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ABSTRACT 

 

 

This work explores how the evidential value of digital timestamps can be enhanced by 

taking a hypothesis based approach to the investigation of digital timestamps. It defines 

the concepts of clock hypotheses, timestamps and causality in digital systems. These 

concepts are utilized to develop methods that can be used in an investigation to test a 

clock hypothesis for consistency with timestamps found in an actual investigation, given 

causality between specific events occurring in the investigated system. Common storage 

systems are explored for the identification of causality between the events of information 

storage. By using a logic programming variant of predicate calculus, a formalism for 

modelling the relationship between events and timestamp updating is defined. This 

formalism can be used to determine invariants in digital systems.  

 

Invariants and causality relations can be used to check a clock hypothesis for consistency 

with timestamp evidence. These methods can be utilized in software for digital 

investigation. By checking the large number of timestamps typically occurring on a 

digital medium, the methods can assist with the justification of a clock hypothesis, and 

thereby increase the confidence in specific timestamps found during the investigation. 

Previously, the checking of timestamps has relied upon the existence of timestamps from 

other evidence sources. With the methods defined in this work, justification of timestamp 

interpretation can be achieved without having to rely on timestamps from other sources 

of evidence. 

 

The methods developed in this work were implemented in a clock hypothesis consistency 

checker. This checker was tested in an experiment where subjects were asked to antedate 

a document. The checker was found to be able to produce evidence supporting a 

hypothesis that the document was antedated.  
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1 INTRODUCTION 

 

This chapter provides an introduction to timestamps, their use in digital investigation 

and challenges associated with such use. Section 1.1 describes timestamps and how they 

are created. Section 1.2 introduces the digital investigation process. Section 1.3 provides 

an introduction to the use of timestamps in digital investigation. Section 1.4 and 1.5 

discuss possible sources for error and uncertainty in timestamps and how they affect 

digital investigations. Section 1.6 presents the thesis statement of this work. Section 1.7 

presents existing related work. The discussion in this chapter serves as background 

material for the remainder of this work. 

 

1.1 Timestamps and their origin 

 

A timestamp is a recorded representation of a specific moment in time. In digital 

computing, a timestamp is a recorded representation of a specific moment in time in a 

digital format. This representation is either stored on a medium storing digital data, or 

transmitted on a network designed to convey digital data. Timestamps are generated in 

computers as the result of executed code in the processes running on a processor. The 

running program creates a timestamp by obtaining the value currently assigned to the 

local clock of the processor and storing it in memory. The value may subsequently be 

stored on non-volatile memory (such as a hard drive) or it may be included in data 

transmitted on a network. When a timestamp is generated, it is possible to associate 

execution of the code immediately before and after the timestamp was generated with the 

point in time the timestamp represents. Identification of the time when the enclosing 

code was executed is usually the purpose of the timestamp itself. The generation of the 

timestamp makes it possible to identify when the code ran, and therefore when the result 

of that code took effect. If the timestamp is stored on a non-volatile medium or 

transmitted and stored on another computer together with information that identifies the 

executed code, the executed code can be associated with the timestamp. Execution of 

specific code can be said to constitute an event. The timestamp associates the event with 

a specific point in time. The event can be said to have generated the timestamp. 

Although the code that constitutes the event itself is not the code that copies the 
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processor clock, the term reflects the cause of the generation of the timestamp; to assign 

a time to the event. The event that generated the timestamp is the generating event. 

 

When stored on a non-volatile medium, timestamps are typically stored in such a way 

that the generating event is clearly identified.  Current computer systems store large 

numbers of timestamps on their storage.  Some of the most common sources of 

timestamps are:  

 

- File systems: Typically each file on a file system has several associated 

timestamps, related to user actions on the files. For example, timestamps are 

commonly stored that indicates when each file was last read, written or otherwise 

changed by a user process.  

- Logs: System logging facilities usually log events from system processes in system 

logs. Each event has a timestamp. Network servers such as http, smtp, pop, imap 

and dhcp servers typically log each user transaction in a system log. 

- Email: SMTP mandates each smtp server to add its identity and a timestamp to 

transmitted email. Email messages therefore contain many timestamps. Other 

messaging protocols, such as SMS in GSM, also add server generated timestamps 

to each transmitted message. [1] 

- Application specific files: Many mainstream applications such as word processors, 

spreadsheets and web browsers generate timestamps and store them as part of 

their specific file format. If the format is known, the timestamps and events that 

generated them can be identified. 

 

Timestamps can be stored in different formats. Scope and resolution are inherent 

properties of timestamp formats. With scope is meant the timescale coverage of the 

format, in other words which specific time periods the format is able to represent. For 

example, the 32-bit UNIX time˙t format (see Appendix A.4) has the scope of [1901, 

2038], meaning that it is only able to represent specific moments in time in the period 

between year 1901 and 2038 AD.  The resolution of a timestamp format refers to the 

ability of representing two different moments close in time. Timestamps representing 

moments closer in time than the resolution of the format are not distinguishable. For 

example, the resolution of the time˙t format is one second. It is therefore not possible to 

reliably distinguish two different timestamps in the time˙t format if they represent 

moments in time closer together than one second. In addition to the representation of a 
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specific moment in time, a timestamp may or may not represent additional information. 

Some timestamps include information about the time zone in which the timestamp is 

valid. Such information is necessary in order to be able to compare timestamps generated 

in different time zones. 

 

Another important notion when dealing with timestamps is accuracy. The accuracy of a 

timestamp reflects how close in time the timestamp represent the actual time when the 

event occurred. The accuracy may be limited by a number of factors. Resolution is an 

important limiting factor of accuracy. The resolution of the computer clock, the 

timestamp format in computer memory and the timestamp format in non-volatile storage 

may differ. Therefore the accuracy may not be equal to the resolution of the stored 

timestamp. For example, the timestamp format used in the NTFS file system has a 

resolution of 100 ns (see Appendix A.1), but the resolution of the Windows internal clock 

is 1 ms, therefore the accuracy of timestamps in NTFS on Windows systems cannot be 

better than 1 ms. Accuracy in timestamps also reflect the time difference that may occur 

between the occurrence of events and the generation of the timestamps they are stamped 

with. 

 

1.2 The digital investigation process 

 

Investigations are inquiries into past events. The purpose of an investigation is to find 

evidence that can establish an understanding of previous events. During an investigation, 

evidence is examined in order to produce information about past events. Possible sources 

of evidence include witness statements, documents, physical evidence (i.e. fingerprints or 

biological evidence) and data stored on digital media. From examination of the evidence, 

information about the past events can be reconstructed. Event reconstruction is the final 

outcome of an investigation, and forms the basis for a decision. The final event 

reconstruction relies on interpretation of the evidence and is usually performed by a 

person or group of persons separate from those performing the investigation. This person 

or group is called the finder of fact, and could be a judge, magistrate, jury or other 

depending on the case and jurisdiction. During the investigation, the investigator 

formulates theories about possible events in order to find further sources of evidence, 

prepare the case for the correct jurisdiction and present the evidence to the fact finder in 

an appropriate manner. 
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Investigation of digital media with the purpose of finding evidence is commonly referred 

to as digital investigation. The purpose of digital investigation is to find evidence related 

to the events under investigation and present them to the fact finder. The process of 

investigating digital media has in previous works been divided into different phases. The 

Electronic Crime Scene Guide divides the digital investigation process into the following 

phases: Preparation, Collection, Examination, Analysis and Reporting. [2] Here, the 

collection phase involves identifying digital media potentially containing evidence and 

collecting them physically or by making a digital copy of their contents. Examination 

involves searching the collected data for evidence and analysis involves reviewing the 

examination results for their value in the case. Reporting involves presenting evidence in 

a form acceptable to the fact finder. Carrier and Spafford have proposed using a model 

similar to the model used in physical crime scene investigation. [3] In this model, the 

physical crime scene investigation is divided into Preservation, Survey, Documentation, 

Search, Reconstruction and Presentation of Theory. The digital crime scene investigation 

takes place in the Search and Reconstruction phase of the physical process. During these 

steps, any digital media are found and analyzed. The model proposes similar steps in the 

digital investigation process: Preservation, Survey, Documentation, Search, Reconstruc-

tion and Presentation of Theory. Preservation involves isolating the digital medium and 

making a forensic image backup of it. Survey, Documentation, Search and Collection 

involves finding the relevant evidence on the digital medium and preserving it. 

Reconstruction and Presentation involves performing a preliminary event reconstruction 

and present the resulting theory to the fact finder.  

 

Both models reflect the steps actually taken by investigators in digital investigations. 

First, digital media must be found and enumerated. Then, data on it must be preserved 

in order to secure the evidential integrity. This usually involves copying the data on the 

medium to another medium in such a way that no data is changed on the original. The 

data on the copy can then be analyzed for contents relevant as evidence. Due to the large 

amounts of data stored on modern data storage devices, the search is usually performed 

by a combination of manual and automatic search. There exist a number of helpful 

techniques employed by investigators in this phase such as keyword search, hashing and 

signature search. When any relevant data has been found, it must be documented, 

usually in the form of a report. Finally, the data is presented to the fact finder, either as 

printouts, or by having the investigator appear before the fact finder to report the 
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findings. Although final event reconstruction is up to the fact finder, one should bear in 

mind that the fact finder usually has little expertise in digital computing. The investi-

gator is often asked to present his theory on how the presented evidence can be used to 

reconstruct the investigated events. 

 

A formalization of the digital investigation process has been proposed by Carrier, by 

introducing the concept of an object history. [4] For a computer, the history includes the 

complete set of configurations, states and events that has occurred during the lifetime of 

the computer. A state is the sum of all variables that may occur in the computer, 

whereas an event is any action that may change the state. In this model, the digital 

investigation process is defined as formulating hypotheses about the history of the 

computer, and testing them against known values such as known user-input, data from 

other evidence sources and the final state of the system. With this model, the 

assumptions on which the event reconstruction is based are more explicit. This makes it 

possible for the investigator and the fact finder to assess the assumptions and decide if 

they are justified or not.  

   

1.3 The role of timestamps in digital investigations 

 

Timestamps play an important role in digital investigations. Traditionally, they are used 

to place the generating event at a specific moment in time, thereby facilitating event 

reconstruction. The identification that a certain event on a computer took place at a 

specific time makes it possible to correlate the event with events occurring outside the 

computer system. A witness statement that a certain computer was used at a particular 

time might for example be strengthened if the timestamps on the computer shows 

evidence of usage by the particular user at that time. It is often necessary to use 

timestamps to identify events occurring on different digital computers within the same 

timeframe. If a computer intrusion was committed from one computer to another, it 

would be necessary to examine the timestamps of the victim computer to find the exact 

time of the intrusion. This information can then be used to examine the activity on the 

computer where the attack originated. 

 

A particularly important application of timestamps in digital investigation is attribution. 

Attribution is the ability to attribute events to a specific person. This is important, 
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because most investigations aim at placing the responsibility for occurred events on one 

or more individuals. If evidence of the investigated events is digital, it may be necessary 

to place the event at a specific point in time in order to be able to attribute it to the 

correct person. If the time of the event inferred from the evidence is incorrect, it may not 

be possible to attribute it to anyone, or the event may be attributed to the wrong person. 

The prevalence of dynamic network addresses on the Internet makes timing important in 

all types of investigations of events that occurred on the Internet. In many such 

investigations, attribution relies on the identification of which computer were using an 

IP-address at a particular time. If the IP-address is dynamically assigned, the originating 

computer can only be identified if a log of the usage of the address exists, and the time of 

the event can be established with sufficient certainty and accuracy.  Only in this case can 

the originating computer be identified from the usage log by selecting the correct entry 

from the IP-address and time. When the originating computer has been identified, it can 

be examined for corroborating evidence.  

 

In many investigations placing the investigated events at a specific moment in time is 

also important in attributing usage of a computer to the correct person. For example, 

finding contraband images on an office workstation does not necessarily imply that the 

current user of the workstation placed them there, or even knew of their existence.  In 

order to attribute storing of the images to the current user, it is necessary to find 

evidence that links the user and the contraband. The time of the storage event as 

correlated with the time the user has been known to use the workstation is one possible 

link. 

 

1.4 Sources of error and uncertainty in timestamps 

 

For a number of reasons, stored timestamps may not accurately reflect the time of the 

generating event. As already mentioned, a timestamp may have an inherent inaccuracy 

caused by the resolution of the timestamp format, and the time between the actual event 

occurring and the generation of a timestamp. This inaccuracy may sometimes be large 

enough to give the timestamp limited value in an investigation. For example, the 

resolution of the Last Read timestamp in the FAT file system has a resolution of one 

day, meaning that it stores only the date and not the time associated with the event.  
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A timestamp always refers to the clock from which it is generated. Since the timestamp 

is a function of the clock, it is always relative to the adjustment of the clock. 

Unfortunately, clocks are not fully reliable. Clocks may drift, thereby generating 

timestamps gradually more different from those generated from other clocks. Clocks may 

also fail, and produce completely incorrect timestamps. Further, clocks on most systems 

may be adjusted at any time by the user of the system to show a different date and time 

than civil time (standard time in the jurisdiction in question). Such adjustment may be 

committed intentionally or unintentionally by the user. In the case of intentional 

adjustment, it may be done with the purpose of producing deviating timestamps 

(malicious adjustment), or it may be done for other reasons, such as sustaining the 

function of software programmed to work only a limited time. The consequence is that a 

timestamp is relative not only to the clock it was generated from in general, but also to 

the particular adjustment of the clock at the time the timestamp was generated. 

Therefore, even timestamps generated from the same clock cannot be reliably compared 

unless it can be justified that the adjustment of the clock is unchanged between creations 

of timestamps. In order to reliably compare timestamps from different clocks, the 

difference between the clocks must be found, and it must be justified for all clocks that 

their adjustment has not changed. 

 

Another consideration when assessing the correctness of a timestamp is events that took 

place after the timestamp was stored. A timestamp is just another piece of data stored on 

the storage of the computer. This means that unless the timestamp has been stored on a 

read-only medium, it can be changed by subsequent events on the computer. The 

timestamp may for example be deleted and overwritten by other data. It may also be 

changed to represent a moment in time earlier or later than it originally represented. 

Such changes may be intentional or unintentional on the user’s part and in the case of 

intentional changes, they may be committed with malicious intent or not. The ease, with 

which a timestamp may be changed, depends on the format and the storage location. 

Setting file timestamps to a different time on a UNIX system can for example be done 

easily with the date and touch commands. Changing timestamps in undocumented 

formats directly on disk may be significantly more difficult and may require specialized 

knowledge.  
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1.5 Implications of timestamp error and uncertainty in investigations 

 

The uncertainty associated with digitally stored timestamps implies that timestamps in 

general should not be relied upon as evidence without justification of the factors that can 

lead to errors. In particular, it should not be blindly assumed that timestamps are based 

on a clock that is adjusted to civil time. Further, it cannot be assumed that timestamps 

generated by different clocks are relative to the same clock. Not even when timestamps 

are based on the same clock, can one be absolutely certain that the time difference 

between the two events is equal to the difference between the timestamps. These 

uncertainties are worrying for investigators. If timestamps cannot be relied upon, then it 

is in many cases not possible to reconstruct the events in the case reliably. In particular, 

it will not be possible to attribute the events under investigation to a particular 

individual. This is a major problem, since in many cases the sole purpose of the 

investigation is to be able to attribute events to an individual. 

 

The current practice in digital investigations is to check the current time of the computer 

clock at the time of the investigation, and look for corroboration in the form of 

timestamps from other clocks. [5] The assumption is that if the current state of the clock 

is within reasonable synchronization with civil time, then that has been the case also 

earlier in the computer’s history. Any timestamps from external sources confirm the 

assumption, but the assumption is also made if no timestamps from external sources are 

found. If the clock on the investigated computer is significantly different from civil time 

and no external time references are found, there seems to be different approaches. Some 

investigators merely add the observed offset to the value of the timestamps stored on the 

computer, assuming that the current offset has also been the offset during the computer 

history. Others conclude that no inferences about the computer’s history can be drawn 

from observed timestamps when the clock differs from civil time at the time of the 

investigation.  

 

A common investigator attitude is to take evidence at face value unless contested by the 

opposing party. In the context of timestamps, this attitude means that timestamps in 

most cases are interpreted as correct and equal to moments in civil time, without further 

consideration of possible sources of error and uncertainty. As long as the opposing party 

does not have the knowledge required to challenge this position, the result of this 

approach will be that the fact finder takes the investigator’s interpretation of the 
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timestamps as fact. This is the result in many current investigations where timestamps 

are presented as evidence.  

 

The practice of investigating timestamps and present them without any consideration of 

possible error sources is questionable. Most important, such a practice may lead to a 

flawed event reconstruction, which may in turn lead to incorrect results such as incorrect 

convictions or acquittals. This is most certainly the case in an area where the 

investigation is performed by specialists and where neither counsel (of any party), 

accused nor fact finders have the necessary expertise to identify the problem. As long as 

this practice continues, there will be no development of methods that can define 

hypotheses of potential uncertainty in timestamp evidence and test them. The 

assumption that timestamps can be trusted as evidence is left unjustified and open to a 

simple attack. Suppose that the opposing party actually has the knowledge to understand 

the uncertainties and potential errors in timestamps. The timestamp evidence can in such 

a situation be contested, for example with an allegation that the clock previously has 

been erroneous or maladjusted. If the investigator has no method for testing errors and 

uncertainty in this situation, it is possible that the timestamp evidence will be refuted. 

 

From an engineering standpoint, a possible solution for the mentioned challenges would 

be to redesign computers to reduce problems with errors and uncertainty in timestamps 

as evidence. A possible approach would be to use clock synchronization to ensure that 

clocks on computers are synchronized with a universally recognized clock. Clock 

synchronization across computer networks has been studied extensively and can be said 

to be a well understood problem. There exist a number of recognized methods for clock 

synchronization as well as protocols for synchronizations of clocks across networks. [6, 7]  

It has also been proposed to change existing file systems, to allow systems to keep trails 

of previous timestamps for specific files, and not just overwrite timestamps when new 

timestamps are produced. This scheme was proposed in systems with synchronized 

clocks, to prevent malicious users from modifying timestamps directly without producing 

evidence of it. [8] 

 

There are however several problems with this approach. The most fundamental problem 

is that in most investigations, the computer containing the evidence has been controlled 

by the individual under investigation during the period of the investigated events. It 

cannot be assumed that this person would be interested in keeping the computer clock 
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synchronized in case the computer should be investigated. And even if the computer 

clock was actually synchronized with an external clock, it could not be assumed that the 

computer had been synchronized during its full history. It would even be possible for the 

computer owner to falsify the synchronization by using an external computer acting as a 

synchronization proxy, thereby making it look like the synchronization was towards a 

universal clock, when this was in fact not the case.  

 

Another possible solution from en engineering point of view would be to use digitally 

signed timestamps. In such a system, data would be sent to a trusted third party for 

timestamping using a trusted clock. The data would then, along with the timestamp be 

signed with the trusted thirds party’s private key. Such a solution has been proposed for 

use in digital investigations to enhance the trust in correct handling of digital evidence. 

[9] The usefulness for the investigation itself is however doubtful. As with clock-

synchronization, it is not very likely that a secure timestamp technology would be very 

widely adopted among computer owners in the case they should be investigated. 

 

1.6 Timestamps, causality and invariants, thesis statement 

 

New methods are required for digital investigation of timestamps and use of digitally 

stored timestamps as evidence. This work takes the approach that timestamp evidence 

can be tested in the hypothesis based approach suggested by Carrier. In this approach, 

the history of the medium under investigation is the complete set of configurations, states 

and events that has occurred during the lifetime of the medium. The data direct 

observable by the investigator is the final state of the medium. This includes observations 

of all timestamps stored on the medium. These timestamps are all functions of the 

computer clock at some previous state in the history, and any subsequent events that 

affect them. With this definition, it is possible to formulate hypotheses about the 

adjustment of the clock in previous states and events that affect timestamps. For 

example, the default investigator assumption in section 1.5 can be formulated as the 

following hypothesis: “The computer clock has been adjusted to civil time during the 

entire history of the computer. No subsequent events have changed the values of the 

timestamps.”  Having formulated a hypothesis, it can now be tested for consistency with 

the observed data. This work provides methods for such tests. 
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In this work, the concept of causality is used to test hypotheses about clocks and 

timestamps. Causality is a concept used to describe cause and effect. It can be defined as 

the relationship between two entities A and B, in which A is necessary for B. A and B 

could be objects, events, states or properties. In the context of digital investigation of 

timestamps it is useful to define causality as the relationship between events. Causality is 

then the relationship between two events, in which the first must have occurred in order 

for the second to occur. In digital computers, events and causality relations between 

them are defined by the hardware and software constituting the computer. Events change 

the state of the computer medium in the computer history model. Some events are 

timestamped and others are not. If the working of the hardware and software that 

constitutes the computer is known, then causality relationships between events can be 

inferred. These causality relationships can be used to test hypotheses about the computer 

clock and events affecting timestamps in the computer history model.  For example, if 

two timestamped events are causally connected, the timestamps have not been changed 

by subsequent events, and the clock has not been adjusted between the two events, then 

the timestamp of the second event must be later than the timestamp of the first event. 

[10] By testing for this and other properties of causal connections between timestamped 

events in a computer system, the formulated hypothesis can be accepted or refuted.  

 

Further, we explore how invariants can be found in systems containing timestamps. 

Condider for example a file system in which each file has three different timestamps. 

These timestamps can be updated by different system actions, where each action may 

update one or more time stamp. In such a system, there may be invariants. For example 

if every action updating the Modified timestamp also updates the Accessed timestamp, 

then the latter timestamp will always be set at the same or a later time than the 

Modified timestamp. As with causality, such invariants can be used to test a clock 

hypothesis and accept or refute it.  

 

The thesis statement for this work is then: 

 

The use of timestamps as digital evidence can be enhanced by testing if the observed 

timestamps are consistent with causality of the events they represent, and invariants in 

the systems in which they exist.   
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1.7 Related work 

 

Being recognized as a research challenge, the problem of timestamp interpretation in 

digital investigation has been studied by a few researchers during recent years. Schatz et 

al demonstrated the problem of clock drift by observing clock synchronization on a 

network of computers in a small business. [11]  The problem of clock drift and lack of 

synchronization was confirmed by Buchholz et al in a larger scale study of web server 

clocks. [12] Schatz suggests mitigating the problem by correlating the timestamps in web 

cache stored on the computer with records obtained from the web servers. Weil and Boyd 

et al suggest similar correlation methods, by using timestamps stored on the investigated 

computer coming from other clocks, such as timestamps in dynamically generated web 

pages. [5, 13]  Such methods would provide correlation for the period for which cached 

data exist on the investigated computer only. These methods may be able to confirm or 

refute hypotheses about the clock in the period for which correlation material exists. 

They may not be able to provide reasonable evidence to refute a hypothesis that 

timestamps have been changed or the clock has been adjusted during the period for 

which no correlation material exist. Correlation with server records is only possible when 

such records actually exist, and the investigator has legal access to them.  

 

Stevens studied clocks and described a clock model where each clock is described as the 

clock it was originally derived from plus the sum of all adjustments, errors and drift. [14] 

The clock model described by Stevens was refined by Buchholz, in the formalization of a 

clock model as the sum of clock drift (skew) and adjustments. [15] These models are 

versatile and provide good tools for event reconstruction in cases where clock 

adjustments, error and drift are known or measurable. They can also be used for the 

modelling of hypothesized clocks. They do not however by themselves assist in the 

identification of adjustment, error or drift from an observed final state.  

 

Gladyshev studied the use of causality properties for establishing boundaries on period of 

time in which an event may have occurred. [16] In his approach, time bounding can be 

established when an event that occurred at an unknown or uncertain time is causally 

preceded and succeeded by events with known time occurrence. In order to perform time 

bounding, it is then required to know events of known time causally connected to the 

investigated events. When used to investigate a computer system, these events of known 

time must come from external sources. This approach differs from the approach taken in 
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this work, where no time references from external sources is assumed. The concept of 

causality is used in this work as well as in Gladyshev’s. Although the happened-before 

relation is defined differently, its use to correlate timestamps bears resemblance.  

 

Gladyshev’s event time bounding is based on his finite state machine approach to Event 

Reconstruction. [17-19]  In this work, an investigated system is modelled as a finite state 

machine, and event reconstruction is performed based on the possible transitions from 

state to state in the modelled state machine. More recently, the idea of representing a 

system as a state machine has been taken further by Gladyshev and Enbacka into the 

development of consistency criteria for a system specified as a state machine and the 

verification of those criteria using the B-method. [20]  This idea bears resemblance with 

this work, in that it aims to model aspects of a system formally, derive invariants for a 

system, and test the available evidence for consistency with the invariants. The approach 

is however different. In Gladyshev and Enbacka’s paper, the evidence is examined for 

internal inconsistencies. In this work, a hypothesis is formulated by the investigator, and 

the hypothesis is tested for consistency with the available evidence. Further, this work 

does not attempt to model a system as a finite state machine, but rather determines 

events in the system and the causal relations between them, as well as formulating parts 

of a system in predicate logic. 

 

1.8 Outline 

 

This dissertation is organized as follows. Chapter 2 presents a study of four real cases 

where timestamps have played a role. Chapter 3 describes the formal background for this 

work and the development of a theory for testing of clock hypothesis consistency with 

observed events and causal relations between them. In Chapter 4, this theory is applied 

by studying common types of storage systems and enumerating causal relations in them 

that can be applied for clock hypothesis consistency testing. Chapter 5 describes how a 

system can be modelled in predicate logic, and how such a model can be applied to derive 

invariants for timestamp evidence in the system. These invariants can be used to test 

clock hypotheses for consistency with timestamp evidence from a system. Chapter 6 

describes a simplification of the formalism from Chapter 5, in which the actions in a 

system is described in an action table, and invariants are derived by simpler methods. In 

Chapter 7, a software implementation of the methods derived in Chapter 3-6 is 
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presented. The implementation was used to detect antedating in an experiment where 

subjects were asked to antedate a digital document in such a way that the antedating 

was not detectable by an investigator. Chapter 8 evaluates the methods and discusses 

several possible criticisms. Finally, Chapter 9 summarizes the findings. Appendices A and 

B gives an overview of common timestamp and clock formats. Appendix C summarizes 

results from timestamp updating experiments conducted in Windows XP, used as the 

basis for the implementation discussed in Chapter 7. Appendix D provides information 

about how to obtain and run the implementation. Appendix E provides copies of 

published papers with results of this work. 
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2 CASE STUDIES 

 

Chapter 1 introduced timestamps and the challenges associated with them in digital 

investigations. In this chapter, a few examples from real investigations will be provided. 

These examples will be used in the following chapters in the discussion of problems that 

may be solved by the model proposed in this work. Section 2.1 presents a case where 

documents where antedated in order to keep assets from being seized in a bankruptcy. 

Section 2.2 presents a case where timestamps were faked in order to produce false alibi 

for a murder. Section 2.3 presents a case where a computer clock was manipulated in 

order to produce evidence in a contract dispute. Section 2.4 presents a set of cases where 

discussion timestamp consistency played an important role in judicial procedure. 

 

2.1 Antedated documents 

 

Dated documents play an important role in legal processes. Antedating means producing 

a document with a date that earlier than the date the document was actually produced. 

Digital investigation can play an important role in determining that antedating has 

occurred. An example of antedating can be found in the investigations of the Finance 

Credit case in Norway. [21] 

 

The investigation of Finance Credit started in the fall of 2002. The business of Finance 

Credit was based on purchasing claims from customers at a value slightly lower than the 

claim value. To finance this business, the managers in Finance Credit had obtained loans 

from a syndicate of Norwegian banks for values around NOK 1 billion. (The amount is as 

of 2007 equivalent to more than 100 million Euro) These loans were secured by the total 

value of the claims Finance Credit had in its current portfolio. The banks had based their 

loans on an estimate of the value of the portfolio, derived from information given in the 

accounts of Finance Credit. 

 

During the fall of 2002, the banks discovered that the total value of the current claim 

portfolio in Finance Credit was much lower than the values documented in the accounts. 

The difference was so high that it was likely that the banks had been purposefully misled 
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by false account figures. Most likely, the company had been run entirely on the loans 

given from the bank, and not from the revenues from its business.  

 

Finance Credit and the managers Trond Kristoffersen and Torgeir Stensrud were 

reported to he Norwegian Police Economic Crime Unit, who promptly started an 

investigation of the matters. In November 2002, Kristoffersen and Stensrud were arrested 

and searches were performed at the premises of Finance Credit as well as the homes of 

Kristoffersen and Stensrud. Shortly after, bankruptcy was declared in Finance Credit. 

The investigation revealed that not only had the claim portfolio been vastly overvalued, 

but significant funds had also found its way from Finance Credit to bank accounts and 

property owned by Kristoffersen and Stensrud personally. On this basis, Kristoffersen 

and Stensrud were also declared bankrupt in early December 2002.  

 

The part of the Finance Credit case of interest here is the transfer of shares in a UK 

private company Yaar Investment Ltd. Yaar owned a property in Norway, in which the 

Kristoffersen familiy lived. The value of the property was around NOK 14 million. 

(Equivalent to approximately 2 million Euro)  During the registration of Kristoffersen’s 

assets following his bankruptcy, Kristoffersen declared that the home was not owned by 

him, since he had transferred the shares in Yaar to his daughter in the year 2000. Yaar 

Investments and the property it owned was therefore not a part of his estate, and could 

not be used by his creditors to cover his debt. At this time, Kristoffersen was still 

imprisoned. He was however released on conditions on January 19th, 2003. In another 

search at Kristoffersen’s home in May 2003, a computer was seized. In the computer, 

investigators found two documents “Transfer of Shares” and “Share Certificate”, dated 

January 3rd, 2000. These documents detailed the transfer of all shares in Yaar to 

Kristoffersen’s daughter. The content of the documents were in accordance with 

Kristoffersen’s statement to the bankruptcy Receiver that the shares had been transferred 

in 2000, and therefore was not part of the estate. Investigators believed however that the 

document had been produced on the computer during early 2003 and not in 2000. Since 

the shares of Yaar had previously been owned by Kristoffersen, this would mean that the 

property would be a part of the estate after all, and could be seized by the Receiver. 

Further, it would mean that Kristoffersen had given false information to the Receiver 

during the registration, a felony under Norwegian law.  
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Based on the theory that the documents were antedated, investigators therefore put 

considerable effort in a digital investigation of the timestamps and events on the 

computer in order to find evidence of the antedating. No conclusive evidence was found. 

However, during the investigation other evidence was discovered that indicated that the 

documents were antedated. Several emails with the company handling the registration of 

the company indicated that the share transfer had occurred in 2003 and not in 2000. 

Further, other documents were recovered that indicated that the shares of Yaar had 

actually been owned by Kristoffersen in late 2000 and early 2001 and not by his 

daughter. Based on these documents, Kristoffersen was imprisoned again and was kept in 

custody until the trial in 2004. In the verdict, Kristoffersen was convicted on counts of 

giving false information to the Receiver of his estate, among many other counts in the 

charges. Kristoffersen received a sentence of nine years imprisonment and must pay more 

than NOK 1 billion in damages. 

 

2.2 Timestamps as bogus alibi 

 

Timestamped events are sometimes presented as alibi. An example of a situation where 

such an alibi was judged as bogus can be found in the investigation following the murder 

of Jennifer Myers on October 20th, 1997.  [22-24] 

 

Myers was found murdered in her art gallery in York, Pennsylvania. She had been shot 

three times in the chest, shoulder and the left eye. At the time, Kevin Brian Dowling, a 

citizen of York, was already charged with robbery and attempted rape of Myers that 

occurred on Aug 5th, 1996. The robbery charge was based on the description of Myers, 

and the fact that she had subsequently recognized him. Trial on the charges of robbery 

and attempted rape was set to begin two days after Myers was found dead. Based on the 

theory that Dowling had murdered Myers to prevent her from appearing as witness in 

the trial against him, police focused the investigation on Dowling.  

 

When Dowling was first interviewed the day after the body was found, he explained that 

he had been spending that day fishing at a lake in the area. He had videotaped himself 

several times during the day, and also explained that he had stopped at a convenience 

store where he could probably be seen on the videotape of the surveillance camera. 

Further, Dowling supplied receipts from a boat rental dealer and a bait shop as evidence 
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that he had actually been fishing that day. The receipts and surveillance camera records 

confirmed that Dowling had been at the lake on the morning of October 20th.  The 

murder had however occurred at 2 pm, and it would not be impossible for Dowling to 

drive to the lake first, and then to Myers’ art gallery to kill her. After analyzing the 

videotape, police found that the tape showed Dowling fishing at the lake. The video 

contained timestamps incompatible with Dowling being the perpetrator. If the 

timestamps on the video were to be trusted, the video placed Dowling at the lake at the 

time of the murder and he could not be the killer. 

 

Police immediately suspected that the timestamps on the videotape had been 

manipulated by Dowling, by making adjustments to the clock on the camera. To test this 

theory, investigators asked Robert Boyle, an associate professor of physics at Dickinson 

College to analyze the videotape. Boyle analyzed the tape by building a digital model of 

the scenery depicted in the video, based on compass measurements in the area around 

the lake. In the digital model, Boyle could estimate the length of the shadows the sun 

would cast in the picture at various times of the day, and compare them with the 

shadows actually seen on the video. The result was that the timestamps on the video 

differed from civil time with up to three hours. The analysis showed that the timestamps 

of the video had been manipulated, and that the video did not rule out that Dowling 

could be the murderer after all. After the analysis evidence had been filed with court, 

Dowling changed his statement regarding the videotape. He now claimed that he had 

gone tired of fishing and instead went to a strip club in the afternoon. He had changed 

the time on the tape because he didn’t want his wife to find out. 

 

Based on the videotape analysis, as well as other evidence such as findings of gunshot 

residue on clothes Dowling had been wearing that day, Dowling was convicted in York 

County trial court on December 14, 1998 to a verdict of death. The death sentence was 

upheld by the Supreme Court of Pennsylvania.  

 

2.3 Clock manipulation in a contract investigation 

 

Dates and times of decisions sometimes play an important role in determining if a 

contract has been upheld or breached. The helicopter contract investigation described in 

the following is a good example. The helicopter contract investigation was performed by 



    

 

 

 

 

19 

a digital investigation services provider in Norway in January 2003. It started as a 

dispute over a purchase contract of a helicopter that was signed between two parties. 

The seller was a private business operated by an individual, hereafter called Mr A. The 

buyer was a contractor business operating several helicopters offering air services 

primarily within the oil industry, hereafter called company B.  A had a purchase option 

agreement on the helicopter from a foreign business, that allowed him to buy the 

helicopter should he be able to sell it.   The contract between A and B was signed and 

went into force in July 2002. It mandated the delivery of the helicopter in January 2003. 

The contract also stated in a special clause that both parties could withdraw from the 

agreement without any consequences other then the cancellation of the agreement until 

the 15th of October 2002. After this date, the contract went into force and the parties 

could not withdraw. The contract mandated an initial transfer of funds shortly after the 

15th of October. The remainder of the purchase amount would be paid when the 

helicopter was delivered. 

 

In early October 2002, the managers of B went through the terms of the agreement in 

order to decide if it should be terminated before the 15th or not. After consideration of 

the terms, the management of B decided to withdraw from the contract. They phoned A 

several times and left messages on his voice mail about the termination. Further, they 

wrote two emails on October 7th and October 13th to A, stating that the contract was 

terminated. They did not receive any reply on these emails. On October 17th, a formal 

letter about the termination of the contract was written and sent through postal service. 

At this point the dispute arose. After receiving the letter, A claimed that the termination 

was too late, and that the contract therefore was in force. Should B terminate the 

contract, they would have to pay him compensation, amounting to the gain that he 

would have earned from the contract. A claimed that he had never received any phone 

calls or voice mail messages from B.  Further, A claimed that he had never received any 

email messages from B concerning the termination of the contract. According to A, the 

first time he had heard about termination, was the letter dated October 17th, which was 

too late for termination. B printed copies of the termination emails they had sent to A 

before October 15th, serving as evidence of termination, but A still claimed that he had 

not received any such message. The managers of B then decided to disregard A’s claims 

and act according to their own view that the contract was terminated in due time. Thus, 

no funds were transferred and A cancelled the purchase option agreement. 
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During late 2002 and early 2003, A considered whether he should go to the courts to 

claim compensation from B for what he saw as a breach of contract. In A’s view, B’s only 

evidence for terminating the contract before October 15th, was the copies of the emails 

they had sent. A realized that he needed evidence supporting the claim that he had never 

received these emails. A therefore decided to have his computer investigated by an 

independent third party to confirm that he had not received any email regarding contract 

termination in the period before October 15th. In January 2003, A asked a digital 

investigation service provider, hereinafter called company C, to do this job.  

 

After receiving A’s computer, the investigators at C performed the normal procedure for 

digital investigations at the time. The computer was dismantled and the hard drive 

removed. The computer clock was checked and found to be short of Norwegian civil time 

with only a few seconds. A digital image copy of the hard drive was made in another 

computer. The copy was mounted in an investigation computer and investigated with 

standard software for digital investigation. The investigation of existing files showed that 

the current operating system and application software on the computer had been 

installed in June 2002. The existing email on the computer was investigated and no 

evidence of email from company B in early October 2002 was found. Only a few emails 

were found to have been sent and received in October 2002. In fact, very small amounts 

of email were found at all. The computer did not contain the amount of user files and 

data that one would expect from a computer that had been used by a business for half a 

year. This prompted the investigators to check the unallocated areas of the disk for signs 

of deleted files. No signs of deleted files were found in this investigation. Instead, it was 

determined that the complete hard drive had been wiped by a disk wipe utility sold by C 

prior to the installation of the operating system. This disk wipe utility was programmed 

to write the current time, the version number and the serial id of the wiper to each sector 

on the hard drive. The date written to each sector of the hard drive was in early June 

2002, on the same day as the date the operating system had been installed, as determined 

from timestamps on system logs and files in the operating system.  

 

At this point, A’s claim that no email had been received regarding termination of the 

contract would seem to be supported. However, the fact that so little user data was 

found on the computer prompted the investigators at C to perform further investigation 

steps. The version number of the disk wipe utility was compared with the development 

log of the utility at the development department of C. It was found that the particular 
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version of the wipe utility had been produced in the fall of 2002 and released in 

December 2002. Further, the serial number of the wipe utility was examined. The serial 

number showed that this version of the disk wipe utility had been sold in a computer 

store located near A’s office in January 2003, one week before A had sent the computer 

to C for investigation. 

 

From these results, the following hypothesis about the events on the investigated 

computer was formulated:  In January 2003, A had bought the disk wipe utility at the 

local computer store. He had then adjusted the computer clock to June 2002, wiped the 

disk and installed the operating system. He had then used the computer for some time 

and gradually adjusted the computer clock forward in order to make it look like the 

activity had occurred during the fall of 2002. Finally, he had adjusted the clock back to 

the current civil time. The observed state of the system as investigated in January 2003 

was consistent with this theory. C concluded that the original question of whether emails 

had been received in October 2002 could not be answered, since the user of the computer 

had wiped it in January 2003. These results were written in a report which was sent to 

A. After receiving the report from C, A decided to not pursue the matter in the courts. 

 

2.4 Timestamps in procedure 

 

Timestamps can be of importance not only in matters of substance but sometimes also in 

procedural matters. This is most clearly seen in matters of procedure where party 

representatives must meet a deadline. In these matters, an investigation of timestamps is 

sometimes performed in order to decide the question of whether the party met the 

deadline or not. The decisions of the UK Employment Appeal Tribunal in the cases of 

Midland Packaging v Clark, Woodward v Abbey National and JP Garrett v Cotton are 

illustrative. [25, 26] 

 

In the mentioned cases, the Employment Appeal Tribunal received appeals against the 

Registrar’s ruling an appeal out of time. Parties in cases before UK Employment 

Tribunals have 42 days to prepare a Notice of Appeal and submit it to the Employment 

Appeal Tribunal (hereafter EAT). The notice must have been received by the registrar of 

the EAT on the 42nd day after the decision of the Employment Tribunal in order to be 

considered. Notices received later then the 42nd day will not be considered by the EAT. 
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Thus, if the appeal is too late, the decision of the Employment Tribunal will be final. 

Further, UK Civil Procedure Rules (CPR) state that deliveries of documents and faxed 

documents in particular after 4 pm will be treated as filed on the next business day of the 

court office. The three cases discussed here all involve faxing of Notice of Appeal on the 

42nd day, where the sender started the faxing before 4 pm according to their fax machine 

clock, but the complete notice had not been printed out on the receiving end before after 

4 pm according to the clock on the receiving fax machine. 

 

In the Midland case, the appellant faxed the notice just before 4 pm on the 42nd day. 

After the fax was completed, he received a document from his own fax machine that 

confirmed the transmission of 21 pages and the time when all the pages had been 

transmitted, which was 16:09.  In the receiving end, the fax machine printed a timestamp 

on each printed page. The first page of the documents printed from the fax machine at 

the EAT showed 16:06, the second and third pages 16:07, the fourth and fifth 16:08 and 

so on. At this rate of approximately two pages per minute, the complete transmission of 

the 21 pages document would have taken around ten minutes.  

 

In the decision, the court discusses various possibilities that may have caused the 

difference in the timestamps, for example different clock settings in the different fax 

machines, delay between scanning and faxing in the sending end or delay between 

receiving and printing in the receiving end. The court did not have available expert 

testimony regarding the functioning of the fax machines and could not as such make any 

assumptions regarding how the fax machines worked. The determining factor for the 

court was when the actual transmittal of information had occurred from the fax machine 

in the sending end to the fax machine in the receiving end.  Based on the timestamp 

from the sending end, placing the end of the transmission at 16:09, and the calculation 

from the receiving end that the transmission took around ten minues, the court found 

that the transmission must have begun before 4 pm. The court found it probable that the 

two fax machines had communicated with each other before 4 pm and at least some part 

of the document had been electronically transferred before 4 pm, even if it had not been 

printed at the time. On this basis, the court decided that the appeal had been delivered 

in time. Note that in the basis for this decision, the court relied on the correctness of 

both the timestamp on the receipt from the sending machine and the accurateness of the 

transmission time calculation in the receiving end. 
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The two other cases happened after the decision in the Midland case. In the Woodward 

case, a 61 pages notice of appeal was transmitted by fax just before 4 pm on the 42nd day, 

the last day in the allowed appeal period. According to the appellant, the fax machine 

was ready at 15:35 and the documents started feeding through at 15:40. In the receiving 

end, a log showed that the faxing started at 15:48 and took 18 minutes and 46 seconds 

for the 61 pages to be faxed. The print out had timestamps 15:49 on the first page and 

16:07 on the last page. In the J P Garrett case, a receipt from the appellant’s end showed 

that faxing had started at 15:59 and took 3 minutes and 35 seconds to be completed. In 

the receiving end, the fax log and timestamps on the printed fax showed that the faxing 

started at 16:01 and took 3 minutes and 35 seconds, finished at 16:04. Thus, the situation 

in the J P Garrett case was exactly as in the Midland case, whereas the situation in the 

Woodward case was somewhat different, in that also timestamps in the receiving end 

showed receiving of documents before 4 pm. 

 

In the latter cases, the court recognized the impracticability of having to rely on 

timestamps from both ends. Having determined the possibility of relying on a fax log in 

the receiving end, the court departed from the decision in the Midland case, and decided 

that the timestamps in the receiving end should determine the receiving time of the 

notice. Further, the court decided, again departing from the Midland decision, that the 

complete document must have been received before 4 pm. Even if faxing had started 

before 4 pm in both the Woodward and J P Garrett cases, the complete document had 

not been printed out at the receiving end before 4 pm in any of them. The decision 

therefore rendered the appeals in both cases as too late. Recognizing the fact that at least 

one of the appellants knew about the decision in the Midland case and acted accordingly, 

the court however granted the appellant the necessary extra time. Therefore, the appeals 

were accepted even if they had been received too late. 
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3 REASONING ON SETS OF CAUSAL EVENTS WITH TIMESTAMPS 

 

This chapter presents the formal foundations of this work. Section 3.1 - 3.4 defines 

causality, time and clocks. Section 3.5 introduces ideal clocks and their properties. 

Section 3.6 introduces the specification of clock hypotheses. Section 3.7 examines ways of 

determining the correctness of a clock hypothesis. Section 3.8 defines clock hypothesis 

consistency. Section 3.9 examines the properties of consistency of subsets, supersets, 

unions and intersections of observed sets. Finally, Section 3.10 discusses whether the 

clock hypothesis can be viewed as a scientific hypothesis. 

 

3.1 Causality 

    

In this work, causal properties of systems are used to reason on timestamps and test 

hypotheses about the events occurring on a computer system. In order to be able to 

reason about events and causality, it is necessary to start from a definition of causality.  

 

Informally, causality is the relationship between cause and effect. This relationship can 

be expressed as a relation between events. If two events e1 and e2 are related by the 

causality relation, then whenever e2 occurs, e1 must have occurred first. In previous 

works, causality has been defined by means of the happened-before relation →. The 

happened-before relation was first used by Lamport, who defined the relation by ordering 

events happening in a process and sending and receiving messages between processes. [27] 

This definition was generalized by Fidge to encompass process creation and termination 

as well as both synchronous and asynchronous message passing. [28] These concepts have 

been utilized in distributed computing to achieve clock synchronization, and to achieve 

ordering of events in systems without synchronized clocks.  

 

For use in digital investigation, Gladyshev proposed an extended definition of happened-

before. In Gladyshev’s version it is defined that e1 → e2 if e2 uses the result of e1 or e1 

precedes e2 in the usual course of business of some organisation or during the normal 

operation of a machine. [16] In this definition, the meaning of happened-before is 
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extended beyond computers. This extension is useful, since digital investigation requires 

the reconstruction of events, both within computers and outside them. Gladyshev’s 

definition might however create doubt about exactly what happened-before means, since 

it is debatable what exactly constitutes the normal operation of a machine and the usual 

course of a business.  

 

In order to be able to utilize the happened-before relation to reason on the causality 

between timestamp generating events, it is necessary to define happened-before in 

sufficient general terms to allow its application to causality in different types of systems. 

Yet, the definition should be sufficiently specific to allow it to represent the intuitive 

understanding of causality coherently. It is however difficult to define causality in very 

exact terms without entering into a deep philosophical discourse, something that is not 

intended here. 

