
 
Some Service Issues  

in  
Adaptable Service Systems 

 
 

 
Shanshan Jiang 

 
 
 

 
 

 
Doctoral Thesis 

 
Submitted for the Partial Fulfilment of the Requirements for the Degree of 

 
Doktor Ingeniør 

 
 
 
 

 
 

Department of Telematics 
Faculty of Information Technology, Mathematics and Electrical 
Engineering 
Norwegian University of Science and Technology 

 
February 2008 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NTNU 
Norwegian University of Science and Technology 
 
Thesis for the degree Doktor Ingeniør 
 
Faculty of Information Technology, 
Mathematics and Electrical Engineering 
Department of Telematics 
 
© 2008 Shanshan Jiang 
 
ISBN 978-82-471-6955-1 (printed version) 
ISBN 978-82-471-6969-8 (electronic version) 
ISSN 1503-8181 
Doctoral theses at NTNU, 2008:52 
 
Printed in Norway by NTNU Trykk, Trondheim 



ABSTRACT 

 iii

Abstract 
Networked services have been an important research topic for over 40 years. These 
days, the amount and variety of services are growing enormously at the same time as the 
complexity and heterogeneity of the service systems is also increasing. Adaptable 
services and service systems are a research issue aiming to cope with the complexity.  

Adaptable Service Systems are service systems that are able to adapt dynamically to 
changes in time and position related to users, nodes, capabilities, status, changed service 
requirements and policies. 

A service can be considered at different abstraction levels. In this thesis, three 
abstraction levels are used, denoted as the conceptual, engineered and physical services. 
Service engineering is the creation of conceptual, engineered and physical services. 
Service management is the functionality to control the provision of service functionality 
and quality of a service, both within and across service systems, through the service life 
cycle phases.  

This thesis addresses some service issues related to service engineering and service 
management in adaptable service systems. The work presented in this thesis is related 
with TAPAS (Telematics Architecture for Play-based Adaptable Service Systems). On 
one hand, TAPAS concepts, architectures and platform are the context and the basis of 
the thesis. On the other hand, my research work also aims to further develop TAPAS 
concepts, architectures and platform. The research aims to answer the following five 
problem statements: 

 
P1: How can services be modelled and represented? 
P2: How can services be discovered efficiently, automatically and accurately?  
P3: How can services be instantiated dynamically and according to available 

capabilities and status information?  
P4: How can new service specifications or modifications to existing services 

dynamically be introduced without interrupting the executing services? 
P5: How to evaluate and validate the proposed frameworks and mechanisms?  
 
The problem statements P1-P4 are related to the following four research topics: 
 
T1: Service representation 
T2: Service discovery 
T3: Service instantiation 
T4: Service adaptation.  
 
Service representation is the representation of a service (conceptual, engineered and 

physical) based on a specific language and a data model. Service discovery is the 
process of finding services that satisfy functional and non-functional requirements. It is 
a core functionality to locate desired services in a distributed environment. Service 
instantiation is the process of creating a service instance upon request and making it 
available to the user, and finally service adaptation is the process of adapting the 
structure or behaviour of the service to the various changes during its execution.  

 
 



ABSTRACT 

 iv

There is one-to-one mapping from P1-P4 to T1-T4. P5 is related with all the four 
research topics T1-T4. The problem statements P1 and P2 are further refined into sub-
problems. The problem statement P1 is refined into sub-problem statements P1.1-P1.3 
defined as follows:  

 
P1.1: How to represent conceptual services? 
P1.2: How to represent physical services in a flexible manner so that it is 

possible to adapt the services to changes dynamically? 
P1.3: How to extract the component interface behaviour from the physical 

service representation so that compositional service verification can be 
applied? 

 
The problem statement P2 is refined into sub-problem statements P2.1-P2.2 defined 

as follows:  
 

P2.1: How to ensure automatic and accurate service discovery? 
P2.2: How to locate services efficiently in a large-scale service system? 

 
The result of the research work is classified as nine research contributions C1-C9. 

These contributions are related to the research topics and accordingly problem 
statements as defined below:  

 
Research topic T1 Service representation: 

• C1: Conceptual service representation. This contribution addresses P1.1. An 
integrated semantic service description based on a service ontology is proposed 
and is represented using Web Services and Semantic Web languages. The service 
ontology defines a model of functional and non-functional properties, where the 
service functionality is represented as operations, inputs, outputs, preconditions 
and effects and the non-functional properties include service parameters, Quality 
of Service (QoS) parameters and policies consisting of business policies, QoS 
policies and context policies. Such semantic-annotated service description is the 
basis for semantic matching procedure in service discovery.  

• C2: Physical service representation. This contribution addresses P1.2. XML 
(eXtensible Markup Language) is the physical service representation language. 
An Extended Finite State Machine (EFSM)-based XML manuscript data model is 
defined. It is based on modifiable and parameterized behaviour patterns, 
separating action types from actual action codes. Service functionality is further 
classified into Action Groups and Capability Categories according to the nature of 
actions and the dependability on capability respectively. Such manuscript data 
model is the basis for service instantiation and adaptation. 

• C3: Preparation for service verification. This contribution addresses P1.3. Service 
verification is the process of checking service specifications to ensure that service 
components can play well together. In order to utilize compositional verification 
based on an interface type language, rules are given for automatic translation from 
EFSM-based XML manuscript to the interface type language. Projection 
technique is applied during the translation process.  

 



ABSTRACT 

 v

Research topic T2 Service discovery:  
• C4: Semantic service discovery procedure. This contribution addresses P2.1. An 

integrated semantic service description model is defined based on a service 
ontology (i.e. the conceptual service representation). An integrated semantic 
discovery procedure based on such service descriptions is proposed for semantic 
matching of both functional and non-functional properties. Such procedure 
consists of both ontological inference and rule-based reasoning and has been 
implemented on a Reasoning Machine (RM).  

• C5: Super-peer Semantic Overlay Network (SON)-based service discovery system. 
This contribution addresses P2.2. A service discovery system based on super-peer 
managed SONs is proposed and functionality for efficient service discovery and 
efficient SON management is defined. The integrated semantic service discovery 
procedure proposed for C4 is applied for semantic matching on selected 
directories (i.e. selected SONs). A self-organizing process based on an 
autonomous super-peer selection algorithm is applied for super-peer SONs 
construction and maintenance. The system performance is evaluated by 
simulations and the results indicate efficient service discovery (in terms of recall, 
messages-per-request and hops-per-request) and efficient SON management (in 
terms of self-organization time, management procedure overhead and load factor).  

 
Research topic T3 Service instantiation:   

• C6: Manuscript execution support – State Machine Interpreter (SMI). This 
contribution addresses P3. This thesis implements an execution support for 
service instantiation, namely the SMI, which can interpret and execute EFSM-
based XML manuscripts. SMI can instantiate the manuscripts according to 
available capability and status information.  

 
Research topic T4 Service adaptation: 

• C7: Physical service adaptation. This contribution addresses P4. An approach for 
physical service adaptation is proposed based on the XML manuscripts. Given a 
service adaptation request, the system dynamically selects and instantiates XML 
manuscripts according to runtime capability and status information. The actual 
execution codes for the behaviour patterns defined in the manuscripts can be 
dynamically selected according to available capability and status. The dynamic 
generation of such adaptation requests according to traffic situation and failure 
states is not considered. 

• C8: Dynamic service management framework. This contribution addresses P4 and 
is related with C2, C6 and C7. A RM-based framework integrating service 
behaviour specification (i.e. EFSM-based XML manuscript), selection 
(instantiation) and adaptation is proposed and prototyped. Selection and Mapping 
Rules are proposed and modelled. 

 
For research topics T1-T4: 

• C9: Prototypes and simulations. This contribution addresses P5 and is used to 
evaluate and validate the proposed frameworks and mechanisms.  

 



PREFACE 

 vi

Preface 

This thesis is submitted to the Norwegian University of Science and Technology 
(NTNU) for partial fulfilment of the requirements for the degree of Doktor Ingeniør 
(Dr. Ing). The work presented in this thesis has been carried out at the Department of 
Telematics, NTNU, Trondheim, under the supervision of Professor Finn Arve Aagesen. 
The doctoral work has been financed by the Norwegian Research Council for three 
years and by the Department of Telematics, NTNU for one year. 

This thesis addresses some issues related to service engineering and service 
management in adaptable service systems. The thesis is composed of three parts: 

• Part I: Introduction. It describes the background of this research and gives an 
overview of Part II of the thesis.  

• Part II: Included papers. It is a collection of seven papers (PAPER A to PAPER 
G) published at different conferences and workshops. Each paper deals with one 
or several of the research topics, namely, service representation, service 
discovery, service instantiation and service adaptation.  

• Part III: Appendices. Additional information related to super-peer SON service 
discovery system is provided. These appendices help understand PAPER B and 
PAPER C and are thus integral part for service discovery. 

 



ACKNOWLEDGEMENTS 

 vii

Acknowledgements 
Many people have helped me through the course for the pursuing of my doctoral degree. 
First of all, I would like to give my sincere thanks to my supervisor, Finn Arve 
Aagesen. Without his guidance and help, the completion of the thesis would have been a 
mission impossible. I benefited from his rigorous style of work and his strict 
requirements on the quality of research. His inspirations through discussions and 
valuable feedbacks made the journey of research more effective and enjoyable. The art 
of research and the skills of writing scientific papers have also been accumulated 
through the journey. 

I am grateful to all colleagues at the Department of Telematics and all the members 
of the TAPAS project. In particular, I would like to thank Professor Ole Petter 
Håkonsen for four years’ harmonic cooperation when I worked as a teaching assistant 
for his course “ICT and Market”. His understanding and consideration as well as the 
impressive lectures have made our cooperation a pleasant experience. I am also grateful 
to Professor Steinar Andresen, who is the first guide for my research career at this 
department. Special thanks go to Randi Flønes for all her administrative support and 
advices. Thanks to Mazen Malek Shiaa for cooperation on the papers and valuable 
discussions on TAPAS project. Thanks to Cyril Carrez and Hao Ding for constructive 
discussions during the co-authoring of papers. My sincere thanks also go to Steinar, 
Mazen and Cyril for their patience in thesis reading and the valuable feedbacks. Their 
comments have assisted me greatly in improving the quality of this thesis. Thanks to 
Paramai Supadulchai and Chutiporn Anutariya for the help with XET engine. Thanks to 
Jarle Kotsbak, Pål Sæther, Asbjørn Karstensen for technical support. Thanks to Richard 
Sanders for discussions and the happy time sharing the office and to Jacqueline Floch 
for the discussions during my early study. 

Thanks to my parents in China for their unselfish love and support for all the years. 
Last, but not least, my sincere thanks to my dearest husband Naiquan, for his continuous 
support and love, and to our lovely children, Kristian, Fredrik and Astrid, for all their 
smiles that can dismiss all the troubles and tiredness. 

 
 
 
 
 
 
 
 
 
 
 



CONTENTS 
 

 viii

Contents 
 

ABSTRACT........................................................................................................................................ III 

PREFACE .......................................................................................................................................... VI 

ACKNOWLEDGEMENTS .............................................................................................................VII 

CONTENTS .................................................................................................................................... VIII 

LIST OF PAPERS ............................................................................................................................. XI 

LIST OF FIGURES........................................................................................................................ XIII 

LIST OF TABLES.......................................................................................................................... XIII 

ABBREVIATIONS..........................................................................................................................XIV 

PART I: INTRODUCTION.................................................................................................................1 
1. SERVICE RELATED DEFINITIONS ................................................................................................3 

1.1 Networked Services..........................................................................................................3 
1.2 Service Models.................................................................................................................4 
1.3 Service Life Cycle Concepts.............................................................................................8 
1.4 Service Ontology..............................................................................................................9 

2. KEY TECHNOLOGIES FOR NETWORKED SERVICES....................................................................11 
2.1 Overview ........................................................................................................................11 
2.2 Adaptable Service Systems.............................................................................................12 
2.3 Peer-to-Peer Technology ...............................................................................................14 

3. RESEARCH OBJECTIVES, PROBLEM STATEMENTS, RESEARCH TOPICS AND SCOPE...................17 
3.1 Research Objectives.......................................................................................................17 
3.2 Problem Statements .......................................................................................................17 
3.3 Research Topics.............................................................................................................17 
3.4 Scope..............................................................................................................................18 

4. TAPAS ....................................................................................................................................19 
4.1 TAPAS Architectures .....................................................................................................19 
4.2 This Thesis’s Contribution to TAPAS ............................................................................21 

5. RESEARCH CONTRIBUTIONS.....................................................................................................23 
5.1 General ..........................................................................................................................23 
5.2 Topic T1: Service Representation ..................................................................................24 
5.3 Topic T2: Service Discovery..........................................................................................28 
5.4 Topic T3: Service Instantiation......................................................................................31 
5.5 Topic T4: Service Adaptation ........................................................................................32 
5.6 The Realization of the Problem Statements ...................................................................34 
5.7 Guidelines for Reading of Part II ..................................................................................36 

6. RESEARCH METHODOLOGY .....................................................................................................37 
7. SUMMARY OF PAPERS ..............................................................................................................39 
8. SUMMARY, CONCLUSIONS AND FUTURE WORK.........................................................................45 

8.1 Summary of Results........................................................................................................45 
8.2 Conclusions....................................................................................................................46 
8.3 Directions of Future Work .............................................................................................48 

PART II: INCLUDED PAPERS .......................................................................................................51 



CONTENTS 
 

 ix

PAPER A: AN APPROACH TO INTEGRATED SEMANTIC SERVICE DISCOVERY .........53 
1. INTRODUCTION.........................................................................................................................55 
2. SERVICE DESCRIPTION ELEMENTS ...........................................................................................56 

2.1 Business Policies............................................................................................................58 
2.2 QoS Properties...............................................................................................................59 
2.3 Context Policies .............................................................................................................61 

3. INTEGRATED SEMANTIC SERVICE DISCOVERY FRAMEWORK ...................................................61 
3.1 Integrated Semantic Service Description.......................................................................61 
3.2 Integrated Semantic Service Requirement .....................................................................63 
3.3 Integrated Semantic Service Discovery Procedure........................................................63 

4. RELATED WORK.......................................................................................................................65 
5. CONCLUSIONS ..........................................................................................................................65 
REFERENCES .....................................................................................................................................66 

PAPER B: A SELF-ORGANIZING SERVICE DISCOVERY SYSTEM BASED ON 
SEMANTIC OVERLAY NETWORKS............................................................................................69 

1. INTRODUCTION.........................................................................................................................71 
2. RELATED WORK.......................................................................................................................72 
3. SON-BASED SERVICE DISCOVERY SYSTEM MODEL.................................................................73 
4. SON-BASED SERVICE DISCOVERY SYSTEM .............................................................................75 

4.1 Assignment of Directories to SONs................................................................................76 
4.2 Construction and Maintenance of SONs........................................................................77 
4.3 Service Discovery ..........................................................................................................78 

5. EVALUATION............................................................................................................................79 
6. CONCLUSION............................................................................................................................82 
REFERENCES .....................................................................................................................................82 

PAPER C: EFFICIENT SERVICE DISCOVERY SYSTEM BASED ON SEMANTIC 
OVERLAY NETWORKS..................................................................................................................85 

1. INTRODUCTION.........................................................................................................................87 
2. REQUIREMENTS TO AN EFFICIENT SON-BASED SERVICE DISCOVERY SYSTEM........................88 
3. SON-BASED SERVICE DISCOVERY SYSTEM MODEL.................................................................89 
4. A SUPER-PEER BASED SON SERVICE DISCOVERY SYSTEM .....................................................91 

4.1 Assignment of Directories to SONs................................................................................92 
4.2 SONs Construction and Maintenance............................................................................93 
4.3 Service Discovery ..........................................................................................................94 

5. EVALUATION............................................................................................................................95 
5.1 Evaluation Measures .....................................................................................................95 
5.2 Experiments ...................................................................................................................96 

6. RELATED WORK.....................................................................................................................100 
7. CONCLUSIONS ........................................................................................................................101 
REFERENCES ...................................................................................................................................101 

PAPER D: XML-BASED DYNAMIC SERVICE BEHAVIOUR REPRESENTATION ..........103 
1. INTRODUCTION.......................................................................................................................105 
2. TAPAS BASIC ARCHITECTURE AND DYNAMIC CONFIGURATION FUNCTIONALITY................106 
3. BEHAVIOUR DESCRIPTION USING XML.................................................................................108 
4. THE IMPLEMENTATION IN JAVA AND TAPAS PLATFORM ......................................................110 
5. CONCLUSION..........................................................................................................................112 
REFERENCES ...................................................................................................................................113 

PAPER E: AUTOMATIC TRANSLATION OF SERVICE SPECIFICATION TO A 
BEHAVIOURAL TYPE LANGUAGE FOR DYNAMIC SERVICE VERIFICATION ...........115 

1. INTRODUCTION.......................................................................................................................117 
2. SOME TAPAS CONCEPTS.......................................................................................................118 
3. BEHAVIOURAL TYPE LANGUAGE ...........................................................................................121 



CONTENTS 
 

 x

4. TRANSLATION METHODOLOGY..............................................................................................122 
4.1 Messages......................................................................................................................122 
4.2 Deactivation of Interfaces............................................................................................124 
4.3 Hidden Actions and Their Removal .............................................................................124 

5. RELATED WORK.....................................................................................................................124 
6. CONCLUSION..........................................................................................................................125 
REFERENCES ...................................................................................................................................126 

PAPER F: AN APPROACH FOR DYNAMIC SERVICE MANAGEMENT ............................127 
1. INTRODUCTION.......................................................................................................................129 
2. RELATED WORK.....................................................................................................................130 
3. TAPAS CONCEPTUAL MODEL ...............................................................................................131 
4. TAPAS CORE PLATFORM ......................................................................................................132 
5. DYNAMIC SERVICE MANAGEMENT ........................................................................................134 

5.1 The Framework............................................................................................................134 
5.2 The Action Library and Capability Category Specifications and Rules ......................135 
5.3 The Functionality of the Service Manager...................................................................137 

6. EXAMPLE ...............................................................................................................................138 
7. CONCLUSIONS ........................................................................................................................142 
REFERENCES ...................................................................................................................................142 

PAPER G: AN XML-BASED FRAMEWORK FOR DYNAMIC SERVICE MANAGEMENT
............................................................................................................................................................145 

1. INTRODUCTION.......................................................................................................................147 
2. RELATED WORK.....................................................................................................................148 
3. SERVICE SPECIFICATION ........................................................................................................148 
4. DYNAMIC SERVICE MANAGEMENT FRAMEWORK ..................................................................150 
5. IMPLEMENTATION ISSUES.......................................................................................................152 
6. EXPERIMENTATION SCENARIOS .............................................................................................153 
7. CONCLUSION..........................................................................................................................154 
REFERENCES ...................................................................................................................................154 

PART III: APPENDICES ................................................................................................................157 

APPENDIX A: ALGORITHMS FOR CONSTRUCTION AND MAINTENANCE OF SUPER-
PEER SONS ......................................................................................................................................159 

A.1 THE STRUCTURE OF THE PROTOCOL STACK AND DATASETS IN A NODE ..................................159 
A.2. GOSSIP-BASED PROTOCOLS.....................................................................................................160 
A.3. CONSTRUCTION AND MAINTENANCE OF SUPER-PEER SONS...................................................162 

APPENDIX B: PEERSIM SIMULATOR ......................................................................................165 

APPENDIX C: ADDITIONAL SIMULATION RESULTS..........................................................169 
C.1 DISCOVERY OVERHEAD FACTOR..............................................................................................169 
C.2 OBSERVED STANDARD DEVIATION IN EXPERIMENTS ...............................................................169 

BIBLIOGRAPHY.............................................................................................................................171 



LIST OF PAPERS 
 

 xi

List of Papers 
Table 1 lists papers published that constitute part II of this thesis. Table 2 lists additional 
papers published as a part of my doctoral work, but not included in this thesis.  

 
Table 1 - An overview of the papers included in part II of this thesis. 

 
PAPER A Shanshan Jiang and Finn Arve Aagesen. An Approach to Integrated 

Semantic Service Discovery. In Proceedings of Autonomic 
Networking (AN’06), Paris, France, September 27-29, 2006. Lecture 
Notes in Computer Science (LNCS) 4195, pp. 159-171, 2006. 

PAPER B Shanshan Jiang, Finn Arve Aagesen and Hao Ding. A Self-organizing 
Service Discovery System Based on Semantic Overlay Networks. 
Journal of System and Information Sciences Notes, July 2007, 
Volume 1, Number 3, pp. 303-309. SIWN International Conference 
on Complex Open Distributed Systems (CODS’07), Chengdu, China, 
July 22-24, 2007. 

PAPER C Shanshan Jiang and Finn Arve Aagesen. Efficient Service Discovery 
System Based on Semantic Overlay Networks. In Proceedings of 6th 
International Information and Telecommunication Technologies 
Symposium (I2TS’07), Brasilia, DF, Brazil, December 12-14, 2007. 

PAPER D Shanshan Jiang and Finn Arve Aagesen. XML-based Dynamic Service 
Behaviour Representation. In Proceedings of Norsk 
informatikkonferanse (NIK’03), Oslo, Norway, November 24-26, 
2003. 

PAPER E Shanshan Jiang, Cyril Carrez and Finn Arve Aagesen. Automatic 
Translation of Service Specification to a Behavioural Type Language 
for Dynamic Service Verification. In Proceedings of RISE 2004 on 
Rapid Integration of Software Engineering techniques, Luxembourg, 
November 26, 2004. Lecture Notes in Computer Science (LNCS) 
3475, pp. 34-44, 2005. 

PAPER F Shanshan Jiang, Mazen Malek Shiaa and Finn Arve Aagesen. An 
Approach for Dynamic Service Management. In Proceedings of IFIP 
WG 6.3 Workshop and EUNICE 2004 on “Advances in fixed and 
mobile networks”, Tampere, Finland, June 14-16, 2004. 

PAPER G Mazen Malek Shiaa, Shanshan Jiang, Paramai Supadulchai and Joan J. 
Vila-Armenegol. An XML-Based Framework for Dynamic Service 
Management. In Proceedings of IFIP International Conference on 
Intelligence in Communication Systems (INTELLCOMM’04), 
Bangkok, Thailand, November 23-26, 2004. Lecture Notes in 
Computer Science (LNCS) 3283, pp. 273-280, 2004. 

 
 



LIST OF PAPERS 
 

 xii

Table 2 - An overview of additional papers published as a part of my doctoral work, but 
not included in this thesis. 

 
[1] Shanshan Jiang and Finn Arve Aagesen. Service Discovery Based on Semantic 

Overlay Networks. In Proceedings of 3rd Balkan Conference in Informatics, 
Sofia, Bulgaria, September 27-29, 2007. 

[2] Shanshan Jiang and Finn Arve Aagesen. Design and Implementation for XML-
based Dynamic Service Behaviour Representation. Plug-and-Play Technical 
Report, Department of Telematics, NTNU, ISSN 1500-3868, September 2003. 



LIST OF FIGURES AND TABLES 

 xiii

 

List of Figures 
Figure 1 - Service system, service component and (networked) service.......................... 3 
Figure 2 – A three-level service model [Aag07]. ............................................................. 6 
Figure 3 - A general service concept model. .................................................................... 6 
Figure 4 - Concepts related to service engineering, management and life cycle. ............ 8 
Figure 5 - Upper ontology of service.............................................................................. 10 
Figure 6 - Simplified TAPAS computing architecture................................................... 20 
Figure 7 - TAPAS management architecture. ................................................................ 21 
Figure 8 - Contribution to TAPAS architectures............................................................ 22 
Figure 9 - Overview of research topics and research contributions. .............................. 23 
Figure 10 - Problem statements, research topics, papers and contributions................... 24 
Figure 11 - The integrated semantic service description (cf. PAPER A)....................... 26 
Figure 12 - EFSM-based XML manuscript data structure (cf. PAPER D and F). ......... 27 
Figure 13 - Super-peer SON service discovery system architecture (cf. PAPER C). .... 29 
Figure 14 - Relation of the service discovery system and adaptable service systems.... 30 
Figure 15 - Engineering model for service instantiation. ............................................... 31 
Figure 16 - Generation of the Mapping table. ................................................................ 33 
Figure 17 - Dynamic service management framework (cf. PAPER F). ......................... 34 
Figure 18 - Relationship between papers, problem statements and contributions. ........ 36 
Figure 19 - Suggested paper reading order..................................................................... 36 
Figure 20 - Research cycle. ............................................................................................ 38 

 
 
 

List of Tables 
Table 1 - An overview of the papers included in part II of this thesis. ........................... xi 
Table 2 - An overview of additional papers published as a part of my doctoral work, but 

not included in this thesis. ...................................................................................... xii 
Table 3 - User service areas and examples of service functionalities. ............................. 4 
Table 4 - The relationship between problem statements and research topics. ............... 18 



ABBREVIATIONS 

 xiv

Abbreviations 
DHT  Distributed Hash Table 
DPE  Distributed Processing Environment 
EFSM  Extended Finite State Machine 
IN  Intelligent Network 
IP  Internet Protocol 
ISO  International Standards Organization 
ISO/OSI RM ISO Reference Model for Open System Interconnection 
NGN  Next Generation Network 
ODP  Open Distributed Processing 
P2P  Peer-to-Peer 
QoS  Quality of Service 
RM  Reasoning Machine 
SCP  Service Control Point 
SDP  Service Data Point 
SIB  Service Independent Building Block 
SON  Semantic Overlay Network 
SMI  State Machine Interpreter 
TAPAS Telematics Architecture for Play-based Adaptable Service Systems 
TINA  Telecommunications Information Networking Architecture 
XML  eXtensible Markup Language 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PART I: INTRODUCTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

 



INTRODUCTION 
 

 3

Part I Introduction 
 
This introduction part gives service related definitions used in this thesis and discusses 
the key technologies for networked services, in particular, adaptable service systems 
and peer-to-peer technology. It presents the research objectives, problem statements and 
scope for this research. The problem statements are further mapped into four research 
topics. As the basis and context for this research, the related concepts and architectures 
in TAPAS are introduced. This thesis’s contribution to TAPAS is also described. The 
research topics covered in the thesis as well as research contributions within each topic 
are presented. The research methodology and research cycle for this thesis is described. 
This part also summarizes each of the included papers in Part II and their research 
contributions. Summary of the results, conclusions and future work are also included. 

1. Service Related Definitions 

This section presents service related definitions used in this thesis. Section 1.1 
introduces networked services and gives examples of user services. Section 1.2 presents 
service model concepts in general as well as service models to be used in this thesis. 
Section 1.3 presents service life cycle concepts, while Section 1.4 describes the service 
ontology defined for this research. 

1.1 Networked Services 
A service is a functionality offered to a service user by a service provider. Both service 
users and service providers can be human beings, enterprises, as well as software and 
hardware entities (i.e. programs and devices). A networked service is a service provided 
by a service system through the structural and behavioural arrangements of service 
components based on a communication infrastructure. A service component is an entity 
that offers some functionality. A service system is constituted by service components, 
which in turn can also be service systems, thus constituting a hierarchy of service 
systems. Such relationship is illustrated in Figure 1. This figure is a subset of a more 
complete service concept model defined in Figure 3. 
 

Service 
system

Service 
component

(Networked) 
Service

can_be

provides

provides

consists_of  
 

Figure 1 - Service system, service component and (networked) service. 
 
A service provided to a human user is usually referred to as a user service. These 

days the amount and variety of user services are growing dramatically, due to the 
radical advances of technology, especially the development and use of Internet for e-
business, e-banking and other types of networked services provided by private and 
government service-oriented enterprises. To get a feeling of the versatility of user 
services, Table 3 lists 9 user service areas with examples of service functionalities. This 
table is a slightly different version of the service model presented in [RPOS05], which 



INTRODUCTION 
 

 4

classifies services into 8 service areas. The main difference is that we think information 
retrieval/transfer should be a separate user service area. 
 
Table 3 - User service areas and examples of service functionalities.  

 
User Service Areas Examples of service functionalities 

Broadcasting/weather/public Pay broadcasting, emergency news, electronic voting 
Business/commerce/banking Management, reservation, membership, payment, 

advertisement, brokerage 
Communication Voice/moving picture communication (e.g. telephony, 

video conference), text communication (e.g. email, chat, 
instant messaging), roaming 

Emergency/disaster ITS(camera, traffic signalling, alarm), satellite, mobile 
control centre, emergency routing and traffic handling 
schemes 

Information 
retrieval/transfer 

Web browsing, computational services, data/file 
transmission 

Leisure/games Multimedia quality, contents selection, online gaming, 
television, Video on Demand, smart home 

Life Intelligent agent, personal information management, 
monitoring, remote education, access and security 
control 

Mobility/traffic Navigation, context-aware, position information, lost 
protection, positioning-based guidance 

Telemedicine/health Remote control services, remote medical consult and 
treatment 

 
 
 

1.2 Service Models 
A service model has concepts defined by the type of abstractions and life cycle phases 
of the service. The abstractions mechanisms are viewing, scoping and layering. The 
viewing defines which aspect and the scoping defines the level of detail. Layering is the 
hierarchical arrangement of functionality which can apply both viewing and scoping. A 
viewpoint provides an abstraction of the service from a certain perspective, while 
layering models the service using abstraction layers with order and hierarchy. This 
Section 1.2 will present abstraction model. Life cycle models are presented in Section 
1.3. The interaction of the components constituting an executing service requires 
concepts defined by a common ontology. Ontology concepts are defined in Section 1.4.  

Viewpoints and layering principles for networked service design and interoperation 
were introduced by ISO Reference Model for Open System Interconnection (ISO/OSI 
RM) [DZ83] and ISO Reference Model for Open Distributed Processing (ODP) 
[ODP95]. ISO/OSI RM defines a seven-layer model, which consists of physical, data 
link, network, transport, session, presentation and application layers. Within the context 
of ISO/OSI RM, a (N)-service is the service offered to the (N+1)-layer by the (N)-layer 



INTRODUCTION 
 

 5

using the (N-1)-services. With reference to this model, networked application services 
based on and/or residing at the application layer are considered in this thesis. From now 
on, such networked application services are referred to as networked services, or simply 
services. 

The ISO/OSI ODP defines a viewpoint model, which consists of enterprise, 
information, computational, engineering and technology viewpoints. The enterprise 
viewpoint specifies the roles of the external actors of the system and their relationships. 
The information viewpoint describes the semantics of the information and information 
processing. The computational viewpoint describes the functional decomposition of the 
system into objects that interact at interfaces. The engineering viewpoint specifies the 
infrastructure required to support distribution. The technology viewpoint gives the 
system implementation of hardware and software components. These viewpoints are 
widely used in the design of distributed systems. TINA [BDD99] (see also Section 2.1) 
introduced a specific enterprise viewpoint model denoted as the business model. This 
model defines the relationship between the stakeholders related to service delivery, 
usage and business. TINA also introduced a specific two-dimensional architecture of the 
service: 

 
• The computing architecture is a generic model for the modelling of any service 

system.  
• The service architecture is the structure of services and service functionality 

components.  
 
While the computing architecture focuses on the modelling of functionality with 

respect to implementation, but independent of the nature of the service functionality, the 
service architecture has focus on the structural arrangement of service functionality 
independent of implementation.  

Considering the computing architecture, this thesis considers the service at three 
abstraction levels, denoted as conceptual, engineered and physical service [Aag07] 
defined as follows: 

 
• Conceptual service: the high level abstraction of the service independent of how 

it is realized. 
• Engineered service: the system and procedures for the realization of the service 

based on concepts that can be executed and implemented. 
• Physical service: the real provision of the service by instantiated software and 

hardware components in nodes as well as supporting communication 
infrastructure.  

 
This generic three-level service model is illustrated in Figure 2. Each service model 

is constituted by conceptual service components, engineering service components and 
physical service components, respectively. A conceptual service component is an 
abstract high-level component that constitutes a conceptual service. An engineering 
service component is a component suitable to map the conceptual service components to 
programming languages. A physical service component is an operating system process 
component that executes in a node. The conceptual/engineered/physical service is 



INTRODUCTION 
 

 6

realized by the structural and behavioural arrangement of 
conceptual/engineering/physical service components, respectively. 

 

Conceptual 
service 

component

Conceptual 
service 

component
Conceptual 

service 
component Conceptual 

service model

Engineering 
service 

component

Engineering 
service 

component
Engineering 

service 
component

Engineered 
service model

Physical 
service 

component

Physical 
service 

component

Physical 
service 

component Physical 
service model

Constitutes/Realizes

Constitutes/Realizes

 
Figure 2 – A three-level service model [Aag07]. 

 
 
Figure 3 presents important service model concepts without paying attention to the 

level of abstraction.  
 

Service 
system

Service 
component Service

Non-functional 
properties

Functional 
properties

Capability

Behavior 
model

Interface

Procedure Extended finite 
state machine

Reasoning 
machine

can_be

consists_of

can_be
can_be

can_be

hashas

provides

provides

has has

has, 
requires

requires
requires

is_the_basis_for
is_the_basis_for

Life cycle 
concepts

has

Status

has

 
 

Figure 3 - A general service concept model. 
 



INTRODUCTION 
 

 7

The concepts of service, service system and service component have already been 
introduced in Section 1.1. A service has functional properties and non-functional 
properties. Functional properties of a service are usually referred to as its functionality. 
A service model needs concepts related to the life cycle phases. The various service life 
cycle concepts will be discussed in Section 1.3. Functional and non-functional 
properties will be discussed in more detail in Section 1.4.  

A capability is an inherent property of a node, which is a basis for implementing a 
service [AS07]. Capabilities can be classified as functions, resources and data 
[ASAS05]. Examples of capabilities are software programs, library functions, CPU, 
memory, transmission channels, hard disk, user profiles and access rights. Status is the 
measure for the situation in a system with respect to the actual number of nodes, active 
entities, traffic situation and Quality of Service (QoS) [ASAS05]. Status can both 
comprise observable counting measures, measures for QoS or calculated predicates 
related to these counts and calculated measures. 

A service requires certain capabilities, which are the basis for the functional and non-
functional properties of the service. A service component has certain status, and at the 
same time, may require certain capabilities and status for the provision of a service. The 
concepts of capability and status provide the flexibility to map the concepts in the 
conceptual service model to computing and communication platforms in the physical 
service model. 

A service component has a behaviour model and an interface. Based on the nature of 
the service, a behaviour model can be: 

 
• Procedure. A procedure is basically a state-less operation that has 

preconditions and effects, and may generate outputs according to given inputs. 
• Extended Finite State Machine (EFSM). A state machine is a model of 

behaviour composed of a number of states, transitions between those states, and 
actions. An EFSM is a state machine with finite states and variables, which 
performs actions (including calculation and updating of variables), sends 
outputs and moves to a next state when receiving messages. 

• Reasoning Machine (RM). A RM is an information processing system (e.g. a 
computer program) that can derive a conclusion by systematically employing 
inference steps, which process the rules, cases, objects or other types of 
knowledge and expertise based on the facts of a given situation. 

 
A service component interface can be: 
 
• A user-component interface: the interface between a service user and a service 

component. 
• A component-component interface: the interface between two service 

components. 

 
 



INTRODUCTION 
 

 8

1.3 Service Life Cycle Concepts 
The main service life cycle concepts can be briefly distinguished into two groups, i.e., 
concepts related to service engineering and concepts related to service management, as 
illustrated in Figure 4.  
 

Service 
management

Service 
specification

Service design

Service 
implementation

Service 
validation

Service 
verification

Service 
deployment

Service 
instantiation

Service 
(re)configuration

Service 
adaptation

Service 
exhibition

Service 
discovery

Service 
representation

related_to

Life cycle 
concepts

Life cycle 
concepts

Service 
engineering

related_to related_to

aspect_of

Service 
manager

responsible_for

Main concepts considered in this thesis

 
Figure 4 - Concepts related to service engineering, management and life cycle. 

 
Service engineering refers to the creation of conceptual, engineered and physical 

services. The main service life cycle concepts related to service engineering are: 
 
• Service specification is the process that creates the conceptual service according 

to the requirements.  
• Service design is the process that creates the engineered service. 
• Service implementation is the process of producing the physical service.  
• Service validation is the process to confirm that the service produced 

(conceptual, engineered or physical service) satisfies its requirements.  
• Service verification is the process of checking service specifications to ensure 

that service components can play well together.  
 

In addition, one important aspect of service engineering is: 
 
• Service representation, which is the representation of a service (conceptual, 

engineered and physical) based on a specific language and a data model. It is 
thus related to several life cycle concepts, i.e., service specification, design, 
implementation and verification.  

 



INTRODUCTION 
 

 9

Service management is the functionality to control the provision of service 
functionality and quality of a service, both within a service system and across different 
service systems, through the service life cycle phases. The main service life cycle 
concepts related to service management include: 

 
• Service deployment introduces new services and service components into the 

physical nodes to make them ready for use.  
• Service instantiation is the process of creating a service instance upon request 

and making it available to the user. This is the provision of the physical service. 
• Service configuration is the arrangement and setup of service systems. It can be 

done initially during service deployment and instantiation, or later during service 
execution, which is also called service reconfiguration.  

• Service adaptation is the process of adapting the structure or behaviour of the 
service to the changes during its execution.  

• Service exhibition refers to the exposure of functionality and other service 
related properties to service users, so that the service can be discovered and 
executed. It is also called service publication or service advertisement. 

• Service discovery is the process of finding the services that satisfy the functional 
and non-functional requirements. Depending on the service request, the result 
can be the conceptual or engineered service (service type), or the physical 
service (service instance). Service discovery can also be applied to service 
components in order to compose services, both statically (during service design) 
or dynamically upon a request.  

 
Service manager is responsible for service management. It is an entity that carries 

out service management functionality, such as the functionality required for service 
adaptation, discovery and instantiation.  

 

1.4 Service Ontology 
Ontologies are the basis for adding semantic expressiveness to service descriptions and 
requirements. An ontology is an explicit and formal specification of a shared 
conceptualization [SBF98]. A service ontology is accordingly an explicit and formal 
specification of core concepts of the functional and non-functional properties of service. 
An upper ontology of service is a model of common service-related concepts applicable 
to a wide range of domains.  

Ontology provides several advantages due to its semantic expressiveness. On one 
hand, service ontology enables semantic interoperability as shared concepts with 
common semantics can be defined. On the other hand, ontology facilitates automatic 
reasoning because the meaning of the concepts can be accurately and automatically 
interpreted. The ontological relationships, such as subClassOf, enable comparison of 
semantic similarity of the concepts defined in the ontology.  



INTRODUCTION 
 

 10

In order to further represent functional and non-functional properties with semantic 
expressiveness, an upper ontology of service1 is defined for the conceptual service, as 
shown in Figure 5. The conceptual service functionality is based on procedures, and 
represented using operations, inputs, outputs, preconditions and effects. Non-functional 
properties include service category, service parameter, QoS parameters and policies. 
Service category is a categorization of service. The set of service categories is 
connected by a rooted tree, category hierarchy (CH). QoS parameters are QoS attributes 
that can be expressed in quantifiable measurements or metrics, such as reliability, 
availability, security and performance measures. Service parameters are other service 
related parameters, such as price and location. Policies are the constraints applied on the 
system. Policies can be business policies, QoS policies and context policies. Business 
policies are rules related to business concepts, such as a delivery policy. QoS policies 
are rules related to QoS parameters. Context policies are rules related to context 
information. Examples of context information are location, time, connection, user’s 
feeling, presence, and user’s habits and hobbies. 

 

Functional 
properties

Non-functional 
properties

Output

Operation

Precondition

Service 
category

hasOperation

belongsTo

hasInput

Service

hasOutput
Effect

hasEffect

hasCondition

Service 
parameter

QoS 
parameter

hasQoS

hasParameter

Input

policy

hasPolicy

Business 
policy

QoS 
policy

Context 
policy

canBe

canBe
canBe

 
 

Figure 5 - Upper ontology of service. 

                                                 
1 This ontology was first defined in PAPER A, in order to represent the conceptual service. It was 
extended with the concept of service category in PAPER B and PAPER C in order to organize directories 
into Semantic Overlay Networks (SON). It is sometimes in this thesis referred to as simply the service 
ontology. 



INTRODUCTION 
 

 11

2.  Key Technologies for Networked Services 

2.1 Overview 
Networked services have been an important research topic since the introduction of the 
computer controlled telephone exchanges in the early 60s. The research focus on 
networked services during the 80s and 90s was primarily on service architectures that 
give flexibility and efficiency in the definition, design, deployment and execution of the 
service. IN (Intelligent Network) and TINA (Telecommunications Information 
Networking Architecture) are such examples.  

IN [IN92] was introduced in the 1980s as a promising way to defining and 
constructing services to cope with the complexity in services. Its main purpose was to 
increase flexibility in service design and speed up the provision of new services by 
implementing new services from predefined service-related functionality components, 
called SIBs (Service Independent Building Blocks). IN architecture separates service 
control from switching and places service logic in dedicated network components (i.e. 
service control points, or SCPs). Database has been an important component in IN 
architecture and is used to realize various aspects of flexibility. SCP contains 
programmable service logic and utilizes such databases either internally or by 
consulting external service data points (SDPs). The IN architecture, however, has 
limitations for advanced and complex service provision as the execution of the IN 
services can only be triggered from switches.  

TINA [BDD99] was developed between 1995 and 1997. Its primary objective was to 
become a software architecture for services and for the operation of these services, by 
putting together the best of telecommunications and information technologies [BDD99]. 
TINA provides concepts and principles for the design, deployment, operation and 
management of the TINA-based services based on a notion of sessions, and uses DPE 
(Distributed Processing Environment) to resolve heterogeneity and distribution. TINA 
offers greater flexibility than IN as it separates information network from transport 
network and offers an abstract view of resources to control and manage.  

Since the middle of the 1990s, Internet usage has undergone exponential growth and 
various initiatives to increase the power of flexibility within Internet have emerged. 
Examples include Active and programmable networks, Web Services and Semantic Web. 

Active and programmable networks [TSS97][CDK99] are aimed at speeding up the 
efficiency of application layer services. Such networks give more intelligence to routers 
which can adjust themselves to the environment using network-level programming 
capabilities. The intermediate routers have functionality up to the application layer and 
can carry out customized operations on the packets. In addition, users can program the 
network by injecting their programs into it. 

Web Services technology [WS07] deals mainly with service descriptions, service 
discovery and utilization. It provides high level interfaces, focusing mainly on service 
syntax, for service interoperability over Internet. On the other hand, Semantic Web 
[SW07] is a semantic description framework for semantic interoperability, enabling the 
encoding of knowledge and services on the Web using ontology-based semantics. 
Semantic Web technologies will not only provide essential tools for semantic 
representation but also facilitate automatic reasoning and advanced decision-making. 



INTRODUCTION 
 

 12

Through more than one century’s development, telecom networks have evolved as 
the world’s largest online, real-time distributed system and offer world-wide 
connectivity with vast amount of various networked services. Next Generation Network 
(NGN) is a general term referring to the future architectural evolutions in telecom 
networks. NGNs are generally packet-based, IP-based, multi-service networks 
[NGN04]. The fundamental difference between NGNs and current telecom networks is 
the transition from circuit-switched networks to packet-based networks such as those 
using Internet Protocol (IP). NGN provides a unified and flexible control environment 
that allows unrestricted access technologies to use the same core network and supports 
multimedia services with generalized mobility. One of the major characteristics of NGN 
is the distribution of network intelligence [NGN07], i.e., intelligence (control) is 
distributed throughout the network and may reside at the edge or in the network as 
needed.  

Due to the increasing complexity and heterogeneity in today’s distributed computing, 
networking and service systems, the research focus on networked services has recently 
shifted towards adaptability and evolution of services. Examples are adaptable service 
systems and autonomic systems.  

Adaptable Service Systems are service systems that are able to adapt dynamically to 
changes in time and position related to users, nodes, capabilities, status, changed service 
requirements and policies [ASAS05]. Adaptable Service Systems will be presented 
more comprehensively in Section 2.2. 

Autonomic Systems are service systems that can act upon the failures, unexpected 
events and changes in environments and requirements in an autonomous and adaptive 
manner. They are targeted at coping with the rapidly growing complexity of operating, 
managing and integrating service systems, and also towards the management of network 
and computing resources in a decentralized manner. Different approaches have been 
proposed: autonomic computing [AC07], autonomic communication [ECAC07] and 
autonomic networking [ANA07][Bion07], which are attempts to create more self-
managing and self-organizing systems from computing, communication and networking 
fields, respectively. Basically, robustness, adaptability, intelligence and dependability 
are among the goals desired for autonomic systems [DDF06]. 

Concerning the network infrastructure for networked service systems, there are 
basically two types of architecture: client-server based and peer-to-peer (P2P) based. In 
client-server based architecture, a node has predefined role as either a client or a server, 
with clients making requests to dedicated servers. In P2P-based architecture, each node 
is considered equal (thus the name peer), and can act both as a client or a server to other 
peers. The client-server based architecture may suffer from single-point-of-failure and 
scalability problems due to dedicated servers. In addition, some servers may have 
performance bottleneck due to sharply increased requests, while others may have plenty 
of unused resources. P2P-based architecture holds many promises for robustness and 
scalability and can alleviate the above problems facing the client-server architecture. 
Section 2.3 will give a more detailed description of related P2P technology.  

2.2 Adaptable Service Systems 
In a dynamic environment, components come and go all the time, and the services will 
be provided by nodes and devices that experience great variation in their available 
capabilities. Therefore, a service system needs to adapt or evolve due to changes in 



INTRODUCTION 
 

 13

human needs, enabling technology or application environment during its life cycle. 
Some of the changes can be predicted at the design time, while others are not. This leads 
to a need for dynamic adaptation or evolution, i.e. modification or extension of the 
system without interrupting those parts of the system that are not directly affected 
[KM90].  

