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Transforming Collaborative Service Specifications
into Efficiently Executable State Machines

Frank Alexander Kraemer and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

Abstract: We describe an algorithm to transform UML 2.0 activities into state
machines. The implementation of this algorithm is an integral part of our tool-
supported engineering approach for the design of interactive services, in which
we compose services from reusable building blocks. In contrast to traditional ap-
proaches, these building blocks are not only components, but also collaborations in-
volving several participants. For the description of their behavior, we use UML 2.0
activities, which are convenient for composition. To generate code running on exist-
ing service execution platforms, however, we need a behavioral description for each
individual component, for which we use a special form of UML 2.0 state machines.
The algorithm presented here transforms the activities directly into state machines,
so that the step from collaborative service specifications to efficiently executable
code is completely automated. Each activity partition is transformed into a separate
state machine that communicates with other state machines by means of signals,
so that the system can easily be distributed. The algorithm creates a state machine
by reachability analysis on the states modeled by a single activity partition. It is
implemented in Java and works directly on an Eclipse UML2 repository.

Keywords: Model Transformation, UML 2.0, Activities, State Machines

1 Introduction

In a highly competitive market for modern networked services, it is important to deliver new
services with short development times, in order to react on new customer demands quickly and
to keep development costs low. These efforts are hampered by the typically high complexity of
such services, which arises mainly from the fact that a service needs the coordinated effort of
several participating components (cf. [1]). Hence, if we want to understand what a service does,
we have to look at the behavior of all its participating components. Moreover, when services
need to be adjusted or composed from other services, we must consider the descriptions of all
participating components again and make sure that they interact correctly. Literature (e.g., [2])
as well as experience from our own work [3, 4, 5] stated that there are two dominant perspectives
on a system delivering services:

• In the component-oriented perspective, systems are decomposed into physically distributed
components, which are modelled separately. Services are specified indirectly by the com-
posed behavior of the components. This perspective is well supported by traditional stan-
dards like SDL and its descriptions are typically easily transformable into executable code.
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Figure 1: Engineering approach for interactive services

• In the collaboration-oriented perspective, services are modeled by a number of collabora-
tions as the main structuring elements. A collaboration specifies the interactions between
the components involved in it, as well as the corresponding local behavior of the compo-
nents to accomplish the service. Collaborations describe services in a self-contained form
and may be composed from other ones. Within an application domain, collaborations
contributing to a service are often similar which makes them ideal elements of reuse.

These two perspectives are the shaping forces behind our approach for the rapid engineering of
interactive services, outlined in Fig. 1. Services are composed from collaborations that identify
the interactions as well as the local behavior of a set of components that are necessary to fulfill
a certain task. To express the structural aspects of collaborations as well as their composition
(e.g., the participants and which roles they play in a service), we use the conforming concept of
UML 2.0 collaborations. For the behavioral aspect (e.g., what a collaboration does as well as
how collaborations are coupled together), we use UML 2.0 activities.

As an example, we consider an access control system (ACS) [6, 7]. It controls the opening
mechanism of a door and lets pass only authorized people that can prove their identity by pre-
senting a security card and a secret number at an input panel. The opening mechanism and input
panel are connected to a local station installed close to the door. Once a user draws the card and
enters the pin, the resulting data (called pid) is transferred to a central station that authenticates
the user and checks authorization right by querying two servers. If both, the authentication and
authorization are successful, ok is sent back to the local station that opens the door.

In [4] we introduced how the ACS can be easily composed from reusable collaboration el-
ements expressed by a combination of UML 2.0 collaborations for the structure (Fig. 2) and
activities for the behavior (Fig. 3). These diagrams describe the system from a collaboration
oriented perspective. To execute the system, however, we need a description of the behavior of
the individual components, i.e., a description from a component-oriented perspective, as outlined
above. In our approach, we use for this purpose so-called executable UML 2.0 state machines
and composite structures, that are a suitable input for our code generators. To automate the step
from the collaboration-oriented specifications in form of activities to the component-oriented
design in form of state machines, we use a model transformation performed by the algorithm
described in this article. Evidently, the introduction of such an automated transformation step
accelerates the development of services drastically. In addition to the omission of manual labor
for constructing the state machines, no new errors are introduced. Whenever a service specifi-
cation needs to be updated, the state machines are simply generated again to ensure consistency.
The algorithm creates the state machines without any intermediate representation and is therefore
quite efficient concerning memory usage. Before we describe the principles of the transforma-
tion in Sect. 4 and the detailed algorithm in Sect. 5, we outline in the next two sections the two
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Figure 3: Activity diagram modeling the detailed behavior of the system

development perspectives outlined above. Sect. 6 sketches then a proof of the correctness of the
transformation in temporal logic. We close with a discussion of related approaches and some
concluding remarks.

