
Adaptive Middleware Support

and Autonomous Fault

Treatment: Architectural

Design, Prototyping and

Experimental Evaluation

Doctoral thesis
for the degree of doktor ingeniør

Trondheim, May 2006

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Telematics

Hein Meling

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Doctoral thesis
for the degree of doktor ingeniør

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Hein Meling

ISBN 82-471-7938-5 (printed version)
ISBN 82-471-7937-7 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2006:92

Printed by NTNU-trykk

Dedicated to Håvard and Elin

iv

Abstract

Networked computer systems are prevalent in most aspects of modern society, and
we have become dependent on such computer systems to perform many critical tasks.
Moreover, making such systems dependable is an important goal. However, depend-
ability issues are often neglected when developing systems due to the complexities
of the techniques involved.

A common technique used to improve the dependability characteristics of systems
is to replicate critical system components whereby the functions they perform are
repeated by multiple replicas. Replicas are often distributed geographically and con-
nected through a network as a means to render the failure of one replica independent
of the others. However, the network is also a potential source of failures, as nodes
can become temporarily disconnected from each other, introducing an array of new
problems.

The majority of previous projects have focused on the provision of middleware li-
braries aimed at simplifying the development of dependable distributed systems,
whereas the pivotal deployment and operational aspects of such systems have re-
ceived very little attention. This thesis extends on previous works and emphasize the
deployment and operational aspects, where the gain in terms of improved depend-
ability is likely to be the greatest.

The main contribution of this dissertation is an architecture for autonomous repli-
cation management, aimed to improve the dependability characteristics of systems
through a self-managed fault treatment mechanism that is adaptive to network dy-
namics and changing requirements. Consequently, the architecture also improves the
deployment and operational aspect of systems, and reduces the human interactions
needed. The architecture has been implemented as a proof of concept prototype by
extending the Jgroup object group system.

v

In addition, numerous supporting contributions are also included in this work: (i) an
architecture for dynamic protocol composition that avoids the delays of event pro-
cessing in intermediate layers of a strictly vertical protocol stack; (ii) adaptive proto-
col selection is also made possible on a per method/invocation basis, by annotating
server methods with the replication protocol to be used; (iii) client-side membership
handling is also implemented aimed to improve the load balancing and failover prop-
erties of systems when exposed to failures; (iv) online upgrade management of oper-
ational services is also implemented as an extension to the replication management
architecture.

Finally, the dissertation provides extensive experimental evaluation of the fault treat-
ment capabilities of the autonomous replication management architecture, with em-
phasis on testing complex failure scenarios. The first experiment examines the abil-
ity of clients to maintain correct membership when servers crash and recover. The
second experiment investigates the behavior of services when exposed to multiple
nearly-coincident node crash failures. In conjunction with this experiment, a novel
technique has been developed to estimate various service dependability characteris-
tics. In the third experiment the recovery performance of a system deployed in a wide
area network is evaluated. In this experiment multiple nearly-coincident reachability
changes are injected to simulate network partitions separating the service replicas.

To support the experimental evaluation, a set of generic tools have also been devel-
oped to aid the execution and analysis of the experiments.

vi

Preface

The Portable Document Format (PDF) version of this thesis features hyperlinks, en-
abling the reader to click on chapter, section and figure references, citations and other
linked items in order to navigate easily within the document. Also, the reader is en-
couraged to take note of the back reference links used in the bibliography; these
enable you to move to the pages where a particular citation was made.

The Jgroup/ARM [81] dependable computing toolkit presented in this thesis is made
available as open-source, licensed under the GNU Lesser General Public License
(LGPL). It can be downloaded from http://jgroup.sourceforge.net/. The Jgroup Ob-
ject Group System [87] was originally developed at the University of Bologna, Italy,
by Alberto Montresor under the supervision of Professor Özalp Babaoğlu.

vii

http://jgroup.sourceforge.net/

viii

Acknowledgements

First of all, I wish to thank my thesis advisor Professor Bjarne E. Helvik for his
contributions to this work, both as a coauthor of several papers and for invaluable
guidance and encouragement which eventually lead to the completion of this work. I
also wish to thank my mentor, Associate Professor Alberto Montresor for his contri-
butions and technical assistance concerning the Jgroup Object Group System. Also
for all the administrative help and your kindness during my visits to the University of
Bologna and the beautiful city of Verona. Also thanks to both Alberto and Professor
Özalp Babaoğlu for the collaboration on the Jgroup and Anthill projects.

I would also like to thank Associate Professor Simin Nadjm-Tehrani, Dr. Oddvar
Risnes and Associate Professor Poul E. Heegaard for taking the time to serve on my
dissertation committee. I’m also very grateful to Ketil Kristiansen for proofreading
the dissertation.

Thanks to all my colleagues at the Department of Electrical and Computer Engi-
neering (IED) at the University of Stavanger (UiS) for contributing to a joyful and
friendly work atmosphere. In particular, I wish to thank Professor Sven Ole Aase and
Kjell Olav Kaland for reducing my workload this last semester. Thanks to my for-
mer colleagues at the Department of Telematics (ITEM) at the Norwegian University
of Science and Technology (NTNU), especially Arne Øslebø, Otto Wittner, Tønnes
Brekne, Jacqueline Floch and Frank Li.

Thanks to Patricia Retamal (IED) and Randi Fløsnes (ITEM) for all kinds of admin-
istrative help, and Pål Sturla Sæther and Asbjørn Karstensen (ITEM), Birger Sandvik
and Theodor Ivesdal (IED) for invaluable technical assistance. Also thanks to the stu-
dents who have contributed code to the Jgroup/ARM toolkit: Rohnny Moland, Tor
Arve Stangeland, Rune Vestvik, Henning Hommeland and Jo Andreas Lind.

Finally, and most of all thanks to my wife Ingrid for her loving support through all
the ups and downs and for making me finish what I started even though it has taken
way too long to do it.

ix

x

Publications by the Author

Published parts of this thesis

[1] Hein Meling, Alberto Montresor, Bjarne E. Helvik, and Özalp Babaoğlu. Jgroup/ARM:
A Distributed Object Group Platform with Autonomous Replication Management. Tech-
nical Report No. 11, University of Stavanger, January 2006. Submitted for publication.

[2] Bjarne E. Helvik, Hein Meling, and Alberto Montresor. An Approach to Experimentally
Obtain Service Dependability Characteristics of the Jgroup/ARM System. In Proceed-
ings of the Fifth European Dependable Computing Conference (EDCC), Lecture Notes
in Computer Science, pages 179–198. Springer-Verlag, April 2005.

[3] Hein Meling and Bjarne E. Helvik. Performance Consequences of Inconsistent Client-
side Membership Information in the Open Group Model. In Proceedings of the 23rd
International Performance, Computing, and Communications Conference (IPCCC),
Phoenix, Arizona, April 2004.

[4] Hein Meling, Jo Andreas Lind, and Henning Hommeland. Maintaining Binding Fresh-
ness in the Jgroup Dependable Naming Service. In Proceedings of Norsk Informatikkon-
feranse (NIK), Oslo, Norway, November 2003.

[5] Marcin Solarski and Hein Meling. Towards Upgrading Actively Replicated Servers
on-the-fly. In Proceedings of the Workshop on Dependable On-line Upgrading of Dis-
tributed Systems in conjunction with COMPSAC 2002, Oxford, England, August 2002.

[6] Hein Meling and Bjarne E. Helvik. ARM: Autonomous Replication Management in
Jgroup. In Proceedings of the 4th European Research Seminar on Advances in Dis-
tributed Systems (ERSADS), Bertinoro, Italy, May 2001.

Other publications

[1] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Toward Self-Organizing, Self-
Repairing and Resilient Distributed Systems, chapter 22, pages 119–124. Number 2584
in Lecture Notes in Computer Science. Springer-Verlag, June 2003.

xi

[2] Özalp Babaoğlu, Hein Meling, and Alberto Montresor. Anthill: A Framework for the
Development of Agent-Based Peer-to-Peer Systems. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems (ICDCS), Vienna, Austria, July
2002.

[3] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Messor: Load-Balancing
through a Swarm of Autonomous Agents. In Proceedings of the International Workshop
on Agents and Peer-to-Peer Computing in conjunction with AAMAS 2002, Bologna,
Italy, July 2002.

[4] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Towards Self-Organizing, Self-
Repairing and Resilient Large-Scale Distributed Systems. In Proceedings of the In-
ternational Workshop on Future Directions in Distributed Computing (FuDiCo), Berti-
noro, Italy, June 2002.

[5] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Towards Adaptive, Resilient and
Self-Organizing Peer-to-Peer Systems. In Proceedings of the International Workshop
on Peer-to-Peer Computing (co-located with Networking 2002), Pisa, Italy, May 2002.

[6] Hein Meling, Alberto Montresor, and Özalp Babaoğlu. Peer-to-Peer Document Sharing
using the Ant Paradigm. In Proceedings of Norsk Informatikkonferanse (NIK), Tromsø,
Norway, November 2001.

[7] Finn Arve Aagesen, Bjarne E. Helvik, Ulrik Johansen, and Hein Meling. Plug and
Play for Telecommunication Functionality – Architecture and Demonstration Issues. In
Proceedings of the International Conference on Information Technology for the New
Millennium (IConIT), Bangkok, Thailand, May 2001.

[8] Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling, Rolv Bræk, and
Ulrik Johansen. Towards a Plug and Play Architecture for Telecommunications. In
Thongchai Yongchareon, Finn Arve Aagesen, and Vilas Wuwongse, editors, Proceed-
ings of the IFIP TC6 Fifth International Conference on Intelligence in Networks (Smart-
Net), pages 321–334, Pathumthani, Thailand, November 1999. Kluwer Academic Pub-
lishers.

[9] Finn Arve Aagesen, Bjarne E. Helvik, Hein Meling, and Ulrik Johansen. Plug and Play
for Telecommunications – Architecture and Demonstration Issues. In Proceedings of
Norsk Informatikkonferanse (NIK), Trondheim, Norway, November 1999.

[10] Audun Jøsang, Hein Meling, and May Lu. The establishment of public key infrastruc-
tures; Are we on the right path? In Proceedings of Norsk Informatikkonferanse (NIK),
Trondheim, Norway, November 1999.

xii

Technical reports

[1] Hein Meling, Alberto Montresor, Özalp Babaoğlu, and Bjarne E. Helvik. Jgroup/ARM:
A Distributed Object Group Platform with Autonomous Replication Management for
Dependable Computing. Technical Report UBLCS-2002-12, Department of Computer
Science, University of Bologna, October 2002.

[2] Alberto Montresor and Hein Meling. Jgroup Tutorial and Programmer’s Manual. Tech-
nical Report UBLCS-2000-13, Department of Computer Science, University of Bologna,
September 2000. Revised February 2002.

[3] Hein Meling and Bjarne E. Helvik. Dynamic Replication Management; Algorithm Spec-
ification. Plug-and-Play Technical Report 1/2000, Department of Telematics, Trondheim,
Norway, December 2000.

[4] Hein Meling and Bjarne E. Helvik. Dynamic Replication Management; Implementation
Options. Plug-and-Play Technical Report 2/2000, Department of Telematics, Trondheim,
Norway, December 2000.

[5] Bjarne E. Helvik and Hein Meling. Dynamic Replication; A simple dependability model
and some considerations concerning optimal state synchrony between active and passive
replicas. Plug-and-Play Technical Report 3/2000, Department of Telematics, Trondheim,
Norway, December 2000.

[6] Ulrik Johansen, Finn Arve Aagesen, Bjarne E. Helvik, and Hein Meling. Demonstrator
– Requirements and Functional Description. Plug-and-Play Technical Report 3/1999,
Department of Telematics, Trondheim, Norway, 1999.

[7] Finn Arve Aagesen, Rolv Bræk, Jacqueline Floch, Bjarne E. Helvik, Ulrik Johansen,
Hein Meling, and Vilas Wuwongse. A Reference Model for Plug and Play. Plug-and-
Play Technical Report 1/1999, Department of Telematics, Trondheim, Norway, 1999.

xiii

xiv

Contents

Abstract v

Preface vii

Acknowledgements ix

Publications by the Author xi

Nomenclature xxiii

Abbreviations xxvii

I Overview of Research 1

1 Introduction 3

1.1 Motivations . 5

1.2 About this Thesis . 6

1.2.1 Research Objectives and Constraints 7

1.2.2 Research Methodology . 8

1.2.3 Contributions . 9

1.3 Roadmap . 10

xv

2 Fault Tolerant Distributed Computing Platforms 13

2.1 Distributed Computing Systems 13

2.1.1 Dependable Distributed Systems 14

2.2 Object-Oriented Distributed Computing Platforms 17

2.2.1 CORBA . 18

2.2.2 Java Remote Method Invocations 20

2.2.3 Jini . 23

2.2.4 Enterprise Java Beans . 25

2.3 Group Communication Systems 26

2.3.1 The Group Membership Service 27

2.3.2 Primary Partition vs. Partitionable Membership Services . . 27

2.3.3 Open vs. Closed Group Communication 28

2.4 Replication Techniques and Protocols 29

2.4.1 Active Replication . 29

2.4.2 Passive Replication . 31

2.4.3 Semi-Active Replication 31

2.4.4 Semi-Passive Replication 32

2.4.5 Combining Replication Techniques 32

2.4.6 Atomic Multicast . 33

2.5 Dependable Middleware Platforms 33

2.5.1 Classification of Dependable Middleware 33

2.5.2 Object Group Systems . 35

2.5.3 Fault Treatment Systems 36

2.6 Summary . 38

xvi

3 The Jgroup Distributed Object Model 39

3.1 System Model . 40

3.2 Architectural Overview . 41

3.3 Jgroup Services . 43

3.3.1 The Partition-aware Group Membership Service 43

3.3.2 The Group Method Invocation Service 44

3.3.3 The State Merging Service 51

3.4 The Dependable Registry Service 53

4 An Overview of Autonomous Replication Management 55

4.1 Introduction . 56

4.2 Jgroup/ARM Overview . 57

4.3 Architectural Overview . 59

II Adaptive Middleware 63

5 The Jgroup/ARM Architecture 65

5.1 Architectural Requirements . 66

5.2 The Jgroup/ARM Architecture . 67

5.2.1 Replication Manager Dependency 69

5.2.2 The Object Factory . 69

5.2.3 The Group Manager . 70

5.2.4 The Jgroup Daemon . 70

5.2.5 Failure Independence and JVM Allocation 71

xvii

6 Dynamic Protocol Composition 73

6.1 Introduction to Protocol Architectures 74

6.2 Protocol Architecture Requirements 75

6.3 Protocol Modules . 75

6.4 Module Interactions . 78

6.4.1 Local Inter-module Interactions 80

6.4.2 Remote Inter-module Interactions 82

6.4.3 Server to Module Interactions 83

6.4.4 External Entity to Module Interactions 85

6.5 The Dynamic Construction of Protocol Modules 87

6.5.1 Module Instantiation . 88

6.5.2 Link Configuration . 89

6.5.3 Bootstrapping . 90

6.5.4 Event Interception . 90

6.5.5 An Example Protocol Module 91

6.5.6 Impact of Dynamic Module Construction 91

7 Adaptive Protocol Selection 93

7.1 Motivation . 94

7.2 The EGMI Architecture . 96

7.2.1 The Client-side and Server-side Proxies 99

7.3 Replication Protocol Selection . 100

7.3.1 Supporting a New Protocol 101

7.3.2 Concurrency Issues . 103

7.4 The Leadercast Protocol . 104

7.5 The Atomic Multicast Protocol . 107

7.6 Runtime Adaptive Protocol Selection 109

xviii

8 Enhanced Resource Sharing 111

8.1 The Jgroup Daemon Architecture 112

8.2 Daemon Communication . 113

8.2.1 Inter-Daemon Communication 113

8.2.2 Group Manager – Daemon Communication 115

8.3 Daemon Allocation Schemes . 116

8.4 Daemon Discovery and Creation 118

8.5 Failure Detection and Recovery 119

8.5.1 Recovery Issues . 121

9 Client-side Membership Issues in the Open Group Model 123

9.1 Problem Description . 124

9.2 Client-side Performance Impairments 126

9.2.1 Performance Without Updates of the Client-side Proxy . . . 126

9.2.2 Client-side Update Delays 127

9.3 Updating the Dependable Registry 129

9.3.1 The Lease Refresh Technique 129

9.3.2 The Notification Technique 130

9.3.3 Combining Notification and Leasing 131

9.4 Updating the Client-side Proxies 131

III Autonomous Management 135

10 Policies for Replication Management 137

10.1 ARM Policies and Policy Enforcing Methods 138

10.1.1 The Distribution Policy . 138

10.1.2 The Replication Policy . 140

10.1.3 The Remove Policy . 141

10.2 The Configuration Mechanism . 141

10.2.1 Target Environment Configuration 141

10.2.2 Service Configuration . 143

xix

11 Autonomous Replication Management 145
11.1 The Replication Manager . 146
11.2 The Management Client . 148
11.3 Monitoring and Controlling Services 148

11.3.1 Group Level Service Monitoring 149
11.3.2 Replica Level Monitoring 150
11.3.3 The Remove Policy . 152

11.4 The Object Factory . 154
11.5 Failure Recovery . 155
11.6 Replicating the Replication Manager 156
11.7 Summary . 159

12 Online Upgrade Management 161
12.1 Introduction . 162
12.2 System Model and Upgrade Assumptions 163
12.3 A Simple Architecture for Online Upgrades 164

12.3.1 The Upgrade Module . 165
12.4 The Upgrade Algorithm . 166

12.4.1 Summary . 168
12.5 An Alternative Upgrade Approach 169
12.6 Closing Remarks . 170

IV Experimental Evaluation 171

13 Toolbox for Experimental Evaluation 173
13.1 Introduction . 174
13.2 Architectural Overview . 175
13.3 Experiment Scripting . 177
13.4 Code Instrumentation . 178

13.4.1 The Logging Facility . 178
13.4.2 Fault Injectors . 179
13.4.3 Improvements to Avoid Code Modification 184

13.5 Experiment Analysis . 185
13.6 Summary . 186

xx

14 Client-side Update Measurements 189
14.1 Experiment Setup . 190

14.2 Client-side Update Measurements 191

14.2.1 No Update . 191

14.2.2 Client-side View Refresh 192

14.2.3 Periodic Refresh . 193

14.3 Summary of Findings . 194

15 Measurement based Crash Failure Dependability Evaluation 195
15.1 Introduction . 196

15.2 Target System . 197

15.2.1 The State Machine . 198

15.3 Measurements . 201

15.3.1 Experiment Outline . 201

15.3.2 Experimental Strategy . 205

15.3.3 Estimators . 209

15.4 Experimental Results . 211

15.5 Concluding Remarks . 214

16 Evaluation of Network Instability Tolerance 215
16.1 Target System . 217

16.2 A Partial State Machine and Notation 218

16.3 Measurements . 220

16.3.1 Injection Scheme . 221

16.4 Experimental Results . 223

16.4.1 Configuration (a) . 223

16.4.2 Configuration (b) . 225

16.5 Concluding Remarks . 229

V Conclusions 231

17 Conclusions and Further Work 233

Bibliography 237

xxi

xxii

Nomenclature

BW the bandwidth used by the kernel density function
ck command k associated with a service interface
dx number of Jgroup daemons in site x

Di the duration to reach a stable state after injection Ii

D] state identifier (down state)
δs the setup delay for the injection of a network partition
δc the commit delay for the injection of a network partition
ei,j event j associated with the ith listener interface
Ei last event system event before injection Ii+1

F the set of down states
f number of failures to be tolerated
fil time of the lth failure, relative to the first failure in the ith trajectory
G the set of group members (replicas) in a group
Gn the set of group members (replicas) in group n

Gn
i the set of group members (replicas) in group n at time i

g(Xi) generic function on samples from Xi

Ii injection number i

I(· · ·) indicator function
ij the jth event in the ith failure trajectory
k number of fault injections
k∗ the reached stratum (the actual number of faults injected)
l index counter for the number of failures injected so far
Λ̂ system failure intensity
λ node failure rate

xxiii

m a message
mi message number i

N number of observations
Nx number of nodes in site x

Ni node number i

n number of nodes in target system
Pi the set of patterns from which injection number i is drawn
P the current set of partitions
pi probability of failure trajectory i

pj,i the ith reachability pattern to inject in the jth experiment
πk probability of a trajectory in stratum Sk

R the current redundancy level of a group (or service)
Rp the current redundancy level of a group (or service) in partition p

Rmin the minimum redundancy level of a group (or service)
Rmin (s) the minimum redundancy level of service s

Rinit the initial redundancy level of a group (or service)
Ractive the number of active replicas
Rpassive the number of passive replicas

R̂(t) the predicted reliability function
Si server number i

SA(i) server number i of type A

Sk classification/stratum for trajectories with k concurrent failure events
σk variance in the duration of a trajectory reaching stratum Sk

(T |k = l) the duration of a trajectory that completes in stratum Sl

Tmax maximum range from which injections are chosen
Tmin minimum time between injections
TBF time between failures
TNR node recovery time
TSR service recovery time
T|V| renewal rate for replica monitoring given a group size of |V|
Tcu client update time
Tf client-side failover latency
Ti duration of trajectory i

xxiv

Tr server recovery time
Tu total client-side update delay
td client-side detection time for server failure
tij time of the jth event in the ith failure trajectory
tu time at which the client-side proxy is updated again
tx failure occurrence time
Θ expected duration of a trajectory
Θk expected duration of a trajectory reaching stratum Sk

Û service unavailability
v̂ version number of the replica
vk view number k (view identifier)
V the set of members in the current view
Vk the set of members in the view identified by vk

Vp the set of members in the current view in partition p

|V| the cardinality of view V
View-c a view event with cardinality c

X] state identifier (up state)
Xij state after event ij
Xi(t) the state at time t in the ith failure trajectory
Xi(tx) ./ f a trajectory i where a failure occurs at tx
Xi list of events and timestamps recorded for trajectory i

Yi generic function on samples from Xi

Y d
i time spent in a down state during trajectory i

Y f
i indicator for visiting down state during trajectory i

xxv

xxvi

Abbreviations

AOP Aspect-Oriented Programming
API Application Programming Interface
ARM Autonomous Replication Management
AS Additional Service
CORBA Common Object Request Broker Architecture
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DR Dependable Registry
EGMI External Group Method Invocation
EGMIS External Group Method Invocation Service
EJB Enterprise Java Beans
GC Garbage Collection
GCS Group Communication System
GM Group Manager
GMI Group Method Invocation
GMIS Group Method Invocation Service
GMS Group Membership Service
IGMI Internal Group Method Invocation
IGMIS Internal Group Method Invocation Service
IIOP Internet-Inter ORB Protocol
IP Internet Protocol
ISO International Organization for Standardization
JD Jgroup Daemon
JVM Java Virtual Machine

xxvii

LAN Local Area Network
LMI Local Method Invocation
MANET Mobile Ad Hoc Network
MC Management Client
MDT Mean Down Time
MS Monitored Service
MTBF Mean Time to Between Failures
NTP Network Time Protocol
OD Outdated view
OGS Object Group System
ORB Object Request Broker
OSI Open Systems Interconnection
PDP Policy Decision Point
PEP Policy Enforcement Point
PE Partition Emulator
PGMS Partitionable Group Membership Service
RM Replication Manager
RMI Remote Method Invocation
RMS Reliable Multicast Service
ROWA Read-One, Write-All
SM Service Monitor
SMS State Merging Service
TCP Transmission Control Protocol
TINA Telecommunications Information Networking Architecture
UDP User Datagram Protocol
WAN Wide Area Network
XML eXtensible Markup Language

xxviii

Part I

Overview of Research

1

Chapter 1

Introduction

The increasing reliance on networked information systems in modern society requires
that the services they provide remain available and the actions they perform be cor-
rect. A common technique for achieving these goals is to replicate critical system
components whereby the functions they perform are repeated by multiple replicas.
As long as replica failures are independent, the technique provides higher availability
and correctness for the system than that of its individual components. Distributing
replicas geographically and connecting them through a network is often effective for
rendering failures independent. However, the network is in no way static. Nodes
fail, are removed or introduced, and temporary network partitions may occur. Pro-
viding highly dependable services cost-efficiently in such an environment, requires
self-managing systems capable of fault treatment in response to failures.

Traditionally, vendor specific hardware based solutions have been used to provide
dependable computing. In the last decade the trend has been towards using replicated
commercial-off-the-shelf (COTS) components, augmented with specialized software
components that enable dependable computing. The rationale behind this trend is
mainly driven by the fact that COTS components are cheaper, but they are also more
flexible and easier to replace. In addition, the evolution of processing capacity of
such components are typically superior to custom made hardware, due to the lower
production volume of such hardware.

In parallel with the trend towards replicating COTS components, distributed com-
puting has gained an enormous growth due to the commercialization of the Internet.
This growth, and the complexity of the systems involved, has lead to the emergence
of numerous distributed computing platforms, often called middleware because they

3

4

appear between the application and operating system services. These middleware
platforms greatly simplify the development of distributed software applications, since
they provide high-level programming interfaces for building distributed applications,
thus hiding the low-level details, such as remote communication and object loca-
tion. Most notable are CORBA [50] and Java RMI [123], and more recently Java 2
Enterprise Edition [120], Jini [7] and .NET [39], all of which hold the promise of
simplifying network application complexity and development efforts. Their ability
to exploit COTS components, cope with heterogeneity and distribution and to permit
access to legacy systems makes them particularly attractive for building application
servers and three-tier e-business solutions.

Facilitating simplicity in distributed application development, deployment and opera-
tion, middleware frameworks typically implement a number of transparencies [125].
Collectively these transparencies are often referred to as the distribution transparency,
and include location transparency and access transparency among others. Unfortu-
nately, most middleware frameworks do not provide replication transparency and
failure transparency, facilitating ease of development and operation of dependable
distributed applications. This shortcoming has been recognized by numerous aca-
demic research projects [43, 87, 18, 93, 96], and also by the Object Management
Group (the governing body for the CORBA standard) in its Fault Tolerant CORBA
specification [49]. The telecommunications community have always had strong fo-
cus on dependable service delivery, and hence the TINA1 Consortium (see [128])
emphasized dependability in their various specifications, e.g. [129, 130]. The TINA
architecture reuse CORBA as its distributed processing environment, with a few
telecommunications related enhancements. In recent years, commercial [10, 117]
implementations of dependable middleware products have also become available.

The majority of previous projects have focused on the provision of middleware li-
braries aimed at simplifying development of dependable distributed applications,
whereas the pivotal deployment and operational aspects of such applications have
received very little attention. This thesis extends on previous works and emphasize
the deployment and operational aspects, where the gain in terms of improved depend-
ability is likely to be the greatest.

This thesis focus on object-oriented middleware frameworks based on the client-
server paradigm, where a client object issues requests to a server object that performs
the operation associated with the request, and returns an appropriate response to the
client.

1Telecommunications Information Networking Architecture

1. INTRODUCTION 5

1.1 Motivations

Replication transparency is about hiding the fact that an object is replicated [125], and
requires that the client be able to communicate with the replicated server as if it was
a single entity. The lack of support for replication transparency in existing middle-
ware environments stem from their fundamental one-to-one interaction model. Such
environments would have to simulate a “one-to-many” interaction model through
multiple one-to-one interactions [48]. This approach not only increases application
complexity, since the application developer needs to worry about complex reliability
protocols, but it also degrades performance.

A common approach to enhance a middleware platform with replication transparency
is to introduce replicated (server) objects. Hence, the unit of replication is an object.
Thus, for a client object to communicate transparently (and efficiently) with a repli-
cated server object, it needs a one-to-many communication primitive. Such one-to-
many interactions can be provided by a group communication system [87, 29]. Group
communication provides support for managing groups of objects and primitives for
communication between all members of a group. The purpose of a group is to provide
a single logical address, through which clients can transparently communicate with
an object group, as if it were a single, non-replicated object. Clients can communi-
cate with an object group, without knowing the location and identity of the individual
members. The clients does not need to know the size of the group. The notion of ob-
ject groups has shown itself to be an important paradigm for building applications
that support fault tolerance, high availability, load balancing, and parallel processing.

Although there are many middleware platforms based on object groups [43, 87, 18, 3]
that support replication transparency, most platforms do not support failure trans-
parency. Failure transparency hides, from a client, the failure and recovery of a server
object. Failure transparency is an important aspect in the design of (possibly un-
maintained) highly available systems. Traditionally, group communication systems
assume a dynamic crash no-recovery model [134]. That is, it will hide the fact that a
server has failed, using the group mechanism for hiding the number of members of
the group, their location and identity. However, a group communication system per se
will not try to recover a failed member. Maintaining a certain redundancy level (and
thereby service availability) requires that replica failures are detected and handled
through manual intervention, or through some unspecified external entity [134] [29,
and references therein]. Under this assumption, one can only hide failure until all
initial group members are exhausted, which will eventually happen unless there is
active maintenance of the system.

6 1.2. ABOUT THIS THESIS

The overall goal of this thesis is to propose a self-managed fault treatment middle-
ware architecture, consequently improving the dependability characteristics of ser-
vices deployed on top of the architecture.

1.2 About this Thesis

This thesis was started in the context of the Plug-and-Play (PaP)2 project [126] – a
joint project between the Norwegian University of Science and Technology (NTNU)
and SINTEF. The PaP project aims at developing an architecture for network-based
service systems with A) flexibility and adaptability, B) robustness and survivability,
and C) QoS awareness and resource control. The goal is to enhance the flexibil-
ity, efficiency and simplicity of system installation, deployment, operation, manage-
ment and maintenance by enabling dynamic configuration of network components
and network-based service functionality.

The work in this thesis was triggered by the intention to provide dependable PaP
services [1] through middleware functionality which a) were transparent to the ser-
vice functionality, b) had a replication level (and style) tailored to the dependability
requirements of the individual services (objects or actors in PaP terminology) and
c) were autonomously maintained under node failures and topology changes in the
network, etc.

Since the inception of the PaP project, we have seen a significant interest in systems
capable of coping with complexity and dynamism in the same spirit as we started out
with in the PaP project. For instance, the Autonomic Computing initiative proposed
by IBM in March 2001 [9] and the BISON project [24]. Since then, the Autonomic
Communication concept has evolved [8] based on the same ideas, but instead focus-
ing on autonomy in network environments, much like the overall ideas of the PaP
project.

An autonomic computing system tries to mimic the human autonomous nervous sys-
tem, which takes care of the actions you have no conscious control over, such as
breathing, heartbeat, digestion and so on [95]. An autonomic computing system is
therefore considered to be self-managing. The properties of a self-managing system
may include: self-configuring, self-healing, self-optimizing and self-protecting. Such
capabilities can be obtain through an engineered approach or through an emergent

2The Plug-and-Play project has later been dubbed TAPAS (Telematics Architecture for Play-based
Adaptable Systems).

1. INTRODUCTION 7

behavior based approach. Emergent behavior is the overall behavior generated by
many simple behaviors interacting in some way, where a simple behavior is a be-
havior with no true awareness of the overall emergent behavior it is part of [135].
Emergent behaviors are common in nature and have been observered in colonies of
social insects and animals. The emergent behavior based approach is very appealing
when the sheer size of the system makes traditional engineered techniques infeasible.
For instance, emergent behavior based approaches have been used to construct load
balancing mechanisms [90], a P2P file-sharing system [16], and to resolve network
management issues [135], all of which focus on complex and large-scale systems.

The work presented in this thesis bring along many of the ideas developed in the PaP
project, and draws on concepts from autonomic computing and communication to de-
velop a self-managing fault treatment architecture, based on a traditional engineered
approach.

1.2.1 Research Objectives and Constraints

A lot of research has been done in the domain of distributed computing and group
communication in recent years, and very promising techniques and platforms have
been proposed to deal with the various transparencies that are so sought after to re-
duce application complexity. Yet very few proposals [102, 103, 81] have focused on
the fault treatment issue.

The overall goal of this thesis is to provide a fault-tolerance architecture that is self-
managing and adaptive to network dynamics and changing requirements. The added
benefits of such an architecture are twofold:

• reduced human interactions and costs, and

• improved dependability of systems using the architecture [57, 81].

To reach this goal, an architecture for Autonomous Replication Management (ARM)
is proposed. ARM extends the Jgroup [87] object group system, in a manner which
allows the deployment and operation of services through an autonomic management
facility, consequently reducing the required human interactions and costs. Another
important goal of this thesis is to evaluate the dependability characteristics obtained
by using the ARM architecture [57].

The assumed target environment for such a system is one in which the distributed
system contains a pool of nodes (processors) on which service replicas can be hosted
(see Figure 1.1). It is also assumed that more than one service can be hosted on the

8 1.2. ABOUT THIS THESIS

Wide Area Network

Site XNode X1
ServiceA

ServiceB

Node X2
ServiceC

ServiceB

Site YNode Y1
ServiceA

ServiceC

Node Y2
ServiceC

ServiceA

Client

Client

Client
Client

Client

Figure 1.1: An example target environment for a fault tolerant distributed system.

same node. The nodes may be geographically distributed on separate sites to avoid
the consequences of a catastrophic failure or a network partition separating clients
from all the servers.

Failure assumptions: Objects and nodes in the target environment are assumed to
follow the crash (omission) failure semantics, whereas links between nodes/objects
may partition and re-merge. The system presented in this thesis is designed to tolerate
such failures. Chapter 2 provides a description of these and other failure modes.

1.2.2 Research Methodology

The Jgroup/ARM architecture has been implemented as a proof of concept prototype.
Generally, a system or architecture can be evaluated analytically, through simulations,
or through measurements on a real system [61]. There are mainly two reasons for
doing a prototype implementation:

1. Many middleware platforms already exists, even with support for replication
transparency. Hence, a working system is significantly more credible than a
system based on simulations or analytical evaluation. However, the drawback
of doing a prototype is that it takes longer to implement and test and to perform
measurements [61].

1. INTRODUCTION 9

2. Both experience and code can be brought into a commercial product based on
this work.

The work presented in this thesis follows a traditional research methodology.

Work hypothesis The contributions of this thesis are all based on an initial idea,
i.e. a hypothesis. The main ideas in Part III are geared towards techniques aimed at
achieving the overall goal of this work, whereas ideas in Part II are needed to support
the main goal.

Hypothesis testing To determine the value of the ideas presented in this thesis,
various test scenarios have been constructed. The various tests attempt to model
realistic failure scenarios that could potentially occur in a real deployment of a system
based on Jgroup/ARM. The tests are designed to test a significant portion of the
possible ways in which the system can fail, rather than testing only the common
failure scenarios. A measurement based evaluation is the natural choice, since a
prototype implementation has been developed. Chapter 13 presents the framework
used for the tests. This framework has been developed in the context of this thesis,
and aims to simplify and automate the execution of experiments.

Result validation Results are obtained from the various test scenarios. Some tests
are aimed at revealing the delays involved in fault treatment, whereas others aim to
test Jgroup/ARM resilience when exposed to a rapid succession of failures. Few other
comparable results exists, but where appropriate a comparison is made.

1.2.3 Contributions

A Revised Object Group Platform for Java The prototype developed in the con-
text of this thesis is based on the Jgroup [87] object group system. The initial Jgroup
design followed a rather monolithic approach which made it difficult to support the
flexibility and adaptivity required for autonomic management of services. However,
other benefits of Jgroup outweighed these considerations, and hence the decision was
made to enhance Jgroup with the necessary features to support our requirements. In
particular, the revised Jgroup core has been made significantly more flexible by in-
troducing layer-like modules that can be configured to interact in various ways. New
modules can easily be added, and a number of modules have been implemented to
solve specific tasks needed by the other contributions below. Additional flexibility

10 1.3. ROADMAP

has also been gained by allowing multiple replicas (of distinct services) to be located
on the same node. Furthermore, clients also need to adapt to the dynamics of the
environment to provide an adequate failover mechanism in the face of failures and
recoveries. Finally, an architecture for configurable replication protocols has been
added to simplify application design. These are all issues that needed to be dealt with
in order to support our main goal.

The Autonomous Replication Management Architecture We propose the design
of an event-driven architecture for Autonomous Replication Management (ARM),
that provides replication management and recovery to Java-based distributed appli-
cations. The ARM architecture is built on top of an object group system and features
mechanisms for distributing replicas (geographically) on separate nodes, and han-
dling recovery from replica failures, by means of creating a replacement replica on
an alternative node. This is an effective mechanism for rendering replica failures
independent.

The Upgrade Management Architecture An architecture for software upgrade
management is proposed, ensuring uninterrupted service provisioning during the up-
grade process. Upgrade management is incorporated in the ARM architecture and
takes advantage of the fact that we can, for a short period of time, decrease the redun-
dancy level of a service to handle the upgrade process by replacing the replicas one
by one.

Extensive Experimental Analysis To demonstrate the usefulness of Jgroup/ARM
and its impact on service availability, three major experimental evaluations has been
conducted. Each experiment focuses on a separate aspect: client performance and
failover latency in response to server failures, obtaining service availability metrics
for a service exposed to multiple nearly-coincident crash failures and determining
the recovery performance for the system when exposed to multiple nearly-coincident
partition failures. In the second experiment, a novel technique has been developed to
assess the dependability characteristics of a system deployed using Jgroup/ARM.

1.3 Roadmap

The dissertation is organized in five parts as illustrated in Figure 1.2.

Part I gives an overview of the research topics covered in this thesis. Chapter 2 gives
a brief state of the art overview of fault tolerant distributed systems and attempts to

1. INTRODUCTION 11

relate previous works to the work presented in this thesis. Readers familiar with the
field may browse quickly through the chapter or skip directly to Chapter 3.

Part I Part I —— Overview of Research Overview of Research
1. Introduction
2. Fault Tolerant Distributed Computing Platforms
3. The Jgroup Distributed Object Model
4. An Overview of Autonomous Replication Management

Part IV Part IV —— Experimental Evaluation Experimental Evaluation
13. Toolbox for Experimental Evaluation
14. Clientside Update Measurements
15. Measurement based Crash Failure Dependability Evaluation
16. Evaluation of Network Instability Tolerance

Part II Part II —— Adaptive Middleware Adaptive Middleware
5. The Jgroup/ARM Architecture
6. Dynamic Protocol Composition
7. Adaptive Protocol Selection
8. Enhanced Resource Sharing
9. Clientside Membership Issues in
 the Open Group Model

Part III Part III —— Autonomous Management Autonomous Management
10. Policies for Replication Management
11. Autonomous Replication Management
12. Online Upgrade Management

Part V Part V —— Conclusions Conclusions
17. Conclusions and Further Work

Figure 1.2: Organization of the dissertation.

Chapter 3 gives an overview of the Jgroup distributed object model on which this
work is based; the description is included to make the thesis self-contained. Readers
familiar with Jgroup may skip to Chapter 4. The main contribution of this work is
briefly presented in Chapter 4. It serves to give the reader an overview of the ARM
framework before covering the necessary changes to the Jgroup platform to support
ARM. The details of the ARM framework is covered in Part III.

12 1.3. ROADMAP

Part II covers the numerous enhancements made to the Jgroup platform to support
ARM and in general to improve the system. Chapter 5 presents the joint Jgroup/ARM
architecture. Chapter 6 describes the new protocol composition framework that is ca-
pable of dynamic construction of protocols based on some configuration. The archi-
tecture for adaptive protocol selection is covered in Chapter 7. It allows both design
time and runtime adaption of replication protocols on a per method basis. Issues
concerning enhanced resource sharing among replicas on the same node is covered
in Chapter 8. This improvement makes it easier for ARM to place multiple replicas
on the same node. Chapter 9 describes techniques to overcome potential member-
ship inconsistencies on the client side of a group communication system based on the
open group model, such as Jgroup.

Part III treats the main architectural contributions of this work, the ARM framework.
Chapter 10 describes the policy framework in which policies for replication manage-
ment are defined; the policy framework is used by the various Jgroup/ARM compo-
nents to determine their self-regulatory behavior. A detailed description of the ARM
framework is given in Chapter 11; ARM is a self-managing fault treatment system
aimed at improving the dependability characteristics of deployed services. Chap-
ter 12 describes a complementary architecture to enable online upgrading of services
by exploiting synergies with ARM.

Three distinct measurements of the ARM framework are covered in Part IV. Initially,
in Chapter 13, we describe the experiment framework used to conduct the measure-
ments in the following three chapters. The first set of measurements presented in
Chapter 14 aims to reveal the benefit of updating the client-side membership infor-
mation when invocations are load balanced on a set of servers. The failover latency
seen by clients is also measured in this experiment. These measurements are related
to the techniques described in Chapter 9. Chapter 15 presents a novel evaluation tech-
nique to estimate dependability attributes of a system based on measurements. This
technique is applied to a service deployed using Jgroup/ARM, when exposed to crash
fault injections. The final experimental evaluation presented in Chapter 16, aims to
evaluate the network instability tolerance of the Jgroup/ARM framework. In this ex-
periment, network instability is emulated through injection of one or more network
partitions in the system.

Part V concludes the thesis by reviewing the main topics covered herein. Ideas for
future work is also outlined.

Chapter 2

Fault Tolerant Distributed
Computing Platforms

This chapter gives a brief overview of the state of the art in the field of fault tolerant
distributed systems and middleware for such systems, and attempts to relate previous
works to what has been done in the context of this thesis.

2.1 Distributed Computing Systems

Computer programs that consist of two or more decoupled program components that
interact with each other by the exchange of messages, is considered a networked
application. In contrast, a distributed computing application is comprised of a set
of tightly coupled program components running on several computers, coordinating
their actions [22]. The purpose of building distributed applications is to circumvent
the limited resources of a single computer, through exploitation of the aggregate re-
sources of multiple (possibly less powerful) computers. The resources we refer to
may be information, disk capacity, CPU cycles and so on. For example, an online
banking service, as shown in Figure 2.1, may be implemented as a distributed ap-
plication involving a large number of clients, and a number of server objects imple-
menting various parts of the banking application. Each of the server objects may be
located on distinct nodes within the bank network.

Although distributed computing has many appealing properties, they are very difficult
to build and manage correctly. This is due to issues such as synchronization, failures,

13

14 2.1. DISTRIBUTED COMPUTING SYSTEMS

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Node

Node

Node

Node

Server objects

Business
logic

service
Auth.

Security
manager

Business
logic

Client objects

Database

Bank network
Gateway

Account

service
Audit

Figure 2.1: An imaginary distributed banking application.

unreliable and insecure communication. The primary aim of middleware platforms
for distributed computing is to support the distribution transparency, as discussed
previously.

2.1.1 Dependable Distributed Systems

Since distributed systems typically involve a large number of hardware and software
components, more things can go wrong. That is, without taking additional measures,
a distributed system is per se less dependable than a centralized system. Dependabil-
ity is a term that covers many useful requirements for distributed systems [62, 56]:

1. Reliability is defined as the system’s ability to provide uninterrupted service.
In other words, a highly reliable system is one that is likely to continue to work
without interruption for a relatively long period of time.

2. Availability refers to the property that a system is ready to be used immedi-
ately. Thus, a highly available system is one that is likely to be working at a
given instance in time.

3. Safety refers to a system that may fail temporarily, yet nothing catastrophic
happens. For example, a system stop may be considered a benign failure, while
loss or corruption of data is considered catastrophic.

4. Security concerns the system’s ability prevent unauthorized access to data,
services and other resources.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 15

In this dissertation, focus is on reliability and availability.

In the dependable system community, fault, error and failure have a specific mean-
ings, whereas in daily language these words are often used interchangeably to mean
the same thing. This dissertation use the definitions of [11]:

1. Failure Deviation of the delivered service from compliance with the speci-
fication. Transition from correct service delivery to incorrect service delivery.

2. Error Part of a system state which is liable to lead to failure. Manifestation
of a fault in a system.

3. Fault Adjudged or hypothesized cause of an error. Error cause which is
intended to be avoided or tolerated.

Hence, an error is the manifestation of a fault in the system, whereas a failure is the
effect of an error on the service.

There are an infinite number of ways in which a system can fail, and to be able to
build distributed systems that tolerate failures, we need to provide a precise and clear
definition of the types of failures that the system will tolerate. The various ways
in which a system can fail is often referred to as the failure modes of the system.
Although a system can fail in a number of different ways, it is common to classify
the various failure modes as shown in Figure 2.2, and briefly described below.

1. Value failures occur when the value of a response from the system implemen-
tation does not comply with the system specification. Value failures may either
be consistent, given the same input to the system, or inconsistent. Inconsistent
failures are often referred to as Byzantine failures [70].

2. Timing failures are related to violation of the temporal properties of the sys-
tem. Timing failures occur when the response to an input arrives too late/early
at its destination. The response value may otherwise be correct, but has become
invalidated by its late (or early) delivery.

3. Omission failures can be viewed as a special case of both value and timing
failure, and occur when the system provides no response to the provided input.
An omission failure can be either persistent or non-persistent. Persistent omis-
sion failure is commonly denoted as crash failure, meaning that a unit (e.g.
object) simply halts, losing its volatile data.

16 2.1. DISTRIBUTED COMPUTING SYSTEMS

Failure

Value Timing

Inconsistent
(Byzantine)

Consistent Late Early

Omission

Crash failure

Incorrect Delayed

Infinitely

PersistentNull value

Figure 2.2: Classification of failure modes (adopted from [56]).

In the context of distributed systems, it is common to use a further subdivision of
the failure modes that a system can tolerate. In particular, one such failure mode is
network partitioning failure, which is a special kind of omission failure, and may
occur when a network is fragmented into two or more subnetworks that are unable
to communicate with each other. A set of communicating processes may perceive a
network partition for a number of reasons. Events such as physical link breakage,
buffer overflows, incorrect or inconsistent routing tables may disable communication
between a pair of objects [14]. Such failures are also referred to as communication
failures.

In this work, we consider objects and nodes that follow crash failure semantics, and
in addition the network may partition and re-merge.

There are two general approaches to designing dependable distributed systems with
emphasis on reliability and availability attributes [56]:

• fault avoidance, and

• fault tolerance.

In this thesis, we focus on techniques related to fault tolerance.

A fault tolerant system is one that is able to continue to provide service in spite of the
occurrence and activation of faults in the system [56]. Building a fault tolerant system
requires some form of redundancy to detect, correct, or mask the effects of faults. In

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 17

this work, we consider redundancy in the form of additional system components or
replicas of objects.

To further improve the dependability characteristics of fault tolerant systems based
on replication, fault treatment can be introduced. A fault treatment system is one
that is able to reconfigure the system to either rectify or reduce the consequences of
a fault/failure. For example, fault treatment can be used to reconfigure the system to
restore the redundancy level of a service so that the system is able to tolerate further
faults. Fault treatment typically involves three phases: fault diagnosis, fault passiva-
tion and system reconfiguration. The fault diagnosis aims to localize the fault and to
decide whether fault passivation is necessary to prevent the fault from causing fur-
ther errors [102]. System reconfiguration often entails the allocation (relocation) and
initialization of new replicas to replace failed ones to restore the level of redundancy.

Software components deployed in a distributed system are rarely static, and new
versions are often deployed to replace old ones. In most distributed systems such
software upgrading requires that the whole system is taken offline while the upgrade
takes place. Such a scheme would be severely detrimental to the system’s availability.
However, when used in conjunction with a fault tolerant system based on replication,
online upgrades are made possible by replacing replicas one-by-one, while at least
some of the replicas (old and new) remains operational and able to service clients.
Hence, online upgrades can also be viewed as a means to improve the service avail-
ability characteristics, by eliminating (or reducing) the downtime during maintenance
activity.

2.2 Object-Oriented Distributed Computing Platforms

Distributed computing platforms, commonly denoted middleware platforms, are soft-
ware components or libraries that intend to ease the development of distributed com-
puting systems. These software components are logically layered below the applica-
tion and above the operating system, hence the name middleware. They hide many
details of distribution through the provision of a high-level programming interface
that developers may use. In addition to providing programming interfaces, middle-
ware platforms often include a number of common services that applications can
take advantage of to further simplify application development. Examples of common
services: naming service, notification service, and transaction management services.
Such services can be reused by multiple applications within the same system, and as
such becomes important infrastructure components.

18 2.2. OBJECT-ORIENTED DISTRIBUTED COMPUTING PLATFORMS

In recent years, numerous middleware platforms have evolved [50, 123, 120, 7, 39].
All of these middleware platforms are based on the object-orientation paradigm,
and their focus is on the non-functional aspects of a distributed system. Many of
these systems provide overlapping services and mechanisms. In the following, the
most common distributed computing platforms are discussed. The remote object
model [125] is prevalent in most e-business middleware architectures, and is also
the model used by the Jgroup [87] toolkit on which our prototype implementation is
based. Hence, we limit our discussion to the most common middleware platforms
based on the remote object model.

2.2.1 CORBA

The Common Object Request Broker Architecture (CORBA) is a specification [50] of
an architecture for distributed computing. The specification is drawn up by the Object
Management Group (OMG), a non-profit consortium with many industry members.
The primary goals of the CORBA specification is to provide a common architec-
ture for developing distributed systems, that will run across heterogeneous hardware
platforms, operating systems and programming languages.

Common
Object
Services

facilities
Vertical Horizontal

facilities
Application

objects

Object Request Broker (ORB)

Figure 2.3: The OMG object reference model [50].

The overall architecture of CORBA is laid down in a conceptual model, known as the
OMG reference model, shown in Figure 2.3. This reference model consists of four
groups of architectural facilities that connect to an Object Request Broker (ORB).
The ORB is at the core of a CORBA-based distributed system, and enable communi-
cation between CORBA objects and clients while concealing issues related to object
distribution and heterogeneity. The ORB is also commonly called a communication
bus for the CORBA objects, and in many systems the ORB is implemented as a set
of libraries that are linked at compile-time with the client and server applications.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 19

The four architectural facilities specified in the reference model is described briefly
below:

• Vertical facilities are domain specific. That is, they target a specific applica-
tion domain, such as finance, health care and electronic commerce.

• Horizontal facilities consist of high-level general purpose services that are in-
dependent of application domain. Examples of such services include document
management, printing and task management.

• Common object services are basic building blocks commonly used in dis-
tributed systems. These include services such as event notification, transaction
processing service and naming service.

• Application objects are end-user objects that perform specific tasks for a user.
A distributed CORBA application may involve a large number of objects, some
of which are application objects, while others may be taken from the domain
specific, general purpose and common facilities.

Application objects and CORBA services are specified using the CORBA Interface
Definition Language (IDL). CORBA IDL is a declarative language, derived from C++
syntax, in which methods and their arguments can be specified. However, CORBA
IDL has no provision for specifying semantics. It is also necessary to provide rules
for mapping an IDL specification to existing programming languages. Currently,
such rules exist for a number of languages, including C, C++, Java, Smalltalk, Ada,
COBOL, Lisp, Python and IDLscript.

In the common object services, a number of services have already been defined, and
new services continuously appear. However, for a long period, CORBA lacked real
support for fault-tolerance. That is, a failure of a server would simply be reported
to the client, and no further actions were taken by the CORBA system. In CORBA
version 3 [50] however, fault-tolerance have been addressed specifically. The spec-
ification for fault tolerant CORBA (FT CORBA) can be found in [49]. The basic
mechanism for dealing with failures in CORBA is to replicate objects into object
groups. The group as a whole can be referenced as if it were a single object, and as
such provide transparent replication to its clients. Several replication strategies are
supported in the fault tolerant CORBA specification, in particular various incarna-
tions of active and passive replication. In Section 2.5.3 the FT CORBA specification
is discussed further from a fault treatment perspective.