As defined in Section 2.1, Adaptable Service Systems are service systems that can 
adapt dynamically to the various changes. TAPAS (Telematics Architecture for Play-
based Adaptable Service Systems) project [ASAS05] is such an example research 
project. The defined adaptability functionality for adaptable service system is very 
broad. In fact, according to this definition, adaptable service systems are more general 
than autonomic systems, as autonomic systems impose more strict requirements for the 
systems and environment. Adaptable service systems should possess certain adaptability 
properties. TAPAS has defined two classes of targeted properties: 

 
• general adaptability properties and 
• core functional adaptability properties 

 
The general properties are properties of the architectural framework, while the core 

properties are properties of the functionalities. 
The general properties are in [AS07] defined as follows: 1) There must be a flexible 

and common way of modelling services, 2) The framework must be flexible with 
respect to the adding of adaptability properties and features, 3) The service concepts 
must be flexible and powerful, 4) The software mechanisms must be flexible and 
powerful, and 5) There must be an easy mapping of service models to software models. 

The core properties as defined in [ASAS05] and [AS07] are grouped into three 
classes: 

 
A1: Rearrangement flexibility 
A2: Robustness and survivability 
A3: QoS awareness and resource control 
 

Rearrangement flexibility means that the system structure and the functionality are 
not fixed. Nodes, users, resources, services and service components can be added, 
moved, removed according to the needs. New nodes and capabilities are found 
automatically when introduced and such information is propagated accordingly. 
Furthermore, there is a continuous adaptation to changed environments and operation 
strategies/policies. 

Robustness and survivability means that the architecture is dependable and 
distributed. Resources and functionality are replicated, and malicious and unauthorized 
components need to be inhibited. It also means that the system can reconfigure itself in 
the presence of failures and can provide continuous operation through re-initialization. 

QoS awareness and resource control means that there is functionality for negotiation 
about QoS and optimum resource allocation, as well as monitoring of resource 
utilization and reallocation of resources.  

Traditionally, services are defined only at design time. A change in the system 
usually requires manual modification of service specification, then manually 
reconfiguration and deployment into the system. Such situation has been changing with 



INTRODUCTION 
 

 14

adaptable service systems, where services can be dynamically created, i.e., the service 
specifications can be changed or created dynamically and deployed during the execution 
phase. 

There are basically two types of service adaptations considering the conceptual and 
physical service level: 

 
• Conceptual service adaptation 
• Physical service adaptation 
 
Conceptual service adaptation is adaptation at the conceptual service level. Service 

specifications can be dynamically created by composing new service specifications 
from existing service specifications during the execution phase. For example, when a 
user sends a request for a certain service, sometimes a service that can satisfy all the 
user’s requirements does not exist. Instead, several services together can provide the 
required service. The dynamic composition of conceptual services is thus an approach 
for service adaptation at the conceptual service level.  

Physical service adaptation is adaptation at the physical service level, e.g., by 
selecting different predefined codes for a service dynamically. 

For conceptual service adaptation, new services are created dynamically, and they 
need to be deployed and instantiated. For physical service adaptation, the services are 
already deployed in the system. 

 

2.3 Peer-to-Peer Technology 
Peer-to-Peer (P2P) technology is a distributed computing technology where each node 
in the system is considered equal (also called peer), instead of client-server relationship. 
Each peer is considered an autonomous entity, and a P2P network is typically used to 
connect peers via largely ad hoc connections. An overlay network is a network which is 
built on top of another network. Many P2P networks are overlay networks because they 
usually run on top of the Internet. Advantages of P2P networks are typically robustness 
(due to its distribution and autonomous nature), scalability (due to no central manager or 
controller), autonomy and self-organizing, but the security problem is a major concern. 
[AS04] provides survey and overview of P2P systems and technologies.  

There are several ways to classify P2P architectures and networks. The classification 
defined in [AS04] is followed here. P2P architectures can be classified as pure, partial 
or hybrid according to the degree of centralization. Purely decentralized architectures 
have no central servers to coordinate the peer activities and all peers are equal in the 
roles. Partially centralized architectures have dynamically assigned servers (called 
super-nodes or super-peers) that assume a more important role than others. Hybrid 
decentralized architectures have a central server facilitating the interaction between 
peers, which usually constitutes a single point of failure. On the other hand, P2P 
architectures can also be classified as structured or unstructured according to whether 
there is structure of the links between nodes in the overlay network.  

Pure, unstructured P2P networks do not rely on any centralized entities and are well-
suited for highly dynamic environments such as ad hoc networks. Examples of pure, 
unstructured P2P networks include Gnutella [LW00] and FreeHaven [DFM00].  



INTRODUCTION 
 

 15

Distributed Hash Table (DHT)-based P2P networks are formed by constructing a 
structured overlay network in which each participating node needs to communicate with 
only a small fraction of the other nodes. By using DHT-techniques, a set of keys are 
assigned among participating nodes, and can be used to efficiently route messages to the 
unique owner of any given key. The benefit of using DHT lies mainly in its efficiency, 
where a message can be routed within O(logN) hops for a network of N nodes. 
However, such structured P2P systems impose restrictions on data or index placement, 
and have tight coupling between nodes. Examples of DHT-based infrastructures include 
Chord [SMK01], CAN [RFHK01], Tapestry [ZKJ01] and Pastry [RD01].  

Super-peer based P2P networks [YG03] represent partially centralized architectures. 
A super-peer acts as a central server to a subset of clients, providing services such as 
listing connected peers and acting as primary connection nodes. Clients submit queries 
to corresponding super-peer and receive results from it. Essentially, the connections 
among super-peers form a pure P2P system, and super-peers are responsible for sending 
and answering requests on behalf of client peers and themselves. It is important to be 
noted that such super-peers do not constitute single points of failure, since they are 
dynamically assigned and, if they fail, the network will automatically take action to 
replace them with others. Super-peer based systems have some degree of centralized 
management, which provide the efficiency of centralized network as well as autonomy, 
reliability and load balancing of distributed network. Example systems include JXTA 
[Gon01] and Kazaa [Kaz07]. 

Semantic Overlay Networks (SONs) have been proposed as an approach to improve 
the efficiency and quality of search in unstructured P2P systems. The basic idea is to 
group together peers that contain semantically similar content, so that at search time, 
queries can be forwarded to only those peers containing content with high probability of 
satisfying the query constraints. Hence, communication cost of the query can be 
reduced, while at the same time, result quality can be increased. Evaluation conducted 
in [CG02] shows that SONs can significantly improve query performance while at the 
same time allowing systems to decide what content to put in their computers and to 
whom to connect. 

P2P-based service discovery systems have been proposed as promising solutions 
providing scalability and autonomy [PSNS03][SMK01]. Since different P2P 
technologies have different research focus, they are suitable for different applications. 
Pure P2P-based service discovery systems use flooding to route requests and are 
suitable for highly dynamic environments. However, flooding tends to increase message 
overhead in the system. DHT-based P2P systems can provide results fast when the 
request is based on a single key value. They are efficient for service discovery based on 
exact matching and keyword-based matching, but are not suitable for complex, 
ontology-based semantic matching. In addition, there is high maintenance overhead for 
the DHT index.  

P2P technology is important as an enabling technology for networked service 
systems. The reason to use P2P technology in this research is mainly to enhance the 
robustness and survivability property (core property A2).  



INTRODUCTION 
 

 16



INTRODUCTION 
 

 17

3. Research Objectives, Problem Statements, Research 
Topics and Scope 

3.1 Research Objectives 

The context for this thesis is service engineering and service management in adaptable 
service systems. In adaptable service systems, new service specifications or 
modifications to existing services shall be introduced without interrupting the executing 
services. 

The main research objectives are to specify, construct, evaluate and validate 
applicable concepts, models, mechanisms, algorithms and frameworks for service 
engineering and service management in adaptable service systems. 

 

3.2 Problem Statements 
The following problem and sub-problem statements are defined: 
 

P1: How can services be modelled and represented? 

P1.1: How to represent conceptual services? 

P1.2: How to represent physical services in a flexible manner so that it is 
possible to adapt the services to changes dynamically? 

P1.3: How to extract the component interface behaviour from the physical 
service representation so that compositional service verification can be 
applied? 

P2: How can services be discovered efficiently, automatically and accurately?   

P2.1: How to ensure automatic and accurate service discovery? 

P2.2: How to locate services efficiently in a large-scale service system? 

P3: How can services be instantiated dynamically and according to available 
capabilities and status information?  

P4: How can new service specifications or modifications to existing services 
dynamically be introduced without interrupting the executing services? 

P5: How to evaluate and validate the proposed frameworks and mechanisms?  
 

3.3 Research Topics 
The problem statements P1-P4 are related to the following four research topics: 
 

T1: Service representation 

T2: Service discovery 



INTRODUCTION 
 

 18

T3: Service instantiation 

T4: Service adaptation 
 
In addition, P5 is related to all the four topics T1-T4. Table 4 depicts the relationship 

between problem statements and research topics. 
 

Table 4 - The relationship between problem statements and research topics. 
 

Related Research TopicsProblem 
Statement T1 T2 T3 T4 

P1  X    
P2   X   
P3   X  
P4    X 
P5 X X X X 

 

3.4 Scope 
Concerning the targeted adaptability properties defined in Section 2.2, the main 
emphasis of this thesis is on the functionality that can support or realize core property 
A1. In addition, some support for core property A2 is also considered, but it is not the 
main focus.  

Concerning the three service levels defined in Section 1.2, service representation is 
considered at both the conceptual and the physical service level, service discovery is 
considered at the conceptual service level, while service instantiation and service 
adaptation are considered at the physical service level. Service adaptation at the 
conceptual service level, e.g. by dynamically composition of conceptual services, is not 
considered. 

This PhD work is related with TAPAS. TAPAS has a computing and a management 
architecture in line with the TINA computing and service architecture (cf. Section 1.2 
and Section 4). Referring to the TAPAS computing architecture, this thesis focuses 
mainly on the representation of the conceptual and the physical services. In addition, 
support for physical services in the core platform is also considered. Methodologies for 
service engineering are outside the scope of this thesis. 

Referring to the TAPAS management architecture, this thesis focuses mainly on 
service management component and service managers that carry out service 
management functionality as well as the Service Definitions in service repository. The 
main assumptions are 1) capability and status information should be available when 
needed, 2) the changes in the system and environment can be detected and reflected as 
service requests sent to service managers for appropriate handling.  

 



INTRODUCTION 
 

 19

4. TAPAS 

This PhD research is related to TAPAS project (TAPAS = Telematics Architecture for 
Play-based Adaptable Service Systems), which is a research project founded by the 
Norwegian Research Council and the Department of Telematics at NTNU. On one 
hand, TAPAS architectures and concepts are the basis and context for this research. On 
the other hand, this thesis aims to further develop TAPAS concepts, architectures and 
platform. 

This section presents the most related TAPAS features and concepts first, and then 
summarizes the contribution from the work reported in this thesis to TAPAS. 

4.1 TAPAS Architectures 
To meet the general properties defined in Section 2.2, the TINA architecture principle 
presented in Section 1.2 is followed. The TAPAS architecture is separated into a 
computing architecture and a management architecture, which corresponds to the TINA 
computing and service architecture, respectively. The features, concepts and properties 
of the computing architecture are the fundament for the creation of services with needed 
adaptable networking services properties.  
 

The TAPAS Computing Architecture 
TAPAS computing architecture is founded on a theatre metaphor, where actor, 
manuscript, role figure and capability are core concepts. Actors perform roles defined 
by manuscripts according to actors’ capabilities. An actor playing a role is denoted as a 
role figure.  

The computing architecture is illustrated in Figure 6. With respect to Section 1.2, the 
conceptual service model is denoted as the service view, the engineered service model is 
denoted as the play view and the physical service model is denoted as the physical view.  

In service view, the concepts service system, service components and service 
functionality have been defined in Section 1. Service performance is the QoS (or non-
functional) aspects of the service.  

The leaf service components that can not be further decomposed are constituted by 
role figures in the play view and are implemented by actors in the physical view. A role 
figure plays a role, and has role sessions with other role figures. A director is an actor 
with supervisory status with regard to other actors.  

In the physical view, a node is a physical processing unit that has particular 
capabilities and status. A node is installed with the core platform, which is a platform 
supporting the execution of service functionality based on the computing architecture 
functionality. Actors are implemented by the core platform as generic software 
components that are able to download and execute different functionality depending on 
the need. The functionality of an actor is defined in a manuscript. The core platform 
thus has a manuscript execution support and a communication support.  

 



INTRODUCTION 
 

 20

Service Component

Role 
Figure

Node Capabilities and Status

Service View

Play View

Physical View

constitutes

plays

offers

has

can_be

Role 
Session

requires

Core 
Platform

interprets

is_defined_by

Service System

Role

consists_of

executes

implements

ActorManuscript

implements

Communication

projects

supports

implements

Director
manages

implements

Service performance
has

provides

are_the_basis_for

Service functionality
provides

requires

are_the_basis_for

 
Figure 6 - Simplified TAPAS computing architecture. 

 
The concepts of capability and status as defined in Section 1.2 represent the 

attributes of services, service components and nodes. The ability of an actor to play a 
role depends on the matching of the required capabilities and status of the role and the 
offered capabilities and status in the node where the actor is executing. This principle is 
the basis for various service management functionalities, such as the service 
instantiation and adaptation mechanism proposed in this thesis. 

 

The TAPAS Management Architecture 
TAPAS management architecture (Figure 7) defines the functionality structure of and 
between service systems. Primary service providing functionalities comprise the 
provision of the ordinary services offered to human users. In addition, four main 
functionality components are defined: 
 

• Service management: deployment and invocation of services and service 
components, selection and adaptation of service specifications as well as service 
discovery. 

• Capability and status administration: registration and de-registration of 
capabilities, as well as updating, transforming and providing access to the 
capability and status repository. 

• Capability configuration management: allocation, re-allocation, de-allocation of 
capabilities, and optimization of the use of capabilities.  

• Mobility management: the handling of various mobility types. 
 

Two main repositories are defined in the TAPAS management architecture:  
 
• Inherent capability and status repository: the snapshots of available capabilities 

and status information in the system.  
• Service repository, which consists of:  



INTRODUCTION 
 

 21

o Service configuration definitions, which include targeted capabilities and 
status as well as additional requirements when deploying and 
instantiating a role figure.  

o Service definitions, which include generic service descriptions (i.e. 
conceptual service representations) as well as execution definitions (i.e. 
physical service representations).  

Service Repository

Capability and Status 
Administration

Capability 
Configuration 
Management

Targeted 
Capabilites

Targeted 
Status

Additional 
Requirements

Service 
Descriptions

Execution 
Definition

Service 
Management

Mobility 
Management

Primary Service 
Providing 

Functionalites

Service Configuration 
Definitions

Inherent Capability and 
Status Repository

Service Definitions

 
Figure 7 - TAPAS management architecture. 

 

4.2 This Thesis’s Contribution to TAPAS 
The work in this thesis has contributed to concepts, models, algorithms, mechanisms 
and frameworks of the TAPAS. Figure 8 illustrates the contributions. At the starting 
point of this PhD work, the status of TAPAS was as follows: 
 

• The concept model constituting the TAPAS computing architecture was defined 
[AHAS03].  

• The original core platform provided basic communication support and manuscript 
execution support based on Java RMI and Web technologies [AHAS03].  

• The management architecture was originally the configuration management 
architecture [AASH02], and later functionality components concerning mobility, 
capability and service management were introduced [ASAS05]. However, no 
mechanisms and functionalities for service management were defined.  

 
The computing and management architecture as well as the core platform have been 

extended and revised. In addition, new concepts have been introduced. The following 
description highlights this thesis’s contribution to TAPAS, while detailed description of 
thesis contribution will be provided in Section 5. 

Concerning the computing architecture, this thesis contributes mainly in the service 
view and the physical view. The TAPAS service view is very generic, applicable to any 
service model. The work in this thesis defines new concepts, called upper ontology of 
service, for the representation of conceptual services (e.g. QoS parameters, service 
parameters and policies), as shown in Figure 5 in Section 1. This service ontology 
model and its representation are described mainly in PAPER A. As for the physical 



INTRODUCTION 
 

 22

view, although originally it was specified to model a manuscript as an EFSM 
[AHAS03], no explicit data model and representation was defined. An EFSM 
manuscript data model and its XML representation were introduced in PAPER D. 

Concerning the TAPAS core platform, extensions and new mechanisms have been 
proposed by this thesis. In the original version, a manuscript was an EFSM directly 
represented as a Java object. To achieve greater flexibility and interoperability, XML is 
introduced as a service behaviour representation language. Action Library and State 
Machine Interpreter (SMI) were added to the core platform (cf. PAPER D and F), so 
that XML manuscripts can be easily introduced to the system without recompilation.  

Concerning the TAPAS management architecture, originally there was only a basic 
support for the execution of primary service functionality. This thesis contributes with 
concepts, models, mechanisms, algorithms and frameworks for service discovery, 
instantiation and adaptation (cf. Section 5). As for service repository, service 
descriptions and execution definitions were added. The data model and representation 
for conceptual service descriptions and execution definitions have been defined.  

 

Management Architecture

Original TAPAS Current TAPAS

Computing Architecture

EFSM data 
model

Service View

Service ontology model and 
representation

Service 
component

Service 
system

XML 
representation

Manuscript

Action
 Library

State Machine 
Interpreter

Communication 
Support

Manuscript 
Execution Support

Physical View

Core Platform

Service Repository

Targeted 
capabilities

Targeted 
status

Additional 
requirements

Service Management

Basic support

Computing Architecture

Service View

Service 
component

Service 
system

Manuscript

Communication 
Support

Manuscript 
Execution Support

Physical View

Core Platform

Management Architecture
Service Management

Service 
discovery

Service Repository

Execution 
definitions

Service 
descriptions

Service 
instantiation

Service 
adaptation

Basic support

Targeted 
capabilities

Targeted 
status

Additional 
requirements

 
 

Figure 8 - Contribution to TAPAS architectures. 



INTRODUCTION 
 

 23

5. Research Contributions 

5.1 General 
Problem statements P1-P5 and research topics T1-T4 were defined in Section 3. The 
substance of the contributions of the research work is presented in the papers included 
in Part II. The major research contributions are classified as nine contributions C1 – C9, 
which will be presented in the following subsections.  

C1: Conceptual service representation 

C2: Physical service representation 

C3: Preparation for service verification 

C4: Semantic service discovery procedure 

C5: Super-peer Semantic Overlay Network (SON)-based service discovery 
system 

C6: Manuscript execution support – State Machine Interpreter (SMI) 

C7: Physical service adaptation 

C8: Dynamic service management framework 

C9: Prototypes and simulations 
 

Figure 9 gives an overview of the research topics and research contributions. It also 
shows that the topic T1 - service representation is the basis of other three topics. 

 
T1 - Service 

representation

C1, C2, C3, C9

T2 - Service 
discovery

C4, C5, C9

T3 - Service 
instantiation

C6, C9

T4 - Service 
adaptation

C7, C8, C9

topic
contributions

Based_on

Legend:

 
 

Figure 9 - Overview of research topics and research contributions. 
  

Figure 10 illustrates how the major contributions in the included papers relate to the 
research topics. Each topic is covered by a number of papers, and each paper constitutes 
one or several contributions. For instance, PAPER A addresses two contributions C1 
and C4, and is related with the topics T1 and T2. The relations between the papers are 
also illustrated. For example, PAPER C is a further work of PAPER B. In addition, the 
figure also shows the relationship between contributions. For example, C4 is based on 
C1. The relationship between problem statements and research topics is also depicted. 



INTRODUCTION 
 

 24

The relationship between papers, problem statements and contributions will be further 
illustrated in Figure 18. 

 

T2

PAPER A PAPER B PAPER C PAPER DPAPER E PAPER F

Topics Papers Contributions

C1 C4 C5 C6C3 C8C7C2

Further workRelated

PAPER G

Minor contributionMajor contribution

Legend:

based_on applies

based_on

considers

considersbased_on based_on

considers

Problem 
Statements

P2.1

T1 T3

P3

T4

P4P2.2P1.1 P1.2 P1.3

Note: 1. Since P5 is related to topics T1-T4, and is addressed by all the papers, P5 is not depicted in the figure.
          2. Since C9 is related to P5 and is addressed by all the papers, C9 is not depicted in the figure.  

 
Figure 10 - Problem statements, research topics, papers and contributions. 

 
The following Sections 5.2-5.5 discuss the various research topics and research 

contributions. General description of each topic is provided first, and then the main 
results and major contributions of this thesis within each topic are described. The 
relationship between the contributions and the problem statements is discussed in 
Section 5.6. Finally, Section 5.7 presents suggested paper reading guidelines.  

5.2 Topic T1: Service Representation 
As defined in Section 1.2, a service can be a conceptual service, an engineered service 
or a physical service. In order to create a service, the service needs to be modelled 
according to its nature and be represented using proper languages.  

Depending on the nature of service, service functionality can be modelled using 
different behaviour models, such as procedures, EFSMs and reasoning machines, as 
defined in Section 1.2. These models can also be represented using various languages. 
The most used languages include SDL, UML, and XML. 

SDL [SDL00] is a specification and description language for modelling of behaviour 
defined by ITU-T. It has formal semantics and has been widely used in the telecom 
industry. For instance, the work of [Flo03] uses SDL for modelling of service roles.  

UML [UML07] is a leading modelling language defined by OMG, originally from 
the area of object-oriented development. The recent version UML2 [UML05] has 
included most of the expressive power from other languages, such as SDL. Although it 
has been attacked as lacking formal semantics, UML has gained a dominating position 
as a modelling language in the IT community. Work on service modelling based on 
UML2 can be found in [SB04][SCKB05][CB06]. 



INTRODUCTION 
 

 25

XML [XML06] is a standard for interchanging structured documents over the 
Internet. Its main advantages are flexibility and interoperability. Recently a number of 
languages have been developed based on XML, such as the languages for Web Services 
and Semantic Web. These languages aim to make the representations both readable for 
humans and comprehensible by machines. In addition, ontology is used to enhance 
semantic expressiveness and to facilitate automatic reasoning. XML-based ontology 
language is thus an important approach to achieve both semantic interoperability and 
intelligence based on automatic reasoning. Representative efforts on service 
representation based on XML languages are WSDL [WSDL01] and OWL-S 
[OWLS03]. The representative XML-based ontology language is OWL [SWM04]. 

Considering the popularity of XML-based technologies (including ontologies) as 
well as the advantages for interoperability and autonomic reasoning, this thesis applies 
XML-based languages for service representation2. The research in this thesis focuses on 
the representation of conceptual services and physical services using such XML-based 
languages. In addition, work has been carried out on preparation for service verification. 
 
C1: Conceptual Service Representation 

This contribution addresses the problem statement P1.1. In this thesis, a high level 
conceptual service representation based on procedures is proposed. PAPER A presents a 
model for integrated semantic service description based on a service ontology. The 
upper ontology of service has been given in Figure 5 in Section 1. The service 
functionality is represented as operations, inputs, outputs, preconditions and effects. The 
non-functional properties are described as QoS parameters, service parameters and 
policies including business policies, QoS policies and context policies. The integrated 
semantic service description is represented using XML-based languages from Web 
Services and Semantic Web standards, i.e. WSDL, OWL, and WS-Policy [Baj06]. An 
example of the integrated semantic service description is given in Figure 11. 

Such service description is the basis for semantic matching in service discovery. 
Service functionality, policies and QoS parameters are all ontology-based. In addition, 
rule-based policy representation is applied. The application of rules and ontologies 
enables a rule-based Reasoning Machine (RM) to carry out automatic and semantic 
matching in service discovery (cf. 5.3).  

 
C2: Physical Service Representation 
This contribution addresses the problem statement P1.2. Manuscripts define the 
physical service functionality. PAPER D presents an approach for XML-based EFSM 
service behaviour representation, and the data model for such XML manuscripts. This 
model has been extended in PAPER F and PAPER G. Such XML manuscript 
representation is the basis for service instantiation and adaptation. 
 

                                                 
2 This thesis focuses on service representation. Methodologies for service creation from requirements to 
implementations are out of the scope of this work. In fact, any service engineering methodology or tools, 
e.g., UML-based techniques, should be applicable for service creation from requirements to 
implementations. Such created models and specifications can then be translated to our XML-based 
representations to enable the flexibility and adaptability functionality in later service life cycle phases. 



INTRODUCTION 
 

 26

WSDL

Operation: 
PurchaseBook

Input: 
BookDetails

Output:
Confirmation

BookSelling
Services

Output

Operation

BookOrdering

BookInfo ConfirmMessage

Policy

Context 
policy

QoS paramter

Avaliability

Economic
Cost

Accessibility

Business 
policy QoS policy

Precondition

...

cost
availability

accessibility

PolicyAttachment

Policy.xml

PurchaseBook
Service.wsdl

PolicyRule.
owl

QoS.owl

hasOperation
subClassOf

subClassOf

hasInput

subClassOf

Service

subClassOf

subClassOf
subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

Part of Service 
Ontology

Part of Policy 
Ontology

Part of QoS 
Ontology

QoS parameter and 
service parameter

DeliveryPolicy
BookStoreA

LocationPolicy
BookStoreA

hasOutput

...

Effect
hasEffect

hasCondition

GoldClassQoSPolicy
BookStoreA

subClassOf

Service 
parameter

QoS 
parameter

hasQoS

hasParameter

Input

 
Figure 11 - The integrated semantic service description (cf. PAPER A). 

 
The main advantage of using XML as a service behaviour representation is 

interoperability and flexibility. An XML manuscript can be directly downloaded to any 
node and can be executed with the support of State Machine Interpreter (SMI, cf. 
Section 5.4), without the need of recompilation. In addition, using XML for service 
behaviour (execution) representation gives one integrated representation of all dynamic 
service related functionality in TAPAS. 

To use XML for the representation of service logic poses a challenge, since XML is 
inherently a language for structure and data. This problem is addressed by utilizing node 
inherent capabilities and making the XML manuscript platform independent. The 
behaviour specification has been separated into Manuscripts and the Action Library, so 
that behaviour can be specified in platform independent (generic behaviour patterns) 
and platform-dependent parts (which can be extended or adapted according to the 
available capabilities and status information). Figure 12 gives the EFSM-based XML 
manuscript data model. The behaviour description defined in the manuscript consists of 
states, data and variables, inputs, outputs and different actions. The <Action> list in 
manuscripts only specifies the action types, i.e., the method name and parameters for 
the action. The action types are classified into Action Groups according to the nature of 
actions. The XML manuscripts therefore specify parameterized behaviour patterns. The 
actual implementation of actions is realized by codes for different platform contained in 
the Action Library. The action codes in the Action Library are classified into Capability 
Categories according to the dependability on capability. A mapping (called Mapping 
table) is required to link the action definitions in the service specification to the 



INTRODUCTION 
 

 27

executable codes stored in Action Library. The selection, instantiation and adaptation of 
the defined XML manuscripts will be further described in Section 5.4 and Section 5.5. 

 
EFSM_name

string

init_state
string

data

+

EFSM

FSM_name

string

output

FSM_name

string

next_state

*

tran_rule

state

state_name
string

input
string

*
FSM_name

string

actions

+

Action Type
string

parameter
string

Action Group
string

*

*

 
 

Figure 12 - EFSM-based XML manuscript data structure (cf. PAPER D and F). 
 
The benefits of introducing the concepts of Action Library, Action Type, Action 

Group and Capability Category are mainly for achieving platform and implementation 
independence, as well as more flexibility and better reusability in service design. At the 
same time, they keep the service behaviour specifications short, clean and abstract from 
how it would eventually be implemented in different end-user devices. 

 
C3: Preparation for Service Verification 

This contribution addresses the problem statement P1.3. In an adaptable service system, 
new services and components are introduced into systems, where other services and 
components may already be running. Service verification is an important approach to 
ensure that components are introduced and assembled in a dynamic and error-free way. 
Service verification can be based on global verification or compositional verification. 
Global verification has limited applicability for complex systems such as adaptable 
service systems due to state explosions. To overcome this problem, compositional 
verification decomposes the service system and provides isolated verification of the 
decomposed parts.  

Compositional verification based on an interface type language [CFN04] is adopted 
in the thesis. In order to utilize the compositional verification techniques provided, the 
service component behaviour needs to be extracted and translated to the interface type 
language. PAPER E presents the translation mechanism from EFSM-based XML 
manuscript to the interface type language. The translation is based on projection and 
consists of two steps. It first makes projections that preserve the binding between the 
role sessions (i.e. the component-component interface) related to each service 
component by using hidden actions. Then remove the hidden action so a sound 
verification can take place.  



INTRODUCTION 
 

 28

5.3 Topic T2: Service Discovery 
Service discovery is a core functionality to locate desired services in a distributed 
environment. In a dynamic system, the amount and variety of services continue to 
increase and the service components and devices that offer services can come and go all 
the time. Service discovery thus becomes an important and difficult task. Efficient and 
automated mechanisms and frameworks for service discovery are required. 

Service discovery is a process of finding the desired service(s) by matching service 
descriptions against service requests. Semantic service discovery is a service discovery 
process based on ontology concepts. Semantic service discovery is considered in this 
thesis. There are two major research aspects of service discovery, namely: 1) the 
semantic representation and matching procedure for semantic service discovery, and 2) 
the network infrastructure for a service discovery system. 

As for aspect 1, the matching procedure depends on the semantic representation of 
service. For example, [SBBA05] proposed an approach for service discovery based on 
high level service goals comparison, where service goals are expressed in terms of 
service predicates. The service goal comparison is based on the matching of association 
class names, complementary roles and evaluation of additional constraints.  

As for aspect 2, the research on network infrastructure concentrates on the 
mechanism for the organization of directories and the communication between them. 

 
C4: Semantic Service Discovery Procedure 

This contribution addresses the problem statement P2.1. In this thesis, the focus is on 
aspects of reasoning in the discovery process, i.e., semantic representation that 
machines can operate on as well as automatic matching based on semantic similarity of 
the service description elements.  

PAPER A proposes a semantic service discovery procedure based on the integrated 
semantic service description defined in Figure 11, where all the elements in the 
description are used for semantic matching during service discovery. The procedure 
considers the matching of both functional and non-functional properties. It is carried out 
by a Reasoning Machine (RM), and consists of both ontological inference and rule-
based reasoning. The ontological inference compares the semantic similarity of the 
concepts in the service descriptions and requests, while the rule-based reasoning is used 
to apply further constraints for the discovery procedure. 

An RM-based prototype for semantic service discovery has been implemented. To 
exploit the reasoning power of the RM, suitable rules need to be designed. The lesson 
learnt from the design and implementation of the RM-based prototype is that the 
accuracy of the results from the semantic service discovery procedure depends on the 
good design of such rules, which needs accurate knowledge of the services and 
applications. 

The discovery procedure is a generic one, applicable to both centralized and 
distributed environment. In the thesis (PAPER B and PAPER C), it is applied to an 
autonomous environment with distributed, self-organizing and scale-free 
communication (cf. contribution C5). 
 
 
 



INTRODUCTION 
 

 29

C5: Super-peer SON-based Service Discovery System  
This contribution addresses the problem statement P2.2. A large scale service discovery 
system consisting of autonomous directories is considered. P2P based systems have 
been proposed as promising solutions providing scalability and autonomy 
[PSNS03][SMK01]. The challenges in such P2P systems are: (a) finding the right peers 
to query and (b) efficient routing of messages [HS04].  

This thesis aims to apply appropriate P2P architectures as the network infrastructure 
for service discovery systems. It focuses on the solutions to an important question: how 
to locate services efficiently in a large–scale system with a huge amount of a large 
variety of services. With regard to the above mentioned challenge (a), the system needs 
to find relevant directories for a discovery request. For this, Semantic Overlay Networks 
(SONs) are used to logically connect directories with semantically similar contents. To 
discover a service, the service requests only need to be sent to relevant SONs. With 
regard to challenge (b), a super-peer structure is applied to the various SONs. The 
routing of service requests consists of the inter-SON communication and intra-SON 
communication assisted by super-peers. 

Figure 13 illustrates the architecture for super-peer SON service discovery system. 
PAPER B and PAPER C describe the required functionality for the organization of 
directories into such super-peer SONs, and the use of such SONs for efficient service 
discovery as well as efficient SON management. The integrated semantic service 
discovery procedure proposed in PAPER A is adopted for semantic matching on 
selected directories. The service ontology defined in PAPER A is extended with one 
more concept: service category. The ontology-based semantics is used for two purposes: 
organizing directories into SONs based on service categories (a finer classification than 
domain), and semantic annotation of service descriptions. The semantics is added at two 
levels, i.e., at the level of the directories and at the level of individual service (i.e. 
service description) in each directory by using ontologies. 

 

Service 
Description

SON1

Direc
tory

Super-peer for 
each SON 

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory Direc

tory

Direc
tory

...SON2 SONn

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
toryDirec

tory
Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Physical network 
of directories

Logical networks 
of SONs

Network of super-peers 
for inter-SON 

communication

constitutes

belongs to SON

service discovery user

Service 
Request

service discovery system

edge

 
Figure 13 - Super-peer SON service discovery system architecture (cf. PAPER C). 

 
A self-organizing process is applied for the construction and maintenance of such 

super-peer SONs based on an autonomous super-peer selection algorithm. The system 



INTRODUCTION 
 

 30

can dynamically determine and select how many super-peers are needed in the system. 
If one super-peer fails, new super-peer can be selected to reorganize the system. Such 
mechanism and the P2P-based architecture is an approach to realize the robustness and 
survivability property.  

Evaluation based on simulations has been conducted for the super-peer based SON 
system. The super-peer SON system has been compared with a service discovery 
system based on a random overlay network. The results indicate efficient service 
discovery (in terms of recall, messages-per-request and hops-per-request) and efficient 
SON management (in terms of self-organization time, management procedure overhead 
and load factor).  

The super-peer selection algorithm is described in APPENDIX A. The simulator and 
simulation model is described in APPENDIX B. Additional simulation results are 
provided in APPENDIX C.  

 

Service 
Descriptions

Service 
Descriptions
Service 

Descriptions

Service 
Repository

Service 
Management

Directory

Service 
Descriptions

Service 
Manager

Direc
tory

Direc
tory

Direc
tory

SON
SON

Mapping InteractionPart of TAPAS management 
architecture 

Super-peer SON service 
discovery system

 
 

Figure 14 - Relation of the service discovery system and adaptable service systems. 
 

Figure 14 illustrates the relations of the service discovery system and adaptable 
service systems (e.g. TAPAS-based systems). The TAPAS management architecture is 
a high-level conceptual architecture independent of implementation and network 
distribution. The proposed service discovery system architecture is a realization of 
service discovery functionality based on TAPAS management architecture with regard 
to network distribution. The service discovery system is targeted for service discovery 
both within adaptable service systems and between adaptable and non-adaptable service 
systems. A directory in the service discovery system can be a service repository from an 
adaptable service system, or from a non-adaptable service system. An adaptable service 
system can provide one or several directories for service discovery. A directory consists 
of a set of service descriptions and a service manager. The service descriptions in the 
adaptable service system will be mapped to the service descriptions contained in a 
directory in the service discovery system. The service manager carries out the service 
discovery-related functionality as well as SON management functionality. Concerning 
the discovery functionality, a service manager will (de-)register a service, carry out the 
local semantic matching, and collaborate in the dissemination of discovery messages in 
the discovery system (cf. PAPER B and C). A service is registered in a directory using 
Register() function defined in PAPER B and C, which means to store its service 
description in the directory. This thesis assumes that the changes in the services can be 
reflected in the service descriptions. Join policies can then be applied by the service 



INTRODUCTION 
 

 31

manager to adapt the SON membership dynamically according to runtime situation (cf. 
PAPER C). 

5.4 Topic T3: Service Instantiation 
Service instantiation provides the physical service to the service user. Since in adaptable 
service systems, the system resources allocated to service components are varied and 
may change all the time, the challenge is how to instantiate the service according to the 
available capabilities and status information (P3). 
 
C6: Manuscript Execution Support – State Machine Interpreter 

This contribution addresses the problem statement P3. This PhD work in this regard is 
based on TAPAS core platform (cf. Section 4.1). A general framework of service 
system has been proposed based on the physical service representation, i.e., the EFSM-
based XML manuscript (PAPER D and PAPER F). Specifically, a tool (i.e. State 
Machine Interpreter) has been implemented for the instantiation of TAPAS-based 
services.  

 
Node

Web Server

TAPAS BASIC 
SUPPORT

Manuscript

Action 
Library

EFSM
instance

XML
Message box 
for EFSMs

State Machine 
Interpreter 

(SMI)

Manuscript 
downloaded from 

WebServer

Selected subset 
downloaded 
according to 

Mapping table

 
 

Figure 15 - Engineering model for service instantiation. 
 

The engineering model for service instantiation is given in Figure 15. As stated in 
Section 5.2, the behaviour specification has been separated into Manuscripts and the 
Action Library, so that behaviour can be specified in platform independent and 
platform-dependent parts. Mapping tables are required to link the action definitions in 
the service behaviour specification to the executable codes stored in Action Library. 
The instantiation of the XML manuscript is based on dynamically selecting the 
execution codes, i.e., by downloading a subset of Action Library based on the Mapping 
table. The State Machine Interpreter (SMI) instantiates and executes the manuscript by 
comparing the offered Capability Categories in the Mapping table and the required 
Capability Categories in the Action Library, and invoking the action codes with 



INTRODUCTION 
 

 32

matching action types and capability requirements. In other words, the codes will be 
selected when the offered Capability Category matches the required Capability 
Category for the specific action. This mechanism scales as Action Library can be 
expanded without expanding the manuscript definition and only a subset of Action 
Library needs to be downloaded. The functionality and the implementation of the SMI 
are described in [JA03]. The generation of Mapping tables will be discussed in Section 
5.5. 

5.5 Topic T4: Service Adaptation 
Adaptable service systems need adaptability functionality to handle various dynamic 
changes. Such adaptability functionality should be performed without stopping or 
interrupting other parts of the system which are not directly affected. The principles 
given in [KM90] are considered as a basis for any dynamic change management, which 
are also followed in the work reported in this thesis. The changes should be specified 
based on separation of concerns, i.e. separate the structural aspects (i.e. configuration) 
from the functional aspects (i.e. algorithms, protocols and states of the applications) 
[KM90]. 

Examples of the adaptability functionality include: changing a specific role played by 
an actor, moving a role figure from one node to another, modifying the execution of a 
manuscript definition for a role figure to adapt to changes in the environment without 
changing the definitions of the service system, reallocating and re-initializing 
capabilities within existing service systems. In TAPAS, the mechanisms for the various 
adaptability functionality are realized by different components in the TAPAS 
management architecture.  

The adaptability functionality can be applied to realize conceptual service adaptation 
or physical service adaptation. This thesis addresses physical service adaptation. 
 
C7: Physical Service Adaptation 

This contribution addresses the problem statement P4. PAPER F and PAPER G propose 
an approach for physical service adaptation based on a RM-based mechanism for 
dynamic code selection. It dynamically changes manuscripts execution by selecting and 
instantiating physical service definitions (i.e. the parameterized EFSM-based XML 
manuscripts and corresponding action codes for different capability and status 
requirements) according to the runtime capability and status information. It enables 
different execution codes to be selected dynamically for the same behaviour type 
specification.  

Adaptability implies intelligence, i.e. the ability to make decisions according to the 
dynamic changes in the system and environment. The adaptability is achieved by a RM. 
The RM has the intelligence for selection and adaptation because it has knowledge of 
what are the conditions and what are the actions to choose. Allowing RM to 
dynamically reason about the different implementation codes based on the availability 
of system resources introduces a great degree of flexibility into the manner how the 
service behaviour specification is carried out.  

Given an adaptation request, a RM can select EFSM-based XML manuscripts and 
generate the Mapping tables according to the Selection Rules and Mapping Rules 
defined. In addition, parts of the manuscript specification can be changed (computed 



INTRODUCTION 
 

 33

dynamically) according to the available capability and status (PAPER G). The problem 
of how to generate different adaptation requests according to traffic situation and failure 
states is however not considered.  

Figure 16 illustrates the generation of the Mapping table. Rules for mapping Action 
Groups to Capability Categories are defined in Mapping Rules. The rule-based RM 
computes the Mapping table based on the instantaneous Capability and Status 
information of the execution environment as well as the Mapping Rules. By assigning 
action types to a few Action Groups in the manuscript and action codes to Capability 
Categories in the Action Library, only a few Action Groups are needed to be mapped to 
Capability Categories, thereby, the amount of computation tasks for RM is reduced. At 
the same time, the resulting Mapping table is far shorter than the direct mapping from 
action types, thus greatly saves the communication overhead. 

 

Action 
Group

RM

XML 
Manuscript Capability 

&Status

Mapping 
table

Mapping 
Rules  

 
Figure 16 - Generation of the Mapping table. 

 
C8: Dynamic Service Management Framework 

The approach for physical service adaptation is realized by a framework for dynamic 
service management, which provides an overall solution by considering service 
specification, selection and adaptation. The service specification is based on the 
modifiable and parameterized behaviour patterns with generalized action types (the 
XML manuscript described in Section 5.2). Service selection refers to the selection of 
optimal code for execution, and is based on the selection of manuscripts and 
computation of Mapping table according to the available capabilities and status 
information. Service adaptation is achieved by dynamically selecting the execution 
codes in the manuscripts according to the changes in the capability and status 
information. The service selection and adaptation is based on the mechanism described 
in this Section for “C7: Physical service adaptation”.  

Figure 17 illustrates the dynamic service management framework. The Service 
Manager (SM) is a RM-based selection engine, which can select manuscripts and 
generate Mapping tables according to service requests and runtime capability and status 
information. The SMI is responsible for instantiating the manuscripts according to the 
manuscripts and Mapping tables sent by SM.  
 
C9: Prototypes and Simulations 
The proposed frameworks and mechanisms in this thesis have been evaluated and 
validated by prototypes and simulations. The prototypes have been implemented to 



INTRODUCTION 
 

 34

demonstrate the applicability of the proposed framework and mechanisms. In PAPER A, 
the integrated semantic service discovery procedure is carried out by an XET-based RM 
[Sup07][AWW02]. In PAPER D, a tool of SMI is implemented as an extension of the 
original TAPAS core platform. In PAPER E, the translation mechanism is demonstrated 
on a TAPAS-based example application – TeleSchool. In PAPER F and G, the dynamic 
service management framework is prototyped based on TAPAS core platform and XET-
based RM, and example scenarios based on TeleSchool are described. In addition, 
simulations are used to give more detailed results with respect to system performance. 
In PAPER B and C, simulations have been carried out to evaluate the super-peer SON 
service discovery system with respect to the defined evaluation measures. 
 

TAPAS Core Platform

Service 
Manager 

(SM)

Action
Library

Funtion Update
requests

Initial Service
requests

Capability
& Status
(CSRep)

Play
Repository

State Machine 
Interpreter

(SMI)

Manuscript
Manuscript

Rules

Mapping
table

Manuscript

Selection
Mapping

 
 

Figure 17 - Dynamic service management framework (cf. PAPER F). 

5.6 The Realization of the Problem Statements 
This section summarizes the relationship between research contributions and the 
problem statements. 

Concerning P1, data models and representations for conceptual services and physical 
services have been proposed. For conceptual services (P1.1), a service ontology model 
(Figure 5) is defined and representation is based on Web Services and Semantic Web 
languages, such as WSDL, OWL and WS-Policy. Ontology is used as the basis to add 
semantics to service descriptions and requirements. This model and representation is 
defined in PAPER A, and used in PAPER A, B and C as a basis for service discovery. 
For physical services (P1.2), EFSM data model and XML representation (Figure 12) is 
applied. For P1.3, mechanism for translation from such XML service behaviour 
representation to interface behaviour representation based on a behaviour type language 
has been proposed to facilitate compositional verification. Such translation mechanism 
is described in PAPER E. The application of XML and ontology-based languages as 
well as the physical data model support the rearrangement flexibility (core property A1).  



INTRODUCTION 
 

 35

Concerning P2, an integrated semantic service discovery procedure is proposed in 
PAPER A for the realization of P2.1, and a super-peer SON service discovery system 
(Figure 13) for efficient service discovery is described in PAPER B and C for the 
realization of P2.2. The accurate and automatic service discovery (P2.1) is enabled by 1) 
the matching of both the functional and non-functional properties for discovery, 2) the 
application of ontologies for formal and accurate semantic representation of service 
descriptions and requests, and 3) the application of RM for ontological inference and 
rule-based reasoning. Such discovery procedure supports the core property A1. On the 
other hand, to discover services efficiently in a large-scale service system (P2.2), a 
super-peer SON-based service discovery system is proposed. It applies the above 
discovery procedure to a large-scale, autonomous, self-organizing network 
infrastructure. Such P2P-based architecture and the super-peer selection algorithm for 
constructing and maintaining the super-peer SONs support the robustness and 
survivability property (core property A2).  

Concerning P3, the physical service representation (XML manuscript) is instantiated 
and executed by State Machine Interpreter (SMI), proposed in PAPER D and extended 
in PAPER F. The XML manuscripts can be downloaded dynamically from a web server 
as needed and instantiated according to the Mapping table. The Mapping table provides 
the linking of the required capabilities and status of the action codes and the available 
capabilities and status information. Such mechanism supports the core property A1. 

Concerning P4, the flexibility in introducing new service or modifications to existing 
services is realized by a dynamic service management framework described in PAPER 
F and G, which considers service specification, service selection and service adaptation 
in an overall framework. The service specification is based on the XML manuscript 
defined in PAPER D and extended in PAPER F. It separates the specification and 
implementation of actions by the parameterized behaviour patterns defined in XML 
manuscripts, and the implementing action codes contained in Action Library. The 
selection and adaptation of service is RM-based, where the RM can dynamically 
compute the Mapping table as well as select appropriate manuscripts according to the 
capability and status information. In addition, parts of the manuscript specification can 
be changed (computed dynamically) according to the available capabilities and status 
(PAPER G). The rearrangement flexibility is realized by the separation of the 
specification and implementation of actions, the RM-based computation of Mapping 
tables, and the dynamic instantiation based on such Mapping tables. Such framework 
thus supports the core property A1.  

