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"Would you tell me please, which way | ought to go from here?"
"That depends a good deal on where you want to go," said the cat.
"I don't much care where," said Alice.

"Then it doesn't matter which way you go," said the cat.

Lewis Carroll



Summary

Among new emerging digital communication systems, there is a clear trend of an
increasing number of services using high capacity broad band connections, e.g.
transfer of images, video and high quality sound. This makes it necessary to find
bandwidth efficient modulation formats aefficient channel equalizatiosolutions

at the receiver. A modulation format, with possibilities for both relatively simple
equalizer structures and bandwiéfficientsolutions is Orthogonal Frequency Divi-

sion Multiplexing (OFDM). The symbol stream is divided into  parallel symbol
streams, which are modulated on to separate subchannels. The frequency spectra of
the subchannels overlap, but the orthogonality of the subchannels are maintained in
the time domain at the sampling instant.

To obtain orthogonality between subchannels in OFDM system, one of the assump-
tions which are made, is exact knowledge of theier frequency at the receiver. In

the case of a carrier frequency offset (CFO) between transmitter and receiver, the
orthogonality between subchannal®lost. With a CFO some of the signal power

will be transfered into interferenc@ower, i.e. noise, reducing the system perform-
ance. All digital transmission systemdfeus from performance degradation in the
case of a CFO and it is thus important to minimize the CFO,dréornm carrier fre-
guency synchronization. The CFO generated interference is special for the OFDM
systems and makes them more vulnerable to CFO than single carrier (SC) systems.
In addition, the symbol length is increased in OFDM systems compared to SC sys-
tems, reducing the amount of CFO tolerated before phase slipping occuesr¢ke.
neous decisions due to CFO generated phase errors). Extra care should be taken in
the case of OFDM systems to synchronize the carrier frequency at the receiver with
the carrier of the transmitter.

The main topics of this work have been:

e Carrier synchronization in bandwidéfficient OFDM gstems on station-
ary channels. To obtain maximum bandwidth efficiency, neither pilots,
guard intervals, repeated sequences or other redundant signalling is used in
the proposed methods.
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Summary

Four new OFDM carrier frequency acquisition algorithms are proposed,
with performance investigated by simulations.

The frequency estimator of Kay is investigated for use in Decision
Directed (DD) carrier frequency tracking, with OFDM and non-constant
amplitude modulation.

» Consequences of non perfect carrier frequency tracking and time varying
transmission channels in OFDM systems. Both OFDM systems using QAM
with rectangular pulses and OFDM systems using O-QAM with finite length
pulses have been investigated.

Degradation due to noregfect tracking on stationary channels has been
calculated and performance requirements for the developed tracking algo-
rithms are found.

For flat Rayleigh fading channels, degradation due to non-perfect tracking
and doppler spread are calculated.

Acquisition

The few bandwidttefficient carrier frequency gaisition algorithms proposed for
OFDM in earlier works have assumed oversampled receiver structures and/or more
than one filterbank in the receiver, increasing receiver complexity.

In this work, four critically sampled LMS carrier frequency acquisition algorithms
have been developed for OFDM systems, using a single filterbank in the receiver to
maintain minimum receiver complexity. Error functions for the LMS caffrier
guency acquisition algorithm have been developed by identifying similarities
between OFDM carrier acquisition, SC timing and SC blind equalization. Neither
pilots, guard intervals nor repeated sequences are used in the proposed algorithms.

The performance, i.e. acquisition time for a given steady state variance, of the four
developed algorithms have been simulated and compared to each other and to the
performance of the ML carrier frequency acquisition algorithm of (Daffra and
Chouly 93). Compared with the best of the developed algorithms, the Daffara algo-
rithm performs better for moderate SNR and low number of subchannelsigkor
number of channels and low SNR the developed algorithms are best. Introducing
time dispersive transmission channels or carrier frequency offsets of several sub
channel bandwidths, the developed algorithms have significantly shorter acquisition
time than the Daffara algithm.

Compared to the Daffara algorithm, the best of the algorithms developed in this
work give lower receiver complexity and larger robustness against noisecarge
rier frequency offsets and time dispersive transmission channels.
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Tracking

In the literature there exist several methods for carrier frequeacking in OFDM.

Most of these methods assume constant amplitude modulation and use of pilots,
guard intervals, repeated sequences or other redundant signalling decreasing band-
width efficiency.

In this work methods for decision directed (D@rer phase traing and DD car-

rier frequency tracking in OFDM have been presented for use with higher order
modulation. These methods operate without redundant signalling, maintaining band-
width efficiency. Their performances have been itigeted by comparing calcu-
lated and simulated variance with Cramer Rao Bound (CRB). The best of the
proposed algorithms perform close to or equal to CRB. The proposed DD tracking
algorithms perform better than DA tracking with a factor close (or equal) to the pilot
spacing in the DA systems.

The proposed phase error estimator performs equal to CRB independent of constel-
lation size and number of symbols used for averaging. For the eight frecgreoicy
estimators proposed in this work, the performance equals CRB for constant ampli-
tude modulation. Using higher order modulation, tafgrmance ranges from CRB

to a loss relative to CRB proportional to the second power of the number of frames
used for averaging. For the example systems of Chapter 6, averaging over only a few
frames were necessary to obtain adequate carrier estimation accuracy.

Compared to pilot based methods, several of the presented DD carrier tracking meth-
ods give better trackinggpformance and system with higher bandwid#fficiency.

Performance loss due to imperfect carrier tracking and fading
channels

The performance requirements for carrier frequency tracking algorithms, are decided
by the system degradation as function of CFO. Earlier works on system degradation
due to CFO, have concentrated on OFDM systems using QAMrextdigular
pulses on stationary transmission channels.

In this work OFDM systems using QAM with rectangular pulses and OFDM sys-
tems using O-QAM with finite length pulses are investigated and compared with
respect to CFO generated degradation. This is done both for stationary channels and
flat Rayleigh fading channels. In addition, the degradation due to fading (time varia-
tions on the transmission channel) is investigated. The focus is degradation due to
inter bin interference (IBI) generated by CFO/fading.
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Summary

The IBI generated by CFO at stationary channels and IBérgéed bydoppler
spread at fading channels are calculated and simulated, they are found to behave
similar to the channel noise. This IBI can be viewed as an increase of the AWGN on
the channel. On the other hand, if the IBI is generated by CFO on a fading channel,
calculations and simulations show that the instant signal power (as decided by the
"fade level") and the instant IBI power are highly correlated. The IBI is ignored for
low CFO where channel noise is dominating, and the sysesfarmslike a stand-

ard flat fading system with SNR equal to signal to channel noise power ratio. For
high CFO where the IBI is dominating the channel noise is ignored, and the system
can be viewed as a stationary channel with SNR equal to the signal to IBI power
ratio.

Systems operating at high SNR are found to be more sensitive to CFO and Doppler
spread generated IBI than systems operating at low SNR. In the same manner, sensi-
tivity to CFO and doppler spread is proportional to the number of subchannels in the
system.

If the number of subchannels in the OFDM system is dictated by spectral require-
ments, choice of pulseshaping filters decides the number of subchannels and thus the
CFO and doppler robustness. If the number of subchannels is dictated by delay
spread in the channel, choice of pulseshaping filters have little influence on CFO and
doppler robustness.

Using 4-QAM on flat Rayleigh fading channels, CFO generated phase slipping
occurs at a lower CFO than CFO generated IBI domination. This results in CFO
robustness to be decided by the symbol length and not by IBI generation in OFDM
systems with 4-QAM operating on flat Rayleigh fading channels.
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Chapter 7

Weight in used for preprocessing before the extra FFT in the receiver
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Interference from one quadrature of charmel |, into the other quad-
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Carrier frequency offset
Estimated carrier frequency offset at frakne

Estimated frequency offset at frarke , based on K frames
Frequency separation

Dirac function

Number of samples in the cyclic extension, creating guard interval
Time separation

Estimated gradient according taffara of the likelhood function of
framek , termed the Daffara error function of frakne

First order Godard based error function, frakme , averaged across
the channels

XVil



XViii Nomenclature

€62 k Second order Godard based error function, frame , averaged across
the channels

€61k m First order Godard basedror fundion, channeim frame k

€62,k m Second order Godard based error function, chamnel |, flame

Em, k Mueller and Mdller based error function, fratke , averaged across
the channels

EM.k m Mueller and Miiller based error function, chanmel , frakne

() Delay spread in the transmission channel

0 Phase error

0 Estimated phase error

Ok m Estimated phase error, frarke , chanmel

No,o Damping factor of the wanted signal.

Al mn Interference from real part of channel , $ohl into real part of

channelm , symboD , and from imaginary part to imaginary part.

Hp Step size weight for the LMS update using the Braffdgorithm

M Step size with Mueller and Muller based acquisition

p(df, At) Envelope correlation coefficient

o2, oﬁ Transmission channel noise power

G The set of subchannels used for pilots

T Time variable for time dispersion in time varying channels

Tp Delay of second ray in two ray channel

Y Performance loss of the chosen tracking algorithm relative to CRB

ay Transmitted complex datasymbol numiger

A n Transmitted complex datasymbol in channeframe k

glk Decision / estimate of complex datasymbol number

ék, n Decision / estimate of complex datasymbol transmitted in channel
n, framek

A/D Analog to digital



Nomenclature

Xix

AWGN
b(t)

Peq

Dar

D(Af)

Dtolerated
D/A

DA

DD

Additive white Gaussian noise

Transmission channel impulse response

Doppler bandwidth of the fading channel

Probability of error in one quadrature channel

Total OFDM system bandwidth

Total OFDM system bandwidth for systems with guard interval
Total OFDM system bandwidth for systems without guard interval
Speed of light

Fourth order cumulant of

Time varying attenuation of flat Rayleigh fading channel
Carrier Frequency Offset, carrier frequency error
Cramer Rao bound

Cramer Rao bound of thaier frequency offset estimate
Cramer Rao bound of theucier phase estimate

Time delay of length one symbol interval

SNR degradation

Distance between points in the signal constellation

SNR degradatio® for a given CFOf = AF
relation between SNR-; and SNR¢-ar

SNR degradatio

, measured as the

as function of CFO
Maximum tolerated SNR degradation due to CFO (design criterion)

Digital to analog

Data aided

Decision directed

Power of the received signal component

Transmitter carrier frequency
Receiver carrier frequency
Channel doppler bandwidth

High sampling rate, i.e. after parallel/serial converter



XX

Nomenclature

FFT
FLL

a(t)
h(t)
h(K)

I0
Im—n
B

IBlcro

IBI Doppler
ICI

Im{ }
IS

Jo
K

K(a, b)

k|

L
|

LMS

LP, LP(%)
M

m
ML

High sampling rate in system with Guard channels

Fast Fourier transform
Frequency locked loop

Impulse response of receiver filter
Impulse response of transneitt, or pulseshapg- filter
Time discrete vesion of h(t)

Subchannel offset, i.e. difference between input channel of signal at
the transmitter and output channel for the same signal at the receiver

Damping factor of the desired signal.

Weight of interference from channel n into channel m.
Inter Bin Interference
CFO generated IBI

Fading generated IBI

Inter Channel Interference
Extraction of imaginary part of signal
Inter Symbol Interference

Zero order Bessel function

Number of symbols (Single carrier) or frames (OFDM) used o+
rier frequency estimation

Covariance betweea arid
Index of symbol (Singlearrier) or frame (OFDM) in the transmitter

Index of samples at the high sampling rate in front of the serial to
parallel converter in the OFDM receiver

Number of channels used for pilots in OFDM systems

Index of symbol (Single carrier) dame (OFDM) in the receiver
Least mean square

Butterwort low pass filter

Symbol constellation size

Index of receiver filterbank channel number

Maximum likelihood



Nomenclature

XXi

Nrm Nim: N,

NDA

n(t)
Ne
ok,m

OFDM
0-QAM

p
p( )

Paf>ar

pk, m

Phase slipping When a phase erroeofA fT

PLL

Q[ ]
QAM

R’[Ot
Re{ }

s(t)
sc

S-curve

SER
SERAf)
SNR

SNRyt-ar
SN I%uard
SNR\loGuard

Number of channels in the OFDM filterbank

Channel noise in real part, imaginary part and the total complex
noise of channetn

Non data aided

Index of transmitter filterbank channel number

Additive channel noise

Noise enhancement due to zero forcing equalization

(2, mék, m)

Orthogonal frequency division multiplexing
Offset QAM

Order of Godard error function

Convolution of transmitter and receiver filter
Probability for the CFO to excedsF

(Z+ 1, mZH mr:qu 1, m;lk, m)

generates decision errors
Phase locked loop

Q-function, integral of the Gaussian density

Quadrature amplitude modulation

Total symbol rate in the OFDM system

Extraction of real part of signal
Continuous time and amplitude received baseband signal
Single carrier

Expectation of the error functidgl,€] , also known as characteristic

curve
Symbol error rate

Symbol error rate as function of CFO
Signal to noise ratio
Signal to noise (including IBI) ratio for a CFO Af

SNR at the data detector for systems with guard interval

SNR at the data detector for systems without guard interval



XXil

Nomenclature

w(k)
Win(K)
Weighting
WGN
Windowing

x(1)
Zy
%,

z

Single sideband
Continuous time

Symbol interval

SC symbol interval

Symbol interval minus guard time for systems using guard interval
Weighting function

Power of the signal generated interference, or IBI

Velocity of mobile transceiver

Windowing function

Windowing function subchanneh

Use weights during channel averaging
White Gaussian noise
Use weights during time averaging

Continuous time and amplitude transmitted baseband signal
Sampled received signal at tihe= kT

Sampled received signal in chanmel , at titme KT

Output of FFT with preprocessing in the OFDM receiver of (Daffra
and Chouly 93)



Chapter 1
Introduction

A block diagram of a typical digital communications system is shown in Figure 1.1.
The source signal is processed by the source encoder to generate a digital signal
compatible with the digital communications system. The channel encoder adds
redundancy and organizes the digital signal to protect against errors during transmis-
sion. The task of the modulator is to transform the time discrete symbol sequence
from the channel encoder into a time continuous signal suitable for the transmission
channel. Using passband transmission channels, one of the operations performed by
the modulator is addingarrier to the time cdmuous signal to be transmitted, i.e.
moving the frequency spectra of the signal to an area aroundittier drequency,
compatible with the transmission channel and other systems using the same trans-
mission channel. The transmission channel may distort the signals and introduce
noise and interference. The demodulator transforms the received time continuous
signal, to a time discrete symbol sequence, which may differ from the transmitted
sequence due to the effects of the trassioh channel. Removal of the carrier and
sampling of the time continuous signal at the symbol rate is included in the operation
of converting the time continuous signal to a time discrete symbol stream. Neither
exact carrier frequency, carrier phase nor symbol timing is known at the receiver. It
is the task of the synchronizer unit in the demodulator to reconstruct these parame-

Source Channel Modulator
encoder encoder

Channel

<«— Demodulato J

Figure 1.1. Block diagram of digital communications system

Source Channel
decoder ' decoder




Introduction

ters from the signal. The channel decoder corrects transmission errors and removes
the redundancy introduced by the channel encoder. The purpose of the source
decoder is to reconstruct the original source signal as accurately as possible. Source
or channel coding is not treated any further in this work. It will be assumed that the
modulator receives a stream of random symbols.

Examining the new emerging digital communications systems, there is a clear trend
of an increasing number of services using high capacity, broadband connections, e.g.
transfer of still images and video. Several transmission channels suffers from band-
width limitations and time dispersion. Broadband systems using such transmission
channels need bandwidth efficient modulation and channel equalization at the
receiver. A modulation format, which exhibits good qualities both for bandwidth
efficiency and time dispersion robustness is Orthogonal Frequency Division Multi-
plexing. (OFDM). Instead of modulating the high rate symbol stream on to a single
carrier (SC), the symbol stream is divided\in argllel symbol streams, each modu-
lated by a unique sub carrier on to separate subchannels. The frequency spectra of
the subchannels overlap, but the orthogonality of the subchannels are maintained in
the time domain at the sampling instant.

OFDM is proposed used for a wide range of applications and channels:

* In mobile cellular radio communication, the system must cope with large
time dispersions. Due to the splitting of the symbol streamNnto  channels
in OFDM, the duration of each symbol increase witactor N , increasing

the time dispersion robustness. Independent of the sikk of , time disper-
sion will give a certain level of Inter Symbol Interferent®l). For some
OFDM systems the ISI can be totally avoided by including guard intervals,
(Doelz et.al 57), (Clasen and Meyr 94). In this case the channel equaliza-
tion reduces to a power scaling problem.

» OFDM has been incorporated in standards for both digital audio broadcast-
ing (DAB), (Zimmermann 96) and digital video broadcasting (DVB),
(Reimers 97). Use of OFDM with guard intervals in digital broadcasting
networks, makes single frequency networks possible, increasing the band-
width efficiency. OFDM gstems are also well suited for co existence with
analogue systems, by adjusting the content of each subchannel according
to the spectra of the analogue system, (Vahlin 96).

» The twisted pair subscriber lines in the telephony network is a slowly
changing channel, with signal to noise ratio (SNR) dependant dinethe
guency. Using OFDM on such a transmission channel, the system capacity
can be maximized by adjusting the transmitted power and signal constella-



tions according to the SNR in each OFDM subchannel. The transmitter is
informed about the transmission channel through a return link from the
receiver. This is utilized in asymmetric and high bit rate digital subscriber
lines (ADSL), (Chow et. al. 91) and VDSL.

» |n stationary line of sight radio links there are high bandwidth efficiency
requirements, with frequency masks allowing little excess bandwidth. With
the use of OFDM this is achievable without the use of sharp and expensive
analogue filters, (Vahlin 96).

The orthogonality between subchannels in an OFDM system is lostdathier fre-
guency of the demodulator, i.e. of the receiver, differs from the carrier frequency of
the modulator, i.e. of the transmitter, (Pollet et. al 95). Loss of orthogonality will
transform some of the signal power into noise power, reducing the system perform-
ance. The transformation of signal power to noise power makes the OFDM system
more vulnerable to carrier frequency offset (CFO) than @fems. It is thus the

task of the synchronizer unit in the demodulator to keep the frequency error at such a
low level that these effects are minimized.

The main issue of this work @arrier frequency synchronization in OFDdylstems.

Existing synchronization algorithms for OFDM usually depend on pilots or other
redundant signalling, oreasing system bdwidth. In this work arrier frequency
acquisition algorithms and tracking algorithms are developed without the use of
redundant signalling. This gives bandwiddfficient solutions. The algorithms
developed in this work are intended for stationary channels.

System degradation as function of CFO, decides the carrier frequency tracking per-
formance requirements. Earlier, the consequences of a CFO have been investigated
for OFDM systems using QAM on stationary transmission channels. In this work the
consequences of CFO are analysed for both stationary transmission channels and flat
Rayleigh fading transmission channels, together with the consequences of the fading
generated Doppler spread. OFDM systems using QAM and OFDM systems using O-
QAM are compared with respect to CFO d&wppler spread robustness.

Carrier phase tracking is also addressed, while timing is only addressed by refer-
ences to other work.



Introduction

1.1

Outline of thesis

Chapter 2: The principles of OFDM are introduced and some characteristic
properties are described. Different classes of OFyMems are reviewed.
A short overview of the literature of OFDM systems is presented.

Chapter 3: A short introduction to the synchronization problem and possi-
ble solution strategies in general, with comments on what is special for
OFDM. An introduction to the consequences of a carrier frequency offset
for different OFDM systems are given, together with an introduction to the
consequences of a flat Rayleigh fading channel on the same OFDM sys-
tems. An overview of work on timing in OFDM is also included. In the end
there is an overview of earlier work in the area of carrier frequency and
phase synchronization for OFDM, together with an overview of work con-
cerning consequences of CFO and phase noise in OFDM.

Chapter 4. Algorithms are developed for carrier frequency acquisition on
high capacity stationary channels without the use of pilots. The algorithms
assume critically sampling and one single filterbank irr¢iceiver to min-

imize receiver complexity. The algorithms are developed for use with
square pulses without assuming the use of guard interval. The performance
of the algorithms are compared to the performance of an existing algorithm
requiring double set of filterbanks in the receiver@ffia and Gouly 93).

Chapter 5: Decision directed tracking algorithms for carrier phaseand

rier frequency are developed. The algorithms are presented for use with
square pulses without assuming the use of guard intervals. The similarity
with pilot based algorithms is shown, and the performance of tfezatit
algorithms are compared.

Chapter 6: The consequences of a residual CFO during tracking is ana-
lysed for different OFDM systems on Stemary and flat Rayleigh fading
channels. The CFO robustness for the different systems are compared. The
results for the square pulse OFDM system on stationary channels are also
used to find quality demands on the CFO tracking algorithms in Chapter 5.
The consequences of loss of orthogonality due to a flat Rayleigh fading
channel is also discussed for thatent OFDM gstems.

Chapter 7: The conclusions of the work are presented.



Chapter 2
OFDM Principles and system
model description

This chapter contains a genal intoduction to Orthogonal Frequency Division Mul-
tiplexing (OFDM) which is a class of multi carrier transmission systems with over-
lapping spectra, and data modulated on to each carrier or subcharfferieri
OFDM systems and models are presented, including the models used for calcula-
tions and simulation in subsequent chapters. Notation is also established. At the end
of the chapter there is an introduction to flat fading channels, describing the physical
mechanism of the fading and the channel model used in this work.

The chapter is organised as follows: Chapter 2.1 contains references to earlier work
in the area of OFDM systems, Chapter 2.2 describes the basic principles of OFDM,
Chapter 2.3 gives an introduction to different OFDM classes, in Chapter 2.4 time
discrete implementation of OFDM systems is discussed, Chapter 2.5 contains design
criteria for number of subchannels in OFDM systems and Chapter 2.6 describes the
transmission channel models used in this work.

2.1 Earlier work in the area of OFDM systems

Transmission with overlapping spectra has become popular during the last decade as
increased calculation power has become available in digital transmission systems.
On the other hand the first contributions to the literature on the subject date 40 years
back, (Doelz et.al 57), (Harmuth 60). These early systems used sulggs, fthe

use of guard interval was included by (Doelz et.al 57). Later the use of FFT for
implementation of rectangular pulse systems was proposed by (Weinstein and Ebert
71). Rectangular pulses is an example of pulse shapes of length one symbol. Other
pulse shapes of length one symbol exists as well, (Mallory 92), (Li and Stette 95).
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Bandlimited pulses for use with Single Sideband (SSB) was first mentioned by
(Chang 66) and later the same pulses where used with offset QAM (O-QAM) sys-
tem, (Saltzberg 67).

