation of capabilities in the system. The module 
Mobile handles issues related to mobility and behaviour change. 

The role-figure model specification is an object-oriented module: 

omod RoleFigureModel is … endom. 

In this module, a role-figure is specified as a class with attributes. 
These attributes are the role-figure’s location, interfaces, behaviour, capa-
bilities, queue, and methods, denoted by Location, Int, Beh, Cap, Que, 
and Met, respectively. The supervisory role-figure Director has a simple 
structure, which only includes an interface definition part: 

The role-figure and Director class definition 
class  RoleFigure | Location : Loc, Int : OidSet, Beh : BehType, Cap : CapSet, 
              Que : MesSet, Met : MetSet . 
class  Director | Int : OidSet . 

Role-figure and director use the following sort definitions: 

Sort definitions 
sorts Loc OidSet Content State StateSet Beh BehType Signal SignalSet Cap 

CapSet Mes MesSet Met MetSet . 
subsort Oid < OidSet .          *** object definitions  
subsort State < StateSet .    *** state definitions  
subsort Signal < SignalSet . *** signal definitions 
subsort Cap < CapSet .        *** capability definitions 
subsort Met < MetSet .         *** method definitions 
subsort Mes < MesSet .        *** message definitions 

Loc defines location type, while Content defines message content type. 
These sorts are partially ordered via the subsort relation, e.g. a State is a 
subsort of StateSet. 

Role-figure methods 
In the Maude specification, the invocation requests of the main methods 
of the role-figure model are defined using messages. These requests fol-
low the syntax defined in the role-figure model semantics, as well as ap-
ply the assumptions mentioned earlier in Sec. 5.2.2. Certain requests 
however have several message definitions. The reason is to achieve vari-
ous levels of detail in the specification. The definitions of these messages 
are the following: 
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Method invocation request definitions 
*** plugin request takes target, source, name, and location arguments 
msg pi-tar_src_name_location_            : Oid Oid Oid Loc -> Msg . 
*** plugin request takes target, source, name, location, behaviour and capability 
*** arguments 
msg pi-tar_src_name_location_with__ : Oid Oid Oid Loc BehType CapSet -> Msg . 
*** plugout request takes target, source, and role-figure name arguments 
msg po-tar_src_name_                         : Oid Oid Oid -> Msg . 
*** create interface request takes target, source, and interface(s) arguments 
msg ci-tar_src_j_                                   : Oid Oid OidSet -> Msg . 
*** behaviour change request takes target, source, and behaviour arguments 
msg bc-tar_src_beh_                             : Oid Oid BehType -> Msg . 
*** behaviour change request takes target, source, behaviour, current state, stable 
*** states (used to control the behaviour change and move procedures), and  
*** progress states (used to check the playability properties) arguments 
msg bc-tar_src_beh____                    : Oid Oid BehType State StateSet StateSet -> 

Msg . 
*** capability change request takes target, source, and capability arguments 
msg cc-tar_src_p_                                  : Oid Oid CapSet -> Msg . 
*** move request takes target, source, role-figure name, location and content 
*** arguments 
msg mo-tar_src_location__with_            : Oid Oid Oid Loc Content -> Msg . 
*** move return takes target, source, role-figure name and location arguments 
msg mor-tar_src_to__                            : Oid Oid Oid Loc -> Msg .  

   

Beside these method requests, the following message definition is 
required. The first line defines a general message, which is mainly used as 
a signal to stimulate the behaviour of the role-figures. multimsg is used as 
a broadcast message that sends a message to a list of recipients. 

Message definitions 
msg msg_from_to_ : Content Oid Oid -> Msg . 
op multimsg_from_to_ : Content Oid OidSet -> Configuration . 
ceq multimsg M from A to (B N) =  
             (msg M from A to B) (multimsg M from A to (N - B)) if not M == creInt . 

A and B are Oid variables, N is an OidSet variable, and M is a Content vari-
able. creInt is a constant used in the create interface rules. 

Constants, Operations and Variables 
The role-figure specification uses the following constants, operations, and 
variables: 
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Constants, Operations, and Equation definitions 
*** constants definition 
ops st1 st2 : -> State .          *** states 
ops sts1 sts2 : -> StateSet .     *** state sets 
ops bh1 bh2 : -> Beh .            *** behaviours 
ops m remInt creInt moving : -> Content . *** "content" of some messages 
ops director a a' b c e : -> Oid .           *** role-figures 
ops n n' : -> OidSet .   *** Oid sets 
ops bht1 bht2 : -> BehType .      *** behaviour type 
ops sig1 sig2 : -> Signal .  *** signals 
ops sigs1 sigs2 : -> SignalSet .  *** signal sets 
ops cap1 cap2 : -> Cap .  *** capabilities 
ops caps1 caps2 : -> CapSet .  *** capability sets 
ops met1 met2 : -> Met .  *** methods 
ops mets1 mets2 : -> MetSet .  *** method sets 
ops mes1 mes2 : -> Mes .  *** messages 
ops mess1 mess2 : -> MesSet .  *** message sets 
ops loc1 loc2 : -> Loc .                  *** locations 
*** constants 
op nil : -> OidSet .                                      *** an empty set 
op nilOid : -> Oid .                                      *** a nil object 
op nilcaps : -> CapSet .                              *** an empty capability set 
op nilbht : -> BehType .                              *** an empty behaviour definition 
op nilmess : -> MesSet .                             *** an empty message set 
op nilmets : -> MetSet .                               *** an empty method set 
*** Some set-operations: 
op in : Oid OidSet -> Bool .  *** an Oid is in a set 
op subseteq : OidSet OidSet -> Bool .       *** subset of a set 
op _-_ : OidSet Oid -> OidSet .       *** Oid removed from set 
*** Equations on sets: 
eq A A = A .                                   *** concatenation of sets 
eq in(A, B N) = A == B or in(A,N) . *** in operation 
eq in(A,nil) = false .                                      *** in operation 
eq subseteq(A N ,N') = in(A,N') and subseteq(N,N') . *** subseteq operation 
eq subseteq(nil,N') = true .                         *** subseteq operation 
eq (A N) - A = N - A .                 *** further operations 
ceq N - A = N if not in(A,N) .               *** further operations 

The following variables are also used. 

Variable declarations 
*** variable declaration 
vars A A' B C D : Oid .  
vars N N' N'' : OidSet . 
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vars M : Content . 
vars ST1 ST2 : State . 
vars STS1 STS2 : StateSet . 
vars BH1 BH2 : Beh . 
vars BHT1 BHT2 : BehType . 
vars SIG1 SIG2 : Signal . 
vars SIGS1 SIGS2 : SignalSet . 
vars CAP1 CAP2 : Cap . 
vars CAPS1 CAPS2 : CapSet . 
vars MET1 MET2 : Met . 
vars METS1 METS2 : MetSet . 
vars MES1 MES2 : Mes . 
vars MESS1 MESS2 : MesSet . 
vars LOC1 LOC2 : Loc . 

Role-figures 
A role-figure is expressed using the following notation, e.g. for the role-
figure a with interfaces to the director and two other role-figures (b and c): 

< a : RoleFigure | Location : loc1, Int : director b c, Beh : bht1, Cap : caps1, Que : 
mess1, Met : mets1 > 

Role-figure Configurations 
An example of a role-figure configuration (an assembly of role-figures 
and messages) is presented as follows.  

role-figure Configuration example 
(pi-tar director src a name e location loc1) 
< director : Director | Int : a b c > 
< a : RoleFigure | Int : director b c > < b : RoleFigure | Int : director > < c : RoleFig-

ure | Int : director > 

In this configuration a plug in request message (target, source, name, 
and location arguments), a director, and three role-figures (a, b, and c) ex-
ist. These role-figures have interfaces. Each role-figure has at least one 
interface with the director. The plug in request has been issued by the 
role-figure a and sent to the director. It requests the instantiation of a role-
figure with the name e at the location loc1. Based on the desired level of 
detail these definitions may be further specified and extended to handle 
more complex configurations and behaviour patterns. 

Role-figure Plug in 
The role-figure plug in method instantiates a role-figure. It may have dif-
ferent utilizations by passing different arguments to the instantiated role-
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figure. Plug in method is defined by a number of rewriting rules, e.g. a 
rewriting rule plug in request with or without initial capability and behav-
iour definitions. 

We present two rewriting rules specifying the role-figure plug in se-
mantics. The first rewriting rule, labelled [PlugInNoContentSemantics], speci-
fies the plug in of a role-figure without capability and behaviour specifi-
cation, while the second rewriting rule, labelled [PlugInwithCapBehSemantics], 
specifies the plug in of a role-figure with capability and behaviour speci-
fication. 

role-figure plug in rewriting rules 
*** A simple PlugIn by which the director is performing the plugin  
crl [PlugInNoContentSemantics] : 
   (pi-tar D src A name B location LOC1) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director 

A, Beh : nilbht, Cap : nilcaps, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B) if not in(B,N) and (D == director) . 
*** this corresponds to PlugIn with cap/beh 
crl [PlugInwithCapBehSemantics] : 
   (pi-tar D src A name B location LOC1 with BHT2 CAPS2) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director 

A, Beh : BHT2, Cap : CAPS2, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B)  if (D == director) . 

In the first rule, A, B and D are role-figure variables. A is the role-
figure that issued the plug in request (pi-tar D src A name B location LOC1), 
while B is the role-figure to be instantiated at location LOC1. If the rule is 
executed, it results the instantiation of the B role-figure at location LOC1 
with empty definitions – empty capability, behaviour, queue and method 
definitions. Its interface definition includes an interface to role-figure A 
and a default interface to the director. The director also adds an interface 
to role-figure B. The rule results also a message to create an interface at 
role-figure A, (ci-tar A src director j B). This rule is a conditional rule. It is 
only executed if the conditions on its right hand side are met. There are 
two conditions: that B does not exist (not in(B,N)), and that the plug in re-
quest is sent to the director (D == director). If either of these conditions is 
not met this rule will not be executed. 

The second rule is similar to the first one except for passing the role-
figure B capability and behaviour specification (pi-tar D src A name B location 
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LOC1 with BHT2 CAPS2). This rule is a conditional rule, and has one condi-
tion (D == director). In this rule the queue and method definitions of role-
figure B will be empty after the execution of this rule. 

It is important also to notice that in a rewriting rule, the attributes of a 
class that don’t appear on the right hand side of the rule assumed not 
changed from their values at the left hand side. 

Role-figure Plug out 
A role-figure may initiate a request to plug out another role-figure. This 
means terminating the role-figure instance, and removing all interfaces to 
the terminated role-figure. Similar to the Plug in case, the director is re-
sponsible for this request. To handle role-figure plug out we define sev-
eral rewriting rules: 

role-figure Plug out rewriting rules 
*** in this rewriting rule the director is sending the plugout request  
crl [PlugOuttoDirectorSemantics] : 
   (po-tar director src A name B) 
   < director : Director | Int : N > =>  
   < director : Director | Int : N > (po-tar B src director name B) if in(B,N) . 
*** A simple PlugOut method request by which the director is performing the plug-

out process 
crl [PlugOuttoActorSemantics] : 
   (po-tar A src B name C) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 

MESS1, Met : METS1 > =>  
   (multimsg remInt from A to N) if (C == A) and (B == director) and in(B,N) . 
*** these two rules will handle the removal of the existing interfaces 
crl [RemoveInterfacesAtActorSemantics] : 
   (msg remInt from B to A) 
   < A : RoleFigure | Int : N > =>  
   < A : RoleFigure | Int : N - B >  if in(B,N) . 
crl [RemoveInterfacesAtDirectorSemantics] : 
   (msg remInt from B to A) 
   < A : Director | Int : N > =>  
   < A : Director | Int : N - B >  if in(B,N) . 

The first rewriting rule, [PlugOuttoDirectorSemantics], specifies the han-
dling of the plug out request, (po-tar director src A name B), at the director. 
The director sends another plug out request to the role-figure B. The sec-
ond rewriting rule, [PlugOuttoActorSemantics], specifies the handling of the 
plug out request at the role-figure that is requested to plug out, (po-tar A src 
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B name C). If this rule is executed it results in destroying the role-figure 
and generating multiple messages to remove interfaces to this role-figure. 

The last two rules, [RemoveInterfacesAtActorSemantics] and [RemoveInterface-
sAtDirectorSemantics], handle the removal of interfaces to role-figures that 
exist in the interface list. There are two rules for this task because we 
have two classes, one for the director and one for the role-figure. These 
semantics, as well as the operations on sets defined earlier, achieve the 
semantics of the remove operator  on interfaces, which has been defined 
in Chapter 4. 

Create Interface 
Requesting a create interface method instructs role-figures to create inter-
face(s) defined in the argument of that request. There are two rules, [Cre-
ateInterfacesAtActorSemantics] and [CreateInterfacesAtDirectorSemantics], to handle 
the creation of interfaces to role-figures, one for the director and one for 
the role-figure. 

role-figure Create interface rewriting rule 
*** Create Interface: 
crl [CreateInterfaceAtActorSemantics] : 
   (ci-tar A src C j B) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 

MESS1, Met : METS1 > => 
   < A : RoleFigure | Int : B N > if in(C,N) or (B == C) . 
crl [CreateInterfaceAtDirectorSemantics] : 
   (ci-tar A src C j B) 
   < A : Director | Int : N > => 
   < A : Director | Int : B N > if in(C,N) or (B == C) . 

In these rules a role-figure A updates its interface list with an interface 
to role-figure B in two cases: if the sender of the request exists in the in-
terface list, or if the sender is requesting to create an interface to itself. 
These semantics, as well as the operations on sets defined earlier, achieve 
the semantics of the insert operator  on interfaces, which has been de-
fined in Chapter 4. 

Capability Change 
The capability definition of a role-figure may be changed by a capability 
change procedure, in the following rule [CapabilityChangeSemantics]: 

role-figure Capability Change rewriting rule 
*** Capability Change: 
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crl [CapabilityChangeSemantics] : 
   (cc-tar A src B p CAPS2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 

MESS1, Met : METS1 > => 
   < A : RoleFigure | Location : LOC1, Cap : CAPS2 > if in(B,N) . 

In this rewriting rule a role-figure A changes its capability definition 
from CAPS1 to CAPS2, (cc-tar A src B p CAPS2). The rule is only executed if 
the sender B exists in the interface list. 