Concerning P5, the evaluation and validation by prototypes and simulations 
concludes that the above contributions meet the problem statements.  

Figure 18 illustrates the relationship between papers, problem statements and 
contributions. As an example, P1 has three sub-problems, P1.1 – P1.3, each which is 
addressed by a contribution C1 – C3, respectively and is dealt with in PAPER A, D and 
E, respectively. P5 is related with C9 and has been addressed in all papers. 



INTRODUCTION 
 

 36

C1: Conceptual service representation

C2: Physical service representation

C3: Preparation for service verification

C4: Semantic service discovery 
procedure

C5: Super-peer SON-based service 
discovery system

C6: Manuscript execution support – 
State Machine Interpreter (SMI)

C7: Physical service adaptation

C8: Dynamic service management 
framework

ContributionsPapers
Problem 

Statements

PAPER A

PAPER B

PAPER C

PAPER D

PAPER E

PAPER F

PAPER G

P1.1

P1.2

P1.3

P2.1

P2.2

P3

P4

P5

P1

P2

C9: Prototypes and Simulations

 
 

Figure 18 - Relationship between papers, problem statements and contributions. 

5.7 Guidelines for Reading of Part II 
Each paper included in Part II is self-contained and focuses on one or several topics. 
APPENDIX A, B and C provide additional descriptions about the algorithms, simulator 
and results for super-peer SON service discovery system, which help understand 
PAPER B and PAPER C and are an integral part for the service discovery topic. Since 
the topics covered by the papers and appendices are linked, it is recommended to follow 
the suggested reading order as illustrated in Figure 19.  
 

Part I: 
Introduction

PAPER D PAPER F PAPER G

PAPER E

PAPER A PAPER B PAPER C

APPENDIX A APPENDIX B APPENDIX C

 
 

Figure 19 - Suggested paper reading order.  



INTRODUCTION 
 

 37

6. Research Methodology 

The research presented in this thesis can be mainly characterized as research in the 
constructive context [Bri91]. The research process followed the design science research 
methodology, also called constructive research methodology. The design science aims at 
creation of new artefacts, i.e. things created by humans that can bring some utilities. 
The artefacts can be generally classified as constructs (or concepts), models, methods 
and instantiations [MS95]. This thesis deals with the following specific artefacts: 
concepts, models, algorithms, mechanisms and frameworks. A general methodology of 
design research is proposed in [VK04], which has been followed in the work presented 
in this thesis. The research cycle is depicted in Figure 20, and consists of the iterations 
of the following phases: 
 

• Problem formulation. A set of problem statements has been identified in this 
phase. Such problem formulation is usually the result from literature review, 
which evaluates and analyzes the current state-of-art. At the same time, the 
research context is also clarified to understand the requirements of the target 
systems.  

• Suggestion and development. This is a phase that results in new functionality 
based on a novel configuration of existing/new elements. Since several different 
research topics have been investigated, several different artefacts have been 
developed in this thesis. Examples of artefact include: concepts and models for 
service representation, methods (algorithm and procedure) for semantic 
matching and translation of XML manuscript to the behavioural type language, a 
framework for dynamic service management, a tool for service instantiation, a 
system model for super-peer SON service discovery system as well as the 
algorithm for super-peer SONs construction and maintenance.  

• Evaluation and validation. Methods are used in this phase to evaluate and 
validate the results from the suggestion and development phase. Two methods 
are used in this thesis, namely: prototypes and simulations. The choice of the 
methods depends on the research focus. When the focus is on the demonstration 
of functionality, validation by prototypes is used. When the system performance 
is a main concern and real world execution is not practical, simulations are 
selected. 

o Prototypes: Most of the proposed artefacts are implemented as 
prototypes based on TAPAS (PAPER A, D, E, F and G). The main 
purpose is to demonstrate the implementation possibility and to validate 
the feature applicability by implementing the various mechanisms, 
algorithms and frameworks based on TAPAS.  

o Simulations: For large-scale systems, simulation is used to study the 
system behaviour. Such approach is used for evaluation of system 
performance of super-peer SON service discovery system in PAPER B 
and C. Evaluation measures are defined and simulation models are 
constructed with tuneable parameters. Simulations have been based 
either on simulation programs written by the author of this thesis or on 



INTRODUCTION 
 

 38

an open-source simulator – PeerSim [Pee07]. The simulation results are 
used as indications of system performance. 

• Result discussion. Results from the evaluation and validation are discussed and 
conclusions are drawn accordingly. Sometimes the results and additional 
knowledge gained in the suggestion and development phase may be used as new 
inputs for another round of suggestion and development. In addition, new 
problem statements may be identified and lead to iteration of a new research 
sequence. 

 

 

Problem statements
Concepts, models, 

mechanisms, algorithms, 
frameworks

Results and conclusions Prototypes and simulation 
results

TAPAS
Computing architecture, Management architecture, Core 

platform and Prototype implementations

phase feedback/iteration

Suggestion and 
development

Evaluation 
and validation

Result 
discussion

New definitions /
extensions

iteration

Iteration of problem 
statements

Iteration of concepts 
and models

contribution

Problem 
formulation

 
Figure 20 - Research cycle.  



INTRODUCTION 
 

 39

7. Summary of Papers 

This section summarizes the seven papers included in Part II of this thesis and presents 
the main contributions of each of the papers (cf. section 5).  
 
PAPER A: An Approach to Integrated Semantic Service Discovery 
 
In a distributed service environment, service discovery is a core functionality to locate 
the desired services. This paper deals with the research problem of the semantic 
representation and matching procedure for service discovery. Service discovery has 
been a hot topic in the last years and many different approaches have been proposed. 
One limitation of many available approaches is that they either lack of the semantic 
representation of service behaviour in service descriptions, or make no use of them in 
service discovery process. Another limitation is that many approaches limit their 
discovery to functional-properties only, without considering non-functional properties 
during the process. 

Ontologies are the basis for adding semantic expressiveness to service descriptions 
and requirements. Semantic service discovery is a service discovery process based on 
ontology concepts. This paper proposes an integrated semantic service discovery 
approach based on a service ontology. The service ontology defines concepts related to 
both the functional and non-functional properties of service. An integrated semantic 
service description is defined based on the service ontology. Such service descriptions 
are the conceptual service representation. Functional properties are described in terms of 
operations, inputs, outputs, preconditions and effects, while non-functional properties 
are specified as service parameters, QoS parameters and policies, which consist of 
business policies, QoS policies and context policies. Semantics are added to the service 
descriptions based on ontologies. Service requests are integrated with context 
information and personalized ranking criteria. An integrated semantic service discovery 
procedure based on the integrated semantic service description for semantic matching of 
both functional and non-functional properties is presented. Ontological inference and 
rule-based reasoning are applied for automatic and accurate discovery. A prototype 
discovery system (demonstrator) is implemented based on an XET-based reasoning 
machine to carry out the above discovery procedure. 

Our work is based on widely accepted standards in Web Services and Semantic Web, 
i.e., WSDL, OWL and WS-Policy. The integrated semantic discovery approach 
proposed is a generic one, and can be applied to a centralized or distributed 
environment.  

 
The main research topics of the paper are conceptual service representation and 

service discovery (semantic representation and matching procedure). The problem 
statements addressed are P1.1 and P2.1. The major contributions of the paper are:  

 
• C1 { Conceptual service representation}  
• C4 {Semantic service discovery procedure} 
• C9 {Prototypes}. 



INTRODUCTION 
 

 40

PAPER B: A Self-organizing Service Discovery System Based on Semantic Overlay 
Networks 
 
This paper has focus on the network infrastructure for service discovery system. It 
provides an approach to applying the semantic matching procedure proposed in PAPER 
A on a large-scale network infrastructure. 

Currently, several service discovery protocols are available for enterprise and home 
network. These approaches rely on centralized entities for discovery or search entire 
local network by broadcast or multicast, thus are not suitable for a large-scale system 
with a huge amount of a large variety of services. An important research objective is 
thus the location of services in such a large-scale system efficiently, i.e. to answer 
service requests fast with low overhead.  

A network of autonomous directories forming a large-scale distributed service 
discovery system is considered. We propose to apply semantic service discovery and to 
organize directories into Semantic Overlay Networks (SON) based on service ontology. 
The various SONs are further organized into super-peer networking structures. Service 
discovery based on SONs is an iterative process that can consist of several loops. Each 
loop has two steps. In Step 1, SONs which may contain relevant directories are selected. 
In Step 2, all the directories in these SONs are searched based on semantic matching. 
The result of PAPER A, i.e., the integrated semantic service discovery approach that 
can carry out semantic matching, has been proposed for Step 2. In each loop, the results 
are checked to see if enough number of matches is found. If not, more SONs are 
selected in new loops and until enough number of matches is obtained.  

A generic model for SON-based service discovery system is presented, and a super-
peer SON service discovery system is described. The focus is on the functionality for 
the organization of directories into SONs and the self-organizing construction and 
maintenance of super-peer SON networks. Different policies are applied as constraints 
on the system functionality. Aggregation and assignment policies are applied to ensure 
the size and number of SONs can be small. The number of SONs and SON membership 
can change dynamically by applying policies on each directory. Iterative selection of 
SONs for discovery enables high probability searching. The proposed system has been 
evaluated by simulations. The results indicate that such super-peer based SON system 
can improve discovery efficiency. The proposed functionality gives a small number of 
SONs with small SON size and requires a small management procedure overhead. The 
results also indicate short self-organization time both in initial SON construction 
situations and in situations when nodes are leaving. Moreover, discovery procedure 
overhead is significantly reduced compared to a system based on a random overlay 
network (i.e. pure, unstructured P2P system). 

 
The main topic of the paper is service discovery (network infrastructure). The 

problem statement addressed is P2.2. Contributions of the paper are:  
 
• C5 {Super-peer SON service discovery system} 
• C9 {Simulations}.  

 
 
 



INTRODUCTION 
 

 41

PAPER C: Efficient Service Discovery System Based on Semantic Overlay Networks 
 
This paper extends the work of PAPER B. An efficient service discovery system is 
characterized by efficient service discovery and efficient SON management. Efficient 
service discovery means high recall, small number of messages-per-request (i.e. 
discovery procedure overhead) and small number of hops-per-request. Efficient SON 
management is characterized by small management procedure overhead, small load 
factor and short self-organization time. The effect of service distribution and join 
policies on system performance has been studied and more simulations have been 
carried out for the service discovery procedure. Specifically, two cases for service 
distribution have been simulated, namely: 1) when services are clustered and 2) when 
services are evenly distributed. Simulations indicate that such super-peer based SON 
system can significantly improve discovery efficiency by providing high recall with 
small hops-per-request value and significantly reduced messages-per-request value. 
Moreover, such system requires only a small management procedure overhead and the 
self-organization time is short both for SONs initial construction and reconstruction 
under dynamic node joining and leaving situations. Simulations also indicate a small 
average load factor. The results, however, indicate that a SON system has better 
performance when services are clustered than when services are evenly distributed. 

APPENDIX A, B and C provide additional information for understanding PAPER B 
and PAPER C, and are integral part of service discovery topic. APPENDIX A describes 
the super-peer selection algorithms for super-peer SONs. APPENDIX B provides 
information on the PeerSim simulator. APPENDIX C gives additional simulation 
results.  

 
The main topic of the paper is service discovery (network infrastructure). The 

problem statement addressed is P2.2. Contributions of the paper are:  
 

• C5 {Super-peer SON-based service discovery system} 
• C9 {Simulations}.  

 
PAPER D: XML-based Dynamic Service Behaviour Representation 
 
Modelling of behaviour is important for dynamic adaptable service development and 
deployment. An implementation language independent framework for behaviour 
description in XML is presented in this paper. The service behaviour is an EFSM-based 
functionality defined in the manuscript. The basic XML data structure for such EFSM-
based behaviour is defined. The framework is based on a State Machine Interpreter 
(SMI) 3  (XML engine), which is the interface between XML-represented behaviour 
description and runtime environment, and can interpret and execute XML-represented 
EFSM behaviour. Functionalities for a SMI are provided in the paper.  

The challenge of using XML for service execution representation is how to represent 
the dynamic service logic, as XML basically is a structure representation language. Our 
dynamic behaviour representation is made possible by utilizing the inherent 
characteristics of the TAPAS computing architecture. Capability is considered in 
                                                 
3 In the paper, it is called FSM interpreter. In subsequent work and papers, State Machine Interpreter or 
SMI is used. To be consistent, the name of SMI has been used throughout the first part. 



INTRODUCTION 
 

 42

service modelling as part of the service specification, i.e. service behaviour is defined 
by plug-and-play manuscripts and node inherent capabilities. 

This model has been implemented and integrated into TAPAS platform. An SMI for 
TAPAS platform has been implemented as an example of realizing the XML-based 
service system model. One novel design is the separation of behaviour specification into 
manuscripts and action library, so that behaviour can be specified in platform-
independent (generic) and platform-dependent parts (which can be extended or adapted 
according to the available capabilities and status information). In this way, the 
specification and implementation of actions is separated. 

In addition, using XML for service execution representation gives one integrated 
representation of all dynamic service related functionality in TAPAS. 

 
The main topics of the paper are physical service representation and service 

instantiation. The problem statements addressed are P1.2 and P3. Major contributions 
of the paper are:  

 
• C2 {Physical service representation}. 
• C6 {Manuscript execution support – the SMI} 
• C9 {Prototypes}.  

 
PAPER E: Automatic Translation of Service Specification to a Behavioural Type 
Language for Dynamic Service Verification 
 
Networked services are constituted by the structural and behaviour arrangement of 
service components. A service component is executed as an actor, which can download 
and execute different EFSM-based functionality. The functionality of an actor is 
denoted as its role, while a role session is a projection of the role with respect to the 
interaction with one other actor. In an adaptable service system, new services and 
components are introduced while other services and components may already be 
running. Service verification is therefore an important approach to ensure that 
components are introduced and assembled in a dynamic and error-free way. 

There are basically two different approaches to service verification. One is global 
verification by modelling the composite behaviour of the whole service, which has 
limited applicability for complex systems due to state explosions. Another approach is 
the compositional verification by decomposition of the service system and isolated 
verification of the decomposed parts. Service components are naturally decomposed 
parts for such compositional verification. We propose an approach for verification of 
the services, based on interface verification techniques for the verification of the role 
sessions. The service component specifications used for actor execution are based on 
XML-based EFSM representations (i.e. the EFSM-based XML manuscripts defined in 
Paper D), while the verification of the role sessions (i.e. component-component 
interface) is based on a behaviour type language [CFN04]. This language has a sound 
theoretical basis, and provides formal framework for compositional verification of 
component based systems. Especially, it is used to avoid “message-not-understood” 
errors while plugging a new component. Rules are given for automatic translation from 
XML-based EFSM service specification to the behaviour type language applied. This 
translation first makes projection to the role session, using hidden actions. Those hidden 



INTRODUCTION 
 

 43

actions are then removed so a sound verification can take place. The automatic 
translation provides an efficient and reliable way to extract interface types. An 
experiment has been carried out based on an example application. 

 
The main topic of the paper is service representation (preparation for service 

verification). The problem statement addressed is P1.3. The major contributions of the 
paper are  

 
• C3 {Preparation for service verification} 
• C9 {Prototypes}.  

 
PAPER F: An Approach for Dynamic Service Management 
 
Managing dynamic changes in a service system requires the handling of the 
modifications and extensions of the system without stopping or disturbing its 
functionality. The solution must be based on a flexible service specification which can 
be adapted by a supporting runtime mechanism. For this purpose, a framework for 
dynamic service management with respect to service specification, selection and 
adaptation is proposed.  

Service specification is based on modifiable and parameterized behaviour patterns 
with generalized action types (an extended EFSM-based XML manuscript of PAPER 
D). Service functionality is classified into Action Groups and Capability Categories 
according to the nature of actions and the dependability on capability respectively. Such 
service specifications can be instantiated by dynamically selecting the execution codes, 
or the subset of Action Library that include routines specific to the execution 
environment (i.e. based on Capability Categories), according to the execution 
environment context and the service requests. A mapping (i.e. Mapping table) is 
required to link the action definitions in the service specification to the executable codes 
stored in Action Library. Service adaptation is achieved by allowing these service 
specifications to be modified according to the dynamic changes in the executing 
environment, a process based on dynamic code selection realized by the dynamic 
mapping from Action Group to Capability Category according to the runtime context 
and capability information. 

The dynamic service management framework extends the TAPAS core platform by 
providing the intelligence and flexibility of dynamic service selection and adaptation. 
Service Manager(SM) is responsible for service selection and adaptation processes and 
makes decisions based on a rule-based reasoning machine. Rules for selecting 
manuscripts and mapping Action Groups to the corresponding Capability Categories are 
defined as Selection Rules and Mapping Rules respectively. The service requests 
(containing also context information), the instantaneous Capability and Status 
information of the execution environment, as well as the rules are inputs for the 
reasoning machine to compute the Mapping table and select the specific manuscript for 
execution. A prototype reasoning and selection engine for Service Manager based on 
XDD [WAAN01] and XET is implemented to illustrate the feasibility of the framework 
proposed. An SMI manages the execution of the manuscripts and the linking of action 
definitions with their implementation in the Action Library based on the Mapping table. 
An example that exploits these features is also presented. 



INTRODUCTION 
 

 44

The main topic of the paper is physical service adaptation. The problem statement 
addressed is P4. Major contributions of the paper include:  

 
• C7 {Physical service adaptation}, 
• C8 {Dynamic service management framework},  
• C9 {Prototypes}. 
 
In addition, the paper has the following minor contributions: 
 
• C2 {Physical service representation}: extension to the EFSM-based XML 

manuscript data model defined in PAPER D.  
• C6 {Manuscript execution support – SMI}: extension of SMI to support the 

execution of the extended XML manuscripts. 
 
PAPER G: An XML-based Framework for Dynamic Service management 
 
This paper extends the work presented on PAPER F. Role Figures are the constituents 
of the architecture that is used to provide a basis for service specification and 
instantiation. Service specification is the Role Figure behaviour specifications, which 
has three forms, namely (static) Role-Figure Specification, instantiated Role-Figure 
specification and calculated Role-Figure Specification. An extension of the EFSM-
based manuscript data structure, i.e. substate structure, has been proposed to allow for 
more flexibility and adaptability in specification. The XML-based framework for 
dynamic service management handles the selection and computation of these 
specifications. Web services technology is used to manage the availability and 
communication of service components. To allow for a decentralized computation, SMI 
can calculate the Role-Figure Specification in the local node where it will be executed, 
instead of the SM. This feature can solve problems such as those related to over-loaded 
SM or congested network. An example scenario of Role-Figure move request is 
illustrated. This work extends TAPAS core platform with Web Services communication 
routines and node registry capabilities. 

Both PAPER F and PAPER G consider physical service adaptation, where 
manuscripts are dynamically selected and instantiated according to the given service 
adaptation requests. The dynamic generation of such adaptation requests according to 
traffic situation and failure states is not considered. 

 
The main topic of the paper is physical service adaptation. The problem statement 

addressed is P4. The major contributions of the paper are: 
 
• C7 {Physical service adaptation}.  
• C8 {Dynamic service management framework}. 
• C9 {Prototypes}. 
 
In addition, this paper has the following minor contribution: 
 
• C2 {Physical service representation}: extension to EFSM-based XML 

manuscript data structure. 



INTRODUCTION 
 

 45

8. Summary, conclusions and future work 

8.1 Summary of Results 
The context for this thesis is service engineering and service management in adaptable 
service systems. The main research objectives are to specify, construct, evaluate and 
validate applicable concepts, models, mechanisms, algorithms and frameworks for 
service engineering and service management in adaptable service systems. Five 
problem statements P1-P5 (including sub-problems) have been defined in Section 3. 
These problem statements are related to the following four research topics: T1: Service 
representation, T2: Service discovery, T3: Service instantiation and T4: Service 
adaptation.  

The papers in Part II address the research topics and problem statements with 
proposed concepts, models, algorithms, mechanisms and frameworks. They constitute 
the following contributions: 

 
C1: Conceptual service representation 
C2: Physical service representation 
C3: Preparation for service verification 
C4: Semantic service discovery procedure 
C5: Super-peer Semantic Overlay Network (SON)-based service discovery 

system 
C6: Manuscript execution support – State Machine Interpreter 
C7: Physical service adaptation 
C8: Dynamic service management framework 
C9: Prototypes and simulations 

 
For topic T1: Service representation, the contributions are C1-C3. This thesis 

focuses on the representation of conceptual services and physical services. An 
integrated semantic service description is proposed for high-level conceptual service 
representation and is represented using Web Services and Semantic Web languages. The 
service ontology defines a model for procedure-based functionality and non-functional 
properties. Such semantic-annotated service description is the basis for semantic 
matching procedure in service discovery. On the other hand, XML manuscript is the 
physical service representation. An EFSM-based XML manuscript data model is 
defined based on modifiable and parameterized behaviour patterns. Such manuscript 
data model is the basis for service instantiation and adaptation. In addition, in order to 
utilize compositional verification techniques based on an interface type language, 
automatic translation from the EFSM-based XML manuscript to the interface type 
language has been provided based on projection. Projection technique is applied during 
the translation process. 

For topic T2: Service discovery, the contributions are C4-C5. Two aspects of service 
discovery are considered, namely: 1) the semantic representation and matching 
procedure for semantic service discovery, and 2) the network infrastructure for a large-
scale service discovery system. For aspect 1, an integrated semantic discovery 



INTRODUCTION 
 

 46

procedure based on semantic-annotated service descriptions is proposed for semantic 
matching of both functional and non-functional properties. Such procedure consists of 
ontological inference and rule-based reasoning and is carried out by a Reasoning 
Machine (RM). For aspect 2, a super-peer based SON service discovery system is 
proposed and functionality for efficient service discovery and efficient SON 
management is defined. The integrated semantic service discovery procedure proposed 
for aspect 1 is applied for semantic matching on selected directories (i.e. selected 
SONs). A self-organizing process based on an autonomous super-peer selection 
algorithm is applied for super-peer SONs construction and maintenance. The system 
performance is evaluated by simulations and the results indicate efficient service 
discovery and efficient SON management. 

For topic T3: Service instantiation, the main contribution is C6. An execution 
support, namely the State Machine Interpreters (SMI), has been implemented to 
interpret and execute EFSM-based XML manuscripts.  

For topic T4: Service adaptation, the contributions are C7 and C8. The physical 
service adaptation is realized by dynamic code selection, which can change the 
execution of service by dynamically select and instantiate EFSM-based XML 
manuscript according to runtime capability and status information. A RM-based 
dynamic service management framework integrating service specification (i.e. EFSM-
based XML manuscript), selection (instantiation) and adaptation is proposed and 
prototyped. Selection and Mapping Rules are proposed and modelled.  

For topics T1-T4, contribution C9 is used to evaluate and validate the proposed 
frameworks and mechanisms. 

 

8.2 Conclusions 
The work presented in this thesis consists of nine contributions C1-C9 that aim to meet 
the problem statements P1-P5. To conclude, these problem statements have been 
realized as follows: 

For P1: 

• P1.1 has been realized by C1. Conceptual services can be modelled based on 
a service ontology and represented using XML-based languages. 

• P1.2 has been realized by C2. Physical services can be modelled as EFSMs 
and represented using XML. Separation of the physical service 
representation into parameterized behaviour patterns and Action Library 
with actual codes enables the flexibility of dynamic service adaptation 
according to available capabilities and status information. 

• P1.3 has been realized by C3. The component interface behaviour can be 
extracted from the physical service representation using the translation 
mechanism proposed in PAPER E in order to apply compositional service 
verification. 

For P2: 

• P2.1 has been realized by C4. Automatic and accurate service discovery can 
be achieved by an integrated semantic service discovery procedure 



INTRODUCTION 
 

 47

considering both functional and non-functional properties and consisting of 
ontological inference and rule-based reasoning. 

• P2.2 has been realized by C5. Super-peer SON-based service discovery 
system can be used to locate services efficiently in a large-scale service 
system. 

For P3:  

• P3 has been realized by C6. Services can be instantiated dynamically and 
according to available capabilities and status information using a SMI that 
can select actual execution codes based on Mapping tables.  

For P4:  

• P4 has been realized by C7 and C8. New service specifications or 
modifications to existing services can dynamically be introduced without 
interrupting the executing service based on the dynamic service management 
framework proposed in PAPER F and G. 

For P5:  

• P5 has been realized by C9. The evaluation and validation of the proposed 
frameworks and mechanisms by prototypes and simulations concludes that 
the contributions meet the above problem statements.  

 
The solutions proposed in this thesis have contributed to TAPAS computing and 

management architecture and have been included in TAPAS. 
Referring to core adaptability properties, the research presented in this thesis focuses 

primarily on the core property A1, i.e., rearrangement flexibility. This property is 
achieved by mechanisms that enable interoperability and intelligence. Interoperability is 
based on XML representation. In particular, semantic interoperability is realized by 
XML-based ontologies. Intelligence means the ability to make decisions according to 
the dynamic changes in the system and environment. In the thesis, a RM-based 
mechanism is the basis for achieving intelligence in service discovery and service 
adaptation. To exploit the reasoning power of the RM, suitable rules need to be 
designed. The lesson learnt from the design and implementation of the RM-based 
prototypes is that the accuracy of the results from the semantic service discovery 
procedure depends on the good design of such rules, which needs accurate knowledge 
of the services and applications.  

The P2P-based architecture for service discovery system and the super-peer selection 
algorithm for constructing and maintaining the super-peer SONs support the robustness 
and survivability property (core property A2).  

 
 
 
 
 
 



INTRODUCTION 
 

 48

8.3 Directions of Future Work 
This section presents proposals for further work. 

 
Integrated framework for service management 
This thesis has investigated four related service topics. A dynamic service 

management framework addressing service representation, service selection (including 
service instantiation) and service adaptation has been studied (PAPER F and G). 
However, service discovery has been investigated separately. Efforts are needed to 
integrate the respective mechanisms and procedures proposed for each of the four issues 
into one integrated framework. The performance of the integrated framework needs to 
be evaluated. 

 
Generation of adaptation requests 
The physical service adaptation solution proposed in this thesis assumes that changes 

in the system and environment can be detected and reflected as service adaptation 
requests sent to the service manager for appropriate handling. The generation of such 
requests according to the traffic situations and failure states is not considered in this 
thesis. It is an important yet complex functionality for service adaptation. This 
functionality needs not only the monitoring of the current situation (i.e. available 
capabilities and status information), but also detailed knowledge of the application. It is 
important to find a generic solution so that human intervention can be reduced in this 
process. Future work needs to analyze the aspects needed for the autonomous 
generation of such requests and integrate them into the physical service adaptation and 
dynamic management framework proposed by this PhD work.  

 
Utilization of EFSM-based behaviour model in service discovery  
The semantic representation and matching procedure proposed in the thesis work is 

based on a high-level conceptual service representation where service functionality is 
modelled as procedures. Sometimes it is not enough to find a service that offers some 
functionality. Instead, a service with specific behaviour is desired, which means the 
EFSM-based behaviour specification needs to be compared in service discovery. The 
EFSM-based behaviour model (i.e. a sequence of inputs and outputs) should be included 
in the conceptual service representation and used for matching in the integrated 
semantic service discovery procedure.  

 
Conceptual service adaptation 
As an important approach for conceptual service adaptation, mechanisms are needed 

for dynamic composition of services based on the conceptual service behaviour 
specifications. Such dynamic composition needs to be verified. 

 
Platform dynamics 
In the TAPAS systems, there are some specialized actors, such as Directors and 

service managers. These actors used to be allocated using predefined configuration 
rules. The self-organizing super-peer selection algorithm proposed in PAPER B and C 
can be applied to realize platform dynamics. The Directors and service managers can be 
considered as super-peers (i.e. nodes provide services to others) with special 
capabilities. This means that the system can dynamically determine and select how 



INTRODUCTION 
 

 49

many Directors or service managers are needed to manage the actors in the system. If 
one Director or service manager fails, new Director or service manager can be selected 
to reorganize the system. Such mechanism for platform dynamics can be considered as 
an approach to realize the robustness and survivability property. 

 
Super-peer SON-based network infrastructure 
The super-peer SON-based network infrastructure needs to be explored further. It is 

possible to extend the super-peer selection algorithm with mechanisms to introduce 
super-peer redundancy, i.e., with nodes being clients of multiple super-peers. 
Communications between the super-peers can be improved by mechanisms such as 
DHT-based structure. Extensive simulations are needed to evaluate its performance. 

 



 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PART II: INCLUDED PAPERS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 



 

 

 
 

PAPER A: An Approach to Integrated Semantic 
Service Discovery 

Shanshan Jiang and Finn Arve Aagesen 

 
Published in 

Proceedings of Autonomic Networking (AN’06) 
 

Paris, France, September 27-29, 2006.  
 
 

Lecture Notes in Computer Science (LNCS) 4195, pp. 159-171, 2006. 
@IFIP 2006 

 
 
 
 



 

 

 
 



PAPER A 
 

55 

An Approach to Integrated Semantic Service Discovery 
 

Shanshan Jiang 
 

Finn Arve Aagesen 
 
Abstract   In a distributed service environment, service discovery is a core functionality 

to locate the desired services. We propose an integrated semantic service 
discovery approach based on ontology, which provides matching of 
functional and non-functional properties. Functional properties are described 
in terms of operations, inputs, outputs, preconditions and effects, while non-
functional properties are specified as business policies, QoS properties and 
context policies. Ontological inference and rule-based reasoning are applied 
for automatic and accurate discovery. 

1. Introduction 

In a distributed service environment, service discovery is a core functionality to locate 
the desired services. Service discovery is a process of finding the desired service(s) by 
matching service descriptions against service requests. A service description provides 
service-related information which can be advertised by a service provider and searched 
during service discovery process. Such information usually includes functional 
properties and non-functional properties. In this paper, functional properties 
representing functionality of a service are modelled in terms of operations, inputs, 
outputs, preconditions and effects, while non-functional properties comprise business 
policies, Quality of Service (QoS) properties as well as context policies. QoS properties 
include QoS parameters and QoS policies. A service request represents user's service 
requirements, comprising requirements on functional and non-functional properties.  

Ontologies are the basis for adding semantic expressiveness to service descriptions 
and requirements. An ontology is an explicit and formal specification of a shared 
conceptualization [19]. A service ontology is accordingly an explicit and formal 
specification of core concepts of the functional and non-functional properties of service. 
“A domain ontology (or domain-specific ontology) models a specific domain and 
represents the particular meanings of terms as they apply to that domain. An upper 
ontology is a model of the common objects that are generally applicable across a wide 
range of domain ontologies.”1 Ontological relations such as “is-subclass-of” or “part-
of” are used for ontological inference.   

Semantic service discovery is a service discovery process based on ontology 
concepts. By using ontology concepts defined in a service ontology expressively in a 
service description, semantics of the service description can be defined. These service 
descriptions are therefore expressive semantic descriptions. At the same time, by having 
both ontology-based descriptions and requirements, an ontology-enhanced reasoning 
engine (i.e. capable of ontological inference) can be used to locate services 
automatically and accurately. Integrated semantic service discovery is a semantic 
                                                 
1 Wikipedia: http://en.wikipedia.org/wiki/Ontology_(computer_science). 



PAPER A 
 

56 

service discovery process based on both functional and non-functional properties of the 
services.  

Service discovery has been a hot topic in the last years, and many different 
approaches have been proposed. In Web Services technology, Web Services are 
described in WSDL (Web Services Description Language) [22] and advertised in UDDI 
(Universal Description, Discovery and Integration) [21] registries. UDDI provides only 
keyword-based discovery (e.g. service category or provider name) and makes no use of 
semantic information of service behaviour (e.g. semantics of operations, inputs and 
outputs) defined in the service descriptions during discovery. A number of protocols for 
service discovery have also been proposed, most notably, SLP (Service Location 
Protocol) [8], Jini [11], UPnP [7] and Salutation [4]. Service descriptions in these 
protocols are usually based on categories of predefined service types, interface types, 
attributed IDs and values, without expressive semantic descriptions to enable reasoning. 
Thus service discovery is restricted to simple keyword-based category and attribute 
matching. Other approaches based on Semantic Web technology, such as [13], provide 
semantic service discovery, but limit their discovery to functional properties only, 
without considering non-functional properties during the process. Integrated semantic 
service discovery, however, is important to achieve accurate and satisfactory discovery 
results. 

In this paper, we propose an integrated semantic service discovery approach based on 
semantic-annotated WSDL [16]. Ontologies are defined in the Web Ontology 
Language, OWL [12]. Behavioural semantics are added to WSDL file by associating 
service functionality related elements with links to OWL-based service ontology. Non-
functional properties are specified as QoS parameters and rule-based policies 
comprising business policies, QoS policies and context policies. Furthermore, WS-
Policy Framework (Web Services Policy Framework) [6] and WS-PolicyAttachment 
(Web Services Policy Attachment) [5] are utilized to attach QoS parameters and policies 
to WSDL-based service descriptions. Service requirements are also expressed using 
ontology concepts. Based on them, an integrated semantic service discovery procedure 
is presented, which takes into account selection criteria based on business policies, QoS 
policies and context policies, as well as user defined service selection criteria in terms 
of overall QoS scores based on QoS parameters.  

The rest of the paper is organized as follows: Sect. 2 discusses service description 
elements with focus on rule-based policy specifications. Based on it, an integrated 
semantic service discovery framework is presented in Sect. 3. Related work is discussed 
in Sect. 4, followed by summary and conclusions in Sect. 5. 

2. Service Description Elements 

A service description comprises the following elements: 
• Functionality description in terms of operations, inputs, outputs, preconditions 

and effects. 
• QoS parameters offered by the service. 
• Service parameters such as location and other service specific parameters. 
• Policies for service discovery, comprising business policies, QoS policies and 

context policies. 



PAPER A 
 

57 

A policy is a rule applied in the decision making process. It is usually conditional 
criteria against which factual variables are evaluated to determine an appropriate action. 
Therefore, a rule-based policy representation is a natural choice for policy specification. 
Ontology-based policy description allows service providers and requestors to describe 
their policies with respect to a common ontology in terms of meaningful concepts and 
relations. Furthermore, benefit from semantic enrichment and ontological inference can 
be achieved. For service discovery process, policies will guide the optimal selection of 
desired services among several functionally equivalent services.  

Formally, an ontology-based policy rule P can be defined as a tuple <r, o, s, c, a>, 
where r is a reference to a policy ontology, o denotes the organization P belongs to, s 
denotes the service P applied to, c the conditions, a the actions. WS-Policy framework 
[6] provides a general purpose model to describe and communicate policies of a Web 
Service. It places no restrictions on the language used to represent policy expressions. 
We use an ontology language, OWL, to express the policy based on the upper ontology 
for policy inspired by [18] and depicted in Fig. 1. The upper ontology defines the 
concepts used for policy specification and their relations. A policy belongs to an 
organization and is applied to a service. A policy has a policy domain and refers to a 
domain-specific policy ontology. A policy may have multiple rule sets, each of them 
defines a set of rules. The rule sets have rule operators, such as “ExactlyOne” to 
specify that only one rule set is applied at a time. Each rule is a conditions-and-actions 
statement, which specifies the actions to be performed when conditions are evaluated to 
TRUE. Conditions are specified in expressions while actions are associated with 
operations of a service. Actions may also have expressions and may require conditions. 
Expressions may have attributes, literal values, operators as well as logical operators. 
Attributes can be service parameters, inputs, outputs or QoS parameters of a service. 
Therefore, this upper ontology of policy has relations with service ontology, i.e. 
concepts in the gray area in Fig. 1 also belong to service ontology. 

 

policy

Policy 
domain

Rule

RuleSet

Service

Condition

Rule 
Operator Action

Expression

Operation

Policy 
Ontology

Organization

Literal 
value

Attribute

hasRuleSet

hasRule

belongTo

referTo

hasDomain

hasAction

hasCondition

hasRuleOperator

hasExpression

hasVariable

associateWith
Operation

hasParameter

”Operator”

hasOperator

hasVariable hasOperation
hasLiteralValue

hasLogicalOperator

”LogicalOperator”
isAppliedTo

hasExpression

Require 
Condition

outputinput

hasInput hasOutput

canBe canBe

QoS 
parameter

Service 
Parameter

canBe

hasQoS
canBe

Part of service ontology

 
 

Fig. 1. Upper ontology for rule-based policy 
 



PAPER A 
 

58 

2.1 Business Policies 
Business policies are rules related to business concepts. They can be published 
associated with a service to constrain service discovery process. As an example, 
consider a delivery policy for an online bookstore, say BookStoreA, which specifies that 
if the number of copies ordered for a book is less than 50, then the delivery time will be 
within 5 days; if between 50 and 200, the order will be delivered within 10 days; 
otherwise, the inventory should be checked before an action is taken. The policy can be 
expressed in three rules as shown in Fig. 2. 

 
Rule 1   IF   (numberOfCopies ≤ 50) 
              THEN   DeliverBooks (deliveryDays ≤ 5) 
Rule 2   IF   (50 < numberOfCopies ≤ 200) 
              THEN   DeliverBooks (deliveryDays ≤ 10) 
Rule 3   IF   (numberOfCopies > 200) 
              THEN   CheckInventoryFirst 

 
Fig. 2. Example delivery policy for an online bookstore 

 
A user who orders 100 copies of a textbook to be delivered within 15 days from 

online bookstores may select the PurchaseBook service from BookStoreA since his/her 
request can be matched by the second rule. Figure 3 shows part of the policy 
specification called DeliveryPolicyBookStoreA for an online bookstore BookStoreA 
based on the upper ontology defined in Fig. 1, which corresponds to Rule 1 in Fig. 2. 
Note that the namespace po: refers to the upper ontology, while the namespace sp: 
refers to the domain-specific policy ontology. Attribute numberOfCopies is a service 
input, attribute deliveryDays is a service output, while operation DeliverBookOperation 
is a service operation. 
 

xmlns:po="http://examplepolicy.com/policy.owl#" 
xmlns:sp="http://ecommerce.com/policy.owl#" 
xmlns="http://BookStoreA.com/PolicyRule.owl#" 
 
<sp:DeliveryPolicy rdf:ID="DeliveryPolicyBookStoreA"> 
  <po:hasRuleSet rdf:ID="RuleSet1"> 
    <po:hasRuleOperator rdf:resource="po:ExactlyOne" /> 
    <po:hasRule> 
       <po:Rule rdf:ID="Rule1"> 
         <po:hasCondition  rdf:resource="#CheckQuantity1" /> 
         <po:hasAction  rdf:resource="#DeliverBooks1" /> 
       </po:Rule> 
    </po:hasRule> 
    .... 
  </po:hasRuleSet> 
</sp:DeliveryPolicy> 
 
<sp:CheckQuantity rdf:ID="CheckQuantity1"> 
  <po:hasExpression> 
    <po:Expression rdf:ID="ExprCondition1"> 
      <po:hasVariable> 
        <po:Attribute rdf:resource="sp:numberOfCopies" /> 
      </po:hasVariable> 



PAPER A 
 

59 

      <po:hasOperator rdf:resource="po:isLessThanOrEqual" /> 
      <po:hasLiteralValue> 
        <po:LiteralValue rdf:ID="LiteralValue1"> 
          <po:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int”>50 

                </po:hasValue> 
          <po:hasType rdf:resource="po:Integer" /> 
       </po:LiteralValue> 
     </po:hasLiteralValue> 
    </po:Expression> 
  </po:hasExpression> 
</sp:CheckQuantity> 
 
<sp:DeliverBooks rdf:ID="DeliverBooks1"> 
  <po:associateWithOperation> 
    <sp:DeliverBookOperation rdf:ID="DelBkStoreA" /> 
  </po:associateWithOperation> 
  <po:hasExpression> 
     <po:Expression rdf:ID="ExprAction1"> 
        <po:hasVariable> 
          <po:Attribute rdf:resource="sp:deliveryDays" /> 
        </po:hasVariable> 
        <po:hasOperator rdf:resource="po:isLessThanOrEqual" /> 
        <po:hasLiteralValue> 
            <po:LiteralValue rdf:ID="LiteralValue2"> 
               <po:hasValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int”>5 

                     </po:hasValue> 
               <po:hasType rdf:resource="po:Integer" /> 
           </po:LiteralValue> 
        </po:hasLiteralValue> 
    </po:Expression> 
  </po:hasExpression> 
  <po:requireCondition rdf:resource="#CheckQuantity1" /> 
</sp:DeliverBooks> 
 

Fig.3. Example policy rule specification in OWL 

2.2 QoS Properties 
QoS is a very important aspect of non-functional properties for a service. In a 
distributed environment, services with equivalent functionality can be provided by 
different service providers with substantially varied QoS. How to specify QoS and 
incorporate it into service discovery process is thus of great importance. 

QoS properties can be specified as QoS parameters and QoS policies. QoS 
parameters are QoS attributes that can be expressed in quantifiable measurements or 
metrics. A service usually possesses a set of QoS parameters. Though many of them are 
of dynamic nature, i.e., related to the execution of the service, a service can still 
advertise its guaranteed QoS in service description. QoS policies are rules related to 
QoS parameters. Rule-based QoS policies have often been used in network-related 
services, e.g. network and system management services. A service can provide different 
QoS classes of service depending on the service classes users subscribed. For example, 
a GoldClass user may have access to GoldClassService, which guarantees a set of QoS 
parameters, such as bandwidth and response time, much better than a user in 
SilverClass. A QoS policy for service discovery can similarly be specified as “If a user 
belongs to GoldClass, then the service provided guarantees a set of QoS parameters.” 



PAPER A 
 

60 

QoS parameters can be classified into different categories, e.g., scalability, capacity, 
performance, reliability, availability, etc. There are several efforts to define and 
categorize QoS parameters in terms of classifications or ontologies [10][15]. Fig. 4 
shows part of a QoS ontology based on [10] for illustration purpose. 

 

QoS

Economic

Cost

Performance

Latency Throughput

Reliability

Scalability Availability

Security

Authentication

Encryption

Auditability

ResponseTime

Jitter

Recoverable

MTTR

 
 

Fig. 4. Part of a QoS ontology (arrows indicate subClassOf relationship) 
 
Not all attributes in the QoS ontology is relevant in a specific service discovery 

process, for example, a user may consider some of the QoS parameters valuable in his 
or her request. The matching procedure for service discovery therefore needs to take this 
into account by calculating the user specified QoS selection criteria. We adopt the QoS 
ranking approach proposed in [14], which defines a quality matrix to represent the 
values of user specified QoS parameters for all candidate services and an overall QoS 
score function to calculate overall QoS satisfactory values. 

A quality matrix, Φ = {V(Qij); 1 ≤ i ≤ m; 1 ≤ j ≤ n}, is defined as a collection of 
quality attribute-values for a set of candidate services, where V(Qij) represents the value 
of the ith QoS attribute for the jth candidate service. These values are obtained from 
candidate service descriptions and mapped to a scale between 0 and 1.  

An overall QoS score function is defined as 

fQoS(Servicej)  = ∑
=

×
m

i

iij WeightQV
1

))((  

where m is the number of QoS attributes in Φ, Weighti is the weight value (specified 
by user) for each attribute. 

The fQoS score is calculated for each candidate service, and if the fQoS score is greater 
than some user defined threshold, the corresponding service will be selected. Take an 
example, a user requesting an online streaming video service considers throughput, 
response time and availability more valuable than other QoS parameters and specifies 
the QoS selection criteria as WeightThroughput = 0.8, WeightresponseTime = 0.9, 
WeightAvailability = 0.7, and a threshold score value UThreshold = 1.5. Assume there are three 
candidate services for online streaming video, S1, S2 and S3, and the quality matrix is: 



PAPER A 
 

61 

Φ =  
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

40.050.090.0
60.080.090.0
50.080.090.0
321

tyAvailabili
meresponseTi

Throughput
SSS

 

 
After calculation of their respective fQoS scores, only S1 and S2 will be selected. 

Further assume that the user specifies to rank the services based on Cost in ascending 
order, and the Cost of S1 is greater than that of S2 , the results returning to the user will 
be {S2, S1}, specifying that S2 is a better choice than S1 for the user’s purpose. 

2.3 Context Policies 
Context policies are rules related to context information. Some context information can 
greatly affect the selection of services. For instance, for a home food delivery service, 
the user’s location is an important aspect for selecting possible service providers. In 
addition, depending on service types, different context information should be 
considered. Examples of context information include location, time, connection (e.g., if 
the user is accessible via a wireless or wired connection), user’s feeling, presence, and 
user’s habits and hobbies.  

Context policies can be specified in the same format as business policies and QoS 
policies. For example, a service provider for a home food delivery service may specify a 
location-based policy as “only deliver food within the same city”. This location policy 
can be specified as:  

 
IF   (UserLocation.city = ServiceProviderLocation.city) 
THEN  Service can be provided. 
 
Some services are context-aware, others are not. For context-aware services, it is 

preferable that the context information can be automatically integrated into the service 
request even though the user does not specify them explicitly. For instance, there are 
several approaches to identify the location of a mobile user. One method to position the 
mobile user is to leverage the SS7 network to derive location. Another example is user 
profiles, which usually define user preferences, such as habits, hobbies, and other 
personalized information, such as access rights and startup applications. However, 
mechanisms for obtaining such context information are outside the scope of this paper. 
We just demand that context information should be included as a part of service request 
wherever possible so that context policies can be used during service discovery.  

