
Collaborations, Semantic
Interfaces and Service Goals:
a way forward for Service
Engineering

Thesis for the degree doktor ingeniør

Trondheim, March 2007

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Richard Torbjørn Sanders

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Thesis for the degree doktor ingeniør

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

© Richard Torbjørn Sanders

ISBN 978-82-471-1495-7 (printed version)
ISBN 978-82-471-1500-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2007:68

Printed by NTNU-trykk

- iii -

Preface

A central theme of this thesis is services. In daily use we think of a service as something
that an organization or system provides to the public. What “something” is can have
wildly different interpretations, and whether a service is involved or not can be food for
lawyers; in 2001 the US won the “banana-war” against the EU by winning the argument
that providing bananas was a service, not a product, thus placing the “banana distribution
service” under the GATS rules1. The result was that the EU banana-regime, favouring
some of the poorest banana-producing countries, was ruled by the WTO to be illegal.

Banana distribution services are not the topic of this thesis; telecommunication services
are. Most people take services such as telephone calls for granted. They have after all been
around for over a century; most of us grew up with phones at home, now most of us carry
one in our pocket as well. Exactly because of the latter - that increasingly complex
machines fit into our pockets - there is a risk that the future ahead of us might turn messy.
Because not all of what comes need necessarily be to the better. Much of what is com-
monly called progress is arguably the opposite.

In the western world we are encouraged to define ourselves in our role as consumer. We
are supposed to delight in choice; between different phones with different colours and
ringing tunes, between different operators, between different services like SMS and
MMS. We are not supposed to long back to the days when phones were rationed, and the
state ran the service with all-knowing human operators at the switchboards. But what will
we do the day our mobile phone crashes while downloading some fancy context-sensitive
media application at it’s own behest, so that we can’t make or receive good old telephone
calls? What if the terminal runs on fuel cells so we can’t even pull the trick we resort to
when our gadgets fail: pull out the plug, re-boot, and hope it works?

The context of our work is exactly such a brave new world, where our computer-control-
led devices try to sort things out by themselves, based on what is going on around them.
About discovering new service opportunities, and negotiating with other devices about
what great things they can do together - for our sake. We don’t necessarily wish to push
or pull the world in that direction; but it seems this is the way things are going, whether
we like it or not. Our concern is that there will be some quality out there in the future, not
just quantity of functionality, which seems to be the name of the game in other ICT fields.

1. See for instance http://www.globalexchange.org/campaigns/bananas/guardian031501.html

iv

Our contribution aims at ensuring at least some level of quality in the services we one day
will use. Just like good old phones used to work 99,999% of the time, so should our
devices in the future. We hope our ideas will contribute to this to some degree.

We believe this thesis suggests things that can bring the world a little further. If it does, it
does so by “standing on the shoulders of giants”2. One of these giants is my advisor, Rolv
Bræk, whom I have known and admired since I in 1985 became acquainted with his out-
standing work with Structure-Oriented Modelling - SOM. I still admire him very much;
his ability to recognise and extract the essence when all seems chaotic, his mild stubborn-
ness, and his gift for expressing his thoughts in pictures like no other person I know.

Another shoulder upon which I stand firmly is my good friend and colleague for many
years, Jacqueline Floch. She showed the way, by commencing on and completing her own
PhD, and by doing such excellent work. I have relied heavily on the foundation she has
laid; I think it is solid, and my somewhat more esoteric work remains grounded partly
thanks to her. In addition she has been a great partner in discussions about the subject mat-
ter - and a wonderful person to have as a friend.

The SIMS project I am currently leading is the latest in a series of interesting projects that
have contributed with relevant and interesting discussions. Other projects include Avantel,
with Ericsson and Telenor, the SISU project that produced TIMe - The Integrated Meth-
odology, and the Norse project that started while I was at Stentofon. Many of these
projects have revolved around the same set of people. Among them I in particular extend
sincere thanks to Birger Møller-Pedersen and Øystein Haugen, most recently for discus-
sions about the details in UML 2.0 - and of course for the wonderful scientific work they
have put into TIMe, SDL, MSC and UML. The same goes to Geir Melby, who has been
instrumental in making things happen since SISU started in 1988.

I thank my fellow doctoral students at the Department of Telematics; Humberto and Frank
have particularly been good discussion partners, while Shanshan, Fritjof, Haldor and Arne
Lie have been great company, as have the other colleagues at the department. Cyril Car-
rez, whom I got to know while in Paris and who later joined NTNU, provided me with
lots of comments, and scrutinized my work meticulously. Fancy a Frenchman correcting
the language of a semi-native Englishman! Thanks, Cyril!

Of course it took a pair of true Englishmen to correct the finer language details; thanks to
Norman and Anne for their meticulous work.

I thank the members of the SIMS project, in particular those who initially bought into the
ideas we presented to them in the late Autumn of 2004, and to those who have grappled
with the concepts since - largely based on this unpublished PhD thesis.

I must also thank The Money. It was Telenor that financed the PhD grant and half of the
additional expenses for my stay in Paris, so thanks to Oddvar Hesjedal and Oddvar
Risnes. Thanks to SINTEF for their generosity in keeping me up to my SINTEF salary,
and for their flexibility during my stay in Paris. In particular thanks to Eldfrid Øfsti Øvs-
tedal, who supported me all along. Also to Tore Dybå for pioneering the generous
SINTEF PhD deals, and for being my first role model. Thanks to the Department of

2. As Isaac Newton wrote in a letter to his colleague Robert Hooke in 1676

v

Telematics; first to Peder Emstad for giving me the best financial offer one could get, to
Randi Flønes for making difficult things easy, to the boys (Asbjørn and Pål) for offering
good computing services, and to all the other friendly people who work at the department.

I would also like to thank the Machine; by that I mean the inner workings of NTNU and
of SINTEF, for doing their job without me noticing it, so I could get on with mine.

In particular I thank Elie Najm for being such a wonderful person, for inviting me to
ENST Paris, for lending me much of his office space for what turned out to be 9 months.
Thanks for the fun discussions about modelling, politics, war and religion. Thanks also to
friends and colleagues there, Arnaud Bailly in particular, but also Cyril - and for their role
(sic) in bringing Happy Hour - le “Zappy” - to Trondheim.

Lastly I wish to thank Jorunn for her support at a crucial point when I couldn’t begin writ-
ing, and my children, Ingeborg and Andreas, for offering encouraging cheers when I had
a good day, and comforting compassion on more useless days, of which there were many.

It has been said that the average thesis gets read 2,5 times. That supposedly includes the
committee. Most of my friends and colleagues will of course not read it, even though they
in due respect and friendship might file it in their bookshelf. They may even have read this
far, before giving up on understanding “magic interfaces” and “service trolls”. I will not
be insulted if they do not read further. But I do hope that some of the ideas herein are taken
up in some way by future ICT practitioners. Not that I think that ours should become a
household word (“My new phone is Sanders’ enabled!”), but because we believe the core
ideas can make some things a little better. However, we are aware that there is much more
left to be done. Our contribution is only a fraction what is needed to make future commu-
nication services work seamlessly across network and service provider boundaries.

Trondheim, March 2007

Richard Torbjørn Sanders

vi

- vii -

Last modified 19 March 2007 11:16 am

Abstract

The challenges faced when designing and deploying convergent telecommunication serv-
ices are well know to practitioners. While good tools and methods are available for
designing, implementing and testing system parts that run on a single computer, there is a
lot to be desired when it comes to the cross-cutting aspects of services that require coop-
eration between several software components distributed over several machines.

Our work addresses the latter issues.

Firstly it defines services in a more general way than much of the current thinking, exem-
plified by Service Oriented Architecture; we consider a service to involve a collaboration
between objects, rather than an interface to an object. This means that a larger set of prob-
lems can be addressed by services, due to a more general definition.

Secondly, we present the core concept of semantic connectors as a reusable modelling
construct. Semantic connectors, and the pair of semantic interfaces they define, are used
as elements in the composition of more complex services, without any limitations regard-
ing the number of objects participating in the service.

Semantic connectors can be designed and validated as separate entities. Semantic inter-
faces are small state machines, and opposite semantic interfaces must adhere to basic
safety properties, entailing that all output from one interface must be accepted as input in
the opposite interface, and vice-versa, states taken into consideration.

The “semantic” aspect of semantic connectors is expressed by what we call service goals,
which characterize events or states that are desirable to achieve over the semantic connec-
tor. Service goals are used to check whether collaborations between objects can achieve
their intentions; if one can prove that service goals never can be achieved, then the collab-
oration has no useful purpose. We call this a validation of basic liveness properties, which
comes as an add-on to the validation of basic safety properties.

Furthermore, the behaviour of services composed of semantic interfaces can be character-
ised by what we call goal sequences. These provide an overview of the service logic,
focusing on the achievement of goals of the constituent semantic connectors. Collabora-
tion goal sequences facilitate the validation of composite service structures, and can be
used to derive role goal sequences that describe relationships between goals of semantic
interfaces. Actor goal sequences describe the ability of objects to play semantic interfaces,
taking sequences of goals into consideration.

viii

In addition to a compositional approach to service design and validation, our work also
shows how semantic interfaces can facilitate service discovery at runtime. By comparing
semantic interfaces and actor goal sequences of potentially connected actors, it is possible
to determine what services opportunities are available between peers, both in general and
at any specific time, i.e. dependent on the current context. Context dependent service dis-
covery is expected to increase in importance as the number and diversity of terminal
types, signalling and transport networks, and service providers increase.

Our work builds upon the work of other researchers, but represents a new approach. To
the best of our knowledge, our suggestions are new and original. Hence there is little to
compare with in terms of other initiatives, although there is a large volume of work that
constitutes our point of departure.

We use the second version of the Unified Modeling Language, UML 2, as a modelling
language. We make original and innovative use of some of the new constructs in UML, in
particular collaborations and collaboration uses, as well as interaction overviews. This
may be of interest to the UML community at large, not only to designers of convergent
services. The ability to model cross-cutting concerns using UML is of general importance.

Finally, we note that this work is being used as a basis for ongoing research and evaluation
work, most notably by the SIMS project funded by the European Commission, and by a
number of doctoral students at the Norwegian University of Science and Technology.

- ix -

Table of contents

Preface ... iii
Abstract .. vii
List of figures ..xv
List of definitions ...xxi
List of method rules .. xxiii

1 Introduction ...1
1.1 Motivation and background ...1

1.1.1 Experience from the battlefield of service development1
1.1.2 Inspiration from the world wide web paradigm ...2
1.1.3 Inspiration from earlier research work ...2

1.2 The client-server versus the peer-to-peer paradigm ..3
1.3 Research problems ...5

1.3.1 Modelling services ...5
1.3.2 Role modelling ...7
1.3.3 Service goals and goal sequences ..8
1.3.4 Validation ...8
1.3.5 Service discovery ...9

1.4 Introduction to the approach ..9
1.4.1 Semantic connectors, semantic interfaces and goals10
1.4.2 Goal sequences ..14
1.4.3 Validating services ...15
1.4.4 Service discovery ...17

1.5 Guide to the thesis ...17

2 Point of departure ..19
2.1 RM-ODP - a framework for distributed processing ..19
2.2 Systems engineering according to TIMe ...20

x

2.2.1 Abstractions in models ...21
2.2.2 Objects and properties ...22

2.3 Services ..24
2.3.1 Sessions and connectors ...27

2.4 Roles ..28
2.4.1 Service roles and actors ...29
2.4.2 Interface roles ..30
2.4.3 The role-playing principle ...33
2.4.4 Connected roles ..34
2.4.5 Role requests and role arbitration ..35

2.5 Service validation ..35
2.5.1 Role projection and validation ...36
2.5.2 Constructive and corrective methods ...37
2.5.3 Interaction safety ..38
2.5.4 Compliancy of role bindings ..39

2.6 Modelling objectives ...39
2.6.1 Horizontal relationships between roles ..39
2.6.2 Vertical relationships between roles ..40
2.6.3 Flexibility when binding roles to actors ..40
2.6.4 Collaboration behaviour, role behaviour and interface behaviour40
2.6.5 UML as modelling language ..40

3 Modelling services in UML ...43
3.1 Collaborations and collaboration uses in UML2 ...43
3.2 Services modelled as UML2 collaborations ..44

3.2.1 The suitability of UML2 to our service modelling requirements44
3.2.2 Definition of terms ...46
3.2.3 Service structures ...46
3.2.4 Modelling service roles in UML2 collaborations47
3.2.5 Approach to the modelling of service structures48

3.3 Service behaviour ..54
3.3.1 Activity diagrams ...54
3.3.2 Interaction diagrams ..54
3.3.3 State machines ...55
3.3.4 Interface state machines ...56
3.3.5 Interface behaviour ..58
3.3.6 Service role behaviour ...59

xi

3.3.7 Collaboration behaviour ..61
3.3.8 Actor behaviour ...65

3.4 Related work ..66
3.5 Method guidelines ...68

4 Service goals ...71
4.1 Role projection and safety properties ..71

4.1.1 Safe service roles ...72
4.1.2 Dual role ..73
4.1.3 Containment and obligation ...73
4.1.4 Discussion ..74
4.1.5 Motivation for expressing basic liveness properties77

4.2 Expressing basic liveness properties with service goals78
4.2.1 Definition of terms ...79
4.2.2 Examples of progress labelling ..80
4.2.3 Types of progress labels ...82
4.2.4 Using progress labels ...84
4.2.5 Deriving progress labels ..86
4.2.6 General aspects of service goals ..87
4.2.7 Service goal types ..88
4.2.8 Semantic interfaces versus p-roles: specified versus actual88

4.3 Live subtyping ...89
4.3.1 Removing behaviour ..89
4.3.2 Adding behaviour ..91
4.3.3 Live subtyping: compatibility between interfaces roles92
4.3.4 Live subtyping and collaborations ...94

4.4 Service goals expressed in UML2 ...95
4.4.1 Composite structures ..96
4.4.2 Interactions ...97
4.4.3 State machines ...99

4.5 Related work ..103
4.6 Summary: Modelling of service goals ...104
4.7 Method guidelines ...104

5 Goal sequences ...107
5.1 Collaboration goal sequences ..107

5.1.1 Collaboration goal sequences modelled by dependencies109

xii

5.1.2 Collaboration goal sequences modelled by interaction overviews110
5.1.3 Method guidelines ..116

5.2 Role goal sequences ..117
5.2.1 Role dependencies derived from collaboration dependencies117
5.2.2 Role goal sequences in interaction overviews119
5.2.3 Method guidelines ..123

5.3 Actor goal sequences ...123
5.3.1 Actor goal sequences modelled by activity diagrams124
5.3.2 Method guidelines ..126

5.4 Semantics ...127
5.4.1 Semantics of collaboration goal sequences and role goal sequences127
5.4.2 Semantics of actor goal sequences ...129
5.4.3 Formalized semantics for behavioural composition132

6 Service validation ...133
6.1 Progress checking: validating basic liveness properties133

6.1.1 Validation of interface roles ...133
6.1.2 Validation of service roles ..134
6.1.3 Algorithms and tools for validation of progress labels135

6.2 Validating compliancy with bound semantic interfaces142
6.3 Validating state-like goals ..143

6.3.1 Validating goal expressions ...144
6.3.2 Validating goal assertions in collaborations ...145
6.3.3 Validating goal assertions in service roles ...146

6.4 Consistency with interaction sequences ..148
6.4.1 Consistency with role goal interactions ...148
6.4.2 Consistency with collaboration goal sequences150
6.4.3 Consistency with actor goal sequences ..150

6.5 Runtime connector validation ..151
6.5.1 Runtime connector validation as part of role requests152
6.5.2 Challenging and challenged roles ..153

6.6 Summary of service validation techniques ..153
6.6.1 Connector validation ..154
6.6.2 Validating state-like goals ..155
6.6.3 Comparison ..156
6.6.4 Validation method overview ..156

xiii

7 Service discovery ...159
7.1 Introduction ...159
7.2 Discovery of compatible actors ...160

7.2.1 Example 1: two-party service ..160
7.2.2 Example 2: multi-role service ..161

7.3 Discovery of service opportunities ..162
7.3.1 Example: multi-role service ...163

7.4 Role learning ...165
7.5 Mechanisms ...167

7.5.1 Transformation of activity diagrams to transition charts167
7.5.2 Data structures ...170
7.5.3 Algorithms ...172

7.6 Scalability issues ...173

8 Conclusion ..175
8.1 Main contributions ...175
8.2 Planned further work ...176

8.2.1 SIMS - Semantic Interfaces for Mobile Services177
8.2.2 Planned doctoral work ...178

8.3 Other areas for further work ..179
8.3.1 Using organisational roles to assign actor behaviour dynamically180

9 Appendix A - Alternative UML modelling ..181
9.1 Modelling services as UML association classes ...181

9.1.1 Collaboration goals in association classes ...182
9.1.2 Two-party services ...182
9.1.3 Multi-party services ...184
9.1.4 Discussion ..187

10 Appendix B - Open issues ...191
10.1 Service structures ...191

10.1.1 Connectors external to a collaboration ..191
10.1.2 N-ary connections ..192

10.2 Goal sequences ..193
10.2.1 Goal dependencies for service roles ..193
10.2.2 Illustrating preceding goals ..194
10.2.3 Overlapping roles ...196
10.2.4 Multiple role goals ...197

xiv

10.2.5 Modelling parallel role-playing ...198
10.2.6 Semantics of goal sequences ..198
10.2.7 State invariants to express goals ..199
10.2.8 Alternative forms of goal sequence diagrams ..202

10.3 Evolution or revolution? ..204

11 Appendix C - Glossary ..205
References ..209

- xv -

List of figures

Fig. 1.1 The client-server paradigm [Bræk and Floch 2004]3
Fig. 1.2 The peer-to-peer paradigm [Bræk and Floch 2004]4
Fig. 1.3 Horizontal and vertical composition of services [Bræk 2004]4
Fig. 1.4 Services as collaborations between service roles played by actors8
Fig. 1.5 Semantic connector and a pair of semantic interfaces10
Fig. 1.6 Interface behaviour of a pair of semantic interfaces - with role goals11
Fig. 1.7 Call composed of semantic connectors ...11
Fig. 1.8 Modelling details of services, roles and goals ..12
Fig. 1.9 Service interactions and role goals ...13
Fig. 1.10 Actors play roles typed by a composite service ..13
Fig. 1.11 Goal sequences ...14
Fig. 1.12 Validating state-like goals ...15
Fig. 1.13 Connector validation ...16
Fig. 1.14 Discovery of compatible actors ..17
Fig. 2.1 Systems and their abstractions in models [TIMe 1999]21
Fig. 2.2 Networks and services [Floch 2003] ..24
Fig. 2.3 A service consisting of four service roles ...26
Fig. 2.4 Sessions, objects and service roles of a service invocation27
Fig. 2.5 Services, service roles and actors ...30
Fig. 2.6 Service roles and interface roles ...31
Fig. 2.7 Service roles and interface roles played by actors32
Fig. 2.8 Binding interface roles to UML interfaces ...33
Fig. 2.9 Role request pattern in ServiceFrame ...35
Fig. 2.10 Role projection and role validation ...36
Fig. 2.11 Constructive and corrective methods ..37
Fig. 3.1 Two-party service modelled using UML2 collaboration46
Fig. 3.2 Three-party service modelled using UML2 collaboration46

xvi

Fig. 3.3 Service roles modelled using UML2 collaboration47
Fig. 3.4 Modelling connectors using UML2 collaboration47
Fig. 3.5 Modelling service roles with interface roles ...48
Fig. 3.6 Elementary collaboration and a pair of interface roles49
Fig. 3.7 Composite service composed of elementary collaborations50
Fig. 3.8 Interface roles composed of elementary collaboration roles51
Fig. 3.9 Assigning service roles to actors ..51
Fig. 3.10 Multi-role service composed of elementary collaborations52
Fig. 3.11 Meeting Place Conference scenario ..52
Fig. 3.12 N-party service modelled as a collaboration - without connectors53
Fig. 3.13 N-party service composed of elementary collaborations53
Fig. 3.14 Sequence diagram for composite Call service ..55
Fig. 3.15 Sequence diagram for the elementary collaboration Call Setup55
Fig. 3.16 Interfaces and UML protocol state machines: not recommended56
Fig. 3.17 Validation of connected protocol state machines ..57
Fig. 3.18 Binding interface roles to ports: extended protocol state machines57
Fig. 3.19 Role behaviour for interface roles ..58
Fig. 3.20 SDL state machine diagram for service role Caller60
Fig. 3.21 Sketch of service roles of the Call service ..61
Fig. 3.22 Overview of collaboration states for the Call service62
Fig. 3.23 Collaboration states for the Call service with state orientation63
Fig. 3.24 Role states for Caller role with state orientation ...64
Fig. 3.25 Role states for Callee role with state orientation ..64
Fig. 3.26 SDL description of a UserAgent actor type (excerpt)65
Fig. 3.27 Overview of Actor behaviour emphasising service role selection66
Fig. 4.1 Projection of service roles to p-roles ..71
Fig. 4.2 Containment and obligation ..73
Fig. 4.3 Two-party service with interface roles An and Bn74
Fig. 4.4 Role A1: connection or messaging ...75
Fig. 4.5 Role B0 = mirror (A1), the mirrored role of A1, is not safe75
Fig. 4.6 Role B1 = dual (A1), the dual role of A1, is safe76
Fig. 4.7 Roles B2, B3, B4 and B5: safe but less useful alternatives to B177
Fig. 4.8 Role A1 combined with B5: a safe but useless alternative to B178
Fig. 4.9 Role A2: Graded progress labels added to A1 ..81
Fig. 4.10 Role A2 combined with B5: no progress achievable81
Fig. 4.11 Role A2 combined with B2 or B4: progress achievable82

xvii

Fig. 4.12 Role A3: A1 with service-specific progress labels added84
Fig. 4.13 Role with progress labels on exit points ...85
Fig. 4.14 Deriving progress labels from role goal interactions86
Fig. 4.15 Deriving progress labels from goal states ...87
Fig. 4.16 Role A3 and dual role B1: a pair of semantic interfaces89
Fig. 4.17 Roles B2, B3, B4 and B5: safely removing output from B190
Fig. 4.18 Interface role with too little output: obligation breached90
Fig. 4.19 Role B6: adding input-output behaviour is safe ...91
Fig. 4.20 Role A4: adding output-input behaviour is unsafe92
Fig. 4.21 Live subtyping: extending one role is safe and useful94
Fig. 4.22 Live subtyping: extending both roles is safe and useful94
Fig. 4.23 Live subtyping: extending one role, creating dual role from it95
Fig. 4.24 Two-party service structure with goal expressions96
Fig. 4.25 Three-party service structure with goal expressions96
Fig. 4.26 Semantic connector defines a pair of semantic interfaces96
Fig. 4.27 Meeting Place Conference scenario with role goals97
Fig. 4.28 Sequence diagram for composite Call service with service goals98
Fig. 4.29 Sequence diagram for semantic connector with goals98
Fig. 4.30 Role behaviour for interface roles with goals ...100
Fig. 4.31 Sketch of service roles of the Call service with service goals100
Fig. 4.32 Overview of collaboration states - goal added ..101
Fig. 4.33 Collaboration states using state orientation - goal added102
Fig. 4.34 Role states for Caller role with state orientation102
Fig. 5.1 Call composed of semantic connectors ...107
Fig. 5.2 Interaction for successful Call ..108
Fig. 5.3 Collaboration goal dependency for Call ...109
Fig. 5.4 MpConf composed of semantic connectors ..110
Fig. 5.5 Collaboration goal dependencies for MpConf ..110
Fig. 5.6 Connector goal interactions and interaction overview for Call112
Fig. 5.7 Interaction overview and goal sequence diagrams for Call113
Fig. 5.8 Goal expressions relevant for Call ..113
Fig. 5.9 Connector goal interactions for Mp, MpSession and MpCnf114
Fig. 5.10 Connector goal interactions for Mpc, MpcInfo and MpcAddOn114
Fig. 5.11 Interaction overview diagram for MpConf ...115
Fig. 5.12 Goal sequence diagram for MpConf ...115
Fig. 5.13 Role dependencies derived from collaboration dependencies118

xviii

Fig. 5.14 Role goal dependencies for MpConf ..118
Fig. 5.15 Role goal interactions for setup, accept and release120
Fig. 5.16 Role goal sequences for Call ..120
Fig. 5.17 Role goal interactions for MpConf (1 of 2) ..121
Fig. 5.18 Role goal interactions for MpConf (2 of 2) ..122
Fig. 5.19 Role goal sequences for MpConf ..122
Fig. 5.20 Actor goal sequence for PSTN UserAgent supporting Call125
Fig. 5.21 Actor goal sequence for UserAgent supporting multiple services125
Fig. 5.22 Actor goal sequences for Conference and Meeting Place126
Fig. 5.23 Collaboration goal sequence ...128
Fig. 5.24 Collaboration goal sequence with interaction constraints129
Fig. 5.25 Decision nodes and service opportunities ...130
Fig. 6.1 Flowchart of validation algorithms ...135
Fig. 6.2 Metamodel for validation algorithms [Alsnes 2004]142
Fig. 6.3 Validating compliancy between actors and semantic interfaces143
Fig. 6.4 Service goal expressions ...144
Fig. 6.5 Collaboration states and goal assertions ...145
Fig. 6.6 Service role state machines with role goal assertions147
Fig. 6.7 Role states with state orientation ..148
Fig. 6.8 Validating consistency with role goal interactions149
Fig. 6.9 Validating consistency with interactions: implied scenarios149
Fig. 6.10 Validating consistency with a collaboration goal sequence150
Fig. 6.11 Validating consistency with an actor goal sequence151
Fig. 6.12 Role request pattern ..152
Fig. 6.13 Challenged role associated with challenging role153
Fig. 6.14 Connector validation ...154
Fig. 6.15 Validating state-like goals ...155
Fig. 7.1 Discovering compatible actors: two-party service161
Fig. 7.2 Discovering compatible actors: multi-role service161
Fig. 7.3 Exploiting actor goal sequences to discover service opportunities163
Fig. 7.4 Initiating role A5 before learning ...165
Fig. 7.5 Responding role B1 ..165
Fig. 7.6 Initiating role A6 has more capabilities than A5166
Fig. 7.7 Learning a new service role ..166
Fig. 7.8 From actor goal sequences to transition charts ...168
Fig. 7.9 Possible mapping of join nodes ..169

xix

Fig. 7.10 Data structures for service discovery ..171
Fig. 9.1 Attempting to model two-party service using association class183
Fig. 9.2 The Call service modelled by an association class183
Fig. 9.3 Messaging service modelled by an association class184
Fig. 9.4 Meeting Place Conference as an N-ary association class185
Fig. 9.5 Meeting Place Conference as a set of associations186
Fig. 10.1 Interface roles external to a collaboration ...191
Fig. 10.2 Collaboration composed of sets of semantic connectors192
Fig. 10.3 Goal sequence diagram with loops ...193
Fig. 10.4 Goal dependencies for service roles (not recommended)194
Fig. 10.5 Goal sequence diagram illustrating preceding goals (1)195
Fig. 10.6 Goal sequence diagram illustrating preceding goals (2)195
Fig. 10.7 Nested goal dependencies ...196
Fig. 10.8 Alternative role goals ..197
Fig. 10.9 Role goal sequences versus actor goal sequences198
Fig. 10.10 State invariants as pre- and postconditions on role goals199
Fig. 10.11 Goal sequence diagram as a state machine ...202
Fig. 10.12 Goal sequence diagram as a special form of interaction diagram203

xx

- xxi -

List of definitions

Actor ...29
Actor goal ...80
Actor goal sequence ...123
Actual interface behaviour ...32
Alternative role ...93
Basic interface role ...80
Collaboration goal ..79
Collaboration goal sequence ...108
Compatible connected roles ...93
Compliancy between a service role and a semantic interface ..94
Compliancy with a semantic interface ...134
Connected role ..34
Connector ...27
Connector goal interaction ...111
Deadlock ...39
Discovery of compatible actors ..160
Dual role ...73
Elementary collaboration ..46
Enabled role ..129
Event goal ...80
Goal assertion ...80
Goal dependency ..109
Goal expression ..79
Goal sequence diagram ...111
Goal state ..80
Graded progress label ...82
Improper termination ..39

xxii

Initial state invariant ...200
Initiating role ..34
Interaction safety ..39
Interface role ...31
Level of progress ..82
Live interface role ...80
Live subtype ...92
Progress ambiguity ...137
Progress label ..80
Projection role (p-role) ...37
Responding role ..34
Role compatibility ..79
Role compliancy ...39
Role goal ...80
Role goal interaction ...119
Role goal sequence ...117
Safe interface role ...72
Safe service role ...72
Safe subtype ..93
Semantic connector ..79
Semantic interface ..79
Service ...26
Service goal ..79
Service invocation ..26
Service opportunity ..162
Service progress ..83
Service role ...29
Service structure ...46
Service-specific progress label ...83
Specified interface behaviour ...32
State-like goal ...79
Terminal state invariant ..200
Truncated role ...76
Unspecified signal reception ..38

xxiii

List of method rules

Role behaviour [TIMe 1999] ..33
Identify elementary collaborations ...68
Define interface role behaviour of the interface roles ..68
Identify composite services ..68
Identify roles (interface roles or service roles) of composite services68
Identify service role multiplicity of composite services ...68
Compose services from elementary collaborations ..68
Compose composite role behaviour from interface role behaviour68
Model composite service structure in a collaboration, wo/connectors (optional)68
Model composite service structure in a collaboration, w/connectors68
Identify actor types ...69
Bind service roles to actors ...69
Compose actor behaviour from interface role behaviour ...69
Insert graded progress labels in service roles ...86
Insert service-specific labels in semantic interfaces ...86
Derive service-specific progress labels ..87
Identify semantic connectors ..104
Identify semantic interfaces ..104
Identify goal expressions of semantic connectors (optional)104
Identify role goal expressions in semantic interfaces (optional)104
Identify role goal variables ...105
Identify or derive event goals of semantic interface ..105
Compose services from semantic connectors ...105
Identify collaboration goals of composite services (optional)105
Insert goal assertions in service roles (optional) ..105
Define connector goal interactions in sequence diagrams ...116
Include only successful interactions in connector goal interactions116
Define terminal state invariants in connector goal interactions116
Omit event occurrences after goal achievement ...116

xxiv

Define collaboration goal sequences in interaction overviews116
Derive role goal interactions ..123
Derive role goal sequences ...123
Causality remains undefined in role goal sequences ..123
Do not describe parallel behaviour in role goal sequences ..123
Model actor goal sequences ..127
Attach progress labels to unique events ...137
Initial state invariants must be consistent with terminal state invariants200
Terminal state invariants propagate to succeeding goal interactions201

- 1 -

1
Introduction

1.1 Motivation and background
The motivation behind this thesis is twofold, and has been a driving force throughout our
career as consultant, designer, researcher and teacher.

One is to come to grips with the essence of the problems we are trying to solve when we
design and deploy systems. Without a profound understanding of this, we are likely to cre-
ate new problems, not solve the existing. For instance, the essential needs of a user of a
service may be to get in contact with a doctor. In the days of manually switched exchanges
you could simply pick up any phone and ask for the doctor - and get connected1. Perhaps
one day we will be able to do that again.

Modelling the essential services and needs rather than the accidental technology of hand-
sets, phones and networks is a motivating force. This is why we have sought high-level
descriptions of services, focusing on the collaborating parties and their goals, rather than
dwelling on the technology used to perform services.

Another motivation has been a constant striving towards more professional development
processes. Good systems design is still too much of an art, and not enough of a craft. We
have constantly been on the lookout for better tools, better methods, better ways of tack-
ling the design process, building quality into product designs from the beginning.

Furthermore, we acknowledge that the technological advances imply that more control
over services will take place on networked terminals rather than on centralized switches.
Hence we have sought mechanisms that enable devices to discover and validate service
opportunities on a peer-to-peer basis, possibly on-demand. We hope to contribute to
retaining the time-proven quality level of telecom services even in a future ad hoc setting.

1.1.1 Experience from the battlefield of service development
The main motivation for our work stems from experiencing the complexity of designing
state machines capable of coordinating conflicting initiatives from multiple sources. This
is the nature of systems design experienced by designers of real-time systems rich on
behaviour - exemplified by the intercom exchanges we worked on at Stentofon.

1. The operator might know who and where your doctor was, and would connect you to that extension.

2 1 Introduction

Designing complex state machines that coordinate multiple initiatives is so complex that
it challenges the limitations of the human brain. It is no easy task to solve such challenges
- one day you may have a clear understanding of the parallel tasks being controlled by the
state machine, but when you return half a year later even you yourself can make fatal mis-
takes when altering or adding a small function. Not to speak of the risks involved in
subjecting it to a novice designer inexperienced in the design of such systems.

Attempting to divide and conquer this challenge is what lies behind the factoring out of
interactions in semantic connectors, and (re)using them in composite structures.

An observation made while working as a systems designer at Stentofon was that of the
market people negotiating service functionality with customers, while struggling with the
service designers with their own ideas of customer needs. Could there be a better way of
making conceptual models of services, consisting of modules that could be put together
in different ways? And described in a way that customers, market people and designers
can agree on? These considerations lie behind service goals and goal sequences to express
relationships between the semantic connectors. In addition, it is desirable to validate that
components indeed can reach goals when interacting.

1.1.2 Inspiration from the world wide web paradigm
Telecom systems have traditionally been statically designed, with detailed knowledge
about devices, networks and basic services deeply embedded in the architecture and code
of the systems. Even the Intelligent Networks architecture has a built-in Basic Call Model,
plus pre-defined trigger points that dictate much of the functional possibilities for subse-
quent tailoring of services.

In the world wide web, the client-server model is based on a “dumb” browser client not
really knowing much about the web sites the user visits. Here the server provides the con-
tent that determines the subsequent operation of the client. This means that the server at
any time can be changed, without having to worry about what clients have down-loaded
before; the next time the client accesses the server, they will get the new functionality.

We have found inspiration from this. We envision mechanisms to discover service oppor-
tunities on the fly, as they arise. And, taking this a step further, seeking to upgrade terminal
functionality while in use, i.e. role learning. Thus, for instance, new service capabilities
in a callee’s terminal can result in new features being made available to the caller. Such
“automated” deployment of services is not supported by traditional telecom systems.

1.1.3 Inspiration from earlier research work
For many years we have had the privilege of working with very skilled researchers; people
who have created new system design languages, methodologies and tools, people who
have been capable of distinguishing between the essential problems and the accidental
shortcomings of technology.

Most important when starting this work was the contribution towards plug-and-play serv-
ices of Jacqueline Floch. The validation mechanisms of her thesis [Floch 2003] address
safety properties, ensuring that errors will not occur when peers interact. We saw that role

1.2 The client-server versus the peer-to-peer paradigm 3

validation could be enhanced to include basic liveness properties, i.e. validating that
something good should be achievable as a result of the cooperation between peers. This
lead to our contribution of progress labels and consequentially to the formulation of
semantic connectors with semantic interfaces.

The modelling of services using UML2 collaborations was suggested earlier by Øystein
Haugen and Birger Møller-Pedersen [ARTS 2003]. Their initial verdict was not without
reservations, as the binding of roles to parts of classifiers has some restrictions. However,
the shortcomings of our initial attempt at modelling services using UML association
classes forced us to reconsider the use of UML2 collaborations. The work of Haugen and
Møller-Pedersen inspired us to pursue the matter further.

However, our greatest inspiration has been provided by the systems engineering perspec-
tive of Rolv Bræk. His view on role modelling [Bræk 1999] underpins our approach. In
addition, state orientation, which stems from the early days of structure-oriented model-
ling [SOM 1981], was a particular inspiration: could this be put to renewed use in
modelling and validation? We have adopted some of this thinking in our suggestions for
modelling collaboration behaviour.

1.2 The client-server versus the peer-to-peer paradigm

Some essential characteristics of peer-to-peer systems in the telecom domain compared to
client-server systems in the computing domain need to be recognized in order to appreci-
ate the problems we are addressing, and to put our contributions into perspective. There
are fundamental differences between their communication models and service concept.

Many practitioners within the computing domain consider systems and services according
to the client-server paradigm. Such systems are characterized by passive objects respond-
ing to operations, communication by procedure calls, and one-way interfaces supporting
request-response interactions, as illustrated in Figure 1.1.

Essentially, only one side of the communication will ever take the initiative to communi-
cate. This is the paradigm behind CORBA and, more recently, Web-services and what has
been coined as service-oriented computing or a service-oriented architecture (SOA).

Figure 1.1 : The client-server paradigm [Bræk and Floch 2004]

Distributed resources

initiative
response

Distributed resources

initiative
response

4 1 Introduction

Telecommunication systems, on the other hand, are characterized by the peer-to-peer par-
adigm, where active objects with collaborating behaviour communicate via signals over
two-way interfaces in symmetrical interactions, where communication initiatives may be
taken simultaneously from several directions, see Figure 1.2.

The behavioural complexity of peer-to-peer systems is by nature greater than that of cli-
ent-server systems, as simultaneous and possibly conflicting initiatives must be handled
by each peer.

While ICT convergence is gradually bridging these views, it can be argued that peer-to-
peer is the most general paradigm, while the client-server paradigm can be seen as a spe-
cial case [Bræk and Floch 2004].

Services in computing systems are often viewed as a computation or information process-
ing operation accessed via an interface. Such a service is provided by an object or
component. This is the principle underpinning service-oriented computing, see e.g.
[Singh and Huhns 2005]2.

In contrast to this, the peer-to-peer services of the telecom domain result from the collab-
oration between several actors (active objects or components), see Figure 1.3.

2. However, even within this domain the definition of the term service is not unanimous, see e.g. [Jones 2005].

Figure 1.2 : The peer-to-peer paradigm [Bræk and Floch 2004]

Distributed service logic

two-way initiatives

Distributed service logic

two-way initiatives

Figure 1.3 : Horizontal and vertical composition of services [Bræk 2004]
ActorA ActorB ActorC ActorD ActorE

Horizontal
composition
across actors

Vertical composition within actors

Service 2

Service 1

Service 3

Service 2Service 2

Service 1Service 1

Service 3Service 3

Service role

1.3 Research problems 5

We address convergent services. Such services combine communication control services
with aspects of information services. We do not specifically address application services
in the computing domain, nor transport services within the telecom domain.

We consider a service to be a collaboration between service roles played by actors. Com-
plex convergent services typically involve more than two actors. An actor is typically
capable of playing several service roles, both simultaneously and/or alternately. Providing
a service means executing a successful collaboration between roles.

In this problem area there are a number of well-known issues.

• Telecommunication services are becoming increasingly complex as network and ter-
minal diversity increases, and as more information aspects are added. There are greater
expectations from users and service providers for services to offer personalization and
context awareness, and to operate across network and service provider boundaries.
Hence it is desirable that services are well-formulated and well-understood by all
stakeholders. Formal descriptions that readily lend themselves to human understanding
are a key to this end. Formal validation is also increasingly important to achieve service
quality, but easy-to-use validation tools seem to be out of reach for many practitioners;

• The languages and techniques traditionally used to design telecom systems focus on
describing protocols and control behaviour by means of state machines and asynchro-
nous signalling. However, systems and service modelling at the requirement stage tend
to use textual descriptions with informal diagrams, supplemented by informal models
such as Use Case diagrams. Added precision is possible using activity diagrams and
sequence diagrams. A challenge remains to find better ways to model services sepa-
rately in ways that are precise, readable and compositional, i.e. supportive of the
succeeding design and composition of actors (system components);

• There are also growing expectations from users and network operators that services
should be discovered dynamically on-the-fly as soon as they are deployed, implying
that new functionality is propagated to users in a semi-automated, ad hoc fashion.

1.3 Research problems
Several central issues have been addressed by our work:

• The modelling of services, including the modelling of service roles and service goals;

• The validation of services, with a focus on modular validation of units of service struc-
tures and service behaviour;

• Service discovery of convergent services.

Below we briefly outline each problem area.

1.3.1 Modelling services
Telecom services are characterized by complex reactive behaviour. Capturing this behav-
iour in models has been a challenge for several decades, and explains the advent of
modelling languages and methods in the 70’s3. While modelling structure is established

6 1 Introduction

in many fields of engineering and architecture, formal models of behaviour are few and
mostly leave a lot to be desired in terms of expressive power and validation opportunities.

One challenge is to provide behaviour models that are easy to understand for humans, and
easy to analyse by machines. A second challenge is to describe service behaviour without
binding the system design and implementation unduly.

Prototyping and simulation are techniques that help people to understand the conse-
quences of system solutions prior to their complete construction. This applies both to ICT
systems and to systems in general. But such mock-ups only give a flavour of certain
aspects, and generally do not lend themselves to formal validation.

Inherent to the problem lies the fact that two dimensions must be grasped.

1. One is the interactions between cooperating objects, and the relationships between
these interactions. Present (and thus future) behaviour is a function of what has already
happened, and the combined behaviour of cooperating entities must be captured and
understood. The cross-cutting relationships between cooperating objects and their
interactions are what we choose to call the horizontal dimension in Figure 1.3.

2. The other dimension is the composition of the objects that take part in the interactions;
the vertical dimension. Systems are built from objects, and it is they that perform the
actions of the system. So understanding and modelling them is always of great impor-
tance. The challenge is that the focus on object design takes attention away from the
horizontal dimension, and one quickly loses sight of the environment in which the
object acts. This often leads to errors and misunderstandings about the role that an
object plays in relation to other objects.

There is a large body of work intended to help stakeholders and designers address these
modelling dimensions, such as the languages in the ITU-T family, which include:

• User Requirements Notations (URN) [GRL 2003], [UCM 2003] for expressing
requirements at a high level;

• Specification and Description Language [SDL-2000] and Message Sequence Charts
[MSC 2004] for describing structure, behaviour and interactions between systems and
components;

• extended Object Definition Language [eODL 2003] for describing the architecture and
deployment of distributed system components;

• Test and Test Control Notation [TTCN 2003] for describing test suites.

These languages have matured considerably since the early beginnings [Telektronikk 4/
2000]. Methodologies (such as [SDL Method 1997], [TIMe 1999]) and tools (e.g. [Telel-
ogic], [Cinderella]) are available.

Recently the Unified Modeling Language (UML) has emerged as a leading modelling lan-
guage. UML2 [UML 2.0] has included most of the expressive power of SDL and MSC,

3. The first version of recommendation Z.100 Specification and Description Language came in 1976. Methodologies
like SOM were used in leading edge industrial projects from the early 1970s [Bræk 1977, 1979], applying the prin-
ciples of finite state machines [Hennie 1968] to communication control systems.

1.3 Research problems 7

albeit without the same degree of formal definition of the semantics4. Tools and method-
ologies for UML2 are expected to be found in abundance, considering that UML has
obtained such a dominating position as a modelling language in the IT community.

However, good models that address both the horizontal and vertical dimensions described
above are hard to come by. Informal textual descriptions and diagrams are still common-
place in the ICT domain, even in recent standardisation work (e.g. [TIPHON 2003]5). Of
the ITU-T languages listed above, for instance MSC focuses specifically on the horizontal
dimension, while SDL has its strong points on the vertical axis; the combination of the
two leaves many things to be desired, especially their relationship, for example what is
required for an SDL system to be compatible with an MSC.

There clearly is a need to address how services best can be modelled to span both dimen-
sions, and, given the current trends, investigate how this can be done using UML, if at all.
One of our goals is to explore whether new and better ways of expressing the essential
properties of convergent services are enabled by the recent advances in UML2.

1.3.2 Role modelling
The concept of describing functional properties in roles was suggested in [OORASS
1992], [OOram 1995], and was partly covered by classifier roles in UML1. A composi-
tional approach to roles was outlined in [TIMe 1999], describing role behaviours and
indicating how class behaviours could be composed of role behaviours.

[TIMe 1999] and [Bræk 1999] are points of departure for our work on services and role
modelling. They define terms such as service roles, session roles and projection roles, and
their relationships to type modelling. [Bræk 1999] clarified important shortcomings of
UML1, such as its inability to treat role descriptions (classifier roles) in a general way,
independently of type descriptions or classifiers (which UML1 required that they were
bound to), and the absence of two-way signal exchange in UML interfaces. The former is
addressed by UML2 collaborations, while the latter is as yet still missing, as we shall see.

It is desirable that roles should be described and analysed separately from actors. Actors
can then be assigned roles depending on what services they take part in, see Figure 1.46.

[Floch 2003] used SDL for formal modelling of behaviour, but had an informal descrip-
tion of structure. We seek to express horizontal and vertical relationships between roles
using UML2. We know from [Bræk 1999] that UML1 did not provide support for role
behaviour on interfaces. We seek to explore other ways of describing interface behaviour
in UML, investigating whether UML2 offers new possibilities.

4. In UML the semantics is defined in prose form, with some additional constraints expressed in the Object Constrain
Language [OCL 2.0] and many semantic variation points. It lacks the formal semantics of SDL [SDL Semantics]
or MSC [MSC Semantics].

5. TIPHON (Telecommunications and Internet Protocol Harmonisation Over Networks) uses MSC and SDL to
define functional entities, but the overall architectural service models are informal diagrams supported by text.

6. This is an informal diagram, meaning it does not use UML. It is adapted from [Floch 2003].

8 1 Introduction

1.3.3 Service goals and goal sequences
Goals can be used to capture the various objectives a system or component should
achieve. Expressing goals is well known in the domain of requirements engineering
[Lamsweerde 2001]. However, existing approaches to goal orientation do not seem to be
concerned with interaction behaviour between distributed cooperating components. We
seek to find ways of expressing service goals, as well as methods of validating whether
service goals can be met during interactions between cooperating objects.

Service goals identify desirable states or events. They characterize whether a system, a
component or an interaction is useful or not. In addition comes the need to express rela-
tionships between services goals, recognizing that the achievement of preceding goals can
make succeeding goals achievable. This is what we call goal sequences.

1.3.4 Validation
Formal validation of communicating systems has a long tradition in the telecommunica-
tion domain, and is witnessed by the efforts put into the formal semantics of modelling
languages [SDL Semantics] [MSC Semantics] and validation tools like the SDL Validator
[Telelogic]. Formal model checking is also a mature field, and has resulted in specific lan-
guages and tools like Promela and SPIN [Holzmann 1991, 2003].

A limitation of these approaches is that they are not incremental, but must be repeated for
each system composition. In addition validating real systems is often infeasible due to the
state explosion problem. The standard solution to this is to build validation models for
selected aspects of a complete system in order to simplify the analysis.

[Floch 2003] and [Floch and Bræk 2003a] contributed to improve this, and went into
detail on modelling service roles in SDL 2000, the projection of service roles into projec-
tion roles, and a constructive and corrective approach to role validation. While this
approach validates basic safety properties, i.e. checking whether errors occur, it does not
address basic liveness properties, that is checking whether something useful can happen
in a cooperation. Thus there is a need to add the possibility of expressing and validating
basic liveness properties in the same framework.

Figure 1.4 : Services as collaborations between service roles played by actors

b:Actor

user A

ra:role_a

user B

rb:role_b

collaboration A-B

legend: service role interface role

BA

a:Actor

object

1.4 Introduction to the approach 9

Liveness properties can for instance be expressed in Promela and checked by SPIN. How-
ever, in addition to the state explosion problem, such languages and tools need dedicated
experts to formulate the models and interpret the results. One of the strong points of
[Floch 2003] is that the validation techniques do not require a separate model or model-
ling language, but can use the design language commonly used, which in her case was
SDL. Analysis does not entirely depend on tools, as with traditional model checking, but
can be performed by any skilled SDL designer, thanks to the focus on interfaces and
projections.

1.3.5 Service discovery
Service discovery is a topic receiving due attention from the ICT community. Frameworks
and protocols for service discovery have been defined in well-established technologies,
such as CORBA [CORBA 2001], as well as in newer and emerging technologies, such as
IETF’s Service Location Protocol [SLP 1999, 2002], Bluetooth’s Service Discovery Pro-
tocol (SDP), Parlay [OSA 2003], [JINI 2004] and Web services with its Universal
Description, Discovery and Integration protocol [UDDI 2004], [JAIN 2004].

However, most of the contributions and discussions in this area relate to discovery of cli-
ent-server services. According to that paradigm, service discovery entails finding which
servers are available to perform what services, and a service is typically defined by a
remote procedure signature. Through service discovery, clients can find both what serv-
ices are available (in terms of signatures and service capabilities), and where to direct
service requests, since servers may be distributed. The mechanisms involved typically
require servers to register their services and capabilities at so-called lookup servers.

In the peer-to-peer paradigm, the challenge is profoundly different. An initiator of a tele-
phone call normally wants to call a specific peer, and is not looking for a server that is
capable of performing some general computation service. The initiator wants to know
what peers can be reached using which service. A peer is not just a record in a distributed
database, like a passenger seat in an aeroplane flight, but also an object with substance and
behaviour of its own. It is the peer’s potential behaviour that is of interest for service dis-
covery, for instance if it is capable of accepting an incoming call or an instant message,
both as a general capability at some time, and as a specific capability at the present time.

How can entities with a desire to communicate with each other determine in advance if
they are capable of achieving goals while interacting? Static interfaces can be compared,
but we also need to analyse their possible behaviour. Are requested and provided behav-
iour compatible? Given that service opportunities come and go depending on a peer’s
context and state, how does this influence service discovery? Are there ways of learning
service opportunities on the fly? These are some of the questions we seek answers to.

1.4 Introduction to the approach

In this section we give a brief introduction to the main elements of our approach. Our
intention is to give the reader an overview, prior to presenting the details. Hence in the
following we do not precisely define any of the terms used.

10 1 Introduction

As shall be seen, the approach consists of a number of techniques:

1. Modelling semantic connectors using UML2 collaborations with a pair of roles called
semantic interfaces whose behaviour is described by state machines;

2. Modelling composite services by binding semantic interfaces to service roles using
UML2 collaboration uses;

3. Modelling computational objects (actors) by binding service roles to them;
4. Expressing service goals for collaborations, service roles and semantic interfaces;
5. Modelling goal sequences for collaborations, roles and actors;
6. Validating services, which entails validating the basic safety and liveness properties

of collaborations, roles and actors; and
7. Service discovery, meaning discovering compatible actors and service opportunities,

as well as role learning.

In the following subsections we give a short outline of each technique.

1.4.1 Semantic connectors, semantic interfaces and goals
Semantic connectors and their semantic interfaces form the building blocks for composi-
tional service design, and play a central part in goal sequences, service validation and
service discovery. Semantic connectors are used to express the specified interface behav-
iour of actors and/or service roles. In contrast, projection roles express actual interface
behaviour of actors and/or service roles.

Semantic connectors are modelled in UML2 using elementary collaborations, i.e. UML2
collaborations with two and only two collaboration roles, see Figure 1.5.

A semantic connector has a dual pair of semantic interfaces, each defining one end of the
semantic connector. A semantic interface comprises a role name, a role type and role
goals. A collaboration goal can be defined by a goal expression, i.e. a property condition
that characterizes the goal of the semantic connector as a whole. In Figure 1.5, for
instance, the collaboration goal is expressed as the conjunction of two role goals.

Role goals are represented by boolean attributes in the scope of the semantic interfaces.
The semantic interfaces define their interface behaviour in UML using a form of state
machine diagrams that we call extended protocol state machines, see Figure 1.6.

The interface behaviour includes assignments of goal values, and can specify event goals
and state-like goals. Event goals are marked by progress labels, while state-like goals are
expressed by goal assertions, as in Figure 1.6.

Figure 1.5 : Semantic connector and a pair of semantic interfaces

Setup

inviter:Inviter 1 invitee:Invitee 1

{def: goal : Boolean = inviter.goal and invitee.goal}

Semantic connector

Semantic interface Semantic interface

1.4 Introduction to the approach 11

Note that a semantic interface does not define complete object behaviour; it describes
interface behaviour, i.e. the sequence of input and output events over a semantic connec-
tor. In particular, a semantic interface does not define why events are output; this is instead
described by service roles.

More complex services, i.e. with multiple goals and multiple roles, are composed of
semantic connectors. This is achieved by binding the roles of the semantic connectors to
service roles in UML2 collaboration uses, see Figure 1.7.

A composite collaboration identifies the service roles of the composite service, and which
semantic interfaces of the semantic connectors are bound to them. We represent service
roles with octagons to differentiate them graphically from interface roles.

In Figure 1.7 we see for instance that the four semantic interfaces inviter, receiver, rel_ee
and rel_er, which are defined by the three semantic connectors Setup, Accept and
Release, are bound to the service role A. In fact, A can play both the roles defined by
Release. Similar role bindings are defined for the service role B.

Figure 1.6 : Interface behaviour of a pair of semantic interfaces - with role goals

callingcalling

idleidle

Ringing

Inviter {xprotocol}

Reject

idleidle

CallRequest

progress:
Setup_Init

RingingAtB
{goal==True}

calledcalled

freefree

Invitee {xprotocol}

freefree

Ringing

A-Ringing
{goal == True}

Reject

CallRequest

progress:
Setup_Resp

Role goal assertion

goal:=False

goal:=True

goal:=False

goal:=TrueRole goal variable

Progress label
marks an
event goal

Figure 1.7 : Call composed of semantic connectors

<<s-role>>

A:Caller 1

<<s-role>>

B:Callee 1

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee

Semantic interfaceService role

rel_er

Semantic
connector

12 1 Introduction

UML requires that the role bindings are compatible: in our terms, the classifiers must be
compliant with the role types bound to them. Compatibility in role binding is a semantic
variation point in UML2. In our approach, compliance means:

• An actor must accept all the input specified by the bound role, however it can accept
more;

• It can provide less output compared to the bound role, but enough to enable basic
liveness;

• It must not provide more output compared to the bound role when playing with an actor
that is compliant with the opposite semantic interface.

We say an actor or a service role is compliant with a semantic interface if the projection
of its behaviour on the semantic connector is a live subtype of the interface behaviour of
the semantic interface. This entails providing enough output to achieve goals (hence live).

We do not require that projected behaviours are identical to the behaviour of the bound
role types. For instance, it suffices that the projection of A on the connection represented
by setup must be a live subtype of the role type of inviter in Figure 1.7, i.e. a live subtype
of the Inviter in Figure 1.6.

Additional properties of a service can be modelled in collaboration diagrams, see
Figure 1.8, as well as in other diagrams.

Examples of additional properties include:

• modelling the connections between service roles as connectors; on connector ends rec-
tangular icons can optionally be used to highlight the interface role names;

• distinguishing between initiating role and responding role to show which can take a
first initiative. This is shown by dark and light colouring of connector end icons respec-
tively, and/or as an arrow head on the connector end or the role binding;

Figure 1.8 : Modelling details of services, roles and goals

Service_abc

<<s-role>>

a:Type_a a1
a2

<<s-role>>

c:Type_cc1

<<s-role>>

b:Type_bb1

aa a ba ba b goal
a b

c
goal

a b
c

a b
cabc

Collaboration states

Initiating
role

Responding
role

su1:serv_feat1

Connector

su2:serv_feat2

1.4 Introduction to the approach 13

• defining collaboration states in state machine diagrams, possibly referring to the appro-
priate states of the role types, and optionally defining collaboration goals;

• defining collaboration interactions in sequence diagrams to express collaboration goals
and/or role goals; see Figure 1.9. As we shall see, goal assertions in sequence diagrams
are closely related to progress labels found in semantic interfaces.

UML2 collaboration uses are used to bind service roles to actors7, see Figure 1.10. This
is analogous to composing services from semantic connectors by binding semantic inter-
faces to service roles.

The composite service Call in Figure 1.10 is composed of four semantic connectors.
Actors are typed with the semantic connectors bound to them. This simplifies dynamic
validation and enables dynamic service discovery.

UML requires that roles are compatible with the classifiers they are bound to. In
Figure 1.10 UserAgent must be compliant with both Caller and Caller. Our approach seeks
mechanisms to validate role compliancy at design time and at runtime.

7. Formally actors are active objects with behaviour compliant with the service roles bound to them, i.e. actors are
the system components that actually execute the service roles.

Figure 1.9 : Service interactions and role goals

inviter:Inviter invitee:Invitee

CallRequest(inviter,invitee)
Ringing

sd Setup_goal

{goal == True} {goal == True}

Role goal
assertion

Role goal
assertion

Figure 1.10 : Actors play roles typed by a composite service

he:User
Agent [A]

she:User
Agent [B]hiscall:Call

A B

plays plays
Collaboration

useActor

role binding

<<s-role>>

A:Caller 1

<<s-role>>

B:Callee 1

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee rel_er

14 1 Introduction

Note that the synthesis of service role behaviour from semantic interfaces lies outside the
scope of our work. The same applies to the synthesis of actor behaviour from service roles
and/or semantic interfaces.

