
Methods for Enhancement

of Timestamp Evidence

in Digital Investigations

Doctoral thesis
for the degree philosophiae doctor

Trondheim, January 2008

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Svein Yngvar Willassen

NTNU
Norwegian University of
Science and Technology

Doctoral thesis
for the degree philosophiae doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

© Svein Yngvar Willassen

ISBN 978-82-471-6227-9 (printed version)
ISBN 978-82-471-6230-9 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:19

Printed by NTNU-trykk

iii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Stig Frode Mjølsnes. His guidance and helpful

feedback has helped shape and direct this work. I would also like to thank the others at

Department of Telematics for many discussions providing valuable inspiration. Special

thanks to Kristian Gjøsteen for mathematical insights and fruitful discussions about

digital forensics and digital security. Thanks to Tore Amble at the Department of

Computer and Information Science for introducing me to Shanahan’s Event Calculus.

Also thanks to Eugene Spafford at Purdue University and Pavel Gladyshev at University

College Dublin. The discussions we had during our meetings in Norway as well as during

my visits to West Lafayette and Dublin were most inspiring.

Thanks to the many people in the Digital Forensics community in Norway. Special

thanks to my previous colleagues in Økokrim, Inger Marie Sunde, Steffen Thorkildsen

and Lars Wilberg and to my previous colleagues in Ibas AS. Their work and support has

been most inspiring for me. Also great thanks to the anonymous participants in the

antedating experiment for supporting this work with their valuable time.

I would also like to thank my family; my wife Ingebjørg and my three children Kristian,

Johannes and Sigrid. Their support enabled me to go back to research after working in

the public and private sector, and provided me with the necessary time and energy to

complete this work.

This work was performed under the project Timestamps in Digital Forensics, funded by

the Norwegian Research Council under project number 164378/V30. I am deeply grateful

for the financial support of the Norwegian government that enabled this work.

iv

TABLE OF CONTENTS

1 INTRODUCTION ..1

1.1 Timestamps and their origin ..1

1.2 The digital investigation process ..3

1.3 The role of timestamps in digital investigations...5

1.4 Sources of error and uncertainty in timestamps...6

1.5 Implications of timestamp error and uncertainty in investigations8

1.6 Timestamps and causality, thesis statement ..10

1.7 Related work ..12

1.8 Outline ...13

2 CASE STUDIES ...15

2.1 Antedated documents...15

2.2 Timestamps as bogus alibi ...17

2.3 Clock manipulation in a contract investigation..18

2.4 Timestamps in procedure ...21

3 REASONING ON SETS OF CAUSAL EVENTS WITH TIMESTAMPS24

3.1 Causality ..24

3.2 Time and time values ...27

3.3 Clocks...29

3.4 Timestamped events...30

3.5 Ideal and non-ideal clocks and their properties ..30

3.6 Clock hypotheses, adjustment and drift ...32

3.7 Observed event sets and correctness ..36

3.8 Clock hypothesis consistency..41

3.9 Subsets, supersets, intersections and unions...42

3.10 The clock hypothesis as a scientific hypothesis ..48

4 CAUSALITY IN STORAGE SYSTEMS..51

4.1 Append only allocation...51

4.2 First-fit allocation...53

4.3 Other allocation strategies..57

4.4 Sequence numbers ..60

4.5 Allocation causality in file systems...61

4.5.1 File system category...62

v

4.5.2 Content category..62

4.5.3 Metadata category..63

4.5.4 File name category ...65

4.5.5 Application category ..65

4.5.6 File system causality ..67

5 TIMESTAMP REASONING WITH EVENT CALCULUS......................................68

5.1 Introduction to Simplified Event Calculus ...68

5.2 Representation of timestamps in Simplified Event Calculus71

5.3 Observation sets and action hypotheses ...76

5.4 Formulating action hypotheses...79

5.5 Using event calculus to test a clock hypothesis..82

5.6 Invariants in the simple file system..84

5.7 Using invariants to test a clock hypothesis ..88

5.8 Using Simplified Event Calculus to develop tests for a system91

5.9 Extending the simple file system with creation and deletion92

5.10 Invariants in the simple file system with creation..95

5.11 Complexity ... 102

6 TIMESTAMP REASONING WITH AFFECTS TABLES..................................... 106

6.1 Actions affects timestamps... 106

6.2 Timestamping orders.. 108

6.3 Action sequences and possible timestamping orders....................................... 110

6.4 Modelling a real file system.. 113

6.5 Complexity ... 115

6.6 Comparison with Simplified Event Calculus .. 122

7 IMPLEMENTATION AND EXPERIMENT.. 125

7.1 Purpose... 125

7.2 TimeStampLogic implementation... 126

7.3 Results from initial TimeStampLogic test runs.. 129

7.3.1 RuleSet ... 130

7.3.2 SequenceChecker .. 131

7.3.3 LogSequenceChecker .. 131

7.4 Document antedating experiment .. 132

7.5 Analysis of the reference image .. 134

7.6 Results.. 134

7.6.1 Subject 1... 135

vi

7.6.2 Subject 2... 136

7.6.3 Subject 3... 137

7.6.4 Subject 4... 138

7.7 Summary .. 138

8 EVALUATION AND CRITICISMS... 141

8.1 Complexity ... 141

8.2 Completeness of the model ... 143

8.3 Correctness of the model .. 146

8.4 The Arms Race Argument ... 147

8.5 Falsified evidence creation.. 150

9 SUMMARY... 153

9.1 Accomplishments.. 153

9.2 Implications.. 154

9.3 Future Directions ... 155

9.3.1 An implementation of invariant derivation .. 155

9.3.2 A database of system functionality .. 156

9.3.3 Forensic friendly systems.. 158

vii

LIST OF TABLES

Table 5.1 Ordered Bell numbers p(i) for i < 10.. 104

Table 6.1 Affects table for the extended simple file system ... 108

Table 6.2 All timestamping orders, n = 2 .. 109

Table 6.3 All timestamping orders, n = 3 .. 110

Table 6.4 Action sequences for the extended simple file system..................................... 113

Table 6.5 Affects table for Windows XP / NTFS .. 114

Table 6.6 Timestamping orders in Windows XP/NTFS. ... 115

Table 7.1 Timeline of experiment computer... 133

Table 7.2 Participating subjects ... 133

viii

LIST OF FIGURES

Figure 3.1 Graph of events related by happened-before ...27

Figure 3.2 Plot of ()b t and ()c t in Example 3.10..35

Figure 3.3 Plot of ()b t and ()c t in Example 3.11..36

Figure 3.4 An observation of timestamp oddτ for which h()c t = oddτ has no solution41

Figure 3.5 Graphical representation of a connection set...46

Figure 4.1 Graphical representation of append only storage ..52

Figure 4.2 Timestamped events related transitively...53

Figure 4.3 A possible allocation sequence in a first-fit storage ...54

Figure 4.4 The sequence in Figure 4.3 with generation markers added............................55

Figure 4.5 Storage locations in a system with generation markers...................................56

Figure 4.6 Causality between generations and between all locations at g = 057

Figure 4.7 Graph of the storing events in Figure 4.6 ...57

Figure 4.8 A possible allocation sequence in a next-fit system with generation markers..59

Figure 4.9 Event and happened-before graph in Example 4.4..65

Figure 5.1 Resolution of HoldsAt(Accessed(file1,10),tobs) in Example 5.374

Figure 5.2 Resolution of HoldsAt(Modified(file1,10),tobs) in Example 5.475

Figure 5.3 Resolution of HoldsAt(Accessed(file1,5),tobs) in Example 5.476

Figure 5.4 Resolution of HoldsAt(Accessed(file1,5),tobs) with H2 in Example 5.883

Figure 5.5 The observation proposition fails for H2 when m at t<86

Figure 5.6 HoldsAt(Modified(file, c(tm)), tobs) does not fail for H1 when m at t<87

Figure 5.7 HoldsAt(Accessed(file, c(ta)), tobs) does not fail for H1 when m at t<88

Figure 5.8 Graphical representation of the life cycle of a file instance92

Figure 5.9 Observation of the Modified timestamp with H1 and c m at t t< <97

Figure 5.10 The accessed timestamp for H6 when a ct t< and a HoldsAt(Exists(),)file t¬ 98

Figure 5.11 The created timestamp for H6 when a ct t< and aHoldsAt(Exists(),)file t99

Figure 5.12 Resolution fails for a mt t< where a ct t= ... 101

Figure 6.1 Affects graph for the simple file system with creation 118

Figure 6.2 Timestamps in the simple file system with creation...................................... 119

Figure 6.3 Affects graph for Windows XP / NTFS.. 120

Figure 6.4 Invariant graph for Windows XP / NTFS .. 120

Figure 6.5 Connections between timestamps through actions .. 121

Figure 7.1 UML class diagram of the TimeStampLogic implementation 127

ix

ABSTRACT

This work explores how the evidential value of digital timestamps can be enhanced by

taking a hypothesis based approach to the investigation of digital timestamps. It defines

the concepts of clock hypotheses, timestamps and causality in digital systems. These

concepts are utilized to develop methods that can be used in an investigation to test a

clock hypothesis for consistency with timestamps found in an actual investigation, given

causality between specific events occurring in the investigated system. Common storage

systems are explored for the identification of causality between the events of information

storage. By using a logic programming variant of predicate calculus, a formalism for

modelling the relationship between events and timestamp updating is defined. This

formalism can be used to determine invariants in digital systems.

Invariants and causality relations can be used to check a clock hypothesis for consistency

with timestamp evidence. These methods can be utilized in software for digital

investigation. By checking the large number of timestamps typically occurring on a

digital medium, the methods can assist with the justification of a clock hypothesis, and

thereby increase the confidence in specific timestamps found during the investigation.

Previously, the checking of timestamps has relied upon the existence of timestamps from

other evidence sources. With the methods defined in this work, justification of timestamp

interpretation can be achieved without having to rely on timestamps from other sources

of evidence.

The methods developed in this work were implemented in a clock hypothesis consistency

checker. This checker was tested in an experiment where subjects were asked to antedate

a document. The checker was found to be able to produce evidence supporting a

hypothesis that the document was antedated.

1

1 INTRODUCTION

This chapter provides an introduction to timestamps, their use in digital investigation

and challenges associated with such use. Section 1.1 describes timestamps and how they

are created. Section 1.2 introduces the digital investigation process. Section 1.3 provides

an introduction to the use of timestamps in digital investigation. Section 1.4 and 1.5

discuss possible sources for error and uncertainty in timestamps and how they affect

digital investigations. Section 1.6 presents the thesis statement of this work. Section 1.7

presents existing related work. The discussion in this chapter serves as background

material for the remainder of this work.

1.1 Timestamps and their origin

A timestamp is a recorded representation of a specific moment in time. In digital

computing, a timestamp is a recorded representation of a specific moment in time in a

digital format. This representation is either stored on a medium storing digital data, or

transmitted on a network designed to convey digital data. Timestamps are generated in

computers as the result of executed code in the processes running on a processor. The

running program creates a timestamp by obtaining the value currently assigned to the

local clock of the processor and storing it in memory. The value may subsequently be

stored on non-volatile memory (such as a hard drive) or it may be included in data

transmitted on a network. When a timestamp is generated, it is possible to associate

execution of the code immediately before and after the timestamp was generated with the

point in time the timestamp represents. Identification of the time when the enclosing

code was executed is usually the purpose of the timestamp itself. The generation of the

timestamp makes it possible to identify when the code ran, and therefore when the result

of that code took effect. If the timestamp is stored on a non-volatile medium or

transmitted and stored on another computer together with information that identifies the

executed code, the executed code can be associated with the timestamp. Execution of

specific code can be said to constitute an event. The timestamp associates the event with

a specific point in time. The event can be said to have generated the timestamp.

Although the code that constitutes the event itself is not the code that copies the

2

processor clock, the term reflects the cause of the generation of the timestamp; to assign

a time to the event. The event that generated the timestamp is the generating event.

When stored on a non-volatile medium, timestamps are typically stored in such a way

that the generating event is clearly identified. Current computer systems store large

numbers of timestamps on their storage. Some of the most common sources of

timestamps are:

- File systems: Typically each file on a file system has several associated

timestamps, related to user actions on the files. For example, timestamps are

commonly stored that indicates when each file was last read, written or otherwise

changed by a user process.

- Logs: System logging facilities usually log events from system processes in system

logs. Each event has a timestamp. Network servers such as http, smtp, pop, imap

and dhcp servers typically log each user transaction in a system log.

- Email: SMTP mandates each smtp server to add its identity and a timestamp to

transmitted email. Email messages therefore contain many timestamps. Other

messaging protocols, such as SMS in GSM, also add server generated timestamps

to each transmitted message. [1]

- Application specific files: Many mainstream applications such as word processors,

spreadsheets and web browsers generate timestamps and store them as part of

their specific file format. If the format is known, the timestamps and events that

generated them can be identified.

Timestamps can be stored in different formats. Scope and resolution are inherent

properties of timestamp formats. With scope is meant the timescale coverage of the

format, in other words which specific time periods the format is able to represent. For

example, the 32-bit UNIX time˙t format (see Appendix A.4) has the scope of [1901,

2038], meaning that it is only able to represent specific moments in time in the period

between year 1901 and 2038 AD. The resolution of a timestamp format refers to the

ability of representing two different moments close in time. Timestamps representing

moments closer in time than the resolution of the format are not distinguishable. For

example, the resolution of the time˙t format is one second. It is therefore not possible to

reliably distinguish two different timestamps in the time˙t format if they represent

moments in time closer together than one second. In addition to the representation of a

3

specific moment in time, a timestamp may or may not represent additional information.

Some timestamps include information about the time zone in which the timestamp is

valid. Such information is necessary in order to be able to compare timestamps generated

in different time zones.

Another important notion when dealing with timestamps is accuracy. The accuracy of a

timestamp reflects how close in time the timestamp represent the actual time when the

event occurred. The accuracy may be limited by a number of factors. Resolution is an

important limiting factor of accuracy. The resolution of the computer clock, the

timestamp format in computer memory and the timestamp format in non-volatile storage

may differ. Therefore the accuracy may not be equal to the resolution of the stored

timestamp. For example, the timestamp format used in the NTFS file system has a

resolution of 100 ns (see Appendix A.1), but the resolution of the Windows internal clock

is 1 ms, therefore the accuracy of timestamps in NTFS on Windows systems cannot be

better than 1 ms. Accuracy in timestamps also reflect the time difference that may occur

between the occurrence of events and the generation of the timestamps they are stamped

with.

1.2 The digital investigation process

Investigations are inquiries into past events. The purpose of an investigation is to find

evidence that can establish an understanding of previous events. During an investigation,

evidence is examined in order to produce information about past events. Possible sources

of evidence include witness statements, documents, physical evidence (i.e. fingerprints or

biological evidence) and data stored on digital media. From examination of the evidence,

information about the past events can be reconstructed. Event reconstruction is the final

outcome of an investigation, and forms the basis for a decision. The final event

reconstruction relies on interpretation of the evidence and is usually performed by a

person or group of persons separate from those performing the investigation. This person

or group is called the finder of fact, and could be a judge, magistrate, jury or other

depending on the case and jurisdiction. During the investigation, the investigator

formulates theories about possible events in order to find further sources of evidence,

prepare the case for the correct jurisdiction and present the evidence to the fact finder in

an appropriate manner.

4

Investigation of digital media with the purpose of finding evidence is commonly referred

to as digital investigation. The purpose of digital investigation is to find evidence related

to the events under investigation and present them to the fact finder. The process of

investigating digital media has in previous works been divided into different phases. The

Electronic Crime Scene Guide divides the digital investigation process into the following

phases: Preparation, Collection, Examination, Analysis and Reporting. [2] Here, the

collection phase involves identifying digital media potentially containing evidence and

collecting them physically or by making a digital copy of their contents. Examination

involves searching the collected data for evidence and analysis involves reviewing the

examination results for their value in the case. Reporting involves presenting evidence in

a form acceptable to the fact finder. Carrier and Spafford have proposed using a model

similar to the model used in physical crime scene investigation. [3] In this model, the

physical crime scene investigation is divided into Preservation, Survey, Documentation,

Search, Reconstruction and Presentation of Theory. The digital crime scene investigation

takes place in the Search and Reconstruction phase of the physical process. During these

steps, any digital media are found and analyzed. The model proposes similar steps in the

digital investigation process: Preservation, Survey, Documentation, Search, Reconstruc-

tion and Presentation of Theory. Preservation involves isolating the digital medium and

making a forensic image backup of it. Survey, Documentation, Search and Collection

involves finding the relevant evidence on the digital medium and preserving it.

Reconstruction and Presentation involves performing a preliminary event reconstruction

and present the resulting theory to the fact finder.

Both models reflect the steps actually taken by investigators in digital investigations.

First, digital media must be found and enumerated. Then, data on it must be preserved

in order to secure the evidential integrity. This usually involves copying the data on the

medium to another medium in such a way that no data is changed on the original. The

data on the copy can then be analyzed for contents relevant as evidence. Due to the large

amounts of data stored on modern data storage devices, the search is usually performed

by a combination of manual and automatic search. There exist a number of helpful

techniques employed by investigators in this phase such as keyword search, hashing and

signature search. When any relevant data has been found, it must be documented,

usually in the form of a report. Finally, the data is presented to the fact finder, either as

printouts, or by having the investigator appear before the fact finder to report the

5

findings. Although final event reconstruction is up to the fact finder, one should bear in

mind that the fact finder usually has little expertise in digital computing. The investi-

gator is often asked to present his theory on how the presented evidence can be used to

reconstruct the investigated events.

A formalization of the digital investigation process has been proposed by Carrier, by

introducing the concept of an object history. [4] For a computer, the history includes the

complete set of configurations, states and events that has occurred during the lifetime of

the computer. A state is the sum of all variables that may occur in the computer,

whereas an event is any action that may change the state. In this model, the digital

investigation process is defined as formulating hypotheses about the history of the

computer, and testing them against known values such as known user-input, data from

other evidence sources and the final state of the system. With this model, the

assumptions on which the event reconstruction is based are more explicit. This makes it

possible for the investigator and the fact finder to assess the assumptions and decide if

they are justified or not.

1.3 The role of timestamps in digital investigations

Timestamps play an important role in digital investigations. Traditionally, they are used

to place the generating event at a specific moment in time, thereby facilitating event

reconstruction. The identification that a certain event on a computer took place at a

specific time makes it possible to correlate the event with events occurring outside the

computer system. A witness statement that a certain computer was used at a particular

time might for example be strengthened if the timestamps on the computer shows

evidence of usage by the particular user at that time. It is often necessary to use

timestamps to identify events occurring on different digital computers within the same

timeframe. If a computer intrusion was committed from one computer to another, it

would be necessary to examine the timestamps of the victim computer to find the exact

time of the intrusion. This information can then be used to examine the activity on the

computer where the attack originated.

A particularly important application of timestamps in digital investigation is attribution.

Attribution is the ability to attribute events to a specific person. This is important,

6

because most investigations aim at placing the responsibility for occurred events on one

or more individuals. If evidence of the investigated events is digital, it may be necessary

to place the event at a specific point in time in order to be able to attribute it to the

correct person. If the time of the event inferred from the evidence is incorrect, it may not

be possible to attribute it to anyone, or the event may be attributed to the wrong person.

The prevalence of dynamic network addresses on the Internet makes timing important in

all types of investigations of events that occurred on the Internet. In many such

investigations, attribution relies on the identification of which computer were using an

IP-address at a particular time. If the IP-address is dynamically assigned, the originating

computer can only be identified if a log of the usage of the address exists, and the time of

the event can be established with sufficient certainty and accuracy. Only in this case can

the originating computer be identified from the usage log by selecting the correct entry

from the IP-address and time. When the originating computer has been identified, it can

be examined for corroborating evidence.

In many investigations placing the investigated events at a specific moment in time is

also important in attributing usage of a computer to the correct person. For example,

finding contraband images on an office workstation does not necessarily imply that the

current user of the workstation placed them there, or even knew of their existence. In

order to attribute storing of the images to the current user, it is necessary to find

evidence that links the user and the contraband. The time of the storage event as

correlated with the time the user has been known to use the workstation is one possible

link.

1.4 Sources of error and uncertainty in timestamps

For a number of reasons, stored timestamps may not accurately reflect the time of the

generating event. As already mentioned, a timestamp may have an inherent inaccuracy

caused by the resolution of the timestamp format, and the time between the actual event

occurring and the generation of a timestamp. This inaccuracy may sometimes be large

enough to give the timestamp limited value in an investigation. For example, the

resolution of the Last Read timestamp in the FAT file system has a resolution of one

day, meaning that it stores only the date and not the time associated with the event.

7

A timestamp always refers to the clock from which it is generated. Since the timestamp

is a function of the clock, it is always relative to the adjustment of the clock.

Unfortunately, clocks are not fully reliable. Clocks may drift, thereby generating

timestamps gradually more different from those generated from other clocks. Clocks may

also fail, and produce completely incorrect timestamps. Further, clocks on most systems

may be adjusted at any time by the user of the system to show a different date and time

than civil time (standard time in the jurisdiction in question). Such adjustment may be

committed intentionally or unintentionally by the user. In the case of intentional

adjustment, it may be done with the purpose of producing deviating timestamps

(malicious adjustment), or it may be done for other reasons, such as sustaining the

function of software programmed to work only a limited time. The consequence is that a

timestamp is relative not only to the clock it was generated from in general, but also to

the particular adjustment of the clock at the time the timestamp was generated.

Therefore, even timestamps generated from the same clock cannot be reliably compared

unless it can be justified that the adjustment of the clock is unchanged between creations

of timestamps. In order to reliably compare timestamps from different clocks, the

difference between the clocks must be found, and it must be justified for all clocks that

their adjustment has not changed.

Another consideration when assessing the correctness of a timestamp is events that took

place after the timestamp was stored. A timestamp is just another piece of data stored on

the storage of the computer. This means that unless the timestamp has been stored on a

read-only medium, it can be changed by subsequent events on the computer. The

timestamp may for example be deleted and overwritten by other data. It may also be

changed to represent a moment in time earlier or later than it originally represented.

Such changes may be intentional or unintentional on the user’s part and in the case of

intentional changes, they may be committed with malicious intent or not. The ease, with

which a timestamp may be changed, depends on the format and the storage location.

Setting file timestamps to a different time on a UNIX system can for example be done

easily with the date and touch commands. Changing timestamps in undocumented

formats directly on disk may be significantly more difficult and may require specialized

knowledge.

8

1.5 Implications of timestamp error and uncertainty in investigations

The uncertainty associated with digitally stored timestamps implies that timestamps in

general should not be relied upon as evidence without justification of the factors that can

lead to errors. In particular, it should not be blindly assumed that timestamps are based

on a clock that is adjusted to civil time. Further, it cannot be assumed that timestamps

generated by different clocks are relative to the same clock. Not even when timestamps

are based on the same clock, can one be absolutely certain that the time difference

between the two events is equal to the difference between the timestamps. These

uncertainties are worrying for investigators. If timestamps cannot be relied upon, then it

is in many cases not possible to reconstruct the events in the case reliably. In particular,

it will not be possible to attribute the events under investigation to a particular

individual. This is a major problem, since in many cases the sole purpose of the

investigation is to be able to attribute events to an individual.

The current practice in digital investigations is to check the current time of the computer

clock at the time of the investigation, and look for corroboration in the form of

timestamps from other clocks. [5] The assumption is that if the current state of the clock

is within reasonable synchronization with civil time, then that has been the case also

earlier in the computer’s history. Any timestamps from external sources confirm the

assumption, but the assumption is also made if no timestamps from external sources are

found. If the clock on the investigated computer is significantly different from civil time

and no external time references are found, there seems to be different approaches. Some

investigators merely add the observed offset to the value of the timestamps stored on the

computer, assuming that the current offset has also been the offset during the computer

history. Others conclude that no inferences about the computer’s history can be drawn

from observed timestamps when the clock differs from civil time at the time of the

investigation.

A common investigator attitude is to take evidence at face value unless contested by the

opposing party. In the context of timestamps, this attitude means that timestamps in

most cases are interpreted as correct and equal to moments in civil time, without further

consideration of possible sources of error and uncertainty. As long as the opposing party

does not have the knowledge required to challenge this position, the result of this

approach will be that the fact finder takes the investigator’s interpretation of the

9

timestamps as fact. This is the result in many current investigations where timestamps

are presented as evidence.

The practice of investigating timestamps and present them without any consideration of

possible error sources is questionable. Most important, such a practice may lead to a

flawed event reconstruction, which may in turn lead to incorrect results such as incorrect

convictions or acquittals. This is most certainly the case in an area where the

investigation is performed by specialists and where neither counsel (of any party),

accused nor fact finders have the necessary expertise to identify the problem. As long as

this practice continues, there will be no development of methods that can define

hypotheses of potential uncertainty in timestamp evidence and test them. The

assumption that timestamps can be trusted as evidence is left unjustified and open to a

simple attack. Suppose that the opposing party actually has the knowledge to understand

the uncertainties and potential errors in timestamps. The timestamp evidence can in such

a situation be contested, for example with an allegation that the clock previously has

been erroneous or maladjusted. If the investigator has no method for testing errors and

uncertainty in this situation, it is possible that the timestamp evidence will be refuted.

From an engineering standpoint, a possible solution for the mentioned challenges would

be to redesign computers to reduce problems with errors and uncertainty in timestamps

as evidence. A possible approach would be to use clock synchronization to ensure that

clocks on computers are synchronized with a universally recognized clock. Clock

synchronization across computer networks has been studied extensively and can be said

to be a well understood problem. There exist a number of recognized methods for clock

synchronization as well as protocols for synchronizations of clocks across networks. [6, 7]

It has also been proposed to change existing file systems, to allow systems to keep trails

of previous timestamps for specific files, and not just overwrite timestamps when new

timestamps are produced. This scheme was proposed in systems with synchronized

clocks, to prevent malicious users from modifying timestamps directly without producing

evidence of it. [8]

There are however several problems with this approach. The most fundamental problem

is that in most investigations, the computer containing the evidence has been controlled

by the individual under investigation during the period of the investigated events. It

cannot be assumed that this person would be interested in keeping the computer clock

10

synchronized in case the computer should be investigated. And even if the computer

clock was actually synchronized with an external clock, it could not be assumed that the

computer had been synchronized during its full history. It would even be possible for the

computer owner to falsify the synchronization by using an external computer acting as a

synchronization proxy, thereby making it look like the synchronization was towards a

universal clock, when this was in fact not the case.

Another possible solution from en engineering point of view would be to use digitally

signed timestamps. In such a system, data would be sent to a trusted third party for

timestamping using a trusted clock. The data would then, along with the timestamp be

signed with the trusted thirds party’s private key. Such a solution has been proposed for

use in digital investigations to enhance the trust in correct handling of digital evidence.

[9] The usefulness for the investigation itself is however doubtful. As with clock-

synchronization, it is not very likely that a secure timestamp technology would be very

widely adopted among computer owners in the case they should be investigated.

1.6 Timestamps, causality and invariants, thesis statement

New methods are required for digital investigation of timestamps and use of digitally

stored timestamps as evidence. This work takes the approach that timestamp evidence

can be tested in the hypothesis based approach suggested by Carrier. In this approach,

the history of the medium under investigation is the complete set of configurations, states

and events that has occurred during the lifetime of the medium. The data direct

observable by the investigator is the final state of the medium. This includes observations

of all timestamps stored on the medium. These timestamps are all functions of the

computer clock at some previous state in the history, and any subsequent events that

affect them. With this definition, it is possible to formulate hypotheses about the

adjustment of the clock in previous states and events that affect timestamps. For

example, the default investigator assumption in section 1.5 can be formulated as the

following hypothesis: “The computer clock has been adjusted to civil time during the

entire history of the computer. No subsequent events have changed the values of the

timestamps.” Having formulated a hypothesis, it can now be tested for consistency with

the observed data. This work provides methods for such tests.

11

In this work, the concept of causality is used to test hypotheses about clocks and

timestamps. Causality is a concept used to describe cause and effect. It can be defined as

the relationship between two entities A and B, in which A is necessary for B. A and B

could be objects, events, states or properties. In the context of digital investigation of

timestamps it is useful to define causality as the relationship between events. Causality is

then the relationship between two events, in which the first must have occurred in order

for the second to occur. In digital computers, events and causality relations between

them are defined by the hardware and software constituting the computer. Events change

the state of the computer medium in the computer history model. Some events are

timestamped and others are not. If the working of the hardware and software that

constitutes the computer is known, then causality relationships between events can be

inferred. These causality relationships can be used to test hypotheses about the computer

clock and events affecting timestamps in the computer history model. For example, if

two timestamped events are causally connected, the timestamps have not been changed

by subsequent events, and the clock has not been adjusted between the two events, then

the timestamp of the second event must be later than the timestamp of the first event.

[10] By testing for this and other properties of causal connections between timestamped

events in a computer system, the formulated hypothesis can be accepted or refuted.

Further, we explore how invariants can be found in systems containing timestamps.

Condider for example a file system in which each file has three different timestamps.

These timestamps can be updated by different system actions, where each action may

update one or more time stamp. In such a system, there may be invariants. For example

if every action updating the Modified timestamp also updates the Accessed timestamp,

then the latter timestamp will always be set at the same or a later time than the

Modified timestamp. As with causality, such invariants can be used to test a clock

hypothesis and accept or refute it.

The thesis statement for this work is then:

The use of timestamps as digital evidence can be enhanced by testing if the observed

timestamps are consistent with causality of the events they represent, and invariants in

the systems in which they exist.

12

1.7 Related work

Being recognized as a research challenge, the problem of timestamp interpretation in

digital investigation has been studied by a few researchers during recent years. Schatz et

al demonstrated the problem of clock drift by observing clock synchronization on a

network of computers in a small business. [11] The problem of clock drift and lack of

synchronization was confirmed by Buchholz et al in a larger scale study of web server

clocks. [12] Schatz suggests mitigating the problem by correlating the timestamps in web

cache stored on the computer with records obtained from the web servers. Weil and Boyd

et al suggest similar correlation methods, by using timestamps stored on the investigated

computer coming from other clocks, such as timestamps in dynamically generated web

pages. [5, 13] Such methods would provide correlation for the period for which cached

data exist on the investigated computer only. These methods may be able to confirm or

refute hypotheses about the clock in the period for which correlation material exists.

They may not be able to provide reasonable evidence to refute a hypothesis that

timestamps have been changed or the clock has been adjusted during the period for

which no correlation material exist. Correlation with server records is only possible when

such records actually exist, and the investigator has legal access to them.

Stevens studied clocks and described a clock model where each clock is described as the

clock it was originally derived from plus the sum of all adjustments, errors and drift. [14]

The clock model described by Stevens was refined by Buchholz, in the formalization of a

clock model as the sum of clock drift (skew) and adjustments. [15] These models are

versatile and provide good tools for event reconstruction in cases where clock

adjustments, error and drift are known or measurable. They can also be used for the

modelling of hypothesized clocks. They do not however by themselves assist in the

identification of adjustment, error or drift from an observed final state.

Gladyshev studied the use of causality properties for establishing boundaries on period of

time in which an event may have occurred. [16] In his approach, time bounding can be

established when an event that occurred at an unknown or uncertain time is causally

preceded and succeeded by events with known time occurrence. In order to perform time

bounding, it is then required to know events of known time causally connected to the

investigated events. When used to investigate a computer system, these events of known

time must come from external sources. This approach differs from the approach taken in

13

this work, where no time references from external sources is assumed. The concept of

causality is used in this work as well as in Gladyshev’s. Although the happened-before

relation is defined differently, its use to correlate timestamps bears resemblance.

Gladyshev’s event time bounding is based on his finite state machine approach to Event

Reconstruction. [17-19] In this work, an investigated system is modelled as a finite state

machine, and event reconstruction is performed based on the possible transitions from

state to state in the modelled state machine. More recently, the idea of representing a

system as a state machine has been taken further by Gladyshev and Enbacka into the

development of consistency criteria for a system specified as a state machine and the

verification of those criteria using the B-method. [20] This idea bears resemblance with

this work, in that it aims to model aspects of a system formally, derive invariants for a

system, and test the available evidence for consistency with the invariants. The approach

is however different. In Gladyshev and Enbacka’s paper, the evidence is examined for

internal inconsistencies. In this work, a hypothesis is formulated by the investigator, and

the hypothesis is tested for consistency with the available evidence. Further, this work

does not attempt to model a system as a finite state machine, but rather determines

events in the system and the causal relations between them, as well as formulating parts

of a system in predicate logic.

1.8 Outline

This dissertation is organized as follows. Chapter 2 presents a study of four real cases

where timestamps have played a role. Chapter 3 describes the formal background for this

work and the development of a theory for testing of clock hypothesis consistency with

observed events and causal relations between them. In Chapter 4, this theory is applied

by studying common types of storage systems and enumerating causal relations in them

that can be applied for clock hypothesis consistency testing. Chapter 5 describes how a

system can be modelled in predicate logic, and how such a model can be applied to derive

invariants for timestamp evidence in the system. These invariants can be used to test

clock hypotheses for consistency with timestamp evidence from a system. Chapter 6

describes a simplification of the formalism from Chapter 5, in which the actions in a

system is described in an action table, and invariants are derived by simpler methods. In

Chapter 7, a software implementation of the methods derived in Chapter 3-6 is

14

presented. The implementation was used to detect antedating in an experiment where

subjects were asked to antedate a digital document in such a way that the antedating

was not detectable by an investigator. Chapter 8 evaluates the methods and discusses

several possible criticisms. Finally, Chapter 9 summarizes the findings. Appendices A and

B gives an overview of common timestamp and clock formats. Appendix C summarizes

results from timestamp updating experiments conducted in Windows XP, used as the

basis for the implementation discussed in Chapter 7. Appendix D provides information

about how to obtain and run the implementation. Appendix E provides copies of

published papers with results of this work.

15

2 CASE STUDIES

Chapter 1 introduced timestamps and the challenges associated with them in digital

investigations. In this chapter, a few examples from real investigations will be provided.

These examples will be used in the following chapters in the discussion of problems that

may be solved by the model proposed in this work. Section 2.1 presents a case where

documents where antedated in order to keep assets from being seized in a bankruptcy.

Section 2.2 presents a case where timestamps were faked in order to produce false alibi

for a murder. Section 2.3 presents a case where a computer clock was manipulated in

order to produce evidence in a contract dispute. Section 2.4 presents a set of cases where

discussion timestamp consistency played an important role in judicial procedure.

2.1 Antedated documents

Dated documents play an important role in legal processes. Antedating means producing

a document with a date that earlier than the date the document was actually produced.

Digital investigation can play an important role in determining that antedating has

occurred. An example of antedating can be found in the investigations of the Finance

Credit case in Norway. [21]

The investigation of Finance Credit started in the fall of 2002. The business of Finance

Credit was based on purchasing claims from customers at a value slightly lower than the

claim value. To finance this business, the managers in Finance Credit had obtained loans

from a syndicate of Norwegian banks for values around NOK 1 billion. (The amount is as

of 2007 equivalent to more than 100 million Euro) These loans were secured by the total

value of the claims Finance Credit had in its current portfolio. The banks had based their

loans on an estimate of the value of the portfolio, derived from information given in the

accounts of Finance Credit.

During the fall of 2002, the banks discovered that the total value of the current claim

portfolio in Finance Credit was much lower than the values documented in the accounts.

The difference was so high that it was likely that the banks had been purposefully misled

16

by false account figures. Most likely, the company had been run entirely on the loans

given from the bank, and not from the revenues from its business.

Finance Credit and the managers Trond Kristoffersen and Torgeir Stensrud were

reported to he Norwegian Police Economic Crime Unit, who promptly started an

investigation of the matters. In November 2002, Kristoffersen and Stensrud were arrested

and searches were performed at the premises of Finance Credit as well as the homes of

Kristoffersen and Stensrud. Shortly after, bankruptcy was declared in Finance Credit.

The investigation revealed that not only had the claim portfolio been vastly overvalued,

but significant funds had also found its way from Finance Credit to bank accounts and

property owned by Kristoffersen and Stensrud personally. On this basis, Kristoffersen

and Stensrud were also declared bankrupt in early December 2002.

The part of the Finance Credit case of interest here is the transfer of shares in a UK

private company Yaar Investment Ltd. Yaar owned a property in Norway, in which the

Kristoffersen familiy lived. The value of the property was around NOK 14 million.

(Equivalent to approximately 2 million Euro) During the registration of Kristoffersen’s

assets following his bankruptcy, Kristoffersen declared that the home was not owned by

him, since he had transferred the shares in Yaar to his daughter in the year 2000. Yaar

Investments and the property it owned was therefore not a part of his estate, and could

not be used by his creditors to cover his debt. At this time, Kristoffersen was still

imprisoned. He was however released on conditions on January 19th, 2003. In another

search at Kristoffersen’s home in May 2003, a computer was seized. In the computer,

investigators found two documents “Transfer of Shares” and “Share Certificate”, dated

January 3rd, 2000. These documents detailed the transfer of all shares in Yaar to

Kristoffersen’s daughter. The content of the documents were in accordance with

Kristoffersen’s statement to the bankruptcy Receiver that the shares had been transferred

in 2000, and therefore was not part of the estate. Investigators believed however that the

document had been produced on the computer during early 2003 and not in 2000. Since

the shares of Yaar had previously been owned by Kristoffersen, this would mean that the

property would be a part of the estate after all, and could be seized by the Receiver.

Further, it would mean that Kristoffersen had given false information to the Receiver

during the registration, a felony under Norwegian law.

17

Based on the theory that the documents were antedated, investigators therefore put

considerable effort in a digital investigation of the timestamps and events on the

computer in order to find evidence of the antedating. No conclusive evidence was found.

However, during the investigation other evidence was discovered that indicated that the

documents were antedated. Several emails with the company handling the registration of

the company indicated that the share transfer had occurred in 2003 and not in 2000.

Further, other documents were recovered that indicated that the shares of Yaar had

actually been owned by Kristoffersen in late 2000 and early 2001 and not by his

daughter. Based on these documents, Kristoffersen was imprisoned again and was kept in

custody until the trial in 2004. In the verdict, Kristoffersen was convicted on counts of

giving false information to the Receiver of his estate, among many other counts in the

charges. Kristoffersen received a sentence of nine years imprisonment and must pay more

than NOK 1 billion in damages.

2.2 Timestamps as bogus alibi

Timestamped events are sometimes presented as alibi. An example of a situation where

such an alibi was judged as bogus can be found in the investigation following the murder

of Jennifer Myers on October 20th, 1997. [22-24]

Myers was found murdered in her art gallery in York, Pennsylvania. She had been shot

three times in the chest, shoulder and the left eye. At the time, Kevin Brian Dowling, a

citizen of York, was already charged with robbery and attempted rape of Myers that

occurred on Aug 5th, 1996. The robbery charge was based on the description of Myers,

and the fact that she had subsequently recognized him. Trial on the charges of robbery

and attempted rape was set to begin two days after Myers was found dead. Based on the

theory that Dowling had murdered Myers to prevent her from appearing as witness in

the trial against him, police focused the investigation on Dowling.

When Dowling was first interviewed the day after the body was found, he explained that

he had been spending that day fishing at a lake in the area. He had videotaped himself

several times during the day, and also explained that he had stopped at a convenience

store where he could probably be seen on the videotape of the surveillance camera.

Further, Dowling supplied receipts from a boat rental dealer and a bait shop as evidence

18

that he had actually been fishing that day. The receipts and surveillance camera records

confirmed that Dowling had been at the lake on the morning of October 20th. The

murder had however occurred at 2 pm, and it would not be impossible for Dowling to

drive to the lake first, and then to Myers’ art gallery to kill her. After analyzing the

videotape, police found that the tape showed Dowling fishing at the lake. The video

contained timestamps incompatible with Dowling being the perpetrator. If the

timestamps on the video were to be trusted, the video placed Dowling at the lake at the

time of the murder and he could not be the killer.

Police immediately suspected that the timestamps on the videotape had been

manipulated by Dowling, by making adjustments to the clock on the camera. To test this

theory, investigators asked Robert Boyle, an associate professor of physics at Dickinson

College to analyze the videotape. Boyle analyzed the tape by building a digital model of

the scenery depicted in the video, based on compass measurements in the area around

the lake. In the digital model, Boyle could estimate the length of the shadows the sun

would cast in the picture at various times of the day, and compare them with the

shadows actually seen on the video. The result was that the timestamps on the video

differed from civil time with up to three hours. The analysis showed that the timestamps

of the video had been manipulated, and that the video did not rule out that Dowling

could be the murderer after all. After the analysis evidence had been filed with court,

Dowling changed his statement regarding the videotape. He now claimed that he had

gone tired of fishing and instead went to a strip club in the afternoon. He had changed

the time on the tape because he didn’t want his wife to find out.

Based on the videotape analysis, as well as other evidence such as findings of gunshot

residue on clothes Dowling had been wearing that day, Dowling was convicted in York

County trial court on December 14, 1998 to a verdict of death. The death sentence was

upheld by the Supreme Court of Pennsylvania.

2.3 Clock manipulation in a contract investigation

Dates and times of decisions sometimes play an important role in determining if a

contract has been upheld or breached. The helicopter contract investigation described in

the following is a good example. The helicopter contract investigation was performed by

19

a digital investigation services provider in Norway in January 2003. It started as a

dispute over a purchase contract of a helicopter that was signed between two parties.

The seller was a private business operated by an individual, hereafter called Mr A. The

buyer was a contractor business operating several helicopters offering air services

primarily within the oil industry, hereafter called company B. A had a purchase option

agreement on the helicopter from a foreign business, that allowed him to buy the

helicopter should he be able to sell it. The contract between A and B was signed and

went into force in July 2002. It mandated the delivery of the helicopter in January 2003.

The contract also stated in a special clause that both parties could withdraw from the

agreement without any consequences other then the cancellation of the agreement until

the 15th of October 2002. After this date, the contract went into force and the parties

could not withdraw. The contract mandated an initial transfer of funds shortly after the

15th of October. The remainder of the purchase amount would be paid when the

helicopter was delivered.

In early October 2002, the managers of B went through the terms of the agreement in

order to decide if it should be terminated before the 15th or not. After consideration of

the terms, the management of B decided to withdraw from the contract. They phoned A

several times and left messages on his voice mail about the termination. Further, they

wrote two emails on October 7th and October 13th to A, stating that the contract was

terminated. They did not receive any reply on these emails. On October 17th, a formal

letter about the termination of the contract was written and sent through postal service.

At this point the dispute arose. After receiving the letter, A claimed that the termination

was too late, and that the contract therefore was in force. Should B terminate the

contract, they would have to pay him compensation, amounting to the gain that he

would have earned from the contract. A claimed that he had never received any phone

calls or voice mail messages from B. Further, A claimed that he had never received any

email messages from B concerning the termination of the contract. According to A, the

first time he had heard about termination, was the letter dated October 17th, which was

too late for termination. B printed copies of the termination emails they had sent to A

before October 15th, serving as evidence of termination, but A still claimed that he had

not received any such message. The managers of B then decided to disregard A’s claims

and act according to their own view that the contract was terminated in due time. Thus,

no funds were transferred and A cancelled the purchase option agreement.

20

During late 2002 and early 2003, A considered whether he should go to the courts to

claim compensation from B for what he saw as a breach of contract. In A’s view, B’s only

evidence for terminating the contract before October 15th, was the copies of the emails

they had sent. A realized that he needed evidence supporting the claim that he had never

received these emails. A therefore decided to have his computer investigated by an

independent third party to confirm that he had not received any email regarding contract

termination in the period before October 15th. In January 2003, A asked a digital

investigation service provider, hereinafter called company C, to do this job.

After receiving A’s computer, the investigators at C performed the normal procedure for

digital investigations at the time. The computer was dismantled and the hard drive

removed. The computer clock was checked and found to be short of Norwegian civil time

with only a few seconds. A digital image copy of the hard drive was made in another

computer. The copy was mounted in an investigation computer and investigated with

standard software for digital investigation. The investigation of existing files showed that

the current operating system and application software on the computer had been

installed in June 2002. The existing email on the computer was investigated and no

evidence of email from company B in early October 2002 was found. Only a few emails

were found to have been sent and received in October 2002. In fact, very small amounts

of email were found at all. The computer did not contain the amount of user files and

data that one would expect from a computer that had been used by a business for half a

year. This prompted the investigators to check the unallocated areas of the disk for signs

of deleted files. No signs of deleted files were found in this investigation. Instead, it was

determined that the complete hard drive had been wiped by a disk wipe utility sold by C

prior to the installation of the operating system. This disk wipe utility was programmed

to write the current time, the version number and the serial id of the wiper to each sector

on the hard drive. The date written to each sector of the hard drive was in early June

2002, on the same day as the date the operating system had been installed, as determined

from timestamps on system logs and files in the operating system.

At this point, A’s claim that no email had been received regarding termination of the

contract would seem to be supported. However, the fact that so little user data was

found on the computer prompted the investigators at C to perform further investigation

steps. The version number of the disk wipe utility was compared with the development

log of the utility at the development department of C. It was found that the particular

21

version of the wipe utility had been produced in the fall of 2002 and released in

December 2002. Further, the serial number of the wipe utility was examined. The serial

number showed that this version of the disk wipe utility had been sold in a computer

store located near A’s office in January 2003, one week before A had sent the computer

to C for investigation.

From these results, the following hypothesis about the events on the investigated

computer was formulated: In January 2003, A had bought the disk wipe utility at the

local computer store. He had then adjusted the computer clock to June 2002, wiped the

disk and installed the operating system. He had then used the computer for some time

and gradually adjusted the computer clock forward in order to make it look like the

activity had occurred during the fall of 2002. Finally, he had adjusted the clock back to

the current civil time. The observed state of the system as investigated in January 2003

was consistent with this theory. C concluded that the original question of whether emails

had been received in October 2002 could not be answered, since the user of the computer

had wiped it in January 2003. These results were written in a report which was sent to

A. After receiving the report from C, A decided to not pursue the matter in the courts.

2.4 Timestamps in procedure

Timestamps can be of importance not only in matters of substance but sometimes also in

procedural matters. This is most clearly seen in matters of procedure where party

representatives must meet a deadline. In these matters, an investigation of timestamps is

sometimes performed in order to decide the question of whether the party met the

deadline or not. The decisions of the UK Employment Appeal Tribunal in the cases of

Midland Packaging v Clark, Woodward v Abbey National and JP Garrett v Cotton are

illustrative. [25, 26]

In the mentioned cases, the Employment Appeal Tribunal received appeals against the

Registrar’s ruling an appeal out of time. Parties in cases before UK Employment

Tribunals have 42 days to prepare a Notice of Appeal and submit it to the Employment

Appeal Tribunal (hereafter EAT). The notice must have been received by the registrar of

the EAT on the 42nd day after the decision of the Employment Tribunal in order to be

considered. Notices received later then the 42nd day will not be considered by the EAT.