2 Collaborations and Activities for Service Composition

While the collaboration in Fig. 2 shows how the system is composed structurally from elemen-
tary collaborations that were taken from a library, the activity diagram in Fig. 3 states how their
behavior is coordinated. For each collaboration use of Fig. 2 (e.g., Authenticate), we find a
structured node (in dashed lines) in the activity that specifies the behavior contributed by the
collaboration use. Each collaboration role of Fig. 2 (e.g., central station) is a location of com-
putation and represented by an activity partition in Fig. 3. The door and the panel are part of
the environment, and, hence, do not have their own activity partition. Instead, they communicate
with the local station by explicit signal send and receive actions. The local station receives a
pid from the panel control and forwards it via the transfer collaboration to the central station.
Depending on the result received from the central station (ok or nok), the local station will either
cause the panel to display nok and leave the door locked, or it will cause the panel display to
show ok and unlock the shutter of the door. In this case, a timer will be started which locks the
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Figure 4: Executable state machines for the system components

door shutter again after a while. As activities have a Petri net like semantics [8], we can use to-
kens and places to understand the behavior of the diagram in Fig. 3. Once a token representing a
pid arrives at the central station, it is prepared (described by the operations prep1 and prep2) and
sent to the authentication respective the authorization server. For that, the token is duplicated at
the fork node f1, so that the subsequent behaviors may happen in parallel. Both servers evaluate
the pid and send their results back to the central station.

The results may arrive in any order. For example, if the result of the authorization server
arrives first, it is evaluated by the central station (operation val2) which branches in decision d2
depending on the validity of the authorization. If the result was valid, a token is placed in w4.
This node is an extension of a decision node (cf. [4]) as tokens can rest in it. It is represented by
a filled diamond. The central station waits now for the arrival of the authentication result, which
is evaluated in val1, and a token is placed either on w1 or w2. When the other result arrives, two
waiting decisions hold one token, so that exactly one of the join nodes j1..j4 can fire. Obviously,
j4 fires in the case that both results were ok and causes the central station to send an ok to the
local station. In the other three cases (when at least one result is nok) one of the other join nodes
j1..j3 fires. These cases are combined by merge node m1 and a nok is sent to the local station.
We assume that the panel control only sends a new pid after it received an ok or a nok.

3 State Machines for Service Execution

Fig. 4 presents the executable UML state machines generated by our algorithm from the activity
in Fig. 3. The state machines interact with each other by transmitting signals which are buffered
in event queues. Similar to SDL, UML allows for the use of send signal actions and signal
triggers to describe the transmission and reception of signals. Each state machine has an initial
state and a number of transitions that are triggered by either signal receptions or by timeouts.
Transitions may include choices guarded by constraints (like ok1). As an effect, a transition may
execute actions such as the sending of signals, the call of an operation (like val1) or the control
of a timer. States can declare an event to be deferred by listing it in their body followed by the
keyword “/defer” (abridged here to “/d”). This event is left in the queue until a state is entered
that does not defer it anymore but declares a transition for its consumption. For compactness, we
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presented a transition that can be executed from any control state by referring to a state called
“*”. After it executes, the state machine returns into its originating state, denoted by “-”.

As these executable state machines are the input for our code generators [9], they must fulfill
some constraints to achieve efficient code. In particular, they are event-driven, which means that
each transition is only executed as the reaction to either the creation of the state machine itself,
the reception of a signal, or the expiration of an internal timer. In consequence, transitions are
enabled based purely on their source state and trigger, so that guards may only be declared on
branches following choices. Moreover, for each pair of control state and trigger, merely one
transition may be declared to prevent fairness conflicts between competing transitions.

These executable state machines have a long tradition in the telecommunication area (see for
example [10]) and facilitate the efficient implementation on a range of different platforms and
architectures, including J2EE. We defined in [5] their execution semantics in terms of tempo-
ral logic and described, how they can be efficiently implemented using a scheduler as virtual
machine layer. Of course, the constraints on the executable state machines needed to generate
efficient code highly influence the layout of our algorithm which we discuss in the following.