1.4.2 Goal sequences
With composition of services from semantic connectors comes the need to express rela-
tionships between the constituent parts. This is where goal sequences come in. Goal
sequences express vertical and horizontal goal relationships. They express how reaching
one goal is an enabling condition for another.

We identify three different types of goal sequences, see Figure 1.11:

• collaboration goal sequences define how the achievement of collaboration goals ena-
bles new collaborations, thus defining both horizontal and vertical goal relationships;
the sequences refer to goals of semantic connectors that the service is composed of;

• role goal sequences are derived from collaboration goal sequences, and define goal
sequences of semantic interfaces played by service roles, showing how the achieve-
ment of goals enables new semantic interfaces to be played. These are constraints that
must be respected by the actors playing the service roles;

• actor goal sequences express the sequence of semantic interfaces supported by an actor
type, showing how the achievement of goals enables new interface roles to be played.
Actor goal sequences are constrained by the collaboration and role goal sequences.
Actors with different role-playing capabilities have different actor goal sequences.

Figure 1.11 : Goal sequences

sd Call_goals

ref

ref

A:Caller B:Callee
setup

A:Caller B:Callee
accept

inviter invitee

PSTN_UserAgent_roles

Setup_inviter_
invitee

/* Invite peer */

Accept_receiver_
accepter

/* Peer accepts call */

Setup_invitee_
inviter

/* Invited by peer*/

Accept_ accepter_
receiver

/* Accept call */

Idle
Collaboration

goal sequence Role goal
sequence

Actor goal
sequence

sd Call_A_goals

setup.
Setup_inviter_invitee

/* Invite peer */

accept.Accept_
receiver_accepter

/* Peer accepts call */

ref

ref

receiver accepter

1.4 Introduction to the approach 15

Goal sequences distinguish between initiating and responding roles. This is used during
service discovery.

1.4.3 Validating services
The validation method exploits the chosen modelling approach:

• Composing services as a collaboration of service roles allows a focused validation of
the collaboration per se, while disregarding other aspects. One can perform model
checking on the collaboration, and ascertain that goals can be reached;

• A special case is the elementary collaborations that define a semantic connector. These
can be validated independently. The pair of semantic interfaces of a semantic connector
can subsequently be bound to actors and service roles;

• Actors are typed by semantic connectors, and one can validate that actors are compliant
with the semantic interfaces bound to them. The same applies to service roles;

• Connections are validated by checking semantic connectors.

The result is a validation method that is modular and compositional. Validation can be per-
formed on types at design time; once performed it does not need to be applied to actor
instances or repeated at runtime. Hence the validation approach scales well.

Two sets of techniques are presented: validating state-like goals and connector validation.

Validation of state-like goals uses model checking techniques to validate whether collab-
oration goals, role goals and actor goals can be reached.8 Each technique is performed as
a separate step addressing a specific aspect, as illustrated in Figure 1.12.

Standard model checking techniques are used to explore the state space of the combined
model elements in search of achievable service goals. Validating state-like goals is carried
out on service roles and on the actor types that play the service roles. Collaboration goal
validation checks whether a collaboration can achieve its designated collaboration goals.

8. Note that validation of state-like goals uses traditional model checking techniques, and may run into the problems
that follow from limitations of space and time that accompany these techniques.

Figure 1.12 : Validating state-like goals

<<s-role>>
Type_a

<<s-role>>
Type_b

Service_aba b

:actor_a :actor_b
:Service_ab

a b

plays plays

goalgoal
goalgoal

goalgoal

aa a ba ba b goal
a b

Collaboration goal validation

Role goal validation

Actor goal validation

16 1 Introduction

Role goal validation establishes which goals can be reached by the service roles, given a
particular binding of semantic interfaces to service roles. Actor goal validation deter-
mines whether an actor is compliant with roles bound to it.

The other validation technique is called connector validation. It complements validation
of state-like goals by validating the basic safety and liveness properties of actual or spec-
ified interface behaviour, see Figure 1.13.

An advantage of connector validation is the simplification obtained by specifying state
machines that define the interface behaviour. This results in more moderate demands for
computational resources to perform the validation. The computationally demanding parts
can be done at design time and are limited to the connector. Hence this technique is used
wherever possible.

Improved scaling of runtime validation is enabled, as this can be reduced to compatibility
checks on semantic interfaces. However, in practice a combination of the two techniques
is needed, as suggested in the validation method.

Validating whether a so-called projection role (p-role) is compliant with a semantic inter-
face implies checking whether the p-role is a live subtype of the semantic interface. If so,
then the actor or service role is compliant with the semantic interface, and can play safely
and usefully with actors that are compliant with the dual semantic interface.

A point that should be stressed is the central position of semantic connectors and their pair
of semantic interfaces. A prerequisite is that the basic safety and liveness properties of the
semantic connector have been validated. Failing these two tests means that the collabora-
tion representing the semantic connector is not well-formed. Both connector validation
and validation of state-like goals are used to establish these facts.

1.4.3.1 Assumptions regarding validation of liveness

In our validation approach we introduce mechanisms to ascertain that progress can be
achieved. We call this a validation of usefulness or basic liveness. However, this form of
validation can arguably be viewed as checking a safety aspect, and not ascertaining live-

Figure 1.13 : Connector validation

C
om

pl
ia

nc
y

ch
ec

ki
ng

<<s-role>>
a:Type_a

pa

A B

<<s-role>>
b:Type_b

pb

Design rule
validation

:actor_a :actor_b

plays plays

pa pb

ab: semantic
connector

Design-time connector validation

Runtime connector validation

C
om

pl
ia

nc
y

ch
ec

ki
ng

project project

playsplays

1.5 Guide to the thesis 17

ness in the strict meaning of the term, see e.g. [Alpern and Schneider 1985]. This is due
to a key assumption made in role validation, which is that output eventually will be sent.

Our techniques do not check whether this assumption holds. To do so would constitute a
validation of “liveness proper”. Checking complete liveness properties is an integral part
of the development process, and needs to come in addition to the techniques presented in
our approach. However, we argue that the validation mechanisms we suggest are mean-
ingful; without possessing basic liveness properties according to our terms, actors playing
the roles will not be able to achieve goals, and validation of “liveness proper” would be a
waste of effort.

1.4.4 Service discovery
Semantic interfaces can be exploited to achieve static and dynamic discovery of compat-
ible actors, see Figure 1.14.

Semantic interfaces simplify the mechanisms required to find compatible actors. This can
be combined with goal sequences to establish an actor’s service opportunities toward a set
of compatible actors. The techniques can also be used to facilitate role learning.

1.5 Guide to the thesis
The thesis is structured as follows:

1. This introduction has given the motivation behind the work, and discussed the
research problems addressed, as well as giving an introduction to the approach;

2. Chapter 2 outlines the point of departure for our subsequent contributions. It gives an
overview of previous work, such as RM-ODP and The Integrated Method - TIMe. We
define basic concepts such as services, roles and actors, discuss existing validation
approaches and our modelling objectives, including why we use UML;

3. Chapter 3 presents our approach to modelling services using UML2 collaborations
and collaboration uses;

4. Chapter 4 presents service goals, and how these are integral parts of semantic connec-
tors and semantic interfaces;

5. Chapter 5 presents goal sequences, where we express relationships between semantic
connectors in terms of goal achievements, expressing how the reaching of preceding
service goals enables succeeding goals to become achievable;

Figure 1.14 : Discovery of compatible actors

service
discovery

service
discovery

<<s-role>>

A:Caller

<<s-role>>

B:Callee
Call

:UserAgent :UserAgent

plays plays

18 1 Introduction

6. Chapter 6 presents our contributions to validation, i.e. validation of state-like goals
and connector validation, including the validation of basic liveness in collaborations
by checking for the presence of progress labels in role projections;

7. In chapter 7 we discuss future directions for service discovery, how it can be facili-
tated by semantic interfaces, outlining an approach to static and dynamic discovery of
service opportunities, and indicating how role learning can be achieved;

8. Chapter 8 contains our conclusions, and present plans and suggestions for future
work.

Appendix A discusses an alternative service modelling approach using UML association
classes. This is included to underscore how UML2 collaborations are superior to this.

Appendix B lists a number of open issues that were identified during the course of the
work, and discusses some possible ways forward.

Appendix C lists the definitions of terms in alphabetical order.

A list of references is included at the end.

We have illustrated our approach by a set of toy services. These have been carefully cho-
sen to demonstrate various aspects of the approach. To keep them small, many details
have been omitted, e.g. all network issues are abstracted away. Typically, service proto-
cols are shown at a high level, disregarding details such as signal parameters.

We stress that the techniques are not limited to the simple examples; our motivation for
including examples is to enable the reader to appreciate some of the principles underpin-
ning the techniques.

- 19 -

2
Point of departure

In this chapter we present parts of previous work upon which we build our approach. We
define our use of terms such as services, connectors, roles and actors, and present the
principles underlying the validation mechanisms that we extend. We list the objectives
underpinning the modelling of services, and motivate for our choice of UML2.

2.1 RM-ODP - a framework for distributed processing
It is common practice to distinguish between different levels of abstraction or modelling
viewpoints when describing or prescribing ICT systems of any complexity. ICT profes-
sionals commonly accept RM-ODP, Reference Model for Open Distributed Processing,
as a taxonomy of such viewpoints.

RM-ODP defines a range of basic modelling concepts that we base our work on, such as
the concept of objects. Some of the important passages are quoted from [RM-ODP 1998]:

ODP system specifications are expressed in terms of objects. An object is a represen-
tation of an entity in the real world. [...] A system is composed of interacting objects.
An object is characterized by that which makes it distinct from other objects and by
encapsulation, abstraction and behaviour.

Encapsulation is the property that the information contained in an object is accessible
only through interactions at the interfaces supported by the object. Because objects are
encapsulated, there are no hidden side effects of interactions. That is, an interaction
with one object cannot affect the state of another object without some secondary inter-
action with that object taking place. Thus, any change in the state of an object can only
occur as a result of an internal action of the object or as a result of an interaction of
the object with its environment. [...]

Objects can only interact at interfaces, where an interface represents a part of the
object’s behaviour related to a particular subset of its possible interactions. Each inter-
face is identified with a set of interactions in which the object can participate. Note that
these interactions do not necessarily occur with other objects: an object can interact
with itself. An important characteristic of the concept of object in the RM-ODP is that
an object can have a number of interfaces. [...]

Object composition yields composition of states and behaviours and it is therefore pos-
sible to speak of a composite behaviour and of a composite state. [...]

20 2 Point of departure

One object is said to be behaviourally compatible with another object in some environ-
ment if the first object can replace the second, without the environment being able to
detect any difference. Any particular interpretation of behavioural compatibility will
impose constraints on the allowed behaviour of the environment. [...]

A contract is an agreement that governs cooperation among a number of objects, and
embodies the ideas of obligation, permission, prohibition and expectation associated
with cooperating objects. [...] A contract can specify the roles of objects and the obli-
gations applying to roles, i.e. the expected cooperative behaviour [...]

Binding behaviour establishes a contractual context (a binding) between interfaces
and enables object cooperation. A binding can exist at several levels of abstraction.

A liaison is the relationship that exists between the objects cooperating under the aus-
pices of a binding. When the liaison is in place, an object knows that the other objects
in the liaison obey the contract. An object can be involved in several simultaneous liai-
sons: for each of these liaisons there is a corresponding contract.

In this thesis, we primarily address issues pertaining to the computational viewpoint:

The computational viewpoint: A viewpoint on the system and its environment that ena-
bles distribution through functional decomposition of the system into objects which
interact at interfaces. [...]

The computational viewpoint is directly concerned with the distribution of processing
but not with the interaction mechanisms that enable distribution to occur. The compu-
tational specification decomposes the system into objects performing individual
functions and interacting at well defined interfaces.

Our focus lies in service modelling, and our definition of service deviates from the infor-
mal use of the term in RM-ODP. However, the concepts that we suggest, such as service
structures, service goals and goal sequences, are all aimed at the computational viewpoint,
as are the mechanisms for validation of liveness properties at interfaces.

Our research also addresses services at the level of domain models, and as such is related
to the enterprise viewpoint1 of RM-ODP. Service goals are property descriptions belong-
ing to domain models and application models. Domain models capture issues in the
problem domain, and identify domain-given objects and properties. In an ideal world
domain models will be common for a large range of systems, each with its own system
description. A domain model will be stable as long as the problem area remains stable.

Issues related to the other viewpoints in RM-ODP (informational view, engineering view
and technology view) lie outside the scope for our work.

2.2 Systems engineering according to TIMe
An additional pillar upon which we base our work is the understanding of the systems
engineering challenge (and a suggested method of conquering it) according to TIMe - The
Integrated Methodology [TIMe 1999]. We do not suggest that TIMe is in all ways superior

1. A viewpoint on the system and its environment that focuses on the purpose, scope and policies for the system.

2.2 Systems engineering according to TIMe 21

to other system development methodologies, but it does address issues that are important
to our work. According to TIMe, the essence of systems engineering is to understand
needs and to design systems having properties that satisfy the needs in a cost-effective
way.

In this section we present the elements of TIMe that are particularly relevant to our work.

2.2.1 Abstractions in models
Concrete systems in the real world are composed of physical parts and software that pro-
vides services to users. To implement such systems we make detailed descriptions of the
physical composition and software, so-called implementation descriptions.

However, implementation descriptions are often too detailed to be easily understood by
humans. There is a conflict between the needs of machines and the needs of humans. To
satisfy humans, we need abstractions that remove technical detail of implementations and
allow us to concentrate fully on the aspects that are important for the designer and user.

To bridge the conflicting needs of human interpretation on one hand and physical con-
struction on the other, TIMe defines models at two main levels of abstractions: the abstract
world and the concrete world, as illustrated in Figure 2.1

The abstract world emphasizes concepts and behaviour related to user needs. They define
system behaviour in an abstract form that can be understood, communicated and analysed
without binding the implementation more than necessary.

The concrete world describes the implementation. It includes the architecture models,
which are a high level description of the physical implementation. In addition come the

Figure 2.1 : Systems and their abstractions in models [TIMe 1999]

Domain models

Objects Properties

Application models

Objects Properties

Architecture models

Objects Properties

Abstract world

Concrete world

System descriptions

WHAT

HOW

Systems

Domain models

Objects Properties

Application models

Objects Properties

Architecture models

Objects Properties

Abstract world

Concrete world

System descriptions

WHAT

HOW

Systems

22 2 Point of departure

implementation descriptions, which are composed of a variety of notations and languages
for hardware design and programming.

The main point here is that we use abstractions primarily to improve human understanding
and communication and enable reasoning.

2.2.2 Objects and properties

As seen in Figure 2.1, TIMe makes the important distinction between two related model
types: object models and property2 models.

• Object models describe how a system or component are composed of objects, connec-
tions and relationships. They are constructive in the sense that they describe how an
entity is assembled from parts. This is the perspective of designers;

• Property models describe properties of a system or component without prescribing a
particular construction. They are not constructive, but used to characterise an entity
from the outside. There are many kinds of properties: behaviour properties, perform-
ance properties, maintenance properties, etc. This is the perspective preferred by users
and marketing people. It is also the main perspective in specifications.

A central idea in TIMe is that every object is characterised by properties that can be used:

1. to understand what the object does;
2. to check whether it is suitable for the environment where it is used;
3. to synthesize the design;
4. to verify that the design satisfies needs by matching provided and required properties;
5. to retrieve a suitable object from a library, given some required properties.

Property models are not necessarily bound to object models, while object models shall
normally be bound to property models. This holds for all object models: domain models,
application models, and architecture models.

Concrete world properties are associated with the concrete models and state properties
relevant to the implementation. They are often termed Non-functional properties and
characterize the implementation. But as this is not a topic in this thesis, we do not go into
more detail on these types of properties.

Abstract properties are associated with the abstract object models. Since abstract models
focus on functionality (behaviour), these properties are often termed Functional proper-
ties. They characterise the behaviour of objects, and the collaboration between objects.

Functional properties are classified in the following categories:

• General properties, which are properties that can be expressed independently of partic-
ular objects, services or interfaces. An important class of general properties is safety
properties, which state what should never happen, such as unspecified signal reception,
deadlock and improper termination;

• Service properties, which are properties related to specific services. Important aspects

2. We use the term property in the sense of “a characteristic trait or quality” of the object in interest.

2.2 Systems engineering according to TIMe 23

are the service roles that objects shall play to perform the service and the interaction
behaviour between these roles,

• Interface properties, which are properties related to specific interfaces. Services are
controlled via interfaces, and interfaces may have properties of their own. These prop-
erties (i.e. protocols) must be followed by both sides of the interface. Objects may have
several interfaces, and the same interface may apply to several objects;

• Data properties. These express what can be said about the data contained in a system
in terms of what they mean for the environment.

Users tend to think in terms of services and interfaces. Therefore it is customary to char-
acterise systems using a service-oriented perspective. This is best explained in contrast to
the vertical perspective illustrated in Figure 1.3 on page 4. Many services will naturally
involve several objects. A normal call in a telephone system involves at least two objects:
the calling subscriber and the called subscriber. There is no point in one without the other.
The service perspective allows us to see the two in combination, but only to see fragments
of each object. In the object perspective we can see the complete object, but only frag-
ments of each service.

As we said in the introduction, the service perspective provides a horizontal view, taking
in all the collaborating parts. Even the human end user can play a role. This is opposed to
a vertical view of taking in just one object, and considering its complete behaviour.

TIMe makes two important observations:

1. Service and interface properties span several objects. They are composed of (sub)prop-
erties of different objects. An important advantage of the property perspective is the
possibility to combine and describe interaction properties of different objects in one
place. It encourages us to describe service and interface properties in one place so that
they may be used to characterise all object types using the service or interface.

2. Object properties are composed of sub-properties belonging to different services and
interfaces. However, the composition of properties into objects is not as simple and
well-defined as the composition of objects into systems. The reason is that objects
encapsulate behaviour and have interfaces, whereas object properties are likely to be
only fragments of behaviour without clearly defined interfaces.

TIMe poses two requirements on functional property models:

1. It should be possible to express property models without referring to specific objects
or object types. The reasons for this is that we sometimes need to specify properties
without knowing the objects (types) they shall be associated with, and that we may
want several different objects to share the same properties, such as a common interface.

2. It should be possible to compose the properties of an object from parts described in dif-
ferent property models.

The role concept aims to satisfy both these requirements. Roles represent objects in prop-
erty models in an anonymous fashion, and one may compose the properties of an object
from different roles described in different property models.

24 2 Point of departure

It is not obvious that a property description is consistent with an object design. When
relating object design descriptions and property descriptions we seek principles that can:

1. perform verification and validation based on described properties;
2. check compliancy between object models and property models;
3. extract and describe properties of objects in a way faithful to the object design;
4. synthesize a consistent object design from property specifications.

The notion of roles is a key to all this. We shall return to roles after having defined what
we mean by services.

2.3 Services
Many of the terms and concepts we use to discuss ICT systems have multiple definitions,
ranging from their ordinary linguistic use to the range of more or less precise definitions
used within certain ICT fields. This is certainly true of the terms that are most central to
this thesis, such as services, actors and roles; each has a colloquial meaning, and each
conveys a different understanding among various groups of ICT professionals.

The term services is probably the most overloaded of them all. In daily use we may think
of a service as something an organization or system provides to the public. For instance,
a service is useful labour that does not produce a tangible commodity [Sassen and Mac-
millan 2005]. Among ICT professionals, the term has several more or less specific
meanings.

In her discussion of services, [Floch 2003] suggests a taxonomy, see Figure 2.2.

Most ICT professionals refer to application domain services when they use the term serv-
ice. As we pointed out in section 1.2, this is the viewpoint of the client-server paradigm.
According to this view, services are software modules that are accessed by name via an
interface, typically in a request-reply mode, i.e. all initiatives originate on one side.3 This

3. This is consistent with the term service as used in UML, where a service is “a stateless, functional component that
returns a value” [UML2 Ref] p. 589.

user

Figure 2.2 : Networks and services [Floch 2003]

network

service

1..*

*

offeruse
*

*

application
domain service

transport
service

communication
control service

communication
 service

system

use
*

*

2.3 Services 25

is the perspective of service-oriented computing. Service requests only influence each
other to the degree that they compete for the same resources, such as seats in a cinema or
positions in a queue of printing jobs on a printer.

In contrast to this, for communication control services, coordination is part and parcel.
Such services take care of what is often called service logic, meaning the “things that hap-
pen when users or devices take initiatives towards each other”. Generally such services
are symmetrical or peer-to-peer, meaning that initiatives may originate at several compu-
tational objects, and potentially cross each other and cause conflicts that must be resolved.

Setting up a telephone call between two or more participants is a typical example of a
communication control service, and can involve a whole range of complex decisions for
the parties involved. Who is the caller allowed to call? What to do if (some of) the cal-
lee(s) are busy? What to do if a callee initiates call back? These are but a few of the issues
that typically have to be settled before a call is connected.

In general we can say that services are either single-sided or multi-sided:

• Single-sided services are of the client-server type, where all initiatives originate on one
side. Most application domain services are single-sided;

• Multi-sided services are of the symmetric peer-to-peer type where initiatives may orig-
inate on several sides and potentially cross each other, causing conflicts.
Communication control services are usually multi-sided.

In this thesis the needs of communication control services are addressed, being an impor-
tant aspect of convergent services. When used alone, the term service should be
understood as meaning a convergent service.

Communication control services cannot exist by themselves. The rely on transport serv-
ices to allocate and set up transport channels in the network, and to allocate network
resources in order to secure connectivity and transport capacity. Typical transport services
are voice, video and data transfer over various network technologies such as ISDN, GSM
or IP. In this thesis we abstract away from all details of the transport network, assuming
that it provides a network-independent interface to convergent services.

Before we formulate our definition of service, let us assess a few candidates. One defini-
tion is the following:

A service is a unit of behaviour which characterizes what a system (or component) pro-
vides for the user. A service is normally given a name. Services may be interleaved in
time. [TIMe 1999]

In our view this definition puts too much focus on the user, and does not cater for services
between computational objects. A more general definition is as follows:

A service is an identified (partial) functionality, provided by a system, component, or
facility, to serve a purpose for its environment. [Bræk 1999]

This definition considers a service to be relative to goals of the environment it serves. It
identifies functionality as an asset for the environment. As such, it may have a price and
be provided as a commercial offering, i.e. a service as defined by Intelligent Networks [IN
1993]. A drawback with this definition is that it does not include the behaviour of the envi-

26 2 Point of departure

ronment as part of the service, and thus does not fully cover the peer-to-peer aspect. This
is true of RM-ODP as well, it informally refers to services as “offered by objects”.

We need the concept of service to cover the joint behaviours of the computational objects,
as well as the purpose relative to the environment. We also see the need to distinguish
between service types, which we just call services, and instances of these, which we call
service invocations.

Our definitions of the terms service and service invocation are as follows:

Definition: Service
A service is a collaboration between concurrent and potentially distributed service roles
played by computational objects in order to provide some identified functionality to the
environment.

We defer defining service roles to section 2.4.1.

Definition: Service invocation
A service invocation is an instance of a service.

A service invocation exists from the first event occurrence in the role taking the initiative
to commence the service, and until the involved service roles have completed the last
event occurrence of the service.

In our approach we model service using UML2 collaborations, see Figure 2.3.

In our work, we address convergent services that combine traditional telecom, multime-
dia, messaging, context-awareness and information services. They are convergent in the
sense that they combine elements of the peer-to-peer paradigm with client-server solu-
tions. In other words, the multi-sided services we address can have elements that follow
the pattern of single-sided services. This does not pose a problem for our approach; the
communication mechanisms needed to support multi-sided services can support single-
sided services, while the opposite is not true [Bræk and Floch 2004]4.

4. Synchronous communication can work well for single-sided services, but not for multi-sided. Asynchronous com-
munication works for both kinds of services. In [RM ODP 1998] interactions between computational objects are
essentially asynchronous; operations are explained in terms of a combination of asynchronous signals.

Figure 2.3 : A service consisting of four service roles

<<s-role>>
Service_

role_1

<<s-role>>
Service_

role_4

<<s-role>>
Service_
role_3

<<s-role>>
Service_
role_2

Service_1234

2.3 Services 27

2.3.1 Sessions and connectors
In communication control services, a session is a fundamental concept. It corresponds to
the RM-ODP term liaison. Many communication control services involve sessions in one
form or another: a two-party call session, a conference session, and a chat session are typ-
ical examples of service sessions.

In this thesis we use the term connector when we are referring to session types5.

Definition: Connector
A connector is a binding between two roles that can carry the interactions of a service.

Since our focus is on types and not on instances, we use the terms session and connection
informally, meaning a path6 between computational objects for the interactions of a serv-
ice invocation, see Figure 2.4.

In general, sessions and connectors are not confined to communication control services;
for instance [TINA 1999] defines concepts such as access sessions (between user and sys-
tem), communication sessions (co-ordination of network resources) as well as service
sessions (provision of the service itself). However, in this thesis, we do not distinguish
between media streams and control streams, and do not go into in-band signalling or any
other network related issues, since the focus is on convergent services.

Note that not all of the services exemplified in this thesis are traditionally characterised
by sessions. Positioning services, instant messaging or email are all examples of services
that involve data exchanges of an instantaneous nature, and one does not normally speak
of a session being established. However, we shall treat such “instantaneous” service role
relationships in the same way as more long-lasting relationships, in order to present a uni-
form approach for all types of advanced services.

5. Note that session types are called service associations in [Floch 2003].
6. In UML parlance a session or connection corresponds to a link between objects.

Figure 2.4 : Sessions, objects and service roles of a service invocation

Object3

Object1Object1 Object2

<<s-role>>
:Service_

role_1

<<s-role>>
:Service_

role_4

<<s-role>>
:Service_

role_3

<<s-role>>
:Service_

role_2

session1_2

session3_4

session1_3 session2_3

28 2 Point of departure

2.4 Roles
The concept of roles is well known from daily life, where we speak of ourselves in terms
of functions we perform as members of some organisation, such as employee, conductor
etc., or in relation to others, such as parent, child, sibling etc. One can indeed distinguish
between functional roles and relational roles:

• In a play, such as Peer Gynt by Henrik Ibsen, we find roles such as Peer and Mor Aase.
During a theatre performance we find actors playing Peer and Mor Aase. The roles, as
described by Ibsen, specify required properties of the actors without specifying what
other properties they may have. Good actors provide the properties in a way that make
us believe that Peer and Mor Aase are real. After the play is over, the actors will do
other things and provide other properties. This notion of a role can be formalized as the
properties of an object appearing in the context of a service, i.e. functional roles;

• Another notion of role comes from the relationship between objects. A person has the
role of father in relation to his daughter, husband in relation to his wife and owner in
relation to his car. This notion of role can be formalized as properties of an object
appearing in relation to another object, i.e. relational roles.

Relational roles are typically related in pairs. The role of daughter is complemented by
the role of father. It is also typical that the role corresponds to properties required in
that relationship. One may well play many relational roles, but they should not all be
mixed. Reactions are bound to surface if a person mixes the role of “lover” with the
role of “parent”, for instance.

Relational roles are commonly known from entity-relationship modelling, and are for
instance used within role-based access control, see e.g. [Ferraiolo et alia 2001].

Both types of role are useful in understanding and describing reality, and have gradually
made their way into modelling languages. Both can for instance be modelled in UML7:

• Functional roles can be modelled as roles in UML2 collaboration diagrams, capturing
the role that classifiers play when interacting with other classifiers8;

• Relational roles can be modelled as properties of classifiers related by associations in
class diagrams9.

Roles are a useful concept in systems modelling for a number of reasons:

• So much seems to depend on the point of view. Every object will have a relative view
on other objects in its environment. This applies to both types of roles;

• Relational roles are often represented by associations in UML, e.g. the father - daugh-

7. Note that UML2 has tidied up the multiple use of the term role in UML1: ClassifierRole, AssociationRole, and
AssociationEndRole have been replaced and generalised by ConnectableElement, Connector and ConnectorEnd
respectively. Association end is no longer a model element, and has been superseded by Property. The “role” term
is referred to in Use Cases, but only in an informal way. Collaboration role has been introduced to reference con-
nectable elements, and represents roles that instances may play within a UML2 collaboration.

8. A collaboration describes a structure of collaborating elements (roles), each performing a specialized function,
which collectively accomplish some desired functionality [UML 2.0] p. 164.

9. Thus capturing “participation of instances of the classifier connected to the end in links of the association” [UML
2.0] p. 36.

2.4 Roles 29

ter roles. Such roles are important to describe and to understand;

• There is some symmetry among the functional roles played at the two sides of an
interface.

In our work, it is the functional roles that are of interest, for exactly the latter reason. As
we shall see, a special kind of functional role called an interface role can play an important
part in designing and analysing behaviour.

The role concept we use has its roots in the SISU project [TIMe 1999] and in the Plug &
Play project [Aagesen et alia 1999], with its theatre analogy. We use [Bræk 1999] as our
starting point for defining roles; this extends [Aagesen et alia 1999] to define different
types of roles that computational objects play in convergent services. Finally we use
revised definitions of roles as set out in [Floch 2003]10.

Below we define two types functional roles: service roles and interface roles.

2.4.1 Service roles and actors
Service roles are the parts that computational objects play in a given service. In a basic
telephone call, for instance, it is common to differentiate between an initiating and a ter-
minating subscriber role. These roles must be played by different computational objects
in the same call since an object cannot call itself11. Service roles can be dynamically
assigned, implying that objects take on different service roles over time.

Definition: Service role
A service role is the part a computational object plays in a service12. A service role can
play several interface roles, both simultaneously and alternately.

In other words a service role is the part of the behaviour of a computational objects that
relates to a particular service. In our work we assume that the behaviour of a service role
is described by a composite state in UML or SDL. A service role hence cannot act by
itself, but is part of a computational object13, and is entered from and exits to the state
machine of that object. We call such computational objects actors14.

Definition: Actor
An actor is a computational object that can play service roles. An actor can play several
service roles, both simultaneously and alternately.

An actor can be described and implemented as an extended finite state machine, commu-
nicating with other actors via asynchronous signals. Actors coordinate between composite
states of service roles. Underpinning our approach is the understanding that interacting

10. Session roles in [Bræk 1999] were called service association roles (a-roles) in [Floch 2003]. We in our turn chose
to call them interface roles. Both semantic interfaces and projection roles are interface roles.

11. Note, though, that an object may be capable of playing both roles simultaneously in different calls.
12. [Floch 2003] p. 21.
13. If a service role has attributes, an object playing the service role must accommodate them.
14. In UML, the term actor has a special use. “Actors model entities external to the subject” [UML 2.0] p. 571. The

UML term for actor as we use it is Active Object, “an object that, as a direct consequence of its creation, com-
mences to execute its classifier behaviour, and does not cease until either the complete behaviour is executed or
the object is terminated by some external object” [UML 2.0] p. 424.

30 2 Point of departure

actors can belong to different systems, i.e. run on distributed devices communicating over
disparate networks, and play a part in services offered by different service providers.

The relationship between services, service roles and actors is summarized in Figure 2.5

A service consists of two or more service roles, as illustrated by Figure 2.4. Service roles
can be composed of other service roles; service roles that are not decomposed are denoted
elementary service roles.

[Floch 2003] defines design patterns for the coordination of concurrent service roles; this
is not a topic of our work.

2.4.2 Interface roles
RM-ODP defines the term role as follows:

A role identifies, in a template for a composite object, a behaviour to be associated with
one of the component objects.

A role may correspond to a subset of the total behaviour of a component object. When
an object is viewed in terms of a role, only a named subset of its actions is of interest,
and other actions are abstracted away, possibly to other roles. A component object may
have several roles at a given time depending upon its interactions, and may take dif-
ferent roles at different times. These roles may be associated with interfaces.

This corresponds to what we call an interface role. In general, every computational object
provides some roles at its interfaces, and expects compatible roles to be played by objects
in its environment, see Figure 2.6.

Figure 2.5 : Services, service roles and actors

Service

1

2..r

involves

Service role

Actor

can be played by

performs in

plays

1

1

11..s

1..n

1..a

2.4 Roles 31

Figure 2.6 shows a service consisting of four service roles, here represented by octa-
gons.15 The connections between the service roles are represented by connectors, and are
constituent parts of the service. At each endpoint of a connector there is an interface role.

Definition: Interface role
An interface role describes the (actual or specified) interface behaviour of an actor or serv-
ice role at a connector endpoint.

Interface roles are property descriptions that play an important part in designing and ana-
lysing actor behaviour:

• It should be possible to characterise internal behaviour in a purely external way,
removing all irrelevant internal detail. Such behaviour is factored out in interface roles;

• It should be possible to use such interface roles to simplify the validation of connectors,
so that one can routinely ascertain that actors are instantiated only in environments
where they will work properly;

• Validation effort, like development effort, should be modular. It should be possible to
focus validation and verification effort on types in a manner that simplifies the valida-
tion of actors. Validating the interface roles of an actor type should be sufficient to
establish its ability to interact safely and usefully with its environment.

Interface roles allow us to describe and study interaction behaviour at a particular inter-
face, and to disregard details of the interactions at the other interfaces. Using interface
roles, we may describe and analyse the properties of each interface separately. In that way
we obtain an external view of an actor or service role from a particular vantage point.

Interface behaviour works in two ways: it may describe the actual behaviour exhibited by
the actor or service role, or behaviour that the actor or service role is specified to exhibit.

15. The icons for service roles and interface roles are not standard UML. UML stereotypes can be used to define such
icons.

Figure 2.6 : Service roles and interface roles

<<s-role>>
Service_
role_1

a

b

<<s-role>>
Service_
role_4

h
<<s-role>>
Service_
role_3

g

fe

legend: service role interface role

<<s-role>>
Service_
role_2

c

d

connector1_2

connector3_4

connector1_3
connector2_3

Service_1234

32 2 Point of departure

Definition: Actual interface behaviour
Actual interface behaviour is the behaviour an actor or service role exhibits at an interface.

Definition: Specified interface behaviour
Specified interface behaviour is the behaviour an actor or service role is specified to
exhibit at an interface.

The service roles in the role structure shown in Figure 2.6 represent anonymous actor
objects. Roles should not need to specify which actors play them; roles should be defined
independently of objects. Actor behaviour can in turn be bound to a set of service roles.
An allocation (or binding) of the roles of Figure 2.6 to actors is exemplified in Figure 2.7.

The binding of interface and service roles to actors is the mechanism used to support the
two-dimensional composition of services illustrated in Figure 1.3. We discuss compliancy
of role binding in section 2.5.4 below.

Note that service roles can be involved in more than one service, as defined by the per-
forms in relationship in Figure 2.5. This is illustrated above by the interface roles x, y and
z, which belong to some other service(s) not shown in Figure 2.3 or Figure 2.6. For
instance the service role Service_role_1 is involved in the service depicted in Figure 2.4,
as well as in some other service of which x is an interface role.

UML provides a concept of interfaces for structured classifiers, see Figure 2.8.

Several connectors can be combined on the same UML interface. Figure 2.8 shows one
way the interface roles of Figure 2.7 can be bound to UML interfaces. In this example, the
interface roles of actor a2 have been combined into a single interface, although they could
have been split into several, while the interface roles d, f, x, y and z of Figure 2.8 have not
been bound to interfaces.

An object will often be able to play several service roles, which may be accessible from
the same interface, as shown by a2:ActorType2 in Figure 2.7. Figure 2.8 also illustrates
how provided and required interfaces are attached to ports in UML2.

Figure 2.7 : Service roles and interface roles played by actors

a3:ActorType3

a1:ActorType1a1:ActorType1 a2:ActorType2

<<s-role>>
:Service_

role_1
a

b

<<s-role>>
:Service_

role_4
h

<<s-role>>
:Service_

role_3
g

f
e

<<s-role>>
:Service_

role_2
c

d

session1_2

session3_4

session1_3 session2_3

x y

z

2.4 Roles 33

[Bræk 1999] and [TIMe 1999] defined so-called “association roles” describing the visible
behaviour of a computational object at a connector end, with the special case “interface
role” describing the visible behaviour at an interface. Since synthesis of actor behaviour
is not addressed by our work, we do not need to distinguish between observable behaviour
at a connector end or at an interface. Specifically we do not consider composite interfaces
like int2 in Figure 2.8.

2.4.3 The role-playing principle
Role-playing is symmetric; validating an interface is to check whether both sides play the
roles they mutually require from each other. The notion of roles are closely connected to
the notion of validation and thus to system quality. TIMe summaries this with the follow-
ing method rule:

Method rule: Role behaviour [TIMe 1999]
Define the [interface] behaviour of each role in the system and in the environment. Use
the roles as a basis for behaviour synthesis and validation.

Interface roles are fundamental to our approach to validation. They may be used to relate
design descriptions and property descriptions:

1. to analyse the properties of an interface role by itself, to see whether it is well formed.
This can be done independently of any particular application of the role;

2. to analyse the actual interface behaviour of an actor, to see whether it behaves in a
well-formed manner over a connector. This can be done independently of any peer;

3. to verify that the actual behaviour of an actor is compliant with its specification. This
means checking actual interface behaviour against specified interface behaviour;

4. to synthesize object behaviours that are correct by construction. Note that this is not
part of our present work.

Figure 2.8 : Binding interface roles to UML interfaces

a3:ActorType3

a1:ActorType1 a2:ActorType2

<<s-role>>
Service_
role_1

a

b

<<s-role>>
Service_

role_4
h

<<s-role>>
Service_
role_3

g

fe

<<s-role>>
Service_
role_2

d

c

legend : provided
interface

required
interface

int1b

int2

int3

int1a

x y

z

port port
interface role

34 2 Point of departure

2.4.4 Connected roles
A service involves at least two distinct service roles, as defined in Figure 2.5. For instance
a call is initiated by one party, and is directed towards another. In the telecom domain
these roles are commonly recognized and defined by service designers, e.g. the former
role is referred to as the Caller or A, while the latter is denoted Callee or B.

The roles that collaborate to provide a service are called connected service roles. Caller
and Callee are examples of connected roles. Connected interface roles play a central part
in our approach, which is why the term connected role refers to interface roles only.

Definition: Connected role
An interface role is called a connected role with respect to an opposite interface role, if it
intends to16 interact with that interface role over a connector, or actually does so.

In Figure 2.7 the interface roles b and e interact, and are thus connected roles. An interface
role is connected to exactly one connected role in a service session. Connected roles are
closely related; one represents the environment of the other.

Note that we use the term connected role to mean a potentially connected counterpart that
one does not necessarily interact compatibly with, e.g. one targeted in a role request (see
below). Role compatibility is checked by the validation techniques, see section 2.5.1.

At least one of a pair of connected interface roles must be able to send a first signal over
the connector between them. Inspired by initiating and responding actors in RM-ODP, we
denote such a role as an initiating role, while an initially “passive” role is called a respond-
ing role17.

Definition: Initiating role
An initiating role is an interface role that can send a first signal over a connector.

Definition: Responding role
A responding role is an interface role that does not send any first signal over a connector.

We have considered using the terms “required” for an initiating role, and “provided” for
a responding role, as these are well established terms for interfaces. However, due to the
definition of interfaces in UML, an interface role needs both a provided and a required
UML interface in order to support two-way signal exchange, see the discussion in
section 3.3.4.

The fact that a role sends a first signal is important in connection with service discovery
and validation, which is why we defined the terms responding role and initiating role.
Note that both interface roles of a connector can be initiating roles, i.e. both can send a
first signal.

16. “Intends to” refers to an attempt to bind a pair of actors at runtime. In certain situations a pair of actors may attempt
to initiate an interaction without having validated a priori that they can interact compatibly.

17. “Responding” in this context means “accepting the first communication”. In traditional two-party telecom serv-
ices, one is called the initiating or originating role, while another is called the target or terminating role. However,
this relates to the initiative of establishing the connection, which may be different from sending a first signal.

2.5 Service validation 35

2.4.5 Role requests and role arbitration
We have argued that roles are important modelling terms. But they may also be important
concepts in implementation frameworks. For instance in the experimental service devel-
opment and execution framework ServiceFrame [ServiceFrame 2002], sessions
(instances of connectors) are established as a result of role requests, i.e. a requesting actor
asks for a certain interface role to be played by a requested actor, see Figure 2.9 below.

In this interaction the requesting actor supplies an identification of the desired role (B)
and/or its own interface role behaviour (A) in the request, and receives an identification
of the connected role’s actual interface role behaviour (B’) in the confirmation. Role arbi-
tration and validation can be performed by ActorStateMachine, based on knowledge of (A
or B) and B’.

The role request pattern can be used to achieve dynamic role binding, see [Castejón and
Bræk 2005]. In our work we discuss how the role request pattern can support an aspect of
service discovery called role learning, see section 7.4.

2.5 Service validation
Validation can generally be said to consist of two classes of techniques: static analysis and
dynamic analysis:

• Static analysis checks that interfaces between components are compatible, for instance
by checking the type compatibility of signals exchanged. Static analysis is a basic tech-
nique, and is not treated further. In our approach to validation we take it for granted
that static analysis is successfully performed prior to dynamic analysis;

• Dynamic analysis takes into consideration the order of events occurring during system
execution; an aim is to evaluate all possible interactions that may occur between coop-
erating objects. Dynamic analysis demands more computing resources in terms of time

Figure 2.9 : Role request pattern in ServiceFrame

requesting:ActorTypeA requested:ActorTypeB

ActorStateMachineActorStateMachine
1. Request (B,A..)

3. Confirm (B’)

2. Play (B’)

<<s-role>>

Service_
role_a

<<s-role>>

Service_
role_b

B’

A
Session

36 2 Point of departure

and space, and checking all possible interactions often exceeds available resources due
to the state space explosion encountered in reachability analysis. Real systems must
often be simplified in order to perform dynamic analysis.

Since our focus is on services, we use the term service validation rather than system val-
idation. Service validation targets services that cross system boundaries.

2.5.1 Role projection and validation
Role projections are similar to geometrical projections in that they show everything that
is visible from a given angle, and hide the rest. As in geometry, we can use projections to:

• synthesize new objects, like a carpenter builds a house from a set of blueprints;

• make projections of existing objects, in order to document and analyse their properties.

Instead of geometrical views, we are interested in the observable behaviour of objects.
Synthesis is not a theme of this thesis, while validation of the behaviour of objects is.

The concept of projection was proposed in [Lam and Shankar 1984] for the analysis of
single functions in a protocol. In that work, protocols were decomposed into modules that
handle different functions, and each module was defined as a projection of the whole pro-
tocol. This projection technique was exploited in [Bræk and Haugen 1993] to sketch a
projection transformation and analyse the projected interfaces. [Floch 2003] (see also
[Floch and Bræk 2003a]) developed this idea further, and her results are a basis for our
present work. She introduced the use of role projection to perform safety checks of the
derived roles. The principle is illustrated in Figure 2.10.

Projection is an abstraction technique that results in a simplified system description
emphasising some of the system properties while hiding some others. Rather than analys-
ing an entire system, the analysis is carried out on projections only. In the work of [Floch

Figure 2.10 : Role projection and role validation

b:UserAgent

user A

<<s-role>>
Service_
role_a

user B

<<s-role>>
Service_
role_b

collaboration A-B

collaboration A-B'
<<s-role>>
Service_
role_b

B
<<s-role>>
Service_
role_a

A

Association
validated

p-role A:
Projection of

role_a to role_b

p-role B:
Projection of

role_b to role_a

Hidden
interactions

Hidden
interactions

Hidden
interactions

Role
projection

a:UserAgent

Role validation

2.5 Service validation 37

2003], the projection only retains the aspects required to validate a connector between two
service roles. Projection hides internal actions and external interactions that are not rele-
vant in the validation of a particular connector.

[Floch 2003] defines a projection transformation for the generation of interface roles from
service roles. Such interface roles describe the visible (interface) behaviour of service
roles over connectors, and hide the behaviour not visible to the connector being analysed.
We refer to the interface roles obtain by projection as projection roles (p-roles)18.

Definition: Projection role (p-role)
A projection role (p-role) is an interface role describing the actual interface behaviour of
a service role visible at a connector endpoint.

Role validation can subsequently be applied to p-roles to ensure that they interact safely.
[Floch 2003] did not include validation of liveness properties, which our work addresses
by introducing service goals and related validation mechanisms, see chapter 4 and
section 6.1 respectively.

2.5.2 Constructive and corrective methods
[Bræk and Haugen 1993] distinguished between constructive methods that aim to gener-
ate error-free systems, and corrective methods that aim to detect and correct the errors that
are nonetheless made. Role validation can be applied in two ways:

• As a constructive method, one use of role validation techniques is to generate compat-
ible roles from particular interface roles;

• As a corrective method, role validation is used to check whether two connected roles
interact compatibly. This may be checked at design time or at run time.

Rather than directly checking the compatibility of two service roles, one may first check
whether or not the interface roles have the properties required to interact safely [Floch
2003]. This is illustrated in Figure 2.11 (adapted from [Floch 2003]).

18. These are called service association roles (a-roles) in [Floch 2003].

Figure 2.11 : Constructive and corrective methods

1. project p-role

4. correct errors

3. identify symptoms

2. transform

of errors

(apply design rules)

dual role

5b. generate
dual role

1.
p-role

4.

3.

2.

5a. connector
validation

service service
role role

38 2 Point of departure

The steps are as follows:

1. Projection is first applied in order to generate p-roles from service roles. P-roles are
defined as state machines. Projection can be performed by a tool;

2. The p-role graphs are then transformed in order to simplify further validation opera-
tions. This can be performed by a tool;

3. The simple definition of p-roles enables us to detect ambiguous or conflicting behav-
iours automatically. Results reported by tools seem easy for designers to understand;

4. Design rules have been proposed by [Floch 2003] that support the designer in remov-
ing errors and defining well-formed service roles. This step can be assisted by tools;

5. When p-roles obey the design rules, the safety properties of a connection between two
roles can be checked (5a), and/or dual interface roles can be generated (5b).

By identifying and removing errors before connector validation we prevent having to ana-
lyse poorly designed service roles. The algorithm for connector validation can thus be
simplified, and the number of states in the working space used by the algorithm can be
kept low. Requiring that each interface role is well-formed does not restrict the useful
functionality expressed in the roles, but results in designs that are less likely to cause
dynamic errors.

The transformation techniques applied to service roles and p-roles can be performed man-
ually by the designer, or be supported by tools19. The validation approach of [Floch 2003],
although formal, is arguably easy to understand and use. In addition it is compositional,
as dual roles can be used to construct environment roles in a systematic way.

2.5.3 Interaction safety
As interface roles are defined in terms of state machines that communicate through signal
exchanges, safety and liveness violations can be characterized in terms of signals and
states. We restrict ourselves to the detection and prevention of logical errors. Physical
errors such as signal loss, communication channel defect and actor defect lie outside the
scope of our work.

Note that parameters of signals are not treated in our work, all issues concerning compat-
ibility of parameter data types are hence not treated.

[Floch 2003] focuses on safety properties, i.e. ensuring that bad things never happen.
Unspecified signal receptions20, deadlocks and improper terminations are classified as
violations of safety properties. Unspecified signal reception is a symptom of possible
design errors. Therefore strong requirements are enforced on interacting roles: all signals
sent by a role should be explicitly consumed by the connected role.

Definition: Unspecified signal reception
An unspecified signal reception occurs when an interface role consumes a signal that is
not specified as input of the current role state.

19. The algorithms of [Floch 2003] have been implemented by [Korda 2004], [Alsnes 2004] and [Birkeland 2005].
20. In SDL, signals that are unspecified in an agent’s current state are consumed without any transition occurring (i.e.

they are discarded from the input queue), and thus unspecified signal reception will not cause any immediate error
or failure. In UML2 the handling of unspecified event occurrences is open: “If an event in the [input] pool satisfies
no triggers at a wait point, it is a semantic variation point what to do with it.” [UML 2.0] p. 420

2.6 Modelling objectives 39

Definition: Deadlock
A deadlock occurs when two interface roles are unable to proceed because they wait end-
lessly for signals from each other.

Definition: Improper termination
Improper termination occurs:

• when two interface roles do not terminate in a coordinated manner: no signal should
be sent to a role that has terminated;21

• when the exit conditions22 attached to the interface role terminations are not consistent
with each other. Two exit conditions are consistent when they represent the same ter-
mination cases, or when one of the conditions represents a termination case that covers
the termination case represented by the other condition.

Definition: Interaction safety
A pair of interface roles are said to interact safely when their interactions do not lead to
any unspecified signal reception, deadlock or improper termination.

2.5.4 Compliancy of role bindings
Service validation also concerns what UML calls compatibility of role bindings. We rather
say that a classifier is compliant with a role that is bound to it.

Definition: Role compliancy
A classifier is compliant with a role bound to it if the interface behaviour of the classifier
is a live subtype of the interface behaviour of the bound role.

The concept of live subtyping is defined in chapter 4.

2.6 Modelling objectives
In this section we describe our modelling objectives concerning service structures and
service goals. In addition we discuss our objectives concerning the use of UML.

The notion of the “horizontal” and “vertical” axes of service composition was introduced
in section 1.3.1. Both represent essential aspects of service structures, and we start by dis-
cussing what relationships and what behaviour needs to be modelled.

2.6.1 Horizontal relationships between roles
We need to model the “horizontal” relationships between roles in terms of the service they
provide. It should be a modular structure where it is possible to factor out roles without
premature binding to actors.

Roles interact with each other over connectors. Our primary concern is to model the inter-
action over a connector using role types. We are not concerned with specifying what
service invocations take place during the lifetime of systems (i.e. specifying what are

21. Checking for this is analogous to detecting unspecified signal reception.
22. State exit conditions are defined by labelled exit points [Floch 2003] p. 46.

40 2 Point of departure

called binding actions in RM-ODP). Representing other relationships between actors lies
likewise outside the scope of our work, such as the representation of knowledge, including
how actors know about each other. Such concerns belong to more detailed design.

2.6.2 Vertical relationships between roles
We need to model the “vertical” relationships between different roles that apply when the
roles are played, regardless of what actor plays them. This includes expressing how the
achievement of one role goal is a precondition for another role.

A related aspect we want to model is the configuration of roles as they are played by an
actor, i.e. to model what roles a given actor type can play, and in what order.

2.6.3 Flexibility when binding roles to actors
Detailing the inner structure of an actor and synthesis of actor behaviour lies outside the
scope of our work, we limit our approach to defining how roles may be bound to actors.

Roles should be described in a way that is independent of particular actors, specifying
only aspects that are important for the correct functioning of the service.

Binding roles to actors should be flexible, meaning that a role can be bound to any actor
capable of playing the role. Roles can then be specifications of behaviour that a potentially
wide range of actors can comply with. Actors should be able to take on roles dynamically.

2.6.4 Collaboration behaviour, role behaviour and interface behaviour
A final aspect we want to model is the behaviour of a service. In particular we need to
express behaviour that constitutes the successful reaching of service goals, while letting
other details remain undefined.

It is desirable that the collaboration behaviour of the service as a whole can be expressed
by itself, so that the service can be understood without taking in the detailed behaviour of
the roles. This is desirable because role behaviours can in themselves be quite complex;
understanding their combined behaviour is not trivial in such cases.

We want to model interface behaviour as a description of its own, separate from the model
of role behaviour and collaboration behaviour. Interface behaviour should only focus on
the behaviour visible on an interface, and not describe complete behaviour.

Collaboration behaviour, role behaviour and interface behaviour should be modelled in a
way that enables us to check whether they are consistent with each other.

2.6.5 UML as modelling language
In this thesis we have used the Unified Modeling Language (UML) version 2.0 [UML 2.0,
UML 2.0 Infra, UML2 Ref] as a modelling language to define our approach. In our work
we have searched for and used elements in UML as far as they suit our purposes, and have
at certain points suggested extensions or different interpretations or semantics. The dia-
grams that illustrate our approach use UML, at times adding graphical additions of our

2.6 Modelling objectives 41

own. Sometime these additions are discussed, at other times not, especially if the figures
are only illustrations, like many in this chapter.

Our objective is not to argue that UML is the most appropriate modelling language for
capturing the essence of convergent services. In our opinion, a modelling language is like
a tool; if it fits the job then things get done faster. The question is if UML can promote
both the human understanding and the mechanical analysis of convergent services. Since
UML is widespread, the answer to this question is an interesting research endeavour.

There are shortcomings in UML, the most important being its informal semantics. We
have had a long professional experience and preference for the ITU languages, in partic-
ular SDL and MSC in their various versions23, and previous modelling notations like
SOM before them [SOM 1981], [Bræk and Emstad 1986]. We have been strong champi-
ons of practical methods for system development [Bræk and Haugen 1993], and have co-
authored a methodology for their use [TIMe 1999].

Our experience is that all modelling languages leave much to be desired. But since UML
is a popular language with much attention from users and tool vendors, our view is that
demonstrating our approach in UML increases the chances of its being adopted, given
adequate tool support. In addition, we maintain that we are demonstrating new ways of
using UML, making use of new opportunities in UML2, such as UML2 collaborations.
We believe this can contribute to the improvement of the UML language and encourage
it use.

The 2.0 version of the UML modelling language is in our view the first truly promising
edition. Through the active participation of key players in the telecom community, UML2
has included a large part of the expressive power of MSC, SDL and TTCN, although lack-
ing the same level of formal foundation.

For goal expressions we use the Object Constraint Language (OCL) version 2 [OCL 2.0].
There are different opinions on the merits of OCL in the ICT community, where some say
languages such as Alloy [Alloy 2002] are more suited to fulfilling the objectives of OCL.
We do not take sides in this debate, and have chosen to use OCL in our approach24 and in
our examples simply because it is there as part of the UML family.

A note of warning must be expressed about the use of UML2 in the thesis. UML 2.0 has
been subjected to considerable changes during the standardisation process. For instance
there were substantial changes in the superstructure from [UML 2.0 Adopted] via the
revised version [UML 2.0 Revised] to the final version [UML 2.0]. Since we have used
many of the modelling elements that are new to UML2, it is likely that these will be sub-
ject to more changes in subsequent versions of UML2 than other more stable parts of the
language. Hence there may be differences between later versions of UML2 and the one
we have based our approach on. References are to the final version [UML 2.0] or to the
de facto reference book [UML2 Ref] (which in itself deviates somewhat from the various
versions of the UML 2.0 standard).

23. For instance [MSC-92, MSC-96, MSC-2000, MSC-2004, SDL-88, SDL-92, SDL-96, SDL-2000]
24. Arguably, our use of OCL can be branded as “misuse”, since we do not use it to constrain what constitutes valid

UML models, which is the intended use of OCL.

42 2 Point of departure

2.6.5.1 SDL profile for UML

Validation of behaviour requires that the dynamic semantics is formally defined. UML
deliberately does not define this, identifying instead a number of semantic variation points
that can be bound by UML profiles.

Our approach to validation is based on and extends the work of [Floch 2003], which in
turn is based on SDL. Therefore we assume that SDL semantics applies when we validate
interface behaviour modelled in UML. This implies that we assume the existence of an
SDL profile for UML, specifying a number of key assumptions:

1. a FIFO queuing mechanism on ports (signals are consumed in the order in which they
are received);

2. message overtaking does not occur on connections (signals are received in the order
they are sent);

3. unspecified signal receptions are discarded (signals are not persistent), and similar
details.

No such profile currently exists. However, work is in progress at the ITU-T to define an
SDL profile for UML. It is scheduled to be completed early in 2007 as a revision of [Z.109
1999]. We assume that this will provide the formal basis needed to support our approach.

- 43 -

3
Modelling services in UML

In this chapter we discuss how services can be modelled in service structures. We show
how to model elementary collaborations, the building blocks from which more sophisti-
cated services can be constructed.

In our work we investigated two modelling approaches in UML, one based on associa-
tions or association classes, and one based on UML2 collaborations. The former approach
turned out to be too restricted, which is why UML2 collaborations were investigated. The
limitations of associations and association classes are discussed in chapter 9.

The structure of the chapter is as follows: we first introduce UML2 collaborations, then
we present the modelling approach using UML2 collaborations, and discuss the model-
ling of service behaviour. A discussion of related work and summaries of method
guidelines are provided towards the end.