 

DefinitioDefinitioDefinitioDefinition n n n 3333....1111....  Let → be the happened-before relation. If e1 → e2, then the occurrence of 

e1 is necessary for e2 to occur because e2 depends on the effects of e1.
 1  

 

Important examples of causality per this definition of the happened-before relation 

include: 

 

- e1 produces an item that is necessary input for e2  

This is equivalent to Gladyshev’s definition “e2 uses the result of e1”. The 

definition of happened-before in terms of message sending and reception used by 

Lamport and Fidge also fall within this example. 

 

- e1 and e2 are events in a computer program, where e2 uses data produced by e1. 

Since events in computer programs use items produced by other events in the 

same program, such as variables, data stored in memory, registers and stack 

                                         

 

 

 

1 In order to be consistent with previous works, the symbol → is used to denote the happened-

before relation in this work. It should not be confused with implication, which in this work is 

denoted by ⇒ . 
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pointers, many events occurring in computer programs will be related by 

happened-before. This is a special case of “e1 produces an item that is necessary 

input for e2”.  The definition of happened-before in terms of events occurring in a 

process used by Lamport and Fidge falls within this example, with the exception 

of events that do not use the result of each other. This exception makes the 

definition suitable for modern computer systems, in which the execution order of 

a computer program can be rearranged by compilers and processors when the 

instructions do not depend on the results of each other.  

 

The happened-before relation has the following properties: 

 

→ is transitive.  If ei happened-before ej and ej happened-before ek, then ei happened 

before ek. 

 

( ) ( )i j j k i ke e e e e e→ ∧ → ⇒ →  

 

The transitivity property implies that events can be causally connected through 

intermediaries. This follows directly from the definition of happened-before in Definition 

3.1. If an event ej depends on the effect of other events, then any event depending on the 

effects of ej will also depend on those events. 

 

 → is irreflexive. An event ei cannot happen-before itself. 

 

i ie e→/  

 

The irreflexivity property follows from the relationship implied by →. An event 

dependant on the effects of itself cannot occur since such an event would require another 

event, itself, to occur first. That event would also require another event, itself, to occur 

first and so on ad infinitum.  

 

→ is antisymmetric. If ei happened-before ej, then ej cannot happen-before ei. 

 

i j j ie e e e→ ⇒ →/  
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The antisymmetry property follows from the relationship implied by →. If one event has 

occurred on which a second depend, the first cannot depend on the second. Note that any 

relation that is transitive and irreflexive must also be antisymmetric, since otherwise the 

self will be reachable transitively and thereby violate irreflexivity. 

 

For any event e, there may be other events that happened-before it. There may also be 

other events that e happened-before. Any system with events and happened-before 

relations can be represented as a graph, where events are vertices, and instances of the 

happened-before relation are edges. Such a graph is shown in Figure 3.1.  

 

 
Figure 3.1 Graph of events related by happened-before 

 

Since it is transitive, irreflexive and antisymmetric, the happened-before relation is a 

strict partial order relation, imposing a strict partial order on a set of events. A system 

with events and happened-before relationships shown as a graph is therefore a Directed 

Acyclic Graph (DAG), such as the graph shown in Figure 3.1.  

 

3.2 Time and time values 

 

In order to be able to reason about timestamps and clocks, it is necessary to start from a 

definition of time. Time as a concept is viewed quite differently in different disciplines 

such as physics and philosophy. In modern physics, time is viewed as an additional 

dimension to the three dimensions in space. The four dimensions constitute the space-

time-continuum. In philosophy on the other hand, time is often viewed as a container for 

events. In this view, time is merely a concept that allows us to sort and compare the 

occurrence of events.   

 e6 

 e7 
 e5  e4 

 e3  e2  e1 
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In this work, time is considered to be a fundamental quantity. As a fundamental 

quantity, time is not itself defined in terms of other quantities, but it is measurable by 

means of comparison with periodic events, such as the periodic events occurring in clocks. 

Such periodic events may for example be the swinging of a pendulum (a pendulum 

clock), the movement of earth (a sundial) or microwave emission from certain materials 

(an atomic clock). We consider events to have a moment in time associated with them, 

and assume that these moments in time can be ordered in time by relations <  and =. 

 

Definition Definition Definition Definition 3333....2222....  Let E be the domain of events. Let e be an event. Events are considered 

to be instantaneous. Let T be the domain of time. Let ( )t e  be a function E T� , 

representing the moment in time at which event e occurred.   

 

Further, we assume that causality is preserved in time. With the preservation of 

causality in time, we mean that no event can causally depend on an event occurring at 

the same time or a later time than itself. This can be expressed explicitly with the 

happened-before relation as:  

 

( ) ( )i j j it e t e e e≤ ⇒ →/     (3.1) 

 

This assumption corresponds to the intuitive understanding of the relationship between 

causality and time. If such causal relations were allowed, then events in the future would 

be allowed to affect events in the past, something that has not been shown to occur in 

the real world. 

 

For two events related by the happened-before relation, Equation (3.1) implies that: 

 

( ) ( )i j i je e t e t e→ ⇒ <     (3.2) 

 

From Equation (3.2), the progression of time is linked to causal sequences of events 

because time must increase for each event that is causally connected to a previous event. 

This corresponds to the philosopher’s view of time as a container for events. At the 

occurrence of two causally connected events, an observer would perceive the event 

happening-before as the event coming first in time, and can infer the progression of time 

from the occurrences. Consider for example a philosopher watching Galileo dropping 
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objects from a tower through a telescope. The events “Galileo dropped the stone” and 

“the stone falls” are clearly causally connected and the first must therefore have occurred 

at an earlier point in time than the second. Thus, the philosopher can infer the 

progression of time from his observations. On the other hand, if Galileo did not drop the 

object and made no movements, the philosopher could not infer the progression of time 

from what he had seen through the telescope. Instead he would have to rely on other 

chains of events, such as the movement of the sun or his own heartbeats. 

 

The above imposes an ordering in time on events ordered by the happened-before relation 

→. It does not however imply any ordering in time for events not ordered by →. Also, 

( ) ( )i jt e t e<  does not imply that ei → ej. Events may happen at different moments in 

time without being related by →. On the other hand, if two times 1( )t e  and 2( )t e  are 

ordered such that 1 2( ) ( )t e t e< , events occurring at those moments in time cannot be 

causally connected in reverse, such that the e2 → e1. 

 

3.3 Clocks 

 

A clock is a device designed to give the user an approximation of time that is sufficiently 

coherent to allow him to measure and compare time periods and sufficiently consistent 

with other clocks so as to allow the owner to perform actions concurrent with other clock 

users without continuous coordination. Clocks are in other words designed to give an 

approximation of time. The definition of a clock should be able to reflect the possibility 

of clock drift and adjustment mentioned in section 1.4.  

 

Definition Definition Definition Definition 3333....3333....        Let V  be the domain of time values produced by a clock. ( )c t  is a clock 

function T V�   

 

The definition of a clock function does not impose any restrictions on the clock values as 

a function of time. For example, even if t1 <  t2 it may be the case that 1 2( ) ( )c t c t> .  And 

even if t1 <  t2 <  t3, it may be the case that 1 2 3( ) ( ) ( )c t c t c t= = . The latter situation may 

for example occur if the events occurring at t1, t2, t3 are so close together in time that the 

clock is unable to differentiate between them. 
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3.4 Timestamped events 

 

A timestamped event is an event for which there exists a timestamp value in domain V. 

The timestamp value can be represented as a function on the event. Timestamps are 

created when an event makes a copy of the value provided by a clock. All timestamps in 

a set of timestamped events are not necessarily related to the same clock.  

 

Definition Definition Definition Definition 3333....4444....  Let E  be a set of timestamped events and V  a domain of time values. 

( )c eτ  is a function E V�  such that ( )  ( ( ))c i ie c t eτ = . ( )c ieτ  represents the timestamp 

associated with the event ei relative to clock c.  

 

In this definition, a timestamp is the value of the producing clock at the time of the 

event. The timestamp reflects the clock’s representation of time at that particular 

moment. The definition of timestamps as a function of events and clocks provides a 

possibility to reason over timestamps and clocks. 

 

3.5 Ideal and non-ideal clocks and their properties 

 

It is useful to introduce the concept of ideal clocks and non-ideal clocks. An ideal clock is 

a clock which can only go forward.  

 

Definition Definition Definition Definition 3333....5555....        Let I  be the set of ideal clocks. An ideal clock ( )c t I∈  is a clock which 

satisfies  

( ( ) ( ) ( ( )) ( ( )))i j i ji j t e t e c t e c t e∀ ∀ < ⇒ ≤  

( ( ) ( ) ( ( )) ( ( )))i j i ji j t e t e c t e c t e∀ ∀ = ⇒ =  

 

Let NI  be the set of non-ideal clocks. Non-ideal clocks are clocks that are not ideal clocks 

( )c t I∈/ . 

 

An ideal clock is a clock function on time which has the property that the value provided 

in the function on time is monotonically increasing. While having a monotonically 

increasing value, values c(t(ei)), c(t(ej)) produced from two different moments in time 

( )it e  and ( )jt e  where ( ) ( )i jt e t e<  may be equal. Many clocks represent moments in time 
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as discrete values. In a discrete clock with limited resolution, two moments close in time 

will be represented by the same clock value.  

 

An always increasing clock has the property that all timestamps produced from it will 

always be equal or higher for events occurring at increasing moments in time. In 

particular, events causally connected to each other would have timestamps with an equal 

or higher value on the latter event. This can be formulated as follows. 

 

TheoremTheoremTheoremTheorem    3333....6666....  For all ideal clocks c I∈ , produced timestamps satisfies 

 

( ) ( )i j c i c je e e e→ ⇒ τ ≤ τ  

 

ProofProofProofProof....  From Definition 3.5 an ideal clock satisfies:  

 

( ( ) ( ) ( ( )) ( ( )))i j i ji j t e t e c t e c t e∀ ∀ < ⇒ ≤  

 

That is, for events ei and ej occurring at times t(ei) and t(ej) we have: 

 

( ) ( ) ( ( )) ( ( ))i j i jt e t e c t e c t e< ⇒ ≤  

 

By replacing the right hand side of Equation (3.2) we now obtain: 

 

( ( )) ( ( ))i j i je e c t e c t e→ ⇒ ≤  

 

And from Definition 3.4, ( ) ( ( ))c i ie c t eτ = , which gives: 

 

( ) ( )i j c i c je e e e→ ⇒ τ ≤ τ  

�  

 

It is also interesting to determine if the opposite is the case, that a non-ideal clock does 

not necessarily produce such timestamps.  

 

Theorem Theorem Theorem Theorem 3333....7777....        There is at least one possible non-ideal clock c NI∈  that does not satisfy  

( ) ( )i j c i c je e e e→ ⇒ τ ≤ τ  
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Proof.  Proof.  Proof.  Proof.  The proof is simply by providing a counterexample. Let i je e→ . It now follows 

from Equation (3.2) that ( ) ( )i jt e t e< . Now, let 

 

( ( )) 1ic t e =  

( ( )) 0jc t e =  

 

The clock c is non-ideal (c NI∈ ) because 

 

( ) ( ) ( ( )) ( ( ))i j i jt e t e c t e c t e< ⇒ ≤   

 

And in this case, 

( ( )) ( ( ))i j c i c jc t e c t e e e> ⇔ τ ( ) > τ ( )  

Thus, 

c i c je eτ ( ) < τ ( )/  

�  

 

As shown, the monotonic property of ideal clocks guarantee that two causally connected 

events timestamped by the same ideal clock have timestamps where the timestamp of the 

latter event is always equal or higher than the timestamp of the first.  

 

It would be desirable if public recognized clocks in the real world were ideal clocks. But 

even if a clock is publicly recognized, it is not necessarily an ideal clock. Civil time in a 

country may for example be adjusted for Daylight Savings Time twice a year. If this 

adjustment breaks the monotonicity requirement of an ideal clock in Definition 3.5, then 

the civil time in that country is not an ideal clock. UTC (see Appendix B.1) is adjusted 

regularly to keep it synchronized with the rotation of the Earth. Because of the way it is 

defined, UTC still maintains monotonicity, and is therefore an ideal clock according to 

the definition.  

 

3.6 Clock hypotheses, adjustment and drift 

 

In order to be able to test if a certain theory about the clock holds, one must be able to 

formulate a hypothesis about the clock function. A hypothesis about the clock function is 

a possible theory about the clock function during the computer history. That hypothesis 
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can then be tested against the set of observed timestamps. In the following, a clock 

hypothesis will be denoted ( )hc t . 

 

In order to be able to reason on timestamps from a certain clock, it is useful to divide the 

clock into a base component being an ideal clock and a deviation component representing 

all adjustment, error and drift in the clock. The only requirement for the base is that it is 

an ideal clock, but selecting a base clock that allows correlation with other clocks is a 

good idea. UTC is an example of a universal time source that would allow such 

correlation. The UTC is moving forward at a known rate, and is adjusted in a predictable 

manner. There are many clocks in the world that have a known relationship to UTC. 

Therefore, if events can be timestamped at UTC, it would be easy to correlate their 

timing with those of events timestamped by other clocks.  

 

Definition Definition Definition Definition 3333....8888....  A clock function ( )c t  can be divided into two components, one function 

( )b t  which is an ideal clock and one function ( )d t  representing the deviation from the 

ideal clock. 

 

( ) ( ) ( )c t b t d t= +  

 

In this scheme, the clock ( ( )c t ) is divided into components: ( )b t  is a base clock which 

must be an ideal clock. ( )d t  is the difference between the base clock and the investigated 

clock. By selecting a common base, two or more clocks can be compared by comparing 

the deviation only. It is sometimes useful to express the time of an event in terms of the 

base clock. This can be done by subtracting ( )d t  in Definition 3.8. 

 

                                         ( ) ( ) ( )b t c t d t= −     (3.1) 

 

ExampleExampleExampleExample    3333....9999.  .  .  .      The clock of the investigated computer is equal to civil time at the time of 

the investigation. The investigator assumes that this has been the case in the entire 

history of the computer. Selecting civil time as the base, the hypothesis becomes  

 

( ) 0d t =  

In other words 

( ) ( )c t b t=  
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Example 3.9 describes the default hypothesis - the assumption that the clock has been 

maintained at the current offset during the computer history. In the default hypothesis, 

the assumption is that the clock has not been adjusted at any time in its previous 

history. This assumption is not justified only by the fact that the clock is equal to civil 

time when the investigation is performed. It could also be the case that the clock had 

been adjusted to an earlier time and then adjusted forward again, similar to the example 

in Section 2.3. A clock hypothesis model must be able to model such changes to the 

clock.  

 

A clock adjustment is an event. If the event of an adjustment to a clock is eadj, then the 

time of that adjustment is adj( )t e . The time value of that adjustment in the base clock is 

adj( ( ))b t e . Adjustments on a clock can now be represented by representing ( )d t  as a 

discontinuous function on t. By letting the clock adjustment be represented by an event, 

it is possible to perform reasoning on any other events causally dependant on that event. 

Records of these events may for example exist in computer systems which log clock 

changes. 

 

Example Example Example Example 3333....10101010.  .  .  .  The clock of the investigated computer is equal to civil time at the time 

of the investigation. The investigator assumes that the clock was adjusted back one year 

(eadj1) approximately two years before the investigation (einv) and then adjusted forward 

one year (eadj2) approximately one year before the investigation.  

 

adj1( ) 0, ( )d t t t e=   <  

adj1 adj2( ) 1 year, ( ) ( )d t t t e t t e= −    > ∧ <  

adj2( ) 0, ( )d t t t e=   >  

adj1 inv( ( )) ( ( )) 2 yearsb t e b t e= −   

adj2 inv( ( )) ( ( )) 1 yearb t e b t e= −   
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Figure 3.2 Plot of ( )b t  and ( )c t  in Example 3.10. 

 

 

A clock hypothesis must also be able to account for errors and drift in clocks. The 

occurrence of random errors in clock can be modelled the same way as adjustments, by 

letting an event represent the occurrence of the error and determining its effects in ( )d t . 

Clock drift is a little different. Drift is in most cases a factor on the time since the clock 

drifts a certain amount per time unit, relative to the time unit. [12] 

 

Example Example Example Example 3333....11111111....        A clock was adjusted to UTC (eadj1) and is believed to drift 5 seconds per 

day in the forward direction. 

( ) ( ) ( )c t b t d t= +  

adj1( ) ( ( ))
( ) 5 sec

1day

b t b t e
d t

−
=  ⋅

 
 

 

c(t) 

b(t) 

T 

V 
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Figure 3.3 Plot of ( )b t  and ( )c t  in Example 3.11 

 

 

This provides ways of defining a clock hypothesis. There may be other occurrences that 

should be modelled in a clock hypothesis as well. The discussion in the following does not 

impose any constraints on the clock hypothesis itself, as long as it can be composed of an 

ideal base clock component and a deviation component. 

 

The clock function as it is represented here is similar to the clock models described by 

Stevens and Buchholz. [14, 15] These models describe a clock in terms of a base clock by 

letting it be the sum of clock drift, adjustments and error. These models can be used to 

represent clock hypotheses to be tested using the methods in this work. It should 

however be noted that Definition 3.8 requires the base clock to be an ideal clock. This 

requirement is necessary in the development of consistency tests developed in the 

following. The requirement is satisfied in Stevens’ model, since it uses UTC as base. 

Buchholz does not however state any such requirement for the reference time used in his 

model. Thus, if Buchholz’ clock model is used for hypothesis formulation and testing with 

the methods in this work, an ideal clock must be selected as reference time. 

 

3.7 Observed event sets and correctness 

 

c(t) 

b(t) 

T 

V 
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During a digital investigation of a computer, the investigator will observe a number of 

timestamped events that all come from the same clock. Some of these events will be 

causally connected. This set of observed timestamped events is called the observation set.   

 

Definition Definition Definition Definition 3333....12121212.  .  .  .  An observation set O, is a set of timestamped events, in which all 

timestamps are related to one clock o( )c t .   

 

In an observation set, there will typically be a large amount of timestamped events. The 

number of causal connections may also be large. The data in an observation set can be 

used to determine if a clock hypothesis holds or not. 

 

Definition Definition Definition Definition 3333....13131313.  .  .  .  A clock hypothesis h( )c t  for an observation set O is correct if and only if 

the value of o( )c t  is equal to the value of h( )c t  for all events e O∈ . 

  

o

o h

h

( ) ( )

( ( ) ( ( )))i c i i

c t c t

e e c t e

=

⇓

∀ τ =

 

 

If a clock hypothesis is correct, then all occurrences of timestamps must match the value 

predicted by the hypothesis. The correctness property can therefore be utilized to find 

techniques for testing if a clock hypothesis is correct or not. 

 

Theorem Theorem Theorem Theorem 3333....14141414.  .  .  .  In    a correct clock hypothesis h( )c t , the timestamps of all causally 

connected events ei → ej in an observation set O must be such that the timestamp of the 

first event minus the deviation from a common base has value less than or equal to the 

timestamp of the latter event minus the deviation from a common base. 

 

o oh h( ) ( ( )) ( ) ( ( ))i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −  

 

Proof. Proof. Proof. Proof.     Let h( )c t  be a correct clock hypothesis.    Let ( )b t  be a common base for h( )c t  and 

o( )c t . Then 

h h( ) ( ) ( )b t c t d t= −  

o o( ) ( ) ( )b t c t d t= −  

Thus,  

h h o o( ) ( ) ( ) ( )c t d t c t d t− = −  
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And since h( )c t  is correct we have h( )c t  = o( )c t . Therefore  

 

h o( ) ( )d t d t=  

o h( ) ( ) ( )b t c t d t= −  

And inserting Definition 3.4 yields 

o h( ( )) ( ) ( ( ))cb t e e d t e= τ −  

 

Now, from Definition 3.8 ( )b t  shall be an ideal clock. From Theorem 3.6 we know that 

ideal clocks satisfy 

( ( )) ( ( ))i j i je e c t e c t e→ ⇒ ≤  

And then, inserting ( )b t  gives 

( ( )) ( ( ))i j i je e b t e b t e→ ⇒ ≤  

o oh h( ) ( ( )) ( ) ( ( ))i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −  

�  

 

And conversely, if the property examined in Theorem 3.14 does not hold, then the 

hypothesis is not correct.  

 

Theorem Theorem Theorem Theorem 3333....15151515 (Test (Test (Test (Test----A theorem)A theorem)A theorem)A theorem).  .  .  .  If a pair of causally connected events ei → ej exist in an 

observation set O, for which the timestamp of ei minus the hypothesis deviation from a 

common base has a higher value than the timestamp of ej minus the hypothesis deviation 

from a common base, then the clock hypothesis is incorrect. This is called Test-A. 

 

o oh h o h(( ) ( ( ) ( ( )) ( ) ( ( )))) ( ) ( )i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/  

 

Proof.Proof.Proof.Proof.        The proof is by contradiction.    Let h( )c t  be a clock hypothesis and O an 

observation set with clock o( )c t . Let ( , )a be e  be a pair of events in O such that ea → eb 

and 

 

o oh h( ) ( ( )) ( ) ( ( ))c a a c b be d t e e d t eτ − > τ −  

 

Assume that h( )c t  is correct, h( )c t  = o( )c t . If h( )c t  is correct we have from Theorem 

3.14 that 
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o oh h( ) ( ( )) ( ) ( ( ))i j c i i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −  

 

But for i = a and j = b, we have assumed that ea → eb and so, 

 

o oh h( ) ( ( ) ( ( )) ( ) ( ( )))a b c a a c b be e e d t e e d t e→ ∧ τ − > τ −   (3.2) 

 

This contradicts the result from Theorem 3.14. Therefore, if (3.2) holds, then h( )c t  

cannot be correct. There has been no assumption or restriction on the events ea and eb. ea 

and eb could therefore have been any event in the observation set O. The result is that 

for any event ei and ej, if (3.2) holds, h( )c t  cannot be correct. 

 

o oh h o h(( ) ( ( ) ( ( )) ( ) ( ( )))) ( ) ( )i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/  

�  

 

Test-A can be illustrated by an example. 

 

Example Example Example Example 3333....16161616.  .  .  .  Consider the default clock hypothesis, where it is assumed that the clock 

of the investigated computer has always been equal to civil time, say UTC. Then h( )c t  = 

b(t) and h( )d t  = 0. Now, let the observed set consist of timestamps for four events e1 - 

e4, where: 

 

1( )oc eτ  = Jan 12, 2003, 12:46:34 

o 2( )c eτ  = Apr 21, 2004, 10:22:38 

o 3( )c eτ  = Feb 9, 2003, 22:16:04 

o 4( )c eτ  = Dec 12, 2002, 02:46:32 

 

And where e1 → e2 and e3 → e4 .  If we now apply Test-A for i = 3 and j = 4, we see 

that  

 

o o3 4 3 4( ) ( ( ) ( ))c ce e e e→ ∧ τ > τ  

 

And since h( )d t  = 0, the test fails. Thus, the default hypothesis is not correct for this 

observation set. 
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The result can be explained informally as follows: Since e4 must have happened after e3 

and the timestamp of e4 is at an earlier time than the timestamp of e3, it cannot be the 

case that the clock has not been adjusted between these two events. 

 

Theorem Theorem Theorem Theorem 3333....17171717 (Test (Test (Test (Test----B theorem)B theorem)B theorem)B theorem).  .  .  .  In a clock hypothesis h( )c t ,    for values 'c  of h( )c t  for 

which h( )c t  = 'c  has no solution, the existence of any timestamps in the observation set 

O with value 

 

'
o
( )c ie cτ =  

 

implies that h( )c t  is incorrect. This is called Test-B. 

 

Proof.Proof.Proof.Proof.        The proof is by contradiction. Let h( )c t  be a clock hypothesis and O an 

observation set with clock o( )c t . Let ea be an event in O and  

'
o
( )c ae cτ =  

the timestamp of ea. Let 'c  have a value such that h( )c t = 'c  has no solution. Assume 

that h( )c t  is correct, h( )c t  = o( )c t . If h( )c t  is correct we have from Definition 3.13  

 

o h( ( ) ( ( )))i c i ie e c t e∀ τ =  

Which means that for i = a 

o h( ) ( ( ))c a ae c t eτ =  

 

This is a contradiction since '
o
( )c ae cτ =  and 'h( )c t c=  has no solution.  

 

Therefore if '
o
( )c ae cτ =  and 'h( )c t c=  has no solution, then h( )c t  cannot be correct. 

�  

 

An example will illustrate the use of Test-B. 

 

Example Example Example Example 3333....18181818.  .  .  .  Consider the clock hypothesis in Example 3.10. This hypothesis is a 

discontinuous function for which there exist values 'c  where ( )c t  has no solution. If for 

example a timestamp oddτ  from one and a half years before the investigation was found, 

this would imply the incorrectness of the hypothesis. A plot of this timestamp value and 

the clock hypothesis is shown in Figure 3.4.  
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Figure 3.4 An observation of timestamp oddτ  for which h( )c t  = oddτ  has no solution 

 

3.8 Clock hypothesis consistency 

 

The results in Theorem 3.15 and Theorem 3.17 are useful, because they can be used to 

refute a clock hypothesis for observation set O, from observations of the timestamps on 

events in O. In Test-A, a clock hypothesis is incorrect when observations of timestamps 

for two causally connected events are not ordered correctly by the clock hypothesis. In 

Test-B, a clock hypothesis is incorrect if observations of timestamps exist that cannot be 

produced by the clock hypothesis, because it is a discontinuous function. These theorems 

provide methods for testing if a clock hypothesis is incorrect. By iterating over all events 

and pair of events, each timestamp can be checked for consistency with Test-A and Test-

B. There are also other tests that can determine if a clock hypothesis is incorrect, as will 

be more closely examined in Chapter 5-7.  

 

The result of testing all timestamps in the observation set will be either that the clock 

hypothesis is incorrect or that it is not incorrect. The tests can refute the clock 

hypothesis, but they can not prove it correct. This leads to the following definition of a 

consistent clock hypothesis. 

 

oddτ  

ch(t) 

T 

V 
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Definition Definition Definition Definition 3333....19191919        Given a set of tests Z, a clock hypothesis is consistent under Z with an 

observation set O if no test z Z∈  shows that the hypothesis is incorrect for O. A clock 

hypothesis is inconsistent under Z with an observation set O if it is not consistent under 

Z with O. 

 

Since a correct hypothesis by definition cannot be proven incorrect it follows that  

 

CorollaryCorollaryCorollaryCorollary    3333....20202020        A correct hypothesis h( )c t  for observation set O is always consistent with 

O. 

 

The distinction that follows from the definitions of correct and consistent is useful in the 

context of digital investigations. In a correct clock hypothesis all possible time values are 

always equal to the investigated clock. A correct clock hypothesis can only be derived if 

the investigated clock has been observed at every moment in its history. Establishing a 

correct hypothesis about the investigated clock is inconceivable in a real investigation. 

All the investigator can hope to do is to establish a consistent clock hypothesis. In such a 

hypothesis there is no evidence available that refutes the hypothesis. Specifically, none of 

the timestamps of events in the observation set O as applied in tests in the test set Z 

show that the hypothesis is incorrect. If there is a large number of timestamps and 

causally connected events present in the observation set O, these requirements impose 

strict constraints on a consistent hypothesis. This can lead to the justification of the 

hypothesis. The more data available in O to be fed into the tests in Z, the more justified 

the clock hypothesis can be. As long as the clock hypothesis is consistent, the data in O 

is evidence supporting the hypothesis. 

 

3.9 Subsets, supersets, intersections and unions 

 

It is useful to be able to reason on subsets and supersets of the observed set. It is 

therefore interesting to look at certain properties of such sets in relation to Test-A and 

Test-B. 

 

Theorem Theorem Theorem Theorem 3333....21212121.  .  .  .  If a clock hypothesis h( )c t  is consistent under Test-A with an observation 

set O, then h( )c t  is also consistent under Test-A with every subset of O. 
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Proof.  Proof.  Proof.  Proof.  Since h( )c t  is consistent under Test-A with O, we have from Theorem 3.15 for O 

 

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))i j i j c i i c j je e e e e d t e e d t e¬∃ ∃ → ∧ τ − > τ −  

 

Which means that for any pair, ei, ej ∈ O:  

 

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))i j c i i c j je e e d t e e d t e¬ → ∧ τ − > τ −  

 

Let P be any subset of O, P ⊆ O. For every pair of events ei, ej ∈ P, since P ⊆ O, it is 

also the case that ei, ej ∈ O. Which means that for also for any pair, ei, ej ∈ P:  

 

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))i j c i i c j je e e d t e e d t e¬ → ∧ τ − > τ −  

Thus for P,  

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))i j i j c i i c j je e e e e d t e e d t e¬∃ ∃ → ∧ τ − > τ −  

 

Showing that h( )c t  is not refuted by timestamps in set P using Test-A. From Definition 

3.19, h( )c t  is then consistent with P using Test-A. 

�  

 

TheoremTheoremTheoremTheorem    3333....22222222.  .  .  .  If a clock hypothesis h( )c t  is consistent under Test-B with an observation 

set O, then h( )c t  is also consistent under Test-B with every subset of O. 

 

Proof. Proof. Proof. Proof.     By Theorem 3.17, if h( )c t  is consistent under Test-B with O, then there is no 

timestamp  

 

'
o
( )c ae cτ =  

 

for an event ea in O, where h( )c t  = 'c  has no solution.  

 

Let P be any subset of O, P ⊆ O. For every event ei ∈ P, since P ⊆ O, it is also the case 

that ei ∈ O. Since there is no event ea in O for which h( )c t  = c’ has no solution, there 

cannot be any such event in P. Consequently, there are no events in P for which h( )c t  = 

'c  has no solution. Therefore Test-B holds also for P, and by Definition 3.19 h( )c t  is 

then also consistent under Test-B with P. 

�  
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TheorTheorTheorTheorem em em em 3333....23232323.  .  .  .  If a clock hypothesis h( )c t  is inconsistent under Test-A with an 

observation set O, then h( )c t  is also inconsistent under Test-A with every superset of O. 

 

Proof.  Proof.  Proof.  Proof.  Let h( )c t  be inconsistent with O using Test-A. Then (from Theorem 3.15): 

 

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))a b a b c a a c b be e e e e d t e e d t e∃ ∃ → ∧ τ − > τ −  

 

Let Q be any superset of O, Q O⊇ . For every pair of events ,i je e O∈ , since Q O⊇ , it 

is also the case that ,i je e Q∈ . This means that if ,a be e O∈  then consequently also 

,a be e Q∈ . Therefore, any pair of events ea, eb that makes h( )c t  inconsistent with O must 

also make h( )c t  inconsistent with Os superset Q. We have then for Q: 

 

o oh h(( ) ( ( ) ( ( )) ( ) ( ( ))))a b a b c a a c b be e e e e d t e e d t e∃ ∃ → ∧ τ − > τ −  

�  

 

TheoremTheoremTheoremTheorem    3333....24242424.  .  .  .  If a clock hypothesis h( )c t  is inconsistent under Test-B with an 

observation set O, then h( )c t  is also inconsistent under Test-B with every superset of O. 

 

Proof.  Proof.  Proof.  Proof.  Let h( )c t  be inconsistent with an observation set O. Then by Theorem 3.17 there 

exists a timestamp '
o
( )c ae cτ =  such that 'h( )c t c=  has no solution. 

 

Let Q be any superset of O, Q O⊇ . For any event ie O∈ , since Q O⊇ , it is also the 

case that ie Q∈ . Therefore, if the timestamp '
o
( )c ae cτ =  is in O, it is also in Q. 

Consequently we have also in Q a timestamp '
o
( )c ae cτ =  such that 'h( )c t c=  has no 

solution. 

�  

 

These theorems states that with the test methods A and B, consistency will be preserved 

when treating subsets of the observed set as observed set and inconsistency will be 

preserved when treating supersets of the observed set as observed set. But is the opposite 

the case? Is for example consistency preserved when treating a superset of the observed 

set as observed set? It is easy to see that this is not the case. In the superset, there are 

events that do not exist in the observed set. These events may have values that cannot 
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be generated by the clock hypothesis, and therefore violate Test-B. Such events may also 

be causally connected to each other or to events in the observation set and may have 

values that are inconsistent with the clock hypothesis in Test-A. Consequently, 

consistency is not preserved when observing supersets. The opposite, that inconsistency is 

not necessarily preserved when observing subsets follows from similar reasoning. The 

events that constitute the inconsistency are not necessarily present in the subset, and a 

subset of the observed set may therefore be consistent, even if the observed set is not. 

 

In the following, properties of intersections and unions of observation sets in relation to 

Test-A and Test-B will be examined. 

 

Theorem Theorem Theorem Theorem 3333....25252525.  .  .  .  If a clock hypothesis h( )c t  is consistent under Test-A with observation 

sets O1 and O2, then h( )c t  is also consistent under Test-A with the intersection 1 2O O∩ . 

If a clock hypothesis h( )c t  is consistent under Test-B with observation sets O1 and O2, 

then h( )c t  is also consistent under Test-B with the intersection 1 2O O∩ . 

 

Proof.Proof.Proof.Proof.        Let O be the intersection of O1 and O2, 1 2O O O= ∩ . By the definition of 

intersection, O must then be a subset of O1 and a subset of O2. The preserving of 

consistency for subsets in Test-A and Test-B has already been proven in Theorem 3.21 

and Theorem 3.22.  

�  

 

 

Theorem Theorem Theorem Theorem 3333....26262626.  .  .  .  If a clock hypothesis h( )c t  is consistent under Test-B with observation 

sets O1 and O2 using Test-B, then h( )c t  is also consistent under Test-B with the union 

1 2O O∪ . 

 

Proof.Proof.Proof.Proof.        Let O be the union of O1 and O2, 1 2O O∪ . For every event ie O∈ , since 

1 2O O O= ∪ , then ei must be either in O1 or O2, 1 2i ie O e O∈ ∨ ∈ .  

 

By Theorem 3.17, if h( )c t  is consistent under Test-B with O1 and O2, then there is no 

timestamp '
o
( )c ae cτ =  for an event ea in O1 or O2, where 'h( )c t c=  has no solution. 

Therefore, since 1 2i ie O e O∈ ∨ ∈  there is no timestamp '
o
( )c ae cτ =  for an event ea in O,  

where 'h( )c t c=  has no solution. 

�  
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When examining Test-A in relation to unions of sets, it is necessary to define a 

connection set. A connection set is the set of bordering elements in each of the two 

different sets, elements that is member in one of the sets and have causal connections to 

elements in the other set. An example connection set is shown in Figure 3.5. 

 

Definition Definition Definition Definition 3333....27272727.  .  .  .  A connection set OA-B is a set consisting of elements from two sets OA 

and OB, where each element e in OA-B  is element of exactly one of the sets OA and OB, 

and is causally connected to another element ek in the other set. Formally, 

 

( ( )

)

a b a A b B a B b A a b b a

a A B b A B

e e e O e O e O e O e e e e

e O e O− −

∀ ∀ ∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /

⇒ ∈ ∧ ∈
 

 

 
Figure 3.5 Graphical representation of a connection set 

 

 

Theorem Theorem Theorem Theorem 3333....28282828....  If a clock hypothesis h( )c t  is consistent under Test-A with observation 

sets O1 and O2, and consistent with the connection set O1-2, then h( )c t  is also consistent 

under Test-A with the union 1 2O O∪ . 

 

Proof.  Proof.  Proof.  Proof.      Let O be the union of two sets O1 and O2, 1 2O O O= ∪ .        Let h( )c t  be consistent 

with O1 and O2 and their connection set O1-2 . For h( )c t  to be consistent, Theorem 3.14 

must be satisfied for all ,i je e O∈ : 

 

OB OA 
OA-B 

e7 

e6 

e5 e4 

e3 e2 e1 
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o o h( ) ( ( )) ( ) ( ( ))i j c i h i c j je e e d t e e d t e→ ⇒ τ − ≤ τ −  

 

Since 1 2O O O= ∪ , all elements in O must be an element of either O1, O2 or both. For 

every pair (ei, ej) in O, it could then be the case that either both ei and ej is element in 

the same set or that ei is element in one set and ej is element in the other. For the cases 

where ei and ej are element of the same set, we already know that Theorem 3.14 is 

satisfied, since h( )c t  is consistent with both O1 and O2. 

 

For the cases where ei and ej are elements of different sets, we have two cases: Either ei is 

element in O1 and not O2, with ej element in O2 and not O1, or ei is element in O2 and not 

O1, while ej is element in O1 and not O2. We do not consider cases where an event is 

element in both O1 and O2, since in that case Theorem 3.14 would be satisfied by the 

reasoning above. The two cases can be written: 

 

1 2 2 1i j i je O e O e O e O∈ ∧ ∈ ∧ ∈ ∧ ∈/ /     

1 2 2 1j i j ie O e O e O e O∈ ∧ ∈ ∧ ∈ ∧ ∈/ /  

 

In order to prove that Theorem 3.14 is satisfied, we need only consider cases where 

i je e→  or j ie e→ . The cases that need to be considered are then reduced to:  

 

1 2 2 1 ( )i j i j i j j ie O e O e O e O e e e e∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /  

1 2 2 1 ( )j i j i i j j ie O e O e O e O e e e e∈ ∧ ∈ ∧ ∈ ∧ ∈ ∧ → ∨ →/ /  

 

Since h( )c t  is consistent with the connection set O1-2 it is now sufficient to show that 

these cases are included in the connection set O1-2. This follows directly from Definition 

3.27. Let a = i, b = j, A = 1 and B = 2, and it becomes clear that the first cases are 

included in O1-2. Further, let a = j, b = i, A = 1 and B = 2. It then becomes clear that 

also the second cases are included in O1-2. Since h( )c t  is consistent with O1-2, all pairs of 

elements in O therefore satisfy Theorem 3.14 and consequently h( )c t  is also consistent 

with O using Test-A. 

�  

 

Finally, it is interesting to determine the properties of an empty observation set. Since 

Test-A and Test-B only put requirements on h( )c t  in relation to events in an observation 
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set, it is reasonable that a clock hypothesis is always consistent with an empty 

observation set. 

 

Theorem Theorem Theorem Theorem 3333....29292929.  .  .  .  A clock hypothesis h( )c t  is always consistent under Test-A and Test-B 

with the empty observation set O = ∅ . 

 

Proof.Proof.Proof.Proof.        Let the observation set O be the empty set, O = ∅ . Test-A is given in Theorem 

3.15:  

 

o oh h o h(( ) ( ( ) ( ( )) ( ) ( ( )))) ( ) ( )i j i j c i i c j je e e e e d t e e d t e c t c t∃ ∃ → ∧ τ − > τ − ⇒ =/  

 

But if O = ∅ , there can by definition not be any elements e O∈ .  Therefore, Test-A will 

never fail and by Definition 3.19, h( )c t  is always consistent under Test-A with O.  

 

The same reasoning can be applied for Test-B, given in Theorem 3.17, whereby the test 

fails at an observation of '
o
( )c ie cτ =  for which 'h( )c t c=  has no solution. But if O = ∅ , 

there can by definition not be any elements e O∈ , for which there can exist observations 

of '
o
( )c ie cτ = . Therefore this test will never fail and by Definition 3.19 h( )c t  is always 

consistent with O using Test-B.  

�  

 

Theorem 3.29 reflects the situation in an investigation where no evidence is available. In 

such an investigation most investigators would conclude that one would not be in the 

position to infer any conclusions about the history of the investigated object. The fact 

that any clock hypothesis would be consistent in this case reflects the nature of a 

hypothesis. A hypothesis cannot be proven correct, it can only be refuted. An empty 

observation set implies that there is no evidence available. When there is no evidence 

available the hypothesis cannot be refuted. 

 

3.10 The clock hypothesis as a scientific hypothesis 

 

In the hypothesis based investigation model proposed by Carrier, a digital investigation is 

a process that formulates and tests hypotheses to answer questions about digital events 

or the state of digital data. [4] Carrier proposes that the investigation process is scientific 
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if the hypothesis is scientific and then tested through performing experiments. Carrier 

cites Popper in that the “criterion of the scientific status of a theory is its falsifiability, or 

refutability, or testability”. Popper elaborates further on the subject: [29] 

 

-  “Every ‘good’ scientific theory is a prohibition: it forbids certain things to happen. The 

more a theory forbids, the better it is.” 

- “Every genuine test of a theory is an attempt to falsify it, or to refute it. Testability is 

falsifiability; but there are degrees of testability; some theories are more testable, more 

exposed to refutation than other; they take, as it were, greater risks.” 

- “Confirming evidence should not count except when it is the result of a genuine test of 

the theory; and this means that it can be presented as a serious but unsuccessful attempt 

to falsify the theory.” 

 

The question here is then if the method for clock hypothesis formulation and testing the 

set of observed timestamps adhere to these criteria. From the previous discussion, a clock 

hypothesis is a theory that is falsifiable and therefore testable. After formulating a clock 

hypothesis, the investigator can use the methods explored in sections 3.7 - 3.9 to test the 

hypothesis. The outcome of such a test can only be a refutation of the hypothesis. If the 

hypothesis is not refuted, it is consistent according to the definition in section 3.8, but 

not necessarily correct according to the definition in section 3.7. The hypothesis cannot 

be proven correct, but as the amount of evidence supporting it increases, it becomes more 

and more justified. With the test methods that have been developed, the observed set of 

timestamps can put a clock hypothesis under scrutiny, especially where there are tens of 

thousands of timestamps in the observed set, such as on a typical hard drive. It is enough 

with one mismatched timestamp in an observed set to refute the clock hypothesis.  

 

The clock hypothesis theory described in the previous sections adheres to the 

requirements of a scientific theory. The hypothesis forbids certain things to happen; the 

occurrence of timestamp configurations as described in Test-A and Test-B. The described 

tests examine the evidence for refutation of the theory. They do not look for 

confirmation, but examine the available evidence for consistency with the theory. When 

the tests have been applied, and found not to refute the hypothesis, the tests count as 

serious but unsuccessful attempts to falsify the theory and therefore as confirming 

evidence. Thus, the methods described in this chapter fall within the hypothesis based 
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investigation model proposed by Carrier and should be considered an application of this 

model within the subject of digital investigation of timestamps.  
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4 CAUSALITY IN STORAGE SYSTEMS 

 

Chapter 3 introduced how causality reasoning can be applied to develop a consistent 

clock hypothesis. In order to be able to test a clock hypothesis for consistency, it is 

necessary to enumerate events in the investigated systems with causal connections 

between them. The study of events and causality in storage systems is of particular 

interest, since these systems provide the foundations of the way data is stored on the 

media investigated in digital investigations. In this chapter, several properties of storage 

systems will be investigated, with the goal of finding causal connections that can be 

utilized for clock hypothesis consistency determination.  

 

Section 4.1 analyzes causality of append-only storages. Section 4.2 analyzes causality of 

first-fit storage systems, with or without generation markers. Section 4.3 generalizes these 

results for other allocation algorithms. Section 4.4 discusses the use of sequence numbers 

in storage systems. Section 4.5 applies the discussion in the other sections to the analysis 

of causality in file system events. 

 

4.1 Append only allocation 

 

A common type of storage system is a system in which each new storage location is 

allocated after the previously allocated storage location. In such a system, previous 

storage locations are never reused, since there is no support for deleting the contents of 

previous storage locations and free them for reuse. Without any influence from the 

outside, the contents of an append-only storage will grow towards infinity. 

 

The use of append only allocation strategies is prevalent in log files. System logs on 

UNIX-systems are good examples. In these logs, the storage allocation is usually line-

based. Each line represents a separate event in the system logging software, and is 

usually timestamped by the system logging software at the time it is stored. Other 

examples include line-based logs from ftp-servers, web servers and databases as well as 

binary logs such as UNIX wtmp-files and Windows event logs. In the latter, each storage 
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allocation represents timestamped system events. These are stored in an append-only 

fashion, although the format makes that less obvious than for text based logs.  

 
Figure 4.1 Graphical representation of append only storage 

 

Let is  be the i-th storage location where 0i > . Let ise be the event of storing data in the 

i-th storage location.  Then, for all i, 
1i is se e

−
→ .  

 

On this basis, Test-A and Test-B can be used to test a clock hypothesis for consistency 

based on the timestamps in an append-only storage. If each storage location is  is 

timestamped, Test-A can be applied directly on each pair 
1i is se e

−
→ , whereas Test-B can 

be applied to each event individually. 

 

Example Example Example Example 4444....1111.  .  .  .  Consider a default clock hypothesis, where h( )c t  is considered to be equal 

to UTC and therefore ( )d t  = 0. Let the observation set O be the timestamps in the 

following excerpt from a Linux system log, where the creation of the first log line is e1, 

the second e2 and so on. If the log is append-only, then e1 → e2 → … → e12.  

 
Mar 18 20:17:56 liqin sshd[30513]: pam˙unix(sshd:session): session closed for user bakksjo 

Mar 18 21:43:25 liqin sshd[30680]: Accepted password for sventy from 80.203.37.109 port 63053 ssh2 

Mar 18 21:43:25 liqin sshd[30682]: pam˙unix(sshd:session): session opened for user sventy by (uid=0) 

Mar 18 22:19:31 liqin sshd[30846]: Failed password for sventy from 213.179.57.64 port 38718 ssh2 

Mar 18 22:19:34 liqin sshd[30846]: Accepted password for sventy from 213.179.57.64 port 38718 ssh2 

Mar 18 22:19:34 liqin sshd[30848]: pam˙unix(sshd:session): session opened for user sventy by (uid=0) 

Mar 18 22:19:35 liqin sshd[30848]: pam˙unix(sshd:session): session closed for user sventy 

Mar 18 22:19:41 liqin sshd[30878]: Accepted password for sventy from 213.179.57.64 port 40882 ssh2 

Mar 18 22:19:41 liqin sshd[30880]: pam˙unix(sshd:session): session opened for user sventy by (uid=0) 

Mar 18 22:20:40 liqin sshd[30880]: pam˙unix(sshd:session): session closed for user sventy 

Mar 18 22:22:46 liqin su: pam˙unix(su-l:session): session opened for user root by sventy(uid=500) 

Mar 18 22:28:44 liqin su: pam˙unix(su-l:session): session closed for user root 

 

There is no timestamps in the observation set where 
o o

( ) ( ( ) ( ))i j c i c je e e e→ ∧ τ > τ . 

Therefore the clock hypothesis is consistent using Test-A. Further, if h( )c t  is equal to 

UTC, then there is no 'c  for which h( )c t  = 'c  has no solution. Therefore the observation 

set is consistent using Test-B.  Thus, the default hypothesis is consistent with O using 

tests A and B. 