4 Transformation from Activities to State Machines

In our approach, an activity partition corresponds to one physical point of execution. We there-
fore generate one state machine for each activity partition. This also makes it possible to consider
the activity partitions separately and not the entire activity, as discussed later. To separate the
partitions from each other, we have to cut those edges which cross partition borders. These edges
model the control flows between different system components. As communication between the
state machines is done entirely by means of signals, a flow crossing the boundaries of activity
partitions must be implemented as a signal transmission. In activities, flows between actions
occur instantaneously, i.e., a token leaves an action and enters a subsequent one without resting
in the flow. The transmission between state machines, however, is buffered. Introducing signal
transmissions in flows between partitions therefore implies virtual places that may hold tokens.
We add these places where flows enter a partition, as illustrated in Fig. 5 by the circles with
the queue symbols inside. These so-called queue places simulate the input queue of the state
machines implementing an activity partition. In the model, these input queues are of unlimited
capacity1. Thus, the virtual places are unbounded (i.e., can hold any number of tokens).

As described above, the state machines execute a transition as a reaction to the arrival of a
signal. This event corresponds to the emission of a token from the virtual queue places. Hence,
when we construct a transition, we simulate the emission of one token from a queue place. The
token passes along the flows and nodes of the activity diagram until it reaches a control node
where it has to wait for further events to happen. These are three kinds of nodes: (1) Join nodes
synchronize different flows, that may arrive in any order. An incoming token may have to wait
for the other incoming flows to arrive. (2) Waiting decisions synchronize competing join nodes
(see Sect. 2). A token has to rest inside a waiting decision if none of the succeeding joins can
fire. (3) Timer nodes may contain tokens describing that the timers are active.

Fig. 5 (a) illustrates also the inner places of the central station in which tokens rest to wait for

1 Of course, in an implementation, buffer capacity is limited, which can be addressed the means described in [5].
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further input events. In contrast to the queue places, these inner places will constitute the control
states of the state machine. For instance, the token in the waiting decision w2 of Fig. 5 (a)
means that a valid authentication result arrived and that the central node waits for the result of
the authorization. (The join nodes do not have own places, as all their incoming flow originate
from waiting decisions, which hold the token instead.) For the number of control states to be
finite, the number of tokens in an inner place must be bounded. Moreover, to keep the state
space small, we allow only one token in each inner place. This is not a limitation since tokens
that would fill an inner place are stored in the unlimited queue places as discussed later. The set
of control states for one state machine is then the powerset of the inner places.

We can construct a state machine transition by following the passing of the tokens between
two stable token markings. The marking of the inner places before passing the tokens define
the source state of the transition and the next stable marking refer to the target state. The token
taken from a queue place models the input signal consumed by the transition. The activity nodes
passed by the token are transformed in the following way: Call operation actions and send signal
actions are simply copied into the effect of a transition. Decision nodes with guards are added
to the transition and lead to different branches. A flow leaving the current activity partition is
translated to a send signal action. Fork nodes duplicate tokens, to that the subsequent flows are
executed in parallel. In the transition, this is mapped by executing their actions interleaved. For
instance, the transition triggered by PID in Central Station in Fig. 4 simply executes first the
action prep1 and then prep2. Initial nodes emit tokens once the activity is started and are treated
by the initial transition of a state machine.

A problem is the handling of joins. The passing of a token after all incoming flows arrived
would result in a transition without a trigger event, violating constraints of our event-driven state
machines. Therefore we use the token passing rules illustrated in Fig. 5 (b). When a token
arrives at a join and there are other incoming edges that do not yet offer a token (since their flow
did not arrive yet), the token is stored and a new stable control state is reached (i), awaiting the
next event. If, however, the arriving token completes the join (ii), the transition continues with
its outgoing edge, and all tokens of the incoming edges are removed. Waiting decisions work
similarly, but consider a set of subsequent join nodes. If none of these joins is ready, the decision
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is filled with a token (iii), and a new stable state is reached. If one of the joins is ready, the
transition continues at its outgoing edge, consuming the token from the decision node (iv).