Behaviour Change 
A behaviour change implies that a role-figure will be assigned a behav-
iour different than what it is executing, as in the following rule [Behaviour-
ChangeSemantics]: 

role-figure Behaviour Change rewriting rule 
*** Behaviour Change: 
crl [BehaviourChangeSemantics] : 
   (bc-tar A src B beh BHT2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 

MESS1, Met : METS1 > => 
   < A : RoleFigure | Location : LOC1, Beh : BHT2 > if in(B,N) . 

In this rewriting rule a role-figure A changes its behaviour definition 
from BHT1 to BHT2 by consuming the request (bc-tar A src B beh BHT2). 
The rule is only executed if the sender B exists in the interface list. An 
extended behaviour change request to handle the playability properties of 
the role-figure model including the arguments current state, stable states, 
and progress states is specified in Appendix IV. 

Role-figure Move 
A role-figure move is handled by a move method. In this method the fol-
lowing sequence of tasks is performed: Plug in a new instance of the role-
figure at a new location, updating its capability definition as required by 
the original role-figure, creating interfaces to the list of connected role-
figures, changing its behaviour so both instances perform the same role, 
and plug out the original role-figure. The following rules specify the 
move method. 

role-figure Move rewriting rules 
*** role-figure Move: 
crl [RoleFigureMoveSemantics] : 
   (mo-tar A src B location A' LOC2 with M) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 
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MESS1, Met : METS1 > => 
   < A : RoleFigure | Location : LOC1, Int : N > (pi-tar director src A name A' loca-

tion LOC2 with M) if in(B,N) . 
***  plugin request for moving role-figures 
crl [PlugInMovingSemantics] : 
   (pi-tar D src A name A' location LOC1 with M) 
   < director : Director | Int : N > => 
   < director : Director | Int : A' N >  
   < A' : RoleFigure | Location : LOC1, Int : director A, Beh : nilbht, Cap : nilcaps, 

Que : nilmess, Met : nilmets > 
   (mor-tar A src director to A' LOC1) 
   if not in(A',N) and (M == moving)  and (D == director) . 
*** the following rule handles the return of this method 
crl [RoleFigureMoveReturnSemantics] : 
   (mor-tar A src D to A' LOC2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : 

MESS1, Met : METS1 > => 
   < A : RoleFigure | Location : LOC1, Int : A' N >   
   (cc-tar A' src A p CAPS1) (multimsg creIntS from A' to N) (bc-tar A' src A beh 

BHT1) (po-tar director src A' name A) if (D == director) . 

In the first rule, [RoleFigureMoveSemantics], a role-figure move request is 
consumed and a plug in request is initiated at the new location, role-figure 
A’ at LOC2.  

In the second rule, [PlugInMovingSemantics], we handle the plug in of the 
role-figure at the new location. This rule is needed to provide the trigger-
ing of the rest of the move procedure by sending a return, (mor-tar A src di-
rector to A' LOC1). This rule ensures that the role-figure does not exist at that 
location using the following condition: not in(A',N) and (M == moving). 

In the last rule, [RoleFigureMoveReturnSemantics], the move method return 
is handled. In this rule the sequence of capability, interface, behaviour, 
and plug out procedures is executed. These procedures are handled by the 
rules specified earlier. 

5.2.4 Service Specification 
To experiment with the concepts of role-figure mobility we present an 
example of a client/server service that uses role-figures to provide func-
tionality (the complete Maude specification of this example is included in 
Appendix IV, in the ClientServer module). Figure 5-1 illustrates this cli-
ent/server example. A client role-figure a running in Node1 uses the ser-
vice provided by the server role-figure b that runs in Node2. Node1 and 
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Node2 are in domain domain1. Role-figure a will move from Node1 to 
Node2 and become role-figure a’. This movement is represented by an 
arrow in the figure, while interfaces between role-figures are represented 
by connecters. 

 
Figure 5-1 An example of a client server configuration 

The sequence diagram of Figure 5-2 shows an example execution of 
the system. In this figure the director and the methods handled by the di-
rector have been dropped for clarity. The messages of Figure 5-2 will be 
explained later in the Maude specification. 

 
Figure 5-2 An example message diagram of the client/server configuration 

The client is considered receiving a data stream from the server with 
changing transmission bandwidth. At the same time the client relies on a 
communication channel that could suffer congested conditions. Both the 
transmission bandwidth and the communication channel are modelled us-
ing sorts, constants, and variables in the Maude specification. The server 
and the client start communicating using initial transmission bandwidth. 
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The server attempts to increase its transmission bandwidth to the client. 
Once a congested channel is detected, the client informs the server about 
it, and supplies a backup location. The server moves the client role-figure 
to this backup location, and resumes transmitting to it starting from the 
initial transmission bandwidth. 

The Maude module specification of this example uses a subset of the 
role-figure module presented in the previous subsection. This subset is a 
simplified set of semantics and rewriting rules. In the following we illus-
trate the main parts of this module. 

In this module we define a class Actor instead of class role-figure. The 
client role-figure a is declared of class ActorClient, while the server role-
figure b is declared of class ActorServer. ActorClient and ActorServer are 
inherited from the Actor class using the subclass relation.  

Client/Server role-figure definitions 
***Application actors inheriting from the generic actor class 
class  Actor | Int : OidSet, Beh : BehType, Cap : CapSet, 
              Que : MesSet, Met : MetSet . 
class  ActorClient | Count : MachineInt, Backup : Oid . 
class  ActorServer | Trans : MachineInt . 
subclass ActorServer < Actor . 
subclass ActorClient < Actor . 

In ActorClient and ActorServer, Count and Trans keep track of the 
utilized channel. These values will increase in case the server requires 
more bandwidth. Backup defines the backup location for the client. 

The module uses the following capability definitions: Congested and 
Ncongested to determine when an ActorClient role-figure suffers a con-
gested condition. The module defines the Status of the channel by Ok and 
Nok. The sorts of capability and status are Cong and Status, respectively. 

Client/Server capability and status definitions 
***capability definition: Congestion 
sorts Status Client Server Cong congectionValue . 
subsort Cong < Cap < CapSet . 
*** capability instances, and congestion condition 
op Congested : -> Cong . 
op Ncongested : -> Cong . 
op congestionValue : -> MachineInt . 
*** the status of the channel 
op Ok : -> Status . 
op Nok : -> Status . 
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We also need specific signals that will be used to communicate be-
tween the client and the server. 

Client/Server signal definitions 
*** signal definitions 
msg s1_from_to_ : Status Oid Oid -> Msg . 
msg s1_from_to_myBU_ : Status Oid Oid Oid -> Msg . 
msg s2from_to_ : Oid Oid -> Msg . 

s1 is used to acknowledge the reception of a signal at the client. It may 
include either an Ok or a Nok status, in the latter a myBU backup location 
is specified. s2 is sent by the server to the client. 

The role-figure configuration, in Figure 5-2, may be represented in 
Maude with a triggering event, a message (s2from b to a), as in the fol-
lowing definition. 

Client/Server example configuration definition 
eq testCS2 = 
   (s2from b to a) 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, 

Met : mets1, Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : 

mets2, Trans : transmissionChannel > . 

A client normally has a counter Count to check the utilization of its 
channel availability, while a server measures its transmission channel by 
Trans, which both are integers for simplicity. Note that the client has an 
Ncongested capability upon start up. A client may adapt to a shortage of 
its channel by providing a backup instance a’ that might be plugged in at 
some predefined location, again for simplicity in Node2, and resume re-
ceiving from the server. 

The following rewriting rule defines a normal operation by the client 
upon receiving from the server, while the other rule is used for congestion 
situations: 

ActorClient rewriting rules 
*** a non-congested client receiving a signal from the server 
crl [receiveNotcongested] : 
   (s2from B to A) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : 

METS1, Count : COUNT, Backup : A' > => 
   < A : ActorClient | Cap : Ncongested, Count : COUNT + 1 > (s1 Ok from A to B)  
   if (COUNT <= congestionValue) . 
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 *** a congested client receiving a signal from the server 
crl [receiveCongested] : 
   (s2from B to A) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : 

METS1, Count : COUNT, Backup : A' > => 
   < A : ActorClient | Cap : Congested, Count : 0 >  
   (s1 Nok from A to B myBU A')  
   if (COUNT > congestionValue) . 

The first rule specifies how a role-figure would evolve in normal non-
congested situations, while the second rule signals to the server that it is 
experiencing a congested situation. 

The following two rewriting rules define the operation of the server 
and the operation of the client for normal and congestion situations: 

ActorServer rewriting rules 
*** if the sending is to continue normally 
crl [adapt2] : 
   (s1 stus from B to A) 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 

METS1, Trans : TRANS >  
   => < A : ActorServer | Trans : TRANS - 1 > (s2from A to B)  
   if (stus == Ok) and (TRANS =/= 0) . 
*** if the client suffers a congestion condition, two cases; 
*** First case: if there is a  Backup for the congested actor 
crl [adapt3] : 
   (s1 stus from B to A myBU B') 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 

METS1, Trans : TRANS >  
   =>  < A : ActorServer | Trans : TRANS - 1 >  
   (ActorMove B to B' with moving cl) (s2from A to B') 
   if (stus =/= Ok) and (TRANS =/= 0) .  
 
*** Second case: if there is no Backup for the congested actor 
 crl [adapt3nobackup] : 
   (s1 stus from B to A) 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 

METS1, Trans : TRANS >  
   => < A : ActorServer | Trans : TRANS - 1 > (ActorPlugOut B to director from A) 

(ActorPlugIn B from A )  
   if (stus == Nok) and (TRANS =/= 0) . 

These rules specify the server actions to the client signals. A client sig-
nal s2 comes with a status stus. This is examined, and in case of conges-
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tion, a move request is initiated to the backup location myBU. A simple 
scenario to test the move procedure is to steadily increase the sending 
bandwidth from the server until the congestion situation is reached. The 
server will detect this situation by receiving a status Nok, which shows 
degradation in some mandatory QoS requirements have happened. We 
assume the simplest scenario, both the server and the client can still 
communicate, and the client could move to a backup location. 

5.3 Formal analysis and validation 
After presenting the formal specification of the role-figure model in Sec. 
5.2, we show in this section the results of the formal analysis and valida-
tion. The formal analysis and validation is presented in three parts. In Sec. 
5.3.1 we present the model execution, which is a direct simulation, de-
bugging, and trace analysis process. The model execution assesses obtain-
ing better versions of the specification. In Sec. 5.3.2 we present the ex-
haustive execution of the role-figure model. This part examine all the pos-
sible executions of a given role-figure configuration. In Sec. 5.3.3 we pre-
sent our brief validation efforts for the role-figure mobility management. 
We conclude the formal analysis and validation with some experiences in 
Sec. 5.3.4. 

5.3.1 Model executions 
A Maude formal specification has a great advantage. It can be validated 
immediately by executing configurations. This execution provides quick 
feedbacks on the specification. We used this feature during the specifica-
tion of the role-figure mobility management in particular. In this subsec-
tion we define a number of configurations of role-figures and messages 
covering different scenarios of service adaptability and mobility manage-
ment. We use the default Maude interpreter (using the command rew or 
rewrite) to rewrite these test cases according to the rewriting rules of the 
role-figure model. 

Each execution of these configurations simulates an arbitrary run of 
the specification, and results a configuration that cannot be applied to any 
of the rewriting rules – hence the default Maude interpreter stops execut-
ing and returns a result configuration. 

Another important facility of the Maude tool is used to discover and 
detect errors. This built-in facility is the tracing of the executions. We use 
two types of configurations. Configurations of generic actors are used to 
check the computing architecture functionality, while configurations of 
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client and server role-figures are used to check the application or service 
functionality. 

Some computing architecture configurations 
In the following we present several configurations and clarify how the 
Maude system interprets them. We show here several configuration ex-
amples for the computing architecture: testS1 (tests the plug out rewriting 
rules), testS13 (tests the plug in and the plug out rewriting rules) and testS6 
(tests the role-figure move rewriting rules). To check other configurations 
see Appendix IV. In this appendix each Maude module contains several 
configurations used for testing purposes. Each one of these configurations 
tests a set of the rewriting rules in the given module. By executing one of 
these configurations the corresponding set of rewriting rules can be tested. 

role-figure Configuration examples test1 and test6 
eq testS1 = 
   (po-tar e src director name e) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1, Int : director b c e, Beh : bht1, Cap : caps1, 

Que : mess1, Met : mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c e, Beh : bht2, Cap : caps2, 

Que : mess2, Met : mets2 > 
   < c : RoleFigure | Location : loc1, Int : director a b e, Beh : bht1, Cap : caps1, 

Que : mess1, Met : mets1 > 
   < e : RoleFigure | Location : loc1, Int : director a b c, Beh : bht2, Cap : caps2, 

Que : mess2, Met : mets2 > . 
eq testS13 = 
   (po-tar e src director name e)(pi-tar director src a name e location loc1 with m) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1, Int : director b c e, Beh : bht1, Cap : caps1, 

Que : mess1, Met : mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c e, Beh : bht2, Cap : caps2, 

Que : mess2, Met : mets2 > 
   < c : RoleFigure | Location : loc1, Int : director a b e, Beh : bht1, Cap : caps1, 

Que : mess1, Met : mets1 >  
   < e : RoleFigure | Location : loc1, Int : director a b c, Beh : bht2, Cap : caps2, 

Que : mess2, Met : mets2 > . 
eq testS6 = 
   (mo-tar a src b location a' loc2 with moving) 
   < director : Director | Int : a b c > 
   < a : RoleFigure | Location : loc1,  Int : director b c, Beh : bht1, Cap : caps1, Que 

: mess1, Met : mets1 >  
   < b : RoleFigure | Location : loc1,  Int : director a c, Beh : bht2, Cap : caps2, Que 
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: mess2, Met : mets2 > 
   < c : RoleFigure | Location : loc1,  Int : director b a, Beh : bht1, Cap : caps1, Que 

: mess1, Met : mets1 > . 