2.2 System model

Each subchannel in an OFDM system can be viewed as a Single Carrier (SC) sys-
tem, the total OFDM system will be a composition of SC systems. In this model each
subchannel SC system must fulfill all the criteria of an ordinary SC system, in addi-
tion there will be some extra requirements to fulfil, making the different SC systems
work together as one OFDM system. OFDM has been proposed used together with
several modulation schemes, QAM, O-QAM, single side band and combinations
with spread spectrum. In this work the focus is on O-QAM and QAM. First there is a
generalintroduction to OFDM, then the ffitrence between OFDMystems using
O-QAM and QAM is described.

OFDM

In an OFDM system there will be several subchannels witltréec spacing equal to
1/T, whereT is the symbol interval. If thgstem containdN channell,  symbols

will be transmitted simultaneously in one frame. A model of an OFDM system is
shown in Figure 2.1

a.,: Data symbol transmitted in channel n, frame k

ék, n: Estimation of data symbol transmitted in channel n, frame k
T: Symbol interval

N: Number of channels in the OFDM system

n(t) : Additive channel noise

X(t) : Continuous time and amplitude transmitted baseband signal
s(t): Continuous time and amplitude received baseband signal
b(t) : Channel impulse response

f.r: Transmitter carrier frequency

f.r: Receiver carrier frequency

In the rest of Chapter 2 receiver and transmitter carrier frequency is assumed to be
equal.
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Modulator and demodulator

A block diagram of a QAM modulator and demodulator with time continuous trans-
mitter and receiver filters is shown in Figure 2.2

SC demodulator

an
4|> g(t) —m — j: —>ék,n

Figure 2.2. Block diagram of the analytic model of a Single Carrier QAM
system

h(t) :Pulse shaping filter
g(t) :Receiver filter

z, ,-Received, sampled signal, frarke , chanmel

In the case of QAM modulation the real and imaginary part of each symbol are trans-
mitted simultaneously and sampled in the receiver simultaneously. An alternative
solution is to use O-QAM modulation where the transmission of the imaginary part
of the symbol is moved half a symbol interval compared to the real part of the sym-
bol. A block diagram is shown in Figure 2.3

Re{ } :Extraction of real part of signal

Im{ } :Extraction of imaginary part of signal

Filter requirements

In a SC systemN = 1 , the design criterion for the receiver and transmitter filters
will be no inteference between different syawmls at the sampling instant, denoted as
no Inter Symbol Irgrference (ISI). For this to be the case the filters mustl filé
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| = Im{ 7 .} :
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Figure 2.3. Block diagram of the equivalent complex analytic model of a Single
Carrier O-QAM system

Nyquist Criterion (Lee and Messerschmitt 94). In an OFDM system with pulse shap-
ing filters with non zero excess bandwidth, a carrier spacirly of will give over-

lapping spectra as shown in Figure 2.4
n-1 f et 1 ¢
Figure 2.4. OFDM spectrum

| |
| |
1:c"'_ 1:c"' c T

n
T T
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In this case, transmitter and receiver filters must be designed to avoid both Inter
Channel Interference (ICI) and ISI at the séinpinstant, i.e. fulfill the generalized
Nyquist criterion (Lee and Messerschmitt 94). In this work Inter Bin fertence,

(1BI), will refer to both ICI and ISI. With filters fulfing the criterion, impairment

free channeb(t) = d(t) and no noise, the received sampled signal equals the trans-
mitted signalz, ,, = ay m -

The collection of theN pulseshaping filters in the transmitter is in this work termed

the transmitter filterbank, and the collection of thie ecaiver filters as the receiver
filterbank.

2.3 Different OFDM systems

All calculations througout the thesis are based on the OFDM system models with
time continious pulseshaping filters presented below in Chapter 2.3.1 and 2.3.2.

2.3.1 QAM and rectangular pulses

One set of transmitter and receiver filters which fulfill the generalized Nyquist crite-
rion are the rectggular shaped filters, with both transmitter and receiver filter of

length one symbol interval, . The amplitude is adjusted to unity pulse power.

E L o<t<T

— <i<

hy =g7 = (2.1)
E 0 else where

g(t) = h(-t) (2.2)

According to Equation 2.2 this is a matched filter solution. The transmitted baseband
signalx(t) isasum o QAM signals affdrent frequencies.

N-1 o

2T
X =Y za,,nh(t—lT)e’?”t 2.3)

n=01=0
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This gives a system where consecutive symbols do not overlap and ISl is avoided.
Assuming transmission over an impairment free channel and no noise, the received

sampled signal in channal |, franke equals:

N-1

Z knjl G <, @4

QAM and rectangular pulses with guard interval

Another set of square transmitter and receiver filters which fulfill the generalized
Nyquist criterion is the guard interval solution. Transmitter eewtiver filters are

given by Equation 2.5 and 2.6, and the carrier spacing eq4dls

0 1
d 0<t<Ty+A
h(t) = E To+ A (2.5)
0 0 else where
O
T,+A
00 _ _
g(t) = 0T (To+A)st<-A (2.6)
O 0 else where

Extending the length of the transmitter pulse shape &ith  will make the system tol-

erate time dispersive channels with time dispersion less&han , in the sense that no
ISI and no ICI are generated.

There are two disadvantages with the guard interval solution (Vahlin 96).

a The guard interval solution is not a matched filter solution, resulting in a
Signal to Noise Ratio (SNR) loss.

b A guard interval will cause increased use afidaidth.

BWGuard — SNRjoGuard =1+ é (2.7)
BWNoGuard SNF%uard TO
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2.3.2 Offset QAM

Square pulses of length  have high spectral sidelobes. To reduce the sidelobe level,
pulses of length more than one symbol may be used. Applying O-QAM instead of
QAM will increase the freedom in choosing pulse shaping- and mediiters,
which meet the generalized Nyquist criterion. The filters discussed here for use with
OFDM and O-QAM will be limited to pulses which fulfill the following require-
ments:

i Real, symmetric transmitter filter, i.a(t) = h(-t)

il Matched filter in the receiver, i.g(t) = h(-t)

iii The cascade of transmitter filter and receiver filter gives no intersymbol
interference.

iv There is no inter channel interference in the system
According to iii and iv the pulses must fulfill the generalized Nyquist criterion.

The transmitted signal in an O-QAM OFDM system equals:

N-1 o o n
=y z@ae{ a,n}h(t—|T)+j|m{a,,n}h§—|T+g%e’DT o (2.8)
n=01=0

With impairment free channel and no noise, the received sampled real part in chan-
nelm attimek equals:

Re{ 2mt = z ZIRe{ an}h(t=1T)h(t-KT) (2.9)
n=0I=0-w
Ebos%[ﬁgg(n—m)gdt
-3 Y [im ayn}h%—lT+g%|(t—kﬂ
n=0I =00

Esin%-[t + gg(n - m)gdt
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Similarly the sampled imaginary part will be equal to:

Mz} = 5 3 [im{ aa,n}h(t—IT+£)h(t_kT+ g) 010
n=0Il=0-
Ebos%[t + gg(n - m)gdt
©3 3 [Reta ek )
n=0l= 0o

Esin%-[t + gg(n - m)%ﬂt

To avoid ISI and ICI, the second integral of both Equation 2.9 and 2.10 must equal
zero for every combination af, n k arld . Similarly the first integral must equal
one forn = mO | = k and zero for every other combinatiompfn, k bhnd

Pulses with less than 100% excess bandwidth

Pulses with double sided bandwidth less tRRam that obey point i, ii and iii on
page 12, (symmetry and no ISI), will also obey point iv, (no ICI), (Vahlin 96). One
class of pulses which fulfill i, ii and iii is the raised cosine pulses, (Lee and Messer-

schmitt 94). With roll-off factor,a,, , in the regiob<a,,<1 , point iv will thus
also be fulfilled.

A short description of the proof of (Vahlin 96) is given. Due to limited bandwidth,
the only channels which give contributions to the received symbol in Equation 2.9

and Equation 2.10aren = m mtl . Inseihg n = m equals a single carrier sys-
tem, and with pulses fulfilling the Nyquist criterion, (no I1Sherawill only be a
contribution forl = k . Insertingh = mt1 and substituting integration variables,
all integrands will turn into odd functions of time, integrating frem ot0  the

resulting integrals equals zero. Assuming normalized pulse shapes, impairment free
channel and no noise, the received symbols will equal the transmitted symbols

Re( 7w}
Im{ 7}

Re{ 8 m} (2.11)

Im{ &} (2.12)



14

OFDM Principles and system model description

O-QAM with time limited pulses

Rectangular pulses have a high spectral sidelobe level while bandlimited pulses have
long duration in the time domain. Practical approximations to the bandlimited pulses
will need long filters which give a high complexity in transmitter and receiver. Alter-

natively pulses with low spectral sidelobe level and finite length largerthan  can be
during the pulse design. One example is (Vahlin and Holte 96) where the pulse
length is given and the out of band power is minimized under the condition of no ISI

and no ICI. This gives pulses of finite, relatively short length and low sidelobe level

of the spectra.

2.4 Time discrete implementation

The OFDM systems discussed in Chapter 2.3 were based on time continuous filters
in each branch or subchannel in the OFDM systems. This is not the case for most
normal implementations. Usually the pulse shaping and receiver filtering is done in a
time discrete manner. With time discrete pulse shaping the Digital to Analog (D/A)
conversion is done after the summation of the channels, while in the receiver the
Analog to Digital (A/D) conversion, including the sampling, is done after removal of
the carrier. A principal model for QAM OFDM with time discrete pulseshaping fil-
ters and normalized bandwidth is shown below in Figure 2.5. The conversion from
time continuous to time discrete filtering for the O-QAM OFDM system will be sim-
ilar.

D/A: Digital to analog converter, including low pass filtering
A/D: Analog to digital converter including lowpass filtering and sampling

k' : Time index at the high sampling rate
h(K): Sampled version dif(t)

Simulations of O-QAM systems in later chapters use a structure similar to Figure
2.5. Simulations of QAM systems with rectangular pulses use the structure of Figure
2.6 with the operation of the FFT and the IFFT given by Equation 2.14. Deaing

rier acquisition simulations, Chapter 4, guard channels are included, Chapter 2.4.3.

2.4.1 Time discrete QAM rectangular pulse systems

The discrete time filterbanks in Figure 2.5eomtes at the high sanmrate, N/ T
which gives high computational complexity. The filterbanks for OFDM with QAM
and square pulses can be implemented in a eftiolent manner bysing IFFT and
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Figure 2.5. Principle model of OFDM QAM transmitter and receiver with time

discrete pulseshaping filters
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FFT. The transmitter consists of an IFFT and a parallel to a serial converter, while the
receiver uses a serial to parallel converter in front of a FFT, as shown in Figure 2.6.

Both IFFT and FFT operates at the low samplingfat®

=) %0 ék,o
—P —1 —— | j: —
© [
= - )
3 1 % x(K)  s(K) E 41 ak 1
— L_|_ — DC? . . - —
@ > ™= II
LR < L
S S
© (D)
ol 0p]
A N-1 4 N-1 Ak N1
— — -1 — - L j: —

Figure 2.6. FFT realisation of OFDM QAM system

The IFFT/FFT realization makes it easy to implement the guard interval discussed in
Chapter 2.3.1. This is done by a cyclic extension of the output signal, i.e. for each

block of N samples gemated by the IFFT, the la&N samples are copied and
inserted in front of théN  length block in the transmitter. Total length of each block
is N+ AN where the size dAN is decided by the length of the guard interval. At
the receiver, the firsAN  samples are removed before processing by the FFT.

The inverse discrete Fourier transform (IDFT) and the discrete Fourier transform
(DFT), performed by the IFFT and FFT, is shown in Equation 2.13 fér a  channel
OFDM system with normalized bandwidth in each subchannell i=.1
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N-1
oon,
x(K) = %1 s a(n)e”™ IDFT

n=0
W (2.13)

2(m =Y s k)e_janm DFT

k=0

Comparing these expressions with the continuous time filters Equation 2.1 and
Equation 2.2, reveals that the IDFT/DFT solution is a non symmetric sampling of the

continuous pulse shapes. The first sample & at  and the last sarfip(e.an) of

a pulse in the intervdl0, 1> . This non symmetric sampling does not conflict with
the requirement of no ISI and no ICI in a impairment fgstem, but in some occa-
sions the unsymmetrical sampling will give &elience in the beléour of the time
discrete implementation and the time continuous implementation, Chapter 4. An odd
IDFT/DFT with symmetrical sampling is shown in Equation 2.14.

N-1
P
x(K) = %1 s a(n)e ™2 oddIDFT
n=0 (2.14)
N-1
anler1/2)
z(m) = ZS(k)e N OddDFT
K=0

2.4.2 Time discrete O-QAM pulse systems

The system in Figure 2.5 can be modified to work with O-QAM including time dis-
crete filterbanks with sampled versions of the time continuous filt&) working

at the high sampling ratd/ T . In the case of timelimited pulse shapes the whole
pulse can be used, while in the case of the bandlimited pulses, which are of infinite
length, they must be truncated to be implementable. The truncation will lead to both
ISI and ICI where the level of interference must be traded against pulse length and
system complexity. Similar to OFDM with QAM and square pulses, solutions with
reduced computational complexity exists for OFDM with O-QAM, (Hirosaki 81)
and (Cariolaro and Vagliani 95). The solutions differ at several points, but all of them
include the use of IFFT and FFT. A basic block diagram of the transmitters is shown
below in Figure 2.7, the receivers will have a corresponding structure.
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Figure 2.7. Computational efficient OFDM O-QAM transmitter

The preprocessing doubles the sampling rate by separating the real and imaginary
part in time. In addition the symbols are rearranged and multiplied with diffaient
tors for the different dations. The filterbank is implemented with a N-branch poly-

phase network, using the original high samplingrate fiigh) eterence filter.
The samplingrate at the IFFT and in the polyphase network egyals , reducing
the computational complexity compared to the solution with a filterbank operating at

a sampling rate oN/T . BotN  point ainy 2 point IFFT solutions exists, (Cari-
olaro and Vagliani 95) and (Hirosaki 81).

2.4.3 Guard channels

If every channel in the OFDM filterbank is used for transmission of datdrehe
guency spectra in front of the D/A converter will be a repeated spectra with non zero

values around half the sampling frequentfy/ 2 . WHere  equals the filterbank

bandwidth and the high sampling rate in the OFDM system. To achieve good spec-
tral efficiency a steep atway filter is needed in the D/A conversion. This is difficult
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to implement. A common approach to avoid this problem, is to extend both transmit-
ter and receiver filterbank with guard channels. The guard channels are divided
between the upper and lower end of the filterbanks, Figure 2.8. This gvikise the

filterbank bandwidth and the high sampling rate in the systefyzto . By not trans-
mitting data in the guard channels, there will not be large signal contributions out-
sidexf/2 , ceating gaps arounsif,./2 . So despite that the filterbank bandwidth is
increased td,; , the system bandwidth is kept cloge to . At the same time, the gaps
in the frequency spectra allow less steep filters to be used in the D/A conversion. A
schematic illustration is shown in Figure 2.8.
Filterbank Bandwidthdg

Time discrete - _ Time continuous

A Filterbank spectrum  System Bandwidthf D/A Filter spectrum

gremiint P

- q —p <>
Lower Data- Upper
Guard- channels Guard-
channels channels

Figure 2.8. Spectrum for OFDM system with Discrete pulseshaping filters,
guard channels and time continuous D/A filter

2.5 Number of channels in OFDM s ystems

In Chapter 6 it is concluded that CFO and Doppler spread robustness depend on the
number of channels in the OFDM system. The number of channels will be dictated

by system requirements. In the case of strong spectral requirements, the frequency
mask can dictate the number of channels used in the system, while in the case of
multipath channels the number of channels can be dictated by a wish of time disper-

sion«1/T to make each subchannel behave close to a non time dispersive system.
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2.5.1 Number of channels determined by spectral requirements

Usually there are strong spectral requirements for fixed radio links operating on sta-
tionary channels, resulting in strict frequency masks which requires a strong out of
band attenuation and have small excess bandwidth. In the case of an OFDM system
one can focus on the edge channels (cha@nel Nand ). The spectral side lobe
level of these edge channels must fall off quickly enough, i.e. the transition band
must be narrow enough, to fulfil the frequency mask of the total system and thereby
avoid cochannel interference (at this point cochannelferaice refers to interfer-

ence between two OFDM systems). The transition band is defined as the area
between the subchannel passband (width/oF ) and stopband (where the attenua-
tion is above a given limit). The width of the transition band compared to the symbol
rate in each subchannel is given by the pulse shaping in the system, but the width
compared to the total rate of the system is also decided by the number of subchan-
nels in the system. Multiplying the number of chanri¢ls  with some factor, multi-
plies the width of the transition band with the same factor. Use of pulse shapes with
slowly decaying sidelobes, i.e. a wide transition band, must be compensated with an
increased number of subchannels in the system.

Square pulses have sinc shaped frequency spectra with large side lobes, which fall
offas1/f (Lee and Messerschmitt 94). Hence a large number of chahnels  is nec-
essary to obtain good spectral efficiency. O-QAM OFDydtems can use pulse
shapes with, in this context, better spectral behaviour. Bandlimited raised cosine
pulses will make it possible to fulfil the frequency mask with a low number of chan-
nels, but the long pulse lengths gives high complexity. A O-QAM low complexity
solution with good spectral efficiency has been found by (Vahlin and Holte 96). In
this work, pulses of finite duration which were optimized for minimum out of band
energy under constraint of zero intersymbol and interchannefdrgace in an
OFDM system, were created. The pulses are given as a sum of prolate spheroidal
wave functions. The pulses of lengaif atdl are shown bellow in Figure 2.9
together with the square pulse.

With finite length, the there will be infinite bandwidth, but the minimisation of the
out of band power ensures that the sidelobes will be fast decaying. The spectrum of
the pulses in Figure 2.9 is shown in Figure 2.10.

The low side lobe level compared to square pulses will be advantageous if a small
number of channels are wanted in a system where spectral efficiency requirements
are strong. In order to achieve 5% excess bandwidth of the total system, with a given
sidelobe level, (Vahlin 96) has shown how many chanNels an OFDM realisation
of the systems must use to meet these requirements. The results are presented in
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Table 2.1 and show that the use of O-QAM and optimized pulses for OFDM systems
with strong spectral requirements gives a significant reduction in the number of
required channels compared to a QAM realization with square pulses.

Opt. pulses Opt. pulses
Rect. pulses 2T 4T
Sidelobe level-30dB 192 15 11
Sidelobe leve-40dB 627 80 20

Table 2.1. Number of channels necessary to achieve a given sidelobe level for
5% excess bandwidth.

Increasing the length of the optimizgulises, decrease the sidelobe level, but
increase the complexity of the receiver filters. But increasing the length of the pulses

from 2T to 4T increase the complexity in each channel, but reduce the number of

necessary channels according to Table 2.1. For sidelobe -l40elB (Vahlin 96)

has shown that the complexity measured in number of operations per output symbol
is equal for the two optimized pulse systems, while the complexity for the 627 chan-

nel rectangular pulse system is approx. doubled.

2.5.2 Number of channels determined by delay spread

As described in Chapter 2.6 a transmission channel can be both time dispersive and
time varying. In the frequency domain, this equals afremuency flat, time varying
transmission channel (Steele 92). Wideband SC systems must use equalizers in the
receivers to compensate for the non frequency flat transmission channel (Lee and
Messerschmitt 94). Using an OFDM system with a sufficient number of subchan-
nels, the transmission channel experienced by tharaep(nawwbanded) subchan-

nels will be close to frequency flat, reducing the need of high complexity equalizers.

According to (Steele 92), a measure of the transmission bandwidth at which distor-
tion due to time dispersion becomes appreciable, is often based on the transmission
channels coherence bandwidth. The coherence bandwidth indicatieghency
separation at which the attenuation of the amplitudes of two frequency components
becomes decorrelated such that the kEpee correlation coefficientp(of, At)
reaches a predesignated valpg,,i . There have beenak@woposals for this

value ranging froml/e td.9 . Systems applying ei#nt modulation formats,
have different time dispersion sensitivities. A particular system might experience
problems for a transmission bandwidth corresponding to a correlatifficent of
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0.9, where as more robust systems may perform satisfactorily on a transmission
bandwidth corresponding to a correlatioreffizient of 1/e .

The envelope correlation coefficient of two signals separatedf by  HAfand sec-
onds equals (Steele 92):

J&%T{\—émg
of, At) = 2.15
Pl ) 1+ (2mdf)°Z3(t) (245

Jo: Zero order Bessel function
v: Mobile speed

c: Speed of light

((t): delay spread

InsertingAt = 0 , the (frequency) correlationefficient equals:

1
1+ (2mdf)2Z3(t)

p(5f) = (2.16)

In an OFDM system the subchannel transmission bandwidth can be defipéd as
Designing the system for a maximum delay spréad, , and a chgsgn for
the subchannel transmission bandwidth, the subchannel spacing equals:

_ 1
24/1 + (ZT[)ZCmaxzplimmit

(2.17)

1
T

2.6 Channel models

The transmission channel in Figure 2.1, has been assumed impaireeein the
discussions above, but in general it will distort the signals and introduce noise and
interference. The stationary transei channel model described in Chapter 2.6.1

is used for calculations and simulations in Chapter 4, 5 and 6. The flat Rayleigh fad-
ing transmission channel model of Chapter 2.6.3 is used for calculations and simula-
tions in Chapter 6.
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2.6.1 Stationary additive white Gaussian noise channel

Several transmission channels exhibit extremely slow changes, or no changes at all
as function of time. One example is the transmission channel of stationary line of

sight radio links. The channels can thus be viewed as stationary. Despite stationarity,
multipath propagation can generate time dispersion, described by the channel

impulse responsdy(T1)

In addition to time dispersion, the transmission channel introduce noise. For radio
links the noise is usually modelled as additive white Gaussian noise (AWGN), (Lee
and Messerschmitt 94). Unless other is stated the transmission channels in this work
are assumed non time dispersive with AWGN.

b(t) = (1) (2.18)
o( ): Dirac function.

For testing of the proposed carrier frequency acquisition algorithms in Chapter 4, the
two ray AWGN transmission channel of (Rummler et al. 86) is applied as well.

b(t) = 8(1) + ape®d(1—1p) (2.19)

0p: Attenuation of the non direct path
8, : Phase shift of the non direct path

Tp: Delay of the non direct path

2.6.2 Fading channels
In the mobile scenario the transmitterreceiver (orboth) will be moving. In the
case of multipath propagation, the transmission channel impulse respfinsg, , 1S

a function of timet , as the mobile moves relative to the base station and reflectors.
This is the most general case with a time dispersive, time varying channel. The sta-
tionary channeb(t) , discussed in Chapter 2.6.1, can be viewed as a special case of

the general channdb(t, T) . Yet another special case is the non time dispersive, time
varying channel, also known as the frequency flat fading channel:

b(t, 1) = c(t)3(7) (2.20)

c(t) : Time variation to be multiplied with the transmitted signal.
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The channels applied in this work for use with mobile applications, is flat Rayleigh
fading channels, which is discussed in further detail below. Similar to the stationary
channel, the noise is assumed AWGN.