 

s  
si-1 s1 
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It could also be the case that not every storage location is timestamped. In this case the 

transitivity property of the happened-before relation can be used to extract those events 

that can be used in Test-A, and the happened-before relationship between them. Only 

the events of the timestamped store location creations are used in the observation set. 

 

Example Example Example Example 4444....2222. . . .     e1 - e6 are the events of creation of six storage locations in an append-only 

storage system. Only e1, e3 and e6 are timestamped. Since 1 2 3 4 5 6e e e e e e→ → → → → , 

by transitivity, 1 3 6e e e→ → . See Figure 4.2. 

 

 

 
Figure 4.2 Timestamped events related transitively 

 

 

Generally; due to the transitivity property, in an append-only system every creation of a 

storage location is causally dependant on the creation of every other storage location 

preceding it. 

 

Let is  be the i-th storage location in an append-only storage. Let ise be the event of 

storing data in the i-th storage location.  Then, for all i, 

 

( )j is sj i e e∀ < → .       (4.1) 

 

4.2 First-fit allocation 

 

A first-fit allocation storage is a system in which each new data item is stored in the first 

available storage location. Deleting data items is allowed and can be done at any time 

after the data item has been stored in a storage location. After a data item has been 

e1 e3 e6 

τ  τ  τ  

e6 e5 e4 e3 e2 e1 
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deleted, it may be overwritten by new data at any time. It may be possible to recover 

deleted data, but it is not possible to recover data that has been overwritten, and it is 

not otherwise possible to determine if stored data was stored by using a deleted storage 

location or a previously unused storage location. A first-fit storage without deletion 

possibility is an append-only storage. Figure 4.3 shows a possible allocation sequence in a 

first-fit storage. 

 

 

Figure 4.3 A possible allocation sequence in a first-fit storage 

 

 

With a first-fit storage, one can no longer deduce a causal connection between two 

neighbours. For any two neighbours is  and 1is +  in an append-only storage, 1i is s +→ , 

because new storage locations are only allowed to be allocated after previously allocated 

storage locations. In a first-fit storage on the other hand, storage locations are allowed to 

be allocated before other existing storage locations if data was deleted there, freeing 

storage locations for new allocation. Therefore, in such a storage it is not possible to 

deduce any causality between the storage of the elements based on the position of the 

elements themselves.  

 

It is interesting to examine a modified form of the first available storage, the first fit 

storage with generation-markers. In this form, the first available storage is augmented 

with the possibility of identifying which generation the data in each storage location 

belongs to. The generation of a storage location is an identification of how many times 

that data in that storage location has been overwritten. On some systems, this number 

may be deduced from a stratigraphic analysis of the medium. On other systems, explicit 
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generation markers exist. Figure 4.4 shows the allocation sequence from Figure 4.3 with 

generation markers. 
 

 
Figure 4.4 The sequence in Figure 4.3 with generation markers added 

 

In a system with generation markers, there is a causal connection between every pair of 

consecutive generations at the same storage location. The storing of data in the i-th 

storage location generation g can only commence if the data present in the i-th storage 

location generation (g-1) has already been stored and deleted. Therefore, for every 

storage location i, the storage of data in generation (g-1) happened-before the storage of 

data in generation g. Generally; due to the transitivity property, the event of storing 

data in a storage location is causally dependant on the storing of all previous generations 

in that storage location. 

 

Let ,i gs  be the i-th storage location generation g. Let 
,i gse be the event of storing data in 

the i-th storage location at the g-th generation.  Then for all i and g; 
, 1 ,i g i gs se e

−
→ . Due 

to the transitivity of → , for all generations g,  

 

, ,
( )i h i gs sh g e e∀ < →      (4.2) 

 

Next, consider the storing of data in storage locations with generation g = 0. When g = 

0, there cannot exist any storage location which has been deleted and then overwritten 

with another data item, because this would have increased the generation number above 

0. The only place where new storage locations can be allocated with generation number 0 

is at the end of the storage. The subset of storage locations with g = 0 is therefore an 

append-only storage. 
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Let ,0is  be the i-th storage location in a first-fit storage, generation 0. Let 
,0ise be the 

event of storing data at generation 0 in the i-th storage location.  Then, for all i,  

 

,0 ,0
( )j is sj i e e∀ < →       (4.3) 

 

Two different types of causal event sets have now been defined from the first available 

storage with generation markers; the causality between storage of storage locations with g 

= 0, and causality between storage of increasing generations at one storage location. 

These sets intersect. Each causality set for increasing generations start at g = 0. Each 

such element is also part of the g = 0 causal set. With these two types of causal 

connections in the first available storage with generation markers, a causal connection on 

all storage locations in the set is imposed. The ordering imposed by a causal connection is 

best illustrated by an example. 

 

Example Example Example Example 4444....3333. . . .     Consider the storage location set in Figure 4.5. In the figure, the storage 

locations are shown horizontally, and generations vertically. Deleted data are shown in 

the lighter colour. For each storage location, the topmost item is always the current data 

stored in the location. Figure 4.6 now shows the causal connections in the diagram, where 

each generation within a storage location happened-before the next generation, and each 

storage location at generation 0 happened-before the next location at generation 0. The 

resulting Direct Acyclic Graph of the creation events of the existing storage locations is 

shown in Figure 4.7. 

 
Figure 4.5 Storage locations in a system with generation markers 
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Figure 4.6 Causality between generations and between all locations at g = 0 

 
 

 

 
Figure 4.7 Graph of the storing events in Figure 4.6 

 

Example 4.3 shows how causality in a first-fit system with generation markers imposes an 

ordering on the events in the system. Such an ordering implies causal connections 

between most storing events in the storage system, providing strict requirements on a 

clock hypothesis in such a system when tested with the tests developed in Chapter 3. 

 

4.3 Other allocation strategies 

 

There exists many possible allocation strategies in addition to those already discussed. 

Among these are: [30] 
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- Next-fit: Similar to first-fit, but the search for the next available location start at 

the location of the previous allocation, not the start of the storage as in first-fit. 

- Best-fit: The available area that best match the data size is always allocated. 

- Worst-fit: Opposite from best-fit: All allocation takes place from the largest 

contiguous storage chunk. 

- Optimal-fit: Similar to best-fit, but other criteria than data size match are taken 

into account. 

 

These strategies all have in common that deletion and reallocation may occur for any 

location in the storage. In a storage system utilizing any of these strategies without any 

possibility to determine the storage location generation, it will not be possible to deduce 

any causal connections between observed elements. The result that no causality can be 

derived in any such plain system is similar to the situation for first-fit allocation storage 

with no generation markers, as discussed in section 4.2. 

 

How do these strategies compare to first-fit if augmented with generation markers? With 

such markers, each storage location has a generation id associated with it, determining 

the number of times that storage location has been deleted and reused by another data 

block. This does not change from a first-fit allocation system to any other allocation 

strategy, so Equation (4.2) still applies. It is still possible to deduce causal connections 

between each generation of a storage location. 

 

For the first-fit algorithm, the storage of the first data generation is an append-only 

system in which the storage of each data block depends on all previous data blocks. With 

this property and the causality between generations, all data blocks in a first-fit system 

with generation markers can be linked together causally. An interesting question is 

therefore if similar causality exists in systems with other allocation strategies. From the 

discussion above, we know that any such system will have many causal connections if the 

storage of the first generation of storage locations is an append-only system. The question 

is therefore whether these allocation strategies result in an append-only system for the 

first generation. The answer to this question will depend on the specific implementation 

of the allocation algorithm, but some general observations can be made for each of the 

mentioned allocation algorithms:  
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- Next-fit: In a next-fit system, each new block in the first generation must have 

been allocated at a position in the storage, where no other blocks were allocated 

before. This occurs when there is no empty block where the allocated data would 

fit between the allocation pointer and the end of the storage. Whenever a new 

block in the first generation is allocated, all previous data blocks in the first 

generation must have been allocated before it. The first generation of this system 

is therefore an append-only system. See Figure 4.8. 

 

- Best-fit: In a best-fit system, whenever a new block in the first generation is 

allocated, it is because there is no previous available block that would fit the data 

size better, so the data is stored at the end of the storage. Whenever a new block 

in the first generation is allocated, all previous data blocks in the first generation 

must have been allocated before it. Therefore the first generation of this system is 

also an append-only storage. 

 

- Worst-fit/Optimal-fit: The same type of argument applies to worst-fit and 

optimal-fit: If a new block in the first generation is allocated, it is because there is 

no previously block that fit worse or more optimal in the case of optimal-fit. The 

first generation of such systems would also be append-only. 

 

 
Figure 4.8 A possible allocation sequence in a next-fit system with generation markers 

 

Although the discussion of any specific allocation implementation necessarily must 

depend on the details of that implementation, it is worth noting that adding generation 

markers to any allocation system in principle impose causal connections on the complete 

storage structure. This implies that a forensic investigator can simplify the search for 
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causality patterns in existing allocation systems by looking for the existence of generation 

markers. A systems designer would simplify subsequent forensic investigations of the 

designed system by adding explicit generation markers in the allocation systems used in 

the designed system. 

 

4.4 Sequence numbers 

 

Sequence numbers is a feature occurring in many digital systems, such as file systems and 

networks. By using a sequence number, the systems designer ensures that sequence 

numbered entities can be ordered in the correct order or be distinguished from each 

other. Sequence numbers are usually implemented by using a counter that increases 

whenever a new sequence numbered entity is produced and associating a copy of the 

value of the counter (the sequence number) with that entity. The implementation of 

sequence numbers are similar to the implementation of clocks, with the exception that 

the increment of the counter does not occur at regular intervals, so the sequence number 

cannot be used as an approximation of time. It is useful to distinguish between wrapping 

sequence numbers and strictly increasing sequence numbers. In wrapping sequence 

numbers, the counter has a limited span of values. When the highest value is reached, 

the counter wraps and starts at the lowest value. A strictly increasing sequence number 

on the other hand is a sequence number that does not wrap in this fashion. In theory a 

strictly increasing sequence number would have to be able to represent infinite numbers. 

In practice however, a sequence number can be viewed as strictly increasing as long as 

the number of values that can be represented in the sequence number is large enough to 

produce strictly increasing numbers over a significant time span, for example the lifetime 

of a computer. 

 

When observing a system of sequence numbered entities, the distinction between 

wrapping sequence numbers and strictly increasing sequence numbers is important. With 

a wrapping sequence number, one would not be able to know how many times the 

counter had wrapped at the time of the generation of the sequence number. When 

correlating two entities with sequence numbers, one would therefore not be able to 

determine if one of the entities was produced before the other. In a system with strictly 

increasing sequence numbers on the other hand, one would be sure that the entity with 
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the highest sequence number had been produced after the entity with the lowest sequence 

number.  

 

In a system with strictly increasing sequence numbers, causality can be inferred between 

the events of production of sequence numbered entities. Each generation of a sequence 

numbered entity is causally dependant on the generation of every other sequence 

numbered entity with lower sequence number. This causality property is very useful, as 

will be seen in section 4.5.5.   

 

4.5 Allocation causality in file systems 

 

Because most file systems record timestamps on a non-volatile medium for events in the 

file system, the causality properties of file systems is of particular interest to the forensic 

investigator. If causal connections between events that cause timestamps to be updated 

can be found, these relations can be utilized to impose strict restrictions on the clock 

hypothesis, by using the methods described in Chapter 3.  

 

Carrier divides the structures of a file system into the following categories: [31] 

 

File system category: structures containing general file system information 

Content category: structures containing the content of files 

Metadata category: structures with data describing files such as file size, where content is 

stored, timestamps and other metadata 

File name category: structures storing data that contain the names of the files, typically 

as directories with contents 

Application category: structures containing data pertaining to special features of the file 

system 

 

Each of these structures may have their own allocation strategy, and should therefore be 

investigated separately for possibilities of inferring causal connections. Allocation 

strategies used in file system are not codified in the file system itself, but are rather 

features of the file system driver in the operating system. Allocation strategies may 

therefore differ between different operating systems, even if the same file system has been 

used.  
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4.5.1 File system category 

 

The file system category structures contains general data about the file system and where 

important data is located on the disk, such as the Master File Table in NTFS and the 

superblock and block group description tables in UNIX file systems. These structures are 

in most cases allocated at the creation of the file systems. Causal relations between their 

creations are therefore usually not especially relevant to the actions of the user. In the 

context of forensic investigations, it is more interesting to investigate the contents of the 

structures pointed to by the structures in the file system category.  

 

4.5.2 Content category 

 

The content category structures contain the data of the files stored in the file system. 

The ability of performing causality reasoning on the allocation of these structures 

depends on the ability to identify timestamp information for the creation of a file on the 

file system, as well as the allocation strategy used and the existence of generation 

markers.  

 

Allocation strategies used in different operating systems may vary, and different 

strategies such as next-fit (in Windows 98 FAT), best-fit (in Windows XP NTFS) and 

first-fit (in Linux Ext2) have been observed in practice. [31]  With such allocation 

strategies, allocation causality could be inferred if it could be identified which generation 

each allocation unit belongs to. Explicit generation markers are however usually not 

implemented in the content category. Identification of which generation a content data 

storage unit belongs to is not required in most file systems, since the data contained in 

the other categories keep track of which data pertain to which files, and whether data 

storage units are currently free or not. Identification of data generation in the content 

category must therefore be inferred from implicit data available based on knowledge of 

how the file system works. One possible such generation identification is the analysis of 

data known as file slack. File slack is data stored in a content category allocation unit 

that does not pertain to the current file stored in it. Such data may exist because a file of 

greater length than the current file may previously have been stored in the allocation 
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unit and deleted. From the existence of file slack data, one may infer that the contents of 

the slack belong to a previous generation than the contents of the current file stored in 

the allocation unit. It is therefore a causal relation between the storage of the file slack 

data and the storage of the current file. The impact of this causal connection is however 

limited.  Identification of file metadata and timestamps pertaining to the file in slack 

space may be difficult or impossible. Further, such analysis may have to be done 

manually, something that would require a very large amount of work if such analysis 

were to be done for all files on a file system. This limits the value of file slack analysis for 

clock hypothesis testing, since many causal connections should be identified to scrutinize 

the clock hypothesis. 

 

Another theoretical possibility for generation identification of content data is the 

identification of the data generation by low level analysis of the signal on the medium. It 

has been postulated that such analysis is possible by using special equipment to read the 

analog signal stored on magnetic platters in hard drives. [32]  It is however to date 

unknown whether this technique is possible in practice. The technique has not been 

demonstrated on recent or current hard drives. The complexity and density of current 

hard drives suggest that such analysis would be very difficult, if possible at all. It’s worth 

noting that if such a technique was indeed possible, it would have to be done on the 

original evidence medium. It would therefore challenge the current paradigm for digital 

investigations, in which the original medium is always copied to another medium before 

it is analyzed. 

 

In summary, identification of generation-markers for data structures in the content 

category seems to be impractical for current file systems.  

 

4.5.3 Metadata category 

 

Data structures in the metadata category contain metadata about the files stored in the 

content category structures. These structures are stored in their own data areas and have 

their own allocation algorithms. Each allocation unit usually stores metadata information 

pertaining to one file. The NTFS Master File Table (MFT) and file inodes in UNIX file 

systems are examples of data structures in the metadata category. Like other storage 

systems, the data units in the metadata category may be deleted and reused. Deletion of 
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a metadata allocation unit usually occurs when the file to which the metadata pertain is 

deleted. 

 

The possibility for finding causal connections depends on, like the other categories, the 

existence of the allocation strategy and the existence of a generation marker. Unlike the 

content category, for the metadata category, explicit generation markers do exist in some 

systems. The file entries the NTFS Master File Table is a good example. 

 

Each file stored in the NTFS file system has its own entry in the Master File Table. Each 

entry occupies two 512-byte blocks on the disk. Data stored in the MFT entry include 

the file name, the list of data runs where the file data is stored, timestamps and other 

data such as information on whether the data is compressed or encrypted using the 

compression and encryption features in the file system. The file entry in the MFT is the 

central reference point for each file. It is created when a file is stored on the file system, 

and deleted (but not wiped) when a file is deleted. Allocation of file entries within the 

MFT occurs on a first-fit basis. [31] Each file entry contains a generation marker, termed 

sequence number, which identifies the generation of the usage of that entry. This number 

is increased whenever the file entry is reused. With a first-fit allocation algorithm, this 

system is exactly the system described in section 4.2. In this system, the storage of each 

new generation in a specific location always depends causally on the storage and deletion 

of previous generations. All elements in the first generation depend on all previously 

stored elements of that generation. Thus, causal connections exist between file entries in 

the Master File Table of the NTFS file system, under the reasoning described in section 

4.2.  

 

Example Example Example Example 4444....4444. . . .     Consider the following set of allocated file entries from an NTFS Master 

File Table. Let ei be the storage of the current data in entry i. 

 
Entry 45 sequence number 0 

Entry 46 sequence number 2 

Entry 47 sequence number 0 

Entry 48 sequence number 1 

Entry 49 sequence number 5 

Entry 50 sequence number 0 

Entry 51 sequence number 3 
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Since 
,0 ,0

( )j is sj i e e∀ < →  it can be inferred that e45 → e47 → e50. Further, since also 

,0 ,i i gs se e→ , we also have e45 → e46, e47 → e48, e47 → e49 and e50 → e51. The resulting 

causality graph is:  

 

 
Figure 4.9 Event and happened-before graph in Example 4.4 

 

4.5.4 File name category 

 

Data structures in the file name category contain indices over file names stored in the file 

system, such as directories. The determination of causal connections between their 

allocation depends on the allocation algorithm and, unless append-only is used, the 

possibility of identifying the generation. Some file systems use linear allocation for 

directory indices, while some use more advanced data structures such as B-trees. In either 

case, the possibility of deletion of file names and reuse of the storage area in question 

means that it would be necessary to identify the data generation in order to find causal 

connections. Since explicit generation markers are not common in file system directory 

indices, finding causal connections in the allocation in directories may not be possible. 

 

4.5.5 Application category 

 

Some file systems contains special data pertaining to specific features of the file system or 

operating system. One such specific feature of special interest is File System Journals. 

When using a file system with journaling, the operating system logs all changes to file 

system metadata before and after the change is written to disk. This prevents file system 

inconsistencies resulting from system crashes. When booting after a crash, the system can 

remove any inconsistencies by checking the journal for actions that were started but not 

finished.  
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The possibility to find causal connections in the use of a journal depends on the 

allocation strategy used in the journal file. A common strategy in journal files is to use an 

append-only strategy (used in for example Ext3 and NTFS). Each file system action 

descriptor is appended to the end of the previous descriptor already stored in the file 

system journal. Since the file system journal has limited size, there must be identification 

of where the current journal file starts and to which extent old data has been 

overwritten. This is commonly implemented by using a strictly increasing sequence 

number. For example, in NTFS, journal file transactions are labelled with a 64-bit 

number (so called Logical Sequence Number - LSN) that increases throughout the 

lifetime of the file system. The proper functioning of the journaling feature in NTFS 

depends on this number being strictly increasing. [33] 

 

On this basis, it is possible to find causal connections by analyzing journal files. The 

amount of information that can be derived from the journal file itself is however limited. 

Since every write to a file produces a journal file entry and the journal file has limited 

size, old entries will quickly be overwritten. It is common for operating systems to restart 

the log file at every boot of the operating system, thereby overwriting the data written in 

previous sessions. Due to the limited size of the journal file, the most interesting use of 

journaling to find causal connections comes from the use of the sequence number in the 

journal file. Some file systems, such as NTFS, store the journal file sequence number (the 

LSN in NTFS) in the file metadata entry. If the journal file sequence number is strictly 

increasing, then it means that the events that generate it are causally connected, as 

discussed in section 4.4. On such systems, it is possible to impose causal connections on 

the events of the last change of the file entry on all files stored on the file system.  

 

Example Example Example Example 4444....5555.  .  .  .  Consider the following set of allocated file entries from an NTFS Master 

File Table. Let ei be the last update of the current data in entry i. 

 
Entry 45 log file sequence number 432627 

Entry 46 log file sequence number 186345 

Entry 47 log file sequence number 735294 

Entry 48 log file sequence number 165093 

Entry 49 log file sequence number 878121 

Entry 50 log file sequence number 782427 

Entry 51 log file sequence number 561987 
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Since logical sequence numbers in the journal file (log file) are allocated sequentially, we 

can obtain the causal ordering of the last update events by sorting the file entries by 

their log file sequence number: e48 → e46 →  e45 → e51 → e50 → e47 → e49. 

4.5.6 File system causality 

 

The above discussion has shown that causal connections can be found in the analysis of 

allocation in several of the storage categories in file systems. Such inferences would 

provide the necessary basis for the formulation and testing of clock hypotheses. File 

systems provide the foundations for data storage in digital systems investigated in digital 

investigations. On a normal medium investigated in a digital investigation, there are tens 

of thousands or even hundreds of thousands of files. It has been found that, depending on 

the implementation of the file system, there may exist several ways in which all files on a 

file system are causally connected. When all these files are causally connected, and there 

exists timestamps for the events, a strict boundary on a clock hypothesis is produced by 

the tests investigated in Chapter 3.  Such usage of file system causal connections to 

provide clock hypothesis bounds will be further investigated in Chapter 7. 
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5 TIMESTAMP REASONING WITH EVENT CALCULUS 

 

Chapter 3 - 4 introduced clock hypothesis testing and how causality relations can be 

found in storage systems. This Chapter extends this system by introducing a model for 

systems containing timestamps. The model uses fluents to represent timestamps, and 

actions to represent events changing them. Since actions may change more than one 

timestamp at the same time, the creation of timestamps is correlated. This property can 

be utilized to put a clock hypothesis under additional scrutiny. This Chapter uses a 

simple theoretical file system to illustrate the process. 

 

Section 5.1 introduces the Simplified Event Calculus. Section 5.2 shows how timestamps 

can be formulated in this calculus. Sections 5.3 - 5.4 discusses how action hypotheses can 

be derived from observation sets. Section 5.5 - 5.8 then shows how the system model can 

be used to test a clock hypothesis. In Section 5.9 - 5.10, invariants is derived to be used 

for clock hypothesis testing from a more advanced theoretical file system, bearing closer 

resemblance to a real file system. 

 

5.1 Introduction to Simplified Event Calculus 

 

In this chapter, a form of reasoning will be developed for finding properties that can be 

used for clock hypothesis testing with the methods developed in Chapter 3. The 

reasoning is based on modelling these systems in Simplified Event Calculus (SEC), a 

calculus for reasoning on change, defined by Shanahan. [34] 

 

Simplified Event Calculus is a many-sorted predicate calculus, in which reasoning on 

change is performed by means of predicates describing properties at particular moments 

in time and events that can change these properties. In Simplified Event Calculus, the 

world is modelled with time, fluents and actions.  

 

Definition Definition Definition Definition 5555....1111.... A language of the Simplified Event Calculus is a many-sorted first-order 

predicate calculus with equality, which includes: 
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- A sort for fluents, with variables f, f1, f2, etc. 

- A sort for actions, with variables a, a1, a2, etc 

- A sort for time, with variables t, t1, t2, etc 

- the following predicates, whose arguments are fluents, actions and times: 

HoldsAt(f, t) - fluent f  holds at time t 

Happens(a, t) - action a occurs at time t 

Initiates(a, f, t) - action a causes fluent f  to hold if it happens at time t 

Terminates(a, f, t) - action a causes fluent f  not to hold if it happens at time t 

Clipped(t1, f, t2) - fluent f ceased to hold in the period between t1 and t2 

Initially(f) - fluent f  held at t = 0 

 

A fluent in the Simplified Event Calculus represents any property in the modelled world. 

The existence of a fluent at a specific moment in time is denoted with the HoldsAt 

predicate. An action in the Simplified Event Calculus represents an occurrence that can 

cause a property to change. The occurrence of an action at a specific moment in time is 

denoted with the Happens predicate. The change introduced by an action is modelled 

with the predicates Initiates and Terminates. These predicates represent the change 

introduced by the occurrence of an action at a specific moment in time; causing a fluent 

to hold (Initiates) or causing a fluent not to hold (Terminates). The predicate Clipped 

represents that a fluent ceased to hold in a specific time period. The predicate Initially 

allows the representation of fluents existing before the events represented in a particular 

model. 

 

Shanahan defines effect axioms for the Simplified Event Calculus as follows: 
 

2 1 1 1 2 1 2HoldsAt( , ) Happens( , ) Initiates( , , ) not Clipped( , , )f t a t a f t t t t f t⇐ ∧ ∧ < ∧  (5.1) 

1 2 1 2Clipped( , , ) Happens( , ) Terminates( , , )t f t a t a f t t t t⇐ ∧ ∧ < <    (5.2) 

HoldsAt( , ) Initially( ) notClipped(0, , )f t f f t⇐ ∧      (5.3)

  

Informally, the effect axioms can be interpreted as: 

 

- If an action happening at time t1 initiated a fluent f, than the fluent f  still holds 

at time t2, if it has not been Clipped between t1 and t2 (5.1),  
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- If a fluent held Initially, then it will still hold at time t, if it has not been Clipped 

between 0 and t (5.3) 

- A fluent is Clipped between t1 and t2 if an action occurring between t1 and t2 

terminates that fluent. (5.2) 

- Whenever a fluent holds at time t, it must be either because it held Initially (5.3), 

or because some action Initiated it. (5.1) 

  

Simplified Event Calculus is used in logic programs for reasoning on change. Shanahan 

defines an event calculus program as follows.  

 

Definition Definition Definition Definition 5555....2222....  An event calculus program is the conjunction of, 

 

- A finite set S of Initially clauses of the form,  

 

Initially( )f  

 

- A finite set A of Happens clauses of the form,  

 

Happens( , )a t  

 

- A finite set EI of Initiates clauses and a finite set ET of Terminates clauses of the 

form,  

 

1Initiates( , , )a f t ⇐ Π  

1Terminates( , , )a f t ⇐ Π  

 

where Π does not mention the predicates Initially, Happens, Initiates or 

Terminates and every occurrence of the HoldsAt predicate is of the form  

 

2HoldsAt( , )f t  

 

- The effect axioms of simplified event calculus, eq. (5.1) - (5.3) 

 

- A finite set of general clauses not mentioning the predicates Initially, Happens, 

Initiates, Terminates or < . 
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The representation of a model in a logic program allows for the use of resolutions to 

prove or disprove claims expressed with a predicate. This involves substituting each 

clause in the claim with all possible substitutions according to the clauses and axioms of 

the program. The resolution of a claim yields a search space, in the form of a resolution 

tree such as the tree found in Figure 5.1. From a resolution, it can be determined if the 

claim is true, and if so, under which conditions. In the next sections, resolutions will be 

used to explore properties of file systems represented with the Simplified Event Calculus.  

 

A specific feature of the Simplified Event Calculus that should be noted is the use 

negation-as-failure, a form of default reasoning utilized to avoid having to write explicit 

propositions for everything that does not change whenever an action happens.2 Negation-

as-failure is represented by using the predicate operator “not”, instead of the predicate 

operator ¬ . “Not” implies using negation-as-failure instead of explicit negation. Whereas 

1 2Clipped( , , )t f t¬  would require a proposition explicitly stating that there was no 

terminating action occurring in the time period, 1 2notClipped( , , )t f t  will only be false if 

there is actually such a terminating action, and true otherwise. Thus, explicit 

propositions defining conditions for the persistence of fluents not affected by actions do 

not have to be written.  

 

For further reading on the background and semantics of Simplified Event Calculus, the 

reader is referred to Shanahan’s original text. Note that this work uses the symbol ⇐  for 

implication in the Simplified Event Calculus, to avoid confusion with the happened-

before relation. This distinction from Shanahan’s text is purely symbolic and is not 

intended to imply a semantic difference. 

 

5.2 Representation of timestamps in Simplified Event Calculus 

 

                                         

 

 

 

2 The problem of having to represent non-change is called the frame problem in Shanahan’s and 

other works.  
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With the definitions in Definition 5.2, changes in timestamps on a computer system can 

now be represented as an event calculus program, where the fluents are timestamps with 

an associated clock value, and actions are the operations on the computer system that 

might change the timestamps. In accordance with Shanahan, we consider that the 

interpretation of the time sort is by the reals, and that <  and = is interpreted 

accordingly. This interpretation is consistent with the assumptions in Section 3.2.  

 

When representing a system with timestamps in Simplified Event Calculus, we must 

start with defining sets of fluents and actions for our event calculus program. For 

example, in a file system, there might be several timestamps associated with each file. 

We may then represent each timestamp with a fluent type, pertaining to a specific file, 

and holding a specific clock value. In a file system where the last access time and 

modified time of a file is stored, timestamps of a specific file can be represented with 

fluents 

 

aAccessed( , )file τ                

mModified( , )file τ                                       
 

Further, operations in the file system that could potentially change the value of the 

timestamps can be represented with actions 

 

Read( )file       

Write( )file      

 

The change introduced by Read and Write, would be represented in the event calculus 

program as a set of Initiates and Terminates clauses. It could for example be that the 

Read action sets the Accessed timestamp of a file to the current system clock ( )c t  and 

the Write action sets both the Accessed and Modified timestamps to the current system 

clock ( )c t : 
 

Initiates(Read( ),Accessed( , ( )), )file file c t t    (5.4) 

Initiates(Write( ),Accessed( , ( )), )file file c t t    (5.5)

  

Initiates(Write( ),Modified( , ( )), )file file c t t    (5.6) 

 



    

 

 

 

 

73 

In a real file system, the previous clock values stored as timestamps for a file, would be 

overwritten when new timestamps were written for that file. This effect must be 

represented as a set of Terminated clauses: 
 

1 1Terminates(Read( ),Accessed( , ( )), )file file c t t t t⇐ <  (5.7) 

1 1Terminates(Write( ),Accessed( , ( )), )file file c t t t t⇐ <  (5.8)

  

1 1Terminates(Write( ),Modified( , ( )), )file file c t t t t⇐ <  (5.9)

  

 

In most real file systems there is always a value assigned to the time stams of a file. It 

therefore makes sense to define Initially clauses that initiates fluents for the timestamps 

that holds from the start:  

0Initially(Accessed( , ))file τ     (5.10) 

0Initially(Modified( , ))file τ     (5.11) 

 

With the conjunction of the above formulae, a model of a simple file system has been 

defined. This file system has a fixed set of files. Each file always has two timestamps; the 

Accessed timestamp and the Modified timestamp. These timestamps may have an initial 

value, and may be changed by two actions; the Read action and the Write action. The 

Read action sets the Accessed timestamp to the current value of the system clock, 

whereas the Write action sets both the Accessed timestamp and the Modified timestamp 

to the current clock value. There is only one timestamp of each type for each file, so 

whenever a timestamp is changed, the previous value is lost. 
 

In this model, S is the conjunction of formulae (5.10) - (5.11) and E is the conjunction of 

formulae (5.4) - (5.9). With a definition of a set A of Happens clauses, an event calculus 

program for this simple file system has been completed. Then, resolutions can be utilized 

to search the space of possible event histories and test propositions about fluents at 

particular moments in time.  

 

Example Example Example Example 5555....3333....     Let the file “file1” be Read at t = tr and subsequently written at t = tw, 

such that r wt t< . Let ( )c t  be an integer, such that 00τ = , c(tr) = 5 and c(tw) = 10. 
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Let an event calculus program be defined by (5.4) - (5.11) and the following clauses as A:  

 

rHappens(Read(file1), )t      

wHappens(Write(file1), )t      

 

The value of timestamps at certain moments in time can now be examined by means of 

resolutions. For example, let us determine if the accessed timestamp has value 10 at time 

t = tobs, where r w obst t t< < . 
 

 
 

Figure 5.1 Resolution of HoldsAt(Accessed(file1,10),tobs) in Example 5.3 

 

Figure 5.1 shows a resolution for the observation of the Accessed timestamp given a spe-

cific observation time. The right hand branch of the resolution, representing the case that 

the timestamp was initially set to the observed value fails due to the fact that there is no 

Initially clause setting the Accessed timestamp to 10. The left hand branch of the resolu-

tion represents the occurrence of an action a at time t1 initiating the fluent 

Accessed(file1,10) . The only Happens clause that can satisfy this is Hap-

Initially(Accessed(file1,10))⇐

obs notClipped(0, Accessed(file1,10), ))t∧

obsHoldsAt(Accessed(file1,10), )t

1 1Happens(a, ) Initiates( ,Accessed(file1,10), )t a t⇐ ∧

<1 obs 1 obs notClipped( ,Accessed(file1,10),t )t t t∧ ∧

w obsnot Clipped( , Accessed(file1,10), )t t⇐

w obsClipped( ,Accessed(file1,10), )t t⇐

< <w obsHappens( , ) Terminates( ,Accessed(file1,10), )a t a t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 w  Write(file1)t t , a= =
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pens(Write(file1),tw). Since the evalution of the clause w obsClipped(t ,Accessed(file1,10),t ) 

fails, the left branch shows that obsHoldsAt(Accessed(file1,10),t )  holds.  
 

Example Example Example Example 5555....4444. . . .     Consider the event calculus program from Example 5.3. Determine if it 

could be the case at t = tobs , where r w obst t t< < , that the accessed timestamp is set to 

value 5 and the modified timestamp is set to value 10. The proposition to be tested is 

then 

 

obs obsHoldsAt(Modified(file1,10),t ) HoldsAt(Accessed(file1,5),t )∧   (5.12) 

 

It is practical to evaluate each of the HoldsAt clauses in the proposition separately. Since 

both clauses have to hold for the proposition to be true, none of the resolution trees must 

fail, should the proposition hold. The resolution for the first clause is shown in Figure 5.2 

and the second in Figure 5.3. 
 

 
 

Figure 5.2 Resolution of HoldsAt(Modified(file1,10),tobs) in Example 5.4 

 

Initially(Modified(file1,10))⇐

obs notClipped(0, Modified(file1,10), ))t∧

obsHoldsAt(Modified(file1,10), )t

1 1Happens( , ) Initiates( ,Modified(file1,10), )a t a t⇐ ∧

1 obs 1 obs notClipped( ,Modified(file1,10), )t t t t∧ < ∧

w obsnotClipped( , Modified(file1,10), )t t⇐

w obsClipped( , Modified(file1,10), )t t⇐

< <w obsHappens( , ) Terminates( , Modified(file1,10), )a t a t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 w,  Write(file1)t t a= =
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As shown on the figures, the term HoldsAt(Modified(file1,10),tobs) holds, but the term 

HoldsAt(Accessed(file1,5),tobs) fails, since the Accessed(file1,5) fluent initiated by 

Happens(Read(file1),tr) is Clipped by Happens(Write(file1),tw). Consequently, the access 

timestamp cannot have the value 5 at tobs. 

 

 
 

Figure 5.3 Resolution of HoldsAt(Accessed(file1,5),tobs) in Example 5.4 

 

5.3 Observation sets and action hypotheses 

 

Initially(Accessed(file1,5))⇐

obs notClipped(0, Accessed(file1,5),t ))∧

obsHoldsAt(Accessed(file1,5), )t

1 1Happens( , ) Initiates( ,Accessed(file1,5), )a t a t⇐ ∧

<1 obs 1 obs notClipped( ,Accessed(file1,5), )t t t t∧ ∧

r obsnotClipped( , Accessed(file1,5),t )t⇐

r obsClipped(t ,Accessed(file1,5),t )⇐

< <r obsHappens( , ) Terminates( ,Accessed(file1,5), )a t a t t t t⇐ ∧ ∧

FAIL

FAIL

1 r,  Read(file1)t t a= =

w,  Write(file1)t t a= =

< <
w

w r w obs

Happens(Write(file1), )

Terminates(Write(file),Accessed(file, 5), )

t

t t t t

⇐

∧ ∧

�
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The examples in the previous section has shown how Simplified Event Calculus can be 

utilized to determine if specific timestamp values holds at a specific moment in time, 

given known occurrence of actions. Definition 3.12 introduced the concept of an 

observation set. An observation set is the set of timestamps observed by an investigator 

at the time of the investigation. In Simplified Event Calculus, timestamps are 

represented as fluents that may or may not hold at a specific moment in time. 

Formulated in Simplified Event Calculus, an Observation set is therefore a set of fluents 

that holds at the time of the observation tobs. 

 

Definition Definition Definition Definition 5555....5555.  .  .  .  Formulated in the Simplified Event Calculus, an Observation Set O is a 

finite set of HoldsAt clauses on the form 

 

obsHoldsAt( )f t,  

 

representing fluents f holding at the time of the observation tobs. The observation 

proposition is the conjunction of the HoldsAt clauses in the observation set. The 

observation proposition has the form 

 

no = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ  

 

Where each ϕ  is a HoldsAt clause contained in O, and n is the number of elements in O. 

 

With the definition of an observation set, we can start investigating the relationship 

between an observation set and the sets S, A and E defining an event calculus program. 

As shown in the previous sections, an event calculus program defines the behaviours 

occurring in a system in terms of the initial state (S), the effect any actions would have 

on the states (E) and the actions that actually occurred (A). With known S, E, and A, 

possible states at a specific moment in time could be tested for consistency with the 

event calculus program. In Example 5.3 the tested state was consistent, whereas in 

Example 5.4 the tested state was inconsistent with the event calculus program. When S, 

E and A are known, resolutions can be used to test observation propositions and 

therefore confirm or refute possible observation sets O.  

 

From the examples,  
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{ }obsO = HoldsAt(Accessed(file1,10),t )  

 

was confirmed, whereas 

 

{ }obs obsO = HoldsAt(Modified(file1,10),t ), HoldsAt(Accessed(file1,5),t )  

 

was refuted as a possible observation set for S, A and E. These examples show how 

possible observation sets can be tested for consistency with an event calculus program. 

 

As we have already seen in Chapter 3, things are different in an investigation situation. 

In an investigation, the state at the time of the investigation is observable, whereas 

information about the sets defining the event calculus program is lacking. Under the 

assumption that the investigator has all information about the initial state S, and also 

thorough knowledge about the workings of the system, E, the investigator can use the 

knowledge about the observed state O to derive information about occurred events. In 

this case A is unknown, whereas S, E and O are known. The investigator can now infer 

knowledge about A from the observation set O and the detailed knowledge about how 

the system works, represented by S and E. 

 

Returning to Example 5.3, if the observed set is { }obs = HoldsAt(Accessed(file1,10),t )O  

and A is unknown, the investigator can now reason that since (from O) the fluent 

Accessed(file1, 10) holds at the time of the observation and since (from S) initially 

Accessed(file1, 0), some action must have occurred that terminated Accessed(file1, 0) and 

initiated Accessed(file1, 10). From E, the investigator knows that this must have been an 

action occurring at t = ta, where c(ta) = 10. The investigator also knows that the action 

must have been either a Read or a Write action, since (again, from E) these are the only 

actions that can affect the Accessed fluent. The investigator can therefore formulate two 

hypotheses about occurred actions, H1 and H2 where c(ta) = 10. 

 

{ }1 aH  = Happens(Read(file1),t )  

{ }2 aH  = Happens(Write(file1),t )  

 

These hypotheses can be tested by resolution of the observation proposition; something 

that will produce resolutions similar to that shown in Figure 5.2 for both H1 and H2, and 

both hypotheses will be accepted. H1 and H2 are hypotheses about actions that actually 
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took place. If hypotheses about occurred actions are accepted by an event program 

resolution, it means that they are possible explanations for the observed set O. The 

hypotheses, even if they are accepted, do not imply full knowledge of the set of actions A. 

Even if a hypothesis is accepted, it is still in the unknown if there were any actions in A 

for which there exist no evidence anymore. In Example 5.3, it could for example be the 

case that the file was Read at some moment prior to ta. The timestamp fluent resulting 

from this Read would be Terminated by the Read occurring at ta, and therefore not be 

observable at tobs.  

 

The above discussion leads to the following definition: 

 

Definition Definition Definition Definition 5555....6666. . . .     An action hypothesis H  is a finite set of Happens clauses on the form 

 

Happens( )a t,  

 

derived from an observation set O, given finite sets S and E in an event calculus 

program.  

 

5.4 Formulating action hypotheses 

 

The acceptance of an action hypothesis means that it is a possible set of actions that can 

explain the observation set O. It does not however guarantee that there are no other 

possible explanations. In order to be able to deduct possible courses of events from an 

observation set, we would like to find all possible hypotheses H, given an observation set 

O and knowledge about the system, represented by S and E. 

 

From Definition 5.5 the elements of an observation set O are HoldsAt clauses 

representing the fluents that holds at the time of the observation. The observation 

proposition to be tested in the event calculus program is the conjunction of these 

HoldsAt clauses and takes the form 

 

1 2 = ... no ϕ ∧ ϕ ∧ ∧ ϕ     (5.13) 

 

where each ϕ  is a HoldsAt clause.   
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As per the effect axioms of the Simplified Event Calculus, these HoldsAt clauses may 

exist either because they held initially (eq. (5.3)) or because an action occurred that 

initiated them (eq (5.1)).  There is no other way a HoldsAt clause can come to existence 

than through eq. (5.1) or (5.3). It is therefore possible to find all action hypotheses 

explaining the observation set O by reasoning on the observation proposition, the 

Initiates clauses in E and the Initially clauses in S. This reasoning does not have to 

consider termination of fluents as per the Terminates clause in E, since this will be done 

by means of resolution when each hypothesis is tested for acceptance. The proposition 

that all fluents in an observation set has been initiated is the conjunction of the initiation 

of each fluent and takes the form: 

 

1 2  ... nq = κ ∧ κ ∧ ∧ κ     (5.14) 

 

where each κ  is the initiation of the corresponding ϕ  in the observation proposition o. 

In the following, this proposition will be called the initiation proposition. 

 

A fluent may exist because it held initially or because it was Initiated by a clause in E. 

There may be more than one Initiates clause in E initiating one particular fluent, and 

these must all be considered. Written in propositional logic, the initiation of a HoldsAt 

clause takes the form of a disjunction: 

 

1 2 ... ii i i iu iκ = α ∨ α ∨ ∨ α ∨ η    (5.15) 

 

Where iκ  is the i-th HoldsAt(f, t2) clause in q, iη  is an Initially(f) clause, ui is the 

number of Initiates(a, f, t1) clauses affecting that fluent and each iα is a clause on the 

form 

 

1Happens( , )a t  

 

where there exists a clause Initiates(a, f, t1) in E. 

 

The initiation of the fluents in the observation proposition can now be found by inserting 

(5.15) into (5.14), yielding 
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1

2

11 12 1 1

21 22 2 2

1 2

  ( ... )

   ( ... )

   ...

   ( ... )n

u

u

n n nu n

q = α ∨ α ∨ ∨ α ∨ η

∧ α ∨ α ∨ ∨ α ∨ η

∧

∧ α ∨ α ∨ ∨ α ∨ η

 

 

q is a conjunction of disjunctive clauses. By reordering it into a disjunction of conjunctive 

clauses, a set of action hypotheses can be found, where each of the conjunctive clauses in 

the disjunction is an action hypothesis H. 

 

Example Example Example Example 5555....7777.  .  .  .  Consider an event calculus program with S and E as defined in Example 

5.3 and O as defined by the observation proposition in Equation (5.12). Then a set of 

action hypotheses can be found by the following reasoning:  

 

The observation proposition is given in (5.12) 

 

obs obs = HoldsAt(Modified(file1,10), ) HoldsAt(Accessed(file1,5), )p t t∧  

 

The initiation of these fluents can then be expressed as a conjunction of disjunctive 

clauses as follows, where c(ta) = 5 and c(tm) = 10:  

 

m

a

a

 = (Happens(Write(file1), ) 

      Initially(Modified(file1,10)))

   (Happens(Read(file1), )

      Happens(Write(file1), )

      Initially(Accessed(file1,5)))

q t

t

t

∨

∧

∨

∨

 

 

Since there is no Initially(Modified(file1,10)) or Initially(Accessed(file1,5)) in S, we know 

that these clauses are false. q then becomes:  

 

m

a

a

 = Happens(Write(file1), ) 

   (Happens(Read(file1), )

        Happens(Write(file1), ))

q t

t

t

∧

∨

 

 

Rewritten as a disjunction of conjunctive clauses: 
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m a

m a

 = Happens(Write(file1), ) Happens(Read(file1), )

  Happens(Write(file1), ) Happens(Write(file1), )

q t t

t t

∧

∨ ∧
 

 

So here we obtain two different hypotheses from the fluent initiation: 

 

{ }

{ }

1 m a

2 m a

H  = Happens(Write(file1), ), Happens(Read(file1), )

H  = Happens(Write(file1), ), Happens(Write(file1), )

t t

t t
 

 

5.5 Using event calculus to test a clock hypothesis 

 

The defined system can be used to put additional constraints on the clock hypothesis 

that does not follow directly from the reasoning in chapter 3. The investigator can test 

clock hypotheses for consistency with the observed set O, given knowledge of the initial 

state S and how the system works, E. Such testing is performed by deriving hypotheses 

about occurred events from the observation set using the method in section 5.4, and then 

test them with the clock hypothesis h( )c t  by using resolutions. If no action hypothesis is 

accepted in the event calculus program for a clock hypothesis, then that clock hypothesis 

is refuted. If one or more action hypotheses are accepted for a clock hypothesis, then that 

clock hypothesis is accepted, and the action hypotheses describe the possible sequence of 

events that could bring the system into the observed state. 

 

ExampleExampleExampleExample    5555....8888....  Consider the default clock hypothesis, where it is assumed that the clock of 

the investigated computer has always been equal to civil time, say UTC. Then h( )c t  = 

( )b t  and ( )d t  = 0.  Now, assume the event calculus program and observation set of 

Example 5.7. Then the hypotheses to be tested are:  

 

{ }

{ }

1 m a

2 m a

H  = Happens(Write(file1), ), Happens(Read(file1), )

H  = Happens(Write(file1), ), Happens(Write(file1), )

t t

t t
 

 

Now, since ch(ta) = 5 and ch(tm) = 10 and h( )c t  is an ideal clock, a mt t< . H1 was tested in 

Example 5.4, where it was found to be refuted.  
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Figure 5.4 Resolution of HoldsAt(Accessed(file1,5),tobs) with H2 in Example 5.8 

Initially(Accessed(file1,5))⇐

obs notClipped(0, Accessed(file1,5),t ))∧

obsHoldsAt(Accessed(file1,5),t )

1 1Happens( , ) Initiates( ,Accessed(file1,5), )a t a t⇐ ∧

<1 obs 1 obs notClipped( ,Accessed(file1,5), )t t t t∧ ∧

a obsnotClipped( , Accessed(file1,5), )t t⇐

a obsClipped( ,Accessed(file1,5), )t t⇐

< <a obsHappens( , ) Terminates( ,Accessed(file1,5), )a t a t t t t⇐ ∧ ∧

FAIL

FAIL

1 a,  Write(file1)t t a= =

m,  Write(file1)t t a= =

< <
m

m a m obs

Happens(Write(file1), )

Terminates(Write(file1),Accessed(file1, 5), )

t

t t t t

⇐

∧ ∧

�
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The resolution of the second clause in the observation proposition, 

HoldsAt(Accessed(file,5),tobs) with hypothesis H2 is shown in Figure 5.4. The resolution 

fails, which means that H2 is also not a valid hypothesis for h( )c t . In other words, in the 

defined simple file system, the observed set cannot come to existence with the default 

clock hypothesis. The default clock hypothesis is therefore refuted. This would happen for 

any file where a mt t< . 