At the outset of this thesis, the intention was to enhance CORBA with support for
failure transparency and other fault-tolerance mechanisms. However, this intent was

20 2.2. OBJECT-ORIENTED DISTRIBUTED COMPUTING PLATFORMS

later abandoned for several reasons. Firstly, at the time the only available CORBA
based platform supporting fault-tolerance were OGS [41]. Albeit being a very good
framework, it had not been maintained for several years and lacked support for re-
cent developments in the CORBA architecture. Furthermore, the ORBs were not
designed to cope with deployment of services in a wide-area network, a fundamental
requirement if replicas are to be distributed geographically. Finally, the complexi-
ties of the CORBA architecture had caused a lot of companies to adopt competitive
technologies instead, such as J2EE and EJB in particular.

In discussions with companies providing CORBA implementations it seemed un-
likely that they would provide independent implementations of the FT CORBA stan-
dard, and would instead rely on the FT CORBA solution provided by Eternal sys-
tems to transparently provide fault tolerance for their systems. Eternal systems have
since changed their name to Availigent [10] and now provides fault tolerant mid-
dleware for ”all“ classes of applications. It seems that their focus has moved away
from FT CORBA. Additional details concerning the FT CORBA standard and related
technologies are discussed by Felber and Narasimhan in [45].

2.2.2 Java Remote Method Invocations

Java Remote Method Invocations (RMI) is a distributed object model for the Java
programming language. It retains as much as possible of the semantics of the Java
object model, simplifying the development of distributed objects [136]. A remote
object in the Java RMI model, is one whose methods can be invoked from another
Java Virtual Machine (JVM). The invoking JVM may be located on the same local
node or a remote node. The methods of a remote object that can be invoked remotely
must be declared in a remote interface. The invocation of a method on a remote
object is referred to as a remote method invocation.

Note that the following discussion is adapted from [87] and is slightly more detailed
than the other technologies discussed herein; this is motivated by the fact that the
Jgroup prototype extends the Java RMI model with support for object groups and
group method invocations.

In Java RMI, remote interfaces must satisfy the following requirements:

• A remote interface must at least extend, either directly or indirectly, the inter-
face java.rmi.Remote, which is a marker interface that defines no methods.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 21

• Each method declaration in a remote interface must satisfy the requirements of
a remote method declaration as follows:

1. A remote method declaration must include the java.rmi.RemoteExcepti-
on in its throws clause, in addition to any application-specific exceptions.
Remote exceptions are thrown when a remote method invocation fails
for some reason, such as communication failures (unreachable servers,
servers refusing the connection, etc.) or failures during parameter mar-
shaling or unmarshaling.

2. In a remote method declaration, a remote object declared as a parameter
or return value (either declared directly in the parameter list or embedded
within a non-remote object) must be declared as the remote interface, not
the implementation class of that interface.

Application Layer

Remote Reference Layer

Transport Layer

Stub/Skeleton Layer

Network

Transport

Stub

RemoteRef

Client

Transport

RemoteRef

Skeleton

Server

Figure 2.4: The Java RMI Architecture

The Java RMI architecture is illustrated in Figure 2.4. Java RMI uses a standard
mechanism (derived from RPC) for communicating with remote objects: stubs and
skeletons. The stub is the client’s local representative for the remote object. Clients
interact with remote objects through their local representative stub object. The stub
is responsible for performing method invocations on their remote counterpart. A
skeleton for a remote object is a server-side entity that dispatches invocations on
the actual remote object implementation. Stubs and skeletons can be generated by
the rmic compiler supplied with the standard Java RMI distribution. However, in
recent versions of the Java 2 Platform, the stubs and skeletons can also be generated
dynamically at runtime, obviating the need to use the rmic compiler.

A stub for a remote object implements the same set of remote interfaces implemented
by the remote object. Invoking a method on a stub, the stub does the following:

22 2.2. OBJECT-ORIENTED DISTRIBUTED COMPUTING PLATFORMS

• initiates a connection with the remote JVM containing the remote object;

• marshals (writes and transmits) the parameters to the remote JVM;

• waits for the result of the method invocation;

• unmarshals (reads) the return value or exception returned;

• returns the value to the caller.

In the remote JVM, each remote object have a corresponding skeleton. The skeleton
is responsible for dispatching the invocation to the actual remote object implementa-
tion. When a skeleton receives an incoming method invocation it does the following:

• unmarshals (reads) the parameters for the remote method;

• invokes the method on the actual remote object implementation;

• marshals the result (return value or exception) to the invoker.

In JDK 1.2 an additional stub protocol was introduced that eliminates the need for
skeletons. Instead, generic code is used to carry out the duties of skeletons.

Each stub contains a remote reference, that can be seen as a handle for the remote
object and is responsible for the semantics of the invocation. The current version
of Java RMI includes only two unicast (point-to-point) invocation mechanisms, one
relative to servers always running on some machine, and one relative to servers that
are activated only when one of their methods is invoked. No multicast invocation
mechanism is provided. One of the objectives of Jgroup [87] is to provide a multicast
invocation mechanism for remote method invocations. This is discussed at length in
Section 3.3.2.2.

Before a client can invoke the methods of a remote object, it must obtain a stub for
it. For this reason, the Java RMI architecture includes a repository facility called
rmiregistry that can be used to retrieve remote object stubs by simple names. Each
registry maintains a set of bindings 〈name, remote object〉; new bindings can be
added using method bind, while a lookup method is used to obtain the stub for a
remote object registered under a certain name. Since registries are remote objects,
the Java RMI architecture includes also a bootstrap mechanism to obtain registry
stubs. Jgroup provide a dependable registry, as discussed in Section 3.4.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 23

2.2.3 Jini

The Jini technology framework [121, 122, 7] provides an infrastructure for defining,
advertising and finding services in a network. It takes care of some of the common,
but difficult, issues of distributed systems development. A Jini system consists of the
following parts [7]:

• A set of components that provides an infrastructure for federated services in a
distributed system.

• A programming model that supports and encourages the production of reliable
distributed services.

• Services that can be made part of a federated Jini system and offer functionality
to any other member of the federation.

Figure 2.5 shows the various services, programming models and infrastructure com-
ponents supported by the Jini architecture.

Figure 2.5: Jini Architecture Segmentation [121].

Note that we have used Jgroup to enhance the Jini transaction service with support
for replicated transaction managers and participants [85, 66]. Also the Jini lookup
service has been enhanced to support object groups [88]. These topics are not covered
in this thesis.

24 2.2. OBJECT-ORIENTED DISTRIBUTED COMPUTING PLATFORMS

2.2.3.1 Jini Extensible Remote Invocation

In recent versions of Jgroup the plain Java RMI model discussed above have been re-
placed with the more flexible Jini Extensible Remote Invocation (JERI) model [116].
JERI is used to invoke remote methods in Jini. It is designed explicitly for extension
of the mechanisms underlying remote invocations. JERI is based on Java RMI, but
is more loosely coupled to the Java programming language. This is to improve the
interoperability with other languages. There are several implementations of JERI en-
abling the use of RMI semantics over HTTP, IIOP and also SSL. JERI has also been
modified to eliminate the need for compile-time generation of stubs, which is now
done using reflection [6] instead. The JERI protocol stack is also more flexible than
the Java RMI model, as shown in Figure 2.6.

Figure 2.6: The JERI protocol stack [116].

The protocol stack consist of three layers: A transport layer, an object identification
layer and an invocation layer. The transport layer is responsible for communicating
requests and responses over the network. Remote method invocations are encoded
into a transport specific format, which is encapsulated in an Endpoint. There are
various implementations of an Endpoint for different types of network transports,
for instance TCP, HTTP and SSL. The Endpoint represents the remote communi-
cation endpoint to which a request is sent. The object identification layer is used
to uniquely identify remote objects. Typically, an object identifier is added to each
invocation sent, and the server request dispatcher use this identifier to locate the in-
vocation dispatcher associated with the identifier. The invocation layer is responsible
for intercepting calls made by the client, and pass these to the invocation dispatcher

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 25

at the server. This includes marshalling and unmarshalling of the objects to be passed
back and forth between the client and server. The invocation dispatcher invokes the
remote object, and returns any result to the client.

The use of JERI has made it possible to improve the client-side failover mechanism
in Jgroup, and also simplified the implementation of the protocol extensions that have
been added to Jgroup. These additions are discussed in Part II.

2.2.4 Enterprise Java Beans

The Enterprise Java Beans (EJB) architecture is a multi-tier server-centric component
architecture for the development and deployment of component-based distributed
business applications [120]. It is one of several coordinated specifications that make
up the Java 2 Platform, Enterprise Edition (J2EE). The EJB architecture makes is
easy to develop distributed application that are scalable and multi-user secure. It is
focused around a transactional model, and provides simple mechanisms for persist-
ing data to persistent storage. The EJB architecture is also portable in the sense that
numerous vendors support the EJB architecture in their Application Servers (AS),
and hence EJB applications can be deployed in any one of those application servers.

Components developed with EJB technology are often called enterprise beans, and
typically encapsulate the logic and the data needed to perform operations specific to
some business area. A number of distinct enterprise beans are offered, including:
session beans, entity beans and message-driven beans.

Entity bean Entity bean

Session bean

Client

Figure 2.7: The interaction pattern of a simple EJB application.

Clients can interact with the various beans exported by the application. Figure 2.7
illustrates the interaction pattern of a simple EJB application. A session bean instance

26 2.3. GROUP COMMUNICATION SYSTEMS

is tied to a specific client for the duration of a communication session. Hence, a
session bean cannot be shared between multiple clients, whereas the entity bean can
be shared between clients. Business tasks to be executed on the server are exposed
through methods on the session bean, enabling clients to call these methods.

Communication between clients and stateful session beans usually take place over
Java RMI1. As mentioned previously, Jgroup extends Java RMI with support for
group method invocations. Albeit not tested, this particular feature of Jgroup is ex-
pected to enable us to extend the EJB architecture with the fault tolerance mecha-
nisms provided by Jgroup.

2.3 Group Communication Systems

Group communication can be defined as a means for providing multi-point to multi-
point communication, through organizing communication entities into groups [29].
Historically, process groups [21, 132, 38] were used, whereas more recent implemen-
tations are based on object groups, including Jgroup [87] and OGS [41]. A group is
defined as a set of communicating objects which are members of the group. For ex-
ample, a group may be a set of server objects (replicas for brevity), providing some
service to a large number of clients in a highly available and load-balanced distributed
system. The object group constitutes a logical addressing facility, allowing external
objects, e.g. clients, to communicate with the object group without knowledge of the
number of group members, their individual identity and location.

SRV1

SRV2

SRV3

Group GGroup G

SRVClient Client send(G, msg)send(srv, msg)

ClientserverClientserver
communicationcommunication

ClientgroupClientgroup
communicationcommunication

Figure 2.8: Client-server vs. Client-group communication (adapted from [41]).

As depicted in Figure 2.8, messages (or method invocations) are sent from a client

1The CORBA IIOP protocol can also be used.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 27

to a group using a single logical address, G, in the same way as in traditional client-
server interactions. Hence, to a client the existence of an object group is transparent.
Generally, a group communication system (GCS) provides two services:

• a group membership service (GMS) and

• a reliable multicast service (RMS).

A GCS based on an object-oriented approach is often denoted an object group sys-
tem [33, 74, 41, 87]. The interaction primitives provided by the reliable multicast ser-
vice may support a number of reliability and ordering guarantees. The Jgroup RMS
is based on method invocations rather than message passing and is covered in Sec-
tion 3.3.2. The group membership service is briefly covered in the next section.

2.3.1 The Group Membership Service

An object group is a collection of server objects that cooperate in providing a dis-
tributed service. For increased flexibility, the group composition is allowed to vary
dynamically as new servers are added and existing ones are removed. A server con-
tributing to a distributed service becomes member of the group by joining it. Later
on, a member may decide to terminate its contribution by leaving the group. At any
time, the membership of a group includes those servers that are operational and have
joined but have not yet left the group. System asynchrony and failures may cause
each member to have a different perception of the group’s current membership. The
purpose of the GMS is to track voluntary variations in the membership, as well as
involuntary variations due to failures and repairs of servers and communication links.
All variations in the membership are reported to members through the installation of
views. A view consist of a membership list along with a unique view identifier, and
correspond to the group’s current composition as perceived by members included in
the view. In response to variations in the group’s membership the GMS of all mem-
bers runs a view agreement protocol to reach agreement on a new view.

The GMS provided by Jgroup is a so called partition-aware group membership ser-
vice (PGMS); a brief informal overview is given in Section 3.3.1.

2.3.2 Primary Partition vs. Partitionable Membership Services

A group membership service may be either primary partition or partitionable. A pri-
mary partition GMS install views at all members in a total order, while in a partition-
able GMS the views are only partially ordered [29]. Thus, for a partitionable GMS

28 2.3. GROUP COMMUNICATION SYSTEMS

multiple concurrent views may coexist in disjoint partitions. A primary partition
GMS will, when exposed to a network partition scenario, only allow execution (pro-
cessing of messages) to continue in a single partition. The other partitions suspend
execution until the network becomes connected again. The partition in which exe-
cution is allowed is chosen according to some rule, e.g. inclusion of a distinguished
node/member or a majority of members [15]. On the other hand, a partitionable GMS
allow execution to continue in all partitions. The advantage of this approach is that
service is provided to all clients that can reach a server independent of the partition
in which they reside. That is, assuming the client does not get partitioned from all
the servers.

As discussed in [15], there is a class of applications that can continue to provide
service (possibly reduced or degraded) in multiple disjoint partitions. Operation in
partitioned mode is dictated by application semantics, e.g. it may be possible to ser-
vice read operations in all partitions, while write operations are restricted to the pri-
mary partition. An important requirement for partitioned operation is that a common
shared state can be reconstructed once the network becomes connected again after
a partition scenario. However, for another class of applications, merging the states
of disjoint partitions into a single shared state for the common partition is not pos-
sible. For example, when two partitions have performed conflicting changes to the
shared state. Hence, for applications that require a globally consistent shared state,
the primary partition approach should be taken.

The membership service of the Jgroup/ARM system used throughout this work put
special emphasis on supporting continued operation in multiple disjoint partitions.
However, it is straightforward to enhance the system to notify the members whether
they are in a primary view or not. This can be used by applications that needs to
maintain a globally consistent shared state.

2.3.3 Open vs. Closed Group Communication

Traditionally, group communication systems such as ISIS [21], Horus [132] and
Transis [38], have been based on a so called closed group model [64]. Thus, when
adopting group communication in a client-server setting, the clients are members
(or special members) of the server group. The advantage of this approach is that
clients have immediate access to the group communication primitives that provide
reliable and totally ordered messages. However, this approach is extremely costly
when the number of clients increase and it does not scale well [17]. A client could

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 29

become member of the group when it needs to interact with the server group, but this
approach is also costly with many simultaneous clients. In particular, the view agree-
ment algorithm must be executed for each new client that wish to interact with the
group to ensure that all servers deliver the same set of the messages sent by clients.
Hence, for client-server systems with a large number of clients that communicate
with relatively few servers, the closed group model is unsuitable.

For this reason, many recent group communication systems [87, 41] use the open
group model [64] instead. In this model, clients need not become members of the
server group in order to communicate with it, as illustrated in Figure 2.8. This is
the model used by Jgroup [87], and it clearly introduces additional challenges with
respect to delivery of messages originated from clients. These issues are discussed
further in Section 3.3.2.2.

2.4 Replication Techniques and Protocols

As discussed previously, the use of redundancy to mask the failure of individual com-
ponents is a common technique to improve the reliability and availability character-
istics of a system. In the context of this work, the unit of replication is an object. The
set of objects being replicated can be either static or dynamic. Using static replica-
tion, the number of replicas and their identity is fixed for the duration of the objects
life. Dynamic replication on the other hand, allow replicas to be added or removed at
runtime. To support such dynamism of replicas, a group membership service is often
used, as discussed above. Various well-known replication techniques and protocols
commonly used in systems are presented below.

2.4.1 Active Replication

Active replication – also called state machine approach [108] or modular redund-
ancy [56] – is a technique in which all replicas process requests from clients and
update their states before sending a response to the client (see Figure 2.9). The main
advantage of this approach is that since the requests are always sent to all replicas,
it is possible to mask replica failures from the client as long as there are at least one
live replica capable of responding to the client. Hence, client requests are processed
uninterrupted; there are no delays incurred by any recovery mechanism.

30 2.4. REPLICATION TECHNIQUES AND PROTOCOLS

Request

Reply

Processing

Client

Replica 3

Replica 1

Replica 2

Figure 2.9: Active replication.

The main drawback with this approach is that all replicas must process every re-
quest and return a reply in a deterministic manner. There are many sources of non-
determinism in a program [101]. For instance, building a multi-threaded server that
is actively replicated is a challenging task [98], since multi-threading is inherently
non-deterministic in its scheduling of threads. Also, since all replicas have to process
every request, and respond, the technique naturally has a high resource consumption,
both with respect to CPU and communication. In addition, to maintain strong con-
sistency, communication intensive protocols are required, e.g. atomic multicast (see
Section 2.4.6).

There are two kinds to active replication, depending on the severity of the failures to
be tolerated as discussed next.

Active replication without majority vote If we can assume failstop [107] behavior
of replicas only f + 1 replicas are needed to tolerate f failures.

Active replication with majority vote Given that Byzantine failures are allowed,
an f fault-tolerant system must have at least 3f + 1 replicas. A majority vote has to
be performed on the result from all the 3f + 1 replicas, allowing correct output even
with f failures. With f + 1 failures there are not enough correct replicas to make a
majority decision, since Byzantine failures are possible.

Note that active replication requires that client requests are sent directly to all repli-
cas, and that each replica respond directly to the client. Hence, it would be beneficial
to exploit multicast directly from clients to achieve this [118]. However, since clients
tend to be located at sites different from those of the servers, this may not be possible
due to the limited deployment of IP multicast in Internet routers. For this reason,
Jgroup takes a different approach when a client needs to communicate with all repli-
cas as discussed in Section 3.3.2.2.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 31

2.4.2 Passive Replication

Passive replication – also called the primary-backup approach [26, 51] or standby
redundancy [56] – is a technique in which only one replica (the primary) processes
requests from clients, and send their state to the other replicas (the backups) (see
Figure 2.10). Note that the primary does not return a reply to the client until the
state of the backup replicas have been brought up-to-date. Hence, passive replication
provides strong consistency between the replicas. In response to the failure of the
primary, a backup will be selected to take over the responsibility of the primary. If
the primary fails during the processing of a request, it is the client’s responsibility to
reissue the request to a new primary.

Request

ReplyProcessing

Client

Replica 3

Replica 1

Replica 2

Ack

Update
Update

Figure 2.10: Passive replication.

The benefits of passive replication is that less processing power is needed, while still
being able to provide fault tolerance. But perhaps the most important advantage of
passive replication is that processing can be non-deterministic. The main drawback
with this approach is that it has slow reaction to failures, and hence may be unsuit-
able for certain time-critical systems. This is since most implementations of passive
replication rely on a GMS to exclude the primary from the membership when it is
suspected, and often the view agreement protocol is configured with a conservative
timeout value, to avoid false suspicions [36].

A variant of the passive replication protocol is implemented in Jgroup, and is dis-
cussed in Section 7.4.

2.4.3 Semi-Active Replication

Semi-active replication was developed in the context of Delta-4 [102, 20], which was
designed specifically to support time-critical systems and assumes a synchronous

32 2.4. REPLICATION TECHNIQUES AND PROTOCOLS

system model. The technique extends active replication with the notation of leader
and followers. The actual processing is performed by all the replicas, however, only
the leader performs the non-deterministic parts of the processing and inform the fol-
lowers. Hence, semi-active replication circumvents the requirement for deterministic
processing in active replication. With respect to computational resources the tech-
nique is equivalent to active replication, since all replicas process the requests.

2.4.4 Semi-Passive Replication

Semi-passive replication [37, 36] has the same advantages as the passive replication
technique, but is claimed to have faster reaction time to failures than passive repli-
cation. This is accomplished by using a separate consensus protocol to elect a new
primary with a more aggressive timeout value than what a group membership service
typically allow.

2.4.5 Combining Replication Techniques

Combining several replication techniques or protocols in a common framework is
appealing since it contributes significant flexibility to the developer and may also
reduce the overall cost of replication. Such hybrid replication techniques are known
from hardware fault tolerant systems [111].

The approach proposed in [76] suggests to combine active and passive replication.
Assuming a redundancy level of R, then only Ractive ≤ R replicas are active, while
the remaining R − Ractive replicas are passive. In response to failure of an active
replica, one of the passive replicas can be promoted to become an active replica. The
objective of the technique is to reduce the number (Ractive) of active replicas that
needs communication intensive protocols to maintain strong consistency, hence ob-
taining a performance gain without reducing the service availability. This technique
has not been pursued by a prototype implementation due to its complexity and lack
of required support in the middleware platforms that existed at the time.

In [42] an approach to combining active and passive replication is presented, allowing
the server side to dynamically assign distinct replication protocols to each individual
operation/method of the replicated object. What this means is that individual methods
may use different protocols, some of which are weaker but more efficient, while
others are stronger but less efficient. A similar approach is used in our protocol
framework discussed in Chapter 7.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 33

2.4.6 Atomic Multicast

Atomic multicast [54] – also called total order multicast – is perhaps the most im-
portant protocol for building replicated services, since it facilitates maintenance of a
globally consistent shared state. Put simply, atomic multicast requires that all cor-
rect objects deliver all messages in the same order. This total order message delivery
ensure that all objects have the same view of the system, facilitating consistent be-
havior without additional communication [54]. Figure 2.11 illustrates two clients,
each sending a message to a group of replicas, with and without total ordering. As
shown, when total order is enforced, the delivery of some messages (m2 in this case)
may have to be delayed.

Client 2

Replica 3

Replica 1

Replica 2

Client 1

m2

m1

m 2

m 1

With Total OrderWith Total OrderWithout Total OrderWithout Total Order

Figure 2.11: Total order multicast.

A variant of the ISIS total ordering protocol [23] has been implemented in the context
of this thesis (see Section 7.5).

2.5 Dependable Middleware Platforms

2.5.1 Classification of Dependable Middleware

Felber [41] introduced a classification of CORBA based group communication sys-
tems into three broad categories: integration, interception and service. This clas-
sification can aid us in identifying the intrusiveness imposed on the developer of
distributed applications.

34 2.5. DEPENDABLE MIDDLEWARE PLATFORMS

1. Integration Approach The integration approach entails modifying and en-
hancing the ORB using an underlying group communication system. CORBA
invocations are passed to the group communication service that multicasts
them to replicated servers. This approach was pursued by the Electra sys-
tem [73].

2. Interception Approach In the interception approach, low-level messages
containing CORBA invocations and responses are intercepted on client and
server sides and mapped onto messages sent through a group communication
system. This approach does not require any modification of the ORB, but relies
on OS-specific mechanisms for request interception. Eternal [93, 97] is based
on the interception approach.

3. Service Approach Felbers last class is the service approach. It provides
group communication as a separate CORBA service; that is the group commu-
nication primitives are embedded into an application programming interface
(API) that ease the development of dependable distributed applications. The
ORB is unaware of object groups, and the service can be used in any CORBA-
compliant implementation. The service approach has been adopted by object
group systems such as OGS [41, 43], DOORS [30], TRANSORG [124] and
Newtop [91]. Also the FT CORBA standard [49] is based on the service ap-
proach.

The main advantages of the first two approaches are that they provide a high degree
of transparency to the application developer and they have better performance, but in
general these are not as portable as the service approach [41].

Albeit these coarse classes are focused on CORBA related systems, they can also be
applied to other middleware architectures. For instance, Aroma [96] is a fault toler-
ance framework for Java RMI which is based on the interception approach, whereas
JavaGroups [18], Filterfresh [19] and Jgroup/ARM [81] are all based on the service
approach. However, Jgroup/ARM does exploit several advanced language-level fea-
tures of Java, such as reflection and annotation [6], to make application development
as seamless as possible from a non-functional point of view, by hiding most of the
fault tolerance mechanisms. For example, Jgroup provides complete client trans-
parency, while server implementations often needs to provide state transfer/merge
operations. In addition, server implementations can simply annotate each method
with the replication protocol to use. This particular feature is discussed in Chapter 7.

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 35

2.5.2 Object Group Systems

In the following, the most well-known object group systems that can support Java
applications are briefly discussed.

The Object Group System (OGS) [41, 43] implements object groups on top of off-the-
shelf CORBA ORBs through a number of services. The services provided by OGS
includes reliable unordered multicast, monitoring, group membership and a consen-
sus service. The consensus service is used to implement total ordering. OGS supports
group method invocations from clients, much like the approach taken by Jgroup. On
the other hand, servers must interact through message multicasting instead of method
invocations; Jgroup servers can interact through method invocations.

The TRANSORG system [124] implements the FT CORBA standard by extending
an existing ORB using portable interceptors, but also provides an alternative imple-
mentation called FA-CORBA which avoids that certain infrastructure components
becomes single points of failure.

Filterfresh [19], like Jgroup, integrates the object group paradigm with the Jgroup
distributed object model. Filterfresh is rather limited, as it does not provide sup-
port for multicast semantics and many other features needed by modern distributed
applications.

JavaGroups2 [18] is a message-based group communication system written in Java
providing reliable multicast communication. JavaGroups can support remote method
invocations, but not transparently. This is since it is based on the exchange of objects
that encode method invocation descriptions. The JBoss Application Server includes
support for Enterprise Java Beans, and also supports clustering based on the Java-
Groups toolkit [68].

Also Spread [3] is a message-based group communication system implemented in
C, but it provides a Java API. Like Jgroup, Spread is also designed especially for
partition-awareness and wide-area networks. Some recent dependability middleware
architectures have been built on Spread, including MEAD [105], discussed in the
next section.

Aroma [96] provides transparent fault tolerance to Java RMI through a partially OS-
specific interception approach similar to that of Eternal [93], and relies on an underly-
ing group communication system (Totem [92]) implemented on the native operating

2Note that JavaGroups were renamed to JGroups (with capital G and ending with an s) around
August 2003. Note that this framework should not be confused with the Jgroup toolkit used in this
thesis. For this reason, we continue to use the original JavaGroups name when referring to it.

36 2.5. DEPENDABLE MIDDLEWARE PLATFORMS

system. Aroma provides a failover mechanism for clients, similar to the approach
used in Jgroup. Aroma does not support partition-awareness. Furthermore, the reli-
able registry implementation included with Aroma is different from the Jgroup de-
pendable registry (see Section 3.4) in that it requires all nodes to run a local registry
instance. This approach is not scalable, since the number of registries that needs to
be kept synchronized grows with the number of servers deployed in the distributed
system.

Jgroup [87] is based on RMI communication and is implemented in its entirety in
Java, and does not rely on any underlying toolkits or a special operating system.
A particularly attractive feature of Jgroup is its support for transparent client-server
group interactions, including transparent failover. Being based on RMI rather than
message multicasting also simplifies the adoption of Jgroup as the fault tolerance
framework for middleware environments based on Java RMI, such as Jini [7] and
EJB [120]. For instance, Jgroup has been used to enhance the Jini transaction man-
ager with replication support [85, 66]. Another distinguishing feature of Jgroup is
its focus on supporting highly-available applications to be deployed in partitionable
environments. Most of the existing object group systems [43, 30, 19, 96] are based
on the primary-partition approach and thus cannot be used to develop applications ca-
pable of continuing to provide services in multiple partitions. Very few object group
systems [91, 93, 3] abandon the primary-partition model but do not provide adequate
support for partition-aware application development.

2.5.3 Fault Treatment Systems

Many middleware platforms support replication, most of which are based on object
groups as discussed above. To compliment such middleware platforms and to im-
prove the dependability characteristics of services, fault treatment can be introduced.

Fault treatment techniques were first introduced as part of the Delta-4 project [102].
Delta-4 was developed in the context of a fail-silent network adapter, ensuring that
crashed nodes remain silent towards the network. Thus, a fault that results in a node
crash is automatically passivated by the very notion of fail-silence. Faults that result
in violation of the fail-silence assumption can only be detected if active replication
is employed. For such faults, the violating node is assumed faulty and removed from
the system as if it had crashed.

None of the Java-based fault tolerance frameworks discussed in the previous section
supports fault treatment mechanisms. The FT CORBA standard [49] does specify

2. FAULT TOLERANT DISTRIBUTED COMPUTING PLATFORMS 37

certain mechanisms such as a generic factory, a replication manager and a fault mon-
itoring architecture, that can be used to implement a fault treatment facility. However,
fault treatment is not covered explicitly in the standard.

Eternal [93, 97] is probably the most complete implementation of the FT CORBA
standard. It supports allocating replicas to nodes, however, the exact workings of
their approach has (to the author’s knowledge) not been published.

DOORS [30, 99] is a framework that provides a partial FT CORBA implementa-
tion, focusing on passive replication. It uses a centralized ReplicaManager to handle
replica placement and migration in response to failures. The ReplicaManager compo-
nent is not replicated, and instead performs periodic checkpointing of its state tables,
limiting its usefulness since it cannot handle fault treatment of other applications
when the ReplicaManager is unavailable.

Also the MEAD [105] framework implements parts of the FT CORBA standard, and
supports recovery from node and process failures. However, recovery from a node
failure require manual intervention to either reboot or replace the node, since there is
no support for relocating the replicas to other nodes. Another part of MEAD [100] is
designed to proactively install replacement replicas on the same node in response to
fault indications such as process memory exhaustion.

The AQuA [104, 103] framework is also based on CORBA and was developed inde-
pendently of the FT CORBA standard. Like Delta-4, AQuA also supports passivation
of replicas due to value faults.

The approach in [25] focus on fault treatment to improve the dependability of COTS
and legacy-based applications. The supported fault types include hardware-induced
software errors, process/node crashes and hangs, and errors in the persistent stable
storage. Several different levels of fault treatment can be applied depending on the
number and severity of faults.

The ARM framework presented herein is a fault treatment system that can tolerate
object, node and partition failures. What distinguishes the ARM approach from the
above systems is its support for recovery in partition failure scenarios, and its use
of policies to facilitate a self-managed system. For example, the main policy used in
ARM tries to maintain a specified minimal redundancy level in each network partition
that may arise.

38 2.6. SUMMARY

2.6 Summary

Distributed computing systems are decoupled program components, that interact with
each other by the exchange of messages to perform a task. The major focus in the field
of distributed computing in the last decade has been the development of middleware
platforms for such systems, and more recently security and reliability aspects have
also gained a lot of attention.

As documented in this chapter, there are still open issues and several improvements
possible with respect to fault treatment and replication and upgrade management is-
sues. In particular, further reducing the complexity, development efforts and human
interactions needed by systems. This thesis seeks to take a step in this direction.

Chapter 3

The Jgroup Distributed Object
Model

Building distributed applications that deal with partial component failures is an error-
prone and time-consuming task, and developing such applications become even more
complex when having to deal with network partition failures. This is because the ap-
plication has to consider the fact that server replicas residing in distinct partitions
may potentially evolve their states in an inconsistent manner. Application complex-
ity is further complicated, by the fact that the application has to deal with replica
recovery and deployment issues, such as where to place the server replicas to ensure
application dependability. The latter issue is discussed in Chapter 4.

The aim of Jgroup [87] is to provide systematic support for the development of de-
pendable distributed applications in a partitionable environment, by providing an
object-oriented development framework.

To make our description self-contained, the following repeats briefly the Jgroup dis-
tributed object model and the main services provided by Jgroup [80, 81, 87, 89].
The description in this chapter is more or less the status of Jgroup at the time it
was adopted as the base platform for our studies of fault treatment mechanisms. We
begin with a short description of our underlying system model in Section 3.1, and
in Section 3.2 we give an architectural overview and present the various Jgroup com-
ponents. Section 3.3 discusses some of the details of the Jgroup services. Finally,
in Section 3.4 we discuss the dependable registry provided with Jgroup.

39

40 3.1. SYSTEM MODEL

3.1 System Model

The context of this work is a distributed system composed of client and server objects
interconnected through a network. The client and server objects are hosted within
Java Virtual Machines (JVMs). Each JVM can host a bounded (by memory) number
of objects, and an application is typically composed of large number of such objects.
A server object is an object whose methods may be accessed remotely, through the
use of remote method invocations. A client object is one that perform remote method
invocations on the server object. Even though we distinguish between client and
server objects, there is nothing restricting a server object in assuming the role of client
towards another server. As such we may get a chain of client-server invocations, and
this is typically called a multi-tiered architecture. Figure 3.1 illustrates a typical
three-tiered architecture.

operation
Request

Database
server

Application
server

Client application
interface

Time

Return data

Return result

Request data

Wait for data

Wait for result

Figure 3.1: Illustration of a three-tiered architecture involving a client application,
an application server (business logic) and a database server. The figure is adapted
from [125, Ch. 1.5.3].

The distributed system is considered to be asynchronous in the sense that neither
the computational speed of objects nor communication delays are assumed to be
bounded. Furthermore, the system is unreliable and failures may cause objects and
communication channels to crash whereby they simply stop functioning. Once fail-
ures are repaired, they may return to being operational after an appropriate recovery
action. Finally, the system is partitionable in that certain communication failure
scenarios may disrupt communication between multiple sets of objects forming par-
titions. Objects within a given partition can communicate among themselves, but
cannot communicate with objects outside the partition. When communication be-
tween partitions is re-established, we say that they merge.

3. THE JGROUP DISTRIBUTED OBJECT MODEL 41

Developing dependable applications to be deployed in these systems is a complex
and error-prone task due to the uncertainty resulting from asynchrony and failures.
The desire to render services partition-aware to increase their availability adds sig-
nificantly to this difficulty. Jgroup/ARM have been designed to simplify the devel-
opment of partition-aware, dependable applications by abstracting complex system
events such as failures, recoveries, partitions, merges and asynchrony into simpler,
high-level abstractions with well-defined semantics.

Jgroup enable dependable application development through replication, based on the
object group paradigm [33, 74]. In this paradigm, distributed applications are repli-
cated among a collection of server objects that form a group in order to coordinate
their activities and appear to clients as a single server. See Figure 3.2 for a simple
illustration.

Server Server

Server

Client

Object Group

Figure 3.2: Client-to-object group interaction and group internal interactions.

3.2 Architectural Overview

Jgroup extends the object group paradigm to partitionable systems through three core
services aimed at simplifying the coordination among replicas: a partition-aware
group membership service (PGMS), a group method invocation service (GMIS) and
a state merging service (SMS) [87]. These services are briefly described in Sec-
tion 3.3. An important aspect of Jgroup is the fact that properties guaranteed by each
of its components have formal specifications, admitting formal reasoning about the
correctness of applications based on Jgroup [87].

As discussed in Section 2.3.1, the task of the PGMS is to provide servers with a
consistent view of the group’s current membership, to be used to coordinate their
actions.

42 3.2. ARCHITECTURAL OVERVIEW

Reliable communication between clients and the object group take the form of group
method invocations (GMI) [87], that result in methods being executed by the servers
forming the group. To clients, GMI interactions are indistinguishable from standard
remote method invocations (RMI): clients interact with the object group through a
client-side group proxy that acts as a representative object for the group, hiding its
composition. The group proxy maintains information about the servers composing
the group, and handle invocations on behalf of clients by establishing communication
with one or more servers and returning the result to the invoker. On the server side,
the GMIS enforce reliable communication among replicas.
Finally, the task of SMS is to support developers in re-establishing a global shared
state when two or more partitions merge. Servers are called back in order to obtain
information about their current state and diffuse them to other partitions.

G
ro

up
 M

an
ag

er

PGMS

SMSGMIS

Server Client

Group
proxy

Jgroup Daemon

Network

Figure 3.3: Overview of the Jgroup service architecture.

Figure 3.3 gives a high-level overview of the composition of the core Jgroup services.
The main component of Jgroup is the Jgroup daemon (JD); it implements basic group
communication services such as failure detection, group membership and reliable
communication. Server replicas must connect to a Jgroup daemon to gain access to
the group communication services. Each server replica is associated with a group
manager (GM), whose task is to act as an interface between the Jgroup daemon and
the replica.
Finally, in order to enable clients to locate server groups, Jgroup include the de-
pendable registry (DR), a replicated naming service that allows dynamic groups of
replicas to register themselves under the same name using the bind() method. Infor-
mation about the replicas composing the group are collected in a group proxy (GP),

3. THE JGROUP DISTRIBUTED OBJECT MODEL 43

S1

S2

S3

DR

C

bind(name) GP

LegendLegend
Group Proxy Group Method Invocation Server initialization View

 C Client S# Server number DR Dependable Registry

lookup(name)
GP

View Agreement

method()

GMI

GMIGP

Figure 3.4: Dependable registry interactions with clients and servers.

that can be retrieved by clients using the lookup() method. This enables clients to
seamlessly communicate with the whole group as a single entity, by performing in-
vocations through the group proxy. Figure 3.4 illustrates these interactions. Note that
the dependable registry itself is implemented as a distributed service, replicated using
Jgroup services, although the figure depicts it as a single entity.

3.3 Jgroup Services

The services described below were originally implemented as a (partially) monolithic
group manager, while now these have been redesigned using a configurable protocol
composition framework as discussed in Chapter 6.

3.3.1 The Partition-aware Group Membership Service

Recall the general description of the group membership service given in Section 2.3.1.
A useful PGMS specification has to take into account several issues (see [14] for a
detailed discussion of the problem). First, the service must track changes in the group
membership accurately and in a timely manner such that installed views indeed con-
vey recent information about the group’s composition within each partition. Next, it
is required that a view be installed only after agreement is reached on its composi-
tion among the servers included in the view. Finally, PGMS must guarantee that two

44 3.3. JGROUP SERVICES

views installed by two different servers be installed in the same order. These last two
properties are necessary for servers to be able to reason globally about the replicated
state based solely on local information, thus simplifying significantly their imple-
mentation. Note that the PGMS defined for Jgroup admits coexistence of concurrent
views, each corresponding to a different partition of the communication network, thus
making it suitable for partition-aware applications. Figure 3.5 illustrates the behavior
of the PGMS in response to various failure scenarios.

S1

S2

S3
join

join

join

S3 crashes; a new view is
installed

first full view partitioning mergingsingleton views

v2

v3

v4 v5v1

Figure 3.5: PGMS behavior. Servers S1, S2 and S3 join the group, forming view
v1; immediately after, servers S1 and S2 are partitioned from S3. The PGMS reacts
by installing two views v2 and v3. Later, the partitioning disappears, and nodes are
enabled to form again a view v4 including all members. Finally, server S3 crashes,
causing view v5 to be installed including only the surviving members.

3.3.2 The Group Method Invocation Service

Jgroup differs from existing object group systems due to its uniform communication
interface based entirely on GMI. Clients and servers interact with groups by remotely
invoking methods on them. In this manner, benefits of object-orientation such as
abstraction, encapsulation and inheritance are extended to internal communication
among servers. Although they share the same intercommunication paradigm, we
distinguish between internal GMI (IGMI) performed by servers and external GMI
(EGMI) performed by clients. There are several reasons for this distinction:

• Visibility: Methods to be used for implementing a replicated service should not
be visible to clients. Clients should be able to access only the “public” interface
defining the service, while methods invoked by servers should be considered
“private” to the implementation.

3. THE JGROUP DISTRIBUTED OBJECT MODEL 45

• Transparency: Jgroup strives to provide an invocation mechanism for clients
that is completely transparent with respect to standard Java RMI. Hence, clients
should not be aware that they are invoking a method on a group of servers, as
opposed to a single server. On the other hand, servers have different require-
ments for group invocations, such as obtaining a result from each server in the
current view.

• Efficiency: Having identical specifications for external and internal GMI would
have required that clients become members of the group, resulting in poor sys-
tem scalability. Therefore, Jgroup follow the open group model [64], allowing
external GMI to have slightly weaker semantics than those of internal GMI.
Recognition of this difference results in a much more scalable system by lim-
iting the higher costs of full group membership to servers, which are typically
far fewer in number than clients [17].

When developing dependable distributed services, internal methods are collected to
form the internal remote interface of the server object, while external methods are
collected to form its external remote interface. The group proxy objects that are able
to handle GMI are generated dynamically (at runtime) based on the remote interfaces
of the server object. A proxy object implement the same interface as the group for
which they act as a proxy, and enable clients and servers to communicate with the
entire group of servers using local invocations on the proxy object. Figure 3.6 details
the use of proxies on both the client and server side, as part of the inner workings
of the external group method invocation with multicast semantic. That is, a client
invoking a multicast method exported externally by the server group.

In order to perform an internal GMI, servers must obtain an appropriate group proxy
from the Jgroup runtime running in the local JVM. Clients that need to interact with
a group, on the other hand, must request a group proxy from a registry service, by
performing a lookup operation for the desired service (identified by name) on the
registry. The registry enables multiple servers to register themselves under the same
service name, so as to compose a group of servers providing the same service. Jgroup
feature two different registry services. The first, called dependable registry [86], is
derived from the standard registry included in Java RMI, while the second is based
on the Jini lookup service [7]. The dependable registry service is an integral part
of Jgroup and is replicated using Jgroup itself. In this work, only the dependable
registry service is used (see Section 3.4).

46 3.3. JGROUP SERVICES

Client Group
proxy

Random selection
of server replicas

Server

Server

Server

Dependable Registry
Obtained from the

internal multicast
Performs group

Server−side
proxy

Object Group
mcast

reply

RMI invocation

JVM

EGMI − group manager component

Figure 3.6: Details of the proxy usage in external group method invocation with
multicast semantic. The client performs its invocation on the group proxy (obtained
from the dependable registry.) The proxy will then perform a plain RMI invocation on
one of the servers (the choice of server is random.) Since the invocation has multicast
semantic, the receiving server-side proxy will forward the invocation to all servers,
and return the result to the client-side proxy. Each server group member must bind
with the dependable registry, which can generate a (client-side) group proxy based
on its set of known members.

In the following sections, we discuss how internal and external GMI in Jgroup work,
and how internal invocations substitute message multicasting as the basic commu-
nication paradigm. In particular, we describe the reliability guarantees provided by
the two GMI implementations. They are derived from similar properties previously
defined for message delivery in message-based group communication systems [14].
In this context, we say that an object (client or server) performs a method invocation
at the time it invokes a method on a group; we say that a server object completes an
invocation when it terminates executing the associated method.

3.3.2.1 Internal Group Method Invocations

Unlike traditional Java remote method invocations, IGMI returns an array of results
rather than a single value. IGMI comes in two flavors: synchronous and asyn-
chronous, as illustrated in Figure 3.7.

For synchronous IGMI, the invoker remains blocked until an array containing the
result from each server that completed the invocation can be assembled and returned
to the invoker. There are many situations in which such blocking may be too costly,
as it can unblock only when the last server to complete the invocation has returned
its result. Furthermore, it requires programmers to consider issues such as deadlocks

3. THE JGROUP DISTRIBUTED OBJECT MODEL 47

that may occur due to circular invocations. For these reasons, in asynchronous IGMI
the invoker does not block, but instead specifies a callback object that will be notified
when return values are ready from servers completing the invocation.

S1

S2

S3

invoke()

invoke()

invoke()

Synchronous

Invoc.
Returns

invoke()

invoke()

invoke()
Asynchronous

Return
Invocation Invocation Results available

in callback object

Figure 3.7: In synchronous IGMI, the invoking server is delayed until all servers
have returned a result (or an exception). In asynchronous IGMI the invocation re-
turns immediately. However, result values are not readily available, but may later be
obtained through the callback object.

If the return type of the method being invoked is void, no return value is provided
by the invocation. The invoker has two possibilities: it can specify a callback object
to receive notifications about the completion of the invocation, or it can specify null,
meaning that it is not interested in knowing when the method completes.

Completion of IGMIs by the servers forming a group satisfies a variant of view syn-
chrony that has proven to be an important property for reasoning about reliability in
message-based systems [21]. Informally, view synchrony requires two servers that
install the same pair of consecutive views to complete the same set of IGMIs during
the first view of the pair. In other words, before a new view can be installed, all
servers belonging to both the current and the new view have to agree on the set of
IGMIs they have completed in the current view. Figure 3.8(a) illustrates a run that
violates the view synchrony property, since it does not install a new view after a mem-
ber has crashed, and the remaining members has processed an IGMI. Figure 3.8(b)
illustrates the same run that satisfies view synchrony. Figure 3.8(c) shows another run
that violate the view synchrony property. In this case, the various members deliver
different sets of IGMIs before installing a new view, clearly violating view synchrony.
Figure 3.8(d) illustrates the same run, satisfying view synchrony. Ensuring the view
synchrony property enables a server to reason about the state of other servers in the

48 3.3. JGROUP SERVICES

Processing

v1

S1

S4

S2

S3

(a) Invalid view synchrony execution.

Processing
S1

S4

S2

S3
v1

v2

(b) A valid view synchrony execution.

m1

v1

v2

m2
S1

S4

S2

S3

(c) Another invalid view synchrony execution.

m1

v1

v2

m2
S1

S4

S2

S3

(d) A valid view synchrony execution.

Figure 3.8: Some examples of valid and invalid view synchrony executions.

3. THE JGROUP DISTRIBUTED OBJECT MODEL 49

group using only local information such as the history of installed views and the
set of completed IGMIs. Note that view synchrony does not require that the set of
IGMIs be ordered. Clearly, application semantics may require that servers need to
agree not only on the set of completed IGMIs, but also the order in which they were
completed. The standard Jgroup multicast service can easily be enhanced with other
multicast services, supporting different ordering semantics. Thus, various ordering
semantics can be ensured also for IGMI.

We now outline some of the main properties that IGMI satisfy. First, they are live:
an IGMI is guaranteed to terminate either with a reply array (containing at least the
return value computed by the invoker itself), or with an application-defined exception
declared in the throws clause of the method being invoked. Furthermore, if an opera-
tional server S completes some IGMI in a view, all servers included in that view will
also complete the same invocation, or S will install a new view. Since installed views
represent the current failure scenario as perceived by servers, this property guaran-
tees that an IGMI will be completed by every other server that is in the same partition
as the invoker. IGMI also satisfy integrity requirements whereby each IGMI is com-
pleted by each server at most once, and only if some server has previously performed
it. Finally, Jgroup guarantees that each IGMI be completed in at most one view. In
other words, if different servers complete the same IGMI, they cannot complete it in
different views. In this manner, all result values that are contained in the reply array
are guaranteed to have been computed during the same view.

3.3.2.2 External Group Method Invocations

The EGMI approach supports two distinct invocation semantics, namely: anycast and
multicast, as illustrated in Figure 3.9. The anycast EGMI is performed by a client on
a group and will be completed by at least one server of the group, unless there are
no operational servers in the client’s partition. Anycast invocations are suitable for
implementing methods that do not modify the replicated server state, as in query
requests to interrogate a database. Multicast EGMI performed by a client on a group
will be completed by every server of the group that is in the same partition as the
client. Multicast invocations are suitable for implementing methods that may update
the replicated server state.

Notice how the multicast invocation semantic differ from an active replication proto-
col (see Section 2.4.1). In active replication, the client communicates directly with
all the servers, whereas in our multicast approach, the client only communicates with

50 3.3. JGROUP SERVICES

C

S1

S2

S3

Invocation

invoke()

Reply Reply

Invocation

invoke()

invoke()

invoke()
Anycast Multicast

Figure 3.9: The supported EGMI method invocation semantics.

a single server. This server mediates the invocation to the other servers, as shown in
Figure 3.6 above. Furthermore, the multicast invocation semantic does not order in-
vocations and hence strong replica consistency cannot be enforced with this protocol.
The atomic multicast protocol discussed in Section 7.5 fulfills these requirements.

Each of the methods exported to clients through the external interface have distinct
invocation semantic, and the choice of semantic to associate with each method is left
to the application developer designing the external interface. The default semantic
for an external method is anycast, and methods with multicast semantic have to be
tagged by including a specific exception in their throws clause.

Note that this is improper use of the exception declaration mechanism. Therefore,
in recent versions of Jgroup this mechanism has been replaced with a more suitable
mechanism based on Java annotations [6, Ch.15] as discussed in Chapter 7.

Our implementation of Jgroup guarantees that EGMI are live: if at least one server
remains operational and in the same partition as the invoking client, EGMI will even-
tually complete with a reply value being returned to the client. Furthermore, an EGMI
is completed by each server at-most-once, and only if some client has previously per-
formed it. These properties hold for both anycast and multicast versions of EGMI. In
the case of multicast EGMI, Jgroup also guarantees view synchrony as defined in the
previous section.

Internal and external GMI differ in one important aspect. Whereas an IGMI, if it
completes, is guaranteed to complete in the same view on all servers, an EGMI may
complete in several different concurrent views. This is possible, for example, when a

3. THE JGROUP DISTRIBUTED OBJECT MODEL 51

server completes the EGMI but becomes partitioned from the client before delivering
the result. Failing to receive a response for the EGMI, the client’s group proxy has to
contact other servers that may be available, and this may cause the same EGMI to be
completed by different servers in several concurrent views. The only solution to this
problem would be to have the client join the group before issuing the EGMI. In this
manner, the client would participate in the view agreement protocol and could delay
the installation of a new view in order to guarantee the completion of a method in a
particular view. Clearly, such a solution may become too costly as group sizes would
no longer be determined by the number of servers (degree of replication), but by the
number of clients, which could be very large.

One of the goals of Jgroup has been the complete transparency of server replication to
clients. This requires that from a client’s perspective, EGMI should be indistinguish-
able from standard Java RMI. This has ruled out consideration of alternative defini-
tions for EGMI including multi-value results or asynchronous invocations. Note that
the client-side group proxy may still receive multiple result values, but these cannot
be exposed to the client application.

3.3.3 The State Merging Service

While partition-awareness is necessary for rendering services more available in par-
titionable environments, it can also be a source of significant complexity for ap-
plication development. This is simply a consequence of the intrinsic availability-
consistency tradeoff for distributed applications and is independent of any of the de-
sign choices we have made for Jgroup.

Being based on a PGMS, Jgroup allows partition-aware applications, which have
to cope with multiple concurrent views. Application semantics dictate which of its
services remain available where during partitioning. When failures are repaired and
multiple partitions merge, a new common server state has to be constructed. This
new state should reconcile, to the extent possible, any divergence that may have taken
place during partitioned operation.

Generically, state reconciliation tries to construct a new state that reflects the effects
of all non-conflicting concurrent updates and detect if there have been any conflict-
ing concurrent updates to the state. While it is impossible to automate completely
state reconciliation for arbitrary applications, a lot can be accomplished at the sys-
tem level to simplify the task [13]. Jgroup includes a state merging service (SMS)
that provides support for building application-specific reconciliation protocols based

52 3.3. JGROUP SERVICES

on stylized interactions. The basic paradigm is that of full information exchange –
when multiple partitions merge into a new one, a coordinator is elected among the
servers in each of the merging partitions; each coordinator acts on behalf of its parti-
tion and diffuses state information necessary to update those servers that were not in
its partition. When a server receives such information from a coordinator, it applies
it to its local copy of the state. This one-round distribution scheme has proven to be
extremely useful when developing partition-aware applications [15, 86].