22

Thus, if the appeal is too late, the decision of the Employment Tribunal will be final.

Further, UK Civil Procedure Rules (CPR) state that deliveries of documents and faxed

documents in particular after 4 pm will be treated as filed on the next business day of the

court office. The three cases discussed here all involve faxing of Notice of Appeal on the

42nd day, where the sender started the faxing before 4 pm according to their fax machine

clock, but the complete notice had not been printed out on the receiving end before after

4 pm according to the clock on the receiving fax machine.

In the Midland case, the appellant faxed the notice just before 4 pm on the 42nd day.

After the fax was completed, he received a document from his own fax machine that

confirmed the transmission of 21 pages and the time when all the pages had been

transmitted, which was 16:09. In the receiving end, the fax machine printed a timestamp

on each printed page. The first page of the documents printed from the fax machine at

the EAT showed 16:06, the second and third pages 16:07, the fourth and fifth 16:08 and

so on. At this rate of approximately two pages per minute, the complete transmission of

the 21 pages document would have taken around ten minutes.

In the decision, the court discusses various possibilities that may have caused the

difference in the timestamps, for example different clock settings in the different fax

machines, delay between scanning and faxing in the sending end or delay between

receiving and printing in the receiving end. The court did not have available expert

testimony regarding the functioning of the fax machines and could not as such make any

assumptions regarding how the fax machines worked. The determining factor for the

court was when the actual transmittal of information had occurred from the fax machine

in the sending end to the fax machine in the receiving end. Based on the timestamp

from the sending end, placing the end of the transmission at 16:09, and the calculation

from the receiving end that the transmission took around ten minues, the court found

that the transmission must have begun before 4 pm. The court found it probable that the

two fax machines had communicated with each other before 4 pm and at least some part

of the document had been electronically transferred before 4 pm, even if it had not been

printed at the time. On this basis, the court decided that the appeal had been delivered

in time. Note that in the basis for this decision, the court relied on the correctness of

both the timestamp on the receipt from the sending machine and the accurateness of the

transmission time calculation in the receiving end.

23

The two other cases happened after the decision in the Midland case. In the Woodward

case, a 61 pages notice of appeal was transmitted by fax just before 4 pm on the 42nd day,

the last day in the allowed appeal period. According to the appellant, the fax machine

was ready at 15:35 and the documents started feeding through at 15:40. In the receiving

end, a log showed that the faxing started at 15:48 and took 18 minutes and 46 seconds

for the 61 pages to be faxed. The print out had timestamps 15:49 on the first page and

16:07 on the last page. In the J P Garrett case, a receipt from the appellant’s end showed

that faxing had started at 15:59 and took 3 minutes and 35 seconds to be completed. In

the receiving end, the fax log and timestamps on the printed fax showed that the faxing

started at 16:01 and took 3 minutes and 35 seconds, finished at 16:04. Thus, the situation

in the J P Garrett case was exactly as in the Midland case, whereas the situation in the

Woodward case was somewhat different, in that also timestamps in the receiving end

showed receiving of documents before 4 pm.

In the latter cases, the court recognized the impracticability of having to rely on

timestamps from both ends. Having determined the possibility of relying on a fax log in

the receiving end, the court departed from the decision in the Midland case, and decided

that the timestamps in the receiving end should determine the receiving time of the

notice. Further, the court decided, again departing from the Midland decision, that the

complete document must have been received before 4 pm. Even if faxing had started

before 4 pm in both the Woodward and J P Garrett cases, the complete document had

not been printed out at the receiving end before 4 pm in any of them. The decision

therefore rendered the appeals in both cases as too late. Recognizing the fact that at least

one of the appellants knew about the decision in the Midland case and acted accordingly,

the court however granted the appellant the necessary extra time. Therefore, the appeals

were accepted even if they had been received too late.

24

3 REASONING ON SETS OF CAUSAL EVENTS WITH TIMESTAMPS

This chapter presents the formal foundations of this work. Section 3.1 - 3.4 defines

causality, time and clocks. Section 3.5 introduces ideal clocks and their properties.

Section 3.6 introduces the specification of clock hypotheses. Section 3.7 examines ways of

determining the correctness of a clock hypothesis. Section 3.8 defines clock hypothesis

consistency. Section 3.9 examines the properties of consistency of subsets, supersets,

unions and intersections of observed sets. Finally, Section 3.10 discusses whether the

clock hypothesis can be viewed as a scientific hypothesis.

3.1 Causality

In this work, causal properties of systems are used to reason on timestamps and test

hypotheses about the events occurring on a computer system. In order to be able to

reason about events and causality, it is necessary to start from a definition of causality.

Informally, causality is the relationship between cause and effect. This relationship can

be expressed as a relation between events. If two events e1 and e2 are related by the

causality relation, then whenever e2 occurs, e1 must have occurred first. In previous

works, causality has been defined by means of the happened-before relation →. The

happened-before relation was first used by Lamport, who defined the relation by ordering

events happening in a process and sending and receiving messages between processes. [27]

This definition was generalized by Fidge to encompass process creation and termination

as well as both synchronous and asynchronous message passing. [28] These concepts have

been utilized in distributed computing to achieve clock synchronization, and to achieve

ordering of events in systems without synchronized clocks.

For use in digital investigation, Gladyshev proposed an extended definition of happened-

before. In Gladyshev’s version it is defined that e1 → e2 if e2 uses the result of e1 or e1

precedes e2 in the usual course of business of some organisation or during the normal

operation of a machine. [16] In this definition, the meaning of happened-before is

25

extended beyond computers. This extension is useful, since digital investigation requires

the reconstruction of events, both within computers and outside them. Gladyshev’s

definition might however create doubt about exactly what happened-before means, since

it is debatable what exactly constitutes the normal operation of a machine and the usual

course of a business.

In order to be able to utilize the happened-before relation to reason on the causality

between timestamp generating events, it is necessary to define happened-before in

sufficient general terms to allow its application to causality in different types of systems.

Yet, the definition should be sufficiently specific to allow it to represent the intuitive

understanding of causality coherently. It is however difficult to define causality in very

exact terms without entering into a deep philosophical discourse, something that is not

intended here.

DefinitioDefinitioDefinitioDefinition n n n 3333....1111.... Let → be the happened-before relation. If e1 → e2, then the occurrence of

e1 is necessary for e2 to occur because e2 depends on the effects of e1.
 1

Important examples of causality per this definition of the happened-before relation

include:

- e1 produces an item that is necessary input for e2

This is equivalent to Gladyshev’s definition “e2 uses the result of e1”. The

definition of happened-before in terms of message sending and reception used by

Lamport and Fidge also fall within this example.

- e1 and e2 are events in a computer program, where e2 uses data produced by e1.

Since events in computer programs use items produced by other events in the

same program, such as variables, data stored in memory, registers and stack

1 In order to be consistent with previous works, the symbol → is used to denote the happened-

before relation in this work. It should not be confused with implication, which in this work is

denoted by ⇒ .

26

pointers, many events occurring in computer programs will be related by

happened-before. This is a special case of “e1 produces an item that is necessary

input for e2”. The definition of happened-before in terms of events occurring in a

process used by Lamport and Fidge falls within this example, with the exception

of events that do not use the result of each other. This exception makes the

definition suitable for modern computer systems, in which the execution order of

a computer program can be rearranged by compilers and processors when the

instructions do not depend on the results of each other.

The happened-before relation has the following properties:

→ is transitive. If ei happened-before ej and ej happened-before ek, then ei happened

before ek.

() ()i j j k i ke e e e e e→ ∧ → ⇒ →

The transitivity property implies that events can be causally connected through

intermediaries. This follows directly from the definition of happened-before in Definition

3.1. If an event ej depends on the effect of other events, then any event depending on the

effects of ej will also depend on those events.

 → is irreflexive. An event ei cannot happen-before itself.

i ie e→/

The irreflexivity property follows from the relationship implied by →. An event

dependant on the effects of itself cannot occur since such an event would require another

event, itself, to occur first. That event would also require another event, itself, to occur

first and so on ad infinitum.

→ is antisymmetric. If ei happened-before ej, then ej cannot happen-before ei.

i j j ie e e e→ ⇒ →/

27

The antisymmetry property follows from the relationship implied by →. If one event has

occurred on which a second depend, the first cannot depend on the second. Note that any

relation that is transitive and irreflexive must also be antisymmetric, since otherwise the

self will be reachable transitively and thereby violate irreflexivity.

For any event e, there may be other events that happened-before it. There may also be

other events that e happened-before. Any system with events and happened-before

relations can be represented as a graph, where events are vertices, and instances of the

happened-before relation are edges. Such a graph is shown in Figure 3.1.

Figure 3.1 Graph of events related by happened-before

Since it is transitive, irreflexive and antisymmetric, the happened-before relation is a

strict partial order relation, imposing a strict partial order on a set of events. A system

with events and happened-before relationships shown as a graph is therefore a Directed

Acyclic Graph (DAG), such as the graph shown in Figure 3.1.

3.2 Time and time values

In order to be able to reason about timestamps and clocks, it is necessary to start from a

definition of time. Time as a concept is viewed quite differently in different disciplines

such as physics and philosophy. In modern physics, time is viewed as an additional

dimension to the three dimensions in space. The four dimensions constitute the space-

time-continuum. In philosophy on the other hand, time is often viewed as a container for

events. In this view, time is merely a concept that allows us to sort and compare the

occurrence of events.

 e6

 e7
 e5 e4

 e3 e2 e1

28

In this work, time is considered to be a fundamental quantity. As a fundamental

quantity, time is not itself defined in terms of other quantities, but it is measurable by

means of comparison with periodic events, such as the periodic events occurring in clocks.

Such periodic events may for example be the swinging of a pendulum (a pendulum

clock), the movement of earth (a sundial) or microwave emission from certain materials

(an atomic clock). We consider events to have a moment in time associated with them,

and assume that these moments in time can be ordered in time by relations < and =.

Definition Definition Definition Definition 3333....2222.... Let E be the domain of events. Let e be an event. Events are considered

to be instantaneous. Let T be the domain of time. Let ()t e be a function E T� ,

representing the moment in time at which event e occurred.

Further, we assume that causality is preserved in time. With the preservation of

causality in time, we mean that no event can causally depend on an event occurring at

the same time or a later time than itself. This can be expressed explicitly with the

happened-before relation as:

() ()i j j it e t e e e≤ ⇒ →/ (3.1)

This assumption corresponds to the intuitive understanding of the relationship between

causality and time. If such causal relations were allowed, then events in the future would

be allowed to affect events in the past, something that has not been shown to occur in

the real world.

For two events related by the happened-before relation, Equation (3.1) implies that:

() ()i j i je e t e t e→ ⇒ < (3.2)

From Equation (3.2), the progression of time is linked to causal sequences of events

because time must increase for each event that is causally connected to a previous event.

This corresponds to the philosopher’s view of time as a container for events. At the

occurrence of two causally connected events, an observer would perceive the event

happening-before as the event coming first in time, and can infer the progression of time

from the occurrences. Consider for example a philosopher watching Galileo dropping

29

objects from a tower through a telescope. The events “Galileo dropped the stone” and

“the stone falls” are clearly causally connected and the first must therefore have occurred

at an earlier point in time than the second. Thus, the philosopher can infer the

progression of time from his observations. On the other hand, if Galileo did not drop the

object and made no movements, the philosopher could not infer the progression of time

from what he had seen through the telescope. Instead he would have to rely on other

chains of events, such as the movement of the sun or his own heartbeats.

The above imposes an ordering in time on events ordered by the happened-before relation

→. It does not however imply any ordering in time for events not ordered by →. Also,

() ()i jt e t e< does not imply that ei → ej. Events may happen at different moments in

time without being related by →. On the other hand, if two times 1()t e and 2()t e are

ordered such that 1 2() ()t e t e< , events occurring at those moments in time cannot be

causally connected in reverse, such that the e2 → e1.

3.3 Clocks

A clock is a device designed to give the user an approximation of time that is sufficiently

coherent to allow him to measure and compare time periods and sufficiently consistent

with other clocks so as to allow the owner to perform actions concurrent with other clock

users without continuous coordination. Clocks are in other words designed to give an

approximation of time. The definition of a clock should be able to reflect the possibility

of clock drift and adjustment mentioned in section 1.4.

Definition Definition Definition Definition 3333....3333.... Let V be the domain of time values produced by a clock. ()c t is a clock

function T V�

The definition of a clock function does not impose any restrictions on the clock values as

a function of time. For example, even if t1 < t2 it may be the case that 1 2() ()c t c t> . And

even if t1 < t2 < t3, it may be the case that 1 2 3() () ()c t c t c t= = . The latter situation may

for example occur if the events occurring at t1, t2, t3 are so close together in time that the

clock is unable to differentiate between them.

30

3.4 Timestamped events

A timestamped event is an event for which there exists a timestamp value in domain V.

The timestamp value can be represented as a function on the event. Timestamps are

created when an event makes a copy of the value provided by a clock. All timestamps in

a set of timestamped events are not necessarily related to the same clock.

Definition Definition Definition Definition 3333....4444.... Let E be a set of timestamped events and V a domain of time values.

()c eτ is a function E V� such that () (())c i ie c t eτ = . ()c ieτ represents the timestamp

associated with the event ei relative to clock c.

In this definition, a timestamp is the value of the producing clock at the time of the

event. The timestamp reflects the clock’s representation of time at that particular

moment. The definition of timestamps as a function of events and clocks provides a

possibility to reason over timestamps and clocks.

3.5 Ideal and non-ideal clocks and their properties

It is useful to introduce the concept of ideal clocks and non-ideal clocks. An ideal clock is

a clock which can only go forward.

Definition Definition Definition Definition 3333....5555.... Let I be the set of ideal clocks. An ideal clock ()c t I∈ is a clock which

satisfies

(() () (()) (()))i j i ji j t e t e c t e c t e∀ ∀ < ⇒ ≤

(() () (()) (()))i j i ji j t e t e c t e c t e∀ ∀ = ⇒ =

Let NI be the set of non-ideal clocks. Non-ideal clocks are clocks that are not ideal clocks

()c t I∈/ .

An ideal clock is a clock function on time which has the property that the value provided

in the function on time is monotonically increasing. While having a monotonically

increasing value, values c(t(ei)), c(t(ej)) produced from two different moments in time

()it e and ()jt e where () ()i jt e t e< may be equal. Many clocks represent moments in time

31

as discrete values. In a discrete clock with limited resolution, two moments close in time

will be represented by the same clock value.

An always increasing clock has the property that all timestamps produced from it will

always be equal or higher for events occurring at increasing moments in time. In

particular, events causally connected to each other would have timestamps with an equal

or higher value on the latter event. This can be formulated as follows.

TheoremTheoremTheoremTheorem 3333....6666.... For all ideal clocks c I∈ , produced timestamps satisfies

() ()i j c i c je e e e→ ⇒ τ ≤ τ

ProofProofProofProof.... From Definition 3.5 an ideal clock satisfies:

(() () (()) (()))i j i ji j t e t e c t e c t e∀ ∀ < ⇒ ≤

That is, for events ei and ej occurring at times t(ei) and t(ej) we have:

() () (()) (())i j i jt e t e c t e c t e< ⇒ ≤

By replacing the right hand side of Equation (3.2) we now obtain:

(()) (())i j i je e c t e c t e→ ⇒ ≤

And from Definition 3.4, () (())c i ie c t eτ = , which gives:

() ()i j c i c je e e e→ ⇒ τ ≤ τ

�

It is also interesting to determine if the opposite is the case, that a non-ideal clock does

not necessarily produce such timestamps.

Theorem Theorem Theorem Theorem 3333....7777.... There is at least one possible non-ideal clock c NI∈ that does not satisfy

() ()i j c i c je e e e→ ⇒ τ ≤ τ

32

Proof. Proof. Proof. Proof. The proof is simply by providing a counterexample. Let i je e→ . It now follows

from Equation (3.2) that () ()i jt e t e< . Now, let

(()) 1ic t e =

(()) 0jc t e =

The clock c is non-ideal (c NI∈) because

() () (()) (())i j i jt e t e c t e c t e< ⇒ ≤

And in this case,

(()) (())i j c i c jc t e c t e e e> ⇔ τ () > τ ()

Thus,

c i c je eτ () < τ ()/

�

As shown, the monotonic property of ideal clocks guarantee that two causally connected

events timestamped by the same ideal clock have timestamps where the timestamp of the

latter event is always equal or higher than the timestamp of the first.

It would be desirable if public recognized clocks in the real world were ideal clocks. But

even if a clock is publicly recognized, it is not necessarily an ideal clock. Civil time in a

country may for example be adjusted for Daylight Savings Time twice a year. If this

adjustment breaks the monotonicity requirement of an ideal clock in Definition 3.5, then

the civil time in that country is not an ideal clock. UTC (see Appendix B.1) is adjusted

regularly to keep it synchronized with the rotation of the Earth. Because of the way it is

defined, UTC still maintains monotonicity, and is therefore an ideal clock according to

the definition.

3.6 Clock hypotheses, adjustment and drift

In order to be able to test if a certain theory about the clock holds, one must be able to

formulate a hypothesis about the clock function. A hypothesis about the clock function is

a possible theory about the clock function during the computer history. That hypothesis

33

can then be tested against the set of observed timestamps. In the following, a clock

hypothesis will be denoted ()hc t .

In order to be able to reason on timestamps from a certain clock, it is useful to divide the

clock into a base component being an ideal clock and a deviation component representing

all adjustment, error and drift in the clock. The only requirement for the base is that it is

an ideal clock, but selecting a base clock that allows correlation with other clocks is a

good idea. UTC is an example of a universal time source that would allow such

correlation. The UTC is moving forward at a known rate, and is adjusted in a predictable

manner. There are many clocks in the world that have a known relationship to UTC.

Therefore, if events can be timestamped at UTC, it would be easy to correlate their

timing with those of events timestamped by other clocks.

Definition Definition Definition Definition 3333....8888.... A clock function ()c t can be divided into two components, one function

()b t which is an ideal clock and one function ()d t representing the deviation from the

ideal clock.

() () ()c t b t d t= +

In this scheme, the clock (()c t) is divided into components: ()b t is a base clock which

must be an ideal clock. ()d t is the difference between the base clock and the investigated

clock. By selecting a common base, two or more clocks can be compared by comparing

the deviation only. It is sometimes useful to express the time of an event in terms of the

base clock. This can be done by subtracting ()d t in Definition 3.8.

 () () ()b t c t d t= − (3.1)

ExampleExampleExampleExample 3333....9999. . . . The clock of the investigated computer is equal to civil time at the time of

the investigation. The investigator assumes that this has been the case in the entire

history of the computer. Selecting civil time as the base, the hypothesis becomes

() 0d t =

In other words

() ()c t b t=

34

Example 3.9 describes the default hypothesis - the assumption that the clock has been

maintained at the current offset during the computer history. In the default hypothesis,

the assumption is that the clock has not been adjusted at any time in its previous

history. This assumption is not justified only by the fact that the clock is equal to civil

time when the investigation is performed. It could also be the case that the clock had

been adjusted to an earlier time and then adjusted forward again, similar to the example

in Section 2.3. A clock hypothesis model must be able to model such changes to the

clock.

A clock adjustment is an event. If the event of an adjustment to a clock is eadj, then the

time of that adjustment is adj()t e . The time value of that adjustment in the base clock is

adj(())b t e . Adjustments on a clock can now be represented by representing ()d t as a

discontinuous function on t. By letting the clock adjustment be represented by an event,

it is possible to perform reasoning on any other events causally dependant on that event.

Records of these events may for example exist in computer systems which log clock

changes.

Example Example Example Example 3333....10101010. . . . The clock of the investigated computer is equal to civil time at the time

of the investigation. The investigator assumes that the clock was adjusted back one year

(eadj1) approximately two years before the investigation (einv) and then adjusted forward

one year (eadj2) approximately one year before the investigation.

adj1() 0, ()d t t t e= <

adj1 adj2() 1 year, () ()d t t t e t t e= − > ∧ <

adj2() 0, ()d t t t e= >

adj1 inv(()) (()) 2 yearsb t e b t e= −

adj2 inv(()) (()) 1 yearb t e b t e= −

35

Figure 3.2 Plot of ()b t and ()c t in Example 3.10.

A clock hypothesis must also be able to account for errors and drift in clocks. The

occurrence of random errors in clock can be modelled the same way as adjustments, by

letting an event represent the occurrence of the error and determining its effects in ()d t .

Clock drift is a little different. Drift is in most cases a factor on the time since the clock

drifts a certain amount per time unit, relative to the time unit. [12]

Example Example Example Example 3333....11111111.... A clock was adjusted to UTC (eadj1) and is believed to drift 5 seconds per

day in the forward direction.

() () ()c t b t d t= +

adj1() (())
() 5 sec

1day

b t b t e
d t

−
= ⋅

c(t)

b(t)

T

V

36

Figure 3.3 Plot of ()b t and ()c t in Example 3.11

This provides ways of defining a clock hypothesis. There may be other occurrences that

should be modelled in a clock hypothesis as well. The discussion in the following does not

impose any constraints on the clock hypothesis itself, as long as it can be composed of an

ideal base clock component and a deviation component.

The clock function as it is represented here is similar to the clock models described by

Stevens and Buchholz. [14, 15] These models describe a clock in terms of a base clock by

letting it be the sum of clock drift, adjustments and error. These models can be used to

represent clock hypotheses to be tested using the methods in this work. It should

however be noted that Definition 3.8 requires the base clock to be an ideal clock. This

requirement is necessary in the development of consistency tests developed in the

following. The requirement is satisfied in Stevens’ model, since it uses UTC as base.

Buchholz does not however state any such requirement for the reference time used in his

model. Thus, if Buchholz’ clock model is used for hypothesis formulation and testing with

the methods in this work, an ideal clock must be selected as reference time.

3.7 Observed event sets and correctness

c(t)

b(t)

T

V

37

During a digital investigation of a computer, the investigator will observe a number of

timestamped events that all come from the same clock. Some of these events will be

causally connected. This set of observed timestamped events is called the observation set.

Definition Definition Definition Definition 3333....12121212. . . . An observation set O, is a set of timestamped events, in which all

timestamps are related to one clock o()c t .

In an observation set, there will typically be a large amount of timestamped events. The

number of causal connections may also be large. The data in an observation set can be

used to determine if a clock hypothesis holds or not.

Definition Definition Definition Definition 3333....13131313. . . . A clock hypothesis h()c t for an observation set O is correct if and only if

the value of o()c t is equal to the value of h()c t for all events e O∈ .

o

o h

h

() ()

(() (()))i c i i

c t c t

e e c t e

=

⇓

∀ τ =

If a clock hypothesis is correct, then all occurrences of timestamps must match the value

predicted by the hypothesis. The correctness property can therefore be utilized to find

techniques for testing if a clock hypothesis is correct or not.

Theorem Theorem Theorem Theorem 3333....14141414. . . . In a correct clock hypothesis h()c t , the timestamps of all causally

connected events ei → ej in an observation set O must be such that the timestamp of the

first event minus the deviation from a common base has value less than or equal to the

timestamp of the latter event minus the deviation from a common base.

o oh h() (()) () (())i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −

Proof. Proof. Proof. Proof. Let h()c t be a correct clock hypothesis. Let ()b t be a common base for h()c t and

o()c t . Then

h h() () ()b t c t d t= −

o o() () ()b t c t d t= −

Thus,

h h o o() () () ()c t d t c t d t− = −

38

And since h()c t is correct we have h()c t = o()c t . Therefore

h o() ()d t d t=

o h() () ()b t c t d t= −

And inserting Definition 3.4 yields

o h(()) () (())cb t e e d t e= τ −

Now, from Definition 3.8 ()b t shall be an ideal clock. From Theorem 3.6 we know that

ideal clocks satisfy

(()) (())i j i je e c t e c t e→ ⇒ ≤

And then, inserting ()b t gives

(()) (())i j i je e b t e b t e→ ⇒ ≤

o oh h() (()) () (())i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −

�

And conversely, if the property examined in Theorem 3.14 does not hold, then the

hypothesis is not correct.

Theorem Theorem Theorem Theorem 3333....15151515 (Test (Test (Test (Test----A theorem)A theorem)A theorem)A theorem). . . . If a pair of causally connected events ei → ej exist in an

observation set O, for which the timestamp of ei minus the hypothesis deviation from a

common base has a higher value than the timestamp of ej minus the hypothesis deviation

from a common base, then the clock hypothesis is incorrect. This is called Test-A.

o oh h o h(() (() (()) () (()))) () ()i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/

Proof.Proof.Proof.Proof. The proof is by contradiction. Let h()c t be a clock hypothesis and O an

observation set with clock o()c t . Let (,)a be e be a pair of events in O such that ea → eb

and

o oh h() (()) () (())c a a c b be d t e e d t eτ − > τ −

Assume that h()c t is correct, h()c t = o()c t . If h()c t is correct we have from Theorem

3.14 that

39

o oh h() (()) () (())i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −

But for i = a and j = b, we have assumed that ea → eb and so,

o oh h() (() (()) () (()))a b c a a c b be e e d t e e d t e→ ∧ τ − > τ − (3.2)

This contradicts the result from Theorem 3.14. Therefore, if (3.2) holds, then h()c t

cannot be correct. There has been no assumption or restriction on the events ea and eb. ea

and eb could therefore have been any event in the observation set O. The result is that

for any event ei and ej, if (3.2) holds, h()c t cannot be correct.

o oh h o h(() (() (()) () (()))) () ()i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/

�

Test-A can be illustrated by an example.

Example Example Example Example 3333....16161616. . . . Consider the default clock hypothesis, where it is assumed that the clock

of the investigated computer has always been equal to civil time, say UTC. Then h()c t =

b(t) and h()d t = 0. Now, let the observed set consist of timestamps for four events e1 -

e4, where:

1()oc eτ = Jan 12, 2003, 12:46:34

o 2()c eτ = Apr 21, 2004, 10:22:38

o 3()c eτ = Feb 9, 2003, 22:16:04

o 4()c eτ = Dec 12, 2002, 02:46:32

And where e1 → e2 and e3 → e4 . If we now apply Test-A for i = 3 and j = 4, we see

that

o o3 4 3 4() (() ())c ce e e e→ ∧ τ > τ

And since h()d t = 0, the test fails. Thus, the default hypothesis is not correct for this

observation set.

40

The result can be explained informally as follows: Since e4 must have happened after e3

and the timestamp of e4 is at an earlier time than the timestamp of e3, it cannot be the

case that the clock has not been adjusted between these two events.

Theorem Theorem Theorem Theorem 3333....17171717 (Test (Test (Test (Test----B theorem)B theorem)B theorem)B theorem). . . . In a clock hypothesis h()c t , for values 'c of h()c t for

which h()c t = 'c has no solution, the existence of any timestamps in the observation set

O with value

'
o
()c ie cτ =

implies that h()c t is incorrect. This is called Test-B.

Proof.Proof.Proof.Proof. The proof is by contradiction. Let h()c t be a clock hypothesis and O an

observation set with clock o()c t . Let ea be an event in O and

'
o
()c ae cτ =

the timestamp of ea. Let 'c have a value such that h()c t = 'c has no solution. Assume

that h()c t is correct, h()c t = o()c t . If h()c t is correct we have from Definition 3.13

o h(() (()))i c i ie e c t e∀ τ =

Which means that for i = a

o h() (())c a ae c t eτ =

This is a contradiction since '
o
()c ae cτ = and 'h()c t c= has no solution.

Therefore if '
o
()c ae cτ = and 'h()c t c= has no solution, then h()c t cannot be correct.

�

An example will illustrate the use of Test-B.

Example Example Example Example 3333....18181818. . . . Consider the clock hypothesis in Example 3.10. This hypothesis is a

discontinuous function for which there exist values 'c where ()c t has no solution. If for

example a timestamp oddτ from one and a half years before the investigation was found,

this would imply the incorrectness of the hypothesis. A plot of this timestamp value and

the clock hypothesis is shown in Figure 3.4.

41

Figure 3.4 An observation of timestamp oddτ for which h()c t = oddτ has no solution

3.8 Clock hypothesis consistency

The results in Theorem 3.15 and Theorem 3.17 are useful, because they can be used to

refute a clock hypothesis for observation set O, from observations of the timestamps on

events in O. In Test-A, a clock hypothesis is incorrect when observations of timestamps

for two causally connected events are not ordered correctly by the clock hypothesis. In

Test-B, a clock hypothesis is incorrect if observations of timestamps exist that cannot be

produced by the clock hypothesis, because it is a discontinuous function. These theorems

provide methods for testing if a clock hypothesis is incorrect. By iterating over all events

and pair of events, each timestamp can be checked for consistency with Test-A and Test-

B. There are also other tests that can determine if a clock hypothesis is incorrect, as will

be more closely examined in Chapter 5-7.

The result of testing all timestamps in the observation set will be either that the clock

hypothesis is incorrect or that it is not incorrect. The tests can refute the clock

hypothesis, but they can not prove it correct. This leads to the following definition of a

consistent clock hypothesis.

oddτ

ch(t)

T

V

42

Definition Definition Definition Definition 3333....19191919 Given a set of tests Z, a clock hypothesis is consistent under Z with an

observation set O if no test z Z∈ shows that the hypothesis is incorrect for O. A clock

hypothesis is inconsistent under Z with an observation set O if it is not consistent under

Z with O.

Since a correct hypothesis by definition cannot be proven incorrect it follows that

CorollaryCorollaryCorollaryCorollary 3333....20202020 A correct hypothesis h()c t for observation set O is always consistent with

O.

The distinction that follows from the definitions of correct and consistent is useful in the

context of digital investigations. In a correct clock hypothesis all possible time values are

always equal to the investigated clock. A correct clock hypothesis can only be derived if

the investigated clock has been observed at every moment in its history. Establishing a

correct hypothesis about the investigated clock is inconceivable in a real investigation.

All the investigator can hope to do is to establish a consistent clock hypothesis. In such a

hypothesis there is no evidence available that refutes the hypothesis. Specifically, none of

the timestamps of events in the observation set O as applied in tests in the test set Z

show that the hypothesis is incorrect. If there is a large number of timestamps and

causally connected events present in the observation set O, these requirements impose

strict constraints on a consistent hypothesis. This can lead to the justification of the

hypothesis. The more data available in O to be fed into the tests in Z, the more justified

the clock hypothesis can be. As long as the clock hypothesis is consistent, the data in O

is evidence supporting the hypothesis.

3.9 Subsets, supersets, intersections and unions

It is useful to be able to reason on subsets and supersets of the observed set. It is

therefore interesting to look at certain properties of such sets in relation to Test-A and

Test-B.

Theorem Theorem Theorem Theorem 3333....21212121. . . . If a clock hypothesis h()c t is consistent under Test-A with an observation

set O, then h()c t is also consistent under Test-A with every subset of O.

43

Proof. Proof. Proof. Proof. Since h()c t is consistent under Test-A with O, we have from Theorem 3.15 for O

o oh h(() (() (()) () (())))i j i j c i i c j je e e e e d t e e d t e¬∃ ∃ → ∧ τ − > τ −

Which means that for any pair, ei, ej ∈ O:

o oh h(() (() (()) () (())))i j c i i c j je e e d t e e d t e¬ → ∧ τ − > τ −

Let P be any subset of O, P ⊆ O. For every pair of events ei, ej ∈ P, since P ⊆ O, it is

also the case that ei, ej ∈ O. Which means that for also for any pair, ei, ej ∈ P:

o oh h(() (() (()) () (())))i j c i i c j je e e d t e e d t e¬ → ∧ τ − > τ −

Thus for P,

o oh h(() (() (()) () (())))i j i j c i i c j je e e e e d t e e d t e¬∃ ∃ → ∧ τ − > τ −

Showing that h()c t is not refuted by timestamps in set P using Test-A. From Definition

3.19, h()c t is then consistent with P using Test-A.

�

TheoremTheoremTheoremTheorem 3333....22222222. . . . If a clock hypothesis h()c t is consistent under Test-B with an observation

set O, then h()c t is also consistent under Test-B with every subset of O.

Proof. Proof. Proof. Proof. By Theorem 3.17, if h()c t is consistent under Test-B with O, then there is no

timestamp

'
o
()c ae cτ =

for an event ea in O, where h()c t = 'c has no solution.

Let P be any subset of O, P ⊆ O. For every event ei ∈ P, since P ⊆ O, it is also the case

that ei ∈ O. Since there is no event ea in O for which h()c t = c’ has no solution, there

cannot be any such event in P. Consequently, there are no events in P for which h()c t =

'c has no solution. Therefore Test-B holds also for P, and by Definition 3.19 h()c t is

then also consistent under Test-B with P.

�

44

TheorTheorTheorTheorem em em em 3333....23232323. . . . If a clock hypothesis h()c t is inconsistent under Test-A with an

observation set O, then h()c t is also inconsistent under Test-A with every superset of O.

Proof. Proof. Proof. Proof. Let h()c t be inconsistent with O using Test-A. Then (from Theorem 3.15):

o oh h(() (() (()) () (())))a b a b c a a c b be e e e e d t e e d t e∃ ∃ → ∧ τ − > τ −

Let Q be any superset of O, Q O⊇ . For every pair of events ,i je e O∈ , since Q O⊇ , it

is also the case that ,i je e Q∈ . This means that if ,a be e O∈ then consequently also

,a be e Q∈ . Therefore, any pair of events ea, eb that makes h()c t inconsistent with O must

also make h()c t inconsistent with Os superset Q. We have then for Q:

o oh h(() (() (()) () (())))a b a b c a a c b be e e e e d t e e d t e∃ ∃ → ∧ τ − > τ −

�

TheoremTheoremTheoremTheorem 3333....24242424. . . . If a clock hypothesis h()c t is inconsistent under Test-B with an

observation set O, then h()c t is also inconsistent under Test-B with every superset of O.

Proof. Proof. Proof. Proof. Let h()c t be inconsistent with an observation set O. Then by Theorem 3.17 there

exists a timestamp '
o
()c ae cτ = such that 'h()c t c= has no solution.

Let Q be any superset of O, Q O⊇ . For any event ie O∈ , since Q O⊇ , it is also the

case that ie Q∈ . Therefore, if the timestamp '
o
()c ae cτ = is in O, it is also in Q.

Consequently we have also in Q a timestamp '
o
()c ae cτ = such that 'h()c t c= has no

solution.

�

These theorems states that with the test methods A and B, consistency will be preserved

when treating subsets of the observed set as observed set and inconsistency will be

preserved when treating supersets of the observed set as observed set. But is the opposite

the case? Is for example consistency preserved when treating a superset of the observed

set as observed set? It is easy to see that this is not the case. In the superset, there are

events that do not exist in the observed set. These events may have values that cannot

45

be generated by the clock hypothesis, and therefore violate Test-B. Such events may also

be causally connected to each other or to events in the observation set and may have

values that are inconsistent with the clock hypothesis in Test-A. Consequently,

consistency is not preserved when observing supersets. The opposite, that inconsistency is

not necessarily preserved when observing subsets follows from similar reasoning. The

events that constitute the inconsistency are not necessarily present in the subset, and a

subset of the observed set may therefore be consistent, even if the observed set is not.

In the following, properties of intersections and unions of observation sets in relation to

Test-A and Test-B will be examined.

Theorem Theorem Theorem Theorem 3333....25252525. . . . If a clock hypothesis h()c t is consistent under Test-A with observation

sets O1 and O2, then h()c t is also consistent under Test-A with the intersection 1 2O O∩ .

If a clock hypothesis h()c t is consistent under Test-B with observation sets O1 and O2,

then h()c t is also consistent under Test-B with the intersection 1 2O O∩ .

Proof.Proof.Proof.Proof. Let O be the intersection of O1 and O2, 1 2O O O= ∩ . By the definition of

intersection, O must then be a subset of O1 and a subset of O2. The preserving of

consistency for subsets in Test-A and Test-B has already been proven in Theorem 3.21

and Theorem 3.22.

�

Theorem Theorem Theorem Theorem 3333....26262626. . . . If a clock hypothesis h()c t is consistent under Test-B with observation

sets O1 and O2 using Test-B, then h()c t is also consistent under Test-B with the union

1 2O O∪ .

Proof.Proof.Proof.Proof. Let O be the union of O1 and O2, 1 2O O∪ . For every event ie O∈ , since

1 2O O O= ∪ , then ei must be either in O1 or O2, 1 2i ie O e O∈ ∨ ∈ .

By Theorem 3.17, if h()c t is consistent under Test-B with O1 and O2, then there is no

timestamp '
o
()c ae cτ = for an event ea in O1 or O2, where 'h()c t c= has no solution.

Therefore, since 1 2i ie O e O∈ ∨ ∈ there is no timestamp '
o
()c ae cτ = for an event ea in O,

where 'h()c t c= has no solution.

�

46

When examining Test-A in relation to unions of sets, it is necessary to define a

connection set. A connection set is the set of bordering elements in each of the two

different sets, elements that is member in one of the sets and have causal connections to

elements in the other set. An example connection set is shown in Figure 3.5.

Definition Definition Definition Definition 3333....27272727. . . . A connection set OA-B is a set consisting of elements from two sets OA

and OB, where each element e in OA-B is element of exactly one of the sets OA and OB,

and is causally connected to another element ek in the other set. Formally,

(()

)

a b a A b B a B b A a b b a

a A B b A B

e e e O e O e O e O e e e e

e O e O− −

∀ ∀ ∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /

⇒ ∈ ∧ ∈

Figure 3.5 Graphical representation of a connection set

Theorem Theorem Theorem Theorem 3333....28282828.... If a clock hypothesis h()c t is consistent under Test-A with observation

sets O1 and O2, and consistent with the connection set O1-2, then h()c t is also consistent

under Test-A with the union 1 2O O∪ .

Proof. Proof. Proof. Proof. Let O be the union of two sets O1 and O2, 1 2O O O= ∪ . Let h()c t be consistent

with O1 and O2 and their connection set O1-2 . For h()c t to be consistent, Theorem 3.14

must be satisfied for all ,i je e O∈ :

OB OA
OA-B

e7

e6

e5 e4

e3 e2 e1

47

o o h() (()) () (())i j c i h i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −

Since 1 2O O O= ∪ , all elements in O must be an element of either O1, O2 or both. For

every pair (ei, ej) in O, it could then be the case that either both ei and ej is element in

the same set or that ei is element in one set and ej is element in the other. For the cases

where ei and ej are element of the same set, we already know that Theorem 3.14 is

satisfied, since h()c t is consistent with both O1 and O2.

For the cases where ei and ej are elements of different sets, we have two cases: Either ei is

element in O1 and not O2, with ej element in O2 and not O1, or ei is element in O2 and not

O1, while ej is element in O1 and not O2. We do not consider cases where an event is

element in both O1 and O2, since in that case Theorem 3.14 would be satisfied by the

reasoning above. The two cases can be written:

1 2 2 1i j i je O e O e O e O∈ ∧ ∈ ∧ ∈ ∧ ∈/ /

1 2 2 1j i j ie O e O e O e O∈ ∧ ∈ ∧ ∈ ∧ ∈/ /

In order to prove that Theorem 3.14 is satisfied, we need only consider cases where

i je e→ or j ie e→ . The cases that need to be considered are then reduced to:

1 2 2 1 ()i j i j i j j ie O e O e O e O e e e e∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /

1 2 2 1 ()j i j i i j j ie O e O e O e O e e e e∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /

Since h()c t is consistent with the connection set O1-2 it is now sufficient to show that

these cases are included in the connection set O1-2. This follows directly from Definition

3.27. Let a = i, b = j, A = 1 and B = 2, and it becomes clear that the first cases are

included in O1-2. Further, let a = j, b = i, A = 1 and B = 2. It then becomes clear that

also the second cases are included in O1-2. Since h()c t is consistent with O1-2, all pairs of

elements in O therefore satisfy Theorem 3.14 and consequently h()c t is also consistent

with O using Test-A.

�

Finally, it is interesting to determine the properties of an empty observation set. Since

Test-A and Test-B only put requirements on h()c t in relation to events in an observation

48

set, it is reasonable that a clock hypothesis is always consistent with an empty

observation set.

Theorem Theorem Theorem Theorem 3333....29292929. . . . A clock hypothesis h()c t is always consistent under Test-A and Test-B

with the empty observation set O = ∅ .

Proof.Proof.Proof.Proof. Let the observation set O be the empty set, O = ∅ . Test-A is given in Theorem

3.15:

o oh h o h(() (() (()) () (()))) () ()i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/

But if O = ∅ , there can by definition not be any elements e O∈ . Therefore, Test-A will

never fail and by Definition 3.19, h()c t is always consistent under Test-A with O.

The same reasoning can be applied for Test-B, given in Theorem 3.17, whereby the test

fails at an observation of '
o
()c ie cτ = for which 'h()c t c= has no solution. But if O = ∅ ,

there can by definition not be any elements e O∈ , for which there can exist observations

of '
o
()c ie cτ = . Therefore this test will never fail and by Definition 3.19 h()c t is always

consistent with O using Test-B.

�

Theorem 3.29 reflects the situation in an investigation where no evidence is available. In

such an investigation most investigators would conclude that one would not be in the

position to infer any conclusions about the history of the investigated object. The fact

that any clock hypothesis would be consistent in this case reflects the nature of a

hypothesis. A hypothesis cannot be proven correct, it can only be refuted. An empty

observation set implies that there is no evidence available. When there is no evidence

available the hypothesis cannot be refuted.

3.10 The clock hypothesis as a scientific hypothesis

In the hypothesis based investigation model proposed by Carrier, a digital investigation is

a process that formulates and tests hypotheses to answer questions about digital events

or the state of digital data. [4] Carrier proposes that the investigation process is scientific

49

if the hypothesis is scientific and then tested through performing experiments. Carrier

cites Popper in that the “criterion of the scientific status of a theory is its falsifiability, or

refutability, or testability”. Popper elaborates further on the subject: [29]

- “Every ‘good’ scientific theory is a prohibition: it forbids certain things to happen. The

more a theory forbids, the better it is.”

- “Every genuine test of a theory is an attempt to falsify it, or to refute it. Testability is

falsifiability; but there are degrees of testability; some theories are more testable, more

exposed to refutation than other; they take, as it were, greater risks.”

- “Confirming evidence should not count except when it is the result of a genuine test of

the theory; and this means that it can be presented as a serious but unsuccessful attempt

to falsify the theory.”

The question here is then if the method for clock hypothesis formulation and testing the

set of observed timestamps adhere to these criteria. From the previous discussion, a clock

hypothesis is a theory that is falsifiable and therefore testable. After formulating a clock

hypothesis, the investigator can use the methods explored in sections 3.7 - 3.9 to test the

hypothesis. The outcome of such a test can only be a refutation of the hypothesis. If the

hypothesis is not refuted, it is consistent according to the definition in section 3.8, but

not necessarily correct according to the definition in section 3.7. The hypothesis cannot

be proven correct, but as the amount of evidence supporting it increases, it becomes more

and more justified. With the test methods that have been developed, the observed set of

timestamps can put a clock hypothesis under scrutiny, especially where there are tens of

thousands of timestamps in the observed set, such as on a typical hard drive. It is enough

with one mismatched timestamp in an observed set to refute the clock hypothesis.

The clock hypothesis theory described in the previous sections adheres to the

requirements of a scientific theory. The hypothesis forbids certain things to happen; the

occurrence of timestamp configurations as described in Test-A and Test-B. The described

tests examine the evidence for refutation of the theory. They do not look for

confirmation, but examine the available evidence for consistency with the theory. When

the tests have been applied, and found not to refute the hypothesis, the tests count as

serious but unsuccessful attempts to falsify the theory and therefore as confirming

evidence. Thus, the methods described in this chapter fall within the hypothesis based

50

investigation model proposed by Carrier and should be considered an application of this

model within the subject of digital investigation of timestamps.

51

4 CAUSALITY IN STORAGE SYSTEMS

Chapter 3 introduced how causality reasoning can be applied to develop a consistent

clock hypothesis. In order to be able to test a clock hypothesis for consistency, it is

necessary to enumerate events in the investigated systems with causal connections

between them. The study of events and causality in storage systems is of particular

interest, since these systems provide the foundations of the way data is stored on the

media investigated in digital investigations. In this chapter, several properties of storage

systems will be investigated, with the goal of finding causal connections that can be

utilized for clock hypothesis consistency determination.

Section 4.1 analyzes causality of append-only storages. Section 4.2 analyzes causality of

first-fit storage systems, with or without generation markers. Section 4.3 generalizes these

results for other allocation algorithms. Section 4.4 discusses the use of sequence numbers

in storage systems. Section 4.5 applies the discussion in the other sections to the analysis

of causality in file system events.

4.1 Append only allocation

A common type of storage system is a system in which each new storage location is

allocated after the previously allocated storage location. In such a system, previous

storage locations are never reused, since there is no support for deleting the contents of

previous storage locations and free them for reuse. Without any influence from the

outside, the contents of an append-only storage will grow towards infinity.

The use of append only allocation strategies is prevalent in log files. System logs on

UNIX-systems are good examples. In these logs, the storage allocation is usually line-

based. Each line represents a separate event in the system logging software, and is

usually timestamped by the system logging software at the time it is stored. Other

examples include line-based logs from ftp-servers, web servers and databases as well as

binary logs such as UNIX wtmp-files and Windows event logs. In the latter, each storage

52

allocation represents timestamped system events. These are stored in an append-only

fashion, although the format makes that less obvious than for text based logs.

Figure 4.1 Graphical representation of append only storage

Let is be the i-th storage location where 0i > . Let ise be the event of storing data in the

i-th storage location. Then, for all i,
1i is se e

−
→ .

On this basis, Test-A and Test-B can be used to test a clock hypothesis for consistency

based on the timestamps in an append-only storage. If each storage location is is

timestamped, Test-A can be applied directly on each pair
1i is se e

−
→ , whereas Test-B can

be applied to each event individually.

Example Example Example Example 4444....1111. . . . Consider a default clock hypothesis, where h()c t is considered to be equal

to UTC and therefore ()d t = 0. Let the observation set O be the timestamps in the

following excerpt from a Linux system log, where the creation of the first log line is e1,

the second e2 and so on. If the log is append-only, then e1 → e2 → … → e12.