 

5.6 Invariants in the simple file system 

 

The methods in the previous sections can be used to test the observation proposition in 

the general case, and thereby summarize properties of the simple file system defined in 

formulae (5.4) - (5.11). For any given file in the file system, the observation proposition 

is: 

 

)m obs a obsHoldsAt(Modified( , ( )), ) HoldsAt(Accessed( , ( )),file c t t file c t t∧  

 

Now, if m( )c t 0≠ τ and a( )c t 0≠ τ , there must have occurred actions initiating these 

fluents. As seen in Example 5.7, these actions can only have been 

 

{ }

{ }

1 m a

2 m a

H  = Happens(Write( ), ), Happens(Read( ), )

H  = Happens(Write( ), ), Happens(Write( ), )

file t file t

file t file t
   (5.16) 

 

Now, three different timestamping orders can be investigated; m at t< ,   m a=t t  and 

m at t> . The case of m at t>  was examined in Example 5.8, and found to always be 

refuted.  

 

In the case of   m a=t t , (5.16) is reduced to  

 

{ }

{ }

1 m m

2 m

H  = Happens(Write( ), ), Happens(Read( ), )

H  = Happens(Write( ), )

file t file t

file t
   (5.17) 

 

Written as a disjunction 
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m m

m

(Happens(Write( ), )  Happens(Read( ), ))

 Happens(Write( ), )

file t file t

file t

∧

∨
 

 

Which is equivalent to 

 

mHappens(Write( ), )file t  

 

The effect of Happens(Read(file),tm) in H1 in (5.17) will always be consumed by the effect 

of Happens(Write(file),tm), (5.17) can then be reduced to  

 

     { }1 mH  = Happens(Write( ), )file t  

 

The timestamping order m at t<  must be investigated further. The resolution in Figure 

5.5 shows that H2 is refuted if m at t< .  The resolutions in Figure 5.6 and Figure 5.7 show 

that H1 is accepted for m at t< . 
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Figure 5.5 The observation proposition fails for H2 when m at t<  

 
 

mInitially(Modified( , ( )))file c t⇐

m obs notClipped(0, Modified( , ( )), ))file c t t∧

m obsHoldsAt(Modified( , ( )), )file c t t

1 m 1Happens( , ) Initiates( ,Modified( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped( ,Modified( , ( )), )t t t file c t t∧ ∧

m m obsnotClipped( , Modified( , ( )), )t file c t t⇐

m m obsClipped( ,Modified( , ( )), )t file c t t⇐

< <m m obsHappens( , ) Terminates( ,Modified( , ( )), )a t a file c t t t t t⇐ ∧ ∧

FAIL

FAIL

1 m,  Write( )t t a file= =

a,  Write( )t t a file= =

< <
a

m a m a obs

Happens(Write( ), )

Terminates(Write( ),Modified( , ( )), )

file t

file file c t t t t t

⇐

∧ ∧

�
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Figure 5.6 HoldsAt(Modified(file, c(tm)), tobs) does not fail for H1 when m at t<  

 

mInitially(Modified( , ( )))file c t⇐

m obs notClipped(0, Modified( , ( )), ))file c t t∧

m obsHoldsAt(Modified( , ( )), )file c t t

1 m 1Happens( , ) Initiates( ,Modified( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped( ,Modified( , ( )), )t t t file c t t∧ ∧

m m obsnotClipped( , Modified( , ( )), )t file c t t⇐

m m obsClipped( , Modified( , ( )), )t file c t t⇐

< <m m obsHappens( , ) Terminates( , Modified( , ( )), )a t a file c t t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 m,  Write( )t t a file= =
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Figure 5.7 HoldsAt(Accessed(file, c(ta)), tobs) does not fail for H1 when m at t<  

 

In summary, the above discussion has shown that 

  

m a   t t>/  

m a m =   Happens(Write( ), )t t file t⇒  

m a a m    Happens(Read( ), ) Happens(Write( ), )t t file t file t< ⇒ ∧  

 

And therefore, for any observations of timestamps in this simple file system, it is required 

that: 

 

m a  t t≤  

 

5.7 Using invariants to test a clock hypothesis 

 

In the simple file system, it is now known that m a t t≤ .  But these times are not directly 

observable in the observation set O. Instead, the investigator observes the Modified 

aInitially(Accessed( , ( )))file c t⇐

a obs notClipped(0, Accessed( , ( )), ))file c t t∧

a obsHoldsAt(Accessed( , ( )), )file c t t

1 a 1Happens( , ) Initiates( ,Accessed( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped( ,Accessed( , ( )), )t t t file c t t∧ ∧

a a obsnotClipped( , Accessed( , ( )), )t file c t t⇐

m a obsClipped( , Accessed( , ( )), )t file c t t⇐

< <a a obsHappens( , ) Terminates( , Accessed( , ( )), )a t a file c t t t t t⇐ ∧ ∧

�

FAIL

FAIL

1 a,  Read( )t t a file= =
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timestamp c(tm) and the Accessed timestamp c(ta). The clock hypothesis must then 

match with the observed timestamp values and m a  t t≤ . This requirement can be 

expressed in the same way as Theorem 3.14: 

 

TheoremTheoremTheoremTheorem    5555....9999....        In    a correct clock hypothesis h( )c t , the timestamps of all events ei , ej 

where t(ei) ≤  t(ej) in an observation set O must be such that the timestamp of the first 

event minus the deviation from a common base has value less than or equal to the 

timestamp of the latter event minus the deviation from a common base. 

 

h h( ) ( ) ( ) ( ( )) ( ) ( ( ))i j i i j jt e t e e d t e e d t e≤ ⇒ τ − ≤ τ −  

 

Proof. Proof. Proof. Proof.     Let h( )c t  be a correct clock hypothesis.    Let ( )b t  be a common base for h( )c t  and 

o( )c t . Then 

h h( ) ( ) ( )b t c t d t= −  

o o( ) ( ) ( )b t c t d t= −  

Thus,  

h h o o( ) ( ) ( ) ( )c t d t c t d t− = −  

 

And since h( )c t  is correct we have h( )c t  = o( )c t . Therefore  

 

h o( ) ( )d t d t=  

o h( ) ( ) ( )b t c t d t= −  

And inserting Definition 3.4 yields 

h( ( )) ( ) ( ( ))b t e e d t e= τ −  

 

Now, from Definition 3.8 ( )b t  shall be an ideal clock. From Definition 3.5 ideal clocks 

satisfy 

( ) ( ) ( ( )) ( ( ))i j i jt e t e c t e c t e< ⇒ ≤  

And then, inserting ( )b t  gives 

( ) ( ) ( ( )) ( ( ))i j i jt e t e b t e b t e< ⇒ ≤  

o oh h( ) ( ) ( ) ( ( )) ( ) ( ( ))i j c i i c j jt e t e e d t e e d t e< ⇒ τ − ≤ τ −  

 

Further, from Definition 3.5 ideal clocks satisfy 

( ) ( ) ( ( )) ( ( ))i j i jt e t e c t e c t e= ⇒ =  

And then, inserting ( )b t  gives 
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( ) ( ) ( ( )) ( ( ))i j i jt e t e b t e b t e= ⇒ =  

o oh h( ) ( ) ( ) ( ( )) ( ) ( ( ))i j c i i c j jt e t e e d t e e d t e= ⇒ τ − = τ −  

Thus,  

 

o oh h( ) ( ) ( ) ( ( )) ( ) ( ( ))i j c i i c j jt e t e e d t e e d t e≤ ⇒ τ − ≤ τ −  

�  

 

And so, the requirement of Theorem 5.9 can be tested as follows: 

 

TheoremTheoremTheoremTheorem    5555....10101010....     If, in an known system, timestamps generated by ei and ej must be such 

that ( ) ( )i jt e t e≤ , then if there exist timestamps in an observation set O, for which the 

timestamp of ei minus the hypothesis deviation from a common base has a higher value 

than the timestamp of ej minus the hypothesis deviation from a common base, then the 

clock hypothesis is incorrect.  

 

ho oh o h(( ( ) ( )) ( ( ) ( ( )) ( ) ( ( )))) ( ) ( )i j i j c i i c j je e t e t e e d t e e d t e c t c t∃ ∃ ≤ ∧ τ − > τ − ⇒ =/  

 

The proof follows the reasoning of the proof for Theorem 3.15 and is omitted here. 

 

This test complements Test-A and Test-B developed in chapter 3, for systems that can 

be described in Simplified Event Calculus and where invariants can be found by using 

the methods described in this chapter. 

 

Example Example Example Example 5555....11111111.  In Example 5.8 a file in the simple file system was observed with 

Accessed timestamp c(ta) = 5 and Modified timestamp c(tm) = 10. The default clock 

hypothesis was tested against this evidence. Now, we know that in the simple file system, 

m a  t t≤ , and for the default clock hypothesis, h( )d t = 0. Then, applying the test in 

Theorem 5.10 and inserting tm, ta, c(ta) and c(tm) yields: 

 

o oh h( ( ) ( )) ( ( ) ( ( )) ( ) ( ( )))i j c i i c j jt e t e e d t e e d t e≤ ∧ τ − > τ −  

m a m a( ) ( ( ) ( ))t t c t c t≤ ∧ >  

m a( ) (10 5)t t≤ ∧ >  

 

Which is clearly true, hence the default clock hypothesis is refuted. 
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5.8 Using Simplified Event Calculus to develop tests for a system 

 

In this chapter, a method for developing clock hypothesis tests from the description of a 

system has been developed. The necessary steps to develop such test are described as 

follows, hereafter called the SEC-algorithm:  

 

1. Determine a set E of the effect of actions in the system by inspecting how the 

system works or otherwise justify assumptions about the effect of actions in the 

system.  

2. Determine a set S of the initial state of the system by determining the production 

state of the system or otherwise justify assumptions about the initial state. 

3. Find action hypotheses for the system by using the initiation proposition 

4. Test the hypotheses against the observation proposition by means of resolution 

for all timestamping orders 

5. Derive invariants for the system from the testing of the observation proposition. 

6. Derive tests from the invariants, by using Theorem 5.9. 

7. Test the clock hypothesis. 

 

In order to determine how practical this procedure is, it is interesting to evaluate each 

step in practical terms. Step 1 involves an investigation of how the system reacts to 

actions. Ideally, such knowledge can be derived directly from the specification or 

implementation of the system. This is however not always possible. Then, it is necessary 

to do an active investigation by testing how variables of the system changes as a result of 

actions. Step 2 involves obtaining knowledge about the start state. In computer systems, 

this can often be accomplished by determine how the system was configured when it was 

installed. In other cases, witness statements may be enough to determine how the start 

state was. Step 3-6 is an exercise of reasoning, by using the tools given in this chapter.  It 

is interesting to note that for any given system type, steps 1-6 may not have to be done 

more than once. The results, tests to be used in step 7, can be applied over and over 

again in different investigations involving that system type. For example, in investigation 

of digital media, investigation of file systems is common. For a specific file system, steps 

1-6 could be performed once, and the developed tests could then be implemented in a 

system for testing clock hypotheses in that file system. Such a system could for example 

be a part of a software package for digital investigation.  
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5.9 Extending the simple file system with creation and deletion  

  

In real file systems, files do not exist indefinitely. Instead, files are created by means of 

special operations, and can also be deleted. Therefore, in order to more closely represent 

an actual file system, it is necessary to extend the simple file system from chapter 5 to 

also include creation and deletion of files. The representation should be modelled in such 

a way that the fluents and actions pertain to file instances. A file instance is the storage 

of a specific file on a storage medium. A file instance does not represent the file’s contents 

or name as such, since there may be other files with the same content or the same name. 

The file instance represents the storage of file data at a specific location on the storage 

medium. A file instance can be created or deleted. It can only be created if it has not 

been created before. It can only be deleted if it has been created before and has not 

already been deleted. This definition gives the life cycle of a file instance, shown in Figure 

5.8. 
 

 
Figure 5.8 Graphical representation of the life cycle of a file instance 

   

A file can only be created if it has not already been created (interval I1). It can only be 

deleted if it has already been created, but is not deleted (interval I2). Other operations, 

such as Read or Write can only occur in interval I2. Then, a file instance can only be 

created exactly once, and it can only be deleted exactly once. Recreation of a deleted file 

instance cannot occur. Timestamps that has been assigned to a file in the delete 

operation or before, is retained after the delete operation and cannot be changed 

thereafter (interval I3). This reflects a property of real file systems; when a file has been 

deleted, it is no longer reachable in the file system, so the timestamps can no longer be 

t 

I1 

I2 

I3 

creation deletion 
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set by normal operating system procedures. By using special forensic software, it is 

however possible to find the values for the timestamps also after the file was deleted. 

 

Based on this model, we obtain the following fluents for representing the state of a file in-

stance: 

      Exists( )file   

      Deleted( )file   

 

And the following actions that can change the fluents: 

 

      Create( )file   

      Delete( )file   

 

Clauses for the relationship between the state fluents and the state actions can be defined 

as follows: 

 

  Initiates(Create( ),Exists( ), )file file t      (5.18) 

   Initiates(Delete( ),Deleted( ), ) HoldsAt(Exists( ), )file file t file t⇐  (5.19) 

        

Note that further requirements for the clauses are not needed. It is for example not 

necessary to require that a file does not exist for the Create(file) action to initiate the 

Exists(file) fluent. If the file does exist, the Create(file) action would not change anything 

anyway. 

 

The life cycle of a file instance has now been defined, and we can go further to introduce 

a new fluent to represent the Created timestamp that exist in most real file systems: 

 

      cCreated( , )file τ    

 

It is necessary to change the Initiates and Terminates clauses from the simple file system 

to reflect the requirement that timestamp fluents can only change while the file exists 

and is not deleted, and to introduce the Created timestamp fluent: 
 

  
Initiates(Read( ),Accessed( , ( )), )

           HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

file t file t⇐ ∧
  (5.20) 
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Initiates(Write( ),Accessed( , ( )), )

           HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

file t file t⇐ ∧
  (5.21) 

  
Initiates(Write( ),Modified( , ( )), )

           HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

file t file t⇐ ∧
  (5.22) 

 

 Initiates(Create( ),Created( , ( )), ) not HoldsAt(Exists( ), )    file file c t t file t⇐ (5.23) 

 Initiates(Create( ),Modified( , ( )), ) not HoldsAt(Exists( ), )file file c t t file t⇐  (5.24) 

 Initiates(Create( ),Accessed( , ), ( )) not HoldsAt(Exists( ), )file file t c t file t⇐  (5.25) 

 

  
1

1

Terminates(Read( ),Accessed( , ( )), )

               HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

t t file t file t⇐ < ∧ ∧
(5.26) 

  
1

1

Terminates(Write( ),Accessed( , ( )), )

               HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

t t file t file t⇐ < ∧ ∧
(5.27) 

  
1

1

Terminates(Write( ),Modified( , ( )), )

               HoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )

file file c t t

t t file t file t⇐ < ∧ ∧
(5.28) 

 

Terminates clauses for the Created fluent are not introduced. Consequently this fluent 

will hold indefinitely once Initiated. Similarly, the state of the Modified and Accessed 

fluents will hold indefinitely when the file has been Deleted. This is what we require; in 

real file system it is possible to recover the timestamps of previously deleted files. 

Further, we do not introduce Terminates clauses for the Create action and the Accessed 

and Modified fluents. This is not necessary, since the Create action can only occur once 

on each file instance - the Create action cannot subsequently change the Accessed and 

Modified fluents, and it is therefore not necessary to have Terminated clauses for them. 

 

With the introduction of the Create action, the Initially clauses present in the simple file 

system are no longer necessary, since a file must exist in order to be affected by other 

actions. For a file to exist, it must first be created. In this model, files do not exist from 

the start, but have to be created by the Create action, something that will initiate 

timestamp fluents. No timestamp fluents are initiated before the file is created, achieving 

a representation closer to a real file system than the simple file system model.   
 



    

 

 

 

 

95 

5.10 Invariants in the simple file system with creation 

 

Let the simple file system with creation be the file system model defined by the 

conjunction of formulae (5.18) - (5.28) in the Simplified Event Calculus. In this system, E 

is the conjunction of formulae (5.18) - (5.28), and S is the empty set. 

 

The observation proposition for a file in this system takes the form: 

 

c obs

m obs

a obs

 = HoldsAt(Created( , ( )) )

  HoldsAt(Modified( , ( )), )

  HoldsAt(Accessed( , ( )), )

o file c t t

file c t t

file c t t

∧

∧

 

 

There are no Initially clauses, so the initiation proposition can be derived from formulae 

(5.20) - (5.25): 

 

c

m m

a a a

 = (Happens(Create( ), ))

  (Happens(Create( ), ) Happens(Write( ), ))

  (Happens(Create( ) ) Happens(Write( ), ) Happens(Read( ), ))

q file t

file t file t

file t file t file t

∧ ∨

∧ ∨ ∨

 

 

Rewritten: 

 

m c

m c

a c

 =((Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Write( ), ) Happens(Create( ), )))    

  ((Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Write( ),

q file t file t

file t file t

file t file t

file

∧

∨ ∧

∧ ∧

∨ a c

a c

) Happens(Create( ), ))

      (Happens(Read( ), ) Happens(Create( ), )))

t file t

file t file t

∧

∨ ∧

 

 

And expanded:  

 

a c m

a c m

a

 = (Happens(Create( ), ) Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Write( ), ) Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Read( ), ) Happens

q file t file t file t

file t file t file t

file t

∧ ∧

∨ ∧ ∧

∨ ∧ c m

a c m

a c

(Create( ), ) Happens(Create( ), ))

      (Happens(Create( ), ) Happens(Create( ), ) Happens(Write( ), ))

      (Happens(Write( ), ) Happens(Create( ), ) Happens(Write(

file t file t

file t file t file t

file t file t file

∧

∨ ∧ ∧

∨ ∧ ∧ m

a c m

), ))

      (Happens(Read( ), ) Happens(Create( ), ) Happens(Write( ), ))

t

file t file t file t∨ ∧ ∧
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So now we have six different hypotheses, all of which hypothesize a Create action 

occurring at tc :  

 

{ }

{ }

1 a c m

2 a c m

3 a

H  = Happens(Create( ), ), Happens(Create( ), ), Happens(Create( ), )

H  = Happens(Write( ), ), Happens(Create( ), ), Happens(Create( ), )

H  = Happens(Read( ), ), Happens(Cr

file t file t file t

file t file t file t

file t{ }

{ }

{ }

c m

4 a c m

5 a c m

eate( ), ), Happens(Create( ), )

H  = Happens(Create( ), ), Happens(Create( ), ), Happens(Write( ), )

H  = Happens(Write( ), ), Happens(Create( ), ), Happens(Write( ), )

H

file t file t

file t file t file t

file t file t file t

{ }6 a c m = Happens(Read( ), ), Happens(Create( ), ), Happens(Write( ), )file t file t file t

 

 

Consider first   c m a= = t t t . In this case, the initiation proposition will collapse to a 

simple hypothesis: 

c = Happens(Create( ), )q file t     (5.29) 

 

Then consider  c m= t t .  In this case the initiation proposition will collapse to: 

 

a c

a c

a c

 = (Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Write( ), ) Happens(Create( ), ))

      (Happens(Read( ), ) Happens(Create( ), ))

q file t file t

file t file t

file t file t

∧

∨ ∧

∨ ∧
  (5.30) 

And for  c a= t t the result is: 

 

c m

c m

 = (Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Create( ), ) Happens(Write( ), ))

q file t file t

file t file t

∧

∨ ∧
  (5.31) 

 

Now, let c m at t t< < and consider H1. The resolution for this hypothesis is shown in Figure 

5.9. As the resolution shows, H1 fails with this timestamping order. Now consider other 

timestamping orders with H1 where    c m c a  t t t t≠ ∧ ≠ . It is easy to see that the kind of 

tree shown in Figure 5.9 would arise for all configurations of tc, tm and ta, when tested for 

the part of the observation proposition pertaining to the middle or last timestamp. 

Therefore, H1 cannot be the case and is refuted.  



    

 

 

 

 

97 

 

 
 

Figure 5.9 Observation of the Modified timestamp with H1 and c m at t t< <  

 

Now, observe that many of the other hypotheses include multiple Create actions on the 

same file, namely H2, H3 and H4. These all hypothesize the occurrence of more than one 

Create action that will set timestamp fluents. As discussed for H1, all resolutions for the 

observation proposition for these hypotheses will fail when    c m c a  t t t t≠ ∧ ≠ , since the 

requirement for the second Create action is that the file does not already exist, but the 

file exists, because of the first Create action. 

mInitially(Modified( , ( )))file c t⇐

m obs notClipped(0, Modified( , ( )), ))file c t t∧

m obsHoldsAt(Modified( , ( )), )file c t t

1 m 1Happens( , ) Initiates( ,Modified( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 m obs notClipped( ,Modified( , ( )), )t t t file c t t∧ ∧

m

m m obs

not HoldsAt(Exists( ), )

 notClipped( , Modified( , ( )), )

file t

t file c t t

⇐

∧

mHoldsAt(Exists( ), )file t⇐

FAIL

1 m,  Create( )t t a file= =

<1 m 1 m notClipped( ,Exists( ), )t t t file t∧ ∧

1 1Happens( , ) Initiates( ,Exists( ), )a t a file t⇐ ∧

1 c,  Create( )t t a file= =

c mnotClipped( ,Exists( ), )t file t

�

FAIL
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Thus, we are left with:   

 

{ }

{ }

5 a c m

6 a c m

H  = Happens(Write( ), ), Happens(Create( ), ), Happens(Write( ), )

H  = Happens(Read( ), ), Happens(Create( ), ), Happens(Write( ), )

file t file t file t

file t file t file t
 

 

Now, consider H6 and a ct t< . Since the initiation of the Accessed timestamp by an action 

Read(file) at ta requires aHoldsAt(Exists( ), )file t , we must consider both 

aHoldsAt(Exists( ), )file t  and a HoldsAt(Exists( ), )file t¬ . For a HoldsAt(Exists( ), )file t¬ , 

the resolution for the observation of the Accessed timestamp fails, as shown in Figure 

5.10. On the other hand, for aHoldsAt(Exists( ), )file t , the resolution for the observation 

of the Created timestamp fails, as shown in Figure 5.11, since the initiation of the 

Created timestamp requires that the file does not exist. The result is then, that for H6, it 

cannot be the case that a ct t< . 
 

 

Figure 5.10 The accessed timestamp for H6 when a ct t< and a HoldsAt(Exists( ), )file t¬  

 

Now, consider that m ct t<  for H6. One can now apply the same type of reasoning as for  

a ct t< , and draw resolutions for the observation of the modified timestamp assuming 

that m HoldsAt(Exists( ), )file t¬  and for the observation of the created timestamp 

assuming that aHoldsAt(Exists( ), )file t . These resolutions take the same form as those 

aInitially(Accessed( , ( )))file c t⇐

a obs notClipped(0, Accessed( , ( )), ))file c t t∧

a obsHoldsAt(Accessed( , ( )), )file c t t

1 a 1Happens( , ) Initiates( ,Accessed( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped( ,Accessed( , ( )), )t t t file c t t∧ ∧

a aHoldsAt(Exists( ), ) not HoldsAt(Deleted( ), )file t file t⇐ ∧

FAIL

1 a,  Read( )t t a file= =

FAIL
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shown in Figure 5.10 and Figure 5.11. The result is that m ct t<  cannot be the case for 

H6.  

 

So, how would these results relate to H5? Since H5 hypothesizes Write actions at ta and 

tm, the situation for both ta and tm is equal to that already discussed for tm with H6. 

Again, resolution trees would be equal to those shown in Figure 5.10 and Figure 5.11, 

and would show that also for H5, m ct t<  and a ct t<  cannot be the case. The same 

reasoning would apply for the hypotheses in (5.30) and (5.31), showing that m ct t<  or 

a ct t< is not possible. 

 

 

Figure 5.11 The created timestamp for H6 when a ct t< and aHoldsAt(Exists( ), )file t  

 

From the reasoning above, it can be concluded that for the simple file system with 

creation, it is always the case that c mt t≤  and c at t≤ .  

 

Similar reasoning can be performed concerning the relationship between ta and tm.  

Consider first a mt t= . Then, since c mt t≤ , either  c a m = = t t t , in which case the only 

possible hypothesis is given in (5.29), or c mt t<  which reduces H5 and H6 to: 

 

cInitially(Created( , ( )))file c t⇐

c obs notClipped(0, Created( , ( )), ))file c t t∧

c obsHoldsAt(Created( , ( )), )file c t t

1 c 1Happens( , ) Initiates( ,Created( , ( )), )a t a file c t t⇐ ∧

< obs1 obs 1 c notClipped( ,Created( , ( )),t )t t t file c t∧ ∧

c

c c obs

not HoldsAt(Exists( ), )

 notClipped( , Created( , ( )), )

file t

t file c t t

⇐

∧

FAIL

1 c,  Create( )t t a file= =

FAIL
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{ }

{ }

5 m c m

6 m c m

H  = Happens(Write( ), ), Happens(Create( ), ), Happens(Write( ), )

H  = Happens(Read( ), ), Happens(Create( ), ), Happens(Write( ), )

file t file t file t

file t file t file t
 

 

In other words 

c m

m m

Happens(Create( ), ) ((Happens(Write( ), ))

 (Happens(Read( ), ) Happens(Write( ), )))

file t file t

file t file t

∧

∨ ∧
 

 

Which can be reduced to 

 

c mHappens(Create( ), ) Happens(Write( ), )file t file t∧  

 

This reduction is the equivalent to the reduction in section 5.6 for the simple file system. 

 

Now, consider a mt t< . Then, if a ct t= , the hypothesis is given in (5.31): 

 

c m

c m

 = (Happens(Create( ), ) Happens(Create( ), ))

      (Happens(Create( ), ) Happens(Write( ), ))

q file t file t

file t file t

∧

∨ ∧
 

 

The first of these hypotheses fail, by the resolution in Figure 5.9. The second also fail, as 

shown in Figure 5.12. 
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Figure 5.12 Resolution fails for a mt t< where a ct t=  

 

 

And, if c a mt t t< < , H5 will fail as shown in the resolution in Figure 5.4 and H6 will fail as 

shown in the resolution in Figure 5.3.   

 

Thus, it has been shown that, for the simple file system with creation, for every file, the 

observed Created, Modified and Accessed timestamps tc, tm and ta must obey: 

c m at t t≤ ≤ . This property can be used to test clock hypotheses with observed sets from 

the simple file system with creation by using the test in Theorem 5.10. 

aInitially(Accessed( , ( )))file c t⇐

a obs notClipped(0, Accessed( , ( )), ))file c t t∧

a obsHoldsAt(Accessed( , ( )), )file c t t

1 a 1Happens( , ) Initiates( ,Accessed( , ( )), )a t a file c t t⇐ ∧

<1 obs 1 a obs notClipped( ,Accessed( , ( )), )t t t file c t t∧ ∧

a a obsnotClipped( , Accessed( , ( )), )t file c t t⇐

a a obsClipped( ,Accessed( , ( )), )t file c t t⇐

< <a a obsHappens( , ) Terminates( ,Accessed( , ( )), )a t a file c t t t t t⇐ ∧ ∧

FAIL

FAIL

1 a,  Create( )t t a file= =

m,  Write( )t t a file= =

< <
m

a m a m obs

Happens(Write( ), )

Terminates(Write( ),Accessed( ,  ( )), )

file t

file file c t t t t t

⇐

∧ ∧

�



    

 

 

 

 

102

 

5.11 Complexity 

 

In this chapter, the SEC-algorithm for the determination of invariants from a system 

model was described. The algorithm has been applied manually, but could just as well be 

implemented in a computer program, for example in the logic programming language 

PROLOG. With such a program, invariants could be found with the SEC-algorithm 

without having to manually draw figures for each resolution. This would save manual 

work, and allow for more complex systems. It is however not certain that even a 

computer can handle the amount of computation involved if the system to be tested is 

too complex. It is therefore interesting to find the computational complexity of the SEC-

algorithm, and determine how the amount of necessary computation steps grows when 

the modelled system gets more complex. 

 

The growth of the SEC-algorithm is determined by two factors; the number of 

timestamps associated with each file in the system and the number of Initiates clauses in 

the model. Let n be the number of timestamps associated with each file in the system. 

Let ui be the number of Initiates clauses in EI initiating fluents for timestamp i. The total 

number of Initiates clauses for the model is then: 

I

0

n

i

i

E u
=

=∑  

Evaluating the initiation proposition q in (5.14), we see that q is a conjunction of n 

terms, corresponding to the initiation of each fluent in the observation proposition o in 

(5.13). Each term is a disjunction of ui Happens clauses corresponding to the initiation of 

that fluent. After reordering the conjunction of disjunctive clauses into a disjunction of 

conjunctive clauses, each term is called an action hypothesis. The reordering involves 

taking the conjunction of each clause in the disjunctions, something that will produce 

1 2... nu u u  terms. The number of hypotheses is then: 

0

n

i

i

H u
=

= ∏      (5.32) 

The number of Happens clauses in each hypothesis is equal to the number of conjunctive 

clauses in q, which is n. 
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The number of timestamping orders that must be tested by resolutions is the number of 

different orderings between n moments in time, ordered with relations < and =. We call 

this number p(n). p(n) is the number of weak orders on n labelled elements, also called 

ordered Bell numbers. [35, 36] Computing the ordered Bell numbers is not 

straightforward. For a given n, one must first find all possible partitions 1 2, ,..., jk k k  

where 

0

j

i

i

k n
=

=∑  

The number of orders for each partition is then given by the multinomial coefficients for 

that ordering:  

1 2, ,...,

1 2 1 2

!
( )

, ,..., ! !... !jk k k
j j

n n
p n

k k k k k k

   
= =   
   

 

For example, for n = 3, the possible partitions are (1,1,1), (1,2), (2,1) and (3). The 

multinomial coefficients for each partition then yield: 

1,1,1

3 3!
(3) 6

1,1,1 1!1!1!
p

   
= = =   
   

 

1,2

3 3!
(3) 3

1,2 1!2!
p

   
= = =   
   

 

2,1

3 3!
(3) 3

2,1 2!1!
p

   
= = =   
   

 

3

3 3!
(3) 1

3 3!
p

   
= = =   
   

 

Thus, p(3) = 6+3+3+1 = 13. The ordered Bell numbers for n up to 9 are given in Table 

5.1. [36] 

 

n p(n) 

0 1 

1 1 

2 3 

3 13 

4 75 

5 541 

6 4683 
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7 47293 

8 545835 

9 7087261 

Table 5.1 Ordered Bell numbers p(n) for n < 10 

 

Barthelemy showed that the Bell numbers can be approximated as: [36] 

1

!
( ) o(( 1)!)

2(log 2) n
n

p n n
( + )

= + −  

This approximation is appropriate for the purpose of determining the growth of p(n) in 

order to express the complexity of the SEC-algorithm. It can also be written as: 

 
( 1)

1 1
( ) !  o(( 1)!)

2 log 2

n

p n n n
+

 
= + − 

 
 

From which it is clear that the dominant growth of p(n) comes from the factor n!. Thus, 

 

p(n) is ( !) as O n n → ∞ .   (5.33) 

In the SEC-algorithm, a resolution must be tested for every timestamping order, action 

hypothesis and observed timestamp value. The number of observed timestamp values for 

a file is equal to the number of timestamps, n. The number of resolutions is then  

 

( !) as ,O Hn n H → ∞     (5.34)

  

It then remains to determine the number of computation steps involved with a 

resolution. The number of actions that needs to be tested for each hypothesis is n. 

Therefore, the computation of a resolution is O(n). The growth of this function when n 

grows is too small to contribute to the growth compared to the number of resolutions. 

We therefore obtain the complexity of the SEC-algorithm by inserting H  into (5.34): 

 

0

( ! ) as ,
n

i i

i

O n u n u
=

→ ∞∏    (5.35) 

 

It should be recognized that the growth expressed in (5.35) is extraordinarily rapid. The 

growth is for example comparable to that of an algorithm seeking to solve the well known 

Traveling Salesman Problem by exhaustive search of all permutations of n cities, 
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something that would exhibit growth O(n!). The SEC-algorithm can be described as an 

exhaustive search of all permutations of timestamping to determine which sequences of 

actions can lead to that permutation, if any. Such an exhaustive search involves a 

significant amount of computation, with rapid growth as the number of timestamps n 

grows. For important practical applications, n is however small, and computation 

therefore feasible. In this chapter, computation has been performed by hand for n = 2 

and n = 3. For larger n, the SEC-algorithm should be implemented as a computer 

program. With such a program, computation with the SEC-algorithm should be feasible 

also with larger n. Most real systems have only a few timestamps per file. The given 

procedure is therefore useful for real applications, even if it grows rapidly with growing n. 
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6 TIMESTAMP REASONING WITH AFFECTS 

 

Chapter 5 described the Simplified Event Calculus, and its use to create a model of a 

system for clock hypothesis testing. Finding invariants for a system becomes more 

complex as the number of actions in the system increases. This chapter simplifies 

reasoning, by introducing the concept of an affects table, finding all timestamping orders, 

and testing which action sequence may cause a specific timestamping order.  

 

In Section 6.1 the affects table is described. In Section 6.2 timestamping orders is defined. 

Section 6.3 then describes how these concepts can be used to derive invariants for a sys-

tem, which can be used for clock hypothesis testing. In Section 6.4 this algorithm is 

applied in a model of a real system. In Section 6.7, the use of affects tables is compared 

with the use of Event Calculus for timestamp reasoning. 

 

6.1 Actions affects timestamps 

 

A feature of the Simplified Event Calculus is the effect axioms whereby actions affect 

fluents via the Initiates and Terminates predicates. The file systems modelled in Chapter 

5 have several timestamps per file. Each timestamp may or may not be updated by a 

specific action. When such a system is described with Simplified Event Calculus, 

timestamps are represented with fluents, and updating of timestamps by a specific action 

is modelled with one Initiates clause for the initiation of the new value and one 

Terminates clause for the termination of the previous value. Whenever a new timestamp 

fluent is Initiated, the previous timestamp fluent is always Terminated. This 

representation reflects the property of real file systems that whenever a timestamp is 

updated, the timestamp is set to the current value of the clock, and the previous value is 

lost. 

 

It is possible to represent such a system in a simpler way, under the assumption that 

every timestamp change sets a new value and removes the previous. Instead of defining 

the relationship between actions and timestamps by means of Simplified Event Calculus, 

we can simply list the timestamps and actions, and define which timestamps are affected 
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by which actions. In this representation, the relationship between timestamps and actions 

is expressed as affects.  

 

Definition Definition Definition Definition 6666....1111. . . . An action affects a timestamp if and only if an occurrence of that action 

sets a new value for the timestamp and removes the previous value for the timestamp. 

 

Affects then expresses the updating of a timestamp directly, without the need for 

explicitly stating initiation of a new timestamp value and termination of the old 

timestamp value. This allows for simplified reasoning. Timestamp affect in the simple file 

system described in formulae (5.4) - (5.9) can now be summarized as follows: 

 

-  Read affects Accessed  ((5.4) and (5.7)) 

-  Write affects Accessed ((5.5) and (5.8)) 

-  Write affects Modified ((5.6) and (5.9)) 

 

Having defined affects, one can now list all possible combinations of timestamps for a file 

in a table, and determine which of these combinations correspond to actions.  

 

Definition Definition Definition Definition 6666....2222. . . . An affects table is a table listing all possible combinations of timestamps 

in a system, and all actions in the system and timestamps they affect. An affects table 

for a system with n timestamps has 2n entries. 

 

The affects table for existing non-deleted files in the simple file system with creation is 

given in the following: 

 

 Created Modified Accessed Actions 

0     

1 X    

2  X   

3 X X   

4   X Read 

5 X  X  

6  X X Write 
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7 X X X Create 
Table 6.1 Affects table for the simple file system with creation 

 

The affects table states clearly which timestamps are affected by actions. The affects 

table also shows which timestamp affects combination does not occur with any action. 

This information can be utilized to derive invariants on timestamp, by reasoning on 

sequences of timestamp updating and corresponding sequences of actions. 

 

6.2 Timestamping orders 

 

In an investigation, the investigator observes values of timestamps on each investigated 

file. Each file has n different timestamps 1 2, ,..., nθ θ θ . The observed values of these 

timestamps were set at moments in time 
1 2
, ,..., nt t tθ θ θ , and the values observed by the 

investigator are 
1 2

( ), ( ),..., ( )nc t c t c tθ θ θ , set by the clock of the investigated system. Since 

the clock function ( )c t  of the investigated system is unknown, the investigator cannot 

map these values directly to the moments in time 
1 2
, ,..., nt t tθ θ θ when timestamping 

occurred. But the investigator can list possible orders of timestamping, and determine if 

the observed result is consistent with a specific clock hypothesis, given the affects table 

for the system. 

 

Definition Definition Definition Definition 6666....3333. . . .     In a system with n timestamps,    the timestamp set Θ  is the set of 

observed timestamps 1 2, ,..., nθ θ θ . The stamping time itθ  for timestamp iθ  is the time at 

which the observed value of the timestamp was set.  

 

ExampleExampleExampleExample    6666....4444.... For the simple file system with creation described in section 5.9, the 

stamping time set is { } = Created, Modified, AccessedΘ . The stamping times for the 

simple file system are denoted tc, tm and ta. tc is the time of production of the observed 

Created timestamp, tm is the time of production of the observed Modified timestamp and 

ta is the time of production of the observed Accessed timestamp. 

 

To determine which (if any) sequence of actions in the system could have resulted in the 

observed timestamps, it is interesting to determine the different orders in which 

timestamping could have occurred. For each pair of timestamps in Θ  ( , )i jθ θ , the 
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corresponding pair of stamping times ( itθ , jtθ ) may be related by either i jt tθ θ< , 

  i jt tθ θ=  or i jt tθ θ> .  

 

Definition Definition Definition Definition 6666....5555. . . . A timestamping order is a sequence of the stamping time for every 

element in the timestamp set Θ , where each stamping time is related to the next 

stamping time in the sequence with the equals-relation = or the less-than relation <.  

 

The equals relation imply that the stamping times are equal; the two timestamps were 

set at the same time. The less-than relation imply that the first stamping time is earlier 

than the second stamping time; the production of the first timestamp occurred at an 

earlier time than the production of the second timestamp. Each different stamping time 

in a timestamping order constitutes a step in the timestamping order. When two or more 

stamping times are equal, they constitute a step in the timestamping order together. 

 

Example Example Example Example 6666....6666.  .  .  .  An example timestamping order for the simple file system with creation is 

(tc = tm < ta).  With this timestamping order, the Created and Modified timestamps were 

set at the same time, and the Accessed timestamp was set at a later time than the 

Created and Modified timestamps. 

 

A list of all timestamping orders can then be constructed where each stamping of a 

specific timestamp may have occurred before, after or at the same time as the stamping 

of the other timestamps. For n = 2, all possible timestamping orders are:  

 

Number Order  

1 (t1 < t2)  

2 (t1 = t2)  

3 (t2 < t1)  

 
Table 6.2 All timestamping orders, n = 2 

 

For n = 3, as in the file system models discussed in Chapter 5, the number of 

timestamping orders is higher: 

 

Number Order  
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1 (t1 < t2 < t3)  

2 (t1 < t3 < t2)  

3 (t2 < t1 < t3)  

4 (t2 < t3 < t1 )  

5 (t3 < t1 < t2)  

6 (t3 < t2 < t1)  

7 (t1 = t2 < t3)  

8 (t3 < t1=t2)  

9 (t2=t3 < t1)  

10 (t1 < t2=t3)  

11 (t1=t3 < t2)  

12 (t2 < t1=t3)  

13 (t1=t2=t3)  

 
Table 6.3 All timestamping orders, n = 3    

 

6.3 Action sequences and possible timestamping orders 

 

Timestamps can only be set by actions. The cause of timestamping having occurred in a 

specific order must have been actions that have occurred in a specific sequence. An action 

sequence is a sequence of actions of arbitrary length.  

 

Definition Definition Definition Definition 6666....7777.  An action sequence is a sequence of one or more actions, where each 

element is related to the next element in the sequence with the equals-relation = or the 

less-than relation <. The equals relation imply that the actions occurred at the same 

time. The less-than relation imply that the first action occurred earlier than the second 

action. 

 

The relationship between an action sequence and a timestamping order is that every 

observed timestamping order, must have been created by an action sequence. When 

considering all timestamping orders, there may be many action sequences that may cause 

that particular timestamping order. There may however also be timestamping orders, 
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which cannot be created by any action sequence. These timestamping orders cannot 

occur in the real system. The relationship between action sequences and timestamping 

orders can be deduced from the affects table. 

 

Definition Definition Definition Definition 6666....8888.  .  .  .  A timestamping order is possible in a system if there is at least one action 

sequence that may cause the timestamping order. If there is no action sequence that can 

cause the timestamping order, then the timestamping order is impossible in the system. 

 

By using the affects table, it is possible to find all action sequences that may have caused 

a specific timestamping order by the following algorithm, hereafter called the AS-

algorithm:  

 

1. Find all actions or combination of actions affecting all timestamps in the first 

step in the timestamping order. 

 

2. For each following step in the timestamping order, find all actions or combination 

of actions affecting all timestamps in that step, and not affecting any timestamps 

listed in previous steps. If there is no such action or combination of actions, then 

this timestamping order is impossible in the system. 

 

The task of finding all actions or combination of actions can be implemented as follows:  

 

1. For every timestamp iθ  find all actions affecting it, and add them to a set Ai. 

2. For every action ia A∈ , check if a affects any timestamp jθ  listed in previous 

steps in the timestamping order. If so, remove it from Ai. 

3. Actions 1 2( ... )na A A A∈ ∩ ∩ ∩  affect all timestamps in that step. Remove them 

from Ai. 

4. If all sets Ai are still non-empty, the remaining actions represent combinations of 

actions affecting all timestamps for that step. The combinations can be found 

with the Cartesian product 1 2 ... nA A A× × ×  

 

Example Example Example Example 6666....9999....    Find all action sequences for the timestamping order (tc < tm < ta) for an 

existing file in the simple file system with creation. 
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From the affects table for the simple file system with creation in Table 6.1, the steps in 

the timestamping order yields:  

 

Step 1 (tc): Create (tc is only affected by Create)    

Step 2 (tm): Write  (tm is affected by Create and Write, only Write does not affect tc) 

Step 3 (ta):  Read (ta is affected by Read/Write/Create, only Read does not affect tc,  

tm) 

 

Thus, the only possible action sequence for timestamping order (tc < tm < ta) is (Create < 

Write <  Read). 

 

Example Example Example Example 6666....10101010. . . .     Find all action sequences for the timestamping order (tm=ta < tc) for an 

existing file in the simple file system with creation. 

 

From the affects table for the simple file system with creation in Table 6.1, the steps in 

the sequence yields:  

 

Step 1 (tm=ta):  Create, Write (tm and ta are both affected by Create and Write) 

Step 2 (tc):   none  (tc is only affected by Create, but Create also affects tm and  

ta) 

 

Thus, the timestamping order (tm=ta < tc) is not possible in the system. 

 

 

By using the AS-algorithm for all timestamping orders for a given number of timestamps, 

one can now complete the reasoning in a system with known actions. The result of this 

exercise will be a list of timestamping orders impossible in the system and a table of 

possible action sequences of each timestamping orders possible in the system. These 

results can be used with Theorem 5.10 to check the consistency of a clock hypothesis. 

 

Example Example Example Example 6666....11111111....  Find all action sequences for the simple file system with creation. 

 

This file system has three timestamps for each file (n = 3). All timestamping orders for 

such a system are given in Table 6.3. Assigning t1 = tc, t2 = tm and t3 = ta produces all 

timestamping orders for this system, shown in column “Stamping Order” in Table 6.4. 
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Following the AS-algorithm for each timestamping order listed in the table by using the 

affects table for the simple file system with creation given in Table 6.1, gives the possible 

action sequences for that timestamping order, shown in the column “Action Sequence”: 

 

Number Stamping Order Action Sequence 

1 (tc < tm < ta) (Create < Write < Read) 

2 (tc < ta < tm) None 

3 (tm < tc < ta) None 

4 (tm < ta < tc ) None 

5 (ta < tc < tm) None 

6 (ta < tm < tc) None 

7 (tc = tm < ta) (Create < Read) 

8 (ta < tc=tm) None 

9 (tm=ta < tc) None 

10 (tc < tm=ta) (Create < Write) 

11 (tc=ta < tm) None 

12 (tm < tc=ta) None 

13 (tc=tm=ta) (Create) 

 
Table 6.4 Action sequences for the simple file system with creation 

 

The only timestamping orders in Table 6.4 possible in the system are sequences where 

c m at t t≤ ≤ . This is equal to the result achieved for the simple file system with creation in 

section 5.10.  

6.4 Modelling a real file system 

 

The AS-algorithm described in the previous sections can be used to create a model of a 

real file system, determine which timestamping orders are possible in the system and 

derive invariants of the file system for use with a clock hypothesis checker. To illustrate 

this algorithm, this section performs it on the semantics in Windows XP for file 

timestamps stored in the NTFS $STANDARD_INFORMATION attribute. The basis for 
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the model described here is the experiments described in Appendix C. The model 

assumes that the files in question exist, are larger than the file cache size, and that 

updating of the last accessed timestamp is enabled. 