3.1 Collaborations and collaboration uses in UML2
UML2 collaborations and collaboration uses1 are new to UML, and deserve an introduc-
tion2. Collaborations in UML2 are considerably different from their predecessors in
UML13. This is one of the UML language changes aimed at obtaining more flexible
encapsulation, and enabling the composition of internal structures from smaller parts.

A UML2 collaboration describes a structure of collaborating elements (roles), each per-
forming a specialized function, which collectively accomplish some desired functionality.
The behaviour of a collaboration will eventually be exhibited by a set of cooperating
objects (in our terms: actors specified by actor types) that interact with each other by send-
ing signals or invoking operations. In other words, the roles of a collaboration are played
by actors when the actors interact with each other.

The connectors defined by a collaboration represent sessions between the actors when
they perform the interaction behaviour specified in the collaboration. A collaboration
specifies a view (or projection) of a set of interacting actors. It describes the required con-

1. Collaboration uses were called collaboration occurrences in [UML 2.0 Adopted].
2. Parts of this introduction are adapted from [UML 2.0] and [UML 2.0 Ref].
3. UML2 makes a clear separation between the static structure (the collaboration) and the dynamic structure (the

interaction). As a result UML1 collaboration diagrams have become communication diagrams in UML2, and are
a form of interaction diagram, while UML2 collaborations are expressed in UML2 composite structure diagrams.

44 3 Modelling services in UML

nectors between actors playing the roles of the collaboration. Several collaborations may
be used to describe different views of the same set of actors.

A given actor may simultaneously play several roles in different collaborations, but each
collaboration would only represent those aspects of the actor that are relevant to the serv-
ice described by the collaboration. An actor may simultaneously play several roles of one
collaboration, unless specific constraints hinder it4.

A UML2 collaboration is not directly instantiable5. Instead, the interaction defined by the
collaboration comes about when the actual interaction takes place between the actors that
play the roles defined by the collaboration.

A UML2 collaboration use relates features6 of the given collaboration type to connectable
elements in the classifier owning the collaboration use. Any behaviour defined by the col-
laboration type applies to the set of roles and connectors bound by a given collaboration
use. In this way an interaction among parts of a collaboration applies to the classifier parts
bound by a collaboration use.

3.2 Services modelled as UML2 collaborations
We seek ways of modelling service structures in UML that meet the objectives laid out in
section 2.6. Recall that in the previous chapter we defined a service as a collaboration
between actors playing service roles, using the term collaboration in the general sense.

Adopting the modelling views discussed in section 2.6, we start with the horizontal inter-
relationships, and explore the modelling opportunities offered by UML2 collaborations.

3.2.1 The suitability of UML2 to our service modelling requirements
The introduction to UML2 collaborations in the UML2 reference book [UML2 Ref] does
not mention the term “service”, but talks about “an arrangement of objects and links that
work together to accomplish a purpose”. However, that UML2 meets our requirements
listed in section 2.6 becomes apparent when analysing quotations from [UML2 Ref],
starting with UML2 connectors:

A connector is a relationship between two roles that exists only within the collabora-
tion. Connectors may have types, which must be associations that constrain the
connector to be implemented as a link of the given association.

UML2 connectors7 thus correspond to our definition of the term connector.

4. An example of such a constrain is that Caller and Callee cannot simultaneously be played by one and the same
actor in the same collaboration use - i.e. an actor cannot through-connect to itself.

5. When we speak about a collaboration instance, we are referring to collaboration roles being played by actors.
6. The term feature used here is the UML term, meaning a property, such as an operation or attribute, that character-

izes the instances of a classifier.
7. According to the UML metamodel, a connector is not limited to linking just two roles, but may be n-ary. In our

approach we restrict them to connecting two and only two roles.

3.2 Services modelled as UML2 collaborations 45

At runtime, objects and links are bound to the roles and connectors of the collabora-
tion. A collaboration instance does not own the instances bound to its roles (unlike an
instance of a structured class, which does own its parts). It merely references them and
establishes a contextual relationship among the objects bound to its roles for the dura-
tion of the collaboration instance. The objects playing the roles must exist previously.
They must be compatible with the declared types of the roles to which they are bound.

An object can be bound to one or more roles. If an object is bound to multiple roles,
then it represents an “accidental” interaction between the roles - that is, an interaction
that is not inherent in the roles themselves, but only a side effect of their use in a wider
context. Often, one object plays roles in more than one collaboration as part of a larger
collaboration. This is an “inherent” interaction between the roles. Such overlap
between collaborations provides an implicit flow of control and information between
them.

A collaboration can be used by binding the roles to classifiers within a particular con-
text, such as the internal structure of a class or the definition of a larger collaboration.
Such a bound collaboration is called a collaboration use.

A collaboration use may be used to attach a collaboration to a classifier for which it
shows an aspect of behaviour.

Collaboration uses therefore enable actors to play more than one role, and supports defin-
ing roles and role types independently from the actors playing them. This is a
distinguishing feature that makes UML2 collaborations superior to UML associations, as
we discuss in the appendix.

Collaborations may be nested. A collaboration may be implemented in terms of subor-
dinate collaborations, each of which implements part of the overall functionality. The
subordinate collaborations are indirectly connected by their participation in the outer
collaboration.

A collaboration use may appear within the definition of a larger collaboration. In this
context, its roles are bound to roles of the larger collaboration, rather than classifiers.
The types of the roles of the larger collaboration must be compatible with the types of
the roles of the collaboration use.

Consequently, UML2 collaboration uses support the construction of composite services
from elementary services.

Note that a collaboration use can only bind aspects within a single classifier. This may be
a limiting factor for synthesis of behaviour, as pointed out by [ARTS 2003]. In our present
work this does not pose a problem, since we do not address synthesis of actor behaviour.

We conclude that UML2 collaborations and collaboration uses seem to offer what is
needed. In the following we see how they can be put to use to fulfil the objectives of our
approach.

46 3 Modelling services in UML

3.2.2 Definition of terms
We start by defining a number of terms. Firstly, a service8 is modelled in what we call a
service structure.

Definition: Service structure
A service structure defines a collaboration by name, and identifies (names) the roles that
collaborate to provide the service or service feature. The service structure also defines the
multiplicity and type of the roles.

A service structure with two interface roles is called an elementary collaboration.

Definition: Elementary collaboration
An elementary collaboration is a service structure defining the roles and collaboration
behaviour for a cooperation between two and only two interface roles.

3.2.3 Service structures
A generic two-party service modelled by a UML2 collaboration is shown in Figure 3.1.

Figure 3.1 depicts a service structure with two roles, of which there can be many
instances, as defined by role multiplicities (1..n) and (1..m). It does not specify whether it
models interface roles or service roles.

Figure 3.1 uses the standard UML notation for classifiers and the presentation option
where a collaboration named Service_ab identifies the associated roles a and b without
specifying the connectors between them. Omitting connectors can be useful when there
are more than two roles in a service structure, as in Figure 3.2.

Note that Figure 3.2 exemplifies the two ways of naming roles (see roles a and c).

8. Or a sub-service, what is called a service feature, as defined in [IN 1993].

Figure 3.1 : Two-party service modelled using UML2 collaboration

a:Type_a

service_attributes
service_states

b:Type_b

service_attributes
service_states1..n 1..mService_ab

Role
type Role multiplicity

Collaboration

Figure 3.2 : Three-party service modelled using UML2 collaboration

Type_a Type_bService_abc
a b

c:Type_c
Role name

1 1

0..1

Type_a

Role type

3.2 Services modelled as UML2 collaborations 47

For two-party services such as the one in Figure 3.1 nothing is gained by using this pres-
entation option, since the two roles must be connected, or else no interaction is possible.

3.2.4 Modelling service roles in UML2 collaborations
UML2 collaborations can be used to model service roles, see Figure 3.3

In Figure 3.3 we introduce a stereotyped presentation of the role classifier, using an octag-
onal icon instead of the rectangular class symbol. This is to emphasise that the roles in this
service structure diagrams are service roles, adhering to the notation used by [Floch
2003]. We can thus distinguish service roles from interface roles by their different icons.

Connectors are shown in the normal presentation form of UML2 collaborations, see
Figure 3.4. Connectors define the interaction paths between the roles.

Service roles and interface roles are closely related: the behaviour of interface roles char-
acterises the interactions on the communication paths (i.e. on the connectors) between the
service roles. Hence, when modelling service roles with UML2 collaborations, we let con-
nectors represent connectors, and let connector ends represent interface roles. This is
illustrated in Figure 3.5.

In UML2, connector ends do not have any graphical representation apart from the multi-
plicity elements, as Figure 3.3 shows. To achieve a graphical rendition of interface roles,
we introduce an icon for connector ends: rectangular icons that can contain the role name.

Figure 3.3 : Service roles modelled using UML2 collaboration

<<s-role>>

Type_a

<<s-role>>

Type_bService_abc
a b

<<s-role>>

Type_c

c

Service role
name

Service role
type

1 1

0..1

Figure 3.4 : Modelling connectors using UML2 collaboration

Service_abc

<<s-role>>

a:Type_a

<<s-role>>

c:Type_c
<<s-role>>

b:Type_b
connector

48 3 Modelling services in UML

Using an icon enables us to highlight interface roles in the service structure, as in
Figure 3.5, where a1, b1 etc. are the names of interface roles.

A collaboration like the one in Figure 3.5 may refer to many interface roles. The number
of interface roles depends on the interaction patterns of the service roles:

2(No_s_roles - 1) <= No_i_roles

Here No_i_roles is the number of interface roles and No_s_roles the number of
service roles in a given collaboration. The lower limit is due to the requirement that all
service roles must be associated with at least one other service role in the collaboration.
There is no upper limit, since there is no limit to the number of collaboration uses that can
be bound in a composite collaboration. By definition a service role may not have a con-
nector with itself.9

The classification of interface roles into “initiating” and “responding” is important for
service discovery, as will be discussed in chapter 7. We suggest using a dark colour for
initiating roles, and a light colour for responding roles, or adorning the connector with an
arrow pointing to the responding role10; see the connector between the roles a and b in
Figure 3.5.

The proposed additions can easily be integrated into UML via a profile introducing the
stereotypes, which may also use their own graphical notations.

3.2.5 Approach to the modelling of service structures
The suggested approach to modelling service structures in UML2 is as follows:

• We model elementary collaborations as UML2 collaborations with two roles of mul-
tiplicity 1. Each role of an elementary collaboration defines an interface role name11,
whose role type12 is used to define the interface behaviour of the interface role;

9. An actor can have sessions with itself if and only if it plays several different roles of the same service.
10. A stereotype of a connector can be defined that uses an arrow notation. Note that there is no placeholder in the

standard UML definition to capture the direction of a connector.
11. The role name is the name of the connectable element of the collaboration.

Figure 3.5 : Modelling service roles with interface roles

Service_abc

<<s-role>>

a:Type_a a1

a2

<<s-role>>

c:Type_cc1
<<s-role>>

b:Type_bb1

interface
role

initiating
role

responding
role

3.2 Services modelled as UML2 collaborations 49

• Composite service structures are defined by employing collaboration uses to bind
interface roles to service roles. Connector ends define cardinality constraints on service
sessions, i.e. the number of service role instances involved in a service invocation;

• We use classes to represent service roles that play interface roles, and collaboration
uses to bind interface roles to service roles. Such collaboration uses represent connec-
tors between service roles. The service roles must be compliant with the interface
role(s) to which they are bound;

• We also use classes to represent actor types that play service roles, and collaboration
uses to bind service roles and/or interface roles to actor types. Such collaboration uses
represent service invocations, i.e. the links represent sessions between actors. Actor
types must be compliant with their bound roles.

Following this approach, arbitrarily complex composite services may be composed of ele-
mentary collaborations, meaning that any number of interface roles can be bound to roles
or classifiers by collaboration uses. This implies that a potentially large set of interface
roles are ultimately bound to an actor, i.e. the set of interface roles defining or character-
ising an actor’s service repertoire.

There can be an ordering imposed on the sequence of roles played by an actor; this will
be discussed in connection with goal sequences in chapter 5. Validating compliancy in
role bindings will be discussed in chapter 6.

In the following sections we illustrate the use of this approach by way of examples, start-
ing with elementary collaborations, and then proceeding with the composition of larger
services from elementary collaborations.

3.2.5.1 Elementary collaborations and interface roles

An elementary collaboration consists of a pair of interface roles of single role multiplicity.
As we shall see in chapter 4, a semantic connector is an elementary collaboration. An ele-
mentary collaboration defining a pair of interface roles is shown in Figure 3.6.

In Figure 3.6 the collaboration Setup defines two interface roles, inviter and invitee of
respective role types Inviter and Invitee. An arrowhead13 on the connector end attached to
invitee indicates that inviter is the initiating role; invitee is a responding role.

12. The role type of the collaboration role is the (optional) type of the typed element that the connectable element of
the collaboration inherits from. The initial version of UML2 [UML 2.0 Adopted] did not support this, as the con-
nectable element was a named element. This was partially corrected in [UML 2.0 Revised] (Figure 95 was wrong),
and fully corrected in the final version [UML 2.0].

13. Arrowheads should be placed at both ends if both roles start with mixed initiatives.

Figure 3.6 : Elementary collaboration and a pair of interface roles

Setup

inviter:Inviter 1 invitee:Invitee 1

50 3 Modelling services in UML

To complete the definition of an elementary collaboration we need to define the behaviour
of the interface roles. We defer this to section 3.3.

3.2.5.2 Composite two-party services

Composite services can be composed of elementary collaborations by using UML2 col-
laboration uses. A Call composed of elementary collaborations is shown in Figure 3.7.

In Figure 3.7 the classic Call service is composed of the elementary collaborations Setup,
Accept and Release14. The Setup roles inviter and invitee are bound to the A and B roles
of Call respectively15, as are the Accept roles receiver and accepter. Release has the inter-
face roles rel_ee and rel_er; in Figure 3.7 there are two instances of Release, where the
role bindings of rel_ee and rel_er to the A and B roles are swapped. This exemplifies how
collaboration uses allow elementary collaborations to be reused in a flexible way, in this
case to support that each party can take the initiative to release the call.

When binding interface roles to service roles or actors we can differentiate between the
initiating and responding roles of the elementary collaborations by using an arrow at the
role binding of the responding role. In Figure 3.7 the interface role rel_ee is the respond-
ing role, and its binding to A or B is adorned with an arrow. This adornment makes it easy
to see that collaboration uses rel_a and rel_b are initiatives in different directions between
A and B, a so-called mixed initiative, a fact that the experienced service designer knows
must be treated with care.

In Figure 3.7 the octagonal icons indicate that the roles of Call are service roles, implying
that Caller and Callee are composite states that can be used for the composition of actor
behaviour, according to [Floch 2003].

Interface roles can also be composed of elementary collaboration roles, see Figure 3.8.

Figure 3.8 defines a collaboration Call_Init, with interface roles a and b that are composed
of the elementary collaboration roles inviter/receiver and invitee/accepter respectively. In
Figure 3.7 we can replace Setup and Accept with Call_Init.

14. The Basic Call service consists of a number of “normal procedures”, including Call Setup, Call Acceptance and
Call Release, according to the standard [Basic Call 1988].

15. The ITU-T standards for services typically describe actor roles such as User A or Originating User, and User B
or Terminating customer, which are the service roles of the Basic Call service [Basic Call 1988].

Figure 3.7 : Composite service composed of elementary collaborations

<<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee
rel_er

{def: goal : Boolean = A.connected and B.connected}

3.2 Services modelled as UML2 collaborations 51

Binding roles to actors with the help of collaboration uses is shown in Figure 3.9.

Figure 3.9 illustrates how a collaboration use binds collaboration roles16 to specific actors
(instances or types); here both the service roles A and B of the composite service Call are
bound to the actor type UserAgent. The composition of Call in Figure 3.7 implies that the
UserAgent must be compliant with six interface roles (the union of the interface roles of
A:Caller and B:Callee), i.e. inviter, invitee, receiver, accepter, rel_ee and rel_er.

Note that nothing is said about the number of roles played by an actor at a given point in
time, e.g. Figure 3.9 does not specify whether UserAgents can partake in several simulta-
neous originating and/or terminating Calls or not. We discuss how an actor’s role-playing
capabilities can be characterised in section 5.3.

3.2.5.3 Composite multi-party services

Multi-party services (i.e. services with more than two roles) can be composed of subordi-
nate elementary collaborations. An example is shown in Figure 3.10.

Figure 3.10 shows how the roles of three elementary collaborations are bound by collab-
oration uses to four service roles. The example shows how a service role can play several
interface roles; e.g. the service role CallerAgent plays the interface role iu of the elemen-
tary collaboration initCall, and the role a of the elementary collaboration Call_Init. The
connectors between the service roles are not shown in Figure 3.10.

A more complex example is provided by the Meeting Place Conference, a service defined
in [AMIGOS 2004].

16. In this case service roles are bound to actors, though in principle they could be interface roles bound to actors. The
composition of actor behaviour from service roles is a more direct constructive approach than composition from
interface roles, see the composition of actor behaviour from composite state machines in [Floch 2003]. Note that
synthesis of actor behaviour from service roles or semantic interfaces is not treated in our work.

Figure 3.8 : Interface roles composed of elementary collaboration roles

a:caller b:callee

Call_Init

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

1 1

{def: goal : Boolean = a.goal and b.goal}

Figure 3.9 : Assigning service roles to actors

:UserAgent :UserAgent:Call
A B

Collaboration use

Role binding Collaboration typeRole player (actor)

52 3 Modelling services in UML

As an introduction, consider the sequence diagram17 in Figure 3.11, which shows a sce-
nario combining traditional telecom services such as conferencing [CONF 1988] with
services such as chat rooms, called Meeting Places in [AMIGOS 2004].

We choose to consider that the interaction consists of several stages, which are indicated
by the numbered initiating signals from the environment in Figure 3.11:

1. User a creates and configures a MeetingPlace, becoming the MeetingPlaceController;
2. A second user b joins a MeetingPlace, and thus becomes a MeetingPlaceParticipant;
3. User a, the MeetingPlaceController, creates a Conference for the MeetingPlace, thus

becoming the ConferenceController;
4. User a, the ConferenceController, configures the MeetingPlace with the Conference;
5. The MeetingPlaceParticipant b joins the Conference, thereby becoming a Conferee

(in the scenario the only other conference18 member is the MeetingPlaceController a).

From the interactions in Figure 3.11 we see that the Meeting Place Conference service
involves four actors of three different types. However, as we pointed out in chapter 2, we

17. Sequence diagrams are rather too detailed at this level of abstraction, but can help to explain the manner of oper-
ation. Sequence diagrams typically only describe certain cases, not all behaviour between the entities.

18. A two-party connection can be viewed as a special kind of conference.

Figure 3.10 : Multi-role service composed of elementary collaborations

PeerToPeerCall

<<s-role>>
:Caller

Terminal

<<s-role>>
:Caller
Agent

<<s-role>>
:Callee
Agent

<<s-role>>
:Callee

Terminal

call:
Call_Init

t:term-
Call

i:init-
Call

a bic iu tu tt

Figure 3.11 : Meeting Place Conference scenario

b:UserAgent a:UserAgent

mp:MeetingPlace

JoinMp

Create

Create (mp)

MpInfo(..)

MpConf(conf)

MpConfCall(a)
CallAck

MpcInfo(conf,a)

sd MeetingPlaceConference

MpAck(..)

JoinAck(..)

MpConfAck conf:Conference

AddOnReq

MpCnfAck

CreateMP

JoinMp

CreateMpConf

JoinMpConf

ConfigMpConf

1

2

3

4

5

3.2 Services modelled as UML2 collaborations 53

consider actors to be playing roles in the services. In service modelling it is the service
roles and interface roles that interest us. Actors are only interesting in their function as role
players and by the domain entities they represent.

We identify four service roles in the MpConf service: conferee, controller, mp and conf.
The service structure of MpConf is shown in Figure 3.12 below, using the presentation
option for collaborations where only the roles are identified. Figure 3.13 uses the normal
presentation form to define the communication paths between the roles of MpConf.

In accordance with our approach, multiparty services are composed of a set of elementary
collaborations. The elementary collaborations of MpConf are:

1. Mp: a Meeting Place is created and configured;
2. MpSession: someone joins a Meeting Place;
3. MpCnf: a Conference is created for the Meeting Place;
4. Mpc: the Meeting Place is configured with information about the Conference;
5. MpcInfo: participants of the Meeting Place are informed of the Conference;
6. MpcAddOn: a Meeting Place participant joins the Conference.

MpConf composed of these elementary collaborations is shown in Figure 3.13.

This is an example of a bottom-up approach to service specification, arriving at a domain
level model based on an existing service design. During service specification one can iter-
ate between a top-down and bottom-up approach. However, the development process
employed lies outside the scope of our work.

Figure 3.12 : N-party service modelled as a collaboration - without connectors

<<s-role>>

controller
0..1

1 <<s-role>>

conferee

<<s-role>>

mp

MpConf 1..c

1

<<s-role>>

conf

Figure 3.13 : N-party service composed of elementary collaborations

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

MpConf

0..1 1

1..c1

mpcnf:MpCnf

mp_mpmp_controller

mps_host

mps_participantmpcnf_conf

mpcnf_controller

mps:MpSession

mpc_controller mpc_mp

mpi:MpcInfo

mpi_mp

mpi_participant

mp:Mp

mpc:Mpc

mpa:MpcAddOn
mpa_confereempa_conf

54 3 Modelling services in UML

3.3 Service behaviour
Since UML2 collaborations inherit properties from both structured classifiers and behav-
ioured classifiers, they have a large range of expression forms at their disposal. In addition
to expressing structural relationships, it is possible to express all forms of behavioural
aspects of collaborations, such as interactions, activities and state machines. The standard
[UML 2.0] and reference book [UML2 Ref] focus mainly on the structural features of col-
laborations, and provide few guidelines on how the behaviour of a collaboration is related
to the behaviour of its constituent parts, i.e. the role types19.

The collaborative behaviour of services can therefore be defined in a variety of places:

• in the context of the collaboration, as interaction diagrams;

• in the collaboration itself, in the form of state machine, interaction or activity diagrams;

• in the role types, as state machines or interaction diagrams.

Defining behaviour in several places offers opportunities for validation between different
behaviour descriptions; this is treated in chapter 6.

3.3.1 Activity diagrams
Activity diagrams highlight the coordination of execution of subordinate units, with
actions connected by flows from outputs from one node to inputs of another. They focus
on the process of computation rather than the objects performing the computation or the
data involved. Activities concern the states of a computation, possibly across many
objects, and explicitly model the flow of control and information among nodes.

Service behaviour can conceivably be modelled using activities, where each collaboration
or role is an action. This perspective is useful in expressing the coordination between serv-
ices and between roles of different services.

[Kraemer and Herrmann 2006] use activity diagrams to specify behavioural aspects of
collaborations, as this aligns well with their use of compositional Temporal Logic of
Actions (cTLA) as an underlying formalism. Our work leans on the formalism of SDL,
and we prefer to use state machines and interactions to specify the behaviour of collabo-
rations. We use activity diagrams to model actor goal sequences in chapter 5.

3.3.2 Interaction diagrams
Two kinds of interaction diagrams are found in UML2: communication diagrams20 and
sequence diagrams21. Both typically define partial behaviour, but their focus is different:

• Sequence diagrams show object interactions in a time dimension. They do not show
object relationships.

19. [UML2 Ref] p. 227 states that behaviour in collaborations may be described by interactions. Clearly this is not
the complete story.

20. Communication diagrams in UML2 were called collaboration diagrams in UML1.
21. Sequence diagrams have undergone a major revision in UML2 compared to UML1.

3.3 Service behaviour 55

• Communication diagrams show interactions organized around parts of a composite
structure or the roles of a collaboration, and explicitly show the relationships among
the elements. Communication diagrams do not show time as a dimension, so sequence
numbers must be used to determine sequences of signals and concurrent threads;

Communication diagrams have a cumbersome sequencing technique, while the relation-
ships between objects that they support are adequately covered by service structures.

In the sequence diagram presented in Figure 3.14 the lifelines use a stereotyped icon with
an octagonal shape for the name compartment instead of the standard UML rectangle.
This is something we suggest in order to highlight that these lifelines represent service
roles and not actors or interface roles.

Note that service roles exchange signals with the environment, not just with each other.
Interface roles on the other hand exchange signals only with each other, see Figure 3.15.

3.3.3 State machines
State machines are well suited for describing the complete behaviour of classifiers, as
opposed to the partial behaviour normally defined in interactions. In the following sec-
tions we will discuss:

- The limitations of current UML in terms of defining interface behaviour

- Our suggested extension of UML to define interface behaviour

Figure 3.14 : Sequence diagram for composite Call service

sd Call

A:Caller B:Callee

CallRequest(A,B)
Ringing

Answer

Call(B) Call_Ind(A)

CallResponse
Ringing(B)

CallConfirm(B)

Service role Service role

alt

Figure 3.15 : Sequence diagram for the elementary collaboration Call Setup

inviter:Inviter invitee:Invitee

CallRequest(inviter,invitee)
Ringing

sd Setup_goal interface role

56 3 Modelling services in UML

- The modelling of role behaviour and actor behaviour, exemplified by SDL

- The modelling of collaboration behaviour in UML

3.3.4 Interface state machines
Defining interface roles is supported by UML2 collaboration role types, and the definition
of behaviour of classifiers such as role types is possible using UML state machines. It
would seem natural to connect or bind interface roles to UML interfaces.

Interfaces and thereby ports can be associated to UML protocol state machines, but as we
shall see, their semantics is not suited to the general description of interface roles, or
indeed of general two-way signal exchange between actors defined by state machines.
Protocol state machines are used to specify the legal sequence of operation calls and sig-
nals received (or consumed) by an object, and thus only tell part of the story, since output
is not specified.

If protocol state machines were used to type an interface, the signals sent and the signals
received would have to be split into two protocol state machines, one for signals received,
and one for signals sent, see Figure 3.16.

In Figure 3.16 an anonymous (unnamed) instance of the actor type Actor_A is attached to
a port ia of type APortType, which has two associated interfaces: one for signals received
(provided interface a) and one for signals sent (required interface a). Both interfaces are
described by protocol state machines, fragments of which are shown. The protocol state
machine for signals sent, a, must be expressed as the sequence of signals that would be
received by its connected role. This is confusing for the reader, since output is modelled
as input, and causes alignment problems during validation, as we shall see.

Validation of connected roles amounts to the situation depicted in Figure 3.17.

When interfaces are described in this way, validation consists of comparing two pairs of
protocol state machines: a with b, and a with b. In addition, the protocol state machines
that type an interface (such as a and a) must be aligned. This alignment can be done

Figure 3.16 : Interfaces and UML protocol state machines: not recommended

ContextA

a
a

ia:APortType[2]

a1

a2

a2

a3

Ringing Reject

:Actor_A

CallRequest

a {protocol}

a {protocol}

Required interface:
events sent

Consumed at port ia

Provided interface:
events consumed

3.3 Service behaviour 57

through conditions (i.e. state names), for instance the postcondition a2 of a is a precondi-
tion a2 of a.

Special consideration must be given to final states; if a final output is followed by an
input, the final output of the output state machine must not be followed by a final state,
since a final state cannot be aligned to a state in the corresponding input protocol state
machine. Instead, a dummy final state must be named, plus a conditional transition to a
final state based on the input protocol state machine having finished. This is not the case
in Figure 3.17.

This approach seems to be rather cumbersome. It is also counter-intuitive, since output is
modelled as input. Hence we do not suggest pursuing this further.

The current limitations of UML interfaces would be overcome, if UML supported the def-
inition of interface behaviour in terms of interface state machines that model the
combined input/output behaviour of a component at the interface. The solution we pro-
pose is to extend protocol state machines to include output, see Figure 3.18.

Figure 3.18 shows the “extended” protocol state machine of a interface role being bound
to actor ports. This is similar to the Port State Machines (PoSM) proposed by [Mencl
2004], and also to the port state machines originally part of [ROOM 1994].

Figure 3.17 : Validation of connected protocol state machines

ContextA

a
a

ia:APortType[2]

a1

a2

a2

a3

Ringing Reject

:Actor_A

CallRequest

a {protocol}

a {protocol}

ContextB

b
b

ib:BPortType[2]

b1

b2

b2

b3

RingingReject

:Actor_B

CallRequest

b {protocol}

b {protocol}

Validate

Required interface:
events sent

Sent from port ib

Provided interface:
events consumed

Consumed by port ia

Al
ig

nm
en

t

Figure 3.18 : Binding interface roles to ports: extended protocol state machines

ContextA

ai

a1

a3

Ringing Reject

:Actor_A

A {xprotocol}

ContextB

bi

b1

b2

b3
:Actor_B

CallRequest

B {xprotocol}

Validate

Interface
role

Interface
role

CallRequest

Ringing Reject

a2

Call

A B

58 3 Modelling services in UML

The transitions defined by the extended protocol state machines are what we need to
describe interface behaviour. They differ from normal state machines in that they contain
spontaneous output and spontaneous transitions (-transitions as used in [Floch 2003]).

The lack of support for asynchronous signals in interfaces has been pointed out previously
[Bræk 1999]. One can hope that UML interfaces in the future will be able to support inter-
face roles22. We believe there is a strong argument for the extension of protocol state
machines in UML to include two-way interface behaviour.

3.3.5 Interface behaviour
Expressing the interface behaviour of interface roles is of central importance in our
approach. These role behaviours are not complete, as they only describe the collaboration
behaviour over a connection to an opposite role. But they are complete in the sense that
they accurately specify the total behaviour of the interface role.

We suggest that interface behaviours are defined in what we call extended protocol state
machines, see Figure 3.19. We motivated the extensions in section 3.3.4 above.

To express interface behaviour we need only model the sending and consumption of sig-
nals, the changing of states visible on the connection and any event goals that apply.
Behaviour not visible at the interface is removed, such as the calling of internal actions,
the manipulation of internal data, and the setting and resetting of timers. While service
roles may make use of all the expressive power of UML state machines, few of these con-
structs23 are needed for defining interface behaviour.

22. Bran Selic has suggested in private communication that OCL postconditions to signal input events can be
exploited to express output, and OCL being part of UML implies that UML thus supports two-way interfaces. In
our view this solution is not satisfactory, and we would suggest changes to UML per se.

23. Including constructs such as state redefinition, composite states, submachine states, certain types of pseudostates
(deep and shallow history), state activities (do-activities), entry and exit behaviour, time events, change events,
guarded transitions, history states and conditions, and multiple transitions triggered by an event.

Figure 3.19 : Role behaviour for interface roles

callingcalling

idleidle

Ringing

Inviter {xprotocol}

Reject

idleidle

CallRequest

RingingAtB

calledcalled

freefree

Invitee {xprotocol}

freefree

Ringing

A-Ringing

Reject

CallRequest

3.3 Service behaviour 59

On the other hand, we need to express state changes due to interactions on other connec-
tions or interfaces not visible to the interface in question. For this reason the modelling of
spontaneous state changes is a necessary part of extended protocol state machines.

Note that when we define input behaviour, we are in fact expressing signal consumption,
not signal reception. This is due to the SDL semantics that underlie our approach, inher-
ited from [Floch 2003]. SDL attaches FIFO input queues to agents, and the state machines
describe the consumption of signals from the input queue, not the actual input of the sig-
nals into the queue. UML does not make any distinction between reception and
consumption, since event pools and input queues are a semantic variation point in UML.

The run-to-completion semantics of UML state machines suits our modelling needs.
According to this semantics, events are detected, dispatched and then processed by state
machines, one at a time. The order of dequeuing is not defined in UML. Events that are
not enabled and not deferred are discarded, i.e. incoming signal events are not persistent.

The following elements of UML state machines are used to model interface behaviour24:

• simple states with a single region;

• deferred triggers (needed for projection of p-roles if the service role has deferred
triggers);

• transitions with triggers (consumption of incoming signal events), guard constraints
(for spontaneous transitions) and activity expressions (for outgoing signal events);

• pseudostates for entry points (for initial transition), exit points, terminate, choice and
junction (the latter if elegant graphical rendering is needed);

• final states.

Figure 3.19 shows the interface behaviour of the interface roles Inviter and Invitee, which
are part of the elementary collaboration Setup described in Figure 3.6 on page 49.

Interface behaviour specifies one event per transition. Interface behaviours allow outputs
directly following a state, i.e. spontaneous output. An example is the CallRequest output
in the idle state of the Inviter role in Figure 3.19. In a service role bound to play such an
interface role, one would find this output in a transition caused by input on another con-
nection, e.g. from init-call in Figure 3.10 on page 52.

3.3.6 Service role behaviour
The behaviour of a service role is defined by a composite state, see Figure 3.20.

Figure 3.20 is an example of a state machine for a service role, and is designed according
to the SDL techniques suggested by [Floch 2003]. The composite state csCaller can be
used in the composition of actor behaviour, as shown in Figure 3.26 on page 65. The com-
posite state csCaller is entered by a UserAgent actor upon consumption of the Call signal.
This signal is received from the environment in Figure 3.14 on page 55.

24. Parameters of triggering events and assignment specifications for the handling of signal parameters is not
included. Taking this into consideration involves the treatment of attribute typing, and is left for further work.

60 3 Modelling services in UML

The exit label25 progress is a progress label; these will be discussed in chapter 4.

Using projection one can analyse the signals that flow on the various connectors, and val-
idate that csCaller behaves like the interface role Inviter in Figure 3.19 on the connection
to an Invitee. I.e. csCaller is compliant with Inviter, as will be discussed in chapter 6. Note
that unlike the interface role Inviter, the service role csCaller has no spontaneous output26.

25. Exit label is an SDL term; in UML they are called exit points.
26. The output of CallRequest is part of an initial transition that fires when the service role is initiated by the actor,

and is not a spontaneous output.

Figure 3.20 : SDL state machine diagram for service role Caller

CallRequest

Timeout

Release_
Indication

WaitRing

state type csCaller

failure

failure

failure

progress

(self, peer)

/* local declarations */
dcl reason Reason;

timer Timeout := CallDuration;

to peer

WaitRing

CallNak

Ringing
(callee)

failure

(reason)

CallFail
(reason)

*

RingingAtB

Busy

Busy
(peer)

(peer)

BusyB

set(Timeout)

Timeout

failure

Ringing
(callee)

BusyB

Answer Timeout

progress failure

*

reset(Timeout)

reset(Timeout)

*

reset(Timeout)

Release_
Request

Release_
Indication

Release_
Indication

failure

reset(Timeout)

Release_
Request

RelAck RelAck

Release_
Indication

Call_
Confirmation

CallFail
(reason:=Timeout)

3.3 Service behaviour 61

3.3.6.1 Overview of service role behaviour

In order to focus on high-level service descriptions it can be desirable to make simplified
sketches instead of specifying complete behaviours. Sketches of the role behaviour of the
role types Caller and Callee are found in Figure 3.21.

The state machine diagrams in Figure 3.21 show an overview of some of the states of the
role types of A (Caller) and B (Callee) of the Call service, without detailing the transitions
between the states or conditions in choices. It may also be useful to include invariants
(assertions) that role attributes have certain values in certain states, such as the callee
attribute having a valid value in the Caller’s state RingingAtB. Goal assertions are dis-
cussed in chapter 4 (these were not included in Figure 3.20).

3.3.7 Collaboration behaviour
A collaboration does not represent a separate entity with its own capability to perform
behaviour. On the contrary, all collaboration behaviour is a result of the behaviour of the
constituent parts, and a description of collaboration behaviour only serves to characterize
the role behaviour of the actors that the roles eventually are bound to.

In Figure 3.14 above we provided an example of an interaction. This interaction can be
used to characterize a collaboration, and be part of the package defining the Call
collaboration.

UML also allows us to define collaboration behaviour in a state machine diagram.
Figure 3.22 provides an example of a collaboration state machine.

In Figure 3.22 an overview of the states of the collaboration Call is described in a state
machine diagram. In this case details of the transitions between the states are not defined.

Figure 3.21 : Sketch of service roles of the Call service

WaitRing

RingingAtB
{callee == …} BusyB

Caller

ConnB

A-Ringing
{caller == …}

ConnA

Callee

Disc

Disc

Role data
assertion

62 3 Modelling services in UML

But what does a collaboration state really represent? How can one consider a collabora-
tion state as being apart from the states of the roles? Here there is no answer to be gained
from the UML specifications, and the result is open to interpretation.

We note that the collaboration does not represent an object type, i.e. no single object is
ever in a collaboration state. Rather it is so that collaboration states represent sets of state
tuples representing the joint states of the participating roles. Role states, on the contrary,
represent states that must ultimately be found in actors playing the roles. Hence, we con-
sider a collaboration state to be a conceptual state that can be used to express conditions
on the combined states of the roles27 during the collaboration.We adopt a state-oriented
view, where each state of the collaboration is described in terms of appropriate states of
the collaborating roles, see Figure 3.23.

In Figure 3.23 the states of the roles that are part of the collaboration are inserted into the
collaboration states of Figure 3.22. Here the roles are service roles, represented by octa-
gons. For each collaboration state the relevant role icons contain a rounded rectangle
representing a role state assertion. This is a notational extension to UML. Technically they
are icons inserted into the state compartments of the collaboration states.

For instance in the collaboration state Dialling, it is stated that role A should be in state
WaitRing, while nothing is stated about the B role; it can implicitly be in any state. In the
collaboration state Busy, role A must be in state BusyB, while role B can be in any state28.
In the collaboration states Ringing and Accepted there are assertions about actor
attributes: the value of A’s attribute callee should be equal to the identity of the player of
the connected role B, and vice versa for B’s attribute caller29.

27. In the UML metamodel behind this example (see Figure 3.7), the collaboration roles A and B are the names of
connectable elements, while Caller and Callee are the type of the connectable element. It is the latter that are in
states, thus when we say that a role is in a state, we imply that an instance of the role type is in this state.

28. An example of a detailed design decision is whether or not the B role is actually played at this point.
29. The scope of the collaboration states and the invariants are within the particular connector.

Figure 3.22 : Overview of collaboration states for the Call service

Call
Dialling

Ringing

Accepted

Released

Busy

3.3 Service behaviour 63

Validating that the role behaviour and the collaboration behaviour descriptions are con-
sistent is a validation opportunity that can be exploited, and will be discussed in chapter 6.

3.3.7.1 Role states with collaboration state assertions

As stated earlier, there is a relationship between role behaviour and collaboration behav-
iour. It may be desirable that this relationship is made explicit, so that designers gain a
better understanding of a design, and so that tools can validate the consistency of the
relationships.

This may be achieved using some graphical enhancements to UML state diagrams to
express relationships from the role behaviour to the collaboration behaviour. The states of
the roles in Figure 3.21 can be defined in a state-oriented fashion, where the state of the
collaboration is asserted in each role state, see Figure 3.24 and Figure 3.25.

The state symbols in Figure 3.24 and Figure 3.25 detail object-internal issues such as the
values of certain attributes and what timers are running. We have included a graphical ren-
dering of the service role(s) in each state, indicating the appropriate collaboration state
corresponding to each role state, in accordance with the collaboration states defined for
the Call service in Figure 3.22.

The graphical representation of the situation of an actor state, as exemplified in
Figure 3.24 and Figure 3.25, is inspired by what was called state orientation in [SOM
1981]. Including such a graphical description of the state situation is a notational addition
to UML. In addition to the opportunity for improved quality assurance (see discussion in
section 6.3.3.2), we believe they improve readability by being goal oriented rather than
activity oriented.

Figure 3.23 : Collaboration states for the Call service with state orientation

Call DiallingA:Caller
WaitRing

A:Caller
WaitRing

RingingA:Caller

{callee == B}

RingingAtB

B:Callee

{caller == A}

A-Ringing

RingingA:Caller

{callee == B}

RingingAtB

A:Caller

{callee == B}

RingingAtB

B:Callee

{caller == A}

A-Ringing

B:Callee

{caller == A}

A-Ringing

Accepted
A:Caller

{callee == B}

ConnB

A:Caller

{callee == B}

ConnB

B:Callee

{caller == A}

ConnA

B:Callee

{caller == A}

ConnA

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

A:Caller
Disc

B:Callee
Disc

B:Callee
Disc

Busy
A:Caller

BusyB

B:Callee
*

Busy
A:Caller

BusyB

A:Caller
BusyB

B:Callee
*

B:Callee
*

Role state
assertion

Collaboration
state

Role data
assertion

64 3 Modelling services in UML

We also suggest giving room in the state descriptions for optionally referring to opposite
roles by rendering them in grey-toned text and lines, and within dashed octagons. This is
to emphasise that the actor has a reference to them; for instance in the state RingingAtB of
Figure 3.24 the role attribute callee should be equal to the identity of the actor playing B.

Figure 3.24 : Role states for Caller role with state orientation

Caller WaitRing

{Timers: {dial_timer}}

A:Caller Call

ConnB

{Timers: {};}

A:Caller Call

RingingAtB

{Timers: {answer_timer}; callee == B;}

A:Caller Call

B

WaitRing Dialling RingingRingingAtB

AcceptedConnB

BusyB

{Timers: {busy_timer}}

A:Caller Call
BusyBusyB

Disc

{Timers: {disc_timer}}

A:Caller Call
ReleasedDisc

B

B

Role state

Collaboration
state assertion other roles Data assertion

Figure 3.25 : Role states for Callee role with state orientation

Callee

ConnA

{Timers: {};}

CallA
Accepted

B:Callee
ConnA

A-Ringing

{Timers: {ring_timer}; caller == A;}

CallA
Ringing

B:Callee
A-Ringing

Disc

{Timers: {disc_timer}}

Call
Released

B:Callee
Disc

Data assertion

Timer assertion

Situation description
(state assertions)

Assertions on timers
and data

3.3 Service behaviour 65

3.3.8 Actor behaviour
Ultimately it is actors that play service roles and that exhibit interface behaviour. Actors
are active objects whose behaviour is defined by state machines. In this thesis we do not
address synthesis of actor behaviour, and limit our discussion to an identification of some
of the issues involved.

[Floch and Bræk 2003b] discuss actor composition, and provide rules for synthesizing
actor behaviour from service roles using SDL. They define service roles using SDL com-
posite states, while actors use these composite states in their behaviour graphs.

An example showing this approach is shown in Figure 3.26; here we see part of the behav-
iour of a UserAgent actor (the Caller behaviour) using composite states in SDL.

Figure 3.26 is an example of actor behaviour. Again no spontaneous output is present30.
Note that the composite state csCaller (defined in Figure 3.20 on page 60) is called after
the output of Busy. The other composite states that likewise represent service roles, i.e.
csConnection, csSendMsg and csJoinMp, are not detailed.

30. Note that the output of Free is not spontaneous, but follows an exit from the composite state machines.

Figure 3.26 : SDL description of a UserAgent actor type (excerpt)

idle

process UserAgent

mp:csJoinMp

progress failure

idle idle

JoinMp_
Request
(mp_id)

/* declarations */
dcl peer, dest, callee Pid;

dcl msg Message;
dcl mp_id Pid;

progress
failure

c:csConnection idle

Call
(peer)

cr:csCaller

progress failure

idle idle

mr:csSendMsg

Message_
Request
(dest, msg)

Busy

Free

hold

Hold

idle

Idle *

progress failure

idle idle

c:

FreeFree

JoinMpAck, JoinMpNak(), RelAck,
RelReq, Ringing(), CallNak(),
Busy(), Answer,

-

Explicit con-
sumption of
late signalsMsgAck, MsgNak()

66 3 Modelling services in UML

3.3.8.1 Overview of actor behaviour

Rather than specifying full actor behaviour including all the necessary detail, it may be
desirable to specify an overview of actor behaviour, i.e. a simpler, less complete descrip-
tion. This is consistent with an approach to service modelling at a high level of
abstraction.

An example of a overview of an actor’s behaviour is given in Figure 3.27.

The state machine diagram in Figure 3.27 gives an overview of (some of) the states of a
UserAgent actor type, without detailing the transitions between the states. The figure
shows an actor that can alternately play both the role types Caller and Callee of
Figure 3.21. According to Figure 3.9 on page 51 the UserAgent must be able to play both
roles, though not necessarily simultaneously.

3.4 Related work
The understanding that services involve collaboration between distributed components is
not new; indeed, this was recognized since the early days of telecommunications. In terms
of modelling, the interaction of collaborations, various dialects of interaction diagrams
existed prior to the first standardization of MSC [MSC-92]. A slightly different approach
was taken in the use cases of OOSE [Jacobsen et alia 1992], where interactions were
described textually. However, interactions alone do not really cover the structural aspects
of the roles and the flexible binding of roles to classifiers.

Collaborative designs such as protocols have traditionally been specified by state dia-
grams, using combinations of informal descriptions and formal models, e.g. using SDL
([SDL-88], [SDL-92], [SDL-96] and/or [SDL 2000]) or similar (e.g. [Harel 1987],
[Estelle 1989], [ROOM 1994]). But while state diagrams describe complete object behav-
iour, the overall goals and the joint behaviour tend to be blurred.

The concept of role was already introduced in the end of the 70s in the context of data
modelling [Bachman and Daya 1977] and emerged again in the object-oriented literature.
Using roles for functional modelling of collaborations was of primary concern in the
OOram methodology [OOram 1995], and was one of the inputs influencing the UML
work on collaborations in OMG. Within teleservice engineering it has been a long-stand-

Figure 3.27 : Overview of Actor behaviour emphasising service role selection

Idle

Caller Callee

UserAgent

3.4 Related work 67

ing convention to describe telephone services using role names like A and B. [Bræk 1999]
classified different uses of the role concept, and pointed out that UML1 was too restric-
tive, since a ClassifierRole could bind to only one class, so they were not independent
concepts that could be reused in different classes.

The work of [Rössler et alia 2001], [Rössler 2002], [Rössler et alia 2003] suggested col-
laboration-based design with a tighter integration between interaction and state diagram
models, and created a specific language, CoSDL, to define collaborations. CoSDL was
aligned to SDL-96. [Floch 2003] also proposed a notation for collaboration structure dia-
grams, where components were designed in SDL-2000.

Modelling collaborating services with UML2 collaborations has earlier been suggested by
Haugen and Møller-Pedersen [ARTS 2003], and has been an important input to our work.

In the FUJABA approach described in [Burmester et alia 2004], so-called coordination
patterns are used for similar purposes as our semantic interfaces. They use a model
checker to provide incremental verification based on the coordination patterns.

Illustrating situations has been suggested by [Diethelm et alia 2002]; they use communi-
cation diagrams to illustrate use cases and to illustrate do-actions in states. This is similar
to the state-oriented view of role states in collaboration behaviour (and vice-versa).

Our work is also related to ongoing standardization work for harmonization between net-
works. The so-called “meta-protocols” in [TIPHON 2003] constitute an attempt to
abstract services from particular networks. TIPHON, as with Intelligent Networks [IN
1992- 2001], has a network-centric viewpoint; we advocate that a service-centric
approach should be adopted, as discussed in [Sanders 2002].

Service engineering that pays attention to the horizontal dimension has been suggested
within the automotive domain [Krüger 2003][Krüger et alia 2004][Deubler et alia 2005].
Services are defined in a combination of an extended MSC language and UML Use Cases
(using extends and uses relationships). Their approach includes role mapping to system
architectures, and they describe tools to support the generation of state machines from
service descriptions. Their extensions to MSC include succinct expressions of broadcast
signals (including responses) and preemption (“exceptional” signals). They express
progress or liveness properties (i.e. service goals) in what they call triggers, and compose
services using a number of operators, e.g. join and preemption. Trigger composition,
entailing the joining of liveness expressions with functional scenarios, enables compact
expressions of progress that can be validated (proof obligations).

Compared to our approach, their focus on the automotive domain means that broadcast
and preemption signalling is important, while for the convergent services we address, it
suffices to support general signalling mechanisms. They have not exploited the opportu-
nities provided by UML2 collaborations; this is a distinguishing feature of our approach.

68 3 Modelling services in UML

3.5 Method guidelines
We sum up our modelling approach in a number of method rules.

Method rule: Identify elementary collaborations
Elementary collaborations are identified by a unique collaboration name <feature>.

Method rule: Define interface role behaviour of the interface roles
Define the interface behaviour of each interface role in a state machine diagram (an
extended protocol state machine).

Method rule: Identify composite services
Composite services are identified by a unique name <service>. Use this name as the name
of the composite collaboration that defines the service.

Method rule: Identify roles (interface roles or service roles) of composite services
Service roles or interface roles are identified by role names. These must be unique within
the collaboration defining the composite service.

Method rule: Identify service role multiplicity of composite services
For service roles in a composite service, state the multiplicity of the role, according to the
characteristics that apply to the service invocations. Multiplicities can be optional (0..1),
unary (1..1) or n-ary, i.e. (0..n) or (1..n).

Method rule: Compose services from elementary collaborations
Bind the interface roles of elementary collaborations to the (s-)roles of the composite
service (or to other composite interface roles composed in the same way). Use a unique
name for the collaboration use within the collaboration defining the composite service.

Method rule: Compose composite role behaviour from interface role behaviour
Compose full service role behaviour (or interface behaviour in the case of composite
interface roles) from the role behaviour of the bound interface behaviours, taking goal
sequence diagrams as input, and using tool support if available.

Method rule: Model composite service structure in a collaboration, wo/connectors
(optional)

Define a collaboration called <service>_structure, using the presentation option showing
the identified roles names and the role classifier with associated multiplicity, linked by a
collaboration icon naming the service. Connectors are not shown. If tool support is avail-
able, use octagonal icons for the service roles.

Method rule: Model composite service structure in a collaboration, w/connectors
For each service, define a collaboration called <service>, using the presentation option
where the identified roles names and the role classifier with associated multiplicity, linked
by two-way connectors. If tool support is available, use octagonal icons for the service
roles and square icons for connector ends. If initiating and responding roles have been

3.5 Method guidelines 69

identified, colour initiating roles dark and responding roles light, and/or use a connector
stereotype with an arrow pointing towards the responding role(s).

Method rule: Identify actor types
Actor types that play service roles are identified as active classes. Inheritance relation-
ships can be used.

Method rule: Bind service roles to actors
Bind the roles of composite services or interface roles to actors in a collaboration use. Use
a unique name for the collaboration use within the collaboration defining the actor bind-
ing. Any role data defined for the bound roles must be supported by the actor.

Method rule: Compose actor behaviour from interface role behaviour
Compose the actor behaviour from the behaviour of the interface roles bound to it, taking
role goal sequence diagrams and role goal interactions as input, using tool support if avail-
able. (Method not defined in our work)

70 3 Modelling services in UML

- 71 -

4
Service goals

In this chapter we present the concept of service goals, how they can be used to express
basic liveness properties, and how they can be used to model semantic connectors and
semantic interfaces. We show how live subtypes of semantic interfaces can be used to
guarantee basic liveness properties when objects interact.

The structure of the chapter is as follows: first we motivate for the use of service goals by
discussing role projection and basic safety properties, which is the work of [Floch 2003].
Then we define service goals and related terms, elaborating on event goals, progress
labels and semantic interfaces. Next we present the concept of live subtyping, discussing
how this relationship can be exploited. Finally we discuss the modelling of service goals
in UML. A discussion of related work, and summaries of goal expression forms and
method guidelines are provided at the end.

4.1 Role projection and safety properties
Role projection is an abstraction technique that results in a simplified description empha-
sising some properties while hiding others. Rather than analysing a complete system, the
analysis is limited to projections, thus simplifying the validation process.

The projection of service roles to projection roles (p-roles) is due to [Floch 2003]. A p-
role is an interface role that retains only the aspects significant for the purpose of valida-
tion of a connection between two service roles. A p-role hides internal actions and
interactions of the service role that are not visible to a connected role.

We briefly introduced this in section 2.5.1, which Figure 4.1 recapitulates.

Figure 4.1 : Projection of service roles to p-roles

:Actor_a :Actor_b

<<s-role>>
s-role_a

<<s-role>>
s-role_bA B

1

3

1

2 2

connector

p-role p-role

other connectors

Service
role

72 4 Service goals

The principle is to derive interface roles (p-roles) from service roles by projection, and
subsequently validate them according to the following steps:

• Step (1a): Projection: hide internal actions and interactions on other interfaces not vis-
ible on the connection; hidden state transitions are represented by -transitions;

• Step (1b): Distillation: perform gathering, minimization and merging to obtain a min-
imal visible interface behaviour;

- Gathering is a transformation that merges interface role states linked by -transi-
tions into a single state, if the linked states have the same input behaviour.1

- Minimisation is a transformation that replaces equivalent states by a single state.2

- Merging is a transformation that is applied on distinct states reachable from a state
triggered by equivocal transitions through the same sequence of events.3 Two or
more transitions are equivoque when they are defined for the same state and the
same event (i.e input, output or -event), and lead to distinct non-equivalent states.4

• Step (2): Detect breaches of the design rules5; if any rules are breached, correct the
service role manually and repeat from (1);

• Step (3): Compatibility checking between pairs of interface roles - see section 4.1.3.

Algorithms to validate that safety properties are fulfilled by connected roles have been
defined by [Floch 2003]. The design rules and validation techniques of [Floch 2003] con-
stitute what we call the validation of safety properties, and the algorithms are denoted
safety checking algorithms. Design rule validation comprises steps (1) and (2).

4.1.1 Safe service roles
[Floch 2003] defines design rules that, when followed, ensure that service roles and their
projections into interface roles (p-roles) are safe, meaning that they do not violate safety
properties. A service role that breaks the design rules is considered a safety liability, as
there is no environment that can explore all features of its state machine without running
into safety problems. We refer to the design rules as safety rules.

We define safe service roles and safe interface roles as follows:

Definition: Safe service role
A safe service role is one where all projections to p-roles result in safe interface roles.

Definition: Safe interface role
A safe interface role is an interface role that satisfies the safety rules.

Interface roles that pass Step (2) above are safe interface roles. That a service role is safe
does not imply it is compatible with a connected role. Compatibility checking between
pairs of interface roles, Step (3) above, is performed to establish this.

1. [Floch 2003] p. 108.
2. Ibid. p. 124.
3. Ibid. p. 164.
4. Ibid. p. 126.
5. Floch defines more than half a score of design rules that are checked, see [Floch 2003] pp. 190 and 207.

4.1 Role projection and safety properties 73

4.1.2 Dual role
Safe interface roles can be used constructively; [Floch 2003] shows that for any given safe
interface role (say, A), it is possible to automatically generate a dual role (say, B) that is
guaranteed to play safely with A, and that can cover the full behaviour of A. An attractive
characteristic of dual roles is that they by definition are compatible with each other:

Definition: Dual role6

A dual role is an interface role that interacts compatibly with a given interface role. The
full behaviour of the given interface role can be reached interacting with the dual role.

4.1.3 Containment and obligation
Interface roles are said to interact consistently when their interactions do not lead to any
unspecified signal reception, deadlock or improper termination.7 This definition of inter-
action consistency does not require that every transition in an interface role has to be
reachable when a pair of roles interact. Rather, the roles will interact safely if and only if
they are related by both containment and obligation:

• A containment relation exists between two interacting interface roles when, in each
state reached during the interaction, any interface role is able to at least consume any
of the signals received from its complementary role. We also say that the input behav-
iour of each interface role contains the output behaviour of the other interface role.8

• An obligation relation exists between two interface roles when, at each interaction step
where the input ports of the interface role machines are empty, at least one of the inter-
acting interface roles can send a signal.9

Containment and obligation are complementary techniques; containment focuses on pre-
venting unspecified signals and improper termination, while obligation deals with
deadlock prevention. This is exemplified in Figure 4.2 (adapted from [Floch 2003]).

Figure 4.2 presents fragments of two state machines that illustrate the containment and
obligation relations. In this case only one of the machines, (a), plays an initiating role, i.e.
can take the first initiative to send, which it does in state a1.

6. Adapted from [Floch 2003] p. 150. Note that several interface roles may be dual roles to a given interface role.
7. [Floch 2003] p. 78.
8. Ibid. p. 212.
9. Ibid. p. 123.

Figure 4.2 : Containment and obligation

a1

BA

a2 a3

C D

a4 a5

b1

A

b2

C

b4

(a) machine (b) opposite machine

B

a6

mixed initiative state

input consistent with a1

74 4 Service goals

Note that machine (a) is specified to handle a mixed initiative in the mixed initiative state
a110, and is input consistent11. Here state a2 is input consistent with state a1.