Executing the configuration testS1 as an arbitrary execution of the 
Maude interpreter gives the following result – this result is obtained as no 
rewriting rules could be applied any more:  

Maude> (rew testS1 .) 
rewrites: 451 in 13ms cpu (14ms real) (34411 rewrites/second) 
rewrite in RoleFigureModel : testS1 .  
result Configuration :  
< director : Director | Int : a b c >  
< a : RoleFigure | Que : mess1 , Int : director b c , Met : mets1 , Cap : caps1, Beh : 

bht1 , Location : loc1 >  
< b : RoleFigure | Que : mess2 , Int : director a c , Met : mets2 , Cap : caps2 , Beh : 

bht2 , Location: loc1 > 
< c : RoleFigure | Que : mess1 , Int : director a b , Met : mets1 , Cap : caps1 , Beh : 

bht1 , Location : loc1 > 
The first several lines show how we execute the configuration, how 

many rewriting rules are executed, and how long it takes to rewrite the 
testS1 configuration. The result configuration is highlighted. This result 
configuration shows that all messages that have been produced through-
out the execution have been consumed. This means testS1 had a director, 
four role-figures, and a message before the execution, while after the exe-
cution the result configuration has only a director and three role-figures. It 
also shows that role-figure e successfully plugged out, and interfaces to it 
have been removed from the director and the other role-figures. 

Executing the testS13 configuration as an arbitrary execution of the 
Maude interpreter gives the following result:  

Maude> (rew testS13 .) 
rewrites: 565 in 1ms cpu (3ms real) (509927 rewrites/second) 
rewrite in RoleFigureModel : testS13 .  
result Configuration :  
< e : RoleFigure | Que : nilmess , Int : director a , Met : nilmets , Cap : nilcaps , Beh : 

nilbht , Location : loc1 > 
< director : Director | Int : e a b c >  
< a : RoleFigure | Que : mess1 , Int : e director b c , Met : mets1 , Cap : caps1 , Beh : 

bht1 ,Location : loc1 >  
< b : RoleFigure | Que : mess2 , Int : director a c , Met : mets2 , Cap : caps2 , Beh : 

bht2 , Location : loc1 >  
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< c :RoleFigure | Que : mess1 , Int : director a b , Met : mets1 , Cap : caps1 , Beh : 
bht1 , Location : loc1 > 

The result shows that role-figure e successfully plugs out, then plugs 
in. Note interfaces between a and e exist in both role-figures, i.e. a has an 
interface to e and e has an interface to a. 

testS6 gives the following result when executed: 
Maude> (rew testS6 .) 
rewrites: 705 in 2ms cpu (2ms real) (334440 rewrites/second) 
rewrite in RoleFigureModel : testS6 .  
result Configuration :  
< director : Director | Int : a' b c >  
< a' : RoleFigure | Que : nilmess , Int : director b c , Met : nilmets , Cap :caps1 , Beh : 

bht1 , Location : loc2 >  
< b : RoleFigure | Que : mess2 , Int : director a' c , Met : mets2 , Cap : caps2 , Beh : 

bht2 ,Location : loc1 >  
< c : RoleFigure | Que : mess1 , Int : director a' b , Met : mets1 , Cap : caps1 , Beh : 

bht1 , Location : loc1 > 
This shows a successful role-figure move, in which the role-figure a' is 

successfully plugged in and its definition parts have been updated. Note 
the other role-figures have updated their interface definitions to a'. 

Client/Server configurations 
Regarding the client/server module, example configurations testCS1 

and testCS2 are presented in the following: 

Client/Server role-figure Configuration example testCS1 
eq testCS1 = 
   (s2from b to a) 
   < director : Director | Int : a b > 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, 

Met : mets1, Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : 

mets2, Trans : 1 > . 
eq testCS2 = 
   (s2from b to a) 
   < director : Director | Int : a b > 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, 

Met : mets1, Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : 

mets2, Trans : 5 > . 
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The following are the results of the execution of these two configura-
tions. 

Maude> (rew testCS1 .) 
rewrites: 176 in 8ms cpu (9ms real) (21709 rewrites/second) 
rewrite in ClientServer : testCS1 .  
result Configuration :  
< director : Director | Int : a b >  
< a : ActorClient |Que : mess1 , Int : director b , Met : mets1 , Cap : Ncongested , Beh :  

bht1 , Backup : a' , Count : 0 >  
< b : ActorServer | Que : mess2 , Int : director a , Met : mets2 , Cap : caps2 , Beh : 

bht2 , Trans : 0 >  
In the execution of testCS1, the Trans is set to 1, so that the channel 

utilization between the server and the actor is not increased. This case 
does not generate a congested situation, and therefore no move request is 
issued. 

Maude> (rew testCS2 .)     
rewrites: 438 in 0ms cpu (2ms real) (4055555 rewrites/second) 
rewrite in ClientServer : testCS2 .  
result Configuration :  
< director : Director | Int : a' b > 
 < a' : ActorClient | Que : nilmess , Int : director b , Met : nilmets , Cap : Ncongested , 

Beh : bht1 , Backup : nilOid , Count : 0 >  
< b : ActorServer | Que : mess2 , Int : director a' , Met : mets2 , Cap : caps2 , Beh : 

bht2 , Trans : 0 > 
The execution of testCS2 yields that the client side suffers a shortage 

in the receiving capability (as its channel is congested), so the server initi-
ates a role-figure move to the backup location specified by the client. 

The configurations we presented in this subsection have been experi-
mented in different variations and increments. For instance various num-
bers of role-figures have been used. Also various numbers of messages, as 
well as faulty messages have been used. In certain cases non-existing des-
tinations, duplicate role-figure names, and other types of faults have been 
experimented. In the Maude specification in Appendix IV, only the sim-
plest configurations are included. These configurations can be used to test 
the different sets of rewriting rules if these rules are changed. Also, these 
configurations can be easily extended, e.g. by adding more role-figures, 
by adding more messages, by changing the existing role-figures, or by 
changing the existing messages. 
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5.3.2 Exhaustive executions 
The executions of the specification of the role-figure model revealed 
some errors and inconsistencies. However, these executions showed only 
a single and particular execution of the model with regard to a given con-
figuration. 

We need to test other executions of the model, possibly every execu-
tion, with regard to these configurations. This is possible by applying 
state space exploration techniques. This means using techniques to exam-
ine all possible executions of the model, until terminal states are reached. 
These possible executions can be generated up to a certain depth level of 
the state space. 

We perform this analysis to make sure that the results we obtained by 
executing the role-figure configurations in Sec. 5.3.1 are the only possible 
results. We achieve this by means of exhaustive executions that we per-
form manually. This means to enforce the Maude interpreter to examine 
all the possible rewriting rules after every transition. For instance, we 
execute only a certain set of the rewriting rules in one execution and dis-
card the others, e.g. only checking the rules for the plug in. Additionally 
we enforce the execution of our model to be always handled by checking 
the rewriting rules in an ordered manner, e.g. check the plug in rules and 
then check the plug out rules.  

The result of an exhaustive execution is one or more role-figure con-
figurations, similar to the configurations we obtained in our model execu-
tions. The different role-figure configurations mean that there are differ-
ent possible executions of the model. The resulting configurations and 
their execution traces can be examined to figure out how these configura-
tions are obtained. 

We show here an example role-figure configuration that can give two 
different result configurations under our exhaustive execution. The ex-
haustive execution of testS13 presented earlier yields the following result 
configurations: 

result Configuration :  
< e : RoleFigure | Que : nilmess , Int : director a , Met : nilmets , Cap : nilcaps , Beh : 

nilbht , Location : loc1 > 
< director : Director | Int : e a b c >  
< a : RoleFigure | Que : mess1 , Int : e director b c , Met : mets1 , Cap : caps1 , Beh : 

bht1 ,Location : loc1 >  
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< b : RoleFigure | Que : mess2 , Int : director a c , Met : mets2 , Cap : caps2 , Beh : 
bht2 , Location : loc1 >  

< c :RoleFigure | Que : mess1 , Int : director a b , Met : mets1 , Cap : caps1 , Beh : 
bht1 , Location : loc1 > 

 
< e : RoleFigure | Que : nilmess , Int : director a , Met : nilmets , Cap : nilcaps , Beh : 

nilbht , Location : loc1 > 
< director : Director | Int : e a b c >  
< a : RoleFigure | Que : mess1 , Int : director b c , Met : mets1 , Cap : caps1 , Beh : 

bht1 ,Location : loc1 >  
< b : RoleFigure | Que : mess2 , Int : director a c , Met : mets2 , Cap : caps2 , Beh : 

bht2 , Location : loc1 >  
< c :RoleFigure | Que : mess1 , Int : director a b , Met : mets1 , Cap : caps1 , Beh : 

bht1 , Location : loc1 > 
 
These resulting configurations are only different in the interface defini-

tion of the role-figure a. These configurations are obtained by manually 
controlling the order of the execution of the role-figure model rewriting 
rules, in particular the plug in and the plug out rules. 

The analysis of the trace of this exhaustive execution shows that the 
plug in and the plug out requests were competing against each other. The 
first configuration is similar to the result configuration we obtained in 
Sec. 5.3.1. In the second configuration, the plug out request initiated the 
removal of the interfaces to the plugged out role-figure, i.e. the interface 
to e was removed from a. However this removal was executed after the 
plug in request, sent by a, was consumed. 

The reason for such a situation is that role-figure a should not have 
sent the plug in request in the first place. Role-figure a, as it is defined in 
configuration test13, has already an interface to role-figure e, i.e. it cannot 
initiate a plug in request for an already existing role-figure. Exhaustive 
executions for other configurations have been conducted. Some of these 
exhaustive executions showed situations of inconsistent semantics similar 
to the one shown here for test13. The implications of these executions 
have already been incorporated in the rewriting rules for the role-figure 
model specification. 

5.3.3 Role-figure mobility validation 
Another approach to validate the role-figure model is by using the reflec-
tive kernel META-LEVEL provided in the Maude language to control the 
rewriting strategy starting from initial role-figure configurations. The re-
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flection in the rewriting logic theory is briefly explained in Appendix II, 
furthermore [CDE03] and [Mau04] may be used for a detailed description 
on the kernel META-LEVEL and the Maude module META-LEVEL. We 
use this approach to validate role-figure mobility. 

The approach is simple and consists of two phases. First, all executions 
are checked and all possible rewriting paths are examined. This gives all 
possible result configurations, which could be saved for further inspec-
tion. This can be regarded as an automated exhaustive execution of the 
initial role-figure configurations. Second, the resulting configurations of 
the first phase are checked against some correctness criteria that validates 
the mobility feature. If these resulting configurations obey the given re-
quirements for the role-figure mobility then our proposed mobility man-
agement solution is said to: 

“give valid and correct configurations” and  
“handle role-figure mobility according to the used requirements” 

In this regard we exploit the defined properties of the role-figure model 
in Sec. 4.6: Ppluggability, Pconsumeability, Pwplayability, and Psplayability. In a general 
role-figure mobility management, the following items are checked: 

(i) A moved role-figure has been successfully plugged in at the new 
location, with correct and valid interface definitions. This is a direct 
validation of the property Ppluggability. 

(ii) The resulting configuration should only contain role-figures and not 
messages, otherwise unexpected events may have happened and one 
needs to study the trace generated at this meta-level computations. 
This is the property Pconsumeability. 

(iii) One, and only one, instance of the moved actor does exist in the re-
sulting configuration − assuming no role-figure replication is ap-
plied. 

(iv) Interface definition, behaviour definition, and capability definition 
are handled according to the mobility strategy (assuming that queue 
and methods are not handled). This is achieved partly through vali-
dating the property Pwplayability and Psplayability. This means to prove 
that a moved role-figure has started executing (playing) its role after 
the move. But also we need further information on the role-figure 
state-information before the move, as well as the role-figure state-
information after the move. 

In the first phase, an internal Maude strategy for checking the reduci-
bility of a given term in Maude has been applied. Internal Maude strate-
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gies are used to specify at the META-LEVEL how to control the rewrit-
ing inference process (more on internal strategies see [CEL96]). This in-
ternal Maude strategy was adopted from the strategy used in the formal 
analysis of the Active Networks in Maude, as presented in [DMT00] and 
[WMG00]. The internal Maude strategy executes at the meta-level of the 
language, and results the set of all possible configurations. In the second 
phase, the resulting configurations were verified against our role-figure 
mobility assumptions, (i) – (iv). This verification was mainly performed 
manually. However, early results of using a number of predicates to check 
the correctness of these assumptions have been achieved, namely assump-
tions (i) and (ii). This approach validates all non-rewritable states reach-
able from the initial state, possibly multiple configurations. 

As a demonstration of the applied validation approach, we briefly pre-
sent the validation of the configuration testS6 that contains a simple role-
figure mobility management scenario. This configuration, as the mobility 
example we used in Chapter 4, assumes the application of a mobility 
method that does not involve mobility manager, e.g. mobility method 
RMM3. Also it assumes that the applied mobility strategy does not have 
rules regarding the requirements on queue content and executing methods, 
i.e. applying the design rules RD9 (a) and RD9 (q) from Sec. 3.4.4.2. 

Maude> (down RoleFigureModel : red terminalConfigurations(RoleFigureModel, 
{'testS6}'Configuration, allAMrules) .) 

rewrites: 39790 in 74ms cpu (75ms real) (536998 rewrites/second) 
result Configuration :  
< director : Director | Int : a' b c >  
< a' : Actor | Que : nilmess , Int : director b c , Met : nilmets , Cap : caps1 , Beh : bht1 >  
< b : Actor | Que : mess2 , Int : director a' c , Met : mets2 , Cap: caps2 , Beh : bht2 >  
< c : Actor | Que : mess1 , Int : director a' b , Met : mets1 , Cap : caps1 , Beh : bht1 > 

The first line instructs the Maude interpreter to reduce (using the 
command red) the term: terminalConfigurations (RoleFigureModel, 
{'test6}'Configuration, allAMrules) which calls the operation terminalConfigurations 
that searches for all possible rewriting paths concerning the configuration 
testS6. The Maude interpreter matches testS6 against all the rewriting rules 
of the role-figure model, which are listed in the term allAMrules. When ap-
plying the correctness predicates (i) – (iv) defined earlier, the outcome of 
this execution is the same as the result of the arbitrary execution con-
ducted earlier. Note the dramatic increase in the number of rewrites: 
39790 rewrites, compared to 705 in the arbitrary execution in Sec. 5.3.1.  
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To experiment with this configuration several validation runs have 
been applied with various sets of rewriting rules, various depth levels, etc. 
Similar validation runs have been applied to other configurations with dif-
ferent scenarios regarding role-figure mobility. 