 

In a system with three timestamps, the affects table contains 23 = 8 entries. The actions 

are: 

 

Read: reading a file 

Create: creating a new file 

Write: modifying an existing file 

CopySrc: copying a file (source file) 

CopyDest: copying a file (destination file) 

MoveIntra: moving a file internal to a file system 

MoveInterSrc: moving a file across file systems (source file) 

MoveInterDest: moving a file across file systems (destination file) 

 

From the experiments, the following affects table can then be constructed: 

 

 Created Modified Accessed Actions 

0     

1 X    

2  X   

3 X X   

4   X 
Read, CopySrc, MoveIntra, MoveIn-

terSrc, MoveInterDest (ReadGroup) 

5 X  X CopyDest 

6  X X Write 

7 X X X Create 

 
Table 6.5 Affects table for Windows XP / NTFS 

 

The actions in row 4 of the affects table all have the same effect on timestamps. In the 

following, they will be group together as ReadGroup, meaning that where this action 
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occurs, any of the actions Read, CopySrc, MoveIntra, MoveInterSrc or MoveInterDest 

may have occurred. 

 

With n = 3, the timestamping order table in Table 6.3 can be used. Applying the AS-

algorithm for each timestamping order yields the table of action sequences listed in Table 

6.6. 

 

Number Stamping Order Action Sequence 

1 (tc < tm < ta) (Create/CopyDest < Write < ReadGroup) 

2 (tc < ta < tm) None 

3 (tm < tc < ta) (Create/Write < CopyDest < ReadGroup) 

4 (tm < ta < tc ) None 

5 (ta < tc < tm) None 

6 (ta < tm < tc) None 

7 (tc = tm < ta) (Create/CopyDest=Write < ReadGroup) 

8 (ta < tc=tm) None 

9 (tm=ta < tc) None 

10 (tc < tm=ta) (Create/CopyDest, Write) 

11 (tc=ta < tm) None 

12 (tm < tc=ta) (Create/Write, CopyDest) 

13 (tc=tm=ta) (Create/CopyDest=Write) 

 
Table 6.6 Timestamping orders in Windows XP/NTFS. 

 

From the table, it is evident that there are no possible action sequences where ta does not 

occur in the last step. Consequently, in this model, m at t≤  and c at t≤ . These invariants 

can be used to check clock hypotheses for Windows XP systems with NTFS. An 

implementation of such hypothesis checking will be discussed in Chapter 7.  

 

6.5 Complexity 
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It is interesting to determine the computational complexity of the AS-algorithm given in 

Section 6.3.  As with the SEC-algorithm given in Chapter 5, this algorithm can be used 

manually, as well as in a computer program. 

 

Let n be the number of timestamps associated with each file in the system. Let ui be the 

number of actions affecting timestamp iθ . The AS-algorithm involves finding the 

possible actions sequences, if any, for every timestamping order. All timestamping orders 

must be found, and the procedure of finding possible action sequences must be repeated 

for every timestamping order. The number of timestamping orders impacts the 

complexity of the AS-algorithm directly. The number of timestamping orders is, as 

already discussed in Section 5.11, equal to p(n), the ordered Bell numbers. A list of these 

numbers for n up to 9 is given in Table 5.1. The complexity of p(n) is given in Equation 

(5.33).  

 

A timestamping order has at most n steps. For every step, the AS-algorithm mandates 

finding all actions affecting every timestamp, adding them to sets, and checking the 

resulting sets for actions or combination of actions that affect all timestamps in the step. 

This algorithm is O(ui) for every timestamp to find actions for, or 

0

( ) as ,
n

i i

i

O u n u
=

→ ∞∑  

for finding actions for all timestamps. The actions must then be checked if they affect the 

timestamps in the previous steps in the timestamping order, something that will increase 

the complexity by a factor n, since the timestamping order has at most n steps. We can 

then express the computation complexity of the task for every step in the timestamping 

order as 

0

( ) as ,
n

i i

i

O n u n u
=

→ ∞∑  

And since the timestamping order has at most n steps, the computation for every 

timestamping order is 

2

0

( ) as ,
n

i i

i

O n u n u
=

→ ∞∑  

Inserting Equation (5.33), the term n2 can be removed, since it grows considerably slower 

than the factorial growth of the Bell numbers. We then obtain for the AS-algorithm:  
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0

( ! ) as ,
n

i i

i

O n u n u
=

→ ∞∑  

It is interesting to note the difference of the growth of the AS-algorithm with the growth 

of the SEC-algorithm, expressed in Equation (5.35). While the growth when n → ∞  in 

both cases is proportional to the growth of the Bell numbers, the growth of the AS-

algorithm when iu → ∞  is proportional to the sum of the number of affects for each 

timestamp. In the SEC-algorithm, the growth is proportional to the product of the 

number of Initiates clauses for each timestamp in the event calculus program. This 

difference can be considerable in the evalution on a model with a large number of actions. 

 

The difference can be explained by the order of checking the actions affection on 

timestamps. In the SEC-algorithm, we first formulate action hypotheses, and then check 

if each action hypothesis can occur with the different timestamping orders. When the 

action hypotheses are formulated, there is no implicit knowledge of which hypotheses will 

be refuted in the different timestamping orders, so all possible combinations of initiating 

actions must be  hypothesized, yielding the number of hypotheses expressed in Equation 

(5.32). In the AS-algorithm on the other hand, actions are selected for every step of every 

timestamping order and tested for consistency with the previous steps. This eliminates 

the need for computing all possible action combinations and testing every combination 

with every timestamping order, thereby reducing the growth when iu → ∞ . 

 

6.6 Representing the affects table as a graph 

 

A further simplification of the described derivation of invariants can be achieved by 

reasoning directly on the elements of the affects table. This simplification is best 

illustrated by representing the affects table as a graph. 

 

Definition Definition Definition Definition 6666....12121212.... An affects graph is a representation of the affects table as a bipartite 

graph, in which timestamps and actions are represented with vertices and affects with 

edges. Timestamps are represented with vertices of one color and actions with vertices of 

another color. Affects are represented with edges between timestamp vertices and action 

vertices.  
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ExampleExampleExampleExample    6666....13131313.... The graph in Figure 6.1 shows the affects graph for the simple file system 

with creation as per the affects table in Table 6.1. 

 

Figure 6.1 Affects graph for the simple file system with creation 

 

The description of the affects table as a graph highlights how the affects table can be 

seen as a system of interconnected entities, where timestamps and actions are entities 

and affects are connections. This suggests a type of reasoning directly on the connections 

between timestamps through intermediary actions, without having to rely on an 

exhaustive search of different timestamping orders.  Consider the Created timestamp in 

Figure 6.1. This timestamp is affected by the Create action, which in turn affects the 

Modified timestamp and the Accessed timestamp. Create is also the only action affecting 

the Created timestamp. Thus, whenever the Created timestamp is updated in this 

system, the Accessed and Modified timestamps are updated too. Now consider the 

Modified timestamp. This timestamp is affected by the Create action and the Write 

action. These actions both in turn affect the Accessed timestamp. Thus, whenever the 

Modified timestamp is updated, the Accessed timestamp is also updated.  These 

relationships can be expressed as a directed graph of timestamps as shown in Figure 6.2. 

The arcs in this directed graph represent that whenever the tail timestamp is updated, 

the head timestamp is updated too. Since any update to the tail timestamp also updates 

the head timestamp, the arcs is this graph translate to invariants by which the stamping 

time of the tail timestamp must be less than or equal to the stamping time of the head 

timestamp.  

Write 

Read 

Create 

Accessed 

Modified 

Created 
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Figure 6.2 Timestamps in the simple file system with creation. 

 

From Figure 6.2, we see that any updates of the Created timestamp also update the 

Modified timestamp and the Accessed timestamp, and any updates of the Modified 

timestamp also updates the Accessed timestamp. Thus, c mt t≤ , c at t≤  and m at t≤  and 

consequently c m at t t≤ ≤ , which equals previous results for this file system. 

 

Definition Definition Definition Definition 6666....14141414.... An invariant graph is a directed graph in which timestamps are 

represented with vertices and invariants with arcs. An arc from timestamp iθ  to jθ  

represents the invariant i jt tθ θ≤  

 

It is now possible to devise an algorithm for the derivation of the invariant graph directly 

from the affects graph, hereafter called the IG-algorithm:  

 

- Every timestamp vertex in the affects graph is a vertex in the invariant graph 

- For every timestamp vertex iθ  in the affects graph: 

- For every action aj  affecting iθ : 

- Build a set 
jaΩ  of timestamps affected by aj not including iθ  

- Find 
1 2

...
ma a aΩ = Ω Ω Ω∩ ∩ ∩  

- For every kθ ∈ Ω , insert an arc from iθ  to kθ in the invariant graph 
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Example Example Example Example 6666....15151515.... Draw the invariant graph in for Windows XP / NTFS. The affects table 

for XP / NTFS is given in Table 6.5. From this table, we get the affects graph shown in 

Figure 6.3. By applying the IG-algorithm, we obtain the invariant graph shown in Figure 

6.4. 

 

 

Figure 6.3 Affects graph for Windows XP / NTFS 

 

 

Figure 6.4 Invariant graph for Windows XP / NTFS 
 

 

To compare the IG-algorithm with the previously described algorithms, its complexity 

must be determined. The IG-algorithm is characterized by iterating over all timestamps 

and finding all different connections to other timestamps through the actions connected 
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to these timestamps with affects. Let n be the number of timestamps. We then call ki the 

number of ways timestamp i is connected to other timestamps through actions. Since the 

IG-algorithm iterates over all timestamps and for each timestamp finds other timestamps 

connected to it through actions, the complexity can be expressed in terms of ki as: 

0

( ) as ,
n

i i
i

O k n k
=

→ ∞∑  

 

It is interesting to determine the growth of ki in terms of the number of timestamps, 

actions and affections in the affection table. To do this, one must find the relationship 

between the number of affects and ki. In order to visualize this relationship, a graph of 

connections between timestamps through actions can be derived from the affects graph. 

Such a graph is shown in Figure 6.5 for the affects graph in Figure 6.3. 

 

 

 

Figure 6.5 Connections between timestamps through actions 

 

In Figure 6.5, ki is the number of black arcs connecting timestamp i  to other 

timestamps. For example, for the Modified timestamp, km = 3. Now, let the total number 

of connections between timestamps through actions be ω . For the graph in Figure 6.5, 

ω  is the number of black arcs, which is 5. Now, since ki is the number of connections 

from each timestamp, we have: 
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ω  can also be expressed in terms of the number of actions, and the number of affects 

they have. Let vi be the number of timestamps affected by action ai. The number of 

connections between timestamps through action ai is then given by the triangular number 

T(vi), where, 

0

( 1)
( )

2

iv
i i

i
j

v v
T v j

=

+
= =∑  

So the total number of connections is a matter of summing over actions. Let m be the 

number of actions. Then,  

( 1)
( )

2

m m
i i

i
i i

v v
T vω

=0 =0

+
= =∑ ∑  

The complexity of the IG-algorithm can now be found by inserting 2ω  as follows: 

 

0

( 1)
2 2

2

n m
i i

i
i i

v v
k ω

= =0

+
= =∑ ∑  

And the complexity is: 

2( ) as ,
m

i i
i

O v m v
=0

→ ∞∑  

The complexity of the IG-algorithm depends on the number of actions and the number of 

affects on each action. This is different from the previous algorithms, whose complexity 

depends on the number of timestamps n and the number of affects on each timestamp. In 

order to be able to compare the two approaches, it is interesting to find an upper bound 

on the complexity of the IG-algorithm. For vi, we know that the upper bound is n, since 

no action can affect more than the total number of timestamps in the system. With 

iv n=  the boundary on the IG-algorithm in terms of n becomes:  

 

2 2( ) = ( ) as ,
m

i

O n O mn m n
=0

→ ∞∑  

Thus, the growth of the IG-algorithm is quadratic with the growth of n and linear with 

the growth of m. This compares quite favourably with the O(n!) algorithms given in 

previous sections.  

 

6.7 Comparison with Simplified Event Calculus 
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The affects table reasoning described in this chapter provides a simplification compared 

to the Event Calculus logic described in Chapter 5. The construction of a model is 

simpler; instead of defining a complete Event Calculus program, the model can now be 

constructed by defining an affects table. The affects table lists the timestamp fluents as 

columns and all possible affects combinations as rows. Then, actions in the system are 

listed in rows according to the timestamp fluents it affects. This way of constructing a 

model makes the property that the setting of a new timestamp overwrites the previous 

value of the timestamp implicit, rather than the explicit Initiates and Terminates clauses 

used in the Simplified Event Calculus. This makes it more straightforward to build a 

model of a system with many actions, and also easier to understand the model. This was 

seen in Section 6.4, where an affects table for Windows XP was constructed, whereas a 

model for Windows XP in Simplified Event Calculus would have to include a significant 

number of actions and therefore also a significant number of Initiates and Terminates 

clauses. The grouping of actions in the affection table also allows for a further 

simplification, since actions with equal timestamp affection can be grouped together and 

handled as a single action. 

 

The simplification however means that the ability to represent arbitrary fluents and 

actions is lost. In the construction of an affects table, it is assumed that all actions affect 

the timestamps by terminating the previous value and initiating a new value. Further, 

representation of fluents and actions that are not timestamps is not allowed. Thus, the 

simpler model represented by the affects table is not able to represent all kinds of 

systems in the same way as is possible in the Simplified Event Calculus. For example, the 

affects table is not able to represent the fluent Exists in the simple file system with 

creation described in Section 5.9, and so the affects table shown in Table 6.1 is only valid 

for existing files. 

 

The most important simplification achieved by the use of affects tables over event 

calculus is in the determination of invariants in the system. With the AS-algorithm, this 

is achieved by determining which action sequences, if any, can cause each timestamping 

order. With the IG-algorithm, invariants are determined directly from the affects table 

and its representation as a graph. These algorithms find invariants that must hold for the 

system, such as c m at t t≤ ≤  for the simple file system with creation. In the SEC-algorithm 

on the other hand, it is necessary to first find action hypotheses from an observation 

proposition by finding the initiation proposition and then test each of the action 
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hypotheses by resolution for each timestamping order, as shown for the simple file system 

with creation in Figure 5.10. In this process, many of the action hypotheses found with 

the initiation proposition will be refuted, because the fluents initiated by the 

hypothesized actions will be terminated by subsequent hypothesized actions. In a model 

with many actions, this process will become overly complex, due to the number of 

different hypotheses that must be tested.  

 

Another difference that should be noted is the lack of determination of action sequences 

corresponding to timestamping orders in the IG-algorithm. In the SEC-algorithm and the 

AS-algorithm, all action sequences are tested for consistency with every timestamping 

order. This means that for an observed timestamping order, the investigator can not only 

determine if it is consistent with a given clock hypothesis. He can also determine which 

action sequences may have caused it. Such an interpretation can not be made when the 

IG-algorithm has been used, since it only determines invariants and not possible actions 

sequences for specific timestamping orders. It is however possible to use the IG-algorithm 

for invariant derivation and the AS-algorithm for determination of possible action 

sequences for specific observed timestamping orders. 

 

In summary, the use of an affects table for reasoning about possible action sequences pro-

vides a simplification of the derivation of invariants for a system, compared with the 

Simplified Event Calculus Reasoning. The given algorithms can be used to derive 

invariants and test clock hypotheses in systems with greater number of possible actions. 

As shown with the model of Windows XP, the simplification makes it possible to 

represent and test real systems manually. The affects table is however less expressive, so 

the simplification comes at the cost of possibly not being able to express all states that 

might occur in a real system.  
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7 IMPLEMENTATION AND EXPERIMENT 

 

Chapter 3-6 has introduced and refined a theoretical model for clock hypothesis testing. 

In this chapter, this theoretical model is implemented in software for analysis of a real 

file system. The implementation is then used to find evidence of antedating in an 

experiment where four subject were asked to antedate a document. 

 

Section 7.1 - 7.2 introduces the implementation. Section 7.3 details the results of an 

initial test of the implementation. Section 7.4 - 7.6 then describes the document 

antedating experiment, and the results when the experiment results were analyzed with 

the implementation. 

 

7.1 Purpose 

 

The focus of this work has been the development of a theoretical system for the 

formulation and testing of clock hypotheses in digital investigations. The theoretical 

system can be used as a base for new methods for digital investigation and digital 

evidence interpretation in real digital investigations. Such methods may be manual 

methods employed by investigators or fact finders in specific cases. It may also be 

automated methods implemented in computer programs specifically made for the purpose 

of timestamp investigation, or as part of an all-purpose program for digital investigation.  

 

A question of importance is how the theories presented in the previous chapters can be 

utilized in software, and how the results from such software can be interpreted. Hard 

drives investigated in typical digital investigations contain tens- or perhaps even 

hundreds of thousands of timestamps. All these timestamps may take part in the 

establishment of a consistent clock hypothesis. The large number of timestamps found in 

real investigations makes it difficult to establish a consistent clock hypothesis by using 

manual methods. Performing this analysis with automated tools is therefore desirable. 

 

In order to determine if and how the presented theories could be translated into a 

program, an implementation of a clock hypothesis consistency tester was made in 

software. The implementation is named TimeStampLogic, and realizes clock hypothesis 
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consistency tests on the Windows XP operating system. In order to find out if the 

TimeStampLogic implementation could make a difference in a real investigation, a 

document antedating experiment was performed. Subjects were asked to antedate 

documents on a computer, and the results were analyzed using the TimeStampLogic 

program. The purpose of this experiment was to create the same kind of investigation 

challenges facing the investigators in the cases presented in Section 2.1 and 2.3 in a 

controlled environment, and then determine if the TimeStampLogic implementation 

would help solving them.  

7.2 TimeStampLogic implementation 

 

The TimeStampLogic program is implemented in Java J2SE. The program uses the 

utilities in a modified version of the Sleuthkit [37] to find file instances in an NTFS file 

system image. TimeStampLogic parses the output of these utilities and produces internal 

representations of file instances, which can then be analyzed using the reasoning in 

Chapter 3-6. The TimeStampLogic source code can be obtained by following the 

instructions in Appendix D.  

 

In the implementation, a clock hypothesis is defined by a class implementing the 

ClockHypothesis interface. The implementation provides one hypothesis; 

DefaultHypothesis, in which the hypothesis is that the clock of the investigated system 

is an ideal clock. 
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   ::timestamplogic

<<interface>>

MotherChildRule

DeletedUntouchableRule

MotherMustExistRule

MotherDirectoryUpdatedRule

<<interface>>

Rule

<<interface>>

UnaryRule

DirMustExistToModifyRule

DeletedUntouchableRuleII

ContentCreatedW henRead

InstanceCreatedW henReadRule

FileCreatedW henReadRule

EpochContradictionRule

FutureContradictionRule

IndexInodeConsistency

NTFSRuleSet

RuleSet

DefaultHypothesis

<<interface>>

ClockHypothesis
<<interface>>

::<<Unknown>>::Comparable

FileInstance

FLSParser SequenceChecker LogSequenceChecker Main

 
 

Figure 7.1 UML class diagram of the TimeStampLogic implementation 

 

The input for the timestamp logic implementation is provided by a modified version of 

the Sleuthkit. The class FLSParser runs fls on a target image and istat on each file 

instance listed. It then parses the output for each file instance. Each file is represented 

with an instance of the class FileInstance. This class contains members representing 

the timestamps found in the image, as well as members representing the type (file or 

directory), the status (existing or deleted), the file sequence number and the log file 

sequence number. 

 

The implementation tests the defined clock hypothesis by means of a set of tests derived 

from the analysis of a particular system. The tests implement the Rule interface, through 
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subinterfaces UnaryRule and MotherChildRule. With UnaryRule, the tests pertain to 

timestamps of a single file or directory instance. With MotherChildRule, each test is 

applied to a pair consisting of a file or directory instance (the child), and the directory in 

which that instance is contained (the mother). A complete set of tests for a particular 

system is defined by implementing the interface RuleSet. Implementations of this 

interface specify all tests that apply for a particular type of system. The implementation 

provides the class NTFSRuleSet containing a set of consistency tests for NTFS. 

 

The following tests were implemented and used in NTFSRuleSet: 

 

- EpochContradiction: A timestamp should not have been set at a moment prior to 

the invention of digital computers. 

- FutureContradiction: A timestamp should not have been set at a moment 

posterior to the time of the investigation. 

- FileCreatedWhenRead: The stamping time of the Created timestamp should be 

prior to the stamping time of the Accessed timestamp. (See Table 6.6) 

- ContentCreatedWhenRead: The stamping time of the Modified timestamp should 

be prior to the stamping time of the Accessed timestamp. (See Table 6.6) 

- MotherDirectoryUpdated: The stamping time of the Modified timestamp should 

be prior to the stamping time of the Created timestamps of files and directories 

contained in it. (See Appendix C.3) 

- DeletedUntouchable: Deleted files are not timestamped. Therefore, the stamping 

time of deleted file timestamps should be prior to the Modified timestamp of the 

mother directory. (See Appendix C.3) 

- DeletedUntouchableII: When a file entry has been reallocated to another file, the 

stamping time of the Accessed timestamp of that file should be posterior to the 

stamping time of all timestamps of the deleted file that previously occupied that 

file entry. (See Appendix C.3) 

- IndexInodeConsistency: For existing (non-deleted) files, the timestamps in the 

directory index should match those in the $STANDARD_INFORMATION 

attribute of the MFT entry. 

 

The tests in NTFSRuleSet are applied on all files and directories in the investigated 

image by FLSParser. For every test producing a negative result, the file name and 

timestamps are printed with an identification of the test that failed. A failed test 



    

 

 

 

 

129

indicates that the clock hypothesis is incorrect, or that actions not included in the model 

generating the tests have occurred in the system.  

 

The class SequenceChecker tests the sequence number causality of the file entry 

sequence numbers, by the reasoning in Section 4.5.3. It reads the sequence of file entries 

from the Master File Table with ils. All entries are compared with the last preceding 

entry with the base generation sequence number. Since the allocation of Master File 

Table entries are done in a first-fit fashion, all entries have been stored at a later time 

than the last preceding entry with the base generation sequence number. The 

implementation compares both the Created timestamp and the Accessed timestamp of 

each entry with the last preceding entry with the lowest sequence number.  

 

The class LogSequenceChecker tests the causality of the updating of file entries based 

on the log file sequence numbers stored in the Master File Table file entries, by the 

reasoning in Section 4.5.5. The FileInstance instances read by SequenceChecker are 

inserted into a sorted TreeSet. By implementing the Comparable interface in 

FileInstance, comparing the log file sequence numbers, this structure sorts all file 

instances by their log file sequence numbers. The file instances are then printed in sorted 

order, so that their timestamps can be inspected for evidence of clock hypothesis 

inconsistency. The MFT Entry Modified timestamp in the 

$STANDARD˙INFORMATION attribute is of special interest in this context, because 

storing a new Log File Sequence Number is a modification of the MFT Entry. 

 

7.3 Results from initial TimeStampLogic test runs 

 

Several test runs of the TimeStampLogic implementation were performed. The test runs 

were made on a real Windows XP/NTFS image, in order to make an initial assessment of 

how this implementation can be utilized in real investigations, and if the results can 

really be used to put a clock hypothesis under scrutiny. The clock on the investigated 

computer had been within reasonable synchronization with Norwegian civil time. It may 

have drifted a few minutes, but errors on the scale of days or years should not have 

occurred. The image was tested for consistency with DefaultHypothesis.   
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7.3.1 RuleSet 

 

The initial runs produced a large number of inconsistencies for the tests in NTFSRuleSet. 

Most, but not all, of the inconsistencies fell within the following categories:  

 

1. Instances where the compared timestamps were only small fractions of a second 

from satisfying the test. Most of these inconsistencies were with the 

MotherDirectoryUpdated test. 

2. Instances of files that had been unpacked with packers such as WinZIP and 

WinRAR.  

 

It is reasonable to attribute the inconsistencies in both of these categories to an 

incomplete model. In the case of category 1, the most likely explanation is that the 

updating of the Created timestamp of a file or directory and the Modified timestamp of 

its mother directory does in fact not occur at the same time, but with a small delay. This 

would occur for example if the file creation implementation in the operating system starts 

by creating the MFT index for the file, then writes the file to disk, and then finally 

updates the mother directory. In such a system, the delay between the updating of the 

two timestamps will vary with the length of the file, something that is consistent with 

the observed results for Windows XP/NTFS.  This possibility can only be confirmed by 

close inspection of the operating system. (See C.5) In the case of category 2, the most 

likely explanation is that the packer programs update file timestamps in ways that are 

not consistent with the handling in the operating system. By performing experiments 

with these packers, in a similar fashion to the operating system experiments detailed in 

Appendix C, one could determine how these handle timestamps and update the model to 

reflect the changes. 

 

Most of the remaining inconsistencies were related to a series of digital images shot with 

a digital camera and then copied directly to the computer in question. These were 

inconsistent with ContentCreatedWhenRead, such that the Accessed timestamp were 2-3 

months prior to the Modified timestamp. It is known that the Modified timestamp is 

retained from the source medium, and the Accessed and Created timestamps produced on 

the destination medium during copy operations. (See Appendix C) A possible cause for 

the inconsistencies could therefore be a maladjusted clock on the digital camera.  The 

camera was therefore checked, and it was indeed found that its clock was adjusted 
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approximately 4 months into the future. The Modification time had been set to a point 

in time in the future when the images were shot, and this timestamp had been retained 

when the images later had been copied to the computer. 

 

A few inconsistencies that could not be explained by any of the above were also reported. 

It is unknown if these were due to an incomplete model or if the clock hypothesis was 

incorrect. 

 

7.3.2 SequenceChecker 

 

The initial run for SequenceChecker also produced a number of inconsistencies, although 

remarkably fewer than for RuleSet. Approximately 98% of the files on the file system 

were ordered when compared in this fashion. The remaining files which were reported as 

inconsistent were scattered out across the image.  No specific reason for the 

inconsistencies could be inferred from knowledge about the files where inconsistencies 

were reported. It is likely that these consistencies root in the lack of full knowledge of 

how the operating system works.  There may for example be operations occurring within 

the operating system where MFT entries are allocated without setting the Created 

timestamp of the file in question. The opposite may also be the case; that the Created 

timestamp is updated when in fact a new MFT entry was not allocated. As will be seen 

in Section 7.6, this does not however mean that this method is without value. 

 

7.3.3 LogSequenceChecker 

 

For the initial run of LogSequenceChecker, only a small number of inconsistencies were 

reported, when the MFT modified timestamp was compared. The list of files and 

associated timestamps sorted by Log Sequence Number, provided a list of when the 

computer was used, in which MFT Entry modified timestamps came in succession for 

more than 99,9% of the file entries. Most of the inconsistencies were reported on file 

entries pertaining to deleted files, although a few were also reported on existing files. A 

possible theory regarding deleted files is that new log sequence numbers is assigned when 

files are deleted, and the Entry Modified timestamp is not updated in this case. The 
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reported inconsistencies were scattered out across the file list and did not represent many 

files in sequence. 

 

The results from the initial test indicate that the LogSequenceChecker test could be an 

adequate tool for use in real digital investigations, for testing clock hypotheses and for 

finding antedated material. 

 

7.4 Document antedating experiment 

 

The document antedating experiment was designed to produce the same kind of 

investigation situation as in the case discussed in Section 2.1. Subjects were handed a 

computer and asked to antedate documents on it. In order to limit the workload 

associated with preparation and analysis, the number of subjects was kept small. The 

subjects were chosen so that they represented users with diverse level of experience. 

 

A laptop computer was prepared for the experiment. First, the hard drive of the 

computer was wiped with the tool Win-Hex [38], writing value 0x00 in every byte of 

every block on the hard drive. The computer was then started and the system clock was 

adjusted to approximately two and a half years before the time of the experiment with 

the BIOS setup program. Then, the Windows XP operating system was installed. After 

installation, a series of shutdowns, clock adjustments and reboots were performed. The 

goal of this procedure was to produce data on the hard drive similar to data that would 

have been produced by real usage of the computer. For each step, the computer was shut 

down, then started in BIOS setup, where the clock was adjusted forward. The computer 

was then booted into Windows XP and used for websurfing, downloading files or other 

typical user activity. Table 7.1 summarizes the clock adjustments that were used and the 

associated activities.  

 

Date Activity 

01-Mar-2004 Operating system install 

02-Mar-2004 Install completed 

02-Mar-2004 Websurfing 

02-Jun-2004 Websurfing 

02-Sep-2004 Websurfing, downloaded videos 
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02-Sep-2005 Websurfing 

02-Jan-2006 Websurfing, downloaded thesis 

02-Mar-2006 Websurfing, added user account 

02-Jun-2006 Websurfing, downloaded video 

02-Jul-2006 Changed password, websurfing 

02-Aug-2006 Websurfing 

12-Aug-2006 Installed software 

24-Aug-2006 Websurfing 

01-Sep-2006 Edited documents 

12-Sep-2006 Websurfing 

October 2006 Time of the experiment 

  
Table 7.1 Timeline of experiment computer 

 

After this procedure, the hard drive was copied to an image file on another hard drive 

using the disk dump utility dd, producing a reference image of the experiment computer. 

The reference image can be obtained by following the instructions in Appendix D. 

 

The experiment computer was then handed to the participating subjects with the 

following task: “Store a document on this computer in such a way that a person 

investigating the computer will conclude that the document was produced on 17-May-

2006.”  When each subject returned the computer, the hard drive was copied to an image 

file on another hard drive for analysis. Then, the experiment image was copied back to 

the computer before it was handed to the next subject. The subjects participating in the 

experiment are listed in Table 7.2. 

. 

Subject no Computer experience level 

1 Average computer user, using computer every day for office work 

2 Law Enforcement Computer Forensic Investigator 

3 
Inexperienced office user, mostly used to websurfing and light office 

work 

4 Advanced computer user with some programming experience 

 
Table 7.2 Participating subjects 
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Each image was analyzed using the TimeStampLogic program. Each subject was also 

interviewed to determine how they had chosen to perform the task. The statements of 

the subjects and the results of analysis using TimeStampLogic in each case are 

summarized in Section 7.6. 

 

7.5 Analysis of the reference image 

 

At the start of the experiment, the reference image was analyzed with TimeStampLogic. 

The reference image contained considerably less data than the image analyzed in the 

initial test described in 7.3, and in this case it was also known in more detail how the 

data on the computer had been stored on it. 

 

As with the initial test, a significant number of inconsistencies were reported with 

RuleSet. These inconsistencies were reported for the same categories of files as described 

in Section 7.3.1. It was therefore decided to focus on the SequenceChecker and 

LogSequenceChecker tests on the images in the antedating experiment. The results with 

these tests were consistent with the results in the initial test. SequenceChecker produced 

a significant number of inconsistencies, whereas the number of inconsistencies with 

LogSequenceChecker was fairly small and mainly with deleted files. 

 

7.6 Results 

 

In the following, each of the images resulting from imaging the experiment computer 

after each subject had completed the task is analyzed.  The purpose of the analysis is to 

determine if the document in question has been antedated or not. This can be formulated 

as two different hypotheses: 

 

H0: The document was produced on 17
th of May. 

H1: The document was produced later than 17
th of May, but has been antedated to 17th of 

May. 
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The task for the investigator is then to find evidence supporting or rejecting H0 and H1 

using TimeStampLogic and other investigative tools and present them to the fact finder. 

 

7.6.1 Subject 1 

 

The subject gave the following information about how the task was completed: I adjusted 

the clock on my Mac to May 17th. I then produced the document in Microsoft Word on 

the Mac. When saved on the Mac, I copied the document to my USB stick and inserted 

it into the PC. I then copied the document from the USB stick to the PC. I believe 

producing the document on the Mac may have prevented the creation of timestamps 

inside the Word document. 

 

When analyzed with TimeStampLogic, the results of this operation did not produce a 

result significantly different from the analysis of the reference image. The introduction of 

new files when the computer was booted and a new document was copied to it, did not 

produce any new inconsistencies reported by TimeStampLogic. The document has 

Modified timestamp on the 17th of May, and Created and Accessed timestamps on the 

date of the experiment. This is consistent with timestamps produced when files are 

copied to a medium. (See C.3)  Other evidence suggesting that the file had been copied 

to the medium on the date of the experiment was also found, for example a link-file to an 

external drive, showing that an external drive had been connected to the computer. If the 

file had been copied from another computer, the Modified timestamp would then be 

related to the clock of that computer and not the investigated computer. Since no 

evidence is available to test clock hypotheses for the other computer, there is no evidence 

to either support or reject a hypothesis that the production of the document actually 

occurred on 17th of May civil time. The analysis is therefore inconclusive in this case. The 

reasonable investigative response in cases like this is to try to get hold of the computer 

on which the document was produced and do the same type of analysis on that. 

 

In response to the subject’s claim that timestamps had not been created inside the Word 

document, it was examined for timestamps in the metadata. Such timestamps were 

found, identifying that the document had been created and last changed on May 17th. 

These timestamps would also refer to the clock on the other computer, which will have to 

be analyzed for evidence. 
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7.6.2 Subject 2 

 

The subject gave the following information about how the task was completed: I started 

the PC and connected it to the Internet. I then downloaded and installed OpenOffice on 

the PC. I then restarted the computer, went into BIOS and adjusted the date back to 

May 17th. After booting the computer again, I used OpenOffice to create and store the 

document. I then booted again and adjusted the clock back to current time. I used 

OpenOffice because I think it doesn’t have the same amount of metadata as Microsoft 

Word. I also think downloading and installing OpenOffice would prevent a proper 

investigation, since it probably overwrote a lot of deleted data. 

 

When analyzed with TimeStampLogic, a significant higher number of inconsistencies 

were reported with both SequenceChecker and LogSequenceChecker. Listing all files on 

the medium ordered by both the MFT Entry number (SequenceChecker) and Log 

Sequence Number (LogSequenceChecker), showed several hundred files with Created, 

Modified and Accessed timestamps on Oct 11th in the time period 07:28-07:40 AM.  After 

these (in terms of entry number and log sequence number), approximately 50 files with 

Created, Modified and Accessed timestamps on May 17th time period 07:42-07:48 were 

listed.  All timestamps of the document in question were set to May 17th in the period 

07:42-07:48.  

 

The timestamps on the document itself were in this case set to May 17th, in contrast to 

Subject 1. This fact does not by itself support either H0 or H1, since the document may 

have been antedated by timestamp or clock manipulation.  

 

There is however evidence in this case supporting H1:  

 

- Storing of a significant number of files causally dependant on storing of files 

occurring on Oct11th, were timestamped May 17th, something that is not possible 

unless the clock has been adjusted, or the timestamps changed. 

- While the date changes from Oct 11th to May 17th, the time of day only moves 

approximately 2 minutes forward. This indicates that the subject changed the 

date but did not bother to change the time of day. If the clock adjustment had 
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occurred by an error or some other mystery event, it is not very likely that it 

would have ended up on this exact time of day.  

 

The subject’s claim that he made the investigation more difficult by installing 

OpenOffice, does not seem to be correct in the context of using TimeStampLogic to check 

clock hypothesis consistency. It may be the case that installing a new program would 

overwrite previously overwritten material, but this does not help, since TimeStampLogic 

does not rely on the investigator’s ability to recover deleted material. The claim that 

OpenOffice documents contain less metadata than Word documents was not investigated. 

Since the document was created with the clock adjusted to May 17th, any timestamps 

within the document would be on May 17th anyway. 

  

7.6.3 Subject 3 

 

The subject gave the following information about how the task was completed: I don’t 

know how to manipulate timestamps, so I just went into the control panel and set the 

date to May 17th. Then I used Microsoft Word to produce the document. Then I set the 

current date again in the control panel. 

 

On this image, TimeStampLogic produced the same type of results as on the image from 

Subject 2. Approximately 10 files were listed with Created, Modified and Accessed 

timestamps on Oct 12th from 9:17-9:44 PM.  After this (in terms of MFT entry sequence 

and LSN sequence), approximately 10 files were listed with timestamps at May 17th 9:46-

9:52 PM. This gives evidence for H1, for the same reasons as for Subject 2. 

 

In this case, as opposed to the case of Subject 2, the clock change was done in the 

operating system. Therefore, the event logs of the system were searched to determine if 

the clock change had logged a system event. No such event was found. Windows XP has 

a system logging feature that allow logging of clock change events. This particular event 

is however logged only if Privileged Use logging is enabled, something it is not by default. 

[39] Since very few users change the default settings of the event logging system, the 

logging of clock changes in Windows XP is not of much use in digital investigations. 
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It is interesting to note that both Subject 2 and 3 changed the date without changing the 

time of day. Both in the BIOS of the experiment computer and in the Windows XP 

control panel, changing date is done by a separate control than changing time of day, 

although they are both related to the same underlying clock. A plausible rationale for not 

changing the time of day could be that it would then be easier to adjust the clock back 

to the current time, because one would then not have to resynchronize with an external 

clock. When asked about this, subject 3 said: I didn’t think about that. I just wanted the 

correct date on the document. The time of day didn’t matter to me. I might have 

thought about it if the time of day were of any importance, for example if it mattered if I 

were at work at the time or not. 

 

7.6.4 Subject 4 

 

The subject gave the following information about how the task was completed: I used my 

own pc for the antedating. I adjusted its clock back to May 17th, and produced the 

document using Microsoft Word. I then copied the document over to the experiment PC 

using my USB-stick. 

 

The story of Subject 4 matches the story of Subject 1, and the results of 

TimeStampLogic were similar. No additional inconsistencies were found, and the results 

were inconclusive on the question of whether the document was antedated or not. Also in 

this case, link files pointing to an external medium identified another computer as the 

likely source for the document. 

. 

7.7 Summary 

 

In the document antedating experiment, four subjects were asked to antedate a document 

in such a way that it could not be determine that the document file was antedated. Two 

of the subjects performed the antedating in such a way that the methods described in 

this work could produce evidence supporting the hypothesis that the document was 

antedated and not produced on the date it was timestamped to. Two of the subjects did 

the antedating itself on another computer and copied the resulting document to the 

investigated computer. In this case, it could not be determined that the document was 
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antedated, but it could be determined that the document had been copied from another 

computer, and so another possible item of evidence was found. From the explanation 

from the subjects, it is known that they produced the antedated document on the other 

computer by adjusting the clock back to May 17th, which is the same method used by 

Subject 2 and 3 on the investigated computer. Investigation of the other computer with 

the methods described in this work would therefore most likely have produced evidence 

supporting the hypothesis that the document was antedated. 

 

The antedating methods used by the subjects in the experiment are certainly not the 

only possible methods for document antedating. Other possible methods can be 

conceived:  

 

1. Produce the document at current time, then changing its timestamps by special 

software. This can be done without introducing the software in question on the 

investigated computer by removing the medium and perform the change on 

another computer. 

2. Finding another file matching the desired timestamps, then replacing the contents 

of that file with specialized software. 

3. Using the same method as used by the subjects in the experiment. Then use 

special software that adjusts all timestamps on the medium to match the default 

clock hypothesis. 

 

In the case of conceived method 1, TimeStampLogic would probably report the single file 

as an inconsistency. In the case of conceived method 2 and 3 however, it is not likely that 

TimeStampLogic would be able to find any inconsistencies. Producing evidence of 

antedating in these cases would have to rely on other methods, if possible at all. Thus, 

clock hypothesis testing methods described here are not perfect methods that cannot be 

avoided by a crafty antedater. This can however be said about any investigation method, 

as discussed in Sections 8.4 - 8.5. 

 

In summary, the document antedating experiment has shown that TimeStampLogic can 

provide evidence of antedating of computer files in practical situations, where subjects 

have put effort into antedating a file. As previously mentioned, the purpose of 

TimeStampLogic has been to determine if clock hypothesis testing could make a 

difference in a real investigation. It has not been intended as a program for direct use in 
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real investigations. The described methods can easily be implemented in existing tools for 

digital investigation such as the Sleuthkit or EnCase. This would provide investigators 

already using these tools with the possibility of reason on time and causality and define 

and test clock hypotheses also in real investigations. 
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8 EVALUATION AND CRITICISMS 

 

In the previous chapters, a scheme for reasoning on timestamps and clock hypothesis 

testing was discussed. In this chapter, several possible criticisms against this scheme are 

discussed.  

 

Section 8.1 discusses the state explosion involved in the reasoning, and how it affects 

investigations. Sections 8.2 - 8.3 discusses the correctness and completeness of the model 

representing the investigated systems. Section 8.4 discusses the Arms Race Argument, by 

which every forensic technique is thought to ultimately be hindered by an anti-forensic 

technique. Finally, Section 8.5 discusses how falsified evidence can be created to match 

an invented event history.  

 

8.1 Complexity 

 

In this work, a system is modelled by representing changes in the system as events, and 

then hypothesizing possible sequences of events that may have resulted in the state of the 

system observed during the investigation. A conceivable criticism against any scheme in 

which the working of a digital system is represented in a model consisting of states and 

actions, is the complexity of real systems. If a real system is to be represented accurately 

in a model, the result can be state explosion; a complex model with a large number of 

states and actions, making reasoning in the model inconvenient and perhaps even 

impossible. This can also be said about schemes in which the model consists of possible 

states and events in an actual investigation. When the number of states and events that 

has to be represented in a model becomes large, reasoning becomes difficult due to all the 

possibilities that have to be considered.  

 

The implications of state explosion can be observed in Chapter 5 and 6, where invariants 

were found in the simple file system and the simple file system with creation by reasoning 

with Simplified Event Calculus. Where the computation for the simple file system in 

Section 5.6, had to test hypotheses by resolution in three different orders of two 
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timestamps, the computation in Example 6.11 in Section 6.3 had to consider thirteen 

different orders of three timestamps. In the SEC-algorithm, resolutions would have to be 

tested for every hypothesis derived from the initiation proposition for each timestamping 

order, yielding considerable work with resolution testing. Further, the number of 

hypotheses derived from the initiation proposition grew considerably, as each new Action 

added to E resulted in many new possible hypotheses for the initiation of each observed 

fluent.  

 

The growth of the number of computations required to find invariants with the methods 

proposed in Chapter 5 and 6 was quantified in sections 5.11, 6.5 and 6.6. The 

quantification shows that the algorithm proposed in Chapter 6 is considerably more 

efficient than the algorithm shown in Chapter 5 with growing number of actions and 

timestamps in a system. The algorithm in Chapter 6 grows linearly with the number of 

actions in a system and quadratically with the number of timestamps in a system. It has 

been shown that it is practically possible to use all proposed algorithms for systems 

where a small number of timestamps is associated with each file. In Chapter 5 and 6, the 

necessary computations for n = 2 and n = 3 was performed manually with the SEC-

algorithm and the AS-algorithm. With a software implementation, it would be possible to 

make these computations also with a larger n, although the factorial growth would render 

the procedure impossible as n increases further. With a software implementation of the 

IG-algorithm, invariants can also be found programmatically for larger n. 

 

It should be noted that the factorial growth of the SEC-algorithm and the AS-algorithm 

does not rule out the analysis of systems with many timestamps for each file with these 

algorithms. Consider for example a system with 32 timestamps per file (n = 32). The 

number of computation steps would be on the order of 1035 should this system be 

analyzed in full with these algorithms. This would surely be infeasible. But there is no 

requirement for the investigator to analyze a system completely. The purpose of the 

analysis is just to find invariants that can be used to test a clock hypothesis. Such 

invariants can be found also with partial analysis of the system. The investigator may for 

example divide the system into 8 separate subsystems, each with 4 timestamps. He can 

then analyze each of the subsystems separately and find invariants for them. These 

invariants can then be used to test the clock hypothesis. Should the investigator aim at 

finding all invariants he would have to analyze the complete system, something that 

would be infeasible with these algorithms. But finding all invariants is not necessary; it is 
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enough to find some invariants to impose constraints on the clock hypothesis. The 

number of invariants found will increase as the investigator puts more effort into finding 

them.  

 

The large number of timestamps present in most real cases could also be seen as a state 

explosion problem. This would most certainly be true if the scheme requires every 

timestamp present in the system to be modelled as a state or fluent, that can possibly be 

changed by events. Such modelling is not required in the schemes presented in this work. 

Instead, this work provides methods for finding relations between timestamps that must 

hold true for all timestamp instances. This allows the investigator to test his clock 

hypothesis by testing each observed timestamp for consistency with the prediction of the 

model. The observations of the investigator and his hypotheses about the user’s actions 

are not a part of the model. The model only describes the system behaviour with respect 

to updating timestamps. The observed timestamps are then tested for consistency with 

the system model and the clock hypothesis. No state explosion is introduced, even if large 

numbers of timestamps must be tested for inconsistency. Timestamps are tested with the 

invariants derived from the model, an operation where the complexity is proportional to 

the number of timestamps. As shown in Chapter 7, such testing can be performed in 

software, without problems specifically related to complexity. In evidential terms, a large 

number of timestamps to be tested will increase the confidence in the clock hypothesis. A 

large number of timestamps is therefore an evidential asset to the investigator, and 

should not be seen as a burden increasing complexity. 

 

8.2 Completeness of the model 

 

In Chapter 3-7, theory and methods for clock hypothesis consistency testing were 

developed. The methods are based on creating a model of a system, in which changes to 

timestamps stored on the digital medium are modelled with actions. The system model is 

constructed by analyzing the behaviour of a system or by inferring the possible actions in 

a system by detailed analysis of the implementation.  Any change possible in a real 

system that can affect the state of the digital medium must be matched by an action in 

the model, in order for the model to be complete. This raises an important question: Is it 

possible to be sure that all actions affecting the state of the medium are included in the 

model? If one cannot be sure that all actions are included in the model, how can one be 
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sure that the cause of an inconsistency is an incorrect clock hypothesis and not the 

existence of some action in the real system that was not included in the model?  Say for 

example that there existed an action TouchCreate in Windows XP, updating the Created 

timestamp, but not the Modified or Accessed timestamps for a specific file. The 

introduction of such an action in the reasoning in Section 6.4 would change the reasoning 

and invalidate the result that c at t≤ .  How can one be sure that such actions do not 

exist? In fact, one cannot. In the Windows XP operating system specifically, system calls 

for timestamp updates exist that can be called by any program. (See Appendix A.1 for 

details.) In any system, even if the full details of the system is known, one cannot rule 

out the possibility that the state has been changed by some action occurring outside that 

system. One cannot for example completely rule out the possibility that the storage 

medium has been removed from its system and accessed and changed in another system. 

Changes committed outside the modelled system are not included in the system model, so 

they may produce inconsistencies when testing with a clock hypothesis, even if that 

hypothesis was in fact a correct representation of the actual clock on the system. 

Determining with absolute certainty if such inconsistencies is the result of an inconsistent 

clock hypothesis or the result of missing actions is not possible. At first sight, the above 

reasoning may seem to imply that the methods presented in this work produces 

ambiguous results and therefore should not be used in investigations. After all, the pur-

pose of an investigation is to produce evidence a fact finder can rely upon in his 

reconstruction of the events that took place. There are however several reasons not to 

draw such a conclusion. 