Figure 3.10 illustrates two runs of the state merge algorithm. The first is failure-free;
S1 and S4 are elected as coordinators for their respective partitions, and successfully
transfer their state. The second case shows the behavior of the state merge in the
event of a coordinator crash (S4). In this case, the PGMS will detect the crash, and
eventually install a new view. This will be detected by the SMS, that will elect a new
coordinator for the new partition, and finally complete the state merge algorithm.

S1

S2

S3

getState()

Elected as coordinator
for partition {S1,S2}

S4
putState()

Elected as coordinator
for partition {S3,S4}

getState()

putState()

putState()

putState()

Elected as coordinator
for partition {S1,S2}

Elected as coordinator
for partition {S3,S4}

getState()

putState()

Elected as coordinator
for partition {S3}

putState()

putState()

getState()

Figure 3.10: Two runs of the state merge algorithm: (i) two partitions merge and no
failure occurs; (ii) two partitions merge and a coordinator fails.

SMS drives the state reconciliation protocol by calling back to servers for “getting”
and “merging” information about their state. It also handles coordinator election
and information diffusion. To be able to use SMS for building reconciliation proto-
cols, servers of partition-aware applications must satisfy the following requirements:
(i) each server must be able to act as a coordinator; in other words, every server has to

3. THE JGROUP DISTRIBUTED OBJECT MODEL 53

maintain the entire replicated state and be able to provide state information when re-
quested by SMS; (ii) a server must be able to apply any incoming updates to its local
state. These assumptions restrict the applicability of SMS. For example, applications
with high-consistency requirements may not be able to apply conflicting updates to
the same record. Note, however, that this is intrinsic to partition-awareness, and is
not a limitation of SMS.

The complete specification of SMS is given in [87]. Here we very briefly outline its
basic properties. The main requirement satisfied by SMS is liveness: if there is a time
after which two servers install only views including each other, then eventually each
of them will become up-to-date with respect to the other, either directly or indirectly
through different servers that may be elected coordinators and provide information on
behalf of one of the two servers. Another important property is agreement: servers
that install the same pair of views in the same order are guaranteed to receive the
same state information through invocations of their “merging” methods in the period
occurring between the installations of the two views. This property is similar to view
synchrony, and like view synchrony may be used to maintain information about the
updates applied by other servers. Finally, SMS satisfies integrity: it will not initiate a
state reconciliation protocol without reason, e.g. if all servers are already up-to-date.

3.4 The Dependable Registry Service

As previously discussed, when a client wants to communicate with a Java RMI server
(or an object group), it needs to obtain a reference to either the single server or the
object group depending on what kind of server the client is trying to access. In the
case of Java RMI, the Java runtime environment is bundled with a standard registry
service called rmiregistry. This registry service is a simple repository facility that
allows servers to advertise their availability, and for clients to retrieve references for
remote objects. Unfortunately, the rmiregistry is not suitable for the distributed object
group model. There are several reasons for this incompatibility:

1. The rmiregistry constitutes a single point of failure. It is commonly used for
bootstrapping clients with stubs for servers, and the failure of the registry will
render new clients unable to establish a connection with the server (through
Java RMI, that is). The failure of the rmiregistry have no impact on existing
client-server communication, unless a client has an obsolete stub reference.

54 3.4. THE DEPENDABLE REGISTRY SERVICE

2. It does not support binding multiple server references to a single service name,
as required by a group communication system.

3. Only local servers are allowed to bind their stubs in the rmiregistry. This limita-
tion precludes replication, as a group of servers will necessarily involve servers
running on distinct (non-local) hosts.

To address these incompatibilities, Jgroup includes a dependable registry (DR) ser-
vice [86, 87], that can be used by servers to advertise their ability to provide a given
service identified by the service name. In addition, clients will be able to retrieve
a group proxy for a given service, allowing them to perform method invocations on
the group of servers providing that service, as discussed in Section 3.3.2. The DR
is designed as a replacement for the rmiregistry, and only minor modifications are
required on both client and server side to adopt the DR.

The DR is in essence an actively replicated database, preventing the registry from
becoming a single point of failure. It is replicated using Jgroup itself, and clients
access the registry through EGMI. The database maintains mappings from service
name sn to the set of servers Gsn providing that particular service. Thus, each entry
in the database can be depicted as follows:

sn → Gsn ⊆ {S1, S2, . . . , Sn}

where Si denotes a server, and n represents the number of servers registered under
the service name sn in the DR.

The set of servers G should always contain at least the active servers, i.e. those that
are in the current view V . Hence, a server must bind its reference with DR as soon as
it starts, as illustrated in Figure 3.4. This allows clients to query the DR to obtain G
to communicate with the group.

However, G may contain a substantial number of stale servers, if the DR is not up-
dated in any way. This would cause clients to attempt invocations to stale servers
(before removing them), which introduces a significant failover latency. Therefore,
G = V is desirable, which can be achieved by updating G according to V in the
current partition as discussed in [78] and Chapter 9.

Chapter 4

An Overview of Autonomous
Replication Management

As discussed in Chapter 3, Jgroup solves a number of difficulties involved in devel-
oping dependable distributed applications. However, the application developer still
has to consider a number of complicated issues, e.g. those related to fault treatment,
such as having to deal with replica recovery and deployment to best satisfy the de-
pendability requirements of the application.

The aim of the Autonomous Replication Management (ARM) framework [77, 80,
81] is to provide generic services and mechanisms that can assist applications in
meeting their dependability requirements. To further simplify the deployment and
operation of dependable applications, ARM also seeks to reduce the required human
interactions through a self-managing fault treatment architecture that is adaptive to
network dynamics and changing requirements.

ARM extends Jgroup with automated mechanisms for performing fault treatment and
management activities such as distributing replicas on sites and nodes, and recovering
from failures thus reducing the need for human intervention. These mechanisms are
essential to operate a system with strict dependability requirements, and are largely
missing from existing group communication systems [87, 43, 18, 3].

Being based on Jgroup, ARM inherits the same system model as described in Sec-
tion 3.1, while ARM enhances the architectural model of Jgroup by introducing ob-
ject factories, configurable protocol modules, and a distributed service for managing
deployed services.

55

56 4.1. INTRODUCTION

This chapter gives a brief overview of the services and mechanisms provided by
the ARM framework, whereas Chapter 11 provides additional details. Section 4.1
presents a short description of the mechanisms embedded within ARM, relating them
to autonomic computing concepts. In Section 4.2 an overview of Jgroup/ARM is
presented, aimed at illustrating the high-level relations between ARM and Jgroup.
Finally, in Section 4.3 a brief introduction to the ARM architecture is given.

4.1 Introduction

To support its goals, the ARM framework is comprised of three core mechanisms:
policy-based management, self-healing and self-configuration as discussed below.

Policy-based management [113], where application-specific replication policies and
a system-wide distribution policy are used to enforce the dependability requirements
and WAN partition robustness of services. Policy-based management allows a system
administrator to provide a high-level policy specification to guide the behavior of
the underlying system. Three distinct policies are used to guide ARM in making
decisions on how to handle a particular system condition, e.g. a replica failure. The
system-wide distribution policy is specific to each ARM deployment, and is used to
determine the set of sites and nodes (see Figure 1.1 on page 8) on which replicas
can be allocated. A replication policy and a remove policy, both application-specific,
are used guide the behavior of ARM with respect to maintaining the dependability
requirements and recovery needs of an application service.

Self-healing [95], where failure scenarios are discovered, diagnosed and handled
through recovery actions, depending on the replication policy of the affected ser-
vices. The objective of this mechanism is to minimize the period of reduced failure
resilience, in which additional failures could potentially cause the service to stop,
ultimately degrading its dependability characteristics. Currently, object, node and
network partition failures are handled. It could be extended to handle value faults
as well, like Delta-4 [102] and AQuA [104]. However, that requires an interaction
model where clients can obtain results directly from all replicas, which is currently
not supported by Jgroup. This was briefly discussed in Section 2.4.1. ARM is also
able to handle multiple concurrent failure activities of the same or different services,
including failures affecting the ARM infrastructure (self-recovery). The latter re-
quires that core parts of the ARM infrastructure is replicated to avoid becoming a
single point of failure.

4. AN OVERVIEW OF AUTONOMOUS REPLICATION MANAGEMENT 57

Self-configuration [95] is supported by adapting to changes in the environment, al-
lowing service replicas to be relocated/removed to adapt to uncontrolled changes such
as failure/merge scenarios, or controlled changes such as scheduled maintenance. For
example, operating system upgrades can be performed without manual intervention
to migrate replicas to alternative locations. A node is simply removed from the sys-
tem, causing ARM to reconfigure the replica locations, and upon completion of the
maintenance activity the node is reinserted. ARM also supports software upgrade
management [115, 114], as discussed in Chapter 12.

The ARM framework could also be extended with some degree of self-optimization
in the sense that policies can be programmed to determine the optimal redundancy
level for the current network environment.

A non-intrusive system design is applied, where the operation of deployed services is
completely decoupled from ARM during normal operation in serving clients. Once
a service has been installed, it becomes an “autonomous” entity, monitored by ARM
until explicitly removed. This design principle is essential to support a scalable ar-
chitecture, and follows naturally from the open group model [64] adopted by Jgroup.
Only a negligible overhead is added to each deployed service, due to the main recov-
ery mechanism provided by ARM. Additional recovery mechanisms can be added at
the cost of additional overhead.

4.2 Jgroup/ARM Overview

This section briefly describes the interactions between the various Jgroup and ARM
components. Figure 4.1 shows a high-level view of the components and communica-
tion patterns of Jgroup/ARM.

A client interacts with the dependable registry to obtain group proxies for services
that the client needs to perform its operations. Prior to this, the servers must bind their
references in the registry. Servers will also notify ARM of changes to the membership
of their respective groups. These notifications are used by ARM to determine if
recovery is needed.

The various servers are mapped to nodes (and sites) in the target environment (see
Figure 1.1). Each node has a factory which is used to install and remove servers
on that node. ARM is also responsible for installing and removing services on de-
mand. Figure 4.2 shows the installation of a triplicated server group using the ARM
framework.

58 4.2. JGROUP/ARM OVERVIEW

Server A

Clients

Dependable
registry

ARM

Server B Server C

Factories

Network

Node

Figure 4.1: Overview of Jgroup/ARM components and communication patterns.

createGroup()

createReplica()

N1

N2

N3

DR

RM

MC

bind()

notify(ViewChange) notify(ViewChange)

LegendLegend
Group leader RM processing Server initialization

MC Management Client RM Replication Manager
 N# Node number DR Dependable Registry

View

Figure 4.2: Installation of a triplicated server group.

4. AN OVERVIEW OF AUTONOMOUS REPLICATION MANAGEMENT 59

The responsibilities of the ARM framework include deployment and operation of de-
pendable applications “seamlessly” within a predefined target environment, i.e. the
set of sites and nodes that may host applications and ARM-specific services. Within
the bounds of the target environment, ARM autonomically manages both replica dis-
tribution, according to the rules of the distribution policy, and recovery from various
failure scenarios, based on the replication policy of the service(s) exposed to the
failure. For example, maintaining a fixed redundancy level is a typical requirement
specified in the replication policy. An example of a typical failure-recovery sequence
is shown in Figure 4.3, in which node N1 fails, followed by a recovery action causing
ARM to install a replacement replica at node N4.

N1 crashed Leader

notify(ViewChange)

notify(ViewChange) notify(ViewChange)
N2

N3

N1

N4

RM

join

createReplica()
notify(ViewChange)

Figure 4.3: An example failure-recovery sequence.

4.3 Architectural Overview

The ARM framework keeps track of deployed services in order to discover failures
and to initiate recovery to compensate for reduced failure resilience. This section
gives a high-level overview of the ARM architecture.

Figure 4.4 illustrates the core components and interfaces supported by the ARM
framework: a system-wide replication manager (RM), a supervision module asso-
ciated with each of the managed replicas, an object factory deployed at each of the
nodes in the target environment, and an external management client (MC) used to
interact with the RM.

The replication manager is the main component of ARM; it is implemented as a dis-
tributed service replicated using Jgroup. Its task is to keep track of deployed services

60 4.3. ARCHITECTURAL OVERVIEW

ping()

Management
Client

Replication
Manager

Management

E
ve

nt
s

createGroup()
removeGroup()
updateGroup()
subscribe()
unsubscribe()

GUI

Protocol
Modules

Factory

NodeJVM

Protocol
Modules

JVM

JVM

Protocol
Modules

Factory

NodeJVM

JVMcreateReplica()
removeReplica()
queryReplicas()

notify()

Supervision
Module

notify()

C
al

lb
ac

k
S A 2

S A 1 S B1

Figure 4.4: Overview of ARM components and interfaces.

in order to collect failure information, analyze this information, and reconfigure the
system on-demand according to the configured policies. Reconfiguration often en-
tails the creation of additional replicas to substitute crashed or partitioned ones, or
the removal of excess replicas that may have been created due to incorrect failure
suspicions or when partitions merge after repairs.

The supervision module is the ARM agent co-located with each Jgroup replica. It is
responsible for forwarding view change events generated by the PGMS to the RM.
It is also responsible for decentralized removal of excess replicas. The supervision
module is one of several protocol modules associated with each replica. Protocol
modules are discussed in Chapter 6.

The purpose of object factories is mainly to act as bootstrap agents; they enable
the RM to install and remove replicas, as well as to respond to queries about which
replicas are hosted on the node. They also provide mechanisms to assist ARM in
making decisions about the nodes on which to place replicas.

The management client provides system administrators with a management interface,
enabling on demand installation and removal of dependable applications in the target
environment and to specify and update the distribution and replication policies to be

4. AN OVERVIEW OF AUTONOMOUS REPLICATION MANAGEMENT 61

used. The management client can also acquire information about running services
through callbacks from the RM.

Note that it is assumed that the RM, along with the managed services (such as the
SA and SB services in Figure 4.4), is deployed within the same target environment,
while the management client and other clients are considered external to the target
environment.

Overall, the interactions among these components enable the RM to make proper
recovery decisions and allocate replicas to suitable nodes in the target environment.
These tasks are performed by ARM without human interaction.

62 4.3. ARCHITECTURAL OVERVIEW

Part II

Adaptive Middleware

63

Chapter 5

The Jgroup/ARM Architecture

To support fault treatment, the underlying architecture must support adaptive recon-
figuration of deployed services. However, several design choices were made for
Jgroup that are unfavorable with respect to support such reconfigurations.

Hence the purpose of this chapter is to present a common Jgroup/ARM architecture
that satisfies the requirements needed to meet our goals. The architecture is based
on the Jgroup model presented in Chapter 3, but a number of enhancements (Part II)
and additions (Part III) have been made to address the fault treatment issue. Several
advanced mechanisms are provided to support deployment and operation of self-
managed distributed services. Below a brief overview of Part II is given.

The first enhancement is the ability to dynamically configure the group manager (see
Section 3.2) according to some application-specific policy. The group manager can
now easily incorporate new group-related services, in addition to the basic Jgroup ser-
vices (PGMS, GMIS, SMS). This change makes it possible to build generic Jgroup
services that can intercept group-related events and perform various tasks, e.g. recon-
figurations, based on these events. This enhancement is covered in Chapter 6.

The second enhancement deals with supporting different replication protocols for
EGMI. To build fault tolerant systems with strong consistency, simple anycast and
multicast are not sufficient. Hence the EGMI part of Jgroup has been completely
revised with an architecture for per method selection of replication protocols. Two
new replication protocols have also been added; atomic multicast and leadercast. The
latter is a variant of passive replication. Chapter 7 covers this enhancement.

Enhancements have also been made to the Jgroup daemon to support multiple replicas
per node, by allowing several group managers to connect to the same daemon. This

65

66 5.1. ARCHITECTURAL REQUIREMENTS

change is essential, assuming that the number of nodes in the pool are less than the
total number of server replicas to be deployed, promoting the reuse of node resources.
Chapter 8 elaborates on the resource sharing enhancements.

The last enhancement, covered in Chapter 9, concerns the handling of group member-
ship information on the client-side. Inconsistent client-side membership information
can lead to performance penalties for anycast invocations, and also longer failover
latency.

In the following section, the requirements for the Jgroup/ARM architecture is pre-
sented, supplementing the Jgroup model. In Section 5.2 the architecture is presented;
the aim is to relate the various Jgroup and ARM infrastructure components into a
common architecture.

5.1 Architectural Requirements

Given the goals, constraints and assumptions in Section 1.2.1, the following list of
high-level requirements for the Jgroup/ARM architecture is derived. The architecture
must support:

1. Deploying replicas onto nodes.

2. Running multiple replicas per node.

3. Failure independence between replicas on the same node.

The architecture is specifically designed to support the above requirements, but is
also flexible enough to support alternative configurations.

To support requirement 1 in the list above, each node must provide some entity
through which replicas can be deployed. One solution to this could be to use a pro-
gram for remote execution, e.g. secure shell (ssh) [109]. However, such solutions
are often specific to the operating system. Our solution is independent of operating
system.

Requirement 2 in the list allows each node to host multiple replicas, thereby reusing
resources. In general there are two approaches to hosting multiple replicas per node:

1. Each replica on the node communicates through separate ports and

2. all replicas on the node communicates through the same port.

5. THE JGROUP/ARM ARCHITECTURE 67

The advantage of the former approach is that each replica is completely independent
of all other replicas on the node, whereas the latter approach have a common point of
failure. In the architecture presented below the second approach is used; the reason
for this is twofold: (i) it is more scalable as communication resources can be shared
between replicas (see Chapter 8) and (ii) it is easier to manage communication port
allocations. This approach is also used by the Spread toolkit [3].

Though sharing the communication endpoint between replicas on the same node,
failure independence may still be preserved for the replicas as given by requirement 3,
as long as the communication endpoint component remains available. To ensure
replica failure independence, the replicas must be running in separate processes (or
JVMs). All replicas running in a shared JVM are likely to fail if one of the replicas
fails.

5.2 The Jgroup/ARM Architecture

Figure 5.1 illustrates the principal components of Jgroup/ARM. The target environ-
ment is comprised of a set of server nodes; the server nodes may reside at separate
sites in the network, albeit not shown explicitly in the figure. Client nodes are not
part of the target environment; however, the client applications needs to be aware of
the sites and nodes in the target environment to be able to find services.

In the figure, two application services have been deployed, SA and SB . SA has three
replicas, where replica number i is denoted SA(i), and SB has two replicas. The
replicas are distributed evenly over the four server nodes, such that the same node
have at most one instance of each application service type. These two applications
are deployed and operated through the ARM infrastructure discussed below. The
figure also shows clients, CA and CB , for the corresponding server applications.
Communication between a client and an object group is mediated by a group proxy
(GP), that transmit group method invocations to the group managers associated with
replicas forming the group.

A number of infrastructure components are also shown in Figure 5.1. These com-
ponents perform various tasks to ensure that the dependability requirements of ap-
plications are maintained, and makes the development of such applications easier by
hiding the non-functional details that can be handled by the framework instead of
the application. The following gives a brief overview of these components and their
purposes, and how the various components relate to each other.

68 5.2. THE JGROUP/ARM ARCHITECTURE

Target Environment (server nodes)

Node1

JVM
FactoryBR

JVM

Daemon

RM(1)
GM

DR(1)
GM

JVM

GM
S A1

Node2

JVM

JVM

RM(2)
GM

DR(2)
GM

Node3

JVM

JVM

GM
S A2

JVM

GM
S B2

Node4

JVM

LegendLegend
BR Bootstrap Registry
DR Dependable Registry
GM Group Manager
GP Group Proxy
RM Replication Manager
MC Management Client

Factory – JVM process relation
Daemon – GM communication
Communication
Jgroup/ARM runtime component

NodeA
JVM

GP
C A

Application replica

NodeB
JVM

GP
CB

NodeC
JVM

MC
GP

Client nodes

FactoryBR Daemon

FactoryBR DaemonFactoryBR Daemon

JVM

GM
S A3

JVM

GM
S B1

Figure 5.1: Architectural overview of Jgroup/ARM components.

5. THE JGROUP/ARM ARCHITECTURE 69

The main components of the ARM infrastructure are described briefly in Section 4.3.
These descriptions suffice for now, as we try to relate the various Jgroup and ARM
components into a common architecture in the following sections.

5.2.1 Replication Manager Dependency

The replication manager (RM) relies on the dependable registry (DR) service to store
its object group reference, enabling RM clients such as the supervision module, fac-
tory and management client to query the DR to obtain the group reference of the RM.
Due to this dependency, ARM has been configured to co-locate RM and DR replicas
in the same JVM, as illustrated in Figure 5.1. This eliminates the possibility that
partitions separate RM and DR replicas, which could potentially prevent the system
from making progress.

5.2.2 The Object Factory

Each node in the target environment must be running an object factory to be able
to host server replicas. As illustrated with the dashed lines in the figure, the factory
keeps track of its locally installed replicas at the JVM (process) level. Although the
factory exists on each node, it does not form a group and only maintains local state
information about replicas. The RM and other ARM components communicate with
the factory through RMI.

The factory is co-located with a bootstrap registry (BR). The purpose of the BR is to
store the remote reference of certain Jgroup/ARM infrastructure components, allow-
ing other components to find them and enable communication required to bootstrap
the system. The BR is simply a standard non-replicated Java RMI [123] registry ser-
vice running on a well-known port on each node within the target environment. Each
node contains only a single instance of the BR. The BR only keeps information about
Jgroup/ARM components on the local node, such as the remote reference of the local
factory, and if present the local dependable registry instance. The factory itself (and
consequently the bootstrap registry) is typically started during the operating system
boot process.

70 5.2. THE JGROUP/ARM ARCHITECTURE

5.2.3 The Group Manager

Each replica is associated with one group manager (GM) for each group that the
replica has joined1. The group manager represents the Jgroup runtime and is com-
posed of a set of protocol modules implementing the Jgroup services described in
Chapter 3, in addition to other group-related services such as message multicasting
and supervision. Protocol modules may interact with (i) other local modules or the
application, (ii) a corresponding remote module within the same group, and (iii) ex-
ternal entities such as clients. Local interactions, such as the EGMI cooperating with
the PGMS to enforce view synchrony, are governed through internal service inter-
faces; each module provides a set of services, and requires a set of services to work.
The set of protocol modules is dynamically constructed at runtime based on a declar-
ative specification given at deployment time, as will be discussed in Chapter 6. This
allows maximum flexibility in activating required services. The module configura-
tion is integrated into the ARM policy management, so its description is deferred to
Chapter 10.

As shown in Figure 5.1, multiple GMs may reside on the same node, either in the
same JVM or in different JVMs. Typically, distinct application replicas residing in
the same JVM belong to different groups, exemplified by the RM and DR replicas. As
discussed above, such co-location can be favorable if there is a dependency between
the applications.

5.2.4 The Jgroup Daemon

The basic group communication facilities provided by Jgroup are partially imple-
mented in the daemon. However, the servers do not interact with the daemon directly,
but rather through the GM. The GM of each replica must connect to a daemon. The
new daemon architecture (discussed in Chapter 8) is able to handle multiple GM
connections, reducing the cost of group communication to the number of daemons,
and being able to reuse nodes by co-locating multiple replicas on the same node.
Note that the daemon is only used for low-level group-related communication among
group members, whereas client and server implementations interact through high-
level interfaces based on GMI. As illustrated in Figure 5.1 multiple replicas connect
to the node local daemon. Communication between the daemon and its connected

1A server may join multiple groups, but in this work we consider only servers (replicas) joining a
single group.

5. THE JGROUP/ARM ARCHITECTURE 71

GMs take the form of remote method invocations. It is also possible for a GM to
connect to a daemon on a remote node (not shown in the figure). Replicas belong-
ing to different applications may share the same daemon, but it is also possible to
run several daemons on the same node when distinct applications have completely
different membership and communication requirements.

5.2.5 Failure Independence and JVM Allocation

The architecture in Figure 5.1 is flexible in that application replicas and various
Jgroup/ARM runtime components may be located in separate JVMs. This is mo-
tivated by the desire to enhance the failure independence of different Jgroup/ARM
components. In particular, each application replica is executed in a different JVM
so as to prevent misbehaving replicas from disrupting the Jgroup/ARM runtime or
other applications located on the same node. However, failure independence comes
at the cost of interprocess communication (RMI), and for certain applications this
additional cost may be too high. To avoid the interprocess communication overhead,
it is possible to configure application replicas to be co-located in the same JVM as
the Jgroup/ARM runtime, sacrificing failure independence. This case is not shown in
Figure 5.1, but is discussed further in Chapter 8.

72 5.2. THE JGROUP/ARM ARCHITECTURE

Chapter 6

Dynamic Protocol Composition

Without proper support for configurable protocol stacks, the application developer
needs to have detailed knowledge of the core group communication toolkit, leading
the developer to worry about issues outside of the application domain. Moreover, the
developer would need to recompile from the source code for each protocol stack im-
plemented, which would again lead to issues of maintaining multiple versions of the
code. In the first implementations of Jgroup, adding alternative protocols or group-
related services required modifying core components of the toolkit. Jgroup lacked
flexibility in several aspects, including the composition of protocol modules.

To equip Jgroup with a framework for adaptive and configurable protocol composi-
tion, core parts of the Jgroup toolkit had to be redesigned. The changes discussed in
this chapter makes it possible for each individual application to dynamically config-
ure its own group communication protocol stack, and each protocol module can be
parameterized according to application-specific requirements.

This chapter is organized as follows: In Section 6.1 we discuss previous works on
protocol architectures and relate these to the approach taken by Jgroup. Section 6.2
states the requirements for our protocol architecture. Section 6.3 introduces the con-
cepts on which our protocol composition framework is based, and illustrate a sample
protocol stack. Section 6.4 details the various ways in which protocol modules can
communicate, both internally and externally. Finally, in Section 6.5 the dynamic
composition of protocol modules is discussed.

73

74 6.1. INTRODUCTION TO PROTOCOL ARCHITECTURES

6.1 Introduction to Protocol Architectures

Protocol composition is traditionally based on ISO/OSI like protocol stacks. How-
ever, in the last decade, micro-protocols have become increasingly popular, as they
are aimed at providing more flexible ways for protocol composition. To accomplish
this, micro-protocol frameworks restrict their protocol layers to follow a specific
model, rather than building protocols in an ad hoc manner. Examples of such re-
strictions include things like: the protocol layers have to communicate using events
that travel up or down the protocol stack, and that the layers cannot share any state.
This way protocols become more maintainable and configurable as new protocols can
easily be added to the system. The cost however, is reduced performance.

Micro-protocols were first introduced in the x-kernel [60], and have since been used
in a variety of systems, including group communication systems such as Ensem-
ble [55], Horus [132], JavaGroups [18], Cactus [58] and Appia [84]. Jgroup does
not use a micro-protocol architecture in the low-level message communication (see
Chapter 8). However, the group manager architecture discussed in this chapter, can
be compared to micro-protocol architectures.

Ensemble, Horus, JavaGroups and Appia [55, 132, 18, 84] follow a strictly verti-
cal stack composition, where events must pass through all layers in the stack. In
the Horus system, a protocol accelerator [131] implements optimizations that reduce
the effects of protocol layering. The limitation of these optimization techniques is
that the set of protocols to be bypassed must be well-defined, and the optimizations
were hand-coded into the protocol stack. Thus, it reduces the configurability of the
micro-protocol framework. Similar optimizations are also feasible with the Ensemble
system [55]. Both Appia [84] and JavaGroups [18] are also based on micro-protocols
in its purest form, since none of the optimizations implemented in Horus and Ensem-
ble are available. That means that every event has to pass through all intermediate
layers, even though the event is not being processed by all of the layers.

The Cactus [58] micro-protocol framework is conceptually similar to the Jgroup pro-
tocol composition framework discussed in the remainder of this chapter. Each layer
has to register its interest in the events of other layers, and protocols can be con-
structed according to formal rules, such as a dependency graph. Thus, such a protocol
stack does not follow a strict vertical composition. An advantage of the Jgroup proto-
col framework over JavaGroups, Appia and the Cactus system is type-safety. Events
are passed by means of method calls on a set well-defined interfaces for the vari-
ous modules (layers), whereas other systems have to implement a common handler

6. DYNAMIC PROTOCOL COMPOSITION 75

method in each layer which takes care of demultiplexing the received events based
on the type of the events. In Jgroup, events are passed directly to the appropriate
event handler. Another advantage of Jgroup over the Cactus system is the possibility
to specify interception rules, enabling a module to delay and/or modify events from
another module.

6.2 Protocol Architecture Requirements

In the original Jgroup implementation, protocol modules were constructed statically
as a monolithic core, and message passing relations between the various protocol
modules were established in an ad hoc manner. Hence, the requirements for re-
designing the protocol framework for Jgroup include:

1. Support for simple inter- and intra stack message passing.

2. Efficient intra-stack message passing.

3. Dynamic construction of protocol stacks.

The first requirement above was already provided through an ad hoc mechanism for
connecting protocol modules. Message passing between different stacks was also
supported, but also here ad hoc mechanisms were used and there was a lack of support
for multiplexing messages destined for different modules.

The main contribution for the redesigned protocol architecture is in the dynamic con-
struction of protocol stacks. However, also the message passing techniques used in
Jgroup have been redesigned to follow certain rules that make it easier to develop
protocol modules, and to check the structural correctness of a given set of protocol
modules.

6.3 Protocol Modules

The Jgroup group manager (GM) is the glue between an application and the core
group communication services. It allows the application to interface with the various
Jgroup services to perform group-specific tasks. The GM is based on an event-driven
non-hierarchical composition model1, and consists of a set of weakly coupled proto-
col modules. Each protocol module implements a group-specific function, which may

1In [82] this is called cooperative composition.

76 6.3. PROTOCOL MODULES

require the collaboration of all group members, e.g. the membership service (PGMS).
In fact, all the basic Jgroup services discussed in Chapter 3 and several other generic
group-specific functions are implemented as GM protocol modules.

The advantages of a non-hierarchical set of protocol modules over a strictly verti-
cally layered architecture, as used in many other group communication systems (e.g.
[132, 55, 18, 84]), is that events being passed from one layer (module) does not
have to be processed by any intermediate layers. Events can simply be passed from
one module to another without any processing delay and addition/removal of header
fields, thus also reducing the complexity of implementing a module. Our approach is
also flexible in that a module can intercept commands/events from another module,
delay and/or modify them, before delivery to the destination module. Interception
rules are specified inline in the modules using Java annotations, and the correspond-
ing implementations must adhere to these rules.

Protocol modules communicate with the application, or other modules, by means of
commands (downcalls) and events (upcalls) through a set of well-defined interfaces.
Typically, a module provides a set of services to other modules and/or the application,
and requires another set of services from other modules to perform its services. A
module may also substitute the services provided by another module, by intercepting,
delaying and/or modifying the commands/events passed on to the substituted module.

Each module implements one or more well-defined service interfaces, through which
the module can be controlled, and it may also generate events to listening modules
(or the application) through one or more listener interfaces. Usually, a module imple-
ments one service interface and provide events to other modules through one listener
interface. As an example, consider the MembershipModule which is defined by the
MembershipService and MembershipListener interfaces, shown in Figure 6.1. Notice
also that the server replica may use the MembershipService interface to join/leave the
group. To facilitate this, access to the service interfaces of protocol modules can be
obtained through a static method on the group manager class. However, to be noti-
fied of events generated by the various modules, a server only needs to implement
the listener interface(s) of the module.

The set of GM protocol modules required by an application is configured through
the ARM policy management discussed in Chapter 10. Based on this configuration,
the protocol modules are constructed dynamically at runtime. Recent versions of
JavaGroups [18] and Appia [84] also supports construction of protocol stacks based
on a configuration file. There is no strict ordering in which the modules have to
be constructed, except that the set of required modules must have been constructed

6. DYNAMIC PROTOCOL COMPOSITION 77

Server Replica

G
ro

up
 M

an
ag

er

StateMergeModule

MembershipModule

MulticastModule

DispatcherModule

MembershipService

MembershipService

MulticastService

DispatcherService

MembershipListener StateMergeListener

MembershipListener MulticastListener

DispatcherListener

DispatcherListener

StateMergeService

RemoteDispatcher

join(group) leave()

join(group) leave()

mcast(stream)
viewChange(view)

viewChange(view) getState()putState(state)

deliverStream(stream)

notify(event)

notify(event)

Daemon

notify(event)

DaemonDispatcher

dispatch(event)LegendLegend
Remote method invoc.
Local invocation

dispatch(event)dispatch(event)

isMember()

Figure 6.1: A sample group manager composition with the basic Jgroup services.

a priori. During construction, each module is checked for structural correctness, and
required modules are constructed on-demand.

Constructing protocol modules dynamically has the advantage of enabling developers
to easily build generic group-specific functions and augment the system with new
modules without having to recompile the complete framework.

Figure 6.1 illustrates a protocol composition containing the basic Jgroup services, ex-
cept the GMIS. For readability only the most important commands/events are shown
in the interfaces.

The DispatcherModule is responsible for queuing and dispatching events to/from the
daemon, and is the interface between the GM protocol modules and the daemon.
The MulticastModule implements the MulticastService through which other modules
(and the application) can send multicast messages to the current group members.

78 6.4. MODULE INTERACTIONS

To receive multicast messages, a module must implement the MulticastListener in-
terface. The main task of the MulticastModule is to multiplex and demultiplex the
multicast messages to/from the internal modules or the server replica. The actual low-
level IP multicast is performed by the daemon. Other modules (or the application)
can join() or leave() a group by invoking the MembershipService interface (see List-
ing 6.1), which is implemented by the MembershipModule. Variations in the group
membership are reported through viewChange() events. Any number of modules,
and the application, may register its interest in such events simply by implementing
the MembershipListener interface (see Listing 6.2). The MembershipModule mainly
keeps track of various state information and provides an administrative interface to
the PGMS, whereas the view agreement protocol is implemented in the daemon (for
details see [87]). The DispatcherModule, MulticastModule and MembershipModule
are mandatory, and must always be included for any sensible group communication
support.

Note that the StateMergeModule also implements the MembershipService interface,
and provides events through the MembershipListener interface. This is since the
StateMergeModule substitutes the membership service by intercepting and delaying
the delivery of viewChange() events to the server replica until after the state has been
merged. The main task of the StateMergeModule is to drive the state reconciliation
protocol by calling getState() and putState() on the StateMergeListener interface to
obtain and merge the state of server replicas. It also handles coordinator election
and information diffusion. State reconciliation is only activated when needed, i.e. in
response to viewChange() events generated by the MembershipModule. Hence, the
StateMergeService interface (dashed box) does not provide commands as a means
for activating it. As Figure 6.1 illustrates, the StateMergeModule requires both the
MembershipModule and the MulticastModule, and substitutes the MembershipMod-
ule.

6.4 Module Interactions

Protocol modules may interact in a number of different ways, both with external en-
tities and other protocol modules. Previously, Jgroup supported similar interaction
styles to those presented in this section, except for the interaction style discussed in
Section 6.4.4. However, the interaction links were established in a static and ad hoc
manner. Hence, in this section we formalize the various interaction styles used be-
tween modules. Furthermore, to construct the protocol modules dynamically, it is

6. DYNAMIC PROTOCOL COMPOSITION 79

necessary to understand the ways in which the modules can interact so as to dynami-
cally establish the necessary links between them.

Server to module interaction

Local inter−module interaction

Remote inter−module interaction

G
roup M

anager

Server Replica 1 Server Replica 2

G
ro

up
 M

an
ag

er

Legend:

Module Y

Module X

Module ZModule Z

Module Y

Module X

Figure 6.2: Inter-module and server-to-module interactions.

Figure 6.2 illustrates inter-module and server-to-module interactions. Inter-module
interactions may occur both within the same GM, and also across distinct GMs.
Mostly, only GMs that belong to the same group needs to communicate. GMs be-
longing to the same group should be composed of an identical set of protocol mod-
ules. The arrows in Figure 6.2 represents a may communicate relation. That is, a
module may or may not communicate with another module in one or both directions.
The server replicas may also communicate directly with one or more of the modules
within its local GM, without passing through any intermediate modules. The thicker
arrows represent remote communication between peer modules.
Four distinct forms of interaction styles involving protocol modules have been iden-
tified, as listed below. The first three are shown in Figure 6.2.

1. Local inter-module interactions between modules internal to the same GM.

2. Remote inter-module interactions between peer modules in distinct GMs.

3. Interactions between the server and local protocol modules.

4. Interactions between an external entity and a protocol module.

The last interaction style is common in many of the subsystems presented in later
chapters. Basically, it allows a protocol module to notify or to be notified by an ex-
ternal entity. In the following, we discuss each of these interaction styles individually.
Although commonplace, server-to-server interactions are not considered here.

80 6.4. MODULE INTERACTIONS

6.4.1 Local Inter-module Interactions

As mentioned above, the GM is composed of a collection of protocol modules, each
of which may provide a service to other modules in the same GM. In addition, a pro-
tocol module may also listen to events from other modules. Figure 6.3 illustrates a
generic view of the internal inter-module interaction interfaces, through which local
protocol modules communicate. In the figure, the service interface implemented by
module A is used by modules B and C within the same GM to invoke commands of-
fered through the service interface (e.g. to join() a group). Module A also implements
a set of listener interfaces through which it can be notified of events generated by
modules D and E (e.g. a viewChange() event.)

Module B Module C

Module A

Module D Module E

Service Interface

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command k
Event j of listener
interface n

en , je1, ie1,1

c1 ck

ck
en , j

Figure 6.3: A generic view of the interfaces used for local inter-module interactions.

A module must implement at least one service interface, but may also implement
more than one service (not shown in Figure 6.3). Implementing multiple service
interfaces is useful when a module intercept and substitute the services of another
module, e.g. the StateMergeModule in Figure 6.1. For most other circumstances a
module should implement only a single service interface to encourage reuse.

The service interface typically contains one or more commands (c1, . . . , ck), that can
be invoked by the application or by other modules. The service interface may also
be empty in the sense that it does not provide any commands (methods). Such empty
interfaces are often called marker interfaces, and only serves the purpose of identify-
ing the module internally in the GM. The dashed box around the StateMergeService
interface in Figure 6.1 is used to indicate that it is an empty marker interface.

6. DYNAMIC PROTOCOL COMPOSITION 81

A module may have one or more associated listener interfaces through which module
generated events can be passed to its listeners (other modules or the server replica).
Figure 6.1 illustrates the use of multiple listener interfaces; the StateMergeModule
generates events through both StateMergeListener and MembershipListener, since
the StateMergeModule substitutes the MembershipModule. Usually however, a mod-
ule generate events through a single listener interface (see Figure 6.3). A module
without any associated listener interfaces is useful only when the module provides
services commands.

A module may receive events (e1,1, . . . , e1,i) generated by other modules by imple-
menting one or more listener interfaces.

Listing 6.1: Partial view of the MembershipService interface.
1 public interface MembershipService
2 extends Service, ServiceFinalizer
3 {
4 public void join(int groupId)
5 throws JgroupException;
6 public void leave()
7 throws JgroupException;
8 public boolean isLeader();
9 public MemberId getMyIdentifier();

10 public MemberTable getMemberTable();
11 }

Listing 6.2: The MembershipListener interface.
public interface MembershipListener
{

public void viewChange(View view);
public void prepareChange();
public void hasLeft();

}

The service and listener interfaces are defined in terms of Java interfaces, and arrows
in Figure 6.3 represents Java methods (commands/events). Listings 6.1 and 6.2 il-
lustrates two example interfaces, corresponding to the service and listener interfaces
associated with the MembershipModule.

82 6.4. MODULE INTERACTIONS

6.4.2 Remote Inter-module Interactions

Modules within one GM may interact with its remote peer modules in other GMs
belonging to the same group. Previous versions of Jgroup only supported message
multicasting at the module level, whereas server replicas could exploit IGMI. There-
fore the InternalGMIModule has been redesigned by adding a routing mechanism to
determine which of the modules or the server should receive a particular invocation.
Hence, two approaches can now be used by module developers to support interaction
between peer modules:

• Message multicasting (using the MulticastModule)

• Internal group method invocations (using the InternalGMIModule).

The advantage of the former approach is primarily efficiency, since it adds no over-
head to the messages being sent by the module, except for a small header used to
route multicast messages to the appropriate peer modules. The drawback with mes-
sage multicasting is that module complexity increases, since the developer must im-
plement marshalling and unmarshalling routines for the different message types to be
exchanged between peer modules.

Contrarily, the InternalGMIModule takes care of marshalling and unmarshalling, re-
ducing the module complexity to pure algorithmic considerations. The InternalGMI-
Module do however impose an additional overhead compared to that of message mul-
ticasting. The overhead is mostly due to the use of dynamically generated proxies [6,
Ch.16], as discussed briefly below. Albeit not confirmed through measurements, we
expect that the overhead imposed by the proxy mechanism is small compared to the
communication latencies between the peer modules.

Figure 6.4 illustrates the workings of the InternalGMIModule as a means for com-
munication between peer modules. The example shows the ExchangeModule intro-
duced for the purpose of this discussion. It implements the InternalExchange inter-
face, containing the exchange() method. This allows the ExchangeModule to invoke
the exchange() method on its peer modules, including itself. To support such inter-
nal method invocations on peer modules, the InternalGMIModule dynamically con-
structs an IGMI proxy object implementing the same InternalExchange interface as
the ExchangeModule. The IGMI proxy acts as a representative object for the whole
group of peer modules. The ExchangeModule can then simply invoke the exchange()
method on the proxy (Ê), and the proxy will take care of marshalling the invocation
and multicasting it to the other group members (Ë). Then the InternalGMIModules

6. DYNAMIC PROTOCOL COMPOSITION 83
G

ro
up

 M
an

ag
er

ExchangeModule

MulticastModule
MulticastService

mcast(stream)
deliverStream(stream)

InternalGMIModule
MulticastListener

IGMI Proxy
InternalExchange

InternalExchange
exchange()

exchange()

G
roup M

anager

ExchangeModule

MulticastModule
MulticastService

mcast(stream)
deliverStream(stream)

InternalGMIModule
MulticastListener

IGMI Proxy
InternalExchange

InternalExchange
exchange()

exchange()1

2 3 3

4 4

Invoking
module

Dynamically
generated

Figure 6.4: Remote inter-module interaction using the IGMI approach.

will receive the multicast message (Ì), and will take care of unmarshalling and in-
voking the exchange() method on the local ExchangeModule (Í). Finally, the results
are returned to the invoking module, following the reverse path (not shown in the
figure).

6.4.3 Server to Module Interactions

As discussed above, also the server implementation may interact with the local mod-
ules. The original Jgroup implementation used the same interaction style as presented
in this section; it is included here for completeness as it has not been documented
elsewhere.

Figure 6.5 shows a generic view of the server-to-module interactions. A server replica
may choose to listen to an arbitrary set of events generated by its associated protocol
modules. To accomplish this, the server must implement the listener interfaces as-
sociated with the modules whose events are of interest. However, a server may also
choose to not implement any listener interfaces if it does not need to process events
generated by modules.

In a similar manner, the server may invoke any one of the commands provided
through the service interfaces of the protocol modules associated with the server.

As Figure 6.5 demonstrates, various combinations of using services and listening to
events are possible. The server may both listen to events of a module, and invoke its

84 6.4. MODULE INTERACTIONS

Group
Manager

Server

Module A Module B
Service Interface 1

Listener Interface 1 Listener Interface n

Legend:Legend:

...
... en ,1

Command l of service interface m
Event j of listener interface n

en , je1, ie1,1

c1,1 c1,k

cm ,l
en , j

Module C
Service Interface m

cm ,1 cm ,l

getService()

Figure 6.5: A generic view of the server-to-module interaction interfaces.

service commands (middle module), or it may just listen to its events (left module),
or just invoke its service commands (right module).

Listing 6.3 shows an example server that implements the MembershipListener inter-
face, and exploits the MembershipService interface to become member of group 5.

Establishing the connections between the server and its associated set of protocol
modules is done through the GroupManager object. The GroupManager object wraps
the protocol modules and acts as an interface between the modules and the server.
Initially, when the server requests group communication support it will invoke the
getGroupManager() factory method, passing its own reference (this) (see Line 7 in
Listing 6.3). Given the server reference, the GM is able to establish upcall connec-
tions between the server and the modules whose listener interfaces are implemented
by the server.

On the other hand, establishing connections between the server and the service in-
terfaces of modules are done on-demand by the server implementation itself. This is
accomplished by using the GroupManager.getService() method shown in Figure 6.5
and in Lines 9-10 in Listing 6.3. Given a reference to the service interface of some
module, the server can easily invoke service commands, e.g. the join() method in
Line 12 in Listing 6.3.

Note that even though a server is associated with a set of protocol modules, it does
not have to interact with any of the modules in the set. Mostly, the server will interact
directly with only a small subset of the modules. Also, a particular server may be
interested only in a small part of the methods declared in the listener interfaces, in
which case it can simply provide an empty implementation for those methods, e.g.
Lines 21-22 in Listing 6.3.

6. DYNAMIC PROTOCOL COMPOSITION 85

Listing 6.3: Example server using the MembershipService and MembershipListener.
1 public class ExampleServer
2 implements MembershipListener
3 {
4 public ExampleServer()
5 {
6 /* Obtain a group manager for this server object */
7 GroupManager gm = GroupManager.getGroupManager(this);
8 /* Obtain a reference for the membership service */
9 MembershipService pgms = (MembershipService)

10 gm.getService(MembershipService.class);
11 /* Join group 5 */
12 pgms.join(5);
13 }
14

15 /* Methods from the MembershipListener interface */
16 public void viewChange(View view)
17 {
18 System.out.println("New view installed: " + view);
19 }
20

21 public void prepareChange() {}
22 public void hasLeft() {}
23 }

6.4.4 External Entity to Module Interactions

Protocol modules may also interact directly with (possibly replicated) external en-
tities. For instance, a protocol module could invoke methods on an external entity
or vice versa. This interaction style is new and is useful for a number of purposes,
such as event logging, event notifications or triggering some action, e.g. recovery or
upgrade.

Note that we distinguish between remote peer module interactions as discussed in
Section 6.4.2, and interactions with external entities. This is because peer module
interactions assume the modules are in the same group, and hence view synchrony
can be guaranteed, whereas interactions with external entities cannot provide such
guarantees. Nonetheless, interaction with external entities has proven to be a vital
interaction style for many of the subsystems discussed in later chapters.

External entities and modules can interact in both directions, as shown in Figure 6.6.
Interaction with external entities relies on the dependable registry for looking up the

86 6.4. MODULE INTERACTIONS

Group ManagerGroup Manager

Module X1 Module X2

Server 2

E
G

M
I I

nt
er

fa
ce

Server 1

Module Y1 Module Y2

LeaderLeader

External
Entity 1

External
Entity 2

E
G

M
I Interface

Dependable
Registry

lookup()

bind()lookup()

bind()
Legend:Legend:

External entity interaction
Registry interactions

Figure 6.6: External entity to module interactions.

reference of the external entity (or the group of modules) with which to communicate.
Prior to such lookups, the receiving end must bind() its reference in the dependable
registry. The two interactions shown in Figure 6.6 are both based on EGMI, and
hence the receiving end must include the ExternalGMIModule in its set of protocol
modules.

External Entity 1 can invoke the EGMI interface of Module X to perform some op-
eration implemented by the module. For example, the upgrade manager (the external
entity) can multicast an upgradeRequest() to the UpgradeModule (Module X) asso-
ciated with each of the server replicas, to request that the replica be upgraded to a
new version. Further details about the upgrade approach is given in Chapter 12.

External Entity 2 implements a remote EGMI interface, which indicates that it is
replicated using Jgroup. This allows a module to invoke methods on the external
entity to perform some operation. For example, the ARM replication manager (the
external entity) use this interaction style for receiving viewChange() events generated
by the SupervisionModule (Module Y). Note that when using this interaction style,
it is common that only the leader replica perform invocations so as to reduce the
chance of performing duplicate invocations on the external entity. See Chapter 11 for
additional details.

6. DYNAMIC PROTOCOL COMPOSITION 87

Note that although the above description has assumed the use of EGMI for commu-
nication with external entities, using standard RMI is also possible. In particular, the
client-side group proxy (the external entity), discussed briefly in Section 3.3.2, use
RMI to communicate with the ExternalGMIModule of one of the servers in the group.
The ExternalGMIModule is responsible for performing invocations on the servers and
returning the result to the client-side proxy.

6.5 The Dynamic Construction of Protocol Modules

The group manager encapsulates the set of protocol modules associated with an appli-
cation. Previously however, the group manager provided only a fixed set of statically
constructed protocol modules (services), i.e. those described in Chapter 3. This sec-
tion describes the enhancements made to the group manager construction mechanism
aimed at improving the flexibility in protocol module configuration. Protocol mod-
ules are now configured using the application-specific replication policy as discussed
in Chapter 10. The policy supports specifying the set of protocol modules to be con-
structed, as well as supplying configuration parameters to the modules, e.g. timeout
values.

Protocol modules are constructed dynamically at runtime based on the replication
policy of the application requesting the construction of a GM. Line 7 in Listing 6.3
illustrates how the server interacts with the GM to perform the construction. This is
essentially all a server developer needs to know about the construction of protocol
modules. However, a developer of generic modules needs to have more intimate
knowledge of the architecture.

To a module developer, the dynamic construction facility simplifies these tasks:

• Automatic construction of protocol modules.

• Establishing links between dependent modules.

• Establishing links between the server and its dependent modules.

• Reconfiguration of links for module substitution.

To take advantage of the dynamic construction facility, the module developer must
adhere to the rules listed below:

1. The module must contain a single constructor, whose signature contains the set
of services required by the module.

88 6.5. THE DYNAMIC CONSTRUCTION OF PROTOCOL MODULES
G

roup M
anager

Server

ZModule

Service ServiceFinalizerConstructor
(XService, YService)

@Substitutes(YService, YListener)
XListener YListener

XModule YModule

YService

XService YService

LegendLegend Mandatory

Optional

YListener

ZService

new ZModule(xs, ys)

Module Factory

complete(object)addListener(object)

getGroupManager(server)getService(ZService)

Module repository

Delay

Figure 6.7: The module factory and interfaces used for module construction.

2. The module must implement the Service interface.

3. The module may implement the ServiceFinalizer interface.

4. The module may implement listener interfaces of other modules.

5. The module may declare that it substitutes the services/listeners provided by
another module.

Figure 6.7 illustrates these rules in terms of interfaces. Solid boxes indicate required
interfaces, while dashed boxes denote optional interfaces which may be implemented
by a module depending on its requirements.

6.5.1 Module Instantiation

As shown in Figure 6.7, ZModule requires two other services, XService and YService,
which are implemented by XModule and YModule, respectively. These two modules

6. DYNAMIC PROTOCOL COMPOSITION 89

must have been constructed prior to ZModule, and are passed as parameters to the
ZModule constructor. The module factory uses Java reflection [6, Ch.16] to examine
the constructor signature of the ZModule to determine its required module dependen-
cies, and queries the module repository to obtain the required modules. If a required
module is not found in the repository it will be created on-demand and stored in the
repository. Note that cyclic module dependencies are not possible with this approach,
i.e. if ZModule depends on XModule and vice versa, they cannot be constructed using
the scheme above. However, it is still possible to manually implement dependency
cycles through minor supplements to the mutually dependent modules.