5.3.4 Experiences 
During the formal analysis of the role-figure specification many of the 
small details governing both the computing architecture and the service 
functionality have been refined based on the obtained results. Our formal-
ization work has revealed several details regarding the validity of the con-
structed model. There were several occasions where changes to the role-
figure mobility management procedures were needed. After applying 
these changes, acceptable results have been achieved. Below we list some 
of these details: 

(i) The director, responsible for the play view of the architecture, needs 
to explicitly monitor the create interface method during the plug in 
of new role-figures. In the plug in rewriting rules, the director moni-
tors the create interface request to the role-figure, which has re-
quested a plug in of another role-figure. If this role-figure is down, 
the director plugs out the newly created role-figure. 

(ii) Regarding role-figures classes inherited from a base class, new plug 
in rewriting rules were specified to create these role-figures. 

(iii) In a plug out method request, the handling of the removal of the in-
terfaces has been tightly coupled with the handling of the method it-
self. The director takes a decisive role here, and controls all these 
removals. The unconnected interfaces turned out to be a real chal-
lenge. 

(iv) In the move request handling there was a need to propose a solution 
for backup instances that cannot be plugged in, or those without 
valid backup. 

(v) In the handling of the move request, the plug in of a moving role-
figure needed to be handled in a different way than a normal role-
figure plug in. 

(vi) In the role-figure move rewriting rule that includes the method re-
turn, a hidden ambiguity in the handling of the series of method re-
quests was clarified. The initial thought was to request these meth-
ods in one rewriting rule. The validation run showed certain situa-
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tions where the order of these method requests was crucial. One so-
lution to this problem can be to apply returns for these methods, e.g. 
the plug in request. 

(vii) During the while-on-the-move phase of the role-figure move proce-
dure, the role-figure and its replica should not have interfaces to 
each other, however they must manage to communicate to transfer 
information related to interface, behaviour, and capability defini-
tions. This issue led to the introduction of a role-figure mobility 
method that uses locators. 

(viii) In certain test configurations, some interface relations could not be 
updated (because certain connected role-figures themselves were 
moving), while some capability definitions have not been reclaimed 
(because they were not available in the new location). These exami-
nations led to a modified approach for the role-figure mobility, as 
we present in the following section. 

A clear benefit of applying the formalization work presented in this chap-
ter was the changes we applied to the handling of the role-figure mobility 
management. According to the original concept, role-figure mobility was 
aimed at achieving role-session, state-information, data-space, and capa-
bility mobility, similarly to how code mobility paradigm is addressed in 
other network architectures, e.g. those based on mobile agents. 

However, experimenting with the Maude specification and the formal 
analysis showed some alterations of the original concept. The most im-
portant alterations are with regard to the handling of the interfaces and 
dealing with the while-on-the-move conditions of the moving role-figure. 
Conducting various mobility scenarios led to the following two conclu-
sions: 

(i) Role-figure move procedure should achieve interface mobility 
alongside handling two replicas of the same role-figure in order to 
avoid invalid interface definitions. In Figure 5-3 we illustrate a part 
of the concept with regard to moving interfaces. In this role-figure 
Mobility scenario role-figure a moves to a new location a’. The fig-
ure focuses on the interface definition, and suggests that interfaces 
of the moving role-figure should be created to the relevant role-
figures in the new location, e.g. a’ connects to b instead of c. 

(ii) Role-figure mobility should handle the while-on-the-move condi-
tions of the moved role-figure by: considering the relationship be-



Chapter 5. The Formal Analysis 
 

 

164 

tween the replica, clarifying the mobility strategy in terms of re-
quirements on the queue contents, and the handling of the sus-
pended methods.  

 
Figure 5-3 Illustration of the revised role-figure mobility 

These two situations have not been dealt with in our formalization 
work. The Maude specification for these two situations can be specified 
based on our specification and the formal analysis and validation can be 
similar to our formal analysis and validation efforts. This is a very impor-
tant topic for further development of our formalization that can be ad-
dressed in future work. 

 



 
 

 

CHAPTER 6 
 

6 Conclusion 
 

 

 

6.1 Results 

In this thesis we have considered mobility management in adaptable ser-
vice systems. Three main mobility types have been considered: personal, 
role-figure, and terminal mobility. Personal mobility is the mobility of 
the user and its session in domains; role-figure mobility is the mobility of 
instantiated software components, or role-figures; terminal mobility is the 
mobility of the terminals across domains. There are four contributions 
within the context of the mobility management: the terminology frame-
work, the mobility management architecture, the role-figure model, the 
formal model and analysis of the role-figure model. In addition the work 
with mobility management has contributed to the TAPAS computing ar-
chitecture and system management architecture, which was presented in 
Sec. 1.4. 

The terminology framework presented in Chapter 2 provided a set of 
generic concepts and definitions for the three types of mobility. Proposi-
tions and requirement rules were also given to show what definitions are 
required and how they are related to each other. Among the most impor-
tant ones, login agent, user agent and visitor agent have been defined to 
handle the personal mobility. User agent handles the user interactions at 
home domain, while visitor agent handles the user interactions at visitor 
domain. Mobility manager has also been defined to handle the role-figure 
and the terminal mobility. Terminal mobility also needed the definition of 
mobility agent. 

The mobility management architecture was presented in Chapter 3. 
Concepts, procedures, mechanisms, and design rules to handle the three 
mobility types presented in the terminology framework were developed. 
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The mobility management functionality in this chapter has been handled 
by functional entities that were introduced. Personal mobility has been 
handled by the functional entities: LoginAgent, UserAgent, VisitorAgent, 
UserProfileBase, and UserSessionBase, which are role-figures and data-
bases. Several mobility management procedures have been developed for 
handling the user and user session mobility that constitute the personal 
mobility. Regarding role-figure mobility, MobilityManager has been in-
troduced to handle the movement of role-figures. It also handles the mo-
bility strategies, which are sets of domain based rules to control role-
figure mobility (i.e. to decide when, how, and where to move). The man-
agement functionality for the role-figure mobility was handled by the in-
troduced four different mobility management mechanisms: centralized, 
proxy, locator, and persistent mechanisms. Terminal mobility was handled 
by two main functional entities: MobilityManager and MobilityAgent. The 
proposed solution for terminal mobility was only handled with respect to 
the introduced implications from the other two mobility types, i.e. per-
sonal and role-figure mobility. When a user moves with its terminal to a 
new location or a new domain, the terminal mobility must be handled by 
the architecture. Also, when a terminal moves the executing role-figures 
may be required to move to another node or terminal (due to the reduced 
availability of capabilities in the moving terminal or the limited access 
rights of a user). Several prototype implementations have been developed 
to experiment with the different features of this architecture. One proto-
type implementation was developed for the personal mobility, and another 
prototype implementation was developed for the terminal and role-figure 
mobility. The procedures and mechanisms presented in this chapter have 
been implemented. The development was within the framework of 
TAPAS (Telematics Architecture for Play-based Adaptable Service Sys-
tems). 

The role-figure model, developed in Chapter 4, is an abstract model for 
the implemented role-figure functionality and the role-figure mobility. 
Concerning this role-figure model, we have been investigating several 
candidate frameworks for our modelling and formalization efforts. Our 
initial thoughts were to use an existing semantic framework, such as SDL 
agents, ODP computing objects, or the actor language theories. By using 
an ODP (Open Distributed Processing) semantic framework and the re-
writing logic, the structure of the cooperating role-figures and their be-
haviour is defined. The model considers the most important parts such as 
behaviour, interfaces, capabilities, messages, and executing methods. This 
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model also presented three role-figure model properties: pluggability, 
consummability, and playability.  

This role-figure model was used for the formal analysis developed in 
Chapter 5. This analysis is based on a Maude formal model. Maude is a 
language and tool supporting specification and analysis of rewriting logic 
theories. Some added assumptions and simplifications were needed to de-
velop and analyze the Maude specification. The formal analysis has been 
conducted using state space exploration techniques in the Maude tool for 
the validation of the role-figure mobility management. The formalization 
and analysis of this role-figure model using the Maude language and tool 
turned out to be a good choice. Maude was advantageous in developing 
our specification and conducting the analysis in a relatively fast manner. 

The developed mobility management functionality for the three mobil-
ity types can be related to similar concepts and related work. With regard 
to our proposed solution for the personal mobility, the main issue was 
flexibility. The separation between the user interface and the terminal in-
terface was important to address the needs for personal mobility sepa-
rately from the terminal mobility. This is more flexible than the concepts 
of user, SIM module, and terminal used in mobile telephony systems. 
Another important aspect of the proposed solution was the handling of the 
user capabilities in two main parts: user related and user session related 
capabilities. Generally, this solution is inline with the handling of per-
sonal mobility by VHE and OSA standards. However, our approach to 
user session as based on role-figures instantiated and controlled by a user 
agent or a visitor agent can be more flexible with regard to role-figure 
mobility. For example, when a user moves, its session also moves. This 
means its role-figures must be moved as well; however, not every role-
figure can move with the user session. Using role-figure mobility it is 
possible to move these role-figures to an appropriate location, and still 
achieve user session mobility. In addition to the similarities mentioned 
above, the concepts of user agent and the visitor agent can also be com-
pared to the concepts of the home agents and the foreign agents in the 
Mobile IP. 

Also, our handling of the role-figure mobility can be compared to code 
mobility related concepts. Regarding mobile agent systems, a mobile role-
figure is similar in principle to a controllable mobile agent with limited 
autonomous computing capability. The developed concepts for role-
figures and role-figure mobility achieve both the agency and the mo-
bility aspects associated with mobile agents. The agency aspect implies 
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that a role-figure as a software component can act on behalf of another 
component. For example, a user agent and visitor agent act on behalf of 
users to offer service personalization to users. Also, a mobility agent acts 
on behalf of a terminal to control its location. The other aspect of mobile 
agents is the mobility. The main objective in moving role-figures is to re-
duce network traffic, improve capability allocation, increase fault resil-
ience, and allow local access of data. We believe role-figure mobility has 
the potential to achieve the aspect of mobility with better utilization of the 
system resources due to the limited, but flexible, autonomous characteris-
tics of role-figures. Additionally, we also allow domains and sub-domains 
to define different mobility strategies to control the role-figure mobility. 
These strategies are mainly used to control how role-figures are preserved 
after the move. Mobility strategies also can be used to restrict or prohibit 
role-figure mobility in a visitor domain. 

 

6.2 Perspectives 

The TAPAS mobility management architecture and its mobility proce-
dures contain several areas are that left out to be studied and developed in 
future work. For example the developed role-figure mobility mechanisms 
can be studied and experimented in large domains of nodes and role-
figures. The experimentations can be carried out using varying conditions 
of network traffic, changing service functionality, and multi mobility 
managers. Also new role-figure mobility management mechanisms may 
be developed. 

Although our experiences in modelling the role-figure and its proper-
ties regarding the role-figure mobility management are quite encouraging, 
the results of this thesis in this area are just a first step. The role-figure 
model opens up interesting research areas. The reasoning about the role-
figure queue and methods as part of the role-figure mobility management 
is one example of such research areas. Also the semantics and the dynam-
ics of the role-figure model can be re-constructed based on more elabo-
rated interface type theory than the one we used. The properties of the 
role-figure model may also be extended to elaborate on the role-figure 
mobility management mechanisms. 

More efforts as well as more case studies are needed to experiment 
with our Maude formal specification. Such efforts will definitely increase 
the level of confidence in our results even further. For instance, further 
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validation of the role-figure model can be conducted using the built in 
Maude model checker. Also, the property specification logic (linear tem-
poral logic) and the decision procedures for it (model checking) can be 
used to prove other properties of the role-figure model than the three main 
properties. Besides, extending the role-figure model specification to in-
clude an interface type theory, queue semantics handling, and executing 
methods handling would provide a comprehensive formal analysis for the 
role-figure model presented in Chapter 4. Conducting a case study that 
includes the specification and validation of a large service system using 
our Maude specification is also an interesting future work. 

Concerning the TAPAS architecture, it has been justified that the 
TAPAS computing architecture provides solid ground for further studies 
on adaptable service systems. The system management architecture is still 
under development through PhD work. As the work with these different 
parts is the subject for academic work, there is a potential for a better in-
tegration and harmonization. Seen from the mobility management, the 
integration of the role of the mobility manager into the service manage-
ment, configuration management, and capability management architecture 
components is an interesting topic for further study and development. 
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APPENDIX I TAPAS Architecture 

Appendix I.1  TAPAS – The Service Management Architec-
ture 
The framework for Service Management Architecture is the extension of 
TAPAS that handles the deployment and management of services. This 
appendix provides a brief introduction to this architecture, for more de-
tails see [SJS04]. The framework is illustrated in Figure i. It is centred at 
the role of a supervisory Role-Figure, the Service Manager. 