Flat Rayleigh fading channels

In a mobile radio channel there will be many paths between the base station and the
mobile because of a multitude of reflectors. Compared to the direct path between
base station and mobile the reflected paths are time delayed. Some reflectors are
located far away from the mobile, typically being the origin to paths with delays
longer than the time resolution of the receiver. This generates what the receiver
detects as time dispersion. Other reflectors are located close to the mobile, these
paths have delays shorter than the receiver’s time resolution and can not be separated
from each other. The delay difference between themdifft short delay paths is how-

ever large enough to give the pathselidint phase in addition to a phase shift in the
reflection. The phaseffitrence betweenon separable paths produces the fading.

First a time domain explanation of the flat fading channel is given. The limitation to
flat channels equals excluding the paths with delay larger than the receiver time res-
olution. The total signal with amplitude and phase will be a sum of the short delay
paths, where the paths havffatient ampliude and phase. As the mobile moves rel-
ative to the reflectors, the phase in each path will change and the totalvgiijnal
exhibit random amplitude and phase variations. Assuming nectdiath, Gassian
amplitude of the reflected paths and uniform distribution of the reflectors around the
mobile, the amplitude of the total signal will be Rayleigh distributed and the phase
will be uniformly distributed (Steele 92).

Alternatively the flat fading channel can be interpreted in the frequency domain. The
mobile moves towards some reflectors and away from others, generdtargrdi
doppler shifts in the fierent paths. The total signaill contain a sum of contribu-
tions with different doppler shifts resulting in a frequency dispersion of the signal.
According to (Steele 92) the channel Fourier transformed with respect to the time
variations is equal to the Doppler spread or frequency dispersion of the channel.

2.6.3 Fading channel model

The frequency flat fading channel model of (Jakes 74) is adopted in this work. The
time variations are modelled as a complex multiplicative, time varying fattpr as
shown below in Figure 2.11
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Figure 2.11. OFDM on Rayleigh fading AWGN channel

c(t) has Rayleigh distributed amplitude and uniformly distributed phase and is mod-

elled by independent low pass filtered Gaussian sources for the real and imaginary
part.

WGN —» LP
} c(t)

WGN —» LP J—>

Figure 2.12. Rayleigh fading model

WGN: White Gaussian noise
LP: Butterwort low pass filter

The bandwidth of the low pass filters equal the doppler bandwidth of the channel.

fy = = (2.21)

fy: Channel doppler bandwidth



Chapter 3
Synchronization in OFDM

The task of the receiver is to reconstruct the transmitted data sequence as accurately
as possible. The reconstruction, i.e. detection, process needs synchronization infor-
mation, i.g. timing, framesynchronization, carrier frequency and carrier phase.
These synchronization parameterswanknown to the receiver, which must thus esti-
mate them from the received signal. The number of synchronizaticampters
depend on the system. In differential encoded systems, it is not necessary to estimate
the carrier phase.

This chapter contains the main principles of timing and carrier synchronization in
OFDM. The effects of flat fading channels aratrer frequency offset (CFO) in
OFDM systemsare covered qualitatively. Timg and frame synchronization is
briefly treated in this chapter, mainly by referencestteer work, but will not be
pursued in later chapters of this thesis. Carrier synchronization, CFO consequences
and fading channel consequences will be elaborated in later chapters.

The chapter is organized as follows: Chapter 3.1 contafaserees to earlier work

in the area of carrier synchronization, Chapter 3.2, 3.3 and 3.4 looks at synchronizer
structures and classes in general, while Chapter 3.5 looks at the special case of car-
rier synchronization in OFDM. References to timing is given in Chapter 3.6. In
Chapter 3.7 and Chapter 3.8 the consequences of respectively CFO and flat fading
channels in OFDM systems are discussed.

3.1 Previous work

Analysis of theeffect of phase errors was carriedt by (Chang and Gibby 68),
while phase noise isdated by (Pollet et. al 95) and (El-Tanany and Wu 97). Analy-
sis of the consequence of carrier frequency eamrdund in (Moose 94), (Pollet et.

al 95) and (Speth et. al 98).

27
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Several algorithms for carrieynchronization / acquisition have been proposed in
the literature. (Clasen and Meyr 94), (Lambrette et. al 97a) and (Speth et. al 98) use
DA approaches with pilots, which gives fast acquisition at the cost of loss in capacity
and non optimal tracking.

(Daffra and Chouly 93) use a non data aided (NDA) approach. This method includes
double set of filter banks in the receiver. (Oh et. al 96) propose another NDA system
which requires four sets of filterbanks and an oversampling factor of two in the
receiver. The carrier synchronization algorithm in (Moose 94) also belong to the
NDA algorithms and is based on transmitting the output of the filterbank twice and
synchronize in front of the receiver filterbank. Another NDA system working only
for square pulses with guard interval is proposed by (Van de Beek et. al 97).

A special carrier synchronization algorithm for constant envelope paired burst
OFDM is given by (Dinis and Gusmao 97).

Maximum likelihood estimation of the phasgor is treated in (Hirosaki 84).

3.2 Synchronization topologies

Both timing, carrier phase synchronization amdrier frequencysynchronization

can be divided into two operations: Estimation and Correction. The estimation algo-
rithm use the received signal to estimate the error of a given sync parameter, this
estimate is than used to correct the receivgdas. To improve the performance of

the error estimate, it can be averaged or filtered in time before it is used fex-cor

tion. For OFDM systems, the performance can also be increased by averaging across
the subchannels. Knowing tledfect or operabn of an error, the geecion equals

the inverse operation based on the estimated error.

There exist several topologies for synchronization algorithms. With feed forward
solutions the correction is made after the estimation in the signal path. The estimated
error is used for correcting thigeals from which the error was estimated. Two pos-
sible feed forward solutions for OFDM are shown in Figure 3.1.
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Figure 3.1. Sketch of feedforward topologies with OFDM.

Alternatively feedback solutions can be usedemhthe estimated error is used as

correction to the signal in the consecutive frames. Three possible feedback solutions
are shown in Figure 3.2. Note that fleedback loop must include a delay.

a) X C) x
S, S,
p-| Error g > p-| Ermor | g g
cor. = cor. =
! i b
Filtering E Filtering
. < rror . < Error
inc. delay est. inc. delay est.
b) x
S,
> g p-| Error
= cor.
4
Filtering E
\ < rror
inc. delay est.

Figure 3.2. Sketch of feedback synchronization loops in OFDM.

Error estimate filtering is far more common for the feedback solution, than for the
feed forward solution. To be able terformsynchronization operations after the fil-
terbank, the sync parameter must be stable enough to be considered constant during

at least one OFDM frame. Sufficient sync parameter stability for synchronization
operations after the filterbank will be assumed throughout this work.
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When deciding if the error estimation should be performed in front of or after the fil-
terbank, the nature of the signal should also be considered. After the filterbank the
signal is well defined as symbols belonging to a limited symbol alphabet plus noise.
Estimation algorithms which in some manner utilize information about the symbol
alphabet should thus be performed after the filterbank. The signal in front of the fil-
terbank in an OFDM receiver is not well related to the symbol alphabet, but other
features of the signal can be exploited. In the case of rectangular pulses with guard
interval, the signal in front of the filterbank will contain repeated sequences, which
can be used by estimation algorithms, Chapter 2.4.1.

One criterion for choosing caction before or after the receiver filterbank is com-
plexity. Observing the received signal, the consequence of a sync parameter error
can be modelled as a mathematical operatenfiopmed on the transmitted signal.
This mathematical aration might dfer for observation before and after the filter-
bank. The complexity of performing the inverse operation, i.e. correction, before or
after the filterbank may thus differ, duding one of the alternatives.

3.3 Synchronization modi

To optimize the synchronizer it can be advantageous to divide the synchronization
into two steps or modi:

» Acquisition
» Tracking

After a total synchronization loss during operation or at system start-upartier ¢
frequency is only known to be inside a specified frequency range, wdnitierc
phase and timing are totally unknown. During acquisition mode these relatively
large sync parameterrors are reduced to zero average. Tracking mode equals ordi-
nary system ogration where sync parameter deviations are tracked.

One synchronization algorithm can cover both modi, or specialized algorithms can
be adopted for each mode. If separate algorithms area applied, the acquisition algo-
rithms should be optimized for fast convergence and large lock-in range, i.e. the
maximum error thesynchronizer can cogct. The steady state performance of the
acquisition algorithms need only to be good enough to ensure that the residual
parameter errors araside the lock-in range of theatking algorithms. The task of

the tracking algorithms is then to reduce the errors to a level sufficiently low for
average system epation, and track the deviations during system operation. The
important features of the tracking algorithargthus low residual error variance and
ability to follow time variations in the sync parameters.
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3.4 Synchronization al gorithm classes

Both acquisition and tracking algorithms can be divided into three classes.

» Data Aided (DA): The error estimates is based on known symbols in the
transmitted sequence, (pilot symbols).

» Decision Directed (DD): The transmitted symbols are unknown, but the
decisions are used as estimates of the transmitted sequence in the error esti-
mation.

» Non Data Aided (NDA): The error estimates are based on extraction of sta-
tistical properties from theeceived signal. Generally, there are made no
assumption in NDA algorithms about other than statistical knowledge of
the transmitted sequence.

When DD methods are used for acquisition, the decisions amraijlgnerroneous
and the algorithms will work based on statistical properties of the signal, it can thus
be advocated that DD acquisition algorithms are NDA algorithms.

DA and DD methods exploits knowledge or estimations of the transmitted symbol
sequence. In front of the receiver filterbank in OFDM systems, the signal is a com-
plicated function of the transmitted symbols, thus excluding error estimation in front
of the filterbank for DA and DD methods.

Introducing pilots will reduce system capacity or increase bandwidth and power con-
sumption. But pilots will also decrease acquisition time considerably and increases
the ability to follow time variations. During tracking, NDA algorithms wiliffsu

from a higher residuatrror variance than DA and DOgarithms, (Mengali and
D’Andrea 97).

3.5 Carrier s ynchronization

Receiver carrier and transmitter carrier are generated from local oscillators. The
oscillators are not phase synchronous, creating an arbitrary phasé error . At the

same time, deviations from the nominal oscillators values will creatergr fre-
guency offset (CFO) (A pure Doppler shift generates the same effects.):

Af = fro—Tfre (3.1)

f.r Receiver carrier frequency.
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f.r Carrier frequency of received signal.

Af: Carrier frequency offset, CFO.

The maximum size of the CFO at start-up is given by the specification of oscillator
accuracy in transmitter and receiver. For proper system operation, the receiver must
synchronize/lock itsarrier phase and frequency to the carrier of the transmitter.

Phase noise

In addition to frequency and phase error, there will be short time variations in trans-
mitter and receiver oscillators cragaf phase noise, reducing system performance.
This is not the scope of this work. Tikéffect of phase noise in reagular pulse
OFDM systems is analysed in (Pollet et. al 95) and (El-Tanany and Wu 97).

3.5.1 Carrier phase acquisition

There is no difference in the principles of carrier phase synchronization for OFDM
and SC systems, Chapter 5.3, and known algorithms for SC phase synchronization
can be applied, (Meyr et. al 98), (Mengali and D’Andrea 97) and (Lee and Messer-
schmitt 94). Algorithms for carrier phase acquisition is not treated in detail in this
work. Two observations are made. RArrier phase tr&ing have a lock-in range of

=7t and need no separate acquisition algorithm, Chapter 5.3.1. A NDA phase error
estimator suitable focarrier phase agiisition is given by Equation 4.10. The error
estimation is performed after the receiver filterbank and is suitable for feedback
solutions.

3.5.2 Carrier phase tracking

Carrier phase tracking using pilots

As mentioned above, a Déarrier phase synchronization algom, will perform

both acquisition and tracking. Since DA algorithms are symbol based, phase error
estimation should be performed after the receiver filterbank. At the same time, phase
error correction equals a complex multiplication independent of if it is performed
before or after the filterbank, Chapter 5.3. DA phase tracking is thus well suited for
feed forward solutions after the filterbank, Figure 3.1b. Due to multipath transmis-
sion channels, it is advantageous to perform phasedaion after the receiver filter-

bank for feedback solutions as well, Chapter 5.3. The resulting feedback phase
synchronizer is shown in Figure 3.2b. With DA phase tracking in OFDM, only a few
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subchannels contain pilots. The correction for the intermediate subchannels must be
interpolated from the pilot channels. DA carrier phase tracking is discussed in
Chapter 5.3.1.

Carrier phase tracking without the use of pilots

During tracking, reliable decisions can be assumed available, making DD methods
possible, NDA methods are excluded due to lower tracking performance, (Mengali
and D’Andrea 97). While DA phase synchronization can be both feed forward and
feedback, it is in the nature of DD solutions to be feedback (unless intermediate deci-
sions are used). With the same arguments as for the DA algorithmgetaerqul
structure is the one of Figure 3.2b, a phase locked loop (PLL) placed after the filter-
bank. DD carrier phase tracking is covered in Chapter 5.3.2 through Chapter 5.3.5.

3.5.3 Carrier frequency acquisition

Before frequency acquisition, the CFO can be in the range of several subchannels in
an OFDM system. It is the task of the acquisition algorithm to reduce the CFO to a
fraction of a subchannel bandwidth.

Carrier frequency acquisition using pilots

Like any symbol based error estimation, Datrier frequency acgsition must per-

form the error estimation after the receiver filterbank. The consequence of a CFO,
observed after the filterbank, is inter channel interference (ICl), Chapter 3.7. The
inverse operation would be quite complex. On the other hand the CFO can easily be
corrected in front of the filterbank, either by adjusting the oscillator frequency or by
time discrete complex exponential multiplication after the A/D conversion. The pre-
ferred DA carrier frequency acquisition structure, is thus the feedback synchronizer
of Figure 3.2c. Assuming theacking algorithm to be DA as well, the lock-in range

of the tracking algorithm will almost be comparable with the subchannel spacing,
allowing a quite high steady state variance of the DA acquisition algorithm. DA
acquisition algorithms are not covered in this work, but examples are found in
(Clasen and Meyr 94), (Lambrette et. al 97a) and (Speth et. al 98).

Carrier frequency acquisition without the use of pilots

Assuming no reliable decisions due to large CFO, this case is limited to NDA solu-
tions. Similar to the DA case, correction should be made in front of the receiver fil-
terbank due to complexity considerations. The error estimation can be performed
both in front of and after the filterbank. Assuming low performance of the NDA
error estimator, averaging over a large numbegradr estimates will be necessary.
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The feedback solutions, i.e. frequency locked loops (FLL), of Figure 3.2 a) and c)
will thus be suitable. Assuming the tracking algorithm to be DD, the acquisition
algorithm must reduce the CFO to a snfi@ttion of a subchannel bandwidth where
reliable decisionsare available. Examples oNDA acquisition according to
Figure 3.2a is found in (Moose 94) and (Van de Beek et. al 97). Chaiprency
acquisition according to Figure 3.2c is found imaf{fba and @ouly 93), (Oh et. al

96) and Chapter 4 of this work.

3.5.4 Carrier frequency tracking

During carrier frequency tracking, it can be assumed that reliable decisions or pilots
are available. Both solutions include the use of symbol based freqeencystima-

tion, i.e. thefrequency error estimatioshould be performed after the receiver filter-
bank. At the same time, the frequency error coiwacshould be performed in front

of the filterbank as discussed above. The resulting structure, is thus the structure of
Figure 3.2c, independent of the use of pilots or not.

Since the carrier frequency is the derivative of the carrier phase with respect to time,
it is possible to prform carrier traking just by grforming carrier phase tracking in

SC systems. OFDM systems with estimation after the filterbank, will produce error
estimates at maximum rate o/ T . If only phase synchronization was performed at
this rate, the mean CFO could be removed, but the CFO in each frame would not be
removed resulting in ICI, Chapter 3.7. Estimation after the filterbank in OFDM sys-
tems will thus enforce separate carrier phase and frequency tracking. Using a feed-
back frequency synchronization loop with correction in front of the filterbank, the
phase synchronization will be placed inside the frequency loop. A sketclaofex ¢
synchronization solution with feedback phase loop is shown in Figure 3.3.

<
Freq. 3 Phase
| error ™ & [ ™ error >
cor. i cor.
{ Filtering Phase Freq.
inc. delay™ ] error error
est. est.
Filtering ‘
inc. delay4

Figure 3.3. Sketch of carrier phase and carrier frequency $yanization loops
in OFDM.

In differentially encoded systems phase synchronization will not be used.
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Carrier frequency tracking using pilots

In DA carrier tracking, the CFO estimate will beeaaged over theilot channels,

and used for correction in front of the filterbank. Due to correction in front of the fil-
terbank and error estimation after the filterbank, feed forward solutions are not avail-
able. Since DA carrier tracking udemnown symbols, the lock-in range of the
algorithm is comparable with the subchannel bandwidth of the OFDM system. A
solution to DA carrier frequency tracking is found in (Clasen and Meyr 94). This is
the same DA solution which is discussed in Chapter 5.4 of this work.

Carrier frequency tracking without the use of pilots

Due to the difference in performance, DD tracking is preferred compared to NDA
tracking, (Mengali and D’Andrea 97). Comparing DD and DA tracking algorithms,
the DA pilot sequences can be tailored to have good synchronization properties,
which can not be done with the data sequence used for synchronization in DD algo-
rithms. The strength of the DD algorithms comes from the possibility to average the
error estimates over all subchannels, compared to a subset of channels, which is the
case of the DA algorithms. The Diatking is discussed in Chapter 5.4.

3.6 Timin g recovery in OFDM

In OFDM systems with time discrete filtering, Figure 2.5, timing can be divided in
sampling (instant) recovery and frame synchronization. Sampling recovYery te

the sampling instant in the high rate sampling process at the A/D converter, while
frame synchronization refers to grouping samples belonging to one OFDM frame. It
is important to note that the samples at this stage can not be viewed as symbols from
the transmitter symbol alphabet plus noise. Frame synchronization (error) can be
viewed as timing (error) with readgion T/N. For OFDM systems using square
pulses and guard interval, frame synchronizationrs smaller than the guarder-

val is tolerated, while samplingcovery is not necessary, (Speth et. al 98). The tim-
ing errorwill only result in a phase error which depends on the channel number. For
systems without guard interval, the frame synchronization must bectavhile a
sampling instant error will give a small amount of IBI in addition to a channel
dependant phase error.

In OFDM systems with analog filtering in each subchannel, timing is performed at
the low sampling rate with one sample per OFDM frame. The samples consist of
symbols from the transmitter symbol alphabet plus noise. There is no frame synchro-
nization in such a system.
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(Van de Beek et. al 97) carries out frame synchronization for OFDM systems with
guard interval by exploiting that a guard interval equals a cyclic extension of an
OFDM frame. The synchronizer consists of a sliding correlator and a peak detector.
Maximum correlation is obtained when correlating the cyclic extension at the front
of the OFDM frame with the original data at the end of the frame, thus identifying
start and stop of the frame. The method works both for acquisition and tracking. Sev-
eral related methods based on guard intervals or other kinds of signal repetition are
proposed, (Palin and Rinne 98), (Mochizuki et. al 98) and (Negi and Cioffi 98). Pilot
based frame acquisition and tracking have been proposed by (Warner and Leung 93),
(Schmidl and Cox 97), (Speth et. al 97) and (Speth et. al 98), while (Lambrette et. al
97b) have proposed both DA and NDA SC frame synchronization algorithms which
can be modified for use with OFDM.

A decision directed symbol timing algorithm for tracking mode has been proposed
by (Kang et. al 94). The algorithm is based on the observation that a small timing
mismatch results in a phase error which is increasing with channel number. Esti-
mates of the phase change between neighbouring channels can be used for calculat-
ing the timing error. An algorithm for maximum likelihood estimation of timing
error with analog per channel filtering for O-QAM is found in (Hirosaki 84).

Analysis of the consequences of timigor isgiven by (Speth et. al 98), (Pollet and
Moencleclaey 95) and (Chang and Gibby 68).

3.7 Effects of carrier frequency offset in OFDM

During the calculations of the received signal in Chapter 2 it was assumed flat chan-
nel, no noise and no CF@Qf = 0 . Under these conditions the received symbols are
identical to the transmitted symbols, Equation 2.4, 2.9 and 2.10. In this chapter, the
effect of Af 0 will be discussed qualitatively. Quantitative discussions are left for
Chapter 6.

3.7.1 Phase slipping

In this work, phase slipping is used about phaisers, 8 , large enmh to create

decision errors in even noiseless systems, i.g. for 4-QAM: 1/ 4 . One reason for
phase slipping in cohereméceivers isinsufficient carrier phase synchronization.
Another reason for phase slipping is to large CFO when using feeddaigk phase
synchronization, i.g. for 4-QAMAf| > 1/(8T) . This is a problem even for differen-

tial encoded systems. The tolerated CFO with respect to phase slipping depends on
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the inverse of the symbol length. Since OFDM systems have symbols levigths

times larger than SC systems, the tolerated CFO is reduced with a factor in
OFDM systems compared to tolerated CFO in SC systems.

3.7.2 Carrier offset with QAM and Rectangular pulses

The CFO behaviour of OFDM systems with QAM and rectangular patsesimilar

for systems with and without guard interval, only systems without guard interval will
be discussed. Including the CFO in Equation 2.4, neglecting the noise, the received
signal with a non time dispersive channel is given by Equation 3.2

N-1 T
-m+ AfT)r

Zom = %z ot (32)

N-1
_ a sin(T[(n—m+AfT))
Z K1 (n— m+ AfT)

n=0

(_l(n— m))ejrrAfT

Like in the case of no CFO, theceived syrhols in framek are only influenced by
symbols transmitted in framle . Since the pulse length equals just one symbol inter-
val T no ISI can be created by a frequeshift.

For zero CFO there will be no ICI either, mathematically stated in Equation 2.4 with
zero contribution foom# n . Studying Equation 3.2 reveals that this is not the case
for Af£0. A related situation to no CFO is whé&iT is an integer, i.e. the CFO
equals an integer number of subchannel bandwidths. No ICl is created but the output
has been movedfT channels compared to the input (a subchannel ofid&t of
channels)

Zem = A moptT AfT Integer (3.3)

Usually thecarrier offset is not an integer number of subchannedwalths. In this
case the integration in Equation 3.2 is not equal to zero for any value of and the
received symbol will be a sum of contributions from all the channels, generating ICI.