Construction order may sometimes be important for correct functioning of a protocol
stack. Construction follows the bottom-up order specified in the replication policy
(see Chapter 10). Referring to Figure 6.1, this means that the DispatcherModule
is constructed first, followed by the MembershipModule and so on. Note that the
DispatcherModule does not depend on other GM modules, but is instead responsible
for constructing or establishing connection with a daemon.

6.5.2 Link Configuration

Once all the protocol modules associated with an application have been instantiated,
links between the modules are established by the module factory through the manda-
tory Service interface implemented by all modules. The addListener() method shown
in Figure 6.7 serves two primary purposes:

• To establish upcall links with other modules and the server; links are only
established with modules (or the server) implementing the listener interface
associated with the module.

• To perform bootstrap operations that cannot be performed during module con-
struction.

In Figure 6.7 the object passed to the addListener() method may be either the server
object or a module. Note that the server object is always passed to the addListener()
method, independent of it implementing the listener interface associated with the
module. Thus the module can exploit the server reference type as a means to ob-
tain necessary configuration data from the replication policy, e.g. timeout values, to
configure/bootstrap the module. If the server object does not implement the listener
interface of the module, it cannot receive any events from the module. Furthermore,
the addListener() method may be invoked several times for distinct modules, allowing

90 6.5. THE DYNAMIC CONSTRUCTION OF PROTOCOL MODULES

multiple modules to receive the same set of events. The order in which addListener()
is invoked follows the construction order defined above, with the server object passed
in last.

6.5.3 Bootstrapping

Some modules may need to perform supplementary bootstrap operations after all the
links have been established. The final task performed by the module factory is to
find modules that implement the optional ServiceFinalizer interface, and invoke its
complete() method to perform the final bootstrap operations. For instance, the server
could configure its replication policy to automatically join() its group during the boot-
strap phase, obsoleting Lines 8-12 in Listing 6.3. Joining the group requires that all
the links have been set up between all the protocol modules, and hence it cannot be
bootstrapped through the Service interface. Given this bootstrap mechanism, some
modules may even be able to replace its service interface with an empty marker in-
terface, and instead perform its operations automatically.

6.5.4 Event Interception

As advocated initially in this chapter, some modules need to intercept commands/
events originated in other modules. Such interception may be necessary for a num-
ber of reasons, e.g. if delivery of events must be delayed until after the intercepting
module has completed its tasks. For example, a total ordering module needs to delay
the delivery of messages pending agreement among group members on the sequence
in which to deliver messages.

Modules that wish to intercept the commands/events of another module must de-
clare that it substitutes the other module. The @Substitute declaration uses Java
annotations [6, Ch.15] to indicate which service and listener interfaces to substitute.
As shown in Figure 6.7, the ZModule substitutes both interfaces associated with the
YModule. The module factory will analyze the substitute declarations and reconfig-
ure the links accordingly, hiding the presence of the YModule from other modules
and the server.

Implementing a module which substitutes another can be accomplished by inheriting
from the substituted module, or by wrapping it.

Note that it is essential that substituting modules be ordered appropriately in the
replication policy so as to ensure correct interception.

6. DYNAMIC PROTOCOL COMPOSITION 91

6.5.5 An Example Protocol Module

Listing 6.4 shows the MembershipModule as an example of the core parts required to
be implemented by a protocol module. Particular emphasis has been put on the han-
dling of MembershipListeners. The module factory will discover modules (including
the server) that implement the MembershipListener interface, and invoke the Mem-
bershipModule.addListener() method for each such module. In response to events
received through the DispatcherListener implemented by the MembershipModule,
the various modules registered for membership events are invoked through their cor-
responding viewChange() methods.

Otherwise, the MembershipModule implements the MembershipService interface,
and through it also the Service and ServiceFinalizer interfaces (see Line 2 in List-
ing 6.1). Examining the constructor, notice also that the MembershipModule requires
the services of DispatcherService. Although not shown, the MembershipModule will
use the methods of the DispatcherService to send events to the daemon.

6.5.6 Impact of Dynamic Module Construction

The construction of protocol modules is a one-time operation performed when a
replica is started. It will thus impact the recovery performance that can be obtained.
However, the cost of constructing protocol modules dynamically vs. using a stati-
cally compiled set of modules is relatively small compared to the gain obtained. The
average construction overhead is approximately 7 ms for the full set of Jgroup proto-
cols (those described in Chapter 3). This overhead is insignificant compared to other
delays contributing to the overall recovery performance, as discussed in Part IV.

92 6.5. THE DYNAMIC CONSTRUCTION OF PROTOCOL MODULES

Listing 6.4: Excerpt from MembershipModule.
public class MembershipModule

implements MembershipService, DispatcherListener
{

[...]
private List<MembershipListener> membershipListeners =

new ArrayList<MembershipListener>();

public MembershipModule(DispatcherService dispatcher) { }

// From Service interface; inherited from MembershipService
public void addListener(Object listener)
{

if (listener instanceof MembershipListener
&& !membershipListeners.contains(listener))

membershipListeners.add((MembershipListener)listener);
}

// From ServiceFinalizer; inherited from MembershipService
public void complete(Object server) { }

// From MembershipService
public void join(int gid) { }

// From DispatcherListener
public void notify(Event event)
{

[...]
case INSTALL_EVENT:

handleInstallEvent((InstallEvent) event);
}

private void handleInstallEvent(final InstallEvent event)
{

final View view = event.getView();
for (MembershipListener listener : membershipListeners)

listener.viewChange(view);
}

} // END MembershipModule

Chapter 7

Adaptive Protocol Selection

Middleware frameworks for building dependable distributed applications often pro-
vide a collection of replication protocols supporting varying degrees of consistency.
Typically, providing strong consistency requires costly1 replication protocols, while
weaker consistency often can be achieved with less costly protocols. Hence, there is
a tradeoff between cost and consistency involved in the decision of which replication
protocol to use for a particular server. But, perhaps more important is the behavioral
aspects of the server. For instance, the server may be intrinsically non-deterministic
in its behavior, which consequently rules out several replication protocols from con-
sideration, e.g. atomic multicast.

The topic of this chapter is the architecture for selection of replication protocols. The
architecture is built on the external group method invocation approach discussed in
Chapter 3. The revised EGMI architecture makes it very easy to add new replica-
tion protocols to the system, with no changes to the core toolkit. Protocol imple-
mentations are picked up automatically. Furthermore, the architecture also boosts
the flexibility in using the various protocols by allowing each method to declare its
own replication protocol. Support for two new replication protocols have also been
added to the new EGMI architecture; atomic multicast and leadercast. The latter is
a variant of passive replication and permits servers with non-deterministic behavior,
whereas atomic multicast can be viewed as a kind of active replication, and hence
does not tolerate servers being non-deterministic. The new architecture can also eas-
ily be enhanced to support adaptive protocol selection based on runtime changes in
the environment.

1Costly in terms of communication overhead.

93

94 7.1. MOTIVATION

This chapter is organized as follows: Section 7.1 motivates the need for a revised
EGMI architecture and provides guidelines for choosing appropriate replication pro-
tocols for fault tolerant servers. In Section 7.2 the EGMI architecture is presented,
while in Section 7.3 the protocol selection mechanism is covered. The leadercast
replication protocol is covered in Section 7.4, and Section 7.5 covers the atomic
replication protocol. Finally, Section 7.6 discusses potential enhancements to the
architecture that would enable support for adaptive runtime selection of protocols.

7.1 Motivation

The principal motivation for redesigning the EGMI architecture is to improve the
flexibility in choice of replication protocols, so as to reduce the resource consumption
of dependable applications as much as possible.

In many fault-tolerant systems, different replication protocols are supported at the
object level [93, 104], meaning that all the methods of a particular object must use
the same replication protocol. Jgroup takes a different approach: when implementing
an external interface, the invocation semantic of each individual method can be spec-
ified separately using Java annotations. This allows for greater flexibility as various
methods may need different semantics. Hence, developers may select the appropriate
invocation semantics at the method level, and even provide different implementations
with alternative semantics.

By exploiting knowledge about the semantics of distributed objects, the choice of
which replication protocols to use for the various methods can be used to obtain
a performance gain over the traditional object level approach. Similar ideas were
proposed by Garcia-Molina [46] to exploit semantic knowledge of the application to
allow nonserializable schedules that preserve consistency to be executed in parallel
as a means to improve the performance for distributed database systems. OGS [41,
42] also allows each method of a server to be associated with different replication
protocols, but this must be explicitly encoded for each method through an intricate
initialization step. The Jgroup approach presented herein is much easier to use as
it exploits the Java annotation feature to mark methods with the desired replication
protocol. The Spread [3] message-based group communication system can also be
used to exploit semantic knowledge, since each message can be assigned a different
replication protocol. JavaGroups [18] on the other hand would have required separate
channels for each replication protocol. Unlike Jgroup however, neither of these two
systems are aimed at RMI based systems.

7. ADAPTIVE PROTOCOL SELECTION 95

A common example in which application semantic knowledge can be exploited is a
replicated database with read and write methods. Often a simple Read-One, Write-
All (ROWA) replication protocol [125] can then be used and still preserve consis-
tency. A ROWA replication protocol can easily be implemented using anycast for
read methods and either multicast, atomic, or leadercast for write methods. On the
other hand, replication protocols which operate at the object level require that also
simple read-only methods use the strongest replication protocol required by the ob-
ject to preserve consistency.

Felber et al. [44] discuss various semantic properties that can be used to reduce the
resource consumption for certain operations (methods) on a replicated object. These
properties are summarized here for convenience:

1. Read-only methods do not modify the shared state of a replicated object. Us-
ing costly replication protocols for read-only methods are rarely necessary, but
may sometimes be required if there is a causal relationship between read-only
and write invocations. In Jgroup read-only methods should use the anycast
protocol.

2. Idempotent methods can be invoked twice with the same arguments and still
have the same effect as calling it only once. This property is useful since it
permits clients to reissue a request without harmful effects.

3. Deterministic methods are such that their effects on the shared state and out-
put to clients depend only on the initial state of the object, and the sequence
of methods performed on the object. For active replication, deterministic be-
havior is mandatory. Jgroup provides the atomic protocol for deterministic
methods that modify the shared state and require strong consistency, while the
leadercast protocol can be used for non-deterministic methods.

4. Commutative methods A pair of methods are commutative if it does not
matter in which order they are called on the object. Jgroup provides the multi-
cast protocol for commutative methods that modify the shared state, but require
only weak consistency.

5. Parallelizable methods A pair of methods are said to be parallelizable if
their concurrent execution is equivalent to a serial execution of both methods.
For instance, methods that only modify disjoint parts of the shared state of a
replicated object are often parallelizable.

96 7.2. THE EGMI ARCHITECTURE

Table 7.1: The properties associated with the various replication protocols.

Anycast Multicast Leadercast Atomic
Read-only Suitable Unsuitable Unsuitable Unsuitable
Write Unsuitable Suitable Suitable Suitable
Commutative Suitable Suitable — —
Consistency Weakest Weak Strong Strong
Comm. overhead Low Medium Medium High
Comp. resources Low High Medium High
Failover delay Medium Medium High High
Determinism Not Required Required Not Required Required

Note that care should be taken when developing applications that combine the vari-
ous replication protocols provided by Jgroup. For example, if two methods modify
intersecting parts of the shared state, both methods should use the same replication
protocol.

Table 7.1 summarizes the properties of the various replication protocols supported by
Jgroup/ARM. The table along with the semantic properties discussed above is meant
to serve as a guideline for application developers when deciding which replication
protocol is appropriate for each method of their servers.

A few things to note: Commutative write operations may also use leadercast or
atomic, but it may not be necessary. Moreover, the failover delay is actually quite
high for all the supported protocols. This is because the client is considered external
to the group and as such may take longer to detect a server failure. Additional details
are provided in the following sections.

7.2 The EGMI Architecture

The external group method invocation (EGMI) architecture has been redesigned to
better cope with application-specific requirements, such as adaptive selection of repli-
cation protocols on a per invocation basis. There are three principal reasons for the
redesign, as the original EGMI implementation suffered from a number of problems
as listed below:

1. Only two fixed protocols were supported; anycast and multicast. Adding new
replication protocols was quite cumbersome, and the choice of protocol was
fixed at service design time.

7. ADAPTIVE PROTOCOL SELECTION 97

2. Improper use of the exception declaration mechanism; protocol annotation was
implemented by augmenting the throws clause of methods with a protocol spe-
cific exception (see Section 3.3.2.2).

3. There was no updating of the client-side group membership information. In
fact, it was impossible to fully support client-side view updating (see Chap-
ter 9) with the previous EGMI design.

Note that adding alternative replication protocols through the protocol module mech-
anism discussed in Chapter 6 could also be done, e.g. by substituting the Multicas-
tModule with a TotalOrderModule. However, that would have caused all multicast
methods to use the TotalOrderModule, even if only some of the methods needed to
maintain strong consistency.

The redesigned EGMI architecture aims to provide:

1. Improved flexibility and efficiency by means of a customized RMI layer.

2. Flexibility to add new replication protocols.

3. Runtime adaptive selection of replication protocol.

4. Improved client-side view updating.

The second topic is covered in the next section, while the latter is covered in Chap-
ter 9. In this section, the overall EGMI architecture is presented along with the details
of the customized RMI layer. Runtime adaptive protocol selection is covered in Sec-
tion 7.6.

Figure 7.1 illustrates the EGMI architecture focusing on the high-level interactions
between the various modules and external entities in the system. The figure illustrates
interactions involved in a multicast invocation; the anycast invocation interactions are
much simpler as it does not need to multicast the invocation.

Clients communicate with an object group through a two-step approach, except for
the anycast semantic. Currently, two communication steps are required for interac-
tions that involve all group members through the MulticastModule. Direct client mul-
ticast could be implemented [118], however not without adding a substantial amount
of code to the client-side runtime. In addition, “distant” clients may not be able to
exploit IP multicast, due to its limited deployment in Internet routers.

Returning to Figure 7.1; the ExternalGMIModule acts as the server-side proxy (repre-
sentative) for clients communicating with the object group. The server representing

98 7.2. THE EGMI ARCHITECTURE

Group Manager

ExternalGMIModule

Server Replica 1

Client

Dependable
Registry

bind()

lookup()

Legend:Legend:
External entity interaction Registry interactions
Local method invocation Module interactions

Clientside
Group Proxy

RegistryModule

MulticastModule

EGMI interface

EGMI interface
Serverside Proxy

Group Manager

ExternalGMIModule

Server Replica 1

RegistryModule

MulticastModule

EGMI interface

bind()

1

2 3

4

5

66

5

77 88

Serverside Proxy

Contact ServerContact Server

Figure 7.1: The external GMI architecture.

the group is called the contact server. The choice of contact server is made (on a per
invocation basis) by the client-side proxy, and different strategies can easily be im-
plemented depending on the requirements of the replication protocol being used. The
general strategy used by both anycast and multicast is to choose the contact server
arbitrarily, while leadercast always selects the group leader. However, in the presence
of failures an arbitrary server in the group is selected.

As shown in Figure 7.1, before a client can invoke the object group, each member of
the group must bind() its reference in the dependable registry. The RegistryModule is
responsible for constructing its local part of the client-side proxy based on input from
the ExternalGMIModule, and to pass it on to the registry. This is handled automati-
cally in the module bootstrap phase. The client can then perform a lookup() to obtain
the client-side proxy encompassing all group members.

The client-side proxy provides the same EGMI interface as the server. Hence, given
the client-side proxy object, the client can invoke local methods on it (Ê). The proxy
will encode such invocations into remote communications (Ë), and ultimately com-
plete the invocation by returning a result to the client. The ExternalGMIModule ex-
ploits the MulticastModule to send multicast messages (Ì,Í,Î) to all group members.
This is followed by the invocation of the encoded method (Ï) on all members, and re-
turning the results back to the contact server (Æ,Ç). The contact server is responsible

7. ADAPTIVE PROTOCOL SELECTION 99

for returning a selected result back to the client. Using the MulticastModule allows
enforcement of view synchrony for EGMI invocations.

7.2.1 The Client-side and Server-side Proxies

In this section, we discuss the internal details of the client-side and the server-side
proxies, or more precisely the internals of the ExternalGMIModule. The internals
are basically a customized version of the Jini Extensible Remote Invocation (JERI)
protocol stack discussed in Section 2.2.3.1. By using JERI, several cumbersome and
inflexible extensions to the plain Java RMI model used in the original Jgroup EGMI
implementation were eliminated. The JERI protocol stack shown in Figure 2.6 has
been extended with functionality to support group communication. The new proto-
col stack is illustrated in Figure 7.2, and shows that all layers have been retrofitted
with group communication support, except for the transport layer. Currently, a TCP
transport layer is used. It should be noted that this is only for the transport between
clients and the contact server, whereas the contact server uses the MulticastModule if
multicast communication is required.

Clientside proxy Dynamically
generated

Client

EGMI interface

GroupInvocationHandler

GroupEndpoint

E1 E2 E3 SE1 SE2 SE3

GRH1 GRH2 GRH3

GID1 GID2 GID3

S1 S2 S3
EGMI interface EGMI interface EGMI interface

LegendLegend
GID GroupInvocationDispatcher SE ServerEndpoint
GRH GroupRequestHandler E Endpoint

Replication protocol
selection

Endpoint selection
and failover handling

E
xt

er
na

lG
M

IM
od

ul
e

Object ID LayerObject ID Layer

Invocation LayerInvocation Layer

Transport LayerTransport Layer

Figure 7.2: The EGMI protocol stack.

100 7.3. REPLICATION PROTOCOL SELECTION

The GroupInvocationHandler shown in Figure 7.2 is mainly responsible for mar-
shalling and unmarshalling invocations. When invoked by the client-side proxy,
internal tables are queried to determine the invocation semantic of the method be-
ing invoked. Knowing the invocation semantic on the client-side is useful so that
efficient marshalling can be performed, e.g. multicast invocations need not be fully
unmarshalled at the server-side until received by the GroupInvocationDispatcher.

The GroupEndpoint is used to represent the current group membership, and stores a
single Endpoint for each member of the group. Each Endpoint object represents the
transport between the client and the corresponding ServerEndpoint. The GroupEnd-
point is also in charge of selecting which of the endpoints to use for a particular
invocation, based on the semantic declared for the method being invoked. Further-
more, the GroupEndpoint must keep its membership list up-to-date with respect to
the current server-side membership. The latter issue is covered in Chapter 9.

When the GroupRequestHandler (GRH) receives an invocation, the invocation se-
mantic is extracted from the data stream. Depending on the invocation semantic,
the invocation is passed on to a protocol-specific invocation dispatcher (protocol dis-
patchers are discussed in the next section). For the purpose of this discussion, the
protocol dispatcher is assumed to be multicast (corresponding to that of Figure 7.2).
Hence, the stream is passed on to the MulticastModule, and finally to the GroupInvo-
cationDispatcher (GID) which takes care of the unmarshalling and invocation of the
method on the remote server objects.

As Figure 7.2 shows, the results are returned to the contact server, which finally
returns the result(s) to the client.

7.3 Replication Protocol Selection

As discussed in the beginning of this chapter, each method invocation can use a dis-
tinct invocation semantic. The choice of invocation semantic is usually made by the
server developer at design time. This is done by prefixing each method with a annota-
tion marker indicating the replication protocol to use for each particular method. The
RegistryImpl server shown in Listing 7.1 illustrates how the developer can indicate
the replication protocol to use for the various methods.

Note that it is also possible to declare protocol annotations in the interface, e.g. the
DependableRegistry interface. However, annotation markers declared in the server
implementation takes precedence over those that may be declared in the interface.

7. ADAPTIVE PROTOCOL SELECTION 101

Listing 7.1: Skeleton listing of the DependableRegistry implementation.
public final class RegistryImpl

implements DependableRegistry
{

// Methods from DependableRegistry
@Multicast public IID bind(String name, Entry entry)
throws RemoteException, AccessException

@Multicast public void unbind(IID iid)
throws RemoteException, NotBoundException, AccessException

@Anycast public String[] list()
throws RemoteException

@Anycast public Remote lookup(String serviceName)
throws RemoteException, NotBoundException

} // END RegistryImpl

This makes it easy to provide alternative implementations of the same interface with
different invocation semantics for the various methods declared in the interface. For
example, if a particular implementation wants to provide stronger consistency for
some methods.

Figure 7.3 depicts the ExternalGMIModule and its protocol selection mechanism.
Each protocol must implement the ProtocolDispatcher interface through which in-
vocations are passed before they are unmarshalled. This allows the protocol to
multicast the unmarshalled invocation to the other group members before unmar-
shalling is done in the GroupInvocationDispatcher. However, the stream received by
the GroupRequestHandler is partially unmarshalled to obtain information necessary
to route the message to the appropriate protocol dispatcher instance.

The protocol repository shown in Figure 7.3 holds a mapping between the annota-
tion marker (a method’s invocation semantic) and the actual protocol instance. The
repository is queried for each invocation of a method.

7.3.1 Supporting a New Protocol

To support new EGMI replication protocols, two additions are required:

102 7.3. REPLICATION PROTOCOL SELECTION

ExternalGMIModule

GroupRequestHandler

GroupInvocationDispatcher

Server Replica
EGMI interface

Replication protocol
selection

Anycast LeadercastMulticast Atomic
ProtocolDispatcher ProtocolDispatcher ProtocolDispatcher ProtocolDispatcher

getProtocol(semantics)

ServerEndpoint

Protocol
repository

JERI based
transport

Figure 7.3: EGMI replication protocol selection.

1. A new annotation marker must be added, allowing servers to specify the new
protocol.

2. The actual protocol implementation.

Listing 7.2 shows the annotation marker for the @Atomic replication protocol. To
support runtime protocol selection, the retention policy of the marker must be set to
RUNTIME to allow reflective access to the marker. Furthermore, the target element
type is set so that the marker only applies to METHOD element types. For additional
details about the Java annotation mechanism see [6, Ch.15].

Listing 7.2: The @Atomic annotation marker.
package jgroup.core.protocols;

@Documented
@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@interface Atomic { }

7. ADAPTIVE PROTOCOL SELECTION 103

A new protocol implementation must implement the ProtocolDispatcher interface
(see Listing 7.3). The package pickup location for protocols is easily configured
through a Java system property; currently only a default location is used. Hence,
adding a new protocol is done by placing the protocol in the pickup location. The
ExternalGMIModule takes care of constructing the protocol.

Listing 7.3: The ProtocolDispatcher interface.
package jgroup.relacs.gmi.protocols;

public interface ProtocolDispatcher
{

public InvocationResult dispatch(InputStream in)
throws IOException;

public void addListener(Object listener);
}

Constructing an EGMI replication protocol is similar to the construction of GM pro-
tocol modules, discussed in Chapter 6. A replication protocol may specify the set of
modules that it requires in its constructor signature, and it may also implement the
listener interfaces of modules. In addition, the constructor will typically also include
the GroupInvocationDispatcher, through which the protocol can perform invocations
on the local server.

The ExternalGMIModule will reflectively [6, Ch.16] analyze the server implementa-
tion (or its EGMI interfaces) to determine the invocation semantics of its methods.
Methods whose invocation semantic is unspecified defaults to @Anycast. This anal-
ysis is done during the ExternalGMIModule bootstrap phase, and the information is
kept in internal tables for fast access during invocations. This table is also kept in the
client-side proxy to determine the invocation semantic of the method being invoked.
Replication protocols are constructed on-demand when analyzing the methods of the
server. Hence, only the required protocols are constructed. Note that GM protocol
modules (not just the server) may implement EGMI interfaces that are picked up by
the ExternalGMIModule during the bootstrap phase.

7.3.2 Concurrency Issues

Note that a protocol instance may be invoked concurrently by multiple clients, and
care should be taken when developing a replication protocol to ensure that access to

104 7.4. THE LEADERCAST PROTOCOL

protocol state is synchronized. Furthermore, the EGMI architecture is designed for
multithreading, and hence it does not block concurrent invocations using the same or
different protocols. It is the responsibility of the server developer to ensure that access
to server state is synchronized. However, invocations received while a new view is
pending are blocked temporarily and delivered in the next view. This is necessary
to avoid that invocations modify the server state while the state merge service (see
Section 3.3.3) is active. Optimizations could be implemented to avoid blocking for
protocols such as anycast aimed at read-only methods.

7.4 The Leadercast Protocol

The leadercast protocol presented in this section is a variant of the passive replica-
tion protocol [26, 51] discussed in Section 2.4.2. The principal motivation to provide
this protocol is the need for a strong consistency protocol that is able to tolerate
non-deterministic operations. The main difference between leadercast and the pas-
sive replication protocols described in literature [26, 51] is optimizations in scenarios
where the leader has crashed. That is how to convey information about the new
leader to clients, and how to handle failover. These optimizations are possible due to
the client-side view updating technique discussed in Chapter 9.

Figure 7.4 illustrates the leadercast protocol, when the client knows which of the
group members is the leader. In this case, the protocol is as follows:

1. The client sends its request to the group leader (over a unicast channel).

2. The leader process the request, updating its state.

3. The leader then multicasts an update message containing 〈Result, StateUp-
date〉 to the followers (backups).

4. The followers modify their state upon the reception of an update message, and
reply with an acknowledgement to the leader.

5. Only when the leader have received an acknowledgement from all live follower
replicas, will it return the Result to the client.

Result is the result of the processing performed by the leader, while StateUpdate is
the state (or a partial state) of the leader replica after the processing. A partial state
may for instance be the portions of the state that have been modified by the leadercast

7. ADAPTIVE PROTOCOL SELECTION 105

Processing

Client

Leader

Follower1

Ack

Result, StateUpdate
Update

Follower2

Request

Result

getState() method() compare() putState()Legend:Legend:

Figure 7.4: The Leadercast protocol with leader receiver.

methods. Providing these state update routines implies application involvement by
implementing a StateUpdateListener interface.An alternative approach could be to
use reflective analysis of the server state to determine and only transport the differ-
ence between the old and new state to the followers.

Notice the compare() method performed at the end of the processing. This is used
to compare the state of the server before and after the invocation of method(), and
if the state did not change due to the invocation, there is no need to send the update
message, as shown in Figure 7.5.

Processing

Client

Leader

Follower1

Follower2

Request

Result

getState() method() compare() = ∅Legend:Legend:

Figure 7.5: The Leadercast protocol with no state change.

Note that the Result part of the update message is necessary in case a follower is
promoted to group leader, and needs to emit the Result to the client in response to a
reinvocation of the same method. This can only happen if the leader fails, causing
the client to perform a failover by reinvoking the method on another group member,
as shown in Figure 7.6. Hence, the followers needs to keep track of the result of the
previous invocation made by clients. A result value can be discarded when a new
invocation from the same client is made, or after some reasonable time longer than

106 7.4. THE LEADERCAST PROTOCOL

the period needed by the client to reinvoke the method.

Processing

Client

Leader

Follower1

Ack

Result, StateUpdate
Update

Follower2

Request

Result

getState()
method() compare() putState()Legend:Legend:

Reinvoke
Request

Timeout

getResult()

getResult()

Figure 7.6: The Leadercast protocol with failover.

As depicted in Figure 7.6, the failure of the leader causes the membership service
to install a new view. Client invocations may be received before the new view is
installed, however, they will be delayed until after the view has been installed, as
discussed in Section 7.3.2. The follower receiving the reinvocation of a previously
invoked method will simply return the result to the client along with information
about the new group leader.

If the follower receiving a reinvocation of a previously invoked method is not the new
leader, the invocation will be forwarded to the current leader, as shown in Figure 7.7.
This can happen if the leader failed before the followers could be informed about the
original invocation. Note that this forwarding to the current leader will only occur
once per client, since the result message contains information about which member
is the new leader, and hence the client-side proxy can update its contact server.

Processing

Client

Leader

Follower1

Follower2

Request

Result

getState() method() compare() putState()Legend:Legend:

Reinvoke
Request

Timeout

Processing

Forward
Request

Result, StateUpdate

Ack

Forward
Result

Figure 7.7: The Leadercast protocol with follower receiver after a failover.

As discussed above, the client-side group proxy is responsible for selecting the con-
tact server. For the leadercast protocol, the group leader (primary) is selected unless

7. ADAPTIVE PROTOCOL SELECTION 107

it has failed. The contact server selection strategy is embedded in the invocation se-
mantic representation associated with each method. When the client detects that the
group leader has failed, the choice of contact server is random for the first invoca-
tion; the new leader is then obtained from the result value of the invocation and future
invocations are directed to the current leader.

7.5 The Atomic Multicast Protocol

The atomic multicast protocol implemented in the context of this thesis is based on
the ISIS total ordering protocol [23]. A description of the algorithm can also be found
in [32], hence only a brief description is provided herein. The protocol is useful to
ensure that methods that modify the shared server state do so in a consistent manner.
Methods using the atomic protocol must behave deterministically to ensure consistent
behavior.

Processing

Client

Server 1

Request

Server 2

Server 3

Request

Proposed
Sequence no.

Agreed
Sequence no.

Processing

Processing Result

Result

Figure 7.8: The Atomic multicast protocol.

The protocol is a distributed agreement protocol2 in which the group members col-
lectively agree on the sequence in which to perform the invocations that are to be
ordered. Figure 7.8 shows the protocol. In the first step, the client sends the request
to a contact server (the choice of contact server is discussed below). The contact
server forwards the request to the group members, each of which respond with a pro-
posed sequence number. The contact server then selects the agreed sequence number
from those proposed and notifies the group members; the highest proposed sequence
number is always selected. Finally, when receiving the agreed sequence number each
member can perform the invocation and return the result(s) to the contact server,
which will relay it to the client.

2In [36] it is called destination agreement.

108 7.5. THE ATOMIC MULTICAST PROTOCOL

The contact server selection strategy is random for load balancing and fault tolerance
purposes. The contact server acts as the entity that defines the ordering of messages,
and serves this function for all invocations originated by clients using it as the contact
server. Since the choice of contact server is random, the same client may choose a
different one for each invocation that it performs. It follows that also different clients
will use different contact servers.

An alternative contact server selection strategy is to always select the same server (the
leader) to do the message ordering. By doing so, a fixed sequencer protocol requiring
less communication steps can be implemented. The fixed sequencer and other total
ordering protocols are discussed in [36].

Figure 7.9 illustrates one scenario in which the contact server fails before completing
the current ordering. The client detects the failure of the contact server, and sends
the request to an alternative contact server. In this particular scenario, the remaining
servers needs to rerun the agreement protocol. However, had the contact server failed
after completing the agreement protocol, but before emitting the result to the client,
the new contact server must emit the previous result in response to a reinvocation.

Client

Server 1

Request

Server 2

Server 3

Request

Proposed
Sequence no.

Agreed
Sequence no.

Processing

Processing

Result

Reinvoke
Request

Timeout

Request
Result

Figure 7.9: A failover scenario with the Atomic multicast protocol.

The two-step communication approach used for EGMI between the client and the
group members precludes the provision of a true active replication scheme, as dis-
cussed in Section 2.4.1. In particular, the client-side proxy will not receive replies
directly from all the servers, and thus cannot mask the failure of the contact server
towards the client-side proxy. Hence, if the contact server fails during an invocation,
the client-side proxy is required to randomly pick another contact server and perform
a reinvocation. The failure of the contact server, however, is still masked from the
actual client object. But the disadvantage is that the failover delay of the atomic ap-
proach is equivalent to that of the leadercast approach when the contact server fails.
However, one way to provide true active replication is to let clients become (tran-
sient) members of the object group prior to invoking methods on it, allowing clients

7. ADAPTIVE PROTOCOL SELECTION 109

to receive replies from all members and not just the contact server.

It is foreseen that the client-side proxy in the future can hide the fact that it has
joined the object group, from the client object before performing an invocation, e.g.
by annotating the method with @Atomic(join=true). An optional leaveAfter attribute
could also be provided indicating the number of invocations to be perform before the
client-side proxy requests to leave the group. This way true active replication can be
provided also to clients.

7.6 Runtime Adaptive Protocol Selection

Another useful mechanism that can easily be implemented in this architecture is sup-
port for dynamic runtime protocol selection. Dynamically changing the replication
protocol of methods at runtime is useful for systems that wish to dynamically adapt
to changes in the environment or to handle runtime changes in the requirements. For
instance, a server may decide to change its replication protocol for certain methods
to improve its response time, if the system load increases. One might also imagine
a special module that can configure the replication protocols of the server remotely
from ARM or the management client to adapt to changing requirements. For exam-
ple, if moving to more powerful hardware, one can simply migrate replicas to the
new hardware, followed by a change of the replication protocol to use for certain
methods.

This section briefly outlines how this feature can be implemented.

First, a @Dynamic marker is needed, which must be added to methods that should
support dynamic reconfiguration. Next, the Dynamic replication protocol must be
implemented, which is simply a wrapper for the other supported protocols. The Dy-
namic protocol must maintain a mapping for each @Dynamic method and its cur-
rently configured invocation semantic. By default, methods that declare @Dynamic
should be configured with the @Anycast semantic, unless the marker is parameter-
ized with the desired default protocol, e.g. @Dynamic(protocol=@Leadercast).

The Dynamic protocol can be exposed through the GM by providing a DynamicRepli-
cationService interface through which methods can have their invocation semantics
updated at runtime. This allows the server or other protocol modules to access the Dy-
namicReplicationService, and thus implement update algorithms that can reconfigure
the replication protocol of individual methods at runtime. One scheme could be to
change the replication protocol of certain methods based on the size of the group. For

110 7.6. RUNTIME ADAPTIVE PROTOCOL SELECTION

example, if the group only has three members or less then @Atomic is used; if it has
more than three members then @Leadercast is used.

Another, more subtle use of this feature relates to a client designed for testing the
performance of various replication protocols. The server can then simply implement
a set of test methods, each declaring the @Dynamic marker, whereas the client can
invoke a special method to set the appropriate replication protocol to be tested, be-
fore invoking the actual test methods on the server. To allow clients to reconfigure
the replication protocol of methods, the server (or a module) must provide a remote
interface (e.g. by exporting the DynamicReplicationService interface) through which
clients can update the invocation semantics of the server-side methods.

Chapter 8

Enhanced Resource Sharing

As discussed in Section 1.2.1, this work assumes that nodes belong to a target en-
vironment, and each node is expected to be capable of hosting multiple services.
Hence, the Jgroup model must support allocation of multiple replicas to the same
node. However, in the original Jgroup prototype, placing two or more services on
the same node required the allocation of distinct port numbers for each service, caus-
ing intricate port management issues. More importantly, only a single replica could
connect to the same Jgroup daemon, i.e. there was a one-to-one mapping between
the replica (group manager) and the daemon. This one-to-one mapping would lead to
multiple instances of resource demanding components, in particular the inter-daemon
failure detection component.

The aim of this chapter is to present the enhancements made to the Jgroup daemon
architecture to improve its resource sharing properties, overcoming the above men-
tioned problems. In fact, to enable the ARM framework to place multiple application
replicas of distinct types on the same node, this change was necessary. In addition,
the chapter briefly covers the low-level communication infrastructure needed to sup-
port multicast communication in a wide area network (WAN) setting.

Chapter outline: Section 8.1 gives additional motivation and presents the new dae-
mon architecture. Section 8.2 briefly explains the inter-daemon and group manager –
daemon communication infrastructure. Three distinct allocations of group managers
(replicas) to daemons in the target environment, each with different scalability and
failure independence properties are discussed in Section 8.3. Section 8.4 presents the
algorithm used to discover and create site-specific daemons according to some policy,
and in Section 8.5 the two-way daemon – group manager failure detection scheme is
presented.

111

112 8.1. THE JGROUP DAEMON ARCHITECTURE

8.1 The Jgroup Daemon Architecture

To overcome the limitations discussed initially, the Jgroup daemon architecture has
been revised to take into account resource reuse by allowing multiple application
replicas to share the same daemon through their local group manager. In doing so,
the need to configure several port number allocations per node is also eliminated
since multiple replicas on the same node can share the same daemon.

As mentioned in Chapter 3, the core group membership and reliable multicast com-
munication facilities are implemented as part of the daemon, although application
replicas only access these services through their respective group manager interfaces.
In addition, the daemon also implements failure detection facilities that are not ex-
posed directly through the group manager.

There are a number of compelling reasons for separating the daemon functionality
from the group manager module architecture:

• The number of messages that needs to be exchanged is reduced, compared to
the case when all group managers on the same node replicate failure detection,
exchange of synchronization, reachability and routing information.

• Messages from local server replicas are multiplexed over a single connection,
reducing the number of connections needed between each pair of daemons.

• Scalability to very large groups is easily accomplished by configuring the sys-
tem to use only a few daemons at each site, instead of one daemon per node.
This will reduce the cost of the view agreement protocol, and also the number
of messages that needs to be exchanged. A similar approach to scalability of
groups is used in Spread [3] and Moshe [65].

Figure 8.1 shows one possible arrangement of Jgroup daemons (JD) on a set of nodes
within two sites. The figure also shows the interactions that occur between the various
daemons and between the GMs and their associated daemons.

The target environment defines the set of sites and nodes that comprise the system.
A site is defined as a collection of nodes that are tightly connected. Typically, a
local area network (LAN) is used to connect the nodes in a site, and often a site
corresponds to the DNS domain of the LAN associated with the site. Each site may
support a configurable number of daemons, according to a system-specific scaling
policy discussed in Chapter 10. However, at most one daemon per node is allowed in
the same target environment.

8. ENHANCED RESOURCE SHARING 113

Site X
Node X1 Node X2

JDX1

GM GM GM
Node X3

JDX2

GM

Site Y
Node Y1 Node Y2

JDY1

GM GM
Node Y3

JDY3

GM

JDY2

LegendLegend
Daemon – Group Manager communication (RMI)
Site internal daemon communication (IP multicast)
Cross site daemon communication (UDP/IP unicast)

GM

Figure 8.1: Overview of Jgroup daemon interactions.

In Figure 8.1 Site X has only two daemons, and GMs on nodes without a daemon,
e.g. Node X2, have to connect to a remote daemon within the site, e.g. JDX2. On
the other hand, Site Y has configured its scaling policy to let each node have its own
daemon. As Figure 8.1 also illustrates, multiple GMs may reside on the same node,
e.g. Node X1, and connect to a single local daemon. In fact, GMs can connect to
daemons anywhere within the site, but a local daemon will always be used if one
exists. Each site must have at least one daemon.

8.2 Daemon Communication

Communication between a group manager and a daemon is based on reliable unicast
communication (Java RMI). Inter-daemon communication use IP multicast between
daemons within the same site (LAN), whereas communication between daemons re-
siding at separate sites occur using a reliable unicast protocol implemented on top of
UDP/IP.

8.2.1 Inter-Daemon Communication

The purpose of inter-daemon communication is primarily to provide reliable multi-
cast capabilities within a group of daemons, and to keep track of node availability (or
more precisely daemon availability). GMs connected to a daemon can send multicast
messages within its group, and track the group membership.

114 8.2. DAEMON COMMUNICATION

As mentioned above, inter-daemon communication is based on a combination of IP
multicast within a site and UDP/IP unicast when communicating across sites. Note
that although not shown in Figure 8.1, all daemons in one site is able to communicate
directly with all other daemons, including those at remote sites. Hence, all daemons
keep track of all daemons at all sites. However, for a given round of communication
with daemons in a remote site, the communication is mediated by a contact dae-
mon, as illustrated in Algorithm 8.1. Hence, communication across sites requires two
communication steps to multicast a message m to a group of daemons.
In Figure 8.1, the sending daemon is JDX2 and the contact daemon is JDY 1.
The reasons for this two-step approach are twofold:

• WAN based IP multicast is beyond the control of our framework since multicast
has limited deployment in Internet routers.

• Mediating traffic through a contact daemon allows additional resource sharing.

Algorithm 8.1 The two-step WAN multicast algorithm.
1: Initialization:
2: sites← Config.getSites() {The set of sites}
3: localSite← Config.getLocalSite() {The local site}

4: void multicast(Message m) {MULTICAST AT SENDING DAEMON}
5: foreach site ∈ sites
6: if site.isLocalSite()
7: site.multicast(m)
8: else
9: daemon ← site.selectDaemon()

10: daemon.send(m) {Unicast send to contact daemon}

11: void receive(Message m) {RECEIVE AT CONTACT DAEMON}
12: localSite.multicast(m)

The algorithm works as follows: for the local site, send m by way of reliable multi-
cast; for all other sites, select a contact daemon to which m will be sent over a unicast
channel. In the second step, the contact daemon simply multicasts m within its local
site. For every message sent, the sending daemon selects a new contact daemon for
each of the remote sites in the target environment. The choice of contact daemon
is arbitrary, as a means of load balancing between the daemons at each site. How-
ever, only daemons with good reachability characteristics are selected. For instance,
a daemon being suspected of having crashed will not be selected until its perceived
reachability improves beyond some limit.
The reliable multicast communication layer in the daemon was implemented by Sal-
vatore Cammarata [27] in the context of his masters thesis.

8. ENHANCED RESOURCE SHARING 115

8.2.2 Group Manager – Daemon Communication

Group managers interact with their selected daemon by means of Java RMI, as shown
in Figure 8.2. Events are passed back and forth between the daemon and the GMs us-
ing the dispatch() and notify() methods. In addition, the daemon can provide the num-
ber of members() currently connected to it, while the GM provides a ping() method
that is used for failure detection (see Section 8.5).

The choice of Java RMI for this communication leg is mostly for flexibility and con-
venience in the prototype implementation, and may not be optimal with respect to
performance when the daemon and its GMs are located in separate JVMs. How-
ever, in a WAN setting, the additional cost of RMI is marginal in comparison with
the latencies involved in wide-area communication. Table 8.1 presents some simple
measurements of the overhead due to RMI communication.

Server Replica

G
roup M

anager

DispatcherModule
DispatcherService

RemoteDispatcher

Daemon
DaemonDispatcher

dispatch(event)

LegendLegend
Remote method invoc.
Local invocation

dispatch(event)
notify(event)

notify(event)ping()

members()

Figure 8.2: Group manager – daemon communication interfaces.

116 8.3. DAEMON ALLOCATION SCHEMES

8.3 Daemon Allocation Schemes

Failure independence of co-located application replicas and the scalability in terms
of number of group members have bearings on the choice of how group managers are
allocated to daemons. Recall that there is a one-to-one mapping between application
replicas and their associated GMs. As shown in Figure 8.1 there are several possible
ways to allocate GMs (replicas) to daemons in the target environment.

Site YSite X
Node X2

Node Y2

JVM

JVM

JDX2

GM
JVM

GM

Node X1
JVM

JDX1

GMGM

SharedShared
JVM daemonJVM daemon

SharedShared
node daemonnode daemon

SharedShared
site daemonsite daemon

JVM

GM

Node Y3
JVM

GM

Node Y1JVM

JDY1

Figure 8.3: Group manager allocation mappings to daemon.

The following lists allocation mappings that are supported and briefly discuss their
pros and cons.

1. Shared JVM daemon Group managers share the same JVM as the daemon,
as shown on Node X1 in Figure 8.3.

2. Shared node daemon Group managers residing on the same node as the
daemon are allocated to separate JVMs, as illustrated by Node X2 in Figure 8.3.

3. Shared site daemon A set of group managers at a site share a daemon within
the same site, but on different nodes as shown by Site Y in Figure 8.3.

The last two categories share two important characteristic properties. They both com-
municate by means of Java RMI. And the replicas (and their associated GMs) are
created on nodes/JVMs that are separate from the daemon, enhancing failure inde-
pendence between the application replicas. On the other hand, in the Shared JVM
daemon category, communication between the GMs and the daemon is reduced to
plain Local Method Invocations (LMI). Consequently avoiding the communication
overhead of RMI. However, in this case the failure of a single application replica is
likely to bring down all other replicas in that JVM, including the daemon.

8. ENHANCED RESOURCE SHARING 117

Table 8.1: Statistics for the communication overhead of using RMI between the
GM and the daemon (values are in milliseconds). The statistics were obtained from
measurements of 1000 invocations of the ping() method (invoked once every second)
on an unloaded system.

Mean StdDev Max Min

Shared JVM daemon 0.00302 0.00032 0.00460 0.00242
Shared node daemon 0.88315 0.33364 4.16303 0.74455
Shared site daemon 0.81369 1.26693 28.42181 0.58962

Table 8.1 presents a few simple statistics that illustrate the overhead of RMI com-
munication between the GM and the daemon. As the results show, using a Shared
JVM daemon significantly reduces the communication overhead between daemon
and GM, since communication is by means of local method invocations. Moreover,
the latency difference between Shared site and Shared node is only marginal, how-
ever the variance when communicating between nodes is much higher; in particular,
note the max value of 28 ms for Shared site. These variations are likely due to ex-
ternal stochastic components such as buffer delays etc. Also note the slightly higher
mean value for Shared node; this can be explained by exposure to context-switching
delays since there are two JVM processes on the same node that need to be activated
before concluding the measurement.

For the first two categories above, the replicas and their associated daemons share
the same fate with respect to node crash failures. Therefore, the failure detection
mechanism is implemented in the daemon, avoiding that every GM in the system is
pinging each other. Failure detection issues are discussed further in Section 8.5.

For the Shared site daemon category, application replicas may reside on nodes that
are separate from the daemon node, and thus these replicas may crash independently
of the daemon. Furthermore, in the Shared node daemon category, each replica’s
JVM may crash independently of the other replicas, as long as they are hosted in
JVMs separate from the daemon.

Note that although all three categories discussed above are supported, the Shared
site daemon approach is not used in the experiments presented in Part IV. Instead,
a combination of the first two are used, as shown in Figure 5.1, where the daemon
is co-located with the factory JVM. This is simply to reduce the complexity of the
experiment setup.

118 8.4. DAEMON DISCOVERY AND CREATION

8.4 Daemon Discovery and Creation

In this section, the algorithm used to discover node-external daemons is presented.
The algorithm is required for the Shared site daemon approach, which may be used
to improve the scaling properties of a system. The system-specific scaling policy
defines the number of Jgroup daemons dx, that should be available at each site x.

When application replicas are created they use the getGroupManager() method to
obtain a GM as discussed in Chapter 6, which is needed to access the group commu-
nication services provided by the GM protocol modules. Next, the GM must either
connect to an existing daemon, or a new daemon must be created. Whether to create
a new daemon or not depends on the scaling policy, i.e. if the number of available
daemons are below the required dx. Algorithm 8.2 is used to find daemons and se-
lect the least loaded daemon within the local site. By least loaded is meant the least
number of GMs (members) connected to a daemon.

Algorithm 8.2 The daemon discovery algorithm.
1: Initialization:
2: site ← Config.getLocalSite() {The local site}
3: dx ← site.getPolicy(daemons) {Expected # of daemons in the local site}
4: minMembers ←MAXVALUE {Min. # of members; initially the max value}
5: bestDaemon ← null {The least loaded daemon}

6: Daemon discoverDaemon() {FINDS DAEMON IN LOCAL SITE}
7: foreach node ∈ site
8: daemon← node.lookup("DAEMON") {Query the nodes BootstrapRegistry}
9: if daemon 6= null

10: if node.isLocal()
11: return daemon {Always use a local daemon if exists}
12: dx ← dx − 1 {Found a daemon; decrement dx}
13: members ← daemon.members() {# of members connected to this daemon}
14: if members < minMembers
15: minMembers ← members {Found a daemon with with less members}
16: bestDaemon ← daemon {Save least loaded daemon}
17: if dx > 0
18: bestDaemon ← Daemon.createDaemon() {Create new daemon on local node}
19: return bestDaemon

The algorithm works as follows. In the initialization part, the desired number of
daemons at the local site, i.e. the dx value, is obtained from the system-specific policy
and other state variables are initialized. Next the algorithm iterates over the set of
nodes in the local site, and queries each node (lookup()) to see if there is a daemon
reference stored in the node’s BootstrapRegistry. For each daemon that is found, a

8. ENHANCED RESOURCE SHARING 119

check is performed to see if it is a node-local daemon, in which case the daemon
is returned immediately. Node-local daemons are always used. For non-local nodes
running a daemon, dx is decremented and the algorithm queries the daemon to get the
current number of members (GMs) connected to it. The algorithm ignores daemons
with too many connected members, saving the daemon reference only if it is the least
loaded daemon found so far. At the end of the algorithm, the total number of daemons
found is checked (dx), and if enough daemons exists within the local site, the least
loaded daemon is returned. Otherwise, a new daemon is created on the local node.

8.5 Failure Detection and Recovery

Replicas on the same node share the same fate with respect to node crash failures.
However, replica processes (JVMs) may crash independently of other replicas on
the same node, as long as they are hosted in separate JVMs. Moreover, placing the
daemon in a separate JVM from the GMs enhances the failure independence between
the JVMs hosting application replicas and the core group communication services.

To support multiple GMs on the same node, the daemon maintains two distinct mem-
bership lists: one regarding local replicas (GMs), and another concerning remote
daemons (and their associated replicas). The inter-daemon failure detection mecha-
nism is covered in [27]. However, the daemon also needs to detect failures of GMs,
to accurately reflect the membership. This failure detection mechanism is the topic
of this section. This failure detection mechanism is node (or site) local and only be-
tween the daemon and the GMs. Hence, it saves the cost of all members pinging each
other as would be the case with a one-to-one mapping between daemon and member.

Figure 8.4 illustrates two possible crash scenarios, one involving the crash of a replica
JVM (GM), and the other the crash of the daemon JVM. The latter scenario is the
more severe case, as it renders all connected GMs incapable of communicating with
its peer group members that may reside on remote nodes, since they rely on the
daemon for such communication. In the former case, the remaining replicas are still
able to communicate with its peer group members through the daemon.

The daemon-group manager failure detection mechanism is based on a simple leasing
technique [32]. The technique aims to detect:

• The failure of connected replicas (GMs).

• The failure of the Jgroup daemon itself.

120 8.5. FAILURE DETECTION AND RECOVERY

Site X
Node X2

JVM

JVM
JDX2

GM
JVM

GM

Group ManagerGroup Manager
CrashCrash

Node X1
JVM

JVM
JDX1

GM
JVM

GM

DaemonDaemon
CrashCrash

Figure 8.4: Two scenarios involving JVM crashes.

Algorithm 8.3 The failure detection algorithm (daemon side).
1: Initialization:
2: members ← ∅ {The set of members associated with the daemon}

3: void connect(member) {INVOKED BY MEMBER TO CONNECT TO DAEMON}
4: members ← members ∪member
5: member .timer .schedule(pingRate)

6: when timer expires for member {PERIODIC PINGING}
7: member.hasFailed← member .ping() {Check if member is responding}
8: if member.hasFailed
9: members ← members −member {Remove member from local member list}

10: handleLocalSuspect(member) {Runs view agreement protocol}
11: else
12: member .timer .reschedule(pingRate) {Reschedule timer for this member}

That is, JVM crash failures are detected, and implicitly node crashes when the dae-
mon or GMs are on remote nodes.

Algorithms 8.3 and 8.4 show the failure detection technique for the two entities in-
volved. The technique works as follows:

• Algorithm 8.3: A replica first connects to the selected daemon (either found
locally or on a remote node within the site). The daemon adds the member to
its list of members and schedules the ping timer to be executed periodically
with pingRate intervals. Every time the timer expires, ping() is executed, and
determines if the member has failed or not. If is has failed, the member is re-
moved from the list of members, and the view agreement protocol is executed
to form a new view, excluding the failed ”local“ member. Otherwise, the timer
associated with the member is rescheduled.