 

First, in most cases, an investigated digital medium will contain not only timestamps and 

usage data, but also the programs that have been used to manipulate the data. If the 

system contains some special program updating timestamps in a specific way, then the 

investigator can find it during the digital investigation of the system. If for example a 

Windows XP system contains the TouchCreate program mentioned above, the 

investigator would likely find it during the investigation. When found, the investigator 

can analyze its properties by detailed analysis of its construction, or by running the 

program on a separate system to determine its effects on timestamps. The model can 

then be updated with actions corresponding to the program’s effects. 

 

Further, the number of theories in an investigation is usually limited. Consider an 

investigation where contraband physical objects are found in the home of a suspect. In 
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principle, there are a large number of possible theories of how those objects ended up 

there. But since it’s the suspect’s home, investigators are likely to conclude that the 

suspect placed them there. Now, if the suspect has other theories, he can present them to 

the investigators or as part of his defence. The investigators will then investigate if there 

is any evidence available to support or refute the alternative theories and if so adjust 

their working theory accordingly. Ultimately, it is up to the fact finder to assess the 

evidence supporting the alternative theories and decide which of them likely caused the 

objects to be located in the suspect’s home. A large amount of other possible explanations 

still exist, but these are usually not considered. After all, the objects have been within 

the domain of the suspect, and one can reasonably expect him to be able to explain how 

they got there. Since the suspect has offered his explanation, this is the only considered 

theory in addition to the investigator’s theory. 

 

If the number of possible explanations can be limited in an investigation on physical 

objects, it can in a digital investigation too. Like a home, a computer is likely to be 

within the domain of one specific person or a small group of persons. It is reasonable to 

expect computer users to be able to explain what kinds of actions have been taken on the 

computer, at least at the level visible to the computer user. If they cannot, then at least 

they can present their own theory about what happened, and the investigator can search 

for evidence of that theory as well as his own. It will then be up to the fact finder to 

assess the evidence for the different theories.  

 

One popular alternative theory presented by suspects seems to be the so called Trojan 

horse defence, the theory that contraband was stored by someone performing computer 

intrusion on the computer. [40] The analogy in the physical world is that someone broke 

in to the house and placed the contraband there.  

 

Limiting possible theories also applies in investigations involving clock hypothesis testing. 

In such cases, it is reasonable to ask the persons having the computer in their domain to 

explain what actions have been committed on the computer, including changes on the 

system clock and which programs have been run on it. Their clock hypothesis and action 

model can then be tested against the available evidence using the tests described in this 

work. If the test produces inconsistencies, the investigator must find another hypothesis 

and test it against the evidence.  
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As an example, consider the actions of Subject 3 in the antedating experiment. If the 

motivation of these actions was to antedate a document, it is likely that the subject when 

interviewed would assert the default clock hypothesis. As shown in Section 7.6.3, the 

default hypothesis is inconsistent when tested against the available evidence. A possible 

next step for the investigator would then be to hypothesize the antedating of the 

document by reverse adjustment of the clock by the suspect. This hypothesis, when 

tested, would show to be consistent with the evidence. Thus, in this case, the fact finder 

would have two conflicting theories to choose from, the suspect’s version which was 

refuted by the evidence, and the investigator’s version which was upheld.  

 

8.3 Correctness of the model  

 

The reasoning on the behaviour of a system in this work is based on constructing a model 

of the system. A problem with this approach is the feasibility of detailed analysis of real 

systems. Modern computer systems are complex, and contain many individual pieces of 

hardware and software that fits together. The study of individual parts of the system 

may be feasible, but may not necessarily provide sufficient information to construct a 

correct model of the system. Moreover, in many cases implementation specifications and 

source code is not available for the investigator. Studying a system implementation in 

detail without access to specifications and source code can be a very difficult task. In the 

case where no system documentation is available, a possible approach is to test system 

functions in various test cases. It is however difficult to know if the test cases cover all 

functionality included in the system. Since the internal working of the system is 

unknown, there could be input data not covered by the test cases that would produce a 

different behaviour in the system. This behaviour would then remain unknown, and 

would not be included in the system model. In the context of the time stamp reasoning 

discussed in this work, several system behaviour types are of special interest:  

 

- Determining which events update which timestamps 

- Determining which events are causally related, and which are not 

- Determining how events updating timestamps correspond with user actions 

 

The difficulty of establishing a correct model of a system is levied by the fact the most 

investigated systems are standard systems deployed over a long range of computers, and 
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therefore subject to many investigations. For example, the properties of the Windows XP 

operating system and the NTFS file system, as discussed in Chapter 6-7, is very 

interesting since this currently is the most common operating system, and therefore the 

subject of a long range of investigations. If it can be justified that the function of the 

operating system itself has not been altered in the case in question, a model of a specific 

system can be constructed once, and then reused in a long range of investigations. In 

each investigation, the model can be re-examined by the investigator and any experts 

appointed by the opposing party. If shortcomings are detected during these examinations, 

the model can be updated, and the updates can be reused in subsequent investigations. 

In a scientific context, such a process can be said to be equivalent to the formulation of a 

hypothesis and its acceptance in the scientific community. It is also possible for system 

designers and vendors to contribute in this process, without necessarily having to reveal 

internal system details. The need for correct system models therefore call for the estab-

lishment of forums for the exchange of system models between practioneers within digital 

investigation. The establishment of system models would facilitate event reconstruction 

for digital systems in general, not only within the subject of digital timestamps. With 

such a forum, investigators, prosecutors, defence attorneys as well as fact finders, can 

benefit from the improved understanding of how systems work.  

 

8.4 The Arms Race Argument 

 

The ongoing research within tools and methods for digital investigation has resulted in 

efforts in researching tools and methods for “anti-forensics”. Anti-Forensics can be defined 

as the research into and development of tools to compromise the availability or usefulness 

of evidence to the forensic process. [41]  This can be accomplished in a variety of ways 

ranging from overwriting deleted data to prevent them from being discovered, through 

usage of strong encryption to obscure contraband data to the introduction of directory 

loops in file system that causes forensic software to deadlock or crash when reading file 

system structures. [42] 

 

The parallel development of forensic and anti-forensic tools can be thought of as an arms 

race where development in one field stimulates development in the other. The 

development of techniques for forensic recovery of deleted information for example led to 

the development of the tool EvidenceEliminator [43], which removes temporary files and 
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overwrites areas of hard drives containing deleted material with random data. This has in 

turn led to the development of forensic techniques, by which specific patterns resulting 

from the use of EvidenceEliminator are recognized, so the investigator can prove that 

this particular anti-forensic tool was run. [44]  Conversely, the existence of steganography 

techniques for hiding files within other files has inspired the development of forensic 

techniques that can examine files for superfluous data as well as tools for determining 

signatures produced by specific steganography tools. [45] A common argument is derived 

from extrapolating the existence of forensic - anti-forensic technique pairs into a belief 

that any forensic technique will ultimately be matched by an anti-forensic technique that 

will block evidence extraction performed with the forensic technique. This argument can 

be called the Arms Race Argument. Supporters of this argument believe that any new 

developments within forensics can only be effective for a limited amount of time, since 

ultimately an anti-forensic technique will prevent the forensic technique from being used 

effectively. 

 

In this work, new methods for investigation of timestamps have been proposed, providing 

ways to formulate and test hypotheses about clocks, and thereby increase the possibilities 

for interpretation of timestamps in an investigated system. Would these methods 

withstand a purposeful attack by an anti-forensics tool?  They would not. It is easy to 

conceive an anti-TimeStampLogic tool that will thwart the efforts of the 

TimeStampLogic forensic tool described in Section 7. All this tool would have to do is to 

implement the same model as TimeStampLogic, and then go through all files and 

directories, sequence numbers and other causal properties and change the timestamps so 

they all match a predefined clock, for example civil time. If such a tool had been run on 

the PC after the antedating experiments described in Section 7, a subsequent 

investigation using TimeStampLogic or other tools based on the same principles would 

justify the wrong clock hypothesis, namely a hypothesis being equal to the clock of the 

anti-forensic tool and not the actual clock used on the computer. Thus, the purpose of 

running TimeStampLogic would not be met. The run of the anti-forensics tool can be 

seen as a change of the system not included in the model as discussed above, so the 

missing ability to detect a run of an anti-forensics tool can be seen as a sub-problem of 

the missing ability to distinguish between inconsistent clock hypotheses and detection of 

actions not included in the model. 
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There are several fallacies with the arms race argument that reduces its weight as an 

argument against the effectiveness of forensic techniques. First, in most cases, it is 

possible to determine if an anti-forensics program has been used. It is difficult to make an 

anti-forensics program in such a way that it does not leave any pattern specific to that 

program. An anti-TimeStampLogic program would for example be very likely to produce 

specific patterns between timestamps it would have to change in order to perform its 

function. These patterns could be detected by an anti-anti-TimeStampLogic program. 

Although hypotheses about the original clock could then no longer be tested properly, the 

evidence of usage of anti-TimeStampLogic would create an impression that there was 

something to hide. This reduces the desirability of using an anti-forensics tool 

significantly. 

 

The most serious fallacy in the arms race argument is however the underlying assumption 

that anti-forensic techniques will always be available and will be used by everyone 

possessing potential sources of digital evidence. Consider the adversaries in a digital 

investigation, the Investigator and the Perpetrator. The Investigator usually possesses 

knowledge of digital investigation and tools that can comb a digital medium for evidence, 

including tools for digital imaging and data recovery. The Perpetrator is on the other 

hand likely to be an average computer user, and does not know how to protect himself 

from the scrutiny of a digital investigation or where he can obtain the necessary tools. 

The Investigator also has time on his side. Once a digital medium has been forensically 

imaged, he has plenty of time to investigate its contents. The Perpetrator on the other 

hand never knows when the Investigator will turn up to seize his data, if ever. He 

therefore has to be prepared at all times and run the anti-forensic tools again and again 

after every action that would leave incriminating evidence. There is no room for mistakes 

by the Perpetrator. If he makes a small mistake in his anti-forensic procedures, the 

evidence may be there waiting to be discovered by the Investigator. The Investigator on 

the other hand can make a lot of mistakes, as long as he doesn’t mess up the original 

data. He can always start from a fresh image at a later time, should he feel that there is 

more to find or that current results rely on misinterpretations. All in all, the Investigator 

has a tremendous advantage over the Perpetrator in digital investigations. This is true in 

other types of investigations too, hence the saying “There is no such thing as a perfect 

crime”. 
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The above is not to say that the arms race argument is without value. The assumption of 

the arms race argument that tools and opportunity to use them exist is still valid on the 

Investigator’s side. The Perpetrator is not likely to have the tools or knowledge required 

to counter forensic techniques. The Investigator on the other hand, is likely to have the 

tools and knowledge required to counter the use of anti-forensics techniques. This reduces 

the effectiveness of popular anti-forensics tools such as steganography and strong 

encryption in hiding evidence from the Investigator. Thus, the arms race argument has 

weight, but for the most part in favour of the Investigator only.  

 

8.5 Falsified evidence creation 

 

Aside from using an anti-forensics tool as mentioned above, a Perpetrator wishing to 

deceive the Investigator has another option: creating falsified evidence. In the context of 

digital investigations, creating falsified evidence involves preparing a digital medium to 

contain information matching the story the Perpetrator wants to present. This can be 

accomplished for example by antedating documents or other files such as contraband 

images. Another example could be the wilful installation of a Trojan horse by the 

Perpetrator on his own computer, in order to be able to claim the Trojan horse defence. 

These methods of creating falsified evidence could be exposed by the timestamp 

investigation methods described in this work. Investigation of the activities on the 

computer at the time of the Trojan horse installation can together with timestamp in-

vestigation methods establish evidence that the Perpetrator installed the Trojan horse 

himself in an effort to create false evidence.  

 

But what if the Perpetrator also takes timestamps into account when creating falsified 

evidence?  The complete contents of the digital medium could for example be built up 

from the bottom by gradually installing content, and by using a series of forward 

adjustments to the system clock. As long as the clock is only adjusted forward, no 

timestamps inconsistent with the default clock hypothesis will be introduced. When clock 

adjustments are not recorded on the medium, it is not possible from the Investigator’s 

point of view to distinguish between reboots and clock adjustments in succession, and 

actual usage where the computer has been unused for long periods of time. By using such 

a method, a Perpetrator would be able to create false evidence matching his own 

timeline. The methods presented in this work would not be able to determine that the 
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content was actually produced at a different time. In fact, the method just described is 

the exact method used to prepare the computer used in the antedating experiment 

described in Chapter 7. This method was also used by one of the parties in the helicopter 

contract investigation described in Section 2.3. In that investigation, timestamps alone 

did not reveal the true history of the computer.  

 

The burden on those wishing to create the perfect falsified evidence is however heavy. As 

discussed above, the advantage in an arms race between the Investigator and the 

Perpetrator is on the side of the Investigator. Should the Perpetrator wish to create 

falsified evidence, he must do so with outmost care, to prevent the introduction of 

inconsistencies. As shown in the results of the document antedating experiment, it is very 

difficult to manipulate the clock and timestamps of a computer in such a way that no 

inconsistencies are introduced. The best bet of the Perpetrator falsifying evidence is 

probably to build the complete evidence up from the bottom by wiping the complete 

hard drive and continue with forward clock adjustments only. But then the perpetrator is 

faced with another challenge: How to introduce user data in such a way that the result 

looks like real computer usage?  There is a need to introduce real user data; otherwise the 

evidence will look like something that has been manufactured for the purpose. If the 

Perpetrator wants to copy real user data from another device, outmost care must be 

taken to prevent the introduction of timestamp inconsistencies. When copying documents 

from a computer to another any timestamps retained from the source medium (Such as 

the Modified timestamp in Windows XP), must be changed to match the new timeline. 

Any time evidence existing within the actual data must also be changed. This is where 

the perpetrator in the homicide investigation discussed in Section 2.2 missed. By 

reconstructing the real time from the length of shadows shown in the picture, 

investigators could show that there was a mismatch between the time shown on the video 

and the real time. Great care must also be taken to make sure that the new timeline 

matches evidence that may be available from sources outside the Perpetrator’s control. 

This is where the falsifier in the contract investigation missed; he used a version of the 

wiping program that wasn’t available at the time he was supposed to have used it. A 

falsifier of evidence needs to make sure that every detail in the falsification is consistent. 

Thus, creating believable falsified evidence turns out to be quite difficult - even when 

using the procedure of clock forward only adjustments.  
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Another problem facing the creator of false evidence is analogous to the problem of using 

anti-forensic tools: he needs to know when it should be done. In most situations, the 

Perpetrator cannot know for sure when the digital medium will be investigated. But he 

has to select a time for the production of false evidence. If he does it too early, he runs a 

greater risk of introducing inconsistencies in the evidence after falsification. If he does it 

too late, he risks that the Investigator moves first, and seizes the evidence before the 

falsification has been produced. In most real cases, the Perpetrator has no reason to 

believe that he is being investigated until the Investigator actually turns up to seize the 

evidence. This is reflected in experiences from real digital investigations. Cases where 

suspects have used disk wipe utilities and other anti-forensic tools to remove or alter 

digital evidence prior to seizure are few and far between, although they do exist. 

Accounts of cases where suspects have tried to remove evidence when the Investigator 

came to seize it are however numerous. In many of these cases, suspects have probably 

previously thought that they should remove the evidence, but postponed it because of the 

impracticalities involved.  
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9 SUMMARY 

9.1 Accomplishments 

 

This work has shown that it is possible to enhance the understanding and use of digital 

timestamps as evidence, by formulating hypotheses about clocks and testing them for 

consistency with the observed timestamps. The consistency tests check evidence by 

utilizing known properties of a system, such as known causality between events 

generating timestamps. Testing clock hypotheses can show that a hypothesis is 

consistent. It cannot prove that a hypothesis is correct, but inconsistent hypotheses will 

be refuted. For any consistent hypothesis, the tested timestamp evidence is evidence 

supporting the hypothesis. With many tested timestamps, the clock hypothesis can be 

justified as the clock to be used in the event reconstruction. This is a significant aid to 

event reconstruction, as timestamps pertaining to specific events of importance in the 

investigation can then be interpreted according to the justified clock hypothesis. Previ-

ously, there was no system for clock hypothesis formulation and testing. Inferences from 

timestamps were drawn with ad-hoc methods, often by assuming that the clock of the 

investigated computer had not changed during the computer history. This could lead to 

incorrect event reconstruction, or it could create doubt about the reconstructed event line 

in cases where the assumption was found to be unjustified.  

 

It was shown in this work how clock hypotheses can be tested against timestamps from 

events known to be causally related. Under the assumption that events cannot causally 

affect events occurring earlier in time, causally related events must be ordered in time. 

This allows for the testing of a clock hypothesis against timestamps generated by events 

known to be causally related, by testing each pair of timestamps from causally related 

events. This concept was utilized to study properties of storage systems such as log files 

and file systems. Causal relations occurring in these systems were identified, allowing the 

testing of a clock hypothesis against the timestamps in these systems. Such clock 

hypothesis testing was implemented and evaluated. 

 

Further, it was shown how a model of the part of a system affecting timestamps can be 

created in predicate logic, and how such a model can be developed to derive invariants 



    

 

 

 

 

154

concerning the relationship between timestamps. These invariants can then be used for 

clock hypothesis testing in a similar fashion to the use of causal relations. It was also 

shown how such a model can be simplified to cater for more timestamps and events, thus 

making it possible to create a model of a real file system, and derive invariants for it. The 

derivation of invariants for clock hypothesis testing of a real file system was performed, 

and the hypothesis tester was implemented and evaluated.  

 

9.2 Implications 

 

This work describes methods that can be utilized by investigators to enhance the 

confidence in digital timestamps as evidence. The most important implication is the 

ability to produce more accurate event reconstructions from the analysis of digital 

evidence containing timestamps. The formulation and testing of clock theories is expected 

to be conducted by investigators during the investigation phase, and presented to fact 

finders as part of the presentation of the evidence in the case. During the investigation 

the investigator tests different clock hypotheses, perhaps conflicting hypotheses presented 

by the different parties in a case. He can present to the fact finder how these hypotheses 

match with the available evidence in form of timestamps matching or not matching with 

the clock hypothesis. It is then up to the fact finder to decide which of the hypotheses he 

finds is the most justified one. 

 

The testing of a clock hypothesis against timestamps found in the evidence is a task 

involving the matching of a large number of timestamps against each other. This task is 

not expected to be done manually by investigators. A better solution would be to 

implement the process of clock hypothesis testing as part of tools for digital investigation. 

The implementation of TimeStampLogic in this work provides an example of such an 

implementation. This implementation is only meant as proof of concept. A real 

implementation should allow for easy definition of a clock hypothesis, perhaps by using a 

graphical tool. It should also be easy for investigators to define the semantics of the 

underlying system, in terms of causal relations and invariants. Investigators can then use 

an agreed set of causal relations and invariants for the specific system under 

investigation, as well as changing the semantics in response to the specifics of the 

investigation, such as discovered programs that change timestamps in a non-standard 

way. With such a tool, the formulation and testing of clock hypotheses can be performed 
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in a large number of cases, without increasing the workload on the investigator 

significantly.  

 

The antedating experiment conducted in this work, has shown that the method of clock 

hypothesis formulation and testing can expose antedating. By testing the available 

timestamp evidence with the causality and invariants of the timestamps in the file 

system, the default clock hypothesis was found to be refuted, because the system clock 

had been adjusted back to a previous date to produce an antedated document. Evidence 

in the form of timestamps on the date the document was antedated to was found not 

only on the document, but also on other files being affected by the operating system. 

This demonstrated that the methods presented in this work can be used to find instances 

of clock manipulation, for example in connection with antedating. The presented methods 

are not provide investigation methods that cannot be circumvented by someone who 

would like to create evidence of an event history differing from the real. The construction 

of evidence supporting alternative event histories is however more difficult than without 

these methods, as demonstrated in the antedating experiment. 

 

9.3 Future Directions 

 

This final section discusses some possible directions that can be taken by future research 

within the area discussed in this work. 

 

9.3.1 An implementation of invariant derivation 

 

In Chapter 5 and 6, procedures for the derivation of invariants from system models were 

given. These procedures were employed manually for models of imaginary systems and 

for a real system. The work required for derivation of invariants with the devised 

methods increases with increasing number of timestamps per file in the modelled system. 

Finding invariants manually rapidly becomes impractical. For the analysis of larger and 

more complex systems, the derivation of invariants should therefore be implemented in a 

computer program. This can be accomplished by implementing the algorithms given in 

Chapter 5 and Chapter 6. 
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9.3.2 A database of system functionality 

 

As discussed in Chapter 8, a significant challenge with any method attempting to apply 

reasoning based on the functionality of a digital system, is to establish an understanding 

of the functionality of the digital system. The functionality needs to be known; otherwise 

it will be impossible to build a model for reasoning that corresponds to the real system, 

and the inferences drawn from the model may not apply to the real system. In this work, 

system models have been built from descriptions of systems in previous works, as well as 

by inference from tests with real systems. It has not been attempted to prove or 

otherwise rigorously demonstrate that the system models corresponds exactly to the real 

systems. In real cases, there is however a need to show that there is a correspondence 

between the modelled system and the real system. The need to demonstrate such 

correspondence is not limited to timestamp investigations. In any investigation where an 

event history is reconstructed by observing system states and hypothesizing system 

events, it is necessary to show some correspondence between the modelled relationship 

between events and system states and how actions on the real system change stored data. 

This challenge needs to be addressed.  

 

Carrier proposed the establishment of a complex event database, in which a description 

of which events caused by different programs would be stored. For example, the database 

could store lists of which files are read or written by a specific program. [4]  Although it 

is probably inconceivable to establish a database listing all possible actions taken by all 

possible programs, the database could focus on specific types of events, for example if 

specific programs alter timestamps in ways differing from the standard operating system 

read and store methods. The database could also focus on the most common investigated 

systems, thereby providing data that could be used in a long range of investigations, 

without having to undertake the laborious work associated with determining functionality 

of less common systems. The existence of a database does not however itself provide the 

determination of the relationship between actions and their effect on real systems. In 

order to be able to list action-effect correspondence for a program in a database, it is 

necessary that someone actually determines this correspondence in the real system.  

 

A problem with the determination of the effect of actions in a real system, also noted by 

Carrier, is that this determination is non-trivial. The source code and other system 

specification for the system may not be available, and it may be very difficult to 
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determine the system functionality without them. In practice, the investigator trying to 

determine the functionality of a system may have to resort to performing experiments 

testing user actions in the system and determining which effects they have on the data 

stored on the system. The outcome of such experiments will be a relationship between 

actions undertaken by the investigator and effects measured on a specific system. This 

relationship may however be different under other circumstances than those tested by the 

investigator, and due to the number of variables existing in complex digital systems it 

may not be clear exactly which circumstances held during the experiment. Thus, a 

specific experiment conducted by an investigator during a specific set of circumstances, 

may not yield results qualifying for the inclusion in the event database. The maintainer 

of an event database would need to establish requirements for the admissibility of 

experiment results in the database. 

 

The situation described above is analogous to the situation in science. There is no source 

code or system specification describing the exact nature of the universe. Therefore, a 

researcher studying nature must resort to conducting experiments and study the effects 

of those experiments. But since the circumstances under which the experiments were 

taken may be difficult to repeat, scientific researchers understand that a hypothesis about 

nature cannot be accepted unless repeated experiments conducted by different researchers 

have fail to refute it. Indeed, hypotheses about nature are often debated for many years 

in scientific communities before they are generally accepted, or before someone devises an 

experiment refuting them.  

 

Taking a scientific approach to digital investigation, the hypothesis based approach can 

also be used in the determination of the effect of actions in digital systems. If the system 

specifications cannot be studied in detail, then the results of experiments must be used to 

provide hypotheses about the system functionality. These hypotheses can be stored in the 

event database, detailing the nature of the experiments producing those results, and who 

conducted them. Any conflicting results can also be stored. Should the constructor of the 

system should be willing to participate; he can present his hypotheses about how the 

system works, based on experiments as well as studies of the system specification. He 

does not however have to reveal the system specification itself. After all, if the 

constructor’s hypothesis about the system is based on reading the source code, then it is 

very unlikely that anyone else will find results conflicting with that hypothesis. With 

such a database, the investigator in a specific case can model the system according to the 
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prevailing hypothesis for the functionality of the system or according to several different 

hypotheses if there is more than one. If one of the parties involved in the investigation 

(for example the defence counsel), disagrees with the hypothesis for the system 

functionality, then he may present alternative hypotheses. The alternative hypotheses 

may then be tested with experiments, and the results can be used in the case in question, 

as well as being stored in the event database for future use. In this way, an event 

database detailing the functionality of digital systems can be built gradually by 

application of scientific principles. 

 

9.3.3 Forensic friendly systems 

 

It has been an underlying assumption in this work that the cooperation of the owner of 

the investigated system cannot be assumed. Specifically, it has been assumed that the 

owner of the computer cannot be assumed to be using digitally signed timestamps from 

external systems, or keep system clocks completely synchronized with universal clocks, in 

case the system should be investigated. This does not however imply a rejection of 

proposals to change existing systems in ways that would facilitate future investigations. 

As already mentioned, most of the investigated systems are standard systems. There are 

many things that could be done with these standard systems to enhance the possibilities 

for future investigations. Some proposals have already been made. For example, Buchholz 

proposed to bind pervasive labels to data in a system. [46]  Barik et al proposed to 

extend existing file systems in such a way that historical timestamp values are stored in 

addition to the current. [8]  These changes would enhance the possibilities of using the 

methods for timestamp investigation presented in this work. In the case of pervasive 

labels, the propagation of labels in a system would create many possibilities of causality 

inference not existing before, thereby facilitating clock hypothesis testing. In the case of 

storing historical clock values, these clock values would add to the timestamp evidence 

and therefore put the clock hypothesis under additional scrutiny. If the historical clock 

values were stored in an ordered fashion as proposed by Barik et al, the sequence could 

act as a generation marker, thus making causality inference possible and enabling rea-

soning similar to that explored in Section 4.2. Another possible change that would 

facilitate investigations is adding generation markers to storage systems, as discussed in 

Section 4.3. 
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There are however two considerations that should be made when considering extending 

systems with forensic friendly features. The first have already been mentioned; if specific 

features have been installed in a system just to allow it to be forensic friendly, then 

people who know about them are likely to turn them off in order to avoid the evidence 

production associated with them. The second is the fact that features added to a system 

specifically to be forensic friendly, are likely to create a controversy among users. Many 

users will feel that the addition of specific features to help investigators investigating 

them is a violation of their privacy rights. In fact, in some jurisdictions, adding such 

features would be seen as unjustified in relation to existing privacy regulations. [47] The 

controversy resulting from systems with specific forensic friendly features may increase 

the proportion of users who know about these features, and therefore can turn them off 

to avoid evidence production.  

 

System designers do not primarily design systems so that they can be investigated. The 

primary focus of system designers is usually to make a robust system, create a good user 

experience and attract as many as possible to the system. Creating controversies with 

users does not fit with these goals. System designers will therefore probably be reluctant 

to add specific forensic friendly features to their systems, unless there are some other 

specific goals that can be addressed by doing so. The acceptance for forensic friendly 

features among users and system designers’ motivation to introduce them is an 

interesting area of further study. If it were possible to motivate all system designers and 

users to accept systems built from the bottom up to be forensic friendly, then research 

within digital forensics could be focused on how to build systems recording all user 

activities in forensically sound ways. Until then, research into tools and methods for 

analyzing data not originally intended as evidence will still be required. 
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A. TIMESTAMP FORMATS 

 

A.1 FILETIME 

 

FILETIME is the timestamp format used to record timestamps associated with files 

stored on NTFS file systems. The FILETIME is a 64 bit value representing the number 

of 100-nanosecond intervals since January 1, 1601 00:00:00 UTC. The value is an 

unsigned 64-bit integer. The FILETIME format can represent  

 
64

7
2 58494 years
(10 60 60 24 365)

≈  
⋅ ⋅ ⋅ ⋅

 

 

The resolution is 0,1 microseconds. Applications may however not be able to set 

timestamps with a finer resolution than 1 millisecond. 

 

Windows applications can get and set file time values using system calls GetFileTime() 

and SetFileTime(), supplying FILETIMEs for CreationTime, LastAccessTime and 

LastWriteTime. This operation will succeed for all file systems, but the result of the 

operation will depend on the file system. For example, on FAT file systems, the 

LastAccessTime has a resolution of 1 day, whereas on NTFS file systems it has a 

resolution of 1 second. [48] 

 

A.2 SYSTEMTIME 

 

SYSTEMTIME is a time representation used in Windows applications.  It is a structure 

containing 16-bit values for (in this order) Year, Month, DayOfWeek, Day, Hour, 

Minute, Second, MilliSecond. Each member of the structure is a 16-bit unsigned integer. 

This structure can represent 162 65536= , but year must be between 1601 and 30827 on 

current operating systems. 
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Windows applications can obtain the system time as a SYSTEMTIME with a call to 

GetSystemTime() or GetLocalTime(). The SYSTEMTIME must be converted to a 

FILETIME with SystemTimeToFileTime() if the value is to be stored as file timestamps. 

[49] 

 

A.3 FAT date and time 

 

In the FAT file system, timestamps are recorded as a 16-bit value for the date and a 16-

bit value for the time. These are comprised of: 

 

DATE 

 

Bit  Meaning 

0-4  Day of the Month (1-31) 

5-8  Month (1-12) 

9-15  Year offset from 1980 (0 = 1980) 

 

 

TIME 

 

Bit  Meaning 

0-4  Second divided by 2 

5-10  Minute (0-59) 

11-15  Hour (0-23) 

 

This gives the FAT timestamp a resolution of 2 seconds. The date and time are stored 

together for CreationTime and LastWriteTime. However, only the Date is stored for 

LastAccessTime, yielding a resolution of 1 day.  

 

Windows NT and newer systems store an additional byte for the CreationTime 

timestamp in FAT adding finer resolution. This byte is an 8-bit unsigned integer and 

gives the number of 10 millisecond intervals since the change of the 2-second interval. 

[50] 
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A.4 UNIX time_t 

 

Unix file systems express timestamps as POSIX time, in which time is expressed as the 

number of seconds that has elapsed since January 1, 1970 00:00:00 UTC (often referred 

to as the Unix Epoch). The time˙t is an implementation of Posix Time representing the 

time as a signed integer. The time˙t originally was a 32-bit signed integer, and still is on 

most implementations. Some implementations use a 64-bit signed integer instead and it is 

expected that most systems gradually will move to using 64-bit values. 

 

The resolution of time˙t is 1 second. Implemented as a 32-bit signed integer, the 

timestamp can represent values from December 13, 1901 20:45:52 to January 19, 2038 

03:14:07. The end date is sometimes referred to as the year 2038 problem, referring to the 

fact that any system still using this time format on that date will cease to function 

properly as the counter wraps and revert to December 13, 1901.  It is however expected 

that most systems will have switched to 64-bit time˙t representation before 2038. 

 

The unix time˙t format with 32-bits signed integer representation is used in most unix 

applications and unix file systems.  

 

A.5 Java time 

 

In the Java programming language dates and moments in time can be represented by 

various classes, all of which are based on an internal representation of time where time is 

expressed as the number of milliseconds since January 1, 1970 00:00:00 UTC. This 

number is represented as a long - a 64 bit signed integer. This gives the time 

representation in Java a resolution of 1 millisecond. 

 

The Java time format is able to represent 

 
64

3
2 584 942 417 years
(10 60 60 24 365)

≈  
⋅ ⋅ ⋅ ⋅

 

 

A.6 GSM / UMTS 
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The GSM / UMTS mobile phone system specifications specify timestamp formats for 

timestamp inclusion in text messages. In the absolute timestamp representation, a time 

value is encoded over 7 octets (bytes) in the following manner: [51] 

 

Octet  Representing 

1  Year 

2  Month 

3  Day 

4  Hour 

5  Minute 

6  Second 

7  Time Zone 

 

Octet 1-6 are coded in BCD (Binary Coded Decimal) with the most significant digit in 

bit 0-3 and the least significant digit in bit 4-7. The Time Zone is encoded as the number 

of 15 minute intervals difference from UTC encoded as BCD with bit 4-7 as the least 

significant digit and bit 0-2 as the most significant. Bit 3 expresses the sign, where 0 is 

positive. 

 

This gives the GSM timestamp a resolution of 1 second. Since there is no defined Epoch, 

it is not defined which century a timestamp pertains to. As a result, GSM timestamps 

are inherently ambiguous. In practical terms, the century can however usually be inferred 

from the context of the timestamp. 
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B. CLOCKS 

 

B.1 Universal Time Coordinated (UTC) 

 

In UTC, time is divided into days, hours, minutes and seconds. Days are identified using 

the Gregorian calendar. In UTC, the normal day has 24 hours, each consisting of 60 

minutes, each consisting of 60 seconds. The normal day therefore consists of 86400 

seconds. In addition, UTC defines irregular days in which the last minute has 59 or 61 

seconds. These days have either 86399 or 86401 seconds. The purpose of these irregular 

days is to keep the year defined in the UTC and the Gregorian calendar in 

synchronization with the astronomical year. The usage of irregular days is commonly 

termed “inserting/removing a leap second”, although formally the result is a longer or 

shorter day. Decisions on leap seconds are taken by the International Earth Rotation and 

Reference Systems Service (IERS), based on astronomical observations.  

 

Coordination of the UTC is performed by Bureu International des Poids et Mesures in 

Paris. It imports a clock signal from more than 50 highly accurate clocks around the 

world. Each clock is weighted according to its accuracy, and the final clock is produced 

as the sum of these clocks. The result is used as the official time source in most countries 

in the world.  
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C. FILE SYSTEM TIMESTAMP EXPERIMENTS 

 

During this work, experiments were performed on a computer running Microsoft 

Windows XP with the NTFS file system. These experiments were performed to 

understand the effects on file timestamps, and include them in a model. (See Chapter 6) 

 

C.1 Timestamps in NTFS 

 

NTFS (Originally Windows NT file system) is the standard file system in Windows NT, 

Windows 2000 and Windows XP. The file system is organized as a tree of directories 

under the root directory containing files. Metadata for files and directories are stored in 

the Master File Table (MFT), which is stored as a regular file. The MFT contains 

attributes for each file and directory, such as timestamps, extent tables (where the file is 

located on the disk) and file size.  

 

The $STANDARD_INFORMATION attribute in each MFT-entry in NTFS contains 

four different timestamps, associated with the file or directory to which the MFT-entry 

pertains. These are the creation time, last modified time (also called “last written time”), 

last access time and MFT Modified time. Each timestamp is stored as a FILETIME 

record.  

 

Informally, the four different timestamps can be described as follows: 

 

Timestamp Description 

Creation time: The time of the creation of the file on that file system 

Last modified time: The time of the last change of the file content 

Last access time: The time of the last access to the file content 

MFT Modified time: The time of the last change of file metadata 

 

The $FILE_NAME attribute present in each MFT-entry, and also in the parent directory 

of each file or directory. These fields also contain the described set of four timestamp 

values. These values are not updated by Read or Write operations in the same way as 

those stored in the $STANDARD_INFORMATION attribute. 
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For further reading on NTFS timestamp locations and file system organisation, the 

reader is referred to Carriers work on the subject. [31] 

 

C.2 Experiments 

 

A set of test files and directories were generated. Test operations on files and directories 

were performed using standard operating system methods on a Windows XP computer. 

The system clock was observed at the time of each operation. The tool Win-Hex [38] was 

utilized to check the effect of operations on the $STANDARD_INFORMATION file 

system timestamps. Operations were performed both internally on one file system (intra) 

and from one file system to another (inter) on one computer. They were also repeated on 

another Windows XP computer mounting a file system across a network from the first 

test computer using the Windows standard file system sharing mechanism. 

 

The tested operations are grouped into the categories read, write, delete, move and copy. 

The following operations were tested: 

 

Read operations:  

-  Reading a file into the “notepad” application 

-  Typing a file on the command prompt with “type” 

-  Listing a directory with “dir” on command prompt 

-  Showing a directory by double-click on it in Windows Explorer 

-  Looking at a directory or file’s properties with right-click and select “properties” 

 

Write operations: 

-  Creating a file in the “notepad” application 

-  Creating a file with the “echo” command on command prompt 

-  Changing an existing file with the “notepad” application 

-  Creating a new directory with “md” command on command prompt 

-  Creating a new directory with right-click, “new”, “new folder” 

-  Changing an existing directory by creating a new file in it  

 

Delete operations: 
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-  Deleting a file with right-click, “delete”: will put the file in the recycler 

-  Deleting a directory with right-click, “delete”: will put the directory in the recycler 

-  Emptying the recycler (a real delete operation) 

 

Copy operations: 

-  Copying files and directories with “copy” command on command prompt  

-  Copying files/directories with right-click, “copy” and then right-click “paste” 

-  Copying files/directories with drag-and-drop over different file systems 

 

Move operations: 

-  Moving files and directories with “move” command on command prompt 

-  Moving files/directories with right-click, “cut” and then right-click “paste” 

-  Moving files/directories with drag-and-drop on one file system 

 

C.3 Results 

 

In the following, the results from the tests of the different operations are presented and 

commented. Where the timestamp is unchanged as a result of the operation, a dash “-“ is 

shown. Where the timestamp is changed to the current time, a plus “+” is shown. 

Comments for each result can be found below. When referring to directory hierarchies in 

the comments, “top” means the directory that contains other directories whereas “bottom” 

means files and directories that is contained within other directories. 

 

Read operations 

Operation Created Modified Accessed 

Read file in notepad - - + CACHE 

Read file with “type” - - - 

Read dir, windows explorer - - + CACHE (1) 

Read dir, with “cd”, “dir” - - + CACHE (2) 

View properties of a file - - + CACHE 

View properties of a dir - - + CACHE (3) 

 

During the tests, it was discovered that accessed timestamps are subject to Windows file 

caching. All versions of Windows with NTFS keep a file cache in memory to allow faster 
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loading of frequently used files. The file cache has a page size of maximum 256 kB. [52]  

As a result, files larger than 256 kB cannot be cached in full and must be read from disk. 

From the results, it was evident that where a read operation resulted in a cache hit and 

the file was read from cache in full, the last accessed timestamp on disk was not updated. 

On the other hand, if part of the file was read from disk, the timestamp was updated. In 

the tests, reading of files larger than 256 kB always updated the accessed timestamp. 

When reading smaller files the accessed timestamp was sometimes updated, sometimes 

not.  

 

(1) When entering an absolute path in an explorer window or a file dialog box, Windows 

performs read-ahead of directories for filename completion, resulting in access to 

directories. Reading a directory with Windows Explorer may also result in updating of 

the accessed timestamps of the files contained in the directory. This happens if Explorer 

recognizes the file type and reads the file in order to display information to the user. For 

example; Explorer automatically reads Word Documents and MP3-files in order to show 

document name and author to the user while browsing files in Explorer.  

 

(2) At command “cd”, the accessed timestamps of all directories above the directory in 

question are updated. The accessed timestamp of the directory itself is only updated on a 

subsequent “dir”. 

 

(3) When viewing properties of a directory, Explorer calculates the total size of its 

content. This results in access to all of its subdirectories, updating accessed timestamps 

on these, but not to any of the files in the directory or any subdirectories. 

 

Write operations 

Operation Created Modified Accessed 

New file, Notepad + + + 

New file, “echo” + + + 

Modify file content, Notepad - + + 

New directory, windows + + + 

New directory, “md” + + + 

New file in dir (dir stamps) - + + 
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Delete operations 

Operation Creation Modified Accessed 

Delete file (windows menu) - - + (1) 

Empty recycle bin (file) - - - 

Delete directory  - - + (1) (2) 

Empty recycle bin (dir)  - + (3) + (3) 

 

Deleting a file/directory is actually a move operation where the file is moved to the 

recycler. The resulting timestamps are equal to the results of an intra file system move 

operation. 

 

(2) Deleting a directory moves the whole tree of subdirectories to the recycler. This 

updates the accessed timestamp on all subdirectories, but not files. Access is top-down 

giving the top-directory the earliest access time. 

 

(3) A recursive true delete (such as empty recycle bin) traverses the tree and start 

deleting files at the bottom. File timestamps are not updated, but directories are written 

when files are deleted thereby updating the directory modified timestamp. The result is a 

top-down sequential pattern on directory accessed timestamps and a bottom-up 

sequential pattern on directory modified timestamps. 

 

Copy operations 

File Operations Created Modified Accessed 

Copy, intra file system, source - - + CACHE 

Copy, intra file system, dest + - + 

Copy, inter file system, source - - + CACHE 

Copy, inter file system, dest + - + 

Drag-drop, inter file system, source - - + CACHE 

Drag-drop, inter file system, dest + - + 

Copy-paste, intra, source - - + CACHE 

Copy-paste, intra, dest + - + 

Copy-paste, inter, source - - + CACHE 

Copy-paste, inter, dest + - + 
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Directory Operations Created Modified Accessed 

Copy, intra file system, source - - + CACHE (1) 

Copy, intra file system, dest + + (2) + 

Copy, inter file system, source - - + CACHE (1) 

Copy, inter file system, dest + + (2) + 

Drag-drop, inter, source - - + CACHE (1) 

Drag-drop, inter, dest + + (2) + 

Copy-paste, intra, source - - + CACHE (1) 

Copy-paste, intra, dest + + (2) + 

Copy-paste, inter, source - - + CACHE (1) 

Copy-paste, inter, dest + + (2) + 

 

(1) A recursive copy operation updates the accessed timestamp on all directories and files 

in the source tree that is not present in the cache. The copy operation reads the directory 

tree before it starts reading files, (Explorer displays “Preparing to copy…”). This result in 

a pattern where all directories have accessed timestamps in sequence and all files have 

accessed timestamps in sequence. All accessed timestamps on directories are prior to the 

first accessed timestamp on a file. The operation start can be determined from the 

accessed timestamp of the top directory. The operation end can be determined from the 

latest accessed timestamp in the tree. In the tests, accessed timestamps on files below 256 

kB were seldom updated on the source system during copy operations, whereas accessed 

timestamps on all files above 256 kB were updated, indicating that the caching 

mechanism is active here also. The result is a timestamp pattern in which all directories 

are accessed in rapid succession and then all files above 256k accessed in succession, 

somewhat less rapid, depending on file sizes and copy bandwidth. 

 

(2) On the destination of recursive copy operations, all three timestamps are updated on 

directories, and creation and accessed timestamps updated on all files. The copy 

operation works in a top-down manner, creating directories, then creating subdirectories 

and files. For each directory in the tree the creation time indicates when the directory 

was created and modification and accessed timestamps indicate when the last 

subdirectory or file of that directory was written. The operation start can be determined 

from the creation time on the top directory. The operation end can be determined from 

the latest creation timestamp in the tree. 
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Move operations 

File Operations Creation Modified Accessed 

Move, intra file system, source N/A N/A N/A 

move, intra file system, dest - - + 

Move, inter file system, source - - + 

Move, inter file system, dest + - + 

Drag-drop, intra file system, source N/A N/A N/A 

Drag-drop, intra file system, dest - - + 

Cut-paste, intra file system, source N/A N/A N/A 

Cut-paste, intra file system, dest - - + 

Cut-paste, inter file system, source - - + 

Cut-paste, inter file system, dest - - + 

 

Directory Operations Creation Modified Accessed 

Move, intra file system, source N/A N/A N/A 

Move, intra file system, dest - - + (1) 

Move, inter file system, source - + (2) + (2) 

Move, inter file system, dest + + (3) + (3) 

Drag-drop, intra, source N/A N/A N/A 

Drag-drop, intra, dest - -  + (1) 

Cut-paste, intra source N/A N/A N/A 

Cut-paste, intra, dest - -  + (1) 

Cut-paste, inter, source - + (2) + (2) 

Cut-paste, inter, dest + + (3) + (3) 

 

(1) All directories below are also accessed but not files. Access is depth first, giving the 

top directory the latest access time. 

 

(2) A recursive move operation across file systems had the same effect on the source 

system as a copy operation and then (true) delete. All files had the accessed timestamp 

updated (if it was not in cache, prefetch of files less then 256 kB applied here as well). 

All directories had both accessed and modification timestamps updated. 
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(3) On recursive move operations, directory timestamps on destination systems were 

updated as on copy operations. This applied to the top directory and all subsequent 

directories. Files contained in directories, however, only had the accessed timestamps 

updated, as opposed to a recursive copy operation where the creation timestamps were 

updated as well. 

 

When interpreting move operations it is important to distinguish between intra- and 

inter- file system operations. When moving a file or directory to a location on the same 

file system, only the file entry is changed. When moving across a file system boundary, 

the effect on the directories are equal to copying and subsequently deleting. Files 

contained in directories on the destination system do not update the creation timestamp.  

 

C.4 Disabling update of Last Accessed 

 

It should be noted that it is possible to turn off updating of the accessed timestamp on a 

file system by running the command fsutil behavior set disablelastaccess 1. 

The status of this setting can be checked with fsutil behavior query 

disablelastaccess. Default setting is that updating of the accessed timestamp is on 

(disablelastaccess = 0). Setting disablelastaccess to 1 will disable the updating of the 

accessed timestamp on read operations. The accessed timestamp will still be updated on 

operations where the other timestamps are affected. 

 

C.5 Verification of results 

 

In order to be able to verify the above results by inspecting the file system driver, the 

author applied for access to the source code of the Windows XP NTFS file system driver 

through the Microsoft Shared Source Initiative. Such access was denied. Verification of 

the results must therefore be done with other methods, such as larger scale testing of 

actions in the operating system, or possibly by reverse engineering the file system driver, 

thereby determining its semantics. Verification with these methods has been out of the 

scope of this project.  
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D. TIMESTAMP LOGIC IMPLEMENTATION 

 

The timestamp logic implementation is available for download at: 

 

http://www.willassen.no/phd˙thesis/implementation/ 

 

The Java source files for the timestamp logic implementation can be found in the file 

TimeStampLogic.zip. The archive file contains a complete project directory for use with 

NetBeans IDE 5.0 or newer. Alternatively the java sources can be compiled directly with 

Java compiler version 1.5 or higher. 