In addition to the events of signal reception resulting from the split control flows, explicit sig-
nal receptions contribute to the set of unbounded queue places. Furthermore, timers are sources
of events. When a timeout occurs, a token is emitted on the timer’s outgoing edge. The transi-
tion is then constructed in the same way as for signal receptions. Some events may lead to states
describing that an inner place contains more than one token. For example, if the central station
is connected to several local stations, a pid could arrive while another pid is under evaluation. In
this case it might happen, that, after the central station received a valid res1 and waits for res2,
another valid res1 is coming, which requires node w2 to hold two tokens. To prevent this, we do
not create a transition for flows leading to a marking with several tokens in an inner place, but
defer the incoming event, which may proceed after the inner place is emptied.

5 The Transformation Algorithm

To realize the transformation from activities to state machines introduced above, we can proceed
in quite different ways. For instance, one could perform a complete reachability analysis over all
allowed token allocations in the previously introduced inner and queue places of an activity and
create a transition for every step. The disadvantage is that, especially in highly concurrent sys-
tems, the number of reachable states is very large, rendering the approach not scalable. Another
possibility would be to perform a purely syntactical analysis of an activity. Here, for each edge
between places, a set of transitions is generated. Thereby, a separate transition is created for all
states in which tokens are contained in the corresponding places. This algorithm is quite efficient
since every inner place of the activity is checked only once, but will lead to a large number of
transitions leaving unreachable states. To prevent these disadvantages, we follow an intermedi-
ate approach. Reflecting that for every activity partition a separate state machine is created, we
perform a reachability analysis over the states of an activity partition only, which are constituted
by its inner places. Thus, the number of reachable states is kept small. Starting from the initial
state, for each reached state and every possible input signal a separate transition is created. As
we handle each incoming signal in all control states, some of these transitions may be never fired
(if their input signal cannot occur in the state). However, an unnecessary transition would simply
result in a code fragment that is never executed. While this is not a real problem, nevertheless,
we plan to eliminate these transitions using interface descriptions of the other partitions. These
interface descriptions may be offered as part of the collaboration building blocks of a library.

In the following, we explain our algorithm in detail. Fig. 6 depicts the main loop (lines 7 to
27). As in most reachability analysis algorithms, this loop guarantees that all reachable markings
of an activity partition are analyzed. The markings yet to be checked are listed in the variable
reachable while visited contains all markings which were already analyzed. In the initial part
of the algorithm (1..6), a new and empty state machine is created. Thereafter, the first marking to
be checked, the initial transition of the state machine and the set of events to be received by the
state machine are computed. As our algorithm creates a state machine transition for each pair
of reachable marking and event (see Sect. 4), the loop contains a nested for-loop (10..26) cycling
through all events. The for-loop contains two nested if-statements. The first one (11..25) is used
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transform(ActivityPartition a) : StateMachine

1 var stm: StateMachine = new StateMachine()
2 var firstState: State = computeFirstState(a)
3 createInitialTransition(firstState, stm)
4 var events: Set of Event = computeEvents(a)
5 var visited: Set of State = /0
6 var reachable: Set of State = {firstState}
7 while reachable 6= /0 do
8 var current: State = reachable.removeFirst();
9 visited = visited ∪ {current}

10 for all e ∈ events do
11 if ¬(e is timeout ∧ timerActive(current)) then
12 if harmsBoundedness(current, e) then
13 current.deferEvent(e)
14 else

15 var t: Transition = new Transition(stm);
16 t.setSource(current)
17 t.setTrigger(e)
18 var marking: long = getMarking(current)
19 if e is timeout then marking = unsetTimer(e,marking)
20 var Edge edge = retrieveEdge(e)
21 var targets: Set of State
22 = buildTransition(edge,marking,t,a,stm)
23 reachable = reachable ∪ (targets / visited)
24 end if
25 end if
26 end for
27 end while
28 return stm. �

Figure 6: Main control

to ignore events triggered by a timer which is not active in the current state. The second if-
statement enables us to handle violations of the desired 1-boundedness property correctly. If the
traversal of an edge in the checked activity would lead to two or more tokens in any inner place,
the algorithm does not create a transition but defers the event in the current state (13). Otherwise,
a new transition is built in the else-statement (15..23).