In Figure 4.2 role (a) assumes in state a1 that role (b) may send the signal B. Safety check-
ing will reveal that (b) doesn’t, and that the dashed portions of (a) will thus not be
reachable when playing with (b).

(a) and (b) are related by containment, since each role is able to consume all signals pro-
duced by its connected role. And they are related by obligation, since at least one of the
roles can always send a signal when the input ports are empty.

4.1.4 Discussion
[Floch 2003] has shown that validating interface roles requires less state space than a full
reachability analysis of the behaviour of two interacting objects. In addition, the results
are easy to understand for designer, and separate validation models are not needed.

The validation technique is an improvement to the validation of static interfaces, which
would falsely conclude that (a) and (b) in Figure 4.2 are incompatible. Validation of static
interfaces would claim that (a) requires that (b) should be able to consume “D”, which it
in fact won’t, since “B” is never sent by (b), and “D” will thus never be sent by (a). Safety
checking on the other hand correctly concludes that since the transition sending “D” is not
reachable, their combined behaviour is safe.

To motivate our liveness extensions of [Floch 2003], we present a toy example of inter-
face behaviour of a composite service. Figure 4.3 shows the role structure of the service.

The focus is on the interface roles An and Bn, i.e. the behaviour of s-role_a and s-role_b
in Figure 4.3 are not detailed. In the examples we provide alternative versions of An and
Bn, naming them A1, A2,... and B0, B1,... to tell them apart.

The first example of interface behaviour of s-role_a is A1, as shown in Figure 4.4.

Note in Figure 4.4 that the signal discon being sent by A1 and by its connected role more
or less simultaneously is an example of conflicting initiatives12.

10. A mixed initiative state is a state where both signal consumption and sending can occur. ([Floch 2003]. p.143)
11. A state is input consistent with another state if the set [of] inputs enabled in this state contains the set of inputs

enabled in the other state. Two states are input consistent if they accept the same set of inputs. (ibid. p. 178).
12. This is a classical example from telecom: both peers may at any time disconnect a two-party connection.

Figure 4.3 : Two-party service with interface roles An and Bn

Two-party service

<<s-role>>

b:s-role_b
Bn

<<s-role>>

a:s-role_a
An

C:el_coll

Interface
role

Elementary
collaboration

4.1 Role projection and safety properties 75

Note also that A1 includes conflict resolution: discon can cross without causing an error
(unspecified signal reception or deadlock) in A1; A1 has chosen to treat discon in the con-
flict state pend_ack in much the same way as a disc_ack, proceeding to the idle state13.

We can generate an opposite role for A1 by mirroring, using the function mirror()14:

B0 = mirror (A1)

B0, the mirrored role of A1, is depicted in Figure 4.5 below.

While mirroring of simpler interface roles15 than A1 can result in a dual role, the mirrored
role B0 is not safe, since the resulting state disc_B is not input consistent with the preced-

13. This is a simple conflict resolution without involving any signalling.
14. mirror() is a function that creates an interface role from another interface role by changing inputs to outputs and

vice versa. State names are copied unchanged, as are entry and exit points. Deferred triggers (called save in SDL)
are not maintained in the mirrored graph. For details see [Floch 2003] pp. 150-154.

Figure 4.4 : Role A1: connection or messaging

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

msging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

Role A1:
connection or messaging

mixed initiative state

conflict state

conflict detection
conflict resolution

Figure 4.5 : Role B0 = mirror (A1), the mirrored role of A1, is not safe

idle

calling

call

answer

conn

discon

disc_B

disc_ack

idleidle

received

msging

idle

discon

pend_ack

disc_ack

idle

msg

reject

idle

reject

idle

discon

Role B0 = mirror (A1)

not input consistent with conn

mixed initiative state

conflict detection in A1
should not be mirrored

76 4 Service goals

ing mixed initiative state conn. To achieve a dual role according to [Floch 2003], the
conflict detection in A1 (input of discon) should not be mirrored in B, and the necessary
addition of conflict detection in B0 (adding input of discon in state disc_B) should mirror
the conflict resolution in A1 (in this case: going to idle).

A safe opposite role of A1 can be generated by the function dual()16:

B1 = dual (A1)

B1, the dual role of A1, is depicted in Figure 4.6 below17.

The dual role B1 can by definition play safely18 with A1, as it is capable of exercising the
full behaviour of A1, meaning that all behaviour of A1 is reachable when validated against
B1. We introduce the notation of truncation:

Definition: Truncated role
A truncated role is the sub-tree of an interface role that is reachable when playing with
some specific connected interface role. Role A truncated by role B is written A with B.

Returning to the example above, we see that A1 truncated by the dual role B1 results in
A1, meaning nothing in A1 is lost when interacting with B1 (all of A1 is reachable):

A1 with B1 = A1 with (dual (A1)) = A1

However, two roles, say, A and B, do not need to be dual for the pair to interact safely; B
may have either greater or lesser capabilities compared to the dual role of A (e.g. B accepts
more input and/or produces less output than dual(A)), and still play safely with A.

While a dual role can be generated so that the full behaviour of an interface role can be
reached, safety checking does not require full behavioural reachability of a pair of con-

15. Safe, dual roles can be created by mirroring if the source role has no equivoque transitions, no acute -transitions,
and does not contain any mixed initiative states [Floch 2003] p. 153. Acute -transitions are -transitions that
cannot be removed [..] by gathering and minimisation (ibid. p.136).

16. For details see [Floch 2003] p. 191.
17. State names in the dual role B1 reflect a possible B-role, rather than copying the A1 state names.
18. Provided they start consistently, and that any spontaneous sending can occur, see [Floch 2003] page 192.

Figure 4.6 : Role B1 = dual (A1), the dual role of A1, is safe

idle

called

call

answer

conn2a

discon

pend_ack_A

disc_ack

idle

received

msged

idle

discon

disc_A

disc_ack

idle

msg

reject

idle

reject

idle

Role B1 = dual (A1)
connection or messaging

mixed initiative state

discon

idle

conflict detection
conflict resolution
copied from A1

input consistent with conn2a

4.1 Role projection and safety properties 77

nected roles. According to the safety rules it suffices that safety properties are not
violated, i.e. nothing bad should happen. “Bad” in this context means interactions result-
ing in deadlock, improper termination or unspecified signal reception (see definitions
page 39).

4.1.5 Motivation for expressing basic liveness properties
As noted above, the dual role B1 in Figure 4.6 need not be the only role that can play
safely with A1. Figure 4.7 shows other interface roles that are safe alternatives to B1.

The safety checking algorithms of [Floch 2003 section 7.2.4] show that all the roles B2,
B3, B4 and B5 in Figure 4.7 maintain the containment and obligation relationships with
A1. B1 through B5 are all safe as connected roles of A1.

However, it is clear that the truncated roles A1 with B2 through A1 with B5 will be smaller
than the full behaviour A1 with B1. A1 with B5 will result in a very limited play: all initi-
atives are rejected; nothing useful happens.

Figure 4.8 illustrates A1 with B5 in more detail: here the transitions of A1 that will never
happen are dashed in the diagram to the left, and the truncated role “A1 with B5” (with
dashed elements removed) is shown to the right.

An interesting property of truncated roles can be observed: A pair of connected roles will
each have its truncated role; if they interact compatibly, and neither contain deferred sig-
nals19, then the pair of truncated roles will always be dual roles:

A with B = dual (B with A)

19. Deferred triggers (saved signals in SDL) are not maintained by dual().

Figure 4.7 : Roles B2, B3, B4 and B5: safe but less useful alternatives to B1

idle

called

call

answer

conn

Role B2:

received

msged

idle

msg

idle

call_try

call

reject

idle

received

msged

idle

msg

connection or messaging
Role B4:
messaging only

idle

called

call

answer

conn

reject

msg_try

idle

msg

Role B3:
connection only

idle

call_try

call

reject

idle

reject

msg_try

idle

msg

Role B5:
no servicediscon

pend_ack

disc_ack

idle

discon

disc_A

disc_ack

idle

discon

idle

discon

pend_ack

disc_ack

idle

discon

disc_A

disc_ack

idle

discon

idle

78 4 Service goals

Justification: A and B will truncate each other so that an output from one is matched by a
corresponding input in the other. Any superfluous events and states are pruned. All inputs
and outputs will be matched, otherwise they would not interact compatibly.

This motivating introduction has shown that we need means to compare connected roles
with respect to their achievement of useful behaviour, and we need to find criteria to select
the best among a set of safe alternative role behaviours.

4.2 Expressing basic liveness properties with service goals
All interactions should be safe, as discussed in the previous section. But in addition, some
useful interactions should be possible. Liveness properties, i.e. desirable things that
should eventually happen, are not addressed by [Floch 2003]. We suggest expressing use-
fulness by the systematic use of service goals.

The service goal concept arises from the recognition that behind each service invocation
lies some primary goal. Such goals can be identified and discussed at a high level, inde-
pendently of the implementation details of terminals, networks and service protocols.

Our main contribution to the expression of basic liveness properties involves labelling
events with what we call progress labels. Progress labels are a way of expressing event
goals, and mark events that constitute something useful to the service. They are inspired
by the marking of so-called “progress states” in Promela [Holzmann1991, 2003]20.

The structure of this section is as follows: First we define the concepts related to service
goals, such as state-like goals and event goals, placing particular emphasis on event goals
expressed using progress labels. We exemplify progress labelling, and discuss different
types of progress labels and how they can be used. We show how progress labels can be

20. A progress-state label in Promela marks a state that must be executed for the protocol to make progress.

Figure 4.8 : Role A1 combined with B5: a safe but useless alternative to B1

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

msging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

idle

calling

reject

call

idle

msg

msging

reject

idle

Role A1:
connection or messaging

A1 with B5:
rejections

4.2 Expressing basic liveness properties with service goals 79

derived from goal states. We also discuss aspects of service goals in general, and distin-
guish between specified interface behaviour and actual interface behaviour.

4.2.1 Definition of terms
We use the type elements of a service structure to express service goals.

Definition: Service goal
A service goal is a property that characterizes a point in the behaviour of a collaboration
between roles as having achieved something useful.

Semantic connectors and the semantic interfaces are the basic elements of our approach.
By definition they must contain reachable service goals:

Definition: Semantic connector
A semantic connector is an elementary collaboration with a consistently defined pair of
semantic interfaces and service goals, i.e. where:

• the semantic interfaces are dual roles21, so by definition they are safe interface roles;

• goals are defined consistently: a goal in one role is matched by a goal in its opposite
role;

• it optionally defines collaboration goal(s) that are reachable when the roles interact.

Definition: Semantic interface
A semantic interface is an interface role describing specified interface behaviour. A
semantic interface has at least one event goal.

Definition: Role compatibility
A pair of roles is compatible if and only if the roles interact safely, and are capable of
achieving service goals when doing so.

Definition: Collaboration goal
A collaboration goal is a predicate expressing when a goal is achieved seen from the per-
spective of the collaboration as a whole.

We differentiate between two ways of expressing goals: state-like goals and event goals.
The former relates to stable situations, while the latter relates to transient events.

Definition: State-like goal
A state-like goal is a predicate that can be evaluated at any time when a system is stable,
i.e. in between the handling of events and outside the execution of operations.

A state-like goal is a goal expression or a goal assertion.

Definition: Goal expression
A goal expression is a predicate defined within the scope of a service structure. If evalu-
ated to True, the goal of the element is currently achieved.

21. By dual we imply that all signals sent by one role are consumed by the other role, with no unreachable transitions.

80 4 Service goals

Definition: Goal assertion
Goal assertions are expressed by goal expressions in structure descriptions, or by state
invariants in behaviour descriptions.

Definition: Event goal
An event goal is related to the occurrence of an event: the event occurring implies that
something useful is achieved at that point in the behaviour. An event is a signal sent or
consumed.

Definition: Goal state
A goal state is a state or exit point of a state machine where a goal is achieved. Goal states
can be expressed by goal assertions and/or by progress labels.22

Definition: Progress label
A progress label marks an event goal or goal state in a service role or interface role.

To distinguish between roles with and without progress labels, we introduce the terms
basic roles and live roles:

Definition: Basic interface role
A basic interface role is an interface role without progress labels.

Definition: Live interface role
A live interface role is an interface role with progress label(s).

Goals are ultimately achieved through the successful playing of service roles by the actors
participating in a service invocation. We can thus talk about actors achieving goals.

Definition: Role goal
A role goal is a service goal defined for a collaboration role.

Definition: Actor goal
An actor goal is a service goal defined for an actor. An actor goal is usually related to the
role goal of a service role or a semantic interface an actor can play.

4.2.2 Examples of progress labelling
We introduce the technique of progress labelling by way of an example, showing how sig-
nals sent or consumed are marked by progress labels. Here we only focus on progress
labels in the interface roles, and do not detail the service roles to which the interface roles
are bound or from which they are projected.

Figure 4.9 shows a reworking of the basic interface role A1 we introduced in Figure 4.4
on page 75, into the live interface role A2, where notes containing the strings “progress:2”
and “progress:8” are progress labels. A2 is a semantic interface, as we shall see later.

If A2 was served by an actor playing B5 introduced in Figure 4.7 on page 77, the truncated
behaviour of A2 would be as depicted in Figure 4.10 below.

In Figure 4.10 the transitions that can never occur are dashed in the diagram to the left,
and the truncated role graph is shown to the right.

22. In section 4.2.5.2 we show how goal states marked by assertions can be used to derive progress labels.

4.2 Expressing basic liveness properties with service goals 81

The validation of safety properties first determines whether the interface roles are safe,
which they are in this case. The truncated role A2 with B5 is then be analysed for the pres-
ence of progress labels. In this case there are none; all the progress labels are contained in
the portions of A2 that are not reachable when playing with B5. Progress checking deter-
mines that no progress can be made in this case, i.e.:

progress (A2 with B5) = 0

leading to the conclusion that A2 will not reach any progress when playing with B5,
although the pair are compatible in terms of safety properties.

Figure 4.11 shows examples of interface role combinations capable of yielding progress.

Figure 4.9 : Role A2: Graded progress labels added to A1

idle

calling

answer

call

conn

reject

idle

discon

Role A2: connection or messaging

pend_ack

disc_ack

idle

discon

idle

msg

msging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

progress:2progress:8

Figure 4.10 : Role A2 combined with B5: no progress achievable

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

msging

idle

reject

idle

discon

disc_B

disc_ack

idle

idle

calling

reject

call

idle

msg

msging

reject

idle

progress:2receivedprogress:8

Role A2: connection or messaging progress (A2 with B5) = 0

A2 with B5

82 4 Service goals

In Figure 4.11 the truncated graphs of A2 are shown in each case. Safety rules are
respected in both combinations. Progress checking concludes that A2 will reach progress
when combined with both B2 and B4:

progress (A2 with B2) = 8 + 2 = 10
progress (A2 with B4) = 2

4.2.3 Types of progress labels
Two types of progress labels are defined in the following:

• Graded progress labels;

• Service-specific progress labels.

We discuss each in the subsections below.

4.2.3.1 Graded progress labels

The examples in Figure 4.10 and Figure 4.11 show examples of progress labels in the
form of “progress:<n>”, where the designation <n> quantifies the progress achieved. We
call these graded progress labels.

Definition: Graded progress label
A graded progress label is a progress label with a numerical designation of the relative
amount of progress; the higher the number the greater the relative progress.

If a graded progress label is found in the truncated role, then that interface role is said to
have at least that level of progress with respect to its connected role.

Definition: Level of progress
The level of progress of an interface role truncated by another interface role is the sum of
the graded progress labels in its truncated role.

Figure 4.11 : Role A2 combined with B2 or B4: progress achievable

idle

calling

answer

call

conn

discon

pend_ack

disc_ack

idle

discon

idle

msg

msging

received

idle

discon

disc_B

disc_ack

idle

progress (A2 with B2) = 8 + 2 = 10 progress (A2 with B4) = 2

idle

calling

reject

call

idle

msg

msging

received

idle

progress:2progress:8 progress:2

4.2 Expressing basic liveness properties with service goals 83

A progress label “progress” without a numerical value implies a progress level of “1”. A
basic interface role has progress () = 0, since no graded progress labels are present.

As we have discussed above, there is a need for a mechanism to determine a best choice
among a set of alternative roles. Given that a set of alternative roles satisfies the safety
rules, criteria to distinguish relative role-playing capabilities are required. If several alter-
native role behaviours are possible, e.g. B1-B4 in the example, it is then possible to
compare them with respect to their levels of progress. The alternative interface role with
the highest level of progress is the best choice for a role arbitration mechanism23. Alter-
native roles with the same level of progress are considered equally good alternatives.

In Figure 4.10 the level of progress is zero, i.e. no progress; despite satisfying safety
requirements, A2 with B5 gives no progress. In Figure 4.11 the level of progress of A2 with
B2 is 8 + 2 = 10, while the level of progress of A2 with B4 is 2. Progress checking con-
cludes that B2 is the best choice of alternative role relative to A2.24

4.2.3.2 Service-specific progress labels

The second type of progress label is what we call service-specific progress labels. It ena-
bles one easily to identify which semantic connectors has achieved a goal. This is useful
when several semantic connectors are bound to a service role or an actor.

Definition: Service-specific progress label
A service-specific progress label is a progress label that identifies a role goal.

If a service-specific progress label is found in a truncated role, then the interface role that
is truncated is said to include that service progress with respect to its connected role.

Definition: Service progress
The service progress of a role truncated by another role is the set of service-specific
progress labels in its truncated role. An empty set implies no progress.

We insert service-specific progress labels that identify role goals, e.g. progress: Call_Init
or progress: Msg_Init. An example is shown in Figure 4.12.

Progress checking of A3 with B5 results in an empty set of service-specific progress labels,
i.e. no progress. Validating A3 with B4 results in a set of one progress label, while A3 with
B2 results in the set of four progress labels:

progress (A2 with B2) = {Call_Init, Disc_Init, Disc_Resp, Msg_Init}
progress (A2 with B4) = {Msg_Init}

Several applications of service-specific progress label are possible:

• In terms of choosing between alternative roles, the role yielding the largest set of serv-
ice-specific progress labels is the better choice, e.g. B2 is the best choice for A2;25

• A role request could state progress requirements in terms of service-specific progress
labels, e.g. Request (“B”, “A3”, Atleast Label(“Call_Init”)).

23. This is used for runtime connector validation as an element of role requests, see section 6.5.1.
24. This can be applied to role requests introduced in section 2.4.5: the requesting role could state a minimum level

of progress during a role request, e.g. Request (“B”, “A2”, AtleastLevel(<n>),...).
25. Graded progress labels can likewise be used to select the best among several alternative roles.

84 4 Service goals

Note that service-specific progress labels are linked to goal states, see section 4.2.5.

4.2.4 Using progress labels

4.2.4.1 Employment of progress labels

We have defined two types of progress labels. The label types provide different benefits
at design time and runtime. We suggest two approaches to the use of progress labels:

• Role arbitration which calculates the achieved progress between two roles, and can
compare the progress level of several alternative roles. In the role arbitration scheme,
graded progress labels can be used. The preferred role is the alternative role that returns
the highest value when challenged with a particular role;

• Compatibility check, which checks whether or not a specified role is able to provide
one or more specific service. In the compatibility check the service specific progress
labels can be used to check whether or not a specified service is accomplished during
interaction with some specified role.

Algorithms for both approaches have been designed and implemented, see section 6.1.3.

4.2.4.2 Attaching progress labels to exit points

Progress labels may be attached to exit points; an example was first seen using SDL in
Figure 3.20 on page 60. The principle is to use the exit points to indicate what progress
has been achieved. An example using UML2 is shown in Figure 4.13 below.

In Figure 4.13, the interface role connection_or_messaging is specified using a compos-
ite state. The name of the exit point indicates whether progress is achieved or not. If the
name of the exit point begins with “progress”, then it constitutes a progress label. Either
graded progress labels or service-specific progress labels can be used for such labelling.

Figure 4.12 : Role A3: A1 with service-specific progress labels added

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

messaging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

progress:
Disc_Resp

progress:
Msg_Init

progress:
Call_Init

progress:
Disc_Init

4.2 Expressing basic liveness properties with service goals 85

Labelling exit points is useful for composite states that terminate after reaching a goal. If
exit points and role goals correspond directly, then attaching labels to exit points is
feasible.

However, exit points cannot be used for service logic containing behaviour cycles, i.e.
behaviours where service features are invoked in cyclic fashion, and where a scheme of
“one composite state per service invocation” will not work. In this setting exit points
would not be reached during normal usage.

For instance the composite state in Figure 4.13 must be invoked repetitively if the service
logic is used several times in succession, e.g. to send more than one signal to the associ-
ated B-role. This may not be a desirable way to design service logic as it imposes
restrictions on the progress labels. Were we only to rely on labelling exit points to express
progress, we would not be able to attribute progress to behaviour other than that which
leads to an exit point. For instance, achieving the goals of the positioning logic of
Figure 4.13 could not contribute to the calculation of progress.

4.2.4.3 Insertion of progress labels

Progress labels are manually inserted into service roles or semantic interfaces by a
designer, or they are automatically inserted into p-roles by the projection tool.

The manual insertion of progress labels is a process aimed at specifying what events or
exit points in a state machine constitute progress. As with all manual processes, it can be
creative but also error-prone. Validation algorithms and tools should take this into
account, and support the designer in an iterative process during the design activities.

Use graded progress labels in service roles, and service-specific progress labels in seman-
tic interfaces. Note that the placement of progress labels in service roles must take

Figure 4.13 : Role with progress labels on exit points

idle

calling

answer

call

conn

reject

discon

pend_ack

disc_ack discon

msg

msging

received reject

discon

disc_B

disc_ack

pos_req

position_req

position reject

progress progressprogress

failureprogressfailure

connection_or_messaging

idle idle

progress

failure

86 4 Service goals

projection into consideration, since projection removes events and event goals that are not
visible from the viewpoint of the connection; see section 6.1.3.

Method rule: Insert graded progress labels in service roles
Insert graded progress labels in service role behaviour so that for each role projection of
the service role there is a least one event that has a progress label. Mark all useful alter-
native paths with a progress label. Use graded progress labels to distinguish between
alternative functional service levels, rating the most useful highest.

Method rule: Insert service-specific labels in semantic interfaces
Insert service-specific progress labels in semantic interfaces so that there is a least one
event that has a progress label. Mark all useful alternative paths with a progress label. Use
service-specific progress labels to identify which semantic connector has progress.

In either case one must take care to attach progress labels to unique events, see the method
rule "Attach progress labels to unique events" on page 137.

4.2.5 Deriving progress labels
Since manually inserting progress labels is subject to human inaccuracy, an attractive
alternative is to let tools derive the progress labels from other descriptions of the service.

4.2.5.1 Deriving progress labels from role goal interactions

Goal assertions expressed by UML2 state invariants in role goal interactions can be used
to automate the insertion of service-specific progress labels in interface roles. Figure 4.14
illustrates the principle: the lower right half is a role goal interaction, with a goal assertion
defined by a state invariant. To the left is the definition of the behaviour of the semantic
interface with a service-specific progress label attached to an exit point.

Figure 4.14 : Deriving progress labels from role goal interactions

s1s1 s…s…

answeranswer

Caller {xprotocol}

s0s0

callcall

Progress:
Call_Init

……
call

sd Call_caller_callee

alt answer

reject

rejectreject

caller: 1
Caller

callee: 1
Callee

Call

:CallerProgress
label

Goal assertion
(state invariant)

{goal == True}

4.2 Expressing basic liveness properties with service goals 87

The tool needs to identify the event immediately preceding the state invariant, and mark
this event in the interface role with an appropriate progress label. It is possible to automat-
ically insert service-specific progress labels in this way.

An appropriate naming scheme for progress labels that lends itself to automation is a con-
catenation of the name of the semantic connector (e.g. Call) and “_Resp” for responding
role and “_Init” for initiating role. Which role is responding or initiating is defined by the
semantic connector, see the top right of Figure 4.14.

4.2.5.2 Deriving progress labels from goal states

Goal states can be identified by goal assertions. Since achieving a goal state by definition
constitutes progress, a tool could be used to derive appropriate progress labels from goal
states that are expressed by goal assertions. Figure 4.15 illustrates the principle.

Such a tool needs to identify the goal states of the role, and to mark the states or events
that lead to these states with appropriate progress labels. Note that if several events lead
to a goal state, each event will be marked by a derived progress label.

Method rule: Derive service-specific progress labels
In interface roles, insert service-specific progress labels on goal states (or events that lead
to goal states), such that they correspond one-to-one with goal assertions defined in role
goal interactions. If possible use tools to derive these progress labels.

4.2.6 General aspects of service goals
Different goal expression forms can be used to express the various goal types, depending
on what type element is used, and can vary in complexity. For instance, the simplest form
of collaboration goal is the conjunction of a set of goal assertions.

A service element may have several service goals. For instance a service role may have
more than one role goal, e.g. at least one for each semantic interface it supports. Likewise,
a composite service structure many have more than one collaboration goal.

Figure 4.15 : Deriving progress labels from goal states

calledcalled

freefree

Callee {xprotocol}

freefree

Answer

Connected
{goal == True}

Reject

CallRequest progress:
Call_Init

Goal state

Derived
progress label

progress:
Call_Init

Role goal
assertion

Derived
progress label

88 4 Service goals

Service goals are property descriptions that ultimately characterise actors in terms of the
services they partake in. Service goals are instantiated when the roles they relate to are
instantiated, which occurs when the service roles are played by actors. Goal assertions can
be evaluated during the playing of roles. The value of goals prior to service invocation is
undefined. The result of a goal assertion when the role is no longer played is undefined.

Service goals define successful service invocations. Exceptional cases, error handling and
other forms of failure are not expressed by service goals. The purpose of service goals is
to highlight essential service intentions. Nonetheless, the failure to reach service goals is
important, since subsequent services may depend on preceding service goals being
achieved. The discussion of goal sequences is the subject of chapter 5.

4.2.7 Service goal types
In the sections above we have presented different types of service goals. We summarize
the various service goal types and their scope in Table 4.1:

4.2.8 Semantic interfaces versus p-roles: specified versus actual
As stated above, p-roles and semantic interfaces are different types of interface roles. The
distinction between them lies in how they are derived and used. Semantic interfaces
define specified interface behaviour, while p-roles describe actual interface behaviour.

Following our approach, semantic interfaces are interface roles of semantic connectors,
and defining interface behaviour with role goals is mandatory. Differently, a p-role is
obtained projecting a service role over a connector, and will only contain role goals if the
service role has goals that are visible to that particular connector; see section 6.1.3.

Projection to p-roles and binding to semantic interfaces provides validation opportunities,
such as checking whether p-roles are live subtypes of semantic interfaces, as introduced
below.

Table 4.1: Service goal types

Service goal type Purpose Scope

Collaboration goal

Collaboration goal
assertion

Describes the goal of the collaboration as a
whole in the form of a goal expression
(predicate)

Within the collaboration itself,
following the scoping rules of
collaborations

Role goal

Role goal assertion Describes the goal of the role in the form of a
goal expression (predicate)

Within the classifier (actor)
playing the role, following the
scoping rules of classifiers

Event goal Characterizes an event as achieving a role
goal. A goal event can be a signal sent or con-
sumed, or a state or an exit point reached.

Within the classifier (actor)
playing the role, following the
scoping rules of classifiers

4.3 Live subtyping 89

4.3 Live subtyping
Here we discuss relationships between alternative roles, investigate their effect on the
achievement of progress, and formulate rules for what we call live subtyping. As we shall
see in chapter 6, the live subtyping relationship is useful for efficient validation of com-
patibility and compliancy at both design time and runtime.

Below we analyse the effects of redefining interface roles through subtyping, i.e. adding
and removing input and output from a pair of semantic interfaces. We also compare live
subtyping with the subtyping capabilities of SDL and UML26.

In Figure 4.16 we recall the role A3 (A1 with progress labels added) and its dual role B1.
A3 and B1 constitute a pair of semantic interfaces27 of a semantic connector C.

Dual roles play safely by definition, and are capable of reaching the full behaviour of each
other. Role validation of a dual pair will ascertain whether basic safety properties and live-
ness properties are fulfilled: all the progress labels of A3 are reachable when playing with
its dual role B1.

4.3.1 Removing behaviour

4.3.1.1 Removing output

We start our analysis with removal of output relative to a well-formed semantic interface.
Figure 4.17 below recalls the roles B2, B3, B4 and B5 from Figure 4.7 on page 77. We see
that B2 through B5 are obtained by removing different amounts of output from B1.

26. Compatibility constraints in connection with inheritance of behaviour in UML is a semantic variation point, see
[UML 2.0] p 126.

27. Note that B1 should contain progress labels corresponding to those in A3. These are omitted to save space.

Figure 4.16 : Role A3 and dual role B1: a pair of semantic interfaces

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

messaging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

progress:
Disc_discee

progress:
Call_caller

progress:
Disc_discer

progress:
Msg_msger

idle

called

call

answer

conn

discon

pend_ack

disc_ack

idle

received

msged

idle

discon

disc_A

disc_ack

idle

msg

reject

idle

reject

idle

discon

idle

Role A3:
connection or messaging

Role B1: dual role of A3
connection or messaging

90 4 Service goals

We have previously analysed the roles B2, B3, B4 and B5, and determined that they are
safe alternatives with respect to playing with A1, and hence they are with A3 too.

Removing output from a role is safe up to a point: If too much output is removed, the obli-
gation relationship will be violated. This is exemplified by the role in Figure 4.18:
Whatever signal A3 sends to this interface role, no response is returned, and A3 will for-
ever remain in state calling or messaging.

In addition, even if removing output from a role is safe, it comes at the inherent risk of
losing progress. The resulting truncated role will be smaller, and the progress achieved
towards service goals reduced accordingly. This has been demonstrated for roles B3
through B5, which all result in less progress than the dual role B1. On the other hand, B2
results in the same progress as B1, since it removes output that does not affect any
progress labels in A3. So B2 is a safe and useful alternative to B1.

We conclude that removing output to create a new role from a dual role is possible, but
that it is not generally a safe or useful subtyping relationship. Removing output is possible
by redefining the transitions of a supertype in a subtype28, so here we must be stricter than
SDL and UML to prevent losing progress. A subtype can have less output, but we must
ensure that progress is not lost as a consequence, and that obligation is not breached.

28. A redefinable transition in SDL and UML cannot remove the input of the transition, but any amount of output in
the transition of the supertype can be removed by the subtype.

Figure 4.17 : Roles B2, B3, B4 and B5: safely removing output from B1

idle

called

call

answer

conn

Role B2:

received

msged

idle

msg

idle

call_try

call

reject

idle

received

msged

idle

msg

connection or messaging
Role B4:
messaging only

idle

called

call

answer

conn

reject

msg_try

idle

msg

Role B3:
connection only

idle

call_try

call

reject

idle

reject

msg_try

idle

msg

Role B5:
nothing achieved

discon

pend_ack

disc_ack

idle

discon

disc_A

disc_ack

idle

discon

idle

discon

pend_ack

disc_ack

idle

discon

disc_A

disc_ack

idle

discon

idle

Figure 4.18 : Interface role with too little output: obligation breached

idle

idle

call

idle

msg

4.3 Live subtyping 91

4.3.1.2 Removing input

Input events cannot be removed from any of the roles without safety problems arising. A
premise for the dual relationship is that any spontaneous sending can occur, and without
a corresponding input in the connected role, unexpected input will occur.

We conclude that removing input to create a new role from a dual role is a breach of the
containment rule, see section 4.1.3. This is consistent with subtyping in SDL and UML,
which likewise does not allow input to be removed (see footnote 28).

4.3.2 Adding behaviour
Let us analyse the effects of adding behaviour. Consider the interface role in Figure 4.19:

Role B6 of Figure 4.19 is capable of performing large portions of B1’s behaviour, the only
essential difference29 being that B6 is capable of handling a positioning request, high-
lighted in boldface in Figure 4.19. Compared to B1, B6 adds an input pos_req, a state
positioning, and an output position.

We can say that B6 contains B1. I.e., B1 could be a supertype, and B6 could be a redefi-
nition (subtype) inheriting from B1 and adding the additional behaviour marked in
boldface.

Performing compatibility checking with A3 would conclude that both B1 and B6 would
work equally well, since the additional behaviour of B6 will never be invoked by A3. In
fact, A3 would not be able to tell B1 and B6 apart.

That input can be added to a subtype without impairing safety and liveness properties is
as can be expected. What is more interesting, is that we can safely add output, provided it

29. A few differences in states names are intentionally chosen, to stress the point that state names do not carry any
behavioural semantics; only the sequence of events do.

Figure 4.19 : Role B6: adding input-output behaviour is safe

Role B6:
connection, messaging or positioning

position

positioning

idle

pos_req

idle

call

call

answer

conn

discon

pending

disc_ack

idle

received

msg

idle

discon

disc

disc_ack

idle

msg

reject

idle

reject

idle

discon

idle

reject

idle

92 4 Service goals

is “guarded” by added input, i.e. output added to states that are hidden when viewed from
the perspective of the dual role of the supertype (i.e. states that will not be reached when
they interact). An example is the output of position or reject in state positioning in
Figure 4.19. Since the state positioning will not be reached when A3 and B6 interact, A3
will never receive position. I.e. the interaction between A3 and B6 is safe.

However, adding output is not safe if it is added to a state that is visible to the connected
role. Consider for instance the role A4 in Figure 4.20 below.

A4 relates to A3 in much the same way as B6 relates to B1: large portions of behaviour are
identical, the addition being the positioning functionality shown in boldface. A4 could be
a redefinition (subtype) of A3, since it contains all of A3 and adds the parts in boldface.

Safety checking between pairs of interface roles shows that A4 cannot interact safely with
B1 (nor with B2-B5 of Figure 4.17). The reason is that A4 has the output pos_req that
these roles do not accept as input, thus breaching the containment rule, see section 4.1.3.

However, A4 can interact safely with B6 in Figure 4.19, because this role accepts the extra
signal. In fact, A4 and B6 are dual roles; one of them can be synthesised from the other.

We conclude that input can safely (and usefully) be added by a subtype. Furthermore that
output can be safely added to invisible states (states added by the subtype), while output
cannot safely be added to visible states of the supertype. We note that safely added output
does not affect progress compared to the supertype.

4.3.3 Live subtyping: compatibility between interfaces roles
We are now in a position to define live subtyping and to discuss role compatibility.

Definition: Live subtype
A live subtype is a safe and useful redefinition of an interface role. By useful it is implied
that no progress is lost by the redefinition.

Figure 4.20 : Role A4: adding output-input behaviour is unsafe

idle

Role A4: connection, messaging or positioning

pos_req

position_req

position

idle

reject

idle

calling

answer

call

conn

reject

idle

discon

pend_ack

disc_ack

idle

discon

idle

msg

messaging

received

idle

reject

idle

discon

disc_B

disc_ack

idle

progress:
Disc_discee

progress:
Call_caller

progress:
Disc_discer

progress:
Msg_msger

progress:
Pos_poser

4.3 Live subtyping 93

Live subtyping is limited to adding input events and states to the supertype, and restricting
the addition of output events only to the states added to the supertype. No input of the
supertype may be removed. The subtype may have less output than the supertype, pro-
vided obligation is not breached, and that no event goals are lost.

A’ being a live subtype of A we write as:

A’ ~> A

In UML diagrams we suggest that live subtyping is indicated by writing “live” in the
inheritance icon. See Figure 4.21 on page 94 for an example.

For the sake of argument, we define a less strict form of subtyping that is nonetheless safe:

Definition: Safe subtype
A safe subtype is a safe redefinition of an interface role. The redefinition may have less
progress then the supertype.

Safe subtyping is limited to adding input events and states to the supertype, and restricting
the addition of output events to the states added relative to the supertype. No input of the
supertype may be removed. Output may be removed, provided obligation is not breached.

UML2 allows all output to be removed by subtyping, which in general is not safe or use-
ful. With safe subtyping output can be removed as long as obligation is not breached. Safe
subtyping can remove progress, and is therefore less restrictive than live subtyping.

Roles related by either live or safe subtyping to a supertype fulfil different interpretations
of behavioural compatibility as defined by RM-ODP, see section 2.1. Both can be alter-
native roles of their supertypes with respect to a dual role of the supertype.

Definition: Alternative role
Two roles are alternatives with respect to a particular connected role if they both can play
with the connected role without violating the safety rules.

If a role breaches safety rules, its environment (i.e. the connected role) will notice it. And
with safe subtypes, useful progress can be missing in the truncated role of the connected
role; over time this is also noticeable for its environment.

We therefore define our interpretation of behavioural compatibility as follows:

Definition: Compatible connected roles
A role is behaviourally compatible with another role if and only if the roles interact safely
and their truncated roles contain all their respective progress labels.

Dual roles are by definition compatible. But compatible roles do not have to be dual; both
roles may be truncated by each other, but they must not loose progress as a consequence,
and they must interact safely.

From the discussions above we see that live subtypes are also compatible with the dual
roles of their supertype. Furthermore, two live subtypes where each of their respective
supertypes are compatible, are compatible with each other (and with their complements
respective supertype). This will be further discussed in the next section.

94 4 Service goals

Note that live subtyping is also central to the definition of compliancy between service
roles and the interface roles (semantic interfaces) that are bound to them:

Definition: Compliancy between a service role and a semantic interface
A service role is compliant with a semantic interface if its p-role projected over the con-
nection represented by a semantic connector is a live subtype of the semantic interface.

4.3.4 Live subtyping and collaborations
Here we analyse the effects on collaborations between roles that inherit from semantic
interfaces based on live subtyping.

We take it as given that C is a semantic connector with interface roles A and B, and that A’
is a live subtype of A. See Figure 4.21.

Since A’ is a live subtype of A, A’ and B will by definition be compatible, i.e. the truncated
role A’ with B will by definition have all the progress of A with B. The progress of C will
be identical to that of C’, since all that A’ adds to A will be truncated by B.

Thus we conclude that progress is neither lost nor gained by live subtyping:

A’ ~> A => {progress (A’ with B) == progress (A)} => progress (C’) == progress (C)

Note that C’ and C will be not necessarily be identical, since A’ can remove some output.

What if live subtypes of both semantic interfaces collaborate? Observe the case in
Figure 4.22.

In Figure 4.22 A’ is a live subtype of A, and B’ is a live subtype of B. C’’ is the collaboration
between A’ and B’; the question is what relationship is there between C” and C.

Since A’ is a live subtype of A, A’ and B will by definition be compatible. Likewise, since
B’ is a live subtype of B, B’ and A will also be compatible. The truncated role A’ with B’
will have all the progress of A with B. No progress will be added to C’’ due to A’, since all
that A’ adds relative to A will be pruned by B’, as B’ does not add any output that can use
the additional parts of A’. The same argument holds for progress added to C’’ due to B’.

Figure 4.21 : Live subtyping: extending one role is safe and useful

A BC

A’ BC’

live

Figure 4.22 : Live subtyping: extending both roles is safe and useful

A BC

A’ B’C”

live live

4.4 Service goals expressed in UML2 95

Thus we can conclude that also C” and C have the same progress; progress is neither lost
nor gained:

{ A’ ~> A and B’ ~> B } => progress (C’’) == progress (C)

C’’ and C will not necessarily be identical, since both A’ and B’ can remove some output.

We see from the above relationships that live subtyping never results in a loss of progress,
and that all live subtypes of semantic interfaces are compatible with both the opposite
semantic interface and all its live subtypes. For live subtypes it is thus unnecessary to
repeat the validation performed for their supertypes; we known they are compatible.30

We have previously discussed how it is possible to create dual roles from safe interface
roles. We could use these techniques to create “live” extensions of semantic connectors,
i.e. adding new features without losing previously defined progress. However, the inter-
face role thus created would not be a live subtype. See Figure 4.23.

In Figure 4.23 A’ is a live subtype of A, and B” is created as dual role of A’. Since A is a
safe role, and A’ is a live subtype of A, we know that A’ is a safe role, and that a dual role
B” can indeed be created from it. C’’’ is the collaboration between A’ and B’; the question
is what relationship there is between C’’’ and C.

Since A’ is a live subtype of A, and B” is the dual role of A’, all progress in C is present in
C’’’, since no progress of A is removed by A’, and B” covers all of A’.

However, whatever A’ has added to A will be reachable in C’’’, so C’’’ can have more
progress than C:

A’ ~> A and B”’ = dual(A) => progress (C’’’) > progress (C)

We can say that C”’ is a “live collaboration subtype” of C; no progress of C is lost, but
some additional goals may be achieved. B” on the other hand is not a safe subtype of B,
since it adds output that cannot be accepted by A.

A consequence of this is that dual() cannot be used to create live subtypes.

4.4 Service goals expressed in UML2
In this section we show how service goals can be expressed using UML2, extending the
examples presented in chapter 3. We will show that goals can be expressed:

30. If more lax inheritance relationships other that live subtyping are used, e.g. safe subtyping that removes output
related to progress, the result will always risk losing basic liveness and/or safety properties; in such a case valida-
tion must be performed to determine progress. This was demonstrated in the examples: roles B2 through B5 are
safe subtypes of B1, but each had to be analysed against A1 (or A3) to ascertain the resulting progress.

Figure 4.23 : Live subtyping: extending one role, creating dual role from it

A BC

A’ B’’C’’’

live live

B” = dual (A’)

96 4 Service goals

i. in composite structure diagrams as goal expressions in OCL;

ii. in sequence diagrams as goal assertions in continuation labels or state invariants;

iii. in state machines as goal assertions in OCL.

4.4.1 Composite structures
A two-party service structure enriched with goal expressions is shown in Figure 4.24.

A three-party service structure enriched with goals is shown in Figure 4.25.

4.4.1.1 Semantic connectors and semantic interfaces

A semantic connector with a goal expression is shown in Figure 4.26.

In Figure 4.26 the collaboration Setup defines two semantic interfaces, inviter and invitee
of respective role types Inviter and Invitee.

Figure 4.24 : Two-party service structure with goal expressions

someRole
service_attributes

service_states

otherRole
service_attributes

service_states1..n 1..mService

{context Service def: goal : Boolean =
self.someRole-> forAll(goal) and

self.otherRole-> forAll(goal)}
{context someRole def:

goal : Boolean = …}
{context otherRole def:

goal : Boolean = …}

Role goal
expression

Collaboration goal
expression

Figure 4.25 : Three-party service structure with goal expressions

Type_a Type_bService_abc
a b

c:Type_c

1 1

0..1

{def: goal : Boolean =
a-> forAll(goal) and b-> forAll(goal)
and c-> forAll(goal)}

{def: goal : Boolean

=…}
{def: goal : Boolean

= …}

{def: goal : Boolean

= …}

Collaboration goal
expression

Figure 4.26 : Semantic connector defines a pair of semantic interfaces

Setup

inviter:Inviter 1 invitee:Invitee 1

{def: goal : Boolean = inviter.goal and invitee.goal}

4.4 Service goals expressed in UML2 97

In this example a collaboration goal is expressed as the conjunction of the goals of the
semantic interfaces. Expressing a collaboration goal for a semantic connector is optional
according to the method guidelines given in section 4.7.

4.4.2 Interactions
Sequence diagrams are well suited for determining when service goals are true, since they
define cross-cutting behaviour. Sequence diagrams can be enriched with service goals.

In Figure 4.27 semantic connectors have been factored out by grouping the interactions of
Figure 3.11 and inserting pairs of state invariants31 in Figure 4.27 to indicate pairs of role
goal assertions for each semantic connector.32

Figure 4.28 shows an interaction that results in the achievement of the service goals of the
composite Call service:

• The achievement of the collaboration goal is expressed by a continuation label33 cov-
ering the lifelines representing the service roles;

• The achievement of role goals is expressed by state invariants, here using curly brack-
ets. These are what we called goal assertions, here expressed in OCL.

31. State invariants in UML can be written in state symbols, or, like here, between curly brackets.
32. Note that event occurrences from different semantic connectors interleave in Figure 4.27, like the MpInfo signal

belonging to the Mp collaboration appearing in between MpSession events.
33. Continuation labels were introduced in UML2 to allow conditional fragments to be semantically combined to con-

tinuations in referencing interaction fragments, and normally appear as the first or last element of a conditional
operand. To use this modelling element, one must place the interaction in an alt operand.

Figure 4.27 : Meeting Place Conference scenario with role goals

conferee controller

mp

JoinMp

Create

Create (mp)

MpInfo(..)

MpConf(conf)

MpConfCall(a)
CallAck

sd MpConf_goals

{Mp.controller:goal==True} {Mp.mp.goal==True}

MpAck(..)

JoinAck(..)

{MpSession.participant.goal==True} {MpSession.host.goal==True}

MpConfAck

{MpcAddOn.conferee.goal==True} {MpcAddOn.conf.goal==True}

conf

MpCnfAck

{MpcInfo.participant.goal==True}

{Mpc.controller.goal==True} {Mpc.mp.goal==True}

{MpcInfo.mp.goal==True}

{MpCnf.controller.goal==True} {MpCnf.conf.goal==True}

MpcInfo(conf,a)

AddOnReq

Role goal assertion
(UML state invariant)

98 4 Service goals

Note that UML continuations are just labels, and not real states. However, they can be
informally used to represent collaboration states. We use the continuation as a placeholder
for collaboration goal assertions. The label of the continuation in Figure 4.28 is Accepted.
This is simply a naming convention indicating that it marks a goal achievement of the
semantic connector of the same name. In addition to the label we insert a collaboration
goal assertion. It is expressed in OCL, and is placed within curly brackets.

Note that goal expression in the state invariants on a lifeline refers to the role goal of the
lifeline.

E.g. in Figure 4.28 the OCL expression goal == True on the lifeline B is equivalent to the
OCL expression B.goal == True. The navigation capabilities of OCL can be used to eval-
uate more complex expressions.

Sequence diagrams are well suited for expressing the role goals of semantic interfaces, as
can be seen in Figure 4.29.

Figure 4.29 depicts a sequence diagram for the semantic connector Setup with goal asser-
tions. Note that interactions with the environment are not included as they were in
Figure 4.28, and that state invariants are used to express role goal assertions.

Figure 4.28 : Sequence diagram for composite Call service with service goals

sd Call

A:Caller B:Callee

CallRequest(a,b)
Ringing

{goal == True}

{goal == True}

Answer

Call(b) Call_Ind(a)

CallResponse
Ringing(b)

CallConfirm(b) Role goal assertion

Accepted {Call.goal == True}

alt

Collaboration goal assertion
(UML continuation label)

Figure 4.29 : Sequence diagram for semantic connector with goals

inviter:Inviter invitee:Invitee

CallRequest(inviter,invitee)
Ringing

sd Setup_goal

{goal == True} {goal == True}
Role goal
assertion

Role event

Role goal
assertion

Role event

Semantic interface

4.4 Service goals expressed in UML2 99

State invariants on lifelines of sequence diagrams express goals. In Figure 4.29 the last
event on each lifeline causes a goal to be reached, according to the goal assertions. The
state invariants can be used to derive event goals; this was discussed in section 4.2.5.1.

4.4.2.1 State invariants in interaction diagrams

In interaction diagrams we exploit state invariants to express the achievement of role
goals. As stated earlier, a state invariant is a constraint evaluated when the next event
occurs on the lifeline to which it is attached. The constraint may require that the object is
in a named state, or require that expressions on values reachable from the object evaluate
to True. It is the latter we use to express assertions on role goals. Note that the assignment
of appropriate values (True/False) to goal variables is not depicted in interaction dia-
grams; this is deferred to the state machine diagrams defining role behaviour.

The semantics of state invariants in UML models is as follows: If the constraint is violated
(i.e. does not evaluate to True), then the model is ill-formed. In the trace semantics that
underlie UML interaction diagrams, a trace that contains an event on an instance line
directly following a state invariant that is violated becomes a member of the set of invalid
traces. I.e. all traces that have a state invariant with a false constraint are invalid.

This semantics suits our purpose well, as it helps to enforce the consistent use of role
goals. Tools can help service designers validate whether the models are valid and consist-
ent. This will be discussed in chapter 6.

Collaboration goals modelled by continuation labels do not have the same properties. We
use continuation labels as placeholders for collaboration goal assertions, although they
lack the capability of marking traces as being valid or invalid.

4.4.3 State machines
State machines are used for describing the behaviour of actors, service roles and interface
roles. How to express service goals in state machines is discussed below.

4.4.3.1 Semantic interface behaviour

The behaviour of semantic interfaces is defined in extended protocol state machines. By
definition, semantic interfaces contain goals. A pair of semantic interfaces has consist-
ently labelled event goals: an event marked with a progress label in one semantic interface
is marked with a corresponding progress label in its opposite role, and vice-versa.

Figure 4.30 shows an example of consistently defined event goals.

Figure 4.30 exemplifies different ways of expressing role goals:

1. Goals may be expressed by role goal assertions, as indicated by callouts. Assignment
of values to the goal variable used in the assertion is also shown in the example.

2. Goals may be expressed by event goals, i.e. events marked by progress labels. Goal
events can be signals sent or consumed, or states or exit points reached.

Note that the pair of semantic interfaces described in Figure 4.30 have consistently
defined event goals, although the model elements to which they are attached are different.

100 4 Service goals

Note also that there is a close relationship between role goal assertions and event goals,
in that event goals can as a rule be attached to goal states marked by goal assertions. This
is a mechanical relationship that can be supported by tools, see section 4.2.5.2.

4.4.3.2 Service role behaviour

Sketches of the behaviour of the service roles Caller and Callee are found in Figure 4.31.

The state machines in Figure 4.31 express service goals in the form of state assertions.
Two service goals are defined, one in each service role, as indicated by callouts.

Figure 4.30 : Role behaviour for interface roles with goals

callingcalling

idleidle

Ringing

Inviter {xprotocol}

Reject

idleidle

CallRequest

progress:
Setup_Init

RingingAtB

Progress label
marks an
event goal

calledcalled

freefree

Invitee {xprotocol}

freefree

Ringing

A-Ringing
{goal == True}

Reject

CallRequest

progress:
Setup_Resp

goal:=False

goal:=True

goal:=False

goal:=TrueRole goal
variable

Progress label
marks an
event goal

Role goal
assertion

Figure 4.31 : Sketch of service roles of the Call service with service goals

WaitRing

RingingAtB
{callee == …} BusyB

Caller

Connected
{goal == True}

A-Ringing
{caller == …}

Connected
{goal == True}

Callee

Disc

Disc
Role goal
assertion

Role goal
assertion

4.4 Service goals expressed in UML2 101

4.4.3.3 Collaboration behaviour

UML2 allows us to define collaboration behaviour in a state machine diagram, though
nothing is said in the standard or reference book about what can be achieved by this.

In our approach, we exploit this modelling opportunity to highlight the expression of col-
laboration goals. Figure 4.32 shows a collaboration state machine with collaboration
goals.

In Figure 4.32 an overview of the states of the collaboration Call are described by a state
machine. Here a collaboration goal state is identified by a collaboration goal assertion.

In the collaboration state Accepted, the collaboration goal expression is asserted to be
True. This indicates that the collaboration goal is achieved in this state. We call this a col-
laboration goal state. We contend that Figure 4.32 shows in a succinct way that the
purpose of the Call collaboration is that the combined behaviour of the roles should result
in the call being accepted.

However, it is not clear from Figure 4.32 what the states of the involved roles are. As
stated in section 3.3.7, we can adopt a state-oriented view to express this. Collaboration
goals can be inserted in collaboration state machines when using the state-oriented view,
see Figure 4.33.

By expressing collaboration goals as state invariants one may express properties that shall
hold for some joint states of the roles. This ultimately places requirements on actors that
play the collaborating roles.

4.4.3.3.1 Role states with collaboration state assertions

As stated in section 3.3.7, we can include references to collaboration states when we
describe the state machines of the service roles, by adopting the state-oriented view. In
terms of expressing goals, referencing to collaboration goal states in the role states is of
paramount importance.

Figure 4.32 : Overview of collaboration states - goal added

Call
Dialling

Ringing

Accepted
{Call.goal == True}

Released

Busy

Collaboration
goal state

Collaboration
goal assertion

102 4 Service goals

The states of the role Caller is shown in Figure 4.34, here defined in a state-oriented fash-
ion, i.e. where the state of the collaboration is asserted in each role state.

In Figure 4.34 we highlight role goal assertions; these are states where the role goal
expression is asserted to be True, as indicated by a callout in Figure 4.34. As we can see,

Figure 4.33 : Collaboration states using state orientation - goal added

Call DiallingA:Caller
WaitRing

A:Caller
WaitRing

RingingA:Caller

callee == B

RingingAtB

B:Callee

caller == A

A-Ringing

RingingA:Caller

callee == B

RingingAtB

A:Caller

callee == B

RingingAtB

B:Callee

caller == A

A-Ringing

B:Callee

caller == A

A-Ringing

Accepted

{Call.goal == True}

A:Caller

callee == B

Connected

A:Caller

callee == B

Connected

B:Callee

caller == A

Connected

B:Callee

caller == A

Connected

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

A:Caller
Disc

B:Callee
Disc

B:Callee
Disc

Busy
A:Caller

BusyB

B:Callee
*

Busy
A:Caller

BusyB

A:Caller
BusyB

B:Callee
*

B:Callee
*Collaboration

goal state

Collaboration
goal assertion

Figure 4.34 : Role states for Caller role with state orientation

Caller WaitRing

Timers: {dial_timer}

A:Caller Call

Connected

Timers: {}; Caller.goal == True;

A:Caller Call

RingingAtB

Timers: {answer_timer}; callee == B;

A:Caller Call

B

WaitRing Dialling RingingRingingAtB

AcceptedConnected

BusyB

Timers: {busy_timer}

A:Caller Call
BusyBusyB

Disc

Timers: {disc_timer}

A:Caller Call
ReleasedDisc

B

B

Role goal
assertion

4.5 Related work 103

this role goal state refers to the collaboration state Accepted, where the collaboration goal
is fulfilled.

State orientation opens up for validation opportunities, and we argue that the state-ori-
ented viewpoint is particularly suited for human analysis, since the consistency between
goals defined in roles and in collaborations can easily be discerned by the experienced
service designer. This applies to an even greater extent when these state machine diagrams
are compared with goal sequence diagrams, to be introduced in the next chapter.

4.5 Related work
Goal-driven software engineering is a direction within requirements engineering.

The concept of goal has been used by the artificial intelligence community for over a dec-
ade, e.g. [Cohen, Levesque 1990]. Methodologies [Myklopoulos et alia 1999] and
languages [GRL 2003] identifying actors and goals have been developed, but they mainly
address non-functional aspects.

There has been some work on functional goals. The [KAOS] project defines a goal as “a
prescriptive statement of intent about some system whose satisfaction in general requires
the cooperation of some of the agents forming that system.” Goals prescribe intended
behaviours, and are formalized in a real-time linear temporal logic (LTL). They define
Agents to be active components such as humans, devices or software components that
play some role towards goal satisfaction. Functional goals refer to services the system is
expected to provide.

In KAOS, an operation is an input-output relation over objects; operation applications
define state transitions. When specifying an operation a distinction is made between
domain pre/postconditions and additional pre-, post- and trigger conditions required for
achieving some underlying goal. A pair (domain precondition, domain postcondition)
captures the elementary state transitions defined by operation applications in the domain.
A required precondition for some goal captures a permission to perform the operation
when the condition is True. A required trigger condition for some goal captures an obli-
gation to perform the operation when the condition becomes True provided the domain
precondition is True. A required postcondition defines some additional condition that any
application of the operation must establish to achieve the corresponding goal.

In KAOS terms, our service goals are “functional goals” that define “required precondi-
tions”. However, there is no obligation to perform anything due to a goal condition in our
approach, so we do not express “required triggered conditions”. We use UML and OCL
rather than LTL, and provide a compositional and modular approach that also enables val-
idation and discovery mechanisms.

To the best of our knowledge, no one has addressed goals of state machines in the way
suggested herein.

104 4 Service goals

4.6 Summary: Modelling of service goals
In the sections above we have presented different ways of expressing the various types of
service goals. We summarize the service goal types and what model elements they are
attached to in Table 4.2:

4.7 Method guidelines
We summarise our goal modelling approach in a number of method rules.

Method rule: Identify semantic connectors
Semantic connectors are identified by a unique collaboration name <feature>.

Method rule: Identify semantic interfaces
Semantic interfaces are identified by collaboration roles within a semantic connector.
Semantic interfaces have a role multiplicity of exactly 1.