8. ENHANCED RESOURCE SHARING 121

Algorithm 8.4 The failure detection algorithm (group manager side).
1: Initialization:
2: timer ← new TimerTask() {The daemon timer}

3: void ping() {INVOKED PERIODICALLY BY DAEMON}
4: timer .reschedule(pingRate × 2)

5: when timer expires {GROUP MANAGER DETECT DAEMON FAILURE}
6: System.halt() {Daemon JVM has crashed; terminate replica}

• Algorithm 8.4: On the replica (group manager) side, the ping() method simply
reschedules the local timer. Since the GM expects the ping() method to be in-
voked periodically (with rate pingRate) it can determine whether the daemon
is late and should therefore be suspected to have crashed. To reduce the risk
of false suspicion, a delay of 2 × pingRate is allowed between each ping()
invocation before suspecting the daemon and terminating itself.

8.5.1 Recovery Issues

As shown in Algorithm 8.3, when the daemon detects a failed member it invokes
the handleLocalSuspect() method to force a run of the view agreement protocol.
The details of the view agreement protocol is provided in [87]. The daemon does
not attempt to recover a locally failed application replica. Instead the recovery is
handled by the ARM framework as will be discussed in Chapter 11. Hence, it is
imperative that replica failures are discovered by the daemon and that this information
is communicated to other daemons, ultimately resulting in the installation of a new
view excluding the failed member. The ARM framework use the view installations
as the basis for activating recovery actions.

The more severe JDX2 failure shown in Figure 8.4 is also handled by ARM. The
failure of the daemon is detected by other daemons by means of the inter-daemon
failure detection [27], subsequently installing a new view that is used by ARM to
take the appropriate countermeasures. Assuming that the daemon crashed, and not
its connected replicas, Algorithm 8.4 running on the replica side will also detect the
daemon failure. In response to detecting a daemon failure, the replicas simply commit
suicide.

The reasons for not performing local recovery in either the daemon or the GM is
complexity:

• Replicas that are incommunicado with the rest of the group through the dae-
mon, may interfere with external entities, potentially causing inconsistencies.

122 8.5. FAILURE DETECTION AND RECOVERY

• It would add significant complexity to ARM, as it would have to distinguish be-
tween failures being handled by the GM or the daemon from failures affecting
nodes running daemon and GMs.

• Reestablishing daemon/GM state is difficult.

Chapter 9

Client-side Membership Issues in
the Open Group Model

In a distributed fault-tolerant server system realized according to the open group
model [64], inconsistency will (temporarily) arise between the dynamic member-
ship of the replicated service and its client-side representation in the event of server
failures and recoveries.

This chapter investigates the potential issues that may arise from such inconsisten-
cies, and proposes techniques for maintaining client-side consistency and discusses
their performance implications in failure/recovery scenarios where clients load bal-
ance requests on the servers. Moreover, client-side consistency is also related to the
consistency of the dependable registry.

Comparative performance measurements have been carried out for two of the pro-
posed techniques. The results are presented in Chapter 14. They indicate that the
performance impact of temporary inconsistency is easily kept small, and that the cost
of both techniques are small.

The chapter is based on [78] and is structured as follows. Section 9.1 motivates for
the need to update the client-side membership. Section 9.2 discusses client-side per-
formance impairments and the various delays involved in the update problem. Sec-
tion 9.3 presents two techniques for maintaining the consistency of the dependable
registry, whereas in Section 9.4 two proposed techniques for solving the client-side
update problem are discussed.

123

124 9.1. PROBLEM DESCRIPTION

9.1 Problem Description

In Jgroup, consistent server-side group membership is guaranteed through a group
membership service, as discussed in Chapter 3. As discussed in Section 2.3.3, the
open group model [64] enables external clients to interact transparently with the ob-
ject group, as if it were a single, non-replicated server object. This is different from
the closed group model, in which clients must become member of the group prior
to any interaction with it, thus making it less scalable with respect to the number of
simultaneous clients.

In order for clients to communicate with the object group, they need to obtain an ob-
ject group reference (client-side group proxy). In Jgroup, this is accomplished using
the dependable registry service [86], discussed in Section 3.4. For a replicated ser-
vice it is common that this client-side group proxy holds information about the entire
object group, allowing the client-side to perform transparent failover to a different
group member should some member fail. However, the client-side view of the group
membership is only an approximation of the server-side view, due to the open group
model.

This chapter addresses issues concerning maintaining consistency between the dy-
namic server-side group membership and the client-side representation/approxima-
tion of that membership. In using the open group model we sacrifice the benefit of
membership consistency inherent in the closed group model. However, assuming that
the client-side group proxy holds enough live members to perform failover to another
member, we are able tolerate some inconsistencies between the server and client-side
membership. Unless the client-side membership is updated in some way however,
the client will sooner or later become exposed to server-side failures.

Another aspect is keeping the naming service consistent with the server-side group
membership. Building a dependable distributed middleware platform requires the
naming service to be fault tolerant, so as to ensure that clients can always access the
service. Both Jgroup [86] and Aroma [96] supports a dependable registry service, yet
these do not update their database of client-side proxies in the presence of failures.
Thus, even if the client application is exposed to server-side failures and is able to
obtain a new client-side proxy from the registry service, this proxy may not reflect
the correct membership of the group. The proxy will also contain references to failed
servers, forcing clients to perform failover for the same server multiple times, leading
to increased failover latency.

9. CLIENT-SIDE MEMBERSHIP ISSUES IN THE OPEN GROUP MODEL 125

S1

S2

S3

DR

C

LegendLegend
Group Proxy Group Method Invocation Server initialization View

lookup(A)
method()

GMI

GMI

S4

ARMARM
RecoveryRecovery

bind(A, S4)

G 0
A={S1 , S2 , S3 }

G 1
A={S1 , S2 , S3 , S4 }

G 1
A

V 0 V 1

V 2

G 1
A

G 1
A

Figure 9.1: Failure/recovery scenario causing inconsistency in the registry.

Figure 9.1 shows the same failure/recovery scenario as in Figure 4.3, but serves to
illustrate how this sequence of events will cause an inconsistency between the de-
pendable registry and the server-side group membership. Initially, group A has a
three member view V0 = {S1, S2, S3}, and the dependable registry database holds
a group proxy GA

0 which is identical to V0. After some unspecified time S1 crashes.
This leads to the installation of a new view, V1 = {S2, S3}, after which ARM is
notified of the failure (not shown in Figure 9.1). ARM attempts to maintain the re-
dundancy level by installing a replacement replica, S4, consequently installing view
V2 = {S2, S3, S4}. During initialization of S4, bind() is invoked on the registry in
order to associate the S4 group member with the GA client-side proxy.

Later, once a client needs to access group A, it contacts the registry to obtain the
client-side proxy. Given GA, the client can perform invocations on all live members
of the group. Note that S1 still remains in the registry database, even though it has
crashed. This is since there is no update mechanism in place, and hence there will
be a persistent inconsistency between the server-side view V2 and the entry GA

1 in the
registry. Evidently this inconsistency propagates to clients, as seen in Figure 9.1.

126 9.2. CLIENT-SIDE PERFORMANCE IMPAIRMENTS

9.2 Client-side Performance Impairments

9.2.1 Performance Without Updates of the Client-side Proxy

To demonstrate the performance penalty of not updating the client-side membership
in accordance with the dynamic server-side group membership, we have performed
several experiments on a four server system with crashes and recoveries in which the
clients did not update their membership. The clients perform load balanced invoca-
tions on all known servers, using the anycast method semantic. The method invoked
takes a 1000 byte array as argument, and returns the same array back to the client.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4

R
ou

nd
 tr

ip
 in

vo
ca

tio
n-

re
sp

on
se

 la
te

nc
y

(m
s)

Number of live servers remaining in the client-side proxy

External group method invocation ; anycast semantics

70 clients
56 clients
42 clients
28 clients
14 clients
7 clients

Figure 9.2: The performance drop due to not updating the client-side membership.

Figure 9.2 shows the results of the experiment. The plot shows several lines for var-
ious client loads ranging from 7 to 70 clients. Only 7 physical machines are used
for the clients, whereas in all cases the four servers run on dedicated machines,
i.e. only the number of live servers remaining in the client-side proxy varies. Ini-
tially, all client-side proxies contained all four servers. During the experiment servers
crashed and recovered, rendering the client-side proxies inconsistent (having fewer
live servers). Not surprisingly the results show that the client-side proxies should
update their membership information to avoid increased invocation latencies. Once
a client detects a server failure, it is removed from the client-side proxy and not re-
placed by new servers when they are installed. Thus, the observed performance drop

9. CLIENT-SIDE MEMBERSHIP ISSUES IN THE OPEN GROUP MODEL 127

is due to contention at the servers, since the load balancing mechanism in the client-
side proxy does not know all the servers.

Another, perhaps more important problem is the scenario where all servers crash
before updating the proxy, rendering failed servers visible to clients. Figure 9.3 shows
such a scenario, where the first client invocation completes and the second invocation
fails due to all servers having crashed and recovered as new instances, and since the
client-side proxy GA does not know any of the new server instances it is not able to
failover. Hence, the invocation fails and the client is exposed to the failure.

S1S1
CrashCrash

ARMARM
RecoveryRecovery

ClientClient
Invocation 1Invocation 1

S2S2
CrashCrash

S3S3
CrashCrash

ARMARM
RecoveryRecovery

ARMARM
RecoveryRecovery

G A

V k={S4 , S5 , S6}V 0={S1 , S2 , S3 }
G A=V 0

ClientClient
Invocation 2Invocation 2

Client exposed Client exposed
to server failuresto server failures

G A

Figure 9.3: All servers crashed, exposing the failure to the client.

9.2.2 Client-side Update Delays

To be able to reason about the timing involved in updating the client-side proxy (GA),
let’s assume that the proxy is updated in some unspecified manner. The timeline
in Figure 9.4 illustrates one possible failure/recovery scenario in which the client-
side group proxy is updated. In this example a group of three members install a
view V0 = {S1, S2, S3}, and bind their remote references in the registry service,
allowing clients to obtain a group reference (the GA) from the registry. After some
unspecified time S1 crashes, rendering all existing GA instances inconsistent with the
actual situation. Given that there are two remaining servers in the group, the GA can
simply failover to another server, to perform a client invocation.

The GA should however be updated to enable the use of all available servers, and the
timeline in Figure 9.4 illustrates the timing involved in updating the GA. Let t0 denote
the time at which S1 crashes. Let TV1 be the time that it takes for the other servers to
detect the failure and agree on a new view (V1), while TV2 is the time it takes to install
a replacement server (S4) and for the servers to agree on the new view V2. Thus, the

128 9.2. CLIENT-SIDE PERFORMANCE IMPAIRMENTS

V 0 t 0

S1S1
CrashCrash

T V 1

t u

T u

FailureFailure
DetectionDetection

S4S4
CreatedCreated

Group ProxyGroup Proxy
UpdatedUpdated

ClientClient
InvocationInvocation

V 1 V 2

Total client update delay,

t d

_ _T V 2 _T cu

Figure 9.4: The update timeline.

sum corresponds to the (server-side) recovery time, Tr = TV1 + TV2 . Furthermore,
let td be the time that the client-side proxy detects that S1 has crashed. The total time
for updating GA is given by Tu = tu− t0, and we denote this time as the total update
delay. Note that td may stretch beyond tu, when GA does not select to use S1, or if
the client does not perform any invocations in the range [t0, tu]. Finally, let the client
update time, Tcu, be the time from the installation of the compensation view V2 and
until GA is again consistent with the actual situation.

S1S1
CrashCrash

FailureFailure
DetectionDetection

Client proxy Client proxy
ReinvocationReinvocation

ClientClient
InvocationInvocation

_T f

Figure 9.5: The failover latency.

The failover latency, Tf , is the additional time imposed on clients when attempting
to invoke a server that has failed. Let Tf be the time between the proxy receiv-
ing the actual invocation and the time of performing a reinvocation on a different
server, as illustrated in Figure 9.5. The failover latency does not include the actual
invocation-response latency. Generally, it is assumed that failover requires only a
single reinvocation. However, for multiple nearly coincident failures, or if the update
delay is long, the failover latency may involve multiple invocation attempts.

In the following, extensions to the client-side proxy mechanism of Jgroup/ARM, and
its dependable registry service [86] are presented. The purpose of these extensions is

9. CLIENT-SIDE MEMBERSHIP ISSUES IN THE OPEN GROUP MODEL 129

to maintain consistency between the server-side group membership and its represen-
tations both at the client-side and in the registry service database.

9.3 Updating the Dependable Registry

The current implementation of the dependable registry described in Section 3.4 lacks
support for updating its content to ensure consistency with the server-side group
membership. To better understand why this is a problem, consider the following
scenarios: (i) a server leaves the group voluntarily; and (ii) a server leaves the group
involuntarily by crashing or partitioning. In the former case, the server may perform
the unbind() method on the registry, allowing the registry database to be updated ac-
cordingly, by removing the server’s reference from GA. In the latter case, however,
the failed server is unlikely to be able to perform the unbind() method. The registry
database is thus rendered inconsistent with respect to the server-side membership V .
In this situation, the dependable registry will continue to supply clients with a proxy
(GA) that contains servers that are no longer member of the group. In fact, the proxy
may be completely obsolete if all servers in the group have crashed. Furthermore, if
new servers were to be started to replace failed once as is done by the ARM frame-
work, the number of members of the group proxy for GA would grow to become quite
large. Figure 9.1 illustrates the problem visually.

To prevent clients from obtaining obsolete proxies from the dependable registry, two
distinct techniques are provided for maintaining consistency of the registry content.
The techniques are implemented as separate protocol modules embedded within the
group manager associated with servers. A detailed description of the techniques
can be found in [79]. Note that similar techniques are also provided by the ARM
framework for recovery purposes. Hence, reusing the techniques from ARM would
improve efficiency. However, it would also require tighter integration between the
replication manager and the dependable registry, sacrificing modularity and indepen-
dence of the dependable registry.

9.3.1 The Lease Refresh Technique

Our first solution to the problem is based on the well known concept of leasing [32].
By leasing we mean that each server’s object reference as stored in the dependable
registry is only valid for a given amount of time called the leaseT ime. When a

130 9.3. UPDATING THE DEPENDABLE REGISTRY

server’s object reference has been in the registry for a longer period of time than
its leaseT ime, it becomes a candidate for removal from the registry database. To
prevent such removal, the server must periodically renew its lease with the registry.
The interval between these refresh() invocations is referred to as the refreshRate,
typically related by a factor of two as follows: leaseT ime = 2 × refreshRate.
Figure 9.6 illustrates the workings of the LeaseModule.

S1

S2

S3

DR

G 0
A={S1 , S2 , S3} G 1

A={S 2 , S3}

V 0 V 1

refresh() refresh()

leaseTime

refreshRate

leaseTime expired;
S1 removed from database

Figure 9.6: The LeaseModule exemplified. S1 has crashed and consequently it is
removed from the registry since its lease is not renewed.

This approach is also used by the Jini lookup service [7], except for the fact that it
can only associate a single server with each service name.

9.3.2 The Notification Technique

Jgroup provides a group membership service that allows servers (or modules) to re-
ceive notification of changes to the group’s composition. These notifications come
in the form of viewChange() method invocations. Thus, upon receiving such a view
change event, the NotifyModule selects a leader (e.g. S3) for the group. The leader
is responsible for updating the dependable registry in case the new view represents
a contraction of the group’s membership. This is done by executing the unbind()
method (with S1 as argument) on the registry. Figure 9.7 illustrates the workings of
the NotifyModule.

9. CLIENT-SIDE MEMBERSHIP ISSUES IN THE OPEN GROUP MODEL 131

S1

S2

S3

DR

G 0
A={S1 , S2 , S3} G 1

A={S 2 , S3}

V 0 V 1

unbind(S1)

Figure 9.7: The NotifyModule exemplified. S3 is the leader.

9.3.3 Combining Notification and Leasing

The NotifyModule is by far the most interesting and elegant technique, but it has a
drawback in situations when there is only one remaining server in the object group.
In this case the last server will be unable to notify the registry when it fails. However,
it is easy to combine the LeaseModule and the NotifyModule in order to exploit the
advantages of both. Let |V| denote the size of the current view V installed by the
group. The default for the combined approach is to use the NotifyModule (i.e. when
|V| > 1), and in the situation with only one (i.e. when |V| = 1) remaining server
the LeaseModule is activated. In doing so, we will also diminish the main drawback
of leasing technique, namely the amount of generated network traffic, since there is
only one server that needs to perform a refresh() periodically.

9.4 Updating the Client-side Proxies

Even though the dependable registry is kept up-to-date using the aforementioned
techniques, the client-side proxy representation of the group membership will still
become (partially) invalid since it is not updated in any way. Since the membership
information known to the client-side proxy may include both failed and working
servers, the proxy may hide that some servers have failed by using those that work.
For each anycast invocation, the client proxy randomly selects a single server among
the working servers.

132 9.4. UPDATING THE CLIENT-SIDE PROXIES

In previous versions of Jgroup, the client-side proxy throws an exception to the client
application if all group members have become unavailable, rendering server failures
visible to the client application. The solution is simple enough; the client application
can contact the registry in order to obtain a fresh copy of the group proxy, assum-
ing the registry is updated. However, this yields a poor load distribution among the
servers in the period until obtaining a fresh copy from the registry. Moreover, the
operation should also be transparent to the client application programmer. Hence,
two techniques that can be used to obtain such failure transparency are proposed.

1. Periodic refresh The client-side proxy requests a new group proxy from the
dependable registry at periodic intervals.

2. Client-side view refresh For each invocation, the client-side proxy attaches
its current view identifier vk. The server compares the client view with its own
view. If the two differs, the server augments the result message with its current
view, allowing the client to update its membership information immediately
after the invocation. Figure 9.8 illustrates the approach.

S1

S2

S3

G 1
A=V 1={S2 , S3}

V 0 V 1

T f

{req2 , v0 }{req1 , v0 }

{resp1 }

{req2 , v0 }

ReinvocationReinvocation

{resp2 , v1 , V 1}

C

G 0
A=V 0={S1 , S2 , S3}

{req1 }

{resp1 }

{req2 }

{resp2 }

{req3 , v1}

{req3}

....

LegendLegend
The set of group members in view k Compare server and client view
View identifier for view k Update the clientside view

V k

vk

v0≠v1

G A

Figure 9.8: The client-side view refresh technique.

Technique 1 requires selecting a suitable refresh rate interval, which can be difficult.
If set too low, it could potentially generate a lot of overhead network traffic, and if

9. CLIENT-SIDE MEMBERSHIP ISSUES IN THE OPEN GROUP MODEL 133

set too high we run the risk that it is not updated often enough to avoid exposing
server failures to the client. This technique works by indirect updates in that it relies
on the registry already being up-to-date, which may not be the case, depending on
the technique used to update the registry. Therefore, Technique 2 is very appealing
in that it will work even though the registry is not updated, since the server-side
handles updating clients itself. The overhead of the technique is also very small;
only a 64-bit view identifier is added to each invocation performed, and a simple
comparison is performed on the server-side. In response to an invocation whose
client-side view (e.g. v0) differs from the server-side view (e.g. v1), the reply message
is simply augmented with the current server-side view V1 and its identifier v1.

The main difference between these techniques is the time it takes the client-side proxy
to return to a consistent state with respect to the membership of the server group.
It is not an issue concerning server availability, but rather the ability of the client-
side proxy to load balance its invocations on all active servers, and not just the ones
that are known to the clients. Furthermore, Technique 2 may also experience less
failovers, since it is possible that the proxy is updated without even noticing a server
failure. With the periodic refresh technique it is more likely that the proxy have to
perform failover.

Both techniques discussed above can be combined with a mechanism to circumvent
the problem illustrated in Figure 9.3. Such a client-side mechanism would simply
query the registry if the set of known servers have been exhausted to become updated
again. Obviously, the mechanism assumes that the registry is also kept up-to-date
using the techniques in Section 9.3.

All techniques described in this chapter have been implemented. However, only
the client-side view refresh technique is enabled by default. Chapter 14 presents
measurement results and a comparative evaluation of the two techniques discussed
above.

134 9.4. UPDATING THE CLIENT-SIDE PROXIES

Part III

Autonomous Management

135

Chapter 10

Policies for Replication
Management

The ARM framework, introduced briefly in Chapter 4, aims to be a fault treatment
architecture that is self-managing and adaptive to node and network dynamics and
changing application requirements. In general, an autonomous system seeks to limit
the number of manual interactions needed, and avoids direct manipulation of system
components for management purposes. One approach to accomplish this is to use a
policy-based management system [113]. Policy-based management enables system
administrators to specify how a system should react to changes in the environment —
with no human intervention. These specifications are called policies, and describes
how the system should be managed under various dynamically changing system con-
ditions.

Policy-based management architectures are often organized using two key abstrac-
tions [113, 2]:

• A (centralized) manager component, which monitors and analyzes the status of
managed resources and plans and executes actions on the managed resources.
This component is considered the policy decision point (PDP) [2].

• Managed resources which are controlled by the manager component. Managed
resources can be considered the policy enforcement point (PEP) [2].

Typically, the managed resources expose interfaces for sensors and effectors which
are used by the manager component [2].

137

138 10.1. ARM POLICIES AND POLICY ENFORCING METHODS

The purpose of this chapter is to describe the policy and configuration mechanism
used by Jgroup/ARM to determine the self-managing behavior of the system. The
general organization of the ARM architecture (see Chapter 4) is similar to that of a
manager component and associated managed resources [2]. However, ARM policies
are not restricted to a centralized PDP, e.g. consider the decentralized remove policy
discussed in Section 10.1.3.

Three distinct policies are used to guide ARM in making decisions on how to handle
a particular system condition, e.g. a replica failure. Overall, these policies enforce
the dependability requirements and WAN partition robustness of services. The three
policy types are complemented with configuration information specifying required
policy input. The policy examples used to guide ARM behavior are simple and aimed
to demonstrate the concept; the policies may be extended or combined with other
policies to obtain more advanced behaviors, e.g. to consider the system load when
making policy decisions.

The policy framework for Jgroup/ARM is designed as an integral part of ARM, and
hence is not intended to be a generic policy framework comparable to e.g. [2]. In
particular, there is no conflict resolution mechanism for ARM policies.

The three policy types are presented in Section 10.1. Section 10.2 discusses the
configuration mechanism used by the policies to obtain configurable input data.

10.1 ARM Policies and Policy Enforcing Methods

Policy-based management allows a system administrator to provide a high-level pol-
icy specification to guide the behavior of the underlying system. ARM requires that
three separate policy types be defined in order to support the autonomy properties:

1. The distribution policy which is specific to each ARM deployment.

2. The replication policy which is specific to each service deployed through ARM.

3. The remove policy which is specific to each service deployed through ARM.

10.1.1 The Distribution Policy

The purpose of a distribution policy is to compute how service replicas should be
allocated onto the set of available sites and nodes in the target environment (see Fig-
ure 1.1). Generally, two types of input are needed to compute the replica allocations
of a service:

10. POLICIES FOR REPLICATION MANAGEMENT 139

1. the target environment, and

2. the number of replicas to be allocated.

The latter is obtained at runtime from the replication policy associated with the ser-
vice being deployed, whereas the former is typically obtained from the target envi-
ronment configuration as exemplified by Listing 10.1 on page 142.

Currently, ARM supports only one distribution policy (DisperseOnSites) that
will avoid co-locating two replicas of the same service on the same node, while at the
same time trying to disperse the replicas evenly on the available sites. In addition, it
will try to keep the replica count per node to a minimum. The same node may host
multiple distinct service types. It is assumed that WAN connections between sites
are less robust than LAN connections. Hence, the objective of this distribution policy
is to ensure available replicas in each likely network partition that may arise. More
advanced distribution policies may be defined by combining the above policy with
load balancing mechanisms.

Table 10.1: High-level abstractions for replica distribution.

Method name Description
assignReplicas() Obtain node allocations for the given service.
removeReplicas() Remove node allocations for the given service.
reassignReplica() Relocate a replica to a new node.
colocateReplicas() Co-locate replicas on the same set of nodes.
getAssignedNodes() Get the current node allocations for the given service.
notify() Event notification handler.

A new distribution policy is defined through a set of high-level abstractions for replica
distribution, as shown in Table 10.1. Hence, a replica distribution algorithm must
implement those abstractions, allowing the replication manager to install replicas
based on the output (node allocations) generated by the distribution algorithm. To
make node allocation decisions, a distribution algorithm may wish to receive ARM
events, such as view change events received from external groups. This is possible
through the notify() abstraction.

140 10.1. ARM POLICIES AND POLICY ENFORCING METHODS

10.1.2 The Replication Policy

Each service that is to be deployed through ARM is associated with a replication
policy. The primary purpose of the replication policy of a service is to describe how
the redundancy level of that service should be maintained. Generally, two types of
input are needed:

1. The target environment.

2. The initial/minimal redundancy level of the service.

Let Rinit and Rmin denote the initial and minimal redundancy levels. Currently,
only one replication policy (KeepMinimalInPartition) is provided whose ob-
jective is to maintain service availability in all partitions. That is to maintain Rmin
in each partition that may arise. To maintain a given redundancy level, a fault treat-
ment (recovery) action such as installing replacement replicas is typical. Alternative
policies can easily be defined, for example to maintain Rmin in a primary partition
only. Or a policy may interpret group failures as a design fault symptom and revert to
a previous implementation of the service if such exists. Such a policy could be useful
in conjunction with the online upgrade technique presented in Chapter 12.

As discussed above, a replication policy describes how recovery from various fail-
ure scenarios should be handled for its associated service. The replication policy is
defined through a set of high-level abstractions for replica recovery, as illustrated in
Table 10.2.

Table 10.2: High-level abstractions for the replication policy.

Method name Description
needsRecovery() Check if the service needs recovery.
prepareRecovery() Prepare to perform recovery.
handleFailure() Perform recovery action.

When deploying a service, ARM will instantiate a service-specific replication policy.
During its operation, ARM receives events and maintains state associated with each
of the deployed services, including updating the redundancy level of services. This
state is used by the replication policy to determine the need for recovery. If ARM
detects that it needs to perform recovery, it first initializes state variables through

10. POLICIES FOR REPLICATION MANAGEMENT 141

the prepareRecovery() abstraction and then invokes the handleFailure() abstraction.
Internally, a replication policy needs to analyze the failure pattern to determine the
fault treatment action to use. Table 10.3 lists three predefined fault treatment actions
that can be reused.

Table 10.3: Common fault treatment actions used by a replication policy.

Method name Description
restartReplica() Restart a service replica on a given node.
relocateReplica() Relocate a service replica away from a given node.
groupFailure() Called when all service replicas have failed.

10.1.3 The Remove Policy

Each service deployed through ARM is associated with a remove policy. The re-
move policy of a service describes how the redundancy level should be adjusted if
the redundancy level exceeds some threshold, e.g. the initial redundancy level, Rinit,
of the service. As opposed to the replication policy described above, the remove
policy is executed in a decentralized manner without involving the replication man-
ager. That is, it is the supervision modules associated with each of the replicas which
are collectively responsible for deciding which replica should be removed when the
redundancy level exceeds the threshold. As the remove policy is embedded in the
supervision module, further details are given in Section 11.3.3.

10.2 The Configuration Mechanism

Policy specifications obtain input from a simple configuration mechanism, based on
XML, that enables administrators to specify (1) the target environment, (2) deploy-
ment-specific configuration parameters, and (3) service-specific descriptors. In the
following two sections, the target environment configuration and service configura-
tion formats are discussed.

10.2.1 Target Environment Configuration

Listing 10.1 shows the format for the target environment configuration. It specifies
the set of sites and the IP multicast address to be used internally within each site.

142 10.2. THE CONFIGURATION MECHANISM

Listing 10.1: A sample target environment configuration.
<TargetEnvironment>

<Site name="ux.uis.no" address="226.1.2.1">
<ScalingPolicy daemons="all"/>
<Node name="badne" port="51000"/>
<Node name="johanna" port="51000"/>

</Site>

<Site name="item.ntnu.no" address="226.1.2.2">
<ScalingPolicy daemons="1"/>
<Node name="samson" port="54300"/>
<Node name="poker" port="54300"/>

</Site>

<Site name="cs.unibo.it" address="226.1.2.3">
<ScalingPolicy daemons="2"/>
<Node name="annina" port="20100"/>
<Node name="leonora" port="20100"/>
<Node name="lily" port="20100"/>

</Site>
</TargetEnvironment>

The name of a site typically corresponds to a DNS domain name. Specifying the
target environment in this manner is required since there is no automated discovery
mechanism that is able to span across multiple Internet sites (domains).

Note that a scaling policy is also associated with each site. It is used to configure
the number of daemon instances within each site, as discussed in Chapter 8. Let dx

denote the number of daemons in site x, and let Nx denote the number of nodes in
site x. Each site x should specify the value dx ∈ [1, Nx]. If the keyword all is
specified, or if the scaling policy is undefined for site x, then dx := Nx is used.

Each site entry also defines its associated set of nodes. A node entry specifies its
DNS host name (or IP address), and the port number through which communication
should occur. Other properties could also be added to the node entry, such as the
maximum number of replicas that the node should host.

Once the target environment configuration has been read, it is compiled into a dy-
namic runtime representation, allowing the system to reconfigure its set of nodes
on-demand.

In general, only server-side applications need to have complete knowledge of the
target environment. However, clients need to know at least the nodes that are hosting

10. POLICIES FOR REPLICATION MANAGEMENT 143

the dependable registry service. This is necessary to obtain the client-side group
proxies needed to communicate with other deployed services. In practice however,
the client-side uses the same target environment configuration file.

10.2.2 Service Configuration

Listing 10.2 shows two service configurations, one describing the configuration of
the ARM replication manager service and the other describing the replicated service
used in the experiments in Part IV.

The service configuration permits the operator to define and specify numerous at-
tributes to be associated with the service. Some of the attributes that can be specified
include: The service name and implementation class, the replication policy to be
used in case of failures, and the set of protocol modules used by the service. The re-
dundancy levels to be used initially and to be maintained (minimal) are configurable
parameters to the replication policy. In addition to these fixed parameters, the service
configuration may define generic parameters that are both service-specific as well as
module-specific. Typically, generic parameters are used to specify timeout values or
boolean properties that enable a particular function, e.g. Lines 5-6 in Listing 10.2.

Prior to installation of a service, its service configuration is compiled into a dynamic
runtime representation and passed to the replication manager. The replication man-
ager maintains a table of deployed services and their corresponding runtime config-
urations, allowing the configuration of a service to be modified at runtime. This is
useful to adapt to changes in the environment.

As mentioned in Section 10.1, the distribution policy is specific to each ARM de-
ployment, and hence it is specified as a configuration parameter in the service config-
uration of the ARM replication manager, as shown in Line 15 in Listing 10.2. Note
that the choice of replication protocol is not configurable through the service config-
uration, since this choice is highly dependent on the design of the service. Hence,
instead the replication protocol is specified through annotation of individual methods
in the server implementation as discussed in Chapter 7.

144 10.2. THE CONFIGURATION MECHANISM

Listing 10.2: A sample service configuration description for the replication manager.
1 <Service name="ARM/ReplicationManager" group="2">
2 <Class name="jgroup.arm.ReplicaManagerImpl"/>
3 <ProtocolModules>
4 <Module name="Supervision">
5 <Param name="GroupFailureSupport" value="no"/>
6 <Param name="RemoveDelay" value="5"/>
7 </Module>
8 <Module name="Registry"/>
9 <Module name="EGMI"/>

10 <Module name="StateMerge"/>
11 <Module name="Multicast"/>
12 <Module name="Membership"/>
13 <Module name="Dispatcher"/>
14 </ProtocolModules>
15 <DistributionPolicy name="DisperseOnSites"/>
16 <ReplicationPolicy name="KeepMinimalInPartition">
17 <Redundancy initial="3" minimal="2"/>
18 <ServiceMonitor expiration="3"/>
19 </ReplicationPolicy>
20 </Service>
21

22 <Service name="ARM/ReplicatedService" group="200">
23 <Class name="jgroup.test.ReplicatedServer"/>
24 <Param name="SharedJVM" value="no"/>
25 <ProtocolModules>
26 <Module name="Supervision">
27 <Param name="GroupFailureSupport" value="yes"/>
28 <Param name="RenewalRate" value="30"/>
29 <Param name="RemoveDelay" value="5"/>
30 </Module>
31 <Module name="Registry"/>
32 <Module name="EGMI"/>
33 <Module name="StateMerge"/>
34 <Module name="Multicast"/>
35 <Module name="Membership"/>
36 <Module name="Dispatcher"/>
37 </ProtocolModules>
38 <ReplicationPolicy name="KeepMinimalInPartition">
39 <Redundancy initial="3" minimal="2"/>
40 <ServiceMonitor expiration="3"/>
41 </ReplicationPolicy>
42 </Service>

Chapter 11

Autonomous Replication
Management

Fault tolerant systems are able to continue to provide service in spite of the occur-
rence and activation of faults in the system. Redundancy is a common approach
to build fault tolerant systems whereby faults are detected and their effects masked
from clients using the system. Yet the dependability characteristics of fault tolerant
systems based on redundancy can be improved further by the introduction of a fault
treatment mechanism. A fault treatment system is one that is able to reconfigure the
system to either rectify or reduce the consequences of a fault/failure.

The Autonomous Replication Management (ARM) framework is a self-managing
fault treatment architecture that is adaptive to network dynamics and changing re-
quirements. It was introduced briefly in Chapter 4, and in this chapter additional
details are provided.

The aim of using ARM is to ultimately reduce the human interactions required to
maintain the redundancy level of services, consequently improving the dependability
characteristics of services deployed through ARM. Fault treatment is accomplished
through a reactive mechanism in which failures are detected, followed by system
reconfiguration, such as installing replacement replicas to restore the desired level of
redundancy. The objective is to minimize the period of reduced failure resilience, in
which additional failures could cause service delivery to stop.

Currently, ARM handles object, node and network partition failures. Both Delta-
4 [102] and AQuA [104] handles value faults, but do not support network partitioning.

145

146 11.1. THE REPLICATION MANAGER

ARM is also able to handle multiple concurrent failure activities, including failures
affecting the ARM infrastructure.

ARM also features a convenient mechanism to deploy services without having to
worry about the distribution of replicas in the target environment; depending on the
distribution policy, replicas are placed on nodes within different sites so as to reduce
the likelihood of clients becoming partitioned from all replicas.

A non-intrusive system design is applied, where the operation of deployed services is
completely decoupled from ARM during normal operation in serving clients. Hence,
the overhead due to the main recovery mechanism is negligible.

The chapter is organized as follows: Section 11.1 describes the main ARM infrastruc-
ture component, the replication manager and its interfaces. Section 11.2 discusses the
management client used to deploy services. Section 11.3 covers the protocol module
that must be included in the protocol set of servers for which ARM should perform
fault treatment. In Section 11.4 the object factory used to install and remove replicas
is discussed, and in Section 11.5 the ARM failure recovery mechanism is discussed.
Section 11.6 discusses issues of replicating the replication manager. Finally, Sec-
tion 11.7 summarizes the benefits of the ARM framework.

11.1 The Replication Manager

The replication manager (RM) is the main component of the ARM infrastructure; its
tasks are:

1. to provide interfaces for installing, removing and updating services;

2. to distribute replicas in the target environment, to (best) meet the operational
policies for all services (see Chapter 10);

3. to collect and analyze information about failures, and

4. to recover from them according to the policies defined for the services.

The replication manager is designed as a central controller, enabling consistent de-
cisions on replica placement and recovery actions. For increased fault-tolerance,
however, it is replicated using Jgroup and exploits its own facilities for self-recovery
and to bootstrap itself onto nodes in the target environment (see Section 11.6).

11. AUTONOMOUS REPLICATION MANAGEMENT 147

ping()

Management
Client

Replication
Manager

Management

E
ve

nt
s

createGroup()
removeGroup()
updateGroup()
subscribe()
unsubscribe()

GUI

Protocol
Modules

Factory

NodeJVM

Protocol
Modules

JVM

JVM

Protocol
Modules

Factory

NodeJVM

JVMcreateReplica()
removeReplica()
queryReplicas()

notify()

Supervision
Module

notify()

C
al

lb
ac

k
S A 2

S A 1 S B1

Figure 11.1: Overview of ARM components and interfaces.

Being based on the open group model adopted by Jgroup, external entities are able
to communicate requests and events to the RM without the need to join its group,
avoiding delays and scalability problems inherent to the closed group model [64].

Figure 11.1 is the same as Figure 4.4; it is repeated here for convenience. It illustrates
the core components and interfaces of the ARM infrastructure.

Two EGMI interfaces are used to communicate with the RM. The Management inter-
face is used by the management client to request group creation, update and removal.
The Events interface is used by external components to provide the RM with relevant
events for performing its operations.

As the Management interface is an EGMI interface, it means that on rare occasions,
the same invocation request may be completed in concurrent views, causing ARM
to create a service multiple times. This is simply a manifestation of the fact that
“exactly-once” operation semantic is impossible to guarantee in the presence of fail-
ures [94]; see Section 3.3.2.2 for additional details. The supervision module, de-
scribed in Section 11.3, provides measures to deal with this problem.

A collection of event types are supported, as shown in Table 11.1. All event types
provide their own handle() method, which is executed by the RM upon receiving an

148 11.2. THE MANAGEMENT CLIENT

Table 11.1: Event types supported by ARM.

Event type Description
ViewChange Notify ARM of a change in the group composition of a service.
IamAlive Renew the lease of a replica with the RM.
ReplicaFailure Notify that a replica has failed.
NodePresence Lets a node notify its presence in the target environment.

event. Events interact with the RM through a set of well-defined interfaces. This
event handling architecture makes it very easy to augment the system with additional
event types, assuming their interactions with the RM internals are limited to the meth-
ods supported by the well-defined interfaces. Some of these events are described
further in Section 11.3 and in Section 11.4.

11.2 The Management Client

The management client enables a system administrator to install or remove services
on demand. The management client may also perform runtime updates of the con-
figuration of a service. Currently, updates are restricted to changing the redundancy
level attributes. It is foreseen that the ability to update the service configuration can
be exploited by ARM to support some degree of self-optimization.

Additionally, the management client may subscribe to events associated with one
or more object groups deployed through ARM. These events are passed on to the
management client through the Callback interface, permitting appropriate feedback
to the system administrator. A management client may disconnect and later reconnect
to the RM, and re-subscribe to callback events of previously deployed object groups.

The current management client implementation is specialized and supports defining
scripts for automated installations. It is discussed further in Chapter 13, and was used
to perform the experimental evaluations in Part IV. An alternative implementation
may support a graphical front-end to ease human interaction with ARM.

11.3 Monitoring and Controlling Services

Keeping track of and controlling service replicas is essential to enable discovery of
failures and to rectify any deviation from the specified dependability requirements.

11. AUTONOMOUS REPLICATION MANAGEMENT 149

Figure 11.2 illustrates the ARM failure monitoring architecture, in which a combina-
tion of mechanisms are provided. The architecture primarily follows an event-driven
design in that external components report events collectively to the RM, instead of
the RM continuously probing each individual component, which would be costly.

notify(NodePresence)
notify(ReplicaFailure)

notify(ViewChange)

Replication
Manager

Supervision
Module

Factory

NodeJVM

Supervision
Module

JVM

JVM

Supervision
Module

NodeJVM

JVM

notify(IamAlive)

Periodic

Event driven

ping()

ping()

ping()

LeaderLeader
LeaderLeader

notify(NodePresence)
notify(ReplicaFailure)

S A1

S A 2

S B1

Factory

Figure 11.2: The ARM Failure Monitoring architecture.

11.3.1 Group Level Service Monitoring

To exploit synergies with existing Jgroup components, tracking services is performed
at two levels of granularity: groups and replicas. Both tracking mechanisms are man-
aged by supervision modules, that must be included in the set of protocol modules
associated with Jgroup replicas.
At the group level, the leader of a group is responsible for notifying the RM of any
variation in the group membership. In this way, the failure detection costs incurred
by the PGMS are shared with the failure monitoring part of the RM.
View installations generated by the PGMS are intercepted by the supervision module
and reported to the RM through ViewChange events. To avoid that all members of

150 11.3. MONITORING AND CONTROLLING SERVICES

a group report the same information, only the group leader (see Figure 11.2 and
Figure 11.3) sends this information to the RM. Based on this information, the RM
determines the need for recovery, as discussed in Section 11.5.

N1 crashed Leader

notify(ViewChange)

notify(ViewChange) notify(ViewChange)
N2

N3

N1

N4

RM

join

createReplica()
notify(ViewChange)

Figure 11.3: An example failure-recovery sequence (same as Figure 4.3).

As an illustration of the workings of the supervision module, Figure 11.3 shows a
common failure-recovery sequence where node N1 fails, followed by a recovery
action causing the RM to install a replacement replica on node N4.

11.3.2 Replica Level Monitoring

Unfortunately, group-level events are not sufficient to cover group failure scenarios
in which all remaining replicas fail before being able to report a view change to RM.
This can occur if multiple nodes/replicas fail in rapid succession, or if the network
partitions, e.g. leaving only one replica in a partition whom fails shortly thereafter.
For this reason, replica level tracking is also needed.

To handle group failures, a lease renewal mechanism [32] is embedded in the super-
vision module, causing all replicas to issue renew (IamAlive) events periodically to
prevent ARM from triggering recovery, as illustrated in Figure 11.4. If an expected
renew event is not received, ARM will activate recovery.

The rationale behind this technique is the assumption that group failures are ex-
tremely rare and typically become even less likely for larger groups. Therefore, as
illustrated in Figure 11.5, the renewal period T|V| is set to grow exponentially with
the group size |V| as follows

T|V| = 2(|V|−1) · RenewalRate

11. AUTONOMOUS REPLICATION MANAGEMENT 151

N1 crashed

N2 crashed

timeout

notify(IamAlive)

N2

N3

N1

N4

RM

join

joinnotify(IamAlive)

notify(ViewChange)

notify(IamAlive)
createReplica()

notify(ViewChange)

Figure 11.4: A simple group failure scenario. The timeout indicates that the expected
renew event was not received, and hence ARM activates recovery.

where RenewalRate is obtained from the service configuration, e.g. Line 28 in
Listing 10.2. This keeps the failure detection time short for small groups that are
more likely to fail without notifying the RM, while reducing the number of renew
events for larger groups that are less likely to experience a group failure. Hence, the
overhead of this mechanism can be made insignificant compared to traditional failure
detectors.

MembersMembers

OneOne

TwoTwo

ThreeThree

Renewal
Rate

Figure 11.5: The renew rate grows with the group size.

Note that Jgroup/ARM do not provide support for reestablishing state in case of a
group failure. Hence, recovering from a group failure is mainly useful to stateless
services; alternatively the service may provide its own state persistence mechanism.
Since the lease renew mechanism may not be useful to all services and does in fact in-
duce some overhead, it can be (de)activated through the GroupFailureSupport
property in the service configuration (see Line 27 in Listing 10.2). Note also, that

152 11.3. MONITORING AND CONTROLLING SERVICES

the client-side group proxy makes no attempt to handle group failures, and once they
occur the proxy will notify the client through a GroupUnreachableException. Hence,
it is left to the client application to handle this event, e.g. by retrying after a suitable
delay, giving the service a chance to recover.

11.3.3 The Remove Policy

In addition to monitoring the group membership of its associated service, the super-
vision module also provides a controlling part, or more precisely a remove policy.
Let V denote a view and |V| its size. If |V| exceeds the initial redundancy level
Rinit of the service, for a duration longer than a configurable time threshold (see
RemoveDelay in Line 6 in Listing 10.2), then one excessive replica is requested
to leave the group. If more than one replica needs to be removed, each remove is
separated by the RemoveDelay. This remove policy is motivated by the desire
to maintain a high redundancy level for a longer period of time, when recovering
from a network partition that may become active again. A different remove policy
could easily be implemented in which all needless replicas are remove after the initial
RemoveDelay.

leaving

mergingpartitioning

notify(ViewChange)

N2

N3

N1

N4

RM

RM

join notify(ViewChange)

notify(ViewChange)
createReplica()

notify(ViewChange)

notify(ViewChange) notify(ViewChange)

Figure 11.6: A sample network partition failure-recovery scenario. The partition
separates nodes {N1, N2} from {N3, N4}. The dashed part of the RM timelines
indicate the duration in which the two replicas reside in separate partitions. After
merging, the supervision module detects one excessive replica, and elects N4 to leave
the group.

11. AUTONOMOUS REPLICATION MANAGEMENT 153

The choice of which replicas that should leave is made deterministically based on
the view composition; in this way, the removal can be performed in a decentralized
way, without involving the RM. This mechanism is illustrated in the last part of Fig-
ure 11.6, where the replica on node N4 decides to leave the group, consequently
bringing the group back to a triplicated group.

The reason for the presence of excessive replicas is that during a partitioning, the RM
may have installed additional replicas in one or more partitions to restore a minimal
redundancy level, as shown in Figure 11.6. Once partitions merge, these replicas are
in excess and no longer needed to satisfy the replication policy. Chapter 16 provides
measurements of the time to restore Rmin when exposed to a network partition and
the time to remove needless replicas when merging.

As mentioned in Section 11.1, when installing a group using the management client
two or more RM replicas may in rare circumstances operate in concurrent views,
causing ARM to create the same set of service replicas in distinct subparts of the
target environment. Also this problem is circumvented by the removal of the needless
replicas.

Group Manager

Server Replica

SupervisionModule

MembershipModule
MembershipService

SupervisionListener

MembershipListener

SupervisionService

viewChange(view)

shutdown()

LegendLegend
Remote method invoc.
Local invocation

MembershipListener
viewChange(view)

leave()

removeReplica()

Replication
Manager

Events

Factory

notify(IamAlive)

notify(ViewChange)

Optional interfacesOptional interfaces

notify(NodePresence)

notify(ReplicaFailure)

Figure 11.7: Partial set of the protocol modules required by ARM deployed replicas.

154 11.4. THE OBJECT FACTORY

Figure 11.7 shows a slightly more detailed view of the SupervisionModule than pre-
vious figures. Once a replica has been selected for removal by the remove policy,
the SupervisionModule invokes the leave() method on the MembershipModule. The
server replica may optionally implement the SupervisionListener interface, and if so
the shutdown() method is called by the SupervisionModule after the replica has left
the group. The final task performed is removeReplica() on the Factory, which ulti-
mately results in the destruction of the replica. The SupervisionService interface is
shown as a dashed boxed indicating that it contains no methods, since the Supervi-
sionModule is self-controlled based only on the input from the MembershipModule,
and on the lease renewal timer associated with the replica level monitoring.

11.4 The Object Factory

The purpose of object factories is to facilitate installation and removal of service
replicas on demand. To accomplish this, each node in the target environment must
run a JVM hosting an object factory, as shown in Figure 11.1. In addition, the object
factory is also able to respond to queries about which replicas are hosted on the node.
The factory also provides means for the RM to keep track of available nodes.

The factory maintains a table of local replicas; this state need not be preserved be-
tween node failures since all replicas would have crashed as well. Thus, the factory
can simply be restarted after a node repair and continue to support new replicas. Note
that if only the factory JVM fails, a new factory instance will be unable to connect
to the running replicas. However, those replicas will continue to provide service to
clients independent of the factory, and if they fail, the RM will detect this and take
appropriate recovery actions.

Object factories are not replicated and thus do not depend on any Jgroup or ARM
services. This allows the RM to bootstrap itself onto nodes in the target environment
using the same distribution mechanism used for deploying other service replicas.
The RM may create new replicas and remove old ones by invoking the factory of a
node. Replicas normally run in separate JVMs as shown in Figure 5.1, to avoid that
a misbehaving replica causes the failure of other replicas within a common JVM.

During initialization, each factory looks for a running RM in the target environment
by querying the DR. If RM is present, a NodePresence event is sent to make the
RM aware of the newly available node. If the RM is not present when the factory
is created, the registration of the new node is postponed until the RM is started. At

11. AUTONOMOUS REPLICATION MANAGEMENT 155

that point, all nodes in the target environment will be probed by the RM for running
factory objects using the ping() method. Together, these two mechanisms enable the
RM to become aware of all nodes that are capable of hosting replicas.

This probing mechanism is also used by ARM to determine if a node is available
before selecting it to host a replica. In addition, the factory monitors the connection
between the factory and the replica process, and sends a ReplicaFailure event to the
RM if the replica process fails. This is primarily used by ARM to detect replica
startup failures.

11.5 Failure Recovery

Failure recovery is managed by the RM, and consists of three parts; (i) determine
the need for recovery, (ii) determine the nature of the failures, and (iii) the actual
recovery action. The first is accomplished through a reactive mechanism based on
service-specific timers, while the last two use the abstractions of the replication and
distribution policies, respectively.

The RM uses a timer based Service Monitor (SM) to keep track of the installed repli-
cas. When deploying a service, a new SM timer instance is associated with that
service. If the scheduled expiration time of the SM timer is reached, the recov-
ery algorithm is invoked. To prevent activating unnecessary recovery actions, the
SM timer must be rescheduled or canceled before it expires. The SM timer expi-
ration time is configured in the replication policy of each service, e.g. see Line 18
in Listing 10.2, and is a safety margin to avoid premature recovery activation. The
ViewChange events reported by the SupervisionModule are used to determine if a
SM timer should be rescheduled or canceled. If the received view V is such that
|V| ≥ Rmin, the SM timer is canceled, otherwise the SM is rescheduled to await ad-
ditional view changes. Evidently, if the last view change V received when the timer
expires, is such that |V| < Rmin, then the RM triggers recovery. Since each ser-
vice has a separate SM timer, the RM is able to handle multiple concurrent failure
activities in separate services, including failures affecting the RM itself.

When deploying a service, the RM will instantiate a service-specific replication pol-
icy. During its operation, the RM receives events and maintains state associated with
each of the deployed services, including the redundancy level of services. This state
is used by the replication policy to determine the need for recovery.

156 11.6. REPLICATING THE REPLICATION MANAGER

Upon expiration of the SM timer and detecting that the service needsRecovery(),
the recovery algorithm is executed (see Algorithm 11.1 and Algorithm 11.2). The
purpose of the recovery algorithm is to determine the nature of the current failure
scenario affecting the given service, and to initiate recovery. Recovery is performed
through three primitive abstractions: restartReplica(), relocateReplica() or groupFail-
ure() as discussed in Section 10.1.2. The restart abstraction is used if a replica JVM
that was supposed to be running on a node has failed, but the node’s factory remains
available. The relocation abstraction is used if the node is considered unavailable,
i.e. that both the replica and the factory is not responding. Finally, the group failure
recovery abstraction is only used if all service replicas have failed, and will typically
reuse the relocation abstraction. The actual installation of replacement replicas is
accomplished using the distribution policy.