Mar 18 20:17:56 liqin sshd[30513]: pam˙unix(sshd:session): session closed for user bakksjo

Mar 18 21:43:25 liqin sshd[30680]: Accepted password for sventy from 80.203.37.109 port 63053 ssh2

Mar 18 21:43:25 liqin sshd[30682]: pam˙unix(sshd:session): session opened for user sventy by (uid=0)

Mar 18 22:19:31 liqin sshd[30846]: Failed password for sventy from 213.179.57.64 port 38718 ssh2

Mar 18 22:19:34 liqin sshd[30846]: Accepted password for sventy from 213.179.57.64 port 38718 ssh2

Mar 18 22:19:34 liqin sshd[30848]: pam˙unix(sshd:session): session opened for user sventy by (uid=0)

Mar 18 22:19:35 liqin sshd[30848]: pam˙unix(sshd:session): session closed for user sventy

Mar 18 22:19:41 liqin sshd[30878]: Accepted password for sventy from 213.179.57.64 port 40882 ssh2

Mar 18 22:19:41 liqin sshd[30880]: pam˙unix(sshd:session): session opened for user sventy by (uid=0)

Mar 18 22:20:40 liqin sshd[30880]: pam˙unix(sshd:session): session closed for user sventy

Mar 18 22:22:46 liqin su: pam˙unix(su-l:session): session opened for user root by sventy(uid=500)

Mar 18 22:28:44 liqin su: pam˙unix(su-l:session): session closed for user root

There is no timestamps in the observation set where
o o

() (() ())i j c i c je e e e→ ∧ τ > τ .

Therefore the clock hypothesis is consistent using Test-A. Further, if h()c t is equal to

UTC, then there is no 'c for which h()c t = 'c has no solution. Therefore the observation

set is consistent using Test-B. Thus, the default hypothesis is consistent with O using

tests A and B.

s
si-1 s1

53

It could also be the case that not every storage location is timestamped. In this case the

transitivity property of the happened-before relation can be used to extract those events

that can be used in Test-A, and the happened-before relationship between them. Only

the events of the timestamped store location creations are used in the observation set.

Example Example Example Example 4444....2222. . . . e1 - e6 are the events of creation of six storage locations in an append-only

storage system. Only e1, e3 and e6 are timestamped. Since 1 2 3 4 5 6e e e e e e→ → → → → ,

by transitivity, 1 3 6e e e→ → . See Figure 4.2.

Figure 4.2 Timestamped events related transitively

Generally; due to the transitivity property, in an append-only system every creation of a

storage location is causally dependant on the creation of every other storage location

preceding it.

Let is be the i-th storage location in an append-only storage. Let ise be the event of

storing data in the i-th storage location. Then, for all i,

()j is sj i e e∀ < → . (4.1)

4.2 First-fit allocation

A first-fit allocation storage is a system in which each new data item is stored in the first

available storage location. Deleting data items is allowed and can be done at any time

after the data item has been stored in a storage location. After a data item has been

e1 e3 e6

τ τ τ

e6 e5 e4 e3 e2 e1

54

deleted, it may be overwritten by new data at any time. It may be possible to recover

deleted data, but it is not possible to recover data that has been overwritten, and it is

not otherwise possible to determine if stored data was stored by using a deleted storage

location or a previously unused storage location. A first-fit storage without deletion

possibility is an append-only storage. Figure 4.3 shows a possible allocation sequence in a

first-fit storage.

Figure 4.3 A possible allocation sequence in a first-fit storage

With a first-fit storage, one can no longer deduce a causal connection between two

neighbours. For any two neighbours is and 1is + in an append-only storage, 1i is s +→ ,

because new storage locations are only allowed to be allocated after previously allocated

storage locations. In a first-fit storage on the other hand, storage locations are allowed to

be allocated before other existing storage locations if data was deleted there, freeing

storage locations for new allocation. Therefore, in such a storage it is not possible to

deduce any causality between the storage of the elements based on the position of the

elements themselves.

It is interesting to examine a modified form of the first available storage, the first fit

storage with generation-markers. In this form, the first available storage is augmented

with the possibility of identifying which generation the data in each storage location

belongs to. The generation of a storage location is an identification of how many times

that data in that storage location has been overwritten. On some systems, this number

may be deduced from a stratigraphic analysis of the medium. On other systems, explicit

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Delete 1, 4, 5
Store two

Delete 1, 3

55

generation markers exist. Figure 4.4 shows the allocation sequence from Figure 4.3 with

generation markers.

Figure 4.4 The sequence in Figure 4.3 with generation markers added

In a system with generation markers, there is a causal connection between every pair of

consecutive generations at the same storage location. The storing of data in the i-th

storage location generation g can only commence if the data present in the i-th storage

location generation (g-1) has already been stored and deleted. Therefore, for every

storage location i, the storage of data in generation (g-1) happened-before the storage of

data in generation g. Generally; due to the transitivity property, the event of storing

data in a storage location is causally dependant on the storing of all previous generations

in that storage location.

Let ,i gs be the i-th storage location generation g. Let
,i gse be the event of storing data in

the i-th storage location at the g-th generation. Then for all i and g;
, 1 ,i g i gs se e

−
→ . Due

to the transitivity of → , for all generations g,

, ,
()i h i gs sh g e e∀ < → (4.2)

Next, consider the storing of data in storage locations with generation g = 0. When g =

0, there cannot exist any storage location which has been deleted and then overwritten

with another data item, because this would have increased the generation number above

0. The only place where new storage locations can be allocated with generation number 0

is at the end of the storage. The subset of storage locations with g = 0 is therefore an

append-only storage.

0 1 2 3 4 5 6 7

0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 1 0

0 1 0 0 0 0 1 0

56

Let ,0is be the i-th storage location in a first-fit storage, generation 0. Let
,0ise be the

event of storing data at generation 0 in the i-th storage location. Then, for all i,

,0 ,0
()j is sj i e e∀ < → (4.3)

Two different types of causal event sets have now been defined from the first available

storage with generation markers; the causality between storage of storage locations with g

= 0, and causality between storage of increasing generations at one storage location.

These sets intersect. Each causality set for increasing generations start at g = 0. Each

such element is also part of the g = 0 causal set. With these two types of causal

connections in the first available storage with generation markers, a causal connection on

all storage locations in the set is imposed. The ordering imposed by a causal connection is

best illustrated by an example.

Example Example Example Example 4444....3333. . . . Consider the storage location set in Figure 4.5. In the figure, the storage

locations are shown horizontally, and generations vertically. Deleted data are shown in

the lighter colour. For each storage location, the topmost item is always the current data

stored in the location. Figure 4.6 now shows the causal connections in the diagram, where

each generation within a storage location happened-before the next generation, and each

storage location at generation 0 happened-before the next location at generation 0. The

resulting Direct Acyclic Graph of the creation events of the existing storage locations is

shown in Figure 4.7.

Figure 4.5 Storage locations in a system with generation markers

 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0

1 1 1 1 1 1

2

3

2 2

4

0 0 0

1 1

57

Figure 4.6 Causality between generations and between all locations at g = 0

Figure 4.7 Graph of the storing events in Figure 4.6

Example 4.3 shows how causality in a first-fit system with generation markers imposes an

ordering on the events in the system. Such an ordering implies causal connections

between most storing events in the storage system, providing strict requirements on a

clock hypothesis in such a system when tested with the tests developed in Chapter 3.

4.3 Other allocation strategies

There exists many possible allocation strategies in addition to those already discussed.

Among these are: [30]

 e10

e9

e8

e3

e6

e7

e5 e2

e4

e1 e0

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0

1 1 1 1 1 1

2

3

2 2

4

0 0 0

1 1

58

- Next-fit: Similar to first-fit, but the search for the next available location start at

the location of the previous allocation, not the start of the storage as in first-fit.

- Best-fit: The available area that best match the data size is always allocated.

- Worst-fit: Opposite from best-fit: All allocation takes place from the largest

contiguous storage chunk.

- Optimal-fit: Similar to best-fit, but other criteria than data size match are taken

into account.

These strategies all have in common that deletion and reallocation may occur for any

location in the storage. In a storage system utilizing any of these strategies without any

possibility to determine the storage location generation, it will not be possible to deduce

any causal connections between observed elements. The result that no causality can be

derived in any such plain system is similar to the situation for first-fit allocation storage

with no generation markers, as discussed in section 4.2.

How do these strategies compare to first-fit if augmented with generation markers? With

such markers, each storage location has a generation id associated with it, determining

the number of times that storage location has been deleted and reused by another data

block. This does not change from a first-fit allocation system to any other allocation

strategy, so Equation (4.2) still applies. It is still possible to deduce causal connections

between each generation of a storage location.

For the first-fit algorithm, the storage of the first data generation is an append-only

system in which the storage of each data block depends on all previous data blocks. With

this property and the causality between generations, all data blocks in a first-fit system

with generation markers can be linked together causally. An interesting question is

therefore if similar causality exists in systems with other allocation strategies. From the

discussion above, we know that any such system will have many causal connections if the

storage of the first generation of storage locations is an append-only system. The question

is therefore whether these allocation strategies result in an append-only system for the

first generation. The answer to this question will depend on the specific implementation

of the allocation algorithm, but some general observations can be made for each of the

mentioned allocation algorithms:

59

- Next-fit: In a next-fit system, each new block in the first generation must have

been allocated at a position in the storage, where no other blocks were allocated

before. This occurs when there is no empty block where the allocated data would

fit between the allocation pointer and the end of the storage. Whenever a new

block in the first generation is allocated, all previous data blocks in the first

generation must have been allocated before it. The first generation of this system

is therefore an append-only system. See Figure 4.8.

- Best-fit: In a best-fit system, whenever a new block in the first generation is

allocated, it is because there is no previous available block that would fit the data

size better, so the data is stored at the end of the storage. Whenever a new block

in the first generation is allocated, all previous data blocks in the first generation

must have been allocated before it. Therefore the first generation of this system is

also an append-only storage.

- Worst-fit/Optimal-fit: The same type of argument applies to worst-fit and

optimal-fit: If a new block in the first generation is allocated, it is because there is

no previously block that fit worse or more optimal in the case of optimal-fit. The

first generation of such systems would also be append-only.

Figure 4.8 A possible allocation sequence in a next-fit system with generation markers

Although the discussion of any specific allocation implementation necessarily must

depend on the details of that implementation, it is worth noting that adding generation

markers to any allocation system in principle impose causal connections on the complete

storage structure. This implies that a forensic investigator can simplify the search for

0 1 2 3 4 5
Store two

Delete 1 and 4

0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0

Wrap pointer,
Store two

0

0 0

60

causality patterns in existing allocation systems by looking for the existence of generation

markers. A systems designer would simplify subsequent forensic investigations of the

designed system by adding explicit generation markers in the allocation systems used in

the designed system.

4.4 Sequence numbers

Sequence numbers is a feature occurring in many digital systems, such as file systems and

networks. By using a sequence number, the systems designer ensures that sequence

numbered entities can be ordered in the correct order or be distinguished from each

other. Sequence numbers are usually implemented by using a counter that increases

whenever a new sequence numbered entity is produced and associating a copy of the

value of the counter (the sequence number) with that entity. The implementation of

sequence numbers are similar to the implementation of clocks, with the exception that

the increment of the counter does not occur at regular intervals, so the sequence number

cannot be used as an approximation of time. It is useful to distinguish between wrapping

sequence numbers and strictly increasing sequence numbers. In wrapping sequence

numbers, the counter has a limited span of values. When the highest value is reached,

the counter wraps and starts at the lowest value. A strictly increasing sequence number

on the other hand is a sequence number that does not wrap in this fashion. In theory a

strictly increasing sequence number would have to be able to represent infinite numbers.

In practice however, a sequence number can be viewed as strictly increasing as long as

the number of values that can be represented in the sequence number is large enough to

produce strictly increasing numbers over a significant time span, for example the lifetime

of a computer.

When observing a system of sequence numbered entities, the distinction between

wrapping sequence numbers and strictly increasing sequence numbers is important. With

a wrapping sequence number, one would not be able to know how many times the

counter had wrapped at the time of the generation of the sequence number. When

correlating two entities with sequence numbers, one would therefore not be able to

determine if one of the entities was produced before the other. In a system with strictly

increasing sequence numbers on the other hand, one would be sure that the entity with

61

the highest sequence number had been produced after the entity with the lowest sequence

number.

In a system with strictly increasing sequence numbers, causality can be inferred between

the events of production of sequence numbered entities. Each generation of a sequence

numbered entity is causally dependant on the generation of every other sequence

numbered entity with lower sequence number. This causality property is very useful, as

will be seen in section 4.5.5.

4.5 Allocation causality in file systems

Because most file systems record timestamps on a non-volatile medium for events in the

file system, the causality properties of file systems is of particular interest to the forensic

investigator. If causal connections between events that cause timestamps to be updated

can be found, these relations can be utilized to impose strict restrictions on the clock

hypothesis, by using the methods described in Chapter 3.

Carrier divides the structures of a file system into the following categories: [31]

File system category: structures containing general file system information

Content category: structures containing the content of files

Metadata category: structures with data describing files such as file size, where content is

stored, timestamps and other metadata

File name category: structures storing data that contain the names of the files, typically

as directories with contents

Application category: structures containing data pertaining to special features of the file

system

Each of these structures may have their own allocation strategy, and should therefore be

investigated separately for possibilities of inferring causal connections. Allocation

strategies used in file system are not codified in the file system itself, but are rather

features of the file system driver in the operating system. Allocation strategies may

therefore differ between different operating systems, even if the same file system has been

used.

62

4.5.1 File system category

The file system category structures contains general data about the file system and where

important data is located on the disk, such as the Master File Table in NTFS and the

superblock and block group description tables in UNIX file systems. These structures are

in most cases allocated at the creation of the file systems. Causal relations between their

creations are therefore usually not especially relevant to the actions of the user. In the

context of forensic investigations, it is more interesting to investigate the contents of the

structures pointed to by the structures in the file system category.

4.5.2 Content category

The content category structures contain the data of the files stored in the file system.

The ability of performing causality reasoning on the allocation of these structures

depends on the ability to identify timestamp information for the creation of a file on the

file system, as well as the allocation strategy used and the existence of generation

markers.

Allocation strategies used in different operating systems may vary, and different

strategies such as next-fit (in Windows 98 FAT), best-fit (in Windows XP NTFS) and

first-fit (in Linux Ext2) have been observed in practice. [31] With such allocation

strategies, allocation causality could be inferred if it could be identified which generation

each allocation unit belongs to. Explicit generation markers are however usually not

implemented in the content category. Identification of which generation a content data

storage unit belongs to is not required in most file systems, since the data contained in

the other categories keep track of which data pertain to which files, and whether data

storage units are currently free or not. Identification of data generation in the content

category must therefore be inferred from implicit data available based on knowledge of

how the file system works. One possible such generation identification is the analysis of

data known as file slack. File slack is data stored in a content category allocation unit

that does not pertain to the current file stored in it. Such data may exist because a file of

greater length than the current file may previously have been stored in the allocation

63

unit and deleted. From the existence of file slack data, one may infer that the contents of

the slack belong to a previous generation than the contents of the current file stored in

the allocation unit. It is therefore a causal relation between the storage of the file slack

data and the storage of the current file. The impact of this causal connection is however

limited. Identification of file metadata and timestamps pertaining to the file in slack

space may be difficult or impossible. Further, such analysis may have to be done

manually, something that would require a very large amount of work if such analysis

were to be done for all files on a file system. This limits the value of file slack analysis for

clock hypothesis testing, since many causal connections should be identified to scrutinize

the clock hypothesis.

Another theoretical possibility for generation identification of content data is the

identification of the data generation by low level analysis of the signal on the medium. It

has been postulated that such analysis is possible by using special equipment to read the

analog signal stored on magnetic platters in hard drives. [32] It is however to date

unknown whether this technique is possible in practice. The technique has not been

demonstrated on recent or current hard drives. The complexity and density of current

hard drives suggest that such analysis would be very difficult, if possible at all. It’s worth

noting that if such a technique was indeed possible, it would have to be done on the

original evidence medium. It would therefore challenge the current paradigm for digital

investigations, in which the original medium is always copied to another medium before

it is analyzed.

In summary, identification of generation-markers for data structures in the content

category seems to be impractical for current file systems.

4.5.3 Metadata category

Data structures in the metadata category contain metadata about the files stored in the

content category structures. These structures are stored in their own data areas and have

their own allocation algorithms. Each allocation unit usually stores metadata information

pertaining to one file. The NTFS Master File Table (MFT) and file inodes in UNIX file

systems are examples of data structures in the metadata category. Like other storage

systems, the data units in the metadata category may be deleted and reused. Deletion of

64

a metadata allocation unit usually occurs when the file to which the metadata pertain is

deleted.

The possibility for finding causal connections depends on, like the other categories, the

existence of the allocation strategy and the existence of a generation marker. Unlike the

content category, for the metadata category, explicit generation markers do exist in some

systems. The file entries the NTFS Master File Table is a good example.

Each file stored in the NTFS file system has its own entry in the Master File Table. Each

entry occupies two 512-byte blocks on the disk. Data stored in the MFT entry include

the file name, the list of data runs where the file data is stored, timestamps and other

data such as information on whether the data is compressed or encrypted using the

compression and encryption features in the file system. The file entry in the MFT is the

central reference point for each file. It is created when a file is stored on the file system,

and deleted (but not wiped) when a file is deleted. Allocation of file entries within the

MFT occurs on a first-fit basis. [31] Each file entry contains a generation marker, termed

sequence number, which identifies the generation of the usage of that entry. This number

is increased whenever the file entry is reused. With a first-fit allocation algorithm, this

system is exactly the system described in section 4.2. In this system, the storage of each

new generation in a specific location always depends causally on the storage and deletion

of previous generations. All elements in the first generation depend on all previously

stored elements of that generation. Thus, causal connections exist between file entries in

the Master File Table of the NTFS file system, under the reasoning described in section

4.2.

Example Example Example Example 4444....4444. . . . Consider the following set of allocated file entries from an NTFS Master

File Table. Let ei be the storage of the current data in entry i.

Entry 45 sequence number 0

Entry 46 sequence number 2

Entry 47 sequence number 0

Entry 48 sequence number 1

Entry 49 sequence number 5

Entry 50 sequence number 0

Entry 51 sequence number 3

65

Since
,0 ,0

()j is sj i e e∀ < → it can be inferred that e45 → e47 → e50. Further, since also

,0 ,i i gs se e→ , we also have e45 → e46, e47 → e48, e47 → e49 and e50 → e51. The resulting

causality graph is:

Figure 4.9 Event and happened-before graph in Example 4.4

4.5.4 File name category

Data structures in the file name category contain indices over file names stored in the file

system, such as directories. The determination of causal connections between their

allocation depends on the allocation algorithm and, unless append-only is used, the

possibility of identifying the generation. Some file systems use linear allocation for

directory indices, while some use more advanced data structures such as B-trees. In either

case, the possibility of deletion of file names and reuse of the storage area in question

means that it would be necessary to identify the data generation in order to find causal

connections. Since explicit generation markers are not common in file system directory

indices, finding causal connections in the allocation in directories may not be possible.

4.5.5 Application category

Some file systems contains special data pertaining to specific features of the file system or

operating system. One such specific feature of special interest is File System Journals.

When using a file system with journaling, the operating system logs all changes to file

system metadata before and after the change is written to disk. This prevents file system

inconsistencies resulting from system crashes. When booting after a crash, the system can

remove any inconsistencies by checking the journal for actions that were started but not

finished.

e46

e51 e49
e46

e50

e45

e47

66

The possibility to find causal connections in the use of a journal depends on the

allocation strategy used in the journal file. A common strategy in journal files is to use an

append-only strategy (used in for example Ext3 and NTFS). Each file system action

descriptor is appended to the end of the previous descriptor already stored in the file

system journal. Since the file system journal has limited size, there must be identification

of where the current journal file starts and to which extent old data has been

overwritten. This is commonly implemented by using a strictly increasing sequence

number. For example, in NTFS, journal file transactions are labelled with a 64-bit

number (so called Logical Sequence Number - LSN) that increases throughout the

lifetime of the file system. The proper functioning of the journaling feature in NTFS

depends on this number being strictly increasing. [33]

On this basis, it is possible to find causal connections by analyzing journal files. The

amount of information that can be derived from the journal file itself is however limited.

Since every write to a file produces a journal file entry and the journal file has limited

size, old entries will quickly be overwritten. It is common for operating systems to restart

the log file at every boot of the operating system, thereby overwriting the data written in

previous sessions. Due to the limited size of the journal file, the most interesting use of

journaling to find causal connections comes from the use of the sequence number in the

journal file. Some file systems, such as NTFS, store the journal file sequence number (the

LSN in NTFS) in the file metadata entry. If the journal file sequence number is strictly

increasing, then it means that the events that generate it are causally connected, as

discussed in section 4.4. On such systems, it is possible to impose causal connections on

the events of the last change of the file entry on all files stored on the file system.

Example Example Example Example 4444....5555. . . . Consider the following set of allocated file entries from an NTFS Master

File Table. Let ei be the last update of the current data in entry i.

Entry 45 log file sequence number 432627

Entry 46 log file sequence number 186345

Entry 47 log file sequence number 735294

Entry 48 log file sequence number 165093

Entry 49 log file sequence number 878121

Entry 50 log file sequence number 782427

Entry 51 log file sequence number 561987

67

Since logical sequence numbers in the journal file (log file) are allocated sequentially, we

can obtain the causal ordering of the last update events by sorting the file entries by

their log file sequence number: e48 → e46 → e45 → e51 → e50 → e47 → e49.

4.5.6 File system causality

The above discussion has shown that causal connections can be found in the analysis of

allocation in several of the storage categories in file systems. Such inferences would

provide the necessary basis for the formulation and testing of clock hypotheses. File

systems provide the foundations for data storage in digital systems investigated in digital

investigations. On a normal medium investigated in a digital investigation, there are tens

of thousands or even hundreds of thousands of files. It has been found that, depending on

the implementation of the file system, there may exist several ways in which all files on a

file system are causally connected. When all these files are causally connected, and there

exists timestamps for the events, a strict boundary on a clock hypothesis is produced by

the tests investigated in Chapter 3. Such usage of file system causal connections to

provide clock hypothesis bounds will be further investigated in Chapter 7.

68

5 TIMESTAMP REASONING WITH EVENT CALCULUS

Chapter 3 - 4 introduced clock hypothesis testing and how causality relations can be

found in storage systems. This Chapter extends this system by introducing a model for

systems containing timestamps. The model uses fluents to represent timestamps, and

actions to represent events changing them. Since actions may change more than one

timestamp at the same time, the creation of timestamps is correlated. This property can

be utilized to put a clock hypothesis under additional scrutiny. This Chapter uses a

simple theoretical file system to illustrate the process.

Section 5.1 introduces the Simplified Event Calculus. Section 5.2 shows how timestamps

can be formulated in this calculus. Sections 5.3 - 5.4 discusses how action hypotheses can

be derived from observation sets. Section 5.5 - 5.8 then shows how the system model can

be used to test a clock hypothesis. In Section 5.9 - 5.10, invariants is derived to be used

for clock hypothesis testing from a more advanced theoretical file system, bearing closer

resemblance to a real file system.

5.1 Introduction to Simplified Event Calculus

In this chapter, a form of reasoning will be developed for finding properties that can be

used for clock hypothesis testing with the methods developed in Chapter 3. The

reasoning is based on modelling these systems in Simplified Event Calculus (SEC), a

calculus for reasoning on change, defined by Shanahan. [34]

Simplified Event Calculus is a many-sorted predicate calculus, in which reasoning on

change is performed by means of predicates describing properties at particular moments

in time and events that can change these properties. In Simplified Event Calculus, the

world is modelled with time, fluents and actions.

Definition Definition Definition Definition 5555....1111.... A language of the Simplified Event Calculus is a many-sorted first-order

predicate calculus with equality, which includes:

69

- A sort for fluents, with variables f, f1, f2, etc.

- A sort for actions, with variables a, a1, a2, etc

- A sort for time, with variables t, t1, t2, etc

- the following predicates, whose arguments are fluents, actions and times:

HoldsAt(f, t) - fluent f holds at time t

Happens(a, t) - action a occurs at time t

Initiates(a, f, t) - action a causes fluent f to hold if it happens at time t

Terminates(a, f, t) - action a causes fluent f not to hold if it happens at time t

Clipped(t1, f, t2) - fluent f ceased to hold in the period between t1 and t2

Initially(f) - fluent f held at t = 0

A fluent in the Simplified Event Calculus represents any property in the modelled world.

The existence of a fluent at a specific moment in time is denoted with the HoldsAt

predicate. An action in the Simplified Event Calculus represents an occurrence that can

cause a property to change. The occurrence of an action at a specific moment in time is

denoted with the Happens predicate. The change introduced by an action is modelled

with the predicates Initiates and Terminates. These predicates represent the change

introduced by the occurrence of an action at a specific moment in time; causing a fluent

to hold (Initiates) or causing a fluent not to hold (Terminates). The predicate Clipped

represents that a fluent ceased to hold in a specific time period. The predicate Initially

allows the representation of fluents existing before the events represented in a particular

model.

Shanahan defines effect axioms for the Simplified Event Calculus as follows:

2 1 1 1 2 1 2HoldsAt(,) Happens(,) Initiates(, ,) not Clipped(, ,)f t a t a f t t t t f t⇐ ∧ ∧ < ∧ (5.1)

1 2 1 2Clipped(, ,) Happens(,) Terminates(, ,)t f t a t a f t t t t⇐ ∧ ∧ < < (5.2)

HoldsAt(,) Initially() notClipped(0, ,)f t f f t⇐ ∧ (5.3)

Informally, the effect axioms can be interpreted as:

- If an action happening at time t1 initiated a fluent f, than the fluent f still holds

at time t2, if it has not been Clipped between t1 and t2 (5.1),

70

- If a fluent held Initially, then it will still hold at time t, if it has not been Clipped

between 0 and t (5.3)

- A fluent is Clipped between t1 and t2 if an action occurring between t1 and t2

terminates that fluent. (5.2)

- Whenever a fluent holds at time t, it must be either because it held Initially (5.3),

or because some action Initiated it. (5.1)

Simplified Event Calculus is used in logic programs for reasoning on change. Shanahan

defines an event calculus program as follows.

Definition Definition Definition Definition 5555....2222.... An event calculus program is the conjunction of,

- A finite set S of Initially clauses of the form,

Initially()f

- A finite set A of Happens clauses of the form,

Happens(,)a t

- A finite set EI of Initiates clauses and a finite set ET of Terminates clauses of the

form,

1Initiates(, ,)a f t ⇐ Π

1Terminates(, ,)a f t ⇐ Π

where Π does not mention the predicates Initially, Happens, Initiates or

Terminates and every occurrence of the HoldsAt predicate is of the form

2HoldsAt(,)f t

- The effect axioms of simplified event calculus, eq. (5.1) - (5.3)

- A finite set of general clauses not mentioning the predicates Initially, Happens,

Initiates, Terminates or < .

71

The representation of a model in a logic program allows for the use of resolutions to

prove or disprove claims expressed with a predicate. This involves substituting each

clause in the claim with all possible substitutions according to the clauses and axioms of

the program. The resolution of a claim yields a search space, in the form of a resolution

tree such as the tree found in Figure 5.1. From a resolution, it can be determined if the

claim is true, and if so, under which conditions. In the next sections, resolutions will be

used to explore properties of file systems represented with the Simplified Event Calculus.

A specific feature of the Simplified Event Calculus that should be noted is the use

negation-as-failure, a form of default reasoning utilized to avoid having to write explicit

propositions for everything that does not change whenever an action happens.2 Negation-

as-failure is represented by using the predicate operator “not”, instead of the predicate

operator ¬ . “Not” implies using negation-as-failure instead of explicit negation. Whereas

1 2Clipped(, ,)t f t¬ would require a proposition explicitly stating that there was no

terminating action occurring in the time period, 1 2notClipped(, ,)t f t will only be false if

there is actually such a terminating action, and true otherwise. Thus, explicit

propositions defining conditions for the persistence of fluents not affected by actions do

not have to be written.

For further reading on the background and semantics of Simplified Event Calculus, the

reader is referred to Shanahan’s original text. Note that this work uses the symbol ⇐ for

implication in the Simplified Event Calculus, to avoid confusion with the happened-

before relation. This distinction from Shanahan’s text is purely symbolic and is not

intended to imply a semantic difference.

5.2 Representation of timestamps in Simplified Event Calculus

2 The problem of having to represent non-change is called the frame problem in Shanahan’s and

other works.

72

With the definitions in Definition 5.2, changes in timestamps on a computer system can

now be represented as an event calculus program, where the fluents are timestamps with

an associated clock value, and actions are the operations on the computer system that

might change the timestamps. In accordance with Shanahan, we consider that the

interpretation of the time sort is by the reals, and that < and = is interpreted

accordingly. This interpretation is consistent with the assumptions in Section 3.2.

When representing a system with timestamps in Simplified Event Calculus, we must

start with defining sets of fluents and actions for our event calculus program. For

example, in a file system, there might be several timestamps associated with each file.

We may then represent each timestamp with a fluent type, pertaining to a specific file,

and holding a specific clock value. In a file system where the last access time and

modified time of a file is stored, timestamps of a specific file can be represented with

fluents

aAccessed(,)file τ

mModified(,)file τ

Further, operations in the file system that could potentially change the value of the

timestamps can be represented with actions

Read()file

Write()file

The change introduced by Read and Write, would be represented in the event calculus

program as a set of Initiates and Terminates clauses. It could for example be that the

Read action sets the Accessed timestamp of a file to the current system clock ()c t and

the Write action sets both the Accessed and Modified timestamps to the current system

clock ()c t :

Initiates(Read(),Accessed(, ()),)file file c t t (5.4)

Initiates(Write(),Accessed(, ()),)file file c t t (5.5)

Initiates(Write(),Modified(, ()),)file file c t t (5.6)

73

In a real file system, the previous clock values stored as timestamps for a file, would be

overwritten when new timestamps were written for that file. This effect must be

represented as a set of Terminated clauses:

1 1Terminates(Read(),Accessed(, ()),)file file c t t t t⇐ < (5.7)

1 1Terminates(Write(),Accessed(, ()),)file file c t t t t⇐ < (5.8)

1 1Terminates(Write(),Modified(, ()),)file file c t t t t⇐ < (5.9)

In most real file systems there is always a value assigned to the time stams of a file. It

therefore makes sense to define Initially clauses that initiates fluents for the timestamps

that holds from the start:

0Initially(Accessed(,))file τ (5.10)

0Initially(Modified(,))file τ (5.11)

With the conjunction of the above formulae, a model of a simple file system has been

defined. This file system has a fixed set of files. Each file always has two timestamps; the

Accessed timestamp and the Modified timestamp. These timestamps may have an initial

value, and may be changed by two actions; the Read action and the Write action. The

Read action sets the Accessed timestamp to the current value of the system clock,

whereas the Write action sets both the Accessed timestamp and the Modified timestamp

to the current clock value. There is only one timestamp of each type for each file, so

whenever a timestamp is changed, the previous value is lost.

In this model, S is the conjunction of formulae (5.10) - (5.11) and E is the conjunction of

formulae (5.4) - (5.9). With a definition of a set A of Happens clauses, an event calculus

program for this simple file system has been completed. Then, resolutions can be utilized

to search the space of possible event histories and test propositions about fluents at

particular moments in time.

Example Example Example Example 5555....3333.... Let the file “file1” be Read at t = tr and subsequently written at t = tw,

such that r wt t< . Let ()c t be an integer, such that 00τ = , c(tr) = 5 and c(tw) = 10.

74

Let an event calculus program be defined by (5.4) - (5.11) and the following clauses as A:

rHappens(Read(file1),)t

wHappens(Write(file1),)t

The value of timestamps at certain moments in time can now be examined by means of

resolutions. For example, let us determine if the accessed timestamp has value 10 at time

t = tobs, where r w obst t t< < .

Figure 5.1 Resolution of HoldsAt(Accessed(file1,10),tobs) in Example 5.3

Figure 5.1 shows a resolution for the observation of the Accessed timestamp given a spe-

cific observation time. The right hand branch of the resolution, representing the case that

the timestamp was initially set to the observed value fails due to the fact that there is no

Initially clause setting the Accessed timestamp to 10. The left hand branch of the resolu-

tion represents the occurrence of an action a at time t1 initiating the fluent

Accessed(file1,10) . The only Happens clause that can satisfy this is Hap-

Initially(Accessed(file1,10))⇐

obs notClipped(0, Accessed(file1,10),))t∧

obsHoldsAt(Accessed(file1,10),)t

1 1Happens(a,) Initiates(,Accessed(file1,10),)t a t⇐ ∧

<1 obs 1 obs notClipped(,Accessed(file1,10),t)t t t∧ ∧

w obsnot Clipped(, Accessed(file1,10),)t t⇐

w obsClipped(,Accessed(file1,10),)t t⇐

< <w obsHappens(,) Terminates(,Accessed(file1,10),)a t a t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 w Write(file1)t t , a= =

75

pens(Write(file1),tw). Since the evalution of the clause w obsClipped(t ,Accessed(file1,10),t)

fails, the left branch shows that obsHoldsAt(Accessed(file1,10),t) holds.

Example Example Example Example 5555....4444. . . . Consider the event calculus program from Example 5.3. Determine if it

could be the case at t = tobs , where r w obst t t< < , that the accessed timestamp is set to

value 5 and the modified timestamp is set to value 10. The proposition to be tested is

then

obs obsHoldsAt(Modified(file1,10),t) HoldsAt(Accessed(file1,5),t)∧ (5.12)

It is practical to evaluate each of the HoldsAt clauses in the proposition separately. Since

both clauses have to hold for the proposition to be true, none of the resolution trees must

fail, should the proposition hold. The resolution for the first clause is shown in Figure 5.2

and the second in Figure 5.3.

Figure 5.2 Resolution of HoldsAt(Modified(file1,10),tobs) in Example 5.4

Initially(Modified(file1,10))⇐

obs notClipped(0, Modified(file1,10),))t∧

obsHoldsAt(Modified(file1,10),)t

1 1Happens(,) Initiates(,Modified(file1,10),)a t a t⇐ ∧

1 obs 1 obs notClipped(,Modified(file1,10),)t t t t∧ < ∧

w obsnotClipped(, Modified(file1,10),)t t⇐

w obsClipped(, Modified(file1,10),)t t⇐

< <w obsHappens(,) Terminates(, Modified(file1,10),)a t a t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 w, Write(file1)t t a= =

76

As shown on the figures, the term HoldsAt(Modified(file1,10),tobs) holds, but the term

HoldsAt(Accessed(file1,5),tobs) fails, since the Accessed(file1,5) fluent initiated by

Happens(Read(file1),tr) is Clipped by Happens(Write(file1),tw). Consequently, the access

timestamp cannot have the value 5 at tobs.

Figure 5.3 Resolution of HoldsAt(Accessed(file1,5),tobs) in Example 5.4

5.3 Observation sets and action hypotheses

Initially(Accessed(file1,5))⇐

obs notClipped(0, Accessed(file1,5),t))∧

obsHoldsAt(Accessed(file1,5),)t

1 1Happens(,) Initiates(,Accessed(file1,5),)a t a t⇐ ∧

<1 obs 1 obs notClipped(,Accessed(file1,5),)t t t t∧ ∧

r obsnotClipped(, Accessed(file1,5),t)t⇐

r obsClipped(t ,Accessed(file1,5),t)⇐

< <r obsHappens(,) Terminates(,Accessed(file1,5),)a t a t t t t⇐ ∧ ∧

FAIL

FAIL

1 r, Read(file1)t t a= =

w, Write(file1)t t a= =

< <
w

w r w obs

Happens(Write(file1),)

Terminates(Write(file),Accessed(file, 5),)

t

t t t t

⇐

∧ ∧

�

77

The examples in the previous section has shown how Simplified Event Calculus can be

utilized to determine if specific timestamp values holds at a specific moment in time,

given known occurrence of actions. Definition 3.12 introduced the concept of an

observation set. An observation set is the set of timestamps observed by an investigator

at the time of the investigation. In Simplified Event Calculus, timestamps are

represented as fluents that may or may not hold at a specific moment in time.

Formulated in Simplified Event Calculus, an Observation set is therefore a set of fluents

that holds at the time of the observation tobs.

Definition Definition Definition Definition 5555....5555. . . . Formulated in the Simplified Event Calculus, an Observation Set O is a

finite set of HoldsAt clauses on the form

obsHoldsAt()f t,

representing fluents f holding at the time of the observation tobs. The observation

proposition is the conjunction of the HoldsAt clauses in the observation set. The

observation proposition has the form

no = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ

Where each ϕ is a HoldsAt clause contained in O, and n is the number of elements in O.

With the definition of an observation set, we can start investigating the relationship

between an observation set and the sets S, A and E defining an event calculus program.

As shown in the previous sections, an event calculus program defines the behaviours

occurring in a system in terms of the initial state (S), the effect any actions would have

on the states (E) and the actions that actually occurred (A). With known S, E, and A,

possible states at a specific moment in time could be tested for consistency with the

event calculus program. In Example 5.3 the tested state was consistent, whereas in

Example 5.4 the tested state was inconsistent with the event calculus program. When S,

E and A are known, resolutions can be used to test observation propositions and

therefore confirm or refute possible observation sets O.

From the examples,

78

{ }obsO = HoldsAt(Accessed(file1,10),t)

was confirmed, whereas

{ }obs obsO = HoldsAt(Modified(file1,10),t), HoldsAt(Accessed(file1,5),t)

was refuted as a possible observation set for S, A and E. These examples show how

possible observation sets can be tested for consistency with an event calculus program.

As we have already seen in Chapter 3, things are different in an investigation situation.

In an investigation, the state at the time of the investigation is observable, whereas

information about the sets defining the event calculus program is lacking. Under the

assumption that the investigator has all information about the initial state S, and also

thorough knowledge about the workings of the system, E, the investigator can use the

knowledge about the observed state O to derive information about occurred events. In

this case A is unknown, whereas S, E and O are known. The investigator can now infer

knowledge about A from the observation set O and the detailed knowledge about how

the system works, represented by S and E.

Returning to Example 5.3, if the observed set is { }obs = HoldsAt(Accessed(file1,10),t)O

and A is unknown, the investigator can now reason that since (from O) the fluent

Accessed(file1, 10) holds at the time of the observation and since (from S) initially

Accessed(file1, 0), some action must have occurred that terminated Accessed(file1, 0) and

initiated Accessed(file1, 10). From E, the investigator knows that this must have been an

action occurring at t = ta, where c(ta) = 10. The investigator also knows that the action

must have been either a Read or a Write action, since (again, from E) these are the only

actions that can affect the Accessed fluent. The investigator can therefore formulate two

hypotheses about occurred actions, H1 and H2 where c(ta) = 10.

{ }1 aH = Happens(Read(file1),t)

{ }2 aH = Happens(Write(file1),t)

These hypotheses can be tested by resolution of the observation proposition; something

that will produce resolutions similar to that shown in Figure 5.2 for both H1 and H2, and

both hypotheses will be accepted. H1 and H2 are hypotheses about actions that actually

79

took place. If hypotheses about occurred actions are accepted by an event program

resolution, it means that they are possible explanations for the observed set O. The

hypotheses, even if they are accepted, do not imply full knowledge of the set of actions A.

Even if a hypothesis is accepted, it is still in the unknown if there were any actions in A

for which there exist no evidence anymore. In Example 5.3, it could for example be the

case that the file was Read at some moment prior to ta. The timestamp fluent resulting

from this Read would be Terminated by the Read occurring at ta, and therefore not be

observable at tobs.

The above discussion leads to the following definition:

Definition Definition Definition Definition 5555....6666. . . . An action hypothesis H is a finite set of Happens clauses on the form

Happens()a t,

derived from an observation set O, given finite sets S and E in an event calculus

program.

5.4 Formulating action hypotheses

The acceptance of an action hypothesis means that it is a possible set of actions that can

explain the observation set O. It does not however guarantee that there are no other

possible explanations. In order to be able to deduct possible courses of events from an

observation set, we would like to find all possible hypotheses H, given an observation set

O and knowledge about the system, represented by S and E.

From Definition 5.5 the elements of an observation set O are HoldsAt clauses

representing the fluents that holds at the time of the observation. The observation

proposition to be tested in the event calculus program is the conjunction of these

HoldsAt clauses and takes the form

1 2 = ... no ϕ ∧ ϕ ∧ ∧ ϕ (5.13)

where each ϕ is a HoldsAt clause.

80

As per the effect axioms of the Simplified Event Calculus, these HoldsAt clauses may

exist either because they held initially (eq. (5.3)) or because an action occurred that

initiated them (eq (5.1)). There is no other way a HoldsAt clause can come to existence

than through eq. (5.1) or (5.3). It is therefore possible to find all action hypotheses

explaining the observation set O by reasoning on the observation proposition, the

Initiates clauses in E and the Initially clauses in S. This reasoning does not have to

consider termination of fluents as per the Terminates clause in E, since this will be done

by means of resolution when each hypothesis is tested for acceptance. The proposition

that all fluents in an observation set has been initiated is the conjunction of the initiation

of each fluent and takes the form:

1 2 ... nq = κ ∧ κ ∧ ∧ κ (5.14)

where each κ is the initiation of the corresponding ϕ in the observation proposition o.

In the following, this proposition will be called the initiation proposition.

A fluent may exist because it held initially or because it was Initiated by a clause in E.

There may be more than one Initiates clause in E initiating one particular fluent, and

these must all be considered. Written in propositional logic, the initiation of a HoldsAt

clause takes the form of a disjunction:

1 2 ... ii i i iu iκ = α ∨ α ∨ ∨ α ∨ η (5.15)

Where iκ is the i-th HoldsAt(f, t2) clause in q, iη is an Initially(f) clause, ui is the

number of Initiates(a, f, t1) clauses affecting that fluent and each iα is a clause on the

form

1Happens(,)a t

where there exists a clause Initiates(a, f, t1) in E.

The initiation of the fluents in the observation proposition can now be found by inserting

(5.15) into (5.14), yielding

81

1

2

11 12 1 1

21 22 2 2

1 2

 (...)

 (...)

 ...

 (...)n

u

u

n n nu n

q = α ∨ α ∨ ∨ α ∨ η

∧ α ∨ α ∨ ∨ α ∨ η

∧

∧ α ∨ α ∨ ∨ α ∨ η

q is a conjunction of disjunctive clauses. By reordering it into a disjunction of conjunctive

clauses, a set of action hypotheses can be found, where each of the conjunctive clauses in

the disjunction is an action hypothesis H.

Example Example Example Example 5555....7777. . . . Consider an event calculus program with S and E as defined in Example

5.3 and O as defined by the observation proposition in Equation (5.12). Then a set of

action hypotheses can be found by the following reasoning:

The observation proposition is given in (5.12)

obs obs = HoldsAt(Modified(file1,10),) HoldsAt(Accessed(file1,5),)p t t∧

The initiation of these fluents can then be expressed as a conjunction of disjunctive

clauses as follows, where c(ta) = 5 and c(tm) = 10:

m

a

a

 = (Happens(Write(file1),)

 Initially(Modified(file1,10)))

 (Happens(Read(file1),)

 Happens(Write(file1),)

 Initially(Accessed(file1,5)))

q t

t

t

∨

∧

∨

∨

Since there is no Initially(Modified(file1,10)) or Initially(Accessed(file1,5)) in S, we know

that these clauses are false. q then becomes:

m

a

a

 = Happens(Write(file1),)

 (Happens(Read(file1),)

 Happens(Write(file1),))

q t

t

t

∧

∨

Rewritten as a disjunction of conjunctive clauses:

82

m a

m a

 = Happens(Write(file1),) Happens(Read(file1),)

 Happens(Write(file1),) Happens(Write(file1),)

q t t

t t

∧

∨ ∧

So here we obtain two different hypotheses from the fluent initiation:

{ }

{ }

1 m a

2 m a

H = Happens(Write(file1),), Happens(Read(file1),)

H = Happens(Write(file1),), Happens(Write(file1),)

t t

t t

5.5 Using event calculus to test a clock hypothesis

The defined system can be used to put additional constraints on the clock hypothesis

that does not follow directly from the reasoning in chapter 3. The investigator can test

clock hypotheses for consistency with the observed set O, given knowledge of the initial

state S and how the system works, E. Such testing is performed by deriving hypotheses

about occurred events from the observation set using the method in section 5.4, and then

test them with the clock hypothesis h()c t by using resolutions. If no action hypothesis is

accepted in the event calculus program for a clock hypothesis, then that clock hypothesis

is refuted. If one or more action hypotheses are accepted for a clock hypothesis, then that

clock hypothesis is accepted, and the action hypotheses describe the possible sequence of

events that could bring the system into the observed state.

ExampleExampleExampleExample 5555....8888.... Consider the default clock hypothesis, where it is assumed that the clock of

the investigated computer has always been equal to civil time, say UTC. Then h()c t =

()b t and ()d t = 0. Now, assume the event calculus program and observation set of

Example 5.7. Then the hypotheses to be tested are:

{ }

{ }

1 m a

2 m a

H = Happens(Write(file1),), Happens(Read(file1),)

H = Happens(Write(file1),), Happens(Write(file1),)

t t

t t

Now, since ch(ta) = 5 and ch(tm) = 10 and h()c t is an ideal clock, a mt t< . H1 was tested in

Example 5.4, where it was found to be refuted.

83

Figure 5.4 Resolution of HoldsAt(Accessed(file1,5),tobs) with H2 in Example 5.8

Initially(Accessed(file1,5))⇐

obs notClipped(0, Accessed(file1,5),t))∧

obsHoldsAt(Accessed(file1,5),t)

1 1Happens(,) Initiates(,Accessed(file1,5),)a t a t⇐ ∧

<1 obs 1 obs notClipped(,Accessed(file1,5),)t t t t∧ ∧

a obsnotClipped(, Accessed(file1,5),)t t⇐

a obsClipped(,Accessed(file1,5),)t t⇐

< <a obsHappens(,) Terminates(,Accessed(file1,5),)a t a t t t t⇐ ∧ ∧

FAIL

FAIL

1 a, Write(file1)t t a= =

m, Write(file1)t t a= =

< <
m

m a m obs

Happens(Write(file1),)

Terminates(Write(file1),Accessed(file1, 5),)

t

t t t t

⇐

∧ ∧

�

84

The resolution of the second clause in the observation proposition,

HoldsAt(Accessed(file,5),tobs) with hypothesis H2 is shown in Figure 5.4. The resolution

fails, which means that H2 is also not a valid hypothesis for h()c t . In other words, in the

defined simple file system, the observed set cannot come to existence with the default

clock hypothesis. The default clock hypothesis is therefore refuted. This would happen for

any file where a mt t< .