Services are instantiated and later modified via sending requests to this 
manager. A network node executes a State Machine Interpreter and has a 
set of capabilities. The interpreter can run Role-Figure specifications, 
which are state-machine-based. These specifications define Actions (func-
tions and tasks to be performed by the Role-Figure during a specific 
state,) and their Action Groups (classification of actions, e.g. actions such 
as terminate, exit, error handling, etc. can be classified into the Action 
Group “Control Functions”.) This technique is used to tackle the problem 
of platform and implementation independence, as well as achieving a bet-
ter flexibility and reusability in service and application design. In the 
framework we also use the classification of capabilities into capability 
categories, to indicate the operating circumstances, e.g. Powerful-PDA, 
Basic-PDA, Smart-Phone. The components of the framework will be de-
scribed shortly. 

o Play Repository is a database that contains the service definitions and 
includes: 1) Role-Figure Specifications 2) Mapping Rules (specify the 
mapping between the capabilities and their categories.)  

o Capability and Status Repository (CSRep) is a database that provides 
a snapshot of the resources of the system. It maintains information on 
all capability and status data in all system nodes. 

o Action Library is a database that contains the executable routines for 
the actions. These routines will be executed by the role-figures. They 
are implemented according to the capability information they require.  
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Figure i Dynamic Service Management Framework. 

o Service Manager (SM) is responsible for the handling of Initial Ser-
vice requests, and Function Update requests. It, first, calculates the 
offered Capability Category according to the Mapping Rules. Second, 
it modifies the Role Figure Specification by adding the corresponding 
Capability Category information. This modified Role Figure Specifi-
cation is sent to the State Machine Interpreter for execution. 

o Requests there are two service requests that may be handled by the 
SM: 1) Initial Service request indicates a role to be executed in a 
node, 2) Function Update request is issued to update a functionality 
due to a capability change. 

o State Machine Interpreter (SMI) is a state machine execution support. 
This is the primary entity in the framework responsible for the execu-
tion of the Role-Figures according to the Role-Figure Specification. 
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Appendix I.1  TAPAS – The Dynamic Configuration Archi-
tecture 
A Dynamic Configuration Architecture as an extension to TAPAS has 
been developed. This appendix provides a brief introduction to this archi-
tecture, for more details see [AAS02] and [ASA05]. This framework is 
depicted in Figure ii. The framework comprises the following main enti-
ties: 

o Capability & Status Repository (CSRep) this has the same function as 
in the Service Management Architecture. 

o Play Repository comprises a set of Role-Figure Specifications, and 
two sets of rules. Play configuration rules describe service system 
configuration constraints, such as specification of the maximum num-
ber of roles allowed to install at a specific node. Reconfiguration rules 
define application-specific reconfiguration policies for handling sub-
stantial reconfiguration-related events. Examples of such events in-
clude a service component failure, a decrease in system QoS and re-
source unavailability. With application-specific reconfiguration rules, 
the system can perform appropriate actions to alleviate a problem in a 
running system. 

o Capability, Status & Event Monitor (CSEMon) monitors the system 
capabilities/status and also maintains the CSRep. Moreover, it listens 
to certain events indicating changes to the system and its environment, 
which would prevent the system from getting the desired level of ser-
vices. In response to such events, it notifies the Configuration Man-
ager for further proper reactions.  

o Requests There are three kinds of requests; Trouble report (is an event 
triggered by the deterioration in the resource availability utilized by 
services), Service Request (issued to install and execute a particular 
service system, which has not yet been installed), and Service Compo-
nent Request (is used for the instantiation of a particular service com-
ponent as part of a running service system.) 
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Figure ii Architectural framework for dynamic configuration. 

o Configuration Manager (CM) is responsible for generating the appro-
priate configurations and reconfigurations for a system. When there 
arises a request for installing a new service (i.e., a service request), the 
CM fetches a corresponding play definition and retrieves the system 
capabilities and status from the PlayRep and the CSRep, respectively. 
Valid configurations for such a service are then generated and ana-
lyzed. Such a configuration that defines which nodes in the system 
should execute actors constituting certain Role-Figures will be for-
warded to and executed by the Service Installer. The determination of 
a location for executing a particular role (i.e., in the case of a service 
component request) the CM dynamically determines the best location 
(node) for its installation, based on the current system configuration, 
available capabilities and status as well as the component’s require-
ments. It then notifies the Service Installer to load a corresponding 
manuscript from the PlayRep and instantiates it on the suggested 
node. Thirdly, upon the receipt of a trouble report indicating a prob-
lem in a running system, the CM analyzes the problem, fetches related 
information from the CSRep and the PlayRep, and produces a service 
reconfiguration plan to be executed by the Service Reconfigurator. 
Possible plans include role-figure relocation, re-initialization, load 
balance and distribution. Selection of an appropriate plan depends on 
the defined reconfiguration rules as well as the nature of a problem. 

o Service Installer is responsible for the installation of a service into the 
system by creating corresponding actors for execution of certain roles, 
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according to an obtained play configuration generated by the CM. Al-
location of capabilities as well as instantiation of a manuscript for 
each role are also performed by this entity. 

o Service Reconfigurator initiates and performs reconfiguration of a 
service system based on an obtained reconfiguration plan. 
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APPENDIX II Rewriting Logic 
A rewriting theory is a 4-tuple R = (∑,E,L,R), where ∑ is a ranked al-

phabet of operator symbol, E is a set of ∑-equations, L is a set of labels, 
and R is a set of labelled conditional rewriting rules. Sentences in rewrit-
ing logic are sequent of the form [t]E → [t′]E (read: [t] becomes [t′]), 

where t, t′ are ∑-terms, possibly involving some variables from a count-
able infinite set of variables X=def{x1,x2,…}. A theory R in this logic con-
sists of a set of rules of the form: 

r : [t] → [t′]  if C 

where r is a label from the label set L, C is a condition of the form: [u1]→ 

[v1]∧…∧ [un]→ [vn], and [ui],[vi] are ∑-terms, possibly with variables in 
X. 
Given a rewriting theory R, we say that R entails a sequent [t]→[t ] and 

write R  [t]→[t′] if and only if [t]→[t′] can be obtained by finite applica-
tion of the following rules of deduction: 

 Reflexivity. 
For each [t] ∈ T∑,E(X), ]t[]t[ →  

 Congruence. 

For each f ∈ ∑ , n ∈ IN, 
)]tt(f[)]tt(f[
]t[]t[]t[]t[

'
n

'
n

'
nn

'

11

11

→
→→  

 Replacement. 
For each rewriting rule r: )]xx('t[)]xx(t[ nn 11 →  

)]x'('t[)]x(t[
][][][][ '

nn
'

ωω
ωωωω

→
→→ 11  

 Transitivity.  
]t[]t[

]t[]t[]t[]t[

31

3221

→
→→  

 Symmetry.  
]t[]t[
]t[]t[

12

21

→
→  

Rewriting Logic, as other logics, should be understood as a method of 
correct reasoning about some class of entities, which are, in this case, 
concurrent systems having states, and evolving by means of transitions. 
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The following set of analogies can be used as roadmap for using rewriting 
logic as a semantic framework for concurrent systems: 

State   ↔  Term 
Transition  ↔  Rewriting 
Distributed Structure ↔  Algebraic Structure 

 

In this thesis we used the following specialization for Rewriting Logic in 
our Role-figure Model: 
 RWL→RWLACI→ConcOOP (Rewriting Logic → rewriting modulo As-

sociativity, Commutativity and Identity → Concurrent Object Oriented 
Programming). 

Rewriting logic is reflective, which means that there is a finitely presented 
rewrite theory U that is universal in the sense that we can represent any 

finitely presented rewrite theory R (including U itself) and any term t, t′ 
in R as terms R  and t , 't  in U , and that we then have the following 
equivalence: 
 

R  t → t′   ⇔    U t,R  → ', tR  

The theory U  can be seen as a universal interpreter for rewriting logic 
which can simulate the rewrites pf any given rewrite theory R.   
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APPENDIX III The full Role-figure Model semantics 
In this Appendix the full semantics of the Role-Figure Model is pre-
sented. The following notations are used in the semantics: 

 a, b, f, g, h denote Role-Figure names; 
 RoleFigures is the set of all existing Role-Figures in a given 

system; 
 A,A′,…  B,B′,… denote Role-Figures a and b as they evolve, 

respectively; 
 i, j denote interface names; 
 α, α° denote interface types; 

 〈w1=ν1,w2=ν2〉  denotes the record containing two fields named w1 

and w2 and having the values ν1 and ν2, 
respectively; 

 r.w1  stands for the value of the w1 field in record r; 
 =def  stands for equality by definition; 
 || denotes the asynchronous parallel operator; 
   denotes an infix insert operator; 

 
n

i 1=
  denotes applying the operator  n times 

  denotes an infix remove operator. 

The operators ||,  and  are commutative, associative, and have ∅ as a 

neutral element. The insert operator “a b” only executes if its left-hand 
side argument, a, is not in its right-hand side argument, b. Otherwise it 
does nothing. The remove operator “a b” only executes if its left-hand 
side argument, a, is in its right-hand side argument, b. Otherwise it does 
nothing. 
 

RetSigReqMSG
MetQueCapBehIntRF

MSGRFRFCE
RFCRFCRFCERFC
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=

======
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=
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♣        l:  A || T || Q || M → A′ || Σ || T ′ || Q′ || M′ if  C 

The ♣|conditions: 
(i) T ∩ T ′ = Q ∩ Q′ = M ∩ M′ = Ø  

(ii) A ∉ Σ 
(iii) Assume: 

s = · pargrretmnnrefmnmmetasrcitar ~,,:,:,,: ====== α Ò is a request 
sent by Role-Figure a (to apply ♣ assume: a evolves from A to A′ 

after the sending, and s ∈ M′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b 
 The signature of the invoked method m is included in the 
definition of α. 

 If the invoked method m has the following method signature 
(methsigm ::= argumentm → returnm)  
THEN     (r =def returnm)   AND    ( p~  =def argumentm)   



 
 

 

191 

 n ∈ A′.Met 
Assume now that Role-Figure b receives this request in another rewriting 
rule (to apply ♣ assume: b evolves from B to B′ after the receiving, 

and s ∈ M) then the following hold: 

 ∃ [j : α°], j∈B.Int and α° α  (this means α° is a subtype of α) 

 s ∈ B′.Que 
 If the invoked method m has the following method signature 
(methsigm ::= argumentm → returnm)  

 THEN     (r =def returnm)   AND    ( p~  =def argumentm) 
(iv) Assume: 

s = · pargsignameasrcitar ~,,,: ==== α Ò is a signal sent by Role-
Figure a (to apply ♣ assume: a evolves from A to A′ after the send-

ing, and s ∈ Q′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b  
 The signal name and its arguments are included in the definition 
of α. 

Assume now that Role-Figure b receives this signal in another rewriting 
rule (to apply ♣ assume: b evolves from B to B′ after the receiving, 

and s ∈ Q) then the following hold: 

 ∃ [j : α°], j∈B.Int and α° α  

 s ∈ B′.Que 
(v) Assume: 

s = · pargmnnrefasrcitar ~,:,,: ==== α Ò is a return sent by Role-
Figure a as a response to an invocation request received from an-
other Role-Figure (to apply ♣ assume: a evolves from A to A′ after 

the sending, and s ∈ T′). Then the following hold: 

 i∈A.Int 

 ∃b, b∈ RoleFigures AND i is an interface to b  
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Assume now that Role-Figure b receives this return in another rewriting 
rule (to apply ♣ assume: b evolves from B to B′ after the receiving, 

and s ∈ T) then the following hold: 

 ∃ [j : α°], j∈B.Int and α° α  

 n ∈B.Met 

 s ∈ B′.Que 
(vi) A request, signal, or return may be consumed from the queue of a 

Role-Figure: 
A.Que s  

(vii) In the rewriting rule ♣: 
− Either (A.Int⊆A′.Int), (A.Int =A′.Int), or (A′.Int ⊆A.Int)  

hold in one rewriting transition. 
− Either (A.Met⊆A′.Met), (A.Met =A′.Met), or (A′.Met ⊆A.Met) 

hold in one rewriting transition. 
− Either (A.Que⊆A′.Que), (A.Que=A′.Que), or (A′.Que⊆A.Que) 

hold in one rewriting transition. 
− Either (A.Cap⊆A′.Cap), (A.Cap=A′.Cap), or (A′.Cap⊆A.Cap) 

hold in one rewriting transition. 
(viii) In the rewriting rule ♣, if BehaviourChange is not applied then the 

following hold: 
 Either (A.Beh.St = A′.Beh.St)  or   (A′.Beh.St ∈A.Beh.Sc) 

(ix) If ℵ = RoleFigures ∪ ∑    and      ℑ = ∪
ℵ∈A

Int.A   

then     
 ∀i:α, i ∈ ℑ     and     ∀a, a ∈ ℵ 

 ∀r:Req, r.tar ∈ ℑ    and     r.src ∈ ℵ 

 ∀s:Sig, s.tar ∈ ℑ    and     s.src ∈ ℵ 

 ∀r:Ret, r.tar ∈ ℑ    and     r.src ∈ ℵ 

(x) ∀B ∈ ∑, then  B.Met = Ø  and B.Que = Ø  
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APPENDIX IV The Maude specification 
 

In this Appendix we present the Maude specification of the Role-Figure 
Model. 
*************************************************************************************************************** 
*********                                   The Role-Figure Maude module                                              ******** 
*************************************************************************************************************** 
 (omod RoleFigureModel is 
 
*** sort definitions 
sort Type . 
sorts Loc OidSet Content State StateSet Beh BehType Signal SignalSet Cap CapSet Mes MesSet 
Met MetSet . 
subsort Oid < OidSet . 
subsort State < StateSet . 
subsort Signal < SignalSet . 
subsort Cap < CapSet . 
subsort Met < MetSet . 
subsort Mes < MesSet . 
  
*** the Role-Figure and the Director classes 
class  Actor | Int : OidSet, Beh : BehType, Cap : CapSet, 
              Que : MesSet, Met : MetSet . 
class  Director | Int : OidSet . 
class  RoleFigure | Location : Loc, Int : OidSet, Beh : BehType, Cap : CapSet, 
              Que : MesSet, Met : MetSet . 
  
*** TAPAS messages: 
*** the plug in requests 
msg pi-tar_src_name_location_ : Oid Oid Oid Loc -> Msg . 
msg pi-tar_src_name_location_with_ : Oid Oid Oid Loc Content -> Msg . 
msg pi-tar_src_name_location_with_ : Oid Oid Oid Loc Type -> Msg .                   
msg pi-tar_src_name_location_with__ : Oid Oid Oid Loc Content Type -> Msg .          
msg pi-tar_src_name_location_with__ : Oid Oid Oid Loc BehType CapSet -> Msg . 
msg pi-tar_src_name_location_with___ : Oid Oid Oid Loc BehType CapSet Type -> Msg .  
*** the plug out requests 
msg po-tar_src_name_ : Oid Oid Oid -> Msg . 
msg po-tar_src_name__ : Oid Oid Oid Type -> Msg . 
*** the create interface request 
msg ci-tar_src_j_ : Oid Oid OidSet -> Msg . 
*** the behaviour change requests 
msg bc-tar_src_beh_ : Oid Oid BehType -> Msg . 
msg bc-tar_src_beh____ : Oid Oid BehType State StateSet StateSet -> Msg . 
*** the capability change requests 
msg cc-tar_src_p_ : Oid Oid CapSet -> Msg . 
msg cc-tar_src_p__ : Oid Oid CapSet Type -> Msg . 
*** the move requests 
msg mo-tar_src_location__with_ : Oid Oid Oid Loc Content -> Msg . 
msg mo-tar_src_location__with__ : Oid Oid Oid Loc Content Type -> Msg .                    
*** the move returns 
msg mor-tar_src_to__ : Oid Oid Oid Loc -> Msg .      
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msg mor-tar_src_to__with_ : Oid Oid Oid Loc Type -> Msg . 
 