3.7.3 Carrier Offset with O-QAM

The received symbol in an O-QAM OFDM system is given by Equation 2.9 and
2.10. Inserting CFO gives a sampled real part equal to
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Similarly, the sampled imaginary part will be equal to

Im{z o} = z z,ram{ a|,n}h(t—|T+-£)h(t_kT+_£) )
n =0l = 0-o
Ebos%[t+gg(n—m)+2rrﬁt%it
* Z ZIRe{ an}th(t—I1T)h(t—kT+ g)
n=0l=0-

IEALN
EtslnDDT t+ ;[B(n— m) + 2T[Aft%jt

Before the introduction of a CFO, the integrands in Equation 2.9 and 2.10 with sub-
stitution of integration variable, where odd functions except(for k) O (n = m)

and correct quadrature. Since the integration of odd functionsfsom o to s zero
there will be no ICI and no ISI. When the CFO equals an integer number of subchan-
nel bandwidths, the integrands will still be odd functions avoiding both ISI and ICl,
but the output will be shifted a number of channels compared to the input. This is the
same behaviour as for QAM with rectangular pulses, Equation 3.3. With a CFO not
equal to an integer number of subchannel bandwidths, the integrands will not be odd
functions of time resulting in norero integrals, i.e. each tpuit symbol will be a

sum of several input symbols. Since all the O-QAM pulse shapes which we are
going to study are of length more than one symbol and bandwidth more than one
subchannel bandwidth, they will all exhibit both ISI and ICI under the influence of a
CFO.
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3.7.4 Interference components due to CFO

How many symbols and channels which contribute to therfarence in a given
channel in a given frame, will differ between the different OFDM systems. A CFO in
a QAM system with rectangular pulses will only generate ICI since the pulse dura-
tion is limited to one symbol interval. Rectangular pulses have infinite bandwidth
and thereby ICI contributions from all the channels in the OFDM filterbank. In a
practical context, contributions below a given level will not be of significance, but
since the spectral sidelobes of the rectangular pulses are slowly decaying, the ICI
contributions from a large number of channels must be accounted for.

In O-QAM systems, bandlimited pulses will receive ICI only from the closest chan-
nels, but the infinite extension of the pulses in time gives ISI from an infinite number
of symbols. As in the case of the ICI for rectangular pulses, practical ecaisiths

will limit the number of symbols which give significant contributions to the ISI. O-
QAM pulses of finite length will limit the number of symbols contributing to the ISI
to a number similar to the pulse length, but finite pulse length gives infinite band-
width and ICI from all the channels. Like in the case of QAM and rectangular pulses,
practical considrations will limit the number of channels giving contributions to the
ICI. Assuming that the spectra of the finite length O-QAM putsesdecaying faster
than the spectra of the restpular pulses, the ICI in an O-QAM system will be com-
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Figure 3.4. Areas giving significant IBI contribution for different OFDM
systems
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posed of contributions from less channels than in a rectangular pulse QAM system.
A schematic illustration of where the IBI comes from is given in Figure 3.4.

To the receiver, interferencernsgise reducing the system performance.

3.8 OFDM on flat fading channels

The flat fading channel described in Chapter 2.6 can be viewed as a generalization of
a CFO. A CFO viewed in the frequency domain equals a shift, or a convolution with
a dirac,0(f — Af) . A flat fading channel equals a convolution with the Doppler spec-
tra of the time varying channel. While the CFO just shifts the signal spectra in the
frequency domain, the fading channel creates a frequency dispersion, (Steele 92).

Including the time varying channel, neglecting the noiserdbeivedsignal in arec-
tangular pulse OFDM system equals

N-1
(n m+AfT)r

Zom =T z 3y, n'[C(t) ’ T dt (3.6)

Even with no CFQAf = 0 , the integral will generally not equal zero creating ICI.
In addition there will be a time varying signal power due to the fading channel. How-
ever if c(t) is changing so slowly that it can be viewed as constant over one frame

no ICl is createdhut the OFDM receiver will still experience a slowly time varying
or fading signal power.

For O-QAM systems, observations which are similar to the observations made for
systems with QAM and rectangular pulses can be made.



Chapter 4
Carrier frequency acquisition in
OFDM

During system start-up or after a total synchronization loss, the carrier phase is
totally unknown while thearrier frequency iknown to be inside a region given by
receiver and transmitter oscillator accuracy. Typically this region can be several
times larger than the subchannel spacing in an OFDM system. It is the task of the
carrier aquisition algorithm to reduce the carrier error to a level whareer track-

ing algorithms can operatea@ier tracking algorithms aiiscussed in Chapter 5.

The acquisition methods presented in this work will be intended for high capacity,
spectral efficient OFDM systems, for example fixed radio links. With strong spectral
requirements, pilots and guard interval should, if possible, be avoided in order to
achieve high bandwidth efficiency. During acquisition, reliable decisions do not
exist, thus leaving us with NDA methods. The disadvantage of NDA amdio

DA algorithms, is inceased acqaition time, (Mengali and D’Andrea 97). NDA
algorithms are thus best suited for systems with continuous time transmission, while
other solutions should be sought for burst transmission systems. Most existing car-
rier acquisition algorithms for OFDM use pilots or other redundant signalling. In this
work NDA acquisition algorithms will be developed. The focus is on carrier fre-
guency acquisition, while onlyeferences to carrier phasegatsition are given. The
algorithms are presented for use with QAM and square pulses, but they can be mod-
ified to operate with O-QAM and other pulse shapes.

In addition to spectradfficiency,low receiver complexity is an important issue. The
few existing NDA carrier acquisition algorithms assuraeeivers with over sam-
pling or double set of filterbanks. The algorithms developed in this work are blind
acquisition algorithms with criticallyl/ T ) sampling both in front of and after a
single receiver filterbank. All algorithms are feedback solutions with carrier estima-
tion after the filterbank andacrier corredbn in front of the filterbank. Theeference

41
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carrier frequency acquisition algorithm in this chapter will be the blind ML algo-
rithm by (Daffra and Chaly 93) with critically sampling and double set of filter-
banks in the receiver. Algorithms related to the acquisition algorithms presented in
this work, are found in (Remvik and Holte 96) and (Remvik and Holte 97a).

This chapter is organized as follows: Chapter 4.1 previous work. Chapter 4.2 discuss
ambiguity when no pilots are used. In Chapter 4.3 a Maximum Likelihood based

rier frequency acquisition algorithm is presented éasre@ce algathm. A Mueller

and Mduller motivated carrier frequency acquisition algorithm is developed in
Chapter 4.4, while a Bussgang motivated algorithm is developed in Chapter 4.5. In
Chapter 4.6 the performance of the acquisition algorithms, measured in acquisition
time, is simulated. Chapter 4.7 is an introduction to gear shift algorithms and
Chapter 4.8 contains a summary.

4.1 Previous work

Pilot based carrier frequency acquisition in OFDM systems with square pulses are
presented in the literature by (Clasen and Meyr 94), (Lambrette et. al 97a) and
(Speth et. al 98). NDA algorithms for the same purpose are given by (Daffra and
Chouly 93) and (Oh et. al 96). NDA algorithms with special demands to the trans-
mitted OFDM signal is presented by (Moose 94), (Van de Beek et. al 97) and (Dinis
and Gusmao 97).

4.2 Channel number ambiguity without pilots

4.2.1 Channel number offset

As stated in Equation 3.3, a carrier frequency offset equal to an integer number  of
subchannel bandwidths will not create IBI, but rather result in a subchannel offset of
I channels. This is a “legal” solution in the sense that the input to the decision
devices equals transmitted symbols plus channel noise. This will betefe as the
carrier frequency being locked on to the frequency grid with a channel number off-
set. The frequency grid consists of the single correct carrier frequency dret all
guencies an integer number of subchannel bandwidths away from the correct
frequency. The reference carrier frequenayussition algorithm in Chapter 4.3 is an
example of an algorithm with all its lock points on fhequency grid. The locking
points equals the zero crossings with positive gradient of the error function in
Figure 4.2. So even though the algorithm may give “false locking” in the sense that it
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locks on to an other frequency than the single corenter frequency, the algo-
rithm will always lock on to the frequency grid. The other carrier frequency acquisi-
tion algorithms presented below will also lock on to the grid, but not necessarily at
the single correct carrier frequency, and thus need channel number offset correction
after frequency grid locking.

4.2.2 Methods to correct channel number offsets

Adopting the OFDM system of Chapter 2.4.3 with guard channels, the receiver
should only observe channel noise in the guard channels.NVith  data channels and
locking on to thdrequency grid with an offset df channels, data channel nuthber

to 1 —1 will contain zero signal power, while tHe  guard channels outside data

channelN -1 will contain signal power, assuming to be positive. If it is possible

to detect the number of data channels not containing signal power and the number of
guard channels containing signal power, therier frequency can be corrected to
remove the channel number offset. The “power measurement” is the same as the per
channel power correction necessary for equalization in OFDM, (Sari et. al. 95), and
the necessary information for channel number offsatection carthus be viewed

as available.

Two alternative solutions are based on the observation that reliable detections are
available despite of the channel number offset, i.e. the decisions are reliable but the
correct subchannel number for the symbol is unknown. Channel number offset is
thus similar to symbol stream synchronization in SC systems. One possibility is the
use of unique words. The other one is use of error correcting channel coding with
synchronization, (i.e. offset), information, (Ytrehus 97). Channel coding with syn-
chronization information is error correcting coding with the additional property that

it contains information about positioning in the symbodam. Whentis is used for
detection of channel number offsets in OFDM, the coding museldermed across

the subchannels.

4.3 Maximum Likelihood carrier frequenc vy
estimation
A method for NDA ML estimation of carridrequency offset in OFDM systems has

been developed by @ifra and Chaly 93). The method assumes the use of guard
channels and two filterbanks in the receiver. The input to the extra filterbank is pre-

processed while the output of the extra filterbank, , is correlated with the output of
the ordinary filterbankz , to generate the gradient of the likelihood function,
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(Daffra and Chouly 93). The likelihood function is maximized by updating the CFO
estimate by the use of a gradient algorithm, Equation 4.3. The preprocessing is made
according to Figure 4.1
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Figure 4.1. The extra filterbank with preprocessing, used in the NDA carrier
frequency acquisition technique of (Daffra and Chouly 93)

The weight values equals:
a, = —2mn(n—1) (4.1)
And the estimated gradient of the likelihood function equals:

N-1

Epk = z Re 7 mZﬂk, m} (4.2)

m=0

€p k- The estimated gradient of the likelihood function of frakne , from now
on termed the Daffara error function of fraike
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The S-curve of the error functioig[ey ] , is calculated according &ffi@and
Chouly 93) and is plotted in Figure 4.2 fdlr= 256  channels.

S-curve of the Daffara CFO estimator
25 T T T

15F- nl

-1.5F nl

-2+ 4
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-4

Figure 4.2. S-curve of the Daffara CFO estimator for N=256 channels, unity
transmitted power and unity symbol interval

Possible lock points for the gradient algorithm of Equation 4.3 equals zero crossings
with positive gradient in the S-curve. According to Figure 4.2 the lock-in range of
the proposed acquisition algorithm is apprd¥ = +0.5/T . Larger frequency
errors will give locking on to other frequencies in the frequency grid. A modification

of the error function by (Bffra and Chbuly 93) has been proposed to obtain larger
lock-in range at the cost of reduced performance measured as steady state variance.
This modification is not discusse@fe, since the lock-in range can be increased by
accepting locking to othdrequencies in the frequency grid, and correcting the off-

set by the methods of Chapter 4.2.

The recursive CFO estimate updating equals:
Afier = A,fk_p'DsD,k (4.3)

Up: LMS algorithm step size for the Daffara algorithm
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4.4 Mueller and Muller motivated carrier
frequency synchronization

4.4.1 Properties of carrier offset generated inter bin interference

The received, sampled sigrgl,,  with CFO and no channel noise in an OFDM sys-
tem using square pulses and QAM was given by Equation 3.2. Including AWGN on
the channel and correcting the phase at the signal compangnt , the received sam-
pled signal can be rewritten as:

N-1
Zom = z a nsing(n—m+ AfT)(-1)"" "+ n, 1, (4.4)

n=0
Since this is pure ICI, the frame number index can be dropped for convenience.

In the case of a SC system transmitting N symbols over a non time dispersive chan-
nel, the received symbol number  can be written as a function of the symbol tim-
ing errort , (Lee and Messerschmitt 94):

N-1

z(m) = Za(n)p((m— MNT + 1)+ n(m) (4.5)

n=0

p( ): Convolution of transmitter and receiver and should thus fulfill the
Nyquist criterion, (Lee and Messerschmitt 94)

T': SC symbol interval

Recognisingsinc(—(m-n-AfT))(-1)""" as a sampled version of a function fulfill-
ing the Nyquist criterion, the correction of tfrequency errorAfT in a critically

sampled OFDM system equals the correction of a timing @rror  in a baud rate sam-
pled SC system. The same basic methods used for SC timing recovery can be used
for carrier frequency correction in OFDM.

The outputz(m) equals the convolution of the transmitted sequsmage and a fil-
ter h(m) whose response is a function of the CFO. As an examnipie is plotted in
Figure 4.3 forN = 64 withAfT = —0.05 andfT = 0.3
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Contribution received from channel 32 in a N=64 channel OFDM system
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Figure 4.3. IBI contribution from channeB2 in & = 64 channel OFDM
system with CFO 0£0.05 an@.3 subchannel bandwidths

The results here are based on the continuous time square pulse filterbank, but the
results are also valid for the symmetrical sampled IFFT/FFT given by Equation 2.14.
Using the ordinary IFFT/FFT filterbanks, Equation 2.13, the unsymmetrical sam-
pling will introduce an imaginary component in the outm(t) , dependant on the

number of channelsl in the filterbank.

4.4.2 Mueller and Muller motivation

As pointed out in Chapter 4.4.1, criticallyarcier frequency synchronization in
OFDM is related to baud rate timing correction in SC systems. One well known
technique for time discrete baud rate timing in SC systems was developed by (Muel-
ler and Muller 74), a method described in several other works, (Lee and Messersch-
mitt 94), (Mengali and D’Andrea 97). The method is based on a LMS algorithm for
timing estimate updating, with an error function rewritten for OFDM systems. The
error function is equal to:

Evkm = Re{ &mzZm-1—ax mDZk, m+ 1} (4.6)
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€w.k m- Mueller and Muller based error function, chanmel , frdme

In a SC timing problem, the timing estimate would be updated for each increment of
m. For carrier synchronization in OFDM, a carrier estimate update formach , or
channel, would requir®  calculations of the receiver filterbank outputraae.

Instead of per channel updating, the carfiequency estimate is updated once per
frame with an error function averaged over all subchannels:

1

l ~ ~
Emk = NR &, mDZk, m—1— ak, mDZk, m+1 (4.7)

gmﬂmg
ooooo

=0
em k- Mueller and Mdiller based error function, frake

The sign of the error function is reversed compared to the original algorithm of

(Mueller and Miiller 74) to keep the gradient positive at the zero crossing similar to

the error function of the Daffara algorithm, Chapter 4.3. The error function, or S-

curve, is plotted below in Figure 4.4 under the assumption of correct decisions and
zero phase error.

S—curve of the Mueller and Miiller based CFO estimator
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Figure 4.4. S-curve of the Mueller and Miller based CFO estimator for
—0.5<AfT < 0.5 with perfect decisions and zero phas®e
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Using a LMS algorithm for CFO estimate updating, the estimated CFO equals:

My - Step size with Mueller and Miiller based acquisition

In the area 0£0.5<AfT < 0.5 there will be amique locking point, which make the
LMS algorithm drive the CFO to zero.

4.4.3 Acquisition with erroneous decisions

The S-curve of Figure 4.4 assumed perfect degssiand zero phase error. Usually
these assumptions are not valid during carrier frequency acquisition. Before the
acquisition algorithm has brought the CFO close tddguency grid the decisions

will be unreliable due to a high level of IBI and random phase errors. Random phase
errors and erroneous decisions are included in Figure 4.5z8rbecr@sings with
positive gradient of the S-curve are still located at CFO'’s equal to an integer number
of subchannel bandwidths, placing its lock points on the frequency grid.

S—curve of Mueller and Miiller based CFO_estimator
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Figure 4.5. S-curve of the Mueller and Muller based CFO estimator with non
perfect decisions and random phase erir= 256 channels
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The distance between the true transmitted sequence and the output of the decision
device depends on constellation size and SNR, and the S-curves may thus be chang-
ing with these parameters. The amplitude of the S-curve, Figure 4.5, is decreasing
with increasing constellation size. For the given example, variations in the SNR have
little influence on the S-curve amplitude. AssumiMg is large, the S-curve of the
proposed estimators in this chapter is close to periodic around the correcffiearrier
quency, with period/T = R;o/ N . This is in opposition to the S-curve of the esti-
mator of (Daffra and Chouly 93), Figure 4.2. Due to the periodicity, only one period

of the S-curves will be plotted for the rest of Chapter 4.

4.4.4 Acquisition with erroneous decisions and phase correction

The S-curves of Figure 4.5 is produced with random phase error in front of the deci-
sion device, corrupting the decisions even at small and zero CFO. Correcting the
phase error in a feed forward manner in front of the decision deviiteyake the S-

curve more similar to the S-curve with perfect damis in theareaswith CFO close

to the frequency grid. As shown in Equation 5.10, the influence of a phas®error in
an OFDM system with QAM, rectangular pulses, flat channel and zero CFO is equal
to the influence of a phase error in a §Gtem:

Zm = €%+ n(m) (4.9)

Well known methods for NDA SC phase correction can thus be applied, one possible
estimator is (Mengali and D’Andrea 97):

- 1.0 ad

O, = ZDD z¢ 0O (4.10)
O ad
mOg

¢: TheL channels used for averaging

The estimator is unbiased for QAM modulation, with phase ambiguity of multiples
of /2. The phase ambiguity is identical to phase ambiguity during phase tracking,
Chapter 5.3.2. With 4-QAM the estimator obtains Cramer Rao bound (CRB) at high
SNR, while the distance to the bounarigase with increasing mstellation size,
(Mengali and D’Andrea 97) and Chapter 5.2.

The S-curve of Equation 4.7 with phase correction in front of the estimator is shown
in Figure 4.6. Correction based on the phase estimator of Equation 4.10. Averaging
over a larger number of channels, the phase estimate improves and the CFO area
with low SER decisions increase, Figure 4.7. In the case of time dispersive channels,
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S-curve of Mueller and Miiller based CFO estimator
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Figure 4.6. S-curve of the Mueller and Muller based CFO estimator with phase
correction in front of the decision device and non perfect decisidhs, channels
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the number of channels used for phase averaging must be limited according to the
coherence balwidth of time dispersive channels, (Steele 92).

4.5 Bussgang motivated carrier frequency
synchronization

For low signal to noise plus interference ratio, transmitted symbol estiréates, , will

be of low quality, if generated by procegsthe received signat, , with an ordinary
decisions device, i.e. a slicer. During carfrelquency acquisition in OFDM the sig-
nal to noise plus interferencetimwill be low due to large IBI. A better alternative
under these conditions is a Bayes estimatea of , optimized for minimum mean

squarederror between actually tran#ted symbols,a , and estimated symbas,

This yields the conditional mean estimator of Equation 4.11, (Haykin 96). It is the
same estimator which is used for transmitted symbol estimation in bussgang algo-
rithms during SC blind equalization.

a=E[a7 (4.12)

a is not limited to the transmitted symbol alphabet in this case. Knowing the trans-

mission alphabet and the noise statistﬁts, can be calculated as a function of
Unfortunately the calculations assume knowledge about the total signal to noise plus
interference ratio. Both IBI level during carrier frequency asitjon in OFDM and

ISI level during blind equalization in SC are unknown. The mapping froma to s
recognized as a memoryless non linearityesaivalterntive memoryless nonlinear-

ities, not depending on signal to noise plus irmenfice rdo, have been proposed for

use with bussgang algorithms. One of these proposed nonlinearities is tested in this
chapter for transmitted symbol estimation duriragrier frequency ajuisition in
OFDM.

The bussgang algorithm most widely tested, (Nikias and Petropulu 93), is the equal-

izer of (Godard 80). The memoryless nonlinearity, terigged , equals:
a(m) = g(2(m) = ek (2] + Ryiz(mle-1~[2(mz>-1) 4.12)
r = Ella(m[?] (4.13)

" Ella(m)?]
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p {1, 2} : Order of the Godard algorithm

Including the frame number inddx  and inserting the nonlinearity of the Godard
algorithm, Equation 4.12, into the error function for adaptive LMS frequency esti-
mation algorithm, Equation 4.6, the new error function based on the first order
Godard algorithm equals:

Zm Zm
€cikm = E’k_nlgj Dk_dj z m+1ER (4.14)

The error function of the second order Godard algorithm equals:

8(32, k, m = Re{ - Z( mDZZk, mzk, m-1 + Zk, mmzzk, mzk, m+ 1} (4-15)

From Equation 4.14 and 4.15 it can be observed that both Godard motvaied
functions are insensitive to constant phasers. Phase estinianh during carrier
frequency acquisition using the Godard motivated error functions will thus have no
effect. Averaging over all subchannels in the OFDM system with one estimate
update peframe, the error furtions equals:

O0Zem Ze 1 g
_ _p k, m k, m
€cLk = z Re DEqu 0 Zymo1— Oz |0 z, m+l% (4.16)
N-1
1
€cok = N z Re{ —4 mmzzk, mZk m—1 T 2 mmzzk, mZk, m+ 1} (4.17)
m=20

The error function motivated by the second order Godard algorithm equals an unbi-
ased estimate of the difference of two fourth order cumulants as defined by (Nikias
and Petropulu 93):

E[SGZ, K, m] = _C(Zk, mDZZk, mzk, m—l) + C(Zk mmzzk, mzk, m+ 1) (4-18)

z(m) can be viewed as a random white sequeata) erddtby an all pass filter,

h(m), Chapter 4.4.1. Since second order statistics, i.e. the auto correlation function,
is phase insensitive, second order statistics give no information about the all pass fil-
ter h(m) . Fourth order cumulants on the other hand is phase sensitive and will thus
contain information about the all pass filter and thus the CFO. The S-curve of the
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second order Godard CFO error function is plotted below in Figure 4.8, normalized

. 4
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Figure 4.8. S-curve of the second order Godard based error function

‘c(afn)‘ depends on the constellation sikz(,afn)‘ =1 for 4-Q4Mafn)‘ = 0.68

for 16-QAM, |c(am)| = 0.62 for 64-QAM andc(al)| = 0.60 for 256-QAM. The

cumulants, and thus the S-curve of the second order Godard error function, does not
depend on the SNR. The S-curve of the error function based on the first order
Godard is simulated and plotted in Figure 4.9

The S-curves of first an second order Godard do have a single zero crossing with
positive gradient in the area0.5<AfT<0.5 , the zero crossings being located at

Af = 0. The algorithms will thus lock at the frequency grid. In contrast to the sec-

ond order Godard and the Mueller and Muller based algorithms, the amplitude of the
S-curve for first order Godard is reduced at low SNR.
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S—curve of first order Godard based CFO estimator
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Figure 4.9. S-curve of the first order Godard based CFO estimafor; 256
channels

4.6 Performance of the acquisition al gorithms

The performance of the acquisition algorithms can be measured in number of itera-
tions needed to reduce a CFO to an average of zero with a given steady state vari-
ance, i.e. closed loop residual CFO variance. The number of iterations needed is
termed the acquisition or convergence time. Rewriting the LMS algorithms of
Equation 4.3 and 4.8 for the general case, the result equals:

Afcer = Afc— g, (4.19)

Both acquisition time and steady state variance is influenced krrbefunctione

and the size of the step size parameter . The erroridansthaviour is given by

the working conditions like SNR, number of channels in the system, constellation
size, time dispersion in the transmission channel and choiegmffunction algo-

rithm, which is the only free parameter. For a given error function algorithm, the
steady state variance is assumed to be a strictly monotone raising function of the step
size parameter. The step size parameter is thus an unambiguous function of the
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steady state variance. Steady state variance decrease withsierrstep size
parameter while acquisition time increase widitieiasing step size. Thermection
between step size parameter and steady state variance in this work is found by closed
loop simulations for dierent step sizes.