5.6 Invariants in the simple file system

The methods in the previous sections can be used to test the observation proposition in

the general case, and thereby summarize properties of the simple file system defined in

formulae (5.4) - (5.11). For any given file in the file system, the observation proposition

is:

)m obs a obsHoldsAt(Modified(, ()),) HoldsAt(Accessed(, ()),file c t t file c t t∧

Now, if m()c t 0≠ τ and a()c t 0≠ τ , there must have occurred actions initiating these

fluents. As seen in Example 5.7, these actions can only have been

{ }

{ }

1 m a

2 m a

H = Happens(Write(),), Happens(Read(),)

H = Happens(Write(),), Happens(Write(),)

file t file t

file t file t
 (5.16)

Now, three different timestamping orders can be investigated; m at t< , m a=t t and

m at t> . The case of m at t> was examined in Example 5.8, and found to always be

refuted.

In the case of m a=t t , (5.16) is reduced to

{ }

{ }

1 m m

2 m

H = Happens(Write(),), Happens(Read(),)

H = Happens(Write(),)

file t file t

file t
 (5.17)

Written as a disjunction

85

m m

m

(Happens(Write(),) Happens(Read(),))

 Happens(Write(),)

file t file t

file t

∧

∨

Which is equivalent to

mHappens(Write(),)file t

The effect of Happens(Read(file),tm) in H1 in (5.17) will always be consumed by the effect

of Happens(Write(file),tm), (5.17) can then be reduced to

 { }1 mH = Happens(Write(),)file t

The timestamping order m at t< must be investigated further. The resolution in Figure

5.5 shows that H2 is refuted if m at t< . The resolutions in Figure 5.6 and Figure 5.7 show

that H1 is accepted for m at t< .

86

Figure 5.5 The observation proposition fails for H2 when m at t<

mInitially(Modified(, ()))file c t⇐

m obs notClipped(0, Modified(, ()),))file c t t∧

m obsHoldsAt(Modified(, ()),)file c t t

1 m 1Happens(,) Initiates(,Modified(, ()),)a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped(,Modified(, ()),)t t t file c t t∧ ∧

m m obsnotClipped(, Modified(, ()),)t file c t t⇐

m m obsClipped(,Modified(, ()),)t file c t t⇐

< <m m obsHappens(,) Terminates(,Modified(, ()),)a t a file c t t t t t⇐ ∧ ∧

FAIL

FAIL

1 m, Write()t t a file= =

a, Write()t t a file= =

< <
a

m a m a obs

Happens(Write(),)

Terminates(Write(),Modified(, ()),)

file t

file file c t t t t t

⇐

∧ ∧

�

87

Figure 5.6 HoldsAt(Modified(file, c(tm)), tobs) does not fail for H1 when m at t<

mInitially(Modified(, ()))file c t⇐

m obs notClipped(0, Modified(, ()),))file c t t∧

m obsHoldsAt(Modified(, ()),)file c t t

1 m 1Happens(,) Initiates(,Modified(, ()),)a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped(,Modified(, ()),)t t t file c t t∧ ∧

m m obsnotClipped(, Modified(, ()),)t file c t t⇐

m m obsClipped(, Modified(, ()),)t file c t t⇐

< <m m obsHappens(,) Terminates(, Modified(, ()),)a t a file c t t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 m, Write()t t a file= =

88

Figure 5.7 HoldsAt(Accessed(file, c(ta)), tobs) does not fail for H1 when m at t<

In summary, the above discussion has shown that

m a t t>/

m a m = Happens(Write(),)t t file t⇒

m a a m Happens(Read(),) Happens(Write(),)t t file t file t< ⇒ ∧

And therefore, for any observations of timestamps in this simple file system, it is required

that:

m a t t≤

5.7 Using invariants to test a clock hypothesis

In the simple file system, it is now known that m a t t≤ . But these times are not directly

observable in the observation set O. Instead, the investigator observes the Modified

aInitially(Accessed(, ()))file c t⇐

a obs notClipped(0, Accessed(, ()),))file c t t∧

a obsHoldsAt(Accessed(, ()),)file c t t

1 a 1Happens(,) Initiates(,Accessed(, ()),)a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped(,Accessed(, ()),)t t t file c t t∧ ∧

a a obsnotClipped(, Accessed(, ()),)t file c t t⇐

m a obsClipped(, Accessed(, ()),)t file c t t⇐

< <a a obsHappens(,) Terminates(, Accessed(, ()),)a t a file c t t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 a, Read()t t a file= =

89

timestamp c(tm) and the Accessed timestamp c(ta). The clock hypothesis must then

match with the observed timestamp values and m a t t≤ . This requirement can be

expressed in the same way as Theorem 3.14:

TheoremTheoremTheoremTheorem 5555....9999.... In a correct clock hypothesis h()c t , the timestamps of all events ei , ej

where t(ei) ≤ t(ej) in an observation set O must be such that the timestamp of the first

event minus the deviation from a common base has value less than or equal to the

timestamp of the latter event minus the deviation from a common base.

h h() () () (()) () (())i j i i j jt e t e e d t e e d t e≤ ⇒ τ − ≤ τ −

Proof. Proof. Proof. Proof. Let h()c t be a correct clock hypothesis. Let ()b t be a common base for h()c t and

o()c t . Then

h h() () ()b t c t d t= −

o o() () ()b t c t d t= −

Thus,

h h o o() () () ()c t d t c t d t− = −

And since h()c t is correct we have h()c t = o()c t . Therefore

h o() ()d t d t=

o h() () ()b t c t d t= −

And inserting Definition 3.4 yields

h(()) () (())b t e e d t e= τ −

Now, from Definition 3.8 ()b t shall be an ideal clock. From Definition 3.5 ideal clocks

satisfy

() () (()) (())i j i jt e t e c t e c t e< ⇒ ≤

And then, inserting ()b t gives

() () (()) (())i j i jt e t e b t e b t e< ⇒ ≤

o oh h() () () (()) () (())i j c i i c j jt e t e e d t e e d t e< ⇒ τ − ≤ τ −

Further, from Definition 3.5 ideal clocks satisfy

() () (()) (())i j i jt e t e c t e c t e= ⇒ =

And then, inserting ()b t gives

90

() () (()) (())i j i jt e t e b t e b t e= ⇒ =

o oh h() () () (()) () (())i j c i i c j jt e t e e d t e e d t e= ⇒ τ − = τ −

Thus,

o oh h() () () (()) () (())i j c i i c j jt e t e e d t e e d t e≤ ⇒ τ − ≤ τ −

�

And so, the requirement of Theorem 5.9 can be tested as follows:

TheoremTheoremTheoremTheorem 5555....10101010.... If, in an known system, timestamps generated by ei and ej must be such

that () ()i jt e t e≤ , then if there exist timestamps in an observation set O, for which the

timestamp of ei minus the hypothesis deviation from a common base has a higher value

than the timestamp of ej minus the hypothesis deviation from a common base, then the

clock hypothesis is incorrect.

ho oh o h((() ()) (() (()) () (()))) () ()i j i j c i i c j je e t e t e e d t e e d t e c t c t∃ ∃ ≤ ∧ τ − > τ − ⇒ =/

The proof follows the reasoning of the proof for Theorem 3.15 and is omitted here.

This test complements Test-A and Test-B developed in chapter 3, for systems that can

be described in Simplified Event Calculus and where invariants can be found by using

the methods described in this chapter.

Example Example Example Example 5555....11111111. In Example 5.8 a file in the simple file system was observed with

Accessed timestamp c(ta) = 5 and Modified timestamp c(tm) = 10. The default clock

hypothesis was tested against this evidence. Now, we know that in the simple file system,

m a t t≤ , and for the default clock hypothesis, h()d t = 0. Then, applying the test in

Theorem 5.10 and inserting tm, ta, c(ta) and c(tm) yields:

o oh h(() ()) (() (()) () (()))i j c i i c j jt e t e e d t e e d t e≤ ∧ τ − > τ −

m a m a() (() ())t t c t c t≤ ∧ >

m a() (10 5)t t≤ ∧ >

Which is clearly true, hence the default clock hypothesis is refuted.

91

5.8 Using Simplified Event Calculus to develop tests for a system

In this chapter, a method for developing clock hypothesis tests from the description of a

system has been developed. The necessary steps to develop such test are described as

follows, hereafter called the SEC-algorithm:

1. Determine a set E of the effect of actions in the system by inspecting how the

system works or otherwise justify assumptions about the effect of actions in the

system.

2. Determine a set S of the initial state of the system by determining the production

state of the system or otherwise justify assumptions about the initial state.

3. Find action hypotheses for the system by using the initiation proposition

4. Test the hypotheses against the observation proposition by means of resolution

for all timestamping orders

5. Derive invariants for the system from the testing of the observation proposition.

6. Derive tests from the invariants, by using Theorem 5.9.

7. Test the clock hypothesis.

In order to determine how practical this procedure is, it is interesting to evaluate each

step in practical terms. Step 1 involves an investigation of how the system reacts to

actions. Ideally, such knowledge can be derived directly from the specification or

implementation of the system. This is however not always possible. Then, it is necessary

to do an active investigation by testing how variables of the system changes as a result of

actions. Step 2 involves obtaining knowledge about the start state. In computer systems,

this can often be accomplished by determine how the system was configured when it was

installed. In other cases, witness statements may be enough to determine how the start

state was. Step 3-6 is an exercise of reasoning, by using the tools given in this chapter. It

is interesting to note that for any given system type, steps 1-6 may not have to be done

more than once. The results, tests to be used in step 7, can be applied over and over

again in different investigations involving that system type. For example, in investigation

of digital media, investigation of file systems is common. For a specific file system, steps

1-6 could be performed once, and the developed tests could then be implemented in a

system for testing clock hypotheses in that file system. Such a system could for example

be a part of a software package for digital investigation.

92

5.9 Extending the simple file system with creation and deletion

In real file systems, files do not exist indefinitely. Instead, files are created by means of

special operations, and can also be deleted. Therefore, in order to more closely represent

an actual file system, it is necessary to extend the simple file system from chapter 5 to

also include creation and deletion of files. The representation should be modelled in such

a way that the fluents and actions pertain to file instances. A file instance is the storage

of a specific file on a storage medium. A file instance does not represent the file’s contents

or name as such, since there may be other files with the same content or the same name.

The file instance represents the storage of file data at a specific location on the storage

medium. A file instance can be created or deleted. It can only be created if it has not

been created before. It can only be deleted if it has been created before and has not

already been deleted. This definition gives the life cycle of a file instance, shown in Figure

5.8.

Figure 5.8 Graphical representation of the life cycle of a file instance

A file can only be created if it has not already been created (interval I1). It can only be

deleted if it has already been created, but is not deleted (interval I2). Other operations,

such as Read or Write can only occur in interval I2. Then, a file instance can only be

created exactly once, and it can only be deleted exactly once. Recreation of a deleted file

instance cannot occur. Timestamps that has been assigned to a file in the delete

operation or before, is retained after the delete operation and cannot be changed

thereafter (interval I3). This reflects a property of real file systems; when a file has been

deleted, it is no longer reachable in the file system, so the timestamps can no longer be

t

I1

I2

I3

creation deletion

93

set by normal operating system procedures. By using special forensic software, it is

however possible to find the values for the timestamps also after the file was deleted.

Based on this model, we obtain the following fluents for representing the state of a file in-

stance:

 Exists()file

 Deleted()file

And the following actions that can change the fluents:

 Create()file

 Delete()file

Clauses for the relationship between the state fluents and the state actions can be defined

as follows:

 Initiates(Create(),Exists(),)file file t (5.18)

 Initiates(Delete(),Deleted(),) HoldsAt(Exists(),)file file t file t⇐ (5.19)

Note that further requirements for the clauses are not needed. It is for example not

necessary to require that a file does not exist for the Create(file) action to initiate the

Exists(file) fluent. If the file does exist, the Create(file) action would not change anything

anyway.

The life cycle of a file instance has now been defined, and we can go further to introduce

a new fluent to represent the Created timestamp that exist in most real file systems:

 cCreated(,)file τ

It is necessary to change the Initiates and Terminates clauses from the simple file system

to reflect the requirement that timestamp fluents can only change while the file exists

and is not deleted, and to introduce the Created timestamp fluent:

Initiates(Read(),Accessed(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

file t file t⇐ ∧
 (5.20)

94

Initiates(Write(),Accessed(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

file t file t⇐ ∧
 (5.21)

Initiates(Write(),Modified(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

file t file t⇐ ∧
 (5.22)

 Initiates(Create(),Created(, ()),) not HoldsAt(Exists(),) file file c t t file t⇐ (5.23)

 Initiates(Create(),Modified(, ()),) not HoldsAt(Exists(),)file file c t t file t⇐ (5.24)

 Initiates(Create(),Accessed(,), ()) not HoldsAt(Exists(),)file file t c t file t⇐ (5.25)

1

1

Terminates(Read(),Accessed(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

t t file t file t⇐ < ∧ ∧
(5.26)

1

1

Terminates(Write(),Accessed(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

t t file t file t⇐ < ∧ ∧
(5.27)

1

1

Terminates(Write(),Modified(, ()),)

 HoldsAt(Exists(),) not HoldsAt(Deleted(),)

file file c t t

t t file t file t⇐ < ∧ ∧
(5.28)

Terminates clauses for the Created fluent are not introduced. Consequently this fluent

will hold indefinitely once Initiated. Similarly, the state of the Modified and Accessed

fluents will hold indefinitely when the file has been Deleted. This is what we require; in

real file system it is possible to recover the timestamps of previously deleted files.

Further, we do not introduce Terminates clauses for the Create action and the Accessed

and Modified fluents. This is not necessary, since the Create action can only occur once

on each file instance - the Create action cannot subsequently change the Accessed and

Modified fluents, and it is therefore not necessary to have Terminated clauses for them.

With the introduction of the Create action, the Initially clauses present in the simple file

system are no longer necessary, since a file must exist in order to be affected by other

actions. For a file to exist, it must first be created. In this model, files do not exist from

the start, but have to be created by the Create action, something that will initiate

timestamp fluents. No timestamp fluents are initiated before the file is created, achieving

a representation closer to a real file system than the simple file system model.

95

5.10 Invariants in the simple file system with creation

Let the simple file system with creation be the file system model defined by the

conjunction of formulae (5.18) - (5.28) in the Simplified Event Calculus. In this system, E

is the conjunction of formulae (5.18) - (5.28), and S is the empty set.

The observation proposition for a file in this system takes the form:

c obs

m obs

a obs

 = HoldsAt(Created(, ()))

 HoldsAt(Modified(, ()),)

 HoldsAt(Accessed(, ()),)

o file c t t

file c t t

file c t t

∧

∧

There are no Initially clauses, so the initiation proposition can be derived from formulae

(5.20) - (5.25):

c

m m

a a a

 = (Happens(Create(),))

 (Happens(Create(),) Happens(Write(),))

 (Happens(Create()) Happens(Write(),) Happens(Read(),))

q file t

file t file t

file t file t file t

∧ ∨

∧ ∨ ∨

Rewritten:

m c

m c

a c

 =((Happens(Create(),) Happens(Create(),))

 (Happens(Write(),) Happens(Create(),)))

 ((Happens(Create(),) Happens(Create(),))

 (Happens(Write(),

q file t file t

file t file t

file t file t

file

∧

∨ ∧

∧ ∧

∨ a c

a c

) Happens(Create(),))

 (Happens(Read(),) Happens(Create(),)))

t file t

file t file t

∧

∨ ∧

And expanded:

a c m

a c m

a

 = (Happens(Create(),) Happens(Create(),) Happens(Create(),))

 (Happens(Write(),) Happens(Create(),) Happens(Create(),))

 (Happens(Read(),) Happens

q file t file t file t

file t file t file t

file t

∧ ∧

∨ ∧ ∧

∨ ∧ c m

a c m

a c

(Create(),) Happens(Create(),))

 (Happens(Create(),) Happens(Create(),) Happens(Write(),))

 (Happens(Write(),) Happens(Create(),) Happens(Write(

file t file t

file t file t file t

file t file t file

∧

∨ ∧ ∧

∨ ∧ ∧ m

a c m

),))

 (Happens(Read(),) Happens(Create(),) Happens(Write(),))

t

file t file t file t∨ ∧ ∧

96

So now we have six different hypotheses, all of which hypothesize a Create action

occurring at tc :

{ }

{ }

1 a c m

2 a c m

3 a

H = Happens(Create(),), Happens(Create(),), Happens(Create(),)

H = Happens(Write(),), Happens(Create(),), Happens(Create(),)

H = Happens(Read(),), Happens(Cr

file t file t file t

file t file t file t

file t{ }

{ }

{ }

c m

4 a c m

5 a c m

eate(),), Happens(Create(),)

H = Happens(Create(),), Happens(Create(),), Happens(Write(),)

H = Happens(Write(),), Happens(Create(),), Happens(Write(),)

H

file t file t

file t file t file t

file t file t file t

{ }6 a c m = Happens(Read(),), Happens(Create(),), Happens(Write(),)file t file t file t

Consider first c m a= = t t t . In this case, the initiation proposition will collapse to a

simple hypothesis:

c = Happens(Create(),)q file t (5.29)

Then consider c m= t t . In this case the initiation proposition will collapse to:

a c

a c

a c

 = (Happens(Create(),) Happens(Create(),))

 (Happens(Write(),) Happens(Create(),))

 (Happens(Read(),) Happens(Create(),))

q file t file t

file t file t

file t file t

∧

∨ ∧

∨ ∧
 (5.30)

And for c a= t t the result is:

c m

c m

 = (Happens(Create(),) Happens(Create(),))

 (Happens(Create(),) Happens(Write(),))

q file t file t

file t file t

∧

∨ ∧
 (5.31)

Now, let c m at t t< < and consider H1. The resolution for this hypothesis is shown in Figure

5.9. As the resolution shows, H1 fails with this timestamping order. Now consider other

timestamping orders with H1 where c m c a t t t t≠ ∧ ≠ . It is easy to see that the kind of

tree shown in Figure 5.9 would arise for all configurations of tc, tm and ta, when tested for

the part of the observation proposition pertaining to the middle or last timestamp.

Therefore, H1 cannot be the case and is refuted.

97

Figure 5.9 Observation of the Modified timestamp with H1 and c m at t t< <

Now, observe that many of the other hypotheses include multiple Create actions on the

same file, namely H2, H3 and H4. These all hypothesize the occurrence of more than one

Create action that will set timestamp fluents. As discussed for H1, all resolutions for the

observation proposition for these hypotheses will fail when c m c a t t t t≠ ∧ ≠ , since the

requirement for the second Create action is that the file does not already exist, but the

file exists, because of the first Create action.

mInitially(Modified(, ()))file c t⇐

m obs notClipped(0, Modified(, ()),))file c t t∧

m obsHoldsAt(Modified(, ()),)file c t t

1 m 1Happens(,) Initiates(,Modified(, ()),)a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped(,Modified(, ()),)t t t file c t t∧ ∧

m

m m obs

not HoldsAt(Exists(),)

 notClipped(, Modified(, ()),)

file t

t file c t t

⇐

∧

mHoldsAt(Exists(),)file t⇐

FAIL

1 m, Create()t t a file= =

<1 m 1 m notClipped(,Exists(),)t t t file t∧ ∧

1 1Happens(,) Initiates(,Exists(),)a t a file t⇐ ∧

1 c, Create()t t a file= =

c mnotClipped(,Exists(),)t file t

�

FAIL

98

Thus, we are left with:

{ }

{ }

5 a c m

6 a c m

H = Happens(Write(),), Happens(Create(),), Happens(Write(),)

H = Happens(Read(),), Happens(Create(),), Happens(Write(),)

file t file t file t

file t file t file t

Now, consider H6 and a ct t< . Since the initiation of the Accessed timestamp by an action

Read(file) at ta requires aHoldsAt(Exists(),)file t , we must consider both

aHoldsAt(Exists(),)file t and a HoldsAt(Exists(),)file t¬ . For a HoldsAt(Exists(),)file t¬ ,

the resolution for the observation of the Accessed timestamp fails, as shown in Figure

5.10. On the other hand, for aHoldsAt(Exists(),)file t , the resolution for the observation

of the Created timestamp fails, as shown in Figure 5.11, since the initiation of the

Created timestamp requires that the file does not exist. The result is then, that for H6, it

cannot be the case that a ct t< .

Figure 5.10 The accessed timestamp for H6 when a ct t< and a HoldsAt(Exists(),)file t¬

Now, consider that m ct t< for H6. One can now apply the same type of reasoning as for

a ct t< , and draw resolutions for the observation of the modified timestamp assuming

that m HoldsAt(Exists(),)file t¬ and for the observation of the created timestamp

assuming that aHoldsAt(Exists(),)file t . These resolutions take the same form as those

aInitially(Accessed(, ()))file c t⇐

a obs notClipped(0, Accessed(, ()),))file c t t∧

a obsHoldsAt(Accessed(, ()),)file c t t

1 a 1Happens(,) Initiates(,Accessed(, ()),)a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped(,Accessed(, ()),)t t t file c t t∧ ∧

a aHoldsAt(Exists(),) not HoldsAt(Deleted(),)file t file t⇐ ∧

FAIL

1 a, Read()t t a file= =

FAIL

99

shown in Figure 5.10 and Figure 5.11. The result is that m ct t< cannot be the case for

H6.

So, how would these results relate to H5? Since H5 hypothesizes Write actions at ta and

tm, the situation for both ta and tm is equal to that already discussed for tm with H6.

Again, resolution trees would be equal to those shown in Figure 5.10 and Figure 5.11,

and would show that also for H5, m ct t< and a ct t< cannot be the case. The same

reasoning would apply for the hypotheses in (5.30) and (5.31), showing that m ct t< or

a ct t< is not possible.

Figure 5.11 The created timestamp for H6 when a ct t< and aHoldsAt(Exists(),)file t

From the reasoning above, it can be concluded that for the simple file system with

creation, it is always the case that c mt t≤ and c at t≤ .

Similar reasoning can be performed concerning the relationship between ta and tm.

Consider first a mt t= . Then, since c mt t≤ , either c a m = = t t t , in which case the only

possible hypothesis is given in (5.29), or c mt t< which reduces H5 and H6 to:

cInitially(Created(, ()))file c t⇐

c obs notClipped(0, Created(, ()),))file c t t∧

c obsHoldsAt(Created(, ()),)file c t t

1 c 1Happens(,) Initiates(,Created(, ()),)a t a file c t t⇐ ∧

< obs1 obs 1 c notClipped(,Created(, ()),t)t t t file c t∧ ∧

c

c c obs

not HoldsAt(Exists(),)

 notClipped(, Created(, ()),)

file t

t file c t t

⇐

∧

FAIL

1 c, Create()t t a file= =

FAIL

100

{ }

{ }

5 m c m

6 m c m

H = Happens(Write(),), Happens(Create(),), Happens(Write(),)

H = Happens(Read(),), Happens(Create(),), Happens(Write(),)

file t file t file t

file t file t file t

In other words

c m

m m

Happens(Create(),) ((Happens(Write(),))

 (Happens(Read(),) Happens(Write(),)))

file t file t

file t file t

∧

∨ ∧

Which can be reduced to

c mHappens(Create(),) Happens(Write(),)file t file t∧

This reduction is the equivalent to the reduction in section 5.6 for the simple file system.

Now, consider a mt t< . Then, if a ct t= , the hypothesis is given in (5.31):

c m

c m

 = (Happens(Create(),) Happens(Create(),))

 (Happens(Create(),) Happens(Write(),))

q file t file t

file t file t

∧

∨ ∧

The first of these hypotheses fail, by the resolution in Figure 5.9. The second also fail, as

shown in Figure 5.12.

101

Figure 5.12 Resolution fails for a mt t< where a ct t=

And, if c a mt t t< < , H5 will fail as shown in the resolution in Figure 5.4 and H6 will fail as

shown in the resolution in Figure 5.3.

Thus, it has been shown that, for the simple file system with creation, for every file, the

observed Created, Modified and Accessed timestamps tc, tm and ta must obey:

c m at t t≤ ≤ . This property can be used to test clock hypotheses with observed sets from

the simple file system with creation by using the test in Theorem 5.10.

aInitially(Accessed(, ()))file c t⇐

a obs notClipped(0, Accessed(, ()),))file c t t∧

a obsHoldsAt(Accessed(, ()),)file c t t

1 a 1Happens(,) Initiates(,Accessed(, ()),)a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped(,Accessed(, ()),)t t t file c t t∧ ∧

a a obsnotClipped(, Accessed(, ()),)t file c t t⇐

a a obsClipped(,Accessed(, ()),)t file c t t⇐

< <a a obsHappens(,) Terminates(,Accessed(, ()),)a t a file c t t t t t⇐ ∧ ∧

FAIL

FAIL

1 a, Create()t t a file= =

m, Write()t t a file= =

< <
m

a m a m obs

Happens(Write(),)

Terminates(Write(),Accessed(, ()),)

file t

file file c t t t t t

⇐

∧ ∧

�

102

5.11 Complexity

In this chapter, the SEC-algorithm for the determination of invariants from a system

model was described. The algorithm has been applied manually, but could just as well be

implemented in a computer program, for example in the logic programming language

PROLOG. With such a program, invariants could be found with the SEC-algorithm

without having to manually draw figures for each resolution. This would save manual

work, and allow for more complex systems. It is however not certain that even a

computer can handle the amount of computation involved if the system to be tested is

too complex. It is therefore interesting to find the computational complexity of the SEC-

algorithm, and determine how the amount of necessary computation steps grows when

the modelled system gets more complex.

The growth of the SEC-algorithm is determined by two factors; the number of

timestamps associated with each file in the system and the number of Initiates clauses in

the model. Let n be the number of timestamps associated with each file in the system.

Let ui be the number of Initiates clauses in EI initiating fluents for timestamp i. The total

number of Initiates clauses for the model is then:

I

0

n

i

i

E u
=

=∑

Evaluating the initiation proposition q in (5.14), we see that q is a conjunction of n

terms, corresponding to the initiation of each fluent in the observation proposition o in

(5.13). Each term is a disjunction of ui Happens clauses corresponding to the initiation of

that fluent. After reordering the conjunction of disjunctive clauses into a disjunction of

conjunctive clauses, each term is called an action hypothesis. The reordering involves

taking the conjunction of each clause in the disjunctions, something that will produce

1 2... nu u u terms. The number of hypotheses is then:

0

n

i

i

H u
=

= ∏ (5.32)

The number of Happens clauses in each hypothesis is equal to the number of conjunctive

clauses in q, which is n.

103

The number of timestamping orders that must be tested by resolutions is the number of

different orderings between n moments in time, ordered with relations < and =. We call

this number p(n). p(n) is the number of weak orders on n labelled elements, also called

ordered Bell numbers. [35, 36] Computing the ordered Bell numbers is not

straightforward. For a given n, one must first find all possible partitions 1 2, ,..., jk k k

where

0

j

i

i

k n
=

=∑

The number of orders for each partition is then given by the multinomial coefficients for

that ordering:

1 2, ,...,

1 2 1 2

!
()

, ,..., ! !... !jk k k
j j

n n
p n

k k k k k k

= =

For example, for n = 3, the possible partitions are (1,1,1), (1,2), (2,1) and (3). The

multinomial coefficients for each partition then yield:

1,1,1

3 3!
(3) 6

1,1,1 1!1!1!
p

= = =

1,2

3 3!
(3) 3

1,2 1!2!
p

= = =

2,1

3 3!
(3) 3

2,1 2!1!
p

= = =

3

3 3!
(3) 1

3 3!
p

= = =

Thus, p(3) = 6+3+3+1 = 13. The ordered Bell numbers for n up to 9 are given in Table

5.1. [36]

n p(n)

0 1

1 1

2 3

3 13

4 75

5 541

6 4683

104

7 47293

8 545835

9 7087261

Table 5.1 Ordered Bell numbers p(n) for n < 10

Barthelemy showed that the Bell numbers can be approximated as: [36]

1

!
() o((1)!)

2(log 2) n
n

p n n
(+)

= + −

This approximation is appropriate for the purpose of determining the growth of p(n) in

order to express the complexity of the SEC-algorithm. It can also be written as:

(1)

1 1
() ! o((1)!)

2 log 2

n

p n n n
+

= + −

From which it is clear that the dominant growth of p(n) comes from the factor n!. Thus,

p(n) is (!) as O n n → ∞ . (5.33)

In the SEC-algorithm, a resolution must be tested for every timestamping order, action

hypothesis and observed timestamp value. The number of observed timestamp values for

a file is equal to the number of timestamps, n. The number of resolutions is then

(!) as ,O Hn n H → ∞ (5.34)

It then remains to determine the number of computation steps involved with a

resolution. The number of actions that needs to be tested for each hypothesis is n.

Therefore, the computation of a resolution is O(n). The growth of this function when n

grows is too small to contribute to the growth compared to the number of resolutions.

We therefore obtain the complexity of the SEC-algorithm by inserting H into (5.34):

0

(!) as ,
n

i i

i

O n u n u
=

→ ∞∏ (5.35)

It should be recognized that the growth expressed in (5.35) is extraordinarily rapid. The

growth is for example comparable to that of an algorithm seeking to solve the well known

Traveling Salesman Problem by exhaustive search of all permutations of n cities,

105

something that would exhibit growth O(n!). The SEC-algorithm can be described as an

exhaustive search of all permutations of timestamping to determine which sequences of

actions can lead to that permutation, if any. Such an exhaustive search involves a

significant amount of computation, with rapid growth as the number of timestamps n

grows. For important practical applications, n is however small, and computation

therefore feasible. In this chapter, computation has been performed by hand for n = 2

and n = 3. For larger n, the SEC-algorithm should be implemented as a computer

program. With such a program, computation with the SEC-algorithm should be feasible

also with larger n. Most real systems have only a few timestamps per file. The given

procedure is therefore useful for real applications, even if it grows rapidly with growing n.

106

6 TIMESTAMP REASONING WITH AFFECTS

Chapter 5 described the Simplified Event Calculus, and its use to create a model of a

system for clock hypothesis testing. Finding invariants for a system becomes more

complex as the number of actions in the system increases. This chapter simplifies

reasoning, by introducing the concept of an affects table, finding all timestamping orders,

and testing which action sequence may cause a specific timestamping order.

In Section 6.1 the affects table is described. In Section 6.2 timestamping orders is defined.

Section 6.3 then describes how these concepts can be used to derive invariants for a sys-

tem, which can be used for clock hypothesis testing. In Section 6.4 this algorithm is

applied in a model of a real system. In Section 6.7, the use of affects tables is compared

with the use of Event Calculus for timestamp reasoning.

6.1 Actions affects timestamps

A feature of the Simplified Event Calculus is the effect axioms whereby actions affect

fluents via the Initiates and Terminates predicates. The file systems modelled in Chapter

5 have several timestamps per file. Each timestamp may or may not be updated by a

specific action. When such a system is described with Simplified Event Calculus,

timestamps are represented with fluents, and updating of timestamps by a specific action

is modelled with one Initiates clause for the initiation of the new value and one

Terminates clause for the termination of the previous value. Whenever a new timestamp

fluent is Initiated, the previous timestamp fluent is always Terminated. This

representation reflects the property of real file systems that whenever a timestamp is

updated, the timestamp is set to the current value of the clock, and the previous value is

lost.

It is possible to represent such a system in a simpler way, under the assumption that

every timestamp change sets a new value and removes the previous. Instead of defining

the relationship between actions and timestamps by means of Simplified Event Calculus,

we can simply list the timestamps and actions, and define which timestamps are affected

107

by which actions. In this representation, the relationship between timestamps and actions

is expressed as affects.

Definition Definition Definition Definition 6666....1111. . . . An action affects a timestamp if and only if an occurrence of that action

sets a new value for the timestamp and removes the previous value for the timestamp.

Affects then expresses the updating of a timestamp directly, without the need for

explicitly stating initiation of a new timestamp value and termination of the old

timestamp value. This allows for simplified reasoning. Timestamp affect in the simple file

system described in formulae (5.4) - (5.9) can now be summarized as follows:

- Read affects Accessed ((5.4) and (5.7))

- Write affects Accessed ((5.5) and (5.8))

- Write affects Modified ((5.6) and (5.9))

Having defined affects, one can now list all possible combinations of timestamps for a file

in a table, and determine which of these combinations correspond to actions.

Definition Definition Definition Definition 6666....2222. . . . An affects table is a table listing all possible combinations of timestamps

in a system, and all actions in the system and timestamps they affect. An affects table

for a system with n timestamps has 2n entries.

The affects table for existing non-deleted files in the simple file system with creation is

given in the following:

 Created Modified Accessed Actions

0

1 X

2 X

3 X X

4 X Read

5 X X

6 X X Write

108

7 X X X Create
Table 6.1 Affects table for the simple file system with creation

The affects table states clearly which timestamps are affected by actions. The affects

table also shows which timestamp affects combination does not occur with any action.

This information can be utilized to derive invariants on timestamp, by reasoning on

sequences of timestamp updating and corresponding sequences of actions.

6.2 Timestamping orders

In an investigation, the investigator observes values of timestamps on each investigated

file. Each file has n different timestamps 1 2, ,..., nθ θ θ . The observed values of these

timestamps were set at moments in time
1 2
, ,..., nt t tθ θ θ , and the values observed by the

investigator are
1 2

(), (),..., ()nc t c t c tθ θ θ , set by the clock of the investigated system. Since

the clock function ()c t of the investigated system is unknown, the investigator cannot

map these values directly to the moments in time
1 2
, ,..., nt t tθ θ θ when timestamping

occurred. But the investigator can list possible orders of timestamping, and determine if

the observed result is consistent with a specific clock hypothesis, given the affects table

for the system.

Definition Definition Definition Definition 6666....3333. . . . In a system with n timestamps, the timestamp set Θ is the set of

observed timestamps 1 2, ,..., nθ θ θ . The stamping time itθ for timestamp iθ is the time at

which the observed value of the timestamp was set.

ExampleExampleExampleExample 6666....4444.... For the simple file system with creation described in section 5.9, the

stamping time set is { } = Created, Modified, AccessedΘ . The stamping times for the

simple file system are denoted tc, tm and ta. tc is the time of production of the observed

Created timestamp, tm is the time of production of the observed Modified timestamp and

ta is the time of production of the observed Accessed timestamp.

To determine which (if any) sequence of actions in the system could have resulted in the

observed timestamps, it is interesting to determine the different orders in which

timestamping could have occurred. For each pair of timestamps in Θ (,)i jθ θ , the

109

corresponding pair of stamping times (itθ , jtθ) may be related by either i jt tθ θ< ,

 i jt tθ θ= or i jt tθ θ> .

Definition Definition Definition Definition 6666....5555. . . . A timestamping order is a sequence of the stamping time for every

element in the timestamp set Θ , where each stamping time is related to the next

stamping time in the sequence with the equals-relation = or the less-than relation <.

The equals relation imply that the stamping times are equal; the two timestamps were

set at the same time. The less-than relation imply that the first stamping time is earlier

than the second stamping time; the production of the first timestamp occurred at an

earlier time than the production of the second timestamp. Each different stamping time

in a timestamping order constitutes a step in the timestamping order. When two or more

stamping times are equal, they constitute a step in the timestamping order together.

Example Example Example Example 6666....6666. . . . An example timestamping order for the simple file system with creation is

(tc = tm < ta). With this timestamping order, the Created and Modified timestamps were

set at the same time, and the Accessed timestamp was set at a later time than the

Created and Modified timestamps.

A list of all timestamping orders can then be constructed where each stamping of a

specific timestamp may have occurred before, after or at the same time as the stamping

of the other timestamps. For n = 2, all possible timestamping orders are:

Number Order

1 (t1 < t2)

2 (t1 = t2)

3 (t2 < t1)

Table 6.2 All timestamping orders, n = 2

For n = 3, as in the file system models discussed in Chapter 5, the number of

timestamping orders is higher:

Number Order

110

1 (t1 < t2 < t3)

2 (t1 < t3 < t2)

3 (t2 < t1 < t3)

4 (t2 < t3 < t1)

5 (t3 < t1 < t2)

6 (t3 < t2 < t1)

7 (t1 = t2 < t3)

8 (t3 < t1=t2)

9 (t2=t3 < t1)

10 (t1 < t2=t3)

11 (t1=t3 < t2)

12 (t2 < t1=t3)

13 (t1=t2=t3)

Table 6.3 All timestamping orders, n = 3

6.3 Action sequences and possible timestamping orders

Timestamps can only be set by actions. The cause of timestamping having occurred in a

specific order must have been actions that have occurred in a specific sequence. An action

sequence is a sequence of actions of arbitrary length.

Definition Definition Definition Definition 6666....7777. An action sequence is a sequence of one or more actions, where each

element is related to the next element in the sequence with the equals-relation = or the

less-than relation <. The equals relation imply that the actions occurred at the same

time. The less-than relation imply that the first action occurred earlier than the second

action.

The relationship between an action sequence and a timestamping order is that every

observed timestamping order, must have been created by an action sequence. When

considering all timestamping orders, there may be many action sequences that may cause

that particular timestamping order. There may however also be timestamping orders,

111

which cannot be created by any action sequence. These timestamping orders cannot

occur in the real system. The relationship between action sequences and timestamping

orders can be deduced from the affects table.

Definition Definition Definition Definition 6666....8888. . . . A timestamping order is possible in a system if there is at least one action

sequence that may cause the timestamping order. If there is no action sequence that can

cause the timestamping order, then the timestamping order is impossible in the system.

By using the affects table, it is possible to find all action sequences that may have caused

a specific timestamping order by the following algorithm, hereafter called the AS-

algorithm:

1. Find all actions or combination of actions affecting all timestamps in the first

step in the timestamping order.

2. For each following step in the timestamping order, find all actions or combination

of actions affecting all timestamps in that step, and not affecting any timestamps

listed in previous steps. If there is no such action or combination of actions, then

this timestamping order is impossible in the system.

The task of finding all actions or combination of actions can be implemented as follows:

1. For every timestamp iθ find all actions affecting it, and add them to a set Ai.

2. For every action ia A∈ , check if a affects any timestamp jθ listed in previous

steps in the timestamping order. If so, remove it from Ai.

3. Actions 1 2(...)na A A A∈ ∩ ∩ ∩ affect all timestamps in that step. Remove them

from Ai.

4. If all sets Ai are still non-empty, the remaining actions represent combinations of

actions affecting all timestamps for that step. The combinations can be found

with the Cartesian product 1 2 ... nA A A× × ×

Example Example Example Example 6666....9999.... Find all action sequences for the timestamping order (tc < tm < ta) for an

existing file in the simple file system with creation.

112

From the affects table for the simple file system with creation in Table 6.1, the steps in

the timestamping order yields:

Step 1 (tc): Create (tc is only affected by Create)

Step 2 (tm): Write (tm is affected by Create and Write, only Write does not affect tc)

Step 3 (ta): Read (ta is affected by Read/Write/Create, only Read does not affect tc,

tm)

Thus, the only possible action sequence for timestamping order (tc < tm < ta) is (Create <

Write < Read).

Example Example Example Example 6666....10101010. . . . Find all action sequences for the timestamping order (tm=ta < tc) for an

existing file in the simple file system with creation.

From the affects table for the simple file system with creation in Table 6.1, the steps in

the sequence yields:

Step 1 (tm=ta): Create, Write (tm and ta are both affected by Create and Write)

Step 2 (tc): none (tc is only affected by Create, but Create also affects tm and

ta)

Thus, the timestamping order (tm=ta < tc) is not possible in the system.

By using the AS-algorithm for all timestamping orders for a given number of timestamps,

one can now complete the reasoning in a system with known actions. The result of this

exercise will be a list of timestamping orders impossible in the system and a table of

possible action sequences of each timestamping orders possible in the system. These

results can be used with Theorem 5.10 to check the consistency of a clock hypothesis.

Example Example Example Example 6666....11111111.... Find all action sequences for the simple file system with creation.

This file system has three timestamps for each file (n = 3). All timestamping orders for

such a system are given in Table 6.3. Assigning t1 = tc, t2 = tm and t3 = ta produces all

timestamping orders for this system, shown in column “Stamping Order” in Table 6.4.

113

Following the AS-algorithm for each timestamping order listed in the table by using the

affects table for the simple file system with creation given in Table 6.1, gives the possible

action sequences for that timestamping order, shown in the column “Action Sequence”:

Number Stamping Order Action Sequence

1 (tc < tm < ta) (Create < Write < Read)

2 (tc < ta < tm) None

3 (tm < tc < ta) None

4 (tm < ta < tc) None

5 (ta < tc < tm) None

6 (ta < tm < tc) None

7 (tc = tm < ta) (Create < Read)

8 (ta < tc=tm) None

9 (tm=ta < tc) None

10 (tc < tm=ta) (Create < Write)

11 (tc=ta < tm) None

12 (tm < tc=ta) None

13 (tc=tm=ta) (Create)

Table 6.4 Action sequences for the simple file system with creation

The only timestamping orders in Table 6.4 possible in the system are sequences where

c m at t t≤ ≤ . This is equal to the result achieved for the simple file system with creation in

section 5.10.

6.4 Modelling a real file system

The AS-algorithm described in the previous sections can be used to create a model of a

real file system, determine which timestamping orders are possible in the system and

derive invariants of the file system for use with a clock hypothesis checker. To illustrate

this algorithm, this section performs it on the semantics in Windows XP for file

timestamps stored in the NTFS $STANDARD_INFORMATION attribute. The basis for

114

the model described here is the experiments described in Appendix C. The model

assumes that the files in question exist, are larger than the file cache size, and that

updating of the last accessed timestamp is enabled.

In a system with three timestamps, the affects table contains 23 = 8 entries. The actions

are:

Read: reading a file

Create: creating a new file

Write: modifying an existing file

CopySrc: copying a file (source file)

CopyDest: copying a file (destination file)

MoveIntra: moving a file internal to a file system

MoveInterSrc: moving a file across file systems (source file)

MoveInterDest: moving a file across file systems (destination file)

From the experiments, the following affects table can then be constructed:

 Created Modified Accessed Actions

0

1 X

2 X

3 X X

4 X
Read, CopySrc, MoveIntra, MoveIn-

terSrc, MoveInterDest (ReadGroup)

5 X X CopyDest

6 X X Write

7 X X X Create

Table 6.5 Affects table for Windows XP / NTFS

The actions in row 4 of the affects table all have the same effect on timestamps. In the

following, they will be group together as ReadGroup, meaning that where this action

115

occurs, any of the actions Read, CopySrc, MoveIntra, MoveInterSrc or MoveInterDest

may have occurred.

With n = 3, the timestamping order table in Table 6.3 can be used. Applying the AS-

algorithm for each timestamping order yields the table of action sequences listed in Table

6.6.

Number Stamping Order Action Sequence

1 (tc < tm < ta) (Create/CopyDest < Write < ReadGroup)

2 (tc < ta < tm) None

3 (tm < tc < ta) (Create/Write < CopyDest < ReadGroup)

4 (tm < ta < tc) None

5 (ta < tc < tm) None

6 (ta < tm < tc) None

7 (tc = tm < ta) (Create/CopyDest=Write < ReadGroup)

8 (ta < tc=tm) None

9 (tm=ta < tc) None

10 (tc < tm=ta) (Create/CopyDest, Write)

11 (tc=ta < tm) None

12 (tm < tc=ta) (Create/Write, CopyDest)

13 (tc=tm=ta) (Create/CopyDest=Write)

Table 6.6 Timestamping orders in Windows XP/NTFS.

From the table, it is evident that there are no possible action sequences where ta does not

occur in the last step. Consequently, in this model, m at t≤ and c at t≤ . These invariants

can be used to check clock hypotheses for Windows XP systems with NTFS. An

implementation of such hypothesis checking will be discussed in Chapter 7.

6.5 Complexity

116

It is interesting to determine the computational complexity of the AS-algorithm given in

Section 6.3. As with the SEC-algorithm given in Chapter 5, this algorithm can be used

manually, as well as in a computer program.

Let n be the number of timestamps associated with each file in the system. Let ui be the

number of actions affecting timestamp iθ . The AS-algorithm involves finding the

possible actions sequences, if any, for every timestamping order. All timestamping orders

must be found, and the procedure of finding possible action sequences must be repeated

for every timestamping order. The number of timestamping orders impacts the

complexity of the AS-algorithm directly. The number of timestamping orders is, as

already discussed in Section 5.11, equal to p(n), the ordered Bell numbers. A list of these

numbers for n up to 9 is given in Table 5.1. The complexity of p(n) is given in Equation

(5.33).

A timestamping order has at most n steps. For every step, the AS-algorithm mandates

finding all actions affecting every timestamp, adding them to sets, and checking the

resulting sets for actions or combination of actions that affect all timestamps in the step.

This algorithm is O(ui) for every timestamp to find actions for, or

0

() as ,
n

i i

i

O u n u
=

→ ∞∑

for finding actions for all timestamps. The actions must then be checked if they affect the

timestamps in the previous steps in the timestamping order, something that will increase

the complexity by a factor n, since the timestamping order has at most n steps. We can

then express the computation complexity of the task for every step in the timestamping

order as

0

() as ,
n

i i

i

O n u n u
=

→ ∞∑

And since the timestamping order has at most n steps, the computation for every

timestamping order is

2

0

() as ,
n

i i

i

O n u n u
=

→ ∞∑

Inserting Equation (5.33), the term n2 can be removed, since it grows considerably slower

than the factorial growth of the Bell numbers. We then obtain for the AS-algorithm:

117

0

(!) as ,
n

i i

i

O n u n u
=

→ ∞∑

It is interesting to note the difference of the growth of the AS-algorithm with the growth

of the SEC-algorithm, expressed in Equation (5.35). While the growth when n → ∞ in

both cases is proportional to the growth of the Bell numbers, the growth of the AS-

algorithm when iu → ∞ is proportional to the sum of the number of affects for each

timestamp. In the SEC-algorithm, the growth is proportional to the product of the

number of Initiates clauses for each timestamp in the event calculus program. This

difference can be considerable in the evalution on a model with a large number of actions.

The difference can be explained by the order of checking the actions affection on

timestamps. In the SEC-algorithm, we first formulate action hypotheses, and then check

if each action hypothesis can occur with the different timestamping orders. When the

action hypotheses are formulated, there is no implicit knowledge of which hypotheses will

be refuted in the different timestamping orders, so all possible combinations of initiating

actions must be hypothesized, yielding the number of hypotheses expressed in Equation

(5.32). In the AS-algorithm on the other hand, actions are selected for every step of every

timestamping order and tested for consistency with the previous steps. This eliminates

the need for computing all possible action combinations and testing every combination

with every timestamping order, thereby reducing the growth when iu → ∞ .

6.6 Representing the affects table as a graph

A further simplification of the described derivation of invariants can be achieved by

reasoning directly on the elements of the affects table. This simplification is best

illustrated by representing the affects table as a graph.

Definition Definition Definition Definition 6666....12121212.... An affects graph is a representation of the affects table as a bipartite

graph, in which timestamps and actions are represented with vertices and affects with

edges. Timestamps are represented with vertices of one color and actions with vertices of

another color. Affects are represented with edges between timestamp vertices and action

vertices.