*** general message 
msg msg_from_to_ : Content Oid Oid -> Msg . 
  
*** multimessage-declaration 
op multimsg_from_to_ : Content Oid OidSet -> Configuration . 
  
*** operator declarations 
*** constants 
ops st1 st2 : -> State .            *** states 
ops sts1 sts2 : -> StateSet .       *** state sets 
ops bh1 bh2 : -> Beh .              *** behaviours 
ops m remInt creInt moving : -> Content .       *** message content 
ops director a a' b c e : -> Oid .             *** Role-Figures 
ops n n' : -> OidSet .     *** Role-Figure sets 
ops bht1 bht2 : -> BehType .       *** behaviour type 
ops sig1 sig2 : -> Signal .     *** signals 
ops sigs1 sigs2 : -> SignalSet .    *** signal sets 
ops cap1 cap2 : -> Cap .     *** capabilities 
ops caps1 caps2 : -> CapSet .     *** capability sets 
ops met1 met2 : -> Met .     *** methods 
ops mets1 mets2 : -> MetSet .    *** method sets 
ops mes1 mes2 : -> Mes .     *** messages 
ops mess1 mess2 : -> MesSet .    *** message sets 
ops loc1 loc2 : -> Loc .     *** locations 
  
*** [multi]set constructors: 
op nil : -> OidSet . 
op nilOid : -> Oid . 
op nilcaps : -> CapSet . 
op nilbht : -> BehType . 
op nilmess : -> MesSet . 
op nilmets : -> MetSet . 
op __ : OidSet OidSet -> OidSet [assoc comm id: nil prec 15] . 
  
*** set-operations: 
op in : Oid OidSet -> Bool . 
op subseteq : OidSet OidSet -> Bool . 
op _-_ : OidSet Oid -> OidSet .       *** Set minus one Oid! 
  
*** example configurations for testing: 
ops testS1 testS11 testS12 testS13 testS2 testS21 testS3 testS4 testS5 testS6: -> Configuration . 
  
*** variable declaration 
vars A A' B C D : Oid .              *** Role-Figures 
vars N N' N'' : OidSet .              *** Role-Figure sets 
vars M : Content .         *** message content 
vars ST1 ST2 : State .     *** state sets 
vars STS1 STS2 : StateSet .     *** state sets 
vars BH1 BH2 : Beh .              *** behaviours 
vars BHT1 BHT2 : BehType .             *** behaviours types 
vars SIG1 SIG2 : Signal .             *** signals 
vars SIGS1 SIGS2 : SignalSet .             *** signal sets 
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vars CAP1 CAP2 : Cap .             *** capabilities 
vars CAPS1 CAPS2 : CapSet .             *** capability sets 
vars MET1 MET2 : Met .             *** methods 
vars METS1 METS2 : MetSet .             *** method sets 
vars MES1 MES2 : Mes .             *** messages 
vars MESS1 MESS2 : MesSet .             *** message sets 
vars LOC1 LOC2 : Loc .             *** locations 
 
*** equations on sets: 
eq A A = A .         
eq in(A, B N) = A == B or in(A,N) . 
eq in(A,nil) = false . 
eq subseteq(A N ,N') = in(A,N') and subseteq(N,N') . 
eq subseteq(nil,N') = true . 
eq (A N) - A = N - A .  
ceq N - A = N if not in(A,N) . 
  
*** multimessage definition: 
ceq multimsg M from A to (B N) =  
             (msg M from A to B) (multimsg M from A to (N - B)) if not M == creInt . 
  
eq multimsg creInt from A to (B N) =  
             (ci-tar B src A j A) (ci-tar A src B j B) (multimsg creInt from A to (N - B)) . 
  
eq multimsg M from A to nil = none . 
  
  
*** example configurations for testing 
eq testS1 = 
   (po-tar e src director name e) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1, Int : director b c e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c e, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1, Int : director a b e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < e : RoleFigure | Location : loc1, Int : director a b c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > . 
  
eq testS11 = 
   (po-tar director src a name e) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1, Int : director b c e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c,   Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1, Int : director a b e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < e : RoleFigure | Location : loc1, Int : director a c,   Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > . 
  
eq testS12 = 
   (msg remInt from e to director) 
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   < director : Director | Int : a b c e > . 
   < a : Actor | Int : director b c e, Beh : bht1, Cap : caps1, Que : mess1, Met : mets1 > . 
  
eq testS13 = 
   (po-tar e src director name e)(pi-tar director src a name e location loc1 with m) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1, Int : director b c e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c e, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1, Int : director a b e, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 >  
   < e : RoleFigure | Location : loc1, Int : director a b c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > . 
 
eq testS2 = 
   (pi-tar director src a name e location loc1 with m) 
   < director : Director | Int : a b c > 
   < a : RoleFigure | Location : loc1, Int : director b c, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1, Int : director b a, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > . 
  
eq testS21 = 
   (pi-tar director src a name e location loc1 with bht1 caps1) 
   < director : Director | Int : a b c > 
   < a : RoleFigure | Location : loc1, Int : director b c, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < b : RoleFigure | Location : loc1, Int : director a c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1, Int : director b a, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > . 
 
eq testS3 = 
   (ci-tar e src a j c) (ci-tar c src a j e) 
   < director : Director | Int : a b c e > 
   < a : RoleFigure | Location : loc1,  Int : director b c e, Beh : bht1, Cap : caps1, Que : mess1, Met 
: mets1 > 
   < b : RoleFigure | Location : loc1,  Int : director a c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1,  Int : director b a, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > 
   < e : RoleFigure | Location : loc1,  Int : director a, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > . 
  
eq testS4 = 
   (bc-tar a src b beh bht2) 
   < director : Director | Int : a > 
   < a : RoleFigure | Location : loc1,  Int : director b n, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > . 
  
eq testS5 = 
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   (cc-tar a src b p caps2) 
   < director : Director | Int : a > 
   < a : RoleFigure | Location : loc1,  Int : director b n, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > . 
  
eq testS6 = 
   (mo-tar a src b location a' loc2 with moving) 
   < director : Director | Int : a b c > 
   < a : RoleFigure | Location : loc1,  Int : director b c, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 >  
   < b : RoleFigure | Location : loc1,  Int : director a c, Beh : bht2, Cap : caps2, Que : mess2, Met : 
mets2 > 
   < c : RoleFigure | Location : loc1,  Int : director b a, Beh : bht1, Cap : caps1, Que : mess1, Met : 
mets1 > . 
 
*** The Role-Figure Model rewriting rules: 
 
*** Create Interface: 
crl [CreateInterfaceAtActorSemantics] : 
   (ci-tar A src C j B) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Int : B N > if in(C,N) or (B == C) . 
  
crl [CreateInterfaceAtDirectorSemantics] : 
   (ci-tar A src C j B) 
   < A : Director | Int : N > => 
   < A : Director | Int : B N > if in(C,N) or (B == C) . 
  
*** Plug out method 
crl [PlugOuttoActorSemantics] : 
   (po-tar A src B name C) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > =>  
   (multimsg remInt from A to N) if (C == A) and (B == director) and in(B,N) . 
  
crl [PlugOuttoDirectorSemantics] : 
   (po-tar director src A name B) 
   < director : Director | Int : N > =>  
   < director : Director | Int : N > (po-tar B src director name B) if in(B,N) . 
  
*** remove interface 
crl [RemoveInterfacesAtActorSemantics] : 
   (msg remInt from B to A) 
   < A : RoleFigure | Int : N > =>  
   < A : RoleFigure | Int : N - B >  if in(B,N) . 
  
crl [RemoveInterfacesAtDirectorSemantics] : 
   (msg remInt from B to A) 
   < A : Director | Int : N > =>  
   < A : Director | Int : N - B >  if in(B,N) . 
 
*** Plug in without passing behaviour and capability 
crl [PlugInNoContentSemantics] : 
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   (pi-tar D src A name B location LOC1) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director A, Beh : nilbht, 
Cap : nilcaps, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B) if not in(B,N) and (D == director) . 
 
***  Plug in for non-moving Role-Figure 
crl [PlugInNotMovingSemantics] : 
   (pi-tar D src A name B location LOC1 with M) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director A, Beh : nilbht, 
Cap : nilcaps, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B) if not in(B,N) and (M =/= moving)  and (D == director) . 
  
***  Plug in for moving Role-Figure 
crl [PlugInMovingSemantics] : 
   (pi-tar D src A name A' location LOC1 with M) 
   < director : Director | Int : N > => 
   < director : Director | Int : A' N >  
   < A' : RoleFigure | Location : LOC1, Int : director A, Beh : nilbht, Cap : nilcaps, Que : nilmess, 
Met : nilmets > 
   (mor-tar A src director to A' LOC1) 
   if not in(A',N) and (M == moving)  and (D == director) . 
 
*** Plug in with passing behaviour and capability, possibly to an existing Role-Figure  
crl [PlugInwithCapBehSemantics] : 
   (pi-tar D src A name B location LOC1 with BHT2 CAPS2) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director A, Beh : BHT2, 
Cap : CAPS2, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B)  if (D == director) . 
 
*** Behaviour Change: 
crl [BehaviourChangeSemantics] : 
   (bc-tar A src B beh BHT2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Location : LOC1, Beh : BHT2 > if in(B,N) . 
  
*** Capability Change: 
crl [CapabilityChangeSemantics] : 
   (cc-tar A src B p CAPS2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Location : LOC1, Cap : CAPS2 > if in(B,N) . 
  
*** Role-Figure Move: 
crl [RoleFigureMoveSemantics] : 
   (mo-tar A src B location A' LOC2 with M) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Location : LOC1, Int : N > (pi-tar director src A name A' location LOC2 with M) 
if in(B,N) . 
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*** Role-Figure move return 
crl [RoleFigureMoveReturnSemantics] : 
   (mor-tar A src D to A' LOC2) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Location : LOC1, Int : A' N >   
   (cc-tar A' src A p CAPS1) (multimsg creInt from A' to N) (bc-tar A' src A beh BHT1) (po-tar direc-
tor src A' name A) if (D == director) . 
 
endom) 
 
*** system runs to test the Role-Figure configurations 
  
(rew testS1 .) 
(rew testS11 .) 
(rew testS12 .) 
(rew testS13 .) 
(rew testS2 .) 
(rew testS21 .) 
(rew testS3 .) 
(rew testS4 .) 
(rew testS5 .) 
(rew testS6 .) 
 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
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*************************************************************************************************************** 
*********                                     The Capability Maude module                                              ******** 
*************************************************************************************************************** 
*** A capability manager is considered in this module to manage capabilities 
*** at different locations ... it imports the RoleFigureModel module 
  
(omod  Capability is 
protecting RoleFigureModel . 
protecting MACHINE-INT . 
   
*** Capability Manager with available and used capability sets 
class  ConfigManager | aCap : CapSet, uCap : CapSet . 
 
*** capability management messages: 
*** request to allocate capabilities 
msg capAllocation-src__ : Oid CapSet -> Msg . 
*** return of the allocation 
msg capAllreturn-tar__ : Oid CapSet -> Msg . 
*** request to release capabilities 
msg capRelease-src__ : Oid CapSet -> Msg . 
 
*** capabilities: 
 
ops cap1-a cap1-b cap1-c cap1-d cap1-e cap1-f : -> Cap . 
ops cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f : -> Cap . 
 
ops caps3 caps4 : -> CapSet . 
ops configmanager, a, a', b : -> Oid . 
ops testC1 testC2 testC3 testC4 testC5 testC6 testC7 : -> Configuration . 
op cm : -> Type . 
 
*** Some set-operations: 
op __ : CapSet CapSet -> CapSet [assoc comm id: nilcaps prec 15] . 
op in : Cap CapSet -> Bool . 
op subseteq : CapSet CapSet -> Bool . 
op _-_ : CapSet Cap -> CapSet .         *** Set minus one Oid 
op _-_ : CapSet CapSet -> CapSet .        *** Set minus set 
 
***the same variables in the RoleFigureModule 
vars A A' A" B B' C D : Oid . vars N N' N'' : OidSet . 
vars M : Content . 
vars TYPE : Type . 
vars ST1 ST2 : State . 
vars STS1 STS2 STS3 STS4 : StateSet . 
vars BH1 BH2 : Beh . 
vars BHT1 BHT2 : BehType . 
vars SIG1 SIG2 : Signal . 
vars SIGS1 SIGS2 : SignalSet . 
vars CAP1 CAP2 CAP3 CAP4 CAP5 CAP6 : Cap . 
vars CAPS1 CAPS2 CAPS3 CAPS4 : CapSet . 
vars MET1 MET2 : Met . 
vars METS1 METS2 : MetSet . 
vars MES1 MES2 : Mes . 
vars MESS1 MESS2 : MesSet . 
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vars LOC1 LOC2 : Loc . 
vars L1 L2 : MachineInt . 
 
*** Functions on sets: 
eq CAP1 CAP1 = CAP1 .     *** This equation makes the multiset into a set. 
eq in(CAP1, CAP2 CAPS1) = CAP1 == CAP2 or in(CAP1,CAPS1) . 
eq in(CAP1,nilcaps) = false . 
eq subseteq(CAP1 CAPS1,CAPS2) = in(CAP1,CAPS2) and subseteq(CAPS1,CAPS2) . 
eq subseteq(nilcaps,CAPS2) = true . 
eq (CAP1 CAPS1) - CAP1 = CAPS1 - CAP1 .  
ceq CAPS1 - CAP1 = CAPS1 if not in(CAP1,CAPS1) . 
ceq (CAPS1) - (CAP1 CAPS2) =  ((CAPS1 - CAP1) - (CAPS2 - CAP1)) if in(CAP1,CAPS1) .  
ceq (CAPS1) - (CAP1 CAPS2) =  ((CAPS1) - (CAPS2 - CAP1)) if not in(CAP1,CAPS1) .  
eq (CAPS1) - nilcaps = CAPS1 .  
 
eq testC1 = 
(capAllocation-src a cap1-a) 
< configmanager : ConfigManager | aCap : cap1-a cap1-b cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : nilcaps > 
< a : RoleFigure | Location : loc1, Int : nil, Beh : bht1, Cap : caps1, Que : mess1, Met : mets1 > . 
 
eq testC2 = 
(capRelease-src a cap1-a cap1-b) 
< configmanager : ConfigManager | aCap :  cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : cap1-a cap1-b cap1-c > 
< a : RoleFigure | Location : loc1, Int : nil, Beh : bht1, Cap : caps1, Que : mess1, Met : mets1 > . 
 
eq testC3 = 
(pi-tar director src b name a location loc1 with bht2 cap1-a cap1-b cm) 
< configmanager : ConfigManager | aCap : cap1-a cap1-b cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : nilcaps > 
< director : Director | Int : b > 
< b : RoleFigure | Location : loc1, Int : director, Beh : bht1, Cap : caps1, Que : mess1, Met : mets1 
> . 
 