The transitions of a state machine are created by means of the recursive method buildTransi-
tion (20), listed in Fig. 7. It considers the traversal of a token from one stable marking to another.
For each edge part of the flow triggered by the event it is called recursively and builds the cor-
responding transition along the way. The method returns the set of stable states reached by the
transition. It is a set, as a flow may lead to several distinct reachable states after a decision node.
The returned states are used by the main loop to determine the reachable markings of the partition
yet to be checked. The method contains an order of nested if-statements describing the behavior
for each possible node in the analyzed activity edge. It returns if the edge leaves the partition (2),
reaches a join which cannot be fired in the current activity marking (12), starts a timer (17), arrives
at a waiting decision in which none of the corresponding joins can be fired in the current mark-
ing (50), or reaches a flow final resp. activity final node (58, 62). In all these cases a new stable
state is reached and the created transition can be completed. When another edge is reached, the
transition is not yet complete and its building process has to be continued by a recursive call of
buildTransition. These cases are a join which can be executed after being reached by a token
on the analyzed edge (10), a send action (27), an operation call (30), a merge (32), a decision (40), a
waiting decision from which a corresponding join can be fired after being reached by a token (48),
and a fork (57). While most steps in creating a transition follow directly the ideas presented in
Sect. 4, we will look now on the decisions and forks which are a little subtle. A decision leads
to the addition of a choice pseudo state to the transition behind which more than one continuing
transition fragments are added. This is done by the for-loop (36..42) which calls buildTransition
for each of the choice’s branches. Arriving at a fork (55) means that tokens are emitted at each
outgoing edge and actions of different flows are carried out in parallel. As one state machine
executes only one action at a time, we map parallel executing flows inside one activity partition
to an interleaved execution, which is a correct refinement. This execution is computed by the
method collectEffects which is not listed here for the sake of brevity.
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buildTransition(Edge edge, long c, Transition t, ActivityPartition a, StateMachine stm) : Set of State

1 var node: Node = edge.getTarget()

2 if leavesPartition(edge,a) then
3 addSendSignalAction(t,edge)
4 var target: State = getState(c)
5 t.setTarget(target)
6 return {target}

7 else if node is join then
8 if canFire(join,c) then
9 var n: long = markingAfterJoinFired(c)

10 return buildTransition(outgoing(edge),n,t,a,stm)
11 else
12 var n: long = markingAfterJoinInputArrived(c)
13 var target: State = getState(n)
14 t.setTarget(target)
15 return {target}
16 end if

17 else if node is timer then
18 addSetTimerAction(t,node)
19 var n : long = markingAfterTimerSet(c)
20 var target: State = getState(n)
21 t.setTarget(target)
22 return {target}

23 else if node is send action then
24 addSendSignalAction(t,node)
25 var target: State = getState(c)
26 t.setTarget(target)
27 return buildTransition(outgoing(node),c,t,a,stm)

28 else if node is call operation action then
29 t.addEffect(node)
30 return buildTransition(outgoing(node),c,t,a,stm)

31 else if node is merge then
32 return buildTransition(outgoing(node),c,t,a,stm)

33 else if node is decision then
34 var p: Pseudostate = new Pseudostate(stm,CHOICE)
35 var reachable: Set of State
36 for all o ∈ node.outgoings() do
37 var t = new Transition(stm)
38 t.setSource(p)
39 t.setGuard(o.getGuard())
40 var r: Set of State = buildTransition(o,c,t,a,stm)
41 reachable = reachable ∪ r
42 end for
43 return reachable

44 else if node is waiting decision then
45 for all o ∈ node.outgoings() do
46 var join: Node = o.target;
47 if canFire(join, marking) then
48 return buildTransition(o,c,t,a,stm)
49 end if
50 end for //no join could fire
51 var n : long = markingAfterDecisionSet(c)
52 var target: State = getState(n)
53 t.setTarget(target)
54 return {target}

55 else if node is fork then
56 collectEffects(outgoings(node),t)
57 return computeForkedState(outgoings(node))

58 else if node is flow final then
59 var target: State = getState(c)
60 t.setTarget(target)
61 return {target}

62 else if node is activity final then
63 t.setTarget(new FinalState(stm))
64 return {}
65 end if �

Figure 7: Method to build a transition

6 Correctness of the Transformation

To verify that the algorithm carries out transformations in a correctness-preserving manner, we
use the linear-time temporal logic cTLA [12] as a formalism which is based on Leslie Lam-
port’s TLA [13]. cTLA enables the description of resources and constraints in a process-like
notion and provides a coupling structure based on conjoining actions (i.e., predicates on pairs of
states describing sets of transitions). Refinement verifications are carried out as temporal logic
implication proofs (cf. [13]). As the semantics of activities is based on Petri-nets [8], UML 2.0
activities can easily be expressed by cTLA processes as pointed out in [14]. An activity, ba-
sically, is a cTLA system description consisting of processes each describing a single activity
partition. The variables of a process model its inner places while each queue place of a partition
is described by a separate input queue.