Algorithm 11.1 The recovery algorithm (simplified)
1: recover(service) {RECOVER THE GIVEN SERVICE}
2: rpolicy ← service.getReplicationPolicy()
3: rpolicy .prepareRecovery()
4: recovered ← rpolicy .handleFailure()
5: if recovered
6: service.rescheduleMonitor() {Reschedule the service monitor}
7: else
8: service.notRecovered() {Failed to recover; log problem}

11.6 Replicating the Replication Manager

The RM is a centralized, yet critical component in our framework. If it were to crash,
future replica failures would not be recovered from, thereby severely damaging the
dependability characteristics of the system. Also, it would prevent the installation of
new services for the duration of its downtime. Therefore, the RM must be replicated
for fault tolerance, and it must be able to recover from failures affecting the RM itself,
including network partition failures. Careful consideration is required when replicat-
ing the RM; one needs to consider the consistency between RM replicas in face of
non-deterministic input as well as the merging of states after a network partition sce-
nario. If the RM were to crash, services deployed through ARM will continue to
provide service to its clients independent of the RM. Note that after an RM failure,
replicas could potentially reconnect to the RM and regain recovery support. However,
this would require an additional mechanism to reestablish the state of the RM.

11. AUTONOMOUS REPLICATION MANAGEMENT 157

Algorithm 11.2 The KeepMinimalInPartition replication policy (partial)
1: KeepMinimalInPartition(theService, distPolicy)
2: service ← theService {The service associated with this policy}
3: assigned ← distPolicy .getAssignedNodes(service) {The set of assigned nodes}
4: missing ← ∅ {The set of missing members}
5: V ← ∅ {The current view}

6: notify(view) {VIEW UPDATE}
7: V ← view

8: handleFailure() {GENERIC FAILURE HANDLER}
9: recov ← true

10: if |V| = 0
11: recov ← groupFailure(missing) {All members have failed; group recovery}
12: else
13: foreach node ∈ missing
14: if node.isSuspected()
15: recov ← recov ∧ relocateReplica(node) {The node has failed; relocate}
16: else
17: runningServices ← node.getServices() {Get the services running on node}
18: if service 6∈ runningServices
19: recov ← recov ∧ restartReplica(node) {Service has failed on node; restart}
20: return recov

21: needsRecovery() {CHECK THE NEED FOR RECOVERY}
22: return |V| < Rmin {Return true if recovery needed}

23: prepareRecovery() {PREPARE FOR RECOVERY}
24: missing ← ∅
25: if assigned 6= V
26: missing ← assigned − (assigned ∩ V)

27: relocateReplica(node) {RELOCATE REPLICA TO NEW NODE}
28: newNode ← distPolicy .reassignReplica(service,node)
29: recov ← newNode.createReplica(service)
30: return recov {Return true if replica created successfully}

To make appropriate (recovery) decisions, the RM relies on non-deterministic inputs,
such as the SM timers. These inputs are affected by events received by the RM as
shown in Figure 11.2. Hence, to prevent RM replicas from making inconsistent de-
cisions, only the group leader is allowed to generate output. The leadercast semantic
is used for the methods that perform non-deterministic computations that always up-
date the state, e.g. createGroup(), while multicast semantic is used for the notify()
method. Stronger invocation semantics are not required since invocations related to
different groups are commutative. Although notify() is a multicast method, only the
RM leader replica is allowed to perform the non-deterministic part of the processing
and inform the follower replicas if necessary. For example, only the leader replica

158 11.6. REPLICATING THE REPLICATION MANAGER

will actually perform a recovery action, while the followers are only informed about
the new location of the replica.

As the replication protocols are implemented on top of the group membership mod-
ule, leader election can be achieved without additional communication, simply by
using the total ordering of members defined in the current view. If the current leader
fails, a new view will be installed excluding the current leader, and in effect a fol-
lower replica will become the new leader of the group and will be able to resume
processing.

Since the RM is designed to tolerate network partition failures, it may in rare cir-
cumstances cause temporary inconsistencies due to EGMI events being handled in
multiple concurrent views. However, in most cases, inconsistencies will not occur
since each replica of the RM is only “connected” to replicas within its own parti-
tion. That is, most events (e.g. the location of replicas determined from view change
events) received by the RM replicas reflect the current network partitioning. Hence,
a potential inconsistency will be recovered from as soon as additional events cancel
them out. If an inconsistency were to persist long enough to cause the RM to activate
an unwarranted recovery action, the supervision module would eventually detect this
and remove the excessive replicas. Hence, the application semantics of the RM de-
scribed above enables it to tolerate partition failures; a feature that by far outweighs
the sacrifice of slightly weaker consistency. The impact of weaker consistency can
only result in higher redundancy levels.

When merging from a network partition scenario (see Figure 11.6), the RM invokes
a reconciliation protocol using the state merging service (see Section 3.3.3), to merge
the locations of service replicas. This is feasible since the location of service replicas
in each merging partition will, after the merging, be visible to all RM replicas in
the merged partition. In addition, the reconciliation algorithm also restarts the SM
timers of the involved services, since the RM leader replica of the merged partition
might have received information about new services during reconciliation. The latter
is primarily a safety measure to prevent premature recovery actions.

The RM relies on the dependable registry (DR) service to store its object group refer-
ence, enabling RM clients such as the supervision module, factory and management
client to query the DR to obtain the group reference of the RM. Due to this depen-
dency, ARM has been configured to co-locate RM and DR replicas in the same JVM
(see Figure 5.1). This excludes the possibility that partitions separate RM and DR
replicas, which could potentially prevent the system from making progress.

11. AUTONOMOUS REPLICATION MANAGEMENT 159

As mentioned previously, the RM exploits its own embedded recovery mechanism to
handle self-recovery in case of RM replica failures. The exception being that the RM
cannot tolerate a group failure, since it makes little sense in sending IamAlive events
to itself.

11.7 Summary

The ARM framework presented in this chapter is a fault treatment system that is able
to reconfigure the system to reduce the consequences of failures. The centralized RM
component is responsible for making decisions concerning the activation of recovery,
i.e. to install replacement replicas to restore the desired level of redundancy. Further-
more, to avoid too high redundancy levels, replicas may be removed as well. The
remove policy is implemented in a decentralized manner.

The performance cost of group level monitoring and the remove policy is very low,
since both techniques exploits synergies with the Jgroup PGMS (see Section 3.3.1).
Moveover, the cost of the replica level monitoring technique can also be made quite
low since it is merely a supplementary technique to group level monitoring.

The small cost of the techniques provided by ARM results in a negligible overhead
during normal operation. In the recovery phase, ARM responds rapidly by installing
replacement replicas as demonstrated by the measurements in Part IV.

160 11.7. SUMMARY

Chapter 12

Online Upgrade Management

Most distributed software systems evolve during their lifetime. The spectrum of soft-
ware change is wide, and ranges from program corrections and performance improve-
ments to complex changes of the overall functionality, configuration and structure of
the system. Such changes may be necessary to adapt the system to new user require-
ments. In a conventional approach to system maintenance, the system is taken offline
during maintenance, and often the necessary changes are manually applied to the
system. This approach is unsuitable for distributed systems with strict availability
requirements.

To effectively handle maintenance changes, support for online upgrade management
must be provided. However, managing the changes at runtime in highly available
distributed systems is especially challenging, as upgrading a running system should
not deteriorate its availability characteristics. Moreover, when used in conjunction
with a fault tolerant system based on replication, online upgrade techniques can be
implemented to improve the service availability characteristics, by eliminating (or
reducing) the downtime during maintenance activity.

The purpose of this chapter is to demonstrate that an algorithm for online upgrad-
ing can easily be implemented in the context of the Jgroup/ARM framework. This
chapter is based on joint work with Marcin Solarski [115]. The upgrade algorithm
presented briefly in this chapter is due to Solarski, whereas the main contribution
is a simple architecture for online upgrade management built on Jgroup/ARM. For
further details about the upgrade algorithm, see [115, 114].

Chapter outline: Section 12.1 introduces the concept of software upgrading from sev-
eral viewpoints. In Section 12.2 the underlying system model is presented along with

161

162 12.1. INTRODUCTION

our assumptions for the upgrade algorithm. In Section 12.3 we describe the archi-
tecture of the upgrade system based on Jgroup/ARM, and in Section 12.4 we briefly
present the upgrade algorithm. In Section 12.5 an alternative upgrade approach is
proposed which is expected to be significantly more efficient than the original algo-
rithm in [115]. Finally, Section 12.6 provides a few closing remarks.

12.1 Introduction

Traditional techniques for increasing system availability have been based on mask-
ing failures [108]. The general idea is to introduce redundancy into the system by
replicating critical system components, eliminating the effects of transient hardware
and software failures. However, replication cannot prevent system failures due to
software design faults whose contribution to system unavailability accrues rapidly
with the increasing complexity of software systems. By upgrading the software, the
number of design faults in a system can be reduced. Online upgrade is a technique
that allows the introduction of necessary changes into the system, so that the system
remains operational even while being upgraded. This is possible by upgrading only a
subset of the replicas, while the other subset remains operational and serving clients.
Thus, system availability does not decline as a result of the system upgrade.

Online upgrading of software entities is a research field of its own and a huge body
of research already exists in the literature [53, 67, 110, 127, 114]. The aim of
this chapter is not to compete with previous works, merely to demonstrate that the
Jgroup/ARM platform is easily enhanced to support online upgrades. The unit of
upgrade considered in previous work ranges from a single operation to functions,
programs and even distributed subsystems. Also most previous works are mainly
focused on upgrading non-replicated software entities. In our approach, the unit of
upgrade is a replicated object and focus is on the dependability characteristics of
the upgrade process. The Eternal Evolution manager [127] supports live upgrades
of actively replicated objects using an approach similar to ours. The target of an
upgrade may comprise a set of CORBA objects, both clients and servers. The up-
grade proceeds by replacing single replicas in two phases, while the object group as
a whole remains operational for the duration of the upgrade. The first phase involves
an intermediate version, used to allow additional flexibility in the permitted changes.
This, in contrast to our one-phase upgrade algorithm, is achieved through additional
complexity.

12. ONLINE UPGRADE MANAGEMENT 163

In [114] online upgrade management is considered from three different viewpoints
as follows:

• System Evolution Online upgrades can be considered as a method to handle
change management in evolving software systems at runtime.

• Software Deployment Online upgrades can be viewed as a special case of
service deployment, in that previously deployed software is replaced by a new
version.

• High Availability Online upgrades can also be viewed as a means to im-
prove the service availability characteristics, by reducing or eliminating the
required downtime during maintenance activity.

The primary concern in this chapter is availability, however, the software deployment
aspect is also covered through the ARM framework presented in Chapter 11.

The objective of replicating system components is to reduce the number and duration
of system downtimes; the evaluation in Chapter 15 demonstrates the importance of
short recovery times in this respect. However, unless online upgrades are supported,
system downtimes due to (manual) upgrades will completely dominate the system’s
availability characteristics, independent of replicating system components.

12.2 System Model and Upgrade Assumptions

The upgrade management framework inherits the system model of Jgroup/ARM, as
described in Section 3.1, except that network partition failures are not handled ex-
plicitly by the upgrade algorithm presented later. The algorithm assumes that server
replicas fail only by crashing, and once crashed it does not recover. However, a
replica that is considered to have crashed may be replaced by a new instance of the
replica. A new replica instance may be the same or a new version of the replica.

We consider only upgrading the software of server replicas and not the clients. This
assumption places certain restrictions on what can be achieved with respect to com-
patibility between client and server objects. Let v̂ denote the current version of a
replica to be upgraded to version v̂ + 1. Thus, in order to substitute a replica of ver-
sion v̂ with a replica of version v̂ + 1, the upgrade algorithm makes the following
assumptions:

164 12.3. A SIMPLE ARCHITECTURE FOR ONLINE UPGRADES

• Upgrade atomicity with respect to other upgrades of the server. Server up-
grades are atomic with respect to each other, i.e. two upgrade processes cannot
interleave. Furthermore, a replica cannot process client requests while being
upgraded.

• Input conformance. Replica version v̂ is replaceable with version v̂ + 1. In
terms of input, the input accepted by version v̂ + 1 is the same as the input
acceptable to version v̂ of the replica, possibly augmented with new inputs. In
terms of interfaces, it is assumed that version v̂+1 offers a compatible interface
to that of version v̂, possibly augmented with new functionality.

• State mapping and output conformance. There exist a mapping from the state
of version v̂ to the state of version v̂ + 1 of the replica, such that version v̂ + 1
produces the same output as version v̂, given input acceptable to version v̂.

• Upgrade atomicity with respect to client upgrades. Clients that generate input,
acceptable to version v̂ + 1, but not acceptable to version v̂, do so only after
the upgrade algorithm terminates.

Furthermore, code downloading mechanisms are not dealt with in this work, and
instead it is assume that code for the new software version v̂ + 1 has been deployed
to all the system nodes and can be instantiated.

12.3 A Simple Architecture for Online Upgrades

A simple architecture for supporting online upgrades of replicated services deployed
using the Jgroup/ARM framework is presented. The architecture extends on the ARM
framework as shown in Figure 12.1.
Let SA(∗) denote the server replicas to be upgraded. The upgrade manager (UM) is
responsible for mediating upgrade requests to the UpgradeModule of the respective
replicas in the group. The UM implements the UManagement interface which con-
tains two methods used by the management client to perform upgrades/downgrades.
The upgradeGroup() method is parameterized with version information of the ap-
plication to be upgraded. The upgrade manager is co-located with the replication
manager; in fact it simply extends the replication manager with the UManagement
interface.
The upgrade algorithm described in Section 12.4 is implemented by the Upgrade-
Module. The main task of the UpgradeModule is to drive the upgrade process trig-
gered through the upgradeRequest() method. It is also responsible for interacting
with the local Factory to create a replica of the new version.

12. ONLINE UPGRADE MANAGEMENT 165

Management
Client

Upgrade
Manager

UManagement

upgradeGroup()
downgradeGroup()

GUI
Factory

NodeJVM

JVM

Upgrade
Module

Factory

NodeJVM

JVM

S A2

S A1

upgradeRequest()

Upgrade
Module

createReplica()

Figure 12.1: The Jgroup/ARM online upgrade architecture.

12.3.1 The Upgrade Module

Figure 12.2 shows the protocol modules and interfaces used by upgradable repli-
cas. In response to an upgradeRequest(), the UpgradeModule determines if the local
replica should be upgraded, and if so the local factory is invoked to create a replica
with the new version. Once the new replica has been installed and joined the group,
the old replica is requested to leave the group. Recall that a view is an ordered set of
member identifiers. Hence, to distinguish the old and new replicas in the same view,
the member identifier is augmented with a version number.

The choice of which replica to be upgraded in each iteration of the upgrade algorithm
is made by the UpgradeModule, based on the relative position of the replica in the
current view. Hence, the UpgradeModule needs to receive viewChange() events from
the MembershipModule. These tasks are seamlessly handled by the UpgradeModule.

The application replica may optionally implement the UpgradeListener interface, i.e.
the upgraded() method. The upgraded() method is invoked by the UpgradeModule
to notify the replica that a new version has been installed and that this replica has
left the group; the replica may then gracefully shutdown. Note that the replica is
not required to implement the UpgradeListener interface; the UpgradeModule will
invoke the removeReplica() method on the factory (after having returned from the
upgraded() method) to ensure that the old version is removed.

166 12.4. THE UPGRADE ALGORITHM

Group Manager

Server Replica

UpgradeModule

MembershipModule
MembershipService

UpgradeListener

MembershipListener

UpgradeService

viewChange(view)

upgraded()

LegendLegend
Remote method invoc.
Local invocation

MembershipListener
viewChange(view)

createReplica()

Upgrade
Manager

Factory

upgradeRequest()

Optional interfacesOptional interfaces

ExternalGMIModule
ExternalGMIService

block()

MembershipListener
viewChange(view)

removeReplica()

Figure 12.2: Protocol modules required by upgradable replicas.

Assuming that the application is stateful, the new version of the replica must ensure
that its state is synchronized with the remaining members of the group, before it can
start processing client requests. State synchronization is not handled by the Upgrade-
Module, and instead this task is a concerted effort between the StateMergeModule
(see Section 3.3.3) and the application. That is, the new application version needs to
provide a translation method between the old and new state representation. This im-
plies that the putState() method of the new application version must be able to handle
state retrieved from both the new and old version.

Finally, to prevent client requests from being processed by the replica during an up-
grade, the UpgradeModule interacts with the ExternalGMIModule, as indicated by the
block() method. This is required to prevent returning potentially inconsistent results
to clients while being upgraded.

12.4 The Upgrade Algorithm

In this section, we briefly present a software upgrade algorithm whose purpose is to
replace the code of a running replicated service with a new version of the software.

12. ONLINE UPGRADE MANAGEMENT 167

The algorithm is designed to avoid single points of failure and it is implementable
given the assumptions in Section 12.2. Additional details about the algorithm can be
found in [115].

upgradeGroup()

upgradeRequest()

UM

MC

createReplica()

LegendLegend
MC Management Client
UM Upgrade Manager

To be upgraded next
Upgrade processing
View

removeReplica()

leave()
removeReplica()

leave()

createReplica()

createReplica()

removeReplica()

leave()

UpgradeUpgrade
CompletedCompleted

S1

S 2

S3

S1

S 2

S3

Figure 12.3: Upgrade interactions for a triplicated server group.

Prior to upgrading a particular application, it should first be deployed through the
ARM framework (the replication manager). Figure 12.3 illustrates the interactions of
an upgrade process. The choice to initiate an upgrade is made by the system operator
through the management client (MC). The management client allows an upgrade to
take place by invoking the upgradeGroup() method on the upgrade manager, which
in turn leads to a upgradeRequest() multicast invocation directed towards the Up-
gradeModule of each replica in the group to be upgraded.

Next, the UpgradeModule of S1 is to be upgraded first, consequently it invokes cre-
ateReplica() on the local factory. The new version of the replica is named S′

1 and joins
the group, which installs a new view containing four members: {S1, S

′
1, S2, S3}.

When the UpgradeModule of S1 detects this view, it requests to leave the group and
commits suicide, consequently causing another view installation with three mem-
bers again: {S′

1, S2, S3}. The upgrade algorithm proceeds until all replicas have
been replaced with the new version, eventually returning to a stable condition with
{S′

1, S
′
2, S

′
3}.

168 12.4. THE UPGRADE ALGORITHM

12.4.1 Summary

Further details about the upgrade algorithm presented above is provided in [115].
This section summarizes the main properties of the upgrade algorithm:

• The algorithm requires that there be a minimum redundancy level Rmin > 1,
before a replica is replaced. Furthermore, if a replica cannot be upgraded it will
continue to provide service using the old version. Thus, continuous availability
is provided as there are replicas capable of processing client requests at any
moment during the upgrade process.

• Replica state consistency is maintained through the state transfer mechanism
provided by the StateMergeModule. State transfers are invoked for each up-
graded replica. It is assumed that state transfer can be achieved across different
versions of the replica, as stated in Section 12.2.

• The algorithm is fault-tolerant in that the algorithm coordination is decentral-
ized and it tolerates replica crashes. As there is no single entity that controls the
progress of the algorithm, the upgrade continues even in presence of crashes of
the replicas being upgraded. The recovery mechanism provided by the ARM
framework allows recovery from replica crashes by instantiating a new copy of
the replica.

• At any time during the upgrade, only one additional replica is added to the
group, thus keeping the number of replicas in the system to a minimum.

Note that the upgrade algorithm by itself does not guarantee maintaining the redun-
dancy level. To maintain a given redundancy level for the group, also outside the
upgrade phase, the ARM framework is used.

The implementation of the algorithm presented above has been evaluated experi-
mentally by Solarski in the context of this dissertation [114]. His experiments were
conducted with varying redundancy level and work load placed on the servers being
upgraded. As expected the invocation-response latency increased during the upgrade
phase; the increase varied significantly for the different work loads and redundancy
levels. The average increase for a simple anycast method was 25%, whereas the in-
crease for a multicast method was as high as 66%. The total upgrade time also varied
significantly with the redundancy levels; for the anycast method the upgrade time
ranges from 13 seconds for a two-way replicated service up to 22 seconds for a four-
way replicated service. Solarski’s experiments do not consider crash failures during
the upgrade phase, since the ARM framework was not fully developed at the time.

12. ONLINE UPGRADE MANAGEMENT 169

Note that the client-side view refresh approach discussed in Chapter 9 is also useful
when upgrading servers, as new versions of replicas will use a different local commu-
nication endpoint (port allocation), and thereby rendering the client-side membership
information invalid. Also, to avoid the problem shown in Figure 9.3, the client-side
proxy must support a mechanism to obtain a fresh copy from the DR after an upgrade.

12.5 An Alternative Upgrade Approach

The upgrade algorithm presented above exploits the view agreement protocol and the
state transfer of the underlying group communication system (GCS) to ensure con-
sistent behavior of the upgraded replicas. However, in doing so the duration of the
upgrade depends heavily on the redundancy level of the service, and also clients in-
voking the service experience periods of blocking while the GCS is busy transferring
state or running the view agreement protocol. For instance, the upgrade algorithm
above requires 2R runs of the view agreement protocol as shown in Figure 12.3,
where R denotes the redundancy level of the group.

In this section, an alternative upgrade approach is proposed in which the upgrade
is performed locally only, and as such avoids lengthy runs of the view agreement
protocol and remote state transfers.

Figure 12.4 shows interactions required for the local upgrade approach. Also the pro-
posed technique upgrades the replicas one-by-one until they have all been upgraded.
During the upgrade of a replica, the new version is created in the same JVM as the
current replica instead of a separate JVM. Before activating the new replica, the state
of the old replica must be transfered to the new replica and possibly translated into a
new state representation. While being upgraded, the replica must block invocations;
however, the other members of the group are still able to process invocations. After
initializing the state of the new replica, invocations are redirected to the new replica
instead. The old replica can then be garbage collected by the JVM.

Note that this approach is made possible through a combination of the dynamic pro-
tocol composition architecture (see Chapter 6) and the revised EGMI architecture
(see Chapter 7). That is, these architectures allows us to exercise greater control over
the local server references associated with the various protocol modules, including
the method dispatching mechanism of the ExternalGMIModule. Another advantage
of the local upgrade approach is that the DR and the client-side proxy does not need

170 12.6. CLOSING REMARKS

to be updated since the server-side proxy remains the same across upgrades, i.e. the
communication endpoint can be reused for the upgraded replica.

Further study of the proposed algorithm is needed to reveal its full potential and if
there are problems with respect to fault tolerance and so on.

upgradeGroup()

upgradeRequest()

UM

MC

new Replica()

LegendLegend
Upgrade processing

Redirect invocationsRedirect invocations
and state transferand state transfer

UpgradeUpgrade
CompletedCompleted

S1

S 2

S3

S1

S 2

S3

upgraded()

new Replica()

upgraded()

new Replica()

Figure 12.4: Upgrade interactions for the local upgrade approach.

12.6 Closing Remarks

The objective in this chapter has been to demonstrate the feasibility of implementing
an algorithm for online upgrading of software components within the Jgroup/ARM
framework. A simple architecture to support this objective has been developed. Ex-
perience with this implementation has shown that closer integration between upgrade
and recovery policies is needed, or at least an improved awareness of both problem
domains. Otherwise, conflicting policies are easily introduced. As an example, con-
sider a fallback policy where a new version is replaced by the old version if a group
failure occurs; such a policy needs the cooperation from both upgrade and recovery
management components.

Part IV

Experimental Evaluation

171

Chapter 13

Toolbox for Experimental
Evaluation

Performing experimental evaluation of fault tolerant distributed systems is a complex
and tedious task, and automating as much as possible of the execution and evaluation
of experiments is often necessary to test a broad spectrum of possible executions of
the system to obtain good coverage. The confidence of the results obtained from
an experimental evaluation depends on the degree of control over the environment
in which experiments are being executed. Typically, an uncontrolled environment
is exposed to numerous sources of external influence that can affect the obtained
results. Automated and repeated executions can be used to reduce the impact of such
influences.

In this chapter, a framework for experimental validation and performance evaluation
of fault management in a fault tolerant distributed system is presented. The frame-
work provides a facility to execute experiments in a configured target system. It is
based on injecting faults or other events needed to test the fault handling capability
of the system. Relevant events are logged and collected for post-processing and anal-
ysis, e.g. to construct a single global timeline of events occurring at different nodes
in the target system. This timeline of events can then be used to validate the behavior
a system, and to evaluate its performance.

This chapter is organized as follows: Section 13.1 introduces the concept of fault in-
jection and discuss related work, followed by an architectural overview of the exper-
iment framework in Section 13.2. In Section 13.3 we briefly describe the experiment
scripting organization used by the framework. Section 13.4 explains the two fault

173

174 13.1. INTRODUCTION

injectors used in the experiments and gives a brief inaccuracy analysis. Section 13.5
explains the general organization of the analysis modules, and finally in Section 13.6
the impact on the tested system and the accuracy of the instrumentation is discussed.

13.1 Introduction

Testing the validity of fault tolerant distributed systems and measuring the perfor-
mance impact of faults is a challenging task. A common technique is to apply fault
injection (see for instance [4, 5, 52]) as a means to accelerate the occurrences of faults
in the system. The main purpose of fault injection is to evaluate and debug the error
detection and recovery mechanisms of the distributed systems.

Numerous systems [4, 28, 35, 119] have been developed to provide generic fault
injection tools aimed at testing the fault handling capability of systems. The most
relevant ones are discussed briefly below. Loki [28] is a global state-driven fault
injector for distributed systems. Faults are injected based on a partial view of the
global state of a system, i.e. faults injected on one node of the system can depend on
the state of other nodes. Loki has been used to inject correlated network partitions
to evaluate the robustness of the Coda distributed filesystem [71]. Orchestra [35] is
a script-driven probing and fault injection tool designed to test distributed protocols.
It is based on inserting a fault injection protocol layer below the target protocol that
will filter and manipulate messages exchanged between protocol participants. Since
a separate layer is used, the source code of the tested application does not need to be
modified. NFTAPE [119] is a software infrastructure for assessing the dependability
attributes of networked configurations. The main feature of NFTAPE is extensibility,
and is so in two ways: (i) a suite of tools to support specifying injection scenarios,
and (ii) a library of injection strategies and a light-weight API to customize injection
strategies or develop new ones. Each machine in the target system is associated with a
process manager which communicates with a centralized controller. The centralized
controller injects faults according to a specified fault scenario by sending commands
to the process managers.

It is unclear if any of these frameworks are available for others to use. But more
importantly, none of the frameworks match the needs of our experimental evalua-
tion. Since they are not specifically designed for testing distributed Java applications,
significant effort would have been required to adapt these systems.

So instead we have designed a simple and modular experiment framework specif-
ically for testing Jgroup/ARM. A significant portion of the Jgroup/ARM APIs is

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 175

reused by the framework to ensure consistency between the various configurable pa-
rameters of the target system. It provides a facility for execution of experiments in
a configured target system, and enables the injection of faults to emulate realistic
failure scenarios.

Terminology To experimentally evaluate a system, one or more studies may be
defined, e.g. a crash failure study (see Chapter 15) or a network instability tolerance
study (see Chapter 16). For each study, one or more configurations are defined; a
configuration typically specify the target system and deployment parameters such as
the number of replicas for each service. However, in the following only a single
configuration per study is considered. To obtain statistically significant measures,
several runs of each study are performed. Each of these runs is called an experiment.
Each study (and configuration) is evaluated separately. After each experiment, the
system is reset to its original configuration before beginning the next experiment.
The above terminology is partially borrowed from [28].

During an experiment, events are logged. The set events to be logged are defined
a priori, and the code is instrumented with logging code. After the completion of
an experiment the log files are collected for analysis. Experiment analysis is specific
to each study and typically involves the construction of a single global timeline of
events occurring at the different nodes in the target system. This global timeline of
events can then be used to validate the behavior of the system, and to evaluate its
performance. For instance, a predefined state machine for the system behavior may
be used to validate the behavior of the system by projecting the event trace onto the
state machine.

13.2 Architectural Overview

The experiment framework is designed to perform repeated experiments of a study
to obtain statistically significant measures. Figure 13.1 shows a generalized view of
the components of the experiment framework. The main component is the experi-
ment executor. Its purpose is to execute scripts defining a study. In each experiment
numerous tasks are executed, e.g.:

1. Reset and initialize the nodes in the target system

2. Bootstrap the object factories onto the nodes in the target system

176 13.2. ARCHITECTURAL OVERVIEW

3. Bootstrap the ARM infrastructure (RM replicas)

4. Deploy the replicas

5. Inject faults

6. Shutdown the experiment

7. Collect log files from the target system nodes

Log
Collector

Fault
Injector

Management
Client

Analysis

FI

Log
Node

Experiment
Executor

Log
Repository

inject fault reset target node
synchronize codebase
check clock/load
deploy factory

get logs
delete logs deploy replicas

target nodetarget node
fault injectorfault injector

Results

Figure 13.1: Experiment framework architecture.

Each component in the architecture is defined by a set of tasks that it performs. Tasks
are building blocks for constructing study scripts, and each script is comprised of a
set of common tasks and a set of specialized tasks. For example, the specialized fault
injector and analysis tasks used for the two experiments in Chapter 15 and Chap-
ter 16 are completely different. The experiment executor interacts with all the other
components to activate tasks according to the study script.

The target system nodes must host a fault injector through which faults can be in-
jected. Depending on the type of faults being injected the fault injector code may
have to be incorporated within the running system on the target node.

The events of interest must be logged for use in the analysis phase, and typically
requires additions to the code. The log files are collected from each node in the target
system and stored in a repository for post-processing.

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 177

During a study, the CPU/IO activity of the nodes in the target system is checked be-
fore and after each experiment. Experiments whose load exceeds some configurable
threshold may then be marked for further analysis. This is particularly useful to de-
tect artifacts due to external influence when the study is performed in an uncontrolled
environment.

The analysis component is organized in two separate modules; one module to pro-
cess each experiment individually and another module to process all experiments in
the study collectively and produce statistics. Typically, the latter module will use the
former to obtain measurements from each individual experiment. Note that each ex-
periment may be analyzed after its completion, and the results of the analysis can be
used by the experiment executor to make decisions; hence the dashed arrow between
the experiment executor and the analysis component in Figure 13.1. The analysis
component is discussed further in Section 13.5.

13.3 Experiment Scripting

The initial version of the experiment framework used XML based scripts to specify
the experiment tasks to be executed; the experiment tasks themselves were imple-
mented in Java. The study discussed in Chapter 15 was performed using the XML
based framework. However, lack of support for control flow mechanisms in XML
made it difficult and unnatural to write advanced study scripts. Therefore the exper-
iment framework was ported [133] to the Groovy [47] scripting language, making it
much easier to prepare complex study scripts. Groovy allows close integration with
the Java language, thus enabling reuse of several Jgroup/ARM APIs.

Study scripts are typically organized in four phases, each executing various tasks:

1. Initialization The static configuration of the study is initialized. Dynami-
cally adjustable parameters of the study are embedded within the experiment
tasks below.

2. Pre-study tasks Tasks performed only one time before the actual study be-
gins. This typically involves the creation of a log repository on the experiment
machine and synchronizing the codebase of all the nodes in the target system.

3. Experiment tasks The main tasks needed to perform the study; these are
repeated for each experiment. These tasks typically include: deploying the
factories and replicas on the target system nodes, and injecting faults into the

178 13.4. CODE INSTRUMENTATION

nodes in the target system. After the execution of an experiment, the logs are
collected from the nodes in the target system and the nodes are reset, e.g. by
killing any remaining experiment processes and deleting log files.

4. Post-study tasks Tasks performed only one time after the completion of the
study. For example, to remove log files from the target system nodes.

13.4 Code Instrumentation

Instrumenting code for our experiments is done by inserting logging statements and
other code directly inside the actual source code of the system under study.

13.4.1 The Logging Facility

To simplify the logging of various system and failure events a logging facility is pro-
vided. A particular event is recorded by logging calls inserted at appropriate locations
in the source code. Each recorded event includes:

• The time of the event; recorded using the local processor clock.

• Machine name on which the event was recorded.

• Event type and a brief description.

The recorded events are Java objects and support is provided for ordering the events
into a single global timeline independent of the node on which the events occurred.
Such ordering requires that the processor clocks of all the nodes in the target sys-
tem are synchronized using NTP [83]. The granularity of the clock is one millisec-
ond. Nanosecond granularity is also possible for computing the relative time between
events occurring on the same node. The precision obtained using NTP is in the range
1-5 ms, according to the offset values obtained from the ntpdate command. This
level of accuracy makes it very unlikely that events recorded on different nodes are
ordered incorrectly in the global trace. Note that the clock offset values of each node
are checked before and after each experiment to detect deviations above some thresh-
old. Experiments with too large a clock deviation may be marked and excluded from
further consideration.

Note that in the measurements presented in Chapter 15 events may also be ordered
incorrectly for other reasons. These inaccuracies were solved by other means as
discussed in Section 15.2.1.

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 179

The event class used by the logging facility may be subclassed to include event-
specific details. For instance the view event subclass includes the view object gen-
erated by the PGMS (see Section 3.3.1). Event classes may also provide methods
that can be used in the analysis phase to extract various properties from the event, for
instance to check if a view event represents a fully replicated view.

To reduce the processing overhead of event logging, events are first stored in memory
and periodically flushed to disk. However, to avoid loss of events in response to
fault injections, the flush mechanism can also be triggered immediately before a fault
injection.

13.4.2 Fault Injectors

The experiment framework currently supports two distinct randomized fault injec-
tors; both implemented by means of code instrumentation:

• Crash failure injection (see Chapter 15)

• Reachability change injections (see Chapter 16)

13.4.2.1 The Crash Failure Emulator

The crash failure semantic is discussed in Section 2.1.1. To support crash failure
emulation, the factory has been instrumented with a shutdown() method. The shut-
down() method simply sends a terminate signal to the replicas associated with the
factory, forcing each replica to halt its execution. Figure 13.2 illustrates the crash
failure injector.

Fault
Injector

Factory

Node

S 2
S1

Runtime.halt()

Terminate
shutdown() target nodetarget node

fault injectorfault injector

Figure 13.2: The crash failure injector.

When injecting multiple crash failures in a single experiment, all injections are sent to
their respective nodes at the start of the experiment. A timer mechanism is then used

180 13.4. CODE INSTRUMENTATION

Table 13.1: Statistics for crash injection time (milliseconds). The injection time is
measured from the crash activation time in the factory to immediately before halting
the replica JVMs. The results were obtained from 100 crash failure experiments.

Mean StdDev Max Min
13.833 4.772 32 8

to trigger the injections at the specified activation times. This way the communication
step has a very low impact on the injection time accuracy.

Inaccuracy Injections are performed using the fastest possible way to stop a Java
virtual machine from within itself, namely using the Runtime.halt() method. This
means that no shutdown hooks or finalizers are executed during the shutdown se-
quence, as would be the case if we used the System.exit() method.

However, measuring the accuracy of crash injections is difficult since it is not easy to
accurately detect the time when the process ceases to exist. Hence the measurements
presented in Table 13.1 only accounts for the time taken from activating a crash fail-
ure at the specified time in the factory until immediately before the halt method is
invoked in the replica JVMs. The results indicate that crash fault injections are quite
fast, and hence do not contribute to any significant inaccuracy in the measurements
in Chapter 15.

13.4.2.2 The Network Partition Emulator

At any given time, the connectivity state of the target environment is called the current
reachability pattern. The reachability pattern may be connected (all nodes are in the
same partition), or partitioned (failures render communication between subsets of
nodes impossible). The reachability pattern may change over time, with partitions
forming and merging as illustrated in Figure 13.3. The letters x, y and z each denote
a different site in the target environment. Injections causing a transition from one
reachability pattern to another is called a reachability change. A reachability change
is due to either a partition or a merge event. Note that in the study in Chapter 16
the injected reachability patterns are assumed to be symmetric. However, asymmetric
reachability patterns are easily supported by the partition emulator.

Injecting and measuring real network partitions in a wide area network is difficult for
a number of reasons: (i) lack of physical access and permissions to disconnect cables

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 181

x y

z

x y

z

x y

z

x y

z

ConnectedConnected PartitionedPartitioned PartitionedPartitioned PartitionedPartitioned

ReachabilityReachability
changechange

ReachabilityReachability
changechange

ReachabilityReachability
changechange

ReachabilityReachability
changechange

mergemerge

mergemerge

partitionpartitionpartitionpartition

Figure 13.3: A sequence of reachability patterns.

from switches/routers, (ii) it is difficult to measure the exact time of disconnection,
and (iii) performing a large number of disconnections would be very time consuming.
For these practical reasons, network partition scenarios are instead emulated. To
accomplish this, Jgroup/ARM has been instrumented with code to emulate network
partition scenarios.

The partition emulator allows us to remotely configure and inject the reachability
changes to be seen by the various nodes in the target system. Each node in the target
system has a local partition emulator module through which injections are managed
by the experiment executor (see Figure 13.1). The node local partition emulator
is implemented by intercepting and discarding packets according to the configured
reachability pattern. However, to avoid complicated changes to Jgroup/ARM, packet
discarding must be done at the receiver, rather than the sender side. Hence, packets
from ”disconnected“ nodes are also received and do require some minor processing.
In our experiments in Chapter 16 this processing is negligible however, since there
are no clients generating traffic.

The injection of a new reachability pattern is organized in a setup phase and a commit
phase. The former configures the reachability change to be injected, while the latter
activates it. The setup phase also serves to establish TCP connections to be reused
in the commit phase. The setup phase must be performed before the injection time.
Figure 13.4 illustrates the interactions needed to inject a new reachability pattern.

The inaccuracy of the measured injection time is very small (65 ms on average) and
does not contribute to any detectable effects in our measurements. Details of the
inaccuracy and other limitations of our emulated reachability patterns are discussed
below.

Inaccuracy Let Ii denote the injection time of the ith injection event. Let δs de-
note the setup latency, which is the time from beginning a setup phase and until all

182 13.4. CODE INSTRUMENTATION

Setup time Commit time
ExperimentExperiment
ExecutorExecutor

Node 1Node 1

Node 2Node 2

Node jNode j

......

I i
Concurrent setup activityConcurrent setup activity

for new reachability patternfor new reachability pattern
Concurrent activationConcurrent activation
of reachability patternof reachability pattern

Figure 13.4: Illustration of the setup and commit phases.

nodes have been configured. Let δc be the commit latency, which is the time from
the injection time Ii until all nodes have activated the new reachability pattern. These
latencies limits the accuracy that can be obtained, as illustrated in Figure 13.5. Two
consecutive injections are shown, I1 followed by I2, which serves to illustrates the
smallest possible delay between a pair of injections. That is, δs + δc is the minimum
time between two consecutive injections. Furthermore, δc limits the accuracy in de-
tection of a newly injected reachability pattern. This is since each node may perceive
the new reachability at different times, at most separated by δc.

I 1

I 2 I 3 I 4

s

c

s s s

c c c

s

c

LegendLegend
Setup latency: the time to configure a new reachability pattern on all nodes
Commit latency: the time to activate a new reachability pattern on all nodes

Figure 13.5: Example injection timeline

Table 13.2 provides statistics for these two limiting factors. Note that these statistics
do not show the complete picture, since there is an apparent bimodality in the setup

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 183

Table 13.2: Statistics for setup and commit latencies for injections (milliseconds).

Mean StdDev Max Min
δs 661.45 217.98 1040 425
δc 64.88 27.92 144 35

latency, as illustrated in Figure 13.6. The peak around 900 ms stems from the first
setup phase shown before I1 in Figure 13.5 and is due to connection establishment
between the experiment executor and the node-local fault injector modules. The peak
around 450 ms is the latency typically seen between injections I2, I3 and I4. Thus,
taking also the commit latency (65 ms on average) into account, these observations
seem to indicate that a pair of consecutive injections that arrive within an interval
shorter than 500-600 ms cannot be reliably tested using our fault injector. However,
such close injection events are very rare, and in most cases would not have been
detected by the Jgroup failure detector as a network partition in the first place.

Histogram of setup latencies (N=400)

Latency (ms)

D
en

si
ty

400 500 600 700 800 900 1000 1100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Figure 13.6: Histogram of setup latencies

The density of the commit latency (δc) is included in Figure 13.7. The variations in
the commit latency are rather small, and are most likely due to correlation between

184 13.4. CODE INSTRUMENTATION

the commit invocations and the garbage collection mechanism of the various JVMs
in the target system. It is the commit latency that limits the accuracy of partition
detection. Hence, the results presented in Chapter 16 may have an inaccuracy of
approximately 65 ms on average.

Histogram of commit latencies (N=400)

Latency (ms)

D
en

si
ty

20 40 60 80 100 120 140 160

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Figure 13.7: Histogram of commit latencies

13.4.3 Improvements to Avoid Code Modification

Modifying the original source code to insert instrumentation logic is a common ap-
proach to evaluate systems, and is also used in the framework presented herein. The
drawback is that it makes the code harder to understand – it is difficult to deter-
mine what is evaluation logic (fault injector) and what is actual system algorithms.
Moreover, the evaluation logic must be removed or disabled when a real system is
deployed.

A new programming technique called aspect-oriented programming (AOP) [31] has
recently become popular. AOP extends object-oriented programming by introducing
a new unit of modularity, called an aspect. Aspects are special modules that focus
on crosscutting concerns in a system that are difficult to address in traditional object-
oriented languages.

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 185

In the future, code instrumentation could instead be handled using AOP techniques.
That is, it is possible to define aspects that can ”insert“ logging statements or other
interception logic at certain points in the code without having to modify the actual
source code of the system. Such aspects are typically used only during testing, and
can be easily be removed from a deployed system since they are provided by separate
modules. An example could be an aspect to emulate network partition scenarios
implemented through packet discarding. Such code is hardly useful in a deployed
system, and if implemented as an aspect (a separate module), it is much easier to
remove from the system than modifying the original source code.

Note that using AOP techniques for inserting code and intercepting method calls
may result in a slightly higher overhead compared to inline code instrumention as
currently used.

13.5 Experiment Analysis

Experiment analysis is specific to the kind of study being performed, and is organized
in two separate modules:

• Experiment analysis module (EAM)

• Study analysis module (SAM)

With EAM each experiment is processed individually; it can be used to extract mea-
surement information from the log files (event traces) obtained after the completion
of the experiment. Event traces from all nodes in the target system are collected and
may be used to construct a single global event trace (timeline). This is done for the
studies in Chapter 15 and Chapter 16.

The purpose of SAM is to aggregate the results obtained from the individual exper-
iments to compute various statistical properties for the evaluation. Hence, SAM is
used after the completion of all the experiments in the study. Typically, EAM is
reused for data collection, by extracting relevant measures for which statistics should
be computed. For example to extract detection and recovery delays, or to determine
the system down time.

In general, two kinds of studies are considered:

• Studies for system validation and error correction.

• Studies for performance and dependability evaluation.

186 13.6. SUMMARY

The former aims to test the system functionality and allow the developer to obtain
debug logs that can be used for debugging and error correction. In this case, EAM
can be used online during a study execution to analyze each experiment individually
after their completion. The results of the analysis can be used by the experiment
executor to make decisions about the continued execution of the study. This is useful
to determine whether a particular experiment should be repeated or if the study should
be terminated. An experiment may be repeated by using the same fault injection data
as in the original execution of the experiment; recall that fault injections may occur
at randomized times. Repeating an experiment in this manner is useful to obtain
additional debug logs from similar experiments, to better understand the incorrect
system behavior and to be able to debug the problem. Furthermore, after a fix has
been applied, the same fault injection scenario can again be repeated to determine if
the problem has been solved.

Note that repeating the same fault injection scenario does not guarantee that the same
bug is revealed again. However, if a particular bug is revealed in repeated experiments
prior to applying a fix, and not after the fix, increased confidence is gained that the
bug has in fact been fixed. After fixing the bug, a full randomized fault injection test
should be performed again to determine if the fix has introduced new bugs.

Two studies focusing on performance and dependability evaluation are provided in
Chapter 15 and Chapter 16.

13.6 Summary

The experiment framework presented in this chapter has proved exceptionally useful
in uncovering at least a dozen subtle bugs in the Jgroup/ARM platform, allowing
systematic stress and regression testing. Below the impact of instrumentation and
injection accuracy is discussed.

Impact of the instrumentation code The experiment framework relies on logging
system events to memory during experiment execution. Generally, these events are
infrequent and thus will not influence the overall system significantly. Periodically,
events are flushed to disk and this may result in minor disturbances if disk access is
congested.

Crash failure injections are passive in that they are only activated at the injection time,
thus there is no other impact on the system during an experiment.

13. TOOLBOX FOR EXPERIMENTAL EVALUATION 187

On the other hand, partition failure injections are implemented by discarding packets
according to the configured reachability pattern. With this approach some minor
processing at each node is required, even for packets from ”disconnected“ nodes.
This processing is done for all packets, independent of the reachability pattern. The
processing overhead for each packet is very low. However, given a high system load,
this packet processing overhead may have an impact on system performance.

The Loki fault injector used to evaluate correlated network partitions in the Coda
filesystem [71] is different from our approach. Instead of inline packet discarding, a
firewall mechanism was used to configure blocking on specific ports. This approach
is likely to give slightly less overhead as packets are discarded by the operating sys-
tem. However, the drawback with this approach is that configuring the firewall often
requires administrator (root) access.

Unexpected system behaviors due to the instrumentation code have not been observed
in our measurements in Part IV.

Injection accuracy The accuracy obtained from partition failure injections is very
good. In the worst case a delay of 144 ms (the max commit latency) may separate the
activation of a particular reachability pattern at two nodes. Hence, nodes may per-
ceive a different reachability pattern at the same time instance. The impact of such
a small delay is insignificant, since the view agreement protocol takes much longer
to complete in most cases. In the worst case, it could cause additional runs of the
protocol. The fact that different nodes perceive a different reachability pattern at the
same time instance may also occur in real disconnection scenarios, e.g. if routing ta-
bles have been incorrectly altered. Such errors should be tolerated by the middleware
platform.

188 13.6. SUMMARY

Chapter 14

Client-side Update Measurements

In this chapter the client-side updating techniques discussed in Chapter 9 are evalu-
ated experimentally. The techniques are aimed at maintaining an approximate client-
side membership consistency with the dynamic server-side group membership. Such
techniques are especially important when used in conjunction with ARM, since the
installation of new replicas to replace failed ones leads to client-side inconsistency.
Each technique is evaluated by performing client invocations on a group of two
servers, and measuring the latencies observed by clients in the various phases of
the techniques.

The main objectives of the experiments are:

1. To determine the performance impact on the anycast load balancing, and

2. to investigate the client update time, Tcu, of the techniques.

In addition, we are also interested in the client-side failover latency, Tf , and the total
update delay, Tu. The latter includes the server-side recovery time, Tr.

Section 14.1 explains the experiment setup for evaluating the client update tech-
niques. Section 14.2 presents and discusses the results of the experiments. Sec-
tion 14.3 concludes the chapter.

189

190 14.1. EXPERIMENT SETUP

14.1 Experiment Setup

Three experiments were conducted, using a cluster of eleven P4 2.4 GHz Linux ma-
chines interconnected over a 100 Mbit/s LAN. In each experiment, a two-way repli-
cated echo server were initialized using the ARM framework, allowing recovery from
server failures. The replication policy of the echo server is configured to use a 3 sec-
ond safety margin before activating recovery (see Section 11.5), and its redundancy
level is Rinit := 2 initially, and Rmin := 2 is the minimal redundancy level to be
maintained by ARM.

Figure 14.1 gives an overview of the experiment configuration, consisting of some
56 clients (distributed over seven physical machines), each of which perform a con-
tinuous stream of anycast method invocations. The method being invoked takes an
array of 1000 bytes as argument and returns the same array. Each of the two servers
handle their fair share of the client requests through the anycast load balancing mech-
anism. After reaching a steady state performance level, one of the servers is crashed
manually. The remaining server then notifies ARM of the failure, eventually causing
ARM to install a replacement server on the spare node.

GroupS1 S2
DR

ARM

Clients

bind()

notifyFailure()

invocation()#1 #2 #7

#9 #10 #11

lookup()

Pentium 4 2.4GHz

Linux 2.4.22; Java 2 Std. Ed. ver 1.4.1

100 Mbit/s

Ethernet

< spare >

#8

Figure 14.1: Experiment setup.

14. CLIENT-SIDE UPDATE MEASUREMENTS 191

14.2 Client-side Update Measurements

In each experiment the round trip invocation-response latency is measured at the
clients. The time given on the abscissa in the plots corresponds to the receive time of
an invocation and hence, a long delay in service provision, e.g. due to a server crash,
during an invocation will appear as a blank period on the abscissa. The plots shows
one dot per observation of the invocation-response latency along with the mean value
for all observations as a function of the time on the abscissa. The vertical lines in the
plots are used to indicate the occurrence time of relevant events.

14.2.1 No Update

The no update approach is included for reference, and serves to demonstrate the ben-
efit of using the other techniques. Figure 14.2 shows the invocation-response latency
before and after the server crash without using a client-side update mechanism. That
is, the client-side proxy do not attempt to update its references to include the recov-
ered server.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35

R
ou

nd
 tr

ip
 in

vo
ca

tio
n-

re
sp

on
se

 la
te

nc
y

(m
s)

Time (seconds)

External group method invocation ; anycast semantics ; 56 clients ; configuration: {2, 1}

client failure detection
mean

Figure 14.2: No update.

Initially, the client-side proxy holds a reference to both server endpoints, and will
load-balance client invocations on both servers. However, after the crash, only a
single server is know to the client-side proxy and hence it is unable to exploit the

192 14.2. CLIENT-SIDE UPDATE MEASUREMENTS

recovered server. For this reason, the response time for invocations increases from
about 19 ms to about 38 ms since the load doubles on the remaining server (known to
the client). The blank period immediately before the 5 second mark due to the server
crash and is discussed in the next section.

The no update approach is also demonstrated in Section 9.2, where the client invo-
cation performance degrades without updating the client-side, and eventually server
failures are exposed to the client application.

The observations with higher invocation latencies (approximately 100 ms) are ob-
served at a regular rate of about 0.35 seconds. These invocations take longer to
complete due to correlation with server-side garbage collection (GC) performed reg-
ularly by the Java virtual machine. In addition to these large variations, there are also
other stochastic components that are likely due to request accumulation at the se-
lected server, and client-side GC and context-switching, among other things. These
variations are observed in all the following experiments as well.

14.2.2 Client-side View Refresh

Figure 14.3 illustrates the results obtained using the client-side view refresh tech-
nique.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35

R
ou

nd
 tr

ip
 in

vo
ca

tio
n-

re
sp

on
se

 la
te

nc
y

(m
s)

Time (seconds)

External group method invocation ; anycast semantics ; 56 clients ; configuration: {2, 2}

client failure detection
server recovery

client recovery detection
mean

 600

 700

Figure 14.3: Client-side view refresh.

After the server crash (detected by the client at the 5 second mark), the proxy removes
its reference to the failed server and continues to use only the remaining server known

14. CLIENT-SIDE UPDATE MEASUREMENTS 193

to the proxy. The failover latency (Tf) can be seen as the blank period immediately
before to the client failure detection point. The average Tf = 631.8 ms. Delayed
invocations due to failover are shown as an inset, as these delays fall too far outside
the plot range, and represents only a minor portion of all invocations.

As the figure show, the actual server recovery instance and the point at which all the
clients have become updated is almost overlapping (difference of Tcu = 52 ms). The
total client update delay is Tu = 7.82 seconds, where server recovery time contributes
Tr = 7.77 seconds. The increase in invocation latency immediately after recovery,
stems from connection establishment. For readability, not all data related to post
recovery is shown in the figure; there are also some invocation latencies in the range
[200, 400].