118

ExampleExampleExampleExample 6666....13131313.... The graph in Figure 6.1 shows the affects graph for the simple file system

with creation as per the affects table in Table 6.1.

Figure 6.1 Affects graph for the simple file system with creation

The description of the affects table as a graph highlights how the affects table can be

seen as a system of interconnected entities, where timestamps and actions are entities

and affects are connections. This suggests a type of reasoning directly on the connections

between timestamps through intermediary actions, without having to rely on an

exhaustive search of different timestamping orders. Consider the Created timestamp in

Figure 6.1. This timestamp is affected by the Create action, which in turn affects the

Modified timestamp and the Accessed timestamp. Create is also the only action affecting

the Created timestamp. Thus, whenever the Created timestamp is updated in this

system, the Accessed and Modified timestamps are updated too. Now consider the

Modified timestamp. This timestamp is affected by the Create action and the Write

action. These actions both in turn affect the Accessed timestamp. Thus, whenever the

Modified timestamp is updated, the Accessed timestamp is also updated. These

relationships can be expressed as a directed graph of timestamps as shown in Figure 6.2.

The arcs in this directed graph represent that whenever the tail timestamp is updated,

the head timestamp is updated too. Since any update to the tail timestamp also updates

the head timestamp, the arcs is this graph translate to invariants by which the stamping

time of the tail timestamp must be less than or equal to the stamping time of the head

timestamp.

Write

Read

Create

Accessed

Modified

Created

119

Figure 6.2 Timestamps in the simple file system with creation.

From Figure 6.2, we see that any updates of the Created timestamp also update the

Modified timestamp and the Accessed timestamp, and any updates of the Modified

timestamp also updates the Accessed timestamp. Thus, c mt t≤ , c at t≤ and m at t≤ and

consequently c m at t t≤ ≤ , which equals previous results for this file system.

Definition Definition Definition Definition 6666....14141414.... An invariant graph is a directed graph in which timestamps are

represented with vertices and invariants with arcs. An arc from timestamp iθ to jθ

represents the invariant i jt tθ θ≤

It is now possible to devise an algorithm for the derivation of the invariant graph directly

from the affects graph, hereafter called the IG-algorithm:

- Every timestamp vertex in the affects graph is a vertex in the invariant graph

- For every timestamp vertex iθ in the affects graph:

- For every action aj affecting iθ :

- Build a set
jaΩ of timestamps affected by aj not including iθ

- Find
1 2

...
ma a aΩ = Ω Ω Ω∩ ∩ ∩

- For every kθ ∈ Ω , insert an arc from iθ to kθ in the invariant graph

{ }Create,Write

{ }Create

{ }Create

Accessed

Modified

Created

120

Example Example Example Example 6666....15151515.... Draw the invariant graph in for Windows XP / NTFS. The affects table

for XP / NTFS is given in Table 6.5. From this table, we get the affects graph shown in

Figure 6.3. By applying the IG-algorithm, we obtain the invariant graph shown in Figure

6.4.

Figure 6.3 Affects graph for Windows XP / NTFS

Figure 6.4 Invariant graph for Windows XP / NTFS

To compare the IG-algorithm with the previously described algorithms, its complexity

must be determined. The IG-algorithm is characterized by iterating over all timestamps

and finding all different connections to other timestamps through the actions connected

{ }Create,Write

{ }Create, CopyDest

Accessed

Modified

Created

Write

ReadGroup

Create

Accessed

Modified

Created

CopyDest

121

to these timestamps with affects. Let n be the number of timestamps. We then call ki the

number of ways timestamp i is connected to other timestamps through actions. Since the

IG-algorithm iterates over all timestamps and for each timestamp finds other timestamps

connected to it through actions, the complexity can be expressed in terms of ki as:

0

() as ,
n

i i
i

O k n k
=

→ ∞∑

It is interesting to determine the growth of ki in terms of the number of timestamps,

actions and affections in the affection table. To do this, one must find the relationship

between the number of affects and ki. In order to visualize this relationship, a graph of

connections between timestamps through actions can be derived from the affects graph.

Such a graph is shown in Figure 6.5 for the affects graph in Figure 6.3.

Figure 6.5 Connections between timestamps through actions

In Figure 6.5, ki is the number of black arcs connecting timestamp i to other

timestamps. For example, for the Modified timestamp, km = 3. Now, let the total number

of connections between timestamps through actions be ω . For the graph in Figure 6.5,

ω is the number of black arcs, which is 5. Now, since ki is the number of connections

from each timestamp, we have:

0 0

 2
n n

i i
i i

k kω ω
= =

1
= ⇔ =

2
∑ ∑

Write

ReadGroup

Create

Accessed

Modified

Created

CopyDest

122

ω can also be expressed in terms of the number of actions, and the number of affects

they have. Let vi be the number of timestamps affected by action ai. The number of

connections between timestamps through action ai is then given by the triangular number

T(vi), where,

0

(1)
()

2

iv
i i

i
j

v v
T v j

=

+
= =∑

So the total number of connections is a matter of summing over actions. Let m be the

number of actions. Then,

(1)
()

2

m m
i i

i
i i

v v
T vω

=0 =0

+
= =∑ ∑

The complexity of the IG-algorithm can now be found by inserting 2ω as follows:

0

(1)
2 2

2

n m
i i

i
i i

v v
k ω

= =0

+
= =∑ ∑

And the complexity is:

2() as ,
m

i i
i

O v m v
=0

→ ∞∑

The complexity of the IG-algorithm depends on the number of actions and the number of

affects on each action. This is different from the previous algorithms, whose complexity

depends on the number of timestamps n and the number of affects on each timestamp. In

order to be able to compare the two approaches, it is interesting to find an upper bound

on the complexity of the IG-algorithm. For vi, we know that the upper bound is n, since

no action can affect more than the total number of timestamps in the system. With

iv n= the boundary on the IG-algorithm in terms of n becomes:

2 2() = () as ,
m

i

O n O mn m n
=0

→ ∞∑

Thus, the growth of the IG-algorithm is quadratic with the growth of n and linear with

the growth of m. This compares quite favourably with the O(n!) algorithms given in

previous sections.

6.7 Comparison with Simplified Event Calculus

123

The affects table reasoning described in this chapter provides a simplification compared

to the Event Calculus logic described in Chapter 5. The construction of a model is

simpler; instead of defining a complete Event Calculus program, the model can now be

constructed by defining an affects table. The affects table lists the timestamp fluents as

columns and all possible affects combinations as rows. Then, actions in the system are

listed in rows according to the timestamp fluents it affects. This way of constructing a

model makes the property that the setting of a new timestamp overwrites the previous

value of the timestamp implicit, rather than the explicit Initiates and Terminates clauses

used in the Simplified Event Calculus. This makes it more straightforward to build a

model of a system with many actions, and also easier to understand the model. This was

seen in Section 6.4, where an affects table for Windows XP was constructed, whereas a

model for Windows XP in Simplified Event Calculus would have to include a significant

number of actions and therefore also a significant number of Initiates and Terminates

clauses. The grouping of actions in the affection table also allows for a further

simplification, since actions with equal timestamp affection can be grouped together and

handled as a single action.

The simplification however means that the ability to represent arbitrary fluents and

actions is lost. In the construction of an affects table, it is assumed that all actions affect

the timestamps by terminating the previous value and initiating a new value. Further,

representation of fluents and actions that are not timestamps is not allowed. Thus, the

simpler model represented by the affects table is not able to represent all kinds of

systems in the same way as is possible in the Simplified Event Calculus. For example, the

affects table is not able to represent the fluent Exists in the simple file system with

creation described in Section 5.9, and so the affects table shown in Table 6.1 is only valid

for existing files.

The most important simplification achieved by the use of affects tables over event

calculus is in the determination of invariants in the system. With the AS-algorithm, this

is achieved by determining which action sequences, if any, can cause each timestamping

order. With the IG-algorithm, invariants are determined directly from the affects table

and its representation as a graph. These algorithms find invariants that must hold for the

system, such as c m at t t≤ ≤ for the simple file system with creation. In the SEC-algorithm

on the other hand, it is necessary to first find action hypotheses from an observation

proposition by finding the initiation proposition and then test each of the action

124

hypotheses by resolution for each timestamping order, as shown for the simple file system

with creation in Figure 5.10. In this process, many of the action hypotheses found with

the initiation proposition will be refuted, because the fluents initiated by the

hypothesized actions will be terminated by subsequent hypothesized actions. In a model

with many actions, this process will become overly complex, due to the number of

different hypotheses that must be tested.

Another difference that should be noted is the lack of determination of action sequences

corresponding to timestamping orders in the IG-algorithm. In the SEC-algorithm and the

AS-algorithm, all action sequences are tested for consistency with every timestamping

order. This means that for an observed timestamping order, the investigator can not only

determine if it is consistent with a given clock hypothesis. He can also determine which

action sequences may have caused it. Such an interpretation can not be made when the

IG-algorithm has been used, since it only determines invariants and not possible actions

sequences for specific timestamping orders. It is however possible to use the IG-algorithm

for invariant derivation and the AS-algorithm for determination of possible action

sequences for specific observed timestamping orders.

In summary, the use of an affects table for reasoning about possible action sequences pro-

vides a simplification of the derivation of invariants for a system, compared with the

Simplified Event Calculus Reasoning. The given algorithms can be used to derive

invariants and test clock hypotheses in systems with greater number of possible actions.

As shown with the model of Windows XP, the simplification makes it possible to

represent and test real systems manually. The affects table is however less expressive, so

the simplification comes at the cost of possibly not being able to express all states that

might occur in a real system.

125

7 IMPLEMENTATION AND EXPERIMENT

Chapter 3-6 has introduced and refined a theoretical model for clock hypothesis testing.

In this chapter, this theoretical model is implemented in software for analysis of a real

file system. The implementation is then used to find evidence of antedating in an

experiment where four subject were asked to antedate a document.

Section 7.1 - 7.2 introduces the implementation. Section 7.3 details the results of an

initial test of the implementation. Section 7.4 - 7.6 then describes the document

antedating experiment, and the results when the experiment results were analyzed with

the implementation.

7.1 Purpose

The focus of this work has been the development of a theoretical system for the

formulation and testing of clock hypotheses in digital investigations. The theoretical

system can be used as a base for new methods for digital investigation and digital

evidence interpretation in real digital investigations. Such methods may be manual

methods employed by investigators or fact finders in specific cases. It may also be

automated methods implemented in computer programs specifically made for the purpose

of timestamp investigation, or as part of an all-purpose program for digital investigation.

A question of importance is how the theories presented in the previous chapters can be

utilized in software, and how the results from such software can be interpreted. Hard

drives investigated in typical digital investigations contain tens- or perhaps even

hundreds of thousands of timestamps. All these timestamps may take part in the

establishment of a consistent clock hypothesis. The large number of timestamps found in

real investigations makes it difficult to establish a consistent clock hypothesis by using

manual methods. Performing this analysis with automated tools is therefore desirable.

In order to determine if and how the presented theories could be translated into a

program, an implementation of a clock hypothesis consistency tester was made in

software. The implementation is named TimeStampLogic, and realizes clock hypothesis

126

consistency tests on the Windows XP operating system. In order to find out if the

TimeStampLogic implementation could make a difference in a real investigation, a

document antedating experiment was performed. Subjects were asked to antedate

documents on a computer, and the results were analyzed using the TimeStampLogic

program. The purpose of this experiment was to create the same kind of investigation

challenges facing the investigators in the cases presented in Section 2.1 and 2.3 in a

controlled environment, and then determine if the TimeStampLogic implementation

would help solving them.

7.2 TimeStampLogic implementation

The TimeStampLogic program is implemented in Java J2SE. The program uses the

utilities in a modified version of the Sleuthkit [37] to find file instances in an NTFS file

system image. TimeStampLogic parses the output of these utilities and produces internal

representations of file instances, which can then be analyzed using the reasoning in

Chapter 3-6. The TimeStampLogic source code can be obtained by following the

instructions in Appendix D.

In the implementation, a clock hypothesis is defined by a class implementing the

ClockHypothesis interface. The implementation provides one hypothesis;

DefaultHypothesis, in which the hypothesis is that the clock of the investigated system

is an ideal clock.

127

 ::timestamplogic

<<interface>>

MotherChildRule

DeletedUntouchableRule

MotherMustExistRule

MotherDirectoryUpdatedRule

<<interface>>

Rule

<<interface>>

UnaryRule

DirMustExistToModifyRule

DeletedUntouchableRuleII

ContentCreatedW henRead

InstanceCreatedW henReadRule

FileCreatedW henReadRule

EpochContradictionRule

FutureContradictionRule

IndexInodeConsistency

NTFSRuleSet

RuleSet

DefaultHypothesis

<<interface>>

ClockHypothesis
<<interface>>

::<<Unknown>>::Comparable

FileInstance

FLSParser SequenceChecker LogSequenceChecker Main

Figure 7.1 UML class diagram of the TimeStampLogic implementation

The input for the timestamp logic implementation is provided by a modified version of

the Sleuthkit. The class FLSParser runs fls on a target image and istat on each file

instance listed. It then parses the output for each file instance. Each file is represented

with an instance of the class FileInstance. This class contains members representing

the timestamps found in the image, as well as members representing the type (file or

directory), the status (existing or deleted), the file sequence number and the log file

sequence number.

The implementation tests the defined clock hypothesis by means of a set of tests derived

from the analysis of a particular system. The tests implement the Rule interface, through

128

subinterfaces UnaryRule and MotherChildRule. With UnaryRule, the tests pertain to

timestamps of a single file or directory instance. With MotherChildRule, each test is

applied to a pair consisting of a file or directory instance (the child), and the directory in

which that instance is contained (the mother). A complete set of tests for a particular

system is defined by implementing the interface RuleSet. Implementations of this

interface specify all tests that apply for a particular type of system. The implementation

provides the class NTFSRuleSet containing a set of consistency tests for NTFS.

The following tests were implemented and used in NTFSRuleSet:

- EpochContradiction: A timestamp should not have been set at a moment prior to

the invention of digital computers.

- FutureContradiction: A timestamp should not have been set at a moment

posterior to the time of the investigation.

- FileCreatedWhenRead: The stamping time of the Created timestamp should be

prior to the stamping time of the Accessed timestamp. (See Table 6.6)

- ContentCreatedWhenRead: The stamping time of the Modified timestamp should

be prior to the stamping time of the Accessed timestamp. (See Table 6.6)

- MotherDirectoryUpdated: The stamping time of the Modified timestamp should

be prior to the stamping time of the Created timestamps of files and directories

contained in it. (See Appendix C.3)

- DeletedUntouchable: Deleted files are not timestamped. Therefore, the stamping

time of deleted file timestamps should be prior to the Modified timestamp of the

mother directory. (See Appendix C.3)

- DeletedUntouchableII: When a file entry has been reallocated to another file, the

stamping time of the Accessed timestamp of that file should be posterior to the

stamping time of all timestamps of the deleted file that previously occupied that

file entry. (See Appendix C.3)

- IndexInodeConsistency: For existing (non-deleted) files, the timestamps in the

directory index should match those in the $STANDARD_INFORMATION

attribute of the MFT entry.

The tests in NTFSRuleSet are applied on all files and directories in the investigated

image by FLSParser. For every test producing a negative result, the file name and

timestamps are printed with an identification of the test that failed. A failed test

129

indicates that the clock hypothesis is incorrect, or that actions not included in the model

generating the tests have occurred in the system.

The class SequenceChecker tests the sequence number causality of the file entry

sequence numbers, by the reasoning in Section 4.5.3. It reads the sequence of file entries

from the Master File Table with ils. All entries are compared with the last preceding

entry with the base generation sequence number. Since the allocation of Master File

Table entries are done in a first-fit fashion, all entries have been stored at a later time

than the last preceding entry with the base generation sequence number. The

implementation compares both the Created timestamp and the Accessed timestamp of

each entry with the last preceding entry with the lowest sequence number.

The class LogSequenceChecker tests the causality of the updating of file entries based

on the log file sequence numbers stored in the Master File Table file entries, by the

reasoning in Section 4.5.5. The FileInstance instances read by SequenceChecker are

inserted into a sorted TreeSet. By implementing the Comparable interface in

FileInstance, comparing the log file sequence numbers, this structure sorts all file

instances by their log file sequence numbers. The file instances are then printed in sorted

order, so that their timestamps can be inspected for evidence of clock hypothesis

inconsistency. The MFT Entry Modified timestamp in the

$STANDARD˙INFORMATION attribute is of special interest in this context, because

storing a new Log File Sequence Number is a modification of the MFT Entry.

7.3 Results from initial TimeStampLogic test runs

Several test runs of the TimeStampLogic implementation were performed. The test runs

were made on a real Windows XP/NTFS image, in order to make an initial assessment of

how this implementation can be utilized in real investigations, and if the results can

really be used to put a clock hypothesis under scrutiny. The clock on the investigated

computer had been within reasonable synchronization with Norwegian civil time. It may

have drifted a few minutes, but errors on the scale of days or years should not have

occurred. The image was tested for consistency with DefaultHypothesis.

130

7.3.1 RuleSet

The initial runs produced a large number of inconsistencies for the tests in NTFSRuleSet.

Most, but not all, of the inconsistencies fell within the following categories:

1. Instances where the compared timestamps were only small fractions of a second

from satisfying the test. Most of these inconsistencies were with the

MotherDirectoryUpdated test.

2. Instances of files that had been unpacked with packers such as WinZIP and

WinRAR.

It is reasonable to attribute the inconsistencies in both of these categories to an

incomplete model. In the case of category 1, the most likely explanation is that the

updating of the Created timestamp of a file or directory and the Modified timestamp of

its mother directory does in fact not occur at the same time, but with a small delay. This

would occur for example if the file creation implementation in the operating system starts

by creating the MFT index for the file, then writes the file to disk, and then finally

updates the mother directory. In such a system, the delay between the updating of the

two timestamps will vary with the length of the file, something that is consistent with

the observed results for Windows XP/NTFS. This possibility can only be confirmed by

close inspection of the operating system. (See C.5) In the case of category 2, the most

likely explanation is that the packer programs update file timestamps in ways that are

not consistent with the handling in the operating system. By performing experiments

with these packers, in a similar fashion to the operating system experiments detailed in

Appendix C, one could determine how these handle timestamps and update the model to

reflect the changes.

Most of the remaining inconsistencies were related to a series of digital images shot with

a digital camera and then copied directly to the computer in question. These were

inconsistent with ContentCreatedWhenRead, such that the Accessed timestamp were 2-3

months prior to the Modified timestamp. It is known that the Modified timestamp is

retained from the source medium, and the Accessed and Created timestamps produced on

the destination medium during copy operations. (See Appendix C) A possible cause for

the inconsistencies could therefore be a maladjusted clock on the digital camera. The

camera was therefore checked, and it was indeed found that its clock was adjusted

131

approximately 4 months into the future. The Modification time had been set to a point

in time in the future when the images were shot, and this timestamp had been retained

when the images later had been copied to the computer.

A few inconsistencies that could not be explained by any of the above were also reported.

It is unknown if these were due to an incomplete model or if the clock hypothesis was

incorrect.

7.3.2 SequenceChecker

The initial run for SequenceChecker also produced a number of inconsistencies, although

remarkably fewer than for RuleSet. Approximately 98% of the files on the file system

were ordered when compared in this fashion. The remaining files which were reported as

inconsistent were scattered out across the image. No specific reason for the

inconsistencies could be inferred from knowledge about the files where inconsistencies

were reported. It is likely that these consistencies root in the lack of full knowledge of

how the operating system works. There may for example be operations occurring within

the operating system where MFT entries are allocated without setting the Created

timestamp of the file in question. The opposite may also be the case; that the Created

timestamp is updated when in fact a new MFT entry was not allocated. As will be seen

in Section 7.6, this does not however mean that this method is without value.

7.3.3 LogSequenceChecker

For the initial run of LogSequenceChecker, only a small number of inconsistencies were

reported, when the MFT modified timestamp was compared. The list of files and

associated timestamps sorted by Log Sequence Number, provided a list of when the

computer was used, in which MFT Entry modified timestamps came in succession for

more than 99,9% of the file entries. Most of the inconsistencies were reported on file

entries pertaining to deleted files, although a few were also reported on existing files. A

possible theory regarding deleted files is that new log sequence numbers is assigned when

files are deleted, and the Entry Modified timestamp is not updated in this case. The

132

reported inconsistencies were scattered out across the file list and did not represent many

files in sequence.

The results from the initial test indicate that the LogSequenceChecker test could be an

adequate tool for use in real digital investigations, for testing clock hypotheses and for

finding antedated material.

7.4 Document antedating experiment

The document antedating experiment was designed to produce the same kind of

investigation situation as in the case discussed in Section 2.1. Subjects were handed a

computer and asked to antedate documents on it. In order to limit the workload

associated with preparation and analysis, the number of subjects was kept small. The

subjects were chosen so that they represented users with diverse level of experience.

A laptop computer was prepared for the experiment. First, the hard drive of the

computer was wiped with the tool Win-Hex [38], writing value 0x00 in every byte of

every block on the hard drive. The computer was then started and the system clock was

adjusted to approximately two and a half years before the time of the experiment with

the BIOS setup program. Then, the Windows XP operating system was installed. After

installation, a series of shutdowns, clock adjustments and reboots were performed. The

goal of this procedure was to produce data on the hard drive similar to data that would

have been produced by real usage of the computer. For each step, the computer was shut

down, then started in BIOS setup, where the clock was adjusted forward. The computer

was then booted into Windows XP and used for websurfing, downloading files or other

typical user activity. Table 7.1 summarizes the clock adjustments that were used and the

associated activities.

Date Activity

01-Mar-2004 Operating system install

02-Mar-2004 Install completed

02-Mar-2004 Websurfing

02-Jun-2004 Websurfing

02-Sep-2004 Websurfing, downloaded videos

133

02-Sep-2005 Websurfing

02-Jan-2006 Websurfing, downloaded thesis

02-Mar-2006 Websurfing, added user account

02-Jun-2006 Websurfing, downloaded video

02-Jul-2006 Changed password, websurfing

02-Aug-2006 Websurfing

12-Aug-2006 Installed software

24-Aug-2006 Websurfing

01-Sep-2006 Edited documents

12-Sep-2006 Websurfing

October 2006 Time of the experiment

Table 7.1 Timeline of experiment computer

After this procedure, the hard drive was copied to an image file on another hard drive

using the disk dump utility dd, producing a reference image of the experiment computer.

The reference image can be obtained by following the instructions in Appendix D.

The experiment computer was then handed to the participating subjects with the

following task: “Store a document on this computer in such a way that a person

investigating the computer will conclude that the document was produced on 17-May-

2006.” When each subject returned the computer, the hard drive was copied to an image

file on another hard drive for analysis. Then, the experiment image was copied back to

the computer before it was handed to the next subject. The subjects participating in the

experiment are listed in Table 7.2.

.

Subject no Computer experience level

1 Average computer user, using computer every day for office work

2 Law Enforcement Computer Forensic Investigator

3
Inexperienced office user, mostly used to websurfing and light office

work

4 Advanced computer user with some programming experience

Table 7.2 Participating subjects

134

Each image was analyzed using the TimeStampLogic program. Each subject was also

interviewed to determine how they had chosen to perform the task. The statements of

the subjects and the results of analysis using TimeStampLogic in each case are

summarized in Section 7.6.

7.5 Analysis of the reference image

At the start of the experiment, the reference image was analyzed with TimeStampLogic.

The reference image contained considerably less data than the image analyzed in the

initial test described in 7.3, and in this case it was also known in more detail how the

data on the computer had been stored on it.

As with the initial test, a significant number of inconsistencies were reported with

RuleSet. These inconsistencies were reported for the same categories of files as described

in Section 7.3.1. It was therefore decided to focus on the SequenceChecker and

LogSequenceChecker tests on the images in the antedating experiment. The results with

these tests were consistent with the results in the initial test. SequenceChecker produced

a significant number of inconsistencies, whereas the number of inconsistencies with

LogSequenceChecker was fairly small and mainly with deleted files.

7.6 Results

In the following, each of the images resulting from imaging the experiment computer

after each subject had completed the task is analyzed. The purpose of the analysis is to

determine if the document in question has been antedated or not. This can be formulated

as two different hypotheses:

H0: The document was produced on 17
th of May.

H1: The document was produced later than 17
th of May, but has been antedated to 17th of

May.

135

The task for the investigator is then to find evidence supporting or rejecting H0 and H1

using TimeStampLogic and other investigative tools and present them to the fact finder.

7.6.1 Subject 1

The subject gave the following information about how the task was completed: I adjusted

the clock on my Mac to May 17th. I then produced the document in Microsoft Word on

the Mac. When saved on the Mac, I copied the document to my USB stick and inserted

it into the PC. I then copied the document from the USB stick to the PC. I believe

producing the document on the Mac may have prevented the creation of timestamps

inside the Word document.

When analyzed with TimeStampLogic, the results of this operation did not produce a

result significantly different from the analysis of the reference image. The introduction of

new files when the computer was booted and a new document was copied to it, did not

produce any new inconsistencies reported by TimeStampLogic. The document has

Modified timestamp on the 17th of May, and Created and Accessed timestamps on the

date of the experiment. This is consistent with timestamps produced when files are

copied to a medium. (See C.3) Other evidence suggesting that the file had been copied

to the medium on the date of the experiment was also found, for example a link-file to an

external drive, showing that an external drive had been connected to the computer. If the

file had been copied from another computer, the Modified timestamp would then be

related to the clock of that computer and not the investigated computer. Since no

evidence is available to test clock hypotheses for the other computer, there is no evidence

to either support or reject a hypothesis that the production of the document actually

occurred on 17th of May civil time. The analysis is therefore inconclusive in this case. The

reasonable investigative response in cases like this is to try to get hold of the computer

on which the document was produced and do the same type of analysis on that.

In response to the subject’s claim that timestamps had not been created inside the Word

document, it was examined for timestamps in the metadata. Such timestamps were

found, identifying that the document had been created and last changed on May 17th.

These timestamps would also refer to the clock on the other computer, which will have to

be analyzed for evidence.

136

7.6.2 Subject 2

The subject gave the following information about how the task was completed: I started

the PC and connected it to the Internet. I then downloaded and installed OpenOffice on

the PC. I then restarted the computer, went into BIOS and adjusted the date back to

May 17th. After booting the computer again, I used OpenOffice to create and store the

document. I then booted again and adjusted the clock back to current time. I used

OpenOffice because I think it doesn’t have the same amount of metadata as Microsoft

Word. I also think downloading and installing OpenOffice would prevent a proper

investigation, since it probably overwrote a lot of deleted data.

When analyzed with TimeStampLogic, a significant higher number of inconsistencies

were reported with both SequenceChecker and LogSequenceChecker. Listing all files on

the medium ordered by both the MFT Entry number (SequenceChecker) and Log

Sequence Number (LogSequenceChecker), showed several hundred files with Created,

Modified and Accessed timestamps on Oct 11th in the time period 07:28-07:40 AM. After

these (in terms of entry number and log sequence number), approximately 50 files with

Created, Modified and Accessed timestamps on May 17th time period 07:42-07:48 were

listed. All timestamps of the document in question were set to May 17th in the period

07:42-07:48.

The timestamps on the document itself were in this case set to May 17th, in contrast to

Subject 1. This fact does not by itself support either H0 or H1, since the document may

have been antedated by timestamp or clock manipulation.

There is however evidence in this case supporting H1:

- Storing of a significant number of files causally dependant on storing of files

occurring on Oct11th, were timestamped May 17th, something that is not possible

unless the clock has been adjusted, or the timestamps changed.

- While the date changes from Oct 11th to May 17th, the time of day only moves

approximately 2 minutes forward. This indicates that the subject changed the

date but did not bother to change the time of day. If the clock adjustment had

137

occurred by an error or some other mystery event, it is not very likely that it

would have ended up on this exact time of day.

The subject’s claim that he made the investigation more difficult by installing

OpenOffice, does not seem to be correct in the context of using TimeStampLogic to check

clock hypothesis consistency. It may be the case that installing a new program would

overwrite previously overwritten material, but this does not help, since TimeStampLogic

does not rely on the investigator’s ability to recover deleted material. The claim that

OpenOffice documents contain less metadata than Word documents was not investigated.

Since the document was created with the clock adjusted to May 17th, any timestamps

within the document would be on May 17th anyway.

7.6.3 Subject 3

The subject gave the following information about how the task was completed: I don’t

know how to manipulate timestamps, so I just went into the control panel and set the

date to May 17th. Then I used Microsoft Word to produce the document. Then I set the

current date again in the control panel.

On this image, TimeStampLogic produced the same type of results as on the image from

Subject 2. Approximately 10 files were listed with Created, Modified and Accessed

timestamps on Oct 12th from 9:17-9:44 PM. After this (in terms of MFT entry sequence

and LSN sequence), approximately 10 files were listed with timestamps at May 17th 9:46-

9:52 PM. This gives evidence for H1, for the same reasons as for Subject 2.

In this case, as opposed to the case of Subject 2, the clock change was done in the

operating system. Therefore, the event logs of the system were searched to determine if

the clock change had logged a system event. No such event was found. Windows XP has

a system logging feature that allow logging of clock change events. This particular event

is however logged only if Privileged Use logging is enabled, something it is not by default.

[39] Since very few users change the default settings of the event logging system, the

logging of clock changes in Windows XP is not of much use in digital investigations.

138

It is interesting to note that both Subject 2 and 3 changed the date without changing the

time of day. Both in the BIOS of the experiment computer and in the Windows XP

control panel, changing date is done by a separate control than changing time of day,

although they are both related to the same underlying clock. A plausible rationale for not

changing the time of day could be that it would then be easier to adjust the clock back

to the current time, because one would then not have to resynchronize with an external

clock. When asked about this, subject 3 said: I didn’t think about that. I just wanted the

correct date on the document. The time of day didn’t matter to me. I might have

thought about it if the time of day were of any importance, for example if it mattered if I

were at work at the time or not.

7.6.4 Subject 4

The subject gave the following information about how the task was completed: I used my

own pc for the antedating. I adjusted its clock back to May 17th, and produced the

document using Microsoft Word. I then copied the document over to the experiment PC

using my USB-stick.

The story of Subject 4 matches the story of Subject 1, and the results of

TimeStampLogic were similar. No additional inconsistencies were found, and the results

were inconclusive on the question of whether the document was antedated or not. Also in

this case, link files pointing to an external medium identified another computer as the

likely source for the document.

.

7.7 Summary

In the document antedating experiment, four subjects were asked to antedate a document

in such a way that it could not be determine that the document file was antedated. Two

of the subjects performed the antedating in such a way that the methods described in

this work could produce evidence supporting the hypothesis that the document was

antedated and not produced on the date it was timestamped to. Two of the subjects did

the antedating itself on another computer and copied the resulting document to the

investigated computer. In this case, it could not be determined that the document was

139

antedated, but it could be determined that the document had been copied from another

computer, and so another possible item of evidence was found. From the explanation

from the subjects, it is known that they produced the antedated document on the other

computer by adjusting the clock back to May 17th, which is the same method used by

Subject 2 and 3 on the investigated computer. Investigation of the other computer with

the methods described in this work would therefore most likely have produced evidence

supporting the hypothesis that the document was antedated.

The antedating methods used by the subjects in the experiment are certainly not the

only possible methods for document antedating. Other possible methods can be

conceived:

1. Produce the document at current time, then changing its timestamps by special

software. This can be done without introducing the software in question on the

investigated computer by removing the medium and perform the change on

another computer.

2. Finding another file matching the desired timestamps, then replacing the contents

of that file with specialized software.

3. Using the same method as used by the subjects in the experiment. Then use

special software that adjusts all timestamps on the medium to match the default

clock hypothesis.

In the case of conceived method 1, TimeStampLogic would probably report the single file

as an inconsistency. In the case of conceived method 2 and 3 however, it is not likely that

TimeStampLogic would be able to find any inconsistencies. Producing evidence of

antedating in these cases would have to rely on other methods, if possible at all. Thus,

clock hypothesis testing methods described here are not perfect methods that cannot be

avoided by a crafty antedater. This can however be said about any investigation method,

as discussed in Sections 8.4 - 8.5.

In summary, the document antedating experiment has shown that TimeStampLogic can

provide evidence of antedating of computer files in practical situations, where subjects

have put effort into antedating a file. As previously mentioned, the purpose of

TimeStampLogic has been to determine if clock hypothesis testing could make a

difference in a real investigation. It has not been intended as a program for direct use in

140

real investigations. The described methods can easily be implemented in existing tools for

digital investigation such as the Sleuthkit or EnCase. This would provide investigators

already using these tools with the possibility of reason on time and causality and define

and test clock hypotheses also in real investigations.

141

8 EVALUATION AND CRITICISMS

In the previous chapters, a scheme for reasoning on timestamps and clock hypothesis

testing was discussed. In this chapter, several possible criticisms against this scheme are

discussed.

Section 8.1 discusses the state explosion involved in the reasoning, and how it affects

investigations. Sections 8.2 - 8.3 discusses the correctness and completeness of the model

representing the investigated systems. Section 8.4 discusses the Arms Race Argument, by

which every forensic technique is thought to ultimately be hindered by an anti-forensic

technique. Finally, Section 8.5 discusses how falsified evidence can be created to match

an invented event history.

8.1 Complexity

In this work, a system is modelled by representing changes in the system as events, and

then hypothesizing possible sequences of events that may have resulted in the state of the

system observed during the investigation. A conceivable criticism against any scheme in

which the working of a digital system is represented in a model consisting of states and

actions, is the complexity of real systems. If a real system is to be represented accurately

in a model, the result can be state explosion; a complex model with a large number of

states and actions, making reasoning in the model inconvenient and perhaps even

impossible. This can also be said about schemes in which the model consists of possible

states and events in an actual investigation. When the number of states and events that

has to be represented in a model becomes large, reasoning becomes difficult due to all the

possibilities that have to be considered.

The implications of state explosion can be observed in Chapter 5 and 6, where invariants

were found in the simple file system and the simple file system with creation by reasoning

with Simplified Event Calculus. Where the computation for the simple file system in

Section 5.6, had to test hypotheses by resolution in three different orders of two

142

timestamps, the computation in Example 6.11 in Section 6.3 had to consider thirteen

different orders of three timestamps. In the SEC-algorithm, resolutions would have to be

tested for every hypothesis derived from the initiation proposition for each timestamping

order, yielding considerable work with resolution testing. Further, the number of

hypotheses derived from the initiation proposition grew considerably, as each new Action

added to E resulted in many new possible hypotheses for the initiation of each observed

fluent.

The growth of the number of computations required to find invariants with the methods

proposed in Chapter 5 and 6 was quantified in sections 5.11, 6.5 and 6.6. The

quantification shows that the algorithm proposed in Chapter 6 is considerably more

efficient than the algorithm shown in Chapter 5 with growing number of actions and

timestamps in a system. The algorithm in Chapter 6 grows linearly with the number of

actions in a system and quadratically with the number of timestamps in a system. It has

been shown that it is practically possible to use all proposed algorithms for systems

where a small number of timestamps is associated with each file. In Chapter 5 and 6, the

necessary computations for n = 2 and n = 3 was performed manually with the SEC-

algorithm and the AS-algorithm. With a software implementation, it would be possible to

make these computations also with a larger n, although the factorial growth would render

the procedure impossible as n increases further. With a software implementation of the

IG-algorithm, invariants can also be found programmatically for larger n.

It should be noted that the factorial growth of the SEC-algorithm and the AS-algorithm

does not rule out the analysis of systems with many timestamps for each file with these

algorithms. Consider for example a system with 32 timestamps per file (n = 32). The

number of computation steps would be on the order of 1035 should this system be

analyzed in full with these algorithms. This would surely be infeasible. But there is no

requirement for the investigator to analyze a system completely. The purpose of the

analysis is just to find invariants that can be used to test a clock hypothesis. Such

invariants can be found also with partial analysis of the system. The investigator may for

example divide the system into 8 separate subsystems, each with 4 timestamps. He can

then analyze each of the subsystems separately and find invariants for them. These

invariants can then be used to test the clock hypothesis. Should the investigator aim at

finding all invariants he would have to analyze the complete system, something that

would be infeasible with these algorithms. But finding all invariants is not necessary; it is

143

enough to find some invariants to impose constraints on the clock hypothesis. The

number of invariants found will increase as the investigator puts more effort into finding

them.

The large number of timestamps present in most real cases could also be seen as a state

explosion problem. This would most certainly be true if the scheme requires every

timestamp present in the system to be modelled as a state or fluent, that can possibly be

changed by events. Such modelling is not required in the schemes presented in this work.

Instead, this work provides methods for finding relations between timestamps that must

hold true for all timestamp instances. This allows the investigator to test his clock

hypothesis by testing each observed timestamp for consistency with the prediction of the

model. The observations of the investigator and his hypotheses about the user’s actions

are not a part of the model. The model only describes the system behaviour with respect

to updating timestamps. The observed timestamps are then tested for consistency with

the system model and the clock hypothesis. No state explosion is introduced, even if large

numbers of timestamps must be tested for inconsistency. Timestamps are tested with the

invariants derived from the model, an operation where the complexity is proportional to

the number of timestamps. As shown in Chapter 7, such testing can be performed in

software, without problems specifically related to complexity. In evidential terms, a large

number of timestamps to be tested will increase the confidence in the clock hypothesis. A

large number of timestamps is therefore an evidential asset to the investigator, and

should not be seen as a burden increasing complexity.

8.2 Completeness of the model

In Chapter 3-7, theory and methods for clock hypothesis consistency testing were

developed. The methods are based on creating a model of a system, in which changes to

timestamps stored on the digital medium are modelled with actions. The system model is

constructed by analyzing the behaviour of a system or by inferring the possible actions in

a system by detailed analysis of the implementation. Any change possible in a real

system that can affect the state of the digital medium must be matched by an action in

the model, in order for the model to be complete. This raises an important question: Is it

possible to be sure that all actions affecting the state of the medium are included in the

model? If one cannot be sure that all actions are included in the model, how can one be

144

sure that the cause of an inconsistency is an incorrect clock hypothesis and not the

existence of some action in the real system that was not included in the model? Say for

example that there existed an action TouchCreate in Windows XP, updating the Created

timestamp, but not the Modified or Accessed timestamps for a specific file. The

introduction of such an action in the reasoning in Section 6.4 would change the reasoning

and invalidate the result that c at t≤ . How can one be sure that such actions do not

exist? In fact, one cannot. In the Windows XP operating system specifically, system calls

for timestamp updates exist that can be called by any program. (See Appendix A.1 for

details.) In any system, even if the full details of the system is known, one cannot rule

out the possibility that the state has been changed by some action occurring outside that

system. One cannot for example completely rule out the possibility that the storage

medium has been removed from its system and accessed and changed in another system.

Changes committed outside the modelled system are not included in the system model, so

they may produce inconsistencies when testing with a clock hypothesis, even if that

hypothesis was in fact a correct representation of the actual clock on the system.

Determining with absolute certainty if such inconsistencies is the result of an inconsistent

clock hypothesis or the result of missing actions is not possible. At first sight, the above

reasoning may seem to imply that the methods presented in this work produces

ambiguous results and therefore should not be used in investigations. After all, the pur-

pose of an investigation is to produce evidence a fact finder can rely upon in his

reconstruction of the events that took place. There are however several reasons not to

draw such a conclusion.

First, in most cases, an investigated digital medium will contain not only timestamps and

usage data, but also the programs that have been used to manipulate the data. If the

system contains some special program updating timestamps in a specific way, then the

investigator can find it during the digital investigation of the system. If for example a

Windows XP system contains the TouchCreate program mentioned above, the

investigator would likely find it during the investigation. When found, the investigator

can analyze its properties by detailed analysis of its construction, or by running the

program on a separate system to determine its effects on timestamps. The model can

then be updated with actions corresponding to the program’s effects.

Further, the number of theories in an investigation is usually limited. Consider an

investigation where contraband physical objects are found in the home of a suspect. In

145

principle, there are a large number of possible theories of how those objects ended up

there. But since it’s the suspect’s home, investigators are likely to conclude that the

suspect placed them there. Now, if the suspect has other theories, he can present them to

the investigators or as part of his defence. The investigators will then investigate if there

is any evidence available to support or refute the alternative theories and if so adjust

their working theory accordingly. Ultimately, it is up to the fact finder to assess the

evidence supporting the alternative theories and decide which of them likely caused the

objects to be located in the suspect’s home. A large amount of other possible explanations

still exist, but these are usually not considered. After all, the objects have been within

the domain of the suspect, and one can reasonably expect him to be able to explain how

they got there. Since the suspect has offered his explanation, this is the only considered

theory in addition to the investigator’s theory.

If the number of possible explanations can be limited in an investigation on physical

objects, it can in a digital investigation too. Like a home, a computer is likely to be

within the domain of one specific person or a small group of persons. It is reasonable to

expect computer users to be able to explain what kinds of actions have been taken on the

computer, at least at the level visible to the computer user. If they cannot, then at least

they can present their own theory about what happened, and the investigator can search

for evidence of that theory as well as his own. It will then be up to the fact finder to

assess the evidence for the different theories.

One popular alternative theory presented by suspects seems to be the so called Trojan

horse defence, the theory that contraband was stored by someone performing computer

intrusion on the computer. [40] The analogy in the physical world is that someone broke

in to the house and placed the contraband there.

Limiting possible theories also applies in investigations involving clock hypothesis testing.

In such cases, it is reasonable to ask the persons having the computer in their domain to

explain what actions have been committed on the computer, including changes on the

system clock and which programs have been run on it. Their clock hypothesis and action

model can then be tested against the available evidence using the tests described in this

work. If the test produces inconsistencies, the investigator must find another hypothesis

and test it against the evidence.

146

As an example, consider the actions of Subject 3 in the antedating experiment. If the

motivation of these actions was to antedate a document, it is likely that the subject when

interviewed would assert the default clock hypothesis. As shown in Section 7.6.3, the

default hypothesis is inconsistent when tested against the available evidence. A possible

next step for the investigator would then be to hypothesize the antedating of the

document by reverse adjustment of the clock by the suspect. This hypothesis, when

tested, would show to be consistent with the evidence. Thus, in this case, the fact finder

would have two conflicting theories to choose from, the suspect’s version which was

refuted by the evidence, and the investigator’s version which was upheld.

8.3 Correctness of the model

The reasoning on the behaviour of a system in this work is based on constructing a model

of the system. A problem with this approach is the feasibility of detailed analysis of real

systems. Modern computer systems are complex, and contain many individual pieces of

hardware and software that fits together. The study of individual parts of the system

may be feasible, but may not necessarily provide sufficient information to construct a

correct model of the system. Moreover, in many cases implementation specifications and

source code is not available for the investigator. Studying a system implementation in

detail without access to specifications and source code can be a very difficult task. In the

case where no system documentation is available, a possible approach is to test system

functions in various test cases. It is however difficult to know if the test cases cover all

functionality included in the system. Since the internal working of the system is

unknown, there could be input data not covered by the test cases that would produce a

different behaviour in the system. This behaviour would then remain unknown, and

would not be included in the system model. In the context of the time stamp reasoning

discussed in this work, several system behaviour types are of special interest:

- Determining which events update which timestamps

- Determining which events are causally related, and which are not

- Determining how events updating timestamps correspond with user actions

The difficulty of establishing a correct model of a system is levied by the fact the most

investigated systems are standard systems deployed over a long range of computers, and

147

therefore subject to many investigations. For example, the properties of the Windows XP

operating system and the NTFS file system, as discussed in Chapter 6-7, is very

interesting since this currently is the most common operating system, and therefore the

subject of a long range of investigations. If it can be justified that the function of the

operating system itself has not been altered in the case in question, a model of a specific

system can be constructed once, and then reused in a long range of investigations. In

each investigation, the model can be re-examined by the investigator and any experts

appointed by the opposing party. If shortcomings are detected during these examinations,

the model can be updated, and the updates can be reused in subsequent investigations.

In a scientific context, such a process can be said to be equivalent to the formulation of a

hypothesis and its acceptance in the scientific community. It is also possible for system

designers and vendors to contribute in this process, without necessarily having to reveal

internal system details. The need for correct system models therefore call for the estab-

lishment of forums for the exchange of system models between practioneers within digital

investigation. The establishment of system models would facilitate event reconstruction

for digital systems in general, not only within the subject of digital timestamps. With

such a forum, investigators, prosecutors, defence attorneys as well as fact finders, can

benefit from the improved understanding of how systems work.

8.4 The Arms Race Argument

The ongoing research within tools and methods for digital investigation has resulted in

efforts in researching tools and methods for “anti-forensics”. Anti-Forensics can be defined

as the research into and development of tools to compromise the availability or usefulness

of evidence to the forensic process. [41] This can be accomplished in a variety of ways

ranging from overwriting deleted data to prevent them from being discovered, through

usage of strong encryption to obscure contraband data to the introduction of directory

loops in file system that causes forensic software to deadlock or crash when reading file

system structures. [42]

The parallel development of forensic and anti-forensic tools can be thought of as an arms

race where development in one field stimulates development in the other. The

development of techniques for forensic recovery of deleted information for example led to

the development of the tool EvidenceEliminator [43], which removes temporary files and

148

overwrites areas of hard drives containing deleted material with random data. This has in

turn led to the development of forensic techniques, by which specific patterns resulting

from the use of EvidenceEliminator are recognized, so the investigator can prove that

this particular anti-forensic tool was run. [44] Conversely, the existence of steganography

techniques for hiding files within other files has inspired the development of forensic

techniques that can examine files for superfluous data as well as tools for determining

signatures produced by specific steganography tools. [45] A common argument is derived

from extrapolating the existence of forensic - anti-forensic technique pairs into a belief

that any forensic technique will ultimately be matched by an anti-forensic technique that

will block evidence extraction performed with the forensic technique. This argument can

be called the Arms Race Argument. Supporters of this argument believe that any new

developments within forensics can only be effective for a limited amount of time, since

ultimately an anti-forensic technique will prevent the forensic technique from being used

effectively.

In this work, new methods for investigation of timestamps have been proposed, providing

ways to formulate and test hypotheses about clocks, and thereby increase the possibilities

for interpretation of timestamps in an investigated system. Would these methods

withstand a purposeful attack by an anti-forensics tool? They would not. It is easy to

conceive an anti-TimeStampLogic tool that will thwart the efforts of the

TimeStampLogic forensic tool described in Section 7. All this tool would have to do is to

implement the same model as TimeStampLogic, and then go through all files and

directories, sequence numbers and other causal properties and change the timestamps so

they all match a predefined clock, for example civil time. If such a tool had been run on

the PC after the antedating experiments described in Section 7, a subsequent

investigation using TimeStampLogic or other tools based on the same principles would

justify the wrong clock hypothesis, namely a hypothesis being equal to the clock of the

anti-forensic tool and not the actual clock used on the computer. Thus, the purpose of

running TimeStampLogic would not be met. The run of the anti-forensics tool can be

seen as a change of the system not included in the model as discussed above, so the

missing ability to detect a run of an anti-forensics tool can be seen as a sub-problem of

the missing ability to distinguish between inconsistent clock hypotheses and detection of

actions not included in the model.