3. Integrated Semantic Service Discovery Framework 

3.1 Integrated Semantic Service Description 
There have been efforts to add semantics to service descriptions. Two major approaches 
based on ontology are OWL-S [3] and semantic-annotated WSDL [16]. OWL-S uses an 
OWL-based ontology for describing Web Services and supports service discovery at the 
semantic level. The semantic-annotated WSDL approach relates concepts in WSDL to 
OWL ontologies in Web Services descriptions, i.e., WSDL or UDDI. We adopt 
semantic-annotated WSDL to describe services, because WSDL has been accepted as 



PAPER A 
 

62 

the industry standard for Web Services description and most of the existing Web 
Services support WSDL standards. This has the advantage of having widely acceptance 
without adding significant complexity. 

Figure 5 demonstrates the semantic annotation for our integrated service description 
approach. An ontology-based semantic service description is represented as a semantic-
annotated WSDL file, with links to the ontology definition and WS-Policy file for 
policy definitions and provided QoS parameters. This semantic-annotated WSDL is an 
XML-formatted Web Service description document based on WSDL, and is extended 
with OWL-based ontologies to add semantics to WSDL elements. The WSDL file 
PurchaseBookService.wsdl specifies the functional properties in terms of operations, 
inputs and outputs. Preonditions and effects for the operation can also be specified [17]. 
The concepts of them are referred to concepts in the service ontology. Policies for 
service discovery are specified in OWL file PolicyRule.owl, while WS-Policy 
framework and WS-PolicyAttachment are utilized to attach them to WSDL. In order to 
incorporate QoS parameters into WSDL without significant changes to existing WSDL 
structure, QoS parameters and other service parameters are also specified in an OWL 
file QoS.owl, and attached to WSDL using the same mechanism as the policy file. In 
detail, this means that all policies related to the service as well as QoS and service 
parameters can be specified in one XML file, Policy.xml, with links to respective OWL 
files, as shown in Fig. 6. This policy specification can then be attached to WSDL 
description, as shown in Fig. 7. As to be noted, we assume there is a shared ontology for 
each service domain, the same stands for policy and QoS ontologies. At the same time, 
a local ontology can be extended based on shared ontology to accommodate special 
needs. 

WSDL

Operation: 
PurchaseBook

Input: 
BookDetails

Output:
Confirmation

BookSelling
Services

Output

Operation

BookOrdering

BookInfo ConfirmMessage

Policy

Context 
policy

QoS paramter

Avaliability

Economic
Cost

Accessibility

Business 
policy QoS policy

Precondition

...

cost
availability

accessibility

PolicyAttachment

Policy.xml

PurchaseBook
Service.wsdl

PolicyRule.
owl

QoS.owl

hasOperation
subClassOf

subClassOf

hasInput

subClassOf

Service

subClassOf

subClassOf
subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

Part of Service 
Ontology

Part of Policy 
Ontology

Part of QoS 
Ontology

QoS parameter and 
service parameter

DeliveryPolicy
BookStoreA

LocationPolicy
BookStoreA

hasOutput

...

Effect
hasEffect

hasCondition

GoldClassQoSPolicy
BookStoreA

subClassOf

Service 
parameter

QoS 
parameter

hasQoS

hasParameter

Input

 
 

Fig. 5. Semantic annotated service description for integrated service discovery 
 



PAPER A 
 

63 

<wsp:Policy Name="PurchaseBook"> 
   <wsp:All> 
       <!- Business policy -> 
       <po:DeliveryPolicy>http://BookStoreA.com/PolicyRule.owl#DelieveryPolicyBookStoreA  
       </po:DeliveryPolicy> 
       <!- Context policy -> 
       <po:LocationPolicy>http://BookStoreA.com/PolicyRule.owl#LocationPolicyBookStoreA  
      </po:LocationPolicy> 
       <!- QoS policy -> 
       <po:QoSPolicy>http://BookStoreA.com/PolicyRule.owl#GoldClassQoSPolicyBookStoreA  
       </po:QoSPolicy> 
        <!- QoS parameters and other service parameters -> 
       <po:QoSParameters>http://BookStoreA.com/QoS.owl#QoSParametersBookStoreA  
       </po:QoSParameters> 
       <!- other policy for PurchaseBook, e.g. security policy -> 
        ... 
   </wsp:All> 
</wsp:Policy> 
 
Fig. 6. Policy.xml - All policy specification for Web Service PurchaseBookService 
 
<wsp:PolicyAttachment> 
   <wsp:AppliesTo> 
      <wsa:EndpointReference> 
         <wsa:ServiceName Name="PurchaseBookService" /> 
         <wsa:PortType Name="PurchaseBookPortType" /> 
         <wsa:Address URI="http://BookStoreA.com/PurchaseBookService" /> 
      </wsa:EndpointReference> 
   </wsp:AppliesTo> 
   <wsp:PolicyReference URI="http://BookStoreA.com/Policy.xml" /> 
</wsp:PolicyAttachment> 
 

Fig. 7. Attaching policy specification to WSDL file PurchaseBookService.wsdl 

3.2 Integrated Semantic Service Requirement 
A user request specifies the functional requirements, non-functional requirements and 
user defined selection criteria in terms of preferred QoS parameters and their weights. 
Such request is also based on ontology concepts. A request template can be provided. 
This user request is combined with automatically obtained context information to 
produce an integrated service requirement specification in the form of an integrated 
semantic service request, which comprises the following information: 

• Functional requirements in terms of operations, inputs, outputs, preconditions 
and effects. 

• Non-functional requirements, such as QoS constraints. 
• Context information obtained automatically by the system. 
• User specified selection criteria, i.e. QoS parameters and their weights as well 

as user specified ranking criteria. This allows for personalized service ranking. 

3.3 Integrated Semantic Service Discovery Procedure 
Integrated semantic service discovery process can be arranged in two major steps. The 
first step is to find out the services that meet the functional requirements based on 
matching of functional properties. As there is usually more than one service matching 



PAPER A 
 

64 

the functional requirements, a set of candidate services are obtained. The next step is 
therefore to select the most appropriate ones from these candidates based on non-
functional properties and rank them according to user defined criteria. 

The whole discovery process is carried out by a reasoning engine. When an 
integrated semantic service request is sent to the reasoning engine, the engine will first 
determine the candidate services that offer the requested functionality based on 
matching of functional properties. We adopt a procedure based on ontological inference 
and degree of match [13]. This procedure typically uses subsumption reasoning to find 
similarity between service descriptions and service requests based on operations, inputs 
and outputs. Preconditions and effects can also be used for matching. During the second 
step, policies will be checked and applied to further select services among the candidate 
services. The semantic-annotated WSDL files of candidate services contain links to all 
policy specification file (e.g. Policy.xml), which can be referenced to retrieve the related 
policy rules (PolicyRule.owl) as well as QoS and service parameters (QoS.owl). Rule-
based reasoning can then be applied to determine satisfied matching. After that, overall 
QoS scores for those candidate services are calculated based on user defined selection 
criteria (i.e. based on selected QoS parameters and their respective weights) as 
described in Sect. 2.2. All the matches will be returned according to user specified 
ranking criteria. 

Ontological inference and rule-based reasoning are applied during semantic service 
discovery process. The reasoning engine which carries out the above procedure is based 
on XDD [23] – a knowledge representation framework - and XET [2] – a powerful 
computing and reasoning engine for XDD. Work has already been done, based on this 
representation framework and reasoning engine, for dynamic service configuration [1], 
composition [20], and management [9], proving the practicability and reasoning power 
of such reasoning engine.  

XDD (XML Declarative Description) is an expressive XML rule-based knowledge 
representation, which extends ordinary, well-formed XML elements by incorporation of 
variables for an enhancement of expressive power and representation of information 
into so called XML expressions. A description in XDD is a set of XML expressions and 
the XML elements’ relationships in terms of XML clauses. XML expressions represent 
facts, while XML clauses express rules, conditional relationships, constraints and 
ontological axioms. Applying XDD framework, Ontology-annotated WSDL 
descriptions, concepts and properties in OWL-based ontologies, service parameters and 
QoS parameters can all be represented as facts using XML unit clauses. Ontological 
relations and axioms as well as policy rules for service discovery can be represented as 
rules using XML non-unit clauses. Rules can also be defined for ontological inference 
and querying in XDD. Service requests can be represented as XDD query clauses using 
XML clauses, which specify the patterns as well as the selection conditions of the 
queries. This means all information and rules for integrated semantic service discovery 
can be directly represented as XDD descriptions. Furthermore, XDD descriptions can be 
computed and reasoned using XET (XML Equivalent Transformation), a Java-based 
reasoning engine that transforms the query clause by the XDD-based rules based on 
equivalent transformation [2]. Therefore, by expressing ontologies and rules directly in 
XDD and executing service discovery queries using XET-based engines, we eliminate 
the overhead of transforming between ontology language and rule-based representation, 



PAPER A 
 

65 

and can achieve both ontological inference and rule-based reasoning, two fundamental 
functionalities for semantic service discovery process. 

4. Related Work 

Several approaches for ontology-based semantic service discovery have been proposed, 
based on OWL-S [13] or semantic-annotated WSDL [16]. However, both of them only 
apply ontology for matching on the operational interfaces (i.e. input and output 
parameters of the operations of the Web Services). In addition, both of them lack 
mechanisms to represent non-functional properties based on rule-based policies. We 
extend the semantic matching and selection based on non-functional properties, i.e. 
ontology-based policy rules and QoS parameters. 

Sriharee et al. [18] proposed to discover Web Services based on business rules policy 
using WS-Policy and ontology, but without further consideration of QoS attributes. For 
incorporating QoS attributes with service discovery, Zhou et al. [24] proposed a 
DAML-QoS ontology for specifying various QoS properties and metrics. However, 
there was no provision for the users to specify ranking criteria (based on non-functional 
properties) for service selection. The framework proposed by Pathak et al. [14] provides 
QoS-based service selection; however, there was no consideration for policy rules 
during the discovery process. Maximilien et al. [10] proposed a framework and 
ontology for service selection also considering QoS properties, but there was no 
provision for user-specified ranking criteria in service request. 

5. Conclusions 

An approach to integrated semantic service discovery is presented. We first describe 
how non-functional properties are expressed based on business policies, QoS policies 
and context policies as well as QoS parameters. We then present our approach for 
adding semantics to service description for both functional and non-functional 
properties based on ontologies. We further show how service request can be integrated 
with context information and personalized ranking criteria. Based on them, an 
integrated semantic service discovery procedure based on both functional and non-
functional properties is presented. 

We base our work on widely accepted standards in Web Services and Semantic Web, 
i.e., WSDL, OWL and WS-Policy. The integrated semantic service discovery approach 
is a rather generic one, and can be applied in a centralized or distributed environment. 
We are working towards mechanisms to apply this approach to autonomic environments 
with distributed, self-organizing and scale-free communications. Issues about how the 
service descriptions are stored and organized as well as how they are accessed need 
further exploration.  

Shared ontologies are assumed for service descriptions and service requests in our 
approach. If different ontologies are used, ontology mapping should be carried out to 
build up correspondence between ontologies used for service descriptions and those 
used for service requests. 



PAPER A 
 

66 

References 

1 F. A. Aagesen, P. Supadulchai, C. Anutariya, and M. M. Shiaa. Configuration 
management for an adaptable service system. In IFIP Int’l Conference on 
Metropolitan Area Networks, Architecture, Protocols, Control and Management, 
proceedings, Ho ChiMinh City, VietNam, 2005. 

2 C. Anutariya, V. Wuwongse, and V. Wattanapailin. An equivalent-
transformationbased xml rule language. In Int’l Workshop Rule Markup Languages 
for Business Rules in the Semantic Web, proceedings, Sardinia, Italy, 2002. 

3 The OWL Services Coalition. Owl-s: Semantic markup for web services, 2003. 
http://www.daml.org/services/owl-s/1.0/owl-s.html.  

4 The Salutation Consortium. Salutation architecture specification version 2.0c, 1999. 
http://www.salutation.org/.  

5 S. Bajaj et al. Web services policy attachment, 2006. http://www-
128.ibm.com/developerworks/library/specification/ws-polatt/ .    

6 S. Bajaj et al. Web services policy framework (ws-policy), 2006. http://www-
128.ibm.com/developerworks/library/specification/ws-polfram/.  

7 UPnP Forum. Upnp device architecture version 1.0, 2000. http://www.upnp.org/.  
8 E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location protocol, version 

2. RFC2608, 1999. 
9 S. Jiang, M. M. Shiaa, and F. A. Aagesen. An approach for dynamic service 

management. In EUNICE’04, Proceedings, Tampere, Finland, 2004.  
10 E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web 

services selection. IEEE Internet Computing, 8(5):84–93, 2004. 
11 Sun Microsystems. Jini architecture specification version 2.0, 2003. 

http://www.jini.org/.  
12 OWL. Owl web ontology language overview. W3C Recommendation, Feb 2004. 

http://www.w3.org/TR/owl-features/.  
13 M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic matching of web 

services capabilities. In First Int. Semantic Web Conf., Proceedings, 2002. 
14 J. Pathak, N. Koul, D. Caragea, and V. Honavar. A framework for semantic web 

services discovery. In WIDM’05, Proceedings, 2005. 
15 S. Ran. A model for web services discovery with qos. ACM SIGecom Exchanges, 

4(1):1–10, 2003. 
16 K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to web 

services standards. In ICWS’03, Proceedings, 2003. 
17 N. Sriharee and T. Senivongse. Discovering web services using behavioural 

constraints and ontology. In DAIS’03, volume 2893 of LNCS, pages 248–259. 
Springer, 2003. 

18 N. Sriharee, T. Senivongse, K. Verma, and S. Sheth. On using ws-policy, ontology, 
and rule reasoning to discover web services. In INTELLCOMM 2004, Proceedings, 
volume 3283 of LNCS, pages 246–255, Bangkok, Thailand, 2004. Springer. 

19 R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and 
methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998. 

20 P. Supadulchai and F. A. Aagesen. A framework for dynamic service composition. 
In First Int’l IEEE Workshop on Autonomic Communications and Computing, 
Proceedings, Taormina, Italy, 2005. 

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://www.salutation.org/
http://www-128.ibm.com/developerworks/library/specification/ws-polatt/
http://www-128.ibm.com/developerworks/library/specification/ws-polatt/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www.upnp.org/
http://www.jini.org/
http://www.w3.org/TR/owl-features/


PAPER A 
 

67 

21 uddi.org. Universal description, discovery and integration of web services. 
http://www.uddi.org/.  

22 W3C. Web services description language (wsdl)1.1, 2001. 
http://www.w3.org/TR/wsdl.  

23 V. Wuwongse, C. Anutariya, K. Akama, and E. Natajeewarawat. Xml declarative 
description: A language for the semantic web. IEEE Intelligent Systems, 16(3):54–
65, 2001. 

24 C. Zhou, L. Chia, and B. Lee. Service discovery and measurement based on daml-
qos ontology. In Special Interest Tracks and Posters of 14th World Wide Web 
Conference, Proceedings, 2005. 

 
 
 

http://www.uddi.org/
http://www.w3.org/TR/wsdl


 

 



 

 

 

PAPER B: A Self-organizing Service Discovery 
System Based on Semantic Overlay Networks 

Shanshan Jiang, Finn Arve Aagesen and Hao Ding 

 
Published in 

Journal of System and Information Sciences Notes, July 2007 
Volume 1, Number 3, pp. 303-309. 

@SIWN 2007 
 

SIWN International Conference on Complex Open Distributed Systems(CODS 2007) 
Chengdu, China, July 22-24, 2007. 



 

 



PAPER B 
 

 71

A Self-organizing Service Discovery System Based on 
Semantic Overlay Networks 

 
Shanshan Jiang 

 
Finn Arve Aagesen 

 
Hao Ding 

 
Abstract  A network of autonomous directories forming a large-scale distributed 

service discovery system is considered. It is proposed to organize directories 
into Semantic Overlay Networks (SON) based on service ontology. The 
various SONs are further organized in super-peer networking structures. The 
focus is on the functionality for the organization of directories into SONs 
and the self-organizing construction and maintenance of super-peer SON 
networks. Simulations indicate that the proposed functionality gives super-
peer networks with a small number of SONs and a small SON size that 
require a small management procedure overhead. The self-organization time 
is short both for SON initial construction and in node leaving situations. 
Moreover, discovery procedure overhead is significantly reduced compared 
to a system based on a random overlay network.  

 
Keywords: self-organizing, semantic overlay network, service discovery, super-peer 

network. 

1. Introduction 

In a distributed service environment, service discovery is a core functionality to locate 
desired services. Service discovery is the process of finding the desired services by 
matching service descriptions against service requests. A service description provides 
service-related information which can be advertised by a service provider and searched 
during service discovery process. A service request represents user's service 
requirements. Both service descriptions and requests comprise information on 
functional and non-functional properties. Ontologies are the basis for adding semantic 
expressiveness to service descriptions and requests. An ontology is an explicit and 
formal specification of a shared conceptualization [14]. A service ontology is 
accordingly an explicit and formal specification of core concepts of the functional and 
non-functional properties of service. Semantic service discovery is a service discovery 
process based on ontology concepts. Likewise, semantic matching is the matching of 
service requests and service descriptions based on ontology concepts.  

Available approaches for service discovery, such as SLP [4], Jini [15] and UPnP 
[17], are targeted for enterprise and home networks. They either rely on centralized 
entities for discovery or search entire local network by broadcast or multicast. However, 
the location of services on Internet and other large-scale environments with a huge 
amount of a large variety of services needs other solutions. Hence, an important 



PAPER B 
 

 72

research objective is the location of services in such large-scale systems efficiently, i.e. 
to answer service requests fast with low overhead. 

We consider a large-scale service discovery system which consists of autonomous 
directories, where each directory has its own local registered service descriptions. We 
propose to apply semantic service discovery and to organize directories into Semantic 
Overlay Networks (SON). SON is a flexible network organization that logically 
connects nodes with semantically similar contents. The concept of SON is introduced in 
[2], which aims to improve query performance while maintaining a high degree of node 
autonomy. In this paper, a super-peer [19] based networking architecture is proposed for 
the various SONs. A super-peer architecture organizes nodes into hierarchy by utilizing 
the different capacities of nodes. Super-peers are peers with high capacity and provide 
services to their clients. They are dynamically selected by some super-peer selection 
algorithm and do accordingly not constitute single points of failure. A super-peer based 
approach thus has the efficiency of a centralized approach and the scalability, load-
balancing and robustness of a distributed approach.  

For the organization of directories into SONs, a shared service ontology based on a 
predefined service category hierarchy is used. The service descriptions are classified 
into service categories based on service ontology, and directories with semantically 
similar descriptions (i.e. similar service categories) are grouped into SONs. Each service 
request also identifies one service category.   

Service discovery based on SONs is an iterative process that can consist of several 
loops. Each loop has two steps. In Step 1, SONs which may contain relevant directories 
are selected. In Step 2, all the directories in these SONs are searched based on semantic 
matching. In each loop, the results are checked to see if enough matches are found. If 
not, more SONs are selected in new loops and until enough matches are obtained.  

Efficient service discovery requires that the service requests can be answered fast 
and that the overhead for successful search is low. This requires that the system should 
enable high probability searching (Requirement R1). This requirement means that the 
number of SONs selected for answering a request in Step 1 should be small and at the 
same time contain directories that have a high number of matches. Moreover, to reduce 
the maintenance overhead as well as the messages for answering a request, it also 
requires that the number of SONs as well as the size of SONs must be small 
(Requirement R2). 

The focus of this paper is on Step 1, i.e. how to select a relatively small set of 
promising directories out of a large number of directories. In a previous work [7], an 
integrated semantic service discovery approach that can carry out semantic matching 
has been proposed for Step 2.  

The rest of the paper is organized as follows: Sect. 2 discusses related work. Sect. 3 
presents a SON-based service system model, while Sect. 4 describes the SON-based 
service discovery system. Experiments and results are described in Sect. 5, followed by 
conclusions in Sect. 6. 

2. Related Work 

Semantic Overlay Networks have been proposed as an effective way to improve search 
in Peer-to-Peer (P2P) systems. The concept was originally introduced in [2], which also 
defined the challenges for building SONs as follows: 1) classification of queries and 



PAPER B 
 

 73

peers, 2) definition of level of granularity for each classification, 3) conditions for a peer 
to join a SON and d) the selection of SONs for answering a query. The actual 
networking aspect of SONs is however not addressed. Lately several approaches have 
been proposed. For example, SONs based on unstructured P2P systems (i.e. random 
overlay networks) have been proposed in [18][16]. However, unstructured P2P systems 
usually relying on flooding for searching are not efficient for large-scale service 
discovery. DHT (Distributed Hash Table)-based P2P systems [12][13] can locate nodes 
with a small number of messages based on DHT algorithms. They can however not 
process complex queries which are important for semantic service discovery. In 
addition, the high maintenance cost for DHT-based index and tight coupling between 
nodes limits their application for efficient wide area service discovery.  

Super-peer architecture has been proposed for providing the efficiency of a 
centralized approach and the scalability, load-balancing and robustness of a distributed 
approach. In [8], clustering policies are proposed to generate semantic clusters in super-
peer networks. Our approach differs by clustering directories based on service category 
hierarchy. Furthermore, our approach considers the self-organizing and adaptation of 
SONs, where the number of SONs and SON membership can change dynamically by 
applying adaptation policies on each directory. In addition, the super-peers in our 
system do not index data of their clients and are mainly used to route requests to proper 
SONs.  

This paper adopts a modified version of SG-1 [9] for super-peer selection. A recent 
protocol and a natural evolution of the SG-1 algorithm is SG-2 [6], which introduces the 
notion of latency between peers and poses a QoS limit on it. In addition, SG-2 is 
strongly bio-inspired. 

The self-organizing process for construction and maintenance of SONs in this paper 
is based on gossiping [3]. The gossiping paradigm has been applied in self-organizing 
environments for other purposes as well. For example, gossip-based clock 
synchronization for large decentralized systems is proposed in [5].  

3. SON-based Service Discovery System Model 

A service discovery system Ψ can be modeled as Ψ = <O, D, L, F>, where O is the 
service ontology, D is a set of directories, L is a set of links that logically connects 
directories based on semantic similarity and F is a set of functionality.  

The service ontology O defines the service categories as well as other service related 
concepts in a hierarchical structure. The upper ontology of service s is defined as a tuple 
<c, p, op, qos, sp>, where c denotes the service category the service s belongs to, p the 
policies applied to s, op the operations s performs, qos the QoS parameters and sp the 
service parameters. As shown in Fig. 1, a service belongs to a service category, and has 
operations, policies, service parameters and QoS parameters. Each operation is defined 
by inputs, outputs, preconditions and effects. The set of categories {c} is connected by a 
rooted tree, the category hierarchy CH. The role and the use of the service categories is 
explained at the end of this Section. More details of definitions of service ontology 
elements and their application in semantic service discovery can be found in our 
previous work [7]. 

 



PAPER B 
 

 74

Output

Operation

Precondition

Service 
category

hasOperation

belongsTo

hasInput

Service

hasOutput Effect

hasEffect

hasCondition

Service 
parameter

QoS 
parameter

hasQoS

hasParameter

Input

policy

hasPolicy

 
 

Fig. 1. Upper ontology of service. 
 
D is the set of directories {di}. Each di maintains a set of service descriptions SDi = 

{sdj}. Each service description sdj belongs to one service category c, denoted as sdj→c. 
Each di is logically connected with a relatively small set of directories, called its 
neighbors Ni.  

L is a set of links {l} that logically connects directories based on semantic similarity. 
A link l is a triple <di, dj, c> where di and dj are the logically connected directories based 
on a service category c. A link is symmetric, i.e., <di, dj, c> is the same as <dj, di, c>. A 
Semantic Overlay Network (SON) is represented by the set of links with the same c, 
SONc = {di, dj ∈ D | ∃ a link l = <di, dj, c>}. Each directory can join one or several 
SONs.  

F is a set of functionality provided by the system, which includes six operations as 
described as follows. Each SONc supports three operations:  

• Joinc(di, c):  a directory di is added to SONc, which means to find a directory dj 
∈ SONc so that a link <di, dj, c> can be added to the system Ψ. 

• Searchc(r, c): the service request r is sent to all the directories in SONc and a set 
of matches are returned. 

• Leavec(di, c): a directory di  leaves SONc by simply dropping all the links di 
maintains. 

In addition to the above three operations related to SONs, the service discovery 
system also supports the following operations: 

• Register(sdj, di, c): a service description sdj is registered in a directory di with 
service category c. 

• Assign(di): a directory di is assigned to a number of SONs according to the 
service descriptions registered. 

• Discovery(r, c): a service request r with a service category c specified by the 
user is sent to the system and routed to relevant directories for discovery. 

The role and the use of the service categories can be explained as follows. In service 
ontology, the category hierarchy CH is defined and is referenced by both users and 
service providers when they define service requests and descriptions. Each service 
description is mapped to one service category when it joins the system. Each service 
request contains one service category cr which defines the range of services that the user 
is looking for. Each SONc is related to one service category c, which is the root of the 



PAPER B 
 

 75

category subtree from CH. For example, in Fig. 2, the subtree of c2’ consists of {c3, c4, 
c2’}. Each directory has a set of service categories {c} from all the service descriptions 
registered in the directory. By aggregation of service descriptions according to their 
semantic relationships, a new set of categories {c’} is obtained (cf. Sect. 4.1). Each c’ 
corresponds to one SONc’ that the directory is member of. A directory joining SONc’ 
implies that it has enough service descriptions that fall under the subtree of c’. Fig. 2 
illustrates the category relations in a directory. The black circles represent categories 
related to service descriptions, while larger circles represent categories related to SONs. 

 

C1 C2 C3 C4

C5 C6

C1' C3'

C2'

Category Hierarchy
{C}={C1,C2,C3,C4,C5,C6)

{C’}={C1',C2',C3')

 
 

Fig. 2. Example of category sets of a directory. 

4. SON-based Service Discovery System 

The architecture for SON-based service discovery system is illustrated in Fig. 3. 
Directories are logically organized into SONs. Each directory can belong to several 
SONs. Each SON has an entry directory, which is a directory with high capacity. The 
entry directory acts as a super-peer for other client directories in a SON. A client sends 
requests and receives answers via its super-peer. In addition, such super-peers are 
connected with each other for inter-SON communication. In other words, the entry 
directory (super-peer) can distribute messages within a SON as well as forward them to 
different SONs for global discovery. The inter-SON communication is basically 
broadcast-based, although other approaches can be applied, such as DHT [13]. Each 
directory has the following functionality: 

• Registration of service descriptions.  
• Assigning the directory to SONs, maintaining SON connections and adapting to 

dynamic changes. 
• Accepting service requests and carrying out local semantic matching procedure. 
In addition, two more functionalities are needed, i.e. for: 
• SON super-peer network construction. 
• SON super-peer network maintenance, including directory joining and leaving. 
Each service is registered in a local directory with a service category. Policies are 

applied when assigning directories to SONs and mapping service request to SONs for 
discovery. Service discovery requires also the iterative selection of SONs and searching 
in each SON. In the following, assignment of directories to SONs, construction and 
maintenance of SONs as well as service discovery are explained in more detail. 

 



PAPER B 
 

 76

Service 
Description

SON1

Direc
tory

Entry directory 
for each SON 
(super-peer).

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory Direc

tory

Direc
tory

...SON2 SONn

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
toryDirec

tory
Direc
tory

Direc
tory

Direc
tory

Direc
tory Direc

tory
Direc
tory

Physical network 
of directories

Logical networks 
of SONs

Network of super-peers 
for inter-SON 

communication

Service 
Request  

 
Fig. 3. SON-based service discovery system architecture. 

4.1 Assignment of Directories to SONs 
To join the SON-based service discovery system, a directory needs to find out which 
SONs to join based on the service categories of the service descriptions contained in it. 
The procedure for determining which SONs to join consists of two steps: 1) aggregating 
service descriptions into groups, and 2) assigning directories to SONs according to 
assignment policies based on such group information. In addition, as services can 
dynamically join and leave the system, the services registered in the directories can 
change, which may cause SON membership to change. Adaptation policies are therefore 
accordingly applied for directories to adapt to runtime situation. 
 
4.1.1 Aggregation Policy 
 
To meet the requirement R2, there should be aggregation of service categories of all 
service descriptions stored in a directory. This is based on the semantic relationships 
between service categories. For two service categories c and c’, c’ ≤ c means c’ equals 
to c or c’ is a descendant of c in the service category hierarchy. To aggregate service 
descriptions, a service description sd will be placed in a group of service category c 
(denoted as sd⇒c) if (sd→c’) and (c’≤c). In other words, c is the root of subtree that c’ 
belongs to.  
 
4.1.2 Assignment Policies 
 
Assignment of directories to SONs is based on group information according to 
assignment policies. Several assignment policies can be defined. 

• Policy A1: a directory di joins a SONc if it has a service description that belongs 
to group c, i.e. (di ∈ SONc) if (  ∃ sdj⇒c, sdj∈di).  

This is the most conservative policy. However, such policy tends to produce too 
many links.  



PAPER B 
 

 77

• Policy A2: a directory di joins a SONc if the number of service descriptions that 
belongs to c is greater than a threshold T, i.e. (di ∈ SONc) if (Count(sdj⇒c) > T).  

Such policy is good and practical for service discovery in Internet-scale environment. 
If a directory di joins a SONc, this implies that di contains many service descriptions 
falling under the subtree of c; therefore, selecting di for matching will provide higher 
number of matches than selecting the directories that are not members of SONc. Policy 
A2 thus meets the high probability searching requirement (R1). The threshold value T 
can be an adjustable parameter, which is important for the performance of SON-based 
service discovery system. Taking a high T value, SON connections per directory can be 
reduced, and accordingly SON sizes are reduced (R2). For example, when the threshold 
parameter T=10, a node will only join SONc when it has more than 10 service 
descriptions belonging to group c. The SON connections per node and SON sizes will 
accordingly be changed by the variation of T. However, for small groups of service 
descriptions that are not assigned to SONs, there will be possibility that such 
descriptions never be searched if they are not associated with any SON. To compensate, 
Policy A3 can be applied.  

• Policy A3: for service groups that do not have enough service descriptions, the 
directory can join a SON that corresponds to an ancestor of current service category.  

The selection of assignment policies is determined by the distribution of services. If 
services are clustered, each directory contains only a few service category groups. Both 
the number and the size of SONs can be small if applying Policy A1. On the other hand, 
if services are evenly distributed, Policy A2 and A3 need to be applied to reduce the 
SON connections. In this case, services registered in a directory that contains only a few 
instances of the same category may not be searched if other directories contain many 
instances of the same category due to high probability searching. However, this is 
acceptable for large-scale service discovery since users usually demand any service 
instance that can meet their requests. Otherwise, iterative selection of SONs (cf. Sect. 
4.3.3) will search each possible service in the expense of higher number of messages.  
 
4.1.3 Adaptation Policies 
 
The following adaptation policies are defined for directories to adapt to runtime 
situation: 

• Policy P1: the number of SONs a directory joins must be less than a threshold 
value Ts. Such Ts is determined by the directory’s capacity. 

• Policy P2: if the number of service descriptions belonging to the subtree of c is 
over a threshold value Tc and there is no connection to SONc yet, then add the directory 
to SONc. 

• Policy P3: if the number of service descriptions belonging to the subtree of c 
drops below Tc, the directory can be removed from SONc, but must make sure that it is 
still connected to one SON that corresponds to c’s ancestor. 

4.2 Construction and Maintenance of SONs 
Self-organization means the system can dynamically adapt to topology change and 
reorganize each node’s neighbors. A self-organizing process is applied for both 
construction and maintenance of SONs based on gossiping [3]. It is an autonomous 
functionality determined by directories themselves. By periodically exchanging current 



PAPER B 
 

 78

status information (called partial view) with randomly selected peer nodes, old 
information gradually and automatically replaced by new information. Network 
topology can thus be automatically updated. In particular, information about failed 
nodes will be automatically removed from the system, allowing the system to “self-
repair” the overlay topology. 
 
4.2.1 Construction  
 
Initially, all the directories in the system decide which SONs to join according to the 
function described in Sect. 4.1. For each SON, one directory with high capacity will be 
selected as SON entry directory. Some super-peer selection algorithms can be applied. 
In this paper, a modified version of SG-1 algorithm [9] is adopted. This algorithm is 
based on gossiping and assures the dynamic selection of super-peers according to 
runtime situation. Each node periodically exchanges its partial view with randomly 
selected peer nodes, which contains information such as identifier, capacity, current role 
(super-peer or client), SON memberships, the number of clients they are serving and 
neighbors. After exchanging views, nodes with available connections and higher 
capacity will be changed into super-peers, and others are to connect to them as clients. 
Alternatively, a super-peer may decide to move all its clients to another super-peer with 
more capacity, and become a client itself. This role changing is particular useful when 
the super-peer is overloaded or degraded, so that load balancing can be achieved. Such 
process continues until the system becomes stable, i.e., the minimum number of super-
peers is selected.  
 
4.2.2 Maintenance 
 
The maintenance of SONs involves the handling of the following situations:  

• Directory joining: when a new directory decides to join a SON (according to the 
function defined in Sect. 4.1), it contacts the entry directory for the SON and joins the 
SON as a client of the entry directory. If it is the first member or the entry directory has 
no capacity to accept more clients, it can declare itself as an entry directory (super-
peer), and wait to accept other clients.  

• Directory leaving: if the directory is a client, it does not need to do anything. 
Such change will be automatically updated by gossiping. However, if it is a super-peer, 
all its clients need to be connected to new super-peers. In the system, a client 
periodically probes its super-peer to see if it is active. If its super-peer fails or leaves, 
the client can declare itself as a super-peer, and participate in the super-peer selection 
process as described in Sect. 4.2.1.  

• SON membership update: each directory can determine to update its SON 
membership according to registered services by applying adaptation policies defined in 
Sect. 4.1.3. The update process can be viewed as consisting of directory leaving and 
directory joining. 

4.3 Service Discovery 
When a request is sent to the service discovery system, the discovery operation 
Discovery(r, c) is carried out by an iterative procedure consisting of two steps in each 
loop. 



PAPER B 
 

 79

4.3.1 Step 1: Select the Relevant SONs  
 
Given a service request with category c, the system needs to map it to SONs which may 
contain relevant service descriptions. The selection of relevant SONs is determined by 
the semantic distance between c and cs (category for a candidate SON) in the CH. 
Different selection policies give different discovery scope: 

• Policy S1: Only SONc is selected. 
• Policy S2: Select SONs associated with c and its descendents c’. 
• Policy S3: Select SONs associated with c, and both its descendants and ancestors 

c’. 
An iterative selection based on Policy S3 is adopted in our system (described in Sect. 

4.3.3). 
 
4.3.2 Step 2: Search Each Directory in SONc 
 
This corresponds to the operation Searchc(r, c). Since each SON is managed by a super-
peer with its clients, the super-peer will forward the service request to each directory in 
the SON. Then semantic matching is carried out in each directory. This is based on 
other service concepts than service category in the service ontology, such as operations, 
service and QoS parameters. The semantic matching is based on semantic similarity 
between ontology concepts. The results of a semantic service discovery can be ranked 
according to functionality similarity based on degree of match, which can be 
distinguished as Exact, Plugin, Subsume and Fail [10]. A match between a service 
description sd and a service request r can then be modeled as a function M(sd, r) = {1, if 
degree ∈ (Exact, Plugin, Subsume) | 0, if Fail}. Our previous paper [7] proposed an 
approach for semantic matching based on service ontology defined in Fig. 1. As this is 
not the focus of this paper, interested reader should refer to [7]. 

 
4.3.3 Iterative Selection of SONs 
 
To improve discovery efficiency and enable high probability searching (R1), SONs 
with most probability to answer the request are selected first to carry out Step 2 
mentioned above, then less probable SONs are selected until enough matches are 
obtained. In detail, given a request for category c, SONc (if it exists) is searched first. If 
not enough matches are obtained, SONs that correspond to c’s descendents (if any) are 
searched. If still not enough matches returned, SONs that correspond to c’s ancestors 
are searched (if any, and from the nearest ancestor until the root of the CH). Such 
process continues until enough matches are obtained or every possible SONs are 
searched. Since the size of each SON is determined by the capacity of its entry 
directory, there may be several SONs corresponding to one category c. In this case, each 
such SON is selected until enough results are obtained. 

5. Evaluation 

To evaluate the system performance, the following quality measures are used:  
• number of SONs and SON size 
• management procedure overhead  



PAPER B 
 

 80

• discovery procedure overhead 
• self-organization time 
The number of messages sent per directory in order to maintain super-peer based 

SON structure is applied as a measure for management procedure overhead. Discovery 
procedure overhead is the number of messages generated by the discovery system to 
answer a service request.  

A simulation round δ is a logical time unit, representing the interval each node 
exchanges messages with its neighbor (gossiping interval). As a measure for self-
organization time, the number of simulation rounds for the system to stabilize is used. 
The number of rounds corresponds to how many times a node exchanges messages. The 
real time for execution is determined by the actual gossiping interval. For example, if 
the gossiping interval is 1s, then the system can stabilize in about 10*δ = 10s. A smaller 
number of rounds means the system can stabilize faster. 

An efficient SON-based service discovery system requires a small SON size and a 
small number of SONs, a small management procedure overhead value, a small 
discovery procedure overhead value and a short self-organization time. 

Simulations based on the PeerSim framework [11] are carried out to investigate the 
proposed system. To realize the Searchc(r, c) and Joinc(di, c) operations, a general 
super-peer based protocol for communication within individual SON is implemented 
and an existing implementation of Newscast -- a gossip-based membership protocol 
[11] for inter-SON communication is used. SONs are constructed according to the 
procedure defined in Sect. 4.2.1. Power-law distribution on directory capacities are 
applied, which also determines SON sizes. Assume each directory belongs to one SON 
and only one SON is selected for each request. Simulation rounds for various network 
sizes are conducted, i.e. from 1000 to 50000 nodes (directories). To evaluate the self-
organizing property of the SON system, 50 nodes are deleted in each round from round 
30 to round 35.  

The SON size is determined by the capacity of its super-peer. The number of SON 
connections per directory is determined by the policies applied when assigning 
directories to SONs (cf. Sect. 4.1). In the simulation, one SON per directory is applied. 
Table 1 shows the number of SONs and the average SON size when the system 
stabilizes. The results indicate that the number of SONs in the system is small. If a 
directory joins more than one SON, the number of SONs may increase. 

 
Table 1. The number of SONs and average SON size for different network sizes. 
 

Number of Nodes 1000 5000 10000 50000
Number of SONs 10 44 82 396 
Average SON size 100 114 122 126 

 
Fig. 4 shows that our proposed SON-based system becomes stable in approximately 

10 rounds in both SONs construction situation and node leaving situation. Fig. 5 shows 
the average management procedure overhead in each round. Generally, the overhead is 
between 1 and 6. Fig. 6 shows the discovery procedure overhead for different network 
sizes. The results of SON-based systems are compared with searching in random 
overlay network-based systems, such as Gnutella-based searching [1]. As SON-based 



PAPER B 
 

 81

system routes the requests only to a subset of relative directories, the discovery 
procedure overhead is significantly reduced.  

 

0 10 20 30 40 50 60
No. of round

1

10

100

1000

10000

100000

N
o.

 o
f S

O
N

s

50000 nodes + node leaving from round 30 to round 35
10000 nodes + node leaving from round 30 to round 35
5000 nodes + node leaving from round 30 to round 35
1000 nodes + node leaving from round 30 to round 35

 
Fig. 4. The number of SONs and self-organization time for different network sizes. 

 

0 10 20 30 40 50 60
No. of round

0

2

4

6

8

10

12

M
an

ag
em

en
t p

ro
ce

du
re

 o
ve

rh
ea

d

50000 nodes + node leaving from round 30 to round 35
10000 nodes + node leaving from round 30 to round 35
5000 nodes + node leaving from round 30 to round 35
1000 nodes + node leaving from round 30 to round 35

25 30 35 40 45
1

1.5
2

2.5
3

3.5

4
4.5

 
Fig. 5. The average management procedure overhead for different network sizes. 

 

1000 5000 10000 50000
Network size

0

50000

100000

150000

200000

250000

D
is

co
ve

ry
 p

ro
ce

du
re

 o
ve

rh
ea

d

SON
Gnutella

1000 5000 10000
0

5000

10000

15000

20000

25000

30000

 
Fig. 6. Discovery procedure overhead for different network sizes. 



PAPER B 
 

 82

6. Conclusion 

Semantic Overlay Networks (SONs) have been proposed for improving the discovery 
efficiency, i.e. to answer service requests fast with low overhead, in large-scale service 
discovery systems. The focus is on functionality for the organization of directories into 
SONs and the self-organizing construction and maintenance of super-peer SON 
networks. Different policies are applied as constraints on the system functionality. 
Aggregation and assignment policies are applied to ensure the size and number of SONs 
can be small. The number of SONs and SON membership can change dynamically by 
applying adaptation policies on each directory. Iterative selection of SONs for discovery 
enables high probability searching. The proposed system has been evaluated by 
simulations. The results indicate that such super-peer based SON system can improve 
discovery efficiency. The proposed functionality gives a small number of SONs with 
small SON size and requires a small management procedure overhead. The results also 
indicate short self-organization time both in initial SON construction situations and in 
situations when nodes are leaving. Moreover, discovery procedure overhead is 
significantly reduced compared to a system based on a random overlay network.  

References 

[1] Clip2 distributed Search Services, The Gnutella protocol specification v0.4. 
[2] A Crespo and H Garcia-Molina, Semantic overlay networks for P2P systems. 

Technical Report, Computer Science Department, Stanford University, October 
2002. 

[3] A Demers, et al, Epidemic algorithms for replicated database maintenance. 
Proceedings of the sixth annual ACM Symposium on Principles of distributed 
computing (POCD 1987), Vancouver, British Columbia, Canada, August 10 - 
12, 1987.  

[4] E Guttman, C Perkins, J Veizades and M Day, Service location protocol, version 
2. RFC2608, 1999. 

[5] K Iwanicki, M van Steen and S Voulgaris, Gossip-based clock synchronization 
for large decentralized systems. Proceedings of the Second IEEE International 
Workshop on Self-Managed Networks, Systems and Services (SelfMan 2006), 
Dublin, Ireland, June 16, 2006, LNCS 3996, pp. 28-42. 

[6] G P Jesi, A Montresor and O Babaoglu, Proximity-aware superpeer overlay 
topologies. Proceedings of the Second IEEE International Workshop on Self-
Managed Networks, Systems and Services (SelfMan 2006), Dublin, Ireland, 
June 16, 2006, LNCS 3996, pp. 43-57. 

[7] S Jiang and F A Aagesen, An approach to integrated semantic service discovery. 
Proceedings of the First International IFIP TC6 Conference on Autonomic 
Networking (AN 2006), Paris, France, September 27-29, 2006, LNCS 4195, pp. 
159-171. 

[8] A Loser, et al, Semantic overlay clusters within super-peer networks. 
Proceedings of the International Workshop on Databases, Information Systems 
and Peer-to-Peer Computing (DBISP2P 2003), Berlin, Germany, September 7 - 
8, 2003, LNCS 2944, pp. 33-47. 



PAPER B 
 

 83

[9] A Montresor, A robust protocol for building superpeer overlay topologies. 
Proceedings of the Fourth International Conference on Peer-to-Peer Computing 
(P2P 2004), August 25-27, 2004, pp. 202-209. 

[10] M Paolucci, T Kawmur, T Payne and K Sycara, Semantic matching of web 
services capabilities. Proceedings of the First International Semantic Web 
Conference (ISWC 2002), LNCS, 2342, pp. 333-347. 

[11] PeerSim: a peer-to-peer simulator. http://peersim.sourceforge.net/  
[12] A Rowstron and P Druschel, Pastry: scalable, distributed object location and 

routing for large-scale peer-to-peer systems. Proceedings of the 18th IFIP/ACM 
Conference on Distributed Systems Platforms (Middleware 2001), Heidelberg 
(D), November 2001, LNCS 2218, pp. 329-350. 

[13] I Stoica, et al, Chord: a scalable peer-to-peer lookup service for Internet 
applications. Proceedings of the 2001 ACM SIGCOMM Conference, pp. 149-
160. 

[14] R Studer, V R Benjamins and D Fensel, Knowledge engineering: principles and 
methods. Data and Knowledge Engineering, 25(1-2):161–197, 1998. 

[15] Sun Microsystems, Jini architecture specification version 2.0, 2003. 
http://www.jini.org/ 

[16] P Triantafillou, C Xiruhaki, M Koubarais and N Ntarmos, Towards high 
performance peer-to-peer content and resource sharing systems. Proceedings of 
the Conference on Innovative Data Systems Research (CIDR 2003). 

[17] UPnP Forum, UPnP device architecture version 1.0, 2000. http://www.upnp.org/   
[18] M Vazirgiannis, K Nørvåg and C Doulkeridis, Peer-to-peer clustering for 

semantic overlay network generation. Proceedings of the 6th International 
Workshop on Pattern Recognition in Information Systems (PRIS 2006), Paphos, 
Cyprus, May 2006.  

[19] B Yang and H Garcia-Molina, Designing a super-peer network. Proceedings of 
the IEEE International Conference on Data Engineering (ICDE, 2003), pp. 49-
60. 

 



 

 

 



 

 

 

PAPER C: Efficient Service Discovery System 
Based on Semantic Overlay Networks 

Shanshan Jiang and Finn Arve Aagesen 

 
Published in  

Proceedings of the 6th International Information and Telecommunication 
Technologies Symposium (I2TS’07) 

 
Brasilia, DF, Brazil, December 12-14, 2007. 