*** this configuration shows a competing plug in requests on shared capabilities 
eq testC4 = 
(pi-tar director src b name a location loc1 with bht2 cap1-a cap1-b cm)(pi-tar director src b name c 
location loc1 with bht2 cap1-a cap1-c cm) 
< configmanager : ConfigManager | aCap : cap1-a cap1-b cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : nilcaps > 
< director : Director | Int : b > 
< b : RoleFigure | Location : loc1, Int : director, Beh : bht1, Cap : caps1, Que : mess1, Met : mets1 
> . 
 
eq testC5 = 
(cc-tar b src a p cap1-a cap1-b cm) 
< configmanager : ConfigManager | aCap : cap1-a cap1-b cap1-c cap1-d  
cap2-a cap2-b cap2-c cap2-d , uCap : cap1-e cap1-f cap2-e cap2-f > 
< director : Director | Int : b a > 
< a : RoleFigure | Location : loc1, Int : director b, Beh : bht1, Cap : cap2-e cap2-f, Que : mess1, 
Met : mets1 >  
< b : RoleFigure | Location : loc1, Int : director a, Beh : bht1, Cap : cap1-e cap1-f, Que : mess1, 
Met : mets1 > . 
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eq testC6 = 
(po-tar b src director name b cm) 
< configmanager : ConfigManager | aCap : cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : cap1-a cap1-b  > 
< director : Director | Int : b > 
< b : RoleFigure | Location : loc1, Int : director, Beh : bht1, Cap : cap1-a cap1-b, Que : mess1, Met 
: mets1 > . 
 
*** capability rewriting rules 
  
*** the configuration manager handles the allocation and release of capabilities 
crl [capAllocation] : 
   (capAllocation-src A CAPS3) 
   < configmanager : ConfigManager | aCap : CAPS1, uCap : CAPS2 > => 
   < configmanager : ConfigManager | aCap : CAPS1 - CAPS3, uCap : CAPS2 CAPS3 >  (capAll-
return-tar A CAPS3)  
   if subseteq(CAPS3,CAPS1) . 
 
crl [capAllreturn] : 
   (capRelease-src A CAPS3) 
   < configmanager : ConfigManager | aCap : CAPS1, uCap : CAPS2 > => 
   < configmanager : ConfigManager | aCap : CAPS1 CAPS3, uCap : CAPS2 - CAPS3 >   
   if subseteq(CAPS3,CAPS2) . 
 
*** Plug in with consideration to capability allocation by the configuration manager 
crl [PlugInwithCapBehCap] : 
   (pi-tar D src A name B location LOC1 with BHT2 CAPS2 TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : RoleFigure | Location : LOC1, Int : director A, Beh : BHT2,  
   Cap : nilcaps, Que : nilmess, Met : nilmets > 
   (ci-tar A src director j B) (capAllocation-src B CAPS2) 
   if (TYPE == cm) and (D == director) . 
    
*** this shows how an existing Role-Figure adds an allocated capset to its capability definition 
rl [PlugInwithCapBehCapReturn] : 
   (capAllreturn-tar B CAPS2) 
   < B : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < B : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1 CAPS2, Que : MESS1, 
Met : METS1 > . 
 
*** Capability Change: 
crl [CapabilityChangeSemanticsCap] : 
   (cc-tar A src B p CAPS2 TYPE) 
   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : RoleFigure | Cap : CAPS1 > (capAllocation-src A CAPS2) if (TYPE == cm) and not sub-
seteq(CAPS2,CAPS1) . 
 
*** Plug out method with consideration to capability allocation by the configuration manager 
crl [PlugOuttoActorSemanticsCap] : 
   (po-tar A src B name C TYPE) 
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   < A : RoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > =>  
   (multimsg remInt from A to N) (capRelease-src director CAPS1) 
   if (TYPE == cm) and (C == A) and (B == director) and in(B,N) . 
  
endom) 
 
***some commands for system runs 
 
(rew testC1 .) 
(rew testC2 .) 
(rew testC3 .) 
(rew testC4 .) 
(rew testC5 .) 
(rew testC6 .) 
 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
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*************************************************************************************************************** 
*********                                          The Mobile Maude module                                              ******** 
*************************************************************************************************************** 
 
*** this imports the Capability module and the Role-Figure module 
*** and executes a simple behaviour example with mobility 
  
(omod  Mobile is 
protecting RoleFigureModel . 
protecting Capability . 
protecting MACHINE-INT . 
   
*** Mobile Role-Figure inheriting from the generic Role-Figure class, and it can handle the mobility 
management properties 
class  MRoleFigure | cSt : State, Stb : StateSet, Prg : StateSet . 
  
subclass MRoleFigure < RoleFigure . 
 
*** constants: 
 
ops s1 s2 s3 s4 s5 s6 : -> State . 
ops director, a, a', b : -> Oid . 
ops testM1 testM2 testM3 : -> Configuration . 
op mob : -> Type . 
op idle : -> State . 
op nilsts : -> StateSet . 
 
*** Some set-operations: 
op __ : StateSet StateSet -> StateSet [assoc comm id: nilsts prec 15] . 
op in : State StateSet -> Bool . 
op subseteq : StateSet StateSet -> Bool . 
op _-_ : StateSet State -> StateSet .       *** Set minus one Oid! 
 
***the same variables in the RoleFigureModule 
vars A A' A" B B' C D : Oid . vars N N' N'' : OidSet . 
vars M : Content . 
vars TYPE : Type . 
vars ST1 ST2 : State . 
vars STS1 STS2 STS3 STS4 : StateSet . 
vars BH1 BH2 : Beh . 
vars BHT1 BHT2 : BehType . 
vars SIG1 SIG2 : Signal . 
vars SIGS1 SIGS2 : SignalSet . 
vars CAP1 CAP2 : Cap . 
vars CAPS1 CAPS2 : CapSet . 
vars MET1 MET2 : Met . 
vars METS1 METS2 : MetSet . 
vars MES1 MES2 : Mes . 
vars MESS1 MESS2 : MesSet . 
vars LOC1 LOC2 : Loc . 
 
*** Functions on sets: 
eq ST1 ST1 = ST1 .     *** This equation makes the multiset into a set. 
eq in(ST1, ST2 STS1) = ST1 == ST2 or in(ST1,STS1) . 
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eq in(ST1,nilsts) = false . 
eq subseteq(ST1 STS1 ,STS2) = in(ST1,STS2) and subseteq(STS1,STS2) . 
eq subseteq(nilsts,STS2) = true . 
eq (ST1 STS1) - ST1 = STS1 - ST1 .  
ceq STS1 - ST1 = STS1 if not in(ST1,STS1) . 
 
*** in the following configuration, we control the way how Maude executes the rewrite rules 
eq testM1 = 
(mo-tar a src director location a' loc2 with moving mob) 
< configmanager : ConfigManager | aCap : cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : cap1-a cap1-b  > 
< director : Director | Int : a > 
< a : MRoleFigure | Location : loc1, Int : director, Beh : bht1, Cap : cap1-a cap1-b, Que : mess1, 
Met : mets1, cSt : s3, Stb : s3, Prg : s5 s6 > . 
 
eq testM2 = 
(po-tar b src director name b cm) 
< configmanager : ConfigManager | aCap : cap1-c cap1-d cap1-e cap1-f 
cap2-a cap2-b cap2-c cap2-d cap2-e cap2-f , uCap : cap1-a cap1-b  > 
< director : Director | Int : b > 
< b : MRoleFigure | Location : loc1, Int : director, Beh : bht1, Cap : cap1-a cap1-b, Que : mess1, 
Met : mets1 > . 
 
*** rules 
  
*** A simple PlugIn, and PlugIn with cap/beh by which the director performs 
crl [PlugInType] : 
   (pi-tar D src A name B location LOC1 with TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : MRoleFigure | Location : LOC1, Int : director A, Beh : 
nilbht,  
   Cap : nilcaps, Que : nilmess, Met : nilmets, cSt : idle, Stb : nilsts, Prg : nilsts > 
   (ci-tar A src director j B)  
   if not in(B,N) and (TYPE == mob) and (D == director) . 
 
***  plugin request for moving actors 
crl [PlugInMType] : 
   (pi-tar D src A name A' location LOC1 with M TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : A' N > < A' : MRoleFigure | Location : LOC1, Int : director A, Beh : 
nilbht,  
   Cap : nilcaps, Que : nilmess, Met : nilmets, cSt : idle, Stb : nilsts, Prg : nilsts  > 
   (mor-tar A src director to A' LOC1 with TYPE) 
   if not in(A',N) and (M == moving) and (TYPE == mob) and (D == director) . 
    
*** this is an extended BehaviourChange rule 
*** Behaviour Change: 
crl [BehaviourChangeType] : 
   (bc-tar A src B beh BHT2 ST1 STS1 STS2) 
   < A : MRoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1, cSt : ST2, Stb : STS3, Prg : STS4 > => 
   < A : MRoleFigure | Beh : BHT2, cSt : ST1, Stb : STS1, Prg : STS2 > if in(B,N) . 
 
*** in these two rules we check if the current state is in the set Stable states to control the move  
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crl [ActorMoveType] : 
   (mo-tar A src B location A' LOC2 with M TYPE) 
   < A : MRoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1, 
   cSt : ST1, Stb : STS1, Prg : STS2 > => 
   < A : MRoleFigure | Int : N > (pi-tar director src A name A' location LOC2 with M mob)  
   if in(ST1,STS1) and in(B,N) . 
  
crl [ActorMoveReturnType] : 
   (mor-tar A src D to A' LOC2 with TYPE) 
   < A : MRoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1,  
   cSt : ST1, Stb : STS1, Prg : STS2 > => 
   < A : MRoleFigure | Int : A' N >   
   (cc-tar A' src A p CAPS1 TYPE) (multimsg creInt from A' to N) (bc-tar A' src A beh BHT1 ST1 
STS1 STS2)  
   (po-tar director src A' name A TYPE)  
   if in(ST1,STS1) and (TYPE == mob) and (D == director) . 
*** this may correspond to an existing Role-Figure instance 
crl [PlugInwithCapBehCap] : 
   (pi-tar D src A name B location LOC1 with BHT2 CAPS2 TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : B N > < B : MRoleFigure | Location : LOC1, Int : director A, Beh : 
BHT2,  
   Cap : nilcaps, Que : nilmess, Met : nilmets, cSt : idle, Stb : nilsts, Prg : nilsts > 
   (ci-tar A src director j B) (capAllocation-src B CAPS2) 
   if (TYPE == mob) and (D == director) . 
    
*** Capability Change: 
crl [CapabilityChangeSemanticsCap] : 
   (cc-tar A src B p CAPS2 TYPE) 
   < A : MRoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > => 
   < A : MRoleFigure | Cap : CAPS1 > (capAllocation-src A CAPS2)  
   if (TYPE == mob) and not subseteq(CAPS2,CAPS1) . 
 
*** A simple PlugOut method request by which the director is performing the plugout process 
crl [PlugOuttoActorSemanticsCap] : 
   (po-tar A src B name C TYPE) 
   < A : MRoleFigure | Location : LOC1, Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : 
METS1 > =>  
   (multimsg remInt from A to N) (capRelease-src director CAPS1) 
   if (TYPE == mob) and (C == A) and (B == director) and in(B,N) . 
endom) 
 
***some commands for system runs 
 (rew testM1 .) 
(rew testM2 .) 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
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*************************************************************************************************************** 
*********                                   The Client/Server Maude module                                            ******** 
*************************************************************************************************************** 
*** It first defines ActorModel module, which is a subset of the semantics of the RoleFigureModel 
*** it then specifies a simple Client/Server service system 
 
(omod ActorModel is 
sort Type . 
sorts OidSet Content State StateSet Beh BehType Signal SignalSet Cap CapSet Mes MesSet Met 
MetSet . 
subsort Oid < OidSet . 
subsort State < StateSet . 
subsort Signal < SignalSet . 
subsort Cap < CapSet . 
subsort Met < MetSet . 
subsort Mes < MesSet . 
 
*** defining a generic actor instead of a Role-Figure, no location is applied here 
class  Actor | Int : OidSet, Beh : BehType, Cap : CapSet, 
              Que : MesSet, Met : MetSet . 
class  Director | Int : OidSet . 
  
*** applying similar messages to TAPAS messages: 
msg ActorPlugIn_from_ : Oid Oid -> Msg . 
msg ActorPlugIn_from_with_ : Oid Oid Content -> Msg . 
msg ActorPlugIn_from_with_ : Oid Oid Type -> Msg .       
msg ActorPlugIn_from_with__ : Oid Oid Content Type -> Msg . 
msg ActorPlugIn_from_with___ : Oid Oid BehType CapSet Type -> Msg . 
msg ActorPlugIn_from_with__ : Oid Oid BehType CapSet -> Msg . 
msg ActorPlugOut_to_from_ : Oid Oid Oid -> Msg . 
msg CreateInterface_at_ : Oid Oid -> Msg . 
msg BehaviourChange_with_ : Oid BehType -> Msg . 
msg CapabilityChange_with_ : Oid CapSet -> Msg . 
msg ActorMove_to_with_ : Oid Oid Content -> Msg . 
msg ActorMove_to_with__ : Oid Oid Content Type -> Msg .  
msg ActorMoveReturn_to_ : Oid Oid -> Msg . 
msg ActorMoveReturn_to_with_ : Oid Oid Type -> Msg . 
 