149

There are several fallacies with the arms race argument that reduces its weight as an

argument against the effectiveness of forensic techniques. First, in most cases, it is

possible to determine if an anti-forensics program has been used. It is difficult to make an

anti-forensics program in such a way that it does not leave any pattern specific to that

program. An anti-TimeStampLogic program would for example be very likely to produce

specific patterns between timestamps it would have to change in order to perform its

function. These patterns could be detected by an anti-anti-TimeStampLogic program.

Although hypotheses about the original clock could then no longer be tested properly, the

evidence of usage of anti-TimeStampLogic would create an impression that there was

something to hide. This reduces the desirability of using an anti-forensics tool

significantly.

The most serious fallacy in the arms race argument is however the underlying assumption

that anti-forensic techniques will always be available and will be used by everyone

possessing potential sources of digital evidence. Consider the adversaries in a digital

investigation, the Investigator and the Perpetrator. The Investigator usually possesses

knowledge of digital investigation and tools that can comb a digital medium for evidence,

including tools for digital imaging and data recovery. The Perpetrator is on the other

hand likely to be an average computer user, and does not know how to protect himself

from the scrutiny of a digital investigation or where he can obtain the necessary tools.

The Investigator also has time on his side. Once a digital medium has been forensically

imaged, he has plenty of time to investigate its contents. The Perpetrator on the other

hand never knows when the Investigator will turn up to seize his data, if ever. He

therefore has to be prepared at all times and run the anti-forensic tools again and again

after every action that would leave incriminating evidence. There is no room for mistakes

by the Perpetrator. If he makes a small mistake in his anti-forensic procedures, the

evidence may be there waiting to be discovered by the Investigator. The Investigator on

the other hand can make a lot of mistakes, as long as he doesn’t mess up the original

data. He can always start from a fresh image at a later time, should he feel that there is

more to find or that current results rely on misinterpretations. All in all, the Investigator

has a tremendous advantage over the Perpetrator in digital investigations. This is true in

other types of investigations too, hence the saying “There is no such thing as a perfect

crime”.

150

The above is not to say that the arms race argument is without value. The assumption of

the arms race argument that tools and opportunity to use them exist is still valid on the

Investigator’s side. The Perpetrator is not likely to have the tools or knowledge required

to counter forensic techniques. The Investigator on the other hand, is likely to have the

tools and knowledge required to counter the use of anti-forensics techniques. This reduces

the effectiveness of popular anti-forensics tools such as steganography and strong

encryption in hiding evidence from the Investigator. Thus, the arms race argument has

weight, but for the most part in favour of the Investigator only.

8.5 Falsified evidence creation

Aside from using an anti-forensics tool as mentioned above, a Perpetrator wishing to

deceive the Investigator has another option: creating falsified evidence. In the context of

digital investigations, creating falsified evidence involves preparing a digital medium to

contain information matching the story the Perpetrator wants to present. This can be

accomplished for example by antedating documents or other files such as contraband

images. Another example could be the wilful installation of a Trojan horse by the

Perpetrator on his own computer, in order to be able to claim the Trojan horse defence.

These methods of creating falsified evidence could be exposed by the timestamp

investigation methods described in this work. Investigation of the activities on the

computer at the time of the Trojan horse installation can together with timestamp in-

vestigation methods establish evidence that the Perpetrator installed the Trojan horse

himself in an effort to create false evidence.

But what if the Perpetrator also takes timestamps into account when creating falsified

evidence? The complete contents of the digital medium could for example be built up

from the bottom by gradually installing content, and by using a series of forward

adjustments to the system clock. As long as the clock is only adjusted forward, no

timestamps inconsistent with the default clock hypothesis will be introduced. When clock

adjustments are not recorded on the medium, it is not possible from the Investigator’s

point of view to distinguish between reboots and clock adjustments in succession, and

actual usage where the computer has been unused for long periods of time. By using such

a method, a Perpetrator would be able to create false evidence matching his own

timeline. The methods presented in this work would not be able to determine that the

151

content was actually produced at a different time. In fact, the method just described is

the exact method used to prepare the computer used in the antedating experiment

described in Chapter 7. This method was also used by one of the parties in the helicopter

contract investigation described in Section 2.3. In that investigation, timestamps alone

did not reveal the true history of the computer.

The burden on those wishing to create the perfect falsified evidence is however heavy. As

discussed above, the advantage in an arms race between the Investigator and the

Perpetrator is on the side of the Investigator. Should the Perpetrator wish to create

falsified evidence, he must do so with outmost care, to prevent the introduction of

inconsistencies. As shown in the results of the document antedating experiment, it is very

difficult to manipulate the clock and timestamps of a computer in such a way that no

inconsistencies are introduced. The best bet of the Perpetrator falsifying evidence is

probably to build the complete evidence up from the bottom by wiping the complete

hard drive and continue with forward clock adjustments only. But then the perpetrator is

faced with another challenge: How to introduce user data in such a way that the result

looks like real computer usage? There is a need to introduce real user data; otherwise the

evidence will look like something that has been manufactured for the purpose. If the

Perpetrator wants to copy real user data from another device, outmost care must be

taken to prevent the introduction of timestamp inconsistencies. When copying documents

from a computer to another any timestamps retained from the source medium (Such as

the Modified timestamp in Windows XP), must be changed to match the new timeline.

Any time evidence existing within the actual data must also be changed. This is where

the perpetrator in the homicide investigation discussed in Section 2.2 missed. By

reconstructing the real time from the length of shadows shown in the picture,

investigators could show that there was a mismatch between the time shown on the video

and the real time. Great care must also be taken to make sure that the new timeline

matches evidence that may be available from sources outside the Perpetrator’s control.

This is where the falsifier in the contract investigation missed; he used a version of the

wiping program that wasn’t available at the time he was supposed to have used it. A

falsifier of evidence needs to make sure that every detail in the falsification is consistent.

Thus, creating believable falsified evidence turns out to be quite difficult - even when

using the procedure of clock forward only adjustments.

152

Another problem facing the creator of false evidence is analogous to the problem of using

anti-forensic tools: he needs to know when it should be done. In most situations, the

Perpetrator cannot know for sure when the digital medium will be investigated. But he

has to select a time for the production of false evidence. If he does it too early, he runs a

greater risk of introducing inconsistencies in the evidence after falsification. If he does it

too late, he risks that the Investigator moves first, and seizes the evidence before the

falsification has been produced. In most real cases, the Perpetrator has no reason to

believe that he is being investigated until the Investigator actually turns up to seize the

evidence. This is reflected in experiences from real digital investigations. Cases where

suspects have used disk wipe utilities and other anti-forensic tools to remove or alter

digital evidence prior to seizure are few and far between, although they do exist.

Accounts of cases where suspects have tried to remove evidence when the Investigator

came to seize it are however numerous. In many of these cases, suspects have probably

previously thought that they should remove the evidence, but postponed it because of the

impracticalities involved.

153

9 SUMMARY

9.1 Accomplishments

This work has shown that it is possible to enhance the understanding and use of digital

timestamps as evidence, by formulating hypotheses about clocks and testing them for

consistency with the observed timestamps. The consistency tests check evidence by

utilizing known properties of a system, such as known causality between events

generating timestamps. Testing clock hypotheses can show that a hypothesis is

consistent. It cannot prove that a hypothesis is correct, but inconsistent hypotheses will

be refuted. For any consistent hypothesis, the tested timestamp evidence is evidence

supporting the hypothesis. With many tested timestamps, the clock hypothesis can be

justified as the clock to be used in the event reconstruction. This is a significant aid to

event reconstruction, as timestamps pertaining to specific events of importance in the

investigation can then be interpreted according to the justified clock hypothesis. Previ-

ously, there was no system for clock hypothesis formulation and testing. Inferences from

timestamps were drawn with ad-hoc methods, often by assuming that the clock of the

investigated computer had not changed during the computer history. This could lead to

incorrect event reconstruction, or it could create doubt about the reconstructed event line

in cases where the assumption was found to be unjustified.

It was shown in this work how clock hypotheses can be tested against timestamps from

events known to be causally related. Under the assumption that events cannot causally

affect events occurring earlier in time, causally related events must be ordered in time.

This allows for the testing of a clock hypothesis against timestamps generated by events

known to be causally related, by testing each pair of timestamps from causally related

events. This concept was utilized to study properties of storage systems such as log files

and file systems. Causal relations occurring in these systems were identified, allowing the

testing of a clock hypothesis against the timestamps in these systems. Such clock

hypothesis testing was implemented and evaluated.

Further, it was shown how a model of the part of a system affecting timestamps can be

created in predicate logic, and how such a model can be developed to derive invariants

154

concerning the relationship between timestamps. These invariants can then be used for

clock hypothesis testing in a similar fashion to the use of causal relations. It was also

shown how such a model can be simplified to cater for more timestamps and events, thus

making it possible to create a model of a real file system, and derive invariants for it. The

derivation of invariants for clock hypothesis testing of a real file system was performed,

and the hypothesis tester was implemented and evaluated.

9.2 Implications

This work describes methods that can be utilized by investigators to enhance the

confidence in digital timestamps as evidence. The most important implication is the

ability to produce more accurate event reconstructions from the analysis of digital

evidence containing timestamps. The formulation and testing of clock theories is expected

to be conducted by investigators during the investigation phase, and presented to fact

finders as part of the presentation of the evidence in the case. During the investigation

the investigator tests different clock hypotheses, perhaps conflicting hypotheses presented

by the different parties in a case. He can present to the fact finder how these hypotheses

match with the available evidence in form of timestamps matching or not matching with

the clock hypothesis. It is then up to the fact finder to decide which of the hypotheses he

finds is the most justified one.

The testing of a clock hypothesis against timestamps found in the evidence is a task

involving the matching of a large number of timestamps against each other. This task is

not expected to be done manually by investigators. A better solution would be to

implement the process of clock hypothesis testing as part of tools for digital investigation.

The implementation of TimeStampLogic in this work provides an example of such an

implementation. This implementation is only meant as proof of concept. A real

implementation should allow for easy definition of a clock hypothesis, perhaps by using a

graphical tool. It should also be easy for investigators to define the semantics of the

underlying system, in terms of causal relations and invariants. Investigators can then use

an agreed set of causal relations and invariants for the specific system under

investigation, as well as changing the semantics in response to the specifics of the

investigation, such as discovered programs that change timestamps in a non-standard

way. With such a tool, the formulation and testing of clock hypotheses can be performed

155

in a large number of cases, without increasing the workload on the investigator

significantly.

The antedating experiment conducted in this work, has shown that the method of clock

hypothesis formulation and testing can expose antedating. By testing the available

timestamp evidence with the causality and invariants of the timestamps in the file

system, the default clock hypothesis was found to be refuted, because the system clock

had been adjusted back to a previous date to produce an antedated document. Evidence

in the form of timestamps on the date the document was antedated to was found not

only on the document, but also on other files being affected by the operating system.

This demonstrated that the methods presented in this work can be used to find instances

of clock manipulation, for example in connection with antedating. The presented methods

are not provide investigation methods that cannot be circumvented by someone who

would like to create evidence of an event history differing from the real. The construction

of evidence supporting alternative event histories is however more difficult than without

these methods, as demonstrated in the antedating experiment.

9.3 Future Directions

This final section discusses some possible directions that can be taken by future research

within the area discussed in this work.

9.3.1 An implementation of invariant derivation

In Chapter 5 and 6, procedures for the derivation of invariants from system models were

given. These procedures were employed manually for models of imaginary systems and

for a real system. The work required for derivation of invariants with the devised

methods increases with increasing number of timestamps per file in the modelled system.

Finding invariants manually rapidly becomes impractical. For the analysis of larger and

more complex systems, the derivation of invariants should therefore be implemented in a

computer program. This can be accomplished by implementing the algorithms given in

Chapter 5 and Chapter 6.

156

9.3.2 A database of system functionality

As discussed in Chapter 8, a significant challenge with any method attempting to apply

reasoning based on the functionality of a digital system, is to establish an understanding

of the functionality of the digital system. The functionality needs to be known; otherwise

it will be impossible to build a model for reasoning that corresponds to the real system,

and the inferences drawn from the model may not apply to the real system. In this work,

system models have been built from descriptions of systems in previous works, as well as

by inference from tests with real systems. It has not been attempted to prove or

otherwise rigorously demonstrate that the system models corresponds exactly to the real

systems. In real cases, there is however a need to show that there is a correspondence

between the modelled system and the real system. The need to demonstrate such

correspondence is not limited to timestamp investigations. In any investigation where an

event history is reconstructed by observing system states and hypothesizing system

events, it is necessary to show some correspondence between the modelled relationship

between events and system states and how actions on the real system change stored data.

This challenge needs to be addressed.

Carrier proposed the establishment of a complex event database, in which a description

of which events caused by different programs would be stored. For example, the database

could store lists of which files are read or written by a specific program. [4] Although it

is probably inconceivable to establish a database listing all possible actions taken by all

possible programs, the database could focus on specific types of events, for example if

specific programs alter timestamps in ways differing from the standard operating system

read and store methods. The database could also focus on the most common investigated

systems, thereby providing data that could be used in a long range of investigations,

without having to undertake the laborious work associated with determining functionality

of less common systems. The existence of a database does not however itself provide the

determination of the relationship between actions and their effect on real systems. In

order to be able to list action-effect correspondence for a program in a database, it is

necessary that someone actually determines this correspondence in the real system.

A problem with the determination of the effect of actions in a real system, also noted by

Carrier, is that this determination is non-trivial. The source code and other system

specification for the system may not be available, and it may be very difficult to

157

determine the system functionality without them. In practice, the investigator trying to

determine the functionality of a system may have to resort to performing experiments

testing user actions in the system and determining which effects they have on the data

stored on the system. The outcome of such experiments will be a relationship between

actions undertaken by the investigator and effects measured on a specific system. This

relationship may however be different under other circumstances than those tested by the

investigator, and due to the number of variables existing in complex digital systems it

may not be clear exactly which circumstances held during the experiment. Thus, a

specific experiment conducted by an investigator during a specific set of circumstances,

may not yield results qualifying for the inclusion in the event database. The maintainer

of an event database would need to establish requirements for the admissibility of

experiment results in the database.

The situation described above is analogous to the situation in science. There is no source

code or system specification describing the exact nature of the universe. Therefore, a

researcher studying nature must resort to conducting experiments and study the effects

of those experiments. But since the circumstances under which the experiments were

taken may be difficult to repeat, scientific researchers understand that a hypothesis about

nature cannot be accepted unless repeated experiments conducted by different researchers

have fail to refute it. Indeed, hypotheses about nature are often debated for many years

in scientific communities before they are generally accepted, or before someone devises an

experiment refuting them.

Taking a scientific approach to digital investigation, the hypothesis based approach can

also be used in the determination of the effect of actions in digital systems. If the system

specifications cannot be studied in detail, then the results of experiments must be used to

provide hypotheses about the system functionality. These hypotheses can be stored in the

event database, detailing the nature of the experiments producing those results, and who

conducted them. Any conflicting results can also be stored. Should the constructor of the

system should be willing to participate; he can present his hypotheses about how the

system works, based on experiments as well as studies of the system specification. He

does not however have to reveal the system specification itself. After all, if the

constructor’s hypothesis about the system is based on reading the source code, then it is

very unlikely that anyone else will find results conflicting with that hypothesis. With

such a database, the investigator in a specific case can model the system according to the

158

prevailing hypothesis for the functionality of the system or according to several different

hypotheses if there is more than one. If one of the parties involved in the investigation

(for example the defence counsel), disagrees with the hypothesis for the system

functionality, then he may present alternative hypotheses. The alternative hypotheses

may then be tested with experiments, and the results can be used in the case in question,

as well as being stored in the event database for future use. In this way, an event

database detailing the functionality of digital systems can be built gradually by

application of scientific principles.

9.3.3 Forensic friendly systems

It has been an underlying assumption in this work that the cooperation of the owner of

the investigated system cannot be assumed. Specifically, it has been assumed that the

owner of the computer cannot be assumed to be using digitally signed timestamps from

external systems, or keep system clocks completely synchronized with universal clocks, in

case the system should be investigated. This does not however imply a rejection of

proposals to change existing systems in ways that would facilitate future investigations.

As already mentioned, most of the investigated systems are standard systems. There are

many things that could be done with these standard systems to enhance the possibilities

for future investigations. Some proposals have already been made. For example, Buchholz

proposed to bind pervasive labels to data in a system. [46] Barik et al proposed to

extend existing file systems in such a way that historical timestamp values are stored in

addition to the current. [8] These changes would enhance the possibilities of using the

methods for timestamp investigation presented in this work. In the case of pervasive

labels, the propagation of labels in a system would create many possibilities of causality

inference not existing before, thereby facilitating clock hypothesis testing. In the case of

storing historical clock values, these clock values would add to the timestamp evidence

and therefore put the clock hypothesis under additional scrutiny. If the historical clock

values were stored in an ordered fashion as proposed by Barik et al, the sequence could

act as a generation marker, thus making causality inference possible and enabling rea-

soning similar to that explored in Section 4.2. Another possible change that would

facilitate investigations is adding generation markers to storage systems, as discussed in

Section 4.3.

159

There are however two considerations that should be made when considering extending

systems with forensic friendly features. The first have already been mentioned; if specific

features have been installed in a system just to allow it to be forensic friendly, then

people who know about them are likely to turn them off in order to avoid the evidence

production associated with them. The second is the fact that features added to a system

specifically to be forensic friendly, are likely to create a controversy among users. Many

users will feel that the addition of specific features to help investigators investigating

them is a violation of their privacy rights. In fact, in some jurisdictions, adding such

features would be seen as unjustified in relation to existing privacy regulations. [47] The

controversy resulting from systems with specific forensic friendly features may increase

the proportion of users who know about these features, and therefore can turn them off

to avoid evidence production.

System designers do not primarily design systems so that they can be investigated. The

primary focus of system designers is usually to make a robust system, create a good user

experience and attract as many as possible to the system. Creating controversies with

users does not fit with these goals. System designers will therefore probably be reluctant

to add specific forensic friendly features to their systems, unless there are some other

specific goals that can be addressed by doing so. The acceptance for forensic friendly

features among users and system designers’ motivation to introduce them is an

interesting area of further study. If it were possible to motivate all system designers and

users to accept systems built from the bottom up to be forensic friendly, then research

within digital forensics could be focused on how to build systems recording all user

activities in forensically sound ways. Until then, research into tools and methods for

analyzing data not originally intended as evidence will still be required.

160

LIST OF REFERENCES

161

[1] S. Y. Willassen, ”Forensics and the GSM mobile telephone system,” International

Journal of Digital Evidence, vol. 2:1, 2003.

[2] United States National Institute of Justice Technical Workgroup for Electronic

Crime Scene Investigation, Electronic Crime Scene Investigation: A Guide for

First Responders, 2001.

[3] B. Carrier and E. H. Spafford, ”Getting Physical with the Digital Investigation

Process,” International Journal of Digital Evidence, vol. 2:2, 2003.

[4] B. Carrier, ”A hypothesis-based approach to digital forensic investigations,”

Center for Education and Research in Information Assurance and Security,

Purdue University Tech Report 2006-06, 2006.

[5] C. Boyd and P. Forster, ”Time and date issues in forensic computing - a case

study,” Digital Investigation, vol. 2004:1, pp. 18-23, 2004.

[6] L. Lamport and P. M. Melliar-Smith, ”Synchronizing Clocks in the Presence of

Faults,” Journal of the ACM, vol. 32:1, pp. 52-78, 1985.

[7] D. L. Mills, ”Network Time Protocol (NTP),” in RFC 958, 1985.

[8] M. S. Barik, G. Gupta, S. Sinha, A. Mishra, and C. Mazumdar, ”An efficient

technique for enhancing forensic capabilities of Ext2 file system,” Digital

Investigation, vol. 2007:4S, pp. 55-61, 2007.

[9] C. Hosmer, ”Proving the Intergrity of Digital Evidence with Time,” International

Journal of Digital Evidence, vol. 1:1, 2002.

[10] S. Y. Willassen and S. F. Mjolsnes, ”Digital Forensic Research,” Telektronikk,

vol. 2005:1, 2005.

[11] B. Schatz, G. Mohay, and A. Clark, ”A correlation method for establishing

provenance of timestamps in digital evidence,” Digital Investigation, vol. 2006:3S,

pp. 98-107, 2006.

[12] F. Buchholz and B. Tjaden, ”A brief study of time,” Digital Investigation, vol.

2007:4S, pp. 31-42, 2007.

[13] M. C. Weil, ”Dynamic Time & Date Stamp Analysis,” International Journal of

Digital Evidence, vol. 1:2, 2002.

[14] M. W. Stevens, ”Unification of relative time frames for digital forensics,” Digital

Investigation, vol. 2004:1, pp. 225-239, 2004.

[15] F. Buchholz, ”An Improved Clock Model for Translating Timestamps,” James

Madison University, Department of Computer Science JUM-INFOSEC-TR-2007-

001, 2007.

162

[16] P. Gladyshev and A. Patel, ”Formalising Event Time Bounding in Digital

Investigations,” International Journal of Digital Evidence, vol. 4:2, 2005.

[17] P. Gladyshev, ”Formalising Event Reconstruction in Digital Investigation,” 2004.

[18] P. Gladyshev and A. Patel, ”Finite State Machine Approach to Digital Event

Reconstruction,” Digital Investigation, vol. 2004:2, pp. 130-149, 2004.

[19] P. Gladyshev, ”Finite State Machine Analysis of a Blackmail Investigation,”

International Journal of Digital Evidence, vol. 4:1, 2005.

[20] P. Gladyshev and A. Enbacka, ”Rigorous Development of Automated

Inconsistency Checks for Digital Evidence Using the B Method,” International

Journal of Digital Evidence, vol. 6:2, 2007.

[21] Oslo Tingrett, ”Okokrim Statsadvokatembeter mot Trond Gunnar Kristoffersen.”

Decision Ref. 03-006955MED-OTIR/05, 2004.

[22] Supreme Court of Pennsylvania, ”Commonwealth of Pennsylvania v. Kevin Brian

Dowling.” Decision Ref. 255 CAP, 2005.

[23] R. Halperin, ”Abolish Archives, October 1998,”

http://venus.soci.niu.edu/˜archives/ABOLISH/oct98/0392.html Accessed: 31.

Jan 2007

[24] J. Cohan, ”Physicist key to unlocking case,” in Dickinson Magazine Dickinson,

Pennsylvania, 2002.

[25] Employment Appeal Tribunal, ”Woodvard v. Abbey National, JP Garrett v.

Cotton, Appeal against Registrar’s Order.” Decision Ref.

UKEATPA/0534/05/SM, UKEATPA/0030/05/DZM, 2005.

[26] Employment Appeal Tribunal, ”Midland Packaging Ltd v. Clark, Appeal From

Registrar’s Order.” Decision Ref. UKEATPA/1146/04/RN, 2005.

[27] L. Lamport, ”Time, Clocks and the Ordering of Events in a Distributed System,”

Communications of the ACM, vol. 21:7, pp. 558-565, 1978.

[28] C. Fidge, ”Logical Time in Distributed Computing Systems,” Computer, vol.

24:8, pp. 28-33, 1991.

[29] K. Popper, ”Science: Conjectures and Refutations,” in Introductory Reading in

the Philosopy of Science, 3. ed: Prometheus Books, 1998.

[30] P. Wilson, M. Johnstone, M. Neely, and D. Boles, ”Dynamic Storage Allocation:

A Survey and Critical Review,” in International Workshop on Memory

Management, 1995.

[31] B. Carrier, File system forensic analysis. Upper Saddle River, N.J.: Addison-

Wesley, 2005.

163

[32] P. Gutmann, ”Secure Deletion of Data from Magnetic and Solid-State Memory,”

in Sixth USENIX Security Symposium San Jose, California, 1996.

[33] M. E. Russinovich and D. A. Solomon, Microsoft Windows internals : Microsoft

Windows Server 2003, Windows XP, and Windows 2000, 4th ed. Redmond,

Washington: Microsoft Press, 2005.

[34] M. Shanahan, Solving the frame problem : a mathematical investigation of the

common sense law of inertia. Cambridge, Massachusetts: MIT Press, 1997.

[35] On-Line Encyclopedia of Integer Sequences, ”Number of preferential

arrangements of n labeled elements,” AT&T

http://www.research.att.com/˜njas/sequences/A000670 Accessed: Nov 17 2007

[36] R. Bailey, ”The number of weak orderings of a finite set,” Social Choice and

Welfare, vol. 15:4, pp. 559-562, 1998.

[37] B. Carrier, ”Sleuthkit,” Available at: www.sleuthkit.org.

[38] X-Ways Software, ”WinHex,” Available at: www.winhex.com.

[39] University of Delaware Police Computer Forensics Lab, ”Time Change Captured

in Event Log,” http://128.175.24.251/forensics/timechange.htm Accessed: Oct

3. 2007

[40] D. Haagman and B. Ghavalas, ”Trojan defence: A forensic view,” Digital

Investigation, vol. 2005:1, pp. 23-30, 2005.

[41] R. Harris, ”Arriving at an anti-forensics consensus: Examining how to define and

control the anti-forensics problem,” in Digital Forensics Research Workshop,

2006.

[42] T. Newsham, C. Palmer, A. Stamos, and J. Burns, ”Breaking Forensics Software:

Weaknesses in Critical Evidence Collection,” in BlackHat, 2007.

[43] Robin Hood Software Ltd., ”Evidence Eliminator,” Available at:

http://www.evidence-eliminator.com.

[44] Radsoft.net, ”The Evidence Eliminator Documents,”

http://www.radsoft.net/resources/software/reviews/ee/05.html Accessed: Nov 30

2007

[45] J. Fridrich, M. Goljan, D. Soukal, and T. Holotyak, ”Forensic Steganalysis:

Determining the Stego Key in Spatial Domain Steganography,” in SPIE

Electronic Imaging, San Jose, CA, 2005, pp. 631-642.

[46] F. Buchholz, ”Pervasive Binding of Labels to System Processes,” Purdue

University 2005.

164

[47] M. A. Caloyannides, Privacy Protection and Computer Forensics, 2 ed.: Artech

House, 2004.

[48] Microsoft, ”FILETIME ”: Platform SDK, Windows System Information.

[49] Microsoft, ”SYSTEMTIME ”: Platform SDK, Windows System Information.

[50] Microsoft, ”DosDateTimeToFileTime,” Platform SDK Windows System

Documentation.

[51] G. Le Bodic, Mobile messaging technologies and services : SMS, EMS, and MMS.

New York: J. Wiley, 2002.

[52] M. Friedman and O. Pentakalos, ”File Cache Performance and Tuning,” in

Windows 2000 Performance Guide: O’Reilly, 2002.

165

APPENDIX

166

A. TIMESTAMP FORMATS

A.1 FILETIME

FILETIME is the timestamp format used to record timestamps associated with files

stored on NTFS file systems. The FILETIME is a 64 bit value representing the number

of 100-nanosecond intervals since January 1, 1601 00:00:00 UTC. The value is an

unsigned 64-bit integer. The FILETIME format can represent

64

7
2 58494 years
(10 60 60 24 365)

≈
⋅ ⋅ ⋅ ⋅

The resolution is 0,1 microseconds. Applications may however not be able to set

timestamps with a finer resolution than 1 millisecond.

Windows applications can get and set file time values using system calls GetFileTime()

and SetFileTime(), supplying FILETIMEs for CreationTime, LastAccessTime and

LastWriteTime. This operation will succeed for all file systems, but the result of the

operation will depend on the file system. For example, on FAT file systems, the

LastAccessTime has a resolution of 1 day, whereas on NTFS file systems it has a

resolution of 1 second. [48]

A.2 SYSTEMTIME

SYSTEMTIME is a time representation used in Windows applications. It is a structure

containing 16-bit values for (in this order) Year, Month, DayOfWeek, Day, Hour,

Minute, Second, MilliSecond. Each member of the structure is a 16-bit unsigned integer.

This structure can represent 162 65536= , but year must be between 1601 and 30827 on

current operating systems.

167

Windows applications can obtain the system time as a SYSTEMTIME with a call to

GetSystemTime() or GetLocalTime(). The SYSTEMTIME must be converted to a

FILETIME with SystemTimeToFileTime() if the value is to be stored as file timestamps.

[49]

A.3 FAT date and time

In the FAT file system, timestamps are recorded as a 16-bit value for the date and a 16-

bit value for the time. These are comprised of:

DATE

Bit Meaning

0-4 Day of the Month (1-31)

5-8 Month (1-12)

9-15 Year offset from 1980 (0 = 1980)

TIME

Bit Meaning

0-4 Second divided by 2

5-10 Minute (0-59)

11-15 Hour (0-23)

This gives the FAT timestamp a resolution of 2 seconds. The date and time are stored

together for CreationTime and LastWriteTime. However, only the Date is stored for

LastAccessTime, yielding a resolution of 1 day.

Windows NT and newer systems store an additional byte for the CreationTime

timestamp in FAT adding finer resolution. This byte is an 8-bit unsigned integer and

gives the number of 10 millisecond intervals since the change of the 2-second interval.

[50]

168

A.4 UNIX time_t

Unix file systems express timestamps as POSIX time, in which time is expressed as the

number of seconds that has elapsed since January 1, 1970 00:00:00 UTC (often referred

to as the Unix Epoch). The time˙t is an implementation of Posix Time representing the

time as a signed integer. The time˙t originally was a 32-bit signed integer, and still is on

most implementations. Some implementations use a 64-bit signed integer instead and it is

expected that most systems gradually will move to using 64-bit values.

The resolution of time˙t is 1 second. Implemented as a 32-bit signed integer, the

timestamp can represent values from December 13, 1901 20:45:52 to January 19, 2038

03:14:07. The end date is sometimes referred to as the year 2038 problem, referring to the

fact that any system still using this time format on that date will cease to function

properly as the counter wraps and revert to December 13, 1901. It is however expected

that most systems will have switched to 64-bit time˙t representation before 2038.

The unix time˙t format with 32-bits signed integer representation is used in most unix

applications and unix file systems.

A.5 Java time

In the Java programming language dates and moments in time can be represented by

various classes, all of which are based on an internal representation of time where time is

expressed as the number of milliseconds since January 1, 1970 00:00:00 UTC. This

number is represented as a long - a 64 bit signed integer. This gives the time

representation in Java a resolution of 1 millisecond.

The Java time format is able to represent

64

3
2 584 942 417 years
(10 60 60 24 365)

≈
⋅ ⋅ ⋅ ⋅

A.6 GSM / UMTS

169

The GSM / UMTS mobile phone system specifications specify timestamp formats for

timestamp inclusion in text messages. In the absolute timestamp representation, a time

value is encoded over 7 octets (bytes) in the following manner: [51]

Octet Representing

1 Year

2 Month

3 Day

4 Hour

5 Minute

6 Second

7 Time Zone

Octet 1-6 are coded in BCD (Binary Coded Decimal) with the most significant digit in

bit 0-3 and the least significant digit in bit 4-7. The Time Zone is encoded as the number

of 15 minute intervals difference from UTC encoded as BCD with bit 4-7 as the least

significant digit and bit 0-2 as the most significant. Bit 3 expresses the sign, where 0 is

positive.

This gives the GSM timestamp a resolution of 1 second. Since there is no defined Epoch,

it is not defined which century a timestamp pertains to. As a result, GSM timestamps

are inherently ambiguous. In practical terms, the century can however usually be inferred

from the context of the timestamp.

170

B. CLOCKS

B.1 Universal Time Coordinated (UTC)

In UTC, time is divided into days, hours, minutes and seconds. Days are identified using

the Gregorian calendar. In UTC, the normal day has 24 hours, each consisting of 60

minutes, each consisting of 60 seconds. The normal day therefore consists of 86400

seconds. In addition, UTC defines irregular days in which the last minute has 59 or 61

seconds. These days have either 86399 or 86401 seconds. The purpose of these irregular

days is to keep the year defined in the UTC and the Gregorian calendar in

synchronization with the astronomical year. The usage of irregular days is commonly

termed “inserting/removing a leap second”, although formally the result is a longer or

shorter day. Decisions on leap seconds are taken by the International Earth Rotation and

Reference Systems Service (IERS), based on astronomical observations.

Coordination of the UTC is performed by Bureu International des Poids et Mesures in

Paris. It imports a clock signal from more than 50 highly accurate clocks around the

world. Each clock is weighted according to its accuracy, and the final clock is produced

as the sum of these clocks. The result is used as the official time source in most countries

in the world.

171

C. FILE SYSTEM TIMESTAMP EXPERIMENTS

During this work, experiments were performed on a computer running Microsoft

Windows XP with the NTFS file system. These experiments were performed to

understand the effects on file timestamps, and include them in a model. (See Chapter 6)

C.1 Timestamps in NTFS

NTFS (Originally Windows NT file system) is the standard file system in Windows NT,

Windows 2000 and Windows XP. The file system is organized as a tree of directories

under the root directory containing files. Metadata for files and directories are stored in

the Master File Table (MFT), which is stored as a regular file. The MFT contains

attributes for each file and directory, such as timestamps, extent tables (where the file is

located on the disk) and file size.

The $STANDARD_INFORMATION attribute in each MFT-entry in NTFS contains

four different timestamps, associated with the file or directory to which the MFT-entry

pertains. These are the creation time, last modified time (also called “last written time”),

last access time and MFT Modified time. Each timestamp is stored as a FILETIME

record.

Informally, the four different timestamps can be described as follows:

Timestamp Description

Creation time: The time of the creation of the file on that file system

Last modified time: The time of the last change of the file content

Last access time: The time of the last access to the file content

MFT Modified time: The time of the last change of file metadata

The $FILE_NAME attribute present in each MFT-entry, and also in the parent directory

of each file or directory. These fields also contain the described set of four timestamp

values. These values are not updated by Read or Write operations in the same way as

those stored in the $STANDARD_INFORMATION attribute.

172

For further reading on NTFS timestamp locations and file system organisation, the

reader is referred to Carriers work on the subject. [31]

C.2 Experiments

A set of test files and directories were generated. Test operations on files and directories

were performed using standard operating system methods on a Windows XP computer.

The system clock was observed at the time of each operation. The tool Win-Hex [38] was

utilized to check the effect of operations on the $STANDARD_INFORMATION file

system timestamps. Operations were performed both internally on one file system (intra)

and from one file system to another (inter) on one computer. They were also repeated on

another Windows XP computer mounting a file system across a network from the first

test computer using the Windows standard file system sharing mechanism.

The tested operations are grouped into the categories read, write, delete, move and copy.

The following operations were tested:

Read operations:

- Reading a file into the “notepad” application

- Typing a file on the command prompt with “type”

- Listing a directory with “dir” on command prompt

- Showing a directory by double-click on it in Windows Explorer

- Looking at a directory or file’s properties with right-click and select “properties”

Write operations:

- Creating a file in the “notepad” application

- Creating a file with the “echo” command on command prompt

- Changing an existing file with the “notepad” application

- Creating a new directory with “md” command on command prompt

- Creating a new directory with right-click, “new”, “new folder”

- Changing an existing directory by creating a new file in it

Delete operations:

173

- Deleting a file with right-click, “delete”: will put the file in the recycler

- Deleting a directory with right-click, “delete”: will put the directory in the recycler

- Emptying the recycler (a real delete operation)

Copy operations:

- Copying files and directories with “copy” command on command prompt

- Copying files/directories with right-click, “copy” and then right-click “paste”

- Copying files/directories with drag-and-drop over different file systems

Move operations:

- Moving files and directories with “move” command on command prompt

- Moving files/directories with right-click, “cut” and then right-click “paste”

- Moving files/directories with drag-and-drop on one file system

C.3 Results

In the following, the results from the tests of the different operations are presented and

commented. Where the timestamp is unchanged as a result of the operation, a dash “-“ is

shown. Where the timestamp is changed to the current time, a plus “+” is shown.

Comments for each result can be found below. When referring to directory hierarchies in

the comments, “top” means the directory that contains other directories whereas “bottom”

means files and directories that is contained within other directories.

Read operations

Operation Created Modified Accessed

Read file in notepad - - + CACHE

Read file with “type” - - -

Read dir, windows explorer - - + CACHE (1)

Read dir, with “cd”, “dir” - - + CACHE (2)

View properties of a file - - + CACHE

View properties of a dir - - + CACHE (3)

During the tests, it was discovered that accessed timestamps are subject to Windows file

caching. All versions of Windows with NTFS keep a file cache in memory to allow faster

174

loading of frequently used files. The file cache has a page size of maximum 256 kB. [52]

As a result, files larger than 256 kB cannot be cached in full and must be read from disk.

From the results, it was evident that where a read operation resulted in a cache hit and

the file was read from cache in full, the last accessed timestamp on disk was not updated.

On the other hand, if part of the file was read from disk, the timestamp was updated. In

the tests, reading of files larger than 256 kB always updated the accessed timestamp.

When reading smaller files the accessed timestamp was sometimes updated, sometimes

not.

(1) When entering an absolute path in an explorer window or a file dialog box, Windows

performs read-ahead of directories for filename completion, resulting in access to

directories. Reading a directory with Windows Explorer may also result in updating of

the accessed timestamps of the files contained in the directory. This happens if Explorer

recognizes the file type and reads the file in order to display information to the user. For

example; Explorer automatically reads Word Documents and MP3-files in order to show

document name and author to the user while browsing files in Explorer.

(2) At command “cd”, the accessed timestamps of all directories above the directory in

question are updated. The accessed timestamp of the directory itself is only updated on a

subsequent “dir”.

(3) When viewing properties of a directory, Explorer calculates the total size of its

content. This results in access to all of its subdirectories, updating accessed timestamps

on these, but not to any of the files in the directory or any subdirectories.

Write operations

Operation Created Modified Accessed

New file, Notepad + + +

New file, “echo” + + +

Modify file content, Notepad - + +

New directory, windows + + +

New directory, “md” + + +

New file in dir (dir stamps) - + +

175

Delete operations

Operation Creation Modified Accessed

Delete file (windows menu) - - + (1)

Empty recycle bin (file) - - -

Delete directory - - + (1) (2)

Empty recycle bin (dir) - + (3) + (3)

Deleting a file/directory is actually a move operation where the file is moved to the

recycler. The resulting timestamps are equal to the results of an intra file system move

operation.

(2) Deleting a directory moves the whole tree of subdirectories to the recycler. This

updates the accessed timestamp on all subdirectories, but not files. Access is top-down

giving the top-directory the earliest access time.

(3) A recursive true delete (such as empty recycle bin) traverses the tree and start

deleting files at the bottom. File timestamps are not updated, but directories are written

when files are deleted thereby updating the directory modified timestamp. The result is a

top-down sequential pattern on directory accessed timestamps and a bottom-up

sequential pattern on directory modified timestamps.

Copy operations

File Operations Created Modified Accessed

Copy, intra file system, source - - + CACHE

Copy, intra file system, dest + - +

Copy, inter file system, source - - + CACHE

Copy, inter file system, dest + - +

Drag-drop, inter file system, source - - + CACHE

Drag-drop, inter file system, dest + - +

Copy-paste, intra, source - - + CACHE

Copy-paste, intra, dest + - +

Copy-paste, inter, source - - + CACHE

Copy-paste, inter, dest + - +

176

Directory Operations Created Modified Accessed

Copy, intra file system, source - - + CACHE (1)

Copy, intra file system, dest + + (2) +

Copy, inter file system, source - - + CACHE (1)

Copy, inter file system, dest + + (2) +

Drag-drop, inter, source - - + CACHE (1)

Drag-drop, inter, dest + + (2) +

Copy-paste, intra, source - - + CACHE (1)

Copy-paste, intra, dest + + (2) +

Copy-paste, inter, source - - + CACHE (1)

Copy-paste, inter, dest + + (2) +

(1) A recursive copy operation updates the accessed timestamp on all directories and files

in the source tree that is not present in the cache. The copy operation reads the directory

tree before it starts reading files, (Explorer displays “Preparing to copy…”). This result in

a pattern where all directories have accessed timestamps in sequence and all files have

accessed timestamps in sequence. All accessed timestamps on directories are prior to the

first accessed timestamp on a file. The operation start can be determined from the

accessed timestamp of the top directory. The operation end can be determined from the

latest accessed timestamp in the tree. In the tests, accessed timestamps on files below 256

kB were seldom updated on the source system during copy operations, whereas accessed

timestamps on all files above 256 kB were updated, indicating that the caching

mechanism is active here also. The result is a timestamp pattern in which all directories

are accessed in rapid succession and then all files above 256k accessed in succession,

somewhat less rapid, depending on file sizes and copy bandwidth.

(2) On the destination of recursive copy operations, all three timestamps are updated on

directories, and creation and accessed timestamps updated on all files. The copy

operation works in a top-down manner, creating directories, then creating subdirectories

and files. For each directory in the tree the creation time indicates when the directory

was created and modification and accessed timestamps indicate when the last

subdirectory or file of that directory was written. The operation start can be determined

from the creation time on the top directory. The operation end can be determined from

the latest creation timestamp in the tree.

177

Move operations

File Operations Creation Modified Accessed

Move, intra file system, source N/A N/A N/A

move, intra file system, dest - - +

Move, inter file system, source - - +

Move, inter file system, dest + - +

Drag-drop, intra file system, source N/A N/A N/A

Drag-drop, intra file system, dest - - +

Cut-paste, intra file system, source N/A N/A N/A

Cut-paste, intra file system, dest - - +

Cut-paste, inter file system, source - - +

Cut-paste, inter file system, dest - - +

Directory Operations Creation Modified Accessed

Move, intra file system, source N/A N/A N/A

Move, intra file system, dest - - + (1)

Move, inter file system, source - + (2) + (2)

Move, inter file system, dest + + (3) + (3)

Drag-drop, intra, source N/A N/A N/A

Drag-drop, intra, dest - - + (1)

Cut-paste, intra source N/A N/A N/A

Cut-paste, intra, dest - - + (1)

Cut-paste, inter, source - + (2) + (2)

Cut-paste, inter, dest + + (3) + (3)

(1) All directories below are also accessed but not files. Access is depth first, giving the

top directory the latest access time.

(2) A recursive move operation across file systems had the same effect on the source

system as a copy operation and then (true) delete. All files had the accessed timestamp

updated (if it was not in cache, prefetch of files less then 256 kB applied here as well).

All directories had both accessed and modification timestamps updated.

178

(3) On recursive move operations, directory timestamps on destination systems were

updated as on copy operations. This applied to the top directory and all subsequent

directories. Files contained in directories, however, only had the accessed timestamps

updated, as opposed to a recursive copy operation where the creation timestamps were

updated as well.

When interpreting move operations it is important to distinguish between intra- and

inter- file system operations. When moving a file or directory to a location on the same

file system, only the file entry is changed. When moving across a file system boundary,

the effect on the directories are equal to copying and subsequently deleting. Files

contained in directories on the destination system do not update the creation timestamp.

C.4 Disabling update of Last Accessed

It should be noted that it is possible to turn off updating of the accessed timestamp on a

file system by running the command fsutil behavior set disablelastaccess 1.

The status of this setting can be checked with fsutil behavior query

disablelastaccess. Default setting is that updating of the accessed timestamp is on

(disablelastaccess = 0). Setting disablelastaccess to 1 will disable the updating of the

accessed timestamp on read operations. The accessed timestamp will still be updated on

operations where the other timestamps are affected.

C.5 Verification of results

In order to be able to verify the above results by inspecting the file system driver, the

author applied for access to the source code of the Windows XP NTFS file system driver

through the Microsoft Shared Source Initiative. Such access was denied. Verification of

the results must therefore be done with other methods, such as larger scale testing of

actions in the operating system, or possibly by reverse engineering the file system driver,

thereby determining its semantics. Verification with these methods has been out of the

scope of this project.

179

D. TIMESTAMP LOGIC IMPLEMENTATION

The timestamp logic implementation is available for download at:

http://www.willassen.no/phd˙thesis/implementation/

The Java source files for the timestamp logic implementation can be found in the file

TimeStampLogic.zip. The archive file contains a complete project directory for use with

NetBeans IDE 5.0 or newer. Alternatively the java sources can be compiled directly with

Java compiler version 1.5 or higher.

The implementation uses a modified version of Sleuthkit 2.05 [37] for the parsing of file

system images and extraction of file timestamps. Sleuthkit has been modified to extract

specific timestamp data that the original version did not extract, log file sequence

numbers, as well as printing the timestamps in absolute format so they can be read into

the TimeStampLogic implementation without introducing errors from format printing

and reparsing. The modified and original Sleuthkit 2.05 can be found at the location

mentioned above in the file sleuthkit-2.05-willassen-modified.tar.gz. A diff file

summarizing the modifications to sleuthkit can also be found in this package. Download,

unzip and follow the building instructions in the folder sleuthkit-2.05-willassen to

build.

The TimeStampLogic implementation must be run on images of NTFS file systems. Such

an image may be produced by dumping the contents of an NTFS file system with the

disk dump utility dd. It is also possible to run the timestamp logic implementation

directly on the operating system’s partition device (for example /dev/hdc1) on a

partition with the NTFS file system. The images that were used for the experiments

described in Chapter 7 are available at:

http://www.willassen.no/phd˙thesis/images/

Authoring, building and testing of the timestamp logic implementation as well as the

modified version of Sleuthkit 2.05 was performed on a workstation running Fedora Core 5

Linux on the i386 architecture. It has not been tested on other platforms, but should

work on any platform supported by Sleuthkit 2.05 and Java 1.5.

180

E. PAPERS

This appendix contains copies of four papers presenting results from this work. The

papers have been accepted for publication in January – March 2008.

1111.... Hypothesis based IHypothesis based IHypothesis based IHypothesis based Investigation of Digital Timestampsnvestigation of Digital Timestampsnvestigation of Digital Timestampsnvestigation of Digital Timestamps

presented at the 4th IFIP WG 11.9 Workshop on Digital Evidence in

Kyoto, Japan, January 2008. To be printed in Advances in Digital

Forensics IV.

2.2.2.2. Timestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testing

presented at ACM/ICST E-forensics 2008, Adelaide, Australia, January

2008. To be printed in conference proceedings.

3.3.3.3. Finding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital Investigations

presented at ARES 2008, Barcelona, Spain, March 2008. To be printed in

conference proceedings.

4.4.4.4. Using Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital Investigation

Presented at ACM Symposium on Applied Computing, Fortaleza, Brazil,

March 2008. To be printed in conference proceedings.