Method rule: Identify goal expressions of semantic connectors (optional)
Define collaboration goal expressions in OCL as a conjunction of the role goal expres-
sions of the semantic interfaces (if defined). Place OCL expressions in notes, either
attached to the collaboration, or by identifying the target element in the context of the
OCL expression.

Method rule: Identify role goal expressions in semantic interfaces (optional)
Define role goal expressions of semantic interfaces in OCL. The expressions can only use
data visible to the role, including role states. Place OCL expressions in notes, either

Table 4.2: Modelling of service goals in UML

Service goal type Goal expression form UML model
element UML diagram

Collaboration goal

State-like goal
Goal expression in OCL Collaboration Composite structure

diagram

Goal / state assertion Collaboration
state

State machine diagram

Continuation label Role lifeline Sequence diagram

Role goal

State-like goal
Goal expression in OCL Classifier Composite structure

diagram

Goal / state assertion Classifier state State machine diagram

State invariant Role lifeline Sequence diagram

Event goal Progress label Trigger, state,
exit point

State machine diagram

4.7 Method guidelines 105

attached to the roles, or by identifying the target element in the context of the OCL
expression.

Method rule: Identify role goal variables
Identify the role data needed to determine goal fulfilment. Use the naming convention
goal for the goal variable, or <service>_<role>_goal if several role goals apply due to the
service role taking part in multiple collaborations with disjunct goals.

Method rule: Identify or derive event goals of semantic interface
Define goals of a semantic interface by inserting progress labels on events that uniquely
mark progress. If goal states are identified by goal assertions, then define progress labels
on these states or on the unique events leading to the goal states. Use tool support for this
derivation process, if available.

Method rule: Compose services from semantic connectors
Bind the semantic interfaces of semantic connectors to the service roles of the composite
service (or to other composite interface roles composed in the same way). Use a unique
name for the collaboration use within the collaboration defining the composite service.

Method rule: Identify collaboration goals of composite services (optional)
Define collaboration goal expressions for composite services in OCL, e.g. as the conjunc-
tion of goal expressions defined for the service roles or semantic interfaces. If a role is
optional or n-ary, use the OCL expression forAll(...) to evaluate the goals of role instances.

Method rule: Insert goal assertions in service roles (optional)
For each service role, place assertions on the goal expressions in states where the goal is
achieved. The assertions can use data visible to the role, including goal variables and
states. Goal variables must ultimately be found in actors that play the roles.

106 4 Service goals

- 107 -

5
Goal sequences

In this chapter we discuss ways of expressing how services and service goals depend on
each other, and to what extent their dependencies can be described as sequences of col-
laboration uses in what we call collaboration goal sequences, how these can be used to
derive role goal sequences, and how sequences of roles played by actors can be described
in actor goal sequences. The latter can be used in service discovery, the topic of chapter 7.

Collaboration goal sequences are unique in that they express a combination of horizontal
and vertical dimensions introduced in section 1.3.1: the horizontal role relationships
defined by collaborations are combined with the vertical structure (sequence of goals) of
roles bound to classifiers. We shall see that the composition of services from semantic
connectors enables us to express goal sequences in a structured manner.

5.1 Collaboration goal sequences
As we have seen in the previous chapter, UML2 collaborations and collaboration uses
enable services to be composed of semantic connectors, as in Figure 5.1.

In Figure 5.1 the Call service is composed of the semantic connectors Setup, Accept and
Release, as referenced by collaboration uses. We argue that in using this approach:

• we achieve a structure that provides a good overview;

• each collaboration use defines a reusable unit of behaviour - the semantic connectors.

As pointed out in section 2.6.2, when we reuse the semantic connectors in new composi-
tions we need to express how their goals related to goals of other semantic connectors. For
instance, it is not clear from Figure 5.1 whether the goals of the semantic connectors are

Figure 5.1 : Call composed of semantic connectors

<<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee
rel_er

108 5 Goal sequences

ordered in any particular way, i.e. if a certain order of goal achievement of setup, accept,
rel_a and rel_b is required or implied by the composite service Call. It is not clear whether
the events of the semantic interfaces are fully interleaved, strictly sequential, or a combi-
nation. More generally the ordering operators are sequence, parallel, choice and call.

Call indeed assumes a particular sequencing of the events and goals of the semantic con-
nectors Setup and Accept. This can be gleaned from the sequence diagram in Figure 5.2.

Figure 5.2 shows an interaction for Call consisting of call setup followed by call accept-
ance. Note that the lifelines are instances of the service roles A and B in Figure 5.1, while
the state invariants identify goal achievement for the semantic connectors Setup and
Accept.

Here goal achievement is expressed in terms of goals of the interface roles (inviter/invitee
and receiver/accepter, respectively). A state invariant attached to a lifeline representing a
role expresses:

i. the fulfilment of a role goal due to preceding events;

ii. that the role goal shall be fulfilled prior to subsequent events on the lifeline.

For instance in Figure 5.2, the state invariant Setup.invitee.goal expresses that this goal is
achieved after the signal Ringing has been sent from B. It also implies that this expression
must be valid (evaluate to True) when the CallResponse signal is received by B.

To express relationships between the goals of semantic connectors that are bound to serv-
ice roles, we use what we call collaboration goal sequences.

Definition: Collaboration goal sequence
A collaboration goal sequence describes the global ordering of goals of semantic connec-
tors in the context of a composite service structure.

The semantics of goal sequences is discussed in section 5.4.

Collaboration goal sequences may be expressed:

1. as dependencies between the collaboration uses in a collaboration;

2. using interaction overview diagrams.

We discuss both alternatives1 in the following sections.

Figure 5.2 : Interaction for successful Call

sd Call

A:Caller B:Callee
CallRequest(A,B)

Ringing(B)
{Setup.inviter.goal == True}

{Accept.receiver.goal == True}

{Setup.invitee.goal == True}

{Accept.accepter.goal ==True}

Answer
State invariant

Call(B)

Ringing(B)

CallConfirm(B)

Call_Ind(A)

CallResponse

{Accept.receiver.goal == True} {Accept.accepter.goal ==True}

5.1 Collaboration goal sequences 109

5.1.1 Collaboration goal sequences modelled by dependencies
Dependencies in UML indicate semantic relationships between two or more model ele-
ments, and indicate a situation in which a change to the supplier element may require a
change to the client element of the dependency2. UML includes predefined dependencies,
some with particular semantics, such as associations and generalizations. None of the pre-
defined types suits our purpose, so a special goal dependency is suggested.

Definition: Goal dependency
A goal dependency is a dependency between two collaboration uses expressing that goal
achievement for the supplier element is a precondition for goal achievement of the client
element. In UML a stereotyped <<goal>> dependency is used.

The stereotype can be used to impose a particular semantics on the collaboration goal
sequence relationship, imposing a strict order on goal achievement and a partial order on
the collaboration events. The semantics of goal dependencies is discussed in section 5.4.

5.1.1.1 Example 1: Call service

Figure 5.3 exemplifies goal dependencies. The goal dependency from setup to accept
expresses that setup reaching its goal is a precondition for accept to be enabled in the con-
text of the Call service. The goal dependencies from accept to rel_a and rel_b express that
reaching the goal of accept enables two succeeding semantic connectors, i.e. call release
initiated either by the Caller (rel_a) or the Callee (rel_b)3. Note that goal dependencies do
not define causality, so the reason that one or the other is invoked remains undetermined.

5.1.1.2 Example 2: MpConf service

A second example is the Meeting Place Conference service MpConf, see Figure 5.4.

Figure 5.4 shows MpConf as a composition of six semantic connectors. Here too the
semantic connectors must achieve their collaboration goals in a certain order.

1. Activity diagrams are also an option. An additional possibility, which we do not elaborate, is to express goal rela-
tionships using pre- and post-conditions. OCL can only express preconditions on operations. Since services are
not modelled by operations but by collaborations, some mechanism or language other than OCL must be used.

2. See [UML 2.0] p. 58.
3. The Caller can abort the call setup before setup or before accept reaches its goal. The Callee can likewise cancel

an incoming call (e.g. in GSM). In this example we assume that the signals related to cancelling call setup belong
to the semantic connectors Setup and Accept; and that Release specifies the case where an established call is
release. How best to specify aborting initiatives (e.g. from users or due to timeouts) is a topic for further work.

Figure 5.3 : Collaboration goal dependency for Call

<<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_a:Release

rel_er
rel_ee

rel_b:Release

rel_ee
rel_er

<<goal>>

<<goal>> <<goal>>

110 5 Goal sequences

For instance in the context of MpConf it is not possible to join a Meeting Place with mps
if the mp service that configures the Meeting Place fails, so the success of mp is a precon-
dition for mps. Such goal relationships are not evident from Figure 5.4. We may state such
dependencies explicitly using dependencies, see Figure 5.5.

In Figure 5.5 we have included a number of goal dependencies, such as the requirement
that mps and mpcnf achieve their goals before mpc and subsequently mpi and mpa can
achieve theirs. To prevent cluttering up the diagrams, the stereotype name <<goal>> is
omitted.

However, adding such dependencies clutters up the diagram. We therefore seek an alter-
native way of expressing goal dependencies in the next section.

5.1.2 Collaboration goal sequences modelled by interaction overviews
Interaction overview diagrams are new to UML2, and can be usefully employed in com-
posite service structures. A promising approach is the following:

Figure 5.4 : MpConf composed of semantic connectors

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

MpConf

0..1 1

1..c1

mpcnf:MpCnf

mp_mpmp_controller

mps_host

mps_participantmpcnf_conf

mpcnf_controller

mps:MpSession

mpc_controller mpc_mp

mpi:MpcInfo

mpi_mp

mpi_participant

mp:Mp

mpc:Mpc

mpa:MpcAddOn
mpa_confereempa_conf

Figure 5.5 : Collaboration goal dependencies for MpConf

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

0..1 1

1..c1

mpcnf:MpCnf

mp_mpmp_controller

mps_host

mps_participantmpcnf_conf

mpcnf_controller

mps:MpSession

mpc_controller mpc_mp

mpi:MpcInfo

mpi_mp

mpi_participant

mp:Mp

mpc:Mpc

mpa:MpcAddOn
mpa_confereempa_conf

MpConf

5.1 Collaboration goal sequences 111

1. for each semantic connector, define a connector goal interaction, i.e. a sequence dia-
gram with interactions that lead to the achievement of a goal of the semantic connector;

2. for each composite service structure, define a collaboration goal sequence that refer-
ences the connector goal interactions as interaction uses4, using the sequencing
mechanisms available in interaction overview diagrams5 to represent the sequential
relationships between the goals of the composed semantic connectors.

Definition: Connector goal interaction
A connector goal interaction is an interaction defining the goal achievement of a semantic
connector.

It is desirable to compose services from semantic connectors, and in such a way that the
semantic connectors are designed independently of their use in compositions. Therefore
a connector goal interaction should be defined without knowledge of its use in a compo-
sition. This is supported by UML2 collaborations, since role binding makes it easy to
reuse interactions in new settings, without having to parameterize or rename interaction
instances (i.e. the lifelines of the interaction diagrams).

We introduce a diagram type designed to describe collaboration goal sequences, which we
call a goal sequence diagram.

Definition: Goal sequence diagram
A goal sequence diagram is a graphical adaptation of the interaction overview diagram
showing how goal achievements in semantic connectors of a composite service structure
are ordered.

We introduce the principles and diagrams by way of two examples.

5.1.2.1 Example 1: Call service

Relationships between a semantic connector, a composite service structure, an interaction
overview diagram and a pair of goal interactions are exemplified in Figure 5.6.

Considering Figure 5.6, note that:

• The connector goal interactions Setup_goal and Accept_goal are defined within the
semantic connectors Setup and Accept, respectively;

• The lifelines of Setup_goal and Accept_goal end with state invariants;

• The lifelines of Setup_goal and Accept_goal use their own collaboration role names,
and not the role names of the composite service structure;

• The interaction Accept_goal does not have any initial state invariants referring to
Setup_goal, i.e. Accept is in itself not restricted to be a successor to Setup;

4. An interaction use is a parameterized reference to an interaction within the body of another interaction. When an
interaction use is executed, the effect is the same as executing the referenced interaction with the substitution of
the arguments supplied as part of the interaction use. [UML2 Ref] p. 412.

5. Interaction overview diagrams combine the control flow mechanisms from activity diagrams with the sequencing
of events from sequence diagrams, but follow the interleaving trace semantics of interactions. They are an adap-
tation of the high-level message sequence charts introduced in [MSC-96].

112 5 Goal sequences

• The interaction overview diagram Call_goals is defined in the composite service struc-
ture Call. Call_goals references the interaction uses defined by the collaboration uses,
e.g. the interaction use setup.Setup_goal refers to the interaction Setup_goal defined
by the collaboration use setup (of collaboration type Setup);

• The collaboration Call binds the roles (i.e. the lifelines) of the interactions to roles of
the collaboration (e.g. inviter and receiver are bound to the collaboration role A), mak-
ing it clear that it is A:Caller that outputs the CallRequest signal of the interaction
Setup_goal, and not B:Callee;

• The resulting interaction seen from the point of view of the collaboration Call is iden-
tical to the interaction in Figure 5.2 on page 108.

Interaction overview diagrams combined with goal interactions defined in subordinate
collaborations provide a powerful and flexible means of expressing composite interac-
tions. To highlight the aspect of service goals we propose an adaptation of interaction
overview diagrams, which we call goal sequence diagrams.

The interaction overview diagram for Call and its corresponding goal sequence diagram
are both shown in Figure 5.7.

The goal sequence diagram for Call is to the right in Figure 5.7. The conversion from
interaction overview diagram to goal sequence diagram is straightforward: in goal
sequence diagrams we replace the names of interaction uses of the interaction overview
diagrams with illustrations of the semantic connector involved, showing the collaboration
uses with their role bindings according to the composite service structure.

Figure 5.6 : Connector goal interactions and interaction overview for Call

Setup

inviter:Inviter 1 invitee:Invitee 1

{def: goal : Boolean = inviter.goal and invitee.goal} <<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_er
rel_eerel_ee

rel_er

<<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee
receiver accepter

rel_er
rel_eerel_ee

rel_er

sd Accept_goal

inviter:Inviter invitee:Invitee

CallRequest(inviter,invitee)
Ringing(invitee)

sd Setup_goal

{goal == True} {goal == True}

receiver:Receiver accepter:Accepter

{goal == True} {goal == True}

sd Call_goals

ref
setup.Setup_goal
ref
setup.Setup_goal

ref
accept.Accept_goal
ref
accept.Accept_goal

Answer

5.1 Collaboration goal sequences 113

Each element of a goal sequence diagram has a corresponding connector goal interaction,
e.g. setup:Setup corresponds to setup.Setup_goal (as indicated by the block arrow).

In Figure 5.7 the lower element of the goal sequence diagram refers to the interaction use
accept.Accept_goal. It illustrates that the goal of the preceding collaboration use
setup:Setup is a precondition of the goal of accept:Accept when used in the Call service.
See Figure 5.8 for the related collaboration goal expressions.

Note that the goal of the composite service Call is not fully understood without the goal
sequence diagram: the goal expression for Call in Figure 5.8 only refers to accept being
reached and says nothing of setup; the goal sequence diagram states that setup must reach
its goal prior to accept, thus completing the picture.

We have suggested ways of referring to preceding service goals in goal sequences by var-
ious graphical adornments; see the discussion on this in section 10.2.2. Alternative forms
of goal sequence diagrams are discussed in section 10.2.8.

5.1.2.2 Example 2: MpConf service

A more comprehensive example is provided by the MpConf service, whose composition
was given in Figure 5.4. Connector goal interactions for the semantic connectors that
MpConf is composed of are shown in Figure 5.9 and Figure 5.10.

The goal dependencies for MpConf are as follows:

• a Meeting Place cannot be joined in an MpSession before it is configured by Mp, nor
can a Conference be configured for use in a Meeting Place before Mp succeeds;

• the Meeting Place cannot be configured with a conference by Mpc before the confer-
ence is configured by MpCnf, and at least one user has joined with MpSession;

Figure 5.7 : Interaction overview and goal sequence diagrams for Call

sd Call_goals

A:Caller B:Calleesetup:

Setup

A:Caller B:Calleeaccept:

Accept

inviter invitee

recei-
ver

accep-
ter

sd Call_goals

ref

accept.Accept_goal

ref

accept.Accept_goal

setup.Setup_goal
ref

Figure 5.8 : Goal expressions relevant for Call

{context Setup
def: goal : Boolean =
invitee.goal and inviter.goal}

{context Accept
def: goal : Boolean =
receiver.goal and accepter.goal}

{context Call
def: goal : Boolean =
Accept::goal}

114 5 Goal sequences

• information about the Meeting Place Conference cannot be sent by Mpi before the Con-
ference service Mpc is running;

• A participant cannot choose to join the Meeting Place conference before it is informed
of the conference’s existence by Mpi.

These goal relationships are shown using an interaction overview diagram in Figure 5.11.

The parallel merge construction of the fork and join nodes in Figure 5.11 states that the
achievement of the goals of mpcnf on the left side, and mps on the right side, are inde-
pendent of each other. Conversely, the join node prior to mpc expresses a dependency
between the Mpc collaboration and the goals of the joined paths: the goals of both mpcnf
and mps must be achieved prior to mpc.

Figure 5.9 : Connector goal interactions for Mp, MpSession and MpCnf

:mp_controller

:mp_mpCreate

sd Mp_goal

{goal == True} {goal == True}

MpAck

:mpcnf_controller

:mpcnf_confCreateMpc(mp)

sd MpCnf_goal

{goal == True} {goal == True}

MpConfAck

JoinMp
JoinAck(..)

sd MpSession_goal

{goal == True} {goal == True}

:mps_host:mps_participant

Figure 5.10 : Connector goal interactions for Mpc, MpcInfo and MpcAddOn

:mpc_controller :mpc_mp
MpConf(conf)

sd Mpc_goal

{goal == True} {goal == True}

MpCnfAck

:mpa_conferee :mpa_conf

AddOnReq

sd MpcAddOn_goal

{goal == True} {goal == True}

MpConfCall(controller)

MpcInfo(conf,controller)

sd MpcInfo_goal

{goal == True}

:mpi_mp:mpi_participant

{goal == True}

CallAck

5.1 Collaboration goal sequences 115

There are no loops in Figure 5.11; although loops can be expressed in UML, e.g. to
describe several participants joining a MpConf, we do not suggest using loops in collabo-
ration goal sequences. One reason is that showing complete system behaviour is not the
aim of collaboration goal sequences. It is only to show the relationships between the goals
of the constituent semantic connectors. Another reason is that loops can cause problems
for the service discovery mechanisms defined in chapter 7. Thirdly, we can express loops
in actor goal sequences, as we shall see in section 5.3, and thus suggest doing without
them here. See section 10.1.2 for a discussion on loops in goal sequence diagrams.

The goal sequence expressed using a goal sequence diagram is shown in Figure 5.12.

Figure 5.11 : Interaction overview diagram for MpConf

sd MpConf_goals

mpcnf.MpCnf_goal
/* Configure Conference */

ref

mpc.Mpc_goal
/* Configure MeetingPlace for Conference */

ref

mps.MpSession_goal
/* Join MeetingPlace Session */

ref

mpi.MpcInfo_goal
/* Inform participant of conference */

ref

mp.Mp_goal
/* Configure MeetingPlace */

ref

mpa.MpcAddOn_goal
/* Join Meeting Place Conference */

ref

Figure 5.12 : Goal sequence diagram for MpConf

sd MpConf_goals

controller confmpcnf:

MpCnf

conferee mpmpi:

MpcInfo

conferee mpmps:

MpSession

controller mpmpc:Mpc

mpcnf_
conf

mpcnf_
controller

mpc_
mp

mpc_
controller

mps_
host

mps_
parti-
cipant

controller mpmp:Mp
mp_

mp
mp_
controller

conferee confmpa:

MpcAddOn

mpi_
parti-
cipant

mpi_
mp

mpa_
con-
feree

mpa_
conf

116 5 Goal sequences

5.1.2.3 Discussion

Goal sequence diagrams visualise the role bindings between related semantic connectors,
which interaction overview diagrams do not. For instance Figure 5.12 highlights the piv-
otal role that mp has in MpConf, and shows that the conferee must be a Meeting Place
participant. These relationships are not easy to understand from sequence diagrams like
the one in Figure 3.11 on page 52.

In themselves goal sequence diagrams do not represent any change to the UML semantics;
we consider them to be a presentation option. In Figure 5.7 we for instance illustrate that
the receiver role of the Accept collaboration is bound to the A:Caller role of the Call serv-
ice; the A:Caller role is likewise bound to play the inviter role in the preceding semantic
connector Setup. Formally the role bindings are defined in composite collaborations as in
Figure 5.1, while goal sequence diagrams describe how the goals of semantic connectors
are ordered.

Goal sequence diagrams can be formalised beyond what we have done; this will be dis-
cussed in section 8.2.2.1.

5.1.3 Method guidelines
The method guidelines for collaboration goal sequences are summarized as follows:

Method rule: Define connector goal interactions in sequence diagrams
For each semantic connector, define a sequence diagram describing event occurrences
leading to its collaboration goal. Name the interaction <feature>_goal. Only lifelines rep-
resenting the semantic interfaces of the semantic connector should be included. Lifelines
should bear the names of the interface roles. Signals to and from the environment should
be suppressed. Only events related to the collaboration should be included.

Method rule: Include only successful interactions in connector goal interactions
Focus on defining (a set of) “normal” interaction traces that lead to the achievement of a
service goal. Do not strive for complete behaviour coverage, and prevent including inter-
actions that do not lead to achievement of the service goal, i.e. abnormal or erroneous
sequences.

Method rule: Define terminal state invariants in connector goal interactions
Insert terminal state invariants after the last event on each lifeline.

Method rule: Omit event occurrences after goal achievement
Event occurrences that can occur after goal achievement should not be included in con-
nector goal interactions.6

Method rule: Define collaboration goal sequences in interaction overviews
For each composite service structure <service>, define the relationships between the goals
of the constituent semantic connectors in an interaction overview diagram. Name the dia-

6. This is to ensure that interaction uses referenced in goal sequences have well- defined terminal state invariants.

5.2 Role goal sequences 117

gram <service>_goals. The interactions referenced are the connector goal interactions
defined for each semantic connector. Do not show exceptions that do not lead to goal
achievement of the composite service structure.

• If tool support for goal sequence diagrams is available, display the role binding of the
semantic connector roles to the service roles of the composite service structure as
graphics in the body of the interaction use (see e.g. Figure 5.12);

• Without such tool support, refer to the interaction uses by name (see e.g. Figure 5.11).

• Connect elements using arcs and/or pairs of fork and join nodes, as appropriate, ensur-
ing that branching and joining of branches is properly nested.

5.2 Role goal sequences
According to the requirements in section 2.6.2, we need to express the goal relationships
between roles. Here we shall discuss how collaboration goal sequences can be used to
derive what we call role goal sequences.

Definition: Role goal sequence
A role goal sequence describes the inter-relationships between preceding and succeeding
role goals for an interface role.

Role goal sequences express goal dependencies at the interface role level. While collabo-
ration goal sequences combine both horizontal and vertical dependencies, role goal
sequences define only vertical goal relationships between interface roles. In particular,
role goal sequences hence express goal relationships for semantic interfaces.

Role goal sequences describe properties that must be respected by actors playing the inter-
face roles, in that role goal sequences constrain the order of interface roles played by
actors. However, they do not define an actor’s capability of playing interface roles simul-
taneously; this is the subject of actor goal sequences presented in section 5.3.

The observant reader may ask whether goal sequences for service roles are useful. We
maintain that they are not. The reason is that they do not add anything new compared to
collaboration goal sequences. Nor do they contribute to the resolution of role conflicts;
see the discussion in section 10.2.1. Hence we conclude that service role sequences are an
unnecessary step on the way from collaboration goal sequences to actor goal sequences

5.2.1 Role dependencies derived from collaboration dependencies
Deriving role goal sequences is a mechanical process that can be automated. It entails ana-
lysing the collaboration goal dependencies, and determining the sequence of goals of the
interfaces roles. An example applied to the Call service is shown in Figure 5.13.

Figure 5.13 indicates how the goal dependencies between the interface roles of the seman-
tic connectors (i.e. between inviter and receiver on one hand, and invitee and accepter on
the other) are derived from the collaboration goal dependency between setup and accept7.

7. The example here does not include the two collaboration uses for disconnection, to prevent cluttering up the
figure.

118 5 Goal sequences

Compared to the collaboration goal dependencies of Figure 5.3 on page 109, Figure 5.13
does not add anything new.

The usefulness of role goal dependencies is more apparent in cases where a number of
semantic connector roles are bound to more than two service roles. An example is the
MpConf service, see Figure 5.14.

In Figure 5.14 the dependencies between the interface roles bound to the service role mp
are shown using thick dotted lines8. The dependencies express that the goals of the inter-
face roles must be achieved in a certain order in the context of MpConf. Role goal
dependencies can be derived automatically from collaboration goal dependencies. The
collaboration goal dependencies are shown using thin dotted lines in Figure 5.14.

Since role goal dependencies can be derived from collaboration goal dependencies, there
is no need to model them explicitly; Figure 5.14 and the diagrams in the next subsection
are included for sake of argument only. Adding all the role goal dependencies to
Figure 5.14 would result in a very dense picture.

8. Role goal dependencies for the three other service roles are suppressed to prevent cluttering up the figure.

Figure 5.13 : Role dependencies derived from collaboration dependencies

<<s-role>>

A:Caller

<<s-role>>

B:Callee

Call

inviter setup:Setup

accept:Accept

invitee

receiver accepter

<<goal>><<goal>> <<goal>>

Figure 5.14 : Role goal dependencies for MpConf

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

0..1 1

1..c1 mpcnf:MpCnf

mp_mp

mps_host

mps:MpSession

mpc_mp

mpi:MpcInfo

mpi_mp

mp:Mp

mpc:Mpc

mpa:MpcAddOn

MpConf

5.2 Role goal sequences 119

5.2.2 Role goal sequences in interaction overviews
Like collaboration goal sequences, we could consider describing the goal relationships
between interface roles using interaction overview diagrams. This would comprise:

1. for each interface role, defining a sequence diagram with interactions that lead to the
achievement of its role goal(s); we call this a role goal interaction.

2. for each role of a composite service structure, defining an interaction overview dia-
gram that references the role goal interactions as interaction uses, using the
mechanisms available in interaction overview diagram to represent the role goal rela-
tionships. We call these interaction overview diagrams role goal sequences.

Definition: Role goal interaction
A role goal interaction is an interaction defining the goal achievement of an interface role.

Role goal interactions can be derived from the connector goal interactions of the semantic
connectors, by factoring out each role and replacing signals exchanged between con-
nected roles by signals exchanged with the environment. This is a simple mechanical
process that can be supported by tools. Each connector goal interaction can be used to
derive two role goal interactions, one for each semantic interface.

As with collaboration goal sequences, role goal sequences express a sequence of goals.
They express how goals of preceding and succeeding interface roles are ordered. Role
goal sequences can also be derived by tools from collaboration goal sequences. Role goal
sequences can distinguish between initiating and responding roles, e.g. by colour: initiat-
ing roles in a dark colour, responding roles in a light colour, as shown in Figure 5.16
below. The distinction between initiating and responding roles is useful in connection
with service discovery, as will be discussed in chapter 7.

We introduce the principles and diagrams by way of two examples.

5.2.2.1 Example 1: Call service

Figure 5.15 shows role goal interactions for the Call service. These can be derived from
the connector goal interactions in Figure 5.6.

The role goal sequences for the Call service are shown in Figure 5.16.

In Figure 5.16 we have shown the sequence of role goals of the Call service in an interac-
tion overview diagram that references the role goal interactions of Figure 5.15. Two
sequences are shown, one for each role of the composite service. Initiating and responding
roles are indicated by dark and light colouring, respectively.

5.2.2.2 Alternative roles

Interaction overview diagrams are based on trace semantics, although the token passing
semantics of activities is useful when interpreting them. Our requirements to service dis-
covery imply a certain interpretation of some of the semantics.

Decision nodes as in Figure 5.16 model a choice of behavioural flow. Our interpretation
is as follows: A token arriving at a decision “enables” the roles represented by the subse-
quent interactions. Which path is chosen depends on what event occurrences take place.

120 5 Goal sequences

Enabling means that role playing is possible, though not mandatory. Normally in UML,
guards on the outgoing edges of decisions are evaluated to determine which path is tra-
versed. We suggest not specifying the guards, intentionally leaving causality undefined.
We return to the issue of semantics in section 5.4.1.

In Figure 5.16 the decision nodes choose between taking the initiative to release the call,
or having the call be released by the peer; which one happens depends on the actors at
runtime. This is an example of mixed initiatives; both roles can initiate call release simul-

Figure 5.15 : Role goal interactions for setup, accept and release

sd Accept_receiver_accepter

CallRequest(x,y)
Ringing(y)

sd Setup_inviter_invitee

{goal == True}

{goal == True}

Answer

x:inviter

:receiver

CallRequest(x,y)
Ringing(y)

sd Setup_invitee_inviter

{goal == True}

y:invitee

sd Accept_accepter_receiver

{goal == True}

Answer
:accepter

Rel_Req
Rel_Ack

sd Release_rel_er_rel_ee

{goal == True}

:rel_er
Rel_Req

Rel_Ack

sd Release_rel_ee_rel_er

{goal == True}

:rel_ee

Figure 5.16 : Role goal sequences for Call

sd Call_
A_goals

setup.
Setup_inviter_invitee

/* Invite peer */

accept.
Accept_receiver_accepter

/* Peer accepts call */

rel_a.
Release_rel_er_rel_ee
/* Take initiative to release */

rel_b.
Release_rel_ee_rel_er

/* Released by peer */

sd Call_
B_goals

setup.
Setup_invitee_inviter

/* Invited by peer*/

accept.
Accept_accepter_receiver

/* Accept call */

rel_b.
Release_rel_er_rel_ee
/* Take initiative to release */

rel_a.
Release_rel_ee_rel_er

/* Released by peer */

ref

ref

ref ref

ref

ref

ref ref

5.2 Role goal sequences 121

taneously. This calls for conflict resolution in the service role, and indicates that service
roles are non-trivial in such cases.

Note however that the resolution of mixed initiatives is not formally expressed in role goal
sequences. One reason is that expressing concurrent flows combining fork and merge
nodes is not possible in collaboration and role goal sequences; only properly nested pairs
of fork and join or decision and merge nodes.9 Combining fork and merge nodes is pos-
sible in actor goal sequences, as these are based on activity diagrams, see section 5.3.1.2.

5.2.2.3 Event goals

Event goals are an important element of our approach. They are not expressed in OCL,
but are instead related to event occurrences, such as a signal being sent or consumed.10

Event goals can be derived from the role goal interactions in a mechanical process sup-
ported by tools: The last event occurrence prior to a state invariant representing the role
goal is by definition an event goal (e.g. the MpAck input event in the role goal interaction
Mp_controller_mp in Figure 5.17 below).

Each role goal interaction defines at least one event goal.11 The event goals can subse-
quently be used to generate progress labels used in connector validation.

When an interface role reaches its goal, the control token is passed over the outgoing edge
of the role goal sequence.12

5.2.2.4 Example 2: MpConf service

Role goal interactions derived from the connector goal interactions of Figure 5.9 and
Figure 5.10 are shown in Figure 5.17 and Figure 5.18.

9. Branching and joining of branches must in Interaction Overview Diagrams be properly nested. [UML 2.0] p. 499.
10. A time event occurrence can also be used to indicate a goal success; this can be considered to be an input event.
11. If there are several alternative event sequences that lead to the goal, the role goal interactions can define several

event goals using the “alt” operator.
12. Note that the roles represented by interactions might not necessarily terminate after reaching their goals. They

may still send or consume signals. But the control token can only be passed once, i.e. when the goal is achieved.

Figure 5.17 : Role goal interactions for MpConf (1 of 2)

sd MpSession_
host_participant

sd Mp_
mp_controller

:mp_controller

:mp_mpCreate

sd Mp_
controller_mp

{goal == True} {goal == True}

MpAck

:mpcnf_controller

:mpcnf_confCreate

sd MpCnf_
controller_
conf

{goal == True} {goal == True}

ConfAck

JoinMp
JoinAck(..)

sd MpSession_
participant_host

{goal == True} {goal == True}

:mps_host:mps_participant
Create

MpAck
JoinMp

JoinAck(..)

ConfAck

Create

sd MpCnf_conf_controller

122 5 Goal sequences

Figure 5.17 illustrates how multi-party services result in a set of role goal interactions, the
number of which depends on what interface roles exist. In the MpConf service, conferee
has three interface roles, while conf has two interface roles.

In Figure 5.19 we have depicted the derived role goal sequences for the MpConf service.

Note that the role goal sequences of Figure 5.19 are defined in the scope of the composite
service structure MpConf, while the role goal interactions of Figure 5.17 and Figure 5.18
are defined in the scope of the semantic connectors (i.e. in Mp, MpSession, MpConf, Mpc,
MpcInfo and MpcAddOn respectively).

Figure 5.18 : Role goal interactions for MpConf (2 of 2)

sd Mpc_
mp_controller

sd Mpc_
controller_mp

:mpa_conferee

:mpc_controller :mpc_mp

sd MpcAddOn_conferee_conf

{goal == True} {goal == True}

MpConf(conf)

AddOnReq

{goal == True}

MpConfCall(controller)

CallAck

MpCnfAck

MpConf(conf)

MpCnfAck

:mpa_conf

sd MpAddOn_conf_conferee

AddOnReq

{goal == True}

MpConfCall (controller)

CallAck

sd MpcInfo_
mp_participant

MpcInfo(..)

sd MpcInfo_
participant_mp

{goal == True}

:mpi_mp:mpi_participant

MpcInfo(..)

{goal == True}

Figure 5.19 : Role goal sequences for MpConf

sd MpConf_
conf_goals

mpcnf.
MpCnf_

conf_controller

/* Being configured */

mpa.
MpcAddOn_

conf_conferee

/* MpConferee Add-on */

sd MpConf_
mp_goals

mp.Mp_
mp_controller
/* Being configured */

mps.
MpSession_

host_participant
/* User Joined */

mpi.MpcInfo_
mp_participant

/* Inform participant of Conf */

mpc.Mpc_
mp_controller

/* Configured for MpConf */

sd MpConf_
controller_goals

mp.
Mp_

controller_mp
/* Configure Meeting Place */

mpcnf.
MpCnf_

controller_conf
/* Configure Conference */

mpc.
Mpc_

controller_mp
/* Configure Mp for Conf */

sd MpConf_
conferee_goals

mps.
MpSession_

participant_host
/* Join Meeting Place */

mpa.
MpcAddOn_

conferee_conf
/* Join Mp Conference */

refref

refref

refref

refref

refref

refrefrefref

refref

refref

refref

refref

mpi.
MpcInfo_

participant_mp
/* Informed of conference */

refref

refref

5.3 Actor goal sequences 123

5.2.3 Method guidelines
The method guidelines for role goal sequences are summarized as follows:

Method rule: Derive role goal interactions
For each semantic interface of a semantic connector <feature>, derive role goal interac-
tions from the connector goal interactions by following the appropriate role lifeline,
replacing signals exchanged with its connected role by signals exchanged with the envi-
ronment. Name the role goal interactions <feature>_<(from)role>_<(to)role> to achieve
unique names.

It is preferable to use a tool to derive role goal interactions rather than design them by
hand.

Method rule: Derive role goal sequences
Use a tool to derive role goal sequences; do not design them by hand. For each service
role <role> of a composite service structure <service>, use the corresponding collabora-
tion goal sequence to derive a role goal sequence in the form of an interaction overview
diagram. Each element of the collaboration goal sequence that refers to the service role
results in an element in the role goal sequence. Name the diagrams <serv-
ice>_<role>_goals. Compose the role goal sequence diagram from references to the
derived role goal interactions. Use a dark colour for initiating roles and a light colour for
responding roles. Express sequential role goal relationships by edges, alternative role goal
relationships by a preceding decision node (diamond), and alternative preceding roles by
a merge node (diamond). OR relationships between several alternative preceding and sub-
sequent roles are expressed with a combined merge and decision node (diamond).

The causality of role choice should intentionally remain undefined in role goal sequences:

Method rule: Causality remains undefined in role goal sequences
Do not define conditions on decision nodes in role goal sequences.

Method rule: Do not describe parallel behaviour in role goal sequences
Definition of parallel roles by a preceding fork node are not expressed in role goal
sequences. Parallel goal sequences are deferred to actor goal sequences.

5.3 Actor goal sequences
According to the requirements in section 2.6, we need to express the goal relationships
between roles played by actors. An actor is typically capable of playing several roles, both
alternately or simultaneously. We describe this in actor goal sequences.

Definition: Actor goal sequence
An actor goal sequence describes the relationships between preceding and succeeding
goals of the interface roles played by an actor type.

While role goal sequences can and should be derived from collaboration goal sequences
by tools, the modelling of actor goal sequences requires the involvement of designers.
This is because actor goal sequences express alternative, sequence and parallelism rela-

124 5 Goal sequences

tionships of interface roles that the actor is capable of playing. Actor goal sequences do
not describe the inner structure of the actor, only its role-playing capabilities.

Actor goal sequences are a property description of an actor type, and depend on two
factors:

• the role goal sequences for the service roles that the actor can play;

• the capabilities of the actor, i.e. the capacity it has to play roles simultaneously or
alternately.

Note that actors play both service roles and interface roles. In actor goal sequences, as in
role goal sequences, we focus on goal sequences of interface roles, and not the goal
sequences of service roles. We refer to the discussion in section 10.2.1.

5.3.1 Actor goal sequences modelled by activity diagrams
A promising approach seems to be to define actor goal sequences using activity diagrams,
where roles are represented by actions. This is because the token passing semantics of
activity diagrams is well suited to expressing alternatives, sequences and parallelism in
role playing, and cannot be expressed by interaction overviews. The semantics of actor
goal sequences is detailed in section 5.4.2; for now it suffices to state that a token arriving
at the input pin of an action means that playing of the corresponding role is enabled. That
a role is enabled means that role playing is possible, but not mandatory.

To represent roles we use the standard UML graphical form for actions: round-cornered
rectangles. The actions in actor role sequences use the names of the derived role goal
interactions of the role; i.e. actions of actor goal sequences represent the role behaviour
that leads to the achievement of the goals of the interface role they represent. Note that no
action behaviour is actually defined - the actions are simply placeholders.

5.3.1.1 Example 1: Call service

An example of an actor goal sequence is shown in Figure 5.20.

Figure 5.20 defines the sequence of roles that a PSTN_UserAgent can play, namely the
roles of the Call service. In Figure 5.20 the first decision node chooses between receiving
a call or making a call, and the second (which is a combined merge and decision node)
chooses between taking the initiative to release the call, or having the call released by the
peer. Both are classical examples of mixed initiatives. How the actor performs conflict
resolution, if at all, cannot be read out of the diagram.

The actor goal sequence in this case is a combination of the two role goal sequences for
Call in Figure 5.16 on page 120. This actor is capable of alternately playing the A and B
role of Call. In the case of Call, both roles use the semantic connector Release, which has
been taken into account by the combined merge and decision node in Figure 5.20.

Note the implications of using forks and decisions in activity diagrams: the former
expresses parallelism, the latter mutual exclusion. Figure 5.20 uses a decision, and there-
fore rules out simultaneous incoming and outgoing calls; the flows imply that the roles are
mutually exclusive.

5.3 Actor goal sequences 125

If the decision node had been replaced by a fork node, the roles could have been played
simultaneously. For PSTN, only one Call role can be played at a time.

5.3.1.2 Example 2: Call and MpConf services

In Figure 5.21 we have depicted a UserAgent’s actor goal sequence.

Figure 5.20 : Actor goal sequence for PSTN UserAgent supporting Call

PSTN_UserAgent_roles

Setup_
inviter_invitee

/* Invite peer */

Accept_
receiver_accepter

/* Peer accepts call */

Setup_
invitee_inviter

/* Invited by peer*/

Release_er_ee
/* Take initiative to release */

Accept_
accepter_receiver

/* Accept call */

Release_ee_er
/* Released by peer */

Idle

Idle Idle

Figure 5.21 : Actor goal sequence for UserAgent supporting multiple services

UserAgent_roles

IdleIdle

Setup_
inviter_
invitee

/* Invite peer */

Accept_
receiver_
accepter

/* Peer accepts call */

Setup_
invitee_
inviter

/* Invited by peer */

Release_er_ee
/* Take initiative

to release */

Accept_
accepter_
receiver

/* Accept call */

Release_ee_er
/* Released
by peer */

Idle Idle

Idle

Mp_controller_mp
/* Configure Meeting Place */

MpCnf_
controller_conf
/* Configure Conference */

Mpc_controller_mp
/* Configure Mp for Conf */

MpSession_
participant_

host
/* Join Meeting Place */

MpcInfo_
participant_mp

/* Info of Conference */

MpcAddOn_
conferee_conf
/* Join Mp Conference */

126 5 Goal sequences

As opposed to the PSTN_UserAgent in Figure 5.20, the UserAgent in Figure 5.21 can
simultaneously perform incoming and outgoing calls, as well as play the conferee and
controller roles of MpConf, the role goal sequences of which were defined in Figure 5.19.
The combined merge and decision node in Figure 5.21 expresses that whether it is (simul-
taneously) called or is itself calling, the call can be released by itself or by its peer.

Figure 5.22 shows actor goal sequences for the actors MeetingPlace and Conference.

Note the support for multiple conference call sessions and meeting place sessions are
made explicit in Figure 5.22; this was not specified in the role goal sequences:

• The MeetingPlace actor’s goal sequence has loops that model its support for multiple
participants joining a meeting place (i.e. multiple sessions) and being informed of the
conference;

• The Conference actor’s goal sequence contains loops that model its support for multi-
ple conferees joining a conference.

Note how the first MpSession reaching its goal enables the MeetingPlace actor to play the
mpc_mp role of Mpc. In addition it can play MpSession with new participants.

Note also that the flows in Figure 5.22 end with the flow final node, implying that other
actions (roles) are not terminated (as opposed to all activities of the actor terminating due
to an activity final node).13

5.3.2 Method guidelines
A method rule for actor goal sequences is suggested as follows:

13. A flow final destroys all tokens that arrive at it. It has no effect on other flows in the activity. [UML 2.0] p. 362.
A token reaching an activity final node terminates the activity. [UML 2.0] p. 320.

Figure 5.22 : Actor goal sequences for Conference and Meeting Place

Conference_roles

MpCnf_
conf_controller

/* Being configured */

MpcAddOn_
conf_conferee

/* MpConference Add-on */

MeetingPlace_roles

Mp_
mp_controller

/* Being configured */

MpSession_
host_participant

/* User Joined */

MpcInfo_
mp_participant
/* Inform Part. of Conf */

Mpc_
mp_controller

/* Configured for MpConf */

Conf_
conf_conferee
/* Conference Add-on */

MpSession_
host_participant

/* User Joined */

Cnf_
conf_controller

/* Being configured */

5.4 Semantics 127

Method rule: Model actor goal sequences
Express actor goal sequences in activity diagrams for each actor type, named
<actor_type>_roles. Sequences of roles are represented by actions. To achieve unique
names, use <service>_<my role>_<opposite role> as role names. Use fork nodes to
express parallel role playing, and decision nodes to express mutually exclusive paths. Do
not express conditions on the outgoing edges of the decision nodes. To gather alternatives,
use merge nodes (“OR” relationships to preceding roles)14. Use loops to express multiple
instances of the same roles (multiple sessions). Do not use activity final nodes to terminate
flows, but return tokens to an appropriate start node or use a flow final node.

5.4 Semantics
Here we discuss the semantics of goal sequences.

Goal sequences intend to express that there is some way of reaching the goals of the ref-
erenced services, and in that order. The focus of goal sequences is on the relationships
between the service goals, and not on the complete specification of the event occurrences.

The scope of our approach is to enable basic liveness validation and the discovery of serv-
ices. The semantics of goal sequences is therefore defined with this in mind:

• For service validation the objective is to establish that service goals can be achieved by
some sequence of events; it suffices to express a sequence of event occurrences that
leads to the achievement of a goal and to validate that the sequence is present in the
behaviour tree of the role types and actor types;

• For service discovery the objective is to express service opportunities, where the
achievement of a role goal enables other role goals to be achieved. Service discovery
is needed only by actors, and thus the requirements for service discovery focus on actor
goal sequences.

An approach that takes actor synthesis into account will most likely need a different
semantics, since the correct handling of all events is required. We return to this is in
section 5.4.3.

We express sequences of goals in collaboration goal sequences, role goal sequences and
actor goal sequences. The former two exploit interaction overview diagrams with trace
semantics, while actor goal sequences are based on activity diagrams with token passing
semantics. In the following we discuss semantics along these two lines.

5.4.1 Semantics of collaboration goal sequences and role goal
sequences

The semantics of both <<goal>> dependencies and collaboration goal sequence diagrams
is as follows: if two collaboration uses C1 and C2 with respective collaboration goals G1
and G2 are related so that the achievement of G1 is a precondition for the achievement of
G2, then C1 and C2 can be related by a <<goal>> dependency or a collaboration goal

14. Do not use join nodes to model “AND” relationships to preceding role goals, as these are not supported by service
discovery mechanisms. Use merge nodes instead.

128 5 Goal sequences

sequence, where C1 is a preceding semantic connector, and C2 a succeeding semantic
connector. This is illustrated in Figure 5.23, where semantic connectors are represented
by actions in an activity diagram.

Collaboration and role goal sequences in UML rely on the trace semantics, the basis of
interactions and interaction overviews. Our requirement is to express a partial order
between the goals, and only indirectly express requirements on the event occurrences
involved in reaching the goals. Below we discuss how the UML semantics fits our needs.

5.4.1.1 Preconditions and postconditions in UML

In UML and OCL, preconditions and postconditions are evaluated at the invocation of an
operation and at its completion, and can be attached to an action, an activity, an operation,
or a transition in a protocol state machine. It is not possible to attach them to interactions,
which implies that we cannot use UML preconditions and postconditions in collaboration
and role goal sequences.

5.4.1.2 State invariants and event traces

Connector goal interactions and role goal interactions use UML state invariants to indi-
cate role goal achievement. See for instance Figure 5.2 on page 108.

Collaboration and role goal sequences define valid traces that achieve goals. The trace
events are described in interaction uses, and the relationships between them in interaction
overview diagrams.

Note that interaction overview diagrams can include parallel paths, enabled by pairs of
fork and join nodes, as in Figure 5.11 on page 115. The interleaving trace semantics of
UML interactions implies that event occurrences in each parallel path can be interleaved,
provided the partial event occurrence orders within each interaction use are obeyed. In
addition the order of goal achievement in parallel paths can be freely interleaved.

The interleaving semantics implies that the goals of a goal sequence can be achieved by
different sequences of events. All event orders that obey the partial ordering described by
a goal sequence are valid event orders in terms of reaching the goals specified.

Note that it is not clear from the UML2 semantics what the interpretation of state invari-
ants is between interaction uses referenced in interaction overview diagrams. See the
discussion in section 10.2.7.

5.4.1.3 Interaction constraints

We have considered using interaction constraints as guards before interaction uses in
interaction overview diagrams, see Figure 5.24.

Figure 5.23 : Collaboration goal sequence

C1 C2
G1 G2C1 C2
G1 G2

5.4 Semantics 129

However, the interaction constraints in Figure 5.24 are not legal in UML, as they must
refer to a single lifeline.15 The reason for this restriction is that it must be possible to eval-
uate them “atomically”, that is immediately and without side effects.16

Interaction constraints can only be used to guard an operand in a combined fragment, and
do not distinguish between valid and invalid traces in the way that state invariants do.

5.4.2 Semantics of actor goal sequences
The activity diagrams in UML, which we use to capture actor goal sequences, are based
on token passing semantics. Token passing is attractive to our approach, as it fits in well
with our desire to express and determine role-playing capabilities of actors. Here we
define what token passing semantics means in terms of role playing.

5.4.2.1 Tokens represent service opportunities

When an action representing a role has a token on (all) its incoming control edges, we
interpret this as meaning that the role may be played - we say that the service role is
enabled.

Definition: Enabled role
A role is enabled for an actor if there exists a token on all incoming edges of the action
representing the role in the actor goal sequence.

Whether an action executes (i.e. a role is played) or not depends on what event occur-
rences take place, e.g. what initiatives the actor or its environment take. The token on the

15. The dynamic variables that take part in the [InteractionConstraint] must be owned by the ConnectableElement
corresponding to the covered Lifeline [UML 2.0] p. 470.

16. Evaluating the value specification for a constraint must not have side effects (ibid. p. 55).

Figure 5.24 : Collaboration goal sequence with interaction constraints

sd MpConf_goals

mpcnf.MpCnf_goal
/* Configure Conference */

ref

mpc.Mpc_goal
/* Configure MeetingPlace for Conference */

ref

mps.MpSession_goal
/* Join MeetingPlace Session */

ref

mpi.MpcInfo_goal
/* Inform participant of conference */

ref

mp.Mp_goal
/* Configure MeetingPlace */

ref

mpa.MpcAddOn_goal
/* Join Meeting Place Conference */

ref

[Mp_controller and Mp_mp]
[else]

[else]
[MpCnp_controller and MpSession_host]

[else]
[MpSession_participant and Mpc_mp] [else]

[MpcInfo_participant
and MpCnf_conf]

130 5 Goal sequences

incoming control edges means that role playing is possible, not mandatory. In chapter 7
we shall see how this is interpreted in terms of discovering service opportunities.

In other words the role represented by the action will first start executing when certain
event occurrences happen in the actor or in the environment of the actor; which events
these are is not detailed. The behaviour of UML actions can be defined in terms of com-
munication actions, but we suggest that the actions are treated only as placeholders for the
role goal interactions bearing the same name as the actions.

In our approach, the token remains in the incoming edge until the action starts. Once the
action starts, the token is consumed, and the service opportunity ceases to exist, unless
there are additional tokens on the incoming edge, see section 5.4.2.5.

5.4.2.2 Decision nodes represent multiple service opportunities

One deviation from the standard regards the interpretation of decision nodes. A decision
node is a control node that chooses between outgoing flows, so that each token arriving
at a decision node can traverse only one outgoing edge. While we do not change the UML
semantics, we interpret the situation such that when a token arrives at a decision node, all
the roles of the outgoing edges are enabled, meaning that a service opportunity exists on
each, though only one can be chosen by subsequent events. See Figure 5.25.

A token traversing an edge means that this particular path has been chosen. In UML this
choice is commonly modelled by guards; in our approach we omit guards. Semantically
this can be considered to represent ANY edge being chosen.17 If we had used guards, they
would pose no semantic problems as long as they only use attributes or events visible to
the actor. When an edge has been chosen, there is no longer a token in the decision node,
implying that there no longer exist any service opportunities on the other edges.

Following this approach, the interpretation of Figure 5.25 is as follows: after a0 outputs a
token by reaching its goal, a service opportunity arises for both a1 and a2. The token
remains in the decision node until some event determines that a1 or a2 is chosen. After
the choice is taken, the service opportunity of each of a1 and a2 ceases.

This interpretation of decision nodes means that decision and fork nodes work identically
in terms of enabling all the service opportunities represented by the outgoing edges. The
difference lies in what happens when the roles are played:

• with decision nodes, the service opportunities cease to exist, thus resulting in mutual

17. This resembles the ANY clause used to model indeterminism in SDL.

Figure 5.25 : Decision nodes and service opportunities

a0

a1 a2

a0

a1 a2

5.4 Semantics 131

exclusion of the alternative roles;

• with fork nodes, each path lives its own life, and roles can start and either reach their
goals or fail, independently of the other roles.

5.4.2.3 Token passing models goal achievement, not action (role) completion

We impose the interpretation that actions pass the token when the role goal is achieved,
and not necessarily when the action (role) terminates. In other words, in as far as the
graphs are concerned, the action terminates when the token is passed on to the outgoing
edges. It may be that a role goes on being played after the goal is reached, i.e. that it con-
sumes and sends signals.

This interpretation is due to the needs of service discovery in relation to goal achievement:
at certain points in a role behaviour, some useful progress is made, and that progress ena-
bles subsequent roles. Whether more events take place in a role or not after a goal has been
reached is not important to the succeeding roles.

However, such events may be valid for the service. But rather than modelling “post-goal”
behaviour explicitly, with all the complexity and diagram clutter involved, we simply
assume that services and roles can go on playing after their goal reaching has been con-
veyed in the form of a token being passed.

Typically such additional events can be related to output or consumption of signals such
as the MpInfo and JoinInfo signals in Figure 3.11 on page 52, or it can be events related to
the termination of the connection, status events, error events, and the like. However, recall
the method rule "Omit event occurrences after goal achievement" on page 116, which
enforces that such post-goal events should not be included in connector goal interactions,
even though they may be part of service.

5.4.2.4 Persistence in the event of failure

An implied but not expressed aspect of goal sequences is that the actions may not reach
their goals, and may “prematurely terminate”. UML2 declares a semantic variation point
for CompleteActivities.18

In goal sequence diagrams we do not explicitly show the control flow when a role fails to
reach its goal. It is possible to describe goal failure in activity diagrams, but it clutters up
the diagrams.

Instead we suggest that goal failure causes the token to be consumed, and not passed on
to any succeeding actions. How the activity representing the actor handles such situations
lies outside the scope of our work; it could be that the actor restarts the flow from the
beginning, or that it rolls back to the situation immediately before the failing action com-
mences; this would amount to inserting a token into the control node preceding the failing
action. As long as it is possible to track what actor roles are enabled, the service discovery
mechanisms we suggest will work.

18. See [UML 2.0] p. 303.

132 5 Goal sequences

5.4.2.5 Token queueing

In actor goal sequence diagrams, loops can cause a token to be “returned”. If they return
to the same activity, this expresses that the action can be duplicated or repeated. An exam-
ple is presented in Figure 5.21 on page 125.

A loop can also cause a token to be multiplied anew by a fork node, causing more than
one token to wait at the input of an action (role) on one of the parallel paths caused by the
fork. This is allowed according to the token semantics, and in our approach implies that
an active role “is still enabled” (as it already was, due to the presence of a token on its
input).

5.4.3 Formalized semantics for behavioural composition
The semantics we have chosen are aimed at fulfilling the needs of liveness validation and
service discovery. If goal sequences are to be used to express complete behaviour and be
used for composition of service role and actor behaviour supported by tools, we presume
that a stricter semantics is needed. In particular it must clarify issues such as:

- Given a goal dependency defined in a collaboration goal sequence, does failing to
reach the goal of a preceding semantic connector mean that the succeeding semantic
connector cannot reach its goals?

- Can the succeeding semantic connector exist prior to the achievement of the goal of the
preceding semantic connector? I.e. can it have any interactions prior to the goals of the
preceding semantic connector being reached?

- Can the preceding semantic connector continue to exist after goal achievement? I.e. are
additional interactions possible in a preceding semantic connector after its goal is
reached?

The formalisation of these issues falls outside the scope of our work, and we refer to the
discussion in section 8.2.2.1.

- 133 -

6
Service validation

We discussed the validation of basic safety properties in chapter 4. In this chapter we
address the validation of basic liveness properties, as well as validating compatibility of
collaborations and their constituent parts.

Compatibility in the binding of roles to classifiers in collaboration uses is a semantic var-
iation point in UML; this chapter presents our definition of role-binding compatibility.

The structure of the sections is as follows:

• the validation of basic liveness properties of interfaces is presented in section 6.1;

• validating compliancy with bound semantic interfaces is presented in section 6.2;

• validating state-like goals is discussed in section 6.3;

• consistency between state diagrams and goal sequences is discussed in section 6.4;

• runtime connector validation is presented in section 6.5;

• section 6.6 summarizes service validation techniques and the validation method.

6.1 Progress checking: validating basic liveness properties
Below we present a method for validating liveness when goals are expressed by progress
labels. It entails checking the interface behaviour of actors and service roles, i.e. their
actual behaviour expressed by p-roles, and/or their specified behaviour expressed by
semantic interfaces that are bound to them.

The validation of basic liveness, or progress checking as we call it, can be used to check
a pair of connected roles. Progress checking always follows safety checking, meaning that
progress checking will only be performed if both the checked roles are found to be safe.