 
 
 



 

 



PAPER C 
 

 87

Efficient Service Discovery System Based on Semantic 
Overlay Networks 

 
Shanshan Jiang 

 
Finn Arve Aagesen 

 

Abstract  A network of autonomous directories forming a large-scale distributed 
service discovery system is considered. In order to locate services efficiently 
in such large-scale systems, we propose to organize directories into 
Semantic Overlay Networks (SON) based on service ontology. The various 
SONs are further organized in super-peer networking structures. The focus 
is on the functionality for organization of directories into SONs and the use 
of SONs for efficient service discovery and efficient SON management. 
Efficient service discovery means high recall, small number of messages-
per-request and small number of hops-per-request. Efficient SON 
management is characterized by small management procedure overhead, 
small load factor and short self-organization time. Simulations indicate that, 
compared to a system based on a random overlay network, such super-peer 
based SON system can achieve high recall with small hops-per-request 
value and significantly reduced messages-per-request value. Moreover, such 
system requires only a small management procedure overhead and the self-
organization time is short both for SONs initial construction and 
reconstruction under dynamic node joining and leaving situations. 
Simulations also indicate a small average load factor. 

1. Introduction 

In a distributed service environment, service discovery is a core functionality to locate 
desired services. Service discovery is the process of finding the desired services by 
matching service descriptions against service requests. A service description provides 
service-related information which can be advertised by a service provider and searched 
during service discovery process. A service request represents user's service 
requirements. Both service descriptions and requests comprise information on 
functional and non-functional properties. Ontologies are the basis for adding semantic 
expressiveness to service descriptions and requests. An ontology is an explicit and 
formal specification of a shared conceptualization [1]. A service ontology is accordingly 
an explicit and formal specification of core concepts of the functional and non-
functional properties of service. An upper ontology of service is a model of common 
service-related concepts applicable to a wide range of domains. Semantic service 
discovery is a service discovery process based on ontology concepts. Likewise, 
semantic matching is the matching of service requests and service descriptions based on 
ontology concepts. 

Current service discovery protocols, such as SLP [2], Jini [3] and UPnP [4], are 
targeted for enterprise and home networks. They either rely on centralized entities for 
discovery or search entire local network by broadcast or multicast, thus do not suit for 



PAPER C 
 

 88

wide area discovery. UDDI [5], the standard for Web service discovery, is based on 
centralized registries, also facing the scalability and performance challenges when the 
amount and variety of services increase. Hence, an important research objective is the 
location of services in a large-scale system with a huge amount of a large variety of 
services efficiently, i.e. to answer service requests fast with low overhead. 

A large-scale service discovery system is considered, which consists of autonomous 
directories, where each directory has its own local registered service descriptions. We 
propose to apply semantic service discovery and to organize directories into Semantic 
Overlay Networks (SON). SON is a flexible network organization that logically 
connects nodes with semantically similar contents. The concept of SON is introduced in 
[6], which aims to improve query performance while maintaining a high degree of node 
autonomy. In this paper, a super-peer [7] based networking architecture is proposed for 
the various SONs. Super-peer architecture aims to combine the efficiency of a 
centralized approach and the scalability, load-balancing and robustness of a distributed 
approach. A super-peer architecture organizes nodes into hierarchy by utilizing the 
different capacities of nodes. Super-peers are nodes with high capacity. The super-peers 
and other nodes constitute the service discovery system. The super-peers have special 
assigned functionality in the service discovery procedure. They are dynamically 
selected by some super-peer selection algorithm and do accordingly not constitute 
single points of failure.  

The focus of this paper is on the functionality for organization of directories into 
SONs and the use of SONs for efficient service discovery and efficient SON 
management. For the organization of directories into SONs, a shared service ontology 
based on a predefined service category hierarchy is used. The service descriptions are 
classified into service categories based on service ontology, and directories with 
semantically similar descriptions are grouped into SONs, where semantically similar 
means belonging to the same service category subtree. Each service request also 
identifies one service category. Service discovery based on SONs is an iterative process 
that can consist of several loops. Each loop has two steps. In Step 1, SONs which may 
contain relevant directories are selected. In Step 2, all the directories in these SONs are 
searched based on semantic matching. In each loop, the results are checked to see if 
enough number of matches is found. If not, more SONs are selected in new loops and 
until enough number of matches is obtained. For SON management, a self-organizing 
process based on gossiping [8] is applied for the construction and maintenance of SONs. 

The rest of the paper is organized as follows: Sect. 2 discusses the system 
requirements, while Sect. 3 presents a model for such SON-based service discovery 
system. Sect. 4 describes the super-peer based SON system. Experiments and results are 
described in Sect. 5. Related work is discussed in Sect. 6 followed by conclusions in 
Sect. 7. 

2. Requirements to an Efficient SON-based Service Discovery 
System 

An efficient SON-based service discovery system must both be efficient with respect to 
service discovery and with respect to SON management. Efficient service discovery 
requires that relevant quality answers must be returned fast with small discovery 



PAPER C 
 

 89

procedure overhead. Efficient SON management means fast construction and 
reconstruction of SONs and small management procedure overhead.  

With respect to the efficient service discovery requirement two design requirements 
can be defined. 

• R1: The system should enable high probability searching with high recall.  
The number of SONs selected for answering a request should be small and at the 

same time contain directories that have a high number of matches. This is because that 
if the directories to which the request is sent have many semantically similar service 
descriptions (i.e. many possible matches), the request is answered fast. 

• R2: The number of SONs and the size of SONs must be small.  
Smaller SONs and fewer SONs reduce management procedure overhead. At the 

same time, fewer messages are required for answering a request, so the request is 
answered faster. Reducing SON connections per directory can reduce SON size. Shared 
service ontology with a predefined service category hierarchy is assumed. It is however 
inefficient to build SONs for each category. Aggregation of services into groups is 
needed, i.e. service categories at appropriate hierarchy level should be selected 
according to the service distribution so that the number of SONs and the SON 
connections can be reduced.  

3. SON-based Service Discovery System Model 

A service discovery system Ψ can be modeled as Ψ = <O, D, L, F>, where O is the 
service ontology, D is a set of directories, L is a set of links that logically connects 
directories based on semantic similarity and F is a set of functionality.  

The service ontology O defines the service categories as well as other service related 
concepts in a hierarchical structure. The upper ontology of service s is defined as a tuple 
<c, p, op, qos, sp>, where c denotes the service category the service s belongs to, p the 
policies applied to s, op the operations s performs, qos the QoS parameters and sp the 
service parameters. As shown in Fig. 1, a service belongs to a service category, and has 
operations, policies, service parameters and QoS parameters. Each operation is defined 
by inputs, outputs, preconditions and effects. The set of categories {c} is connected by a 
rooted tree, the category hierarchy CH. The role and the use of the service categories are 
explained at the end of this Section. More details of definitions of service ontology 
elements and their application in semantic service discovery can be found in our 
previous work [9]. 

Output

Operation

Precondition

Service 
category

hasOperation

belongsTo

hasInput

Service

hasOutput Effect
hasEffect

hasCondition

Service 
parameter

QoS 
parameter

hasQoS

hasParameter

Input

policy

hasPolicy

 
 

Fig. 1. Upper ontology of service. 



PAPER C 
 

 90

D is the set of directories {di}. Each di maintains a set of service descriptions SDi = 
{sdj}. Each service description sdj belongs to one service category c, denoted as sdj→c. 
Each di is logically connected with a set of directories, called its neighbors Ni.  

L is a set of links {l} that logically connects directories based on service categories. 
A link l is a triple <di, dj, c> where di and dj are the logically connected directories based 
on a service category c. A link is symmetric, i.e., <di, dj, c> is the same as <dj, di, c>. A 
Semantic Overlay Network (SON) is represented by the set of links with the same c, 
SONc = {di, dj ∈ D | ∃ a link l = <di, dj, c>}. Each directory can join one or several 
SONs.  

F is a set of functionality provided by the system, which includes seven operations as 
described as follows. Each SONc supports three operations: 

• Joinc(di, c): a directory di is added to SONc, which means to find a directory dj ∈ 
SONc so that a link <di, dj, c> can be added to the system Ψ. 

• Searchc(r, c): the service request r is sent to all the directories in SONc and a set 
of matches are returned. 

• Leavec(di, c): a directory di leaves SONc by simply dropping all the links di 
maintains. 

In addition to the above three operations related to SONs, the service discovery 
system also supports the following operations: 

• Register(sdj, di, c): a service description sdj is registered in a directory di with 
service category c. 

• Assign(di): a directory di is assigned to a number of SONs according to the 
service descriptions registered. In addition, SON memberships can be updated 
according to runtime situation. 

• Discovery(r, c): a service request r with a service category c specified by the user 
is sent to the system for discovery and the results are sent back to the user. 

• SONselection(c): select the relevant SONs for a given service category c. 
The role and the use of the service categories can be explained as follows. In service 

ontology, the category hierarchy CH is defined and is referenced by both users and 
service providers when they define service requests and descriptions. Each service 
description is mapped to one service category when it joins the system. Each service 
request contains one service category cr which defines the range of services that the user 
is looking for. Each SONc is related to one service category c, which is the root of the 
category subtree from CH. Fig. 2 illustrates the category relations in a directory. The 
black circles represent categories related to service descriptions, while larger circles 
represent categories related to SONs. Each directory has a set of service categories from 
all the service descriptions registered in the directory (the set ServiceDescriptions). By 
aggregation of service descriptions according to their semantic relationships, a new set 
of categories (the set Potential_SONs) is obtained. This category set corresponds to 
potential SONs. Further applying join policies, a new set of categories of {c’} (the set 
SONs) is obtained (cf. Sect. 4.1). Each c’ corresponds to one SONc’ that the directory is 
member of. A directory joining SONc’ implies that it has enough service descriptions 
that fall under the subtree c’. 



PAPER C 
 

 91

C2 C3 C5 C6

C13 C14

C1' C3'

C2'

Category Hierarchy

ServiceDescriptions={C2,C3,C5,C6,C13,C14}

SONs={C1',C2',C3'}

C1 C4 C7 C8 C9 C10

C11 C12

C15

Potential_SONs={C2,C3,C5,C6,C11,C12,C13,C14,C15,C1',C2',C3'}

 
 

Fig. 2. Category set examples as seen from one directory. 

4. A Super-peer Based SON Service Discovery System 

The architecture for a super-peer based SON service discovery system is illustrated in 
Fig. 3. Service descriptions are stored in directories, while service requests from a 
service discovery user are sent to the service discovery system via the edge directory. 
Directories are logically organized into SONs. Each directory can belong to several 
SONs. The capacity of a directory is characterized by the number of directories it can 
manage. Each SON has a super-peer, which is a directory with high capacity. Other 
directories in a SON are all connected with the super-peer and communicate via the 
super-peer. In addition, such super-peers are connected with each other for inter-SON 
communication. In other words, the super-peer can distribute messages within a SON as 
well as forward them to different SONs for global discovery. The inter-SON 
communication is basically broadcast-based, although other approaches can be applied, 
such as DHT (Distributed Hash Table) [10].  

Each directory in the service discovery system can have one or several of the 
following roles: service storage, edge and super-peer. Each directory has at least the 
role of service storage, which has the following functionality: 1) Registering service 
descriptions, 2) Assigning the directory to SONs and adapting SON memberships to 
dynamic changes, and 3) Accepting service requests from a super-peer and carrying out 
local semantic matching procedure. The directory that a service discovery user contacts 
also assumes the edge role, which will 4) accept the service request from the service 
discovery user, forward it to its super-peer (can be the same directory), and return the 
answers to the user. Furthermore, each SON has a super-peer, which has the following 
functionality: 5) selecting relevant SONs for discovery, forwarding requests to other 
directories in the same SON and/or other relevant SONs accordingly, and returning 
results back to the edge. A sequence diagram showing the interactions between different 
roles during service discovery will be given in Sect. 4.3. 

In addition, system functionality is needed for 6) SON super-peer network 
construction and maintenance, including directory joining and leaving. 

Each service is registered in a local directory with a service category. Policies are 
applied when assigning directories to SONs. Service discovery requires the iterative 
selection of SONs and searching in each SON. In the following, assignment of 
directories to SONs, SONs construction and maintenance as well as service discovery 
are explained in more detail. 



PAPER C 
 

 92

Service 
Description

SON1

Direc
tory

Super-peer for 
each SON 

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory Direc

tory

Direc
tory

...SON2 SONn

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
toryDirec

tory
Direc
tory

Direc
tory

Direc
tory

Direc
tory

Direc
tory

Physical network 
of directories

Logical networks 
of SONs

Network of super-peers 
for inter-SON 

communication

constitutes

belongs to SON

service discovery user

Service 
Request

service discovery system

edge

 
 

Fig. 3. Super-peer based SON service discovery system architecture. 

4.1 Assignment of Directories to SONs 
To join the SON-based service discovery system, a directory needs to find out which 
SONs to join based on the service categories of the service descriptions contained in it. 
To meet requirement R2, a directory should first aggregate service categories of all 
service descriptions stored in it into groups, and then select the best “representative” 
service categories to join SONs according to join policies. As services can dynamically 
join and leave the system, the services registered in the directories can change, causing 
SON membership to change. The join policies will thus not only be applied at startup, 
but also be applied dynamically for directories to adapt to runtime situation.  
 
4.1.1   Aggregation 
 
Aggregation is based on the semantic relationships between service categories. For two 
service categories c and c’, c’ ≤ c means c’ equals to c or c’ is a descendant of c in the 
service category hierarchy. To aggregate service descriptions, a service description sd 
will be placed in a group of service category c (denoted as sd⇒c) if (sd→c’) and (c’≤c). 
In other words, c is the root of subtree that c’ belongs to.  
 
4.1.2 Join Policies  
 
Assignment of directories to SONs is based on the group information which is the result 
of the aggregation. In the following three join policies Join1-Join3 are defined. The 
selection of join policies is determined by the distribution of services. If services are 
clustered, each directory contains only a few service category groups. Both the number 
and size of SONs can be small if applying Policy Join1. On the other hand, if services 
are evenly distributed, Policy Join2 and Join3 need to be applied to reduce the SON 
connections. 

Policy Join1: A directory di joins a SONc if it has a service description that belongs 
to group c, i.e. (di ∈ SONc) if (∃ sdj⇒c, sdj∈di). This is the most conservative policy, 
but it tends to produce many SON connections. 



PAPER C 
 

 93

Policy Join2: A directory di joins a SONc if the number of service descriptions that 
belongs to c is greater than the join threshold T, i.e. (di ∈ SONc) if (Count(sdj⇒c) > T). 
Such policy is good and practical for wide-area service discovery. If a directory di joins 
a SONc, this implies that di contains many service descriptions falling under the subtree 
c; therefore, selecting di for matching will provide higher number of matches than 
selecting the directories that are not members of SONc. Policy Join2 thus meets the high 
probability searching requirement (R1). The join threshold T is an adjustable parameter. 
Policy Join1 can be viewed as setting T=0. The value of T is important for the 
performance of SON-based service discovery system. Taking a high T value, SON 
connections can be reduced, and accordingly SON sizes are reduced (R2). However, for 
small groups of service descriptions that are not assigned to SONs, there will be 
possibility that such descriptions never be searched if they are not associated with any 
SON. In this case, Policy Join3 can be applied.  

Policy Join3: For service groups that do not have enough service descriptions, the 
directory will join a SON that corresponds to an ancestor of current service category. 

4.2 SONs Construction and Maintenance 
To meet requirement for efficient SON management, a self-organizing process is 
applied for both SONs construction and maintenance based on gossiping [8]. It is an 
autonomous functionality determined by directories themselves and enables the updates 
of topology information. In particular, failed or leaving nodes are automatically deleted 
by the absence of information exchange. Initially, all the directories in the system 
decide which SONs to join (i.e. select appropriate service categories) according to the 
function described in Sect. 4.1. For each SON, one directory with high capacity will be 
selected as super-peer, while other directories are clients of the super-peer. Each super-
peer has a maximum capacity which determines the maximum number of directories it 
can manage. If a large number of directories decide to join SONc, several super-peers 
may be needed. This means that there are several SONs corresponding to the same 
category c and each of them is managed by a super-peer. 

A modified version of SG-1 algorithm [11] is adopted for super-peer selection. This 
algorithm is based on gossiping and assures the dynamic selection of super-peers 
according to runtime situation. Each node periodically exchanges its current status 
information (called partial view) with randomly selected peer nodes, which contains 
information such as identifier, capacity, neighbors, SON memberships, current role in a 
SON (super-peer or client), and the number of clients they are serving. After 
exchanging views, nodes with available connections and higher capacity will be 
changed into super-peers, and others are to connect to them as clients. Alternatively, a 
super-peer may decide to move all its clients to another super-peer with more capacity, 
and become a client itself. Such process continues until the system becomes stable, i.e., 
the minimum number of super-peers is selected. The super-peer selection process is also 
applied when directories join or leave the system (i.e. SON maintenance). In addition, 
each client periodically probes its super-peer to see if it is active. If the super-peer fails 
or leaves, the client can declare itself as a super-peer, and participate in the above super-
peer selection process. For more details, please refer to our previous paper [12]. 



PAPER C 
 

 94

4.3 Service Discovery 
When a request is sent to the service discovery system, the discovery operation 
Discovery(r, c) is carried out by an iterative procedure consisting of two steps in each 
loop. 
 
4.3.1   Step 1: Select Relevant SONs 
 
This corresponds to the operation SONselection(c). Given a service request with 
category c, the system needs to map it to SONs which may contain relevant service 
descriptions. The selection of relevant SONs is determined by the semantic distance 
between c and cs (category for a candidate SON) in the CH. An iterative selection policy 
is adopted, which selects SONs associated with c, and both its descendants and 
ancestors c’ in an order that can enable high probability searching (R1). SONs most 
likely to answer the request are selected first to carry out Step 2 (cf. the following 
subsection). Then less probable SONs are selected until enough number of matches is 
obtained. In detail, given a request for category c, SONc (if it exists) is searched first. If 
not enough number of matches is obtained, SONs that correspond to c’s descendents (if 
any) are searched. If still not enough number of matches returned, SONs that 
correspond to c’s ancestors are searched (if any, and from the nearest ancestor until the 
root of the CH). Such process continues until enough number of matches is obtained or 
every possible SONs are searched. Since the maximum size of each SON is determined 
by the capacity of its super-peer, there may be several SONs corresponding to one 
category c. In this case, each such SON is selected until enough results are obtained. 
 
4.3.2   Step 2: Search Each Directory in SONc 
 
This corresponds to the operation Searchc(r, c). Since each SON is managed by a super-
peer, the super-peer will forward the service request to each directory in the SON. Then 
semantic matching is carried out in each directory. This is based on other service 
concepts than service category in the service ontology, such as operations, service and 
QoS parameters. The semantic matching is based on semantic similarity between 
ontology concepts. The results of a semantic service discovery can be ranked according 
to functionality similarity based on degree of match, which can be distinguished as 
Exact, Plugin, Subsume and Fail [13]. A match between a service description sd and a 
service request r can then be modeled as a function M(sd, r) = {1, if degree ∈ (Exact, 
Plugin, Subsume) | 0, if Fail}. Our previous paper [9] proposed an approach for 
semantic matching which is based on service ontology defined in Fig. 1.  
 
An UML sequence diagram for service discovery procedure is given in Fig. 4. The 
arrows with operation names represent operational messages, while arrows without 
names are the return messages, containing results for operational messages. The frame 
loop refers to a loop behavior, while frame opt means optional behavior. Fig. 4 shows 
that a service request is first sent from the service discovery user to the edge, then 
forwarded to super-peer1 (the super-peer of the edge, which can be the edge itself). The 
loop Discovery in super-peer1 consists of iterations of SON selection, search within the 
same SON as well as forwarding the request to corresponding SONs (super-peer2) for 



PAPER C 
 

 95

search. At the end of each loop, the results are checked to see if enough number of 
matches is obtained. 

Discoveryloop

WithinSameSONopt

ForwardToSONsopt

service discovery user edge super-peer1 super-peer2 service storage

1 : discovery() 2 : discovery()

3 : SONselection()

4 : search()

5

6 : forward()
7 : search()

89

10 : CheckResults()

11
12

 
Fig. 4. UML sequence diagram for service discovery procedure. 

5. Evaluation 

5.1 Evaluation Measures 
The service discovery system performance is characterized by: 1) Service discovery 
efficiency and 2) SON management efficiency. Measures for service discovery efficiency 
are: recall, messages-per-request and hops-per-request. Measures for SON management 
efficiency are management procedure overhead, load factor and self-organization time. 

Recall of a discovery process is the proportion of relevant service descriptions that 
are retrieved out of all relevant service descriptions. Higher recall indicates better 
discovery quality. Messages-per-request is the number of messages generated by the 
discovery system to answer a service request. This represents discovery procedure 
overhead. The larger the messages-per-request, the more overhead and longer time it 
needs to answer a request. Hops-per-request is the average number of hops for 
answering a request. The smaller the hops-per-request, the faster the request can be 
answered. 

Concerning SON management efficiency measures, the number of messages sent per 
directory per round in order to maintain super-peer based SON structures is applied as a 
measure for management procedure overhead. The load factor is defined as the value of 
management procedure overhead divided by directory capacity. A small load factor 
indicates a small work load for a directory to maintain the super-peer based SON 
structures. As a measure for self-organization time, the number of simulation rounds for 
the system to stabilize is used. A smaller number of rounds indicate that the system can 
stabilize faster. 



PAPER C 
 

 96

5.2 Experiments 

5.2.1 Service Discovery Efficiency 
In these experiments, SONs are constructed first and then service discovery 
performance is evaluated in terms of recall, messages-per-request and hops-per-request. 
We have written a simulator in Java and used BRITE [14] to generate network 
topologies. Assume the classification of service descriptions and requests is correct and 
accurate, so that only one SONc is selected for Discovery(r, cr). The network size varies 
from 1000 to 10000 nodes (directories), with 2500000 service descriptions falling into 
250 service categories. 25000 service requests are randomly generated for each network 
size. Power-law distribution on node capacities is applied. The maximum capacity is 
2000. Since the number and size of SONs are influenced by service distribution, two 
cases are simulated: 1) uniform, where service categories as well as service descriptions 
are uniformly distributed to directories. This represents the case when services are 
evenly distributed; 2) power-law, where the distribution of service categories on 
directories follows power-law and service descriptions are uniformly distributed to 
categories in the directories. This represents the case when services are clustered. For 
each case, 10 replications with different seeds have been conducted for each network 
size. The results of our SON-based system are compared with Gnutella-based [15] pure 
P2P system, where nodes are connected by a random overlay network and flooding is 
used for routing requests. Gnutella system is not sensitive to service distribution. Its 
recall and messages-per-request are determined by TTL (time-to-live) parameter.  

Fig. 5 shows the average number of messages-per-request for achieving recall of 1.0 
for different network sizes. It shows that, to retrieve all relevant service descriptions, the 
average messages-per-request for Gnutella system is about 3 to 4 times of that needed 
for SON uniform system (i.e. SON system with uniform distribution), and about 7 to 46 
times of that needed for SON power-law system (i.e. SON system with power-law 
distribution). SON uniform system needs about 3 to 10 times of the messages-per-
request required for SON power-law system. As the network size increases, the 
overhead of Gnutella system in terms of messages-per-request increases much more 
than that of SON system. Assume the values of messages-per-request are normally 
distributed, the confidence intervals (CI) can be determined. Take an example, for SON 
uniform system with 1000 nodes, the average messages-per-request is 861.7, its 
standard deviation is 7.16, and the 95% confidence interval will be 856.58≤CI≤866.82. 

Fig. 6 shows the average messages-per-request for different recall for network size of 
1000 and 2000. It shows that, to achieve the same recall (by adjusting TTL for Gnutella 
system and join threshold T for SON uniform system respectively), the average 
messages-per-request sent by Gnutella system is about 3 to 4 times of that needed for 
SON uniform system. 



PAPER C 
 

 97

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Network size

0

5000

10000

15000

20000

25000

30000

M
es

sa
ge

s-
pe

r-r
eq

ue
st

Gnutella, recall=1.0
SON uniform, recall=1.0
SON power-law, recall=1.0

2000 4000 6000 8000 10000
0

200

400

600

800
SON power-law

 
Fig. 5. The average number of messages-per-request for recall=1.0. 

 

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0

1000

2000

3000

4000

5000

6000

M
es

sa
ge

s-
pe

r-
re

qu
es

t

Gnutella, 2000 nodes
Gnutella, 1000 nodes
SON uniform, 2000 nodes
SON uniform, 1000 nodes

 
Fig. 6. The average number of messages-per-request for different recall for network size 

1000 and 2000. 
 
The number of hops for answering a request is determined by the hops to find the 

super-peer for SONc, i.e. by the inter-SON communication. If flooding is used for inter-
SON communication, the results from simulation give a hops-per-request value between 
4 and 5 for different network sizes. This indicates a service request in SON system can 
be answered fast. 

The size and number of SONs determine the messages-per-request for discovery. If 
the SON connections per node are reduced, the SON sizes as well as the messages-per-
request will be reduced. When services are clustered, each node will have a small 
number of service groups and will have a few SON connections. Table 1 shows the 
effect of service distribution and join policies on system performance for network size 
of 2000. The applied policy will be Join1 when the adjustable join threshold parameter 
T=0 and Join2 with T>0 (cf. Sect. 4.1.2). When the threshold parameter T=7, a node 
will only join SONc when it has more than 7 service descriptions belonging to group c. 
The SON connections per node and SON size will accordingly be changed by the 
variation of T. As a consequence, the service discovery efficiency measures will also 
change. Gnutella system is also listed for comparison and its recall and messages-per-



PAPER C 
 

 98

request will be changed when adjusting TTL. As can be seen from the table, when 
applying Policy Join1 (i.e. T=0), the average SON size for SON uniform system is 
about half of the network size, while the average SON size for SON power-law system 
is about one-fiftieth of the network size. SON power-law system has smaller number of 
SON connections per node, and the messages-per-request is only about one-thirteenth 
that of Gnutella system (for same recall). SON uniform system has higher number of 
SON connections per node, and the messages-per-request is only about one-fourth of 
Gnutella system (for same recall). By applying Policy Join2 and adjusting T, SON 
connections are reduced, thus SON size and messages-per-request are reduced 
accordingly, as shown in Table 1 (SON Uniform, T=7). The recall is also reduced in this 
case; however, SON Uniform system needs only one-fourth of the messages-per-request 
value required by Gnutella system to achieve the same recall. The recall may be 
increased by iterative selection of SONs for discovery (e.g. SONs corresponding to an 
ancestor of category c), but the messages-per-request will also be increased. 

 
TABLE 1. SOME SYSTEM PERFORMANCE MEASURES FOR NETWORK SIZE=2000. 

 

SON system 
Distribution T1 SONs/node2 SON size Recall Msg3 Hops4 

Uniform 0 123 985 1.0 1349 4 
Uniform 7 65 521 0.77 884 4 

Power-law 0 5 42 1.0 405 4 
Gnutella system 

TTL5   Recall Msg3  
181   1.0 5281  
4   0.76 3751  

Note: 1. Join threshold parameter. 2. Average number of SON connections per node. 3. Messages-per-
request. 4. Hops-per-request. 5. “Time-to-live” parameter. 

 
The results indicate that when services are clustered, SON system can improve 

discovery efficiency with high recall and significantly reduced messages-per-request. 
Even when services are evenly distributed, SON system still has better discovery 
performance than Gnutella system, requiring much smaller messages-per-request. 
Moreover, policies can be applied to ensure a few SON connections per node and keep 
SON size small, so that messages-per-request can be reduced. There is however a 
tradeoff between high recall and small messages-per-request when services are evenly 
distributed. 
 
5.2.2   SON Management Efficiency 
 
For these experiments, the PeerSim simulation framework [16] is used. To realize the 
Searchc(r, c) and Joinc(di, c) operations, a general super-peer based protocol for 
communication within individual SON is implemented and an existing implementation 
of Newscast – a gossip-based membership protocol [16] is used for inter-SON 
communication. Assume each directory joins one SON. SONs are constructed according 
to procedure defined in Sect. 4.2. Power-law distribution on directory capacities is 
applied. Simulation rounds for network sizes from 1000 to 50000 are carried out. To 
simulate dynamic behavior of the system, 100 nodes are deleted while 50 new nodes are 
added to the system in each round from round 30 to round 35. 



PAPER C 
 

 99

 

0 10 20 30 40 50 60
No. of round

1

10

100

1000

10000

100000

N
o.

 o
f S

O
N

s

50000 nodes
10000 nodes
5000 nodes
1000 nodes

 
Fig. 7. Self-organization time (number of rounds) for different network sizes. 

 
Fig. 7 shows that our proposed SON-based system becomes stable in approximately 

10 rounds in both SONs initial construction and reconstruction under dynamic situation. 
Fig. 8 shows that average management procedure overhead is between 1 and 6. Fig. 9 
shows that maximum management procedure overhead is usually below 15 for network 
size≤10000, and below 20 for network size=50000. Fig. 10 shows the maximum and 
average load factor for each round for network sizes of 1000 and 5000. The average 
load factor is below 1 and maximum load factor below 13. It also demonstrates strong 
correlation with Fig. 7 and indicates a very small value of load factor when the system 
is stable and a relative high value during the self-organizing process for initial SONs 
construction and reconstruction under dynamic situations. This can be explained as 
follows. Most of the management procedure overhead is related to the super-peer 
selection process. Initially, nodes with low capacity also participate in this process. This 
leads to a high load factor value. After one message exchange, such nodes will be 
changed into clients, and leave the selection process. Gradually, only nodes with higher 
capacity (potential super-peers) will participate in the selection process, reducing load 
factor (cf. Sect. 4.2). 

0 10 20 30 40 50
No. of round

0

2

4

6

8

10

12

Av
er

ag
e 

m
an

ag
em

en
t p

ro
ce

du
re

 o
ve

rh
ea

d

50000 nodes
10000 nodes
5000 nodes
1000 nodes

26 28 30 32 34 36 38 40
1

2

3

4

5

 
Fig. 8. Average management procedure overhead for different network sizes. 



PAPER C 
 

 100

 

0 10 20 30 40 50 60
No. of round

5

10

15

20

25

30

35

40

M
ax

im
um

 m
an

ag
em

en
t p

ro
ce

du
re

 o
ve

rh
ea

d

50000 nodes
10000 nodes
5000 nodes
1000 nodes

26 28 30 32 34 36 38 40
1
4
6
8

12

18

 
Fig. 9. Maximum management procedure overhead for different network sizes. 

 

0 5 10 15 20 25 30 35 40 45
No. of round

0
1

4

8

12

16

20

Lo
ad

 fa
ct

or

Maximum load factor, 5000 nodes
Maximum load factor, 1000 nodes
Average load factor, 5000 nodes
Average load factor, 1000 nodes

16 18 20 22 24
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

 
Fig. 10. Maximum and average load factor for network size of 1000 and 5000. 

6. Related Work 

P2P-based service discovery systems have been proposed as promising solutions 
providing scalability and autonomy. Pure P2P-based service discovery systems [17] 
based on flooding for routing requests, do not rely on centralized entities and are well-
suited for highly dynamic environments such as ad hoc networks. However, flooding 
increases message overhead and is not suitable for wide area discovery.  

DHT-based P2P systems [10][18] can locate relevant nodes with a bounded number 
of messages by applying the DHT algorithm. However, as DHT is based on a single key 
value, DHT-based system can not process complex queries in service discovery (e.g. 
based on ontology). Moreover, DHT techniques either require a specific network 
structure or assume total control over the location of the data. The high maintenance 



PAPER C 
 

 101

cost for DHT-based index and the lack of node autonomy limits the scalability and the 
application to wide area service discovery systems.  

Lately several approaches have been proposed for creating and using clusters or 
SONs to improve search in P2P systems. SONs based on pure P2P systems (i.e. random 
overlay networks) have been proposed in [19][20]. In [21], clustering policies are 
proposed to generate semantic clusters in super-peer networks. Our approach differs by 
clustering directories based on service category hierarchy. Furthermore, our approach 
considers the adaptation of SONs, where the number of SON connections and SON 
membership can change dynamically by applying join policies on each directory at 
runtime. In addition, the super-peers in our system do not index data of their clients and 
are mainly used to route requests to proper SONs.  

This paper adopts a modified version of SG-1 [11] for super-peer selection. A recent 
protocol and a natural evolution of the SG-1 algorithm is SG-2 [22], which introduces 
the notion of latency between peers and poses a QoS limit on it. In addition, SG-2 is 
strongly bio-inspired. 

7. Conclusions 

Semantic Overlay Networks (SONs) have been proposed as the basis for improving the 
discovery efficiency in large-scale service discovery systems. The focus of the paper is 
on the functionality of the organization of directories into SONs and the use of SONs to 
locate services efficiently as well as efficient SON management. A super-peer based 
SON service discovery system is described. Aggregation and join policies are applied to 
ensure the SON size and the number of SONs can be small. The number of SON 
connections and SON membership can change dynamically by applying join policies at 
runtime. Iterative selection of SONs for discovery enables high probability searching. A 
self-organizing construction and maintenance of SONs ensures efficient SON 
management. The proposed system has been evaluated by simulations. Simulations 
indicate that such super-peer based SON system can significantly improve discovery 
efficiency by providing high recall with small messages-per-request and small hops-per-
request. The simulations also indicate a small management procedure overhead and 
short self-organzation time. It also indicates a small average load factor. The results, 
however, indicate that a SON system has better performance when services are 
clustered than when services are evenly distributed. 

References 

[1] Studer, R. et al. (1998). Knowledge engineering: principles and methods. Data 
and Knowledge Engineering, 25(1-2):161–197, 1998. 

[2] Guttman, E. et al. (1999). Service location protocol, version 2. RFC2608. 
[3] Sun Microsystems. (2003). Jini architecture specification version 2.0. 

http://www.jini.org/ 
[4] UPnP Forum. (2000). UPnP device architecture version 1.0. http://www.upnp.org/   
[5] UDDI. (2002). Universal description, discovery and integration of web services. 

version 1.0. http://www.uddi.org/ 



PAPER C 
 

 102

[6] Crespo, A., & Garcia-Molina, H. (2002). Semantic overlay networks for P2P 
systems. Technical Report, Computer Science Department, Stanford University, 
October 2002. 

[7] Yang, B., & Garcia-Molina, H. (2003). Designing a super-peer network. In Proc. 
of ICDE’03. 

[8] Demers, A. et al. (1987). Epidemic algorithms for replicated database 
maintenance. In Proc. of POCD’87. 

[9] Jiang, S., & Aagesen, F.A. (2006). An approach to integrated semantic service 
discovery. In Proc. of AN’06. 

[10] Stoica, I. et al. (2001). Chord: a scalable peer-to-peer lookup service for Internet 
applications. In ACM SIGCOMM’01. 

[11] Montresor, A. (2004). A robust protocol for building superpeer overlay topologies. 
In Proc. of P2P’04. 

[12] Jiang, S. et al. (2007). A self-organizing service discovery system based on 
semantic overlay networks. In Proc. of CODS’07. 

[13] Paolucci, M. et al. (2002). Semantic matching of web services capabilities. In 
Proc. of ISWC’02. 

[14] Medina, A. et al. (2001). BRITE: an approach to universal topology generation. In 
Proc. of MASCOTS’01. 

[15] Gnutella. (2003). The Gnutella protocol specification v0.4. 
[16] PeerSim. (2003). PeerSim: a peer-to-peer simulator. 

http://peersim.sourceforge.net/  
[17] Paolucci, M. et al. (2003). Using daml-s for p2p discovery. In Proc. of ICWS’03. 
[18] Rowstron, A., & Druschel, P. (2001). Pastry: scalable, distributed object location 

and routing for large-scale peer-to-peer systems. In Middleware, 2001. 
[19] Triantafillou, P. et al. (2003). Towards high performance peer-to-peer content and 

resource sharing systems. In Proc. of CIDR’03. 
[20] Vazirgiannis, M. et al. (2006). Peer-to-peer clustering for semantic overlay 

network generation. In Proc. of PRIS’06.  
[21] Loser, A. et al. (2003). Semantic overlay clusters within super-peer networks. In 

Proc. of DBISP2P’03. 
[22] G. P. Jesi, A. Montresor and O. Babaoglu, Proximity-aware superpeer overlay 

topologies. In Proc. of SelfMan’06. 
 



 

 

 

PAPER D: XML-based Dynamic Service 
Behaviour Representation  

 
Shanshan Jiang and Finn Arve Aagesen 

 
Published in 

Proceedings of Norsk informatikkonferanse (NIK’03) 
 

Oslo, Norway, November 24-26, 2003. 



 

 

 
 



PAPER D 
 

 105

XML-based Dynamic Service Behaviour Representation 
 

Shanshan Jiang 
 

Finn Arve Aagesen 
 

Abstract   This paper presents an XML-based framework for implementation language 
and platform independent service execution behaviour representation. It is 
based on an FSM-interpreter which can interpret and execute XML-
represented FSM behaviour. This model has been integrated into TAPAS 
(Telematics Architecture for Plug-and-Play Systems) platform. TAPAS has 
basically two engineering viewpoint functionality classes: i) Dynamic 
service configuration and ii) Dynamic service instantiation. The dynamic 
service configuration is already based on XML. Using XML for the service 
execution representation gives one integrated representation of all dynamic 
service related functionality.  As XML basically is a structure representation 
language, dynamic behaviour representation is made possible by utilising 
the inherent characteristics of the TAPAS basic architecture. TAPAS 
defines the behaviour by plug- and- play manuscripts and Node inherent 
capabilities.  

 
Keywords: XML, EFSM, Plug-and-Play, service behaviour description  

1. Introduction 

Due to the increase in both heterogeneity and complexity in today’s networking, wide-
area distributed computing and service provision systems, there arises a demand for an 
architecture for network-based service systems that gives flexibility and efficiency in 
the definition, deployment and execution of the services and at the same time, takes care 
of the adaptability and evolution of such services.  

The TAPAS project (TAPAS = Telematics Architecture for Plug-and-Play Systems) 
[1,2,3,4] is a research project, which aims at developing an architecture for network-
based service systems with A) flexibility and adaptability, B) robustness and 
survivability, and C) QoS awareness and resource control. The goal is to enhance the 
flexibility, efficiency and simplicity of system installation, deployment, operation, 
management and maintenance by enabling dynamic configuration of network 
components and network-based service functionality.  

Another objective is to gain experiences and knowledge by implementing those 
various features, both for demonstrating the implementation possibility and for 
validating the feature applicability. The goal is not to develop a complete executing 
architecture, but is to set the various features coming from the above defined 
requirements in a context related to totality. The TAPAS architecture consists of two 
service functionality classes: P) the basic architecture and Q) the mobility handling 
architecture, where Q) is an extension of P). Considering the functionality from an 
engineering viewpoint, the engineering functionality can be classified as i) Dynamic 
service configuration and ii) Dynamic service instantiation. Dynamic service 
configuration makes decision about in which Node to run the service software. This 



PAPER D 
 

 106

decision is based on information about required and offered status and capabilities. 
Dynamic service instantiation comprises service creation, definition, deployment, 
execution and management.  

The TAPAS architecture requires a support system for the engineering functionality. 
The support system for dynamic service instantiation is denoted as the TAPAS 
platform. The Dynamic service configuration functionality is based on the TAPAS 
platform, and the engineering dynamic configuration functionality can also be 
considered as a service functionality class R) in addition to the classes P)-Q) described 
above. 

Parts of the specified support functionality have previously been implemented using 
Java RMI and Web technologies as a means for service definition, update and 
discovery. For more information of the architecture, implemented system and ongoing 
research activities, the reader is referred to [1,2,3,4] and the Web site 
http://tapas.item.ntnu.no/. 

The TAPAS basic architecture is based on actors that can download manuscripts 
defining roles to be played. The ability to play roles depends on the defined required 
capability and the matching offered capability in a node where an actor is going to play. 
XML (eXtensible Markup Language) [6] is a standard for interchanging structured 
documents over the Internet. It has potential in offering interoperability across 
heterogeneous systems, and can be used to integrate systems by interchanging data and 
metadata (data about data). The TAPAS dynamic configuration functionality uses 
standard XML-based metadata and ontology languages for modelling and providing 
semantic description of capabilities and status of Plug-and-Play (PaP) systems [2]. By 
also using XML as a basis for the service instantiation functionality, we will have one 
common representation language through the whole architecture. This is the motivation 
for the work described in this paper. A model is presented, which uses XML as a 
representation language for the basic behaviour of the Extended Finite State Machines 
(EFSM), but where the actions are based on Node inherent capabilities. This model has 
been integrated into the TAPAS platform. The model is at the moment basically 
supporting the basic architecture P), and this paper is also concerned about this basic 
architecture. Parts of the mobility handling architecture Q) is already XML-based [5], 
but the solution presented here will be used as the basis for actor movement, which is a 
needed function for the fully support of all aspects of mobility handling [5].  

The paper is organized as the following. Section 2 describes relevant parts from the 
TAPAS architecture. Section 3 gives the model and framework for XML-based 
behaviour modelling. Section 4 describes the implementation using Java technology and 
its integration into TAPAS platform. Conclusions are given in section 5. 

2. TAPAS Basic Architecture and Dynamic Configuration 
Functionality 

TAPAS has already been classified related to service and engineering functionality. 
This Section is focusing on TAPAS basic architecture and the dynamic configuration 
functionality.  

The TAPAS basic architecture (Figure 1) is based on generic actors in the nodes of 
the network that can download manuscripts defining roles to be played. This model is 
founded on a theatre metaphor, where actors perform roles according to predefined 

http://tapas.item.ntnu.no/


PAPER D 
 

 107

manuscripts, and a director manages their performance. Actors are software 
components, which represent functionality to be executed at different nodes within the 
network. Roles are modeled as EFSM. A director is an actor with supervisory status 
regarding all other actors’ plug-in and plug-out phases. A director also represents a 
domain, which is a set of nodes managed by a single director.  

A service system consists of service components which are units related to some 
well-defined functionality defined by a play. A play consists of several actors playing 
different roles, each possibly having different requirements on capabilities and status of 
the executing system. A role-session is a projection of the behaviour of an actor with 
respect to one of its interacting actors. An actor will constitute a role figure by behaving 
according to a manuscript defining the functional behaviour of a particular role in a 
play. A service component is realised by a role figure based on a role defined by a 
manuscript. A role figure, however, is realised in an executing environment in a node 
and is utilising capabilities. A capability is an inherent property of a node (or a 
capability component). A capability component may have several capabilities. These 
capabilities are offered to actors. The ability to play roles depends on the defined 
required capability and the matching offered capability in a node where an actor is 
going to play. Examples of capabilities are processing, storage and communication 
resources (e.g., CPU, hard disk and transmission channels), standard equipment (e.g., 
printers and media handling devices), special equipment (e.g., encrypting devices), and 
data (e.g., user login and access rights). Capability can be specialized into three 
subclasses: Function, Resource and Data [1]. Functions are pure software or combined 
software/hardware components used for performing particular tasks.  

 
 

Figure 1. TAPAS basic architecture (object model) 
 

Due to dynamic availability of nodes in the network as well as changes in their 
capabilities and status, configuration and reconfiguration of nodes to constitute 
particular service components must be computed on the fly. The TAPAS dynamic 
configuration functionality (Figure 2) is extended to deal with such a requirement [2]. 



PAPER D 
 

 108

As seen from Figure 2, the Play repository stores a collection of play definitions, each 
of which defines requirements and functional behaviours of a corresponding PaP service 
system. A play definition consists of four specifications: 1) Play configuration rules, 2) 
Reconfiguration rules, 3) Role specifications and 4) Manuscripts. Role specifications 
identify the requirements on available capabilities and status for each role. Role 
specifications and manuscripts define two aspects of roles in a play: the static and 
dynamic models. The former describes the metadata of each role and the latter models 
its functional behaviour in terms of EFSM. Hence, they provide information of “what 
the role is” and “how it is realised”, respectively. Role specifications, play configuration 
and reconfiguration rules are uniformly formalised in a single representation schema, 
i.e., XML Declarative Description (XDD) [14]. 

 

 
 

Figure 2. TAPAS dynamic configuration functionality 

3. Behaviour Description Using XML 

XML is appropriate for the modelling of structure and data. However, to use XML to 
represent service logic, i.e., the dynamic behaviour, poses a challenge. Some XML-
based programming language are available, such as Superx++[8] and XL[9]. But the 
limitation for using such a language is that the language is not general enough and not 
portable. 

In TAPAS, the behaviour is defined by plug-and-play manuscripts and Node inherent 
capabilities. The manuscript definition is basically a state machine specification of 
certain functionality, and describes the behaviour of the actor performing it. When a 
manuscript is executed, the internal actions of the state machine can utilise the functions 
provided by nodes, which are inherent capabilities of the nodes. On the other hand, once 
a manuscript is downloaded and a role is plugged-in on a node, the actions this role 
figure can perform represent new capabilities the node provides.  



PAPER D 
 

 109

EFSM/XML

<states>
<transition-table>
<signals/messages>
<internal actions>
<data>

FSM Interpreter
(XML Engine)

(JAVA,
C++,
etc)

PLATFORM

(TAPAS,
ServiceFrame, 

etc)

Implementation independent 
role representation Runtime environment

 
 

Figure 3. XML-based service system model 
 
The model for representing EFSM using XML is illustrated in Figure 3. FSM 

interpreter is the core part for this model. It is the interface between XML-based EFSM 
description and the execution platform. Figure 4 gives the functionality for the FSM 
interpreter. The FSM interpreter has some basic functionality, which is same for all 
applications. This includes loading XML file into memory when initializing an FSM, 
signal/message processing (sending / receiving), internal actions, state transitions and 
FSM management. In addition, this FSM interpreter can have extended functionality 
related to different applications. This includes, for example, special algorithms for role 
negotiation and PaP support functionality (e.g., the use of ActorPlugIn, 
RoleSessionAction and other APIs). The FSM interpreter can be implemented by Java, 
C++ and other programming languages depending on the platform used, which may be 
TAPAS, ServiceFrame [7] and others. 