Chapter 1

HYPOTHESIS BASED INVESTIGATION OF
DIGITAL TIMESTAMPS

Svein Yngvar Willassen

Abstract Timestamps stored on digital media play an important role in digital
investigations. Unfortunately, timestamps may be manipulated, and
also refer to a clock that can be erroneous, failing or maladjusted. This
reduces the evidentiary value of timestamps. This paper takes the ap-
proach that historical adjustments to a clock can be hypothesized in a
clock hypothesis. Clock hypotheses can then be tested for consistency
with stored timestamps. A formalism for the definition and testing of
a clock hypothesis is developed, and test methods for clock hypothesis
consistency are demonstrated. With the number of timestamps found
in typical digital investigations, the methods presented in this paper can
justify clock hypotheses without having to rely on timestamps from ex-
ternal sources. This increases the evidentiary value of timestamps, even
when the originating clock has been erroneous, failing or maladjusted.

Keywords: digital investigation, timestamps, causality, hypothesis based

1. Introduction
A timestamp is a recorded representation of a specific moment in

time. In digital computing, a timestamp is a recorded representation
of a specific moment in time in a digital format. This representation
is either stored on a medium storing digital data, or transmitted on a
network designed to convey digital data. Timestamps play an important
role in digital investigations. Traditionally, they are used to place the
event generating the timestamp at a specific moment in time, thereby
facilitating event reconstruction. The identification that a certain event
on a computer took place at a specific time makes it possible to correlate
the event with events occurring outside the computer system. This can
be events that occurred in another digital system, or in the physical
world. A hard drive of a Windows system, investigated in typical digital

2

investigations, usually contains tens or even hundreds of thousands of
timestamps.

1.1 Error and uncertainty in timestamps
For a number of reasons, stored timestamps may not accurately re-

flect the time of the generating event. A timestamp always depends on
the adjustment of the clock from which it is generated. Since the times-
tamp is a function of the clock, it is always relative to the setting of
the clock. Unfortunately, clocks are not fully reliable. Clocks may drift,
thereby generating timestamps gradually more different from those gen-
erated from other clocks. Clocks may also fail, and produce completely
incorrect timestamps. Further, clocks on most systems may be adjusted
at any time by the user of the system to show a different date and time
than civil time. The consequence is that a timestamp is relative not only
to the clock it was generated from in general, but also to the particu-
lar adjustment of the clock at the time the timestamp was generated.
Therefore, even timestamps generated from the same clock cannot be
reliably compared unless it can be justified that the adjustment of the
clock is unchanged between creations of timestamps. In order to reli-
ably compare timestamps from different clocks, the difference between
the clocks must be found, and it must be justified for all clocks that
their adjustment has not changed.

The uncertainty associated with digitally stored timestamps implies
that timestamps in general cannot be relied upon as evidence without
justification of the factors that can lead to errors. In particular, it can-
not be blindly assumed that timestamps are based on a clock that is
adjusted to civil time. Further, it cannot be assumed that timestamps
generated by different clocks are relative to the same clock. Not even
when timestamps are based on the same clock, can one be absolutely
certain that the time difference between the two events is equal to the
difference between the timestamps. These uncertainties are worrying for
investigators. If timestamps cannot be relied upon, then it is in many
cases not possible to reconstruct the events in the case reliably.

1.2 Timestamps and causality
New methods are required for digital investigation of timestamps and

use of digitally stored timestamps as evidence. This work takes the
approach that time stamps and their evidence value can be tested in the
hypothesis based investigation model suggested by Carrier. [2] In this
model, the history of the medium under investigation is the complete set
of configurations, states and events that has occurred during the lifetime

Willassen 3

of the medium. The data direct observable by the investigator is the final
state of the medium. This includes observations of all timestamps stored
on the medium and the clock. These timestamps are all functions of the
computer clock at some previous state in the history, and any subsequent
events that affect them. This paper uses these properties to develop a
formalism for clock hypothesis definition and tests that can be used to
test it for consistency with observed evidence.

1.3 Related work
Being recognized as a research challenge, the problem of timestamp in-

terpretation in digital investigation has been studied by a few researchers
during recent years. Schatz et al demonstrated the problem of clock drift
by observing clock synchronization on a network of computers in a small
business. [3] Schatz suggests mitigating the problem by correlating the
timestamps in web cache stored on the computer with records obtained
from the web servers. Weil and Boyd et al suggest similar correlation
methods, by using timestamps stored on the investigated computer com-
ing from other clocks, such as timestamps in dynamically generated web
pages. [1, 4] Such methods would provide correlation for the period
for which cached data exist on the investigated computer only. These
methods may be able to confirm or refute hypotheses about the clock in
the period for which correlation material exists. They may not be able
to provide reasonable evidence to refute a hypothesis that timestamps
have been changed or the clock has been adjusted during the period for
which no correlation material exist. Correlation with server records is
only possible when such records actually exist, and the investigator has
legal access to them.

Gladyshev studied the use of causality properties for establishing
boundaries on period of time in which an event may have occurred.
[5] In his approach, time bounding can be established when an event
that occurred at an unknown or uncertain time is causally preceded
and succeeded by events with known time occurrence. In order to per-
form time bounding, it is then required to know events of known time
causally connected to the investigated events. When used to investigate
a computer system, these events of known time must come from exter-
nal sources. This approach differs from the approach taken in this work,
where no time references from external sources is assumed. The concept
of causality is used in this work as well as in Gladyshev’s. Although
the happened-before relation is defined differently, its use to correlate
timestamps bears resemblance.

4

2. Hypothesis based timestamp investigation

2.1 Causality
Informally, causality is the relationship between cause and effect. This

relationship can be expressed as a relation between events. In previous
works, causality has been defined by means of the happened-before rela-
tion →. The happened-before relation was first used by Lamport, who
defined the relation by ordering events happening in a process and send-
ing and receiving messages between processes. [6] This definition was
generalized by Fidge to encompass process creation and termination as
well as both synchronous and asynchronous message passing. [7]

For use in digital investigation, Gladyshev proposed an extended def-
inition of happened-before. In Gladyshev’s version it is defined that
e1 → e2 if e2 uses the result of e1 or e1 precedes e2 in the usual course of
business of some organisation or during the normal operation of a ma-
chine. [5] In this definition, the meaning of happened-before is extended
beyond computers. This extension is useful, since digital investigation
requires the reconstruction of events, both within computers and out-
side them. Gladyshev’s definition might however create doubt about
exactly what happened-before means, since it is debatable what exactly
constitutes the normal operation of a machine and the usual course of
a business.

Definition. Let → be the happened-before relation. If e1 → e2, then
the occurrence of e1 is necessary for e2 to occur because e2 depends on
the effects of e1.

Important examples of causality per this definition of the happened-
before relation include:

e1 produces an item that is necessary input for e2

This is equivalent to Gladyshev’s definition “e2 uses the result
of e1”. The definition of happened-before in terms of message
sending and reception used by Lamport and Fidge also fall within
this example.

e1 and e2 are events in a computer program, where e2 uses data
produced by e1.

Since events in computer programs use items produced by other
events in the same program, such as variables, data stored in mem-
ory, registers and stack pointers, many events occurring in com-
puter programs will be related by happened-before. This is a spe-
cial case of “e1 produces an item that is necessary input for e2”.
The definition of happened-before in terms of events occurring in a

Willassen 5

process used by Lamport and Fidge falls within this example, with
the exception of events that do not use the result of each other.
This exception makes the definition suitable for modern computer
systems, in which the execution order of a computer program can
be rearranged by compilers and processors when the instructions
do not depend on the results of each other.

2.2 Time and time values
In this work, time is considered to be a fundamental quantity. As a

fundamental quantity, time is not itself defined in terms of other quanti-
ties, but it is measurable by means of comparison with periodic events,
such as the periodic events occurring in clocks. Such periodic events
may for example be the swinging of a pendulum (a pendulum clock),
the movement of earth (a sundial) or microwave emission from certain
materials (an atomic clock). We consider events to have a moment in
time associated with them, and assume that these moments in time can
be ordered in time by relations < and =.

Definition. Let E be the domain of events. Let e be an event. Events
are considered to be instantaneous. Let T be the domain of time. Let
t(e) be a function E �→ T , representing the moment in time at which
event e occurred.

Further, we assume that causality is preserved in time. With the
preservation of causality in time, we mean that no event can causally
depend on an event occurring at the same time or a later time than itself.
This can be expressed explicitly with the happened-before relation as:

t(ei) ≤ t(ej) ⇒ ej �→ ei (1)

This assumption corresponds to the intuitive understanding of the
relationship between causality and time. If such causal relations were
allowed, then events in the future would be allowed to affect events in
the past, something that has not been shown to occur in the real world.

For two events related by the happened-before relation, Equation (1)
implies that:

ei → ej ⇒ t(ei) < t(ej) (2)

The above imposes an ordering in time on events ordered by the
happened-before relation →. It does not however imply any ordering
in time for events not ordered by →. Also, t(ei) < t(ej) does not imply
that ei → ej . Events may happen at different moments in time without
being related by →. On the other hand, if two moments in time t(e1)
and t(e2) are ordered such that t(e1) < t(e2), events occurring at those

6

moments in time cannot be causally connected in reverse, such that the
e2 → e1.

2.3 Clocks
A clock is a device designed to give the owner an approximation of

time that is sufficiently coherent so as to allow the owner to measure and
compare time periods and sufficiently consistent with other clocks so as
to allow the owner to perform actions concurrent with other clock owners
without continuous coordination. Clocks are in other words designed to
give an approximation of time. The definition of a clock should be able to
reflect the possibility of clock drift and adjustment mentioned in Section
1.2.

Definition. Let V be the domain of time values produced by a clock.
c(t) is a clock function T �→ V

The definition of a clock function does not impose any restrictions on
the clock values as a function of time. For example, even if t1 < t2 it
may well be the case that c(t1) > c(t2). And even if t1 < t2 < t3, it
may be the case that c(t1) = c(t2) = c(t3). The latter situation may for
example occur if the events occurring at t1, t2, t3 are so close together
in time that the clock is unable to differentiate between them.

2.4 Timestamped events
A timestamped event is an event for which there exists a timestamp

value in domain V. The timestamp value can be represented as a function
on the event. Timestamps are created when an event makes a copy of
the value provided by a clock. All timestamps in a set of timestamped
events are not necessarily related to the same clock.

Definition. Let E be a set of timestamped events and V a domain
of time values. τc(e) is a function E �→ V such that τc(ei) = c(t(ei)).
τc(ei) represents the timestamp associated with the event ei relative to
clock c.

In this definition, a timestamp is the value of the producing clock at
the time of the event. The timestamp reflects the clock’s representation
of time at that particular moment. The definition of timestamps as
a function of events and clocks provides a possibility to reason over
timestamps and clocks.

Willassen 7

2.5 Ideal and non-ideal clocks and their
properties

It is useful to introduce the concept of ideal clocks and non-ideal
clocks. An ideal clock is a clock which can only go forward.

Definition. Let I be the set of ideal clocks. An ideal clock c(t) ∈ I
is a clock which satisfies

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej)))
∀i∀j(t(ei) = t(ej) ⇒ c(t(ei)) = c(t(ej)))

An ideal clock is a clock function on time which has the property that
the value provided in the function from time is monotonically increas-
ing. While having a monotonically increasing value, the values c(t(ei)),
c(t(ej)) produced from two different moments in time t(ei) and t(ej)
where t(ei) < t(ej) may be equal. Many clocks represent moments in
time as discrete values. In a discrete clock with limited resolution, two
moments close in time will be represented by the same clock value.

Theorem 1. For all ideal clocks c ∈ I, produced timestamps satisfies

ei → ej ⇒ τc(ei) ≤ τc(ej)

Proof for the theorem is given in the Appendix.
The monotonic property of ideal clocks guarantee that two causally

connected events timestamped by the same ideal clock have timestamps
where the timestamp of the latter event is always equal or higher than
the timestamp of the first.

2.6 Clock hypotheses
In order to be able to test if a certain theory about the clock holds,

one must be able to formulate a hypothesis about the clock function.
A hypothesis about the clock function is a possible theory about the
clock function during the computer history. That hypothesis can then
be tested against the set of observed timestamps. In the following, a
clock hypothesis will be denoted ch(t).

Definition. A clock function c(t) can be divided into two compo-
nents, one function b(t) which is an ideal clock and one function d(t)
representing the deviation from the ideal clock.

c(t) = b(t) + d(t)

In this scheme, the clock (c(t)) is divided into components: b(t) is a
base clock which must be an ideal clock. d(t) is the difference between

8

the base clock and the investigated clock. By selecting a common base,
two or more clocks can be compared by comparing the deviation only.
It is sometimes useful to express the time of an event in terms of the
base clock. This can be done by subtracting d(t).

b(t) = c(t) − d(t) (3)

2.7 Observed event sets and correctness
During a digital investigation of a computer, the investigator will ob-

serve a number of timestamped events that all come from the same clock.
Some of these events will be causally connected. This set of observed
timestamped events is called the observation set.

Definition. An observation set O, is a set of timestamped events, in
which all timestamps are related to one clock co(t).

In an observation set, there will typically be a large amount of times-
tamped events. The number of causal connections may also be large.
The data in an observation set can be used to determine if a clock hy-
pothesis holds or not.

Definition. A clock hypothesis ch(t) for an observation set O is
correct if the value of co(t) is equal to the value of ch(t) for all t.

co(t) = ch(t)
⇓

∀ei(τco(ei) = ch(t(ei)))

If a clock hypothesis is correct, then all occurrences of timestamps
must match the value predicted by the hypothesis. The correctness
property can therefore be utilized to find techniques for testing if a clock
hypothesis is correct or not.

Theorem 2.In a correct clock hypothesis ch(t), the timestamps of
all causally connected events ei → ej in an observation set O must be
such that the timestamp of the first event minus the deviation from a
common base has value less than or equal to the timestamp of the latter
event minus the deviation from a common base.

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

Proof for the theorem is given in the Appendix.
Conversely, if the property examined in Theorem 2 does not hold,

then the hypothesis is not correct.
Theorem 3. (Test-A theorem). If a pair of causally connected

events ei → ej exist in an observation set O, for which the timestamp of
ei minus the hypothesis deviation from a common base has a higher value

Willassen 9

than the timestamp of ej minus the hypothesis deviation from a common
base, then the clock hypothesis is incorrect. This is called Test-A.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

Proof for the theorem is given in the Appendix.
Example 1. Consider the default clock hypothesis, where it is as-

sumed that the clock of the investigated computer has always been equal
to civil time, say UTC. Then ch(t) = bh(t) and dh(t) = 0. Now, let the
observed set consist of timestamps for four events e1 − e4, where:

τco(e1) = Jan 12, 2003, 12:46:34
τco(e2) = Apr 21, 2004, 10:22:38
τco(e3) = Feb 9, 2003, 22:16:04
τco(e4) = Dec 12, 2002, 02:46:32

And where e1 → e2 and e3 → e4. If we now apply Test-A for i = 3
and j = 4, we see that

(e3 → e4) ∧ (τco(e3) > τco(e4))

And since dh(t) = 0, the test fails. Thus, the default hypothesis is
not correct for this observation set.

The result can be explained informally as follows: Since e4 must have
happened after e3 and the timestamp of e4 is at an earlier time than
the timestamp of e3, it cannot be the case that the clock has not been
adjusted between these two events.

Theorem 4. (Test-B theorem). In a clock hypothesis ch(t), for
values c′of ch(t) for which ch(t) = c′ has no solution, the existence of
any timestamps in the observation set O with value τco(ei) = c′, implies
that ch(t) is incorrect. This is called Test-B.

Proof for the theorem is given in the Appendix.

2.8 Clock hypothesis consistency
The results in Theorem 3 and Theorem 4 are useful, because they can

be used to refute a clock hypothesis for observation set O, from obser-
vations of the timestamps on events in O. In Test-A, a clock hypothesis
is incorrect when observations of timestamps for two causally connected
events are not ordered correctly by the clock hypothesis. In Test-B,
a clock hypothesis is incorrect if observations of timestamps exist that

10

cannot be produced by the clock hypothesis, because it is a discontin-
uous function. These theorems provide methods for testing if a clock
hypothesis is incorrect. By iterating over all events and pair of events,
each timestamp can be checked for consistency with Test-A and Test-B.

The result of testing all timestamps in the observation set will be ei-
ther that the clock hypothesis is incorrect or that it is not incorrect. The
tests can refute the clock hypothesis, but they can not prove it correct.
This leads to the following definition of a consistent clock hypothesis.

Definition. Given a set of tests Z, a clock hypothesis is consistent
under Z with an observation set O if no test z ∈ Z shows that the
hypothesis is incorrect for O. A clock hypothesis is inconsistent under
Z with an observation set O if it is not consistent under Z with O.

The distinction that follows from the definitions of correct and consis-
tent is useful in the context of digital investigations. In a correct clock
hypothesis all possible time values are always equal to the investigated
clock. A correct clock hypothesis can only be derived if the investigated
clock has been observed at every moment in its history. Establishing
a correct hypothesis about the investigated clock is inconceivable in a
real investigation. All the investigator can hope to do is to establish a
consistent clock hypothesis. In such a hypothesis there is no evidence
available that refutes the hypothesis. Specifically, none of the times-
tamps of events in the observation set O as applied in tests in the test
set Z show that the hypothesis is incorrect. If there is a large number
of timestamps and causally connected events present in the observation
set O, these requirements impose strict constraints on a consistent hy-
pothesis. This can lead to the justification of the hypothesis. The more
data available in O to be fed into the tests in Z, the more justified the
clock hypothesis can be. As long as the clock hypothesis is consistent,
the data in O is evidence supporting the hypothesis.

2.9 The clock hypothesis as a scientific
hypothesis

In the hypothesis based investigation model proposed by Carrier, a
digital investigation is a process that formulates and tests hypotheses
to answer questions about digital events or the state of digital data.
[2] Carrier proposes that the investigation process is scientific if the
hypothesis is scientific and then tested through conducting experiments.
Carrier cites Popper in that the “criterion of the scientific status of a
theory is its falsifiability, or refutability, or testability”.

The question here is then if the method for clock hypothesis formula-
tion and testing the set of observed timestamps adhere to these criteria.

Willassen 11

From the previous discussion, a clock hypothesis is a theory that is fal-
sifiable and therefore testable. The clock hypothesis theory described
in the previous sections adheres to the requirements of a scientific the-
ory. The hypothesis forbids certain things to happen; the occurrence of
timestamp configurations as described in Test-A and Test-B. The de-
scribed tests examine the evidence for refutation of the theory. They do
not look for confirmation, but examine the available evidence for incon-
sistency with the theory. When the tests have been applied, and found
not to refute the hypothesis, the tests count as serious but unsuccessful
attempts to falsify the theory and therefore as confirming evidence.

3. Concluding remarks
This paper has presented a formalism for the definition of a clock

hypothesis and testing it for consistency with evidence in the form of
observed timestamps. When the number of timestamps is high, and
many of them are causally related, these tests will put a clock hypothe-
sis under close scrutiny. This is the typical situation when investigating
digital media like hard drives. In order to test hypotheses on large num-
ber of stored timestamps, the tests can and should be implemented in
software. The tests can then be used in digital investigations, typically
by testing alternative clock hypotheses, such as alternative hypothe-
ses provided by a plaintiff and a defendant. When a clock hypothesis
is justified by these methods, the evidentiary value of the investigated
timestamps is increased; the real time when a timestamp was created
can now be found by using the clock hypothesis.

References

[1] C. Boyd and P. Forster, ”Time and date issues in forensic computing
- a case study,” Digital Investigation, vol. 2004:1, pp. 18-23, 2004.

[2] B. Carrier, ”A hypothesis-based approach to digital forensic investi-
gations,” Center for Education and Research in Information Assur-
ance and Security, Purdue University Tech Report 2006-06, 2006.

[3] B. Schatz, G. Mohay, and A. Clark, ”A correlation method for es-
tablishing provenance of timestamps in digital evidence,” Digital
Investigation, vol. 2006:3S, pp. 98-107, 2006.

[4] M. C. Weil, ”Dynamic Time & Date Stamp Analysis,” International
Journal of Digital Evidence, vol. 1:2, 2002.

[5] P. Gladyshev and A. Patel, ”Formalising Event Time Bounding in
Digital Investigations,” International Journal of Digital Evidence,
vol. 4:2, 2005.

12

[6] L. Lamport, ”Time, Clocks and the Ordering of Events in a Dis-
tributed System,” Communications of the ACM, vol. 21:7, pp. 558-
565, 1978.

[7] C. Fidge, ”Logical Time in Distributed Computing Systems,” Com-
puter, vol. 24:8, pp. 28-33, 1991.

4. Proofs
Theorem 1.
Claim: For all ideal clocks c ∈ I, produced timestamps satisfies

ei → ej ⇒ τc(ei) ≤ τc(ej)

Proof: By definition an ideal clock satisfies:

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej)))

That is, for events ei and ej occurring at times t(ei) and t(ej) we have:

t(ei) < t(ej) ⇔ c(t(ei)) ≤ c(t(ej))

By replacing we now obtain:

ei → ej ⇒ c(t(ei)) ≤ c(t(ej))

And then, τc(ei) = c(t(ei)), which gives:

ei → ej ⇒ τc(ei) ≤ τc(ej)

�

Theorem 2.

Claim: In a correct clock hypothesis ch(t), the timestamps of all
causally connected events ei → ej in an observation set O must be such
that the timestamp of the first event minus the deviation from a common
base has value less than or equal to the timestamp of the latter event
minus the deviation from a common base.

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

Proof: Let ch(t) be a correct clock hypothesis. Let b(t) be a common
base for ch(t) and co(t). Then

b(t) = ch(t) − dh(t)

Willassen 13

b(t) = co(t) − do(t)

Thus,

ch(t) − dh(t) = co(t) − do(t)

And since ch(t) is correct we have ch(t) = co(t). Therefore

dh(t) = do(t)
b(t) = co(t) − dh(t)

And inserting definition yields

b(t(e)) = τco(e) − dh(t(e))

Now, b(t) shall be an ideal clock. From Theorem 1 we know that ideal
clocks satisfy

ei → ej ⇒ c(t(ei)) ≤ c(t(ej))

And then, inserting b(t) gives

ei → ej ⇒ b(t(ei)) ≤ b(t(ej))
ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

�

Theorem 3.

Claim: If a pair of causally connected events ei → ej exist in an
observation set O, for which the timestamp of ei minus the hypothesis
deviation from a common base has a higher value than the timestamp of
ej minus the hypothesis deviation from a common base, then the clock
hypothesis is incorrect.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

Proof: The proof is by contradiction. Let ch(t) be a clock hypothesis
and O an observation set with clock co(t). Let (ea, eb) be a pair of events
in O such that ea → eb and τco(ea) − dh(t(ea)) > τco(eb) − dh(t(eb)).
Assume that ch(t) is correct, ch(t) = co(t). If ch(t) is correct we have
from Theorem 3 that

14

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

But for i = a and j = b, we have assumed that,

(ea → eb) ∧ (τco(ea) − dh(t(ea)) > τco(eb) − dh(t(eb))) (4)

This contradicts the result from Theorem 3. Therefore, if (4) holds,
then ch(t) cannot be correct. There have been no assumption or restric-
tion on the events a and b. a and b could therefore have been any event
in the observation set O. The result is that for any event ei and ej , if
(4) holds, ch(t) cannot be correct.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

�

Theorem 4.

Claim: In a clock hypothesis ch(t), for values c′of ch(t) for which
ch(t) = c′ has no solution, the existence of any timestamps in the obser-
vation set O with value τco(ei) = c′, implies that ch(t) is incorrect.

Proof: The proof is by contradiction. Let ch(t) be a clock hypothesis
and O an observation set with clock co(t). Let ea be an event in O and
τco(ea) = c′ the timestamp of ea. Let c′ have a value such that ch(t) = c′
has no solution. Assume that ch(t) is correct, ch(t) = co(t). If ch(t) is
correct we have

∀ei(τco(ei) = ch(t(ei)))

Which means that for i = a

τco(ea) = ch(t(ea))

This is a contradiction since τco(ea) = c′ and ch(t) = c′ has no solution.
Therefore if τco(ea) = c′ and ch(t) = c′ has no solution, then ch(t) cannot
be correct.

�

Timestamp evidence correlation by model based clock
hypothesis testing

Svein Yngvar Willassen
Department of Telematics, Norwegian University of Science and Technology

O.S. Bragstads plass 2B
7491 Trondheim, Norway

+47 92449678

svein@willassen.no

ABSTRACT
Timestamps play an important role in digital investigations, since
they are necessary for the correlation of evidence from different
sources, including network tracing. Use of timestamps as evidence
can be questionable due to the reference to a clock with unknown
adjustment. This work addresses this problem by taking a
hypothesis based approach to timestamp investigation. Historical
clock values can be formulated as a clock hypothesis. This
hypothesis can be tested for consistency with timestamp evidence
by constructing a model of actions affecting timestamps in the
investigated system. Acceptance of a clock hypothesis with
timestamp evidence can justify the hypothesis, and thereby
establish when events occurred in civil time. The results can be
used to correlate timestamp evidence from different sources,
including identifying correct originators during network trace.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and formal languages]:
Mathematical Logic – model theory, temporal logic.

General Terms
Theory, Legal Aspects, Verification.

Keywords
Digital investigation, event logic, clock hypothesis

1. INTRODUCTION
Investigations are inquiries into past events. The purpose of an
investigation is to find evidence of previous events. Investigation
of digital media with the purpose of finding evidence is
commonly referred to as digital investigation. In recent works,
efforts have been made to make the digital investigation based on
scientific principles, by using a hypothesis-based approach. [1] In
this approach, the investigator formulates his hypothesis about the
occurred events, and tests them using the available evidence.

A timestamp is a recorded representation of a specific moment in
time Timestamps play an important role in digital investigations.

Traditionally, they are used to place the event generating the
timestamp at a specific moment in time. The identification that a
certain event on a computer took place at a specific time makes it
possible to correlate the event with events occurring outside the
computer system. These may be events occurring in another
digital system, or in the physical world. A particularly important
application of timestamps in digital investigation is attribution;
the ability to attribute events to a specific person. This is
important, because most investigations aim at placing the
responsibility for occurred events on one or more individuals. If
evidence of the investigated events is digital, it may be necessary
to place the event at a specific point in time in order to be able to
attribute it to the correct person. If the time of the event inferred
from the evidence is incorrect, it may not be possible to attribute it
to anyone, or the event may be attributed to the wrong person.
The prevalence of dynamic network addresses on the Internet
makes timing important in all types of investigations of events
that occurred on the Internet. In many such investigations,
attribution relies on the identification of which computer were
using an IP-address at a particular time. If the IP-address is
dynamically assigned, the originating computer can only be
identified if a log of the usage of the address exists, and the time
of the event can be established with sufficient certainty and
accuracy. Only in this case can the originating computer be
identified from the usage log by selecting the correct IP-address
and time entry.

A timestamp always refer to the clock from which it is generated.
Since the timestamp is a function of the clock, it is always relative
to the adjustment of the clock. Unfortunately, clocks are not fully
reliable. Clocks may drift, thereby generating timestamps
gradually more different from those generated from other clocks.
Clocks may also fail, and produce completely incorrect
timestamps. [2, 3] Further, clocks on most systems may be
adjusted at any time by the user of the system to show a different
date and time than civil time. The uncertainty associated with
digitally stored timestamps implies that timestamps should not be
relied upon as evidence without justification of these factors. In
particular, it should not be blindly assumed that timestamps are
based on a clock that is adjusted to civil time. These uncertainties
are worrying for investigators. If timestamps cannot be relied
upon, then it is in many cases not possible to trace the use of an
IP-address, since identification of the time of the event is
necessary to find the correct originator.

This work takes the approach that time stamps can be tested in the
hypothesis based investigation model. The investigator can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
e-Forensics 2008, Jan, 2008, Adelaide, Australia.
Copyright 2008 …$5.00.

formulate a hypothesis about historical values of the clock. By
defining a model of the investigated system and observing the
timestamp values on the investigated computer, the clock
hypothesis can be tested for consistency with the available
evidence. Such testing can provide justification for a particular
clock hypothesis. When a clock hypothesis is justified, the time of
the events on the computer can be interpreted accordingly, and
can then be used for correlation with other sources. Previously, a
formalism for clock hypotheses and consistency testing with
causality between timestamped events has been defined. [4] In
this work, a system with actions and timestamps will be defined.
This can be used to develop additional consistency tests for clock
hypotheses.

2. CLOCKS
A clock is a device designed to give the user an approximation of
time that is sufficiently coherent to allow him to measure and
compare time periods and sufficiently consistent with other clocks
to allow him to perform actions concurrent with other clock users
without continuous coordination. Clocks are in other words
designed to give an approximation of time.

Definition 1. Let T be the domain of time. Let V be the domain of
time values produced by a clock. c(t) is a clock function
�T V .

The definition of a clock function does not impose any restrictions
on the clock values as a function of time. For example, if 1 2<t t it
may well be the case that 1 2>c(t) c(t) . And even if 1 2 3< <t t t ,
it may be the case that 1 2 3= =c(t) c(t) c(t) . The latter situation
may for example occur if the events occurring at t1, t2, t3 are so
close together in time that the clock is unable to differentiate
between them.

A clock hypothesis is a hypothesis about historical values of a
clock. In an investigation, the investigator can formulate clock
hypotheses and test them for consistency with the available
evidence. [4]

Definition 2. A clock hypothesis ch(t) is a clock function �T V
that is hypothesized to represent the real clock on c(t) on a system.

In an investigation, the investigator formulates a clock hypothesis,
which is then the working theory about the historical values of the
clock on the investigated computer. The investigator may for
example hypothesize that the clock has always been adjusted to
UTC+10.

The clock hypothesis may also include previous adjustments to
the clock. It is for example possible for the investigator to
formulate a hypothesis in which the owner of the computer
adjusted the clock one year back, then created some (antedated)
documents, and then adjusted the clock forward again. In such a
hypothesis, the clock function ch(t) will be a discontinuous
function.

3. ACTIONS AFFECT TIMESTAMPS
In order to test if a clock hypothesis is consistent with the
timestamps in a system; we can build a model of the investigated
system, by representing the operations in the system that can
possibly change the timestamps as actions. A model of a system
with timestamps can then be described as a table listing the

timestamps and the actions that affect them. We call this an affects
table.

Definition 3. An action affects a timestamp if and only if an
occurrence of that action sets a new value for the timestamp and
removes the previous value for the timestamp. An affects table is
a table listing all possible combinations of timestamps in a system,
and all actions in the system and timestamps they affect. An
affects table for a system with n timestamps has 2n entries.

Example 1. Create an affects table for the following simple file
system: A file system contains files, and each file has a Created
timestamp, an Accessed timestamp and a Modified timestamp.
Files can be Created, Read or Written. Reading a file causes the
Accessed timestamp to be updated. Writing a file causes both the
Accessed timestamp and the Modified timestamp to be updated,
and Creating a file causes all three timestamps to be updated.
There is only one timestamp of each type for each file, so
whenever a timestamp is changed, the previous value is lost.

The affects table for this file system is given in the following:

Table 1. Affects table for the file system in Example 1

 Created Modified Accessed Actions

0

1 X

2 X

3 X X

4 X Read

5 X X

6 X X Write

7 X X X Create

The affects table states clearly how timestamps are affected by
actions. The affects table also shows which timestamp affect
combination does not occur with any action. This information can
be utilized to derive invariants on timestamp, by reasoning on
sequences of timestamp updating and corresponding sequences of
actions.

4. TIMESTAMPING ORDERS
In an investigation, the investigator observes values of timestamps
on each investigated file. Each file has n different timestamps
1 2θ θ θn, ,..., . The observed values of these timestamps were set at

moments in time 1 2θ θ θnt ,t ,...,t , where the values observed by the
investigator are 1 2θ θ θnc(t),c(t),...,c(t) , set by the clock of the
investigated system. Since the clock function c(t) of the
investigated system is unknown, the investigator cannot map these
values directly to the moments in time 1 2θ θ θnt ,t ,...,t when
timestamping occurred. But the investigator can list possible
sequences of timestamping, and determine if the observed result is
consistent with a specific clock hypothesis, given the affects table
for the system.

Definition 4. In a system with n timestamps, the stamping time
set Θ is the set of moments in time 1 2θ θ θnt ,t ,...,t when each

observed timestamp value 1 2θ θ θnc(t),c(t),...,c(t) for the observed
timestamps 1 2θ θ θn, ,..., was set.

Example 2. For the file system described in Example 1, the
stamping time set is { }c m a= , ,Θ t t t , where tc is the time of
production of the observed Created timestamp, tm is the time of
production of the observed Modified timestamp and ta is the time
of production of the observed Accessed timestamp.

To determine which (if any) sequence of actions in the system
could have resulted in the observed timestamps, it is interesting to
determine the different sequences in which timestamping could
have occurred. Each pair of values in Θ , (ti, tj), may be related by
either <i jt t , =i jt t or >i jt t .

Definition 5. A timestamping order is a sequence of all elements
in the stamping time set Θ , where each element is related to the
next element in the sequence with the equals-relation = or the
less-than relation <. The equals relation imply that the stamping
times are equal; the two timestamps were set at the same time. The
less-than relation imply that the first stamping time is earlier than
the second stamping time; the production of the first timestamp
occurred at an earlier time than the production of the second
timestamp. Each different stamping time in a timestamping order
constitutes a step in the timestamping order. When two or more
stamping times are equal, they constitute a step in the
timestamping order together.

An example timestamping order for the simple file system is (tc =
tm < ta). With this timestamping order, the Created and Modified
timestamps were set at the same time, and the Accessed timestamp
was set at a later time than the Created and Modified timestamps.

A list of all timestamping orders can be constructed where each
stamping of a specific timestamp may have occurred before, after
or at the same time as the stamping of the other timestamps. The
list of possible sequences for n = 3 can be found in Table 2.

Table 2. All timestamping orders, n = 3

Number Sequence

1 (t1 < t2 < t3)

2 (t1 < t3 < t2)

3 (t2 < t1 < t3)

4 (t2 < t3 < t1)

5 (t3 < t1 < t2)

6 (t3 < t2 < t1)

7 (t1 = t2 < t3)

8 (t3 < t1 = t2)

9 (t2 = t3 < t1)

10 (t1 < t2 = t3)

11 (t1 = t3 < t2)

12 (t2 < t1 = t3)

13 (t1 = t2 = t3)

5. POSSIBLE ACTION SEQUENCES
When all timestamp updating is represented by actions, the cause
of timestamping having occurred in a specific sequence must have
been actions that have occurred in a specific sequence. An action
sequence is a sequence of actions of arbitrary length.

Definition 6. An action sequence is a sequence of one or more
actions, where each element is related to the next element in the
sequence with the equals-relation = or the less-than relation <.
The equals relation imply that the actions occurred at the same
time. The less-than relation imply that the first action occurred
earlier than the second action.

The relationship between an action sequence and a timestamping
order is that every observed timestamping order must have been
created by an action sequence. When considering all
timestamping orders, there may be many action sequences that
may cause a particular timestamping order. There may however
also be timestamping orders, which cannot be created by any
action sequence. These timestamping orders cannot occur in the
system. The relationship between action sequences and
timestamping orders can be deducted from the affects table.

Definition 7. A timestamping order is possible in a system if
there is at least one action sequence in the system that may cause
the timestamping order. If there is no action sequence that can
cause the timestamping order, then the timestamping order is
impossible in the system.

By using the affects table, it is possible to find all action
sequences that may have caused a specific timestamping order, by
the following procedure:

1. Find all actions or combination of actions affecting all
timestamps in the first step in the timestamping order.

2. For each following step in the timestamping order, find
all actions or combination of actions affecting all
timestamps in that step, and not affecting any
timestamps listed in previous steps. If there is no such
action, then this timestamping order is not possible in
the system.

The task of finding all actions or combination of actions can be
implemented as follows:

1. For every timestamp θi find all actions affecting it, and
add them to a set Ai.

2. For every action ∈ ia A , check if a affects any
timestamp θ j listed in previous steps in the
timestamping order. If so, remove it from Ai.

3. Actions 1 2∈ ∩ ∩ ∩ na (A A ... A) affect all timestamps in
that step. Remove them from Ai.

4. If all sets Ai are still non-empty, the remaining actions
represent combinations of actions affecting all
timestamps for that step. The combinations can be found
with the Cartesian product 1 2× × × nA A ... A

Example 3. Find all action sequences for the timestamping order
(tc < tm < ta) for a file in the file system in Example 1.

From the affects table for the simple file system in Table 1, the
steps in the sequence yields:

Step 1 (tc): Create (tc is only affected by Create)

Step 2 (tm): Write (tm is affected by Create and Write,

 only Write does not affect tc)

Step 3 (ta): Read (ta is affected by Read/Write/Create,

 only Read does not affect tc, tm)

Thus, the only possible action sequence for timestamping order (tc

< tm < ta) is (Create < Write < Read).

Example 4. Find all action sequences for the timestamping order
(tm = ta < tc) for a file in the file system in Example 1.

From the affects table for the simple file system in Table 1, the
steps in the sequence yields:

Step 1 (tm=ta): Create, Write (tm and ta are both

 affected by Create and

 Write)

Step 2 (tc): none (tc is only affected by

 Create, but Create also

 affects tm and ta)

Thus, the timestamping order (tm = ta < tc) is not possible in the
system.

By using this procedure for all timestamping orders for a given
number of timestamps, one can now complete the reasoning in a
system with known actions. The result of this exercise will be a
list of timestamping orders impossible in the system and a table of
possible action sequences of each timestamping order possible in
the system.

Example 5. Find all action sequences for the simple file system.

This file system has three timestamps for each file (n = 3). All
timestamping orders for such a system are given in Table 2.
Assigning t1 = tc, t2 = tm and t3 = ta produces all timestamping
orders for this system, shown in column “Timestamping order” in
Table 3. Following the action sequence procedure for each
timestamping order listed in the table by using the affects table for
the simple file system given in Table 1, gives the possible action
sequences for that timestamping order, shown in the column
“Action Sequence”:

Table 3. Action sequences for the simple file system

Number Timestamping
order

Action Sequence

1 (tc < tm < ta) (Create, Write, Read)

2 (tc < ta < tm) None

3 (tm < tc < ta) None

4 (tm < ta < tc) None

5 (ta < tc < tm) None

6 (ta < tm < tc) None

7 (tc = tm < ta) (Create, Read)

8 (ta < tc = tm) None

9 (tm = ta < tc) None

10 (tc < tm = ta) (Create, Write)

11 (tc = ta < tm) None

12 (tm < tc = ta) None

13 (tc = tm = ta) (Create)

The only timestamping orders in Table 3 possible in the system
are sequences where c m a≤ ≤t t t . Thus, c m a≤ ≤t t t is a property
that always holds for this system, an invariant.

Invariants for a system that has been found using the reasoning
above can be used to test a clock hypothesis. In the example file
system, it is now known that c m a≤ ≤t t t . If for example c(tc) >
c(ta), a hypothesis that the clock has always been adjusted to
UTC+10 would be rejected, since UTC is never adjusted
backwards.

6. MODELLING A REAL FILE SYSTEM
The procedure described in the previous sections can be used to
create a model of a real file system, determine which
timestamping orders are possible in the system and derive
invariants of the file system for use with a clock hypothesis
checker. To illustrate this procedure, this section performs it on
the semantics in Windows XP for file timestamps stored in the
NTFS $STANDARD_INFORMATION attribute. The basis for
the model described here is the semantics determined by Carrier.
[5] The model assumes that the files in question exist, are larger
than the file cache size, and that updating of the last accessed
timestamp is enabled.

In a system with three timestamps, the affects table contains 23 = 8
entries. The actions are:

Read: reading a file

Create: creating a new file

Write: modifying an existing file

CopySrc: copying a file (source file)

CopyDest: copying a file (destination file)

MoveIntra: moving a file internal to a file system

MoveInterSrc: moving a file across file systems (source file)

MoveInterDest: moving a file across file systems (destination file)

The following affects table can then be constructed:

Table 4. Affects table for Windows XP / NTFS

 Created Modified Accessed Actions

0

1 X

2 X

3 X X

4 X Read,

CopySrc,
MoveIntra,
MoveInterSrc,
MoveInterDest
(ReadGroup)

5 X X CopyDest

6 X X Write

7 X X X Create

The actions in row 4 of the affects table all have the same effect
on timestamps. In the following, they will be grouped together as
ReadGroup, meaning that where this action occurs, any of the
actions Read, CopySrc, MoveIntra, MoveInterSrc or MoveInter-
Dest may have occurred.

With n = 3, the timestamping order table in Table 2 can be used.
Applying the action sequence procedure for each timestamping
order yields the table of action sequences listed in Table 5.

Table 5. Timestamping orders in Windows XP/NTFS.

No Timestamping
order

Action Sequence

1 (tc < tm < ta) (Create / CopyDest < Write <
ReadGroup)

2 (tc < ta < tm) None

3 (tm < tc < ta) (Create / Write < CopyDest <
ReadGroup)

4 (tm < ta < tc) None

5 (ta < tc < tm) None

6 (ta < tm < tc) None

7 (tc = tm < ta) (Create / CopyDest=Write <
ReadGroup)

8 (ta < tc=tm) None

9 (tm=ta < tc) None

10 (tc < tm=ta) (Create / CopyDest, Write)

11 (tc=ta < tm) None

12 (tm < tc=ta) (Create / Write, CopyDest)

13 (tc=tm=ta) (Create / CopyDest=Write)

From the table, it is evident that there are no possible action
sequences where ta does not occur in the last step. Consequently,
in this system, m at t≤ and c at t≤ . These invariants can be
used to check clock hypotheses for Windows XP systems with
NTFS.

7. RESULTS
This work studied how a system model can be created used to test
a clock hypothesis for consistency with timestamp evidence. A

system model can be created by listing the actions in the system
and their effect on timestamps in an affects table. By listing all
possible timestamping orders, it can be determined which
timestamping orders are possible in the system and which action
sequences that may cause them. A procedure for deriving possible
action sequences from the list of possible timestamping orders is
given. From the list of possible and impossible timestamping
orders, invariants for a system can be derived. These invariants
can be used to test a clock hypothesis for consistency with
evidence in the form of timestamps stored on an investigated
system.

On the systems examined in real digital investigations, there will
exist tens- or even hundreds of thousands of timestamps. By
modelling the system using the techniques described in this paper,
it is then possible to test a clock hypothesis against a large number
of timestamps. This will put a clock hypothesis under close
scrutiny, and will lead to its justification if there is no evidence to
refute it. Justification of a clock hypothesis is important in digital
investigations, because it will provide a possibility to translate the
timestamps observed on a system to an independent clock. Thus,
the real time of stamping can be established, which can be used to
correlate the time of the events on a digital system with events
occurring elsewhere.

8. CONCLUDING REMARKS
The testing of clock hypotheses provided in this work requires a
model of the investigated system to be constructed. In order to
provide a complete model of a real system one must clearly
understand the system completely, something that can probably
only be accomplished by studying the implementation details of
the system. It might however be reasonable to construct a partial
model only by studying the effects of operations on the real
system, if it can be justified that the only actions taken on the
system were those that were included in the model. In a real
operating system, this could for example be accomplished by
testing the different operations in the system and how they affect
timestamps. If one could not be sure that all possible operations in
the operating system had been included, one would not know for
certain if the rejection of a clock hypothesis was caused by a
wrong clock hypothesis or by missing actions in the model. This
does not have to be a serious problem in digital investigations,
where timestamp operations must be manifested in software,
which can be found during the investigation.

The method provided in this work can be applied during
investigations of digital media, such as seized computers. Since
most systems use common operating systems, the construction of
a model does not have to be repeated in every investigation. It is
enough that the model has been built for a specific system type
once, it can thereafter be used in all digital investigations
concerning that system type. The method presented here are
therefore well suited for implementation in integrated software
packages for digital investigation.

9. REFERENCES
[1] B. Carrier, "A hypothesis-based approach to digital forensic

investigations," Center for Education and Research in
Information Assurance and Security, Purdue University Tech
Report 2006-06, 2006.

[2] B. Schatz, G. Mohay, and A. Clark, "A correlation method
for establishing provenance of timestamps in digital

evidence," Digital Investigation, vol. 2006:3S, pp. 98-107,
2006.

[3] F. Buchholz and B. Tjaden, "A brief study of time," Digital
Investigation, vol. 2007:4S, pp. 31-42, 2007.

[4] S. Y. Willassen, "Hypothesis based investigation of digital
timestamps," in IFIP WG 11.9 Workshop, Kyoto, Japan,
2008.

[5] B. Carrier, File system forensic analysis. Upper Saddle
River, N.J.: Addison-Wesley, 2005.

ARES 2008, Paper ID 349 1

Abstract— Finding evidence of antedating is an important goal
in many digital investigations. This paper explores how causality
can expose antedating by investigating storage systems for
causality and correlate causality with stored timestamps.
Causality is determined in two different system types; storage
systems using sequence numbers and storage systems using the
first-fit allocation strategy. Causality found in these systems was
used to implement a timestamp consistency checker for the NTFS
file system. The implementation was then tested in an experiment,
in which four subjects were asked to antedate a document on a
given computer in such a way that the antedating could not be
determined by an investigator. The results from this experiment
show that the implemented consistency checker can be used to
expose antedating. Investigators can use this method to find
evidence of antedating to be presented to fact-finders in real
cases.

Index Terms— digital investigation, antedating, timestamps,
causality

I. INTRODUCTION

ntedating is the creation of files, documents and other
material with date- or timestamps set to another date than

the date the material was created. Exposing antedating is a
common goal in digital investigation, either because the
matters under investigation involves documents produced with
digital computers, or because the timing of the production of
information stored on a computer is otherwise important. The
typical digital investigation involving antedating is
investigations of financial crimes or other matters where the
date of production of a document has legal implications. In
these matters, the goal of the digital investigation is often to
find out if the document was really produced at the date
printed on the document, or if it could have been produced at a
later date.

When typing a document in a word processor, it is easy to
change the written date. This would not change the timestamps
stored on the file system when the document is stored. It is
however possible to antedate these timestamps too, by altering
the computer system clock to represent a different date than

Manuscript received October 11, 2007.
S. Y. Willassen is with the Department of Telematics, Norwegian

University of Science and Technology, O.S. Bragstads plass 2B, 7491
Trondheim, Norway (phone: +47 92449678; email: svein@willassen.no).

the current. If the system clock is altered before the document
is produced, the timestamps associated with the produced
document will be set to the date the system clock was adjusted
to. With this procedure, it will not be possible to determine
that the document was antedated with previous digital
investigation methods.