As mentioned above, one of the parameters that steady state variance depends on, is
time dispersion in the transmission channel. In Chapter 4.6.1 and 4.6.2, non time dis-
persive channels will be discussed, while the steady state performance for some two
ray channels will be discussed in Chapter 4.6.3.

4.6.1 Performance without channel number offset

As discussed in Chapter 4.2 the carrier agitjon algorithms discussed in this work
can either lock on to the single correetrrier frequency or lock on to another fre-
guency in the frequency grid. In this sub chapter it will be assumed thaartier ¢
locks on to the single correct carrier frequency, while in Chapter 4.6.2 the perform-
ance consequences of locking to another frequency in the grid will be discussed.

Daffara algorithm

Steady state variance for LMS carrier frequency acquisition is plotted in Figure 4.10.
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Figure 4.10. Steady state variance as function of step size parameter with the
error function of (Daffra and Chouly 93)
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The variance is given as function of step size paramgfer , with the error function
€p of Equation 4.2 proposed by &fira and Giouly 93).

Figure 4.10 indicates that the steady state variance depends little on constellation
size and number of subchannels in the OFDM system, on the other hand is it heavily
dependant on SNR. At high steady state variance, the performance is close to equal
for SNR= 22dB and SNR= 34dB , while at lower steady state variance the
higher SNR is superior allowing a larger step size parameter. Average acquisition is
plotted below for steady state variancel6f? aod
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Figure 4.11. Average Acquisition for steady state variancd 0 aod
with the error function of (Daffra and Chouly 93), Average over 20 realizations

The performance independency of number of subchannels in the OFDM systems,
makes the error function of @fra and @Gouly 93) unique compared to the other
error functions in this work. For non time dispersive channels the Daffara algorithm
gives fast acquisition compared to the other algorithms in systems with low and
moderate number of channels. Measgirthe acquisition time in number of data
symbols, the acquisition time with theaffara error funtion increase with the same
factor as the number of subchannels in the OFDM system.
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First order Godard algorithm

Steady state variance as function of step size parameter is plotted below for the first
order Godard error function, Equation 4.16.
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Figure 4.12. Steady state variance as function of step size parameter with the
first order Godard error function

The steady state variance differs little with changing SNR and constellation size,
with the exception of 4-QAM where the variance decrease with increasing SNR. The
steady state variance decreases also with increasing number of subchannels in the
OFDM system. At higher order modulation, the step size parameter is thus only
dependant on number of channels, while with 4-QAM the SNR must be considered
as well. Plotting the acquisition time in 266 channel system, tifieretice in
acquisition time is moderate for different SNRs and constellation sizes, with a ten-
dency of decreasing acquisition time with increasing SNR aancedsing enstella-

tion size. The SNR and constellation size dependency is larger for the steady state
variance oft0+# thari03 , Figure 4.13,.

With 4-QAM, the steady state variance dependency on the SNR in Figure 4.12 is
also visible at the acquisition time.
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Figure 4.13. Average Acquisition for steady state variancd 0 aad
with the first order Godard error function, Average over 20 realizations
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order Godard eror function and 4-QAM, Average over 20 realizations

With the Daffara error function, comparing M = 256 channel system with a

N = 64 channel system, the number of frames used for acquisition was constant,

Figure 4.11. In the case of the first order Godard error function, the acquisition time

measured in number of frames decreases with increasing numsigrabfannels in

the system, but the decay is not strong enough to avoid a small increase in acquisi-
tion time measured in number of data symbols, Figure 4.15.
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Second order Godard algorithm

Similar to the first order Godard algorithm, the steady state variance with second
order Godard algorithm depends heavily on nhumber of channels and little on SNR
and constellation size, except for 4-QAM modulation where the variance also
depends on the SNR.

Plotting the acquisition time in 2356  channel system reveals the same pattern for
the second order Godard error function as for the first order error function.
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Figure 4.17. Average Acquisition for steady state variancd 0f a6d
with the second order Godardrer function, Average over 20 realizations

There is a tendency of increasingyarsition time for increasing constellation size.

This might be expected since Figure 4.16 indicates close to equal step size parameter
for 16-QAM, 64-QAM and 256-QAM, while the amplitude of the second order
Godard error function decays with increasing amplitude, Chapter 4.5. For 16-QAM
and larger constellations there is even smaller dependency on SNR for second order
Godard error function than for first order, while with 4-QAM the acquisition time
still depends on the SNR, Figure 4.18.

Looking at the acquisition time measured in number of data symboll| the256
channel do have larger acquisition time thad & 64 channel system for a steady
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Figure 4.18. Average Acquisition for steady state variance 0 with the
second order Godard error function and 4-QAM, Average over 20 realizations

state variance ol02 , while thefidirence is almost negjible for a steady state
variance ofl0# .
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Figure 4.19. Average Acquisition measured in number of data symbols, for
steady state variance 402 ad@d—*  with the second order Godeod e
function, Average over 20 realizations

Comparing the performance of the first and second order Godard error function, the
first order function is slightly better for 4-QAM constellation, while for larger con-
stellations the second order error function performs better. The difference is small
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for acquisition to a steady state variance 16f3 , while the acquisition time is
reduced with approx. 50% for the second order Godard error function compared to
the first order function for a steady state variancé®f

Mueller and Miiller based algorithm with phase correction

The steady state variance and thus the step size parameter for the Godard error func-
tions was little influenced by constellation size and SNR for constellations larger
than 4-QAM. This is not the case for the Mueller and Miiller baseat fundion

with phase correction as shown below.
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Figure 4.20. Steady state variance as function of step size parameter, Mueller
and Miller based error function with phase correction

The steady state variance depends on the SNR, but is independent of the constella-
tion size. For low steady state variance, the allowed step size parameter increases
with the SNR, while at higher allowed steady state variance this is reversed. One

should also note the small difference in allowed step size parameter forthé4
channel system and tié = 256  channel system.

The average acquisition is plotted below in Figure 4.21.
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For higher order modulation the acquisition time apparently increases with the SNR
due to decreased allowed step size parameter. Mfiter order modulation the
acquisition time decrease with SNR.
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Figure 4.22. Average Acquisition for steady state variancd 0f* with 4-QAM
and Mueller and Miller based error function, Average over 20 realizations
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Higher order modulation with high SNR do not fully gain on averaging over several
subchannels either, Figure 4.23.
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Figure 4.23. Average Acquisition measured in number of data symbols, for
steady state variance a0 ad®d#  with the Mueller and Mdller based error
function, Average over 20 realizations

Mueller and Muller based algorithm without phase correction

The SNR influence on the steady state variance is similar in shape but reduced for a
system without phase correction compared to a system with phase correction using
the Mueller and Miuller based error function. At high steady state variance the
allowed step size parameter for low SNR parameters grows larger than the allowed
step size parameter for high SNR. Comparing systems with and without phase cor-
rection, the difference in allowed step size parameter is smaller feyshem with-

out phase correction. The intersection point after which high SNR systems get
smaller step size parameter than low SNR systems, is moved to a higher steady state
variance for the non phase correcting algorithm, Figure 4.24.

The acquisition time is little influenced by SNR and constellation size for higher
order constellations and steady state varianc&0of . At steady state variance of
10-3 there is a small penalty for high SNR and small constellations, Figure 4.25.
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Steady state variance with Mueller and Miiller based error function
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Comparison of algorithms

Comparing the algorithms for 64-QAM aml = 256  channels, the acquisition time
of the Mueller and Muller based algorithms is several times larger than the acquisi-
tion time of the other algorithms at high SNR and steady state varianbe-3of ,
Figure 4.26a. The Daffara error fumn performs best, while for the second order
Godarderror function there is a factor of apprak5 in increased attopri time

compared to Daffara. For the first order Godard error function there is a factor of two
in acquisition time compared to Daft.

Reducing the SNR fron28dB  t@4dB , Figure 4.26b, the Godard algorithms are
close to unchanged, while the Daffara algorithms get closer to the second order
Godard error function, but is still a little better. The Mueller and Miller based algo-
rithms with phase correction become equal to the first order Godard algorithm, while
dropping the phase correction increases the acquisition time between 50% and
100%.

For steady state variance b0 and SNR28fiB , Figure 4.26c¢, the acquisition
time of Daffaraout performs the second order Godard algorithm with a factor of
four, Mueller and Mdller with phase correction with a factor of six, first order
Godard with a factor of seven and Mueller and Miiller without phase correction with
a factor larger than ten.

Reducing the SNR t@4dB , Figure 4.26d, does not alter the performance of the sec-
ond order Godard and the Mueller and Miller based algorithms with phase correc-
tion. The acquisition time of the difara algoithm increase to close to the
acquisition time of the second order Godard algorithm, while both first order Godard
and Mueller and Muller without phase increase their acquisition time as well.

Summarizing, the Bffara algorithm performs best,llimved by the second order
Godard algorithm. The difference in acquisition time depends on SNR and steady
state variance with a maximum of a factor four to a minimum of close to equal per-
formance.

4.6.2 Locking on to an incorrect frequency in the frequency grid

As discussed in Chapter 4.2 the acquisition algorithms might lock on to another fre-
guency in the frequency grid than the single correct caméguency. Some of the
methods proposed in Chapter 4.2.2 torecr channel number offsets after ko

on to another frequency in the frequency grid, assumed decisions with ordinary oper-
ational quality, which assumes the tracking algorithm to work. The goal of the acqui-



68 Carrier frequency acquisition in OFDM

Average acquisition 256 channels, 64—-QAM, SNR 28dB, Var 10°

0.6 T T T T T T T
0.5 o
0.4 o
£ 0.3 8
a) ¢
Z 02t d
g o
0.1 .
ot N T T spbt .
-0.1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Number of OFDM frames
Average acquisition 256 channels, 64—QAM, SNR 14dB, Var 10°
0.6 T T T T T T T
Daffara u
First order Godard L
. Second order Godard
b) o< M&M with phase correction
g Mueller and Miller M
el M= S ot K et
i M CHEUE S e e O S
-0.1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Number of OFDM frames
Average acquisition 256 channels, 64—QAM, SNR 28dB, Var 10
0.6 T T T T T T T
05
0.4
E o3k
c) 2 0ol
5 0.
L o
0.1 R *#(4‘1‘\#_;_
ok i T e e T
-0.1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Number of OFDM frames
Average acquisition 256 channels, 64—-QAM, SNR 14dB, Var 104
0.6 T T T T T T T

d)

ANIRL

01 I I I I I
0 5 10 15 20 25 30 35 40 45 50

Number of OFDM frames

Figure 4.26. Comparison of average acquisition for differemoe functions
with a 256 channel OFDM system and 64-QAM, Average over 20 realizations



4.6 Performance of the acquisition algorithms 69

sition algorithm is thus to produce a carrier estimate good enough for the tracking
algorithm to start to operate independent of which of the allowed frequencies in the
grid the acquisition algorithm locks on to. l.e. the steady state variance demand is the
same for locking to all allowed frequencies in the grid. The allofsegluencies
equals the frequencies in the grid centred around thieataarrier frequencyith a

width / number of grid frequencies, given by the maximum deviation of the oscilla-
tor frequencies.

Channel number offset influence on

Plotting steady state variance as function of step size fieretit channel number
offsets, reveals that the only algorithm where steady state variance is influenced by a
channel number offset is the Daffara algorithm. iguFe 4.27 steady state variance

is plotted for a channel number offset@f5, &td channels, in an OFDM system
with N = 256 channels, 64-QAM an8NR = 28dB
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Figure 4.27. Steady state variance as function of step size parameter with
channel number offset @ 5, amd channdls;s 256 SNR= 28dB , 64-
QAM

While the step size parameter is close to unchanged by the channel number offset for
all the other algorithms, the allowed step size is reduced with one to two decades for

the Daffara algorithm, moving from a channel number offsed of = channds to
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channels. Increasing the channel number offsgdto channels the tolerated step size
factor is further decreased, but at a much slower rate.

Average acquisition time with a channel number offset

Comparing Figure 4.26a with Figure 4.28. the acquisition time for &ffaf error
function increases approx. with a factor seven due to a channel number ofiset of
channels, assuming a SNR28dB and a steady state variad@e3 of . The acqui-

sition time of the other error functions are not significantlgreld by the channel
number offset.
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Increasing the channel number offset frdm 2@ channels doeslter the
acquisition time of the other algorithms, but the acquisition time with a2
error function will increase to a level substantially higher than any of the other algo-

rithms.
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Figure 4.29. Comparison of average acquisition for differenpe functions
with a channel number offset20 chann®lsz 256 , 64-QAM,
SNR= 28dB and steady state variance o2 , Average over 20 realizations
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Decreasing the tolerated steady state varianckOth , the Daffaréhmgurill
exhibit larger acquisition time than all the other algorithms even for a channel
number offset o6 channels.
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Figure 4.30. Comparison of average acquisition for different error functions
with a channel number offset®f channélsz 256 , 64-QBMR = 28dB
and steady state variance 80— , Average over 20 realizations

4.6.3 Time dispersive transmission channels

So far only the performance on ideal transmission channels have been examined. In
many applications, the channel has multipath characteristics introducing inter sym-
bol interference. To diatss the performance of the proposetrier frequency
acquisition algorithms on time dispersive channels, a two-ray channel is used. This
is a commonly used model of e.g. line-of-sight microwave radio channels, (Rummler
et al. 86). The first ray or path is assumed to reach the receiver without attenuation or

delay, while the second path is attenuated with a facior , detayed seconds and
shifted in phase by Rad. In this work the discussions are limited to the case of
8 = m andtyN/ T integer. The received sampled signal in front of the receiver fil-
terbank can then be written as:

sS(K) = x(K) —ax(K —1p) + n(k) (4.20)

Step size factor | with two ray channel

The influence of two different two ray channels will be discussed. First a channel
with a long delay on the second path,= T/4 and an attenuatiomt of . The sec-
ond channel exhibits a much shorter defgy,= 2T/N and no attenuation of the
second pathp, = 1 . The first transmission channel gives rapid amplitude and

phase variations in thigequency spectra and thus between the subchannels in the
receiver, while the second transmission channel gives zerosfietfuency spectra
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close to subchannel numbeér N/ 2 and- 1 . Steady state variance on the two
transmission channels is plotted as function of step size parameter foaffam D
algorithm and the second order Godard algorithm, Figure 4.31.
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Figure 4.31. Steady state variance as function of step size parameter for one ray
(ideal) and two ray channeN = 256 SNR= 28dB , 64-QAM

For both algorithms a two ray channel gives a reduction of allowed step size param-
eter, with the largest reduction for the channel with a short, strong delay.

Acquisition time with two ray channel

InaN = 256 channel OFDM system with 64-QAMNR = 28dB  and a two ray
transmission channel with, = 0.4 ang = T/4 | the first order Godard and the

Daffara algorithms are close to equal in performance for a steady state variance of
103, Figure 4.32.

Comparing Figure 4.26a and Figure 4.32. , both the Daffara algorithm and the two
Godard algorithms gfer from an increased gaisition time. For Mueller and
Mdiller, the two ray channel give an increase iguasition time similar to a reduc-

tion in SNR. Decreasing the tolerated steady state varianté-to , the pattern is
repeated, Figure 4.33
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Figure 4.32. Comparison of average acquisition for differenpe functions
with a two ray channelN = 256 , 64-QAMBNR = 28dB and steady state
variance of103 , Average over 20 realizations
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Figure 4.33. Comparison of average acquisition for differenpe functions
with a two ray channelN = 256 , 64-QAMBNR = 28dB and steady state
variance ofl0* , Average over 20 realizations
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Figure 4.34. Comparison of average acquisition for differene functions
with a two ray channelN = 256 , 64-QAMBNR = 28dB and steady state
variance of10-2 , Average over 20 realizations
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For the transmission channel with a short powerful reflection, the Daffara algorithm
exhibits a large increase in acquisition time to a level far beyond any of the other
algorithms, while the other algorithms perform a little better than for the two ray

channel with long delay and more attenuation of the second ray, Figure 4.34.

Two ray channel and channel number offset

Introducing a channel number offset in addition to the two ray channel gives little
difference in performance compared to the system twih ray channel and no
channel number offset.

Average acquisition with a=1.0 1=2T/N, SNR 28dB, Var 10_3, 20 channels offset
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Figure 4.35. Comparison of average acquisition for differemoe functions
with a two ray channel and a channel number offset of 20 charvels 256 ,

64-QAM,SNR = 28dB and steady state varianceldf3 , Average over 20
realizations

4.6.4 Carrier frequency acquisition time with timing error

The proposed carrier frequency algorithms have been investigated under the assump-
tion of no timing error. The consequences of a timing error is not treated in depth,
but simulations for two examples are shown below.

For both examples the following is validN = 256 channels, 64-QAM,
SNR= 28dB, non time dispersive transmission channel and step sizamgter
which would give steady state variancel@f3 for no timeéngpr. The results are

averaged over 1000 realizations. In the first example there is a témimgof0.2T ,
Figure 4.36.
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Figure 4.36. Comparison of average acquisition for differenpe functions
with a timing eror of 0.2T, N = 256, 64QAM andSNR = 28dB . Average
over 1000 realizations

All algorithms converge, with the second order Godard algoriterfopning best.
Compared to the case of no timing error Figure 4.26a, the acquisition time is approx.

doubled for the second order Godard algorithm with timing erra@.2T redise

ing the timing error t00.3T , the algorithms do not converge to zero CFO,
Figure 4.37.
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Figure 4.37. Comparison of average acquisition for differenpe functions
with a timing eror of 0.3T, N = 256, 64QAM andSNR = 28dB . Average
over 1000 realizations

Carrier frequency acquisition, using the proposed algorithms, can thus not be per-
formed before the timing acquisition. On the other hand, tolerating a timing error of

0.2T in the given example, there is no need for a complete timing recovery to make
the proposed carrier frequency acquisition algorithms converge. Possible solutions
are thus timing acquisition befocarrier frequency ajpiisition or simultaneous car-

rier and timing acquisition.



76

Carrier frequency acquisition in OFDM

4.7 Gear shift algorithms in carrier frequency
acquisition

As discussed in Chapter 4.6, there is a trade off between steady state variance and
acquisition or convergence time when choosing step size parameter . A large step
size parameter gives fast convergence and high steady state variance, while a small
step size parameter gives slow convergence and low steady state variance. Assuming
a decision directed carrier frequency tracking algorithm and higher order signal con-
stellations, the steady state variance of the acquisition algorithm must be small to
make the tracking algorithm start working. Since steady state variance is only of
interest after convergence, it is possible to obtain both fast convergence and low
steady state variance by switching the step size parameter during operation, i.e. using
a gear shift algorithm, (Lee and Messerschmitt 94). During the first stage of the
acquisition a step sizeapameter corrgmnding to a high steady state variance, e.g.

103, can be used. After reaching steady state for the large step size parameter, the
gear shift algorithm switches to a smaller step size factor with a lower corresponding
steady state variance. The total acquisition time will then be heavily reduced com-
pared to only applying the small step size parameter.

4.8 Summary

This chapter was devoted tarder frequency acdggition in OFDM without the use

of pilots or guard intervals. The transmission channel is assumed stationary. The
methods have been presented for use with QAM systems and rectangular pulses, but
can be modified for use with other pulse shapes as well.

Critically sampled LMS carrier frequency acquisition algorithms have been devel-
oped for OFDM systems with a single filterbank in the receiver to maintain mini-
mum complexity. The algorithms have been developed by recognizing similarities
between NDA carriefrequency acquisition for OFDM on one hand and SC timing
and SC blind equalization on the other hand. The error function of the SC timing
algorithm of (Mueller and Mdiller 74) has been adapted to LMS carrier acquisition in
OFDM. The symbol estimation used in the SC blind equalization algorithms of
(Godard 80) have been adopted as well for development of alternative error func-
tions used in LMS algorithms for carrier acquisition. The carrier acquisition algo-
rithms in this work are developed by viewing each OFDM frame as one sequence,
but the resulting LMS algorithms are block oriented, updating the carrier estimate
once per frame.
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The performance of the developed algorithms have been compared to each other and
to the performance of the ML carrier frequency acquisition algorithm affi@and
Chouly 93). The Daffara algorithm is also critically sampled, but applies two filter-
banks in the OFDM receiver. Comparing the Mueller and Miuller based algorithms
with the Godard based algorithms, the Godard algorithms always give the best per-
formance measured in acquisition time. For the investigated OFDM systems,
depending on SNR, constellation size, number of channels in the OFDM system,
time dispersion in the channel and steady state variance requirementfeteaah

in performance varies with a factor between two and ten when comparing the best
Godard algorithm and Mueller and Mdiller. Two Godard based algorithms have been
investigated, first order Godard and second order Godard. The second order Godard
performs better than the first order Godard except for 4-QAM where the perform-
ances are close to equal. The performance of the Daffara algorithm is heavily
dependant on the SNR and little dependant on the number of subchannels in the
OFDM system. For the second order Godard algorithm it is the other way around.
For moderate SNR and low number of subchannels in the OFDM system, the
Daffara algorithm outgrforms the saand order Godard algorithm, while for a high
number of channels and low SNR the second order Godard algorithm outperforms

the Daffara algorithm. In an example system w86 chanisR = 28dB and
steady state variance 003 | there is a factat.6f in favour of the Daffara system
comparing acquisition times. Introducing a channel number offset or a time disper-
sive channel with zeros in the frequency spectrum close to channel nOmber  and
N -1, the acquisition time of the Daifa algorithm increases rapj to a level far
beyond the second order Godard algorithm. The second order Godard algorithm is

little influenced by neither channel number offset nor time dispersive transmission
channels.

The second order Godard based algorithm is robust against low SNR, high CFO and
time dispersive transmission channels. The algorithm also givedogiver com-
plexity and high spectrafficiency.
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Chapter 5
Algorithms for carrier tracking in
OFDM

After the carrier acquisition algorithm, Chapter 4, has reducedatieicerror to a
sufficiently low level, the carrier tracking algorithm starts to work. As mentioned in
Chapter 3, the main task of carrier tracking is to track the deviations in carrier phase
and frequency during system operation. Tagier tracking isiot perfect because of
noise and other impairments. The quality of the algorithms can thus be measured by
the variance of the carriesttmate, assuming the estimators to be unbiased. Conse-
guences, i.e. system degradation, due to non perd@dercfrequency tradkg are
analysed in Chapter 6.