 

Data 
management

- getData
- setData

FSM XML data 
initialization

- download XML 
file
- load into 
memory

FSM 
manager

- load FSM
- activate 
FSM

State transition

- internal actions
- message sending
- PaP-specific 
funcitions:
. ActorPlugIn
. ActorPlugOut
. RoleSessionAction
:
:

Message box handling
                           Y

   message box empty          wait 
          N

 
get first message

find receiver FSM

invoke FSM

FSM interpreter

 
 

Figure 4. Functionality for FSM interpreter 
 

The XML file has a simple and well-extensible data structure. It is implementation 
language independent. The XML file consists of all the basic elements for state 
machines (Figure 5). The set of states is defined together with initial state and current 
state. The transition table is used to make transitions according to the current state and 
the input signal/message. Application specific data is also recorded in the XML file. 



PAPER D 
 

 110

Internal actions that are carried out during a state transition are defined with an <action> 
list. This XML structure has good extensibility and allows for easily adding new 
abstractions. For example, if method interface is desirable for the EFSM, the method 
signatures can be represented in a similar structure as <action> list.  

 

 
 

Figure 5. Basic XML data structure 
 
Different FSM Interpreters can be implemented to exchange XML-based behaviour 

description in different systems. XMI (XML Metadata Interchange) [10,11] is a widely 
used exchange format, which is also based on XML. XMI is an OMG Standard, and a 
model driven XML Integration framework for defining, interchanging, manipulating 
and integrating XML data and objects. “The main purpose of XMI is to enable easy 
exchange of metadata between modelling tools (based on the OMG UML) and metadata 
repositories (OMG MOF based) in distributed heterogeneous environments [10].” In 
short, XMI is UML (Object Technology) with XML (exchanging data over Internet). 
XMI is currently being adopted by a lot of UML Case Tools vendors and used to tie all 
tools together. For example, using XMI Toolkit from IBM, developers can share Java 
objects using XML, generate document type definitions (DTDs), and convert designs 
and code between Java, UML, and the Rational Rose visual modelling tool [12]. To 
utilise the benefits from XMI, there can be part of the extended functionality for FSM 
Interpreter to translate XML file into XMI format and XMI to XML for interchange 
between tools. Since there is no inherent confliction between XMI and the XML-based 
EFSM file as they have common basis on XML, this conversion functionality can be 
easily implemented.  

4. The Implementation in Java and TAPAS Platform 

An example for this XML-based behaviour representation has been implemented on 
TAPAS platform using Java technology. The reason for using Java is that Java has 



PAPER D 
 

 111

many strong points for XML development. It is a mature technology, highly portable 
and supported by many vendors. Many XML tools and high-quality development 
environments are also available in Java.  

The implementation framework is given in Figure 6. The manuscripts are defined in 
XML. An FSM interpreter is written in Java to interpret the XML files to work with the 
Java-based TAPAS platform. The role figures are represented as FSM instances. The 
FSM interpreter manages all the FSM instances in the memory and handles a common 
message box for all these FSMs. The manuscripts in XML are downloaded from the 
Web server during plug-in phase and loaded into memory as FSM instance by FSM 
Interpreter. FSM interpreter retrieves the first message from the common message box 
and activates the corresponding FSM instance to make transitions according to the 
transition table and the received message.  

 
Node

Web Server

TAPAS BASIC 
SUPPORT

Manuscript

Action 
Library

FSM
instance

XML

Message 
box 

for FSMs

FSM Interpreter
(XML Engine)

Manuscript 
downloaded from 

WebServer

 
 

Figure 6. Implementation framework (engineering model) 
 
In XML file, only method name and parameters for each action are specified in an 

<action> list (cf. Figure 5). The actual actions are implemented in Action Library 
depending on the underlying platform and language. They are also utilising node 
inherent capabilities, like printing and file server functions. The application specific 
data are recorded in FSM instances and real parameter values are provided by FSM 
instances during runtime. By utilizing Java Reflection [13], each time the FSM 
interpreter interprets the internal actions, it will invoke the implementation method in 
Action Library according to the method name and parameters specified in the 
manuscript. The description and implementation of actions can therefore be separated. 
Manuscripts and Action Library are created by application designer and are available 
from the Web server. 

Actions include general-purpose actions, such as, printing, encryption, 
WindowsNew, WindowsClose, and UserLogOn; and application specific actions, such 
as, setFsmData. Engineering ontology of actions is, therefore, important for 
implementation of Action Library. However, instead of defining a new ontology for 
every service system, a standard and predefined one can be shared and reused if it is 



PAPER D 
 

 112

available. For example, the process ontology defined in DAML-S [15] is a good 
candidate. Action library can then be implemented in Java or any other language 
according to the ontology.  

Figure 7 gives an example, which illustrates the structure of the extended TAPAS 
platform. XML Manuscripts, Action Library, and TAPAS Support System are available 
from Web-server. The Actor-environment-execution-module (AEEM) is a process or 
thread that executes a collection of actors with associated Plug-and-Play Actor Support 
(PAS). FSM interpreter manages the Actors instantiated as FSM instances on each node. 
Director and the Actors which the director manages can reside on different nodes. 

 
 

Static available   
Dynamic available   

Node 4   

PNES   
PCI   

B 

AEEM1   
A4  

PAS   

XML FSM 
  interpreter 

  

AEEM2   

D2
   

PAS   

Node 3 (Web -server)  Node 2   

AEEM1   
D1

  
PAS 

  

PNES 
PCI 

web-server 

PCI 

 Ai :     Actor no i  ,   Di:  Director no i,     B:  Plug -and-Play Boot  
 AEEMi:  Actor - environement - execution -module no i  
 PAS:     Plug - and - Play Actor Support,  
 PNES     Plug - and - Play Node Execution Support  
 PCI:     Plug - and - Play Communication Infrastructure  
    

XML Manuscipts,
Action library,

 and TAPAS
Support System

 
B 

 

 

Node 1   

PNES  
PCI   

B   

AEEM1   
A1    

A2   

PAS   

XML FSM 
  interpreter 

  

AEEM2 

A3    

PAS   

XML FSM 
  interpreter 

  

 
Figure 7. Example view of extended TAPAS platform for software execution 

5. Conclusion 

Modelling of behaviour is important for dynamic adaptable service development and 
deployment. An implementation language independent framework for behaviour 
description in XML is presented in this paper. This model is based on an FSM 
interpreter (XML engine), which is the interface between XML-represented behaviour 
description and runtime environment. FSM interpreter can be implemented in different 
languages and platforms, therefore, the model presented in this paper provides a 
solution for different systems to interoperate with each other and interchange data and 
behaviour. By defining or applying action ontology, an Action Library can be built for 
underlying platform, which utilises the node inherent capabilities and makes the XML-
based behaviour description platform independent. The model has been implemented 
and integrated into TAPAS platform. Conversion between XML file and XMI can be 
provided as part of the functionality of the FSM Interpreter to make use of the benefits 
of XMI.  

The result for the framework presented in this paper is a common XML 
representation for i) Dynamic service configuration and ii) Dynamic service 
instantiation. The XML-based behaviour representation presented here will also be used 
in mobility handling architecture for actor movement. When an Actor is going to move 
from one node to another, all the FSM instance data will be packed in an XML file 



PAPER D 
 

 113

using the same structure as Figure 5, and sent to destination, where it will be unpacked 
by FSM interpreter so that the Actor can resume execution in the new node. 

Service behaviour is not only procedures. For further perspective, the XML 
description makes it possible to reason behaviours based on some XML reasoning 
engine, such as an XET reasoning engine [16]. As an application for this, consider the 
interoperation between service systems based on TAPAS and other architectures. When 
a service request is given, there must be a dynamic mechanism for service discovery to 
match the required and provided services. The framework presented here can be used to 
reason between the service requirements and behaviours provided by the system based 
on the XML behaviour representation during service discovery.  

References 

1 Aagesen, F. A., Helvik, B., Johansen, U. and Meling, H. (2001) Plug and Play for 
Telecommunication Functionality: Architecture and Demonstration Issues. Int’l 
Conf. Information Technology for the New Millennium (IConIT), Thammasat 
University, Bangkok, Thailand. 

2 Aagesen, F. A., Helvik, B., Anutariya, C., and Shiaa, M. M.(2003) On Adaptable 
Networking. ICT’03. April 2003, Bangkok, Thailand. 

3 Aagesen, F. A., Helvik, B., Wuvongse, V., Meling, H., Bræk, R. and Johansen, U. 
(1999) Towards a Plug and Play Architecture for Telecommunications. Proc. 5th 
IFIP Conf. Intelligence in Networks (SmartNet’99), Bangkok, Thailand. Kluwer 
Academic Publisher. 

4 Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E. (2002) Support 
Specification and Selection in TAPAS. Proc. IFIP WG6.7 Workshop and EUNICE 
Summer School on Adaptable Networks and Teleservices, Trondheim, Norway, 
September, 109-116. 

5 Shiaa, M., M. Mobility Support Framework in Adaptable Service Architecture. 
Network Control and Engineering for QoS, Security and Mobility 2003 IFIP/IEEE 
Conference (NetCon'2003), Muscat-Oman, October 2003.  

6 W3C: eXtensible Markup Language (XML): http://www.w3.org/XML/.[June 12, 
2003] 

7 Bræk, R., Husa, K., E., Melby, G. ServiceFrame Whitepaper, Ericsson NorARC, 
May 2002. 

8 SuperX++. http://xplusplus.sourceforge.net/index.htm [June 12, 2003] 
9 Florescu, D., Grünhagen, A., Kossmann, D. XL: An XML Programming Language 

for Web Service Specification and Composition .WWW2002, International World 
Wide Web Conference, Honolulu, HI, USA, May 7-11, 2002. 

10 Object Management Group. XML Metadata Interchange, version 1.1. 
ftp://ftp.omg.org/pub/docs/ad/99-10-02.pdf.  

11 Nguyen, Hai Thanh. XML Based Data Exchange: Requirements and evaluation of 
XMI, GML and ISO 19118. Cand Scient Thesis. University of Oslo, 2001. 

12 IBM developerWorks. Convert designs and code between Java, UML and Rational 
Rose. June 1, 2001. http://www-
106.ibm.com/developerworks/webservices/library/co-cow21.html [June 12, 2003] 

http://www.w3.org/XML/
http://xplusplus.sourceforge.net/index.htm
ftp://ftp.omg.org/pub/docs/ad/99-10-02.pdf
http://www-106.ibm.com/developerworks/webservices/library/co-cow21.html
http://www-106.ibm.com/developerworks/webservices/library/co-cow21.html


PAPER D 
 

 114

13 Sun Microsystems, inc. Java Core Reflection. 
http://java.sun.com/j2se/1.3/docs/guide/reflection/spec/java-
reflectionTOC.doc.html [June 12, 2003]  

14 Wuwongse, V., Anutariya, C., Akama, K. And Nantajeewarawat, E. (2001) XML 
Declarative Description (XDD): A language for the Semantic Web. IEEE 
Intelligent Systems 16(3):54-65. 

15 The DAML Services Coalition. DAML-S: Semantic Markup for Web Services. 
http://www.daml.org/services/daml-s/0.7/daml-s.pdf. [June 12, 2003] 

16 Anutariya, C., Wuwongse, V. And Wattanapailin, V. (2002) An Equivalent-
Transformation-Based XML Rule Language. Proc. Int’l Workshop Rule Markup 
Languages for Business Rules in the Semantic Web, Sardinia, Italy. 

http://java.sun.com/j2se/1.3/docs/guide/reflection/spec/java-reflectionTOC.doc.html
http://java.sun.com/j2se/1.3/docs/guide/reflection/spec/java-reflectionTOC.doc.html
http://www.daml.org/services/daml-s/0.7/daml-s.pdf


 

 

 

PAPER E: Automatic Translation of Service 
Specification to a Behavioural Type Language for 

Dynamic Service Verification 
Shanshan Jiang, Cyril Carrez and Finn Arve Aagesen 

 
Published in 

Proceedings of RISE 2004 on Rapid Integration of Software Engineering techniques 
 

Luxembourg, November 26, 2004. 
 
 

Lecture Notes in Computer Science (LNCS) 3475, pp. 34-44, 2005. 
@Springer 2005 



 

 



PAPER E 
 

 117

Automatic Translation of Service Specification to a 
Behavioural Type Language for Dynamic Service Verification 

 
Shanshan Jiang 

 
Cyril Carrez 

 
Finn Arve Aagesen 

 
Abstract    Networked services, constituted by the structural and behaviour 

arrangement of service components are considered. A service component is 
executed as a generic software component, denoted as an actor, which is 
able to download and execute different EFSM (Extended Finite State 
Machine) based functionality. The functionality of an actor is denoted as its 
role, while a role session is a projection of the role with respect to the 
interaction with one other actor. We propose an approach for verification of 
the services, based on interface verification techniques for the verification of 
the role sessions. The service component specifications used for actor 
execution are based on XML representations, while the verification of the 
role sessions is based on a behaviour type language. This language has a 
sound theoretical basis, and is used to avoid “message-not-understood” 
errors. Rules are given for automatic translation from the XML manuscripts 
to this behavioural type language. This translation first makes projection to 
the role session, using hidden actions. Those hidden actions are then 
removed so a sound verification can take place. 

1. Introduction 

Networked services constituted by service components are considered. A service 
component is executed as a software component in nodes, which are physical network 
processing units such as servers, routers or switches, and user terminals such as phones, 
laptops and PDAs. Traditionally, the nodes and the service components have a 
predefined functionality. Concerning both the nature of nodes and the software 
engineering principles, changes are taking place. From being a static component, the 
service component can be based on generic software components, which are able to 
download and execute different functionality depending on the need. Such generic 
programs are from now on denoted as actors (by analogy with the actor in the theatre). 
The functionality of an actor is denoted as its role, while a role session is a projection of 
the role with respect to the interaction with one other actor. Role and role session need 
the power of Extended Finite State Machines (EFSMs) in order to describe a complex 
protocol of interaction (which is not the case with most Web-based services as they are 
request-reply services specified as procedure calls).  

There are basically two different approaches to service verification. One is to model 
the composite behaviour of the whole service [Hol90], but it leads to state explosion and 
has limited applicability for complex systems. Another approach is the decomposition 
of the service system and isolated verification of the decomposed parts (new services 



PAPER E 
 

 118

that reuse existing components can take full advantage of this compositional 
verification). Within this approach we have the sub-approach focusing on the interfaces 
between the service components, with interface type languages [CFN05, LX04]. Most 
of these approaches use behavioural type systems [Nie95, NNS99,RV00], where a type 
specifies a non-uniform interface, meaning the set of operations (or messages) the 
interface accepts depends on the context. Indeed, this type is viewed as an abstract 
behaviour of the component, and is used during compositional verification to ensure 
liveness and safety properties of the application. We aim for a quick compositional 
verification, restricted to the compatibility verification of connected interfaces. This will 
keep the number of states very low, instead of verifying the compatibility of the whole 
behavior of the components. We used the type language developed in [CFN05], 
preferred because of its high level of abstraction. In this setting, each component must 
satisfy a contract, which specifies the behavioural type of its interfaces; an assembly of 
components is sound if connected interfaces are compatible. 

This work is part of the TAPAS project (Telematics Architecture for Play-based 
Adaptable System), which goal is to enhance the flexibility, efficiency and simplicity of 
system deployment, operation and management by enabling dynamic configuration of 
network-based service functionality. See [AHAS03] and the URL 
http://tapas.item.ntnu.no. We propose an approach to verify the services, based on 
interface verification techniques for the verification of the role sessions. We provide an 
automatic translation from XML-based EFSM service component specification to the 
behavioural type language applied. The projection process has two steps. First, make 
projections that preserve the binding between the role sessions related to each service 
component by using hidden actions. Then remove the hidden actions so a sound 
verification can take place.  

The paper is organized as follows. The context of our service specification is 
described through the related TAPAS concepts (Sect. 2). The behavioural type language 
used in the verification is described in Sect. 3. Section 4 gives the methodology of 
translation. Related work and Conclusion end the paper. 

2. Some TAPAS Concepts 

Part of the TAPAS architecture relevant for the verification is illustrated in Figure 1. 
For a more comprehensive description of the architecture, see [AHAS03]. Concepts 
such as service, service components, actor, role and role session were defined in Section 
1. The concepts of actor, director, role and manuscript are concepts from the theatre, 
where actors play roles according to manuscripts and a director manages their 
operations. An actor has two kinds of interfaces (Fig. 2): 
 
Home Interface. This is a control interface between an actor and its director. Each actor 
is associated with one Director, who manages the performance of the actor through this 
control interface. 
 
Application Interface. This is an interface where the role sessions between actors take 
place. 

http://tapas.item.ntnu.no/


PAPER E 
 

 119

Service

ServiceComponent

ActorDirector Role

Manuscript

RoleSession

1
*

*
*

* * 1 *1 *

1

*

1

1
Is_realized_by

manages

Defines_the_superposition_of

Behaves_according_to
projects

Is_defined_by

* *Specifies

 
 

Fig. 1. Some TAPAS concepts related to the verification 
 

Actor 1

Actor 2

Actor 3

Director1

Director2

Home Interface

ApplicationInterface1

ApplicationInterface2

Application Interface

HomeInterface11

HomeInterface12

HomeInterface23

 
 

Fig. 2. Actor interfaces 
 
Figure 3 shows the basic data structure of an XML manuscript. This manuscript is 

the specification of the EFSM based behaviour of an actor. It contains the name of the 
EFSM, its initial state, data and variables, and a set of states. The state structure defines 
the name of the state and a set of transition rules for this state. Each transition rule 
specifies that for each input, the EFSM will perform a number of actions, and/or send a 
number of outputs, and go to the next state. The actions are functions and tasks 
performed during a specific state: calculations on local data, method calls, time 
measurements, etc. The <actions> list specifies only the action type (method name), 
parameters and action group (the classification of action types). This XML manuscript 
therefore specifies parameterized behavioural patterns. The detailed platform support 
and example implementation for XML service specification can be found in [JA03]. 

A fragment of an example XML manuscript is given in Fig. 4. This fragment comes 
from an example application called TeleSchool, which we used as an experiment of our 
approach. For lack of space, we only show simplified behaviour description for one 
state. This service component specification will serve as example to demonstrate the 
translation rules later. 



PAPER E 
 

 120

EFSM_name
string

init_state
string

data

+

EFSM

FSM_name

string

output

FSM_name

string

next_state

*

tran_rule

state

state_name
string

input
string

*
FSM_name

string

actions

+

Action Type
string

parameter
string

Action Group
string

*

*

 
 

Fig. 3. Manuscript data structure 
 

<state name=”stInitUserInterface”> 
   <input msg=”LogonEventInd” 
               source=”v_interface”> 
      <actions> 
         <ActionType>ActorPlugIn 
         </ActionType> 
         <param> 
            <name>role</name> 
            <value>SchoolServer</value> 
         </param> 
         <ActionGroup>G1</ActionGroup> 
         <store_return>v_server 
         </store_return> 
      </actions> 
      <actions> 
         <ActionType>setVariable 
         </ActionType> 
         <param> 
            <name>value</name> 
            <value>INPUT_MSG.school 
            </value> 
         </param> 
         <ActionGroup>G2</ActionGroup> 
         <store_result>v_currentSchool 
         </store_result> 
      </actions> 
      <actions> 
         <ActionType>setVariable 

         </ActionType> 
         <param> 
            <name>value</name> 
           <value>INPUT_MSG.user</value> 
         </param> 
         <ActionGroup>G2</ActionGroup> 
         <store_result>v_currentUser 
         </store_result> 
      </actions> 
      <output> 
         <msg type=”UserVerifyAccessReq”> 
            <param> 
               <name>message</name> 
               <value>INPUT_MSG</value> 
            </param> 
            <dest>v_server</dest> 
         </msg> 
      </output> 
      <next_state>stPasswordIdentify 
      </next_state> 
   </input> 
   <input msg=”CancelEventInd” 
                source=...> 
      <actions>...</actions> 
      <next_state>stInit</next_state> 
   </input> 
</state> 

 
Fig. 4. Fragment of an example XML manuscript 



PAPER E 
 

121 

3. Behavioural Type Language 

We adopt the behavioural type language introduced in [CFN05]. This language 
describes messages that are exchanged on interfaces. We chose this language because it 
has a well defined semantics, and is based on a component model which is rather close 
to the Actor model of TAPAS. A component in [CFN05] has a set of ports. Each port 
interacts with a so-called partner, with which it sends and/or receives messages. 
Communication is asynchronous, and is made through an abstract communication 
medium containing FIFO queues (one for each port). A port will then be mapped to the 
interface in TAPAS, the main difference being that each port has its own queue, 
whereas in TAPAS there is one queue for the whole component. However, we think the 
two models are equivalent: retrieving, in a global queue, a message destined to an 
interface is similar to picking up the first message in the queue of that interface. The 
strong formal framework of the language in [CFN05] also allows us to avoid “message-
not-understood” errors, and to ensure external deadlock freeness properties1. Moreover, 
a type not only imposes constraint on the interface it specifies, but also on its 
environment: it is possible to enforce the environment to send a message by specifying 
that the interface “must receive a message”. Although this feature has not been used 
yet, we think it has an important impact on liveness properties when composing 
services.  

In this paper the details of this language are not presented; the interested reader 
should consult [CFN05, CFN03], where a BNF table is developed, as well as semantics 
description and examples. However, we present an example of a bank account 
specification. The following type specifies the operations interface through which a 
client might perform credits and withdrawals:  
 
operations = may ?[ deposit (real); must ! [ balance (real); operations ] 
                               + withdraw (real); must![ balance (real); operations 
                                                                      +neg_balance (real);negbal_operations] ] 
negbal_operations = must ? [ deposit (real);. . .+ withdraw (real);. . . ] 
 

This type is read as follows: operations may receive (may?) deposit and withdraw 
messages. After receiving one of the two messages, the interface must send (must!) the 
balance of the bank account: message balance is sent when balance is positive, and the 
type becomes operations again. Message neg_balance is sent when the user is debtor, 
and then the type becomes negbal_operations. This latter type is similar to the 
operations type, with the exception of the modality: type operations may receive 
messages, whereas negbal_operations must receive messages. Hence, the client must 
perform some operations as long as he is debtor. 

For the time being, we concentrate on the choice operator “+” and the sequence 
operator “;”, so the resulting type is an abstract behaviour of the component, which is 
roughly a projection of its behaviour to a specific interface. 

                                                 
1 The “message-not-understood” error avoidance is mainly due to the compatibility of the types of the 
interfaces. The deadlock freeness property is due to constraints on the internal behaviour of the 
components, mainly on dependencies between interfaces (i.e. an interface waiting for a result on another 
one). 



PAPER E 
 

122 

4. Translation Methodology 

The actions that an actor can perform are classified into three types:  
 
Control functionality through Home Interface: management functionality including 
ActorPlugIn, ActorPlugOut, etc., defined in [JAHB99]. A request is sent to 
the Director and the Actor must wait for the result.  
 
Role session through Application Interfaces: the application interactions use 
asynchronous message sending through Application Interfaces. 
 
Internal actions: they are invisible in the interface descriptions. 

 
The translation from service specification to interface language uses projection. 

Projection is an abstraction technique, which can produce a simplified system 
description or viewpoint by aggregating some of the system’s functionalities while 
hiding others. It has been used in previous works [LS84, Flo03] to simplify the 
verification of protocols and validation analysis. In our approach, the projection process 
basically consists of two steps. The first step extracts the inputs and outputs for a 
specific interface. All other actions are considered as hidden (internal actions and 
interactions occurring at other interfaces). The second step removes those hidden 
actions so a sound verification can take place. 

The automatic translation algorithm is as follows. It scans the XML manuscript once 
and extracts the interface interaction information, the translation procedure being 
carried out state by state. Each interface has a unique identifier (for example I1), which 
is assigned dynamically when the interface is created. For each interface, every state has 
a type name assigned, which is composed of the interface identifier and a number. For 
example, interface types I1_* are used for all the interactions with the HomeInterface 
(Director), where I1_1 is the type of the first interaction, which will be transformed to 
I1_2 after some I/O interaction. This dynamic creation of interface type is flexible and 
easy for implementation. Each behaviour description will be translated to the equivalent 
interface type description (using the translation rules described hereafter), affecting one 
interface at a time. Finally, gathering of silent transitions and states (Sect. 4.3) is applied 
on the interface type descriptions. In order to simplify the translation, each state will 
receive only messages from one single interface (i.e. all the inputs for one state are from 
the same source). If inputs are from different interfaces, we create new states for 
processing them. In our first implementation, must and may modalities are not 
distinguished: all actions will be “must”.  

4.1 Messages 

In TAPAS, all communications are through asynchronous message passing. The input 
and output operations are the visible actions through interfaces and are translated 
directly into interface types. An input message means a receiving interface type “?”, 
while an output message means a sending interface type “!”. Synchronous 
communication can be implemented by an output followed by an input message, thus 
translated into a sending interface type “!” followed by a receiving one “?”. 

We consider only the types of the parameters, not their values. The resulting message 
types are then finite, so the validation will be a finite-state verification (our verification 



PAPER E 
 

123 

is an optimistic one: it does not handle the cases where values are received outside the 
scope of their type). 

The XML message structures are input, output, and control functionality. 
 

<input> structure. The parameter “source” identifies the role session, and 
distinguishes the interface for this input operation. This structure is translated to “?Mi”, 
with Mi the message type. 
Example 1. 

XML manuscript Interface type 
<input msg=”LogonEventInd” 
            source=”v_interface” > 
 

I2_2 = must ? [ LogonEventInd; I2_3 ] 
 
I2_∗  is used for the interface “v_interface” 

 
<output> structure. The parameter “dest” identifies the role session for this output 
operation, and is used to find the binding interface. If it represents a new destination, a 
new interface will be created. This structure is translated to “!Mi”, with Mi the message 
type. 

 
Example 2. 

XML manuscript Interface type 
<output> 
   <msg type=”UserVerifyAccessReq”> 
      <param> 
         <name>message</name> 
         <value>INPUT_MSG</value> 
      </param> 
      <dest>v_server</dest> 
   </msg> 
</output> 

I3_1 = must! [UserVerifyAccessReq;I3_2] 

I3_∗  is used for the interface “v_server” 
 

 
Control Functionality in <actions> Structure. This is identified by a method name 
starting with “Actor” in <ActionType> substructure. This should be translated to “! Mi; 
? Mj” for the HomeInterface. 
 
Example 3. 

XML manuscript: 
<actions> 
   <ActionType>ActorPlugIn</ActionType> 
   <param> 
      <name>role</name> 
      <value>SchoolServer</value> 
   </param> 
   <ActionGroup>G1</ActionGroup> 
   <store_return>v_server</store_return>  <!–of type “roleSessionId”–> 
</actions> 

Interface type: 

I1_2 = must! [ ActorPlugIn (role); must?[ RequestResult(roleSessionId);I1_3]] 
I1_∗  is used for the interface “HomeInterface” 



PAPER E 
 

124 

4.2 Deactivation of Interfaces 
Interfaces can be dynamically created and deleted (deactivated). Deactivation is 
reflected by the “ActorPlugOut” control functionality. It plugs out an interacting actor, 
thus placing the corresponding role session into inactive state “0”. The interface can 
then be deleted, the deletion being an internal behaviour.  

4.3 Hidden Actions and Their Removal 
The first step of our projection on one interface replaces internal actions and 
interactions occurring at other interfaces by hidden actions, also called τ -transitions. 
The next step in the projection is to remove those hidden actions, by combining τ -
transitions and states, as in Floch’s work [Flo03]. 

All the successive τ -transitions can be replaced by one single τ -transition, and the 
states are combined into one state, as shown in Fig. 5(b). If input and output sequences 
are the same for two states, these states may be combined. However, some ambiguous 
behaviour may result, as shown in Fig. 5(c): from state 2’ message M2 or M3 can be 
received, while originally M2 can be received only in state 6, and M3 in state 5 (This 
ambiguity may be due to some hidden parameter values, or to dependency between 
interfaces). We eliminate this ambiguity by adding state information in the name of the 
message (Fig. 5(d)): “! M1{S4}” means “output a message type M1 at the state S4”. The 
final translated type for Fig. 5(a) could be expressed as follows, referring to Fig. 5(d):  

I1 = must ! [ M1{S4}; must ? [ M2; I7]   +   M1{S3}; must ? [ M3; I7 ] ] 
I1 and I7 are the interface type description for State1 and State7 respectively. 

As states and input types (messages) are finite, our types have finite states, thus 
avoiding the infinite state verification problem. We also provide a more accurate 
description of interface behaviour than the traditional interface definitions, which 
specifies signature of methods but not complex interface behaviour.  

1

2 3

4

5

6

7

T

!M1

!M1

?M2

?M3

1

3

6 5

7

2_4

!M1 !M1

?M2 ?M3

(a) (b)

1

2'

7

!M1

?M2 ?M3

1

6 5

7

!M1{S4} !M1{S3}

?M2 ?M3

(c) Ambiguous behaviour

(d) Correct behaviour

T

T

T T

 
Fig. 5. Combination of τ – transitions 

5. Related Work 

Floch’s PhD thesis [Flo03] provides a validation approach for dynamic service 
composition, which is similar to our work. Floch models the behaviour of the service 
components as state machines using SDL; projection is used to transform it into 



PAPER E 
 

125 

interface behaviour (also described as state machines using SDL-like notation). Our 
service specification has a higher level abstraction of behaviour, as only action types are 
defined. Therefore, implementation details of the internal actions are already hidden, 
while at the same time keeping all the information about interface interactions. This 
simplifies the translation process. Another difference is that we provide translation by 
directly analyzing the XML data structure, whereas the transformation in Floch’s work 
is based on state graphs. 

The behavioural type language we used was first issued in [CFN03], and further 
developed in [Car03, CFN05]. Many type systems exist to capture the behaviour of 
processes, actors or components, most of them based on process algebras like π-
calculus. The closest type system to the one we used is the one of Najm et al. [NNS99]. 
The authors propose an actor calculus featuring regular or infinite state behaviour. 
Although they detect “message-not-understood” errors, communications are one-way. 
Ravara and Vasconcelos, in [RV00], were also inspired by Najm et al., but they did not 
make any distinction between inputs and outputs, hence their notion of error is rather 
loose and did not fit in our needs. They corrected this with Gay, providing so-called 
“session types” [GVR02], but distinguishing internal and external choice between 
actions (respectively client and server choices), which means we have to add messages 
to make sure those choices are made accordingly. De Alfaro and Henzinger provide 
another way of specifying interface behaviour, using Interface Automata [dAH01]. 
Those automata specify the sequence of input/output allowed on an interface, but the 
compatibility they develop is too weak for our architecture. Indeed, two components are 
compatible if there exists an environment that can interact with the product automaton 
of the components’ types; we believe this does not allow detecting “message-not-
understood” in a plug-and-play environment such as TAPAS. 

6. Conclusion 

We have presented an approach for verification of the services, based on interface 
verification techniques for the verification of role sessions. We also provide an 
automatic translation from XML-based EFSM service specification to the behavioural 
type language applied. This language has a sound theoretical basis, and provides formal 
framework for compositional verification of component based systems. Especially, it 
allows us to capture “message-not-understood” errors while plugging a new component. 
The automatic translation provides an efficient and reliable way to extract interface 
types. An experiment has been carried out on an example application called TeleSchool. 

For further work, the translated interface description can be used to compare 
specifications of behaviour / service, so that dynamic service discovery can be done 
based on more accurate semantic interface behaviour description comparison instead of 
simply signature matching. Furthermore, the dynamic assembly of components for 
validation needs to be further developed so as to provide safe plug-and-play techniques 
for components. Finally, we did not use all the features provided by the behavioural 
type language, and put aside the may and must modalities on the actions. We think 
about using the latter modality (“I have to send/receive”) together with service-goal 
developed by Sanders and Bræk [SB04]: some actions can be specified as obligatory 
(must), so the service goal is fulfilled. 



PAPER E 
 

126 

References 

[AHAS03]  F. A. Aagesen, B. E. Helvik, C. Anutariya, and M. M. Shiaa. On 
adaptable networking. In ICT’03, Proceedings, Assumption University, 
Thailand,2003. 

[Car03] C. Carrez. Contrats Comportementaux pour Composants. PhD thesis, 
ENST, Paris, France, December 2003. 

[CFN03] C. Carrez, A. Fantechi, and E. Najm. Behavioural contracts for a sound 
composition of components. In FORTE’03, volume 2767 of LNCS. 2003. 

[CFN05] C. Carrez, A. Fantechi, and E. Najm. Assembling components with 
behavioural contracts. Annals of Telecomms, 2005. To appear. Ext. of 
[CFN03]. 

[dAH01] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC/FSE-01, 
volume 26, 5 of Software Engineering Notes. ACM Press, 2001. 

[Flo03] J. Floch. Towards Plug-and-Play Services: Design and Validation using 
Roles. PhD thesis, NTNU, Trondheim, Norway, February 2003. 

[GVR02]  S. Gay, V. T. Vasconcelos, and A. Ravara. Session types for inter-
process communication. Preprint, Dept. of Computer Science, Univ. of 
Lisbon, 2002. 

[Hol90]  Gerard J. Holzmann. Design and Validation of Computer Protocols. 
Prentice Hall, November 1990. 

[JA03] S. Jiang and F. A. Aagesen. XML-based dynamic service behaviour 
representation. In NIK’03, Proceedings, Oslo, Norway, Nov. 2003. 

[JAHB99] U. Johansen, F. A. Aagesen, B. E. Helvik., and R. Bræk. Design 
specificationof the PaP support functionality. Technical Report 1999-12-
10, Department of Telematics, NTNU, 1999. 

[LS84] S. S. Lam and A. U. Shankar. Protocol verification via projections. IEEE 
Transactions on Software Engineering, 10(4):325–342, July 1984. 

[LX04] E. A. Lee and Y. Xiong. A behavioral type system and its application in 
ptolemy ii. Formal Aspects of Computing, 16(3):210–237, August 2004. 

[Nie95] O. Nierstrasz. Regular types for active objects. In Object-Oriented 
Software Composition, pages 99–121. Prentice-Hall, 1995. 

[NNS99] E. Najm, A. Nimour, and J.-B. Stefani. Infinite types for distributed 
objects interfaces. In FMOODS’99, Proceedings, Firenze, Italy, February 
1999. 

[RV00] A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent 
objects. In CONCUR 2000, volume 1877 of LNCS, pages 474–488. 
Springer, 2000. 

[SB04] R. Sanders and R. Bræk. Discovering service opportunities by evaluating 
service goals. In EUNICE’04, Proceedings, Tampere, Finland, June 
2004. 

 



 

 

 

PAPER F: An Approach for Dynamic Service 
Management 

Shanshan Jiang, Mazen Malek Shiaa and Finn Arve Aagesen 
 

Published in 
Proceedings of IFIP WG 6.3 Workshop and EUNICE 2004 on “Advances in fixed 

and mobile networks” 
 

Tampere, Finland, June 14-16, 2004. 
 



 

 



PAPER F 
 

 129

An Approach for Dynamic Service Management 
 

Shanshan Jiang 
 

Mazen Malek Shiaa 
 

Finn Arve Aagesen 
 

Abstract   Managing dynamic changes in a service system requires the handling of the 
modifications and extensions of the system without stopping or disturbing 
its functionality. For this purpose, a framework for dynamic service 
management with respect to service specification, selection and adaptation 
is proposed. The service specification is based on modifiable and 
parameterised behaviour patterns, which can be instantiated by dynamically 
selecting the execution codes according to the execution environment. The 
service adaptation is achieved by allowing these specifications to be 
modified according to the dynamic changes in the executing environment. A 
prototype selection engine has been implemented to demonstrate the 
feasibility of the framework, and an example that exploits these features is 
presented. 

 
Index terms: Plug-and-play systems, Dynamic Service Management, Service 

Adaptation. 

1. Introduction 

Dynamic Service Management is the mechanism of changing the configuration and 
performance of the service system during execution. A service system is viewed as a 
composition of service components. The problem area of Dynamic Service 
Management may be divided into three main issues:  

• Service Specification: How can a service be specified so that it is possible to 
manage and cope with dynamic changes without major human interventions?  

• Service Selection: If there exist multiple specifications that may be instantiated 
to realize a service component, how to select the most appropriate one given 
certain information on the operating environment?  

• Service Adaptation: What procedures and routines can enhance the service 
adaptation to the dynamic changes in its execution environment related to 
resources, users and changed service requirements? 

 
In this paper, we propose an approach for Dynamic Service Management. The main 

idea is to base the Service Specification on behaviour patterns (basically state machine 
specifications) with generalized action types, while the actual executing code, or the 
action libraries that include routines specific to the execution environment, is 
determined during run-time. This selection of optimal code for execution is referred to 
as Service Selection, and is based on the execution environment context, and of course 
the service request. Service Adaptation is achieved by allowing the service components 



PAPER F 
 

 130

to modify their functionality, or the code they run, dynamically by requesting changes 
to their service specification. The Selection and Adaptation processes are solely 
influenced by the information related to system resources, which are represented by 
capability and status information. To obtain a general sight of the rationale behind our 
approach, consider the following example, a “server” that provides some sort of a 
service to varying number of users, resides in a changing environment in terms of 
available system resources. Now, by the realization of different scenarios, keeping these 
changing factors in mind, this server may benefit from an adapting service specification, 
e.g. whether to use local data space or database utilities to manage users’ data. The 
desirable situation is that the server can automatically switch to different operating 
modes, for example, when the number of users changes or the node it is operating 
within undergoes a congested traffic. The major concern here is the limited and varying 
resources in the system, as well as the need to provide smooth operating principles for 
certain executing service components. 

The concept and framework presented in this paper has been worked out within 
TAPAS (Telematics Architecture for Plug-And-play Systems), which is a research 
project aims for developing an architecture for adaptable network-based service 
systems. The goal is to enhance the flexibility, efficiency and simplicity of system 
installation, deployment, and management by enabling dynamic configuration of 
network components and network-based service functionality. See [1,2,4,5] and the 
URL: http://tapas.item.ntnu.no.  

Sec. 2 will give a general overview of some related work that share similar vision to 
our work. Sec. 3 will provide some details of the concept of service and capability as 
viewed in TAPAS. Sec. 4 will present the TAPAS core platform, while Sec.5 will 
handle the proposed framework and work out the various topics that constitute the 
overall solution. Sec.6 shows a use-case example of the framework, and finally Sec. 7 
provides some concluding remarks. 

2. Related Work 

Network-based Services have been an important research topic for many industrial and 
academic bodies. Some examples may be listed here. TINA (Telecommunication 
Information Networking Architecture) [6] was a major effort in the 90’s to provide a 
solution for the Telecom Service Architecture, including service specification and 
management. Mobile Agents and Active Networks [7,11,13], and Programmable 
Networks [12], may also be mentioned as efforts to revolutionalise how services be 
utilized in an intelligent way. All these topics achieve adaptability in the service 
provision from different point of views, some focus on the general viewpoints, while 
others provide support platforms that are closely associated with certain runtime 
environments. The focus is more and more shifted now towards adaptability and 
evolution of such services. An example of this changing focus is the IBM autonomic 
computing project [15]. 

Service management, to some extent dynamic service management, has been dealt 
with in a number of papers, e.g. in active networks [10], replacement of software 
modules in [9]. In general, the principles discussed in [8] are considered to serve as a 
basis for any dynamic change management, which are also followed in this paper. 

 



PAPER F 
 

 131

Our approach to dynamic service management also focuses on the adaptability of 
network-based services. We follow basic principles of TINA, yet we try to provide 
more concrete and concise results. At the same time, TAPAS architecture is based on a 
generic system, rather than just a particular network, and aims at self-configuration and 
self-adaptation, which is not solved in Active Networks.  

Parlay [18] and JAIN APIs [19] provide service creation environment for rapid 
creation of telecom services. Our support for rapid service creation is augmented by the 
consideration and support of adaptation of specification at runtime, which is not directly 
covered in Parlay or JAIN. 

Our service specification based on parameterised behaviour pattern can be seen as an 
approach to model business process using XML, which has great similarity with Web 
Services Orchestration approaches such as BPEL4WS [20]. BPEL4WS defines different 
structures to model process in a manner similar to programming logic, while in our 
approach, service specification is modelled as EFSM, therefore, implicitly defines the 
control logic and scheduling by states and message interactions. The great complexity 
of the service modelled by TAPAS is that we take capability information into 
consideration. We describe the mechanism for service behaviour adaptation based on 
the capability information, which is not addressed in orchestration approaches. 

3. TAPAS Conceptual Model 

The TAPAS conceptual model is illustrated in Figure 1. TAPAS concepts are founded 
on a theatre metaphor, where actors perform roles according to predefined manuscripts, 
collectively defined in plays. Actors are implemented by software components in the 
nodes of the network. A service-system consists of service- components, and is defined 
by plays. Service-components, units related to some well-defined functionality, are 
realised by role-figures based on roles defined by manuscripts and are executed by 
actors. A role-figure, however, is realised in an executing environment in a node and is 
utilising capabilities. A capability is an inherent property of a capability-component in 
some node. A capability-component may have several capabilities. These capabilities 
are offered to actors, which constitute role-figures in various plays. Basically, 
capabilities can be classified into: 

• Functions: pure software or combined software/ hardware components used for 
performing particular tasks, 

• Resources: hardware components with finite capacity, such as processing, 
storage and communication units, 

• Data: just data, the interpretation, validity and life span of which depend on the 
context. 

 

Capability Category is a classification of capability sets. Because the functionality 
provided by a role-figure can be classified into capability dependent functionality and 
capability independent functionality, Capability Category is used in service 
specification to reflect this dependency on capability. 

Status is, at a certain time instant, the situation in a TAPAS system with respect to 
the actual number of nodes, playing plays, traffic situation, etc. Status can both 
comprise observable counting measures, measures for QoS or calculated predicates 



PAPER F 
 

 132

related to these counts and calculated measures. It reflects the resulting state of the 
system, which cannot directly be changed and negotiated. 

 

ServiceSystem

ServiceComponent

RoleFigure

Role

Play

Manuscript

Status

Node

CapabilityComponentActor

Capability
1

*

1

can _be

1
is_ realized_by1

1

1
constitutes

1

is_ defined_by1

1

uses

*

*

1

*

-executes*
1

1

*

User

1

is_at

1

uses *

*

-has

*

*

1

behaves_ according_to
*

offers
*

*

has

*

*

has

*
*

has*

*

has
*

*

requires
*

*

requires

*

*

1

* is_ defined_by

1

 
 

Figure 1 TAPAS conceptual model. 
 
A role-figure executes in some context, which may change during its life span. 

Context information that affects a role-figure’s execution can be classified into: 
• Node context: information about the node a role-figure resides at, which will 

affect the computation capabilities of the node, such as handheld / desktop / 
Laptop; 

• Location context:  location information which will affect the functional 
capabilities in general, such as home / university / mobile; 

• Connection context: the type of connection which will affect the communication 
capabilities, such as Dial-Up / LAN / Wireless connection; 

• User context: is used to classify how different user groups are assigned different 
access rights, startup application, default capabilities, etc., such as group leader, 
regular user and administrator. 

4. TAPAS Core Platform 

A service consists of service components, which are realized by role-figures. A role-
figure is implemented by an actor, which executes a manuscript modeled as an 
Extended Finite State Machine (EFSM). TAPAS core platform is the platform 
supporting the execution of role figures. XML-based manuscripts are applied to provide 



PAPER F 
 

 133

a representation that gives a potential for interoperability [5]. The manuscript data 
structure is shown in Figure 2. The behaviour description defined in the manuscript 
consists of states, data and variables, inputs, outputs, and different actions. Actions are 
functions and tasks performed by the role figure during a specific state. They may 
include calculations on local data, method calls, time measurements, etc. The <Action> 
list in manuscripts only specifies the action type, i.e., the method name and parameters 
for the action. Each action type belongs to some Action Group according to the nature 
of action. The manuscripts therefore specify parameterized behaviour patterns. The 
actual implementation of actions is realized by different codes stored in an Action 
Library according to the Capability Category it requires.  
 

EFSM_name
string

init_state
string

data

+

EFSM

FSM_name

string

output

FSM_name

string

next_state

*

tran_rule

state

state_name
string

input
string

*
FSM_name

string

actions

+

Action Type
string

parameter
string

Action Group
string

*

*

 
 

Figure 2 EFSM model data structure. 
 
Manuscripts and Action Library, available on a Web server, can be dynamically 

downloaded to a node and executed by the TAPAS core platform running at the local 
node. A State Machine Interpreter (SMI), which is the primary entity in TAPAS core 
platform, manages the execution of the manuscripts and the linking of action definitions 
with their implementation. The SMI executes the manuscript by invoking the action 
codes with matching action type and capability requirements, i.e., the codes will be 
selected when the offered Capability Category matches the required Capability 
Category for the specific action type. This facilitates the separation of action 
specification and implementation and at the same time provides the flexibility of 
implementing actions according to capability requirements and programming languages. 
This mechanism scales as Action Library can be expanded without expanding the 
manuscript definition and only a subset of Action Library needs to be downloaded. 



PAPER F 
 

 134

5. Dynamic Service Management 

5.1 The Framework 

Figure 3 shows the framework for Dynamic Service Management. Dynamic Service 
Management is one functionality component of the TAPAS support platform, which 
extends the Core platform. The components are: 

TAPAS Core Platform

Service 
Manager 

(SM)

Action
Library

Funtion Update
requests

Initial Service
requests

Capability
& Status
(CSRep)

Play
Repository

State Machine 
Interpreter

(SMI)

Manuscript
Manuscript

Rules

Mapping
table

Manuscript

Selection
Mapping

 
 

Figure 3 Dynamic Service Management Framework. 
 