For the state machines forming the input of our code generators, we defined a special di-
alect cTLA/e [5] which describes the coupling between components by assigning a single in-
put queue to each component. A state machine transition is specified by a cTLA action which
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reflects that the transition depends only on the current state and the first signal in the input
queue. Moreover, each component contains an extra queue to handle deferred events. The re-
finement of specifications modeling activities to cTLA/e-based descriptions is carried out by
a sequence of correctness-preserving refinement steps accompanied by cTLA/TLA implication
proofs (cf. [13]). For the sake of brevity, we do not give a thorough introduction to cTLA here
and sketch the proof steps only briefly.

To verify formally that a state machine S derived from an activity partition A keeps all the func-
tional properties state by A, we must perform by temporal logic deductions that the implication
S⇒ A holds. According to Abadi and Lamport [15], this can be achieved by finding a so-called
refinement mapping from the states of S to those of A. A refinement mapping takes into account
that cTLA enables the modeling of state transition systems. A system formula consists of an
initial condition describing the set of initial states, cTLA actions which are predicates on a pair
of a current state and a next state and model a set of state transitions each, and liveness properties
expressed by fairness assumptions on actions which enforce that actions are eventually executed
when they are consistently enabled. A refinement mapping has to keep the following properties:

• An initial state of S is mapped to an initial state of A.

• Each cTLA action of S is either mapped to an action of A or to a so-called stuttering step
in which the mapped current and next states of A are identical.

• Each fairness assumption of A is provided by the fairness assumptions of S (i.e., if an
action ψ of A is consistently enabled, the fairness actions of S enforce a state sequence in
which eventually an action is carried out which is mapped to ψ).

In Sec. 4 we stated that the state space of an activity partition A is partly defined by its inner places
which are situated before joins, at decision nodes, at initial nodes, and at timers. Moreover, it
contains queue places which are situated at points where an incoming flow passes the partition
border and on receive actions. The state space of a state machine is defined in [5] and consists
of the literal states of the state machine, an input queue, a defer queue, output queues for all
connected state machines, and flags for each timer. Furthermore, activities may contain auxiliary
variables which our algorithm directly maps to auxiliary variables of the corresponding state
machines. To outline the correctness of the algorithm, we will, in the following, list a mapping
of the state space from S to that of A and sketch thereafter that it keeps the refinement mapping
properties:

• To find a mapping from S to the queue places of A, we have also to consider the linked state
machines as the queue places mainly describe the interaction between different system
elements. At an activity partition, we have a separate queue place for every signal type st
while in the corresponding state machine, we have central queues for all signals. Moreover,
in the activity we do not distinguish if a signal is still at the side of the outgoing partition,
already in the incoming partition, or deferred. Reflecting these properties, we map all
signals s of type st, which are either in the output queue of a neighboring state machine
Sn, in the input queue of S, or in its defer queue, to the queue place qpst for st in A:

∀st : qpst = {s|s.type = st ∧ s ∈ inputQS∪de f erQS∪
⋃

Sn∈NeighborsS

Sn.out putQS}
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• A mapping of S to the inner places of A located at joins, decision nodes, and initial nodes
has to consider that we use 1-boundedness in the inner places ip and that the algorithm
creates the states of S as a string of flags f lip each being set to 0 if the corresponding inner
place ip is empty and to 1 if ip contains a token to:

∀ip : ip = IF f lip = 1 THEN {to} ELSE {}

• To find a mapping from S to the inner places of A describing a timer is a little more
complex. Indeed, the algorithm adds also a flag ft for each timer t in A to the state repre-
sentation in S. Nevertheless, to find a decent mapping one has to consider the handling of
timers in state machines. When a timer expires, it creates a signal which is attached to the
local input queue. Thus, we must map both the states of S in which the flag f lt of timer t
is enabled and in which a signal st caused by t is in the input or defer queue to a setting in
A where a token to is on the inner place ipt of t. That is expressed by the mapping listed
below:

∀ipt : ipt = IF f lt = 1∨ st ∈ inputQS∪de f erQS THEN {to} ELSE {}

• The mapping from the auxiliary variables from S to those of A is the identity function.