In this work, causality in digital systems will be used to
determine if particular timestamps have been antedated or not.
Causality defines which events are necessary for others to
occur. In a digital investigation, the medium to be investigated
is a storage system storing digital data. In such a system, the
events of storage of specific items can be causally related to
the events of storage of other items. Since the stored data may
contain timestamps, the causal relation can be used to test the
consistency of the timestamps, and thereby expose antedating.

II. RELATED WORK

Being recognized as a research challenge, the problem of
timestamp interpretation in digital investigation has been
studied by a few researchers during recent years. Schatz et al
suggests mitigating the problem by correlating the timestamps
in web cache stored on the computer with records obtained
from the web servers. [1] Weil and Boyd et al suggest similar
correlation methods, by using timestamps stored on the
investigated computer coming from other clocks, such as
timestamps in dynamically generated web pages. [2, 3] Such
methods would provide correlation for the period for which
cached data exist on the investigated computer only.
Correlation with server records is only possible when such
records actually exist, and the investigator has legal access to
them.

Stevens studied clocks and described a clock model where
each clock is described as the clock it was originally derived
from plus the sum of all adjustments, errors and drift. [4] The
clock model described by Stevens was refined by Buchholz, in
the formalization of a clock model as the sum of clock drift
and adjustments. [5] These models are versatile and provide
good tools for event reconstruction in cases where clock
adjustments, error and drift are known or measurable. They do
not however by themselves assist in the identification of clock
adjustment, error or drift.

Finding Evidence of Antedating in Digital
Investigations

Svein Yngvar Willassen

A

ARES 2008, Paper ID 349 2

 In previous works, we have defined a formalism for clock
hypotheses and consistency testing with causality between
timestamped events. [6] This formalism has been utilized to
develop models for the updating of timestamp values in digital
systems. [7] In this work, we use the happened-before relation
defined in [6] to analyze specific properties of file systems.
These properties are then used to find evidence of antedating.

III. SEQUENCE NUMBER CAUSALITY

Sequence numbers is a feature occurring in many digital
systems, such as file systems and networks. By using a
sequence number, the systems designer ensures that sequence
numbered entities can be ordered in the correct order and be
distinguished from each other. Sequence numbers are usually
implemented by a counter increasing whenever a new
sequence numbered entity is produced and associating a copy
of the value of the counter (the sequence number) with that
entity. It is useful to distinguish between wrapping sequence
numbers and strictly increasing sequence numbers. Wrapping
sequence numbers have a limited span of values. When the
highest value is reached, the counter wraps and starts at the
lowest value. A strictly increasing sequence number on the
other hand is a sequence number that does not wrap. In theory
a strictly increasing sequence number would have to be able to
represent infinite numbers. In practice however, a sequence
number can be viewed as strictly increasing as long as the
number of values that can be represented is large enough to
produce strictly increasing numbers over a significant time
span, for example the lifetime of a computer.

When investigating a system with sequence numbered
entities, the distinction between wrapping sequence numbers
and strictly increasing sequence numbers is important. With a
wrapping sequence number, one would not be able to know
how many times the counter had wrapped when the sequence
number was generated. When correlating two entities with
sequence numbers, one would therefore not be able to
determine if one of the entities was produced before the other.
In a system with strictly increasing sequence numbers on the
other hand, one can be sure that the entity with the highest
sequence number has been produced after the entity with the
lowest sequence number. In such a system, each production of
a sequence numbered entity is causally dependant on the
production of every other sequence numbered entity with
lower sequence number.

Many file systems contain File System Journals with
sequence numbered entities. For example, in NTFS, journal
file transactions are labelled with a 64-bit number (so called
Logical Sequence Number - LSN) that increases throughout
the lifetime of the file system. The proper functioning of the
journaling feature in NTFS depends on this number being
strictly increasing. [8]

In these systems, it is possible to find causal connections by
analyzing journal files. The amount of information that can be
derived from the journal file itself is however limited. Since
every write to a file produces a journal file entry and the
journal file has limited size, old entries will quickly be
overwritten. Some file systems, such as NTFS, store the
journal file sequence number (the LSN in NTFS) in the file
metadata entry. If the journal file sequence number is strictly
increasing, the generating events are causally connected.
Causal connections then exist between the events of the last
change of the file entry on all files stored on the file system.

Example 1. Consider the following set of allocated file
entries from an NTFS Master File Table. Let ei be the last
update of the current data in entry i.

Entry 45 log file sequence number 432627
Entry 46 log file sequence number 186345
Entry 47 log file sequence number 735294
Entry 48 log file sequence number 165093
Entry 49 log file sequence number 878121
Entry 50 log file sequence number 782427
Entry 51 log file sequence number 561987

Since logical sequence numbers in the journal file (log file)
are allocated sequentially, we can obtain the causal ordering of
the last update events by sorting the file entries by their log file
sequence number: e48 → e46 → e45 → e51 → e50 → e47 → e49.

IV. ALLOCATION SEQUENCE CAUSALITY

A first-fit allocation storage is a system in which each new
data item is stored in the first available storage location.
Deleting data items is allowed and can be done at any time
after the data item has been stored in a storage location. After
a data item has been deleted, it may be overwritten by new
data at any time. It may be possible to recover deleted data,
but it is not possible to recover data that has been overwritten.

A special form of first-fit storage is first-fit storage with
generation-markers. In this storage, it is possible to identify
which generation the data in each storage location belongs to.
The generation of a storage location is an identification of how
many times that data in that storage location has been
overwritten. Fig. 1 shows a possible allocation sequence with
generation markers.

ARES 2008, Paper ID 349 3

Fig. 1 Allocation sequence with generation markers

In a system with generation markers, there is a causal
connection between every pair of consecutive generations at
each storage location. The storage of data in the i-th storage
location generation g can only commence if the data present in
the i-th storage location generation (g-1) has already been
stored and deleted. Therefore, for every storage location i, the
storage of data in generation (g-1) happened-before the storage
of data in generation g. Generally; due to the transitivity
property of the happened-before relation, the event of storing
data in a storage location is causally dependant on the storing
of all previous generations in that storage location.

Let ,i gs be the i-th storage location generation g. Let

,i gse be the event of storing data in the i-th storage location at

the g-th generation. Then for all i and g; , 1 ,− →i g i gs se e . Due

to the transitivity of → , for all generations g,

, ,()∀ < →i h i gs sh g e e (1)

We now consider the storage of data in storage locations
with generation g = 0. When g = 0, there cannot exist any
storage location which has been deleted and then overwritten
with another data item, because this would have increased the
generation number above 0. The only place where new storage
locations can be allocated with generation number 0 is at the
end of the storage.

Let , 0is be the i-th storage location in a first-fit storage,
generation 0. Let , 0ise be the event of storing data at generation

0 in the i-th storage location. Then, for all i,

, 0 , 0()∀ < →j is sj i e e (2)

Two different types of causal event sets have now been
defined from the first available storage with generation
markers; the causality between storage of storage locations
with g = 0, and causality between storage of increasing
generations at each storage location. These sets intersect. Each
causality set for increasing generations start at g = 0. Each
such element is also part of the g = 0 causal set. With these
two types of causal connections in the first available storage
with generation markers, a causal connection relating all
storage locations in the set has been found.

Example 2. Consider the storage location set in Fig. 2. In
the figure, the storage locations are shown horizontally, and
generations vertically. Deleted data are shown in lighter
colour. For each storage location, the topmost item is always
the current data stored in the location. There are now causal
connections, where each generation within a storage location
happened-before the next generation, and each storage location
at generation 0 happened-before the next location at generation
0. The resulting Direct Acyclic Graph of the creation events of
the existing storage locations is shown in Fig. 3.

Fig. 2 Storage locations with generations

Fig. 3 Causality of existing (non-overwritten) storage locations

Example 2 shows how the happened-before relation imposes
a strict partial order on the set of storing events. The partial
order follows from the properties of the happened-before
relation; it is irreflexive, transitive and asymmetric. [6] The
relation does not however relate all elements of the set of

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 00 00 0

01 0 00 0 1 0

0 0 0 001 1 0

0 1 2 3 4 5 6 7

Delete 1,4,5

Store two

Delete 1,3

10,2se

9,0se

8,1se

7,0se

6,1se

5,2se

4,1se

3,4se

2,0se

1,1se
0,1se

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0

1 1 1 1 1 1

2

3

2 2

4

0 0 0

1 1

ARES 2008, Paper ID 349 4

storing events. Elements with g > 0 are not related to other
elements with g > 0, as shown in Fig. 3. A total order is
therefore not imposed on the set of storing events.

The Master File Table of the NTFS file system is a first-fit
storage with generation markers. Each file stored in NTFS has
its own entry in the Master File Table. Data stored in the MFT
entry include the file name, the list of data runs where the file
data is stored, timestamps and other data such as information
on whether the data is compressed or encrypted using the
compression and encryption features in the file system.
Allocation of file entries within the MFT occurs on a first-fit
basis. [9] Each file entry contains a generation marker, termed
entry sequence number, which identifies the generation of that
entry. This number is increased whenever the file entry is
reused. Thus, causal connections exist between file entries in
the Master File Table of the NTFS file system, following the
reasoning above.

V. IMPLEMENTATION

An implementation of the above reasoning above was made
in a program named TimeStampLogic. The program uses the
utilities in a modified version of the Sleuthkit [10] to find file
instances in an NTFS file system image. It then parses the
output of these utilities and produces internal representations
of file instances, which can then be analyzed. The analysis
consists of two modules; SequenceChecker and
LogSequenceChecker. SequenceChecker tests the generation
causality of the file entries, by the reasoning in Section IV. All
entries are compared with the last preceding entry with the
base generation sequence number. Since the allocation of
Master File Table entries are done in a first-fit fashion, all
entries have been stored at a later time than the last preceding
entry with the base generation sequence number.
LogSequenceChecker tests the causality of the updating of file
entries based on the log file sequence numbers stored in the
Master File Table file entries, by the reasoning in Section III.
The instances are sorted by the associated Log File Sequence
Number (LSN) and then printed in sorted order.

By inspecting the timestamps associated with each file entry
in comparison with the two different sequences produced by
SequenceChecker and LogSequenceChecker, it can now be
determined if the computer clock has been changed.

VI. DOCUMENT ANTEDATING EXPERIMENT

In order to test the theory and implementation, a document
antedating experiment was performed, in which four subjects
were asked to antedate a document. A laptop computer was
prepared for the experiment. The hard drive of the computer
was wiped. The computer was then started and the system
clock was adjusted to approximately two and a half years
before the time of the experiment with the BIOS setup

program. Then, the Windows XP operating system was
installed. After installation, a series of shutdowns, clock
forward adjustments and reboots were performed, until the
clock was adjusted to civil time in October 2006, when the
experiment was performed. The goal of this procedure was to
produce data on the hard drive similar to data that would have
been produced by real usage of the computer. For each step,
the computer was shut down, then started in BIOS setup,
where the clock was adjusted forward. The computer was then
booted into Windows XP and used for web surfing,
downloading files or other normal user activity. After this
procedure, the hard drive was copied to an image file on
another hard drive using the disk dump utility dd, producing a
reference image of the experiment computer.

The experiment computer was then handed to the
participating subjects with the following task: “Store a
document on this computer in such a way that a person
investigating the computer will conclude that the document
was produced on May 17th, 2006.” When each subject
returned the computer, the hard drive was copied to an image
file on another hard drive for analysis. Then, the experiment
image was copied back to the computer before it was handed
to the next subject. The subjects participating in the
experiment were:

Subject no Computer experience level
 1 Average computer user, using computer every day

2 Law Enforcement Computer Forensic Investigator
3 Inexperienced office user, mostly used to websurfing
4 Advanced computer user with programming experience

Each image was then analyzed using the TimeStampLogic
program. Each subject was also interviewed to determine how
they had chosen to perform the task.

VII. RESULTS

In the following, each of the images resulting from imaging
the experiment computer after each subject had completed the
task is analyzed. The purpose of the analysis is to determine if
the document in question has been antedated or not. In a
hypothesis based approach to digital investigation (defined by
Carrier [11]), this can be formulated as two different
hypotheses:

H0: The document was produced on 17th of May.
H1: The document was produced later than 17th of May, but

has been antedated to 17th of May.

The task for the investigator is then to find evidence
supporting or rejecting H0 and H1 using TimeStampLogic and
other investigative tools.

ARES 2008, Paper ID 349 5

A. Subject 1

The subject gave the following information about how the
task was completed: I adjusted the clock on my Mac to May
17th. I then produced the document in Microsoft Word on the
Mac. When saved on the Mac, I copied the document to my
USB stick and inserted it into the PC. I then copied the
document from the USB stick to the PC. I believe producing
the document on the Mac may have prevented the creation of
timestamps inside the Word document.

When analyzed with TimeStampLogic, the results of this
operation did not produce a result significantly different from
analysis of the reference image. The introduction of new files
when the computer was booted and a new document was
copied to it, did not produce any new inconsistencies reported
by TimeStampLogic. The document has Modified timestamp
on the 17th of May, and Created and Accessed timestamps on
the date of the experiment. This is consistent with timestamps
produced when files are copied to a medium. Other evidence
suggesting that the file had been copied to the medium on the
date of the experiment was also found, for example a link-file
to an external drive, showing that an external drive had been
connected to the computer. If the file had been copied from
another computer, the Modified timestamp would then be
related to the clock of that computer and not the investigated
computer. Since no evidence is available to test clock
hypotheses for the other computer, there is no evidence to
either support or reject a hypothesis that the production of the
document actually occurred on 17th of May civil time. The
analysis is therefore inconclusive in this case. The reasonable
investigative response in cases like this is to try to get hold of
the computer on which the document was produced and do the
same type of analysis on that computer.

In response to the subject’s claim that timestamps had not
been created inside the Word document, it was examined for
timestamps in the metadata. Such timestamps were found,
identifying that the document had been created and last
changed on May 17th. These timestamps would also refer to
the clock on the other computer, which will have to be
analyzed for evidence.

B. Subject 2

The subject gave the following information about how the
task was completed: I started the PC and connected it to the
Internet. I then downloaded and installed OpenOffice on the
PC. I then restarted the computer, went into BIOS and
adjusted the date back to May 17th. After booting the computer
again, I used OpenOffice to create and store the document. I
then booted again and adjusted the clock back to current time.
I used OpenOffice because I think it doesn’t have the same
amount of metadata as Microsoft Word. I also think
downloading and installing OpenOffice would prevent a
proper investigation, since it probably overwrote a lot of
deleted data.

When analyzed with TimeStampLogic, a significant higher
number of inconsistencies were reported with both
SequenceChecker and LogSequenceChecker. Listing all files
on the medium ordered by both the MFT Entry number
(SequenceChecker) and Log Sequence Number
(LogSequenceChecker), showed several hundred files with
Created, Modified and Accessed timestamps on Oct 11th in the
time period 07:28-07:40 AM. After these (in terms of entry
number and log sequence number), approximately 50 files with
Created, Modified and Accessed timestamps on May 17th time
period 07:42-07:48 were listed. All timestamps of the
document in question were set to May 17th in the period 07:42-
07:48.

The timestamps on the document itself were in this case set
to May 17th, in contrast to Subject 1. There is however
evidence in this case supporting H1:

- Storing of a significant number of files causally
dependant on storing of files occurring on Oct11th,
were timestamped May 17th, something that is not
possible unless the clock has been adjusted, or the
timestamps changed.

- When the date changes from Oct 11th to May 17th, the
time of day only moves approximately 2 minutes
forward. This indicates that the subject changed the
date but did not bother to change the time of day. If the
clock adjustment had occurred by an error or some
other mysterious event, it is not very likely that it would
have ended up at this exact time of day.

The subject’s claim that he made the investigation more
difficult by installing OpenOffice, does not seem to be correct
in the context of using TimeStampLogic to check timestamp
consistency. It may be the case that installing a new program
would overwrite previously overwritten material, but this does
not help, since TimeStampLogic does not rely on the
investigator’s ability to recover deleted material.

C. Subject 3

The subject gave the following information about how the
task was completed: I don’t know how to manipulate
timestamps, so I just went into the control panel and set the
date to May 17th. Then I used Microsoft Word to produce the
document. Then I set the current date again in the control
panel.

On this image, TimeStampLogic produced the same type of
results as on the image from Subject 2. Approximately 10 files
were listed with Created, Modified and Accessed timestamps
on Oct 12th from 9:17-9:44 PM. After this (in terms of MFT
entry sequence and LSN sequence), approximately 10 files
were listed with timestamps at May 17th 9:46-9:52 PM. This
gives evidence for H1, for the same reasons as for Subject 2.

ARES 2008, Paper ID 349 6

In this case, as opposed to the case of Subject 2, the clock
change was done in the operating system. Therefore, the event
logs of the system were searched to determine if the clock
change had logged a system event. No such event was found.
Windows XP has a system logging feature that allow logging
of clock change events. This particular event is however
logged only if Privileged Use logging is enabled, something it
is not by default. [12]

It is interesting to note that both Subject 2 and 3 changed
the date without changing the time of day. Both in the BIOS of
the experiment computer and in the Windows XP control
panel, changing date is done by a separate control than
changing time of day, even if they are both related to the same
underlying clock. A plausible rationale for not changing the
time of day could be that it would then be easier to adjust the
clock back to the current time, because one would then not
have to resynchronize with an external clock. When asked
about this, subject 3 said: I didn’t think about that. I just
wanted the correct date on the document. The time of day
didn’t matter to me. I might have thought about it if the time of
day were of any importance, for example if it mattered if I
were at work at the time or not.

D. Subject 4

The subject gave the following information about how the
task was completed: I used my own pc for the antedating. I
adjusted its clock back to May 17th, and produced the
document using Microsoft Word. I then copied the document
over to the experiment PC using my USB-stick.

The story of Subject 4 matches the story of Subject 1, and
the results of TimeStampLogic were similar. No additional
inconsistencies were found, and the results were inconclusive
on the question of whether the document was antedated or not.
Also in this case, link files pointing to an external medium
identified another computer as the likely source for the
document.

E. Summary

In the document antedating experiment, four subjects were
asked to antedate a document in such a way that it could not be
determine that the document file was antedated. Two of the
subjects performed the antedating in such a way that the
methods described in this work could produce evidence
supporting the hypothesis that the document was antedated and
not produced on the date it was timestamped to. Two of the
subjects did the antedating itself on another computer and
copied the resulting document to the investigated computer. In
this case, it could not be determined that the document was
antedated, but it could be determined that the document had
been copied from another computer, thus another possible item
of evidence was found. It is known from the explanation from

the subjects, that they produced the antedated document on the
other computer by adjusting the clock back to May 17th, which
is the same method used by Subject 2 and 3 on the investigated
computer. Investigation of the other computer with the
methods described in this work would therefore most likely
have produced evidence supporting the hypothesis that the
document was antedated.

VIII. CONCLUDING REMARKS

Causality reasoning can be used to check timestamp
evidence for consistency with causal ordering of events. Such
reasoning can be used to determine if digital information has
been antedated or not. The document antedating experiment
has shown that causality reasoning can provide evidence of
antedating of computer files in practical situations, where
subjects have antedated a file. The described methods can be
implemented in existing tools for digital investigation such as
the Sleuthkit or EnCase. This would provide investigators with
the possibility for time and causality reasoning in real cases.

The antedating methods used by the subjects in the
experiment are certainly not the only way to antedate a
document. Other possible methods can be conceived:

1. Produce the document at current time, then changing
its timestamps by special software. This can be done
without introducing the software in question on the
investigated computer by removing the medium and
perform the change on another computer.

2. Finding another file matching the desired timestamps,
then replacing the contents of that file with specialized
software.

3. Using the same method as used by the subjects in the
experiment. Then use special software that adjusts all
timestamps on the medium to match the story. Such
software could be called anti-TimeStampLogic.

In the case of conceived method 1, TimeStampLogic would
probably report the single file as an inconsistency. In the case
of conceived method 2 and 3 however, it is not likely that
TimeStampLogic would be able to find any inconsistencies.
Producing evidence of antedating in these cases would have to
rely on other methods, if possible at all. Thus, clock hypothesis
testing methods described here are not perfect methods that
cannot be avoided by a crafty antedater.

This possibility of evidence manipulation does not however
imply that the described methods are not useful in real
investigations. Consider the adversaries in a digital
investigation, the Investigator and the Perpetrator. The
Investigator usually possesses knowledge of digital
investigation and tools that can comb a digital medium for
evidence, including tools for digital imaging and data
recovery. The Perpetrator on the other hand is likely to be an

ARES 2008, Paper ID 349 7

average computer user, and does not know how to protect
himself from the scrutiny of a digital investigation or where he
should go to obtain the necessary tools. The Investigator also
has time on his side. Once a digital medium has been
forensically imaged, he has plenty of time to investigate its
contents. The Perpetrator on the other hand never knows when
the Investigator will turn up to seize his data, if ever. He
therefore has to be prepared at all times and run the anti-
forensic procedure again and again after every action that
would leave incriminating evidence. There is no room for
mistakes by the Perpetrator. If he makes a small mistake in his
anti-forensic procedure, the evidence may be there waiting to
be discovered by the Investigator. The Investigator on the
other hand can make a lot of mistakes, as long as he doesn’t
mess up the original data. He can always start from a fresh
image at a later time, should he feel that there is more to find
or that current results rely on misinterpretations. All in all, the
Investigator has a tremendous advantage over the Perpetrator
in digital investigations.

The above can also be viewed in light of Locard’s exchange
principle, in which it is stated that every physical contact
yields exchange of matter so that subsequent forensic
investigations can prove that the contact occured by analyzing
the exchanged matters. By using special software that adjusts
all timestamps on the medium to match a predefined story, it is
likely that a special timestamp pattern specific to that software
would be created. It would then be possible for the investigator
to produce evidence of the usage of such software. This would
be highly undesirable for the perpetrator, since it would create
an impression that he had something to hide.

Applying this reasoning to the methods developed in this
work, the conclusion must be that there exist methods by
which the investigation methods described in the work can be
avoided. This is however difficult to do to in such a way that it
cannot be detected. Subjects who want to use antedating are
not likely to possess the required knowledge to do this. The
described methods are therefore adequate for exposing
antedating in most real investigations.

REFERENCES

[1] B. Schatz, G. Mohay, and A. Clark, "A correlation method for
establishing provenance of timestamps in digital evidence,"
Digital Investigation, vol. 2006:3S, pp. 98-107, 2006.

[2] M. C. Weil, "Dynamic Time & Date Stamp Analysis,"
International Journal of Digital Evidence, vol. 1:2, 2002.

[3] C. Boyd and P. Forster, "Time and date issues in forensic
computing - a case study," Digital Investigation, vol. 2004:1, pp.
18-23, 2004.

[4] M. W. Stevens, "Unification of relative time frames for digital
forensics," Digital Investigation, vol. 2004:1, pp. 225-239, 2004.

[5] F. Buchholz, "An Improved Clock Model for Translating
Timestamps," James Madison University, Department of
Computer Science JUM-INFOSEC-TR-2007-001, 2007.

[6] S. Y. Willassen, "Hypothesis based investigation of digital
timestamps," in IFIP WG 11.9 Workshop, Kyoto, Japan, 2008.

[7] S. Y. Willassen, "Timestamp evidence correlation by model based
clock hypothesis testing," in E-Forensics 2008, Adelaide,
Australia, 2008.

[8] M. E. Russinovich and D. A. Solomon, Microsoft Windows
internals : Microsoft Windows Server 2003, Windows XP, and
Windows 2000, 4th ed. Redmond, Washington: Microsoft Press,
2005.

[9] B. Carrier, File system forensic analysis. Upper Saddle River,
N.J.: Addison-Wesley, 2005.

[10] B. Carrier, "Sleuthkit," Available at: www.sleuthkit.org.
[11] B. Carrier, "A hypothesis-based approach to digital forensic

investigations," Center for Education and Research in Information
Assurance and Security, Purdue University Tech Report 2006-06,
2006.

[12] University of Delaware Police Computer Forensics Lab, "Time
Change Captured in Event Log,"
http://128.175.24.251/forensics/timechange.htm Accessed: Oct 3.
2007

Using Simplified Event Calculus in Digital Investigation

Svein Yngvar Willassen
Department of Telematics

Norwegian University of Science and Technology
O.S. Bragstads plass 2

7491 Trondheim, Norway
+47 92449678

svein@willassen.no

ABSTRACT
In a hypothesis-based approach to digital investigation, the
investigator formulates his hypothesis about which events took
place, and tests them using the evidence available. A formalism
for the description of the investigated system is useful in the
hypothesis formulation and testing. Simplified Event Calculus, a
form of propositional logic, can be used to define and test
hypotheses in a digital investigation. When a system is modelled
in this logic, observed states can be used to find action hypotheses
and test them in the model. This can assist investigators and fact-
finders in reconstruction of events from digital evidence. The
logic can also be used to derive invariants for a system that can be
utilized in tools checking evidence from these systems for
consistency.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and formal languages]:
Mathematical Logic – model theory, temporal logic.

General Terms
Theory, Legal Aspects, Verification.

Keywords
event calculus, digital investigation, propositional logic

1. INTRODUCTION
Investigations are inquiries into past events. The purpose of an
investigation is to find evidence that can establish an
understanding of events previously taken place. Investigation of
digital media with the purpose of finding evidence is commonly
referred to as digital investigation. The purpose of digital
investigation is to find evidence related to the events under
investigation. In recent works, most notably by Carrier, efforts
have been made to make the digital investigation process based on
scientific principles, by using a hypothesis-based approach. [1] In
this approach, the investigator formulates his hypothesis about

which events took place, and tests them using the available
evidence.

In a hypothesis-based approach, it is useful to use a formalism to
describe the system under investigation, and the events that have
taken place. Such a formalism needs to be able to describe events
occurring on a system and their effect on the state, in such a way
that the investigator’s hypothesis can be tested for consistency
with the evidence on the examined system. Previous works have
used variants of Finite State Machines to represent the system
under investigation and parts thereof. [1, 2] In this work, a variant
of propositional logic will be used for the same purpose. This
paper examines if and how Shanahan’s Simplified Event Calculus
[3] can be used in a hypothesis based approach to digital
investigation.

2. SIMPLIFIED EVENT CALCULUS
In Simplified Event Calculus, the world is modelled with fluents
and actions. Fluents are states that can hold for a specified or
unspecified period of time. Actions are occurrences that initiate or
terminate a fluent. Occurrences of actions and fluents are defined
with the HoldsAt and Happens predicates, and the affection of
actions on fluents is defined by the predicates Initiates and
Terminates. In addition, there is an Initially predicate, for
initiating fluents from the start. The effect axioms of the
Simplified Event Calculus are:

HoldsAt(f,t2) Happens(a,t1)

 Initiates(a,f,t1) t1 < t2 not Clipped(t1,f,t2)

←

∧ ∧ ∧
 (1)

Clipped(t1,f,t2)

 Happens(a,t) Terminates(a,f,t) t1 < t < t2

←

∧ ∧
 (2)

HoldsAt(f,t) Initially(f) not Clipped(0,f,t)← ∧ (3)

 Definition 1. An event calculus program is the conjunction of,

- A finite set S of Initially clauses of the form,
Initially(f)

- A finite set A of Happens clauses of the form,
Happens(a t),

- A finite set E of Initiates clauses and a finite set of Terminates
clauses of the form,

1Initiates(a f ,t), ← Π

1Terminates(a f ,t), ← Π

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.
Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

where Π does not mention the predicates Initially, Happens,
Initiates or Terminates and every occurrence of the HoldsAt
predicate is of the form

2HoldsAt(f t),

- The effect axioms of simplified event calculus
- A finite set of general clauses not mentioning the predicates
Initially, Happens, Initiates, Terminates or < .

For further description of the Simplified Event Calculus, the
reader is referred to Shanahan’s work on the subject. [3]

3. A SIMPLE FILE SYSTEM MODEL
For the purpose of this paper, we define a simple file system: This
file system contains files, and each file has an Accessed timestamp
and a Modified timestamp. Files can be Read or Written. Reading
a file causes the Accessed timestamp to be updated. Writing a file
causes both the Accessed timestamp and the Modified timestamp
to be updated. There is only one timestamp of each type for each
file, so whenever a timestamp is changed, the previous value is
lost.

Changes in the simple file system can now be represented as an
event calculus program, where the fluents are file timestamps with
an associated clock value, and actions are the operations that
might change the timestamps. For the simple file system, the
fluents can be called aAccessed(file,)τ and mModified(file,τ) .

Further, actions can be represented with Read(file) and

Write(file) . The set E of Initiates and Terminates clauses will
then contain clauses that Initiates timestamps with the value from
current system clock c(t), and Terminates them:

Initiates(Read(file),Accessed(file,c(t)),t) (4)

Initiates(Write(file),Accessed(file,c(t)),t) (5)

Initiates(Write(file),Modified(file,c(t)),t) (6)

1 1Terminates(Read(file),Accessed(file,c(t)),t) t < t← (7)

1 1Terminates(Write(file),Accessed(file,c(t)),t) t < t← (8)

1 1Terminates(Write(file),Modified(file,c(t)),t) t < t← (9)

In most real file systems there is always a value assigned to the
time stams of a file. It therefore makes sense to define Initially
clauses that initiates fluents for the timestamps, so they will hold
from the start:

0Initially(Accessed(file,))τ (10)

0Initially(Modified(file,))τ (11)

In the simple file system model, S is the conjunction of formulae
(10) - (11) and E is the conjunction of formulae (4) - (9). With a
definition of a set A of Happens clauses, an event calculus
program for this simple file system has been completed. Then,
SLDNF resolutions can be utilized to search the space of possible
event histories and test propositions about fluents at particular
moments in time.

Example 1. Let a file be Read at t = tR and subsequently written
at t = tW, so that R Wt t< . Let c(t) be an integer, so that 0 0τ = ,
c(tR) = 5 and c(tW) = 10. Let an event program be defined by (4) -
(11) and the following clauses in A:

RHappens(Read(file),t)

WHappens(Write(file),t)
The timestamp fluents at certain moments in time can now be

examined by means of SLDNF resolutions. For example, let us
determine if the accessed time stamp at time t = tObs, R W Obst t t< <

has value 10.

Figure 1. Resolution of HoldsAt(Accessed(file,10),tObs)

Figure 1 shows a resolution for the observation of the Accessed
time stamp given a specific observation time. The right hand
branch of the resolution, representing the case that the time stamp
was initially set to the observed value fails due to the fact that
there is no Initially clause setting the Accessed time stamp to 10.
The left hand branch of the resolution assumes that an action a
happened at time t1 initiating the fluent Accessed(file,10) at time
t1. The only Happens clause that can satisfy this is
Happens(Write(file),tW). Since the evaluation of the clause
Clipped(tW, Accessed(file,10),tObs) fails, the left branch succeeds
and we can conclude that HoldsAt(Accessed(file,10),tObs) holds.

4. OBSERVATION SETS
The example in the previous section showed how Simplified
Event Calculus can be utilized to determine if specific timestamp
values holds at a specific moment in time, given known
occurrence of actions. This can be extended into taking the final
state of the system into account.

Definition 2. Formulated in the Simplified Event Calculus, an
Observation Set O is a finite set of HoldsAt clauses on the form

ObsHoldsAt(f t),

The observation proposition is the conjunction of the HoldsAt
clauses in the observation set. The observation proposition has the
form

np = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ

Where each ϕ is a HoldsAt clause contained in O, and n is the
number of elements in O.

With the definition of an observation set, the relationship between
an observation set and the sets S, E and A defining an event
calculus program can be investigated. An event calculus program
defines the behaviours occurring in a system in terms of the initial
state (S), the effect any actions would have on the states (E) and

ObsHoldsAt(Accessed(file,10),t)

Initially(Accessed(file,10))←

Obsnot Clipped(0, Accessed(file,10),t))∧

1 1Happens(a,t) Initiates(a,Accessed(file,10),t)← ∧

Obs Obs1 1t < t not Clipped(t ,Accessed(file,10),t)∧ ∧
FAIL

W1t t , a Write(file)= =

W Obsnot Clipped(t , Accessed(file,10),t)←

W ObsClipped(t ,Accessed(file,10),t)←

W ObsHappens(a,t) Terminates(a,Accessed(file,10),t) t < t < t← ∧ ∧

FAIL
�

the actions that actually occurred (A). With known S, E, and A,
possible states at a specific moment in time can be tested for
consistency with the event calculus program. When S, E and A
are known, SLDNF resolutions can be used to test observation
propositions and therefore confirm or refute possible observation
sets O. The observation set

{ }ObsO = HoldsAt(Accessed(file,10),t)

was in Example 1 determined to be a possible observation set for
S, E and A. This shows how a possible observation set can be
tested for consistency with an event calculus program.

Things are however different in an investigation situation. In an
investigation, the state at the time of the investigation is
observable, whereas information about occurred events is
unknown. Under the assumption that the investigator has all
information about the initial state S, and also thorough knowledge
about the workings of the system, E, the investigator can use the
knowledge about the observed state O to derive information about
occurred events. In this case A is unknown, whereas S, E and O
are known. The investigator can now infer knowledge about A
from the observation set O and the detailed knowledge about how
the system works, S and E.

Returning to Example 1, if the observed set is

{ }ObsO = HoldsAt(Accessed(file,10),t)

and A is unknown, the investigator can now reason that since
(from O) the fluent Accessed(file, 10) holds at the time of the
observation and since (from S) initially Accessed(file, 0), some
action must have occurred that terminated Accessed(file, 0) and
initiated Accessed(file, 10). From E, the investigator knows that
this must have been an action occurring at t = ta, where c(ta) = 10.
The investigator also knows that the action must have been either
a Read or a Write action, since (again, from E) these are the only
actions that can affect the Accessed fluent. The investigator can
therefore formulate two hypotheses about occurred actions, H1

and H2 where c(ta) = 10.

{ }1 aH = Happens(Read(file),t)

{ }2 aH = Happens(Write(file),t)

These hypotheses can be tested by SLDNF resolution of the
observation proposition for both H1 and H2, and both hypotheses
will be accepted. H1 and H2 are hypotheses about actions that
actually took place. If hypotheses about occurred actions are
accepted by an event program resolution, it means that they are
possible explanations for the observed set O. The hypotheses do
however, even if they are accepted, not imply full knowledge of
the set of actions A. Even if only one hypothesis is accepted, it is
still in the unknown if there were any actions in A for which there
exist no evidence anymore. In Example 1, it could for example be
the case that the file was Read at some moment prior to ta. The
timestamp fluent resulting from this Read would be Terminated
by the Read occurring at ta, and therefore not be observable at tObs.

5. ACTION HYPOTHESES
Definition 3. An action hypothesis H is a finite set of Happens
clauses on the form Happens(a t), derived from an observation set
O, given finite sets S and E in an event calculus program.

The acceptance of an action hypothesis means that it is a possible
set of actions that can explain the observation set O. In order to be
able to deduct possible courses of events from an observation set,
we would like to find all possible hypotheses H, given an
observation set O and knowledge about the system, represented by
S and E.

From Definition 2 the elements of an observation set O are
HoldsAt clauses representing the fluents that holds at the time of
the observation. The observation proposition to be tested in the
event calculus program is the conjunction of these HoldsAt
clauses and takes the form

np = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ (12)

where each ϕ is a HoldsAt clause.

From the effect axioms of the Simplified Event Calculus, these
HoldsAt clauses may exist either because they held initially
(formula (3)) or because an action occurred that initiated them
(formula (1)). There is no other way a HoldsAt clause can come
to existence than through formulae (1) or (3). It is therefore
possible to find all possible action hypotheses by reasoning on the
observation proposition, the Initiates clauses in E and the Initially
clauses in S. This reasoning does not have to consider termination
of fluents as per the Terminates clause in E, since this will be
done by means of SLDNF resolution when each hypothesis is
tested for acceptance. The proposition that all fluents in an
observation set has been initiated is the conjunction of the
initiation of each fluent and takes the form:

nq = ...1 2κ ∧ κ ∧ ∧ κ (13)

where each κ is the initiation of the corresponding ϕ in the
observation proposition p. In the following, this proposition will
be called the initiation proposition.

A fluent may exist because it held initially or because it was
Initiated by a clause in E. There may be more than one Initiates
clause in E initiating one particular fluent, and these must all be
considered. Written in propositional logic, the initiation of a
HoldsAt clause takes the form of a disjunction:

i i i im i...1 2κ = α ∨ α ∨ ∨ α ∨ η (14)

Where iκ is the i-th HoldsAt(f,t2) clause in q, iη is an Initially(f)
clause, m is the number of Initiates(a,f,t1) clauses affecting that
fluent and each iα is a clause on the form Happens(a,t1) where
there exists a clause Initiates(a,f,t1) in E.

The initiation of the fluents in the observation proposition can
now be found by inserting (14) into (13), yielding

m

m

n n nm n

q = (...)

 (...)

 ...

 (...)

11 12 1 1

21 22 2 2

1 2

α ∨ α ∨ ∨ α ∨ η

∧ α ∨ α ∨ ∨ α ∨ η

∧

∧ α ∨ α ∨ ∨ α ∨ η

q is a conjunction of disjunctive clauses. By reordering it into a
disjunction of conjunctive clauses, a set of action hypotheses will
be found, where each of the conjunctive clauses in the disjunction
is an action hypothesis H.

Consider an event calculus program with S and E as previously
defined and O as defined by the following observation
proposition, where 0mc(t) ≠ τ and 0ac(t) ≠ τ :

Obs

Obs

m

a

p = HoldsAt(Modified(file,c(t)),t)

 HoldsAt(Accessed(file,c(t)),t)∧
 (15)

The initiation of these fluents can then be expressed as a
conjunction of disjunctive clauses as follows:

m

m

a

a

a

q = (Happens(Write(file),t)

 Initially(Modified(file,c(t))))

 (Happens(Read(file), t)

 Happens(Write(file),t)

 Initially(Accessed(file,c(t))))

∨

∧

∨

∨

Since there is no Initially(Modified(file,c(tm))) or
Initially(Accessed(file,c(ta))) in S, we know that these clauses are
false. q then becomes:

m

a

a

q = Happens(Write(file),t)

 (Happens(Read(file), t)

 Happens(Write(file),t))

∧

∨

Rewritten as a disjunction of conjunctive clauses:

m a

m a

q = Happens(Write(file),t) Happens(Read(file), t)

 Happens(Write(file),t) Happens(Write(file),t)

∧

∨ ∧

So here we obtain two different hypotheses from the fluent
initiation:

{ }

{ }

1 m a

2 m a

H = Happens(Write(file),t), Happens(Read(file), t)

H = Happens(Write(file),t), Happens(Write(file),t)

6. DERIVING INVARIANTS
The described methods can be used to test the observation
proposition in the general case, and thereby determine properties
of the simple file system defined in formulae (4) - (11). The
general observation proposition for a file in the simple file system
was expressed in (15). Now, if 0mc(t) ≠ τ and 0ac(t) ≠ τ , there
must have occurred actions initiating these fluents. As previously
determined, these actions must have been

{ }

{ }

1 m a

2 m a

H = Happens(Write(file),t), Happens(Read(file), t)

H = Happens(Write(file),t), Happens(Write(file),t)
(16)

Now, by investigating the three different cases; m at t< , m = at t
and m at t> , properties of this system can be found.

In the case of m at = t , (16) is reduced to

{ }

{ }

1 m m

2 m

H = Happens(Write(file),t), Happens(Read(file), t)

H = Happens(Write(file),t)
(17)

Written as a disjunction

m m

m

(Happens(Write(file),t) Happens(Read(file), t))

 Happens(Write(file),t)

∧

∨

Which is equivalent to

mHappens(Write(file),t)

Thus the only hypothesis is,

{ }1 mH = Happens(Write(file),t)

The case of m at t< must be investigated further. The resolution
in Figure 6.1 shows that H2 is refuted if m at t< . The resolution
in Figure 6.2 shows that HoldsAt(Modified(file, c(tm)), tObs) in
H1 is accepted for m at t< . The resolution for
HoldsAt(Accessed(file, c(ta)), tObs) would look exactly like the one
shown in Figure 6.2 and is omitted here. From these resolutions, it
can be concluded that only H1 is accepted.

Figure 6.1 – Proposition fails for H2 when m at < t

Figure 6.2 – Proposition does not fail for H1 when m at < t

In the case of a mt t< , H1 is refuted, as shown in Figure 6.3. A
resolution for H2 would look exactly like the resolution in Figure
6.3, with Accessed and Read replaced with Modified and Write.

ObsmHoldsAt(Modified(file,c(t)),t)

mInitially(Modified(file,c(t)))←

Obsmnot Clipped(0, Modified(file,c(t)),t))∧

m1 1Happens(a,t) Initiates(a,Modified(file,c(t)),t)← ∧

Obs Obsm1 1t < t not Clipped(t ,Modified(file,c(t)),t)∧ ∧
FAIL

1 mt t , a Write(file)= =

Obsm mnot Clipped(t , Modified(file,c(t)),t)←

Obsm mClipped(t ,Modified(file,c(t)),t)←

Obsm mHappens(a,t) Terminates(a,Modified(file,c(t)),t) t < t < t← ∧ ∧

FAIL �

1 at t , a Write(file)= =

Obs

a

m a m a

Happens(Write(file),t)

 Terminates(Write(file),Modified(file,c(t)),t) t < t < t

←

∧ ∧

ObsmHoldsAt(Modified(file,c(t)),t)

mInitially(Modified(file,c(t)))←

Obsmnot Clipped(0, Modified(file,c(t)),t))∧

m1 1Happens(a,t) Initiates(a,Modified(file,c(t)),t)← ∧

Obs Obsm1 1t < t not Clipped(t ,Modified(file,c(t)),t)∧ ∧
FAIL

1 mt t , a Write(file)= =

Obsm mnot Clipped(t , Modified(file,c(t)),t)←

Obsm mClipped(t ,Modified(file,c(t)),t)←

Obsm mHappens(a,t) Terminates(a,Modified(file,c(t)),t) t < t < t← ∧ ∧

FAIL�

Thus, H2 is also refuted for a mt t< , showing that in the simple
file system, a mt t< cannot occur.

It has then been shown that for observations of every file in the
simple file system:

m at t >/

m a mt = t Happens(Write(file),t)⇒

m a a mt t Happens(Read(file),t) Happens(Write(file),t)< ⇒ ∧

These results would facilitate event reconstruction in a forensic
investigation of the simple file system, since the sequence of
events on can now be determined directly from the file timestamp
configuration.

The requirements on timestamp evidence can be explicitly stated
as:

m at t ≤

This result is also interesting, since it impose restrictions on the
formulation of a hypothesis for the system clock. Any occurrences
of m ac(t) c(t) > in the observation set must necessarily mean that
the clock has been adjusted backwards. If many files are available
in the observation set, it can also be determined when the clock
must have been adjusted.

Figure 6.3 – Resolution of H1 when a mt < t .

7. RESULTS
In the previous sections, a simple file system model was defined
in Simplified Event Calculus, and its properties were examined by
SLDNF resolutions. When the set of actions A was known, the
resolutions could be used to determine if a set of observations was
consistent with the model. When the set of action A was unknown

but a set of observations O was known, the model was used to
identify hypotheses of possible actions that could have occurred
and test if these were consistent with the observation set O.

Simplified Event Calculus can be used to identify hypotheses of
possible actions and test them for consistency with an observation
set for an investigated system, as long as it is possible to
determine how the system works (expressed by clauses in E) and
the initial state (expressed by the clauses in S). This method can
be used in digital investigations to identify hypotheses of which
actions occurred on a system, and test them for consistency with
the available evidence.

In Section 6, Simplified Event Calculus was used to derive
invariants that must always hold for the simple file system. The
method shown can be used for any system with known function
and initial state to derive invariants. In digital investigation, these
invariants can be used in tools that checks evidence from these
specific systems for consistency. Specifically, in systems where
timestamps are part of the model, the invariants can be used to
determine adjustments of the system clock the timestamps are
generated from.

8. CONCLUDING REMARKS
Simplified Event Calculus is a reasonable tool for building a
model of a system and determining its properties in a hypothesis-
based approach to digital investigation. By building such a model,
the investigator can find and test possible hypotheses about
actions that occurred on the system, and derive invariants for the
system.

The approach in this work has been purely theoretical. Whether
the Simplified Event Calculus can be used to model a real system
under investigation, or if it is practical to do so, is an area of
further study. In order to provide a full model of a real system in
Simplified Event Calculus one must understand the system in full,
something that can probably only be accomplished by studying
the implementation details of the system. It might however be
reasonable to construct a partial model only by studying the
effects of operations on the real system, if it can be justified that
the actions included in the model are the only actions of relevance
in the investigation.

9. REFERENCES

[1] B. Carrier, A hypothesis-based approach to digital
forensic investigations. CERIAS Tech Report 2006-06,
Purdue University, 2006

[2] P. Gladyshev and A. Patel, Finite State Machine
Approach to Digital Event Reconstruction, Digital
Investigation, vol. 1, p. 19, 2004.

[3] M. Shanahan, Solving the frame problem : a
mathematical investigation of the common sense law of
inertia. Cambridge, Mass.: MIT Press, 1997.

ObsaHoldsAt(Accessed(file,c(t)),t)

aInitially(Accessed(file,c(t)))←

Obsanot Clipped(0, Accessed(file,c(t)),t))∧

a1 1Happens(a,t) Initiates(a,Accessed(file,c(t)),t)← ∧

Obs Obsa1 1t < t not Clipped(t ,Accessed(file,c(t)),t)∧ ∧
FAIL

1 at t , a Read(file)= =

Obsa anot Clipped(t , Accessed(file,c(t)),t)←

Obsa aClipped(t ,Accessed(file,c(t)),t)←

Obsa aHappens(a,t) Terminates(a,Accessed(file,c(t)),t) t < t < t← ∧ ∧

FAIL �

1 mt t , a Write(file)= =

Obs

m

a m a m

Happens(Write(file),t)

 Terminates(Write(file),Accessed(file,c(t)),t) t < t < t

←

∧ ∧

VITA

Svein Yngvar Willassen received the siv.ing degree in Telematics at the Norwegian

University of Science and Technology in 1998. From 1999 to 2002, Willassen was a

Special Investigator at the Norwegian National Computer Crime Unit. From 2002 to

2005 he was the Computer Forensics Manager at Ibas AS. In these years, Willassen

performed a large number of digital investigations in criminal investigations as well as in

the private sector. He also participated in international work such as the authoring of the

Interpol Computer Crime Manual in the Interpol European Working Party on IT Crime

and the production of guidelines on Digital Evidence analysis in the International

Organization on Computer Evidence.

Willassen’s research interests are within the areas of computer crime and digital forensic

investigation, in particular investigation of mobile phones. He is the author of the

forensic tool SIMCon, and has served as expert witness in a significant number of cases

involving digital investigations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