 

The implementation uses a modified version of Sleuthkit 2.05 [37] for the parsing of file 

system images and extraction of file timestamps. Sleuthkit has been modified to extract 

specific timestamp data that the original version did not extract, log file sequence 

numbers, as well as printing the timestamps in absolute format so they can be read into 

the TimeStampLogic implementation without introducing errors from format printing 

and reparsing. The modified and original Sleuthkit 2.05 can be found at the location 

mentioned above in the file sleuthkit-2.05-willassen-modified.tar.gz. A diff file 

summarizing the modifications to sleuthkit can also be found in this package. Download, 

unzip and follow the building instructions in the folder sleuthkit-2.05-willassen to 

build. 

 

The TimeStampLogic implementation must be run on images of NTFS file systems. Such 

an image may be produced by dumping the contents of an NTFS file system with the 

disk dump utility dd. It is also possible to run the timestamp logic implementation 

directly on the operating system’s partition device (for example /dev/hdc1) on a 

partition with the NTFS file system. The images that were used for the experiments 

described in Chapter 7 are available at:  

http://www.willassen.no/phd˙thesis/images/ 

 

Authoring, building and testing of the timestamp logic implementation as well as the 

modified version of Sleuthkit 2.05 was performed on a workstation running Fedora Core 5 

Linux on the i386 architecture. It has not been tested on other platforms, but should 

work on any platform supported by Sleuthkit 2.05 and Java 1.5. 
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E. PAPERS 

 

This appendix contains copies of four papers presenting results from this work. The 

papers have been accepted for publication in January – March 2008.  

 

 

1111....  Hypothesis based IHypothesis based IHypothesis based IHypothesis based Investigation of Digital Timestampsnvestigation of Digital Timestampsnvestigation of Digital Timestampsnvestigation of Digital Timestamps 

presented at the 4th IFIP WG 11.9 Workshop on Digital Evidence in 

Kyoto, Japan, January 2008. To be printed in Advances in Digital 

Forensics IV. 

 

2.2.2.2.  Timestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testingTimestamp Evidence Correlation by model based clock hypothesis testing 

presented at ACM/ICST E-forensics 2008, Adelaide, Australia, January 

2008. To be printed in conference proceedings. 

 

3.3.3.3.  Finding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital InvestigationsFinding Evidence of Antedating in Digital Investigations 

presented at ARES 2008, Barcelona, Spain, March 2008. To be printed in 

conference proceedings. 

 

4.4.4.4.     Using Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital InvestigationUsing Simplified Event Calculus in Digital Investigation    

Presented at ACM Symposium on Applied Computing, Fortaleza, Brazil, 

March 2008. To be printed in conference proceedings. 

 

 



Chapter 1

HYPOTHESIS BASED INVESTIGATION OF
DIGITAL TIMESTAMPS

Svein Yngvar Willassen

Abstract Timestamps stored on digital media play an important role in digital
investigations. Unfortunately, timestamps may be manipulated, and
also refer to a clock that can be erroneous, failing or maladjusted. This
reduces the evidentiary value of timestamps. This paper takes the ap-
proach that historical adjustments to a clock can be hypothesized in a
clock hypothesis. Clock hypotheses can then be tested for consistency
with stored timestamps. A formalism for the definition and testing of
a clock hypothesis is developed, and test methods for clock hypothesis
consistency are demonstrated. With the number of timestamps found
in typical digital investigations, the methods presented in this paper can
justify clock hypotheses without having to rely on timestamps from ex-
ternal sources. This increases the evidentiary value of timestamps, even
when the originating clock has been erroneous, failing or maladjusted.

Keywords: digital investigation, timestamps, causality, hypothesis based

1. Introduction
A timestamp is a recorded representation of a specific moment in

time. In digital computing, a timestamp is a recorded representation
of a specific moment in time in a digital format. This representation
is either stored on a medium storing digital data, or transmitted on a
network designed to convey digital data. Timestamps play an important
role in digital investigations. Traditionally, they are used to place the
event generating the timestamp at a specific moment in time, thereby
facilitating event reconstruction. The identification that a certain event
on a computer took place at a specific time makes it possible to correlate
the event with events occurring outside the computer system. This can
be events that occurred in another digital system, or in the physical
world. A hard drive of a Windows system, investigated in typical digital
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investigations, usually contains tens or even hundreds of thousands of
timestamps.

1.1 Error and uncertainty in timestamps
For a number of reasons, stored timestamps may not accurately re-

flect the time of the generating event. A timestamp always depends on
the adjustment of the clock from which it is generated. Since the times-
tamp is a function of the clock, it is always relative to the setting of
the clock. Unfortunately, clocks are not fully reliable. Clocks may drift,
thereby generating timestamps gradually more different from those gen-
erated from other clocks. Clocks may also fail, and produce completely
incorrect timestamps. Further, clocks on most systems may be adjusted
at any time by the user of the system to show a different date and time
than civil time. The consequence is that a timestamp is relative not only
to the clock it was generated from in general, but also to the particu-
lar adjustment of the clock at the time the timestamp was generated.
Therefore, even timestamps generated from the same clock cannot be
reliably compared unless it can be justified that the adjustment of the
clock is unchanged between creations of timestamps. In order to reli-
ably compare timestamps from different clocks, the difference between
the clocks must be found, and it must be justified for all clocks that
their adjustment has not changed.

The uncertainty associated with digitally stored timestamps implies
that timestamps in general cannot be relied upon as evidence without
justification of the factors that can lead to errors. In particular, it can-
not be blindly assumed that timestamps are based on a clock that is
adjusted to civil time. Further, it cannot be assumed that timestamps
generated by different clocks are relative to the same clock. Not even
when timestamps are based on the same clock, can one be absolutely
certain that the time difference between the two events is equal to the
difference between the timestamps. These uncertainties are worrying for
investigators. If timestamps cannot be relied upon, then it is in many
cases not possible to reconstruct the events in the case reliably.

1.2 Timestamps and causality
New methods are required for digital investigation of timestamps and

use of digitally stored timestamps as evidence. This work takes the
approach that time stamps and their evidence value can be tested in the
hypothesis based investigation model suggested by Carrier. [2] In this
model, the history of the medium under investigation is the complete set
of configurations, states and events that has occurred during the lifetime
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of the medium. The data direct observable by the investigator is the final
state of the medium. This includes observations of all timestamps stored
on the medium and the clock. These timestamps are all functions of the
computer clock at some previous state in the history, and any subsequent
events that affect them. This paper uses these properties to develop a
formalism for clock hypothesis definition and tests that can be used to
test it for consistency with observed evidence.

1.3 Related work
Being recognized as a research challenge, the problem of timestamp in-

terpretation in digital investigation has been studied by a few researchers
during recent years. Schatz et al demonstrated the problem of clock drift
by observing clock synchronization on a network of computers in a small
business. [3] Schatz suggests mitigating the problem by correlating the
timestamps in web cache stored on the computer with records obtained
from the web servers. Weil and Boyd et al suggest similar correlation
methods, by using timestamps stored on the investigated computer com-
ing from other clocks, such as timestamps in dynamically generated web
pages. [1, 4] Such methods would provide correlation for the period
for which cached data exist on the investigated computer only. These
methods may be able to confirm or refute hypotheses about the clock in
the period for which correlation material exists. They may not be able
to provide reasonable evidence to refute a hypothesis that timestamps
have been changed or the clock has been adjusted during the period for
which no correlation material exist. Correlation with server records is
only possible when such records actually exist, and the investigator has
legal access to them.

Gladyshev studied the use of causality properties for establishing
boundaries on period of time in which an event may have occurred.
[5] In his approach, time bounding can be established when an event
that occurred at an unknown or uncertain time is causally preceded
and succeeded by events with known time occurrence. In order to per-
form time bounding, it is then required to know events of known time
causally connected to the investigated events. When used to investigate
a computer system, these events of known time must come from exter-
nal sources. This approach differs from the approach taken in this work,
where no time references from external sources is assumed. The concept
of causality is used in this work as well as in Gladyshev’s. Although
the happened-before relation is defined differently, its use to correlate
timestamps bears resemblance.
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2. Hypothesis based timestamp investigation

2.1 Causality
Informally, causality is the relationship between cause and effect. This

relationship can be expressed as a relation between events. In previous
works, causality has been defined by means of the happened-before rela-
tion →. The happened-before relation was first used by Lamport, who
defined the relation by ordering events happening in a process and send-
ing and receiving messages between processes. [6] This definition was
generalized by Fidge to encompass process creation and termination as
well as both synchronous and asynchronous message passing. [7]

For use in digital investigation, Gladyshev proposed an extended def-
inition of happened-before. In Gladyshev’s version it is defined that
e1 → e2 if e2 uses the result of e1 or e1 precedes e2 in the usual course of
business of some organisation or during the normal operation of a ma-
chine. [5] In this definition, the meaning of happened-before is extended
beyond computers. This extension is useful, since digital investigation
requires the reconstruction of events, both within computers and out-
side them. Gladyshev’s definition might however create doubt about
exactly what happened-before means, since it is debatable what exactly
constitutes the normal operation of a machine and the usual course of
a business.

Definition. Let → be the happened-before relation. If e1 → e2, then
the occurrence of e1 is necessary for e2 to occur because e2 depends on
the effects of e1.

Important examples of causality per this definition of the happened-
before relation include:

e1 produces an item that is necessary input for e2

This is equivalent to Gladyshev’s definition “e2 uses the result
of e1”. The definition of happened-before in terms of message
sending and reception used by Lamport and Fidge also fall within
this example.

e1 and e2 are events in a computer program, where e2 uses data
produced by e1.

Since events in computer programs use items produced by other
events in the same program, such as variables, data stored in mem-
ory, registers and stack pointers, many events occurring in com-
puter programs will be related by happened-before. This is a spe-
cial case of “e1 produces an item that is necessary input for e2”.
The definition of happened-before in terms of events occurring in a
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process used by Lamport and Fidge falls within this example, with
the exception of events that do not use the result of each other.
This exception makes the definition suitable for modern computer
systems, in which the execution order of a computer program can
be rearranged by compilers and processors when the instructions
do not depend on the results of each other.

2.2 Time and time values
In this work, time is considered to be a fundamental quantity. As a

fundamental quantity, time is not itself defined in terms of other quanti-
ties, but it is measurable by means of comparison with periodic events,
such as the periodic events occurring in clocks. Such periodic events
may for example be the swinging of a pendulum (a pendulum clock),
the movement of earth (a sundial) or microwave emission from certain
materials (an atomic clock). We consider events to have a moment in
time associated with them, and assume that these moments in time can
be ordered in time by relations < and =.

Definition. Let E be the domain of events. Let e be an event. Events
are considered to be instantaneous. Let T be the domain of time. Let
t(e) be a function E �→ T , representing the moment in time at which
event e occurred.

Further, we assume that causality is preserved in time. With the
preservation of causality in time, we mean that no event can causally
depend on an event occurring at the same time or a later time than itself.
This can be expressed explicitly with the happened-before relation as:

t(ei) ≤ t(ej) ⇒ ej �→ ei (1)

This assumption corresponds to the intuitive understanding of the
relationship between causality and time. If such causal relations were
allowed, then events in the future would be allowed to affect events in
the past, something that has not been shown to occur in the real world.

For two events related by the happened-before relation, Equation (1)
implies that:

ei → ej ⇒ t(ei) < t(ej) (2)

The above imposes an ordering in time on events ordered by the
happened-before relation →. It does not however imply any ordering
in time for events not ordered by →. Also, t(ei) < t(ej) does not imply
that ei → ej . Events may happen at different moments in time without
being related by →. On the other hand, if two moments in time t(e1)
and t(e2) are ordered such that t(e1) < t(e2), events occurring at those
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moments in time cannot be causally connected in reverse, such that the
e2 → e1.

2.3 Clocks
A clock is a device designed to give the owner an approximation of

time that is sufficiently coherent so as to allow the owner to measure and
compare time periods and sufficiently consistent with other clocks so as
to allow the owner to perform actions concurrent with other clock owners
without continuous coordination. Clocks are in other words designed to
give an approximation of time. The definition of a clock should be able to
reflect the possibility of clock drift and adjustment mentioned in Section
1.2.

Definition. Let V be the domain of time values produced by a clock.
c(t) is a clock function T �→ V

The definition of a clock function does not impose any restrictions on
the clock values as a function of time. For example, even if t1 < t2 it
may well be the case that c(t1) > c(t2). And even if t1 < t2 < t3, it
may be the case that c(t1) = c(t2) = c(t3). The latter situation may for
example occur if the events occurring at t1, t2, t3 are so close together
in time that the clock is unable to differentiate between them.

2.4 Timestamped events
A timestamped event is an event for which there exists a timestamp

value in domain V. The timestamp value can be represented as a function
on the event. Timestamps are created when an event makes a copy of
the value provided by a clock. All timestamps in a set of timestamped
events are not necessarily related to the same clock.

Definition. Let E be a set of timestamped events and V a domain
of time values. τc(e) is a function E �→ V such that τc(ei) = c(t(ei)).
τc(ei) represents the timestamp associated with the event ei relative to
clock c.

In this definition, a timestamp is the value of the producing clock at
the time of the event. The timestamp reflects the clock’s representation
of time at that particular moment. The definition of timestamps as
a function of events and clocks provides a possibility to reason over
timestamps and clocks.
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2.5 Ideal and non-ideal clocks and their
properties

It is useful to introduce the concept of ideal clocks and non-ideal
clocks. An ideal clock is a clock which can only go forward.

Definition. Let I be the set of ideal clocks. An ideal clock c(t) ∈ I
is a clock which satisfies

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej)))
∀i∀j(t(ei) = t(ej) ⇒ c(t(ei)) = c(t(ej)))

An ideal clock is a clock function on time which has the property that
the value provided in the function from time is monotonically increas-
ing. While having a monotonically increasing value, the values c(t(ei)),
c(t(ej)) produced from two different moments in time t(ei) and t(ej)
where t(ei) < t(ej) may be equal. Many clocks represent moments in
time as discrete values. In a discrete clock with limited resolution, two
moments close in time will be represented by the same clock value.

Theorem 1. For all ideal clocks c ∈ I, produced timestamps satisfies

ei → ej ⇒ τc(ei) ≤ τc(ej)

Proof for the theorem is given in the Appendix.
The monotonic property of ideal clocks guarantee that two causally

connected events timestamped by the same ideal clock have timestamps
where the timestamp of the latter event is always equal or higher than
the timestamp of the first.

2.6 Clock hypotheses
In order to be able to test if a certain theory about the clock holds,

one must be able to formulate a hypothesis about the clock function.
A hypothesis about the clock function is a possible theory about the
clock function during the computer history. That hypothesis can then
be tested against the set of observed timestamps. In the following, a
clock hypothesis will be denoted ch(t).

Definition. A clock function c(t) can be divided into two compo-
nents, one function b(t) which is an ideal clock and one function d(t)
representing the deviation from the ideal clock.

c(t) = b(t) + d(t)

In this scheme, the clock (c(t)) is divided into components: b(t) is a
base clock which must be an ideal clock. d(t) is the difference between
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the base clock and the investigated clock. By selecting a common base,
two or more clocks can be compared by comparing the deviation only.
It is sometimes useful to express the time of an event in terms of the
base clock. This can be done by subtracting d(t).

b(t) = c(t) − d(t) (3)

2.7 Observed event sets and correctness
During a digital investigation of a computer, the investigator will ob-

serve a number of timestamped events that all come from the same clock.
Some of these events will be causally connected. This set of observed
timestamped events is called the observation set.

Definition. An observation set O, is a set of timestamped events, in
which all timestamps are related to one clock co(t).

In an observation set, there will typically be a large amount of times-
tamped events. The number of causal connections may also be large.
The data in an observation set can be used to determine if a clock hy-
pothesis holds or not.

Definition. A clock hypothesis ch(t) for an observation set O is
correct if the value of co(t) is equal to the value of ch(t) for all t.

co(t) = ch(t)
⇓

∀ei(τco(ei) = ch(t(ei)))

If a clock hypothesis is correct, then all occurrences of timestamps
must match the value predicted by the hypothesis. The correctness
property can therefore be utilized to find techniques for testing if a clock
hypothesis is correct or not.

Theorem 2.In a correct clock hypothesis ch(t), the timestamps of
all causally connected events ei → ej in an observation set O must be
such that the timestamp of the first event minus the deviation from a
common base has value less than or equal to the timestamp of the latter
event minus the deviation from a common base.

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

Proof for the theorem is given in the Appendix.
Conversely, if the property examined in Theorem 2 does not hold,

then the hypothesis is not correct.
Theorem 3. (Test-A theorem). If a pair of causally connected

events ei → ej exist in an observation set O, for which the timestamp of
ei minus the hypothesis deviation from a common base has a higher value
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than the timestamp of ej minus the hypothesis deviation from a common
base, then the clock hypothesis is incorrect. This is called Test-A.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

Proof for the theorem is given in the Appendix.
Example 1. Consider the default clock hypothesis, where it is as-

sumed that the clock of the investigated computer has always been equal
to civil time, say UTC. Then ch(t) = bh(t) and dh(t) = 0. Now, let the
observed set consist of timestamps for four events e1 − e4, where:

τco(e1) = Jan 12, 2003, 12:46:34
τco(e2) = Apr 21, 2004, 10:22:38
τco(e3) = Feb 9, 2003, 22:16:04
τco(e4) = Dec 12, 2002, 02:46:32

And where e1 → e2 and e3 → e4. If we now apply Test-A for i = 3
and j = 4, we see that

(e3 → e4) ∧ (τco(e3) > τco(e4))

And since dh(t) = 0, the test fails. Thus, the default hypothesis is
not correct for this observation set.

The result can be explained informally as follows: Since e4 must have
happened after e3 and the timestamp of e4 is at an earlier time than
the timestamp of e3, it cannot be the case that the clock has not been
adjusted between these two events.

Theorem 4. (Test-B theorem). In a clock hypothesis ch(t), for
values c′of ch(t) for which ch(t) = c′ has no solution, the existence of
any timestamps in the observation set O with value τco(ei) = c′, implies
that ch(t) is incorrect. This is called Test-B.

Proof for the theorem is given in the Appendix.

2.8 Clock hypothesis consistency
The results in Theorem 3 and Theorem 4 are useful, because they can

be used to refute a clock hypothesis for observation set O, from obser-
vations of the timestamps on events in O. In Test-A, a clock hypothesis
is incorrect when observations of timestamps for two causally connected
events are not ordered correctly by the clock hypothesis. In Test-B,
a clock hypothesis is incorrect if observations of timestamps exist that
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cannot be produced by the clock hypothesis, because it is a discontin-
uous function. These theorems provide methods for testing if a clock
hypothesis is incorrect. By iterating over all events and pair of events,
each timestamp can be checked for consistency with Test-A and Test-B.

The result of testing all timestamps in the observation set will be ei-
ther that the clock hypothesis is incorrect or that it is not incorrect. The
tests can refute the clock hypothesis, but they can not prove it correct.
This leads to the following definition of a consistent clock hypothesis.

Definition. Given a set of tests Z, a clock hypothesis is consistent
under Z with an observation set O if no test z ∈ Z shows that the
hypothesis is incorrect for O. A clock hypothesis is inconsistent under
Z with an observation set O if it is not consistent under Z with O.

The distinction that follows from the definitions of correct and consis-
tent is useful in the context of digital investigations. In a correct clock
hypothesis all possible time values are always equal to the investigated
clock. A correct clock hypothesis can only be derived if the investigated
clock has been observed at every moment in its history. Establishing
a correct hypothesis about the investigated clock is inconceivable in a
real investigation. All the investigator can hope to do is to establish a
consistent clock hypothesis. In such a hypothesis there is no evidence
available that refutes the hypothesis. Specifically, none of the times-
tamps of events in the observation set O as applied in tests in the test
set Z show that the hypothesis is incorrect. If there is a large number
of timestamps and causally connected events present in the observation
set O, these requirements impose strict constraints on a consistent hy-
pothesis. This can lead to the justification of the hypothesis. The more
data available in O to be fed into the tests in Z, the more justified the
clock hypothesis can be. As long as the clock hypothesis is consistent,
the data in O is evidence supporting the hypothesis.

2.9 The clock hypothesis as a scientific
hypothesis

In the hypothesis based investigation model proposed by Carrier, a
digital investigation is a process that formulates and tests hypotheses
to answer questions about digital events or the state of digital data.
[2] Carrier proposes that the investigation process is scientific if the
hypothesis is scientific and then tested through conducting experiments.
Carrier cites Popper in that the “criterion of the scientific status of a
theory is its falsifiability, or refutability, or testability”.

The question here is then if the method for clock hypothesis formula-
tion and testing the set of observed timestamps adhere to these criteria.
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From the previous discussion, a clock hypothesis is a theory that is fal-
sifiable and therefore testable. The clock hypothesis theory described
in the previous sections adheres to the requirements of a scientific the-
ory. The hypothesis forbids certain things to happen; the occurrence of
timestamp configurations as described in Test-A and Test-B. The de-
scribed tests examine the evidence for refutation of the theory. They do
not look for confirmation, but examine the available evidence for incon-
sistency with the theory. When the tests have been applied, and found
not to refute the hypothesis, the tests count as serious but unsuccessful
attempts to falsify the theory and therefore as confirming evidence.

3. Concluding remarks
This paper has presented a formalism for the definition of a clock

hypothesis and testing it for consistency with evidence in the form of
observed timestamps. When the number of timestamps is high, and
many of them are causally related, these tests will put a clock hypothe-
sis under close scrutiny. This is the typical situation when investigating
digital media like hard drives. In order to test hypotheses on large num-
ber of stored timestamps, the tests can and should be implemented in
software. The tests can then be used in digital investigations, typically
by testing alternative clock hypotheses, such as alternative hypothe-
ses provided by a plaintiff and a defendant. When a clock hypothesis
is justified by these methods, the evidentiary value of the investigated
timestamps is increased; the real time when a timestamp was created
can now be found by using the clock hypothesis.
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4. Proofs
Theorem 1.
Claim: For all ideal clocks c ∈ I, produced timestamps satisfies

ei → ej ⇒ τc(ei) ≤ τc(ej)

Proof: By definition an ideal clock satisfies:

∀i∀j(t(ei) < t(ej) ⇒ c(t(ei)) ≤ c(t(ej)))

That is, for events ei and ej occurring at times t(ei) and t(ej) we have:

t(ei) < t(ej) ⇔ c(t(ei)) ≤ c(t(ej))

By replacing we now obtain:

ei → ej ⇒ c(t(ei)) ≤ c(t(ej))

And then, τc(ei) = c(t(ei)), which gives:

ei → ej ⇒ τc(ei) ≤ τc(ej)

�

Theorem 2.

Claim: In a correct clock hypothesis ch(t), the timestamps of all
causally connected events ei → ej in an observation set O must be such
that the timestamp of the first event minus the deviation from a common
base has value less than or equal to the timestamp of the latter event
minus the deviation from a common base.

ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

Proof: Let ch(t) be a correct clock hypothesis. Let b(t) be a common
base for ch(t) and co(t). Then

b(t) = ch(t) − dh(t)
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b(t) = co(t) − do(t)

Thus,

ch(t) − dh(t) = co(t) − do(t)

And since ch(t) is correct we have ch(t) = co(t). Therefore

dh(t) = do(t)
b(t) = co(t) − dh(t)

And inserting definition yields

b(t(e)) = τco(e) − dh(t(e))

Now, b(t) shall be an ideal clock. From Theorem 1 we know that ideal
clocks satisfy

ei → ej ⇒ c(t(ei)) ≤ c(t(ej))

And then, inserting b(t) gives

ei → ej ⇒ b(t(ei)) ≤ b(t(ej))
ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

�

Theorem 3.

Claim: If a pair of causally connected events ei → ej exist in an
observation set O, for which the timestamp of ei minus the hypothesis
deviation from a common base has a higher value than the timestamp of
ej minus the hypothesis deviation from a common base, then the clock
hypothesis is incorrect.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

Proof: The proof is by contradiction. Let ch(t) be a clock hypothesis
and O an observation set with clock co(t). Let (ea, eb) be a pair of events
in O such that ea → eb and τco(ea) − dh(t(ea)) > τco(eb) − dh(t(eb)).
Assume that ch(t) is correct, ch(t) = co(t). If ch(t) is correct we have
from Theorem 3 that
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ei → ej ⇒ τco(ei) − dh(t(ei)) ≤ τco(ej) − dh(t(ej))

But for i = a and j = b, we have assumed that,

(ea → eb) ∧ (τco(ea) − dh(t(ea)) > τco(eb) − dh(t(eb))) (4)

This contradicts the result from Theorem 3. Therefore, if (4) holds,
then ch(t) cannot be correct. There have been no assumption or restric-
tion on the events a and b. a and b could therefore have been any event
in the observation set O. The result is that for any event ei and ej , if
(4) holds, ch(t) cannot be correct.

∃ei∃ej((ei → ej)∧(τco(ei)−dh(t(ei)) > τco(ej)−dh(t(ej)))) ⇒ co(t) �= ch(t)

�

Theorem 4.

Claim: In a clock hypothesis ch(t), for values c′of ch(t) for which
ch(t) = c′ has no solution, the existence of any timestamps in the obser-
vation set O with value τco(ei) = c′, implies that ch(t) is incorrect.

Proof: The proof is by contradiction. Let ch(t) be a clock hypothesis
and O an observation set with clock co(t). Let ea be an event in O and
τco(ea) = c′ the timestamp of ea. Let c′ have a value such that ch(t) = c′
has no solution. Assume that ch(t) is correct, ch(t) = co(t). If ch(t) is
correct we have

∀ei(τco(ei) = ch(t(ei)))

Which means that for i = a

τco(ea) = ch(t(ea))

This is a contradiction since τco(ea) = c′ and ch(t) = c′ has no solution.
Therefore if τco(ea) = c′ and ch(t) = c′ has no solution, then ch(t) cannot
be correct.

�
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ABSTRACT
Timestamps play an important role in digital investigations, since 
they are necessary for the correlation of evidence from different 
sources, including network tracing. Use of timestamps as evidence 
can be questionable due to the reference to a clock with unknown 
adjustment. This work addresses this problem by taking a 
hypothesis based approach to timestamp investigation. Historical 
clock values can be formulated as a clock hypothesis. This 
hypothesis can be tested for consistency with timestamp evidence 
by constructing a model of actions affecting timestamps in the 
investigated system. Acceptance of a clock hypothesis with 
timestamp evidence can justify the hypothesis, and thereby 
establish when events occurred in civil time. The results can be 
used to correlate timestamp evidence from different sources, 
including identifying correct originators during network trace.  

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and formal languages]: 
Mathematical Logic – model theory, temporal logic.

General Terms
Theory, Legal Aspects, Verification.  

Keywords
Digital investigation, event logic, clock hypothesis 

1. INTRODUCTION 
Investigations are inquiries into past events. The purpose of an 
investigation is to find evidence of previous events. Investigation 
of digital media with the purpose of finding evidence is 
commonly referred to as digital investigation. In recent works, 
efforts have been made to make the digital investigation based on 
scientific principles, by using a hypothesis-based approach. [1]  In 
this approach, the investigator formulates his hypothesis about the 
occurred events, and tests them using the available evidence.  

A timestamp is a recorded representation of a specific moment in 
time Timestamps play an important role in digital investigations. 

Traditionally, they are used to place the event generating the 
timestamp at a specific moment in time. The identification that a 
certain event on a computer took place at a specific time makes it 
possible to correlate the event with events occurring outside the 
computer system. These may be events occurring in another 
digital system, or in the physical world. A particularly important 
application of timestamps in digital investigation is attribution; 
the ability to attribute events to a specific person. This is 
important, because most investigations aim at placing the 
responsibility for occurred events on one or more individuals. If 
evidence of the investigated events is digital, it may be necessary 
to place the event at a specific point in time in order to be able to 
attribute it to the correct person. If the time of the event inferred 
from the evidence is incorrect, it may not be possible to attribute it 
to anyone, or the event may be attributed to the wrong person. 
The prevalence of dynamic network addresses on the Internet 
makes timing important in all types of investigations of events 
that occurred on the Internet. In many such investigations, 
attribution relies on the identification of which computer were 
using an IP-address at a particular time. If the IP-address is 
dynamically assigned, the originating computer can only be 
identified if a log of the usage of the address exists, and the time 
of the event can be established with sufficient certainty and 
accuracy.  Only in this case can the originating computer be 
identified from the usage log by selecting the correct IP-address 
and time entry.  

A timestamp always refer to the clock from which it is generated. 
Since the timestamp is a function of the clock, it is always relative 
to the adjustment of the clock. Unfortunately, clocks are not fully 
reliable. Clocks may drift, thereby generating timestamps 
gradually more different from those generated from other clocks. 
Clocks may also fail, and produce completely incorrect 
timestamps. [2, 3] Further, clocks on most systems may be 
adjusted at any time by the user of the system to show a different 
date and time than civil time. The uncertainty associated with 
digitally stored timestamps implies that timestamps should not be 
relied upon as evidence without justification of these factors. In 
particular, it should not be blindly assumed that timestamps are 
based on a clock that is adjusted to civil time. These uncertainties 
are worrying for investigators. If timestamps cannot be relied 
upon, then it is in many cases not possible to trace the use of an 
IP-address, since identification of the time of the event is 
necessary to find the correct originator. 

This work takes the approach that time stamps can be tested in the 
hypothesis based investigation model.  The investigator can 
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formulate a hypothesis about historical values of the clock. By 
defining a model of the investigated system and observing the 
timestamp values on the investigated computer, the clock 
hypothesis can be tested for consistency with the available 
evidence. Such testing can provide justification for a particular 
clock hypothesis. When a clock hypothesis is justified, the time of 
the events on the computer can be interpreted accordingly, and 
can then be used for correlation with other sources. Previously, a 
formalism for clock hypotheses and consistency testing with 
causality between timestamped events has been defined. [4] In 
this work, a system with actions and timestamps will be defined. 
This can be used to develop additional consistency tests for clock 
hypotheses. 

2. CLOCKS 
A clock is a device designed to give the user an approximation of 
time that is sufficiently coherent to allow him to measure and 
compare time periods and sufficiently consistent with other clocks 
to allow him to perform actions concurrent with other clock users 
without continuous coordination. Clocks are in other words 
designed to give an approximation of time.  

Definition 1.  Let T be the domain of time. Let V be the domain of 
time values produced by a clock. c( t )  is a clock function 
�T V .  

The definition of a clock function does not impose any restrictions 
on the clock values as a function of time. For example, if 1 2<t t  it 
may well be the case that 1 2>c( t ) c( t ) .  And even if 1 2 3< <t t t , 
it may be the case that 1 2 3= =c( t ) c( t ) c( t ) . The latter situation 
may for example occur if the events occurring at t1, t2, t3 are so 
close together in time that the clock is unable to differentiate 
between them. 

A clock hypothesis is a hypothesis about historical values of a 
clock. In an investigation, the investigator can formulate clock 
hypotheses and test them for consistency with the available 
evidence. [4] 

Definition 2. A clock hypothesis ch(t) is a clock function �T V
that is hypothesized to represent the real clock on c(t) on a system. 

In an investigation, the investigator formulates a clock hypothesis, 
which is then the working theory about the historical values of the 
clock on the investigated computer. The investigator may for 
example hypothesize that the clock has always been adjusted to 
UTC+10.  

The clock hypothesis may also include previous adjustments to 
the clock. It is for example possible for the investigator to 
formulate a hypothesis in which the owner of the computer 
adjusted the clock one year back, then created some (antedated) 
documents, and then adjusted the clock forward again. In such a 
hypothesis, the clock function ch(t) will be a discontinuous 
function.  

3. ACTIONS AFFECT TIMESTAMPS 
In order to test if a clock hypothesis is consistent with the 
timestamps in a system; we can build a model of the investigated 
system, by representing the operations in the system that can 
possibly change the timestamps as actions. A model of a system 
with timestamps can then be described as a table listing the 

timestamps and the actions that affect them. We call this an affects 
table. 

Definition 3. An action affects a timestamp if and only if an 
occurrence of that action sets a new value for the timestamp and 
removes the previous value for the timestamp. An affects table is 
a table listing all possible combinations of timestamps in a system, 
and all actions in the system and timestamps they affect. An 
affects table for a system with n timestamps has 2n entries. 

Example 1.  Create an affects table for the following simple file 
system: A file system contains files, and each file has a Created 
timestamp, an Accessed timestamp and a Modified timestamp. 
Files can be Created, Read or Written. Reading a file causes the 
Accessed timestamp to be updated. Writing a file causes both the 
Accessed timestamp and the Modified timestamp to be updated, 
and Creating a file causes all three timestamps to be updated. 
There is only one timestamp of each type for each file, so 
whenever a timestamp is changed, the previous value is lost. 

The affects table for this file system is given in the following: 

Table 1. Affects table for the file system in Example 1 

 Created Modified Accessed Actions 

0     

1 X    

2  X   

3 X X   

4   X Read 

5 X  X  

6  X X Write 

7 X X X Create 

The affects table states clearly how timestamps are affected by 
actions. The affects table also shows which timestamp affect 
combination does not occur with any action. This information can 
be utilized to derive invariants on timestamp, by reasoning on 
sequences of timestamp updating and corresponding sequences of 
actions. 

4. TIMESTAMPING ORDERS 
In an investigation, the investigator observes values of timestamps 
on each investigated file. Each file has n different timestamps 
1 2θ θ θn, ,..., . The observed values of these timestamps were set at 

moments in time 1 2θ θ θnt ,t ,...,t , where the values observed by the 
investigator are 1 2θ θ θnc( t ),c( t ),...,c( t ) , set by the clock of the 
investigated system. Since the clock function c( t )  of the 
investigated system is unknown, the investigator cannot map these 
values directly to the moments in time 1 2θ θ θnt ,t ,...,t when 
timestamping occurred. But the investigator can list possible 
sequences of timestamping, and determine if the observed result is 
consistent with a specific clock hypothesis, given the affects table 
for the system. 

Definition 4.  In a system with n timestamps, the stamping time 
set Θ  is the set of moments in time 1 2θ θ θnt ,t ,...,t  when each 



observed timestamp value 1 2θ θ θnc( t ),c( t ),...,c( t )  for the observed 
timestamps 1 2θ θ θn, ,...,  was set. 

Example 2. For the file system described in Example 1, the 
stamping time set is { }c m a= , ,Θ t t t , where tc is the time of 
production of the observed Created timestamp, tm is the time of 
production of the observed Modified timestamp and ta is the time 
of production of the observed Accessed timestamp. 

To determine which (if any) sequence of actions in the system 
could have resulted in the observed timestamps, it is interesting to 
determine the different sequences in which timestamping could 
have occurred. Each pair of values in Θ , (ti, tj), may be related by 
either <i jt t ,   =i jt t  or >i jt t .  

Definition 5. A timestamping order is a sequence of all elements 
in the stamping time set Θ , where each element is related to the 
next element in the sequence with the equals-relation = or the 
less-than relation <. The equals relation imply that the stamping 
times are equal; the two timestamps were set at the same time. The 
less-than relation imply that the first stamping time is earlier than 
the second stamping time; the production of the first timestamp 
occurred at an earlier time than the production of the second 
timestamp. Each different stamping time in a timestamping order 
constitutes a step in the timestamping order. When two or more 
stamping times are equal, they constitute a step in the 
timestamping order together. 

An example timestamping order for the simple file system is (tc = 
tm < ta).  With this timestamping order, the Created and Modified 
timestamps were set at the same time, and the Accessed timestamp 
was set at a later time than the Created and Modified timestamps.  

A list of all timestamping orders can be constructed where each 
stamping of a specific timestamp may have occurred before, after 
or at the same time as the stamping of the other timestamps. The 
list of possible sequences for n = 3 can be found in Table 2. 

Table 2. All timestamping orders, n = 3

Number Sequence  

1 (t1 < t2 < t3)  

2 (t1 < t3 < t2)  

3 (t2 < t1 < t3)  

4 (t2 < t3 < t1 )  

5 (t3 < t1 < t2)  

6 (t3 < t2 < t1)  

7 (t1 = t2 < t3)  

8 (t3 < t1 = t2)  

9 (t2 = t3 < t1)  

10 (t1 < t2 = t3)  

11 (t1 = t3 < t2)  

12 (t2 < t1 = t3)  

13 (t1 = t2 = t3)  

5. POSSIBLE ACTION SEQUENCES 
When all timestamp updating is represented by actions, the cause 
of timestamping having occurred in a specific sequence must have 
been actions that have occurred in a specific sequence. An action 
sequence is a sequence of actions of arbitrary length.  

Definition 6.  An action sequence is a sequence of one or more 
actions, where each element is related to the next element in the 
sequence with the equals-relation = or the less-than relation <. 
The equals relation imply that the actions occurred at the same 
time. The less-than relation imply that the first action occurred 
earlier than the second action. 

The relationship between an action sequence and a timestamping 
order is that every observed timestamping order must have been 
created by an action sequence. When considering all 
timestamping orders, there may be many action sequences that 
may cause a particular timestamping order. There may however 
also be timestamping orders, which cannot be created by any 
action sequence. These timestamping orders cannot occur in the 
system. The relationship between action sequences and 
timestamping orders can be deducted from the affects table. 

Definition 7.  A timestamping order is possible in a system if 
there is at least one action sequence in the system that may cause 
the timestamping order. If there is no action sequence that can 
cause the timestamping order, then the timestamping order is 
impossible in the system. 

By using the affects table, it is possible to find all action 
sequences that may have caused a specific timestamping order, by 
the following procedure: 

1. Find all actions or combination of actions affecting all 
timestamps in the first step in the timestamping order. 

2. For each following step in the timestamping order, find 
all actions or combination of actions affecting all 
timestamps in that step, and not affecting any 
timestamps listed in previous steps. If there is no such 
action, then this timestamping order is not possible in 
the system. 

The task of finding all actions or combination of actions can be 
implemented as follows:  

1. For every timestamp θi  find all actions affecting it, and 
add them to a set Ai. 

2. For every action ∈ ia A , check if a affects any 
timestamp θ j  listed in previous steps in the 
timestamping order. If so, remove it from Ai. 

3. Actions 1 2∈ ∩ ∩ ∩ na ( A A ... A )  affect all timestamps in 
that step. Remove them from Ai. 

4. If all sets Ai are still non-empty, the remaining actions 
represent combinations of actions affecting all 
timestamps for that step. The combinations can be found 
with the Cartesian product 1 2× × × nA A ... A

Example 3. Find all action sequences for the timestamping order 
(tc < tm < ta) for a file in the file system in Example 1. 

From the affects table for the simple file system in Table 1, the 
steps in the sequence yields:  

Step 1 (tc): Create (tc is only affected by Create)



Step 2 (tm): Write  (tm is affected by Create and Write, 

  only Write does not affect tc) 

Step 3 (ta):  Read (ta is affected by Read/Write/Create,  

  only Read does not affect tc, tm) 

Thus, the only possible action sequence for timestamping order (tc

< tm < ta) is (Create < Write < Read). 

Example 4. Find all action sequences for the timestamping order 
(tm = ta < tc) for a file in the file system in Example 1. 

From the affects table for the simple file system in Table 1, the 
steps in the sequence yields:  

Step 1 (tm=ta): Create, Write  (tm and ta are both 

  affected by Create and  

 Write) 

Step 2 (tc):  none  (tc is only affected by  

   Create, but Create also  

   affects tm and ta) 

Thus, the timestamping order (tm = ta < tc) is not possible in the 
system. 

By using this procedure for all timestamping orders for a given 
number of timestamps, one can now complete the reasoning in a 
system with known actions. The result of this exercise will be a 
list of timestamping orders impossible in the system and a table of 
possible action sequences of each timestamping order possible in 
the system.  

Example 5. Find all action sequences for the simple file system. 

This file system has three timestamps for each file (n = 3). All 
timestamping orders for such a system are given in Table 2. 
Assigning t1 = tc, t2 = tm and t3 = ta produces all timestamping 
orders for this system, shown in column “Timestamping order” in 
Table 3. Following the action sequence procedure for each 
timestamping order listed in the table by using the affects table for 
the simple file system given in Table 1, gives the possible action 
sequences for that timestamping order, shown in the column 
“Action Sequence”:

Table 3. Action sequences for the simple file system 

Number Timestamping 
order 

Action Sequence 

1 (tc < tm < ta) (Create, Write, Read) 

2 (tc < ta < tm) None 

3 (tm < tc < ta) None 

4 (tm < ta < tc ) None 

5 (ta < tc < tm) None 

6 (ta < tm < tc) None 

7 (tc = tm < ta) (Create, Read) 

8 (ta < tc = tm) None 

9 (tm = ta < tc) None 

10 (tc < tm = ta) (Create, Write) 

11 (tc = ta < tm) None 

12 (tm < tc = ta) None 

13 (tc = tm = ta) (Create) 

The only timestamping orders in Table 3 possible in the system 
are sequences where c m a≤ ≤t t t .  Thus, c m a≤ ≤t t t  is a property 
that always holds for this system, an invariant. 

Invariants for a system that has been found using the reasoning 
above can be used to test a clock hypothesis.  In the example file 
system, it is now known that c m a≤ ≤t t t .  If for example c(tc) > 
c(ta), a hypothesis that the clock has always been adjusted to 
UTC+10 would be rejected, since UTC is never adjusted 
backwards.  

6. MODELLING A REAL FILE SYSTEM 
The procedure described in the previous sections can be used to 
create a model of a real file system, determine which 
timestamping orders are possible in the system and derive 
invariants of the file system for use with a clock hypothesis 
checker. To illustrate this procedure, this section performs it on 
the semantics in Windows XP for file timestamps stored in the 
NTFS $STANDARD_INFORMATION attribute. The basis for 
the model described here is the semantics determined by Carrier. 
[5] The model assumes that the files in question exist, are larger 
than the file cache size, and that updating of the last accessed 
timestamp is enabled. 

In a system with three timestamps, the affects table contains 23 = 8 
entries. The actions are: 

Read: reading a file 

Create: creating a new file 

Write: modifying an existing file 

CopySrc: copying a file (source file) 

CopyDest: copying a file (destination file) 

MoveIntra: moving a file internal to a file system 

MoveInterSrc: moving a file across file systems (source file) 

MoveInterDest: moving a file across file systems (destination file) 

The following affects table can then be constructed: 

Table 4. Affects table for Windows XP / NTFS 

 Created Modified Accessed Actions 

0     

1 X    

2  X   

3 X X   

4   X Read, 



CopySrc, 
MoveIntra, 
MoveInterSrc, 
MoveInterDest 
(ReadGroup) 

5 X  X CopyDest 

6  X X Write 

7 X X X Create 

The actions in row 4 of the affects table all have the same effect 
on timestamps. In the following, they will be grouped together as 
ReadGroup, meaning that where this action occurs, any of the 
actions Read, CopySrc, MoveIntra, MoveInterSrc or MoveInter-
Dest may have occurred. 

With n = 3, the timestamping order table in Table 2 can be used. 
Applying the action sequence procedure for each timestamping 
order yields the table of action sequences listed in Table 5. 

Table 5. Timestamping orders in Windows XP/NTFS. 

No Timestamping 
order 

Action Sequence 

1 (tc < tm < ta) (Create / CopyDest < Write < 
ReadGroup) 

2 (tc < ta < tm) None 

3 (tm < tc < ta) (Create / Write < CopyDest < 
ReadGroup) 

4 (tm < ta < tc ) None 

5 (ta < tc < tm) None 

6 (ta < tm < tc) None 

7 (tc = tm < ta) (Create / CopyDest=Write < 
ReadGroup) 

8 (ta < tc=tm) None 

9 (tm=ta < tc) None 

10 (tc < tm=ta) (Create / CopyDest, Write) 

11 (tc=ta < tm) None 

12 (tm < tc=ta) (Create / Write, CopyDest) 

13 (tc=tm=ta) (Create / CopyDest=Write) 

From the table, it is evident that there are no possible action 
sequences where ta does not occur in the last step. Consequently, 
in this system, m at t≤  and c at t≤ . These invariants can be 
used to check clock hypotheses for Windows XP systems with 
NTFS.  

7. RESULTS 
This work studied how a system model can be created used to test 
a clock hypothesis for consistency with timestamp evidence. A 

system model can be created by listing the actions in the system 
and their effect on timestamps in an affects table. By listing all 
possible timestamping orders, it can be determined which 
timestamping orders are possible in the system and which action 
sequences that may cause them. A procedure for deriving possible 
action sequences from the list of possible timestamping orders is 
given. From the list of possible and impossible timestamping 
orders, invariants for a system can be derived. These invariants 
can be used to test a clock hypothesis for consistency with 
evidence in the form of timestamps stored on an investigated 
system.  

On the systems examined in real digital investigations, there will 
exist tens- or even hundreds of thousands of timestamps. By 
modelling the system using the techniques described in this paper, 
it is then possible to test a clock hypothesis against a large number 
of timestamps. This will put a clock hypothesis under close 
scrutiny, and will lead to its justification if there is no evidence to 
refute it. Justification of a clock hypothesis is important in digital 
investigations, because it will provide a possibility to translate the 
timestamps observed on a system to an independent clock. Thus, 
the real time of stamping can be established, which can be used to 
correlate the time of the events on a digital system with events 
occurring elsewhere.  

8. CONCLUDING REMARKS 
The testing of clock hypotheses provided in this work requires a 
model of the investigated system to be constructed. In order to 
provide a complete model of a real system one must clearly 
understand the system completely, something that can probably 
only be accomplished by studying the implementation details of 
the system. It might however be reasonable to construct a partial 
model only by studying the effects of operations on the real 
system, if it can be justified that the only actions taken on the 
system were those that were included in the model. In a real 
operating system, this could for example be accomplished by 
testing the different operations in the system and how they affect 
timestamps. If one could not be sure that all possible operations in 
the operating system had been included, one would not know for 
certain if the rejection of a clock hypothesis was caused by a 
wrong clock hypothesis or by missing actions in the model. This 
does not have to be a serious problem in digital investigations, 
where timestamp operations must be manifested in software, 
which can be found during the investigation. 

The method provided in this work can be applied during 
investigations of digital media, such as seized computers. Since 
most systems use common operating systems, the construction of 
a model does not have to be repeated in every investigation. It is 
enough that the model has been built for a specific system type 
once, it can thereafter be used in all digital investigations 
concerning that system type. The method presented here are 
therefore well suited for implementation in integrated software 
packages for digital investigation. 
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Abstract— Finding evidence of antedating is an important goal 
in many digital investigations. This paper explores how causality 
can expose antedating by investigating storage systems for 
causality and correlate causality with stored timestamps. 
Causality is determined in two different system types; storage 
systems using sequence numbers and storage systems using the 
first-fit allocation strategy. Causality found in these systems was 
used to implement a timestamp consistency checker for the NTFS 
file system. The implementation was then tested in an experiment, 
in which four subjects were asked to antedate a document on a 
given computer in such a way that the antedating could not be 
determined by an investigator. The results from this experiment 
show that the implemented consistency checker can be used to 
expose antedating. Investigators can use this method to find 
evidence of antedating to be presented to fact-finders in real 
cases. 