One of the features of OFDM is spectral efficiency, which is important for several
systems, e.g. fixed radio links. Focusing on the example of fixed radio links, these
systems can be described by good SNR, low SER, high capacity, strong spectral
requirements, stable oscillators and slowly changing transmission channel. Strong
spectral requirements enforce higher order modulation at the same time as the use of
guard interval and pilot/DA based algorithms should be avoided. To maintain high
SNR, CFO generated IBI must be kept at a minimQfng 1/ T . This requires high
performance tracking algorithms. Choosing between DD and NDA algorithms, DD
algorithms should be used due to betterfgrmance, (Mengali and Bhdrea 97).
According to Chapter 3.5.4, separate carrier phase and daegeency tracking is
necessary. A DD carrier triing structure is suggested in Figure 3.3 with a feedback
phase synchronizer placed inside a feedback frequency synchronizer.

It is the task of the tracking algorithms to keep pharser and CFO/IBI at a mini-
mum. Analysing the algorithms under the assumption of propenatipn, the Inter

Bin Interference cathus be neglected. This gives a situation where each channel in
the OFDM system can be viewed as similar to Single Carrier systems, allowing the
use of known algorithms and theory for carrier tracking in SC systems.

79
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The carrier synchronization algorithms presented in this work are intendedrfor
rier tracking in spectral efficient OFDM systems. Earlier methods diorier fre-
guency tracking in OFDM are mainly based on pilots or other redundant signalling.
This chapter will look into one family of possible decision directed high perform-
ance carrier frequency tracking algorithms and a related decision direotést ¢
phase tracking algorithm, neither of them requiring redundant signalling.aftierc
estimators are known from SC systems, aradtested her for performance in OFDM
systems with: averaging both in time amxtoss sub channels, higher order modula-
tion and DD input to the estimator. The algorithms are presented for use with QAM
systems, but can be modified to work with O-QAM systems.

In the case of separate algorithms for tracking and acquisition, the tracking algorithm
will sometimes also perform the last part of the acquisition. l.e. the acquisition algo-
rithm does not need to reduce the carrier error to a level with satisfactory system
operation, but rather reduce thgor to a levegood enough for the tracking algo-
rithms to start to work. The lock-in range of the tracking algorithm should thus be
investigated to find a minimum quality limit of the carrier estimate produced by the
acquisition algorithm. For the tracking algorithm presented in this chapter, only a
coarse estimate of the lock-in range is given. On the other hand, the acquisition algo-
rithms presented in Chapter 4 are shown to be able to produaarsbgood esti-

mates by reducing the algorithm step size parameters. Cooperation of the proposed
tracking and acquisition algorithms are thus guaranteed.

The chapter is organized as follows: Chapter 5.1 contafesances to earlier work

in the area of carrier tracking, fundamental limits are given in Chapter 5.2,
Chapter 5.3 describes a decision directed phase tracking algorithm, Chapter 5.4
describes a decision directed carrier frequency tracking algorithm and analyses it's
performance and the consequences of constellation size, teregang and channel
averaging, Chapter 5.5 is a summatry.

5.1 Previous work

There exist severakferences to carriemynchronization in OFDM as mentioned in
Chapter 3.1, (Hirosaki 84), (Clasen and Meyr 94), (Lambrette et. al 97a), (Speth et.
al 98), (Daffra and Chouly 93), (Oh et. al 96), (Moose 94), (Van de Beek et. al 97)
and (Dinis and Gusmao 97). The assumption about negligible IBI in tracking mode
makes it possible to adopt carrier tracking algorithms and theory from SC systems.
SC carrier tracking is a well documented area, examples of textbooks covering the
subject are (Meyr and Ascheid 90), (Meyr et. al 98), (Mengali and D’Andrea 97) and
(Lee and Messerschmitt 94).
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5.2 Cramer Rao Bounds for phase and
frequenc y estimators

Comparing different synchronizers, the optimum synchronizer performance is of
interest. As discussed in Chapter 3, a synclzemionsists of estintian and correc-

tion, with the performance of the synchronizer as a whole given by the estimator per-
formance (including filtering/averaging as a part of the estimator). The minimum
attainable variance for an unbiased estimator is given by the Cramer Rao Bound
(CRB). This makes CRB to a performance threshold, with which estimators can be
compared. CRB for the different synchronization parameters depend on signals sta-
tistics, knowledge about the other synchronization parameters and knowledge about
the transmitted data (Mengali and D’Andrea 97).

The bounds for carrier estimation in a SC system with additive white Gaussian noise
(AWGN) are found in (Meyr et. al 98). Sufficient SNR and averaging over some
symbols with random data is assumed. In this work unity amplification trough the
system and no timingrror is &sumed. CRB for the phase estimator equals:

_ 1
CRE; = —— (5.1)
2K—;
o
While CRB for the frequency estimator equals:
CRB,: = 6 (5.2)

Af 2A2 5
(2mT) O_-ZK(K -1)

02: Noise power

K: Number of frames used for estitivam
For unity bandwidth and symbol duratidn= 1 , the signal poffer equals:
A? = E[|d?] (5.3)

Averaging oveil. independent channels, which is the case of OFDM when the ICl is
small enough to be neglected, the Cramer Rao bounds equals:
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_ 1
CRB@ = A2 (5.4)
ZLK—2
(0}
6
CRBA% = (5.5)

2
(2nT)2L§—2K(K2— 1)

The use of signal powek? in the SC case of Equation 5.1 and 5.2 is based on the
approximation (Meyr et. al 98):

K

z zaklzb-l = z E[algy] (5.6)

k=1l=1 k=1

K

For the OFDM case of Equation 5.4 and 5.5, this equals:

L-1L-1 K K L-1 K
z z z zak, mEb-l,n = z z E[ak nEb-k, n] (5-7)
m=0n=0k=11=1 n=0k=1

This is a consequence of the strong law of large numbers for larie , but for

small L (K the approximation is not valid. As an example, the extreme case of

LK = 1 for phase estimation is discussed. Assuming unity bandwidth and symbol
duration, the signal power equals:

Az, = |al? (5.8)

For constant amplitude modulatié¥g, -, = A2 , and Equation 5.4 and 5.5 are still

valid. For non constant amplitude modulation, the signal pog&r. , depends on
the transmitted symbol. Averaging over all possible symbols the average CRB
equals:
_ 1 1
CRB, = —lE[AZ - J (5.9)
2_ LK=1
0-2

With unity transmitted signal poweE[AZ] = 1 E[1/AZ -] equals 1 for 4-
QAM, 1.9 for 16-QAM, 2.7 for 64-QAM and 3.4 for 256-QAM.
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5.3 Carrier phase trackin g algorithms

For an OFDM system with QAM, rectangular pulses, flat charmeeg CFO and a
phase erro® between the carrieribators in transmitter and receiver, the received
signal in channemn , framk , equals:

N —

1
Zm = %Za

n=0

21 0
j (n—m)T +6 .
el "ot +n(m) = a €%+ n(m) (5.10)

T
K, nI

0
0: Phase error

The received signal equals the transmitted symbol with a phase rotation (equal to the
phase error) plus channel noise, no IBI has been created. For systems with coherent
detection, the phase error must be tracked and compensated.

5.3.1 Data aided carrier phase estimation

Concentrating on OFDM systems with phas®r etimation after the filterbank, the
phase error can be estimated by removing the modulation from the received signal
and extracting the phase.

ek, m = D(Zk, mak, mED (5-11)
ék, m. Estimated phase error, frarke , chanmel

The DA phase error estimator given by Equation 5.11 is a Maximumithdqel

(ML) estimator obtaining CRB, (Mengali and D’Andrea 97). Assuming good SNR
and Gaussian additive noise, the noise of the phase estimate can also be assumed
Gaussian. Phase errors in the range can be detected and the estimator can be
used for correction both in feed forward and feedback systems. In feed forward sys-
tems, Figure 5.1, the variance of the phase error afteeatmn equals the variance

of the phase estimate.
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ak,m
() —

]

Figure 5.1. DA feed forward phase synchronization solution. Channel and/or
frame averaging can be performed before phase extraction or directly on the
phase estimate.

To increase the accuracy of the estimate it can be averagedover frames and
channels, assuming the phase error to be constant over the frames and channels used
for averaging.

k

é =0 z z (Zl,mal,mlzb (5-12)

I =k-K+1MUG

¢: TheL channels used for averaging

In a pilot based system, only the pilot channels are used for averaging.

5.3.2 Decision directed phase error estimation

In Equation 5.11 the receiver is assumed to know the transmitted sequence, which is
the case for systems using pilots. In spectral efficient systems where pilots are
avoided the true transmitted symbols must be interchanged with decisions, creating a
DD estimator for tracking:

Bm = 0(Z max mEb (5.13)

The decision directed estimat&guation 5.13, will behave similar to the pilot based
estimator under the assumption of low SER. For this to be true, phase slipping must
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be avoided. For 16-QAM the maximum tolerated phasar in front of the ddsion

device is approxt0, 0751 . Since the phase error before canecan be anywhere

in the range oft1t , DD phase tracking must be limited to feedback structures where
the phase error is corrected in front of the decision device, Figure 5.2. The estimator
of Equation 5.13 is sensitive to CFO, (Mengali and D’Andrea 97), however during
tracking the CFO can be assumed small. Two equivalent implementations of the
feedback phase synchronizer are shown below in Figure 5.2

; X >j: *> ) ><>E—>j:

0c)

Zk—l,m ak—l,m

Figure 5.2. Two equivalent DD feedback phase synchronization solutions.
Channel and/or frame averaging can be performed before phase extraction or
directly on the phase estimate.

D: Time delay of length one symbol interval

To increase estimator accuracy, the estimate can be averaged over several channels
and frames. Bth in Figure 5.2a) and Figure 5.2. b) the averaging can be performed

in front of the phase extraction or directly on the phase estithate

The contributions from the défent frames and channels can be given equal or dif-
ferent weights. In this work the phrase "windowing" is used for weights applied in
the time direction, while the phrase "weighting" is used for the weights applied in the
frequency direction. Multiplying the error signgl ,,  in Figure 5.2a) with a constant
smaller than unity, equals time averaging with an infinitely long windowing function
using decaying weights for older frames. This equals a first order Phase Locked
Loop (PLL).



86

Algorithms for carrier tracking in OFDM

An alternative is averaging over a finite numbeframes and channels. Thstiena-

tor using uniform time windowing and uniform channel weighting is given in
Equation 5.14. With non constant amplitude modulation, there is an implicit weight
for each contribution to the phase error estimate. It is easy to show that these implicit
weights give optimum performance. With uniform windowing and weighting all
frames and channels used per estimate must have the same phase error. The rate must
thus be decimated with a factd in the phaseection feedback loop of
Figure 5.2.

Due to rotational symmetry of QAM constellationserigawill be a phase ambiguity

of /2 for DD carrier phase synchronizers. This can be solved by rotational invari-
ant coding, which produce the same information sequence independent of rotations
with a multiple oftt/2 . Alternatively difrential encoding can be used of the two

bits identifying the quadrature of the symbol. Other special algorithms are found in
(Mengali and D’Andrea 97).

5.3.3 Decision directed phase error estimator performance

Assuming correct decisions, the DD phase synchronization circuit in Figure 5.2b) is
identical to a DA feed forward phase synchronizer except for a delay introduced in
the feedback structure. With a constant phase error, i.e. no CFO, the performance of
the feed forward and the feedback synchronizers will thus be identical, obtaining
CRB. As mentioned above, increased performance of the DD phase tracking can be
achieved by averaging the phase estimate. With uniform weighting this equals:

k

0 =0 )3 Z(Z|,m?;1|,mD) (5.14)

I =k-K+1MUG

In opposition to pilot based systems, all channels can be used for phase error estima-
tion. Averaging across the subchannels with a non flat transmission channel, one
should pay attention to the coherence bandwidth of the transmission channel and
limit the number of subchannels used for averaging. In the same manner, averaging
in time must be limited according to coherence time of a time varying channel and
oscillator stability, (Steele 92). If per channel equalization is used in connection with
non flat channels, the phase @mtion can be included in the equalizer.

The phase estimator in Equation 5.14 is unbiased under the assumption of negligible
SER. At low SNR this will not be the case, Figure 5.3
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Figure 5.3. DD phase estimator bias (linear) and variance (dB) as function of
SNR,K = 1 andN = 64 , all channels used for averaging phase estimate. SNR
and variance in dB.

Due to significant SER at low SNR the phase estimate becomes biased, explaining
why the estimator variance can become lower than CRB. Since the algorithm is
intended for systems with low SER and thus high SNR, the phase estimator bias at
low SNR will not be of interest during tracking. Larger constellations need a higher
SNR to obtain low SER. This can be observed in Figure 5.3 as a difference between
SNR sensitivity for 4-QAM and 64-QAM.

The results shown in Figure 5.3 are obtained by averaging across 64 channels in one
frame before phase extraction, giving equal performance for constant and non con-
stant amplitude modulations. According to Equation 5.9 there is a penalty using non
constant amplitude modulation if no averaging is performed during phase estima-
tion. The performance loss can be observed in the upper part of Figure 5.4. On the
other hand averaging before phase extraction over only six symbols, the perform-
ance difference betweepmstant and non constant amplitude modulation is negligi-
ble, as observed in the lower part of Figure 5.4.
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Figure 5.4. DD phase estimator variance (dB) with and without averaging
(before phase extraction) across the channels. Constant amplitude modulation,

4-QAM and non constant amplitude modulation, 64-Q&Ms 1 frame

Generally, the performance of the proposed phase estimator follows CRB for 4-
QAM, Equation 5.4, at sufficiently high SNR.

5.3.4 Phase error estimator performance requirements

A phase error will rotate the symbabrestellation in the receiver, reducing the dis-
tance between the constellation points and the decision borders, resulting in a
reduced noise immunity in the system, (Mengali and D’Andrea 97). Using QAM
modulation with constellation size larger than 4, the symbols with the highest ampli-
tude will obtain the largest noise immunity reduction due to a phase error. In this
work the noise immunity reduction is defined as the reduction of distance to the clos-
est decision border for the most phase error sensitive symbol in the symbol alphabet.
The maximum tolerated noise immunity reduction due to phase error is a part of the
system specifications. On the other hand with a stochastic Gaussian distributed
phase error after corréah in the synchronizer, there will always exist a possibility

to exceed the tolerated immunity reduction. The probability to exceed a noise immu-

nity reduction of0, 5dB is plotted in Figure 5.5 as function of number of symbols
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used for phase averaging. The number of symbols equal the number of frames multi-
plied with the number of channekL SNR= 10(M-1) , where M equals the
constellation size. With the chosen SNR and no other impairments than AWGN, the
SER equald 07 , (Pollet et. al 95).

Probability of exceeding a noise imunity reduction of 0.5dB due to phase error
10 T T T T T T T T

——  4-QAM, 14.8dB
-—- 16-QAM, 21.7dB
- -  64-QAM 28.0dB
——  256-QAM 34.1dB

p(Almunity>0.5dB)

50 100 150 200 250 300 350 400 450 500
KL

Figure 5.5. Probability to exceed a noise immunity reductio®&dB due to
phase error, as function of number of frames and channels used for phase
averaging.

To obtain a given probability for exceeding the noise immunity reduction limit, the
number of symbols needed for averagingéasewith increasing constellation size.

The difference in number of symbols needed for averaging is approx. a factor of 1.8
between 4-QAM and 16-QAM, a factor of 2.3 between 4-QAM and 64-QAM an a
factor of 2.6 between 4-QAM and 256-QAM.

Comparing DD and pilot based systems, both of them must use the same number of
symbols for averaging to obtain the same performance. But unlike the pilot based
estimator, the DD estimator can use all channels for averaging. &fechfo DD
systems the number of channels used for phase averaging in pilot based systems will
be reduced with a factor equal to the pilot spacing, increasing the required number of
frames with the same factor. Pilot based phase tracking will thus be more sensitive to
time variations in the phase error.

5.3.5 Lock-in range of the DD carrier phase tracking algorithm

With pilots and feed forward structures, the lock-in range eqtmils with unbiased
estimators giving fast synchronization for the whole range of phase errors. Hence no
separate carrier phase acquisition algorithm is needed.

The proposed DD phase tracking algorithm has lock-in rangetof  , but if the initial
phase error is large enough teate phase iplping, the phase estimator gets unbi-
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ased and the algorithm use a large number of frames to obtain synchronization (Men-
gali and D’Andrea 97). To speed up synchronization, specialized acquisition
algorithms should be used.

The proposed DD algorithm is sensitive to CFO. This is not a large problem during
ordinary system operation, since the frequenagking algorithm will keep the CFO

at a low level. The CFO sensitivity is more critical in the period of time just after the
transition between acquisition and tracking. Other more CFO robust algorithms
could be consigred athis stage. Examples of such algorithms are found in (Mengali
and D’Andrea 97) and (Meyr et. al 98).

5.4 Decision directed carrier frequency tracking
algorithms

A frequency estimator which attains Cramer Rao bound (CRB) has been proposed
by (Kay 89). To obtain CRB, it is assumed AWGN and constant amplitude modula-
tion for the symbols used for frequency estimation, (Kay 89), (Clasen and Meyr 94)
and (Mengali and D’Andrea 97). The estimator has been used for carrier frequency
tracking in pilot based OFDM systems (Clasen and Meyr 94), with CFO estimation
after the receiver filterbank and feedback with carrier correction in front of the filter-
bank.

With the assumption of small CFO, the IBI can be ignored and the received signal
can be approximated with (Mengali and D’Andrea 97):

Zm = A @O+ n(m) (5.15)

The frequency estimator equals the phase error difference between two subsequent
symbols in time divided by the symbol duration. The phaferdnce is éund by

phase extraction after multiplication of subsequent symbols and removal of symbol
modulation. In DA based OFDM systems, the estimate ésaged across the pilot
channels, Equation 5.16

1

Afker = 51

z 0(Zsn, mZk malks 1 may m) (5.16)
m=g¢

Afk: Estimated frequency offset fmame k
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If the performance of the CFO estimate produced from two frames with channel
averaging is not good enough for proper system operation, i.e. the variance is too
high, the CFO estimate must be averaged in time as well. This can be done by a FLL
with a loop filter in the feedback, similar to a PLL, or it can be done by explicit aver-

aging in time overK frames like it is proposed by (Kay 89). It is the last method
which is investigated here.

Perforning time averaging during CFO estimation on a non stationary channel one
should pay attention to the oscillator stability and coherence time of the channel,
(Steele 92).

Averaging over several frames, both estimﬁfe and estinfata contains

The noise of the two estimates is thus not independent and a time windowing func-
tion should be included, (Kay 89). The phrase "windowing" is used for weights
applied in the time déction, while the phrase "weighting" is used for the weights
applied in the frequency direction, i.e. across channels. Averaging across subchan-
nels weighting is not necessary for constant amplitude modulation, assuming the
subchannels to be independent. Equation 5.16 equals estimationfrarme2 which

is the lowest number of frames possible. Udihg  frames and performing averaging,
the estimator equals:

k

A%Eﬂ = 21_[%_ z ZW(| —1)0(z 4 1 w2, mald + 1, may m) (5.17)

m=q =y

r=k-(K-2) (5.18)
A;‘E: Estimated frequency offset at frarke , based on K frames

The time windowing function for constant amplitude modulation is given by
Equation 5.19.

g
U
O (5.19)
g
U

In DD systems the pilots are replaced with decisions:
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N-1 k

. 1 . .
Afgsy = s Y S W(I-n0@.s 20 maH s 1 manm) (5.20)

m=0l=r

Replacing the pilots with decisions, the number of channels used for CFO estimation
is increased from the fraction of subchannels used for pilots to all the subchannels in
the system, improving the quality of the CFO estimate for a given number of frames.
On the other hand the decisions will contain s@mers, reducing the performance

of the CFO estimate, but with sufficiently low SER during tracking, the performance
loss due to SER will be smaller than therfprmance gain due to avegiag over a
increased number of channels. Unlike the phase estimate of Equation 5.fté; the
guency estimate of Equation 5.20 can be averaged over all the channels used for esti-
mation independent of time dispersion in the transmission channel.

With the proposed tracking scheme, both DA an DD carrier frequency tracking make
use of feedback solutions. Assuming no decigomrs and the same number of
symbols used for CFO estimation, there will be no difference between the two sys-
tems. The performance of the synchemmiin Fgure 5.6 thus equals the perform-
ance of the open loop CFO estimator.

To improve the frequency estimate, time and channel averaging canfbened in

front of or after the phase extraction in the frequency correction feedback loop,
Chapter 5.4.1. If averaging in the phase correction loop, special care must be taken
not to corrupt the frequency estimate.

The down sampling in thisequency correction feedback loop is done to keep the
frequency correction, and thus thiequency error in front of the filterbank, constant
over the frames used for each CFO estimate.

In the further discussions about frequency trackingepephase correction in front

of each decision is assumed, i.e. no phase errors which reduce the noise resistance at
the decision. The performance of the proposed synchronizer structure is given as a
function of SNR in this chapter. As discussed in Chapter 6, even a small CFO will
reduce the SNR at the receiver. The results presented here are valid for zero CFO.
For non zero values aif the SNR axis must be shifted with the SNR degradation

introduced by the actualf . The only exception from zero CFO, is found in
Figure 5.9 when analysing the bias of the CFO estimator.
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Figure 5.6. DD feedback phase and frequency $ypnization solutions.
Channel and/or frame averaging can be performed before or after phase
extraction.

5.4.1 Alternative frequency estimators

The CFO estimator in Equation 5.20 is one of several possible CFO estimators
which are unbiased at low SER. Other unbiased estimators may be found by rear-

ranging the order of operations in the estimator, estimator one to six in Table 5.1,
where:

Pm = (Zen, mZI:L, mgﬂu 1, mglk, m) (5.21)
Ocm = (Zk md m) (5.22)
The time windowing functiorw(k) can be square, Mg k) = 1/(K-1) , or

Equation 5.19 can be used for constant amplitude modulation. Square window is
referred to as "no win" in the figures. For negligible SER, the estimators will be
unbiased both with and without windowing. énthaning the order of the opera-
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Frequency estimator Referred to in figires as:
N-1 k Phase, time, channel
oo 1 _
Afeq = TN z ZW(l NOPm
m=0I=r
k N-1 Phase, channel, time
AK _ L 3
NP ZHTNZ z w(l=r)0p;m
l=rm=0
N-1 k Time, channel, phase
“K
Afk+1 - 2T[TD z zw(l_r)pl m
m=0Il=r
k N—1 Channel, time, phase
“K
Afier = ZHTDZ z wW(l=1)p)m
Il=rm=0
N-1 Kk Time, phase, channel
~K _ L 3
Mice1 = o= z Dzw(l r)Pim
m=0 I=r

Channel, phase, time

oo 1 _
Afgry = ZHTZW(I r)szl,m
= m=0
N-1 k Time, channel phase diff.
NP 2 Tg] z ZW(I—r)o,<+lm
m=0Il=r
N-1 k
-0 z ZW(I_r)oknD
m=0Il=r

N-1p K Time, phase diff, channel
/\K _ l
Afgea = >TTN z EJZW(I—r)o,HLm
m—OD l=r
k

[l
_DZW(I_r)Ok,nﬁ

l=r

Table 5.1. Unbiased CFO estimators
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tions and dropping the window function will inflict on both estimator computational
complexity and estimator performance.