6.1.1 Validation of interface roles
Given a connector between two interface roles, the first step is to check whether the roles
are live, i.e. whether they contain progress labels:

Boolean live(<interface_role>)

The predicate live() checks whether progress labels are present in an interface role. If
False is returned then no progress labels were found, and the validation terminates.

134 6 Service validation

If both interface roles of the connector are live, the next step is to check whether progress
can be achieved when the roles collaborate. Two algorithms for evaluating liveness based
on progress labels are defined in section 6.1.3 below. The algorithms construct the trun-
cated role of the pair of interface roles and search for the presence of progress labels in
the truncated role. The connector is said to exhibit the sum of the progress labels found.

If the roles are dual and have consistently defined progress labels then they constitute a
pair of semantic interfaces of a semantic connector.

6.1.2 Validation of service roles
An issue central to our approach is to validate whether service roles and actors are com-
pliant with their specified interfaces, i.e. the semantic interfaces bound to them.
According to UML2:

A classifier bound to a role must be compatible with the type of the role, if any. It must
also obey any constraints on the role. [UML2 Ref] p. 232.

It is a semantic variation when client and supplier elements in role bindings are com-
patible” [UML 2.0] p. 167.

Validating role bindings means one must define what is meant by compatibility between
semantic interfaces (the supplier elements of the collaboration uses) and the service roles
or actors (the client elements), or compliancy as we call it.

To define compliancy we use the notion of live subtyping introduced in chapter 4.

Definition: Compliancy with a semantic interface
A service role or actor is compliant with a semantic interface if its p-role projected over
the connection represented by the semantic connector is a live subtype of the semantic
interface.

Compliancy checking is discussed in section 6.2 below.

6.1.2.1 Progress labels and projections

Note that the projection of event goals from service roles to p-roles depends on the visi-
bility of the event goals on the connection over which they are projected. Progress labels
survive role projection, meaning that p-roles contain the progress labels that the service
role has on the connection over which they are projected.

A service role that has progress labels will project at least one live interface role; however,
there may be connections towards which the service role does not have any progress
labels, thus resulting in the projection of a basic interface role over that connection. A
service role without any progress labels will only project basic interface roles.

The algorithms do not support the projection of goal assertions. However, since event
goals can be derived from goal assertions, see section 4.2.5.2, projecting them can be con-
sidered superfluous.

6.1 Progress checking: validating basic liveness properties 135

6.1.3 Algorithms and tools for validation of progress labels
The liveness validation technique is based on the checking of the presence of progress
labels in truncated interface roles. This can be used for a pair of semantic interfaces, or for
a pair of connected service roles, the latter approach involving projection to a pair of p-
roles and subsequent validation of their basic liveness properties.

A validation tool supporting the latter approach was designed and implemented in a pro-
totype version by [Alsnes 2004].

The following is an account of the joint work done by [Alsnes 2004] and ourselves. First
we give an overview of the implementation, then discuss some of the issues that arose,
before we provide the pseudocode of the algorithms and the data structure.

6.1.3.1 Implementation

Figure 6.1 gives an overview of the implementation of the safety checking algorithms1 of
[Floch 2003] and our progress validation algorithms.

1. The safety checking algorithms of [Floch 2003] were partially implemented by [Korda 2004].

Figure 6.1 : Flowchart of validation algorithms

 PART A: Flowchart of Role Arbitration PART B: Flowchart of Compatibility Check

Progress calculation
Role Arbitration

Implemented
by Alsnes

OUTPUT

List of Service Specific
Progress Labels

List of removed
Progress Labels

Level of progress

Progress calculation
Compatibility check

Implemented
by Alsnes

OUTPUT

List of removed
Progress Labels

Boolean value for
compatibility

p-role
Safety check

s-role
Projection

p-role
Transformation

p-role
Gathering

p-role
Miminisation

p-role
Merging

s-role
Projection

p-role
Transformation

p-role
Gathering

p-role
Miminisation

p-role
Merging

Proposed by Jacqueline Floch

Implemented by Alsnes

s-role
A

s-role
B

Graphical
User Interface

p-role
Safety check

s-role
Projection

p-role
Transformation

p-role
Gathering

p-role
Miminisation

p-role
Merging

s-role
Projection

p-role
Transformation

p-role
Gathering

p-role
Miminisation

p-role
Merging

Proposed by Jacqueline Floch

Implemented by Alsnes

s-role
A

s-role
B

Graphical
User Interface

Input string
identifying the

Service Specific
Progress Label

Implemented
by

Dragana
Korda

1 2 1 2

Proposed by
Richard
Sanders

136 6 Service validation

Two progress calculation algorithms were implemented by [Alsnes 2004]:

i. Role arbitration: Calculates graded progress labels, and is depicted on the left side
of Figure 6.1. It is denoted Role arbitration in Figure 6.1, since it is meant to be
used in a future automated role arbitration as an element of role request pattern of
[ServiceFrame 2002], see section 2.4.5.

ii. Goal compatibility check: Calculates service-specific progress labels, and is
depicted in the flow to the right in Figure 6.1 (part B).

In both flows safety checking is performed prior to progress checking.

6.1.3.2 The loss of progress labels inserted in service roles

The safety checking algorithms of [Floch 2003] were taken as a starting point, and aug-
mented to incorporate the progress calculation schemes outlined above. A general
requirement was that the safety checking algorithms should not be affected.

The algorithms of [Floch 2003] posed a number of challenges concerning the projection
of progress labels from service roles to p-roles, since the algorithms remove states and
events to reduce the p-role description in order to validate the safety properties:

• Service role to p-role projection removes events that are hidden; these events may con-
tain progress labels that should be associated with the service validated;

• Gathering can remove transitions; progress labels may be present in the removed tran-
sitions but not in the gathered transition;

• Minimisation of p-roles removes equivalent states and their transitions, and may thus
remove progress labels;

• Merging combines identical paths, thus removing states and possibly labels.

Several alternative approaches to the handling of removed labels were investigated:

• Not moving labels, but simply providing a list of removed labels which could be ana-
lysed by the designer;

• Moving labels to the retained transitions. The tool could assume that the removed
progress labels are meant to be present, and could issue warnings and provide a list of
moved and removed labels. Merging of labels becomes an issue in this case, since there
might already be a label on the transition that the label is moved to.

The former approach was chosen, and was deemed satisfactory provided the tool is used
interactively and not as an automated tool without a manual feedback loop.

Transitions involving progress labels are only removed by merging if they have equiva-
lent transitions elsewhere in the p-role; if the p-role doesn’t contain a removed label, or if
it contains a different one, then the designer needs to rethink the placement (and/or the
value) of labels. Rethinking is well supported by an iterative use of the tool. See the
method rule "Attach progress labels to unique events" below.

6.1 Progress checking: validating basic liveness properties 137

6.1.3.3 Challenges of the set-based notation

The set-based notation2 used to define transition charts in [Floch 2003] posed a challenge
due to the fact that it stores event types and not event occurrences in its data structure. The
loss of progress labels due to simplification was thought to be a problem. Several solu-
tions were attempted that would ensure that all occurrences of an event that has a progress
label would be retained:

• One solution was to extend the transition relation T(s,e)3 not only to contain the set of
target states for the state s triggered by e, but also to contain the progress labels. How-
ever, this would require a redesign of the safety checking algorithms;

• An alternative solution was to augment the set-based notation with a new relation
P(s,e) that contains progress labels for event e in state s. Adding such a relation would
not affect the safety checking algorithms. After running the algorithms progress labels
could be moved and/or removed freely according to a policy chosen by the progress
calculation algorithm.

Instead of adopting any of these, the implemented algorithms demand that progress labels
are consistently attached to events. In other words, the set-based notation cannot be used
for progress calculation unless all (or none) transitions for a certain event have the same
progress4.

This is considered to be a sound principle. If progress labels are not consistently attached
to events, the result is what we call progress ambiguity.

Definition: Progress ambiguity
Progress ambiguity occurs in an interface role when an event does not have consistent
progress labelling for all occurrences of the event.

Progress ambiguity must be removed by redesign. The following rule enforces that:

Method rule: Attach progress labels to unique events
Progress labels should be attached to only transitions that consistently designate progress.

This rule does not place unreasonable restrictions on service role design. Typically the
events that designate progress are unique, such as output or consumption of service-spe-
cific signals while more “generic” signal names like cancel, error or NAK typically do not
constitute progress. Requiring unique events is not a problem in such cases.

If “generic” signal names such as ACK designate progress they will only pose a problem
if they occur on the same connector due to the nature of projection. If this were the case
it would be reasonable to state that the ACK is an under-specified event liable to create
confusion to designers and errors in an implementation, and should thus be prevented.

A case that can not easily be handled is when a certain number of repetitions of an event
designate progress, e.g. the nth occurrence of ACK.

2. For a simplified version of the set-based notation, see section 7.5.1.2.
3. T(s,e) is the transition relationship, and returns “next state” for state s and event e.
4. For instance, if an acknowledgement signal marks progress in one place, it must mark the same progress in all

other places where it occurs in the semantic interface.

138 6 Service validation

6.1.3.4 Representation of progress labels in models

In the examples progress labels are represented by notes or comments connected to
events. An alternative is to create stereotypes of the events that mark progress, and to
include the progress labels in the definition of the stereotype.

The selection of preferred alternative is a tool issue. Stereotypes were used in the proto-
type tools implemented by [Alsnes 2004].

The algorithms do not search for progress labels attached to states. As was discussed in
section 4.2.5.2, goal states marked by goal assertions or progress labels can be used by a
tool to derive progress labels on the signal events leading to the goal state. However, no
such tool support has been made. Only minor extensions of the algorithms and metamodel
are required to support progress labels on states.

6.1.3.5 Pseudocode for algorithms for validation of liveness

The pseudocode for the progress checking algorithms is included below. Both algorithms
compare two roles; these are denoted “1” and “2”, respectively. Variables, sets and rela-
tionships marked with superscript “1” refer to role 1, while those marked with superscript
“2” refer to the connected role, called role 2.

The algorithms construct the truncated role of a pair of interface roles, and search for the
presence of progress labels. Role arbitration checks for both kinds of progress labels; goal
compatibility checks only for the presence of a given service-specific progress label.

If a set of alternative roles is to be compared, e.g. for role arbitration, the algorithms must
be called several times with role 1, but with a different connected role 2, and the results
compared. This is not shown in Figure 6.1, being outside of the scope of the algorithms.

Some of the relationships are reused from the set-based notation of [Floch 2003]:

• T(s,e) is the transition relationship, returning “next state” for state s and event e;

• Enable(s) returns the set of events that trigger transitions from state s;

• S0 is a finite set of initial states;

• SE is a finite set of exit points;

• e is the complementary of event e. The complementary of an input event is an output
event, and vice versa.

The progress calculation algorithms define an additional relationship Target(), which
maps from a tuple {state, event} in role 1 to a state in role 2. The relationship is initially
empty, and is assigned values during a run.

The algorithms start by collecting all states that are successor states of the initial state of
role 2, and use this collection as a starting point when comparing with role 1. They
traverse through role 1 and check with what events role 1 is able to interact with role 2,
thus building the truncated role.

The algorithms were suggested by us, and initially designed and implemented by [Alsnes
2004]. The pseudocode includes extensions suggested by ourselves which search for

6.1 Progress checking: validating basic liveness properties 139

progress labels in both roles, not just in role 1. The first algorithm has also been extended
to return a string containing the names of all service-specific progress labels found.

The algorithms do not validate whether progress labels are consistently present in the two
roles. Rather, the union of progress labels in the pair of roles is evaluated.

6.1.3.5.1 Role arbitration

The algorithm builds the truncated role of two roles and searches for progress labels.

For each event of the truncated role, any progress labels present in role 1 and role 2 are
retrieved. The algorithm works depth first, recording visited states as it progresses.

Finally the progress level is calculated by adding up the progress labels found, and service
specific progress labels are concatenated.

140 6 Service validation

Algorithm 6.1: Role arbitration

main ()
{
/* Assumption: the roles are found to be safe by the safety checking algorithms */

C1 = {}; /* Set of checked states, initialise to empty */
N2 = {}; /* Set of the next states of the initial states in connected role, initially empty */
nextIter = {}; /* Set of the next states of s in each iteration, initially empty */
L = {}; /* Set of found progress labels, initially empty */
int level = 0; /* Total level of progress, initially zero*/
string goals = ““; /* String of service-specific progress labels, initially empty */

for each s0
1 in S0

1 /* S0
1 is the set of initial states in role “1” */

if s0
1 is not in C1

progressCheck(s0
1);

for each ProgressLabel in L
level = level + ProgressLabel.progressLevel; /* progressLevel is the numerical value of the label */
goals = goals + ProgressLabel.name; /* goals is a text string containing all service-specific labels */

return (level, goals);
}

progressCheck(s1)
{ add s1 to C1;

for each e1 in Enable1(s1) /* Enable(s) is the set of enabled events of state s */
if s1 is an Initial state

initTarget = T1(s1,e1) /* The state transition relation T(s,e) gives the successor state */
if first iteration /* Initialise N2 */

for each s0
2 in S0

2 /* S0
2 is the set of all initial states in connected role */

for each e2 in Enable2(s0
2)

add T2(s0
2, e2) to N2;

for each x1 in Enable1(initTarget)
for each n2 in N2

for each e2 in Enable2(n2)
if x1 equals e2 /* e is the complementary event of e */

set Target(T1(initTarget, x1)) to T2(n2,e2) /* Build target relationship */
add T1(initTarget, x1) to nextIter
if x1 has ProgressLabel add(ProgressLabel) to L
if e2 has ProgressLabel add(ProgressLabel) to L

else /* s1 is not an initial state */
for each s2 in Target(s)

for each e2 in Enable2(s2)
if e1 equals e2

set Target(T1(s1,e1)) to s2

add T1(s1,e1) to nextIter
if e1 has ProgressLabel add(ProgressLabel) to L
if e2 has ProgressLabel add(ProgressLabel) to L

for each y in nextIter
if y is included in SE

1

if y has ProgressLabel /* Exit point has a progress label */
add(ProgressLabel) to L

else if y not in C1

progressCheck(y) /* Check successor state */
}

6.1.3.5.2 Goal compatibility check

This algorithm searches for the presence of a given service-specific progress label in a
truncated role. I.e. it checks that the roles are able to reach the label, not merely that it is

6.1 Progress checking: validating basic liveness properties 141

present in the challenged role. The algorithm is identical to the previous one except that
it looks for a specific progress label name, and stops as soon as a progress label is found
in the truncated role. If more than one service-specific progress label is sought, the algo-
rithm must be called repeatedly.

Algorithm 6.2: Goal compatibility check

main ()
{
/* Assumption: the roles are found to be safe by the safety checking algorithms */

C1 = {}; /* Set of checked states, initialise to empty */
N2 = {}; /* Set of the next states of the initial states in connected role, initially empty */
nextIter = {}; /* Set of the next states of s in each iteration, initially empty */
boolean match = false; /* Enabled service-specific progress label in connected role, initially false */

for each s0
1 in S0

1 /* S0
1 is the set of initial states in role “1” */

if s0
1 is not in C1

progressCheck(s0
1, string ServiceName);

return (match);
}

progressCheck(s1, string ServiceName)
{ add s1 to C1;

for each e1 in Enable1(s1) /* Enable(s) is the set of enabled events of state s */
if s1 is an Initial state

initTarget = T1(s1,e1) /* The state transition relation T(s,e) gives the successor state */
if first iteration /* Initialise N2 */

for each s0
2 in S0

2 /* S0
2 is the set of all initial states in connected role */

for each e2 in Enable2(s0
2)

add T2(s0
2, e2) to N2;

for each x1 in Enable1(initTarget)
for each n2 in N2

for each e2 in Enable2(n2)
if x1 equals e2 /* e is the complementary event of e */

set Target(T1(initTarget, x1)) to T2(n2,e2) /* Build target relationship */
add T1(initTarget, x1) to nextIter
if x1 or e2 has ProgressLabel

if ProgressLabel.name equals ServiceName
match = true
return;

else /* Not an initial state */
for each s2 in Target(s)

for each e2 in Enable2(s2)
if e1 equals e2

set Target(T1(s1,e1)) to s2

add T1(s1,e1) to nextIter
if e1 or e2 has ProgressLabel

if ProgressLabel.name equals ServiceName
match = true
return;

for each y in nextIter
if y is included in SE

1

if y has ProgressLabel /* Exit point has a progress label */
if ProgressLabel.name equals ServiceName

match = true
return;

else if y not in C1

progressCheck(y, ServiceName) /* Check successor state */
}

142 6 Service validation

6.1.3.6 Metamodel for representing state machines

The implementation of [Floch 2003]’s safety checking algorithms by [Korda 2004], and
the implementation of the progress calculation algorithms by [Alsnes 2004] both use a
metamodel to represent UML2 or SDL state machines. The metamodel resembles to a cer-
tain degree the UML2 metamodel to define state machines, but is specifically designed to
represent service roles and interface roles efficiently. The SDL concept save (deferred
triggers in UML) is included, as defined by [Floch 2003].

The metamodel is shown in Figure 6.2 below.

Progress labels are modelled by the class ProgressLabel. Instances of this class can be
contained by signal events and exit points.

SimpleStates must also contain progress labels if goal states are to be supported.

6.2 Validating compliancy with bound semantic interfaces
Assume that the semantic interfaces A and B are defined by a semantic connector C, and
that A and B are respectively bound to service roles s-role_Ai and s-role_Bj played by
respective actor classes Actor_Ai and Actor_Bj, see Figure 6.3.

Figure 6.2 : Metamodel for validation algorithms [Alsnes 2004]

«metaclass»
Role

«metaclass»
Region

0..1*

«metaclass»
State

«metaclass»
Association

«metaclass»
Transition

#isTrigger : boolean

«metaclass»
Event

«metaclass»
Signal

1

1..*

0..1

*

«metaclass»
SubMachine

«metaclass»
SimpleState

«metaclass»
PseudoState

«metaclass»
TauTransition

1 0..*

1

0..*

1

0..*

-originState

1 *-targetState

0..1 *

1

-outgoingSignal

1

1

-in
co

m
in

gS
ig

na
l 1

-progressLevel : int
-name : String
-exitPointProgress : boolean

«metaclass»
ProgressLabel

1

0..1

1 1..*

«metaclass»
Save

-saved

1 0..1

«metaclass»
EmptyTransition

«metaclass»
TauEvent

«metaclass»
EmptyEvent

«metaclass»
SendSignal

-Save : boolean

«metaclass»
ConsumeSignal

1
*

ValidAssociationInputSet

1

*

ValidAssociationOutputSet

«metaclass»
SigmaState

«metaclass»
EntryPoint

-ExitCondition : String

«metaclass»
ExitPoint

-entryCondition : String

«metaclass»
Initial

«metaclass»
Choice

1

-elementaryRole

*

1

0..1

6.3 Validating state-like goals 143

The role bindings imply that the service roles and actors are specified to be compliant with
A and B.

The following steps can be followed to check the compliancy of the service roles and
actors with the semantic interfaces bound to them:

For each actor class Actor_Ai and Actor_Bj playing service roles s-role_Ai and s-role_Bj:

1. Derive their p-roles Ai and Bj by projection.

2. Check whether the service roles service roles are well-formed; correct them if not.

3. Compare the p-roles with the semantic interfaces specified:

• If (Ai ~> A) then Actor_Ai is compliant with the semantic interface A in C;

Similarly for B actor candidates:

• If (Bj ~> B) then Actor_Bj is compliant with the semantic interface B in C;

If Ai ~> A and Bj ~> B, then the actors are compatible with A and B, and the goals of C can
be achieved when they interact. This can be checked for any pair of actors, or for an actor
on its own.

Such checks need only be performed once for each actor type, and need not be repeated
for each actor instance. They can be performed at design time, and be used to characterize
compliancy with semantic interfaces in a library of semantic connectors. Such a library
can assist during runtime connector validation between actors, see section 6.5.

6.3 Validating state-like goals
Validating state-like goals is a validation technique that supplements the validation of
event goals. State-like goals are either goal expressions or goal assertions, and can be
related to collaborations, roles or actors. Validating goal expressions means to check
whether goals can be reached, i.e. that goal expressions can evaluate to True at some point.
Validating goal assertions is to check whether goal assertions are not falsified anywhere.

Figure 6.3 : Validating compliancy between actors and semantic interfaces

Actor_A1

<<s-role>>
s-roleA1

Actor_B2

<<s-role>>
s-roleB2

BA
Actor_A2

<<s-role>>
s-roleA2

Actor_B1

<<s-role>>
s-roleB1

1

2

1

2

1

2

1

2
A2

A1 B1

B2

3

3

3

3

C

144 6 Service validation

That there are multiple ways of expressing state-like goals introduces redundancy. We
consider this to be an advantage, as more validation opportunities arise.

In the following sections we first discuss validation of goal expressions, then move on to
validating goal assertions, and lastly discuss the validation of actor goals.

6.3.1 Validating goal expressions
Collaboration goal and role goal expressions are defined in the context of the service
structure, e.g. as in Figure 6.4.

Figure 6.4 illustrates the following:

• The Call service is described by a collaboration, and service roles A and B are defined
to be of a given role type (i.e. Caller or Callee). Role types define attributes (such as
callee and caller); here the role state is represented by the attribute mystate5;

• Collaboration goal expressions and role goal expressions use attributes defined in the
role types. The collaboration goal can be a conjunction of the role goals.

Given collaboration goal expressions, model checking can be used to validate whether
collaboration goals are achievable:

Given an N-party collaboration C with collaboration goal expression cg and role state
machines A, B, ... N with states a1, a2...; b1,b2…; n1,n2…: perform a reachability anal-
ysis, and for each global state (ai, bj, ... nk):

• Evaluate the collaboration goal expression cg;

Validation stops at the first occasion at which cg evaluates to True.

This form of validation is subject to the state-space explosion problem commonly associ-
ated with model checking.

For a semantic connector where the semantic interfaces contain role goal expressions,
model checking can be used to validate whether goals are achievable without making use
of any collaboration goal expression:

5. States are defined by an enumerated data type; this is an alternative to defining them in state machine diagrams.

Figure 6.4 : Service goal expressions

1 1Call

{context Call def: goal :
Boolean = (A.goal and B.goal}

{context Caller def: goal :
Boolean = (is_valid(callee)
and mystate = ConnB)}

{context Callee def: goal :
Boolean = (is_valid(caller)

and mystate = ConnA)}

Collaboration
goal expression

Role goal
expressionA:Caller

callee : objectId
state:enum{WaitRing,RingingAtB,

BusyB,ConnB,Disc}

A:Caller
callee : objectId

state:enum{WaitRing,RingingAtB,
BusyB,ConnB,Disc}

B:Callee
caller: objectId

state : enum
{A-Ringing,ConnA,Disc}

B:Callee
caller: objectId

state : enum
{A-Ringing,ConnA,Disc}

6.3 Validating state-like goals 145

Given a 2-party collaboration C and role state machines A and B with states a1, a2...;
b1,b2… and goal expressions as and bs; perform a reachability analysis, and for each
global state (ai, bj):

• Evaluate the role goal expressions as and bs;

• Mark the goal of A as satisfied if as evaluates to True;

• Mark the goal of B as satisfied if bs evaluates to True.

Validation stops as soon as both A and B are marked as satisfied.

This form of validation generally requires modest amounts of resources, provided the
goals are achievable, since the algorithm stops as soon as a way to reach them is found.

6.3.2 Validating goal assertions in collaborations
An additional form of model checking is to validate that goal assertions on collaboration
goals and role goals are not falsified in any reachable state. Collaboration state machines
can contain such goal assertions; indeed, in addition to providing an overview, the specific
purpose of collaboration state machines is to enable the validation opportunities that arise.
Figure 6.5 shows an example of collaboration states and goal assertions.

In Figure 6.5 the collaboration goal is asserted to be achieved in the collaboration state
Accepted. This state also expresses assertions on states of the roles A and B.

Using model checking, goal assertions are used to validate the joint collaboration
behaviour:

Given a collaboration state machine with goal assertions, and role state machines with
their own goal assertions, perform a reachability analysis, and for each global state:

• For each role, evaluate their role state expressions (see section 6.3.3.1 below);

Figure 6.5 : Collaboration states and goal assertions

Call DiallingA:Caller
WaitRing

A:Caller
WaitRing

RingingA:Caller

callee == A

RingingAtB

B:Callee

caller == A

A-Ringing

RingingA:Caller

callee == A

RingingAtB

A:Caller

callee == A

RingingAtB

B:Callee

caller == A

A-Ringing

B:Callee

caller == A

A-Ringing

Accepted

assert (goal == True)

A:Caller

callee == B

ConnB

B:Callee

caller == A

ConnA

Accepted

assert (goal == True)

A:Caller

callee == B

ConnB

A:Caller

callee == B

ConnB

B:Callee

caller == A

ConnA

B:Callee

caller == A

ConnA

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

B:Callee
Disc

ReleasedA:Caller
Disc

A:Caller
Disc

B:Callee
Disc

B:Callee
Disc

Busy
A:Caller

BusyB

B:Callee
*

Busy
A:Caller

BusyB

A:Caller
BusyB

B:Callee
*

B:Callee
*

Collaboration
state

Role state
assertion

Collaboration
goal assertion

146 6 Service validation

• Mark the global state with the role goal assertions that evaluate to True;

• Ensure that collaboration goal assertions are not falsified.

Validation stops if a collaboration goal assertion is falsified; if validation runs through
all states of the collaboration without any falsification of collaboration goal assertions,
we conclude that the joint behaviour is consistent with the collaboration state machine.

That the collaboration goal is True in at least one global state is established by validating
the collaboration goal expression (as discussed in section 6.3.1 above).

Note that collaboration states have a scope that takes in all the collaborating roles, and is
therefore a “horizontal” state closely related to the service provided by the collaboration.

6.3.3 Validating goal assertions in service roles
As was discussed in section 4.4.3.2, a state machine defining the behaviour of a service
role can contain goal assertions.

Generally speaking role goal assertions may include internal and external aspects:

• References: What external entities are known? (E.g. Callee knows Caller);

• Attributes: What values are held by internal attributes? (E.g. goal is True);

• Timers: What timers are active? (E.g. dial_timer is active in state WaitRing);

• Collaborations: What collaborations are active and what are their states? (E.g. in role
state ConnB the Call is active and should be in collaboration state Accepted);

The first three cover aspects internal to an actor and directly controlled by it, while the last
assesses joint states of collaboration; the latter are partly outside its control, i.e. external,
as they also depend on the states of the other collaborating roles.

We may thus distinguish between two sets of opportunities: internal checks and external
checks.

6.3.3.1 Internal checks: validating assertions on role states

These checks aim to ensure that assertions expressed for a given state (or a set of states)
of an actor will hold for all possible executions. It entails checking all event sequences
leading to the given state combined with all possible values of attributes and timers.

In Figure 6.6 assertions are specified in the states. These assert that attributes have certain
values in certain states, such as the callee attribute in the Caller’s state RingingAtB, and
assert in which states role goals are achieved, i.e. in states ConnB and ConnA.

If an actor design does not violate the role goal assertions, then one has validated that the
design is consistent with the specified role goals.

Using model checking, goal assertions can be used to validate the role behaviour:

Given a role state machine A with states a1, a2... and a role goal assertion as: Perform
a reachability analysis for A, and for each state (ai):

6.3 Validating state-like goals 147

• Evaluate the role goal assertion as (if present in state ai);

• Mark the goal of A as satisfied if as evaluates to True.

Validation stops if the role goal assertion is falsified; if validation runs through all
states of A without any falsification, we conclude that the assertion as is satisfied.

In the popular model checker tool SPIN [Holzmann 2003], role goal assertions can be
expressed as assertions in Promela.

6.3.3.2 External checks: validating assertions on collaboration states

An additional model checking opportunity is to validate collaboration state assertions
expressed for a role state machine. Collaboration state assertions express properties that
shall hold across actors and thus provide external information that can be used to make
even more comprehensive checks on progress towards goals.

Without any assertions on collaboration states, external checks are limited to checking
general safety properties, see section 4.1.3.

As was discussed in section 4.4.3.3.1, roles can be defined in a state-oriented fashion,
where the collaboration state is asserted in each role state, see Figure 6.7.

The state symbols in Figure 6.7 indicate the appropriate role states and corresponding col-
laboration states, in accordance with what is defined for the Call service. This provides the
opportunity for checking the consistency between role and collaboration behaviour.

Using model checking, roles states with collaboration state assertions can be used to val-
idate whether the collaboration goal is achievable seen from the perspective of the role:

Perform a reachability analysis for a role; for each global state:

• Evaluate the role goal assertions (as for internal checks);

Figure 6.6 : Service role state machines with role goal assertions

WaitRing

RingingAtB
{assert (callee == …)} BusyB

Caller

ConnB
{assert (goal == True)}

A-Ringing
{assert (caller == …)}

ConnA
{assert (goal == True)}

Callee

Disc

Disc

Role goal
assertion

Role goal
assertion

Role data
assertion

148 6 Service validation

• Check whether the collaboration state assertions are satisfied for each role state in
the global state. If not, mark the role state as inconsistent with the collaboration
state.

Validation stops if a collaboration state assertion is falsified; if validation runs through
all states of the role without any falsification of the collaboration assertion, we con-
clude that the collaboration state assertions are satisfied, implying that the role
behaviour is consistent with the collaboration behaviour.

6.4 Consistency with interaction sequences
While state diagrams are used to specify the behaviour of service roles and interface roles,
additional modelling elements are used to capture the cross-cutting behaviour of services,
as was discussed in section 3.3. In our approach we put particular emphasis on the sys-
tematic use of interaction diagrams and goal sequences.

Sequence diagrams and goal sequences normally specify partial behaviour, as opposed to
the complete behaviour defined in state diagrams. This implies that one needs to ascertain
that sequence diagrams and goal sequences are consistent with the state diagrams.

Below we discuss the validation techniques that are appropriate to use in this setting.

6.4.1 Consistency with role goal interactions
A basic validation problem is to check whether role goal interactions and role state dia-
grams are consistent with each other, see Figure 6.8.

Figure 6.7 : Role states with state orientation

Caller WaitRing

{Timers: {dial_timer}}

A:Caller Call

ConnB

{Timers: {}; goal == True;}

A:Caller Call

RingingAtB

{Timers: {answer_timer}; callee == B;}

A:Caller Call

B

WaitRing Dialling RingingRingingAtB

AcceptedConnB

BusyB

{Timers: {busy_timer}}

A:Caller Call
BusyBusyB

Disc

{Timers: {disc_timer}}

A:Caller Call
ReleasedDisc

B

B

Own role state

Collaboration
state assertion

Own assertions

other roles

6.4 Consistency with interaction sequences 149

Role goal interactions are sequence diagrams that describe a sequence of signals that leads
to a role goal being achieved. The object of the validation is to ascertain that there are
event paths in the state diagram of the interface role that correspond to the sequences of
events specified in the interaction, i.e. that the role state machine can perform at least the
sequences specified. Such basic validation functionality is commonplace in software
engineering tools such as [Telelogic].

Note that validation of event sequences depends on what assumptions can be made on the
connectors between roles, see Figure 6.9.

Assuming FIFO properties of connectors, signals will be received in the same order as
they are sent, and the role behaviour in Figure 6.9 a) is compatible with an environment
specified in the interaction diagram. However, if FIFO properties cannot be assumed, the
role behaviour in Figure 6.9 b) is necessary, since B can arrive before A. The latter case is
called an implied scenario.

Note that the definitions of containment and obligation, see section 4.1.3, assume FIFO
properties, according to SDL semantics. In SDL message overtaking does not happen on

Figure 6.8 : Validating consistency with role goal interactions

calling

idle

Ringing

Inviter {xprotocol}

Reject

idle

CallRequest

RingingAtB

CallRequest
Ringing

sd Setup_inviter_invitee

{Setup.inviter.goal == True}

:Inviter

Setup

inviter:Inviter 1 invitee:Invitee 1

{def: goal : Boolean = inviter.goal and invitee.goal}

Validate

Figure 6.9 : Validating consistency with interactions: implied scenarios

2

5

B

Role /* general case */

1

3

A
B

sd AB
:Environment

Service_ab

e:Environment 1 r:Role 1

Validate

A

4

B

A

2

B

Role /* FIFO */

1

3

A

a) b)

150 6 Service validation

connectors, meaning that the order of signals received over a connector is the same as the
order sent.

6.4.2 Consistency with collaboration goal sequences
Collaboration goal sequences are interaction overview diagrams describing sequences of
events leading to collaboration goals being achieved. Validation techniques should verify
that service roles and collaboration goal sequences are consistent, see Figure 6.10.

Recall that collaboration goal sequences are used to derive role goal interactions; validat-
ing service role behaviour should be performed for each service role based on role goal
interactions using standard validation tools as described in section 6.4.1. In the example
in Figure 6.10, tools should be used check whether there is an event path in the state dia-
gram of Caller that corresponds to the events on the lifelines of inviter followed by
receiver.

The interaction overview diagrams that underlie goal sequence diagrams adopt week
sequencing semantics. This means that message overtaking can occur, depending on the
nature of the connectors. E.g. Answer can in some cases be received before Ringing.

6.4.3 Consistency with actor goal sequences
Actor goal sequences are activity diagrams that in effect describe sequences of events
leading to actor goals being achieved. Validation techniques are needed to verify that actor
designs and actor goal sequences are consistent, see Figure 6.11.

As for role goals, standard validation tools can be used to validate whether there is an
event path in the state diagram of the actor that corresponds to the sequences of events
specified in the actor goal sequences. The validation should include checking that loops
of behaviour expressed in the actor goal sequences are also present in the state diagram of
the actor.

Figure 6.10 : Validating consistency with a collaboration goal sequence

sd Call_goals

ref
accept.

Accept_goal

ref
accept.

Accept_goal

setup.
Setup_goal

ref

Validate

sd Accept_goal

inviter:
Inviter

invitee:
Invitee

CallRequest(inviter,invitee)

Ringing(invitee)

sd Setup_goal

{goal == True} {goal == True}

receiver:
Receiver

accepter:
Accepter

{goal == True} {goal == True}

Answer

<<s-role>>
A:Caller

<<s-role>>
B:Callee

Call

inviter
setup:Setup

accept:Accept

invitee

receiver accepter

6.5 Runtime connector validation 151

6.5 Runtime connector validation
Model checking takes place at design time as a quality assurance measure aimed at remov-
ing flaws in systems before they are deployed. When design-time connector validation has
shown that roles are designed safely and usefully, then the roles can be trusted to perform
correctly in all situations where the property model is valid.

However, in a setting where actors are distributed across heterogeneous networks, and
services evolve over time, situations may arise where interacting system components have
been validated against different versions of semantic connectors. This means that the val-
idation originally performed at design time is not sufficient; validation must be performed
for the actual connection.

One solution to this challenge is to validate at runtime, immediately prior to interaction
between actors validated against disparate property models. The need for such a capability
is increased by the introduction of dynamic service discovery and role learning, which we
discuss in the chapter on Service Discovery. Another solution is to calculate substitution
relationships at design time, and then use this information at runtime.

The mechanism needed should validate the connections between actors. Runtime connec-
tor validation should determine whether actors that are dynamically connected can play
well with each other, and reach service goals while doing so.

Runtime connector validation consists of validating the semantic interfaces of connected
roles, and is an adoption of the progress checking algorithms presented in section 6.1.3.
The only difference is that the algorithms are initiated by the actors or on their behalf as
part of their normal operation, rather than at design time and at the behest of a service or
systems designer.

Figure 6.11 : Validating consistency with an actor goal sequence

Validate

UserAgent_roles

Setup_
inviter_invitee

/* Invite peer */

Accept_
receiver_accepter

/* Peer accepts call */

Setup_
invitee_inviter

/* Invited by peer*/

Release_er_ee
/* Take initiative to release */

Accept_
accepter_receiver

/* Accept call */

Release_ee_er
/* Released by peer */

Idle

Idle Idle

Validate

152 6 Service validation

Once the semantic interfaces of dynamically connected actors are validated, the result can
be recorded for future use, so that subsequent runtime connector validation is reduced to
a simple look-up function.

A practical approach to runtime connector validation is to execute the algorithms during
role requests. Such an approach is discussed below.

6.5.1 Runtime connector validation as part of role requests
As stated in section 2.4.5, a session can be established as a result of role requests, i.e. an
actor asks for a certain role to be played by another actor. This is the approach used in
[ServiceFrame 2002]. An example of the role request pattern is shown in Figure 6.12.

In Figure 6.12 a request for role playing comes from a requesting actor to the state
machine ActorStateMachine of a requested actor.

A role request can perform more than just a role allocation; it can also involve runtime
connector validation, i.e. a validation between the interface roles on each side of the con-
nection. This is what [Bræk 1999] calls role alignment: it includes validation and learning.

In addition to identifying the desired service and other necessary information, the
Request signal can supply or in other ways identify a description of the interface role of
the requesting actor6. This information can be used by a validation mechanism in the
requested actor to determine whether it is able to play a service role whose semantic inter-
faces pass a role validation against the semantic interfaces of the requesting actor.

For sake of argument, let us presume that the runtime connector validation mechanism
resides in ActorStateMachine in Figure 6.12. This means that ActorStateMachine per-
forms validation of the semantic interface supplied in the Request signal against the
requested actors’ portfolio of semantic interfaces. It should validate both safety and live-
ness properties. The validation result should determine the response or confirmation

6. For instance, an XML representation of the interface role can be included in the request.

Figure 6.12 : Role request pattern

requesting: Actor requested: Actor

ActorStateMachineActorStateMachine1. Request (B, A)

3. Confirm (B)

2. Play(s-role_b)

<<s-role>>
s-role_a

<<s-role>>
s-role_b

act2: Actor

session
Connection
validated

A

B

Perform runtime
validation

6.6 Summary of service validation techniques 153

signal in Figure 6.12; if no semantic interface at the requested side can be successfully
validated for safety and usefulness, the role request response should be negative.

6.5.2 Challenging and challenged roles
We have previously introduced the concepts of initiating and responding role, and have
discussed requesting and requested actors. Although the actor initiating the role request is
the most likely candidate to play the initiating role, role request should not be restricted
only to supporting this configuration.

We suggest the term challenging role to determine the requesting side of a connection, and
challenged role for the connected role, regardless of which plays the initiating and
responding role, see Figure 6.13.

In the context of role requests, the challenged role is the role that might have substitution
alternatives, while challenging role is regarded as fixed.

The progress checking algorithms evaluate progress from the vantage point of the chal-
lenging role. However, recall from section 4.2.1 that semantic interfaces must have
consistently marked event goals. Hence the result of the progress checking will yield the
same result, regardless of in which “direction” the validation is performed.

6.6 Summary of service validation techniques
The validation techniques presented fall neatly into two groups:

i. connector validation, which validates safety properties and validates basic liveness
properties by checking for the presence of event goals in their interactions;

ii. validating state-like goals, which validates liveness properties by checking that
goal expressions are reached and that goal assertions are not falsified.

In this section we summarize the techniques and give an overview of the validation
method. We also discuss the assumptions regarding the validation of liveness.

Figure 6.13 : Challenged role associated with challenging role

Two-party service

<<s-role>>
b:s-role_bBn

<<s-role>>
a:s-role_a An

Challenging
role

Challenged
role

154 6 Service validation

6.6.1 Connector validation
Connector validation focuses on the exchange of signals over interfaces. It considers
interface behaviour of actors and service roles, i.e. their actual behaviour expressed by p-
roles and/or their specified behaviour expressed by bound semantic interfaces.

Connector validation has the following elements, see Figure 6.14:

1. Performing design rule validation to check whether service roles follow design rules,
ensuring that role projection from service roles results in safe p-roles;

2. Performing design-time connector validation to:

i. check basic safety properties, which we call safety checking;

ii. check basic liveness properties, which we call progress checking;

3. compliancy checking between p-roles obtained by projection from a service role, and
the semantic interfaces that are bound to a service role or actor, i.e. validating whether
the actual interface behaviour is compliant with specified interface behaviour;

4. If necessary: performing runtime connector validation on connected actors to validate
the basic safety and liveness properties of the connection between them.

The purpose of connector validation is to ensure that interactions are safe and useful.
Given that all interface roles of a composite service are validated for all its constituent
service roles, then a basic level of quality has been established: nothing bad can happen
when the service roles collaborate, and at least pairs of service roles can achieve some-
thing good. What is not validated are goal assertions, which we discuss below.

Steps 1 through 2i above, i.e. validating that the design rules for service roles, performing
role projection from service roles to p-roles, and safety checking between pairs of inter-
face roles, are all due to the work of [Floch 2003]. This was introduced in section 4.1.3.

Figure 6.14 : Connector validation

3)
 c

om
pl

ia
nc

y
ch

ec
ki

ng

<<s-role>>
a:Type_a

pa

A B

<<s-role>>
b:Type_b

pb

1) design rule
validation

:actor_a :actor_b

plays plays

Property
model
Object
model

pa pb

ab: semantic
connector

2) design-time connector validation

4) runtime connector validation

3)
 c

om
pl

ia
nc

y
ch

ec
ki

ng
project project

playsplays

6.6 Summary of service validation techniques 155

We have added a basic validation of liveness properties. Our main contribution lies in step
2ii, progress checking, and was presented in section 6.1. Algorithms were presented and
discussed, and the design and implementation of a tool were described.

Step 3 is also unique to our approach, and was presented in section 6.2.

Steps 1 though 3 can be used at design time. The optional step 4, runtime connector vali-
dation, is an application of the techniques at runtime. It only needs to be performed for
distributed actors in cases where design-time validation (steps 1 though 3) has not been
performed using the same service description; in this case actor_a and actor_b of
Figure 6.14 relate to different property models. The technique was outlined in section 6.5.

6.6.2 Validating state-like goals
Validation of state-like goals uses state-space exploration techniques to check whether
goal expressions can be true, and that goal assertions are never falsified.

Validating state-like goals is applied to all service structure elements, see Figure 6.15:

1. Collaboration goal validation, validating that a collaboration can reach its collabora-
tion goals, and that collaboration goal assertions are never falsified;

2. Role goal validation, validating that service roles can achieve their role goals, and that
collaboration goal assertions are never falsified;

3. Actor goal validation, validating that actors can reach their actor goals.

Validation of state-like goals was described in section 6.3. Validation of collaborations,
service roles and actors can be done at design time, and need not be repeated at runtime.

Figure 6.15 : Validating state-like goals

Type_a Type_bService_aba b

:actor_a :actor_b
:Service_ab

a b

plays plays

goalgoal
goalgoal

goalgoal

aa a ba ba b goal
a b

Property
model
Object
model

1) Collaboration goal validation

2) Role goal validation

3) Actor goal validation

156 6 Service validation

6.6.3 Comparison
While the aim of connector validation is to examine the interface behaviour between pairs
of roles, validating state-like goals entails a full reachability analysis of collaboration and
role behaviours.

The main benefit of connector validation compared to validating state-like goals is that
the former requires fewer resources in terms of time and/or space to reach a conclusion,
and that it can be performed at runtime if necessary. The downside is that it only deals
with interface behaviour, and hence does not cover all aspects: it does not address goal
assertions, so the technique is incapable of validating goals related to a set of connections.

6.6.4 Validation method overview
The following methodical approach to validation is suggested:

1. Validation of a semantic connector and its pair of semantic interfaces:

i. check whether the interface roles defined by the elementary collaboration are safe;
if not then they must be redesigned - see section 4.1.3;

ii. check whether both interface roles are live (contain role goals); if not then they
must be redesigned in order to qualify as semantic interfaces - see section 6.1.1;

iii. check whether event goals can be achieved for the pair of interface roles when they
collaborate, if not the collaboration is not well-formed - see section 6.1.3;

iv. check whether the goal assertion(s) of the roles, as well as any collaboration goals
defined for the semantic connector, are achievable - see section 6.3.3;

2. Validation of collaborations composed of semantic connectors:

i. check whether collaboration goals (if defined) are achievable; if not the service role
(or the collaboration goals) must be redesigned - see section 6.3.2;

ii. check whether the collaboration is consistent with its collaboration goal sequences
(if any) - see section 6.4.2;

3. Validation of service roles and the semantic interfaces bound to them:

i. check whether service roles can be projected to p-roles; if not, the service roles
must be redesigned - see section 4.1.3;

ii. check whether the p-roles are compliant with a semantic interface bound to it; if not
then redesign the service role - see section 4.3.3;

iii. check whether goal assertions (if any) of the service role are achievable; if not the
service role (or the goals) must be redesigned - see section 6.3.3;

4. Validation of actors composed of service roles with semantic interfaces:

i. check compliancy with semantic interfaces bound to the actor (directly and/or
through service roles) - see section 6.2;

6.6 Summary of service validation techniques 157

ii. check whether the actor is consistent with its actor goal sequence (if any) - see
section 6.4.3;

iii. only when necessary is runtime validation performed - see section 6.5.

The validation method uses a combination of techniques presented:

• steps 1.i-iii, 3.i-ii and 4.i and iii use connector validation techniques;

• steps 1.iv, 2.i, and 3.iii uses techniques to validate state-like goals.

The remaining steps 2.ii and 4.ii entail checking consistency with goal sequences.

158 6 Service validation

- 159 -

7
Service discovery

In this chapter we show how service discovery can take advantage of semantic interfaces
and goal sequences. We present different forms of service discovery: discovering compat-
ible actors, discovering service opportunities, and role learning, and outline mechanisms
to support them. Lastly we discuss scalability issues.

7.1 Introduction
As stated in section 1.3.5, the need for service discovery of telecom services is not
addressed by traditional discovery mechanisms supported on client-server platforms:

1. An actor can know of a set of actors, such as contacts in an address book, and would
like to know what goals can be achieved with each. For instance, which contacts can
be called, which can be sent a message to, which can be included in a multimedia con-
ference. In traditional service discovery, clients discover what interfaces exist, and
which servers provide them; which server provides a service is often unimportant;

Service discovery can also be viewed from the viewpoint of services: given that an
actor can initiate a set of services, what other actors (i.e. contacts) can be reached using
each service? There is no equivalent to this for client-server systems.

2. Furthermore, since actors have independent behaviour and change state depending on
their interactions, the goals that can be achieved between a particular set of actors at a
specific point in time depends on the situation. It would be desirable for actors to know
what service opportunities are available in the current context;

While traditional service discovery might be able to determine whether services are
available or not, in the sense that servers are on-line and up-and-running or not, there
is no tradition for supporting discovery about e.g. instances of information.

With these needs in mind, we propose mechanisms to support different forms of service
discovery, with increasing levels of ambition:

1. Determining whether an actor is capable of achieving service goals when interacting
with a set of other actors. We call this discovery of compatible actors;

2. Determining what semantic interfaces are offered by actors in the environment of an
actor at a particular point of time. We denote this discovery of service opportunities.
This service discovery mechanism takes the current states of actors into consideration;

160 7 Service discovery

3. Determining new service opportunities, i.e. finding out whether an actor can perform
new or enhanced services by learning new service roles. This we call role learning.

In the following sections we discuss each of these mechanisms in turn.

7.2 Discovery of compatible actors
We define services as collaborations between roles played by actors. One form of service
discovery is for actors to find a set of actors with whom they can successfully achieve
service goals. This means that the collaborating actors play compatible semantic inter-
faces. We call this mechanism the discovery of compatible actors.

Definition: Discovery of compatible actors
Discovery of compatible actors is a service discovery mechanism by which an actor can
determine which actors are capable of playing compatible roles.

Compatibility can be calculated once and for all, provided the role-playing capabilities of
actors do not change. Supplied with this knowledge, an actor can differentiate over or
search for instances of compatible actor types in its environment, and be satisfied that they
have the potential of reaching service goals when interacting.

Discovery of compatible actors is somewhat similar to traditional service discovery in IT
parlance, as exemplified by service-oriented computing, which talks about a discovery
layer “for services to advertise their capabilities and for clients that need such capabilities
to locate and use the services” [Singh and Huhns 2005]. Determining which actors sup-
port compatible roles is equivalent to “locating” them, assuming as we do that actors can
be addressed by communication layers below the service control layer.

Discovery of compatible actors entails a “static” comparison of the semantic interfaces
that actor types can play. By static we imply that it does not take the current state of actors
into consideration, only the role-playing capabilities that are due to the role composition
of the actor type in question. If role-playing capabilities change, e.g. due to new role com-
positions, then the discovery procedure must be repeated.

The following mechanism for discovery of compatible actors is suggested:

• For all initiating roles played by an actor type, determine which actor types can play
compatible roles. Instances of such actor types are by definition capable of reaching
role goals when interacting;

• Look for actors playing live subtypes of the opposite role. Safe subtypes imply that the
interaction between the actor pairs satisfies basic safety and liveness properties.

We outline an algorithm for discovering compatible actors in Algorithm 7.1 on page 172.
In the following sections we present the technique through two examples.

7.2.1 Example 1: two-party service
In the previous chapter we discussed how to validate whether actors are compliant with
the semantic interfaces that are bound to them. This validation is performed at design
time, exploiting knowledge of what semantic interfaces actors are compliant with.

7.2 Discovery of compatible actors 161

In the example in Figure 7.1 we see two actors compliant with the roles Caller and Callee
of Call. In this classical example we presume that he has she among his contacts, and he
would like to know whether it is possible to place a call to she (or initiate some other serv-
ice to get in contact). Or conversely, that the Call service that he has can be used to call
she. Discovery of compatible actors provides he with this knowledge.1

It is not obvious that she wants to discover which actors can call her; for this reason the
block arrow to the right is dashed in Figure 7.1.2

7.2.2 Example 2: multi-role service
Multi-role services can be composed of semantic connectors. For instance, the composi-
tion of MpConf is shown in Figure 7.2.

1. The discovery mechanism looks for actors that can play live subtypes of the Callee role. In this example both
actors are of the same actor type, UserAgent. This need not be the case.

2. “Discovering callers” is not generally recognised as a useful service discovery feature. However, specifying the
opposite, i.e. who should not be able to call one, is a traditional service feature known as Call Screening.

Figure 7.1 : Discovering compatible actors: two-party service

service
discovery

service
discovery

A:Caller B:CalleeCall

he:
UserAgent

she:
UserAgent

plays plays

Figure 7.2 : Discovering compatible actors: multi-role service

c:Conference

se
rvi

ce
dis

co
ve

ry
(m

ps
)

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

MpConf

0..1 1

1..c1

mpcnf:MpCnf

mp_mpmp_controller

mps_host

mps_participant
mpcnf_conf

mpcnf_controller

mps:MpSession

mpc_controller mpc_mp

mpi:MpcInfo

mpi_mp

mpi_participant

mp:Mp

mpc:Mpc

mpa:MpcAddOn
mpa_

confereempa_conf

service
discovery

(mpa)

service
discovery
(mp/mpc)

plays plays plays plays

service

discovery

(mpcnf)

b:UserAgent

se
rvi

ce
dis

co
ve

ry
(m

pi)

m:MeetingPlacea:UserAgent

162 7 Service discovery

Figure 7.2 shows how the service roles of MpConf are bound to four actors, and illustrates
discovery of compatible actors for each. For each actor, the discovery mechanism looks
for other actors that can play live subtypes of its dual role. E.g. a:UserAgent looks for
actor types that can play the mp_mp and mpc_mp roles, as well as actor types that can
play the mpcnf_conf role. This is according to the semantic connectors that MpConf is
composed of, and the semantic interfaces that actor a plays.

Actor types can play a number of semantic interface roles, either simultaneously and/or
consecutively. It is the total portfolio of role-playing capabilities that is of concern to serv-
ice discovery. This determines what services are available to each actor type, depending
on the existence of actor types in its environment with the necessary role-playing capabil-
ities. For instance, if no actor can play mp_mp, then actor a cannot initiate the semantic
connector mp.

However, this does not imply that the services can be successfully initiated at a particular
point of time, as the actors discovered may not be in a situation (state) in which to grant
requests, e.g. the actor m may not be in a state where it can play mpc_mp. This is because
the discovery mechanism does not take actor states into consideration, nor goal
sequences. The next section addresses a mechanism that does.

7.3 Discovery of service opportunities
In this section we present an approach to service discovery where we take goal sequences
and the goal achievement of actors into consideration. This entails finding other actors in
the environment of an actor with an enabled responding role that is compatible with an
enabled initiating role of the actor.

Discovery of service opportunities is evaluated during service execution. With such a
mechanism in place, an end user can be made aware of new service opportunities as they
arise, e.g. through information presented via the user interface.

The opportunities for actors to initiate semantic connectors evolve as goals are achieved
by the actor itself and by other actors in its environment. What roles that are enabled is a
function of goal achievement and the goal sequences, as discussed in section 5.4.2.1 on
page 129.

Definition: Service opportunity
An actor has a service opportunity with a set of actors in its environment when there exists
a non-empty intersection between its current set of enabled initiating roles and the set of
enabled compatible roles offered by the actors in the environment.

That a service opportunity arises means that the roles the actor is capable of playing
become enabled due to the achievement of certain goals within itself and in actors in its
environment. It does not imply that an actor learns new roles.

The sequence of goals is described in actor goal sequences. Along with timely informa-
tion about the status of goal achievement of actor instances, this information can be used
to determine what opportunities exist at any particular point in time.

7.3 Discovery of service opportunities 163

Discovery of service opportunities requires that the service discovery mechanism knows
what roles each actor instance is currently playing, what goals have been achieved, and
which roles are enabled at any point in time, as expressed by the actor goal sequences. The
mechanism distinguishes between initiating and responding roles, assuming that service
opportunities are only of interest to actors that are enabled to play initiating roles.

We outline an algorithm for discovering service opportunities in Algorithm 7.2 on page
173. In the following section we present the technique by way of an example.

7.3.1 Example: multi-role service
Consider the actor goal sequences depicted in Figure 7.3.

Figure 7.3 contains portions of three actor goal sequences presented in section 5.3.1.2 on
page 125. Here the goal sequence UserAgent_roles is referred to twice and with a differ-
ent portion, in accordance with Figure 7.2 where two instances of UserAgent are
involved, here playing different roles. The actors a, c, b and m named in Figure 7.2 play
(from left to right) the actor goal sequences in Figure 7.3, as indicated by callout clouds.

The numerated steps below refer to the labels in the block arrows of Figure 7.3.

1. At the outset the actors a, c, b and m have not achieved any goals. However, c “offers”
the enabled role MpCnf_conf_controller, and m offers Mp_mp_controller. The latter
implies that a can initiate Mp_controller_mp toward m. Note that no actor is yet ena-
bled to play the MpCnf_controller_conf role with c.

Figure 7.3 : Exploiting actor goal sequences to discover service opportunities

1

3

MeetingPlace_roles

Mp_
mp_controller
/* Being configured */

MpSession_
host_participant

/* User Joined */

Mpc_
mp_controller

/* Configured for MpConf */

UserAgent_roles UserAgent_roles

Idle

MpSession_
participant_

host
/* Join Meeting Place */

MpcAddOn_
conferee_conf
/* Join Mp Conference */

Idle

Mp_controller_mp
/* Configure Meeting Place */

MpCnf_
controller_conf
/* Configure Conference */

Mpc_controller_mp
/* Configure Mp for Conf */

2ii

Conference_roles

MpCnf_
conf_controller

/* Being configured */

MpcAddOn_
conf_conferee

/* MpConference Add-on */

2i

5

MpcInfo_
mp_participant
/* Inform Part. of Conf */

MpcInfo_
participant_mp

/* Info of Conference */ 4

a c b m

164 7 Service discovery

2. Given that the goal of the semantic connector Mp is achieved by a and m in step 1, a is
now enabled to play MpCnf_controller_conf, while m now offers
MpSession_host_participant. Hence both a and b have service opportunities that can
be taken advantage of:

i. a initiates MpCnf_controller_conf to start configuring the conference.

ii. b initiates MpSession_participant_host to join the meeting place.

3. Achieving the goal of the semantic connector MpSession enables m to offer the
Mpc_mp_controller role, an opportunity which a can subsequently take advantage of,
provided it has achieved the goal of the semantic connector MpCnf. Note that both
goals of step 2 must be achieved before a gains this opportunity.

4. The goal of the semantic connector MpSession having been achieved in step 2ii ena-
bles b to offer the MpcInfo_participant_mp role, while m is enabled to play
MpcInfo_mp_participant as the result of achieving the goal of the semantic connector
Mpc.