In the first step of the proof that the function listed above fulfills the refinement mapping
properties, we have to verify that the initial state of S is mapped to that of A. Initially, the queue
places in A are empty while the input, output, and defer queues of S do not contain elements as
well. Thus, the mapping of the queue places fulfills the property trivially. The inner places of
A are empty except those located at an initial node. As discussed in Sec. 5, the algorithm maps
the token placement of an initial state of S in which just the flags representing the inner places
of the initial nodes are set to 1. Since the auxiliary variables of S and A contain the same initial
settings, therefore, the initial state of S is mapped to the initial state of A.

Next, we prove that every cTLA action in the model of the state machine S is mapped either to
a cTLA action of the activity partition A or to a stuttering step. As introduced in [5], the model
of S contains different kinds of actions. One type describes the transitions of S and for each
transition tr f , a cTLA action φtr f is defined. The algorithm creates tr f only if a flow f exists
modifying the token setting of A. In the following, we state a number of properties preserved by
the algorithm in the creation of the corresponding transition tr f which are used for the refinement
proof:

1. A transition tr f is only created if in its source state all flags f lip representing those inner
places ip of f are set to 1 which have to contain tokens in order to execute f .

2. The algorithm creates tr f only for a flow f if the execution of f does not violate the
inboundedness property of the inner places in A.

3. If the queue place in f , from which a token is removed, has the type st, tr f is only triggered
if st is at the front of the input queue.

4. By executing a transition tr f which does not leave an initial state, the signal at the front of
the input queue is consumed.

5. A transition tr f consuming a signal from the input queue which was created by a timer is
generated if the corresponding flow f starts at an inner place describing a timer node.
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6. The target states of tr f are generated by starting with the source state and resetting the
flags representing inner places, from which tokens were removed, to 0 while those with a
new token are set to 12.

7. If in f a token is heading to the partition border with a partition An or to a send action with
destination An, tr f puts a send signal into the output queue devoted to the state machine Sn

realizing An.
8. A call operation action passed in f is reflected by adding its code to tr f . Here, we demand

that an auxiliary variable may be modified only once in f and, in consequence, in tr f .

Assuming that φtr f is the cTLA action modeling tr f and ψ f those of the flow f , these properties
are sufficient to prove the implication φtr f ⇒ ψ f . By the first three properties, we can assure
that the enabling condition of φtr f implies that o ψ f since according to the mapping all necessary
tokens are set (1), the 1-boundedness after carrying out f is preserved (2), and the queue place
from which f leaves contains an element (3).

The other properties are used to verify that the effects of φtr f are correctly mapped to those
of ψ f . The elimination of a signal of type st from the input queue is mapped to the removal of
a token from the queue place st (4). In addition, if tr f consumes a signal st created by a timer
from the input queue, st is mapped to a flow f removing a token from the corresponding timer
node (5). We can further verify that tr is a correct realization of the token flow between the inner
places in f (6). The delivery of a signal s to an adjacent state machine Sn does not spoil the
corresponding mapping of Sn to a neighboring activity partition An as s is added to an incoming
queue place of An if S puts it to its output queue devoted to Sn (7). Finally, it is guaranteed that
the auxiliary variables are correctly mapped (8). It is not difficult to verify that these properties
imply that the mapping listed above maps φtr f to ψ f which is omitted, however, for brevity.

Other cTLA actions in S specify the execution of timers and the addition of timer signals to the
input queue, model the deferral of a signal by transferring it from the input to the defer queue,
and describe the transfer of signals from the neighbor’s output queue to the own input queue. It
can be easily shown that these actions lead to stuttering steps in A.

In the third step, we have to verify that the fairness assumptions of the actions ψ f describing
the flows in A are kept. The algorithm guarantees that for every token placement in the inner
nodes of A enabling a flow f , a transition tr f is generated implementing f . Thus, with respect
to the first two properties listed above, an action tr f is enabled whenever f can fire. The only
impeding condition is the third property since tr f may only be executed if the signal s consumed
by it is at the first place of the input queue. According to the mapping, however, the cTLA action
ψ f specifying f can be enabled if s is either in the output queue of the neighboring state machine
Sn or in any place on the input or defer queues of S. Thus, we must verify that s is eventually
being moved to the front of the input queue where it will remain consistently until an action φtr f