Perforning time averaging before phase extraction, (Kay 89) has shown that the SC
estimator asymptotically obtain the CRB for constant amplitude with increasing
SNR. Dropping time windowing this will arease the variance with a factor, (Kay
89):

Val’(A’f)nowindow — K(K + l) ~ 5
Var(Af)window 6(K-1) 6

(5.23)

The last approximation in Equation 5.23 will not be valid for averaging over a small
number of framesAssuming independent subchannels, these results will also be

valid for the estimators of Table 5.1 foNa  channel OFDM system.

An alternative to the frequency estimators discussed so far, is to extract the phase
before taking the phase difference between two subsequent frames, estimator seven
and eight in Table 5.1. Unlike estimator one to six, estimator seven is not valid for
non frequency flat transmission channels. In this case the number of subchannels
used for each phase estimate must be limited, Chapter 5.3.3. Despite that the phase
differs between the subchannels for non flat transmission channels, the CFO is iden-
tical over all the subchannels. This makes it possible to average the CFO estimates
produced from subsets of channels. Estimator eight in Table 5.1 is the extreme case
with per channel CFO estimation.

One problem in gasral with estimator seven andylet of Table 5.1, is the need of
performing phase unwrapping. This is due to the fact that the output of the phase

extraction operator is limited tort . If the phase crogses —1or between frame
andk + 1 this must be detected and the phase must be unwrapped. If the unwrapping

fails, a phase difference close to zevidl appear to be close ta2mt . However
assuming a small phase error and a small CFO during tracking with coherent detec-
tion, the phases to detect will be close to zero and phase unwrapping will not be nec-
essary. For frequency tracking witHfdrential detedbn, phase unwrapping will be
necessary. Non of the CFO estimators from one to six in Table 5.1 need to perform
phase unwrapping. A tracking structure for estimator seven is shown below in
Figure 5.7 for the special case Kf = 2 frames. Channel averaging may be per-
formed in front of the phase extraction.
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Figure 5.7. Alternative DD feedback phase and frequency tracking solution.
Averaging across subchannels is possible in front of phase extraction
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With phase extraction, time araging and channel averaging the order of operations
will inflict on the complexity of the estimator as shown in Table 5.2

First the estimators one to six in Table 5.2 are compared, these estimators don't need
phase unwrapping. If phase extraction is the first or lastatipn, time and channel
averaging can be interchangeaedly producing identical results. If windowing is
included channel averaging before time averaging will reduce the number of multi-
plication, excluding the first and the third estimator of Table 5.2. The estimator with
lowest complexity is number four, with operation order channel averaging, time
averaging and phase extraction. Assuming the phase extraction to be at least as com-
plex as a multiplication, the second estimator will be the most complex estimator of
interest with phase extraction before averaging.

If phase unwrapping is no problem, estimator seven and eight in Table 5.2 can be
applied. The number of additions are doubled compared to the first six estimators.
Compared to estimator four, the number of multiplications are increased faith a

tor of approx.4/3 with windowing and reduced witfieator of approx2/3 with-

out windowing. Estimator seven, which is valid for flat channels, performs two
phase extractions while estimator eight which is valid also for non flat channels per-

forms N phase extractions. Assuming phase extraction to be the computational
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Phase
Order of operators Additons  Multiplications  extractions
1 ZZD( ) N(K-=1)-1 N(K-1)(3+w) N(K-1)
2 ;;D( ) N(K-1)-1 (K-1)(3N+w) N(K-1)
3 Dkzmz( ) N(K=1)-1 N(K-1)(3+w) 1
4 D;;( ) N(K=1)-1 (K—1)(3N+w) 1
5 Z;;( ) N(K=1)-1 (K—1)(3N+w) K-1
6 ;D;( ) N(K=1)-1 N(K-1)(3+w) N
moK
7 15T O-IT O 2N(K=1)-1 2N(K-1)(1+w) 2
8 %%Dk;l( )—D%Z )é 2N(K=1)-1 2N(K-1)(1+w) 2N

Table 5.2. Number of operations per CFO estimate with averaging dver
channels anK framesy = 1 with windowing,= 0 without windowing

demanding task, the flat chanfidquency estimator is comparable to estimator four

in complexity, while the non flat channel estimator number eight will be more com-
plex than estimator number two due to the increased number of phase extractions.
Some of the calculations made for phase tracking may be reused for frequency track-
ing, this can alter the relation of complexity between the different estimators.
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5.4.2 Non constant amplitude modulation

In high capacity transmission systems, symbol constellations larger than 4-QAM is
often used. For DD systems, the data channels are used for synchronization, i.e. there
will not be constant amplitude modulation in the channels used for frequency esti-
mation. As discussed in Chapter 5.2, averaging over a small number of symbols dur-
ing frequency estimation, CRB for non constant amplitude modulation will be higher
than CRB for constant amplitude modulation. In this work the number of symbols
used for averaging will however be assumed large enough to approximate the higher
order modulation CRB with the constant amplitude modulation CRB.

Using non constant amplitude modulation, the different transmitted symbols have
different SNR. For estimators averaging over several frames and/or channels, each
term in the estimator have symbol dependant SNR. To obtain maximum perform-
ance, symbol dependant weights should be used for each term. The non constant
amplitude modulation give implicit weights to the terms. For phase error estimation
with non constant amplitude modulation, Chapter 5.3.3, the implicit weights were
equal to the optimum weights (Mengali and D’Andrea 97). The estimator attains
CRB independent of constellation size without explicit weights. Similar, the explicit
phase difference based frequency estimators, seven and eight Table 5.1, also achieve
CRB independent of constellation size if a sufficient number of symbols are aver-
aged before the phase extraction.

With frequency estimators based on complex multiplication of succeeding symbols
before the phase extraction, estimator one to six Table 5.1, special care must be taken
for non constant amplitude modulation, i.e. use of explicit weights, since the implicit
weights are not optimal. If no explicit weights are used there will be a performance
loss.

Once more the phrase "windowing" is used for weights applied in the time direction,
while the phrase "weighting" is used for the weights applied in the frequerecy di

tion, i.e. across channels. Assuming the subchannels to be independent, windowing
can be performed in eashibchannel before weighting across the subchannels. Both
optimal windowing and optimal weighting will be symbol dependant. With this
approach only estimators with time averaging before channel averaging are availa-
ble. The estimators with weights investigated for non constant amplitude modulation
are:

N-1 k

N ﬁl S u(m) S w(l-r,m)Op, (5.24)

m=20 I=r
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N-1 k

ATy = z_rlnD S u(my w(l=r,m)p, (5.25)
m=0 l=r

r=k-(K-2) (5.26)

w(l—-r, m): Weight due to windowing, channel , frarhe

u(m)y : Weight due to weighting, channe

Frequency estimation from two frames

CRB for the frequency estimate is given by Equation 5.5.Ker 2 frames, aver-
aging overN channels and normalized poviegfa2] = 1 , CRB equals:
_ 1 [fo?
CRB ot N (5.27)

In the case oK = 2 frames there is no windowing, only weighting. Using uniform,
non optimal, weighting, the estimator with channel averaging before phase extrac-
tion, Equation 5.25, has variance equal to (Equation A.11):

A 2
Var(Afen phas) = EQ%TEZ% E.[|al4] (5.28)

An increase in variance d&,[|aj4] equals a los4 &dB for 16-QAM, anritiB

for 256-QAM compared with CRB. To improve the performance of the estimator
symbol dependant weighting should be applied to each subchannel. The optimal

weights are given by (Equation A.13), the focus is puframek = 1 andk = 2
without loss of generality.

(5.29)

Inserting the optimal weights from Equation 5.29 into the estimator of
Equation 5.25, the variance equals (Equation A.14):

2
. _ 0l fo L
Var(Afch phasd = Core0 N2 [ ENEEE }
[l

|ay|? + [ay]2

(5.30)
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a, : Data symbol in framé

Even with optimal weighting, there is a loss cargad to CRB. Theoks equals
0.8dB for 16-QAM, and 1.0dB for 256-QAM., i.e. a weighting gain of ony.4dB

Performng phase extraction before channel averaging, Equation 5.24, with uniform
non optimal weighting, the estimator variance equals (Equation A.15):

Var(AfPhase CI) a?rgcly\l E |:|a| 2:| (531)

Compared to CRB, there is a loss28dB for 16-QAM, @nddB for 256-QAM.
The optimum weighting factors with phase extraction before channel averaging
equals (Equation A.17):

|2, m|?[32,m|?
|al 2+ 85 m/2

u(m) = (5.32)
EEREY

N Z |al o2+ [3g, o2

Inserting the optimal weights of Equation 5.32 into the estimator of Equation 5.24,
the estimator variance equals (Equation A.19):

2
p .0l fo 1
Var(Afenase cj = (enTU N [ ENRE J (539)

Lag2+ |agl?

This is the same performance as the estimator with channel averaging before phase
extraction and optimal weighting, Equation 5.30. With phase extraction before chan-

nel averaging the weighting gain equ&dB for 16-QAM ahddB for 256-

QAM. Compared to CRB there is still a small loss of appddB even with opti-
mal weighting.
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Frequency estimation from more than two frames

For K>2 frames, the complexity of both weighting and windowing factors
increase. As an example, optimal weighting factors and optimal time windowing for
the estimator in Equation 5.25 is given fiér= 3 . The results are found by maxi-
mizing SNR. Details are left out and only the answers are presented. The optimal
time windowing function in channeh , equals:

1 k=0

[l

W(k) = CA,D,+ B,Ch, ‘1 (5.34)
D— —_—
HAEn+ ByDy,

Looking at the case of frequency estimation based on frame 1, 2 and 3:

An = ag ml?[ag m?
B = |82, m?[@3 m?
Crn = |as, @z m2(|as, ml? + 8z m/?) (5.35)
D = |8y, m?[@z, n] %@, ml?

Enm = |a2, m|2|a3, m|2(|a2, m|2+ |a3, m|2)
The optimal weighting factor of channgl  equals:

A,+w,(1)B,
Cm_ 2Wm(l)Dm + Wr2r1(l)Em

u(m) = (5.36)
Looking at the estimator given by Equation 5.25, the performance gain due to opti-
mal weighting and windowing (compared to uniform) equadB Kfor 3 and
16-QAM. The estimator with optimum weighting and windowin{fens from aloss

of 1.2dB compared to CRB.

The complexity of the windowing functions and weighting factors are quite high for
K = 3 and increase padly with increasingK . The gain due to time windowing and
channel weighting (relative to uniform windowing and weightiagd calculated up

to K = 6 for 16-QAM. Similar the loss relative to CRB is calculated for 16-QAM
with optimal windowing and weighting, Table 5.3
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Number offrames | K=2 K=3 K=4 K=5 K=26

Var(Af) Uniform weights
Var(Af)OptimaI Weights 04dB lGdB 30dB 42dB 54dB

Var(Af) Optimal weights
CRB 0.8dB 1.1dB 1.2dB 1.3dB 1.4dB

Table 5.3. Gain due to time windowing and channel weighting and loss for
optimum weighting relative to CRB, 16-QAM and frequency estimator given by
Equation 5.25

Estimator variance without weighting

Generally both windowing and weighting is needed to optimize estimator perform-
ance when averaging over sevefi@mes andsubchannels. If windowing and/or
weighting is dropped (uniform weights), therformance of the stimators are
reduced.

For constant amplitude modulation however, CRB is achieved for the frequency esti-
mators in Table 5.1 without use of weighting, but using windowing. CRiBedses

with increasing number of frames used for averaging accordifhgKG . If the esti-
mators are used without time windowing there will be a loss equéf ® compared
to CRB, resulting in an estimator variance proportiondl A#? , (Kay 89).

Averaging over a sufficient number of symbols before phase extratéguency
estimators seven and eight of Table 5.2 (explicit phaserdifte) behave similarly

for constant and non constant amplitude modulation, obtaining CRB without weight-
ing, but with time windowing.

As discussed above, the estimators given by Equation 5.24 and 5.25 need high com-
plexity weighting and windowing functions with non constant amplitude modulation

to maximize performance. Weighting and windowing can be dropped to reduce the
estimator complexity at the cost of a performance loss.

The performance of the estimator given bguation 5.25, without windowing or
weighting, is simulated and plotted in Figure 5.8 as function of number of frames for
16-QAM. Similarly, the performance of the estimator given [guFe 5.24 is simu-
lated and plotted, without channel weighting, but with and without constant ampli-
tude time windowing. CRB is plotted as well.
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Varriance with averaging over 16 channels, 16 QAM
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Figure 5.8. Simulated values for CFO estimate variance (dB) for DD tracking
with, N = 16, SNR = 30dB, 16-QAM, and different permutations of phase
extraction, time averaging and channel averaging

For estimator two, phase extraction before time and channel averaging, using con-
stant amplitude modulation time windowing, there is a close to constant loss com-

pared to CRB. This loss was calculated above t2.BdB K fer 2 . The variance
is thus proportional td/K3 . Removing the time windowing, the inclination of the
curve equals-20dB per decade for high , i.e. estimator variance proportional to
1/K2. With estimator four, channel and time averaging before phase extraction,
without any weighting or windowing, the curve has an inclination of apptdB

per decade for highk , i.e. estimator variance proportiondl/tg . For estimator
four, the constant amplitude time windowing has no value.

Avoiding weighting due to complexity, the choice of frequency estimator will thus

affect the performance for non constant amplitude modulation. In the rest of this
work, the only weighting function considered is the constant amplitude time win-
dowing, due to the complexity of the other weighting functions.
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5.4.3 Bias of frequency estimate

Similar to the DD phase error estimator, Chapter 5.3.3, the proposed frequency off-
set estimators are unbiased under the assumption of negligible SER. At low SNR
where the SER is not negligible, the estimators will be biased. Estimator seven and
eight are based on the assumption of two phase estimates to be unbiased, at low SNR
this is not the case, Figure 5.3. Estimator one to six are all based on Equation 5.21. In
Figure 5.10. the mean and variance are plotted for estimator fourAfvith 10-2

N = 16, 256-QAM andK = 2 (no time averaging)

Varriance with averaging over 16 channels, 256 QAM
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Figure 5.9. CRB and simulated values for CFO estimate variance (dB) at top,
Af = 102 and estimator mean value at bottom. DD trackiNg= 16 K 7 2
(no time averaging) and 256-QAM.

Similar to phase estimation, the frequency estimate becomes biased for low SNR due
to a significant SER. This explains why the estimator variance can grow lower than
CRB. Since the algorithm is intended for systems with low SER and thus high SNR,
the phase estimator bias at low SNR will not be of interest during tracking.
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5.4.4 Simulated variance of frequency estimate

In this chapter the estimator variance is simulated as a function of SNR for the differ-
ent frequency estimators. Where available, the results areacedwaith calculated
values. The estimator quality demands are treated in Chagigether with a dis-
cussion of the consequences of a small CFO during tracking. Estimators two, four,
five and six which all are guaranteed against the need of phase unwrapping will be
discussed first. Afterwards estimators seven and eight will be discussed under the
assumption of no need of phase unwrapping.

5.4.4.1 Constant amplitude modulation

Variance with channel averaging

As discussed above, the frequency estimators attain CRB with uniform channel
weighting for constant amplitude modulation. In pilot based systems no data is trans-
ferred in the pilot channels. These systems should thus always base the synchroniza-
tion on constant amplitude signals, independent of modulation in the data channels.
The performance of DA frequency tracking is compared here with constant ampli-
tude DD tracking and CRB. The number of channels used for averadfegs di
between DA and DD estimation. With CRB dependant on the number of channels
used for averaging, Equation 5.5, CRB for DA and DD estimation witrdivith a

factor equal to the pilot spacing in the DA system, assuming CFO estimation over
the same number of frames.

As an example, the performance of the DA frequency estimator, Equation 5.16, is
compared to the DD frequency estimator, Equation 5.20, with 4-QNM; 64
channels, no time averaging, = 2 , and pilot spacing equal to , Figure 5.10.

As can be seen from Figure 5.10, both the DD and the pilot based CFO estimate do
perform close to the CRB except for low SNR. The small number of decision errors
at medium and high SNR gives thus no significant degradation of the DD estimator
performance. With constant amplitude modulation, the DD estimator will be supe-
rior to the pilot based estimator measured in variance of the estimate. The variance
of the estimators ffer with a factor equal to the pilot spacing.

Equal power in all channels is assumed in this work. In the case of pilot based sys-
tems, or other systems using a subset of the channels for synchronization, a synchro-
nization performance gain can be achieved by increasing the power in the
synchronization channels, (Clasen and Meyr 94). This will be at the cost of reduced
SNR in the other (data) channels.
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Varriance with 4—-QAM decission directed and pilot based frequency estimator
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Figure 5.10. CRB and simulated values for CFO estimate variance (dB) for DD
tracking and pilot based tracking with pilot spacing equa8toN 7 64 .
K = 2 (no time averaging) and 4-QAM, i.e. constant amplitude modulation

Varriance with averaging over 24 symbols and 16 channels, 4 QAM
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Figure 5.11. CRB and simulated values for CFO estimate variance (dB) for DD
tracking with,N = 16 ,K = 24 , 4-QAM (constant amplitude), and different
permutations of phase extraction, time averaging and channel averaging
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Time and channel averaging

CRB and simulated DD estimator performances hoava in Figure 5.11 for averag-
ingoverN = 16 channels and = 24  symbols with and without time windowing

Using phase extraction before averaging with time windowing, the estimator obtains
CRB even at low SNR, Figure 5.11. Any averaging before phase extraction will
make the estimator approach CRB asymptotically (still using time windowing). This
reduces the distance between the estimators with and without time windowing at low
and moderate SNR. With time averaging oker 24 symbols, the estimator per-

formances with and without windowing differs with appréxlB ~ S&R = 15dB ,
which is a sufficient SNR for operation with 4-QAM. If averaging is performed
before phase extraction, the value of time windowing must thus be considered for the
actual averaging length and SNR used for system operation. Without windowing the
performance is similar for all estimators.

Considering complexity and performance for constant amplitude modulation, this
excludes all solutions with phase extraction in the middle and the solution with
phase extraction before averaging and no windowing.

5.4.4.2 Non constant amplitude modulation

Variance with channel averaging

With channel averaging, the phase extraction can be performed before or after the
channel averaging. Simulated values of the two alternatives are plotted in
Figure 5.12 for 16-QAM and 256-QAM together with CRB. There is no time aver-

aging,i.e.K = 2 N = 16 channels and no channel weighting.

At medium and high SNR where the SER is small, the estimators show a loss com-
pared to CRB as calculated in Equation 5.28 and 5.31. For the worst case, 256-QAM
DD frequency estimator with phase extraction before channel averaging, the loss
equals5.4dB . This performance idgitly better than the performance of a pilot
based system with pilot spacing equal to 4 channels. Including weighting, the per-
formance at medium and high SNR becomes close to similar for both estimators and
for 16-QAM and 256-QAM as calculated in Chapter 5.4.2, Figure 5.13.

CFO estimation for non constant amplitude modulation and no time averaging, chan-
nel averaging without weighting before phase extraction gives low complexity with
only a small performance loss.
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Varriance with phase extraction before and after averaging across 16 channels
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Figure 5.12. CRB and simulated values for CFO estimate variance (dB) for DD
tracking with,N = 16 ,K = 2 (no time averaging) and no weighting for 16-
QAM and 256-QAM, with phase extraction before and after channel averaging

Averaging, with weigthning, over 2 frames and 16 channels

-30 T T T T T T
—_— CRB
351 - %-- 16-QAM, Channel, phase, weigh.
F==% ----  16-QAM, Phase, channel, weigh.
—40 -+ - 256-QAM, Channel, phase, weigh| 7
& --—-  256-QAM, Phase, channel, weigh
—a5t.
S50 TE
Ng)—
2 -s51
5
g
60l
651
_70b
751
-80 I I I I I I I I
5 10 15 20 25 30 35 40 45 50

SNR

Figure 5.13. CRB and simulated values for CFO estimate variance (dB) for DD
tracking withN = 16 ,K = 2 (no time averaging) and chan. weighting for 16
QAM and 256-QAM, with phase extraction before and after channel averaging
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Time and channel averaging

The performance of the estimators are simulateifer 24 fraes,16 chan-
nels and 16-QAM. Non of the estimators use channel weighting, but estimators two,
five and six of Table 5.1 are simulated with and without constant amplitude time
windowing. estimator four is simulated with neither channel weighting nor time win-
dowing.

Varriance with averaging over 24 symbols and 16 channels, 16 QAM
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o Time, phase, ch. win/no win

-100

-110-

-120 1 1 1 1 1 I I I
5 10 15 20 25 30 35 40 45 50

SNR

Figure 5.14. CRB and simulated values for CFO estimate variance (dB) for DD

tracking with,N = 16 ,K = 24 , 16-QAM, and different permutations of phase
extraction, time averaging and channel averaging. No channel weighting.

The results for estimators two and four in Figure 5.14 agrees with the observations in
Figure 5.8. In addition, it is observed that estimators five and six have performance
equal to estimator four. Considering complexity and performance, estimators five
and six will thus not be of interest for non constant amplitude modulation. For the
given example, the lower complexity estimator, with averaging before phase extrac-
tion, has an estimator variance which is more thadB larger than the estimator
with time windowing and phase extraction beforeraging. For CFO estimation
with non constant amplitude modulation, time and channel averaging there will be a
trade off between complexity and performance.
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5.4.4.3 Variance of frequency estimate with explicit phase
difference

Assuming that phase unwrapping is no problem, the “wrapping senditgiency
estimators seven and eight in Table 5.2 can be applied.

Variance with channel averaging

The performance of the "wrapping sensitive" estimators for both constant and non
constant amplitude modulation are plotted in Figure 5KL5; 2 Nard 16

Varriance with averaging across 16 channels
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Figure 5.15. CRB and simulated values for CFO estimate variance (dB) for
phase wrapping sensitive DD tracking with,= 16  add= 2

Averaging acrosd6 channels, estimator seven with channel averaging before phase
extraction obtains CRB independent of constellation size. Estimator eight, which can
be applied to non frequency flat transmission channels as well, suffers from the
“constellation loss’E[1/A?] discussed earlier, whe¥e equals the power of one
symbol. Referring to Table 5.2, estimators eight and two without channel weighting
are comparable in complexity and performance. Both ppticable for nofre-

guency flat transmission channels and botifesimg of a performance loss for non
constant amplitude modulation. Comparing estimator seven with estimator four, the
complexity is similar and the performance equals CRB, i.e. it is apfai. better
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than estimator four for non constant amplitude modulation. Unlike estimator four,

number seven can not be applied with non frequency flat transmission channels.
Considering performance, complexity, the phase unwrapping problem and non fre-
guency flat transmission channels, estimator four without channel weighting is a
good alternative for CFO estimation without time averaging.