5. Having achieved the goal of the semantic connector MpcInfo, b is enabled to play
MpcAddOn_conferee_conf, while the semantic interface MpcAddOn_conferee_conf
has been offered by c since step 2. Thus b is in a position to join the meeting place con-
ference by initiating the sub-service MpcAddOn.

Achieving the goal of the semantic connector MpcAddOn results in the collaboration
goal of the composite service MpConf being achieved.

The example illuminates a number of central points:

• That actors offer responding roles means that peer actors can play the corresponding
initiating roles. I.e. if a responding role is not offered, progress for its corresponding
initiating role is not possible. Conversely, if initiating roles are not enabled, progress
for its corresponding responding role(s) is not possible.

An example: In step 2 above, if there is no UserAgent like b that succeeds in joining
the meeting place, then a cannot proceed to configure the meeting place conference.
This is in accordance to the service logic defined by the goal sequence diagram of
Figure 5.12. Recall from Figure 3.11 that Mpc is initiated by the signal ConfigMpConf
from the environment (i.e. from the user); this step in the service logic will only
achieve its goal when the user withholds this initiative until the conditions are fulfilled.

Presenting the service opportunity to the end user when conditions are fulfilled (at least
one other user has joined the meeting place) is an example of context-sensitivity.

• Service opportunities are exactly that: opportunities. The fact that roles are enabled
does not force them to be played. For instance there is nothing compelling a to initiate
Mp in step 1.

The example demonstrates how actor goal sequences can be exploited to support context-
sensitive service discovery.

7.4 Role learning 165

7.4 Role learning
Role learning is inspired by the Internet, where a web client will send a generic request to
a resource identified in a URL, and receives HTML code that defines “services” available
to the client, sometimes in the form of software plug-ins.

Given knowledge of what responding roles are offered by its environment, an actor can
gain information about functional possibilities that it was not initially designed to handle.
It may be possible for an actor to adapt so that it can initiate more services towards its
environment. It can for example search for service roles that give a better match against
the responding roles in its environment, i.e. service roles that can achieve more goals.

In this section we look at principles and mechanisms that can be put to use for actors to
learn about new role behaviour from their environment. We shall see how initiating actors
can learn functional capabilities from their peers, i.e. functionality that goes beyond what
the actor’s initiating role is capable of.

Consider the initiating role in Figure 7.4.

An actor playing the initiating role A5 in Figure 7.4 is capable of initiating calls. Imagine
that it interacts with an actor playing the responding role B1 shown in Figure 7.5.

Using the techniques to validate basic liveness properties presented in section 6.1, one can
validate that A5 and B1 will play well together, and can achieve the call setup goal indi-
cated by the progress label in Figure 7.4.

However, it is apparent that the messaging capabilities of B1 are “wasted” on the actor
playing A5, since it is not capable of initiating messaging. An actor would play “better”

Figure 7.4 : Initiating role A5 before learning

idle

calling

answer

call

conn

reject

idle

Initiating role A5: connection only

progress:8

Figure 7.5 : Responding role B1

Responding role B1: connection and messaging
free

called

call

answer

conn

received

msged

free

msg

166 7 Service discovery

with the role B1, i.e. achieve more goals, if it played the interface behaviour of the seman-
tic role A6, see Figure 7.6.

It is desirable for an actor to learn a service role with a semantic interface that is compat-
ible with a given opposite semantic interface. Such a role learning mechanism is
illustrated in the communication diagram in Figure 7.7.

Here the initiating actor X issues a role request3 to W, stating that a live subtype of B3 is
requested (B3 is described in Figure 4.7 on page 77). In addition to informing X that the
two can play well together, the role confirmation includes a description of the responding
role (B1). Since B1 is different from B3, X approaches a service broker4 in search of a
service role that it can play, to look for a new role whereby X can achieve more of the goals
of B1. It includes a description of Caller to characterise its current functionality.

3. See section 2.4.5 for an introduction to the role request mechanism. An alternative way of learning is to preform
a comparison between an actor’s semantic interfaces and the semantic interfaces of its contacts. An actor can
thereby learn new roles from known actors in its environment prior to interacting with them.

4. The mechanism assumes the existence of a service broker, or trader as it is called in [RM-ODP 1998].

Figure 7.6 : Initiating role A6 has more capabilities than A5

idle

calling

answer

call

conn

reject

idle

msg

messaging

received

idle

reject

idle

Initiating role A6: connection and messaging

progress:8 progress:2

Figure 7.7 : Learning a new service role

X: UserAgent

provider
:ServiceProvider :ServiceBroker

W: UserAgent

1: Request (B3, A5)

2: Confirm (B1)

Caller CalleeM

3: Looku
p(B1, Caller)

4: Resu
lt(i

dCallerM
, provid

er)

5:
 Im

po
rt

(id
C

al
le

rM
)

6:
 E

xp
or

t
(C

al
le

rM
)

CA’CallerM

A5 B1

7.5 Mechanisms 167

Here the broker5 provides a link to a service provider that offers the service role CallerM
that X subsequently downloads. X is from then on capable of playing the interface role A6.

Note that the learning of new service roles, steps 3 to 6 in Figure 7.7, can be performed in
parallel or independently of the actual service invocation that takes place after step 2.

Role learning means that the behaviour of X is changed. This may influence other seman-
tic interfaces in addition to A5; in the example the user interface of X must be updated so
that messaging can be invoked. This is why the Lookup includes information about the
actor's capabilities (i.e. the service role Caller).6

One consequence of learning new roles should be noted: if the requesting actor X, after
having learnt the service role CallerM, sends new requests according to the new role A6,
it may encounter role rejections from peers that only play B3.7 X could find it necessary
to be able to play the old behaviour as well as the new. This implies that learning new
behaviour does not necessarily mean that old behaviour has no further use.8

7.5 Mechanisms
The approach is based on the assumption that service structures, goals and goal sequences
are known to the service discovery mechanism, as well as knowledge of compatible oppo-
site roles and live subtyping relationships. Combined with the information about what
roles actor types can play or are playing, this information can be used to:

1. determine the totality of useful semantic connectors between various actor types; this
enables an actor to find other actors in its environment with which to play (discovery
of compatible actors);

2. discover actors in the environment of a given actor that currently are in a state that ena-
bles goals to be reached (discovery of service opportunities).

Below we sketch mechanisms that can support these forms of service discovery.

7.5.1 Transformation of activity diagrams to transition charts
We decided to transform actor goal sequences into transition charts, using the set-based
notation of [Floch 2003] to represent transition charts. Our motivation for this is that the
algorithms can reuse the existing work of [Alsnes 2004] and [Korda 2004]. Here we dis-
cuss how this can be done.

We let actor goal sequences be represented by transition charts, where inputs represent
responding roles, outputs represent initiating roles, and states represent the achievement
of preceding goals. Potential transitions out of a state represent service opportunities,

5. Progress calculations can be performed by the broker to select between alternative service provider candidates.
6. The lookup request may convey additional information about the device, its network connections and so on.
7. A solution can be to include the semantic interface (B3) in role rejection, and let the initiating actor search for

alternative service roles (i.e. Caller) in its own role portfolio, or re-learn Caller from a service provider.
8. This issue has implications on the life-cycle of service logic in general, e.g. how to know when behaviour is obso-

lete and can be removed. General solutions to this issue must be sought, such as caching service software, and
discarding the oldest when space on the device runs out. This is a topic for further work.

168 7 Service discovery

while the firing of a transition represents an activation of the semantic connector named
by the signal event.

The transformation from activity diagrams to transition charts is as follows:

• the activity start (which is unique) is mapped to an initial state s0;

• initiating roles are mapped to an output event with the same name as the role;

• responding roles are mapped to an input event with the same name as the role;

• each signal event is preceded by a state, followed by a next state, as follows:

• an edge between actions is mapped to a unique state si;

• a decision node gives succeeding events with the same preceding state;

• a merge node gives preceding events with the same next state;

• a fork node is treated as a decision node, while a join node is treated as a merge node.

Figure 7.8 provides an example that illustrates the transformation of activity diagrams to
transition charts. The transition chart is here represented by a state transition diagram.

7.5.1.1 Actors playing several roles simultaneously

Join and fork nodes model simultaneous role-playing capabilities. This can be modelled
by hierarchical states, but not by a simple transition chart. Instead we opt to use transition
charts and model that an actor is in several states simultaneously. For the algorithms this
choice means that it is easy to support the semantics of fork nodes. Not so with join nodes.

A join node “fires” if it is offered tokens on all its incoming edges. Supporting this using
simple transition charts is not straightforward. One solution is to map each edge leading
to a unique state; all these states have an empty transition to a new state that “fires” spon-
taneously when an actor is in all the preceding states simultaneously, see the transitions to
the state s3 in Figure 7.9, where a condition {and} is inserted.

Figure 7.8 : From actor goal sequences to transition charts

UserAgent_
roles_Call

s1s1

s2s2

Setup_
invitee_inviter

Setup_
invitee_inviter

UserAgent_roles

s0s0

Setup_
inviter_invitee

Setup_
inviter_invitee

s3s3

s2s2

Accept_
receiver_accepter

Accept_
receiver_accepter

Accept_
accepter_receiver

Accept_
accepter_receiver

Release_er_eeRelease_er_ee

s0s0

Release_ee_erRelease_ee_er

s0s0

Setup_
inviter_invitee

/* Invite peer */

Accept_
receiver_accepter

/* Peer accepts call */

Setup_
invitee_inviter

/* Invited by peer*/

Release_er_ee
/* Take initiative to release */

Accept_
accepter_receiver

/* Accept call */

Release_ee_er
/* Released by peer */

Idle

Idle Idle

7.5 Mechanisms 169

However, since join nodes do not seem to be necessary we proposed doing without them
(see the method rule "Model actor goal sequences" on page 127). If present, they are
treated as merge nodes in the transformation from actor goal sequences to transition
charts.

If later research reveals that join nodes are needed, then a different representation than
transition charts must be used. An attractive alternative is to use the UML model directly,
e.g. in the Eclipse Modelling Framework used by Ramses, see [Birkeland 2005].

7.5.1.2 Set-based notation

The set-based notation of [Floch 2003] was introduced to perform validation of role
behaviour. It can be used to represent transition charts, and we simplified it so suit our lim-
ited requirements, which is to represent actor goal sequences.

The simplification consists of removing constructs from the set-based notation that are not
needed. These include -events, -states, exit states, equivalent states, equivocal transi-
tions, entry and exit points, and deferred triggers. In addition we only require one initial
state so, not a set of initial states.

The transition charts are defined by:

• a finite set S = {s0, s1, s2,..., sn} of states, where s0 is the initial state;

• a finite set E = {e1, e2,..., er} of events that trigger transitions. This set is the union of
the disjoint sets:

• I = {i1, i2,..., is}, a set of inputs, representing responding roles;

• O = {o1, o2,..., ot}, a set of outputs, representing initiating roles;

• a state transition relation T. To each pair (s, e) of S x E, T associates a set of zero or one
immediate successor state (a subset of S);

• If T (s, e) is empty, there exists no transition from the state s for the event e. Other-
wise it gives the successor state for the event e in the preceding state s.

Figure 7.9 : Possible mapping of join nodes

Actor_roles

serv1 serv2

serv3

Idle

Idle

s1s1

serv2serv2

Actor_roles

s0s0

serv1serv1

s2s2

s3s3

serv3serv3

s0s0

?
{and}

170 7 Service discovery

7.5.2 Data structures
Data structures that model the initiating and responding roles of an actor type are shown
in Figure 7.10 below. The figure shows both the UML model and examples of how the
model can be instantiated.

The design criteria for the data structures are as follows:

• the number of initiating or responding roles for each actor type is a fraction of the
number of semantic connectors that exist;

• the number of roles an actor plays simultaneously is small (actor goal sequences will
not result in many states), thus the number of states offering more than one responding
role is not large;

• it should be easy to determine whether an initiating role can find a role compatible with
semantic interfaces played by other actor types;

• it should be easy to determine whether an instance of a requested actor type has an ena-
bled role in its present state(s).

The following list describes the algorithms needed to build the data structures shown in
Figure 7.10:

i. The table of initiating roles per state can be built up by traversing the transition
chart of the actor type, and only including the output events for each state found.
This is trivial, and no algorithm is included here. The data structure is fixed as long
as the actor goal sequence remains unchanged. If new functionality is downloaded,
or functionality is removed, the data must be rebuilt;

ii. The list of responding roles is built up by traversing the transition chart of the actor
type, adding each new input event in the list of responding roles, and adding the
preceding state if not already included. The data is fixed as long as the actor goal
sequence remains unchanged, but must be rebuilt if functionality is added or
removed;

iii. The list of compatible role players for the initiating roles of an actor type identifies
what actor types can play well with it in given states. It is built by Algorithm 7.1;

iv. The global table of responding roles is built by traversing all the structures of table
ii, and, for each responding role found, adding the actor type to the list that offers
the role.

7.5 Mechanisms 171

Figure 7.10 : Data structures for service discovery

i) Actor type’s table of states listing its initiating roles for each state

ii) Actor type’s list of responding roles, listing states in which each is offered

iv) Global table of responding roles, listing actor types that offer the role

iii) Actor type’s list of compatible actors for its initiating roles

rn:responding_role

…

r2:responding_role

r1:responding_role

rn:responding_role

…

r2:responding_role

r1:responding_role a1:actor typea1:actor type

a2:actor typea2:actor type

ax:actor typeax:actor type

offered_by

offered_by

sN:state

…

s1:state

s0:state

sN:state

…

s1:state

s0:state ir1:init_roleir1:init_role

ir2:init_roleir2:init_role

actor typeactor type

irx:init_roleirx:init_role

states init_role

init_role

s1:states1:state
s2:states2:state

s3:states3:state

r1:responding_role

r2:responding_role

:actor type:actor type resp_roles offered_in

offered_in

a0:actor typea0:actor type

a1:actor typea1:actor type

ax:actor typeax:actor type

ir1:init_role

ir2:init_role

a:actor typea:actor type

init_roles
comp_actors

comp_actors

UML data model

initiating_role responding_role

actor

state
1..* states

offered_in
1..*

0..* init_role

offered_by
1..*

0..* resp_roles

comp_actors
1..*

1..* init_roles

172 7 Service discovery

7.5.3 Algorithms
In the following we sketch the pseudocode for the algorithms that define the service dis-
covery mechanisms. The algorithms use the data structures presented in Figure 7.10. The
actor goal sequences are represented using the set-based notation. Some functions are not
detailed, such as:

• identifying a semantic connector from the name of a semantic interface;

• finding an opposite role for a semantic interface. The opposite role is denoted role in
the algorithms; it can be a live subtype of the dual role of the semantic interface;

• determining whether an interface role is an initiating or responding role (represented
by an output event or input event, respectively, in the set-based notation).

We present two algorithms below:

1. Algorithm 7.1 performs discovery of compatible actors for an actor type; building
table iii in Figure 7.10. The algorithm can be run periodically as a background process,
with a frequency that depends on the (rate of) change of role behaviour in the environ-
ment. This is due to the fact that it only needs to be run when roles change.

2. Algorithm 7.2 finds service opportunities for an actor instance, and is invoked as a
background process, with a frequency proportional to the rate of state changes in the
actor’s environment, and for every goal achieved by the actor.

Algorithm 7.1 builds the contents of list_iii used by Algorithm 7.2; list_iii lists actor types
that play compatible roles. In addition to its use in Algorithm 7.2, it can be used to present
actors with a list of available services corresponding to the enabled initiating roles, and
for listing which actors these service can be initiated toward.

Algorithm 7.1: Find compatible actors for an actor type
main()
{

list_iii = {}/* List of compatible actors, initially empty*/

for each state of table_i
{

for each init_role in list_i
{

/* Find actor types with a compatible opposite role */

for each actor type that offers responding role in table_iv
{

/* Check safeness/liveness properties */

if Compatible(init_role, role) /* Determined by Algorithm 6.2 on page 141 */
{

add (actor type) to list_iii for init_role
} /* ignore actor types that give no progress */

} /* skip actor types that can’t play responding role */
} /* loop of the actor’s initiating roles in state */

} /*loop of actor’s states */
} /* Find compatible actors for an actor type */

7.6 Scalability issues 173

Algorithm 7.2: Find service opportunities for an actor instance
main()
{

opportunity_list = {}/* List of service opportunities */
/* Format: {role, actor} */

state := current state of actor

for each init_role in table_i
{

for each actor type in list_iii /* Built by Algorithm 7.1 */
{

state_list := actor->resp_roles[role].offered_in

for each instance of actor type
{

/* check whether instance can play responding role */
if instance.states in state_list
{

add (init_role, instance) to opportunity_list
} /* skip actors that can’t play responding role */

} /* loop of instances of actor type */
} /* loop of actor types in environment */

/* ignoring actor types that give no progress */
} /* loop of initiating roles */

} /* Find service opportunities for an actor */

Algorithm 7.2 supports the fact that actors can play multiple interface roles
simultaneously.

7.6 Scalability issues
A discovery mechanism used at runtime must scale if it is to be of practical use. We have
suggested a number of techniques to help achieve scalability:

• Discovery of compatible actors can be performed as a background process, possibly
using agent technology. It can take place between actor types e.g. in different adminis-
tration domains, rather than between actor instances; hence scaling problems are
reduced. We assume that systems are populated by many instances of a limited number
of types. In addition the mechanism constitutes a pairwise comparison of semantic
interfaces. Both principles imply that the computational requirements are reduced.

• It is based on knowledge gained at design time, such as the validation of actors
against specified semantic interfaces. This implies that the computation required at
runtime is reduced, since is does not need to calculate compatibility at runtime,
unless validation for different systems is done against different versions of semantic
connectors. In that case, runtime session validation is required;9

9. Once done, runtime session validation does not need to be repeated as long as interface behaviour is fixed.

174 7 Service discovery

• The mechanisms suggested assume it is only of interest to actors playing initiating
roles; they seek actors that can play compatible roles, while actors playing respond-
ing roles do not. E.g. a UserAgent actor playing Callee needs to find actors that can
play Caller, while a Callee does not need to find actors that can play Caller.

• Discovery of service opportunities can be limited to the actors involved in active ses-
sions, based on knowledge of actor goal sequences for the actor types. Scaling
problems are reduced if only active sessions are evaluated.

Evaluating the scalability of the suggested discovery mechanisms, in particular the dis-
covery of service opportunities, is an issue for further work.

- 175 -

8
Conclusion

In this chapter we summarize the achievements of our work, and present plans and sug-
gestions for further work.

8.1 Main contributions
Our work presents an approach to service modelling, service validation and service dis-
covery. It focuses on the cross-cutting aspects of services by defining semantic connectors
and using these systematically to compose, validate and discover services:

• Semantic connectors encapsulate a reusable unit of structure and behaviour. They
describe collaboration and role goals, as well as collaboration and role behaviour;

• Arbitrarily complex service structures can be composed of them.

The approach achieves a number of objectives:

• A modular approach to compositional service specification is supported. It exploits
semantic connectors and semantic interfaces as building blocks for compositional serv-
ice design;

• It provides a systematic way of defining goals to express goal fulfilment of collabora-
tions and roles;

• Goal interactions combined with state orientation in collaboration state diagrams and
in role state diagrams provide different perspectives of collaborative behaviour;

• Goal sequences capture behavioural compositions:

• Collaboration goal sequences express horizontal and vertical relationships between
goals of semantic connectors bound to service roles;

• Role goal sequences express vertical goal relationships between service roles; they
constrain actors playing the service roles;

• Actor goal sequences express the role-playing capabilities of actors.

• Goal sequences express horizontal and vertical goal relationships in a succinct manner,
and lend themselves to advanced context-dependent service discovery;

• A modular approach to service validation is enabled. Validation can be performed on
the type level at design time; once performed it does not need to be applied to actor

176 8 Conclusion

instances, or repeated at runtime. This implies that the validation approach scales well;

• The validation techniques are closely related to service goals and service discovery.
However they can also be applied independently;

• The validation of basic liveness properties has been implemented in prototype tools,
thereby demonstrating its feasibility.

• Semantic connectors facilitate the discovery of compatible actors. Combined with goal
sequences they also enable the discovery of context-dependent service opportunities.
Role learning is also supported:

i. Discovery of compatible actors determines which other actors a given actor can
achieve goals with;

ii. Discovery of service opportunities determines what services are offered by actors
in the environment of a given actor at a particular point of time;

iii. Role learning enables an actor to learn new roles from its environment.

• The work is based on the latest version of the UML modelling language, exploiting
recent additions to UML2, including collaborations, collaboration uses, and interaction
overview diagrams;

• UML2 collaborations are chosen due to the flexible role binding mechanisms of col-
laboration uses, and their ability to express interactions of cooperating objects and
the state behaviour of collaborations and roles;

• UML2 collaborations are shown to be the “first class modelling citizens” that have
been wanting, see e.g. [Krüger et alia 2004];

• Collaboration goal sequences use interaction overview diagrams.

• The approach addresses the needs of convergent services. However, many elements
may also be useful for purely client-server systems, such as defining goals and goal
sequences.

In summary we contend that we have achieved our initial ambition. This was not the case
while we were still grappling with UML associations as the main modelling element to
represent connections, as presented in Appendix A; with UML2 collaborations we have
found a modelling approach that lends itself nicely to a compositional approach to service
design, service validation and service discovery.

8.2 Planned further work
The approach presented here is novel and has not yet been put to extensive use. However,
the principles have been adopted by research projects and by a number of doctoral studies
that aim to validate the approach and to advance it further.

Below we present plans for further work.

8.2 Planned further work 177

8.2.1 SIMS - Semantic Interfaces for Mobile Services
The EU-funded project 27610 Semantic Interfaces for Mobile Services (SIMS), running
from January 2006 to mid-2008, takes our work as a starting point, as well as that of
[Floch 2003] and the related implementation work of [Korda 2004], [Alsnes 2004] and
[Birkeland 2005]. SIMS will:

• evaluate the feasibility of the approach in an industrial setting;

• provide design and validation tool support for the approach;

• prototype the service discovery mechanisms in middleware, and validate its
scalability;

• define a runtime representation of semantic connectors supported by an ontology;

• suggest techniques for composition of object behaviour (i.e. synthesis of actor
behaviour from semantic interfaces);

• develop demonstration services.

Below we detail two issues of concern to SIMS: service ontologies and tool development.

8.2.1.1 Service ontologies

For concepts and information to be shared across system boundaries there has to be a com-
mon understanding of the service definitions.. This can be represented by an ontology1, a
mechanism being adopted by the IT community, coining the term “semantic web” [W3C
2004].

Concepts that are candidates to be included in a service ontology include:

• service names (e.g. Call, Messaging, Mp, MpConf etc.);

• names of service roles and interface roles (e.g. caller, callee, msger, msgee etc.);

• role goal names (e.g. Call_callee_caller, Call_caller_callee etc.);

• elements (attributes and enumerated values) used in the goal expressions;

• live subtype relationships as determined by the validation techniques.

SIMS will as a minimum support the derivation of ontology derived artefacts for role
goals. This entails that service goals can be expressed in terms of concepts defined in a
domain potential shared by all network operators and users. An ontology can support the
search for candidate semantic interfaces for validation, as service designers can more eas-
ily find semantic interfaces that are conceptually “close”. It can also aid the search for
reusable service roles characterized by their goal achievement capabilities.

1. Ontology is a term from philosophy referring to a systematic account of existence. The term has been adopted by
the artificial intelligence (AI) community to specify a conceptualization, which means sharing and reusing knowl-
edge by defining a vocabulary so that AI agents can communicate about a domain of discourse without operating
on a globally shared theory. An AI agent commits to an ontology if its observable actions are consistent with the
definitions in the ontology. Ontological commitments are agreements to use the shared vocabulary in a coherent
and consistent manner following axioms that constrain the possible interpretations for the defined terms. [Gruber
1993]

178 8 Conclusion

8.2.1.2 Tool development

In our work we have initiated and supervised the development of prototype tools for
progress checking according to the approach suggested in this thesis [Alsnes 2004], and
have given advice during the transformation of the safety checking algorithms into an
Eclipse plug-in to the Ramses UML tool suite carried out by [Birkeland 2005]2.

Work is being undertaken in SIMS to implement validation algorithms. Tool components
to be worked on include:

• Design tool support for derivation steps of the method:

• "Derive service-specific progress labels" on page 87;

• "Derive role goal interactions" on page 123;

• Tool support for the notational extensions suggested to UML;

• Validation tools integrated in a service development platform,3 i.e. tools that:

• check whether interface roles are live or not;

• check for the live subtype relationship at design time;

• check for consistency between auxiliary behaviour descriptions (e.g. state orienta-
tion in state machines of collaborations and roles, goal sequences versus roles);

• Validation tools that support connector validation at runtime:

• support for runtime checks against libraries of live subtypes;

• validate connectors at runtime if necessary, updating subtype libraries accordingly;

8.2.2 Planned doctoral work
Doctoral work is currently being carried out that takes our work further:

• Humberto Castejón has provided a token passing-based4 formal semantics for collab-
oration goal sequences [Castejón and Bræk 2006b], and demonstrated that a number of
errors can be detected and corrected by analysing collaborations and goal sequences at
a high level [Castejón and Bræk 2006a];

• Frank Krämer is exploring activity diagrams for more complete definitions of collab-
oration behaviour [Kraemer and Herrmann 2006], as well as formal definition of
semantics using the compositional Temporal Logic of Actions (cTLA) [Kraemer et alia
2006]. This enables him to formally reason about service specifications using semantic
connectors, and to define refinement steps from abstract collaborations to executable
state machines;

• Fritjof Engelhardtsen has researched how calculus for Communicating Concurrent

2. [Birkeland 2005] did not port the progress calculation algorithms implemented by [Alsnes 2004]. However, these
have since been integrated with Eclipse and the Ramses tool suite [RAMSES 2006].

3. The Ramses tool platform at the Teleservice Laboratory at NTNU [RAMSES 2006].
4. In our work we have used interleaving semantics for collaboration goal sequences and role goal sequences, and

token passing semantics in actor goal sequences.

8.3 Other areas for further work 179

Systems (CCS) and stuck-free conformance can be used as a formal fundament for
semantic interfaces [Engelhardtsen and Prinz 2006];

• Judith Rossebø is exploring collaborations as a framework of authentication and
authorization patterns for ensuring availability in service composition [Rossebø and
Bræk 2006a][Rossebø and Bræk 2006b];

• Haldor Samset is applying the service concept used in our work to that of the service
oriented architecture (SOA).

8.2.2.1 Formalising goal sequences to describe complete behaviour

Goal sequence diagrams illustrate how connections, i.e. structural relationships, evolve as
a function of time and event occurrences. Goal sequence diagrams are concise: they focus
on the achievement of goals, and not on the detailed events needed to achieve them.

There does not seem to be any limitation preventing description of the complete behaviour
of services in this way. Indeed, the work of Castejón and Krämer has shown that goal
sequence diagrams can be formalised and analysed:

• [Castejón and Bræk 2006b] proposes a formal semantics for collaboration goal
sequences by means of hierarchical coloured Petri-nets, and shows how tools can be
used to analyse goal sequences automatically in order to detect implied scenarios.
Implied scenarios can be symptoms of errors;5

• [Kraemer et alia 2006] uses compositional Temporal Logic of Actions (cTLA) to for-
mally reason about service specifications and their refinement. They bridge the gap
between UML for modeling and design, cTLA specifications used for reasoning, and
the efficient execution of services in order to prove important properties formally.6

8.3 Other areas for further work
Additional areas for future work include the following:

1. Investigating whether goal sequences can benefit the discovery and resolution of fea-
ture interaction problems. I.e. see whether conflicts can be detected and their resolu-
tion expressed in terms of goal dependencies and goal sequences. This can be:

• at the level of actors (e.g. the conflict between service roles played by an actor that
initiates a call at the same time as a call is received);

• at the level of service roles (e.g. the conflict between a call being simultaneously
released by two parties of the same call).

2. Find ways of expressing conditions that roles place on the actors playing them, i.e. to
express service goals in terms of what actors are allowed to achieve them:

5. For instance in the MpConf example they would detect that mpc could be initiated by the controller before a par-
ticipant has joined the meeting place. This may not be clear to the service designer. A resolution of this is for mp
to accept the initiative from the controller, but in such cases to return MpCnfNak rather that MpCnfNak (see
Figure 3.11 on page 52).

6. For instance they clarify formally that the executable code is a correct refinement of the executable service model
in spite of the practical limitations of execution frameworks such as finite message buffers.

180 8 Conclusion

• A role should be played only by an identified actor, and none other (e.g. calling a
peer without allowing any forwarding);

• A role should be played only by an identified actor or some other actor designated
by the former (e.g. for call forwarding);

• A role should not be played by a set of identified actors (e.g. a screening list);

• A role can be played by any actor in a group (e.g. group hunt);

• A role can be played by any actor that is capable (e.g. a client-server service).

The latter point may be addressed by organisational roles, as discussed below.

8.3.1 Using organisational roles to assign actor behaviour dynamically
What services an actor should play can depend on what role the actor plays in a wider con-
text. One can speak of an actor having an organisational role, and that to certain
organisational roles there are associated certain services.

An organisational role is a role in an organisation being played by one or more actors.
Organisational roles may be addressed, have responsibilities, credentials and access
rights. Organisational roles can be assigned to actors on a semi-permanent basis.

Characterizing actors by their organisational roles may be a way of extending context-
based service deployment and service discovery. Organisational roles that are assigned to
an actor can vary as a function of time and responsibility. In many work situations certain
persons play particular organisational roles, such as nurse on duty, commanding officer,
etc. Which person plays these roles at any particular moment varies during the course of
a day or week. The services they perform can vary in these different roles. Also, other peer
actors may require that certain interface roles are played by an actor for some desired serv-
ices to be performed. E.g. it should be possible to place a “priority call to nurse in charge”
without the caller having to know which person or which device is the addressee.

Assigning organisational roles to actors implies that service roles are also assigned. A
promising future for services can be dynamic assignment of organisational roles to actors,
combined with dynamic role learning and discovery of service opportunities.

- 181 -

9
Appendix A - Alternative UML modelling

In this appendix we discuss an alternative approach to the modelling of service structures
that was initially attempted, which was to exploit associations (or rather association
classes). It is included as auxiliary material for sake of discussion.

9.1 Modelling services as UML association classes

Before we chose to represent services as collaborations, we investigated other modelling
elements in UML2, but which turned out to be too restricted:

• UML interfaces can describe a classifier in terms of operations, but are not well suited
to describing two-way asynchronous signal transfer; defining a required interface for
sent signals and a provided interface for consumed signals is possible, but the relation-
ships between the two cannot be described in one place separate from the classifier. For
a discussion of this, see section 3.3.4;

• We evaluated thoroughly the use of UML association classes, and identified a number
of issues. The fact that associations and association classes are inflexible in terms of
role binding to actors is the main obstacle to their systematic use; the discussion of this
is detailed below. One motivation for exploring this option was the existence of tool
support for these constructs.

The modelling of objects and their relations in class diagrams is by many held as the most
essential and important modelling view in UML. Seeing services as collaborations or joint
actions, it would be natural to consider modelling service structures as associations, or
association classes, between classes. In UML, “associations are the ‘glue’ that holds
together a system model. Without associations, there is only a set of isolated objects”.1

However, as we shall see, associations do not fulfil our requirements. The main reason is
the lack of flexibility at the association ends, resulting in a rigid binding between associ-
ation classes representing services and classes representing actors. Other limitations
regarding n-ary association classes are also discussed: it seems these can be overcome.

Note that associations have a dual use in systems modelling: modelling knowledge
aspects, i.e. entity-relationship modelling of IT systems, and modelling the communica-
tion aspect representing signalling channels and call paths in ICT systems. It is the latter
that concerns us.

1. According to [UML2 Ref] p. 174.

182 9 Appendix A - Alternative UML modelling

9.1.1 Collaboration goals in association classes
Rather than using UML associations to model services, we focused on the capabilities of
association classes, which combine the collective properties of associations and classes.

The motivation for pursuing association classes rather than associations is that the UML
class properties, which association classes contain by inheritance, can be used to provide
a placeholder for boolean attributes representing collaboration goals, to which one can
attach predicates that characterize goal achievement.2

Association classes inherit the model elements and semantics of UML associations,
which can be used to represent links between instances of the associated classes.

The approach to modelling service structures using association classes is as follows:

• Let classes represent the actor types involved in a service. Let these classifiers have
attributes and states that are service specific, including goal assertions;

• Let association classes represent service types, thereby naming the services. Let asso-
ciation classes capture the involvement of the end classifiers in connectors by
attachment, and by identifying role names3. The association ends thus provide a name
and a type4 for the role the actor plays in the service;

• Let the instances of the association classes define connections between actor instances;
i.e. the links represent connections between the involved actors;

• Let the multiplicity of the association ends enumerate the roles played, thus defining
cardinality constraints on connections;

• Let the association class contain boolean goal attributes representing the collaboration
goals, i.e. the status of the collaboration goal achievement (True or False);

• Let service-specific attributes in the associated classes express the situations (states or
other conditions) used to express goal assertions, in terms of knowledge (data availa-
ble to the class, including its own state, timer values etc.);

• Let goal assertions be expressed in OCL.

We exemplify below the attempted approach, first with simple, two-party services, then
with a multi-party case.

9.1.2 Two-party services
The outline of a generic model of two-party services using binary association classes is
illustrated in Figure 9.1.

Here the service is represented by the association class, the actors by classes and the serv-
ice roles by association end names. Association ends define the multiplicity of the actors
playing the roles.

2. An alternative is to define a stereotype of association containing collaboration goals.
3. The UML1 term role name is not used in UML2; [UML2 Ref] still uses the term, while the proper UML2 term is

association end name, which is actually the name of the property of the member end of an association.
4. The type of the property is the type of the end of the association. The type is not visible in the class diagrams.

9.1 Modelling services as UML association classes 183

We define the goals of each role in OCL. Goal assertions are expressed using local
attributes and states, while the collaboration goal lodged in the association class is a con-
junction of the role goal expressions, as indicated in the bottom of Figure 9.1.

Examples of two-party services are presented below, each highlighting different types of
services, and thus different aspects of the approach.

9.1.2.1 Example 1: Call

The century-old classical two-party service, the telephone call, highlights the establish-
ment of a connection between two peers or users, involving media streams, i.e. the voice
data exchanged between the peers.

Figure 9.2 is a model of the Call service, abstracting away all implementation details. It
focuses solely on the relationships between the peers, who in this case are modelled as
instances of UserAgent.

The collaboration goal is captured by the Boolean attribute goal defined in OCL within a
note. It is a conjunction of two role goals. In this case the UserAgent actors play the tra-
ditional role caller (the user placing the call) and callee (the user being called).

Both actor classes have a service-specific attribute named connected. Their respective
goals are reached when this attribute evaluates to True.

Figure 9.1 : Attempting to model two-party service using association class

SomeActor
service_attributes

service_states

OtherActor
service_attributes

service_states1..n 1..m
someRole otherRole

Service

{context Service def: goal : Boolean =
self.someRole->
forAll(service_someRole_goal) and

self.otherRole->
forall(service_otherRole_goal)}

{context SomeActor def:

service_someRole_goal :
Boolean =
self.service_attributes…
and self.service_states…}

{context OtherActor def:

service_otherRole_goal :
Boolean =
self.service_attributes…
and self.service_states…}

Service
role

Role multiplicityAssociation class

Role goal expressionCollaboration goal expression

Actor class

Figure 9.2 : The Call service modelled by an association class

UserAgent

connected: Boolean 1

1

caller

callee Call

{context Call
def: goal : Boolean =
self.caller.call_caller_goal and

self.callee.call_callee_goal}

{context UserAgent
def: call_caller_goal :
Boolean = connectedtoB}

{context UserAgent
def: call_callee_goal :
Boolean = connectedtoA}

184 9 Appendix A - Alternative UML modelling

Multiplicity constraints express that exactly one caller and one callee participate in a call.
They do not say how many simultaneous calls are available for each actor. Whether a
UserAgent has the capacity to engage in two simultaneous calls or not is not modelled by
the association class.

The service structure in Figure 9.2 can be used to express constraints for the Call service:

{context Call inv uniquePeers :
self.callee <> self.caller}

and the collaboration goal:

{context Call def: goal : Boolean =
self.caller.call_caller_goal and self.callee.call_callee_goal}

The first constraint is an example of a general constraint. The invariant states that the
caller and the callee must be unique, i.e. a UserAgent may not call itself. This is an exam-
ple of using OCL to express general statements about valid models.

The second OCL expression is the definition of a collaboration goal. It simply states that
the Call service as a whole has achieved its goal when the role players have achieved their
goals simultaneously.5

9.1.2.2 Example 2: Messaging

A model of a rudimentary messaging service is depicted in Figure 9.3.

9.1.3 Multi-party services
We have so far presented services involving two actors modelled by binary association
classes. We know that some services involve more than two actors and/or more than two
actor types. Such services were indicated in Figure 1.3 on page 4.

5. Meaning that both role goals are True at the same time sometime during the connection.

The sender’s goal is achieved when the receivers have acknowledged the reception of
a sent signal (details not shown). The receivers’ goals are achieved when a signal has
been received, and an acknowledgement sent. Cardinality constraints express that a
signal can be sent to multiple receivers (multicast or broadcast).

Figure 9.3 : Messaging service modelled by an association class

UserAgent

receivedMsgAcked : Boolean

sentMsgAcked() : Boolean 1

1..m

sender

receiver Messaging

{context Messaging def: goal : Boolean =
self.sender.messaging_sender_goal and

self.receiver->forAll(messaging_receiver_goal)}

{context UserAgent def:

messaging_receiver_goal :
Boolean = receivedMsgAcked}

{context UserAgent def:

messaging_sender_goal :
Boolean = sentMsgAcked()}

9.1 Modelling services as UML association classes 185

The question now is how we can model a multiparty service using associations or associ-
ation classes.

9.1.3.1 Modelling multiparty services using n-ary association classes

We first attempted to represent a multiparty service by an n-ary association class, which
combines the properties of an n-ary association (depicted as a diamond) with class prop-
erties detailed in the class symbol attached to the diamond6, see Figure 9.4.

The n-ary association class represents the whole service. All service roles and actor types
that can take part in the service are joined by the n-ary association class. Compared with
a binary association class most things simply scale up, e.g. the collaboration goal being a
conjunction of all the goals of the roles, as shown in the note in Figure 9.4.

However, one issue that complicates the situation is related to the interpretation of multi-
plicity of n-ary associations, and thus also to n-ary association classes. A discussion on
this is found in section 9.1.4.3.

We suggested overcoming these limitations by imposing our own semantics on n-ary
association classes, letting multiplicity express the legal range of instances that can play
a role, enabling both optional (0..1) and multiple (n>1) ranges to be expressed.

6. This is the graphical symbol according to [UML2 Ref]; the UML standard does not define the precise layout.

Figure 9.4 : Meeting Place Conference as an N-ary association class

A Meeting Place Conference involves one Meeting Place and a number of its partic-
ipants as conferees of a conference. There is a Conference controller (usually the
Meeting Place controller) that “owns” the conference; the controller is allowed to
leave, placing the conference in a Floating state. There must be at least one conferee
in a conference. Only Meeting Place participants are welcome to join the service.

The role goal expressions for each of the four roles are suppressed to save diagram
space; only the collaboration goal is included as a conjunction of the role goals.

UserAgent

status : enum {None,
Open,
Closed} 0..1

1..c

controller

conferee

Conference

state : enum {Idle,
Active,
Floating}

MpConf

MeetingPlace
participants : String[*]

1

1
mp

conf
{context MpConf def: goal : Boolean =
self.mp.mpConf_mp_goal and

self.conf.mpConf_conf_goal and

self.conferee->forAll(mpConf_conferee_goal) and

self.controller->forAll(mpConf_controller_goal)}

186 9 Appendix A - Alternative UML modelling

9.1.3.2 Modelling multiparty services using a set of associations

In Figure 9.4 we represented the multiparty service MpConf using an n-ary association
class. Alternatively we could revert to collections of binary associations, which have a
clearer semantics than n-ary associations, see discussion in section 9.1.4.3.

In Figure 9.5 we have revised the MpConf service from Figure 9.4.

Here the MpConf service uses solely binary associations to model relationships between
the roles and actor types involved in the service. The association classes used in this case
express more general relationships between the actor types; for instance that conferences
may or may not be contained in a Meeting Place, and that a conference has at least one
conferee. However, this information is not a necessary part of the service structure.

More importantly we note that the actors playing the conferee and conf roles are not vis-
ible in the overall goal expression. A correct evaluation of the collaboration goal relies on
MeetingPlace including a goal expression mpConf_mp_goal containing a correct evalua-
tion of the other goal assertions.

Figure 9.5 : Meeting Place Conference as a set of associations

The goals for three of the four service roles are suppressed to save diagram space.
Note how the collaboration goal uses the navigation capabilities of OCL to reach all
role goals: it tests whether the controller is present; if it isn’t, the overall goal value is
determined only by the mp role goal. This goal assertion first checks whether a Con-
ference is linked to the Meeting Place; if it isn’t, then the goal is not reached. If a
Conference is in place, it checks that there is at least one conferee present, that the
conference status is Active or Floating (i.e. not Idle), and that at least one of the con-
ferees is in the Open state, implying that its media stream is connected to the
conference. Given all these conditions, the service goal is fulfilled.

UserAgent

status : enum {None,
Open,
Closed}

Conference
state : enum {Idle,

Active,
Floating}

MpConf MeetingPlace

1

1
mp

conf
1..c conferee

0..1
controller

mp_conf0..1
0..1

{context MpConf def: goal : Boolean = (if self.controller->notEmpty then

(self.controller.mpConf_controller_goal else True)) and self.mp.mpConf_mp_goal}

{context MeetingPlace def: mpConf_mp_goal : Boolean =
if self.mp_conf->notEmpty then ((self.mp_conf.conferee->sizeof() >= 1) and

self.mp_conf.state <> #Idle and self.mp_conf->exists(conferee|status = #Open)) else False}

9.1 Modelling services as UML association classes 187

9.1.3.3 N-ary association classes versus sets of binary associations

We examined two ways of modelling multiparty services, firstly using n-ary association
classes, and secondly using a set of binary associations.

The main drawback to using a set of binary associations is that they conceal the fact that
a service involves multiple roles. This can be seen in Figure 9.5, where it is possible only
to understand the implications of the conferee role if one studies the OCL expressions
carefully. This does not seem satisfactory. N-ary association classes, as in Figure 9.4, on
the other hand, are capable of explicitly naming all the roles involved in the service.

9.1.4 Discussion
Associations and association classes go some way towards providing the expressive
power and formalism needed to model the horizontal inter-relationships between service
roles. They seem to name services and roles adequately, to identify role players, and to
offer placeholders for simple service goal expressions.

However, associations and association classes proved to be too limited for our modelling
purposes:

• The important shortcomings that make them unsuitable are firstly their limited ability
to express collaboration behaviour, and secondly their lacking role-playing flexibility;

• There are also some idiosyncrasies concerning multiplicity in association classes and
n-ary associations, although there seem to be ways of overcoming them.

The following subsections discuss each issue in particular.

9.1.4.1 Role binding flexibility

The decisive argument against using association classes to model services is the lack of
flexibility at the association ends, in terms of a loose binding to the classifiers, i.e. to actor
types. This was pointed out in [Bræk 1999], and is still the case in UML2. The metaclass
Property that bridges an association and a class is either contained in the class, meaning
it is an attribute owned by the class, or it is contained by the association7. A property may
be associated to a classifier, but only with optional (0..1) multiplicity, and is included in
the UML metamodel to capture the property’s optional redefinition context, not to enable
different classifiers to associate with a property.

In Figure 2.5 on page 30 we summarized the relationships between services, roles and
actors, and specified the requirement for a role to be played by several actor types. With
associations or association classes it is not possible to express the fact that different kinds
of actors can play the “role” at the association end. In fact, an association end isn’t really
a role. It is just called that in approximate terms when speaking of the expressive power
of class diagrams, and is the result of the imprecise use of the term “role” in earlier ver-
sions of UML8.

7. When a property is owned by a class it represents an attribute. In this case it relates an instance of the class to a
value or set of values of the type of the attribute. When a property is owned by an association it represents a non-
navigable end of the association. In this case the type of the property is the type of the end of the association.
[UML 2.0 Adopted] p. 89.

188 9 Appendix A - Alternative UML modelling

Instead we turned our attention to a new modelling form that has been introduced by
UML2, namely collaborations. As we see from chapter 3, UML2 collaborations support
the kind of flexibility between roles and role players that we seek in service structures:

• Compare the Call service in Figure 9.2 on page 183 with the same service modelled in
a collaboration in Figure 3.7 on page 50. Firstly, it is clear from the latter that two roles
are involved in a Call. But more importantly, the role players have not been identified.
Any actor that is able to play the A and B roles of Call could potentially be acceptable;

• Compare the MpConf service modelled in an n-ary association class in Figure 9.4 on
page 185 with the same service modelled in a collaboration in Figure 3.12 on page 53.
In the latter the role players have not been identified. Modelling multiparty service
structures with collaborations is not hampered by the limitations of (n-ary) association
classes. That the controller role is optional, as indicated by the multiplicity (0..1), and
that several conferees can be present, is not a problem for service structures modelled
by collaborations.

This does not mean that one should categorically rule out the use of association classes to
model services. We recognize that for the near future tool support for the new elements of
UML2 will be lacking in functionality. In addition, many practitioners may feel comfort-
able considering the properties that bind association ends to classes as roles.

Note that [ARTS 2003] discuss whether collaboration uses are too limited when used to
compose systems9. However, since synthesis of behaviour is not an issue in this thesis,
these reservations are not of concern to our work.

9.1.4.2 Multiplicity of association classes

One limitation in the UML concerns multiplicity in the use of association classes: “in an
instance of an association class, there is only one instance of the associated classifiers at
each end, i.e. from the instance point of view, the multiplicity of the associations ends are
‘1’” [UML 2.0] p. 43. So there is no way of expressing the fact that there are “one or more
receivers” in terms of the association class Messaging. The OCL constraints will not nav-
igate properly.10

There are ways of overcoming this restriction in UML. One is to use a two-step navigation
of the association class. For instance, in the Messaging service introduced in
section 9.1.2.2, to get hold of the set of signal receivers and not just one receiver, we nav-
igate first to the sender, and then to the set of receivers, using OCL navigation
mechanisms.

8. The UML reference manual [UML2 Ref] uses the term rolename for the name of a particular association end. The
official term is association end name. OCL 2.0 also talks of classes playing roles defined by associations; these”
role names” are used to determine the navigation path in OCL navigation expressions [OCL 2.0] p. A-3.

9. Constraints: [1] All the client elements of a roleBinding are in one classifier and all supplier elements of a
roleBinding are in one collaboration and they are compatible. [2] Every role in the collaboration is bound within
the collaboration use to a connectable element within the classifier or operation. [3] The connectors in the clas-
sifier connect according to the connectors in the collaboration. [UML 2.0] p. 167.

10. “Navigation from an association class to one of the objects on the association will always deliver exactly one
object. This is a result of the definition of AssociationClass. Therefore, the result of this navigation is exactly one
object, although it can be used as a Set using the arrow (->).” [OCL 2.0] p. 19.

9.1 Modelling services as UML association classes 189

Using this approach, the service goal of Figure 9.3 can be rewritten as follows:11

{context Messaging def: goal : Boolean =
self.sender.messaging_sender_goal and
self.sender.receiver->forAll(messaging_receiver_goal)}

Another way round it is to include attributes in the entity classes representing the sets, e.g.:

and express the goal satisfaction in terms of such attributes. This leads us to disregard the
restriction in OCL regarding multiplicity of roles for association classes, and take the
view that more than one instance can be modelled.

9.1.4.3 n-ary associations

Another modelling limitation is concerned with the multiplicities of n-ary associations.
What do the multiplicities in, for instance, Figure 9.4 on page 185 really mean? We
intended to express that in any given MeetingPlaceConference, there must be exactly one
Conference and one MeetingPlace, with one or more conferees present, while the pres-
ence of the single controller is optional. However, the interpretation of n-ary associations
in general is not clear, with semantics as divergent as actual tuples, potential tuples (with
its “bouncing effect of the one”) and “limping links” [Gonzalo et al 2002]. Indeed, UML2
states: “the lower multiplicity for an end of an n-ary association of 1 (or more) implies
that one link (or more) must exist for every possible combination of values for the other
ends” [UML 2.0] p.38.

In our case this means that if we want to express that at least one conferee must participate
in a MeetingPlaceConference, and use an n-ary association to do so, we end up saying
that a connection (a link) for this UserAgent must exist for every possible combination of
MeetingPlace and Conference. This is certainly not the case in the world we are model-
ling: not all MeetingPlaces have Conferences, and not all UserAgents can be members
of all MeetingPlaces.

We let multiplicity express the legal range of instances that can play a role, and let both
optional (0..1) and multiple (n>1) ranges be expressed. We suggest the semantics of n-ary
association to be “actual tuples”, and viewed from the vantage point of the service, in this
case the association class.

We suggest not following the “zero-forbidden effect” of actual tuples noted by [Gonzalo
et al 2002]: the multiplicity of the controller in Figure 9.4 is 0..1, implying that in the con-
text of the MpConf service represented by the association class, there can be at most one
UserAgent playing controller, but that it needn’t be there, i.e. it is free to stop playing the
controller role. This fact is explicitly expressed in the OCL goal expression12, where the
goal assertion for controller is only evaluated if it is present. This interpretation of the
semantics is chosen to reflect the reality we are modelling.

11. The underlined text marks the change. Since this modification is trivial, we have refrained from using it in the
OCL examples, to keep the expressions simple. The intentions of the OCL expressions should be clear.

UserAgent

receivers : String[*]

190 9 Appendix A - Alternative UML modelling

9.1.4.4 Expressing collaboration behaviour and collaboration goals

We modelled the satisfaction of the collaboration goal by including goal attributes in the
association class representing the service. In the association class we can only express
simple collaboration goals in the form of predicates in terms of the roles and their goals.
It is not possible to attach behaviour to associations; all they represent are structural prop-
erties, such as the participation of the end classifiers in links. It is in principle possible to
relate behaviour to association classes, since they inherit from class. But there seems to
be no meaningful way of expressing the behaviour of an association class either separate
from or related to the behaviour of the classes at the association ends13.

This implies that all service behaviour must be expressed in terms of the participating
classes. Understanding the cross-cutting behaviour of the service is not possible.

An additional limitation is that the signalling interface at the association ends cannot be
properly defined. Only provided and required operations can be defined, and this does not
satisfy the requirements of the service modelling.

9.1.4.5 Modelling services as associations versus collaborations

A UML2 collaboration models a collection of objects that play roles within a transient
context in order to implement a desired functionality.

The difference between associations and collaborations is pointedly discussed in the sec-
ond edition of the UML reference manual:

Contrast the restricted scope of a role with an association: An association describes a
relationship that is globally meaningful for a class in all contexts, whether or not an
object actually participates in the association. A collaboration defines relationships
that are restricted to a context and that are meaningless outside of that context.14

Collaborations being constrained by a context fits in well with the concept that commu-
nicating peers play certain roles in a certain context; in another connection between the
same actors the roles (e.g. caller and callee) may be swapped. It is the flexibility to specify
the context that is the attraction of UML2 collaborations. Conversely, the lack of support
for flexible role binding is a limiting factor of UML associations.

On the other hand, the “ability to play a role” is something more permanent than a con-
nection, and can well be represented by an association, e.g. that he can call her. This kind
of entity-relationship modelling (representing knowledge) lies outside the scope of our
work.

Compared with associations and association classes, UML2 collaborations offer the
desired flexibility between roles and actors, and support the definition of overall behav-
iour of the service in addition to role behaviour.

12. Note that OCL has its own mechanism for navigation of n-ary associations. In OCL, navigation operations start
from an object of a source class and retrieve all connected objects of a target class. A n-ary association induces a
total of n * (n - 1) directed navigation operations, because OCL navigation operations only consider two classes
of an association at a time [OCL 2.0] p. A-15.

13. The UML documents do not mention behaviour of association classes, nor discuss the semantics of it.
14. [UML2 Ref] p. 228.

- 191 -

10
Appendix B - Open issues

In our thesis we have proposed a modular approach to service modelling based on seman-
tic connectors and semantic interfaces. The modelling approach includes the expression
of service goals, role behaviour and goal sequences. We have discussed how this enables
a modular approach to validation, and suggested how service discovery can gain from it.

In this appendix we list a number of open issues that have been identified.

10.1 Service structures
In chapter 3 we suggested that services be modelled by collaborations composed of
semantic connectors. Below we discuss two open issues regarding service structures:

• How to express interface roles that are external to a collaboration;

• How to express connections between more that two roles.

10.1.1 Connectors external to a collaboration

In Figure 10.1 we have indicated that the service roles a and b have interface roles and
connectors that interact with entities outside the collaboration (semantic interfaces a3 and
b2). This is not legal in UML, and is included for sake of argument. Although modelling
all possible relationships is needed in order to analyse and understand the full behaviour
of a service role, it is not in general possible to include them all in a single UML2 collab-
oration: a collaboration describes interactions between the roles of that collaboration only;
other roles and connectors must be defined in additional collaborations and referenced by
collaboration uses. This issue was researched by [Fuglesang 2005], who suggested nota-
tional additions to UML to express external roles.

Figure 10.1 : Interface roles external to a collaboration

Service_ab

<<s-role>>

a:Type_a a1

<<s-role>>

b:Type_bb1a3 b2

other connectors
(not legal UML)

192 10 Appendix B - Open issues

10.1.2 N-ary connections
We have restricted connections to being between two and only two roles. The motivation
for this is to simplify validation and service discovery, while arguing on the other hand
that arbitrarily complex service structures can be composed of semantic connectors.

However, there is a need to express n-ary connections as a single entity. The MpConf serv-
ice is a good example. Three of the service roles are unary, while the conferee role is n-
ary. Clearly there is a mismatch between the unary collaboration occurrences bound to
conferee, and the multiplicity of this role.

To the best of our understanding, UML has no mechanism for specifying an array of col-
laboration uses. A possible solution to this in suggested in Figure 10.2.

Figure 10.2 uses a set notation for the collaboration uses mps, mpi and mpa that are bound
to conferee. This is inspired by the way SDL defines sets of agents. However, while this
technique seems workable in the collaborations, referring to members of sets of collabo-
ration uses become cumbersome where interaction diagrams and interaction overview
diagrams are concerned, and hence the same applies to the goal sequence diagrams we
have suggested. A possible solution to this is shown in Figure 10.3.

The goal sequence diagram in Figure 10.3 contains loops for the n-ary collaboration uses
(representing interaction uses). While interaction overview diagrams support loops, the
loop controller construct and the identification of members of the set is not supported in
UML21. However, while this might seem an attractive extension for representing the mul-
tiplicity of connectors for n-ary roles, there are many issues that need to be resolved. For
instance, the bottom two interaction uses do not require that the loops for these interaction
uses only apply to set members that have achieved their goals.

Loops are simple in programming languages, but not in specifications. One challenge lies
in the identification of objects in sets, and on referencing them consistently in different
language constructs. Another is the parallelism introduced.

1. Loop constructs in UML interaction occurrences are in the form loop (min, max); referencing a member of a set
is not supported.

Figure 10.2 : Collaboration composed of sets of semantic connectors

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

MpConf

0..1 1

1..c1

mpcnf:MpCnf

mp_mpmp_controller

mps_host

mps_participantmpcnf_conf

mpcnf_controller
mps[c]:

MpSession

mpc_controller mpc_mp

mpi[c]:
MpcInfo

mpi_mp

mpi_participant

mp:Mp

mpc:Mpc

mpa[c]:
MpcAddOn

mpa_confereempa_conf

10.2 Goal sequences 193

While both UML2 and MSC [MSC 2004] have loop operators in inline expressions of
interaction fragments, and in UML2 interaction overviews, these cannot be used to index
instance sets. The issue of instance sets seems to be complex; we note that they are not
properly supported by MSC, despite the obvious need when describing SDL systems.

10.2 Goal sequences
In chapter 5 we have suggested goal sequence diagrams as a way of expressing a combi-
nation of horizontal and vertical relationships. We argue that they adequately describe
essential service relationships, i.e. goal relationships. That actor goal sequences lend
themselves to context-dependent service discovery is a further argument in their favour.

While many modelling objectives are achieved using goal sequences, both the diagram
forms and the underlying semantics require further work before they reach the maturity
needed for any widespread adoption. We discuss some of the open issues below.