1. Play Repository includes:  

 Manuscripts to provide behaviour pattern definition, including the action 
types to be performed and their corresponding Action Groups. 

 Rules to provide information for the decision making process. There are two 
types of rules, Selection Rules and Mapping Rules. Selection Rules are used 
to dynamically select the proper manuscripts that correspond to a specific 
role. Mapping Rules specify how the context, capability and status 
information are mapped to capability categories. 

2. Capability and Status Repository (CSRep) provides a snapshot of the resources of 
the system. It maintains information on all capability and status data that may 
affect the execution of the various role-figures at different nodes.  

3. Action Library contains codes for the state machine-based actions. These codes 
are implemented according to the capability category they required.  

4. Service Manager (SM) is responsible for the handling of Initial Service requests 
(to instantiate a service component) and Function Update requests (to change the 
functionality of an already instantiated service component). It, first, selects a 
specific manuscript based on the Selection Rules. Secondly, it calculates the 
offered Capability Category according to the Mapping Rules and generates the 
Mapping table. Both the manuscript and the Mapping table are sent to the State 
Machine Interpreter for execution. 



PAPER F 
 

 135

5. Service requests supply, on the one hand, the identification for the service 
component to be instantiated or modified. On the other hand, they will provide 
the context information that will be taken into consideration during the 
calculation of the offered Capability Category. Two types of service requests 
may be handled by the SM: 

 Initial Service request indicates a role to be executed at a node.  
 Function Update request is issued when the context, available capability or 

status information has changed and there is a need for functionality update. 
6. Mapping table is a report that contains the mapping from the Action Groups to 

the corresponding Capability Categories, which is the result of the calculation 
done by the SM. 

7. TAPAS Core Platform provides support for the execution of role figures at a node 
as discussed in section 4. 

8. State Machine Interpreter (SMI) is the primary entity in TAPAS Core Platform 
responsible for the execution of manuscripts according to the manuscript and 
Mapping table sent by the SM. 

 
In the following sub-sections detailed description of these components and their 

functionality will be given. It is important, however, to notice that the configuration and 
capability management parts are outside the scope of this paper – their results and 
consequences are assumed in the Play Repository (the Selection Rules in particular) and 
the Capability and Status Repository. To obtain a deeper knowledge of these parts of the 
architecture the reader is requested to visit the project website: http://tapas.item.ntnu.no.  

5.2 The Action Library and Capability Category Specifications and Rules 
While manuscripts provide parameterised role behaviour pattern specifications, the 
actual implementation of the actions is realized by different codes in the Action Library. 
These codes will be designed depending on the capabilities or resources they require or 
use. Some codes may provide a flexible and powerful functionality, so that they require 
more resources, e.g. larger memory, faster processor, wideband communication 
channel, etc. On the other hand, simpler codes, or the so-called lightweight codes, may 
be aimed for small handheld devices to only support the basic functionality. Allowing 
the SM to dynamically reason about these different codes based on the availability of 
system resources would introduce a great degree of flexibility into the manner how the 
service specification is carried out. 

As mentioned in Section 4, actions in the manuscripts are specified as general action 
types, which all belong to some Action Groups. However, the real code to be executed 
in order to perform these actions is maintained in the Action Library, which contains the 
detailed execution code for different executing environments and various operating 
circumstances, i.e. operating systems, communication infrastructure, etc. The Capability 
Category, as a way of classifying the capabilities into different sets, is used to indicate 
which code to be executed. For example, for a certain client role, a Graphical User 
Interface must be obtained; however, the implementation of this interface can be 
different for different node types that differ in their capability set, e.g. a handheld device 
or a desktop. Another example is a streaming application that is dependent on the media 
type offered at a particular point of time, position, used equipment, etc. In these cases, 
the decision on which code to be used is made dynamically by the Service Manager. 

http://tapas.item.ntnu.no/


PAPER F 
 

 136

Following are two tables showing examples of Action Groups and Capability 
Categories, as shown in Table 1 and Table 2. 

 

G1  Node Computation Capability
G2 Communication model 
G3 Graphics 
G4 I/O interaction 
G5 Multimedia 

 
Table 1 Example Action Groups. 

 

C1  PowerfulPDA, 
C2 Basic PDA 
C3  JavaPhone 
C4  SmartPhone 
C5  Laptop/PC 
…  

C10  Bluetooth Communication 
C11  WLAN connection 
C12  LAN connection 
…  

C20  Mouse 
C21  TouchScreen 
…  

C30 Audio 
C31 Video 
C32 Text 

 
Table 2 Example Capability Categories. 

 
A set of Selection Rules and Mapping Rules are provided to select manuscripts and 

map Action Groups to the corresponding Capability Categories based on the current 
capability and status snapshots. In our implementation, the Rules are represented using 
the XDD theory [3] – an expressive XML rule-based, knowledge representation - and 
executed by XET [16,17] engine – a reasoning engine for XDD. An introduction to the 
XDD theory and an example of a Mapping Rule modelled in XDD is given in the 
Appendix. Here for easy understanding, we use plain text to describe the rules. 

 
R1: IF Action Group Gi belongs to {G1, G3}  AND 
ServiceRequest.nodeType=”PDA” AND node.Processor>=300MHz 
    THEN Gi is mapped to C1.  
R2: IF Action Group is G2 AND 
ServiceRequest.connectionUsed=”Bluetooth” 
    THEN G2 is mapped to C10.  
R3: IF Action Group Gi belongs to {G1, G3} AND 
ServiceRequest.nodeType=(”Laptop” OR “PC”) 
    THEN Gi is mapped to C5. 
R4: IF Action Group is G4 AND nodeIOdevice=”TouchScreen” 
    THEN  G4 is mapped to C21. 
R5: IF Action Group is G5 AND multimediaSupport=”Speaker” 
    THEN  G5 is mapped to C30. 



PAPER F 
 

 137

The mapping from Action Group to Capability Category can be one-to-one or one-
to-many depending on the nature of the functionality. Several strategies can be defined 
for rules. If several rules are executable, the simplest way is to use the first rule and 
ignore others. On the other hand, complicated strategies, like priority among rules, can 
be defined to select among the possible rules.  

5.3 The Functionality of the Service Manager 
As described in Subsection 5.1, the SM is responsible for the selection of manuscripts, 
based on the Selection Rules, and the computation of the Mapping table, based on the 
Mapping Rules.  

When a role is to be instantiated at a node, an Initial Service request is sent to the 
SM. This request indicates the service and the role to be realized, as well as further 
information on the preferred configuration and context information. The SM will select 
the manuscript based on this information, and compute a Mapping table of the 
Capability Category for each Action Group used in the manuscript. The selected 
manuscript and the Mapping table are sent to the SMI to instantiate the role. The SMI 
downloads a subset of the Action Library, which contains the action codes that 
correspond to the action types and Capability Category required by the manuscript and 
Mapping table. 

To obtain a proper understanding of the functionality of the SM, consider the 
following case – referring to the examples of Action Groups and Capability Categories 
presented in the subsection 5.2. If an action type belongs to G1 (Node Computation 
Action Group), and the calculated Capability Category for this Action Group is C5 
(Laptop/PC), then all the action codes that belong to C5 will be downloaded by the 
SMI. This means that when the SMI needs to execute an action that belongs to G1 as 
specified in the manuscript, it will select the corresponding action code for this action 
type that is designed for C5, fill out all the parameters by the instance data and execute 
it.  

This selection of execution codes can be dynamically adapted to the changing 
environment, e.g., a role-figure is moved from one node to another, or a user session is 
changed from a PC to a PDA. In these situations, capabilities offered by the node will 
be so different that it is preferable to choose different code that is utilizing these 
capabilities more efficiently. A Function Update request will be issued to the SM, which 
re-computes the Mapping table so that the SMI can adjust the execution of actions 
accordingly. In this way, the parameterized behavior pattern specified in manuscripts 
can be dynamically modified as different codes can be selected based on different 
capability categories. 

An important aspect of the functionality of the SM is its reduced and flexible 
computation mechanism. By assigning action types to a few Action Groups in the 
manuscript and action codes to Capability Categories in the Action Library, we 
calculate the mapping from only a few Action Groups to Capability Categories, thereby, 
reducing the amount of computation tasks. At the same time, the resulting Mapping 
table is far shorter than the direct mapping from action types, and thus greatly saves the 
communication overhead.   



PAPER F 
 

 138

6. Example 

In this section, an example scenario based on the application TeleSchool is described to 
demonstrate the ideas described in the previous sections. TeleSchool is a network based 
learning application, which provides Real-Time-Lectures, Lecture-on-demand and 
Student-offline-support. The services include distribution of multimedia information 
and support both wireless and wired communication.  

TeleSchool service is defined by a play consisting of three different roles:  
• SchoolServer: a server role for managing all the clients running TeleSchool and 

support for all types of services. 
• SchoolRTLServer: provides functionality specific for real time lectures. 
• SchoolClient: an application program that provides user access to TeleSchool 

service. This includes user interface interaction handling (logon and selection of 
courses and lectures), multimedia session control and realization.  

 

PC

SchoolClient

State 
Machine 

Interpreter

PC

SchoolServer

State 
Machine 

Interpreter

Laptop

SchoolClient

State 
Machine 

Interpreter

PDA

SchoolClient

State 
Machine 

Interpreter

Server

SchoolRTLServer

State 
Machine 

Interpreter

WebServer

Play 
Repository

Server
Service 

Manager

Capability
& Status
(CSRep)

 
 

Figure 4 Example TeleSchool Application. 
 
An example TeleSchool application is shown in Figure 4. To see how dynamic 

service management is achieved by the framework proposed in this paper, we look into 
the specification, selection and adaptation of scenarios based on SchoolClient role. 
Different versions of manuscripts can be provided for the same role according to the 
user subscription, e.g., three versions of School Client role - “basic”, “moderate” and 
“advanced” – can be provided to user. 

Service specification defined by the following information should be available before 
TeleSchool system can provide Real Time Lecture and other services:  

Manuscripts for different roles are provided describing parameterized behaviour 
pattern with assigned Action Groups, as examples shown in Figure 5. For the limitation 
of pages, we only include the most related information in manuscript, i.e., only the 
actions information is shown. For a more complete example of XML manuscript for the 
SchoolClient role, please visit the web site: http://tapas.item.ntnu.no/AdapServ. The 
corresponding action codes are implemented in Action Library depending on the 

http://tapas.item.ntnu.no/AdapServ


PAPER F 
 

 139

Capability Category. Examples of Action Groups and Capability Categories are already 
shown in Table 1 and Table 2 respectively.  A set of Selection Rules and Mapping Rules 
are provided to select manuscripts and map Action Groups to the corresponding 
Capability Categories based on the current capability and status snapshots, as described 
in section 5. 

 
<state name=”stInit”> 
  <action> 
      <actionType>WindowNew</actionType> 
      <param> 
          <name>windowSize</name> 
          <value>default</value> 
      </param> 
      <param> 
          <name>windowType</name> 
          <value>Logon</value> 
      </param> 
      <actionGroup>G3</actionGroup> 
  </action> 
   <action> 
      <actionType>getUserInput</actionType> 
      <storeResult> 
          <resultType>msgType</resultType> 
          <resultType>msgParameter</resultType> 
      </storeResult> 
      <actionGroup>G4</actionGroup> 
   </action> 
   <nextState>stInitUserInterface</nextState> 
</state> 
<state name=”stInitUserInterface”> 
   <input msg=”LogonEventInd”> 
     <action> 
        <actionType>ActorPlugIn</actionType> 
        <param> 
            <name>role</name> 
            <value>SchoolServer</value> 
        </param> 
        <storeResult> 
            <resultType>v_server</resultType> 

        </storeResult> 
        <actionGroup>G2</actionGroup> 
     </action> 
     … more actions …. 
     <output> 
         <msg type=”UserVerifyAccessReq”> 
             <param> 
                 <name>message</name> 
                 <value>INPUT_MSG</value> 
             </param> 
             <dest>v_server</dest> 
         </msg> 
     </output> 
     <nextState>”stPasswordIdentify</nextState> 
   </input> 
</state> 
…. More states for user verification and user 
selection of work type (RealTime or Offline), 
courses and lectures … 
<state name=”stSessionCreate”> 
    <input msg=”MMSessionCreate”> 
        <action> 
            <actionType>SessionSetup 
            </actionType> 
            <param> 
                <name>sessionRequired</name> 
                <value>INPUT_MSG</value> 
            </param> 
        </action> 
       <actionGroup>G5</actionGroup> 
       <nextState>stMediaPlay</nextState> 
    </input> 
</state>

 
Figure 5 Fragments of example XML manuscript “SC_advanced” for SchoolClient 

role. 
 
Having all the above information available during service specification and design, 

the TeleSchool service system is ready for deployment and utilization. When the service 
is deployed and instantiated the first time, SchoolServer and SchoolRTLServer objects 
will be installed and configured. SchoolClients can be plugged in later on at any 
possible node running the required TAPAS support. Up-to-date capability and status 
information is provided by TAPAS system in CSRep, which contains snapshots of the 
system as the example shown in Figure 6.  

 



PAPER F 
 

140 

http://comp1.tapas.org : 
CIM Computer System.

Type : PDA
Processor :  400MHz
Memory : 64MB
AvailableConnection :  
Bluetooth
Speaker : Yes
Headphone : Yes

http://comp2.tapas.org : CIM Computer 
System.

Type : Laptop
Processor : Intel Mobile Pentitum III
Memory : 512MB
Max Disk Space : 40G
Available Disk Space : 32G 
AvailableConnection : Bluetooth
AvailableConnection : LAN

VideoPlayer : 
     audioSamplingRate : 44
      pictureHorizontalResolution : 640
      pictureVerticalResolution : 480

 
Figure 6 Capability and Status snapshots for two devices: one PDA and one Laptop 

with Video Player. 
 
Our story begins when a student Joe gets on a train and decides to attend some 

lectures while he travels. He switches on his PDA and asks for TeleSchool services. An 
Initial Service request as shown in Figure 7 is sent to the SM. The request contains the 
relevant context information which can not be obtained from CSRep, i.e., the 
connection context (Bluetooth) and user subscription (advanced). Other context 
information can be inferred from CSRep, such as the node context (PDA), and location 
context (mobile). SM decides that the manuscript to be used is SC_advanced according 
to the serviceType and userSubscription information in the service request. It then 
computes a Mapping table from the Capability & Status information shown in Figure 6 
according to the Mapping Rules R1-R5. The result is shown in Figure 9. The manuscript 
together with the Mapping table will be sent to the PDA where the SMI will interpret 
the manuscript and select codes from the subset of Action Library according to the 
Mapping table. All these codes are optimized to execute on such an environment as 
Joe’s case, e.g., only text information is sent to PDA as it has no graphic display. Joe 
begins with logon process, selects the courses and lectures he wants to join and follows 
the lecture as he travels.  

After a while, as he becomes interested in a multimedia presentation given in this 
course, he decides to transfer his session from PDA to his Laptop using wireless 
connection. As Laptop is equipped with a video player, he can enjoy a multimedia 
session when his application session is transferred. A Funtion Update Request, as 
indicated in Figure 8, is sent to the SM, which recomputes the Mapping table, allowing 
multimedia streaming and better user interface. During his travel, the wireless 
connection can experience different transmission characteristics, which means his 
service needs to adapt to this dynamically. For example, if the transmission speed drops 
dramatically, insufficient capability will result in a new Function Update Request, 
which will keep only one session and close all other sessions. When the transmission 
rate increases, some of the closed sessions can be reopened. These will be handled by 
different Function Update Requests which results in optimal codes selection under the 
situation. During the whole process, Joe can freely switch to the device he prefers and 
select the different service capability, and the service system will take care of the 
optimal configuration and behaviour based on the context and capability information. 

 



PAPER F 
 

141 

<InitialServiceRequest> 
    <serviceType>TeleSchool</serviceType> 
    <roleRequesting>SchoolClient</roleRequesting> 
    <preferredConfiguration> 
       <nodeInstalling>http://comp1.tapas.org</nodeInstalling> 
    </preferredConfiguration> 
    <contextInfo> 
         <connectionUsed>Bluetooth</connectionUsed> 
         <userSubscription>Advanced</userSubscription> 
    </contextInfo> 
</InitialServiceRequest> 

 
Figure 7 Initial Service Request. 

 
<FunctionUpdateRequest> 
     <serviceType>TeleSchool</serviceType> 
     <roleRequesting>SchoolClient</roleRequesting> 
    <preferredConfiguration> 
       <nodeInstalling>http://comp2.tapas.org</nodeInstalling> 
    </preferredConfiguration> 
     <contextInfo> 
       <connectionUsed>WLAN</connectionUsed> 
       <userSubscription>Advanced</userSubscription> 
       <changedCapability> 
            <add>VideoPlayer</add> 
       </changedCapability> 
   </contextInfo> 
</FunctionUpdateRequest> 

 
Figure 8 Function Update Request when a user changes from PDA to Laptop and a 

video player is supplied. 
 

<CapabilityCategory> 
<G2, C10> 
<G3, C1> 
<G4, C21> 
<G5, C30> 
</CapabilityCategory> 

 
Figure 9 Example Mapping table sent to SMI in response to the Initial Service Request 

as shown in Figure 7. 
 
A prototype reasoning and selection engine based on XDD[3] theory and XET[17] 

has already been implemented to provide the functionality of the SM and to test the 
feasibility of the framework proposed in the paper. Due to the limitation of pages, only 
simple examples are shown here. Detailed information is available on the web: 
http://tapas.item.ntnu.no/AdapServ. 

http://tapas.item.ntnu.no/AdapServ


PAPER F 
 

142 

7. Conclusions 

It is very complex and challenging for dynamic service management of adaptable 
systems, where components comes and goes all the time, and the services will be 
provided by nodes and devices that experience great variation in their available 
capabilities. We believe that the solution must be based on a flexible specification 
which can be adapted by a supporting runtime mechanism. Therefore, the paper has 
outlined a framework for dynamic service management for network-based adaptable 
services based on modifiable and parameterised behaviour patterns. Service 
functionality is classified into Action Groups and Capability Category according to the 
dependability on capability. Service adaptation based on dynamic code selection is 
realized by the dynamic mapping from Action Group to Capability Category according 
to the runtime context and capability information. This approach provides an overall 
solution that meets the dynamic and flexibility requirements of service management of 
adaptable systems. 

This dynamic service management framework extends the TAPAS core platform by 
providing the intelligence and flexibility of dynamic service selection and adaptation. A 
prototype selection engine for SM has been implemented to illustrate the feasibility of 
the framework proposed in the paper. Work is in progress to integrate this framework 
with TAPAS system (to integrate SM and the TAPAS core platform) so that an integral 
platform from service creation to provision and adaptation management can be 
achieved. More cases need to be studied and applied, e.g., the management of role 
figure mobility. 

References  

1 Aagesen, F. A., Helvik, B., Johansen, U. and Meling, H. (2001) Plug and Play for 
Telecommunication Functionality: Architecture and Demonstration Issues. Int’l 
Conf. Information Technology for the New Millennium (ICT’2003), Bangkok, 
Thailand. [http://tapas.item.ntnu.no]  

2 Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E. (2002) Support 
Specification and Selection in TAPAS. Proc. IFIP WG6.7 Workshop on Adaptable 
Networks and Teleservices, Trondheim Norway, September 2002. 
[http://tapas.item.ntnu.no]  

3 Wuwongse, V., Anutariya, C., Akama, K. and Nantajeewarawat, E. (2001) XML 
Declarative Description (XDD): A Language for the Semantic Web. IEEE 
Intelligent Systems 16(3): 54–65.  

4 Shiaa M. M and Aagesen. F. A. (2002) Architectural Considerations for Personal 
Mobility in the Wireless Internet, Proc. IFIP TC/6 Personal Wireless 
Communications (PWC’2002), Singapore, Kluwer Academic Publishers, October 
2002. [http://tapas.item.ntnu.no]  

5 Jiang, S. and Aagesen, F. A. (2003) XML-based Dynamic Service Behaviour 
Representation. NIK'2003. Oslo, Norway, November 2003. 
[http://tapas.item.ntnu.no]  

6 Inoue, Y., Lapierre, M. and Mossotto, C., The TINA Book: A Cooperative Solution 
for a Competitive World, Prentice Hall, 1999.  



PAPER F 
 

143 

7 Tennenhouse D. L., Smith J. M., Sincoskie D., Wetherall D. J. and Minden G. J. 
(1997) A Survey of Active Network Research. IEEE Communications, Vol.35, No1  

8 Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dynamic 
Change Management. IEEE Transactions on Software Engineering, 16(11):1293-
1306, November 1990.  

9 Christine R. Hofmeister and James M.Purtilo. Dynamic reconfiguration in 
distributed systems: Adapting software modules for replacement. In Proceedings of 
the 13th International Conference on Distributed Computing Systems, IEEE 
Computer Society Press, May 1993.  

10 M. Brunner and R. Stadler, Service Management in Multiparty Active Networks, 
IEEE Communications Magazine, Vol. 38, No. 3, pp. 144-151, March 2000.  

11 Massachusetts Institute of Technology, Active Networks, 
http://www.sds.lcs.mit.edu/activeware/  

12 Colombia University, Department of Computer Science, NetScript, 
http://www.cs.columbia.edu/dcc/netscript/  

13 U.S. Department of Defense, Advanced Technology Office, 
http://www.darpa.mil/ato/programs/ activenetworks/actnet.htm.  

14 Raza S.K. and Bieszczad A., “Network Configuration with Plug and Play 
Components”, Proc. 6th IFIP/IEEE International Symposium on Integrated 
Network Management, May, 1999.  

15 The IBM autonomic computing project. http://www.research.ibm.com/autonomic/  
16 Akama, K., Shimitsu, T. and Miyamoto, E. (1998) Solving Problems by Equivalent 

Transformation of Declarative Programs. J. Japanese Society of Artificial 
Intelligence (JSAI), 13(6), 944–952.  

17 Anutariya, C., Wuwongse, V. and Wattanapailin, V. (2002) An Equivalent-
Transformation-Based XML Rule Language. Proc. Int’l Workshop Rule Markup 
Languages for Business Rules in the Semantic Web, Sardinia, Italy.  

18 Parlay. http://www.parlay.org/.  
19 JAIN initiative. http://java.sun.com/products/jain.  
20 BPEL4WS Specification. http://www-106.ibm.com/developerworks/library/ws-

bpel/.  

Acknowledgement  

The authors would like to thank reviewers for their valuable comments and suggestions and also thank 
Parami Supadulchai for making the demonstration available on the web.  

Appendix  

XML Declarative Description (XDD) [3] is an expressive XML rule-based 
knowledge representation, which extends ordinary, well-formed XML elements by 
incorporation of variables for an enhancement of expressive power and representation 
of implicit information into so called XML expressions. Ordinary XML elements—
XML expressions without variable—are called ground XML expressions. Every 
component of an XML expression can contain variables, which are prefixed by “$T:”, 



PAPER F 
 

144 

where T denotes the types. For example, $S:NodeID is a variable which can be 
specialized into a string. An XDD description is a set of XML clauses of the form: 

H  ←  B1, … , Bm, β1, …, βn, 
where m, n ≥ 0, H ( Head) and the Bi (collectively called Body of the clause) are 

XML expressions, and each of the βI is a predefined XML constraint. The meaning of 
an XDD expression is the set of all XML elements, which are directly described by and 
are derivable from its clauses. The head of an XML clause intuitively models the 
consequence part, while the body describes the antecedence or the conditional part. 
Thus, each XML clause can be easily interpreted as: deriving the information 
represented by its head if all the conditions specified in its body hold.  

According to this theory, a Mapping Rule is expressed by an XML clause. Its head 
specifies the mapping from Action Group to Capability Category, and its body describes 
the requirements and constraints for the capability and status information for the 
mapping. The Mapping Rule R1 used in section 5 can thus be expressed in XDD 
formalism as Figure 10. 

 

 

<Mapping> 

     <nodeInstalling rdf:resource= $S:NodeID"/> 

     <ActionGroup>$S:Gi</ActionGroup> 

     <CapCategory>$S:Cat</CapCategory>     

</Mapping> 
        ←  <INSTANCE  ClassName="CIM_CompSystem"> 
 <PROPERTY  NAME="NodeID"> 
     <VALUE>$S:NodeID</VALUE> 
 </PROPERTY> 
 <PROPERTY  NAME="NodeType"> 
     <VALUE>$S:NodeType</VALUE> 
 </PROPERTY> 
 <PROPERTY  NAME="ProcessorSpeed"> 
     <VALUE>$S:ProcessorSpeed</VALUE>  
  </PROPERTY> 
 $E:CompSystemProperties 
             </INSTANCE>, 
             [$S:ProcessorSpeed >= 300],   [$S:NodeType = 
“PDA”], 
             Member($S:Gi, {"G1", "G3"}),      Unify( “C1”, $S:Cat)   

 

                    

 
Figure 10 An XDD formalism for Mapping Rule R1. 

 

$S:NodeX : CIM_CompSystem

NodeID = $S:NodeID  
NodeType = $S:NodeType 
ProcessorSpeed = 

$S:ProcessorSpeed 
$E:CompSystemProperties 

Bo
dy

 o
f t

he
 c

la
us

e 

[$S:ProcessorSpeed >= 300], 
[$S:NodeType = “PDA”],   Member($S:Gi, 
{"G1", "G3"}), Unify(“C1”, $S:Cat) 

(B) 

(C) 

$S:Gi : ActionGroup 
ActionGroup 

$S:NodeID: NodeID nodeInstalling
: Mapping $S:NodeX: CIM_CompSystem

$S:Cat : CapabilityCategoryCapabilityCategory 

(a) Graphical notation. (b) XML serialisation 

(A)  Head of the clause 



 

 

 

PAPER G: An XML-Based Framework for 
Dynamic Service Management 

 
Mazen Malek Shiaa, Shanshan Jiang, Paramai Supadulchai and 

 Joan J. Vila-Armenegol 
 

Published in 
Proceedings of IFIP International Conference on Intelligence in Communication 

Systems (INTELLCOMM’04) 
 

Bangkok, Thailand , November 23 - 26, 2004. 
 
 

Lecture Notes in Computer Science (LNCS) 3283, pp. 273-280, 2004. 
@IFIP 2004 



 

 



PAPER G 
 

147 

An XML-based Framework for Dynamic Service 
Management 

 
Mazen Malek Shiaa 

 
Shanshan Jiang 

 
Paramai Supadulchai 

 
Joan J. Vila-Armenegol 

 
Abstract  Service systems are likely to be highly dynamic in terms of changing 

resources and configurations. On the one hand, resources are increasingly 
configurable, extendable, and replaceable. On the other hand, their 
availability is also varying. For this reason, the handling of these changes is 
crucial to achieve efficiency. To accomplish this objective, a framework for 
dynamic service management with respect to service specification and 
adaptation is proposed. 

1. Introduction 

A service system, in general, is viewed as a composition of service components. In the 
lifecycle of service systems (or service components) there are two main phases: the 
service specification and the service execution phases. The first handles the way 
services being specified, while the second comprises all the tasks related to service 
instantiation, operation and maintenance. Historically, service management as a concept 
has always been discussed and disputed within the second phase only, i.e. independently 
from the Service Specification. Manual modification of the service specification and 
thereafter configuration and reconfiguration are therefore needed. The concept of 
Dynamic Service Management will take a different approach to service management. It 
will propose procedures that will make services adaptable to the dynamic changes in 
their execution environment, based on modifiable and selectable service specifications. 

In this paper, we propose a framework for Dynamic Service Management, which 
addresses two key issues; Service Specification and Service Adaptation. The main idea 
is to use behaviour specifications with generalized action types as the service 
specifications. The actual executing code, or the action libraries that include routines 
specific to the execution environment, is determined during run-time. The system 
resources are represented by the so-called Capability and Status of the system, which 
characterize all the information related to resources, functions and data inherent to a 
particular node and may be used by a service component to achieve its functionality. 
Service Adaptation is achieved by allowing the service components to dynamically 
modify their functionality by requesting changes to their service specification. The 
framework uses web services to manage the availability and communication of service 
components. 



PAPER G 
 

148 

2. Related Work 

Service management, and dynamic service management, has been dealt with in a 
number of papers, e.g. in active networks [1], replacement of software modules in [2]. 
In general, the principles discussed in [3] are considered to serve as a basis for any 
dynamic change management, which are also followed in this paper. Another approach, 
sharing our view of Capability availability, can be found in [4]. It addresses the problem 
of providing information access to mobile computers using the principle of adjusting the 
data according to the environment status. Each application is responsible for deciding 
how to exploit available resources by selecting the fidelity level of the transmitted data. 
The adaptation is based on choosing between different versions of the data (fidelity 
levels) in order to match the resource availability. Our work targets the adaptation of 
any kind of behaviour, instead of the adaptation of data itself. It requires that the 
behaviour is rich in its processing possibilities. In this regard, the support platform (that 
executes in the nodes) is responsible for monitoring resource availability, notifying 
applications of relevant changes to those resources and enforcing resources allocation 
decisions. Each application is responsible for deciding how best to exploit available 
resources. 

3. Service Specification 

As a basic assumption in the framework, a service is viewed as a composition of one or 
more service components (we also consider a service as a play consisting of different 
roles.) Each Service Component is realized or carried out by one or more Role-Figure 
(being an entity in the architecture that is capable of representing some well-defined 
functionality). A Role-Figure is realized by a software component (or a collaboration of 
software components, e.g. multi-threaded processes) executing in a node. However, 
throughout this paper, and as an abstraction from the implementation domain, Role-
Figure will be the constituent of the architecture that is used to provide a basis for 
service specification and instantiation. In this regard, a Role-Figure specification is the 
service (or part of a service) specification, which gives a service behaviour description. 
The most intuitive way to model such a specification is by a State Machine model (one 
well-known and applied model is the Extended Finite State Machine, EFSM, that is 
considered here.) [5]. Fig. 1 shows the EFSM data structure for the Role-Figure 
specification. The behaviour description defined in the Role-Figure specification 
consists of states, data and variables, inputs, outputs, and different actions. Actions are 
functions and tasks performed by the Role-Figure during a specific state. They may 
include calculations on local data, method calls, time measurements, etc. The <Action> 
list in the Role-Figure specifications specifies only the action type, i.e. the method 
name, and parameters for the action. Each action type belongs to some Action Group 
according to the nature of action.  

Declaring Actions by their general types and classifying them into Actions Groups 
(e.g. G1: Node Computation Capability, G2: Communication model, G3: Graphics, G4: 
I/O interaction) is a technique used to tackle the problem of platform and 
implementation independence, as well as achieving a better flexibility and reusability in 
service and application design. Using Action Types and Action Groups in the service 
specification keeps the specification short, clean and abstract from how it would 



PAPER G 
 

149 

eventually be implemented in different end-user devices, operating policies, and 
executing environments. For instance, actions such as terminate, exit, error handling, 
etc. can be classified in “G100: Control Functions”. Consequently, the action terminate 
would be used in a specification as: <actionType>terminate</actionType> 
<actionGroup>G100</actionGroup> 

The Capability concept abstracts all the information related to functions, resources 
and data required by the Role-Figures to achieve their functionality. Examples of such 
capabilities can be: software/hardware components, such as units of processing, storage, 
communication, system data, etc. Role-Figures achieve tasks by performing or 
executing actions. Such actions would naturally consume or require resources, or 
capabilities. A Role-Figure specification explicitly specifies what sorts of capabilities 
are required. Occasionally, the execution of the Role-Figure halts if certain capabilities 
are not available. Status comprises observable counting measures to reflect the resulting 
state of the system. 

 
EFSM_name

string

init_state
string

data

+

EFSM

FSM_name

string

output

FSM_name

string

next_state

*

tran_rule

state

state_name
string

input
string

*
FSM_name

string

actions

+

Action Type
string

parameter
string

Action Group
string

*

*

 
 

Fig. 1. EFSM model data structure 
 
As have been indicated previously, Action Types, and eventually their classes or 

Action Groups, are not “executables” that may be run in a specific environment or 
device. Therefore, service designers should map their actions to executable routines 
provided by device manufacturers (Usually using built-in function calls, with explicit 
and proper parameter values, through the device’s Application Programming Interface, 
or API.) In this regard, these executable routines should also be classified, to indicate 
what operating circumstances and capability requirements, they are working within and 
demanding for. We refer to this classification as Capability Categories, so that each 
category represents a capability set. Examples of Capability Categories can be: C1: 
Powerful PDA, C2: Basic PDA, C10: Bluetooth, C11: WLAN, C100: Default CC for 
G100. A mapping is therefore required to link the action definitions in the service 
specification to the executable routines stored in Action Libraries. 



PAPER G 
 

150 

4. Dynamic Service Management Framework 

The Framework presented here considers three distinct forms of Role-Figure 
specification. Firstly, Role-Figure specification exists as a static representation of the 
behaviour of the Role-Figure functionality. Secondly, Role-Figure specification would 
exist as an instantiated code or class instances, with all the necessary mappings to their 
executing environment, which is “instantiated Role-Figure specification.” However, a 
third form may exist between these two forms. Once the capability category is 
determined, it is important to extend and convert certain actions into corresponding sets 
of actions, e.g. providing extra security and authentication checks. This form we refer to 
as “calculated Role-Figure specification.” 

The framework for Dynamic Service Management is illustrated in Fig. 2. The 
components of the framework are:  

1. Play Repository: a data base that contains the service definitions and includes:  
• Role-Figure Specifications: provide behaviour definitions for each Role-

Figure, including the Action Types to be performed and their corresponding 
Action Groups. 

• Selection Rules: provide information for dynamically selecting the proper 
Role-Figure Specification, if it has several corresponding specifications. 

• Mapping Rules: specify the mapping between capabilities and capability 
categories. 

2. Capability and Status Repository (CSRep): is a database that provides a snapshot 
of the resources of the system. It maintains information on all capability and 
status data in all system nodes. 

3. Action Library: is a database that contains codes for the state machine-based 
actions. These codes are implemented according to the capability category they 
require.  

4. Service Manager (SM): is responsible for the handling of Initial Service requests 
(to instantiate a Role-Figure), Role-Figure move (to move an already instantiated 
Role-Figure from one node to another), and Function Update requests (to 
change the functionality of an already instantiated Role-Figure). It, first, selects 
a specific Role-Figure specification based on the Selection Rules. Secondly, it 
calculates the offered Capability Category according to the Mapping Rules, 
which is denoted as Mapping table. Then it generates the calculated Role Figure 
Specification by adding the corresponding Capability Category information and 
the substructures that can be used for decision-making when capability changes 
occur. This calculated Role Figure Specification and the Mapping table are then 
sent to the proper State Machine Interpreter for execution. 

5. Requests: supply, on the one hand, the identification of the Role-Figure to be 
instantiated or modified. On the other hand, they provide the information to be 
taken into consideration during the calculation of the Capability Category. Three 
types of service requests may be handled by the SM: 
• Initial Service request indicates a role to be executed in a node.  
• Role-Figure move is issued when there is a severe deterioration in certain 

capabilities availability or the Role-Figure is requested to move to achieve a 
mobility task for instance. [6] gives an overview of the mobility management 
of Role-Figures. 



PAPER G 
 

151 

• Function Update request is issued to update a functionality due to capability 
change. 

6. Results: are the outcomes of the calculations performed by SM, which contains 
the following: 
• Calculated Role-Figure Specification indicates a changed Role-Figure 

specification. 
• Mapping table is the result of calculating and matching of Capability 

Categories based on the given instantaneous capability situation, Mapping 
rules, and incoming request and its parameters. 

7. State Machine Interpreter (SMI): is a State Machine execution support [5]. This 
is the primary entity in the framework responsible for the execution of Role-
Figures according to the instantiated Role-Figure Specification. The framework 
allows for a decentralized computation. The dotted-arrow connecting the Play 
Repository and the SMI allows for the calculation of the Role-Figure 
Specification to be conducted in the node where it will execute, i.e. by the SMI 
instead of the SM that is, in most cases, would exist at a remote location. This 
option can solve problems related to over-loaded SM, congested network, time-
critical applications, etc. 

 

Node / Device

Service Manager
(SM)

Action
Library

Capability
& Status
(CSRep)

Play
Repository

State Machine
Interpreter

(SMI)

ManuscriptRole-Figure
Specification

Selection
Rules

Mapping
Rules

Capability
Set

Subset of
Action
Lbrary

Funtion Update
requests

Initial Service
requests

Role-Figure
move

Role-Figure
Specification
(instantiated)

Role-Figure

Role-Figure
Specification
(instantiated)

Role-Figure

ManuscriptRole-Figure
Specification
(calculated)

Mapping
table

 
 

Fig. 2. Dynamic Service Management Framework 
 
The next specification is of a clientMultimediaPlayer Role-Figure that runs on a 

Laptop, with both the capability of WLAN (default) and Bluetooth (used when WLAN 
is unavailable). 



PAPER G 
 

152 

 
 
<state name=”stMediaPlay”> 
   <actionType>MediaPlay</actionType> 
   <actionGroup>G2</actionGroup> 
   <CapCategory>C10</CapCategory> 
   <CapCategory>C11</CapCategory> 
   <Config> 
      <defaultCC>C10</defaultCC> 
      <ProblemType> 
         <List>out of coverage</List> 
         <List>congestion</List> 
      </ProblemType> 
      <choice> 
         <check> 
            Check Bluetooth neighbourhood 
         </check> 
         <substate name=”Bluetooth”> 
            <condition value=”available”> 
            <output> 
               <msg type=”FunctionUpdate”> 
                   <param> 
                     <name>manuscript</name> 
                     <value>SchoolClient</value> 
                   </param> 
                  <param> 
                      <name>C10</name> 
                      <value>out of coverage 
                      </value> 
                   </param> 

                  <param> 
                     <name>Wireless Communication 
                     </name> 
                     <value>unavailable</value> 
                  </param> 
                  <dest>ServiceManager</dest> 
               </msg> 
            </output> 
            <nextState>stWaitForManuscript 
            </nextState> 
         </substate> 
         <substate name=”NoBluetooth”> 
             <condition value=”unavailable” 
                                offline=”No”> 
             <actionType>Terminate</actionType> 
             <actionGroup>G100</actionGroup> 
             <CapCategory>C100</CapCategory> 
             <nextState>stTerminate</nextState> 
         </substate> 
         <substate name=”Offline”> 
            <condition value=”unavailable” 
                               offline=”Yes”> 
            <actionType>ChangeToOffline 
            </actionType> 
            <actionGroup>G100</actionGroup> 
            <CapCategory>C100</CapCategory> 
            <nextState>stWaitUserInput</nextState> 
         </substate> 
      </choice> 
   </Config> 
   <nextState>stWaitUserInput</nextState> 
</state> 

Part of a calculated specification for a clientMediaPlayer Role-Figure, in which an action of simple 
communication has been converted into a structure of additional actions and substates. 

5. Implementation issues 

The framework has been developed and implemented as part of the TAPAS 
architecture, see [6,7,8] and the URL: http://tapas.item.ntnu.no/. The implementation of 
the framework is built around the support functionality of the TAPAS core platform. 
Java Web Services Developer Pack (Java WSDP) [9] was applied to develop the main 
communication parts of the framework, while Apache Axis [10] was used as a SOAP 
server. In this regard, nodes running the platform will have an entity that supports Web 
Services requests and replies. Fig. 3 shows a possible implementation of the framework, 
in which a configuration of two nodes running two and three distinct Role-Figures is 
applied, beside a node running the SM and a web server containing the repository data. 
The TAPAS Core Platform has been extended with Web-services communication 
routines, node registry capabilities, and extended configuration data reflecting the 
reachability of SM. In the figure a connection is highlighted between the CSRep and the 
nodes participating in the execution of these Role-Figures. Although it has not been 
fully implemented, a capability registration and update mechanism is considered, which 
keeps the CSRep updated in terms of any capability change in the nodes. Throughout 
the experimentation process such update has been conducted manually in order to 
simplify the overall processing. 



PAPER G 
 

153 

WebServer

Action
Library

Play
Repository

Node3

State Machine 
Interpreter

(SMI)

Role-Figure
Role-Figure

Node2

State Machine 
Interpreter

(SMI)

Role-FigureRole-Figure

Role-Figure

Node1

Service Manager 
(SM)

Capability
& Status
(CSRep)

configurationFile

bootstrap

TAPAS Core PlatformTAPAS Core Platform

TAPAS Core Platform

configurationFile

bootstrap

configurationFile

bootstrap

Communication Network

node1.tapas.org

server.tapas.org
node2.tapas.org node3.tapas.org

 
 

Fig. 3. An implementation of the Dynamic Service Framework within the TAPAS 
platform 

6. Experimentation Scenarios 

Several scenarios have been proposed to demonstrate the applicability and foremost 
features of the framework. During the experimentation, simple application scenarios 
have been used. The application used was the Teleschool, which is an application 
facilitating distance-learning, allowing students and teachers to participate in virtual 
class activities in real-time or off-line modes, using multimedia capabilities on various 
types of terminals and devices. The test scenarios were limited to run and execute the 
client Role-Figures, and examine their proper functionality. Here we instantiate 
SchoolClient Role-Figure on a node featuring a Bluetooth and WLAN communications. 
Below we show an example of a Role-Figure move request to initiate a move 
functionality of a Role-Figure from a node to another one. 
 
<RoleFigureMoveRequest> 
    <sender> 
       <oNode>http://Node2.tapas.org</oNode> 
    </sender> 
    <dateTime /> 
    <serviceType>Teleschool</serviceType> 
    <roleRequesting>SchoolClient 
    </roleRequesting> 
    <RFSUsed>SchoolClient_Advanced 
    </RFSUsed> 
    <preferredConfiguration>        
           <nodeInstalling> 
                   http://Node3.tapas.org 
            </nodeInstalling> 
    </preferredConfiguration> 
    <contextInfo> 

        <connectionUsed>LAN</connectionUsed> 
        <userSubscription>Advanced 
        </userSubscription> 
        <MMSupport>VideoPlayer</MMSupport> 
    </contextInfo> 
    <stateInfo>   
        <currentState>stInitUserInterface 
        </currentState> 
        <variables> 
               <variable> 
      <name>v_server</name> 
      <value>aaaaaa</value> 
 </variable> 
        </variables> 
     </stateInfo> 
</RoleFigureMoveRequest> 

An example Role-Figure move request used to move a Role-Figure from Node2 to Node3 

http://comp2.tapas.org/


PAPER G 
 

154 

WebServer

Action
Library

Play
Repository

Node3

State Machine
Interpreter

(SMI)

RF_3_1

Node2

State Machine
Interpreter

(SMI)

RF_2_1

Node1

Service Manager
(SM)

Capability
& Status
(CSRep)

TAPAS Core PlatformTAPAS Core Platform

TAPAS Core Platform

server.tapas.org

1: When there is a need to move an
instantiated  Role-Figure, a Role-Figure
Move request is sent to SM, indicating
where to re-instantiate it, and how to let it
continue its functionality or performance.
This request contains information about the
state information, like the current state of
the role figure, and the variable information.

2: A new mapping table and Role-Figure
Specification are sent to the new location, in
this case Node3.

3: The TAPAS Core Platform takes care of
the mobility handling, creating a new role
figure and obtaining the required capability.
SMI downloads the corresponding Role-
Figure Specification from the Play
Repisotory,

4: and a subset of the Action Library, then it
restores the state information and resumes
the execution of the moving role figure

1

2

3

4

 
 

Fig. 4. Experimentation scenario of a Role-Figure move including two nodes 

7. Conclusion 

In this paper some challenges of the Dynamic Service Management have been 
discussed, and a framework has been proposed to tackle them. In a highly dynamic 
system, components composing the system come and go, as well as the system 
resources that are allocated for them vary and change all the time. The demonstrated 
framework provides a way of enabling the dynamic service management based on 
specifications that can be selected, their behavior be computed, and their handling of 
system resources are all based on the available capabilities in the execution 
environment. Specifications contain only Action Types and Action Groups, while the 
executable code or Action Libraries are available on a different database. This 
distinction is mainly to achieve flexibility. Capability Categories classify these 
executables based on the capability information in the system. 

References 

1 M. Brunner and R. Stadler, Service Management in Multiparty Active Networks, 
IEEE Communications Magazine, Vol. 38, No. 3, pp. 144-151, March 2000. 

2 Christine R. Hofmeister and James M.Purtilo. Dynamic reconfiguration in 
distributed systems: Adapting software modules for replacement. In Proceedings of 
the 13th International Conference on Distributed Computing Systems, IEEE 
Computer Society Press, May 1993. 

3 Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dynamic 
Change Management. IEEE Transactions on Software Engineering, 16(11):1293-
1306, Nov. 1990. 

4 B.D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications 
in Odyssey (1999). Mobile Networks and Applications, 4, 1999. 



PAPER G 
 

155 

5 Jiang, S. and Aagesen, F. A. (2003) XML-based Dynamic Service Behaviour 
Representation. NIK’2003. Oslo, Norway, November 2003. 
[http://tapas.item.ntnu.no] 

6 Shiaa M. M and Aagesen. F. A. (2002) Architectural Considerations for Personal 
Mobility in the Wireless Internet, Proc. IFIP TC/6 Personal Wireless 
Communications (PWC’2002), Singapore, Kluwer Academic Publishers, October 
2002. [http://tapas.item.ntnu.no] 

7 Aagesen, F. A., Anutariya, C., Shiaa, M. M. and Helvik, B. E. (2002) Support 
Specification and Selection in TAPAS. Proc. IFIP WG6.7 Workshop on Adaptable 
Networks and Teleservices, Trondheim Norway, September 2002. 
[http://tapas.item.ntnu.no] 

8 Aagesen, F. A., Helvik, B. E., Anutariya, C., and Shiaa M. M. (2003) On Adaptable 
Networking, Proc. 2003 Int’l Conf. Information and Communication Technologies 
(ICT 2003), Thailand. 