*** general messages: 
msg msg_from_to_ : Content Oid Oid -> Msg . 
  
*** multimessage-declaration: 
op multimsg_from_to_ : Content Oid OidSet -> Configuration . 
 
*** constant declaration: 
ops st1 st2 : -> State .         
ops sts1 sts2 : -> StateSet .    
ops bh1 bh2 : -> Beh .       
ops m remInt creInt moving : -> Content . 
ops director a a' b c e : -> Oid .                                   *** Actors 
ops n n' : -> OidSet . 
ops bht1 bht2 : -> BehType .     
ops sig1 sig2 : -> Signal . 
ops sigs1 sigs2 : -> SignalSet . 
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ops cap1 cap2 : -> Cap . 
ops caps1 caps2 : -> CapSet . 
ops met1 met2 : -> Met . 
ops mets1 mets2 : -> MetSet . 
ops mes1 mes2 : -> Mes . 
ops mess1 mess2 : -> MesSet . 
  
*** [multi]set constructors: 
op nil : -> OidSet . 
op nilOid : -> Oid . 
op nilcaps : -> CapSet . 
op nilbht : -> BehType . 
op nilmess : -> MesSet . 
op nilmets : -> MetSet . 
  
op __ : OidSet OidSet -> OidSet [assoc comm id: nil prec 15] . 
  
*** set operations: 
op in : Oid OidSet -> Bool . 
op subseteq : OidSet OidSet -> Bool . 
op _-_ : OidSet Oid -> OidSet .       *** Set minus one Oid! 
 
*** variable declaration 
vars A A' B C D : Oid . 
vars N N' N'' : OidSet . 
vars M : Content . 
vars ST1 ST2 : State . 
vars STS1 STS2 : StateSet . 
vars BH1 BH2 : Beh . 
vars BHT1 BHT2 : BehType . 
vars SIG1 SIG2 : Signal . 
vars SIGS1 SIGS2 : SignalSet . 
vars CAP1 CAP2 : Cap . 
vars CAPS1 CAPS2 : CapSet . 
vars MET1 MET2 : Met . 
vars METS1 METS2 : MetSet . 
vars MES1 MES2 : Mes . 
vars MESS1 MESS2 : MesSet . 
 
*** Functions on sets: 
eq A A = A .    
eq in(A, B N) = A == B or in(A,N) . 
eq in(A,nil) = false . 
eq subseteq(A N ,N') = in(A,N') and subseteq(N,N') . 
eq subseteq(nil,N') = true . 
eq (A N) - A = N - A .  
ceq N - A = N if not in(A,N) . 
  
*** multimessage definition: 
ceq multimsg M from A to (B N) =  
             (msg M from A to B) (multimsg M from A to (N - B)) if not M == creInt . 
eq multimsg creInt from A to (B N) =  
             (CreateInterface A at B) (CreateInterface B at A) (multimsg creInt from A to (N - B)) . 
eq multimsg M from A to nil = none . 
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*** rewriting rules: applying similar rules to the RoleFigureModel rules 
crl [PlugOuttoActor] : 
   (ActorPlugOut A to B from C) 
   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > =>  
   (multimsg remInt from A to N) if (B == A) and (C == director) . 
  
crl [PlugOuttoDirector] : 
   (ActorPlugOut A to director from B) 
   < director : Director | Int : N > =>  
   < director : Director | Int : N > (ActorPlugOut A to A from director) if in(A,N) . 
  
crl [RemoveInterfacesAtActor] : 
   (msg remInt from B to A) 
   < A : Actor | Int : N > =>  
   < A : Actor | Int : N - B >  if in(B,N) . 
  
crl [RemoveInterfacesAtDirector] : 
   (msg remInt from B to A) 
   < A : Director | Int : N > =>  
   < A : Director | Int : N - B >  if in(B,N) . 
 
crl [PlugInNotMoving] : 
   (ActorPlugIn D from B with M) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : Actor | Int : director B, Beh : nilbht, Cap : nilcaps, Que : 
nilmess, Met : nilmets > 
   (CreateInterface D at B) if not in(D,N) and (M =/= moving) . 
  
crl [PlugInNoContent] : 
   (ActorPlugIn D from B) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : Actor | Int : director B, Beh : nilbht, Cap : nilcaps, Que : 
nilmess, Met : nilmets > 
   (CreateInterface D at B) if not in(D,N) . 
  
crl [PlugInMoving] : 
   (ActorPlugIn D from B with M) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N >  
   < D : Actor | Int : director B, Beh : nilbht, Cap : nilcaps, Que : nilmess, Met : nilmets > 
   (ActorMoveReturn D to B) 
   if not in(D,N) and (M == moving) . 
  
rl [PlugInwithCapBeh] : 
   (ActorPlugIn D from B with BHT2 CAPS2) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : Actor | Int : director B, Beh : BHT2, Cap : CAPS2, Que : 
nilmess, Met : nilmets > 
   (CreateInterface D at B) . 
  
rl [CreateInterfaceAtActor] : 
   (CreateInterface B at A) 



APPENDIX 
 

 

210 

   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > => 
   < A : Actor | Int : B N > . 
  
rl [CreateInterfaceAtDirector] : 
   (CreateInterface B at A) 
   < A : Director | Int : N > => 
   < A : Director | Int : B N > . 
  
rl [BehaviourChange] : 
   (BehaviourChange A with BHT2) 
   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > => 
   < A : Actor | Beh : BHT2 > . 
  
rl [CapabilityChange] : 
   (CapabilityChange A with CAPS2) 
   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > => 
   < A : Actor | Cap : CAPS2 > . 
  
rl [ActorMove] : 
   (ActorMove A to A' with M) 
   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > => 
   < A : Actor | Int : N > (ActorPlugIn A' from A with M) . 
  
rl [ActorMoveReturn] : 
   (ActorMoveReturn A' to A) 
   < A : Actor | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1 > => 
   < A : Actor | Int : A' N >   
   (CapabilityChange A' with CAPS1) (multimsg creInt from A' to N) (BehaviourChange A' with 
BHT1) (ActorPlugOut A to director from A') . 
  
endom) 
 
*** here we define the Client/Server module that imports the ActorModel 
  
(omod  ClientServer is 
protecting ActorModel . 
protecting MACHINE-INT . 
  
sorts Status Client Server Cong congectionValue . 
***capability definition: Congestion 
subsort Cong < Cap < CapSet . 
  
***Actor types may be used for naming later 
subsort Client < Type . 
subsort Server < Type . 
  
***Application Role-Figures inheriting from the generic actor class 
class  ActorClient | Count : MachineInt, Backup : Oid . 
class  ActorServer | Trans : MachineInt . 
  
subclass ActorServer < Actor . 
subclass ActorClient < Actor . 
  
*** signal definitions 
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msg s1_from_to_ : Status Oid Oid -> Msg . 
msg s1_from_to_myBU_ : Status Oid Oid Oid -> Msg . 
msg s2from_to_ : Oid Oid -> Msg . 
msg s3from_to_ : Oid Oid -> Msg . 
msg s4 : -> Msg . 
  
***these capability instances show the network congestion condition 
op Congested : -> Cong . 
op Ncongested : -> Cong . 
op congestionValue : -> MachineInt . 
  
***parametr for acknowledgement 
op Ok : -> Status . 
op Nok : -> Status . 
  
op cl : -> Type . 
op sr : -> Type . 
  
***operation to return the type of certain actors, to be used later 
op ActorType : Oid -> Type . 
  
ops director, a, a', b : -> Oid . 
  
var stus : Status . 
var CONG :  Cong . 
var COUNT : MachineInt . 
var TRANS : MachineInt . 
ops cap1 cap2 : -> Cap . 
  
***the same variables in the 
vars A A' A" B B' C D : Oid . vars N N' N'' : OidSet . 
vars M : Content . 
vars TYPE : Type . 
vars ST1 ST2 : State . 
vars STS1 STS2 : StateSet . 
vars BH1 BH2 : Beh . 
vars BHT1 BHT2 : BehType . 
vars SIG1 SIG2 : Signal . 
vars SIGS1 SIGS2 : SignalSet . 
vars CAP1 CAP2 : Cap . 
vars CAPS1 CAPS2 : CapSet . 
vars MET1 MET2 : Met . 
vars METS1 METS2 : MetSet . 
vars MES1 MES2 : Mes . 
vars MESS1 MESS2 : MesSet . 
 
ops testCS1 testCS2 testCS21 testCS3 : -> Configuration . 
  
eq ActorType(a) = cl . 
eq ActorType(b) = sr . 
eq congestionValue = 3 .     *** this sets the value for congested network 
  
*** system runs to test these configurations 
eq testCS1 = 
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   (s2from b to a) 
   < director : Director | Int : a b > 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, Met : mets1, 
Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : mets2, Trans : 1 
> . 
  
eq testCS2 = 
   (s2from b to a) 
   < director : Director | Int : a b > 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, Met : mets1, 
Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : mets2, Trans : 5 
> . 
  
*** a moving is deterministic to one backup, which if congested doesn't know where to move 
eq testCS3 = 
   (s2from b to a) 
   < director : Director | Int : a b > 
   < a : ActorClient | Int : director b , Beh : bht1, Cap : Ncongested, Que : mess1, Met : mets1, 
Count : 0, Backup : a' > 
   < b : ActorServer | Int : director a , Beh : bht2, Cap : caps2, Que : mess2, Met : mets2, Trans : 
10 > . 
 
 
*** rules 
*** a client receiving a signal from the server 
crl [receiveNotcongested] : 
   (s2from B to A) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : METS1, Count : 
COUNT, Backup : A' > => 
   < A : ActorClient | Cap : Ncongested, Count : COUNT + 1 > (s1 Ok from A to B)  
   if (COUNT <= congestionValue) . 
  
crl [receiveCongested] : 
   (s2from B to A) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : METS1, Count : 
COUNT, Backup : A' > => 
   < A : ActorClient | Cap : Congested, Count : 0 >  
   (s1 Nok from A to B myBU A')  
   if (COUNT > congestionValue) . 
  
*** if there is no Backup for the client Role-Figure 
crl [receiveCongestedNoBackup] : 
   (s2from B to A) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : METS1, Count : 
COUNT, Backup : A' > => 
   < A : ActorClient | Cap : Congested, Count : 0 >  
   (s1 Nok from A to B )  
   if (COUNT > congestionValue) and (A' == nilOid) . 
 
*** a client receives the end of transmission 
 rl [Finish] : 
   (s3from B to A) 
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   < A : ActorClient | Int : N, Beh : BHT1, Cap : CONG, Que : MESS1, Met : METS1, Count : 
COUNT, Backup : A' >  
   => < A : ActorClient | Count : 0 > . 
 
*** the server receives an acknowledgment from the client with status of the network congestion 
crl [adapt1] : 
   (s1 stus from B to A) 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1, Trans : 
TRANS >  
   => < A : ActorServer | Trans : 0 > (s3from A to B)  
   if (TRANS == 0) . 
  
*** if the sending is to continue normally 
crl [adapt2] : 
   (s1 stus from B to A) 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1, Trans : 
TRANS >  
   => < A : ActorServer | Trans : TRANS - 1 > (s2from A to B)  
   if (stus == Ok) and (TRANS =/= 0) . 
  
*** the Role-Figure move here will create a general Role-Figure class, and not an ActorClient 
crl [adapt3] : 
   (s1 stus from B to A myBU B') 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1, Trans : 
TRANS >  
   =>  < A : ActorServer | Trans : TRANS - 1 >  
   (ActorMove B to B' with moving cl) (s2from A to B') 
   if (stus =/= Ok) and (TRANS =/= 0) . 
    
*** this is executed if there is no Backup for the congested Role-Figure 
 crl [adapt3nobackup] : 
   (s1 stus from B to A) 
   < A : ActorServer | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1, Trans : 
TRANS >  
   => < A : ActorServer | Trans : TRANS - 1 > (ActorPlugOut B to director from A) (ActorPlugIn B 
from A )  
   if (stus == Nok) and (TRANS =/= 0) . 
 
 
*** A simple PlugIn, and PlugIn with cap/beh by which the director performs 
crl [PlugInType] : 
   (ActorPlugIn D from B with TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : ActorClient | Int : director B, Beh : nilbht,  
   Cap : nilcaps, Que : nilmess, Met : nilmets, Count : 0, Backup : nilOid > 
   (CreateInterface D at B)  
   if not in(D,N) and (TYPE == cl) . 
 
***  plugin request for moving Role-Figures 
crl [PlugInMType] : 
   (ActorPlugIn D from B with M TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : ActorClient | Int : director B, Beh : nilbht,  
   Cap : nilcaps, Que : nilmess, Met : nilmets, Count : 0, Backup : nilOid > 
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   (ActorMoveReturn D to B with TYPE) 
   if not in(D,N) and (M == moving) and (TYPE == cl) . 
 
*** this may correspond to an existing Role-Figure instance 
crl [PlugInwithCapBehType] : 
   (ActorPlugIn D from B with BHT2 CAPS2 TYPE) 
   < director : Director | Int : N > => 
   < director : Director | Int : D N > < D : ActorClient | Int : director B, Beh : BHT2,  
   Cap : CAPS2, Que : nilmess, Met : nilmets, Count : 0, Backup : nilOid > 
   (CreateInterface D at B)  
   if (TYPE == cl) . 
 
crl [ActorMoveType] : 
   (ActorMove A to A" with M TYPE) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1, 
   Count : COUNT, Backup : A' > => 
   < A : ActorClient | Int : N > (ActorPlugIn A" from A with M TYPE)  
   if (A" == A') . 
  
crl [ActorMoveReturnType] : 
   (ActorMoveReturn A" to A with TYPE) 
   < A : ActorClient | Int : N, Beh : BHT1, Cap : CAPS1, Que : MESS1, Met : METS1,  
   Count : COUNT, Backup : A' > => 
   < A : ActorClient | Int : A' N >   
   (CapabilityChange A' with CAPS1) (multimsg creInt from A' to N) (BehaviourChange A' with 
BHT1)  
   (ActorPlugOut A to director from A')  
   if (A" == A') and (TYPE == cl) . 
  
endom) 
 
***some commands for system runs 
(rew testCS1 .) 
(rew testCS2 .) 
(rew testCS3 .) 
 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 
*************************************************************************************************************** 