Index Terms— digital investigation, antedating, timestamps, 
causality 

I. INTRODUCTION

ntedating is the creation of files, documents and other 
material with date- or timestamps set to another date than 

the date the material was created. Exposing antedating is a 
common goal in digital investigation, either because the 
matters under investigation involves documents produced with 
digital computers, or because the timing of the production of 
information stored on a computer is otherwise important. The 
typical digital investigation involving antedating is 
investigations of financial crimes or other matters where the 
date of production of a document has legal implications. In 
these matters, the goal of the digital investigation is often to 
find out if the document was really produced at the date 
printed on the document, or if it could have been produced at a 
later date.  

When typing a document in a word processor, it is easy to 
change the written date. This would not change the timestamps 
stored on the file system when the document is stored. It is 
however possible to antedate these timestamps too, by altering 
the computer system clock to represent a different date than 
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the current. If the system clock is altered before the document 
is produced, the timestamps associated with the produced 
document will be set to the date the system clock was adjusted 
to. With this procedure, it will not be possible to determine 
that the document was antedated with previous digital 
investigation methods.  

In this work, causality in digital systems will be used to 
determine if particular timestamps have been antedated or not. 
Causality defines which events are necessary for others to 
occur. In a digital investigation, the medium to be investigated 
is a storage system storing digital data. In such a system, the 
events of storage of specific items can be causally related to 
the events of storage of other items. Since the stored data may 
contain timestamps, the causal relation can be used to test the 
consistency of the timestamps, and thereby expose antedating.  

II. RELATED WORK

Being recognized as a research challenge, the problem of 
timestamp interpretation in digital investigation has been 
studied by a few researchers during recent years. Schatz et al 
suggests mitigating the problem by correlating the timestamps 
in web cache stored on the computer with records obtained 
from the web servers. [1]  Weil and Boyd et al suggest similar 
correlation methods, by using timestamps stored on the 
investigated computer coming from other clocks, such as 
timestamps in dynamically generated web pages. [2, 3]  Such 
methods would provide correlation for the period for which 
cached data exist on the investigated computer only.  
Correlation with server records is only possible when such 
records actually exist, and the investigator has legal access to 
them. 

Stevens studied clocks and described a clock model where 
each clock is described as the clock it was originally derived 
from plus the sum of all adjustments, errors and drift. [4] The 
clock model described by Stevens was refined by Buchholz, in 
the formalization of a clock model as the sum of clock drift 
and adjustments. [5] These models are versatile and provide 
good tools for event reconstruction in cases where clock 
adjustments, error and drift are known or measurable. They do 
not however by themselves assist in the identification of clock 
adjustment, error or drift. 

Finding Evidence of Antedating in Digital 
Investigations 

Svein Yngvar Willassen 

A



ARES 2008, Paper ID 349 2

 In previous works, we have defined a formalism for clock 
hypotheses and consistency testing with causality between 
timestamped events. [6]  This formalism has been utilized to 
develop models for the updating of timestamp values in digital 
systems. [7] In this work, we use the happened-before relation 
defined in [6] to analyze specific properties of file systems. 
These properties are then used to find evidence of antedating. 

III. SEQUENCE NUMBER CAUSALITY

Sequence numbers is a feature occurring in many digital 
systems, such as file systems and networks. By using a 
sequence number, the systems designer ensures that sequence 
numbered entities can be ordered in the correct order and be 
distinguished from each other. Sequence numbers are usually 
implemented by a counter increasing whenever a new 
sequence numbered entity is produced and associating a copy 
of the value of the counter (the sequence number) with that 
entity. It is useful to distinguish between wrapping sequence 
numbers and strictly increasing sequence numbers. Wrapping 
sequence numbers have a limited span of values. When the 
highest value is reached, the counter wraps and starts at the 
lowest value. A strictly increasing sequence number on the 
other hand is a sequence number that does not wrap. In theory 
a strictly increasing sequence number would have to be able to 
represent infinite numbers. In practice however, a sequence 
number can be viewed as strictly increasing as long as the 
number of values that can be represented is large enough to 
produce strictly increasing numbers over a significant time 
span, for example the lifetime of a computer. 

When investigating a system with sequence numbered 
entities, the distinction between wrapping sequence numbers 
and strictly increasing sequence numbers is important. With a 
wrapping sequence number, one would not be able to know 
how many times the counter had wrapped when the sequence 
number was generated. When correlating two entities with 
sequence numbers, one would therefore not be able to 
determine if one of the entities was produced before the other. 
In a system with strictly increasing sequence numbers on the 
other hand, one can be sure that the entity with the highest 
sequence number has been produced after the entity with the 
lowest sequence number. In such a system, each production of 
a sequence numbered entity is causally dependant on the 
production of every other sequence numbered entity with 
lower sequence number.  

Many file systems contain File System Journals with 
sequence numbered entities. For example, in NTFS, journal 
file transactions are labelled with a 64-bit number (so called 
Logical Sequence Number - LSN) that increases throughout 
the lifetime of the file system. The proper functioning of the 
journaling feature in NTFS depends on this number being 
strictly increasing. [8] 

In these systems, it is possible to find causal connections by 
analyzing journal files. The amount of information that can be 
derived from the journal file itself is however limited. Since 
every write to a file produces a journal file entry and the 
journal file has limited size, old entries will quickly be 
overwritten. Some file systems, such as NTFS, store the 
journal file sequence number (the LSN in NTFS) in the file 
metadata entry. If the journal file sequence number is strictly 
increasing, the generating events are causally connected. 
Causal connections then exist between the events of the last 
change of the file entry on all files stored on the file system.  

Example 1.  Consider the following set of allocated file 
entries from an NTFS Master File Table. Let ei be the last 
update of the current data in entry i. 

Entry 45 log file sequence number 432627 
Entry 46 log file sequence number 186345 
Entry 47 log file sequence number 735294 
Entry 48 log file sequence number 165093 
Entry 49 log file sequence number 878121 
Entry 50 log file sequence number 782427 
Entry 51 log file sequence number 561987 

Since logical sequence numbers in the journal file (log file) 
are allocated sequentially, we can obtain the causal ordering of 
the last update events by sorting the file entries by their log file 
sequence number: e48 → e46 →  e45 → e51 → e50 → e47 → e49. 

IV. ALLOCATION SEQUENCE CAUSALITY

A first-fit allocation storage is a system in which each new 
data item is stored in the first available storage location. 
Deleting data items is allowed and can be done at any time 
after the data item has been stored in a storage location. After 
a data item has been deleted, it may be overwritten by new 
data at any time. It may be possible to recover deleted data, 
but it is not possible to recover data that has been overwritten. 

A special form of first-fit storage is first-fit storage with 
generation-markers. In this storage, it is possible to identify 
which generation the data in each storage location belongs to. 
The generation of a storage location is an identification of how 
many times that data in that storage location has been 
overwritten. Fig. 1 shows a possible allocation sequence with 
generation markers. 
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Fig. 1 Allocation sequence with generation markers 

In a system with generation markers, there is a causal 
connection between every pair of consecutive generations at 
each storage location. The storage of data in the i-th storage 
location generation g can only commence if the data present in 
the i-th storage location generation (g-1) has already been 
stored and deleted. Therefore, for every storage location i, the 
storage of data in generation (g-1) happened-before the storage 
of data in generation g. Generally; due to the transitivity 
property of the happened-before relation, the event of storing 
data in a storage location is causally dependant on the storing 
of all previous generations in that storage location. 

Let ,i gs  be the i-th storage location generation g. Let 

,i gse be the event of storing data in the i-th storage location at 

the g-th generation.  Then for all i and g; , 1 ,− →i g i gs se e . Due 

to the transitivity of → , for all generations g,  

, ,( )∀ < →i h i gs sh g e e            (1) 

We now consider the storage of data in storage locations 
with generation g = 0. When g = 0, there cannot exist any 
storage location which has been deleted and then overwritten 
with another data item, because this would have increased the 
generation number above 0. The only place where new storage 
locations can be allocated with generation number 0 is at the 
end of the storage.  

Let , 0is  be the i-th storage location in a first-fit storage, 
generation 0. Let , 0ise be the event of storing data at generation 

0 in the i-th storage location.  Then, for all i,  

, 0 , 0( )∀ < →j is sj i e e              (2) 

Two different types of causal event sets have now been 
defined from the first available storage with generation 
markers; the causality between storage of storage locations 
with g = 0, and causality between storage of increasing 
generations at each storage location. These sets intersect. Each 
causality set for increasing generations start at g = 0. Each 
such element is also part of the g = 0 causal set. With these 
two types of causal connections in the first available storage 
with generation markers, a causal connection relating all 
storage locations in the set has been found.  

Example 2.  Consider the storage location set in Fig. 2. In 
the figure, the storage locations are shown horizontally, and 
generations vertically. Deleted data are shown in lighter 
colour. For each storage location, the topmost item is always 
the current data stored in the location. There are now causal 
connections, where each generation within a storage location 
happened-before the next generation, and each storage location 
at generation 0 happened-before the next location at generation 
0. The resulting Direct Acyclic Graph of the creation events of 
the existing storage locations is shown in Fig. 3. 

Fig. 2  Storage locations with generations 

Fig. 3  Causality of existing (non-overwritten) storage locations 

Example 2 shows how the happened-before relation imposes 
a strict partial order on the set of storing events. The partial 
order follows from the properties of the happened-before 
relation; it is irreflexive, transitive and asymmetric. [6] The 
relation does not however relate all elements of the set of 
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storing events. Elements with g > 0 are not related to other 
elements with g >  0, as shown in Fig. 3. A total order is 
therefore not imposed on the set of storing events. 

The Master File Table of the NTFS file system is a first-fit 
storage with generation markers. Each file stored in NTFS has 
its own entry in the Master File Table. Data stored in the MFT 
entry include the file name, the list of data runs where the file 
data is stored, timestamps and other data such as information 
on whether the data is compressed or encrypted using the 
compression and encryption features in the file system. 
Allocation of file entries within the MFT occurs on a first-fit 
basis. [9] Each file entry contains a generation marker, termed 
entry sequence number, which identifies the generation of that 
entry. This number is increased whenever the file entry is 
reused. Thus, causal connections exist between file entries in 
the Master File Table of the NTFS file system, following the 
reasoning above. 

V. IMPLEMENTATION

An implementation of the above reasoning above was made 
in a program named TimeStampLogic. The program uses the 
utilities in a modified version of the Sleuthkit [10] to find file 
instances in an NTFS file system image. It then parses the 
output of these utilities and produces internal representations 
of file instances, which can then be analyzed. The analysis 
consists of two modules; SequenceChecker and 
LogSequenceChecker.  SequenceChecker tests the generation 
causality of the file entries, by the reasoning in Section IV. All 
entries are compared with the last preceding entry with the 
base generation sequence number. Since the allocation of 
Master File Table entries are done in a first-fit fashion, all 
entries have been stored at a later time than the last preceding 
entry with the base generation sequence number. 
LogSequenceChecker tests the causality of the updating of file 
entries based on the log file sequence numbers stored in the 
Master File Table file entries, by the reasoning in Section III. 
The instances are sorted by the associated Log File Sequence 
Number (LSN) and then printed in sorted order.  

By inspecting the timestamps associated with each file entry 
in comparison with the two different sequences produced by 
SequenceChecker and LogSequenceChecker, it can now be 
determined if the computer clock has been changed. 

VI. DOCUMENT ANTEDATING EXPERIMENT

In order to test the theory and implementation, a document 
antedating experiment was performed, in which four subjects 
were asked to antedate a document. A laptop computer was 
prepared for the experiment. The hard drive of the computer 
was wiped. The computer was then started and the system 
clock was adjusted to approximately two and a half years 
before the time of the experiment with the BIOS setup 

program. Then, the Windows XP operating system was 
installed. After installation, a series of shutdowns, clock 
forward adjustments and reboots were performed, until the 
clock was adjusted to civil time in October 2006, when the 
experiment was performed. The goal of this procedure was to 
produce data on the hard drive similar to data that would have 
been produced by real usage of the computer. For each step, 
the computer was shut down, then started in BIOS setup, 
where the clock was adjusted forward. The computer was then 
booted into Windows XP and used for web surfing, 
downloading files or other normal user activity. After this 
procedure, the hard drive was copied to an image file on 
another hard drive using the disk dump utility dd, producing a 
reference image of the experiment computer.  

The experiment computer was then handed to the 
participating subjects with the following task: “Store a 
document on this computer in such a way that a person 
investigating the computer will conclude that the document 
was produced on May 17th, 2006.”  When each subject 
returned the computer, the hard drive was copied to an image 
file on another hard drive for analysis. Then, the experiment 
image was copied back to the computer before it was handed 
to the next subject. The subjects participating in the 
experiment were: 

Subject no Computer experience level 
     1 Average computer user, using computer every day  

2 Law Enforcement Computer Forensic Investigator 
3 Inexperienced office user, mostly used to websurfing 
4 Advanced computer user with programming experience 

Each image was then analyzed using the TimeStampLogic 
program. Each subject was also interviewed to determine how 
they had chosen to perform the task.  

VII. RESULTS

In the following, each of the images resulting from imaging 
the experiment computer after each subject had completed the 
task is analyzed.  The purpose of the analysis is to determine if 
the document in question has been antedated or not. In a 
hypothesis based approach to digital investigation (defined by 
Carrier [11]), this can be formulated as two different 
hypotheses: 

H0: The document was produced on 17th of May. 
H1: The document was produced later than 17th of May, but 

has been antedated to 17th of May. 

The task for the investigator is then to find evidence 
supporting or rejecting H0 and H1 using TimeStampLogic and 
other investigative tools. 
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A. Subject 1 

The subject gave the following information about how the 
task was completed: I adjusted the clock on my Mac to May 
17th. I then produced the document in Microsoft Word on the 
Mac. When saved on the Mac, I copied the document to my 
USB stick and inserted it into the PC. I then copied the 
document from the USB stick to the PC. I believe producing 
the document on the Mac may have prevented the creation of 
timestamps inside the Word document.

When analyzed with TimeStampLogic, the results of this 
operation did not produce a result significantly different from 
analysis of the reference image. The introduction of new files 
when the computer was booted and a new document was 
copied to it, did not produce any new inconsistencies reported 
by TimeStampLogic. The document has Modified timestamp 
on the 17th of May, and Created and Accessed timestamps on 
the date of the experiment. This is consistent with timestamps 
produced when files are copied to a medium. Other evidence 
suggesting that the file had been copied to the medium on the 
date of the experiment was also found, for example a link-file 
to an external drive, showing that an external drive had been 
connected to the computer. If the file had been copied from 
another computer, the Modified timestamp would then be 
related to the clock of that computer and not the investigated 
computer. Since no evidence is available to test clock 
hypotheses for the other computer, there is no evidence to 
either support or reject a hypothesis that the production of the 
document actually occurred on 17th of May civil time. The 
analysis is therefore inconclusive in this case. The reasonable 
investigative response in cases like this is to try to get hold of 
the computer on which the document was produced and do the 
same type of analysis on that computer. 

In response to the subject’s claim that timestamps had not 
been created inside the Word document, it was examined for 
timestamps in the metadata. Such timestamps were found, 
identifying that the document had been created and last 
changed on May 17th. These timestamps would also refer to 
the clock on the other computer, which will have to be 
analyzed for evidence. 

B. Subject 2 

The subject gave the following information about how the 
task was completed: I started the PC and connected it to the 
Internet. I then downloaded and installed OpenOffice on the 
PC. I then restarted the computer, went into BIOS and 
adjusted the date back to May 17th. After booting the computer 
again, I used OpenOffice to create and store the document. I 
then booted again and adjusted the clock back to current time. 
I used OpenOffice because I think it doesn’t have the same 
amount of metadata as Microsoft Word. I also think 
downloading and installing OpenOffice would prevent a 
proper investigation, since it probably overwrote a lot of 
deleted data. 

When analyzed with TimeStampLogic, a significant higher 
number of inconsistencies were reported with both 
SequenceChecker and LogSequenceChecker. Listing all files 
on the medium ordered by both the MFT Entry number 
(SequenceChecker) and Log Sequence Number 
(LogSequenceChecker), showed several hundred files with 
Created, Modified and Accessed timestamps on Oct 11th in the 
time period 07:28-07:40 AM.  After these (in terms of entry 
number and log sequence number), approximately 50 files with 
Created, Modified and Accessed timestamps on May 17th time 
period 07:42-07:48 were listed.  All timestamps of the 
document in question were set to May 17th in the period 07:42-
07:48.  

The timestamps on the document itself were in this case set 
to May 17th, in contrast to Subject 1. There is however 
evidence in this case supporting H1:  

- Storing of a significant number of files causally 
dependant on storing of files occurring on Oct11th, 
were timestamped May 17th, something that is not 
possible unless the clock has been adjusted, or the 
timestamps changed. 

- When the date changes from Oct 11th to May 17th, the 
time of day only moves approximately 2 minutes 
forward. This indicates that the subject changed the 
date but did not bother to change the time of day. If the 
clock adjustment had occurred by an error or some 
other mysterious event, it is not very likely that it would 
have ended up at this exact time of day.  

The subject’s claim that he made the investigation more 
difficult by installing OpenOffice, does not seem to be correct 
in the context of using TimeStampLogic to check timestamp 
consistency. It may be the case that installing a new program 
would overwrite previously overwritten material, but this does 
not help, since TimeStampLogic does not rely on the 
investigator’s ability to recover deleted material.  

C. Subject 3 

The subject gave the following information about how the 
task was completed: I don’t know how to manipulate 
timestamps, so I just went into the control panel and set the 
date to May 17th. Then I used Microsoft Word to produce the 
document. Then I set the current date again in the control 
panel. 

On this image, TimeStampLogic produced the same type of 
results as on the image from Subject 2. Approximately 10 files 
were listed with Created, Modified and Accessed timestamps 
on Oct 12th from 9:17-9:44 PM.  After this (in terms of MFT 
entry sequence and LSN sequence), approximately 10 files 
were listed with timestamps at May 17th 9:46-9:52 PM. This 
gives evidence for H1, for the same reasons as for Subject 2. 
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In this case, as opposed to the case of Subject 2, the clock 
change was done in the operating system. Therefore, the event 
logs of the system were searched to determine if the clock 
change had logged a system event. No such event was found. 
Windows XP has a system logging feature that allow logging 
of clock change events. This particular event is however 
logged only if Privileged Use logging is enabled, something it 
is not by default. [12]  

It is interesting to note that both Subject 2 and 3 changed 
the date without changing the time of day. Both in the BIOS of 
the experiment computer and in the Windows XP control 
panel, changing date is done by a separate control than 
changing time of day, even if they are both related to the same 
underlying clock. A plausible rationale for not changing the 
time of day could be that it would then be easier to adjust the 
clock back to the current time, because one would then not 
have to resynchronize with an external clock. When asked 
about this, subject 3 said: I didn’t think about that. I just 
wanted the correct date on the document. The time of day 
didn’t matter to me. I might have thought about it if the time of 
day were of any importance, for example if it mattered if I 
were at work at the time or not.

D. Subject 4 

The subject gave the following information about how the 
task was completed: I used my own pc for the antedating. I 
adjusted its clock back to May 17th, and produced the 
document using Microsoft Word. I then copied the document 
over to the experiment PC using my USB-stick.

The story of Subject 4 matches the story of Subject 1, and 
the results of TimeStampLogic were similar. No additional 
inconsistencies were found, and the results were inconclusive 
on the question of whether the document was antedated or not. 
Also in this case, link files pointing to an external medium 
identified another computer as the likely source for the 
document. 

E. Summary 

In the document antedating experiment, four subjects were 
asked to antedate a document in such a way that it could not be 
determine that the document file was antedated. Two of the 
subjects performed the antedating in such a way that the 
methods described in this work could produce evidence 
supporting the hypothesis that the document was antedated and 
not produced on the date it was timestamped to. Two of the 
subjects did the antedating itself on another computer and 
copied the resulting document to the investigated computer. In 
this case, it could not be determined that the document was 
antedated, but it could be determined that the document had 
been copied from another computer, thus another possible item 
of evidence was found. It is known from the explanation from 

the subjects, that they produced the antedated document on the 
other computer by adjusting the clock back to May 17th, which 
is the same method used by Subject 2 and 3 on the investigated 
computer. Investigation of the other computer with the 
methods described in this work would therefore most likely 
have produced evidence supporting the hypothesis that the 
document was antedated. 

VIII. CONCLUDING REMARKS

Causality reasoning can be used to check timestamp 
evidence for consistency with causal ordering of events. Such 
reasoning can be used to determine if digital information has 
been antedated or not. The document antedating experiment 
has shown that causality reasoning can provide evidence of 
antedating of computer files in practical situations, where 
subjects have antedated a file. The described methods can be 
implemented in existing tools for digital investigation such as 
the Sleuthkit or EnCase. This would provide investigators with 
the possibility for time and causality reasoning in real cases. 

The antedating methods used by the subjects in the 
experiment are certainly not the only way to antedate a 
document. Other possible methods can be conceived:  

1. Produce the document at current time, then changing 
its timestamps by special software. This can be done 
without introducing the software in question on the 
investigated computer by removing the medium and 
perform the change on another computer. 

2. Finding another file matching the desired timestamps, 
then replacing the contents of that file with specialized 
software. 

3. Using the same method as used by the subjects in the 
experiment. Then use special software that adjusts all 
timestamps on the medium to match the story.  Such 
software could be called anti-TimeStampLogic. 

In the case of conceived method 1, TimeStampLogic would 
probably report the single file as an inconsistency. In the case 
of conceived method 2 and 3 however, it is not likely that 
TimeStampLogic would be able to find any inconsistencies. 
Producing evidence of antedating in these cases would have to 
rely on other methods, if possible at all. Thus, clock hypothesis 
testing methods described here are not perfect methods that 
cannot be avoided by a crafty antedater.  

This possibility of evidence manipulation does not however 
imply that the described methods are not useful in real 
investigations. Consider the adversaries in a digital 
investigation, the Investigator and the Perpetrator. The 
Investigator usually possesses knowledge of digital 
investigation and tools that can comb a digital medium for 
evidence, including tools for digital imaging and data 
recovery. The Perpetrator on the other hand is likely to be an 
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average computer user, and does not know how to protect 
himself from the scrutiny of a digital investigation or where he 
should go to obtain the necessary tools. The Investigator also 
has time on his side. Once a digital medium has been 
forensically imaged, he has plenty of time to investigate its 
contents. The Perpetrator on the other hand never knows when 
the Investigator will turn up to seize his data, if ever. He 
therefore has to be prepared at all times and run the anti-
forensic procedure again and again after every action that 
would leave incriminating evidence. There is no room for 
mistakes by the Perpetrator. If he makes a small mistake in his 
anti-forensic procedure, the evidence may be there waiting to 
be discovered by the Investigator. The Investigator on the 
other hand can make a lot of mistakes, as long as he doesn’t 
mess up the original data. He can always start from a fresh 
image at a later time, should he feel that there is more to find 
or that current results rely on misinterpretations. All in all, the 
Investigator has a tremendous advantage over the Perpetrator 
in digital investigations.  

The above can also be viewed in light of Locard’s exchange 
principle, in which it is stated that every physical contact 
yields exchange of matter so that subsequent forensic 
investigations can prove that the contact occured by analyzing 
the exchanged matters. By using special software that adjusts 
all timestamps on the medium to match a predefined story, it is 
likely that a special timestamp pattern specific to that software 
would be created. It would then be possible for the investigator 
to produce evidence of the usage of such software. This would 
be highly undesirable for the perpetrator, since it would create 
an impression that he had something to hide. 

Applying this reasoning to the methods developed in this 
work, the conclusion must be that there exist methods by 
which the investigation methods described in the work can be 
avoided. This is however difficult to do to in such a way that it 
cannot be detected. Subjects who want to use antedating are 
not likely to possess the required knowledge to do this. The 
described methods are therefore adequate for exposing 
antedating in most real investigations. 
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ABSTRACT
In a hypothesis-based approach to digital investigation, the 
investigator formulates his hypothesis about which events took 
place, and tests them using the evidence available. A formalism 
for the description of the investigated system is useful in the 
hypothesis formulation and testing. Simplified Event Calculus, a 
form of propositional logic, can be used to define and test 
hypotheses in a digital investigation. When a system is modelled 
in this logic, observed states can be used to find action hypotheses 
and test them in the model. This can assist investigators and fact-
finders in reconstruction of events from digital evidence. The 
logic can also be used to derive invariants for a system that can be 
utilized in tools checking evidence from these systems for 
consistency. 

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and formal languages]: 
Mathematical Logic – model theory, temporal logic.  

General Terms
Theory, Legal Aspects, Verification. 

Keywords
event calculus, digital investigation, propositional logic 

1. INTRODUCTION 
Investigations are inquiries into past events. The purpose of an 
investigation is to find evidence that can establish an 
understanding of events previously taken place. Investigation of 
digital media with the purpose of finding evidence is commonly 
referred to as digital investigation. The purpose of digital 
investigation is to find evidence related to the events under 
investigation. In recent works, most notably by Carrier, efforts 
have been made to make the digital investigation process based on 
scientific principles, by using a hypothesis-based approach. [1]  In 
this approach, the investigator formulates his hypothesis about 

which events took place, and tests them using the available 
evidence.  

In a hypothesis-based approach, it is useful to use a formalism to 
describe the system under investigation, and the events that have 
taken place. Such a formalism needs to be able to describe events 
occurring on a system and their effect on the state, in such a way 
that the investigator’s hypothesis can be tested for consistency 
with the evidence on the examined system. Previous works have 
used variants of Finite State Machines to represent the system 
under investigation and parts thereof. [1, 2] In this work, a variant 
of propositional logic will be used for the same purpose. This 
paper examines if and how Shanahan’s Simplified Event Calculus 
[3] can be used in a hypothesis based approach to digital 
investigation. 

2. SIMPLIFIED EVENT CALCULUS 
In Simplified Event Calculus, the world is modelled with fluents
and actions. Fluents are states that can hold for a specified or 
unspecified period of time. Actions are occurrences that initiate or 
terminate a fluent. Occurrences of actions and fluents are defined 
with the HoldsAt and Happens predicates, and the affection of 
actions on fluents is defined by the predicates Initiates and 
Terminates. In addition, there is an Initially predicate, for 
initiating fluents from the start. The effect axioms of the 
Simplified Event Calculus are: 

HoldsAt(f,t2) Happens(a,t1)

  Initiates(a,f,t1) t1 < t2 not Clipped(t1,f,t2)

←

∧ ∧ ∧
 (1) 

Clipped(t1,f,t2)

  Happens(a,t) Terminates(a,f,t) t1 < t < t2

←

∧ ∧
 (2) 

HoldsAt(f,t) Initially(f) not Clipped(0,f,t)← ∧  (3) 

 Definition 1. An event calculus program is the conjunction of, 

- A finite set S of Initially clauses of the form, 
Initially(f)

- A finite set A of Happens clauses of the form,  
Happens(a t),

- A finite set E of Initiates clauses and a finite set of Terminates 
clauses of the form,  

1Initiates(a f ,t), ← Π

1Terminates(a f ,t), ← Π
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where Π does not mention the predicates Initially, Happens, 
Initiates or Terminates and every occurrence of the HoldsAt 
predicate is of the form  

2HoldsAt(f t),

- The effect axioms of simplified event calculus 
- A finite set of general clauses not mentioning the predicates 
Initially, Happens, Initiates, Terminates or < .  

For further description of the Simplified Event Calculus, the 
reader is referred to Shanahan’s work on the subject. [3] 

3. A SIMPLE FILE SYSTEM MODEL 
For the purpose of this paper, we define a simple file system: This 
file system contains files, and each file has an Accessed timestamp 
and a Modified timestamp. Files can be Read or Written. Reading 
a file causes the Accessed timestamp to be updated. Writing a file 
causes both the Accessed timestamp and the Modified timestamp 
to be updated. There is only one timestamp of each type for each 
file, so whenever a timestamp is changed, the previous value is 
lost. 

Changes in the simple file system can now be represented as an 
event calculus program, where the fluents are file timestamps with 
an associated clock value, and actions are the operations that 
might change the timestamps. For the simple file system, the 
fluents can be called aAccessed(file, )τ  and mModified(file,τ ) .  

Further, actions can be represented with Read(file) and 

Write(file) . The set E of Initiates and Terminates clauses will 
then contain clauses that Initiates timestamps with the value from 
current system clock c(t), and Terminates them:  

Initiates(Read(file),Accessed(file,c(t)),t)   (4) 

Initiates(Write(file),Accessed(file,c(t)),t)   (5)

Initiates(Write(file),Modified(file,c(t)),t)   (6) 

1 1Terminates(Read(file),Accessed(file,c(t )),t) t < t←  (7) 

1 1Terminates(Write(file),Accessed(file,c(t )),t) t < t←  (8)

1 1Terminates(Write(file),Modified(file,c(t )),t) t < t←  (9) 

In most real file systems there is always a value assigned to the 
time stams of a file. It therefore makes sense to define Initially 
clauses that initiates fluents for the timestamps, so they will hold 
from the start: 

0Initially(Accessed(file, ))τ    (10) 

0Initially(Modified(file, ))τ    (11) 

In the simple file system model, S is the conjunction of formulae 
(10) - (11) and E is the conjunction of formulae (4) - (9). With a 
definition of a set A of Happens clauses, an event calculus 
program for this simple file system has been completed. Then, 
SLDNF resolutions can be utilized to search the space of possible 
event histories and test propositions about fluents at particular 
moments in time.  

Example 1.  Let a file be Read at t = tR and subsequently written 
at t = tW, so that R Wt t< . Let c(t) be an integer, so that 0 0τ = , 
c(tR) = 5 and c(tW) = 10. Let an event program be defined by (4) - 
(11) and the following clauses in A:  

RHappens(Read(file),t )   

WHappens(Write(file),t )   
The timestamp fluents at certain moments in time can now be 

examined by means of SLDNF resolutions. For example, let us 
determine if the accessed time stamp at time t = tObs, R W Obst t t< <

has value 10. 

Figure 1. Resolution of HoldsAt(Accessed(file,10),tObs) 

Figure 1 shows a resolution for the observation of the Accessed 
time stamp given a specific observation time. The right hand 
branch of the resolution, representing the case that the time stamp 
was initially set to the observed value fails due to the fact that 
there is no Initially clause setting the Accessed time stamp to 10. 
The left hand branch of the resolution assumes that an action a 
happened at time t1 initiating the fluent Accessed(file,10) at time 
t1. The only Happens clause that can satisfy this is 
Happens(Write(file),tW). Since the evaluation of the clause 
Clipped(tW, Accessed(file,10),tObs) fails, the left branch succeeds 
and we can conclude that HoldsAt(Accessed(file,10),tObs) holds.  

4. OBSERVATION SETS  
The example in the previous section showed how Simplified 
Event Calculus can be utilized to determine if specific timestamp 
values holds at a specific moment in time, given known 
occurrence of actions. This can be extended into taking the final 
state of the system into account.  

Definition 2.  Formulated in the Simplified Event Calculus, an 
Observation Set O is a finite set of HoldsAt clauses on the form 

ObsHoldsAt(f t ),

The observation proposition is the conjunction of the HoldsAt 
clauses in the observation set. The observation proposition has the 
form 

np = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ

Where each ϕ  is a HoldsAt clause contained in O, and n is the 
number of elements in O. 

With the definition of an observation set, the relationship between 
an observation set and the sets S, E and A defining an event 
calculus program can be investigated. An event calculus program 
defines the behaviours occurring in a system in terms of the initial 
state (S), the effect any actions would have on the states (E) and 

ObsHoldsAt(Accessed(file,10),t )

Initially(Accessed(file,10))←

Obsnot Clipped(0, Accessed(file,10),t ))∧

1 1Happens(a,t ) Initiates(a,Accessed(file,10),t )← ∧

Obs Obs1 1t < t not Clipped(t ,Accessed(file,10),t )∧ ∧
FAIL

W1t t ,  a Write(file)= =

W Obsnot Clipped(t , Accessed(file,10),t )←

W ObsClipped(t ,Accessed(file,10),t )←

W ObsHappens(a,t) Terminates(a,Accessed(file,10),t) t < t < t← ∧ ∧

FAIL
�



the actions that actually occurred (A). With known S, E, and A, 
possible states at a specific moment in time can be tested for 
consistency with the event calculus program. When S, E and A 
are known, SLDNF resolutions can be used to test observation 
propositions and therefore confirm or refute possible observation 
sets O. The observation set  

{ }ObsO = HoldsAt(Accessed(file,10),t )   

was in Example 1 determined to be a possible observation set for 
S, E and A. This shows how a possible observation set can be 
tested for consistency with an event calculus program. 

Things are however different in an investigation situation. In an 
investigation, the state at the time of the investigation is 
observable, whereas information about occurred events is 
unknown. Under the assumption that the investigator has all 
information about the initial state S, and also thorough knowledge 
about the workings of the system, E, the investigator can use the 
knowledge about the observed state O to derive information about 
occurred events. In this case A is unknown, whereas S, E and O 
are known. The investigator can now infer knowledge about A 
from the observation set O and the detailed knowledge about how 
the system works, S and E. 

Returning to Example 1, if the observed set is  

{ }ObsO = HoldsAt(Accessed(file,10),t )   

and A is unknown, the investigator can now reason that since 
(from O) the fluent Accessed(file, 10) holds at the time of the 
observation and since (from S) initially Accessed(file, 0), some 
action must have occurred that terminated Accessed(file, 0) and 
initiated Accessed(file, 10). From E, the investigator knows that 
this must have been an action occurring at t = ta, where c(ta) = 10. 
The investigator also knows that the action must have been either 
a Read or a Write action, since (again, from E) these are the only 
actions that can affect the Accessed fluent. The investigator can 
therefore formulate two hypotheses about occurred actions, H1

and H2 where c(ta) = 10. 

{ }1 aH  = Happens(Read(file),t )

{ }2 aH  = Happens(Write(file),t )

These hypotheses can be tested by SLDNF resolution of the 
observation proposition for both H1 and H2, and both hypotheses 
will be accepted. H1 and H2 are hypotheses about actions that 
actually took place. If hypotheses about occurred actions are 
accepted by an event program resolution, it means that they are 
possible explanations for the observed set O. The hypotheses do 
however, even if they are accepted, not imply full knowledge of 
the set of actions A. Even if only one hypothesis is accepted, it is 
still in the unknown if there were any actions in A for which there 
exist no evidence anymore. In Example 1, it could for example be 
the case that the file was Read at some moment prior to ta. The 
timestamp fluent resulting from this Read would be Terminated 
by the Read occurring at ta, and therefore not be observable at tObs.  

5. ACTION HYPOTHESES 
Definition 3.  An action hypothesis H is a finite set of Happens 
clauses on the form Happens(a t),  derived from an observation set 
O, given finite sets S and E in an event calculus program.  

The acceptance of an action hypothesis means that it is a possible 
set of actions that can explain the observation set O. In order to be 
able to deduct possible courses of events from an observation set, 
we would like to find all possible hypotheses H, given an 
observation set O and knowledge about the system, represented by 
S and E. 

From Definition 2 the elements of an observation set O are 
HoldsAt clauses representing the fluents that holds at the time of 
the observation. The observation proposition to be tested in the 
event calculus program is the conjunction of these HoldsAt 
clauses and takes the form 

np = ...1 2ϕ ∧ ϕ ∧ ∧ ϕ     (12) 

where each ϕ  is a HoldsAt clause.   

From the effect axioms of the Simplified Event Calculus, these 
HoldsAt clauses may exist either because they held initially 
(formula (3)) or because an action occurred that initiated them 
(formula (1)).  There is no other way a HoldsAt clause can come 
to existence than through formulae (1) or (3). It is therefore 
possible to find all possible action hypotheses by reasoning on the 
observation proposition, the Initiates clauses in E and the Initially 
clauses in S. This reasoning does not have to consider termination 
of fluents as per the Terminates clause in E, since this will be 
done by means of SLDNF resolution when each hypothesis is 
tested for acceptance. The proposition that all fluents in an 
observation set has been initiated is the conjunction of the 
initiation of each fluent and takes the form: 

nq = ...1 2κ ∧ κ ∧ ∧ κ     (13) 

where each κ  is the initiation of the corresponding ϕ  in the 
observation proposition p. In the following, this proposition will 
be called the initiation proposition. 

A fluent may exist because it held initially or because it was 
Initiated by a clause in E. There may be more than one Initiates 
clause in E initiating one particular fluent, and these must all be 
considered. Written in propositional logic, the initiation of a 
HoldsAt clause takes the form of a disjunction: 

i i i im i...1 2κ = α ∨ α ∨ ∨ α ∨ η    (14) 

Where iκ  is the i-th HoldsAt(f,t2) clause in q, iη  is an Initially(f) 
clause, m is the number of Initiates(a,f,t1) clauses affecting that 
fluent and each iα is a clause on the form Happens(a,t1)  where 
there exists a clause Initiates(a,f,t1) in E. 

The initiation of the fluents in the observation proposition can 
now be found by inserting (14) into (13), yielding 

m

m

n n nm n

q = ( ... )

  ( ... )

   ...

  ( ... )

11 12 1 1

21 22 2 2

1 2

α ∨ α ∨ ∨ α ∨ η

∧ α ∨ α ∨ ∨ α ∨ η

∧

∧ α ∨ α ∨ ∨ α ∨ η

q is a conjunction of disjunctive clauses. By reordering it into a 
disjunction of conjunctive clauses, a set of action hypotheses will 
be found, where each of the conjunctive clauses in the disjunction 
is an action hypothesis H. 

Consider an event calculus program with S and E as previously 
defined and O as defined by the following observation 
proposition, where 0mc(t ) ≠ τ and 0ac(t ) ≠ τ : 



Obs

Obs

m

a

p = HoldsAt(Modified(file,c(t )),t )

 HoldsAt(Accessed(file,c(t )),t )∧
  (15) 

The initiation of these fluents can then be expressed as a 
conjunction of disjunctive clauses as follows:  

m

m

a

a

a

q = (Happens(Write(file),t ) 

     Initially(Modified(file,c(t ))))

   (Happens(Read(file), t )

      Happens(Write(file),t )

     Initially(Accessed(file,c(t ))))

∨

∧

∨

∨

Since there is no Initially(Modified(file,c(tm))) or 
Initially(Accessed(file,c(ta))) in S, we know that these clauses are 
false. q then becomes:  

m

a

a

q = Happens(Write(file),t ) 

  (Happens(Read(file), t )

   Happens(Write(file),t ))

∧

∨

Rewritten as a disjunction of conjunctive clauses: 

m a

m a

q = Happens(Write(file),t ) Happens(Read(file), t )

  Happens(Write(file),t ) Happens(Write(file),t )

∧

∨ ∧

So here we obtain two different hypotheses from the fluent 
initiation: 

{ }

{ }

1 m a

2 m a

H  = Happens(Write(file),t ), Happens(Read(file), t )

H  = Happens(Write(file),t ), Happens(Write(file),t )

6. DERIVING INVARIANTS 
The described methods can be used to test the observation 
proposition in the general case, and thereby determine properties 
of the simple file system defined in formulae (4) - (11).  The 
general observation proposition for a file in the simple file system 
was expressed in (15). Now, if 0mc(t ) ≠ τ and 0ac(t ) ≠ τ , there 
must have occurred actions initiating these fluents. As previously 
determined, these actions must have been 

{ }

{ }

1 m a

2 m a

H  = Happens(Write(file),t ), Happens(Read(file), t )

H  = Happens(Write(file),t ), Happens(Write(file),t )
(16) 

Now, by investigating the three different cases; m at t< , m = at t
and m at t> , properties of this system can be found. 

In the case of m  at = t , (16) is reduced to  

{ }

{ }

1 m m

2 m

H  = Happens(Write(file),t ), Happens(Read(file), t )

H  = Happens(Write(file),t )
(17) 

Written as a disjunction 

m m

m

(Happens(Write(file),t )  Happens(Read(file), t ))

 Happens(Write(file),t )

∧

∨

Which is equivalent to 

mHappens(Write(file),t )

Thus the only hypothesis is,  

{ }1 mH  = Happens(Write(file),t )

The case of m at t<  must be investigated further. The resolution 
in Figure 6.1 shows that H2 is refuted if m at t< .  The resolution 
in Figure 6.2 shows that HoldsAt(Modified(file, c(tm)), tObs)   in 
H1 is accepted for m at t< . The resolution for 
HoldsAt(Accessed(file, c(ta)), tObs) would look exactly like the one 
shown in Figure 6.2 and is omitted here. From these resolutions, it 
can be concluded that only H1 is accepted. 

Figure 6.1 –  Proposition fails for H2  when m at < t

  

Figure 6.2 – Proposition does not fail for H1 when m at < t

In the case of a mt t< , H1 is refuted, as shown in Figure 6.3. A 
resolution for H2  would look exactly like the resolution in Figure 
6.3, with Accessed and Read replaced with Modified and Write. 

ObsmHoldsAt(Modified(file,c(t )),t )

mInitially(Modified(file,c(t )))←

Obsmnot Clipped(0, Modified(file,c(t )),t ))∧

m1 1Happens(a,t ) Initiates(a,Modified(file,c(t )),t )← ∧

Obs Obsm1 1t < t not Clipped(t ,Modified(file,c(t )),t )∧ ∧
FAIL

1 mt t ,  a Write(file)= =

Obsm mnot Clipped(t , Modified(file,c(t )),t )←

Obsm mClipped(t ,Modified(file,c(t )),t )←

Obsm mHappens(a,t) Terminates(a,Modified(file,c(t )),t) t < t < t← ∧ ∧

FAIL �

1 at t ,  a Write(file)= =

Obs

a

m a m a

Happens(Write(file),t )

 Terminates(Write(file),Modified(file,c(t )),t ) t < t < t

←

∧ ∧

ObsmHoldsAt(Modified(file,c(t )),t )

mInitially(Modified(file,c(t )))←

Obsmnot Clipped(0, Modified(file,c(t )),t ))∧

m1 1Happens(a,t ) Initiates(a,Modified(file,c(t )),t )← ∧

Obs Obsm1 1t < t not Clipped(t ,Modified(file,c(t )),t )∧ ∧
FAIL

1 mt t ,  a Write(file)= =

Obsm mnot Clipped(t , Modified(file,c(t )),t )←

Obsm mClipped(t ,Modified(file,c(t )),t )←

Obsm mHappens(a,t) Terminates(a,Modified(file,c(t )),t) t < t < t← ∧ ∧

FAIL�



Thus, H2 is also refuted for a mt t< , showing that in the simple 
file system, a mt t<  cannot occur. 

It has then been shown that for observations of every file in the 
simple file system: 

m at   t  >/

m a mt  = t   Happens(Write(file),t )⇒

m a a mt   t   Happens(Read(file),t ) Happens(Write(file),t )< ⇒ ∧

These results would facilitate event reconstruction in a forensic 
investigation of the simple file system, since the sequence of 
events on can now be determined directly from the file timestamp 
configuration. 

The requirements on timestamp evidence can be explicitly stated 
as: 

m at   t  ≤

This result is also interesting, since it impose restrictions on the 
formulation of a hypothesis for the system clock. Any occurrences 
of m ac(t )  c(t ) > in the observation set must necessarily mean that 
the clock has been adjusted backwards. If many files are available 
in the observation set, it can also be determined when the clock 
must have been adjusted. 

Figure 6.3 – Resolution of H1 when a mt < t . 

7. RESULTS 
In the previous sections, a simple file system model was defined 
in Simplified Event Calculus, and its properties were examined by 
SLDNF resolutions. When the set of actions A was known, the 
resolutions could be used to determine if a set of observations was 
consistent with the model. When the set of action A was unknown 

but a set of observations O was known, the model was used to 
identify hypotheses of possible actions that could have occurred 
and test if these were consistent with the observation set O.  

Simplified Event Calculus can be used to identify hypotheses of 
possible actions and test them for consistency with an observation 
set for an investigated system, as long as it is possible to 
determine how the system works (expressed by clauses in E) and 
the initial state (expressed by the clauses in S).  This method can 
be used in digital investigations to identify hypotheses of which 
actions occurred on a system, and test them for consistency with 
the available evidence.  

In Section 6, Simplified Event Calculus was used to derive 
invariants that must always hold for the simple file system. The 
method shown can be used for any system with known function 
and initial state to derive invariants. In digital investigation, these 
invariants can be used in tools that checks evidence from these 
specific systems for consistency.  Specifically, in systems where 
timestamps are part of the model, the invariants can be used to 
determine adjustments of the system clock the timestamps are 
generated from. 

8. CONCLUDING REMARKS 
Simplified Event Calculus is a reasonable tool for building a 
model of a system and determining its properties in a hypothesis-
based approach to digital investigation. By building such a model, 
the investigator can find and test possible hypotheses about 
actions that occurred on the system, and derive invariants for the 
system. 

The approach in this work has been purely theoretical. Whether 
the Simplified Event Calculus can be used to model a real system 
under investigation, or if it is practical to do so, is an area of 
further study.  In order to provide a full model of a real system in 
Simplified Event Calculus one must understand the system in full, 
something that can probably only be accomplished by studying 
the implementation details of the system. It might however be 
reasonable to construct a partial model only by studying the 
effects of operations on the real system, if it can be justified that 
the actions included in the model are the only actions of relevance 
in the investigation. 
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ObsaHoldsAt(Accessed(file,c(t )),t )

aInitially(Accessed(file,c(t )))←

Obsanot Clipped(0, Accessed(file,c(t )),t ))∧

a1 1Happens(a,t ) Initiates(a,Accessed(file,c(t )),t )← ∧

Obs Obsa1 1t < t not Clipped(t ,Accessed(file,c(t )),t )∧ ∧
FAIL

1 at t ,  a Read(file)= =

Obsa anot Clipped(t , Accessed(file,c(t )),t )←

Obsa aClipped(t ,Accessed(file,c(t )),t )←

Obsa aHappens(a,t) Terminates(a,Accessed(file,c(t )),t) t < t < t← ∧ ∧

FAIL �

1 mt t ,  a Write(file)= =

Obs

m

a m a m

Happens(Write(file),t )

 Terminates(Write(file),Accessed(file,c(t )),t ) t < t < t

←

∧ ∧
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