9 SUN Microsystems, the Web services Homepage, Java Web Services Developer 
Pack (WSDP) documentation, http://java.sun.com/webservices/index.jsp.  

10 The Apache homepage, Apache Axis 1_1, http://ws.apache.org/axis.  
 
 

http://java.sun.com/webservices/index.jsp
http://ws.apache.org/axis


 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PART III: APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 



APPENDIX A 
 

159 

APPENDIX A: Algorithms for Construction and 
Maintenance of Super-peer SONs 
This appendix describes the algorithms for construction and maintenance of super-peer 
SONs, which is based on a modified version of SG-1 [Mon04]. We first describe the 
basic idea and algorithms for SG-1 in Section A.1 and Section A.2, then describe our 
modifications for the construction and maintenance of super-peer based SONs in 
Section A.3.  

The network consists of a large collection of nodes (also called peers) that are 
assigned unique identifiers and that communicate with other nodes through message 
exchanges. The nodes are connected through an existing routed network (i.e. the 
physical underlying network), such as Internet. The super-peer network is constructed 
as an additional overlay, superimposed over the existing connected topology (the 
underlying topology). In the overlay network, each node has a set of neighbours that it 
can communicate directly. Nodes differ in their capabilities, such as the computational 
power, storage and bandwidth. In order to abstract all such characteristics in a single 
quantity, the concept capacity is used to represent the various capabilities. The capacity 
of node n is defined as the maximum number of other nodes it can manage, denoted as 
cn. In a super-peer network, each node is assigned as either super-peer role or client role 
depending on their capacities. A super-peer has higher capacity and manages its clients. 
The assignment of roles is not permanent: a node may start as super-peer and later 
change into client of other node with higher capacity.  

A.1 The Structure of the Protocol Stack and Datasets in a Node 

The algorithm for the construction and maintenance of super-peer network is based on a 
three-layered protocol stack [Mon04], as shown in Figure A.1(a). All the protocols are 
gossip-based [DGHI87], where each node periodically exchanges node information with 
a randomly selected peer. Each node maintains four different datasets, shown in Figure 
A.1(b), which are maintained by these three protocols respectively. 

 

SUPERPEERS UNDERLOADED

CONNECTED

CLIENTSLAYER 3 (P3): super-peer 
selection 

LAYER 2 (P2) : super-peer 
information dissimination 

LAYER 1 (P1): underlying 
topology 

(a) Protocol stack (b) Datasets maintained in each node

SUPERPEER

 
Figure A.1. Three-layered protocol stack run on each node and the datasets maintained 
in each node. 

 



APPENDIX A 
 

160 

Layer 1 protocol (P1) maintains the set CONNECTED, which contains the neighbours 
forming the underlying network. P1 adopted in the experiment is NEWSCAST [JKS03], 
a gossip-based protocol that maintains an approximately random topology. 

Layer 2 protocol (P2) maintains two sets. The set SUPERPEERS contains a random 
sample of nodes currently acting as super-peers. The set UNDERLOADED contains a 
subset of SUPERPEERS, comprising super-peers that can accept additional clients, i.e., 
super-peers that have not reach the maximum number of nodes they can manage. P2 is 
also a variant of NEWSCAST, which selects random peers from the layer 1 CONNECTED 
set for information exchange. 

Layer 3 protocol (P3) manages the client/super-peer relationship. For a super-peer, 
CLIENTS set contains the clients managed by each super-peer. For a client, only the 
connected super-peer is stored. P3 performs the super-peer selection algorithm. It 
periodically samples the UNDERLOADED set to discover if a client transfer or a role 
change is required. 

A.2. Gossip-based Protocols 

All the protocols are gossip-based. Figure A.2 illustrates the gossip paradigm. In 
particular, P1 and P2 are NEWSCAST protocols, which are used to build and maintain 
an approximately random topology [JKS03]. 

 
do forever     do forever 
     wait(δ time units);         sq ← receive(*); 
      q ← RANDOMPEER();         RETURNSTATE(q);  
      SENDSTATE(q);          UPDATE(sq, sender(sq)); 
      sq ← receive(q); 
      UPDATE(sq, q); 

 
                       (a) active thread          (b) passive thread 
 

Figure A.2. The gossip paradigm. Notation: q is the remote peer; sq  is the state received 
from q (from [Mon04]). 

 
Each node has a local state, or called partial view in NEWSCAST, which consists of 

a fixed-size set of peer descriptors. The size of the partial view is denoted as s. A peer 
descriptor contains node status information such as node identifier, capacity, current 
role, and timestamp. Each node executes two threads. At periodic intervals, the active 
thread initiates a state exchange with a randomly selected neighbour through method 
RANDOMPEER by sending its partial view though method SENDSTATE and waits for a 
response from the selected peer. The passive thread waits for a message sent by an 
initiator and replies with its partial view through method RETURNSTATE. Method 
UPDATE updates its local state by merging the received partial view with the current 
local partial view, and keeping the s freshest descriptors. In this way, new information 
enters the system when a node sends its partial view by inserting its own newly created 
descriptor. At the same time, old information is gradually and automatically removed 
from the system and is replaced by new information. The gossip intervals of length δ are 
called rounds. In each round, each node initiates exactly one state exchange. 



APPENDIX A 
 

161 

Figure A.3 illustrates an example NEWSCAST exchange between node A (initiator) 
and node B. Each node has a partial view with 6 descriptors (depicted inside the 
ellipses). A descriptor shown in the figure is a <node-ID, timestamp> pair. After the 
state exchange, each node merges the received partial view with its own partial view. 
The result is depicted under the empty arrow: each node selects 6 freshest descriptors at 
random (as depicted inside the ellipses) and discarded the others.  

 

C/6 B/6 E/6 F/6 H/5 K/5 D/6 M/6 S/6 T/5 X/5 G/5

C/6 B/6 E/6 F/6 H/5 K/5D/6 M/6 S/6 T/5 X/5 G/5

Node A Node B

D/6 M/6 C/6 B/6 S/6 F/6 E/6 H/5 K/5 T/5 X/5 G/5 D/6 C/6 M/6 S/6 E/6 F/6 B/6 T/5 X/5 H/5 K/5 G/5

update update

state 
exchange

 
 

Figure A.3. An example NEWSCAST exchange between node A (initiator) and node B 
 
The generated topology by NEWSCAST is very close to a random graph with out-

degree s. According to experimental results, choosing s = 20 is sufficient for stable and 
robust connectivity [JKS03]. In our experiments, we select s = 30.  

Although P1 and P2 are both NEWSCAST protocols, they have difference in method 
implementation. In P1, a node selects a random peer from its current partial view; while 
in P2, a node selects a random peer from the CONNECTED set managed by P1. In 
addition, in order to generate the SUPERPEERS and UNDERLOADED sets, the partial view 
exchanged in P2 contains only descriptors that belong to super-peers or underloaded 
super-peers, respectively. Since nodes are selected from the CONNECTED set in P2, the 
information about super-peers is disseminated among all nodes, not only the super-
peers. The benefit of this choice is that when super-peers fail, the affected clients are 
still able to disseminate information about the newly selected super-peers. 

P3 is a gossip-based super-peer selection protocol. Its main algorithm is illustrated in 
Figure A.4. This algorithm is executed only by super-peers. In addition, super-peers and 
clients periodically probe their counterparts in order to detect failure. If a client fails, it 
is simply removed form the CLIENTS set. If a super-peer fails, each of its clients needs to 
probe some nodes in UNDERLOADED set to check if they are willing to accept it as client; 
if not, it becomes a super-peer and starts to run the super-peer selection algorithm. This 
function is illustrated in Figure A.5. 

 
RANDOMPEER(): 
      S ← { r | cr ≥ cp ∧ r ∈ UNDERLOADED }  %%  Select those super-peers that have capacity  
      q ← null     %%  higher than or equal to the local peer capacity.  
      while ( S ≠ ∅ ∧ q = null ) 
 r ← 〈pick a random node from S〉  %% UNDERLOADED may contain obsolete info, 
 S = S – {r}    %% multiple selections are made until a node is 
 lr ← 〈request load from r〉   %% found that is up and has capacity to accept 
 if (lr < cr ∧ (cp < cr ∨ lr > lp)    //Found %% more clients. If same capacity, the one with 
        q ← r    %% more clients than the local node will be  
     return q     %% selected. 



APPENDIX A 
 

162 

 
 
SENDSTATE(q):     %% Select as many of the local clients as the 
      C ← 〈select min(cq – lq, lp) local clients〉  %% chosen peer is able to accept, i.e. the number  
      send C to q     %% of clients to be transferred to the selected peer. 
RETURNSTATE(q): send ∅ to q   %% All local clients have been transferred. 

%% In addition, the local peer changes role to 
%% client. 
 
 

UPDATE(C, q):     %% This is for the selected peer that has higher 
      CLIENTS ← CLIENTS ∪ C   %% capacity and will accept clients transferred.  
      if (lq == 0 ∧ lp < cp)    %% When all the clients of q has been transferred, 
  CLIENTS ← CLIENTS ∪ {q}   %% and the selected peer has more capacity, q will  
 〈q becomes a client〉   %% become a client of the selected peer. 
      else if (∃r ∈ CLIENTS: cr > cq)   %% Otherwise, if the selected peer has a local 
 〈transfer clients of q to r〉   %% client r that has more capacity than q, the 
 CLIENTS ← CLIENTS ∪{q} – {r}  %% remaining clients of q will be transferred to r  
 〈q becomes a client, r becomes a super-peer〉   %% with role change between r and q. 

 
Figure A.4. The super-peer selection algorithm. Notations: p is the local peer; q and r 
are remote peers; lq denotes the number of clients of the remote peer q, obtained by an 
explicit request; lp denotes the local number of clients (adapted from [Mon04]). 

 
DOCLIENT(p): 
      〈probe p’s super-peer〉   %% Check the status of p’s super-peer. 
      if 〈super-peer fails〉   %% If super-peer fails, select a random super-peer 
       S ← { r | r ∈ UNDERLOADED }  %% from UNDERLOADED. 
       found ← false     
       while (!found ∧ S ≠ ∅)   %% Since UNDERLOADED may contain obsolete 
     r ← 〈pick a random node from S〉  %% info, multiple choices are made to find a 
     lr ← 〈request load from r〉  %% super-peer r that is up and is able to accept  
     if (lr < cr)    //Found   %% more clients. 
      〈p becomes client of r〉  %% If found, p becomes a client of r. 
                found ← true 
      if (!found)   %% Otherwise, p becomes a super-peer itself. 
     〈p becomes a super-peer〉 

 
Figure A.5. Periodic check of super-peer status in a client. 

A.3. Construction and Maintenance of Super-peer SONs 

In a super-peer SON-based service discovery system, each node is associated with one 
or several SONs. Each SON has a super-peer, and other nodes in the SON are assigned 
client role. The above described SG-1 algorithm thus needs to be modified in order to 
construct super-peer based SONs. Figure A.6 shows the new data model of a node. Each 
node maintains the following data: 
 

• NodeId: the node identifier. 
• Capacity: the node capacity. 
• ConnectedSet: the neighbours that the node can communicate with. 



APPENDIX A 
 

163 

• ServiceDescriptionSet: the set of service descriptions contained in the node. 
• CategorySet: the set of service categories corresponding to the SONs that the 

node joins. 
• SONinfo: contains SON-related information for each SON that the node joins. 

o ServiceCategory: the service category corresponding to the SON. 
o Role: the role of this node in this SON, which is either super-peer or 

client. 
o SuperpeerInfo: for each super-peer role, two datasets are defined: 

 SuperpeerSet: contains a random sample of super-peers that this 
node can communicate with. 

 UnderloadedSet: the super-peers from the SuperpeerSet that can 
accept more clients. 

 ClientSet: contains the clients that this node manages.  
o ClientInfo: for a client role, it refers to the super-peer that this node is 

connected with. 
 

NodeCapacity NodeId

CategorySet

SONinfo

ServiceCategory
-SuperpeerId

ClientInfo SuperpeerInfo

Role SuperpeerSet

ClientSet

1 1

1

1..*

11

1 1

1

1

1

1..*

1

0..1

1

0..1 1

1

1 1 1

1..*

1

1..*ConnectedSet
1

1

UnderloadedSet

1

1..*

1
1 1

1..*

ServiceDescriptionSet

1

1

1

1

 
 

Figure A.6. The data model for a node. 
 
The algorithm for construction and maintenance of super-peer networks needs to be 

modified accordingly. The main changes are: 
 

• The partial view information exchanged by P1 should include CategorySet 
information. As a result, CONNECTED set contains neighbours for each SON that 
the local node joins. In other words, the neighbours are associated with service 
category. 

• P2 and P3 are executed for each service category in the CategorySet (i.e. for 
each SON that the node joins).  

• At start up, each node is assigned super-peer role. A node can be super-peers for 
several SONs, but the total number of clients it manages must be smaller than its 
capacity. As to be noted, this choice may not be the optimal from the resource 
utilization point of view. We have only experimented with single service 



APPENDIX A 
 

164 

category case, i.e., each node joins only one SON (i.e. the one corresponding to 
a service category group that has the highest number of service descriptions in a 
node). The optimal capacity allocation is a challenge in the implementation of 
multiple service categories case. 

 



APPENDIX B 
 

165 

APPENDIX B: PeerSim Simulator 
The PeerSim simulator [Pee07] is applied for the simulation of constructing and 
maintaining super-peer SONs. This appendix first gives a brief introduction of PeerSim, 
and then presents an example simulation of the construction of super-peer SON 
networks using PeerSim. 

PeerSim is an open source, Java based, P2P simulation framework aimed at 
developing and testing P2P algorithms in a dynamic environment. The main goals for 
PeerSim are high scalability and support for dynamicity. It is targeted for large-scale 
environment, and can scale up to 1 million peers. All the algorithms developed in the 
BISON project [BIS07] have been developed and tested on PeerSim.  

PeerSim supports two simulation models:  
 
• Round-based (or cycle-based): the simulation runs in a sequential order, and in 

each round, each node runs its protocols sequentially. 
• Event-based: a set of events (messages) are scheduled and the node protocols are 

run according to the message delivery time order. 
 
Round-based simulation model is used in our experiment. This model achieves high 

scalability and performance at the cost of some loss of realism. The simplifying 
assumptions of round-based model are as follows:  

 
• Lack of transport layer simulation. Each node can communicate with each other 

directly using method calls. The overhead introduced by the low level 
communication protocol stack such as TCP or UDP is ignored. 

• Lack of concurrency. Each node is given control periodically, and in a sequential 
order, when it can perform arbitrary actions (i.e. control or protocol actions).  

 
The main objects in PeerSim simulator are:  
 
• Node. Each node object can run many protocols. 
• Protocol. It defines the operations to be performed at each round. Each protocol 

uses only local information. 
• Control. It defines operations that require global network knowledge. Each 

control object is associated with a scheduler, which determines when the actions 
defined in the control object should be performed. Control objects can be further 
distinguished as Initializers, Dynamics and Observers.  

o Initializer objects are used to initialize the protocol status and node 
properties (e.g., node capacity). They are scheduled to run only at the 
beginning of the simulation.  

o Dynamic objects are used to add dynamics to the system behaviour by 
changing some parameters (e.g. remove or inject nodes at predefined 
time intervals).  

o Observer objects are used to monitor the system properties and gather 
the system statistics. Both Dynamics and Observers can be scheduled to 
run periodically or at certain points during the simulation. 



APPENDIX B 
 

166 

 
PeerSim has a configuration file which is loaded at the beginning of the simulation. 

The configuration file defines the simulation parameters (e.g. network size, node 
capacity), the protocols defined for each node, the Initializers, as well as the Dynamics 
and Observers that need to be run at specified points. 

Figure B.1 depicts the execution of the PeerSim simulator. 
 
Simulator(): 
 〈load configuration file〉 
 〈run initializers〉 
 while (time < MaxRounds ∧ !StopCondition) 
       for (each node in the network) 
  〈run each protocol〉 
       for (each Dynamic and Observer object o) 
  if (o.scheduler.active()) 
       〈perform o’s actions〉 
 
Figure B.1. The execution of the PeerSim round-based simulator. 
 
Figure B.2 illustrates an example simulation of the construction of super-peer 

networks. All the 7 nodes want to join the same SON (i.e. have the same service 
category). Each node has node Id and capacity, depicted in the small circle. The size of 
the partial view is 3. Each node has three datasets, the CONNECTED set (C), SUPERPEERS 
set (S) and UNDERLOADED set (U) (cf. APPENDIX A). The dashed lines with arrow 
constitute the underlying topology. A directed line shows the relationship from a client 
to its super-peer. At start up, each node assumes super-peer role, shown in Figure 
B.2(a). In the PeerSim round-based simulation, for each round, each node will 
sequentially execute all its protocols, namely, P1, P2, and P3. We assume that a node 
selects the same peer to exchange views for all the three protocols at each round. In real 
simulation, however, a node will randomly select one peer to exchange views for each 
protocol. Hence, different protocols may select different peers to exchange.  

 
• When node A starts its super-peer selection algorithm (P3), it first looks for a 

peer from UNDERLOADED set which has higher capacity than itself. It selects 
node B, and exchanges state with B. Since node B has higher capacity than node 
A and is underloaded, node A changes into a client of node B, as shown in 
Figure B.2(b).  

• For node B, it selects node G from its UNDERLOADED set. Since node G has 
higher capacity than node B and has available capacity to accept both node B 
and its clients (i.e. node A), node A and B changes into clients of node G. Such 
role changing and client transfer is shown in Figure B.2(c).  

• Similarly, node C exchange with node G and become client of G, as shown in 
Figure B.2(d). 

• Since G has now reached its capacity (i.e. it has 3 clients) and can not accept 
more clients, node D can only select node E and changes role into client of node 
E, as shown in Figure B.2(e). 



APPENDIX B 
 

167 

• Node E finds that node F has higher capacity and can further accept node E with 
its client, therefore, role changing and client transfer occurs as shown in Figure 
B.2(f).  

• For node F, there is no underloaded super-peer that has higher capacity, so it 
does nothing.  

• For node G, node F has higher capacity than it, but node F can only accept 2 
more clients. Therefore, node A and node B are transferred as clients of node F. 
A final check is whether node F has a client with higher capacity than node G. 
Since no other node has higher capacity than node G, node G remains a super-
peer with only one client node C. Therefore, at the end of this simulation round, 
two super-peers (node F and node G) are selected for the network of 7 nodes, as 
shown in Figure B.2(g). 

• If a super-peer fails (e.g. node G), all its clients need to find new super-peers. 
Since node F has now reached its maximum capacity, node C decides to be 
super-peer itself, and waits to participate in another round of super-peer 
selection. The result is illustrated in Figure B.2(h). 

 
As to be noted: 
 
• Figure B.2(b) – B.2(g) represent one simulation round execution sequence, 

while Figure B.2(h) shows the result of another simulation round. 
• Since partial views are updated at each round by NEWSCAST, the topology 

generated is in a continuous state of flux. Even when the physical underlying 
network is stable, the list of neighbours contained in the CONNECTED dataset 
(representing continuously fresh samples of the network) may still differ after a 
state exchange. The CONNECTED dataset actually contains the neighbours that the 
node can potentially communicate via a routed path in the physical underlying 
network.  



APPENDIX B 
 

168 

A,1

C={F,B,G}

C={A,G,C}

C={B,G,A}

C={F,B,C}

C={A,C,G}

(a) Startup

S={B,G,A}
U={B,G,A}

S={A,G,C}
U={A,G,C}

U={F,B,G}
S={F,B,G}

S={F,B,C}
U={F,B,C}

S={A,C,G}
U={A,C,G}

SP

SP
SP

SP

SP

F,4

B,2

C,1
G,3

E,2

D,1

SP
SP

C={G,C,E}
S={G,C,E}
U={G,C,E}

C={F,G,D}
S={F,G,D} U={F,G,D}

A,1

C={F,B,G}

C={G,C,F}

C={B,G,A}

C={F,B,C}

C={A,C,G}

(b) Node A exchanges with Node B

S={B,G,A}
U={B,G,A}

S={G,C,F}
U={G,C,F}

U={F,B,G}
S={F,B,G}

S={F,B,C}
U={F,B,C}

S={A,C,G}
U={A,C,G}

SP

SP
SP

SP

CL

F,4

B,2

C,1
G,3

E,2
D,1

SPSP
C={G,C,E}
S={G,C,E}
U={G,C,E}

C={F,G,D}
S={F,G,D} U={F,G,D}

A,1

C={F,B,G}

C={G,C,F}

C={B,G,A}

C={F,B,C}

C={A,C,G}

(c) Node B exchanges with Node G

S={B,G,A}
U={B,G,A}

S={G,C,F}
U={G,C,F}

U={F,G}
S={F,G}

S={F,C}
U={F,C}

S={A,C,G}
U={A,C,G}

CL

SPSP

SP

CL

F,4

B,2

C,1
G,3

E,2
D,1

SPSP
C={G,C,E}
S={G,C,E}
U={G,C,E}

C={F,G,D}
S={F,G,D} U={F,G,D}

A,1

C={F,B,G}

C={G,C,F}

C={G,F,B}

C={F,B,C}

C={A,C,G}

(d) Node C exchanges with Node G

S={G,F}
U={F}

S={G,F}
U={F}

U={F}
S={F,G}

S={F}
U={F}

S={A,C,G}
U={A,C,G}

CL

CL
SP

SP

CL

F,4

B,2

C,1
G,3

E,2

D,1

SPSP
C={G,C,E}
S={G,C,E}
U={G,C,E}

C={F,G,D}
S={F,G,D} U={F,G,D}

A,1

C={F,B,G}

C={G,C,F}

C={G,F,B}

C={F,B,C}

C={A,C,G}

(e) Node D exchanges with Node E

S={G,F}
U={F}

S={G,F}
U={F}

U={F}
S={F,G}

S={F}
U={F}

S={A,C,G}
U={A,C,G}

CL

CL
SP

SP

CL

F,4

B,2

C,1
G,3

E,2

D,1

CL
SP

C={G,E,F}
S={G,E,F}
U={E,F}

C={F,G,D}
S={F,G} U={F}

A,1

C={F,B,G}

C={G,C,F}

C={G,F,B}

C={F,B,C}

C={A,C,G}

(f) Node E exchanges with Node F

S={G,F}
U={F}

S={G,F}
U={F}

U={F}
S={F,G}

S={F}
U={F}

S={G}
U={}

CL

CL
SP

SP

CL

F,4

B,2

C,1
G,3

E,2

D,1CL

CL

C={G,E,F}
S={G,F}
U={F}

C={F,G,D}
S={F,G}
U={F}

A,1

C={F,B,C}

C={A,C,F}

C={F,B,A}C={A,C,B}

(h) When node G fails, node C assumes SP role

S={F}
U={}

S={F,C}
U={C}

U={C}
S={F,C}

S={C}
U={C}

CL

SP

SP

CL

F,4

B,2

C,1
G,3

E,2

D,1

CLCL

C={C,E,F}
S={F,C}
U={C}

C={F,D,C}
S={F,C} U={C}

Directed connection in underlying topology

Super-peer/client relationship, pointed from 
client to its super-peer

SP

CL

Super-peer role

Client role

x,k Node with Id x and capacity k

Legend: C={x1,x2,x3}
S={x1,x2,x3}
U={x1,x2,x3}

CONNECTED dataset
SUPERPEERS dataset
UNDERLOADED dataset

A,1

C={F,B,G}

C={G,C,F}

C={G,F,B}

C={F,B,C}

C={A,C,G}

(g) Node G transfers some clients to Node F

S={G,F}
U={G}

S={G,F}
U={G}

U={G}
S={F,G}

S={F}
U={}

S={G}
U={G}

CL

CL

SP
SP

CL

F,4

B,2

C,1G,3

E,2
D,1CL

CL
C={G,E,F}
S={G,F}
U={G}

C={F,G,D}
S={F,G} U={G}

 
Figure B.2. Example of the construction and maintenance of super-peer networks. 
 



APPENDIX C 
 

169 

APPENDIX C: Additional Simulation Results 
This appendix provides additional results from the simulations on super-peer SON 
service discovery system. 

C.1 Discovery Overhead Factor 

To normalize messages-per-request, an evaluation measure called discovery overhead 
factor is defined, which is the value of messages-per-request divided by the number of 
matches (i.e. the retrieved matching services). A small discovery overhead factor means 
a small messages-per-request value per match. The simulation parameters are the same 
as those used in the simulations for the evaluation of service discovery efficiency of 
PAPER C. Figure C.1 shows the average discovery overhead factor for different 
network sizes when recall=1.0. It shows that SON power-law system has a very small 
and almost stable discovery overhead factor (0.04-0.06). SON uniform system has a 
small discovery overhead factor, but it increases with network size. Gnutella system has 
a high discovery overhead factor for both uniform and power-law distributions and the 
value also increases with network size.  

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Network size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

 d
is

co
ve

ry
 o

ve
rh

ea
d 

fa
ct

or

Gnutella Uniform
Gnutella Power-law
SON uniform
SON power-law

2000 4000 6000 8000 10000
0.02

0.04

0.06

0.08
SON power-law

 
Figure C.1. Average discovery overhead factor for different network sizes when 
recall=1.0. 

C.2 Observed Standard Deviation in Experiments 

The results of average messages-per-request and discovery overhead factor shown in 
Figure 5 in PAPER C and Figure C.1 in this appendix have been averaged over 10 
replications, and for each replication, the value is averaged over 25000 service requests. 
Table C.1, Table C.2 and Table C.3 show the corresponding standard deviation in these 
experiments. The mean value refers to the average of the data, which are plotted in the 
figures. The mean value along with the standard deviation reflects the dispersion of the 
data. A high value of standard deviation for a small mean value means that the data are 
dispersed significantly whereas a low standard deviation for a high value of mean value 
means the opposite.  



APPENDIX C 
 

170 

Table C.1. The mean value and the standard deviation of messages-per-request value 
for different network sizes (recall=1.0) for Figure 5 of PAPER C. 

SON uniform distribution SON power-law distribution Number of Nodes 
Mean value Standard deviation Mean value Standard deviation 

1000 861,7 7,16 383,5 2,06 
2000 1358,7 14,43 403,5 3,38 
3000 1863,8 16,43 425,7 3,3 
4000 2679,9 20,37 445,4 3,89 
5000 3182,2 22,58 465,2 4,16 
6000 3686,7 22,22 486 2,15 
7000 4190,4 22,84 507,7 7,36 
8000 5096,8 17,82 525,9 6,63 
9000 5600,1 21,39 550,1 4,86 

10000 6107,3 24,05 566,2 4,74 
 

Table C.2. The mean value and the standard deviation of discovery overhead factor 
value for different network sizes (recall=1.0) for Figure C.1 in this appendix (for SON 
system). 

 
SON uniform distribution SON power-law distribution Number of nodes 

Mean value Standard deviation Mean value Standard deviation 
1000 0,1302 0,0249 0,05557 0,01037 
2000 0,1462 0,0086 0,05095 0,01853 
3000 0,1921 0,0051 0,04515 0,00101 
4000 0,271 0,0025 0,04618 0,0006 
5000 0,3209 0,0022 0,04784 0,00038 
6000 0,3698 0,0022 0,04963 0,00033 
7000 0,423 0,0033 0,05181 0,00078 
8000 0,5204 0,0278 0,0533 0,00067 
9000 0,5632 0,0025 0,05579 0,00054 

10000 0,6125 0,0019 0,05728 0,00046 
 

Table C.3. The mean value and the standard deviation of discovery overhead factor 
value for different network sizes (recall=1.0) for Figure C.1 in this appendix (for 
Gnutella system). 

 
Gnutella uniform distribution Gnutella power-law distribution Number of nodes 

Mean value Standard deviation Mean value Standard deviation 
1000 0,26559 0,01779 0,31545 0,168006 
2000 0,52926 0,02364 0,57863 0,18954 
3000 0,78345 0,03082 0,82605 0,21174 
4000 1,04256 0,03333 1,0793 0,21009 
5000 1,3209 0,03799 1,3662 0,26115 
6000 1,5127 0,037203 1,5539 0,26899 
7000 1,8596 0,04129 1,90105 0,29449 
8000 2,1382 0,03975 2,1832 0,32383 
9000 2,3555 0,03138 2,3904 0,29958 

10000 2,6428 0,03952 2,6819 0,35489 
 



BIBLIOGRAPHY 
 

171 

Bibliography 
[Aag07]  F. A. Aagesen. Lectures on “Network and Service Management”. 2007. 
 
[AASH02] F. A. Aagesen, C. Anutariya, M. M. Shiaa and B. E. Helvik. Support 

Specification and Selection in TAPAS. Proceedings of the IFIP WG6.7 
Workshop and EUNICE Summer School on Adaptable Networks and 
Teleservices, Trondheim, Norway, September 2002. 

 
[AC07]  IBM Autonomic computing. http://www.research.ibm.com/autonomic/. 

Accessed December 2007. 
 
[AHAS03]  F. A. Aagesen, B. E. Helvik, C. Anutariya and M. M. Shiaa. On 

Adaptable Networking. The First International Conference on 
Information and Communication Technologies, ICT’2003, Assumption 
University Thailand, April 2003 . 

 
[ANA07]  ANA: Autonomic Network Architecture project. http://www.ana-

project.org/. Accessed December 2007. 
 
[AS04]  S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer 

Content Distribution Technologies. ACM Computing Surveys, Vol. 36, 
No. 4, December 2004, pp. 335-371. 

 
[AS07] F. A. Aagesen and P. Supadulehai. A Capability-based Service 

Framework for Adaptable Service Systems. In Proceedings of The 2nd 
International Conference on Advances in Information Technology 
(IAIT2007), Bangkok, Thailand, November 2007. 

 
[ASAS05]  F. A. Aagesen, P. Supadulchai, C. Anutariya and M. M. Shiaa. 

Configuration Management for an Adaptable Service System. IFIP 
International Conference on Metropolitan Area Networks, Architecture, 
Protocols, Control, and Management, April 11-13, 2005, Ho Chi Minh 
City, Viet Nam. 

 
[AWW02]  C. Anutariya, V. Wuwongse and V. Wattanapailin. An Equivalent-

Transformation-based XML Rule Language. Proceedings of the Proc. 
International Workshop on Rule Markup Languages for Business Rules 
in the Semantic Web, Sardinia, Italy. June 2002. 

 
[Baj06]  S. Bajaj et al. Web Services Policy Framework (WS-Policy). 2006. 

http://www-128.ibm.com/developerworks/library/specification/ws-
polfram/.  

 
[BDD99]  H. Berndt, E. Darmois, F. Dupuy, et al. The TINA Book: a co-operative 

solution for a competitive world. Published by Prentice Hall Europe, 
1999. 

http://www.research.ibm.com/autonomic/
http://www.ana-project.org/
http://www.ana-project.org/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/library/specification/ws-polfram/


BIBLIOGRAPHY 
 

172 

 
[Bion07]  Bionets project. http://www.bionets.org/. Accessed December 2007. 
 
[BIS07]  The BISON Project. http://www.cs.unibo.it/bison. Accessed December 

2007. 
 
[Bri91]  E. Brinksma. What is the method of formal methods? Forte’91. Sidney, 

Australia, November, 1991. 
 
[CB06] H. N. Castejon and R. Bræk. Formalizing Collaboration Goal Sequences 

for Service Choreography. In Proceedings of FORTE’06, September 26-
29, 2006, Paris, France. Springer-Verlag, LNCS 4229, 2006. 

 
[CDK99]  A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, 

and D. Villela. A Survey of Programmable Networks. ACM SIGCOMM 
Computer Communication Review, Vol. 29, No. 2, pp. 7-23. Apr. 1999. 

 
[CFN04]  C. Carrez, A. Fantechi, and E. Najm. Assembling Components with 

Behavioural Contracts. Annals of Telecomms, 2004. 
 
[CG02]  A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P 

Systems. Technical Report, Computer Science Department, Stanford 
University, October 2002.  

 
[DDF06]  S. Dobson, S. Denazis, A. Fern´andez, D. Ga¨ıti, etc. A Survey of 

Autonomic Communications. ACM Transactions on Autonomous and 
Adaptive Systems, Vol. 1, No.2, pp. 223–259, December 2006. 

 
[DFM00]  R. Dingledine, M. Freedman, and D. Molnar. The FreeHaven Project: 

Distributed Anonymous Storage Service. In Worshop on Design Issues 
in Anonymity and Unobservability. 67-95. 2000. 

 
[DGHI87]  A. Demers, D. Greene, C. Hauser, W. Irish, et al. Epidemic Algorithms 

for Replicated Database Management. In Proc. of 6th ACM Symp. On 
Principles of Distributed Computing. PODC’87, Vancouver, August 
1987. 

 
[DZ83]  J. D. Day, and H. Zimmermann. The OSI Reference Model. Proc. Of the 

IEEE, vol. 71, pp. 1334-1340. 1983. 
 
[ECAC07]  European Commission Autonomic Communication. 

http://www.autonomic-communication.org/. Accessed December 2007. 
 
[Flo03] J. Floch. Towards Plug-and-Play Services: Design and Validation using 

Roles. PhD thesis, 2003:47, NTNU, Trondheim, February, 2003. 
 

http://www.bionets.org/
http://www.cs.unibo.it/bison
http://www.autonomic-communication.org/


BIBLIOGRAPHY 
 

173 

[Gon01]  L. Gong. JXTA: A Network Programming Environment. Internet 
Computing. IEEE, vol. 5(3), May-June 2001. 

 
[HS04] P. Haase and R. Siebes. Peer Selection in Peer to Peer networks with 

semantic topologies. In Proceedings of the 13th International World Wide 
Web Conference (WWW), New York, NY USA. May, 2004. 

 
[IN92]  CCITT Recommendation Q.1200: Q Series Intelligent Network 

Recommendation Structure. March 1992. 
 
[JA03]  S. Jiang and F. A. Aagesen. Design and Implementation for XML-based 

Dynamic Service Behaviour Representation. Plug-and-play technical 
report, 2. Trondheim: Department of Telematics, NTNU, 2003. ISSN 
1500-3868. 

 
[JKS03]  M. Jelasity, W. Kowalczyk and M. van Steen. Newscast Computing. 

Technical Report IR-CS-006, Vrije Universiteit Amsterdam, Department 
of Computer Science, November 2003. 

 
[Kaz07]  Kazaa homepage. http://www.kazaa.com/. Accessed December 2007. 
 
[KM90] J. Krameer and J. Magee. The Evolving Philosophers Problem: Dynamic 

Transactions on Software Engineering, 16(11):1293-1306, November 
1990. 

 
[LW00]  Lime Wire LLC. Gnutella – Limewire 4.0. http://www.limewire.com/. 

2000. 
 
[Mon04] A. Montresor. A Robust Protocol for Building Superpeer Overlay 

Topologies. Proceedings of the Fourth International Conference on Peer-
to-Peer Computing (P2P 2004), August 25-27, 2004, pp. 202-209. 

 
[MS95] S. T. March and G. F. Smith. Design and Natural Science Research on 

Information Technology. Decision Support Systems. 15(4): 251-266. 1995. 
 
[NGN04]  ITU-T. Recommendation Y.2001. General Overview of NGN. 

December. 2004. 
 
[NGN07]  ITU-T. CSR 2007 Discussion Paper. NGN Overview. Available: 

http://www.itu.int/ITU-
D/treg/Events/Seminars/GSR/GSR07/discussion_papers/Cohen_NGN_O
verview_Final.pdf. Accessed December 2007. 

 
[ODP95] ISO/IEC 10746-1; ITU-T X.901. Basic Reference Model of Open 

Distributed Processing – Part1: Overview. ISO, 1995. 
 

http://www.kazaa.com/
http://www.limewire.com/
http://www.itu.int/ITU-D/treg/Events/Seminars/GSR/GSR07/discussion_papers/Cohen_NGN_Overview_Final.pdf
http://www.itu.int/ITU-D/treg/Events/Seminars/GSR/GSR07/discussion_papers/Cohen_NGN_Overview_Final.pdf
http://www.itu.int/ITU-D/treg/Events/Seminars/GSR/GSR07/discussion_papers/Cohen_NGN_Overview_Final.pdf


BIBLIOGRAPHY 
 

174 

[OWLS03] The OWL Services Coalition. OWL-S: Semantic Markup for Web 
Services. 2003. http://www.daml.org/services/owl-s/1.0/owl-s.html.  

 
[Pee07] PeerSim: a peer-to-peer simulator. http://peersim.sourceforge.net/. 

Accessed December 2007. 
 
[PSNS03] M. Paolucci, K. Sycara, T. Nishimura, and N. Srinivasan. Using DAML-

S for P2P Discovery. In Proceedings of ICWS’03. 
 
[RD01]  A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object 

Location and Routing for Large-scale Peer-to-Peer Systems. In 
Middleware, 2001.  

 
[RFHK01]  S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A Scalable Content-

Addressable Network. SIGCOMM 2001. 
 
[RPOS05]  S. Ryu, S. K. Park, D. Oh, G. Sihn, K. Han, and S. Hwang. Research 

Activities on Next-Generation Mobile Communications and Services in 
Korea. IEEE Communications Magazine. September 2005. 

 
[SB04] R. T. Sanders and R. Bræk. Modelling Peer-to-Peer Service Goals in 

UML. In Proceedings of 2nd IEEE Intl. Conf. on Software Engineering 
and Formal Methods, 2004. 

 
[SBBA05] R. T. Sanders, R. Bræk, G. Von Bochman and D. Amyot. Service 

Discovery and Component Reuse with Semantic Interfaces. In 
Proceedings of 12th Intl. SDL Forum, LNCS 3530, pages 85-102, 2005. 

 
[SBF98] R. Studer, V. R. Benjamins and D. Fensel. Knowledge Engineering: 

Principles and Methods. Data and Knowledge Engineering, 25(1-2):161-
197, 1998. 

 
[SCKB05] R. T. Sanders, H. N. Castejon, F. Kraemer and R. Bræk. Using UML 2.0 

Collaboration for Compositional Service Engineering. In Proceedings of 
the 8th International Conference on Model Driven Engineering 
Languages and Systems (MoDELS/UML 2005). Montego Bay, Jamaica, 
October 2-7 2005. Springer Verlag, LNCS 3713, 460-475, 2005.  

 
[SDL00] ITU-T. Recommendation Z.100. Specification and Description Language 

(SDL). Geneva, 2000 (11/99). 
 
[SMK01]  I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. 

Chord: A Scalable Peer-to-Peer Lookup Service for Internet 
Applications. SIGCOMM 2001. 

 
[Sup07] P. Supadulchai. NxET Reasoning Engine. Plug-and-play Technical 

Report, Department of Telematics, NTNU, ISSN 1500-3868, 2007. 

http://www.daml.org/services/owl-s/1.0/owl-s.html
http://peersim.sourceforge.net/


BIBLIOGRAPHY 
 

175 

 
[SW07]  W3C Semantic Web Activity Homepage. http://www.w3.org/2001/sw/. 

Accessed December 2007. 
 
[SWM04]  M. K. Smith, C. Welty and D. L. McGuinness. OWL Web Ontology 

Language Guide. W3C Recommendation. February 2004. 
 
[TSS97]  D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and 

G. J. Minden. A Survey of Active Network Research. IEEE 
Communications Magazine, Vol. 35, No. 1, pp80-86. January 1997. 

 
[UML05] Object Management Group. Unified Modelling Language: 

Superstructure Specification, version 2.0. Needham, USA, August, 2005. 
 
[UML07] UML Reseouce Page. http://www.uml.org/. Accessed December 2007. 
 
[VK04] V. Varishnavi and B. Kuechler. Design Research in Information 

Systems. Association for Information Systems, January 2004. Available 
online: http://www.isworld.org/Researchdesign/drisISworld.htm.  

 
[WAAN01]  V. Wuwongse, C. Anutariya, K. Akama, and E. Nantajeewarawat. XML 

Declarative Description: A Language for the Semantic Web. IEEE 
Intelligent Systems, Vol. 16, No. 3, May/June 2001, pp. 54-65. 

 
[WS07]  W3C Web Services Activity Homepage. http://www.w3.org/2002/ws/. 

Accessed December 2007. 
 
[WSDL01]  W3C. Web Services Description Language (WSDL) 1.1. March 2001. 

http://www.w3.org/TR/wsdl.  
 
[XML06] W3C: eXtensible Markup Language (XML) 1.0 (Fourth Edition). August 

2006. http://www.w3.org/TR/2006/REC-xml-20060816/.  
 
[YG03]  B. Yang and H. Garcia-Molina. Designing a Super-peer Network. IEEE 

International Conference on Data Engineering (ICDE’03), 2003.  
 
[ZKJ01]  B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for 

Fault-tolerant Wide-area Location and Routing. Technical Report, 
UCB/CSD-01-1141, Computer Science Division, University of 
California, Berkeley. April 2001. 

 

http://www.w3.org/2001/sw/
http://www.uml.org/
http://www.isworld.org/Researchdesign/drisISworld.htm
http://www.w3.org/2002/ws/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2006/REC-xml-20060816/

	Abstract 
	Preface 
	Acknowledgements 
	Contents 
	List of Papers 
	List of Figures 
	List of Tables 
	 
	Abbreviations 
	 
	PART I: INTRODUCTION 
	1. Service Related Definitions 
	1.1 Networked Services 
	1.2 Service Models 
	 
	1.3 Service Life Cycle Concepts 
	1.4 Service Ontology 

	2.   Key Technologies for Networked Services 
	2.1 Overview 
	2.2 Adaptable Service Systems 
	2.3 Peer-to-Peer Technology 

	3.   Research Objectives, Problem Statements, Research Topics and Scope 
	3.1 Research Objectives 
	3.2 Problem Statements 
	3.3 Research Topics 
	3.4 Scope 

	4.  TAPAS 
	4.1 TAPAS Architectures 
	4.2 This Thesis’s Contribution to TAPAS 

	5.  Research Contributions 
	5.1 General 
	5.2 Topic T1: Service Representation 
	5.3 Topic T2: Service Discovery 
	5.4 Topic T3: Service Instantiation 
	5.5 Topic T4: Service Adaptation 
	5.6 The Realization of the Problem Statements 
	5.7 Guidelines for Reading of Part II 

	6.  Research Methodology 
	7.  Summary of Papers 
	8.  Summary, conclusions and future work 
	8.1 Summary of Results 
	8.2 Conclusions 
	8.3 Directions of Future Work 

	 
	PART II: INCLUDED PAPERS 
	PAPER A: An Approach to Integrated Semantic Service Discovery 
	1. Introduction 
	2. Service Description Elements 
	2.1 Business Policies 
	2.2 QoS Properties 
	2.3 Context Policies 

	3. Integrated Semantic Service Discovery Framework 
	3.1 Integrated Semantic Service Description 
	3.2 Integrated Semantic Service Requirement 
	3.3 Integrated Semantic Service Discovery Procedure 

	4. Related Work 
	5. Conclusions 
	References 

	 
	  
	PAPER B: A Self-organizing Service Discovery System Based on Semantic Overlay Networks 
	  
	1. Introduction 
	2. Related Work 
	3. SON-based Service Discovery System Model 
	4. SON-based Service Discovery System 
	4.1 Assignment of Directories to SONs 
	4.2 Construction and Maintenance of SONs 
	4.3 Service Discovery 

	5. Evaluation 
	6. Conclusion 
	References 

	 
	PAPER C: Efficient Service Discovery System Based on Semantic Overlay Networks 
	1. Introduction 
	2. Requirements to an Efficient SON-based Service Discovery System 
	3. SON-based Service Discovery System Model 
	4. A Super-peer Based SON Service Discovery System 
	4.1 Assignment of Directories to SONs 
	4.2 SONs Construction and Maintenance 
	4.3 Service Discovery 

	5. Evaluation 
	5.1 Evaluation Measures 
	5.2 Experiments 

	6. Related Work 
	7. Conclusions 
	References 

	 
	PAPER D: XML-based Dynamic Service Behaviour Representation  
	1. Introduction 
	2. TAPAS Basic Architecture and Dynamic Configuration Functionality 
	3. Behaviour Description Using XML 
	4. The Implementation in Java and TAPAS Platform 
	5. Conclusion 
	References 

	 
	PAPER E: Automatic Translation of Service Specification to a Behavioural Type Language for Dynamic Service Verification 
	1. Introduction 
	2. Some TAPAS Concepts 
	3. Behavioural Type Language 
	4. Translation Methodology 
	4.1 Messages 
	4.2 Deactivation of Interfaces 
	4.3 Hidden Actions and Their Removal 

	5. Related Work 
	6. Conclusion 
	References 

	 
	PAPER F: An Approach for Dynamic Service Management 
	1. Introduction 
	2. Related Work 
	3. TAPAS Conceptual Model 
	4. TAPAS Core Platform 
	5. Dynamic Service Management 
	5.1 The Framework 
	5.2 The Action Library and Capability Category Specifications and Rules 
	5.3 The Functionality of the Service Manager 

	6. Example 
	7. Conclusions 
	References  

	 
	PAPER G: An XML-Based Framework for Dynamic Service Management 
	1. Introduction 
	2. Related Work 
	3. Service Specification 
	4. Dynamic Service Management Framework 
	5. Implementation issues 
	6. Experimentation Scenarios 
	7. Conclusion 
	References 

	 
	PART III: APPENDICES 
	APPENDIX A: Algorithms for Construction and Maintenance of Super-peer SONs 
	A.1 The Structure of the Protocol Stack and Datasets in a Node 
	A.2. Gossip-based Protocols 
	A.3. Construction and Maintenance of Super-peer SONs 

	APPENDIX B: PeerSim Simulator 
	APPENDIX C: Additional Simulation Results 
	C.1 Discovery Overhead Factor 
	C.2 Observed Standard Deviation in Experiments 

	Bibliography 