is executed. If s is still in the output buffer of Sn, it will be moved to the end of the input buffer of
S by the fair3 action modeling the transmission from Sn to S. Since signals before s in the input
resp. defer queue are either continuously being deferred4 or eventually being consumed. Thus,
2 If a token is both removed from and added to an inner place in the same flow, its flag remains set to 1.
3 In [12] we established that liveness can only be guaranteed in a distributed system if transmitted messages
are eventually being delivered. This property is expressed by the fairness assumption on the action specifying the
transmission.
4 In that case, the transitions consuming them are never enabled.
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s will be eventually at the front of the input queue. If f is not enabled, s may be deferred itself
but is brought back to the front of the input queue by other transitions. As there is only a finite
number of transitions tr f modeling f , in consequence, one of those will be consistently being
enabled if f can be triggered as well. Due to the fairness assumption of the corresponding cTLA
action φtr f it will be eventually fired which, because of the mapping, causes also the triggering
of f .

Thus, we could verify that the mapping listed above is a refine mapping. According to [15],
we could thereby prove that the state machine S together with its neighboring state machines Sn

produced by the algorithm is a correct implementation of the activity partition A. Since this prove
can be carried out for all partitions of the activity, we established that the algorithm transforms
activities to state machines in a correct way.

7 Related Work

To our best knowledge, the algorithm presented here is the first one that directly transforms
UML 2.0 activity diagrams into the executable state machines described above. Our work is
related to that of Eshuis on model checking of activity diagrams [11], in which activity diagrams
are transformed into the input language of NuSMV, a symbolic model verifier [16]. We could
not adapt this algorithm for our work, since, as discussed in Sect. 5, syntactical algorithms cause
in our field of application a high number of considered unreachable states. To execute activity
graphs, Eshuis and Wieringa [17] describe an algorithm for an event router to coordinate the
behavior of components. Aiming at workflow systems, their execution differs from ours as it
assumes a centralized architecture and the activity is considered as a whole, rather than splitting
up the activity into its partitions and creating distributed state machines as we do.

There is a number of approaches that take scenario descriptions based on sequence diagrams
(like MSCs or UML sequence diagrams) to synthesize state machines [18, 19, 20, 21]. While
the resulting state machines are similarly executable as the ones we described, the input of these
synthesizers in form of sequence diagrams differs from activity diagrams. Sequence diagrams
often specify only a set of scenarios rather than a complete behavior, which may lead to behaviors
that are not expressed explicitly. They focus on the interactions and identify signals. In contrast,
activities focus on the operations and decisions that have to be performed by its participants, and
our algorithm generates the necessary interactions in form of signal transmissions automatically.

Use case maps (UCM, [22]) offer a notation that is close to that of UML activities, as they also
allow the specification of behavior in terms of causal paths that may involve several components.
Yong He et al. conducted an experiment [23] in which a specification expressed by use case
maps was transformed into message sequence charts. These, in turn, were transformed into
executable SDL specifications using the tool MSC2SDL [18]. Similar to that, Castejón [24]
outlines an algorithm that takes specifications in UCM and UML 2.0 collaborations to generate
state machines from sequence diagram fragments contained in the collaborations.
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8 Concluding Remarks

We described an algorithm that transforms UML 2.0 activities into a UML 2.0 state machines,
from which we can easily generate efficiently executable code. The algorithm is implemented in
Java and integrated into our Eclipse-based tool suite, so that we now have a complete automated
development process from collaborative specifications based on activities to implementations on
various platforms. As input and output we use models stored in the Java UML 2.0 repository
from the Eclipse UML2 project. The algorithm does not construct an intermediate graph, but
only UML model elements that are part of the desired output state machines, so that it is efficient
with respect to the memory needed. The time for the transformation of the presented example is
negligible; the state machines appear practically instantly. Moreover, we expect the algorithm to
scale well also for more complex systems, as the increased complexity of a system leads more to
a higher number of partitions than to more complex ones causing only a linear increase.

This work describes a step of a more comprehensive engineering approach for the creation
of interactive services by correctness-preserving design steps. Initially, a service specification
is composed from various abstract collaborations that, to a large extent, can be obtained from
domain-specific libraries. Such abstract collaborations are often quite simple and can also be
understood by customers, who are not experts in software technology but want to focus on their
actual business. In succeeding steps, such abstract specifications are incrementally refined until
the specification has a degree of detail that enables direct translation to software. Due to the
algorithm, we are now able to perform these refining design steps entirely in the collaboration-
oriented perspective. As pointed out in [4], for this purpose we can use the activities with their
convenient properties as reusable building blocks.
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