10.2.1 Goal dependencies for service roles
Since a number of interface roles can be bound to a service role, service roles can obvi-
ously have more than one role goal. However, in role goal sequences we define the
sequence of interface goals, not sequences of goals of service roles.

We have considered modelling goal dependencies for service roles, in the same way as
goal sequences that describe goal dependencies for collaborations, interface roles and
actors. An example is shown in Figure 10.4.

Figure 10.3 : Goal sequence diagram with loops

sd MpConf_goals

controller confmpcnf.

MpCnf_goal

conferee[i] mpmpi[i].

MpcInfo_goal

mps[i].
MpSession

_goal

participant host

conferee[i] mp
mps[i].

MpSession

_goal

controller mpmpc.

Mpc_goal

mpc.
Mpc_goal mp

confcontroller

mpcontroller

hostparti-
cipant

controller mpmp.Mp_goal
mpcontroller

mp.Mp_goalcontroller mp.Mp_goal mp

mpcnf.MpCnf_goal
controller

conferee[i] confmpa[i].

MpcAddOn_goal

mpi[i].
MpcInfo_goal

participant

mpcnf.
MpCnf_goal conf

parti-
cipant

mp con-
feree

loop (1, c)

loop (1, c) loop (1, c)

conf

194 10 Appendix B - Open issues

Figure 10.4 shows goal dependencies for a call. Here four service roles are involved. Goal
dependencies between semantic connectors are depicted in curved dashed arrows. The top
row of dependencies shows how a call setup progresses from left to right, while the bot-
tom row shows a call release initiated by the callee terminal progressing from right to left.
Here we have introduced service role goal dependencies, using straight dashed arrows.

However, it seems that nothing is gained from describing these dependencies:

• If goal dependencies between service roles are not qualified by a goal name, see
Figure 10.4, then they cannot capture both the goal dependencies of the initiating call
(left to right) and the call release (right to left), since dependencies are unidirectional.
I.e. they would express less than goal relationships between collaborations;

• If on the other hand goal dependencies were qualified2 by a goal name, they would only
be capable of capturing the same relationships as those expressed by goal dependencies
between semantic connectors. I.e. they would add nothing new.

We have opted to do without modelling such dependencies in order to prevent unneces-
sary modelling elements and design steps. Some of the goal relationships that are relevant
for service roles can instead be expressed by collaboration goal sequences.

However, it could be desirable to express the conflict resolution that service roles perform.
The Call service provides classical examples of this: conflict resolution between making
and receiving calls at the same time, and conflict resolution within a call, such as call
release initiated by both parties simultaneously. If conflicts could be detected and their
resolution expressed in terms of goal dependencies, then much could be gained.

10.2.2 Illustrating preceding goals
It is an open question whether it would be useful to distinguish between preceding and
succeeding goal achievements of semantic connectors. We considered expressing this by:

• rendering the “current” collaboration use in boldface;

• rendering the preceding collaboration uses in normal typeface if the collaboration goal
should still be valid when the succeeding goal or the composite goal is evaluated, and
in grey-toned text and lines if otherwise.

2. Qualifying goal dependencies with a goal identity is exemplified in Figure 10.5, where the semantic connector
goals setup.ringing and accept.connected are identified.

Figure 10.4 : Goal dependencies for service roles (not recommended)

PeerToPeerCall

:Caller
Terminal

:Caller
Agent

:Callee
Agent

:Callee
Terminal

call:
Call_Init

t:term-
Call

i:init-
Call

a bic iu tu tt

r13:treltrelt

trela
r12:Re-
lease

rel_ee

rel_er

r11:irelirela

irelt

10.2 Goal sequences 195

An example of where the preceding goal is not valid is shown in Figure 10.5.

Figure 10.5 illustrates the role binding between the instances of the preceding semantic
connector setup, relative to the roles of the succeeding semantic connector accept, in the
context of Call. The ringing goal of setup is no longer True when the goal of accept is
achieved, so grey-toned text and lines are used when referencing setup in the bottom part.

An example of where the preceding goal is valid is given in Figure 10.6.

Figure 10.5 : Goal sequence diagram illustrating preceding goals (1)

sd Call_goals

A:Caller B:Calleesetup:

Setup

A:Caller B:Calleeaccept:

Accept

setup:
Setup

inviter invitee

inviter invitee

recei-
ver

accep-
ter

setup.ringing

accept.connected

Figure 10.6 : Goal sequence diagram illustrating preceding goals (2)

sd MpConf_goals

controller confmpcnf:

MpCnf

conferee mpmpi:

MpcInfo

mps:
MpSession

mps_participant mps_host

conferee mpmps:

MpSession

controller mpmpc:Mpc

mpc:
Mpc mpc_mp

mpcnf_
conf

mpcnf_
controller

mpc_
mp

mpc_
controller

mps_
host

mps_
parti-
cipant

controller mpmp:Mp
mp_
mp

mp_
controller

mp:Mpmp_controller mp:Mp
mp_
mp

mpcnf:MpCnf
mpcnf_

controller

conferee confmpa:

MpcAddOn

mpi:
MpcInfo

mpi_participant

mpcnf:
MpCnf

mpcnf_
conf

mpi_
parti-
cipant

mpi_
mp

mpa_
con-
feree

mpa_
conf

196 10 Appendix B - Open issues

Figure 10.6 illustrates the role bindings of the composite collaboration MpConf as it
progresses towards its ultimate goal of achieving a conference. Here the goals of the sub-
ordinate semantic connectors are still valid, indicated by the use of normal typeface.

While one can argue that this makes the sequence of role bindings clear, it does not add
anything new. The role binding is defined by the composite collaborations, and the goal
sequence diagram is but an illustration of the sequence of role bindings as a function of
goal achievement. Note that elements of goal sequence diagrams can only refer “back-
wards”, i.e. only references from succeeding semantic connectors to preceding semantic
connectors are captured. This is necessary to be in line with the semantics of interaction
overview diagrams.

It is not clear that this graphical expression form is worth the added complexity. For use
in connection with service discovery it does not seem to be necessary to know the status
of preceding service goals. On the other hand, if goal sequences are to be used to aid the
construction of actor behaviour, then such information seems useful, as was pointed out
in [Sanders et alia 2005b]. However, pursuing synthesis of behaviour may result in the
demand for additional information in goal sequence diagrams beyond capturing the status
of preceding goals, such as defining whether more events are possible after goal
achievement.

10.2.3 Overlapping roles
We examined the properties of several UML concepts to describe goal relationships:
dependencies, interaction overview diagrams and activity diagrams. These are good at
expressing sequential and parallel relationships, but they fail to express finer relationships
between intermediate goals, such as when two collaboration uses overlap.

In UML activity diagrams activities can be nested, so it is possible to show that, for exam-
ple, C1 only succeeds if C2 also succeeds, by nesting C2 inside C1, see Figure 10.7a.

Figure 10.7 : Nested goal dependencies

a) Fully nested goals b) Partially nested goals
(illegal UML)

Case 1

C1

C2

Case 2 illegal

C1

C2

G1b

G1a

G1

G2
G2

Case 2 redefined

C1a

C2

G1b

G1a

G2

C1b

c) Reworking

10.2 Goal sequences 197

Consider another case, where C1 starts, reaches a goal G1a that enables C2, and from then
on both C1 and C2 run in parallel, with dependency on both reaching subsequent goals
G1b and G2. This is not possible to model in UML, since activities cannot partially end;
in Figure 10.7b G1a and G1b will fire simultaneously, according to the semantics of
UML. To model this case correctly in UML, C1 must be split in two, as in Figure 10.7c.

Splitting semantic connectors into fragments is a feasible work around, but not necessarily
desirable. [Castejón 2005] has analysed Use Case Maps [UCM 2003] as an alternative to
UML for modelling goal dependencies, and has shown that they provide better support in
such cases.

[Krüger et alia 2004] support the composition of overlapping interactions using specific
operators (e.g. join) to synchronize identically labelled signals and states. This is a differ-
ent form of composition that we have not addressed.

10.2.4 Multiple role goals
Can semantic interfaces have multiple goals? In our presentation of goal sequences this
was not discussed. If a semantic interface has several goals, it would be desirable to
express the relationships between such goals in goal sequences.

The suggested approach to goal sequences can be developed to distinguish between mul-
tiple role goals for a given semantic interface. Goal dependencies can be adorned with the
name of the goal achieved, see Figure 10.5 and Figure 10.8.

Multiple role goals can be used to model alternative sequences, as in Figure 10.8, but not
to express that a given semantic interface achieves a sequence of goals; the reason is that
discussed in connection with overlapping roles above: we model semantic interfaces with
activities, and they cannot have control flows that fire tokens at different times. Once a
token has been fired, the activity firing has completed and will not fire again.

Figure 10.8 : Alternative role goals

Alternative role goals

C1

C3

G2

G1b

G3

C2

G1a

198 10 Appendix B - Open issues

10.2.5 Modelling parallel role-playing
Actors are typically capable of playing several roles in parallel. Such role-playing flexi-
bility was not expressed by the role goal sequences. One could argue that it should have
been, since goal sequences are meant to describe properties adhered to by actors.

It is a methodological choice that we suggest that role goal sequences describe the goal
relationships between roles, without describing the parallelism properties of role-playing
Describing parallel behaviour is postponed to the actor goal sequences, see Figure 10.9.

Compare for instance the role goal sequence and actor goal sequence of Figure 10.9. The
role goal sequence does not define that several MpSession_host_participant roles can be
played, nor that the Mpc_mp_controller role can be played in parallel (simultaneously)
with MpSession_host_participant. This is instead expressed by the actor goal sequence,
which defines the role-playing capabilities of the actor. This can include the capability of
establishing several MpSessions. Not all actors need necessarily have this capability,
though MeetingPlace does.

But why is MpSession_host_participant duplicated, while the other roles are not? If this
is due to the nature of the MpSession service feature, should this not be captured in role
goal sequences, rather than being postponed until the actor sequences? These are open
questions that should be investigated.

10.2.6 Semantics of goal sequences
We have relied on trace semantics in interactions (e.g. collaboration goal sequences and
role goal sequences, where goals pose constraints on lifelines representing service roles
and interface roles, respectively), and token passing semantics in activities (e.g. actor goal

Figure 10.9 : Role goal sequences versus actor goal sequences

a) Role goal sequence b) Actor goal sequence

sd MpConf_mp_goals

mp.Mp_
mp_controller
/* Being configured */

mps.
MpSession_

host_participant
/* User Joined */

mpi.MpcInfo_
mp_participant

/* Inform participant of Conf */

mpc.Mpc_
mp_controller

/* Configured for MpConf */

refref

refref

refref

refref

MeetingPlace_roles

Mp_
mp_controller

/* Being configured */

MpSession_
host_participant

/* User Joined */

MpcInfo_
mp_participant

/* Inform participant of Conf */

Mpc_
mp_controller

/* Configured for MpConf */

MpSession_
host_participant

/* User Joined */

10.2 Goal sequences 199

sequences, where actions represent roles played by actors). As has been discussed, this
does not pose very strict behavioural requirements on the actors; they are free to abandon
preceding roles after initiating succeeding roles, and can chose to skip preceding goals
when reaching succeeding goals without violating the goal sequences.

An alternative could be to incorporate some form of temporal logic in the goal sequences,
some kind of MAY / MUST relationships between service goals in a sequence specifying
the degrees of freedom between roles played by an actor. This is a candidate for future
work, possibly exploiting elements of the approach of [Carrez et al 2004].

An open issue is the relationship between event goal expressed by state invariants on the
lifelines of connector goal interactions, and constraints expressed by goal assertions.
There may be a large set of valid event traces after goal achievement, despite that connec-
tor goal interactions should not specify events after goal achievement according to the
method rule "Omit event occurrences after goal achievement" on page 116. Some valid
post-goal interactions may maintain a goal assertion True, while others not.

An open issue is how to specify valid event traces after goal achievement in a succinct
manner. Can this be achieved using interaction operators like ignore and consider? Also:
Can interactions formalise relationships between state invariants and goal assertions?

10.2.7 State invariants to express goals
Connector goal interactions and role goal interactions use UML state invariants to indi-
cate role goal achievement. In goal interactions we have considered distinguishing
between initial and terminal state invariants, see Figure 10.10.

These terms could be defined as follows:

Figure 10.10 : State invariants as pre- and postconditions on role goals

sd MpConf_goals

…

mp.Mp_goal
/* Configure MeetingPlace */

ref

…

:mp_controller

:mp_mpCreate

sd Mp_goal

{goal == True} {goal == True}

MpAck Terminal
state invariant

JoinMp
JoinAck(..)

sd MpSession_goal

{mp.mp_mp.goal == True}

{goal == True} {goal == True}

:mps_host:mps_participant

mps.MpsSession_goal
/* Join Meeting Place */

ref

Initial state
invariant

200 10 Appendix B - Open issues

Definition: Initial state invariant
An initial state invariant is a state invariant that is placed prior to any event occurrences
on the lifeline of a goal interaction.

Definition: Terminal state invariant
A terminal state invariant is a state invariant that is placed after the last event occurrences
on the lifeline of a goal interaction.

While terminal state invariants are useful for denoting goal achievement, the use of initial
state invariants gives us both opportunities and challenges.

One of the opportunities lies in the use of initial state invariants to define invalid behav-
iour. Recall that the semantics of a UML interaction is given as a pair of sets of traces,
where the two trace sets represent valid traces and invalid traces.3

State invariants in UML are evaluated immediately prior to the execution of the next event
occurrence on the lifeline to which the constraint is attached.4 E.g. in Figure 10.10 the
state invariant mp.mp_mp.goal == True is evaluated when the event occurrence JoinMp is
consumed by mps_host. Traces that have a state invariant with a false constraint are
invalid traces. Thus, if the goal of the interface role mp_mp is not achieved when JoinMp
is consumed by host, then the trace is invalid.

This implies that the event occurrences of mps in Figure 10.10 cannot occur prior to mp
reaching its collaboration goal. This means that there is no way of reaching the role goal
of MpSession_host without the role goal of mp_mp being valid first.

It is an open question whether this also implies that the succeeding semantic connector
referenced in a collaboration goal sequence can exist prior to the preceding semantic con-
nector reaching its goal. If the event occurrence defined in the goal interaction is the first
event of the collaboration, then it seems reasonable that the collaboration cannot exist
prior to the preceding semantic connector achieving its goal. Note however that a goal col-
laboration does not necessarily express all the events of a collaboration. I.e. there may be
other initial event occurrences on the lifelines where a state invariant is placed.5

Could UML semantics demand that initial state invariants referenced in interaction over-
view diagrams are checked against terminal state invariants of preceding interaction uses
for each lifeline? Consider the following method rule:

Method rule: Initial state invariants must be consistent with terminal state
invariants

If a lifeline of a goal interaction has a set of initial state invariant(s), this set must be a
subset of the set of terminal state invariants of all preceding goal interaction occurrences,
if any. If not the goal sequence is invalid.

We exemplify this by referring to Figure 10.10. First we note that the collaboration
MpConf has bound mps_host and mp_mp to the same lifeline, while mps_participant and
mp_controller are bound to different roles. The goal interaction MpSession_goal has an

3. The union of these two sets does not necessarily cover the whole universe of traces; traces that are not included
are inconclusive, i.e. one cannot know whether they are valid or invalid. See [UML 2.0] p. 468.

4. See [UML 2.0] p. 487.
5. Such events can be explicitly modelled by using the ignore construct in the interaction fragment.

10.2 Goal sequences 201

initial state invariant mp.mp_mp.goal == True on mps_host, which when evaluated is
indeed equal to (and thus a subset of) the terminal state invariant for the lifeline mp_mp
in the goal interaction Mp_goal. The mps_participant lifeline has no initial state invariant,
so this lifeline is also OK. We can conclude that the goal sequence MpConf_goals is valid.

A second refinement of UML semantics of interaction overview diagrams is to let termi-
nal state invariants propagate to succeeding interaction occurrences:

Method rule: Terminal state invariants propagate to succeeding goal interactions
Terminal state invariants propagate to their respective lifelines in succeeding goal inter-
actions referenced in goal sequence diagrams.

Again referring to Figure 10.10, this would mean that the lifeline mps_host in
MpSession_goal would have an initial state invariant mp.mp_mp.goal == True propa-
gated from the terminal state invariant goal == True related to the service role mp, which
corresponds to the lifeline mp_mp in Mp_goal. (The propagated state invariant is in this
case identical to the initial state invariant explicitly inserted). The lifeline mps_participant
would not have any initial state invariant from the preceding interaction fragment, since
mps_participant is bound to the service role conferee and not to mp or controller.

These possible refinements of UML semantics are based on the initial and terminal global
conditions of MSCs in [MSC-92], and their interpretation by MSC documents. Combin-
ing two MSCs where the start condition of the second was a subset of the end condition
of the first was legal. This was used to ensure correct combination of MSCs in high-level
MSCs (HMSCs)6. We have in addition taken the interleaving semantics of UML interac-
tions into consideration, as well as the semantics of state invariants.

Currently it is not clear from the UML2 semantics what the interpretation of state invari-
ants is between interaction uses referenced in interaction overview diagrams. The
refinements above seem to fit in well with both trace semantics and constraint resolution
in UML2. The state invariants can be evaluated without side effects if they are confined
to variables and states belonging to a (bound) lifeline.

Note that the method rule "Omit event occurrences after goal achievement" on page 116
enforces the rule that events occurring after goal achievement should not be included in
goal interactions, ensuring that the interaction uses referenced in goal sequences have
well-defined terminal state invariants. However, it may be that a collaboration use has
additional event occurrences after a goal is achieved, although they are not included in
goal interactions. An example are the MpInfo and JoinInfo signals of the collaboration uses
mp and mps, which occur after the achievement of their role goals (see Figure 4.27 on
page 97), i.e. interleaved with the event occurrences specified in the interaction
MpConf_goal (see Figure 5.11 on page 115). This does not violate the semantics of UML.

Goal assertions can have a longer “lifetime” than state invariants; the latter are evaluated
at a specific point of time, i.e. at the first event occurrence on the lifeline to which they
are attached, after which they have no function. In goal sequences, such an “instantane-
ous” constraint validation corresponds to preceding collaboration uses rendered in grey

6. Initial and terminal conditions were replaced by setting and guarding conditions in [MSC-2000], which had a dif-
ferent syntax and semantics.

202 10 Appendix B - Open issues

(as in Figure 10.5), i.e. preceding goals that do not have to be valid when a succeeding
goal is reached. “Longer lifetime” goals could be included in the succeeding goal asser-
tions, and be used in subsequent goal evaluations.

10.2.8 Alternative forms of goal sequence diagrams
The goal sequence diagrams we have suggested constitute a considerable departure from
the interaction overview diagrams upon which they are based. It is not likely that UML
tool vendors will offer support for such a diagram; replacing the name of the referenced
interaction fragment with a graphic rendering the collaboration uses and role bindings will
not be easy to implement in CASE tools.

Here we discuss two alternative forms: goal sequences expressed by state machine dia-
grams, and goal sequences expressed by a special form of interaction diagram.

10.2.8.1 Goal sequences expressed by collaboration state machines

Collaborations in UML2 are behavioural classifiers, and can thus have associated behav-
iour defined by state machines. If we consider the semantic connectors to be in a state
when they are active, and exit from this state when they achieve a goal, we could express
goal sequences in a state machine diagram, see Figure 10.11.

Figure 10.11 defines the sequence of goals of the semantic connectors of MpConf in a
state machine diagram. Each state corresponds to a semantic connector with the same
name as the state. Transitions between the states are marked with conditions on the goal
achievement of the preceding semantic connector.

Figure 10.11 : Goal sequence diagram as a state machine

sm MpConf_goals

mpa

mpi

mpc

mp

mpcnf mps

[mp_goal]

[mpcnf_goal and mps_goal]

[mpc_goal]

[mpi_goal]

[mpa_goal]

[mpcnf_goal] [mps_goal]

10.2 Goal sequences 203

An orthogonal composite state with two regions has been used to model two semantic
connectors being active simultaneously; in this case the transition out of the composite
state depends on both features reaching their goals.

10.2.8.2 Goal sequences expressed by a special form of interaction diagrams

This alternative has been suggested to us by Ina Schieferdecker, see Figure 10.12.

The goal sequence diagram in Figure 10.12 in effect combines interaction diagrams with
collaboration uses, showing a sequence of role bindings to the lifelines of the interaction
diagram that correspond to the roles of the composite collaboration.

10.2.8.3 Discussion

Both alternatives have interesting properties relative to goal sequence diagrams.

• Using state diagrams, no role goal interaction is referenced; this implies that goal rela-
tionships can be expressed at a conceptual level without having to specify interactions;
this can be desirable at early stages of development. In Figure 10.11 no role binding is
illustrated; this can be illustrated by additional graphics in the same way as that used
in goal sequence diagrams. Without additional graphics, standard UML tools can be
used to define goal dependencies; this is an advantage. However, since it lacks refer-
ences to interactions, no validation opportunities arise; the diagram remains an
expression of intentions that cannot be validated by tools. Modelling semantic connec-
tors as states might also result in some conceptual confusion about designers.

• The special form of interaction diagram seems quite intuitive, given that the reader is
familiar with the referencing of interaction occurrences in interaction diagrams. It con-
veys preceding role goals without any additional graphics; these can be discerned by

Figure 10.12 : Goal sequence diagram as a special form of interaction diagram

sd MpConf_goals

mpcnf:

MpCnf

mpi:

MpcInfo

mps:

MpSession

mpc:Mpc

mpcnf_confmpcnf_controller

mpc_mpmpc_controller

mps_hostmps_participant

mp:Mp
mp_mpmp_controller

mpa:

MpcAddOn

mpi_participant mpi_mp

mpa_conf mpa_conferee

controller:
Controller

conferee:
Conferee

mp:
Meeting
Place

conf:
Conference

204 10 Appendix B - Open issues

following the lifelines. However, it is not standard UML, and is thus unlikely to receive
support from tool venders, unless it were to catch on and be endorsed by the OMG.

It seems worthwhile to pursue both alternatives.

10.3 Evolution or revolution?
The approach we present in our work marks a departure from earlier practices, which are:

• for the telecoms engineer: focus on designing state machines that communicate asyn-
chronously via signals;

• for the software engineer: focus on designing objects that communicate synchronously
via procedure calls.

Instead we advocate focusing on service composition from semantic connectors, goal
sequences, and the binding of semantic interfaces to actors. Does this mark an evolution
or a revolution? Semantic connectors, where one semantic interface plays an initiator role
and the other a responding role, are in many ways “conveniently” close to the client-server
paradigm of synchronous procedure calls; the asynchronous mechanisms that underlie our
approach are conveniently concealed: a semantic connector can be (mis)understood as
encompassing a synchronous pattern of behaviour7.

It may be considered an advantage that semantic connectors are close to the conceptual
understanding of computer programmers. In this way our approach may constitute a form
of “modelling convergence” between the mind sets of computing and communication,
and might enable the multitude of IT practitioners to embark on the development of serv-
ices in symmetrically communicating systems.

Can one envision a division of responsibility in R&D work, where programmers design,
implement and validate semantic connectors, while specialists (service engineers) design
and validate composite collaborations? And can one assume that the construction of serv-
ice roles and components could be automated by tools? This is as yet unknown.

7. This holds in particular if role behaviour strictly follows a query - response pattern between an initiating and
responding role, i.e. no conflicting initiatives are modelled.

- 205 -

11
Appendix C - Glossary

In our thesis we have introduced and defined a number of terms. These are listed here in
alphabetical order, for the benefit of the reader.

Actor: a computational object that can play service roles. An actor can play several serv-
ice roles, both simultaneously and alternately.

Actor goal: a service goal defined for an actor. An actor goal is usually related to the role
goal of a service role or a semantic interface an actor can play.

Actor goal sequence: describes the inter-relationships between preceding and succeeding
goals of the interface roles played by an actor type.

Actual interface behaviour: the behaviour an actor or service role exhibits on an
interface.

Alternative role: two roles are alternatives with respect to a particular connected role if
they both can play with the connected role without violating the safety rules.

Basic interface role: an interface role without progress labels.

Collaboration goal: a predicate expressing when a goal is achieved seen from the per-
spective of the collaboration as a whole.

Collaboration goal sequence: describes the global ordering of goals of semantic connec-
tors in the context of a composite service structure.

Compatible connected roles: a role is behaviourally compatible with another role if and
only if the roles interact safely and their truncated roles contain all their respective
progress labels.

Compliancy between a service role and a semantic interface: a service role is compli-
ant with a semantic interface if its p-role projected over the connection represented by a
semantic connector is a live subtype of the semantic interface.

Compliancy with a semantic interface: a service role or actor is compliant with a
semantic interface if its p-role projected over the connection represented by the semantic
connector is a live subtype of the semantic interface.

Connected role: an interface role is called a connected role with respect to an opposite
interface role, if it intends to or actually interacts with that interface role over a connector.

Connector: a binding between two roles that can carry the interactions of a service.

206 11 Appendix C - Glossary

Connector goal interaction: an interaction defining the goal achievement of a semantic
connector.

Deadlock: occurs when two interface roles are unable to proceed because they wait end-
lessly for signals from each other.

Discovery of compatible actors: a service discovery mechanism by which an actor can
determine which actors are capable of playing compatible roles.

Dual role: an interface role that interacts compatibly with a given interface role. The full
behaviour of the given interface role can be reached interacting with the dual role.

Elementary collaboration: a service structure defining the roles and collaboration
behaviour for a cooperation between two and only two interface roles.

Enabled role: a role is enabled for an actor if there exists a token on all incoming edges
of the action representing the role in the actor goal sequence.

Event: a signal sent or consumed.

Event goal: related to the occurrence of an event: the event occurring implies that some-
thing useful is achieved at that point in the behaviour.

Goal assertion: expressed by goal expressions in structure descriptions, or by state invar-
iants in behaviour descriptions.

Goal dependency: a dependency between two collaboration uses expressing the fact that
goal achievement for the supplier element is a precondition for goal achievement of the
client element. In UML a stereotyped <<goal>> dependency is used.

Goal expression: a predicate defined within the scope of a service structure. If evaluated
to True, the goal of the element is currently achieved.

Goal sequence diagram: a graphical adaptation of the interaction overview diagram
showing how goal achievements in semantic connectors of a composite service structure
are ordered.

Goal state: a state or exit point of a state machine where a goal is achieved. Goal states
can be expressed by goal assertions and/or by progress labels.

Graded progress label: a progress label with a numerical designation of the relative
amount of progress; the higher the number the greater the relative progress.

Improper termination: occurs:

• when two interface roles do not terminate in a coordinated manner: no signal should
be sent to a role that has terminated;

• when the exit conditions attached to the interface role terminations are not consistent
with each other. Two exit conditions are consistent when they represent the same ter-
mination cases, or when one of the conditions represents a termination case that covers
the termination case represented by the other condition.

Initial state invariant: a state invariant that is placed prior to any event occurrences on
the lifeline of a goal interaction.

207

Initiating role: an interface role that can send a first signal over a connector.

Interaction safety: a pair of interface roles are said to interact safely when their interac-
tions do not lead to any unspecified signal reception, deadlock or improper termination.

Interface role: describes the (actual or specified) interface behaviour of an actor or serv-
ice role at a connector endpoint.

Level of progress: the level of progress of an interface role truncated by another interface
role is the sum of the graded progress labels in its truncated role.

Live interface role: an interface role with progress label(s).

Live subtype: a safe and useful redefinition of an interface role. By useful it is implied
that no progress is lost by the redefinition.

Progress ambiguity: occurs in an interface role when an event does not have consistent
progress labelling for all occurrences of the event.

Progress label: marks an event goal or goal state in a service role or interface role.

Projection role (p-role): an interface role describing the actual interface behaviour of a
service role visible at a connector endpoint.

Responding role: an interface role that does not send any first signal over a connector.

Role compatibility: a pair of roles is compatible if and only if the roles interact safely,
and are capable of achieving service goals when doing so.

Role compliancy: a classifier is compliant with a role bound to it if the interface behav-
iour of the classifier is a live subtype of the interface behaviour of the bound role.

Role goal: a service goal defined for a collaboration role.

Role goal interaction: an interaction defining the goal achievement of an interface role.

Role goal sequence: describes the relationships between preceding and succeeding role
goals for an interface role.

Safe interface role: an interface role that satisfies the safety rules.

Safe service role: a service role whose projections to p-roles all result in safe interface
roles.

Safe subtype: a safe redefinition of an interface role. The redefinition may have less
progress then the supertype.

Semantic connector: an elementary collaboration with a consistently defined pair of
semantic interfaces and service goals, i.e. where:

• the semantic interfaces are dual roles, so by definition they are safe interface roles;

• goals are defined consistently: a goal in one role is matched by a goal in its opposite
role;

• it optionally defines collaboration goal(s) that are reachable when the roles interact.

208 11 Appendix C - Glossary

Semantic interface: an interface role describing specified interface behaviour. A seman-
tic interface has at least one event goal.

Service: a collaboration between concurrent and potentially distributed service roles
played by computational objects in order to provide some identified functionality to the
environment.

Service goal: a property that characterizes a point in the behaviour of a collaboration
between roles as having achieved something useful.

Service invocation: an instance of a service.

Service opportunity: an actor has a service opportunity with a set of actors in its envi-
ronment when there exists a non-empty intersection between its current set of enabled
initiating roles and the set of enabled compatible roles offered by the actors in the
environment.

Service progress: the service progress of a role truncated by another role is the set of
service-specific progress labels in its truncated role. An empty set implies no progress.

Service role: the part a computational object plays in a service. A service role can play
several interface roles, both simultaneously and alternately.

Service structure: defines a collaboration by name, and identifies (names) the roles that
collaborate to provide the service or service feature. The service structure also defines the
multiplicity and type of the roles.

Service-specific progress label: a progress label that identifies a role goal.

Specified interface behaviour: the behaviour an actor or service role is specified to
exhibit on an interface.

State-like goal: a predicate that can be evaluated at any time when a system is stable, i.e.
in between the handling of events and outside the execution of operations. A state-like
goal is a goal expression or a goal assertion.

Terminal state invariant: a state invariant that is placed after the last event occurrences
on the lifeline of a goal interaction.

Truncated role: the sub-tree of an interface role that is reachable when playing with some
specific connected interface role. Role A truncated by role B is written A with B.

Unspecified signal reception: occurs when an interface role consumes a signal that is not
specified as input of the current role state.

- 209 -

References

[Alloy 2002] Daniel Jackson, “Micromodels of Software: Lightweight Modelling and
Analysis with Alloy”, MIT Lab for Computer Science, Feb. 2002

[Alpern and Schneider 1985] B. Alpern and FB Schneider, “Defining liveness”, Informa-
tion Processing Letters, vol. 21, 181-185, Oct. 1985

[AMIGOS 2004] Information at www.pats.no/projects/AVANTEL/AMIGOS.html (ac-
cessed August 2006)

[ARTS 2003] Øystein Haugen and Birger Møller-Pedersen, “The fine Arts of Service
Modeling”, ARTS - Arena for Research on advanced Telecom Services, December
2003

[Alsnes 2004] Rune Alsnes, “Role Validation Tool”, M.Sc. thesis, NTNU, June 2004

[Bachman and Daya 1977] Bachman, C.W., Daya, M., “The role concept in data models”,
Proc. of the 3rd Int. Conference on Very Large Data Bases, Tokyo, Japan, IEEE
Computer Society (1977)

[Basic Call 1988] “Teleservices supported by an ISDN : Telephony”, ITU-T Recommen-
dation I.241.1 (11/88)

[Birkeland 2005] Sebjørn Sæther Birkeland, “Behavioral Projections and Validation from
UML 2.0 State Machines”, Project Assignment TTM4170, NTNU, December 2005

[Bræk 1977] Rolv Bræk, “Modelling Telecommunication Control Systems”, ELAB re-
port STF44 A77229 (1977)

[Bræk 1979] Rolv Bræk, “Unified system modelling and implementation”, International
Switching Symposium, 7-9 May 1979, CCIC, Paris, France Vol. 3, 1180-1187
(1979)

[Bræk and Emstad 1986] Rolv Bræk and Peder Emstad, “Telesystemering, 2. utgave”, Ta-
pir, Trondheim, Norway ISBN 82-519-0721-7 (1986)

[Bræk and Haugen 1993] Rolv Bræk and Øystein Haugen, “Engineering Real Time Sys-
tems”, Prentice Hall, ISBN 0-13-034448-6 (1993)

[Bræk 1999] Rolv Bræk, “Using roles with types and objects for service development”,
Proceedings of the Fifth International Conference on Intelligence in Networks
(Smartnet’99), 265-278, Kluwer Academic Publishers (1999)

210

[Bræk 2004] Rolv Bræk, “MDA in perspective”, keynote speech at First European Work-
shop on Model Driven Architecture with Emphasis on Industrial Application, Uni-
versity of Twente, Enschede, The Netherlands, March 17-18, 2004

[Bræk and Floch 2004] Rolv Bræk and Jacqueline Floch 2004, “ICT Convergence: Mod-
eling Issues”, Proceedings of the 4th SDL and MSC Workshop (SAM), Ottawa,
Canada, 2-4 June 2004, 237-256 (2004)

[Burmester et alia 2004] Sven Burmester, Holger Giese, Martin Hirsch, and Daniela
Schilling, “Incremental Design and Formal Verification with UML/RT in the FU-
JABA Real-Time Tool Suite”, SVERTS workshop, UML 2004, October, 11, 2004
in Lisbon, Portugal (2004)

[Carrez et al. 2004] Cyril Carrez, Alessandro Fantechi and Elie Najm, “Assembling Com-
ponents with Behavioural Contracts”, Annales des Télécommunications Vol. 60
n°7-8, July-August 2005, Hermes-Lavoisier (2005)

[Castejón 2005] Humberto Nicolás Castejón, “Synthesizing State-machine Behavior
from UML Collaborations and Use Case Maps”, in [SDL Forum 2005], 339-359

[Castejón and Bræk 2005] Humberto Nicolás Castejón and Rolv Bræk, “Dynamic Role
Binding in a Service Oriented Architecture”, in IFIP International Conference on
Intelligence in Communication Systems (INTELLCOMM 2005), October 2005,
Montreal, Canada, Springer-Verlag (2005)

[Castejón and Bræk 2006a] Humberto Nicolás Castejón and Rolv Bræk, “A Collabora-
tion-based Approach to Service Specification and Detection of Implied Scenarios”,
5th Workshop on Scenarios and State Machines: Models, Algorithms and Tools,
Workshop at ICSE, May 20-28, 2006, Shanghai, China (2006)

[Castejón and Bræk 2006b] Humberto Nicolás Castejón and Rolv Bræk, “Formalizing
Collaboration Goal Sequences for Service Choreography”, Proceedings of
FORTE'06, September 26-29, 2006, Paris, France, LNCS 4229, Springer-Verlag
(2006)

[Cinderella] Cinderella SDL and MSC tools, information at www.cinderella.dk (accessed
August 2006)

[Cohen and Levesque 1990] P. Cohen and H. Levesque, “Intention is choice with com-
mitment”, Artificial Intelligence, 32(3):213-261, 1990

[CONF 1988] “Multiparty supplementary services: Conference calling (CONF) (ISDN)”,
ITU-T Recommendation I.254.1 (11/88)

[CORBA 2001] “The Common Request Object Broker: Architecture and Specification.
CORBA revision 2.5”, Object Management Group, Needham (MA), USA (2001)

[Diethelm et alia 2002] I. Diethelm, L. Geiger, T. Maier, A. Zündorf, “Turning Collabo-
ration Diagram Strips into Storycharts”, Workshop on Scenarios and state ma-
chines: models, algorithms, and tools (SCESM), ICSE 2002, Orlando, Florida, USA
(2002)

[Deubler et alia 2005] Martin Deubler, Michael Meisinger, Sabine Rittmann and Ingolf

211

Krüger, “Modeling Crosscutting Services with UML Sequence Diagrams”, MoD-
ELS/UML 2005, Montego Bay, Jamaica, Oct. 2-7 2005, LNCS 3713, 522-536,
Springer-Verlag (2005)

[Engelhardtsen and Prinz 2006] Fritjof Engelhardtsen and Andreas Prinz, “Application of
Stuck-free Conformance to Service-role Composition”, in Proceedings of the 5th
Workshop on System Analysis and Modelling (SAM'06), May 31-June 2, 2006,
Kaiserslautern, Germany, LNCS 4320, 115-132, Springer-Verlag (2006)

[Estelle 1989] “Estelle: a formal description technique based on an extended state transi-
tion model”, ISO 9074 (1989)

[eODL 2003] “Extended Object Definition Language (eODL)”, ITU-T Recommendation
Z.130 (07/2003)

[Ferraiolo et alia 2001] D. F. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn and R. Chan-
dramouli, “Proposed NIST Standard for Role-Based Access Control”, ACM Trans-
actions on Information and System Security, Vol. 4(3), 224–274, August 2001

[Fisler and Krishnamurthi 2001] Kathi Fisler and Shriram Krishnamurthi, “Modular Ver-
ification of Collaboration-Based Software Designs”, Joint European Software En-
gineering Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (2001)

[Floch and Bræk 2000] Jacqueline Floch and Rolv Bræk 2000, “Toward Dynamic Com-
position of Hybrid Communication services”, Proceedings of the Sixth Internation-
al Conference on Intelligence in Networks (Smartnet 2000), 73-92, Kluwer
Academic Publishers (2000)

[Floch 2003] Jacqueline Floch, “Towards Plug-and-Play Services: Design and Validation
using Roles”, Ph.D. thesis 2003:47 NTNU (2003)

[Floch and Bræk 2003a] Jacqueline Floch and Rolv Bræk, “Using Projections for the De-
tection of Anomalous Behaviours”, in [SDL Forum 2003], 36-54

[Floch and Bræk 2003b] Jacqueline Floch and Rolv Bræk, “Using SDL for Modelling Be-
haviour Composition”, in [SDL Forum 2003], 251-268

[Floch and Bræk 2005] Jacqueline Floch and Rolv Bræk, “A Compositional Approach to
Service Validation”, in [SDL Forum 2005], 281-297

[Fuglesang 2005] Marie S. Fuglesang, “Service Modelling using UML 2.0 Collabora-
tions”, M.Sc. thesis, NTNU, June 2005

[Gonzalo et alia 2002] G. Gonzalo, J. Llorens and P. Martínes 2002, “The meaning of
multiplicity of n-ary associations in UML”, Systems and Software Modeling, Vol.
1(2), 86 - 97, Springer-Verlag, Heidelberg, Germany, December 2002

[GRL 2003] “Goal-Oriented Requirement Language (GRL)”, ITU-T Draft Recommenda-
tion Z.151, Sept. 2003

[Gruber 1993] T. R. Gruber, “A translation approach to portable ontologies”, Knowledge
Acquisition, 5(2):199-220 (1993)

212

[Harel 1987] David Harel “Statecharts: A visual formalism for complex systems”, Sci-
ence of Computer Programming, vol. 8, no. 3, 231-274, Elsevier (1987)

[Hennie 1968] Hennie, F.C., “Finite-state models for logical machines”, John Wiley &
Sons, Library of Congress Catalog Card Number: 67-29935 (1968)

[Herrmann and Krumm 2000] Peter Herrmann and Heiko Krumm, “A framework for
modeling transfer protocols”, Computer Networks Vol. 34, 317-337, Elsevier Sci-
ence (2000)

[Herrmann 2003] Peter Herrmann, “Formal Security Policy Verification of Distributed
Component-Structured Software”, in Proceedings of the 23rd IFIP International
Conference on Formal Techniques for Networked and Distributed Systems
(FORTE’2003), Berlin, Germany, LNCS 2767, 257–272, Springer-Verlag (2003)

[Holzmann 1991] Gerard J. Holzmann, “Design and Validation of Computer Protocols”,
Prentice Hall 1991, ISBN 0-13-539925-4 (1991)

[Holzmann 2003] Gerard J. Holzmann, “The SPIN Model Checker”, Addison-Wesley,
Boston, USA, September 2003, ISBN 0-32-22862-6 (2003)

[IN 1992] “Intelligent Network: Global Functional Plane Architecture”, Recommenda-
tion I.329 / Q.1203, October 1992

[IN 1993] “Intelligent Network: Introduction to Intelligent Network Capability Set 1”,
ITU-T Recommendation Q.1211, March 1993

[IN 1997] “Intelligent Network: Introduction to Intelligent Network Capability Set 2”,
Recommendation Q.1221, September 1997

[IN 1999] “Intelligent Network: Introduction to Intelligent Network Capability Set 3”,
Recommendation Q.1231, December 1999

[IN 2001] “Intelligent Network: Introduction to Intelligent Network Capability Set 4”,
Recommendation Q.1241, July 2001

[ISDN 1988] “Introduction to Stage 2 Service Descriptions for Supplementary Services”,
ITU-T Recommendation Q.80 (11/88)

[Jacobsen et alia 1992] Jacobsen, I., Christerson, M., Jonsson, P., and Övergaard, G., “Ob-
ject-Oriented Software Engineering: A Case Driven Approach”, Addison-Wesley
(1992)

[JAIN 2004] “Java APIs for Integrated Networks (JAIN)”, java.sun.com/products/jain
(accessed August 2006)

[JINI 2004] DJ - Discovery and Join, Jini Technology Core Platform Specification,
www.sun.com/software/jini/specs (accessed August 2006)

[Jones 2005] Steve Jones, "Toward an Acceptable Definition of Service," IEEE Software,
vol. 22, no. 3, 87-93, May/June, 2005

[Korda 2004] Dragana Korda, “Service-Role Validation”, Diploma thesis, University of
Banja Luka, May 2004

213

[Krüger 2003] I. Krüger, “Modeling and Synthesis with MSC Extensions for Broadcast-
ing, Overlapping, Preemptive, and Triggered Collaborations”, Workshop on Sce-
narios and State Machines at ICSE 2003 (2003)

[Krüger et alia 2004] I. H. Krüger, D. Gupta, R. Mathew, P. Moorthy, W. Phillips, S. Ritt-
mann, J. Ahluwalia, “Towards a Process and Tool-Chain for Service-Oriented Au-
tomotive Software Engineering”, in Proceedings of the ICSE 2004 Workshop on
Software Engineering for Automotive Systems (SEAS) (2004)

[Kraemer et alia 2006] Frank Alexander Kraemer, Peter Herrmann, and Rolv Bræk,
“Aligning UML 2.0 State Machines and Temporal Logic for the Efficient Execution
of Services”, Proceedings of the 8th International Symposium on Distributed Ob-
jects and Applications (DOA), Oct. 29th–Nov. 3rd, 2006, Montpellier, France.
LNCS 4276, 1613-1632, Springer–Verlag (2006)

[Kraemer and Herrmann 2006] Frank Alexander Kraemer and Peter Herrmann, “Service
Specification by Composition of Collaborations --- An Example”, Proceedings of
the 2nd International Workshop on Service Composition (Sercomp), Hong Kong,
December 2006 (2006)

[Lam and Shankar 1984] S. S. Lam and A.U. Shankar, “Protocol Verification via Projec-
tions”, IEEE Transactions on Software Engineering, vol. 10(4), 325-342, July 1984

[Lamsweerde 2001] Axel van Lamsweerde, “Goal-Oriented Requirements Engineering:
A Guided Tour”, Proceedings of the 5th IEEE International Symposium on Re-
quirements Engineering, Toronto, August 2001, 249-263 (2001)

[Lamsweerde and Letier 2003] Axel van Lamsweerde and Emmanuel Letier, “From Ob-
ject Orientation to Goal Orientation: A Paradigm Shift for Requirements Engineer-
ing”, in Radical Innovations of Software & systems Engineering, Proceedings of the
Monterey’02 Workshop, Venice, Italy, LNCS 2941, Springer-Verlag (2003)

[KAOS 2003] Axel van Lamsweerde, “From System Goals to Software Architecture”, in
Formal Methods for Software Architectures, LNCS 2804, Springer-Verlag (2003)

[LSC 2001] Werner Damm and David Harel, “LSCs: Breathing Life into Message Se-
quence Charts”, Formal Methods in System Design, 19, 45–80, 2001 Kluwer Aca-
demic Publishers (2001)

[Mencl 2004] Vladimir Mencl, “Specifying Component Behavior with Port State Ma-
chines”, Proceedings of CV-UML workshop (Oct. 21, 2003, part of UML 2003) F.
de Boer and M. Bonsan-gue (ed.), Elsevier Science (2004)

[MSC-92] Message Sequence Charts (MSC), ITU-T Recommendation Z.120, Sept. 1994

[MSC-96] Message Sequence Charts (MSC), ITU-T Recommendation Z.120, Oct. 1996

[MSC Semantics] Message Sequence Chart Annex B: Formal semantics of Message Se-
quence Charts, ITU-T Recommendation Z.120 Annex B (04/1998)

[MSC-2000] Message Sequence Chart (MSC), ITU-T Recommendation Z.120 (11/2001)

[MSC-2004] Message Sequence Chart (MSC), ITU-T Recommendation Z.120 (04/2004)
(Prepublished recommendation)

214

[Myklopoulos et alia 1999] J. Myklopoulos, L. Chung, E. Yu 1999, “From object-oriented
to goal-oriented requirements analysis”, Communications of the ACM, Vol. 42 (1),
January 1999

[OCL 2.0] “UML 2.0 OCL Final Adopted specification”, ptc/03-10-14, Object Manage-
ment Group, Needham (MA), USA, October 2003

[OCL 2.0 2006] Object Constrain Language, OMG Available Specification, Version 2.0,
formal/06-05-01, Object Management Group, Needham (MA), USA, May 2006

[OOram 1995] Trygve Reenskaug, Per Wold and Odd Arild Lehne, “Working with Ob-
jects, The OOram Software Engineering Method”, Prentice Hall, ISBN 1-884777-
10-4 (1995)

[OORASS 1992] Reenskaug, T., Andersen, E.P., Berre, A.J., Hurlen, A.J., Landmark, A.,
Lehne, O.A., Nordhagen, E., Ness-Ulseth, E. Oftedal, G., Skar, A.L., and Stenslet,
P., “OORASS: Seamless support for the creation and maintenance of object orient-
ed systems”, Journal of object-oriented programming, vol.5, no. 6, 27-41 (1992)

[OSA 2003] Open Service Access (OSA); Application Programming Interface (API); Part
3: Framework, ETSI ES 202 915-3 V1.2.1 (2003)

[RAMSES 2006] Information available at www.item.ntnu.no/lab/pats/wiki/index.php
(accessed August 2006)

[ROOM 1994] Bran Selic, Garth Gullekson, and Paul T. Ward, “Real-Time Object-Ori-
ented Modeling”, Wiley (1994)

[RM-ODP 1998] “Open Distributed Processing: Reference Model”, ISO/IEC 10746-1,
1998, Also known as Information technology - Open distributed processing - Ref-
erence Model: Overview, ITU-T Recommendation X.901 (08/97)

[Rossebø and Bræk 2006a] Judith Rossebø and Rolv Bræk, “Towards a Framework of
Authentication and Authorization Patterns for Ensuring Availability in Service
Composition”, in Proceedings of the 1st International Conference on Availability,
Reliability and Security (ARES’06), Vienna, Austria, pages 206–215. IEEE Com-
puter Society Press (2006)

[Rossebø and Bræk 2006b] Judith Rossebø and Rolv Bræk, “A Policy-driven Approach
to Dynamic Composition of Authentication and Authorization Patterns and Servic-
es”, to appear in Journal of Computers, Academy Publisher Vol. 1 Issue no. 8,
(2006)

[Rössler et alia 2001] Frank Rössler, Birgit Geppert, and Reinhard Gotzhein, “Collabora-
tion-based Design of SDL Systems”, in [SDL Forum 2001], 72-89 (2001)

[Rössler 2002] Frank Rössler, “Collaboration-based Design of Communication Systems
in SDL”, Ph.D. thesis D 386, Kaiserslautern, Feb 2002

[Rössler et alia 2003] Frank Rössler, Birgit Geppert, and Reinhard Gotzhein, “CoSDL -
An Experimental Language for Collaboration Specification”, Telecommunications
and Beyond: The Broader Applicability of SDL and MSC, E. Sherratt (Ed.), LNCS
2599, 1-20, Springer-Verlag (2003)

215

[Sanders 2002] Richard Torbjørn Sanders, “Service-Centred Approach to Telecom Serv-
ice Development”, Proceedings of the 8th EUNICE and IFIP Workshop on Adapt-
able Networks and Teleservices, Trondheim, Norway, Sept. 2-4 2002, 95-101
(2002)

[Sanders et alia 2003] Richard Torbjørn Sanders, Jacqueline Floch and Rolv Bræk, “Dy-
namic Behaviour Arbitration using Role Negotiation”, Proceedings of the 9th EU-
NICE and IFIP Workshop on Next Generation Networks, Balatonfüred, Hungary,
8-10 Sept. 2003, 76-81 (2003)

[Sanders and Bræk 2004a] Richard Torbjørn Sanders, Rolv Bræk, “Discovering Service
Opportunities by Evaluating Service Goals”, Proceedings of the 10th EUNICE and
IFIP Workshop on Advances in Fixed and Mobile Networks, Tampere, Finland, 14-
16 June 2004, 165-172 (2004)

[Sanders and Bræk 2004b] Richard Torbjørn Sanders, Rolv Bræk, “Modeling Peer-to-
peer Service Goals in UML”, Proceedings of the 2nd IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM 2004), Beijing, China,
26-30 September, 2004, 144-154, IEEE Computer Society Press (2005)

[Sanders et alia 2005a] Richard T. Sanders, Rolv Bræk, Gregor van Bochmann, and Dan-
iel Amyot, “Service Discovery and Component Reuse with Semantic Interfaces”, in
[SDL Forum 2005], 85-102 (2005)

[Sanders et alia 2005b] Richard Torbjørn Sanders, Humberto Nicolás Castejón, Frank Al-
exander Kraemer and Rolv Bræk, “Using UML 2.0 Collaborations for Composi-
tional Service Engineering”, Proceedings of the 8th International Conference on
Model Driven Engineering Languages and Systems (MoDELS/UML 2005), Mon-
tego Bay, Jamaica, Oct. 2-7 2005, LNCS 3713, 460-475, Springer-Verlag (2005)

[Sassen & Macmillan 2005] Anne-Marie Sassen and Charles Macmillan, “The service en-
gineering area: An overview of its current state and a vision of its future”, Informa-
tion Society and Media Directorate-General, European Commission, July 2005

[SDL-88] Specification and Description Language (SDL), ITU-T Recommendation
Z.100, Blue Book (1988)

[SDL-92] Specification and Description Language (SDL), ITU-T Recommendation
Z.100, (03/93)

[SDL-96] Specification and Description Language (SDL) Addendum 1, Z.100 Adden-
dum 1 (10/96)

[SDL-2000] Specification and Description Language (SDL), ITU-T Recommendation
Z.100 (08/2002)

[SDL-2000 Corr] Specification and Description Language (SDL): Corrigendum 1, ITU-
T Recommendation Z.100 (03/2003)

[SDL Method 1997] SDL+ Methodology: Use of MSC and SDL (with ASN.1), ITU-T
Recommendation Z.100 Supplement 1 (05/97)

[SDL Semantics] SDL Formal semantics, ITU-T Recommendation Z.100 Annexes F1-3

216

(11/2000)

[SDL Forum 2001] Rick Reed and Jeanne Reed (editors), Proceedings of the 2001 SDL
Forum, Copenhagen, Denmark, June 27-29, 2001, LNCS 2078, Springer-Verlag
(2001)

[SDL Forum 2003] Rick Reed and Jeanne Reed (editors), Proceedings of the 11th SDL
Forum, Stuttgart, Germany, July 1-4, 2003, LNCS 2708, Springer-Verlag (2003)

[SDL Forum 2005] Andreas Prinz, Rick Reed and Jeanne Reed (editors), Proceedings of
the 12th SDL Forum, Grimstad, Norway, 21-24 June, 2005, LNCS 3530, Springer-
Verlag (2005)

[ServiceFrame 2002] Rolv Bræk, Knut Eilif Husa, and Geir Melby, “ServiceFrame:
WhitePaper”, Ericsson Norarc, 2002, Available at www.item.ntnu.no/lab/nettint1/
ServiceFrame/ServiceFrame.html (Accessed August 2006)

[SOM 1981] Rolv Bræk, O. Hell and F. Sandvik, “SOM - A SDL Compatible specifica-
tion and Design Methodology. Experiences from 5 years of Extensive Use”, Proc.
of the 4th Int. Conference on Software Engineering for Telecommunication Switch-
ing Systems, 111-117, IEE, Coventry, UK 20-24 July 1981, ISBN 0 85296242 8
(1981)

[Singh and Huhns 2005] Munindar P. Singh and Michael N. Hunhs, “Service-Oriented
Computing”, Wiley & Sons, Chicester, UK (2005)

[SLP 1999] Service Location Protocol, Version 2, IETF RFC 2608, June 1999

[SLP 2002] Vendor Extensions for Service Location Protocol, Version 2, IETF RFC
3224, January 2002

[Sties and Kellerer 2001] P. Sties and W. Kellerer, “A Generic and Implementation Inde-
pendent Service Description Model”, Proc. of the 21st International Conference on
Distributed Computing Systems Workshops (ICDCSW '01), Mesa, Arizona, USA,
April 2001

[Telektronikk 4/2000] Rolv Bræk (editor), “Languages for Telecommunications Applica-
tions”, Telektronikk, vol. 2, no. 4, Telenor, ISSN 0085-7130 (2000)

[Telelogic] Telelogic Tau SDL suite, Information available at www.telelogic.com (ac-
cessed August 2006)

[TIMe 1999] Rolv Bræk, Joe Gorman, Øystein Haugen, Geir Melby, Birger Møller-Ped-
ersen, and Richard Sanders, “TIMe: The Integrated Method. Version 4.0”, SINTEF,
Trondheim, Norway, www.sintef.no/time, July 1999 (accessed August 2006)

[TINA 1995] “Overall Concepts and Principles of TINA”, version 1.0, February 1995

[TINA 1999] Yuji Inoue, Martine Lapierre and Cesare Mossoto (editors), “The TINA
Book. A Co-operative Solution for a Competitive World”, Prentice Hall (1999)

[TIPHON 2003] TIPHON Protocol Framework Definition; Part 1: Meta-protocol design
rules, development method and mapping guidelines, ETSI TS 101 882-1 V4.1.1
(2003-09)

217

[TTCN 2003]Testing and Test Control Notation version 3 (TTCN-3): Core language,
ITU-T Recommendation Z.140 (04/2003)

[W3C 2004] The World Wide Web Consortium (W3C): The Semantic Web,
www.w3c.org/2001/sw (accessed August 2006)

[UCM 2003] URN - Use Case Maps notation (UCM), ITU-T Draft Recommendation
Z.152, September 2003

[UDDI 2004] Universal Description, Discovery and Integration (UDDI) protocol, Ver-
sion 3, www.uddi.org (accessed August 2006)

[UML 2.0 Adopted] UML 2.0 Superstructure Specification, OMG Adopted Specification,
ptc/03-08-02, Object Management Group, Needham (MA), USA, August 2003

[UML 2.0 Revised] UML 2.0 Superstructure Specification, Revised Final Adopted Spec-
ification, ptc/04-10-02, Object Management Group, Needham (MA), USA, Oct. 8
2004 (Convenience document)

[UML 2.0] Unified Modeling Language: Superstructure Specification, version 2.0, for-
mal/05-07-04, Object Management Group, Needham (MA), USA, August 2005

[UML 2.0 Infra] UML 2.0 Infrastructure Specification, OMG Adopted Specification, for-
mal/05-07-05, Object Management Group, Needham (MA), USA, March 2006

[UML2 Ref] James Rumbaugh, Ivar Jacobson and Grady Booch, “The Unified Modeling
Language Reference Guide, Second Edition”, Addison-Wesley, Boston, USA,
ISBN 0-321-24562-8, July 2004

[Z.109 1999] SDL combined with UML, ITU-T Recommendation Z.109, November
1999

[Aagesen et alia 1999] F.A. Aagesen, B. Helvik, V. Wuwongse, H. Meling, R. Bræk, U.
Johansen 1999, “Toward a Plug and Play Architecture for Telecommunications”,
Proceedings of the Fifth International Conference on Intelligence in Networks
(Smartnet'99), Kluwer Academic Publishers (1999)