The system have a steady state performance between failure and recovery in Fig-
ure 14.3 that is identical to the case with no update. However, once the client detects
the replacement server, the steady state performance returns to the default level. How-
ever, notice that there is a period of approximately 2.1 seconds before all clients have
established a connection with the replacement server.

14.2.3 Periodic Refresh

Figure 14.4 shows the results of the periodic refresh technique.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35

R
ou

nd
 tr

ip
 in

vo
ca

tio
n-

re
sp

on
se

 la
te

nc
y

(m
s)

Time (seconds)

External group method invocation ; anycast semantics ; 56 clients ; configuration: {2, 2}

client failure detection
server recovery

last client updated
mean

Figure 14.4: Periodic refresh.

194 14.3. SUMMARY OF FINDINGS

In this experiment, we used a refresh rate of 15 seconds. As in an operative sys-
tem, the clients start independently and asynchronously. Hence refreshes will occur
uniformly distributed over the refresh interval and the clients gradually establish con-
nections to the replacement server. This leads to an average client update time as high
as Tcu = 8.16 seconds. The total update delay is Tu = 28.88 seconds.

14.3 Summary of Findings

In Chapter 9 and in this chapter, a potential performance bottleneck and other limita-
tions in the client-side proxy and the dependable registry are identified. These limita-
tions may lead to significantly larger invocation latencies for clients, and may render
server failures visible to the client application, an undesirable property in middleware
frameworks. Several techniques have been proposed for maintaining consistency be-
tween the group membership and its representations within the dependable registry
and residing at clients. A performance study has been carried out to reveal the im-
pact of inconsistent client-side proxies and to compare our proposed techniques. The
client-side view refresh technique has been shown to be the most effective approach.

Chapter 15

Measurement based Crash Failure
Dependability Evaluation

Group communication and fault treatment systems for development of dependable
distributed applications have received considerable attention in recent years [87, 41,
97, 3, 104, 102]. Assessing and evaluating the dependability characteristics of such
systems, however, have not received an equal amount of attention.

This chapter presents an extensive evaluation of crash failure and recovery behavior
of the Jgroup/ARM middleware framework [87, 14, 80]. The evaluation approach
is based on stratified sampling combined with fault injections for estimating the
dependability attributes of a service deployed using the Jgroup/ARM middleware
framework. The experimental evaluation is performed focusing on a service provided
by a triplicated server, and indicative predictions of various dependability attributes
of the service are obtained. The evaluation shows that a very high availability and
MTBF may be achieved for services based on Jgroup/ARM. The main principles of
the dependability evaluation technique presented herein is due to B. E. Helvik, and
the results presented in this chapter were published in [57].

This chapter is structured as follows: Section 15.1 introduces the evaluation tech-
nique and relates it to previous works. Section 15.2 describes the target system for
our measurements, while Section 15.3 presents the measurement setup and strategy,
together with the associated estimators for dependability attributes. Experimental re-
sults are provided in Section 15.4, and finally Section 15.5 gives concluding remarks.

195

196 15.1. INTRODUCTION

15.1 Introduction

In the evaluation, dependability attributes are predicted through a stratified sam-
pling [72] approach. A series of experiments are performed; in each experiment, one
or more faults are injected according to an accelerated homogeneous Poisson process.
The approach defines strata in terms of the number of near-coincident failure events
that occur in a fault injection experiment. By near-coincident is meant failures occur-
ring before the previous is completely handled. Hence, a posteriori stratification is
performed where experiments are allocated to strata after they have been carried out.
This as opposed to the more common prior stratification where strata are defined be-
fore the experiment [34]. Three strata are considered, i.e. single failures, and double
and triple near-coincident failures. The nodes of the system under study is assumed
to follow the crash failure semantics. For the duration of an experiment, the events
of interest are monitored, and post-experiment analysis is performed to construct a
single global timeline of fault injections and other relevant events. The timeline is
used to compute trajectories on a predefined state machine.

Depending on the number of injected faults, each experiment is classified into one
of the strata, and various statistics for the experiments are obtained. These statistical
measures are then used as input to estimators of dependability attributes, including
unavailability, system failure intensity and down times. The approach may also be
used to find periods with reduced performance due to fault handling. An additional
benefit of this thorough evaluation is that the fault handling capability of Jgroup/ARM
has been tested extensively, enabling the discovery of rarely occurring implementa-
tion faults of both the distributed service under study and the Jgroup/ARM framework
itself.

Fault injection is a valuable and widely used means for the assessment of fault tolerant
systems, see for instance [4, 5, 52]. Previously, stratified sampling has been used in
combination with fault injection experiments to estimate fault tolerance coverage, as
presented in [34]. Furthermore, for testing specific parts of a system, fault injection
triggers has been used on a subset of the global state space [28]. These approaches
are very useful in testing and evaluating specific aspects of a system. However, our
objective is to perform an overall evaluation of the system and its ability to handle
node1 failures and hence, random injections of crash failures in a operational system
and post stratification is applied.

1In [57] we used the term processor, while in this chapter the term node is used to be consistent
throughout the dissertation.

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 197

Delta-4 [102] provide fault treatment mechanisms similar to those of ARM. Fault
injections were also used in Delta-4 [12], focusing on removal of design/implemen-
tation faults in fault tolerance mechanisms. However, we are not aware of reports
on the evaluation of the fault treatment mechanisms in Delta-4, comparable to those
presented herein. The fault injection scheme used in this work, combined with post-
experiment analysis also facilitate detection of implementation faults, and in addition
allows for systematic regression testing.

The AQuA [104, 103] framework is based on CORBA and also support fault treat-
ment. Unlike Jgroup/ARM, it does not deal with partition failures and relies on the
closed group model [64] which limits its scalability with respect to supporting a large
number of groups. The evaluation of AQuA presented in [103] only provide the
various delays involved in the recovery time. In this paper, focus is on estimating
dependability attributes of services deployed through ARM.

15.2 Target System

Figure 15.1 shows the target system for our measurements. It consists of a cluster
with a total of n = 8 identical nodes, initially hosting a single server replica as shown.
In the experiments, ARM uses the distribution policy described in Section 10.1.1. It
will avoid co-locating two replicas of the same type, and at the same time it will try
to keep the replica count per node to a minimum. Different services may share the
same node.

The ARM infrastructure (i.e. the RM group) is located on nodes 1-3. Nodes 5-7 host
the monitored service (MS), while nodes 4 and 8 host the additional service (AS).
The latter was added to assess ARM’s ability to handle multiple concurrent failure
recoveries at different groups, and to provide a more realistic scenario. Finally, an
external machine hosts the experiment executor that is used to run the experiments
as discussed in Chapter 13. The replication policy (see Section 10.1.2) for all the
deployed services requires that ARM tries to maintain a fixed minimal redundancy
level for each of the three services as follows: Rmin (RM) := 3, Rmin (MS) := 3 and
Rmin (AS) := 2. Hence, the RM group is at least as fault-tolerant as the remaining
components of the system.

In the following, we will focus our attention on the MS service, that constitutes our
subsystem of interest. This subsystem will be the subject of our observations and mea-
surements, with the aim of predicting its dependability attributes. Note that focusing

198 15.2. TARGET SYSTEM

Group

RM1

#1

RM2

#2
RM3

#3

100 Mbps
Ethernet

AS1

#4

MS1

#5

MS2

#6

MS3

#7

AS2

#8

P4, 2.4GHz;
Linux 2.6.3;
Java JDK 5.0

notifyFailure(MS3)

MS4

Experiment
Executor

createGroup(MS)

 faultInjection()

 createReplica(MS4)

Figure 15.1: Target system illustrated.

on a particular subsystem of interest is for simplifying the presentation. Observations
of several subsystems could be done simultaneously and estimates/predictions of all
services and the ARM infrastructure may be obtained during the same experiment.

15.2.1 The State Machine

There is a set of states which we can observe and which are sufficient to determine
the dependability characteristics of the service(s) regarded. Note that these are not all
the operational states of the complete system, but the set of states associated with the
MS service. Thus, the failure-recovery behavior of the MS service can be modeled
according to the state machine in Figure 15.2, irrespective of the states of the ARM
and AS subsystems.

The state machine is not used to control fault injections based on triggers on a subset
of the global state space as in [28]; instead it is only used offline during a posteriori
analysis of fault injection experiments based on random sampling. In the analysis the
independent event traces collected from the target system nodes are merged into a
single global timeline of events, which corresponds to an approximation of the actual
state transitions of the whole system. The events in the global trace corresponds to
the events of the state machine in Figure 15.2. Given this global event trace, we
can compute the trajectory of visited states and the time spent in each of the states.

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 199

These trajectories allow us to classify the experiments and to estimate a number of
dependability attributes for the monitored service.

3r, 3v
X0

2r, 2v
X4

2r, 3v
X1

2r, 1v
X7

1r, 3v
X2

3r, 2v
X3

Replica
created

Replica
failed

1r, 1v
X8

0r, 0v
D0

3r, 1v
X6

Replica
created

1r, 2v
X5

Replica
failed

Replica
failed Replica

failed

Replica
failed

Replica
failed

Replica
failedReplica

failed

View-1

View-2

Replica
failed

Replica
created

Replica
created

OD-View-2

OD-View-2

View-2

View-3

View-3 View-1

View-1/
OD-View-3

View-1

View-1

View-1

View-2

View-1

3r, 0v
D3

1r, 0v
D1

2r, 0v
D2

Replica
created

Replica
created

Replica
created

View-1

View-1

View-1

Replica
failed

Replica
failed

View-1

OD-View-2

Replica
failed

Figure 15.2: State machine illustrating a sample of the possible state changes of the
MS service being measured.

Server-side availability is define in terms of view installations; this is since a view
event confirms that the servers contained in the view are all ready to provide service
to clients. A service is defined to be unavailable (squared states) if none of the group
members have installed a view, and available (circular states) if at least one member
has installed a view. Each up state is identified by X] and a tuple (xr, yv), where x

is the number of installed replicas (r), and y is the number of members in the current

200 15.2. TARGET SYSTEM

view (v) of the server group. Down states are identified by D].

In the state machine, only events that may affect the availability of the service are
considered, such as view changes, replica creations as seen from the perspective of
ARM, and replica failures as perceived by the corresponding MS nodes that fails.
View changes, in particular, are denoted by View-c, where c is the cardinality of the
view. In addition, fault injection events may occur in any of the states, however for
readability they are not included in the figure.

As a sample failure-recovery behavior, consider the trajectory composed of the state
transitions with dashed lines, starting and ending in the X0 state. This is the most
common trajectory. For simplicity the View-c events in the state machine reflect the
series of views as seen by ARM, and do not consider the existence of concurrent
views. So, after recovering from a failure (e.g. moving from state X4 to state X3),
the newly created member will install a singleton view and thus be the leader of that
view, sending a View-1 event to ARM (from state X3 to state X6). Only after this
installation (required by the view synchrony property) a View-3 event will be deliv-
ered to ARM, causing a transition from state X6 to X0. The above simplification
does not affect the availability of the service. It is assumed that client requests are
only delayed during failure-recovery cycles as long as the service is in an operational
state [78]. Such delays are not considered part of the availability measure as opposed
to [63]. Further analysis of these client perceived delays is deferred for future work.

Note that some of the states have self-referring transitions on view change events.
These are needed for several reasons, one being that the ARM framework may see
view change notifications from several replicas, before they have formed a com-
mon view. In addition, ARM will on rare occasions receive what we call outdated
views (OD), that are due to minor inaccuracies in our measurements. For instance,
a View-3 event may occur while in state X7. This can occur if at some point we are
in the X6 state, when a group member sends out a notification of a View-3 event,
and shortly after another member of that group fails and logs a Replica failed event.
However, given that the View-3 event is still in the “air”, and has not yet been logged,
the Replica failed event will appear to have occurred before the View-3 event in the
global trace. To compensate for this behavior, we have inserted additional View-c
transitions, prefixed by OD, in some of the states.

Also note the View-2 transition from X2 to X5. This is also due to an outdated
view and can occur if ARM triggers recovery on the View-2 event before receiving a
View-1 event. Note that the state transitions in Figure 15.2 may not be complete as
presented, however, no other transitions have been observed during our experiments.

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 201

In the following, we will assume that the service has been initialized correctly into
state X0, and thus we do not consider the initial transitions leading to this state.

15.3 Measurements

This section gives motivation for our measurement approach. Furthermore, we dis-
cuss in detail the sampling scheme used to assess the fault handling capability of
the Jgroup/ARM framework and to provide input for the estimators of dependability
attributes.

15.3.1 Experiment Outline

In each experiment, one or more faults are injected. The failure injection pattern
is as if it emerged from a Poisson process. There may be multiple near-coincident
crash failures before the system stabilizes, i.e. a new failure may be injected before
the previous has been completely handled. This will “simulate” the rare occurrence
of nearly coincident failures which may bring the service down. The Poissonian
character of the injected failures is achieved through generation of fault injection
times and the selection of the set of nodes in which to inject faults, according to a
uniform distribution. See the Sampling Scheme in Section 15.3.2 on how this yields
a Poisson fault process. Nodes to crash are drawn from the entire target system.
Hence, the injected faults may affect the ARM infrastructure itself, the monitored
subsystem (MS) or the additional service (AS), all of which are being managed by the
ARM framework. However, only state trajectories for the monitored subsystem are
computed, and these are used for predicting various dependability attributes of MS. A
beneficial “side-affect” of this sampling scheme is that it has shown to be very useful
with respect to performing extensive testing of the fault handling capabilities of the
Jgroup/ARM. During previous experiments several design and implementation faults
have been revealed. In each experiment, at most k = 3 fault injections are performed.
Since all nodes in the target system have allocated replicas initially, failures will cause
ARM to reuse nodes as shown in Figure 15.1, where the replica of node 7 is recreated
at node 3.

15.3.1.1 Time Constants Considered

Assuming services are deployed using the ARM framework, the crashed nodes will
have a node recovery time (TNR) which is much longer than the service recovery

202 15.3. MEASUREMENTS

time (TSR). Further, we assume that the nodes will stay crashed for the remaining
part of the experiment. In other words, a service replica will typically be restarted on
a different node as soon as ARM concludes that a node crash has occurred. However,
the time until the nodes are recovered, is assumed to be negligible compared to the
time between failures (TBF) in a real system. Thus in the predictions it is assumed
that the occurrence intensity of new trajectories (i.e. first failure in a fully recovered
system) is nλ, neglecting the short interval with a reduced number of nodes between
TSR and TNR. Figure 15.3 shows these relations, starting with the first failure event
ti1 . Furthermore, there will be no resource exhaustion, i.e. there are sufficient nodes
to execute all deployed services, including the ARM infrastructure.

t i1

T NR

T BF

T SR

 T max

t i1

T SR

First failure
Service recovery time

T NR
T BF

Node recovery time
Time between failures

T max The maximum range from which injections are selected

Figure 15.3: The relation between the service and node recovery periods and the
time between failures.

15.3.1.2 The Failure Trajectory

A failure trajectory is the series of events and states of the monitored subsystem
following the first node failure and until all the concurrent failure activities have
concluded and all subsystems are recovered and fully replicated. The trajectory will
always start and end in state X0 (see Figure 15.2). If the first node failure affects the
monitored service, it causes it to leave its steady operational state X0 and if it is the
last service to recover, we will see a return to the same state like in Figure 15.4.

We denote the jth event in the ith trajectory by ij , the time it takes place by tij and
the state after the event by Xij (corresponds to the states in Figure 15.2). Note that
all relevant events in the system are included, and a failure or another event does not
necessarily cause a change of state in the monitored subsystem. For instance, the fail-
ure of a node which supports only the ARM or AS subsystems, will not necessarily
result in a change of state in the MS service, but it is likely that it will influence the

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 203

handling of immediately preceding or succeeding failures affecting the service. Let
Xi(t) denote the state of the MS service at time t in the ith failure trajectory,

Xi(t) =

{
Xij tij < t ≤ tij+1 , j = 1, . . . ,mi

X0 Otherwise

where mi is the last event of the ith trajectory before all concurrent failure activities
have concluded, and all subsystems are fully replicated. During the measurements, a
trajectory sample is recorded as the list

Xi =
{
X0, ti1 , Xi1 , ti2 , Xi2 , ti3 , . . . , timi

, X0
}

.

Trajectories for which the MS service does not leave the X0 state are also recorded.

X0

X1

X2

X3

X4

X5

X6

X7

X8

D0

D1

D2

D3

t i6

t i5
t i4

t i3
t i2

t i1

T i

T max

t

Figure 15.4: Sample failure trajectory, where all but failure event ti3 affects the
subsystem of interest. This is the most common failure trajectory, cf. the dashed line
in Figure 15.2.

204 15.3. MEASUREMENTS

15.3.1.3 Characteristics Obtained from a Failure Trajectory

The unknown probability of failure trajectory i is pi. For brevity we denote the
duration of trajectory i by Ti = timi

−ti1 , and its expectation Θ = E(T) =
∑

∀i piTi.

In the following, let Yi denote a sample from the experiment. The sample may be
obtained from the trajectory by some function g, i.e. Yi = g(Xi). The duration of
a trajectory presented above may serve as an example. Determining the dependabil-
ity attributes of the system are other possible samples that can be extracted from the
experiment data. To determine these, it is assumed that the failure rate in the X0
state is nλ, that the expected sojourn time in this state is much longer than the ex-
pected trajectory duration, and that a particular trajectory is independent of previous
trajectories.

Unavailability The time spent in a down state during a trajectory i is given by

Y d
i = g(Xi) =

mi∑
j=1

I(Xij ∈ F)(tij+1 − tij), (15.1)

where I(· · ·) is the indicator function and F = {D0, D1, D2, D3} is the set of down
states (the squared states in Figure 15.2). Given that the periods in state X0 (the
OK-periods) alternate with the failure trajectories, and are independent and much
longer than the failure trajectory periods, we can obtain a measure for the service
unavailability

Û =
E(Y d)

E(Y d) + (nλ)−1
≈ E(Y d)nλ. (15.2)

Note that the collective failure intensity of all nodes when there are no faults in the
system, is only marginally different from the intensity of trajectories. The difference
is due to the restoration of failed nodes during a trajectory, and is negligible.

Probability of failure, reliability In this case, let Y f
i = 1 if trajectory i visits one

or more down states, otherwise let Y f
i = 0.

Y f
i = g(Xi) = I(∃Xij ∈ F)j=1,....,mi . (15.3)

Disregarding multiple down periods in the same trajectory and assuming that system
failures are rare, it is found that the system failure intensity is approximately

Λ̂ =
1

MTBF
≈ E(Y f)

E(Y d) + (nλ)−1
≈ E(Y f)nλ. (15.4)

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 205

The predicted reliability function R̂(t) = exp(−Λ̂t) may be obtained. The system
failure process will be close to a Poisson process since the trajectories starts according
to a Poisson process and each trajectory will with an (unknown) constant probability
result in a system failure, i.e. we have a splitting Poisson process [40, Ch. 5.3.2].
In addition, the mean down time MDT = Û/Λ̂ may be obtained. MDT and the
down time distribution may of course also be measured directly from the trajectories
visiting the set of down states.

The above examples are chosen for illustration and the assumptions made for sim-
plicity. By introducing rewards [106] associated with the states and transitions, we
may obtain predictions of far more comprehensive performability measures of the
system.

15.3.2 Experimental Strategy

The experimental strategy is based on a post stratified random sampling approach.
For an introduction to stratified sampling see for instance [72]. This section elabo-
rates on how the experiments are classified in different strata, and how the sampling
is performed.

15.3.2.1 Stratification

Only some of the events along a failure trajectory will actually be failure events. The
first event of each trajectory will always be a failure, and in a typical operational
environment usually the only one. However, in the experiments we consider also
multiple near-coincident failures which may require concurrent failure handling. In
considering such failure scenarios, our experimental strategy is based upon subdivid-
ing the trajectories into strata Sk based on the number of failure events k in each of
the trajectories. Each of the strata are sampled separately, and the number of sam-
ples in each stratum are random variables determined a posteriori. This is different
from previous work [34] in which the number of samples in each stratum is fixed in
advance.

An example failure trajectory reaching stratum S3 drawn from the experiment data
is shown in Figure 15.5. Three near-coincident faults were injected in this particular
experiment. The first and last failure affect the MS service, while the second affect
the RM service. The RM failure and its related events, as indicated on the curve, do
not cause state transitions in the state machine (see Figure 15.2) of the MS service.

206 15.3. MEASUREMENTS

()tXi

X5

X4

X1

X0

X8

X7

X6

t

X3

20 1 3 4 5 6 7 8 9 10 11 12 13 14 15

Injected crash faults in the target system

Seconds

R
M

 re
pl

ic
a

fa
ile

d

M
S

re
pl

ic
a

fa
ile

d

M
S

Vi
ew

−2
R

M
 V

ie
w

−2

M
S

re
pl

ic
a

fa
ile

d

R
M

 re
pl

ic
a

cr
ea

te
d

M
S

Vi
ew

−1
R

M
 V

ie
w

−1
R

M
 V

ie
w

−3

M
S

re
pl

ic
a

cr
ea

te
d

M
S

re
pl

ic
a

cr
ea

te
d

M
S

Vi
ew

−1
M

S
Vi

ew
−1

M
S

Vi
ew

−2
M

S
Vi

ew
−3

Figure 15.5: Sample failure trajectory reaching stratum S3 drawn on an approximate
time scale. Only two of three injected faults affect the MS service. The second fault
injection affect the RM service.

The collected samples for each stratum are used to obtain statistics for the system
in that stratum, e.g. the expectation E(Y |Sk). The expectation and the variance of
the length of the trajectory within a stratum Sk are denoted Θk = E(T |Sk) and
σk = V ar(T |Sk), respectively. Estimates may then be obtained by

E(Y) =
∞∑

k=1

E(Y |Sk)πk ≈
3∑

k=1

E(Y |Sk)πk, (15.5)

where πk =
∑

∀i∈Sk
pi is the probability of a trajectory in stratum Sk. Recall that k

represents the number of possible concurrent failure events, and in (15.5), we replace
∞ in the summation with 3, since we only consider up to 3 concurrent failure events.
Expressions for πk are derived in Section 15.3.3.1.

If upper and lower bounds for Y exist, and we are able to determine πk, k > 3, we

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 207

may also determine bounds for E(Y) without sampling the higher-order strata, i.e.,

3∑
k=1

E(Y |Sk)πk + inf(Y)
∑
k>3

πk ≤ E(Y) ≤
3∑

k=1

E(Y |Sk)πk + sup(Y)
∑
k>3

πk.

Since the probability of k concurrent failures is much greater than k + 1 failures,
πk � πk+1, the bounds will be tight, and for the estimated quantities the effect
of estimation errors are expected to be far larger than these bounds. The effect of
estimation errors is discussed in Section 15.3.3.2.

15.3.2.2 Sampling Scheme

Under the assumption of a homogeneous Poisson fault process with intensity λ per
node, it is known that if we have k−1 faults (after the first failure starting a trajectory)
of n nodes during a fixed interval [0, Tmax〉, these will occur

• uniformly distributed over the set of nodes, and

• each of the faults will occur uniformly over the interval [0, Tmax〉.

Note that all injected faults will manifest themselves as failures, and thus the two
terms are used interchangeably. In performing experiments, the value Tmax is chosen
to be longer than any foreseen trajectory of stratum Sk. However, it should not be
chosen excessively long, since this may result in too rare observations of higher-order
strata.

In the following, let (T |k = l) denote the duration of a trajectory if it completes in
stratum Sl, as illustrated in Figure 15.6(a), and let fil denote time of the lth failure,
relative to the first failure event in the ith failure trajectory. That is, we assume the
first failure occur at fi1 = 0 and that fil > fi1 , l > 1. To obtain dependability charac-
teristics for the system, we inject k failures over the interval [0, Tmax〉. This leads to
the following failure injection scheme for trajectory i, which may reach stratum Sk.
However, not all trajectories obtained for experiments with k > 1 failure injections
will reach stratum Sk, since a trajectory may reach (T |k = 1) before the second fail-
ure (fi2) is injected. That is, recovery from the first failure may complete before the
second failure injection, as illustrated in Figure 15.6(b). Such experiments contain
multiple trajectories, however, only the first trajectory is considered in the analysis to
avoid introducing a bias in the results.

The sampling scheme includes the following steps:

208 15.3. MEASUREMENTS

k*

T|k = 3()T|k = 2()T|k = 1()

Node failures

Tmaxi 1
t imi

t

Ti

i 2
fi 1

f i 3
f

t

3

2

1

(a) Fault injections causing the failure trajectory into higher-order strata.

k*

T|k = 1() T|k = 1() T|k = 2()

Node failures

imi
t Tmaxi 1

t

Ti

i 3
fi 2

fi 1
f

t

3

2

1

(b) Failure trajectory that completes before reaching higher-order strata.

Figure 15.6: Sample failure trajectories with different fault injection times.

1. The first failure, starting a failure trajectory i, is at fi1 = 0. The following k−1
failure instants are drawn uniformly distributed over the interval [0, Tmax〉 and
sorted such that fiq ≤ fiq+1 yielding the set {fi1 , fi2 , . . . , fik}. Let k∗ denote
the reached stratum, and l is the index denoting the number of failures injected
so far. Initially, set k∗ := 0 and l := 1.

2. Fault l ≤ k is (tentatively) injected at fil in node zl ∈ [1, n] with probability
1/n.

(a) If trajectory i has not yet completed, i.e. fil < Ti, then set l := l + 1 and

i. If the selected node has not already failed zl /∈ {zw|w < l}: Inject

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 209

fault at fil and set k∗ := k∗ + 1

ii. Prepare for next fault injection, i.e. goto 2.

(b) Otherwise the experiment ended “prematurely”.

3. Conclude and classify as a stratum Sk∗ measurement.

The already failed nodes are kept in the set to maintain the time and space unifor-
mity corresponding to the constant rate Poisson process. Although k failures are not
injected in a trajectory, the pattern of injected failures will be as if they came from
a Poisson process with a specific number (k∗) of failures during Tmax. Hence, the
failure injections will be representative for a trajectory lasting only a fraction of this
time.

15.3.3 Estimators

15.3.3.1 Strata Probabilities

In a real system, the failure intensity λ will be very low, i.e. λ−1 � Tmax. Hence,
we may assume the probability of a failure occurring while the system is on trajectory
i ∈ S1 is Ti(n − 1)λ. Hence, the probability that a trajectory (sample) belonging to
a stratum Sk, k > 1 occurs, given that a stratum S1 cycle has started is∑

∀i∈S1
piTi(n− 1)λ∑
∀i∈S1

pi
=

∑
k>1 πk

π1
.

Due to the small failure intensity, we have that
∑

k>1 πk ≈ π2 and the unconditional
probability of a sample in stratum S2 is approximately

π2 = (n− 1)λΘ1π1. (15.6)

This line of argument also applies for the probability of trajectories in stratum S3.
However, in this case we must take into account the first failure occurrence. Let
i ∈ Sk ∧Xi(tx) ./ f denote a trajectory of stratum Sk, where a failure occurs at tx.
The probability that a trajectory belonging to stratum Sk, k > 2 occurs, given that a
stratum S2 cycle has started is, cf. Figure 15.6(a):∫ ∑

∀i∈S2∧Xi(tx)./f pi(Ti − tx)(n− 2)λdtx∑
∀i∈S2

pi
=

∑
k>2 πk

π2
. (15.7)

210 15.3. MEASUREMENTS

Ignoring the constant part of (15.7) for now; the first term on the left-hand side of
(15.7) do not depend on tx and may be reduced as follows:∫ ∑

∀i∈S2∧Xi(tx)./f piTidtx∑
∀i∈S2

pi
=

∑
∀i∈S2

piTi∑
∀i∈S2

pi
= Θ2.

For the second term we have, slightly rearranged:∫
tx

∑
∀i∈S2∧Xi(tx)./fpidtx.

The probability of having a stratum S2 trajectory experiencing its third failure at tx
is the probability that the first (and second) failure has not been dealt with by tx, i.e.
the duration Tj > tx, j ∈ S1 and that a new failure occurs at tx. These two events
are independent. Up to the failure time tx, the trajectories of strata S1 and S2 passing
this point are identical. Hence,

∑
∀i∈S2∧Xi(tx)./fpi = Pr{Tj > tx}π1(n − 1)λ and

by partial integration,∫
tx Pr{Tj > tx}dtx =

1
2
E(T 2

j |j ∈ S1) =
1
2
(Θ2

1 + σ1).

Combining the above, inserting it into (15.7), using that
∑

∀i∈S2
pi = π2 and that

due to the small failure intensity
∑

k>2 πk ≈ π3, the unconditional probability of a
trajectory in stratum S3 approximately becomes:

π3 = (n− 2)λ(Θ2π2 −
1
2
(Θ2

1 + σ1)π1(n− 1)λ)

= (n− 1)(n− 2)λ2(Θ2Θ1 −
1
2
(Θ2

1 + σ1))π1. (15.8)

Since we have that 1 > π1 > 1−π2−π3 and as argued above, a sufficiently accurate
estimate for π1 may be obtained from the lower bound since 1 ≈ π1 ≈ 1− π2 − π3,
or slightly more accurately by solving πi from (15.6), (15.8) and 1 = π1 + π2 + π3.

15.3.3.2 Estimation Errors

The estimation errors or the uncertainty in the obtained result is computed using the
sectioning approach [72]. The experiments are subdivided into N ∼ 10 independent

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 211

runs of the same size. Let Êl(Y) be the estimate from the lth of these; then:

Ê(Y) =
1
N

N∑
l=1

Êl(Y), V̂ar(Y) =
1

(N − 1)

N∑
l=1

(Êl(Y 2)− Ê2(Y)).

15.4 Experimental Results

This section presents experimental results of fault injections on the target system.
A total of 3000 experiments were performed, aiming at 1000 per stratum. Each
experiment is classified as being of stratum Sk, if exactly k fault injections occur
before the experiment completes (all services are fully recovered). The results of the
experiments are presented in Table 15.1. Some experiments “trying to achieve higher
order strata” (S3 and S2) fall into lower order due to injections being far apart, cf.
Figure 15.6(b), or addressing the same node.

Table 15.1: Results obtained from the experiments (in milliseconds).

Classification Count Θk = E(T |Sk) sd=
√

σk Θk, 95% conf.int.

Stratum S1 1781 8461.77 185.64 (8328.98, 8594.56)

Stratum S2 793 12783.91 1002.22 (12067.01, 13500.80)

Stratum S3 407 17396.55 924.90 (16734.96, 18058.13)

Of the 3000 experiments performed, 19 (0.63%) were classified as inadequate. In
these experiments one or more of the services failed to recover (16 exp.), or they be-
haved in an otherwise unintended manner. In the latter three experiments, the services
did actually recover successfully, but the experiments were classified as inadequate,
because an additional (not intended) failure occurred. The inadequate ones are dis-
persed with respect to experiments seeking to obtain the various strata as follows; two
for S1, 6 for S2, and 11 for stratum S3. One experiment resulted in a complete failure
of the ARM infrastructure, caused by three fault injections occurring within 4.2 sec-
onds leaving no time for ARM to perform self-recovery. Of the remaining, 13 were
due to problems with synchronizing the states between the RM replicas, and 2 were
due to problems with the Jgroup membership service. Even though none of the inad-
equate experiments reached the down state, D0, for the MS service, it is likely that
additional failures would have caused a transition to D0. To be conservative in the

212 15.4. EXPERIMENTAL RESULTS

predictions below, all the inadequate experiments are considered to have trajectories
visiting down states, and causing a fixed down time of 5 minutes.

Figure 15.7 shows the probability density function (pdf) of the recovery periods for
each of the strata. The data for stratum S1 cycles indicate that it has a small vari-
ance. However, 7 experiments have a duration above 10 seconds. These durations
are likely due to external influence (CPU/IO starvation) on the machines in the target
system. This was confirmed by examining the cron job scheduling times, and the
running time of those particular experiments. Similar observations can be identified
in stratum S2 cycles, while it is difficult to identify such observations in S3 cycles.
The pdf for stratum S2 in Figure 15.7(b) is bimodal, with a peak at approximately
10 seconds and another around 15 seconds. The density of the left-most part is due
to experiments with injections that are close, while the right-most part is due to in-
jections that are more than 5-6 seconds apart. The behavior causing this bimodality
is due to the combined effect of the delay induced by the view agreement protocol,
and a 3 second delay before ARM triggers recovery. Those injections that are close
tend to be recovered almost simultaneously. The pdf for stratum S3 has indications
of being multimodal. However, the distinctions are not as clear in this case.

Given the results of the experiments, we are able to compute the expected trajectory
durations, Θ1, Θ2 and the variance σ1 as shown in Table 15.1. These are needed to
compute the unconditional probabilities π2 and π3 given in (15.6) and (15.8) for var-
ious node mean time between failures (node MTBF=λ−1), as shown in Table 15.2.
The low probabilities of a second and third near-coincident failure is due to the rel-
atively short recovery time (trajectory durations) for strata S1 and S2. Table 15.2
compares these values with a typical node recovery (reboot) time of 5 minutes and
manual recovery time of 2 hours. These recovery times are computed using fixed
values for Θ1, Θ2 and the variance σ1 as shown in the heading of Table 15.2.

Given the unconditional probabilities and the expected down time for each stratum
(obtained by measurements), we may use (15.5) and (15.2) to compute estimates for
the system unavailability (Û). Similarly, the expected probability of failure for each
stratum (obtained by measurements) is used solve (15.5), and consequently estimates
for the system MTBF (Λ̂−1) is obtained by (15.4).

Of the 407 stratum S3 experiments, only 3 reached a down state. However, we in-
clude also the 19 inadequate experiments as reaching a down state. Thus, Table 15.2
provides only indicative results of the unavailability (Û) and MTBF (Λ̂−1) of the MS
service, and hence confidence intervals for these estimates are omitted. The results
show as expected, that the two inadequate experiments from stratum S1 included

15. MEASUREMENT BASED CRASH FAILURE DEPENDABILITY EVALUATION 213

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 8 9 10 11 12 13 14 15

Duration of failure trajectories in stratum 1 cycles (seconds)

(a) Stratum S1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 10 15 20 25

Duration of failure trajectories in stratum 2 cycles (seconds)

(b) Stratum S2

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10 12 14 16 18 20 22 24 26

Duration of failure trajectories in stratum 3 cycles (seconds)

(c) Stratum S3

Figure 15.7: Probability density functions of trajectory durations for the strata.

214 15.5. CONCLUDING REMARKS

Table 15.2: Computed probabilities, unavailability metric and the system MTBF.

Experiment Recovery Period Node Recovery (min.) Manual Node Recovery (hrs.)

(Θ1 = 5, Θ2 = 8,
√

σ1 = 0.5) (Θ1 = 2, Θ2 = 4,
√

σ1 = 0.5)

Node Mean Time Between Failure (MTBF=λ−1) (in days)

100 200 100 200 100 200

π1 0.99999314 0.99999657 0.99975688 0.99987845 0.99412200 0.99707216

π2 6.8556 · 10−6 3.4278 · 10−6 2.4306 · 10−4 1.2153 · 10−4 5.8333 · 10−3 2.9167 · 10−3

π3 4.0729 · 10−11 1.0182 · 10−11 5.5953 · 10−8 1.3988 · 10−8 4.4662 · 10−5 1.1165 · 10−5

Û 4.6713 · 10−7 2.3356 · 10−7 2.7771 · 10−4 1.3887 · 10−4 6.6275 · 10−3 3.3236 · 10−3

Λ̂−1 20.3367 years 40.6741 years — — — —

with a service down time of 5 minutes, completely dominates the unavailability of
the service. However, accounting for near-coincident failures may still prove impor-
tant once the remaining deficiencies in the platform have been resolved. Although the
results are indicative, it seems that very high availability and MTBF may be obtained
for services deployed with Jgroup/ARM.

15.5 Concluding Remarks

This chapter has presented an approach for the estimation of dependability attributes
based on the combined use of fault injection and a novel post stratified sampling
scheme. The approach has been used to assess and evaluate a service deployed with
the Jgroup/ARM framework. The results of the experimental evaluation indicate that
services deployed with Jgroup/ARM can obtain very high availability and system
MTBF.

The approach may also be extended to provide unbiased estimators, allowing us to
determine confidence intervals also for dependability attributes given enough samples
visiting the down states.

Chapter 16

Evaluation of Network Instability
Tolerance

The recovery performance of Jgroup/ARM has been evaluated experimentally with
respect to both node and communication failures. An extensive study of its crash
failure behavior is presented in Chapter 15 and also in [57]. Hence, the study in this
chapter focuses on the other core feature of Jgroup/ARM, namely its ability to toler-
ate network instability and partitioning due to network failures. Network instability
and partition failures may arise for a number of reasons, e.g. router crashes or power
outages, physical link damage, buffer overflows in routers, router configuration er-
rors and so on. The reality of such failures has been confirmed by others through
measurements [69, 65].

To the author’s knowledge, evaluations of network instability tolerance of fault treat-
ment systems has not been conducted before. The Orchestra [35] fault injection tool
has been used to evaluate a group membership protocol by discarding selected mes-
sages to test the robustness of the protocol. Loki [28] has been used to inject corre-
lated network partitions to evaluate the robustness of the Coda filesystem [71].

At any given time, the connectivity state of the target environment is called the current
reachability pattern. The reachability pattern may be connected (all nodes are in the
same partition), or partitioned (failures render communication between subsets of
nodes impossible). The reachability pattern may change over time, with partitions
forming and merging. In our evaluation, reachability patterns are injected by the
experiment executor as discussed in Chapter 13.

215

216

The goal of the experimental evaluation is to test Jgroup/ARM with respect to:

• Configuration (a) Its recovery performance when exposed to a single parti-
tioned reachability pattern.

• Configuration (b) Its ability to recover when exposed to a rapid succession
of different reachability patterns.

A series of experiments have been performed in both configurations. Figure 16.1
illustrates one possible sequence of reachability changes for each of the two config-
urations; the letters x, y and z refers to the sites in the target environment. Both
configurations begin and end in a fully connected network. Configuration (a) injects
only a single partition before returning to the original connectivity state, whereas
configuration (b) may inject a double partition. Figure 11.6 illustrates the expected
ARM behavior for configuration (a) experiments.

x y

z

x y

z

ConnectedConnected PartitionedPartitioned

xz∣y

xyz

(a) Configuration (a).

x y

z

x y

z

x y

z

x y

z

ConnectedConnected PartitionedPartitioned PartitionedPartitioned PartitionedPartitioned

xz∣y x∣y∣z xy∣z

xyz

(b) Configuration (b).

Figure 16.1: Two example sequences of reachability patterns.

In configuration (b) experiments, four reachability patterns are injected at random
times, the last one returning to the fully connected reachability pattern. Multiple
near-coincident reachability changes may occur before the system stabilizes, i.e. a
new reachability pattern may be injected before the previous has been completely
handled by ARM.

For the duration of an experiment, events of interest are monitored, and post-exp-
eriment analysis is used to construct a single global timeline of events. In the study

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 217

analysis density estimates for the various delays involved in detection and recovery
are computed.

In the following we present the target system and state machine used for the eval-
uation. Further, we briefly discuss the experiment execution, and the emulation of
reachability patterns. Finally, we present our findings and concluding remarks.

16.1 Target System

Figure 16.2 shows the target system for our measurements. It consists of three sites
denoted x, y and z, two located in Stavanger and one in Trondheim (both in Norway),
interconnected through the Internet1.

 Wide Area Network

MS1RM1 AS1

P4, 2.4GHz
Linux 2.6.12

x1 x1x2

x: StavangerA

MS2RM2 AS2

Java JDK 5.0
PE Partition Emulator

y1 y3y2

y: StavangerB

MS3RM3 AS3
z1 z3z2

z : Trondheim
Log

inject(xy|z)

P4, 2.4GHz
Linux 2.6.12

P4, 2.2GHz
Linux 2.4.28

PE

Log
Collector

Partition
Injector

Experiment Executor

PE PE

PE

PE PE PEPEPEPE

Log Log

Log Log LogLogLogLog

Log

Management
Client

Post
Analysis

Node

Site Site

Site

Figure 16.2: Target system used in the experiments.

1Originally, Bologna (Italy) were used as the third site, but due to practical problems with clock
synchronization this site was replaced with another one in Stavanger instead.

218 16.2. A PARTIAL STATE MACHINE AND NOTATION

Each site has three nodes denoted x1, x2, x3, y1, y2, y3 and z1, z2, z3. Initially the
three nodes with index 1 host the RM, nodes with index 2 host the monitored service
(MS), while nodes with index 3 host the additional service (AS). The latter was
added to assess ARM’s ability to handle concurrent failure recoveries of different
services, and to provide a more realistic scenario. Finally, an external node hosts the
experiment executor.

The policies used in the experiments are those described in Section 10.1. In all the
experiments and for all services, Rinit(∗) := 3 and Rmin(∗) := 2. That is, all
services have three replicas initially and ARM tries to maintain at least two replicas
of each service in each partition to may arise. The experiments enable simultaneous
observations of all services in the target system, including the ARM infrastructure. In
the following, however, we report on ARM responsiveness to various network failure
scenarios with respect to just our subsystem of interest, the MS service.

16.2 A Partial State Machine and Notation

In an attempt to model the failure-recovery behavior of the MS service under vari-
ous reachability patterns, a global state machine representation is defined. The state
machine is used to perform sanity checks, and to identify sampling points for our
measurements. However, due to the large number of states, only the initial states are
shown in Figure 16.3 and a trace snapshot in Figure 16.4. Note that since each site in
this study has at least one (assumed non-crashing) replica of each service, there are
no down states.

Each state is identified by its global reachability pattern, the number of replicas in
each partition and the number of members in the various (possibly concurrent) views.
The number of replicas in a partition is the number of letters x, y, and z that are not
separated by a | symbol. The different letters refer to the site in which a replica
resides. The | symbol indicates a disconnection between the replicas on its left-
and right-hand side. The number in parenthesis in each partition is the number of
members in the view of that partition. A partition may for short periods of time
have multiple concurrent views, as indicated by the + symbol. Concurrent views
in the same partition are not stable, and a new view including all live members in
the partition will be installed, unless interrupted by a new reachability change. Two
examples: The fully connected steady state is identified by [xyz(3)] in which each
site has a single replica, and all have installed a three member view. In the state

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 219

xyz(3)

x(3) | yz(3)

 (x|yz)(x|yz)

x(3) | yz(2)

x(1) | yz(2)

 View2

 View1

xy(3) | z(3) xz(3) | y(3)

x(1) | yz(3)

 (xz|y) (xz|y)

View1
x(3) | y(3) | z(3) (x|y|z)(x|y|z)

View2

x(1) | y(3) | z(3)

x(3) | y(2) | z(2)

 (x|y|z)(x|y|z)

 (x|y|z) (x|y|z)

 (xy|z) (xy|z)

(xyz)(xyz)

(xyz)(xyz)

Figure 16.3: Excerpt of the state machine showing the initial states/transitions.

[xx(2) | yy(1 + 1) | zz(2)] all sites are disconnected from each other and all have
installed an extra replica to satisfy the Rmin = 2 requirement. However, the replicas
in site y still have not installed a common two-member view.

Each state can be classified as stable (bold outline in Figure 16.3 and Figure 16.4) or
unstable. Let Rp denote the current redundancy level of a service in partition p. A
state is considered stable if

(Rp = |Vp| ∧Rinit ≥ Rp ≥ Rmin) ∀p ∈ P

where P is the current set of partitions. In the stable states, no ARM action is needed
to increase or decrease the service redundancy level. All other states are considered
unstable, meaning that more events are needed to reach a stable state. Once in a stable
state, only a new reachability change can cause it to enter into an unstable state.

In Figures 16.3 and 16.4 we distinguish between system events (regular arrow) and
reachability change events (double arrow). In the evaluation, only relevant events
are considered such as view change, replica create, replica remove and reachability
change events. View-c denote a view change, where c is the cardinality of the view.
Reachability change events are denoted by (xyz), where a | symbol indicate which
sites are to be disconnected. A new reachability change may occur in any state;
note in particular the transition from the unstable state [x(1) | yz(2)] in Figure 16.4,
illustrating that recovery in partition x did not begin before a new reachability change
arrived.

220 16.3. MEASUREMENTS

xyz(3)

x(3) | yz(3)

 (x|yz)(x|yz)

x(3) | yz(2)

x(1) | yz(2)

 View2

 View1

x(1) | y(2) | z(2)

 (x|y|z)(x|y|z)

x(1) | y(1) | z(2)

 View1

x(1) | y(1) | z(1)

 View1

xx(1) | y(1) | z(1)
Create(x)

xx(1) | yy(1) | z(1)

xx(1) | yy(1) | zz(1)

 Create(y)

 Create(z)

xx(1+1) | yy(1) | zz(1)

View1 (new member)

xx(2) | yy(1+1) | zz(2)

View1 (new member)
View2

View1 (new member)
View2

xx(2) | yy(2) | zz(2)

 View2 xxyy(2+2) | zz(2)

(xy|z)(xy|z)

xxyy(4) | zz(2)

 View4

xxy(3) | zz(2)

Remove(y)
View3

xxyzz(3+2)

 (xyz)(xyz)

xxyzz(5)

 View5

Remove(x)
View4

Remove(z)

xyz(4) View3

Figure 16.4: An example state machine trace. The dashed arrows with multiple
events are used to reduce the size of the figure.

16.3 Measurements

This section presents the evaluation of the two configurations in this study. In config-
uration (a) two reachability changes are scheduled to be injected in the target system,
whereas in configuration (b) four injections are scheduled. Both the generation of in-
jection times and the selection of the reachability patterns follow a uniform distribu-
tion. Each experiment begins and ends in the fully connected steady state [xyz(3)],
while the intermediate reachability patterns may cause a single or double network
partition.

Figure 16.5 shows a timeline of injection events. Let Ii denote the injection time
of the ith injection event, and let Ei be the time of the last system event before

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 221

E1I 1

(x|yz)(x|yz) (x|y|z)(x|y|z) (xy|z)(xy|z) (xyz)(xyz)Duration to
reach stable state Stable

I 2 E2 I 3 E3 I 4 E4

 T max

Figure 16.5: Sample timeline with injection events.

Ii+1. Ei events will bring the system into either a stable or unstable state. Nearly-
coincident injections tend to bring the system to an unstable state, while injections
spaced further apart typically enable the recovery to a stable state. Let Di denote
the duration needed to reach a stable state after injection Ii, where Di may extend
beyond Ij , where j > i, before reaching a stable state. Figure 16.6 illustrates the
duration D2 for three different injection scenarios that may occur in configuration (b)
experiments.

The behavior of Jgroup/ARM in response to such injections is observed, and a global
event trace is computed from each experiment, allowing us to compute the trajectory
of visited states and the time spent in each of the states. Consequently, this allows us
to extract various detection and recovery delays and to determine the correctness of
trajectories.

16.3.1 Injection Scheme

The following injection scheme is applied to emulate real reachability patterns. Let
P

(a)
i be the set of reachability patterns from which injections for configuration (a) are

chosen:

P
(a)
i =

{
{(xy|z), (x|yz), (xz|y)} i = 1
{(xyz)} i = 0, 2

where i denotes the injection number and i = 0 is the initial state. Similarly, let Pi

be the set of patterns from which injections for configuration (b) are chosen:

Pi =

{(xy|z), (x|yz), (xz|y)} i = 1, 3
{(xyz), (x|y|z)} i = 2
{(xyz)} i = 0, 4

(16.1)

222 16.3. MEASUREMENTS

P1 P2 P3

 D1 D2

 D2=T ss

(a) Injection of a P2 pattern starting from a stable state.

P1 P2 P3

 D1

 D2=T us

(b) Injection of a P2 pattern starting from an unstable state; aborting recovery activation for
the P1 pattern.

P1 P2 P3

 D1

 D2=T us

(c) Injection of a P2 pattern starting from an unstable state; recovery is interrupted by another
reachability change, P3, before stabilizing.

Figure 16.6: Timelines illustrating the injection of a P2 pattern. Shaded regions
indicate periods where the system is in unstable states.

Then let pj,i denote the ith reachability pattern to inject in the jth experiment, where
pj,i is drawn uniformly and independently from Pi. The patterns in Pi are organized
in this manner to closely model reachability patterns that could occur in real discon-
nection scenarios, cf. Figure 16.1.

Each injection time Ii is uniformly distributed over the interval [Tmin, Tmin+Tmax〉,
where Tmin is the minimal distance between two injections. In each configuration,
Tmax is chosen to be longer than any foreseen trajectory to reach a stable state. This
choice is motivated by the intent to test failure recovery for injections occurring over
the whole interval of unstable states. For configuration (a), Tmin = 15 seconds is
used to ensure that the final injection (xyz) occurs after the system has reached a
stable state, while Tmin = 0 is used for configuration (b).

The sampling scheme for configuration (b) includes the following steps:

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 223

1. The first reachability pattern, i = 1, is set to occur at I1 = 0. The follow-
ing 3 reachability change instants are drawn uniformly distributed over the
interval [0, Tmax〉 and sorted such that Ii ≤ Ii+1 yielding the ordered set
{I1, I2, I3, I4}. Let k be the index denoting the number of reachability changes
injected so far. Initially, k := 1.

2. While k ≤ 4 do

(a) Inject the kth reachability change, drawn from Pk, at time Ik.

(b) Set k := k + 1

16.4 Experimental Results

This section presents the experimental results of our reachability injections. In 99.6%
of the experiments the expected final state [xyz(3)] was reached, i.e. the initial redun-
dancy level was restored after the final (xyz) injection. Six experiments (out of 1500)
failed to reach the final state.

In the following, various measures are obtained for the system’s behavior between
the first and last injection. The results are presented in the form of kernel density
estimates, which gives an estimate of the probability density function; for details
see [72]. The smoothing bandwidth (BW), given in the legend of each curve, is
chosen as a trade-off between detail and smoothness.

16.4.1 Configuration (a)

In configuration (a), a total of 200 experiments were performed and density esti-
mates obtained using a Gaussian kernel [72]. In this configuration, all experiments
completed successfully, reaching the final state [xyz(3)]. Figure 16.7(a) shows the
density estimates for the time of the various events in the recovery cycle after the
injection of a network partition drawn from P

(a)
1 , e.g. (xy|z). All measurements in

the plots are relative to the injection time, and appear to follow a normal distribu-
tion. The partition detection curve is the time it takes to detect that a partition has
occurred; that is, the time until the member in the ”single site partition“ installs a
new view. It is this view that triggers recovery in that partition to restore the redun-
dancy level back to Rmin =2. The recovery pending period is due to the 3 second
safety margin (ServiceMonitor expiration) ARM uses to avoid triggering

224 16.4. EXPERIMENTAL RESULTS

0 1000 2000 3000 4000 5000 6000 7000 8000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

0.
00

40

Density estimates for detection and recovery times (N=200)

Time since partition injected (ms)

Partition detection (BW=46.89)
Replica created (BW=54.8)
New member view (BW=70.47)
State merged (BW=95.75)
Final view (BW=101.8)

Recovery pending Replica init

(a) Network partition delays.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.
00

00
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
10

0.
00

12

Density estimates for detection and remove times (N=200)

Time since partitions merged (ms)

Merge detection (BW=191.1)
All replicas merged (BW=354.3)
Replica leaving (BW=345.5)
Removed (BW=336.3)

Replica leave pending

(b) Network merge delays.

Figure 16.7: Density estimates for the various delays in configuration (a) experi-
ments.

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 225

unnecessary recovery actions, cf. Line 18 in Listing 10.2. The replica init period is
the time it takes to create a new replica to compensate for lack of redundancy. This
period is mostly due to JVM initialization, including class loading. The new member
view curve is the first singleton view installed by the new replica; this occurs as soon
as the replica has been initialized. The state merge curve is the start of the state trans-
fer from the single remaining replica to the new replica, while the final view curve
marks the end of the state merge after which the system is stable.

Figure 16.7(b) shows the time of events in the remove cycle after the injection of
the final (xyz) merge pattern. Merge detection is the time until the first member
installs a new view after the merge injection. This first view is typically not a full
view containing all four members, whereas the all replicas merged curve is the time
it takes for all members to form a common view. The tail of this curve is due to
delays imposed by the membership service when having to execute several runs of
the view agreement protocol before reaching the final four member view. The replica
leave pending period is due to the 5 second RemoveDelay used by the supervision
module to trigger a leave event for some member (see Section 11.3.3). The last two
curves indicate the start of the leave request and installation of a three member view
which brings the system back to the steady state [xyz(3)].

16.4.2 Configuration (b)

For configuration (b), 1500 experiments were performed and density estimates ob-
tained using the Epanechnikov kernel [72]. In this configuration, six experiments
(0.4%) failed to reach the final state [xyz(3)] due to a problem with the view agree-
ment protocol stopping after the final merge pattern was injected. This problem seems
to occur in rare circumstances when reachability changes arrive in rapid succession.
Unfortunately, not enough debug information was logged during the experiments to
accurately diagnose the problem. However, there are indications that the problem is
related to a failure to retransmit messages in the Jgroup multicast layer. This can
happen if a message is believed to have been received by all servers in the destination
set, and the message is consequently discarded from the sender’s buffer, after which
it cannot be retransmitted. The multicast layer requires that a message sent by a
correct server is eventually received by all servers in the destination set [87]; retrans-
mission is the mechanism used to ensure this. In rare cases it seems that a bug can
cause messages to be discarded prematurely. However, the exact cause of the prob-
lem needs further analysis. In the remaining discussion, the six failed experiments
are not considered.

226 16.4. EXPERIMENTAL RESULTS

Table 16.1 shows the number of observations for the different combinations of reach-
ability changes injected during configuration (b) experiments. The table shows how
many occurrences were observed for a particular reachability change given that the
injection was performed when in a stable or unstable state.

In each experiment there are four injections as shown in Figure 16.5 (and also in
Figure 16.1(b)), each followed by series of system events or another injection. The
ith reachability pattern to be injected is drawn from the set Pi in (16.1).

Table 16.1: Number of observations for different combinations of injections starting
from a stable or unstable state.

Starting from
Injection Reachability change Unstable Stable Aggregate

1 I1 P0 → P1 — 1494 1494
2 I2 P1 → P2[0] 442 264 706

788

}
1494

3 I2 P1 → P2[1] 497 291
4 I3 P2[0] → P3 276 430 706

788

}
1494

5 I3 P2[1] → P3 500 288
6 I4 P3 → P4 844 650 1494

The plot in Figure 16.8(a) shows density estimates for D2 when starting from a
(1) stable or (2) unstable P1 reachability pattern and entering a P2[0] = (xyz) pattern
(line 2 in Table 16.1), i.e. a fully connected network.

In case (1) (solid curve), when starting from a stable P1 pattern (cf. Figure 16.6(a))
the following observations have been made:

• The peak at about 6 s (approximately 119 observations) is due to removal of an
excessive replica installed while in the P1 pattern. This behavior corresponds
to the removed curve (which corresponds to a stable state) in Figure 16.7(b).

• The 17 observations before the peak are due to experiments that briefly visits
P2[0] before entering a P3 pattern equal to the initial P1 pattern. These ob-
servations do not trigger removal since they are caused by rapid reachability
changes.

• The rather long tail after the 6 s peak is due to variations of the following
scenario: In the P2[0] pattern a remove is triggered and before stabilizing a
P3 pattern is injected. Due to the remove, there is again a lack of redundancy,
thus ARM triggers another recovery action. Some experiments stabilize in P3,

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 227

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

Density estimates for the duration to reach a stable state (Epanechnikov kernel)

Time since injection of the P2[0] reachability pattern (ms)

Merge from stable (N=264, BW=259.9)
Merge from unstable (N=442, BW=368.5)

9 observations above 20 s

max: 27.9 s

(a) Duration to reach a stable state after a P2[0] injection.

0 5000 10000 15000 20000 25000

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04
5e

−
04

Density estimates for the duration to reach a stable state (Epanechnikov kernel)

Time since injection of the P2[1] reachability pattern (ms)

(x|y|z) from stable (N=291, BW=428.4)
(x|y|z) from unstable (N=497, BW=408.8)

(b) Duration to reach a stable state after a P2[1] injection.

Figure 16.8: Density estimates for the duration D2 to reach a stable state after a P2

injection in configuration (b) experiments.

228 16.4. EXPERIMENTAL RESULTS

while others do not complete until reaching the final [xyz(3)] state in P4. This
depends on the time between reachability changes.

For case (2) (dashed curve), starting from an unstable P1 pattern the following obser-
vations have been made:

• There is a peak at about 0.6 s due to injections that only briefly visits the P1

pattern, quickly reverting the partition to a P2[0] = P0 pattern, taking the
system back to the [xyz(3)] state without triggering any ARM actions. This
can happen if P2[0] occurs before the 3 s safety margin expires. A total of
288 observations constitute this peak; 54 of these are due to two consecutive
injections without intermediate system events. Figure 16.6(b) illustrates this
scenario.

• There are also 7 observations below 6 s that are due to ARM triggering re-
covery in the P1 reachability pattern (recovery is not completed in P1, hence
unstable) and is then interrupted by a short visit to the P2[0] pattern before en-
tering a P3 pattern identical to the initial P1 pattern. Figure 16.6(c) illustrates
this scenario.

• The observations above 6 s are similar to the above, except that recovery is
completed in P2[0] leading to a [xyzz(4)] (or similar) state. Consequently, re-
moval of the excessive replica is triggered in P2[0], but not completed. Hence,
it needs to enter P3 before reaching stable. It may also need to enter P4 depend-
ing on the time between the reachability changes. The variation seen for these
observations are caused by the varying time between reachability changes.

• There are 37 observations above 13 s. These follow the scenario above, but
the P3 pattern selected is different from P1, causing the need to install an-
other replica in the new single site partition. Note that the other partition will
then have three replicas. That is, it may stabilize in P3 in a state similar to
[xxy(3v)|zz(2v)], or in P4 in the [xyz(3)] state. In latter case, two removes
are needed before reaching a stable state, since there will be five replicas in
the merged partition. For case (2) this is the behavior that gives the longest
durations for D2.

The plot in Figure 16.8(b) shows density estimates for D2 when starting from a
(3) stable or (4) unstable P1 reachability pattern and entering a P2[1] = (x|y|z)
pattern (line 3 in Table 16.1), i.e. a double partition.

For both case (3) (solid curve) and case (4) (dashed curve), there are multiple peaks
at approximately the same time intervals. The observations for case (4) are mostly

16. EVALUATION OF NETWORK INSTABILITY TOLERANCE 229

due to the same behaviors as in case (3), except that the initial P1 pattern has not
reached a stable state before the P2[1] reachability change. Hence, we focus only on
explaining case (3):

• The small peak at approximately 2.5 s (44 observations) is due to short visits to
the P2[1] pattern without triggering recovery before entering a P3 pattern equal
to the P1 pattern.

• The main peak at 7 s (117 observations) is due to recovery in the two new
single site partitions eventually leading to a [xx(2)|yy(2)|zz(2)] stable state.
Recall that the initial P1 pattern is in a stable state similar to [xx(2)|yz(2)]
before the double partition injection. This peak is roughly comparable to the
final view curve in Figure 16.7(a).

• The small peak just below 10 s (15 observations) is due to short visits to P2[1]
and P3 before stabilizing in P4 having to remove one replica created in P1.

• The peak at 12.5 s (24 observations) is due to recovery initiated in P2[1], in-
terrupted by a P3 injection, cf. Figure 16.6(c). Recovery is completed in P3

followed by a replica remove event bringing the system back to a stable state.

• The peak at 17.5 s (31 observations) is due to brief visits to P2[1] followed by
a P3 pattern different from P1 triggering recovery, which eventually completes
in P4 by removing two excessive replicas before reaching stable. Recall that
two removals are separated by the 5 s RemoveDelay.

• The peak at 23.5 s (60 observations) is due to recovery initiated in P2[1], which
does not stabilize until reaching P4. Hence, three removals are needed in this
case, each separated by 5 s.

16.5 Concluding Remarks

The results obtained from our experiments show that Jgroup/ARM is robust with
respect to failure recovery, even in the presence of multiple near-coincident reacha-
bility changes. Only six experiments (0.4%) failed to reach the expected final state
[xyz(3)] when exposed to frequent reachability changes. Further analysis is needed
to fully understand the cause of the problem and to be able solve it.

The delays observed in the measurements are mainly due to two components: (i) ex-
ecution of protocols, e.g. the view agreement protocol, and (ii) timers to avoid ac-
tivating fault treatment actions prematurely. Premature activation could potentially

230 16.5. CONCLUDING REMARKS

occur when the system is heavily loaded or is experiencing high packet loss rates.
The timers constitutes the majority of the observed delays.

Part V

Conclusions

231

Chapter 17

Conclusions and Further Work

The recent call for papers for the second workshop on Hot Topics in System De-
pendability (HotDep ’06) recognizes the relevance of the main contributions of this
dissertation by the following (partial) list of requested topics [59]:

• Automated failure management

• Techniques for detection, diagnosis, and recovery from failures

• Metrics and techniques for quantifying dependability

These are all topics that have been studied in this dissertation.

Main Contributions

In this thesis, we have presented the architectural design, implementation and an
extensive experimental evaluation of Jgroup/ARM. Jgroup is an object group system
that extends the Java distributed object model. ARM is an autonomous replication
management framework that extends Jgroup and enables the automatic deployment of
replicated objects in a distributed system according to application-dependent policies.

The primary goal of Jgroup/ARM has been to support reliable and highly-available
application development and deployment in partitionable systems. Jgroup/ARM ad-
dresses an important requirement for modern applications that are to be deployed in
networks where partitions can be frequent and long lasting. ARM is a self-managing
fault treatment framework that augments Jgroup, enabling simplified administration

233

234

of replicated services, made possible through configurable distribution and replica-
tion policies. As our experimental evaluations demonstrate, Jgroup/ARM is very
robust in its handling of failures, even when exposed to multiple nearly-coincident
crash failures or reachability changes. The results of the experiments show that ARM
is able to detect failures quickly and to recover from them. Most experiments suc-
cessfully recover to the expected steady state when exposed to failures.

The thesis also presents a novel approach to the estimation of dependability attributes
based on the combined use of randomized crash fault injection and a post stratified
sampling scheme. This approach has been used to assess and evaluate a service de-
ployed with the Jgroup/ARM framework. The results of the experimental evaluation
indicate that services deployed with Jgroup/ARM can obtain very high availability
and system MTBF.

Furthermore, an advanced approach to performing experimental evaluation of the net-
work instability tolerance of Jgroup/ARM has been developed, based on randomized
reachability change injections.

The experiment framework used to conduct the experiments in this thesis has proven
to be exceptionally useful by uncovering at least a dozen subtle bugs, allowing sys-
tematic stress and regression testing.

Directions for Future Research

During the course of this research new insights into potential improvements for the
Jgroup/ARM middleware or similar systems have been gained. There are many chal-
lenges still ahead and below we summarize some of the open issues and give ideas
for further extensions of Jgroup/ARM.

Decentralized recovery management In the current framework the remove policy
is implemented through a decentralized mechanism for removing excessive replicas,
whereas replica distribution and recovery management is performed by a centralized
entity, the replication manager. Further study is needed, but it may also be possi-
ble to perform replica recovery through a decentralized mechanism, eliminating the
need for a centralized replication manager. The groups themselves could manage the
recovery process.

Cold standby for recovery A future extension to the ARM recovery mechanism
could be to proactively install cold standby replicas, which do not join the group until

17. CONCLUSIONS AND FURTHER WORK 235

found necessary by ARM. Furthermore, excessive replicas could just leave the group
rather than to terminate themselves, thus remaining in a ”cold“ standby state. This
extension would avoid the JVM initialization delay of starting a new replica, hence
shortening the recovery delay.

Generalize the experimental toolbox In the area of testing and validating dis-
tributed systems through fault injection there are still many open issues; in particular
on the study analysis part. Such analysis often requires specific knowledge of the un-
derlying system, however, generalizing portions of this analysis may still be possible.
Also, a generic toolbox for experimental evaluation could possibly be integrated with
existing project management tools, e.g. Maven [75].

Redesign the communication layers The various communication layers in Jgroup
are partially based on IP multicast, UDP/IP and RMI. This mixture of communication
mechanisms, and the lack of clear separation between the various layers has proven
to be very difficult to maintain. In addition, significant performance gains can be ob-
tained by using new technologies such as the new IO framework of Java, java.nio,
and taking care to avoid internal message copying.

Reliable communication based on IPv6 Taking advantage of anycast and the ad-
vanced multicast capabilities of IPv6 in wide area networking to develop a reliable
multicast layer is an interesting topic for future research.

Improved separation between policy and framework Further study is needed to
simplify user specified policies and to support conflict resolution between policies.
This could possibly utilize the PMAC [2] policy management framework from IBM.

Tighter integration between upgrade and recovery management This is neces-
sary to avoid conflicting policy specifications for upgrade and recovery. Furthermore,
implementation of the new upgrade approach, proposed in Section 12.5, is likely to
reduce the performance overhead of upgrading replicated services.

Tighter integration between the replication manager and dependable registry
There is already a dependency between the RM and the DR, and as discussed in
Chapter 11 they are co-located for this reason. A tighter integration between these
components could be exploited to improve the efficiency of the overall system, since
it would only need to keep one database of object groups up-to-date. The drawback
however, is reduced independence and modularity between the DR and RM compo-
nents, as the DR could not be used without the RM and hence recovery would be
enabled by default.

236

More advanced experiment configurations So far experiments have mainly been
performed without introducing clients generating system load. Such experiments
would give new insight into the performance that can be obtained using Jgroup/ARM.
Furthermore it may also enable us to predict the availability perceived by clients.

Integration with Enterprise Java Beans Communication in the EJB framework
is based on Java RMI. Jgroup was designed to support the same semantics as RMI.
Hence, a future extension could be to enhance EJB with group communication sup-
port based on Jgroup.

Group communication and recovery support in MANETs In the future, mobile
ad hoc networks, or MANETs, may give rise to new application areas needing group
communication and recovery support. Wireless networks have completely different
requirements from fixed line networks, e.g. due to a continuously changing topology
and battery limitations of mobile nodes, demanding that message transmission be re-
duced to a bare minimum. Only recently have people started to investigate protocols
to support group communication in MANETs [112]. Given a group communication
system for MANETs, ARM-like functionality may be implemented on top of it to
support fault treatment.

Autonomic management of network services DHCP, DNS and NTP are essential
network services that are needed for correct behavior of the network. An improve-
ment in system availability can be expected if such network services were to be im-
plemented on top of an autonomic management framework similar to Jgroup/ARM.

Bibliography

[1] Finn Arve Aagesen, Bjarne E. Helvik, Vilas Wuwongse, Hein Meling, Rolv
Bræk, and Ulrik Johansen. Towards a Plug and Play Architecture for Telecom-
munications. In Thongchai Yongchareon, Finn Arve Aagesen, and Vilas Wu-
wongse, editors, Proceedings of the IFIP TC6 Fifth International Conference
on Intelligence in Networks (SmartNet), pages 321–334, Pathumthani, Thai-
land, November 1999. Kluwer Academic Publishers. pages 6

[2] Dakshi Agrawal, Kang-Won Lee, and Jorge Lobo. Policy-Based Manage-
ment of Networked Computing Systems. IEEE Communications Magazine,
43(10):69–75, October 2005. pages 137, 138, 235

[3] Yair Amir, Claudiu Danilov, and Jonathan Stanton. A Low Latency, Loss
Tolerant Architecture and Protocol for Wide Area Group Communication. In
Proceedings of the International Conference on Dependable Systems and Net-
works (DSN), New York, June 2000. pages 5, 35, 36, 55, 67, 94, 112, 195

[4] Jean Arlat, Martine Aguera, Louis Amat, Yves Crouzet, Jean-Charles Fabre,
Jean-Claude Laprie, Eliane Martins, and David Powell. Fault Injection for De-
pendability Validation: A Methodology and Some Applications. IEEE Trans-
actions on Software Engineering, 16(2):166–182, February 1990. pages 174,
196

[5] Jean Arlat, Martine Aguera, Yves Crouzet, Jean-Charles Fabre, Eliane Mar-
tins, and David Powell. Experimental Evaluation of the Fault Tolerance of an
Atomic Multicast System. IEEE Transactions on Reliability, 39(4):455–467,
October 1990. pages 174, 196

[6] Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage. Addison-Wesley, fourth edition, 2005. pages 24, 34, 50, 82, 89, 90,
102, 103

237

238 BIBLIOGRAPHY

[7] Ken Arnold, Bryan O’Sullivan, Jim Waldo, Ann Wollrath, and Robert Schei-
fler. The Jini Specification. Addison-Wesley, second edition, 2001. pages 4,
18, 23, 36, 45, 130

[8] Autonomic Communication. http://www.autonomic-communication.org/.
Last visited May 2006. pages 6

[9] IBM, Autonomic Computing. http://www.research.ibm.com/autonomic/. Last
visited May 2006. pages 6

[10] Availigent, Duration software. http://www.availigent.com/. Last visited May
2006. pages 4, 20

[11] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing, 1(1):11–33, January-
March 2004. pages 15

[12] Dimiter Avresky, Jean Arlat, Jean-Claude Laprie, and Yves Crouzet. Fault
Injection for Formal Testing of Fault Tolerance. IEEE Transactions on Relia-
bility, 45(3):443–455, September 1996. pages 197

[13] Özalp Babaoğlu, Alberto Bartoli, and Gianluca Dini. Enriched View Syn-
chrony: A Programming Paradigm for Partitionable Asynchronous Distributed
Systems. IEEE Transactions on Computers, 46(6):642–658, June 1997. pages
51

[14] Özalp Babaoğlu, Renzo Davoli, and Alberto Montresor. Group Communica-
tion in Partitionable Systems: Specification and Algorithms. IEEE Transac-
tions on Software Engineering, 27(4):308–336, April 2001. pages 16, 43, 46,
195

[15] Özalp Babaoğlu, Renzo Davoli, Alberto Montresor, and Roberto Segala. Sys-
tem Support for Partition-Aware Network Applications. In Proceedings of the
18th International Conference on Distributed Computing Systems (ICDCS),
pages 184–191, Amsterdam, The Netherlands, May 1998. pages 28, 52

[16] Özalp Babaoğlu, Hein Meling, and Alberto Montresor. Anthill: A Frame-
work for the Development of Agent-Based Peer-to-Peer Systems. In Proceed-
ings of the 22nd International Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, July 2002. pages 7

BIBLIOGRAPHY 239

[17] Özalp Babaoğlu and André Schiper. On Group Communication in Large-Scale
Distributed Systems. In Proceedings of the ACM SIGOPS European Work-
shop, pages 612–621, Dagstuhl, Germany, September 1994. Also appears as
ACM SIGOPS Operating Systems Review, 29 (1):62–67, January 1995. pages
28, 45

[18] Bela Ban. JavaGroups – Group Communication Patterns in Java. Technical
report, Department of Computer Science, Cornell University, July 1998. pages
4, 5, 34, 35, 55, 74, 76, 94

[19] Arash Baratloo, P. Emerald Chung, Yennun Huang, Sampath Rangarajan, and
Shalini Yajnik. Filterfresh: Hot Replication of Java RMI Server Objects. In
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS), Santa Fe, New Mexico, April 1998. pages 34, 35, 36

[20] P. A. Barrett, A. M. Hilborne, P. G. Bond, D. T. Seaton, P. Verissimo, L. Ro-
driguez, and N. A. Speirs. The Delta-4 Extra Performance Architecture (XPA).
In Brian Randell, editor, Proceedings of the 20th International Symposium on
Fault-Tolerant Computing (FTCS ’90), pages 481–489, Newcastle upon Tyne,
UK, June 1990. IEEE Computer Society Press. pages 31

[21] Kenneth P. Birman. The process group approach to reliable distributed com-
puting. Communications of the ACM, 36(12):36–53, December 1993. pages
26, 28, 47

[22] Kenneth P. Birman. Building Secure and Reliable Network Applications. Man-
ning Publications and Prentice Hall, December 1996. pages 13

[23] Kenneth P. Birman and Thomas A. Joseph. Exploiting Virtual Synchrony in
Distibuted Systems. In Proceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP), pages 123–138, 1987. pages 33, 107

[24] The BISON project. http://www.cs.unibo.it/bison/. Last visited May 2006.
pages 6

[25] Andrea Bondavalli, Silvano Chiaradonna, Domenico Cotroneo, and Luigi Ro-
mano. Effective Fault Treatment for Improving the Dependability of COTS
and Legacy-Based Applications. 1(4):223–237, 2004. pages 37

[26] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. The
Primary-Backup Approach. In Sape Mullender, editor, Distributed Systems,

240 BIBLIOGRAPHY

chapter 8, pages 199–216. Addison-Wesley, second edition, 1994. pages 31,
104

[27] Salvatore Cammarata. Studio e implementazione di un protocollo di reliable
multicast e failure detector per servizi di group communication. Master’s the-
sis, Department of Computer Science, University of Bologna, 2000. In Italian.
pages 114, 119, 121

[28] Ramesh Chandra, Ryan M. Lefever, Kaustubh R. Joshi, Michel Cukier, and
William H. Sanders. A Global-State-Triggered Fault Injector for Distributed
System Evaluation. IEEE Transactions on Parallel and Distributed Systems,
15(7):593–605, July 2004. pages 174, 175, 196, 198, 215

[29] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group Communi-
cation Specifications: A Comprehensive Study. ACM Computing Surveys,
33(4):1–43, December 2001. pages 5, 26, 27

[30] P.E. Chung, Y. Huang, S. Yajnik, D. Liang, and J. Shih. DOORS: Providing
Fault-Tolerance for CORBA Applications. In Proceedings of the IFIP Inter-
national Conference on Distributed System Platforms and Open Distributed
Processing (Middleware ’98), September 1998. pages 34, 36, 37

[31] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. eclipse
AspectJ. Addison-Wesley, 2004. pages 184

[32] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems —
Concepts and Design. Addison-Wesley, fourth edition, 2005. pages 107, 119,
129, 150

[33] Geoff Coulson, J. Smalley, and Gordon S. Blair. The Design and Implemen-
tation of a Group Invocation Facility in ANSA. Technical Report MPG-92-
34, Distributed Multimedia Research Group, Department of Computing, Lan-
caster University, UK, 1992. pages 27, 41

[34] Michel Cukier, David Powell, and Jean Arlat. Coverage Estimation Methods
for Stratified Fault-Injection. IEEE Transactions on Computers, 48(7):707–
723, July 1999. pages 196, 205

[35] Scott Dawson, Farnam Jahanian, and Todd Mitton. ORCHESTRA: A Fault
Injection Environment for Distributed Systems. Technical Report CSE-TR-
318-96, University of Michigan, EECS Department, 1996. pages 174, 215

BIBLIOGRAPHY 241

[36] Xavier Défago. Agreement-Related Problems: From Semi-Passive Replication
to Totally Ordered Broadcast. PhD thesis, École Polytechnique Fédérale de
Lausanne, Switzerland, August 2000. Number 2229. pages 31, 32, 107, 108

[37] Xavier Défago, André Schiper, and Nicole Sergent. Semi-passive replication.
In Proceedings of the 17th IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 43–50, West Lafayette, IN, USA, October 1998. pages 32

[38] Danny Dolev and Dalia Malki. The Transis Approach to High Availability
Cluster Communication. Communications of the ACM, 39(4), April 1996.
pages 26, 28

[39] Microsoft .NET. http://www.microsoft.com/net/. Last visited May 2006.
pages 4, 18

[40] Peder Emstad, Poul E. Heegaard, and Bjarne E. Helvik. Dependability and
Performance in Information and Communication Systems; Fundamentals. De-
partment of Telematics, NTNU/Tapir, August 2002. pages 205

[41] Pascal Felber. The CORBA Object Group Service: A Service Approach to
Object Groups in CORBA. PhD thesis, École Polytechnique Fédérale de Lau-
sanne, Switzerland, January 1998. Number 1867. pages 20, 26, 27, 29, 33, 34,
35, 94, 195

[42] Pascal Felber, Xavier Défago, Patrick Eugster, and André Schiper. Replicat-
ing CORBA objects: a marriage between active and passive replication. In
Proceedings of the 2nd IFIP International Working Conference on Distributed
Applications and Interoperable Systems (DAIS), Helsinki, Finland, June 1999.
pages 32, 94

[43] Pascal Felber, Rachid Guerraoui, and André Schiper. The Implementation of
a CORBA Object Group Service. Theory and Practice of Object Systems,
4(2):93–105, January 1998. pages 4, 5, 34, 35, 36, 55

[44] Pascal Felber, Ben Jai, Mark Smith, and Rajeev Rastogi. Using semantic
knowledge of distributed objects to increase reliability and availability. In Pro-
ceedings of the 6th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS), pages 153–160, Rome, Italy, January
2001. pages 95

242 BIBLIOGRAPHY

[45] Pascal Felber and Priya Narasimhan. Experiences, Approaches and Challenges
in Building Fault-Tolerant CORBA Systems. IEEE Transactions on Comput-
ers, 53(5):497–511, May 2004. pages 20

[46] Hector Garcia-Molina. Using semantic knowledge for transaction processing
in a distributed database. ACM Transactions on Database Systems, 8(2):186–
213, 1983. pages 94

[47] Groovy. http://groovy.codehaus.org/. Last visited May 2006. pages 177

[48] Object Management Group. Fault Tolerant CORBA Using Entity Redun-
dancy. OMG Request for Proposal orbos/98-04-01, Object Management
Group, Framingham, MA, April 1998. pages 5

[49] Object Management Group. Fault Tolerant CORBA Specification. OMG
Technical Committee Document ptc/00-04-04, Object Management Group,
Framingham, MA, April 2000. pages 4, 19, 34, 36

[50] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification, Rev. 3.0. Object Management Group, Framingham,
MA, June 2002. pages 4, 18, 19

[51] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. IEEE Computer, 30(4):68–74, April 1997. pages 31, 104

[52] Ulf Gunneflo, Johan Karlsson, and Jan Torin. Evaluation of error detection
schemes using fault injection by heavy-ion radiation. In Proceedings of the
19th International Symposium on Fault-Tolerant Computing (FTCS), pages
340–347, Chicago, IL, USA, June 1989. pages 174, 196

[53] Deepak Gupta, Pankaj Jalote, and Gautam Barua. A Formal Framework for
On-line Software Version Change. IEEE Transactions on Software Engineer-
ing, 22(2):120–131, February 1996. pages 162

[54] Vassos Hadzilacos and Sam Toueg. Fault-Tolerant Broadcasts and Related
Problems. In Sape Mullender, editor, Distributed Systems, chapter 5. Addison-
Wesley, second edition, 1993. pages 33

[55] Mark Hayden. The Ensenble System. PhD thesis, Department of Computer
Science, Cornell University, January 1998. pages 74, 76

BIBLIOGRAPHY 243

[56] Bjarne E. Helvik. Dependable computing systems and communication net-
works, January 2001. Draft preprint. pages 14, 16, 29, 31

[57] Bjarne E. Helvik, Hein Meling, and Alberto Montresor. An Approach to Ex-
perimentally Obtain Service Dependability Characteristics of the Jgroup/ARM
System. In Proceedings of the Fifth European Dependable Computing Confer-
ence (EDCC), Lecture Notes in Computer Science, pages 179–198. Springer-
Verlag, April 2005. pages 7, 195, 196, 215

[58] Matti A. Hiltunen and Richard D. Schlichting. The Cactus Approach to Build-
ing Configurable Middleware Services. In Proceedings of the Workshop on
Dependable System Middleware and Group Communication (DSMGC 2000),
Nuremberg, Germany, October 2000. pages 74

[59] Second Workshop on Hot Topics in System Dependability.
http://www.usenix.org/events/hotdep06/. Last visited May 2006. pages
233

[60] Norm C. Hutchinson and Larry L. Peterson. The x-Kernel: An architecture for
implementing network protocols. IEEE Transactions on Software Engineer-
ing, 17(1):64–76, January 1991. pages 74

[61] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurements, Simulation, and Modeling. John Wiley
& Sons, Inc., 1991. pages 8

[62] Pankaj Jalote. Fault Tolerance in Distributed Systems. Prentice Hall, 1994.
pages 14

[63] Kaustubh R. Joshi, Michel Cukier, and William H. Sanders. Experimental
Evaluation of the Unavailability Induced by a Group Membership Protocol. In
Proceedings of the 4th European Dependable Computing Conference (EDCC),
pages 140–158, Toulouse, France, October 2002. pages 200

[64] Christos T. Karamanolis and Jeff Magee. Client-access protocols for replicated
services. IEEE Transactions on Software Engineering, 25(1), January 1999.
pages 28, 29, 45, 57, 123, 124, 147, 197

[65] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev. Moshe: A
group membership service for WANs. ACM Transactions on Computer Sys-
tems, 20(3):191–238, August 2002. pages 112, 215

244 BIBLIOGRAPHY

[66] Heine Kolltveit. High Availability Transactions. Master’s thesis, Department
of Computer and Information Science, Norwegian University of Science and
Technology, August 2005. pages 23, 36

[67] Jeff Kramer and Jeff Magee. The Evolving Philosophers Problem: Dy-
namic Change Management. IEEE Transactions on Software Engineering,
16(11):1293–1306, November 1990. pages 162

[68] Sacha Labourey and Bill Burke. JBoss AS Clustering. The JBoss Group,
seventh edition, May 2004. pages 35

[69] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Internet Routing In-
stability. IEEE/ACM Transactions on Networking, 6(5):515–528, 1998. pages
215

[70] Leslise Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, July 1982. pages 15

[71] Ryan M. Lefever, Michel Cukier, and William H. Sanders. An Experimental
Evaluation of Correlated Network Partitions in the Coda Distributed File Sys-
tem. In Proceedings of the 22nd IEEE International Symposium on Reliable
Distributed Systems (SRDS), pages 273–282, Florence, Italy, October 2003.
IEEE Computer Society. pages 174, 187, 215

[72] P. A. W. Lewis and E. J. Orav. Simulation Methodology for Statisticians,
Operation Analyst and Engineers, volume 1 of Statistics/Probability Series.
Wadsworth & Brooks/Cole, 1989. pages 196, 205, 210, 223, 225

[73] Silvano Maffeis. Adding Group Communication and Fault-Tolerance to
CORBA. In Proceedings of the 1st USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Monterey, CA, June 1995. pages 34

[74] Silvano Maffeis. The Object Group Design Pattern. In Proceedings of the 2nd
USENIX Conference on Object-Oriented Technologies and Systems (COOTS),
Toronto, Canada, June 1996. pages 27, 41

[75] Maven. http://maven.apache.org/. Last visited May 2006. pages 235

[76] Hein Meling and Bjarne E. Helvik. Dynamic Replication Management; Algo-
rithm Specification. Plug-and-Play Technical Report 1/2000, Department of
Telematics, Trondheim, Norway, December 2000. pages 32

BIBLIOGRAPHY 245

[77] Hein Meling and Bjarne E. Helvik. ARM: Autonomous Replication Man-
agement in Jgroup. In Proceedings of the 4th European Research Seminar
on Advances in Distributed Systems (ERSADS), Bertinoro, Italy, May 2001.
pages 55

[78] Hein Meling and Bjarne E. Helvik. Performance Consequences of Inconsistent
Client-side Membership Information in the Open Group Model. In Proceed-
ings of the 23rd International Performance, Computing, and Communications
Conference (IPCCC), Phoenix, Arizona, April 2004. pages 54, 123, 200

[79] Hein Meling, Jo Andreas Lind, and Henning Hommeland. Maintaining Bind-
ing Freshness in the Jgroup Dependable Naming Service. In Proceedings of
Norsk Informatikkonferanse (NIK), Oslo, Norway, November 2003. pages 129

[80] Hein Meling, Alberto Montresor, Özalp Babaoğlu, and Bjarne E. Helvik.
Jgroup/ARM: A Distributed Object Group Platform with Autonomous Repli-
cation Management for Dependable Computing. Technical Report UBLCS-
2002-12, Department of Computer Science, University of Bologna, October
2002. pages 39, 55, 195

[81] Hein Meling, Alberto Montresor, Bjarne E. Helvik, and Özalp Babaoğlu.
Jgroup/ARM: A Distributed Object Group Platform with Autonomous Repli-
cation Management. Technical Report No. 11, University of Stavanger, Jan-
uary 2006. Submitted for publication. pages vii, 7, 34, 39, 55

[82] Sergio Mena, Xavier Cuvellier, Christophe Grégoire, and André Schiper. Ap-
pia vs. Cactus: Comparing Protocol Composition Frameworks. In Proceedings
of the 22nd IEEE International Symposium on Reliable Distributed Systems
(SRDS), Florence, Italy, October 2003. pages 75

[83] David L. Mills. Network Time Protocol (Version 3); Specification, Implemen-
tation and Analysis, March 1992. RFC 1305. pages 178

[84] Hugo Miranda, Alexandre Pinto, and Luis Rodrigues. Appia, a flexible pro-
tocol kernel supporting multiple coordinated channels. In Proceedings of the
21st International Conference on Distributed Computing Systems (ICDCS),
Phoenix, Arizona, April 2001. pages 74, 76

[85] Rohnny Moland. Replicated Transactions in Jini: Integrating the Jini Transac-
tion Service and Jgroup/ARM. Master’s thesis, Department of Electrical and

246 BIBLIOGRAPHY

Computer Engineering, Stavanger University College, June 2004. pages 23,
36

[86] Alberto Montresor. A Dependable Registry Service for the Jgroup Distributed
Object Model. In Proceedings of the 3rd European Research Seminar on
Advances in Distributed Systems (ERSADS), Madeira, Portugal, April 1999.
pages 45, 52, 54, 124, 128

[87] Alberto Montresor. System Support for Programming Object-Oriented De-
pendable Applications in Partitionable Systems. PhD thesis, Department of
Computer Science, University of Bologna, February 2000. pages vii, 4, 5, 7,
9, 18, 20, 22, 26, 27, 29, 36, 39, 41, 42, 53, 54, 55, 78, 121, 195, 225

[88] Alberto Montresor, Renzo Davoli, and Özalp Babaoğlu. Enhancing Jini with
Group Communication. In Proceedings of the ICDCS Workshop on Applied
Reliable Group Communication, Phoenix, Arizona (USA), April 2001. Also
appears as Technical Report UBLCS 2000-16, December 2000 (Revised Jan-
uary 2001). pages 23

[89] Alberto Montresor and Hein Meling. Jgroup Tutorial and Programmer’s Man-
ual. Technical Report UBLCS-2000-13, Department of Computer Science,
University of Bologna, September 2000. Revised February 2002. pages 39

[90] Alberto Montresor, Hein Meling, and Özalp Babaoğlu. Messor: Load-
Balancing through a Swarm of Autonomous Agents. In Proceedings of the
International Workshop on Agents and Peer-to-Peer Computing in conjunc-
tion with AAMAS 2002, Bologna, Italy, July 2002. pages 7

[91] Graham Morgan, Santosh K. Shrivastava, Paul D. Ezhilchelvan, and Mark C.
Little. Design and Implementation of a CORBA Fault-Tolerant Object Group
Service. In Proceedings of the 2nd IFIP International Working Conference on
Distributed Applications and Interoperable Systems (DAIS), pages 361–374,
Helsinki, Finland, June 1999. pages 34, 36

[92] Louise E. Moser, Peter M. Melliar-Smith, Deborah A. Agarwal, Ravi K. Bud-
hia, and Colleen A. Lingley-Papadopoulos. Totem: A Fault-Tolerant Group
Communication System. Communications of the ACM, 39(4), April 1996.
pages 35

BIBLIOGRAPHY 247

[93] Louise E. Moser, Peter M. Melliar-Smith, and Priya Narasimhan. Consistent
Object Replication in the Eternal System. Theory and Practice of Object Sys-
tems, 4(2):81–92, January 1998. pages 4, 34, 35, 36, 37, 94

[94] Sape J. Mullender. Interprocess Communication. In Sape Mullender, editor,
Distributed Systems, chapter 9, pages 217–250. Addison-Wesley, second edi-
tion, 1994. pages 147

[95] Richard Murch. Autonomic Computing. On Demand Series. IBM Press, 2004.
pages 6, 56, 57

[96] Nitya Narasimhan. Transparent Fault Tolerance for Java Remote Method Invo-
cation. PhD thesis, University of California, Santa Barbara, June 2001. pages
4, 34, 35, 36, 124

[97] Priya Narasimhan. Transparent Fault Tolerance for CORBA. PhD thesis, Uni-
versity of California, Santa Barbara, December 1999. pages 34, 37, 195

[98] Priya Narasimhan, Louise E. Moser, and Peter M. Melliar-Smith. Enforcing
Determinism for the Consistent Replication of Multithreaded CORBA Appli-
cations. In Proceedings of the IEEE Symposium for Reliable Distributed Sys-
tems, October 1999. Lausanne, Switzerland. pages 30

[99] Balachandran Natarajan, Aniruddha S. Gokhale, Shalini Yajnik, and Dou-
glas C. Schmidt. DOORS: Towards High-performance Fault Tolerant
CORBA. In Proceedings of the 2nd International Symposium, Distributed
Objects & Applications (DOA), pages 39–48, Antwerp, Belgium, September
2000. pages 37

[100] Soila Pertet and Priya Narasimhan. Proactive Recovery in Distributed CORBA
Applications. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2004. pages 37

[101] Stefan Poledna. Replica determinism in distributed real-time systems: A brief
survey. Real-Time Systems, 6(3):289–316, May 1994. pages 30

[102] David Powell. Distributed Fault Tolerance: Lessons from Delta-4. IEEE Mi-
cro, pages 36–47, February 1994. pages 7, 17, 31, 36, 56, 145, 195, 197

[103] Yansong Ren. AQuA: A Framework for Providing Adaptive Fault Tolerance
to Distributed Applications. PhD thesis, University of Illinois at Urbana-
Champaign, 2001. pages 7, 37, 197

248 BIBLIOGRAPHY

[104] Yansong Ren, David E. Bakken, Tod Courtney, Michel Cukier, David A.
Karr, Paul Rubel, Chetan Sabnis, William H. Sanders, Richard E. Schantz,
and Mouna Seri. AQuA: an adaptive architecture that provides dependable
distributed objects. IEEE Transactions on Computers, 52(1):31–50, January
2003. pages 37, 56, 94, 145, 195, 197

[105] Carlos F. Reverte and Priya Narasimhan. Decentralized Resource Management
and Fault-Tolerance for Distributed CORBA Applications. In Proceedings of
the 9th IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems (WORDS), 2003. pages 35, 37

[106] William H. Sanders and John F. Meyer. A Unified Approach for Specifying
Measures of Performance, Dependability, and Performability. Dependable
Computing and Fault-Tolerant Systems: Dependable Computing for Critical
Applications, 4:215–237, 1991. pages 205

[107] Fred B. Schneider. What Good are Models and What Models are Good? In
Sape Mullender, editor, Distributed Systems, chapter 2. Addison-Wesley, sec-
ond edition, 1993. pages 30

[108] Fred B. Schneider. Replicated Management using the State-Machine Ap-
proach. In Sape Mullender, editor, Distributed Systems, chapter 7, pages 169–
198. Addison-Wesley, second edition, 1994. pages 29, 162

[109] Secure shell. http://www.openssh.com/. Last visited May 2006. pages 66

[110] Mark E. Segal and Ophir Frieder. On-the-fly Program Modification: Systems
for Dynamic Updating. IEEE Software, pages 53–65, March 1993. pages 162

[111] D. P. Siewiorek and E. J. McCluskey. An Iterative Cell Switch Design. In
Proceedings of the International Symposium on Fault-Tolerant Computing
(FTCS), 1972. pages 32

[112] Kulpreet Singh. Towards Virtual Synchrony in MANETS, May 2005. Fifth
European Dependable Computing Conference - Student Forum. pages 236

[113] Moris Sloman. Policy driven management for distributed systems. Journal of
Network and Systems Management, 2(4), 1994. pages 56, 137

[114] Marcin Solarski. Dynamic Upgrade of Distributed Software Components. PhD
thesis, Technischen Universitat Berlin, January 2004. pages 57, 161, 162, 163,
168

BIBLIOGRAPHY 249

[115] Marcin Solarski and Hein Meling. Towards Upgrading Actively Replicated
Servers on-the-fly. In Proceedings of the Workshop on Dependable On-line
Upgrading of Distributed Systems in conjunction with COMPSAC 2002, Ox-
ford, England, August 2002. pages 57, 161, 162, 167, 168

[116] Frank Sommers. Call on extensible RMI: An introduction to JERI.
http://www.javaworld.com/javaworld/jw-12-2003/jw-1219-jiniology_p.html,
December 2003. Last visited May 2006. pages 24

[117] The Spread Toolkit. http://www.spread.org/. Last visited May 2006. pages 4

[118] Tor Arve Stangeland. Client Multicast in Jgroup. Master’s thesis, Department
of Electrical and Computer Engineering, Stavanger University College, June
2003. pages 30, 97

[119] David T. Stott, Benjamin Floering, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. A Framework for Assessing Dependability in Distributed Systems with
Lightweight Fault Injectors. In Proceedings of the 4th International Computer
Performance and Dependability Symposium, 2000. pages 174

[120] Sun Microsystems, Santa Clara, CA. Enterprise JavaBeans Specification, Ver-
sion 2.1, November 2003. pages 4, 18, 25, 36

[121] Sun Microsystems, Santa Clara, CA. Jini Architecture Specification, Version
2.0, June 2003. pages 23

[122] Sun Microsystems, Santa Clara, CA. Jini Technology Core Platform Specifi-
cation, Version 2.0, June 2003. pages 23

[123] Sun Microsystems, Santa Clara, CA. Java Remote Method Invocation Specifi-
cation, Rev. 1.10, February 2004. pages 4, 18, 69

[124] Diana Szentivanyi. Performance Studies of Fault-Tolerant Middleware. PhD
thesis, Linköpings universitet, 2005. pages 34, 35

[125] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems – Princi-
ples and Paradigms. Prentice Hall, 2002. pages 4, 5, 18, 40, 95

[126] The TAPAS project (formerly Plug-and-Play). http://tapas.item.ntnu.no/. Last
visited May 2006. pages 6

250 BIBLIOGRAPHY

[127] Lauren A. Tewksbury, Louise E. Moser, and Peter M. Melliar-Smith. Live
Upgrade Techniques for CORBA Applications. In Proceedings of the 3rd Int’l
Working Conference on Distributed Applications and Interoperable Systems,
Krakow, Poland, September 2001. pages 162

[128] The TINA Consortium. http://www.tinac.com/. Last visited May 2006. pages
4

[129] TINA Consortium. TINA-C Deliverable: Overall Concepts and Principles of
TINA, V1.0, February 1995. pages 4

[130] TINA Consortium. TINA-C Deliverable: Service Architecture, V5.0, June
1997. pages 4

[131] Robbert van Renesse. Masking the Overhead of Layering. In Proceedings
of the 1996 ACM SIGCOMM Conference, Stanford University, August 1996.
pages 74

[132] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus: A Flex-
ible Group Communication System. Communications of the ACM, 39(4):76–
83, April 1996. pages 26, 28, 74, 76

[133] Rune Vestvik. Pålitelighetsvurdering og integrasjonstesting av distribuerte ap-
plikasjoner. Master’s thesis, Department of Electrical and Computer Engineer-
ing, University of Stavanger, June 2005. In Norwegian. pages 177

[134] Matthias Wiesmann. Group Communications and Database Replication:
Techniques, Issues and Performance. PhD thesis, École Polytechnique
Fédérale de Lausanne, Switzerland, 2002. pages 5

[135] Otto Wittner. Emergent Behavior Based Implements for Distributed Network
Management. PhD thesis, Department of Telematics, Norwegian University
of Science and Technology, November 2003. pages 7

[136] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object Model for
the Java System. In Proceedings of the 2nd USENIX Conference on Object-
Oriented Technologies and Systems (COOTS), Toronto, Canada, June 1996.
pages 20

	HeinMeling-DoctoralThesis.pdf
	Abstract
	Preface
	Acknowledgements
	Publications by the Author
	Nomenclature
	Abbreviations
	I Overview of Research
	1 Introduction
	1.1 Motivations
	1.2 About this Thesis
	1.2.1 Research Objectives and Constraints
	1.2.2 Research Methodology
	1.2.3 Contributions

	1.3 Roadmap

	2 Fault Tolerant Distributed Computing Platforms
	2.1 Distributed Computing Systems
	2.1.1 Dependable Distributed Systems

	2.2 Object-Oriented Distributed Computing Platforms
	2.2.1 CORBA
	2.2.2 Java Remote Method Invocations
	2.2.3 Jini
	2.2.4 Enterprise Java Beans

	2.3 Group Communication Systems
	2.3.1 The Group Membership Service
	2.3.2 Primary Partition vs. Partitionable Membership Services
	2.3.3 Open vs. Closed Group Communication

	2.4 Replication Techniques and Protocols
	2.4.1 Active Replication
	2.4.2 Passive Replication
	2.4.3 Semi-Active Replication
	2.4.4 Semi-Passive Replication
	2.4.5 Combining Replication Techniques
	2.4.6 Atomic Multicast

	2.5 Dependable Middleware Platforms
	2.5.1 Classification of Dependable Middleware
	2.5.2 Object Group Systems
	2.5.3 Fault Treatment Systems

	2.6 Summary

	3 The Jgroup Distributed Object Model
	3.1 System Model
	3.2 Architectural Overview
	3.3 Jgroup Services
	3.3.1 The Partition-aware Group Membership Service
	3.3.2 The Group Method Invocation Service
	3.3.3 The State Merging Service

	3.4 The Dependable Registry Service

	4 An Overview of Autonomous Replication Management
	4.1 Introduction
	4.2 Jgroup/ARM Overview
	4.3 Architectural Overview

	II Adaptive Middleware
	5 The Jgroup/ARM Architecture
	5.1 Architectural Requirements
	5.2 The Jgroup/ARM Architecture
	5.2.1 Replication Manager Dependency
	5.2.2 The Object Factory
	5.2.3 The Group Manager
	5.2.4 The Jgroup Daemon
	5.2.5 Failure Independence and JVM Allocation

	6 Dynamic Protocol Composition
	6.1 Introduction to Protocol Architectures
	6.2 Protocol Architecture Requirements
	6.3 Protocol Modules
	6.4 Module Interactions
	6.4.1 Local Inter-module Interactions
	6.4.2 Remote Inter-module Interactions
	6.4.3 Server to Module Interactions
	6.4.4 External Entity to Module Interactions

	6.5 The Dynamic Construction of Protocol Modules
	6.5.1 Module Instantiation
	6.5.2 Link Configuration
	6.5.3 Bootstrapping
	6.5.4 Event Interception
	6.5.5 An Example Protocol Module
	6.5.6 Impact of Dynamic Module Construction

	7 Adaptive Protocol Selection
	7.1 Motivation
	7.2 The EGMI Architecture
	7.2.1 The Client-side and Server-side Proxies

	7.3 Replication Protocol Selection
	7.3.1 Supporting a New Protocol
	7.3.2 Concurrency Issues

	7.4 The Leadercast Protocol
	7.5 The Atomic Multicast Protocol
	7.6 Runtime Adaptive Protocol Selection

	8 Enhanced Resource Sharing
	8.1 The Jgroup Daemon Architecture
	8.2 Daemon Communication
	8.2.1 Inter-Daemon Communication
	8.2.2 Group Manager -- Daemon Communication

	8.3 Daemon Allocation Schemes
	8.4 Daemon Discovery and Creation
	8.5 Failure Detection and Recovery
	8.5.1 Recovery Issues

	9 Client-side Membership Issues in the Open Group Model
	9.1 Problem Description
	9.2 Client-side Performance Impairments
	9.2.1 Performance Without Updates of the Client-side Proxy
	9.2.2 Client-side Update Delays

	9.3 Updating the Dependable Registry
	9.3.1 The Lease Refresh Technique
	9.3.2 The Notification Technique
	9.3.3 Combining Notification and Leasing

	9.4 Updating the Client-side Proxies

	III Autonomous Management
	10 Policies for Replication Management
	10.1 ARM Policies and Policy Enforcing Methods
	10.1.1 The Distribution Policy
	10.1.2 The Replication Policy
	10.1.3 The Remove Policy

	10.2 The Configuration Mechanism
	10.2.1 Target Environment Configuration
	10.2.2 Service Configuration

	11 Autonomous Replication Management
	11.1 The Replication Manager
	11.2 The Management Client
	11.3 Monitoring and Controlling Services
	11.3.1 Group Level Service Monitoring
	11.3.2 Replica Level Monitoring
	11.3.3 The Remove Policy

	11.4 The Object Factory
	11.5 Failure Recovery
	11.6 Replicating the Replication Manager
	11.7 Summary

	12 Online Upgrade Management
	12.1 Introduction
	12.2 System Model and Upgrade Assumptions
	12.3 A Simple Architecture for Online Upgrades
	12.3.1 The Upgrade Module

	12.4 The Upgrade Algorithm
	12.4.1 Summary

	12.5 An Alternative Upgrade Approach
	12.6 Closing Remarks

	IV Experimental Evaluation
	13 Toolbox for Experimental Evaluation
	13.1 Introduction
	13.2 Architectural Overview
	13.3 Experiment Scripting
	13.4 Code Instrumentation
	13.4.1 The Logging Facility
	13.4.2 Fault Injectors
	13.4.3 Improvements to Avoid Code Modification

	13.5 Experiment Analysis
	13.6 Summary

	14 Client-side Update Measurements
	14.1 Experiment Setup
	14.2 Client-side Update Measurements
	14.2.1 No Update
	14.2.2 Client-side View Refresh
	14.2.3 Periodic Refresh

	14.3 Summary of Findings

	15 Measurement based Crash Failure Dependability Evaluation
	15.1 Introduction
	15.2 Target System
	15.2.1 The State Machine

	15.3 Measurements
	15.3.1 Experiment Outline
	15.3.2 Experimental Strategy
	15.3.3 Estimators

	15.4 Experimental Results
	15.5 Concluding Remarks

	16 Evaluation of Network Instability Tolerance
	16.1 Target System
	16.2 A Partial State Machine and Notation
	16.3 Measurements
	16.3.1 Injection Scheme

	16.4 Experimental Results
	16.4.1 Configuration (a)
	16.4.2 Configuration (b)

	16.5 Concluding Remarks

	V Conclusions
	17 Conclusions and Further Work
	Bibliography