One should keep in mind that the results for non flat transmission channels given in
Figure 5.15. are valid for per channel phase and frequency estimation. If the coher-
ence bandwidth is large enough to average over a number of channels before phase
extraction, the performance approaches CRB rapidly, Figure 5.4.

Variance with time and channel averaging

Including both time and channel averaging, the performance is plotted in Figure 5.16
with averaging oveK = 24 frames andN = 16 channels.

Varriance with averaging across 16 channels and 24 frames
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Figure 5.16. CRB and simulated values for CFO estimate variance (dB) for
phase wrapping sensitive DD tracking with,= 16 aNd= 24

Including time averaging and windowing in addition to channel averaging, both esti-
mator seven and eight obtain CRB, independent of constellation size. The phase
wrapping sensitive estimators will thus always outperform the phase wrapping
insensitive estimators for CFO estimation with non constant amplitude modulation,
time and channel averaging. The choice of estimator will thus be a trade off where,
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performance, complexity, phase wrapping and time dispersion in the transmission
channel must be considered.

5.4.5 Lock-in range of DD frequency tracking

The lock-in range of the carrier frequency tracking algorithms in this chapter will not
be discussed, but rather the range of unbiased frequency estimation in a noise less
system. The lock-in range will be larger than the unbiased frequency estimation
range, but for carrier frequency errors outside the unbiased frequency estimation
range the estimated CFO will move slowly towards the true CFO. To speed up syn-
chronization, specialized frequency acquisition algorithms should be applied.

All discussed estimators are unbiased under the assumptions of negligible SER and
negligible IBI. With pilot based tracking the transmitted symia|g, are known,

and the region of unbiased CFO estimation should thus éjual £1/(2T) . But
this would be a violation against the received signal model, Equation 5.15, where
IBI is neglected, (Mengali and D’Andrea 97). The true region of unbiased CFO esti-
mation for DA tracking will thus be smaller. A coarse estimate of maximum CFO
with unbiased frequency estimation during DD tracking is a requirement of no phase
slipping. For 16-QAM with high SNR, the maximum tolerated pleasar in front of

the decision device is approx0, 0751 resulting in an unbiased frequency estima-
tion area of approxAf = +0, 075/ (2T)

5.5 Summary

Methods for decision directed (DD) carrier phase tracking and cdreguency
tracking in OFDM have been presented. Their performances have been investigated
by comparing estimator variance with Cramer Rao Bound (CRB). The best of the
proposed estimators perform close to or equal to CRB. The proposed DD tracking
algorithms perform better than DAatking with a factor close to or equal to the
pilot spacing in the DA systems.

All discussed methods are based on removal of the modulation influence of the
received signal, by multiplication with the complex conjugated ofé¢leeiver esti-

mate of the transmitted symbol. After removing modulation influence, the phase
error can be estimated by phase extraction, while the CFO is estimated by dividing
the phase change between subsequent frames with the symbol duration.

The proposed phaszror estimator performs equal to CRRBlependent of constel-
lation size and number of symbols used for averaging. CRB decrease with the first
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power of the number of channels dnames used for aveging. If no averaging is
performed, CRB for non constant amplitude modulation is higher than CRB for con-
stant amplitude modulation. Averaging over a small number of symbols, the differ-
ence in CRB for different constellation sizes will be negligible. Canegb to ot

based DA phase tracking, the performance of the DD phase tracking is better with a
factor equal to the pilot spacing in the DA system. Alternatively, the DA system
must average over an increased number of frames to obtain the sdorenpnce,
decreasing the CFO tolerance of the phase tracking algorithm.

Eight different DD CFO estimators are proposed in this chapter, all of them unbiased
for negligible SER. Six are related to the frequency estimator of (Kay 89) and do not
need phase unwrapping. These estimators are based on phase extraction after multi-
plying the signal of consecutive frames. The six estimators differ by the order of
phase extraction, channel averaging and frame averaging. The last two estimators are
based on per frame phase extraction and explicit phase differencetWwbaestima-

tors depend on phase unwrapping.

First the six estimators related to finequency estimator of (Kay 89) are discussed.
Comparing performance and complexity, the estimatatts phase extraction in the
middle and averaging before and after can be excluded. For constant amplitude mod-
ulation, two more estimators can be excluded. The two estimatoesdetiie origi-

nal estimator, number two in Table 5.1, with phase extraction before averaging
across channels and frames, and the estimator with averaging across channels and
frames before phase extraction, number four in Table 5.1. Estimator two, obtains
CRB for constant amplitude modulation, with and without frame and channel aver-
aging. The CRB decreases with the third power of the numbiarks used for
averaging, as well as with the first power of SNR and number of channels used for
averaging. The dependency on number of channels used for averaging makes DD
frequency estimation outperform pilot basdquency estimation with a factor
equal to the pilot spacing. To reduce the complexity, estimator number four can be
used. With only channel averaging the performance of estimator four is identical to
the performance of estimattwo. If there is both time and channel averaging, esti-
mator four attains CRB asymptotically with increasing SNR, resulting in a perform-
ance loss at low and moderate SNR. To obtain CRB, a time windowing function is
used during frame averaging. This can be avoided to reduce complexity giving a per-
formance loss proportional to the first power of the number of frames. The variance
of the estimators without windowing will thus decrease with the second power of the
number of frames.

For non constant amplitude modulation, two Kay related estimators are investigated.
One with phase erdction before averagingcross frames and channels, and one
with averaging acrosfsames and channels before phase extracThe Kay related
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estimators based on multiplication of successive symbols before phase extraction,
suffer from a performandess compared to CRB with non constant amplitude mod-
ulation. To maximize performance, symbol dependant channel weighting and time
windowing is necessary. But even with optimum weighting and windowing, the per-
formance does not reach CRB. Tless with optimum weighting and windowing
increases fron®.8dB using two framesioldB using six frames. The complexity
of the weighting and windowing functions increases rapidly witheimsing number

of frames and channels. Dropping windowing and weighting to reduce complexity,
the performance loss differs for theffdient CFO estimators. The estimatweith

phase extraction before averaging and constant amplitude time windowing can be
applied even for non constant amplitude modulation. This will result in a constant
loss compared to CRB, independent of number of frames and channels applied for
averaging. l.e. variance will decrease with the third power of the number of frames
used for averaging. The loss iraseswith increasing costellation size, 256-QAM

gives a loss of appro¥dB . Dropping the windowing function, there is an extra loss
dependant on the number of frames used for averaging. The resulting variance
decreases with the second power of the number of frames. Using the estimator with
averaging before phase mgtion, without channel weighting or time windowing,

the variance decreases with the first power of the number of frames and is little
dependant on constellation size (16-QAM and darg Averaging over a large
number of frames the estimator with phase extraction before averaging is thus supe-
rior, but averaging over a small number fedmes the estimator with avegiag

before phase extraction is better.

The two CFO estimators which depend on phase unwrapping perform equal to CRB
for constant amplitude modulation. Both estimators also obtain CRB for non con-
stant amplitude modulation using both time and channel averaging. With only chan-
nel averaging, the frequency estimator witkeraging over all channels before phase
extraction, obtains CRB. But for non frequency flat transmission channels this esti-
mator can not be used. With no time averaging, the estimator with phesetiort

before channel averaging suffers fronoss equal tae[1/A2] , wher&2  equals the
power of one symbol.

Choosing CFO estimatoredformance and compiity together with theeffects of

phase unwrapping and non frequency flat transmission channels must be considered.
If only channel averaging is performed, the phase wrapping insensitive estimator
four with channel averaging before phase extraction is a good alternative for both
constant and non constant amplitude modulation. If both time and channel averaging
is performed, there will be a trade off between the fadisted above.



Chapter 6

System degradation due to non
Ideal carrier tracking and channel
time variations

During carrier frequency tracking the synchronization is not perfect. At the output of
the tracking module, there will be a stochastic time varying residual CFO with zero
mean and variance as described in Chapter 5. This residual CFO will generate Inter
Bin Interference (IBI) in an OFDMystem. The loss of orthogonality because of
CFO, is one of the subjects in discussions about the feasibility of OFDM for differ-
ent applications. Every system experiencing a CFO wifesdrom a system per-
formance degradation. The CFO generated IBI is special for the OFDM systems, and
can be viewed as a transformation of signal power intof@rercepower. This sig-

nal to interference (i.eoise) power transformation makes the OFDM systems more
vulnerable for CFO than SC systems. In addition, the symbol length is increased in
OFDM systems compared to SC systems, making OFDM systems experience phase
slipping at a lower CFO than SC systems.

The scope of this chapter is to quantify the system degradation due to IBI, during
steady state tracking mode. IBI generated by CFO and IBI generated by Doppler
spread are investigated.

The degradation, measured as SNR reduction, will be calculated as a function of
CFO on stationary transmission channels. This is done both for rectangular pulse
QAM systems and O-QAM systems withffdrent pulse shapes. The influence of
SNR and number of subchannels in the system together with the statistical properties
of the IBI will also be discussed.

For flat Rayleigh fading transmission channels, degradation quantified by the SER
will be calculated as function of CFO and Doppler bandwidth. A CFO is a frequency

115
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shift of the signal, while a fading (i.e. time varying) channel is a frequency disper-
sion of the signal, also denoted as a Doppler spread of the signal. The fading channel
can thus be viewed as a generalization of a CFO. Just like a CFO, a Doppler spread
will generate IBI and reduce systemrfprmance. On a fading channgthout CFO

the Doppler spectra will be located around Zegquency. If the CFO is equal fof

the Doppler spectrum will be located arousfi . The influence of number of chan-

nels in the system and SNR level will be discussed together with statistical proper-
ties of the IBI. To isolate the effects of CFO and timeyway channels, only non

time dispersive, or frequency flat, channels are treated in this work. However during
the design of the example system for fading channels, tolerated time dispersion is
used as design criterion.

The calculations in this chapter are based on time continuous pulseshaping filtering.
The guard channels, Chapter 2.4.3, will thus have no effect and are neglected during
the calculations. During the time discrete simolad guard channebsre included.
Consequences of oscillator phase noise is not specifically treated in this work.

The chapter is organized as follows: Chapter 6.1 contafieserees to earlier work,
degradation due to a CFO on a stationary transmission channel is discussed in
Chapter 6.2, while Chapter 6.3 treats the effects of flat fading transmission channels
and the effects of CFO on such a channel. Chapter 6.4 is a summatry.

This chapter is partly based on (Remvik and Holte 97b) and (Remvik et. al 98).

6.1 Previous work

The earlier contributions to the ditature on the consequence carrier errors in
OFDM, have been concentrated on the effect of Carrier offset imppdta pulse
systems on stationary transmission channels. Analysis and estimation of CFO for
square pulse systems have been treated in (Moose 94) and (Speth et. al 98), while the
most extensive work in analysing teiect of CFO in rectangulgnulse systems was
carried out by (Pollet et. al 95). This last work and (El-Tanany and Wu 97) analyse
the effect of phase noise.

6.2 CFO on Stationar y AWGN channels

Fixed radio links is one example of systems which can be modelled as stationary
Additive White Gaussian Noise (AWGN) channels, typically systems with low SER.
In fixed radio links and several other systems, bandwidth is limited at the same time
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as co channel interference andsystem intefierence limit transmipower. The sys-

tem designer must thus optimize the use of both. This chapter will concentrate on
bandwidthefficient OFDM systems operating on channels with high SNR and low
SER. Both QAM systems with rectangular pulses without guard interval and O-
QAM systems with other pulse shapes are discussed.

6.2.1 Received signal

QAM and Square pulses

The OFDM system discussed in this section is the system with rectangular pulses,
without guard interval, and earrier offset as described in Chapter 2. The received
symbol including a CFO is given by Equation 3.2 and is repeated here, including a
flat AWGN channel:

N-— l

k, m T z %k “I JT(n m+AfT)Td D Nk m (6-1)

Ny m: Channel noise contribution in chanmal , frake

A consequence of the carrier offset is the phase rotation, but in the analysis of the
CFO created system degradation it is assumed thafexcpphase €timate is availa-
ble and is used for phase correction. Using this assumption, Equation 6.1 can be

rewritten for timek = 0 , (Pollet et. al 95):

N
—jard
Zom = Qomllo| + Dz Ao nlm-n* No m® (6.2)
O O
[h=0 O
nzm
Where
J2"Tt anaft
L TI ¢ (6.3)

ag, nlm_n: interference from channelinto channel m.

l,: damping factor of the desired signal.
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With symbols transmitted from timex  to etlewill be no loss of generality by

studying timek = 0 . The factor o9

rection discussed eatrlier.

in Equation 6.2 is the perfect phase cor-

O-QAM with symmetrical filters

In this section the O-QAM OFDM system described in Chapter 2 with carrier offset
is discussed under the assumption of flat AWGN channel. The presentation will be
valid for both bandlimited and timelimited pulses. The real and imaginary part of the
received symbols was presented in respectively Equation 3.4 and 3.5 for the case of

a CFOAf , these results are repeated here for kime0 and with the addition of
channel noise. With transmission of symbols frem oto  there will be no loss in
generality by studying the system at tithe= 0O . Studying the systé&m=a0 will

give zero phaserror due to the CFO at the samplingtant of the real part.

N-1 o o0

R zn} = ¥ 3 Relan} [h(t-ITh(D) (6.

n=0l=—w

(Tem, T
EbOSEDT t+ ;B(n —-m)+ 2T[Aft%jt

~Im{a.} [T+ %Eq(t)

L [T2TL | T
EkslnEDT t+ ;E(n— m) + 2T[Aft%jt + Ngrm

The imaginary part, which is transmittdd 2 ahead of the real part experiences a
phase rotation equal tei2mfT72  compared to the real part. This phase difference
between real and imaginary part is assumed perfectly compensated. With a substitu-
tion of integration variable = t+T/2 and the discussedeaxion of the imagi-

nary part phase angle compared to the real part phase angle, the received imaginary
symbol equals:
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m{zon = 5 Y Im{a,n}jh(r—lT)h(r) (6.5)
n=0I=-w

EbOSDiT + T%n m) + ZMfT%ﬁ

+Re{ ayn}'[h% (1 +1)T+ E%ﬁ(r)

g2, T
EtslnEDT T+ ;%n— m) + ZMfT%ﬁ +Nim

Recognizing the similarity between the shape of the received real part and the shape
of the received imaginary part, the complete received complex symbol can be writ-
ten as

m = 89 m/\o,0 (6.6)

N-1 o

+ z alm/\I0+ z zaln/\lm n

| = —0 n = 0l =—w

1£0
N-1 o

+ z z _Im{ aIn} rI,m—n"'jRe{ arn} r|+1,m—n+Nm

n=0I=—w

n#zm

Where

00

Ay = [h(t=IT)h() Ebos%Tt+g%)+znAft%jt

(6.7)

Ih% IT + %ﬁ(t) Eslnuit + T[%)+ 2MAftt

No, o damping factor of the wanted signal.
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N m_n- Interference from real part of channel n, symbol into real part of chan-
nel m, symbol 0, and from imaginary part to imaginary part.

. m_n- Interference from the inganary part of channel n, symbbl , into the real
part of channel m, symbol 0.

+1m-n- Interference from the real part of channel n, synbol , into the imagi-
nary part of channel m, symbol 0.

Nrm Nim Nim: Channel noise in real part, imaginary part and the total complex
symbol of channel m.

According to Equation 6.6 it may look like the interference between the real and
imaginary part is unsymmetrical, this is not the case. In O-QAM the real and imagi-
nary parts are transmitted with a separation in tima 2 , each real part will be
transmitted mid way between two imaginary parts and vice versa. Which imaginary
part belongs to which real part to produce a complete complex symbol, is only a mat-
ter of definition. In this work the definition is that the real part is transmitted after the
imaginary part. The interference between the quadratures can be described as:

.m_n: interference from one quadrature of channel n, into the other quadra-
ture of channel m which is transmittéid—1/2) T earlier.

Comparison of the systems

With perfect phase correction, the received siggal is the transmitted ajgpal

multiplied with a damping factofl| for the QAM system akgl, for the O-QAM

system. In addition to the sighal component, there is channel noise and signal gener-
ated noise. In the QAM system with square pulses, the signal generated noise is pure
ICI originating from the other channels in the same frame, or at the same time, with
weight factors for the different channels. In an O-QAaystem with pulses of length

larger thanT there will be both ICI and ISI. The ISI arise both between subsequent

frames and between real and imaginary parts of symbols. This ISI behaviour is also
known from SC O-QAM systems (Jesupret et. al 91).

6.2.2 SNR at the receiver

The noise observed by the receiver will equal the sum of channel noise afat-inter
ence. Since a CFO transfer some of the transmitted sigmadr to ISI and/or ICI, a

CFO will reduce theeceived SNR and increase the symbol error rate cfytkiem.

In this chapter the SNR reduction will be quantified according to the same procedure
as used by (Pollet et. al 95) for CFO analysis.
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In an OFDM system with white Gaussian noise and no other impairments, the SNR
at the receiver is given by

2
SNRy-, = E:21 (6.8)

2
On
2 . . . .
oy : variance of the white Gaussian noise.

The power of the transmitted signal is normalizEfia?] = 1 . Introducing a CFO

of Af = AF will give reduced received signal component power and IBl which will

be added to the Gaussian channel noise. The implications of a given level of IBI will
depend on its statistical distribution, which is unknown but will be assumed Gaus-
sian with zero mean. The choice of zero mean Gaussian distribution is motivated by
the IBI being a weighted sum of zero mean, independent, identically distributed (iid)
stochastic variables. The zero mean of the independent members in the sum assures
zero mean of the whole sum. The distribution of each member in the sum will
depend on the transmitted symbol alphabet, while an unweighted sum of the iid var-
iables approaches a Gaussian distribution as the number of members in the sum
grows infinitely, according to the central limit theorem. Assuming Gaussian statistics
of the IBI one should keep in mind that both the finite number of members in the
sum and the weighting are violations to the use of the central limit theorem.

Under the assumption of zero mean Gaussian IBI, which is uncorrelated with the
channel noise, the two noise contributions can be added to one Gaussian noise
source. The total noise power equals the sum of the IBI power and the channel noise
power, resulting in a SNR equal to:

E
SNRyt-aF = 2—0 (6.9)
oyt V,

Eo: power of the received signal component

V: power of the signal gemated interference, or IBI

Using Equation 6.2 and 6.6gEnd 4 in channelm for a stationary channel equals:

> QAM

Ep=Q'°
A5 o OQAM

(6.10)

I o |
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0 N-1 2
E I AM
0 S N Q
0 n=0
Vo =[O nem (6.11)

D N-1 o
E_ASO"' z z (Alzm—n+r|2+1 m—n) OQAM
0 , : :
| n=0l=-w

According to Equation 6.11yY, depends on the receiver channel number, . The

SNR will thus not be equal for the difent channels in the receiver. But since the
largest IBI contribution comes from the closest channels, the only channels with a

V, differing sgnificantly from the other channels, will be the channels with number
closetoorequaltd0 ard—1 . In the calculations in this widgk, in all channels
are approximated witN, for channel numibef2

In the case of O-QAM the largest contributors to the signal generated noise is the
interference between the real and thegimary part at the same channel, and the
interference betweesubsequent symbols at the same channel. In OFDM systems
without guard interval a multipath channel will generate I1SI and a per channel equal-
izer will be needed to remove it. The CFO generated ISI can be assumed removed by
the same equalizer. Before taking into account the noise enhancement, the power of
the signal generated noise with equalizer equals:

N-1 2

> Ihn-d QAM

n=0

m#n (6.12)
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In the SC cas®¥, = 0 , and the only effect of a CFO is a scaling of the signal power
for both QAM and O-QAM with equalization. This scaling is given by
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0142 OA
1> QAM
ED";'

0 A2, OQAM

SNR= SNRy - (6.13)

A single carrier O-QAM system without equalization suffers from additional signal
generated noise, (Jesupret et. al 91).

A2
SNRc_ ooan 0;,0 (6.14)

2 2 2
0f—No o+ z Niot+lio

| = —w

The noise enhancement with per channel equalization will inflict on both channel
noise and ICI, reducing the SNR. The response to be equdlited is found by set-

ting n = m in Equation 6.6.

h(l) = Ay o=Im{ } o+jRe( }T .10 (6.15)

Re[ }: Extraction of real part of signal

Im{ }: Extraction of imaginary part of signal

Rewriting Equation 6.15 as an over sampled system, the noise enhand&ment can
be calculated according to (Lee and Messerschmitt 94) for a zero forcing equalizer.

This is included in the results of this chapter. For the @F@which is investigated

for stationary channels the noise enhancement is negligible, but for the CFO area
investigated for fading channels the noise enhancement will be of importance.

The SNR degradation D for a given CFO8X, = AF , can be measured as the rela-
tionship between SNR-q and SNR¢-ar

VOD
Ne%L + E%D

0

According to Equation 6.16 D is increasing with increasingy, JSER -

Since higher order constellations demand higher SNR for operation than lower order
constellations, higher order constellations wilffsufrom larger degradin for a



124

System degradation due to non ideal carrier tracking and channel time variations

given CFO than lower order constellatioﬂs’.oﬁ is multiplied with the IBI power

V,, and the problem of increasing degradation with increasing SNR is thus avoided
for SC systems using QAM and O-QAM with equalization.

6.2.3 Influence of number of channels N

To be able to compare different systems, total symbol Ryig, , and power per sym-
bol, E[a?] ,are kept costant. The CFOAf , is relative to the total symbol rate.

_Ng N,
Riot = LT const (6.17)
E[a%], = E[a%]; (6.18)

AT, AT
At _ 2L 2% (6.19)
Rot  N: N,

N,, N, : Number of channels in system 1 and system 2
T, T,: Symbol duration in system 1 and 2
E[a?],, E[a?],: Per channel signal power at the sampler in system 1 and system

2, equals unity in this work

According to the guidelines listed above, two QAM square pulse OFDM systems are
compared, the first one with symbol intervial a@d  channels and the second one
with symbol intervaRT an@N channels. Theeirierence to a given channel from

a channelp channels away is given by Equation 6.3 forNhE system, for the
2N, 2T system the integrence equals:

T 21I2Aft
lh =7 I ¢ (6.20)

Similarly, doubling the number of channels in an O-QAM OFDM system will give:
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_ (BT T
= Ih(t—IT)h(t) Ceost + ggo + 2T[2Aft%jt

(6.21)

Ih% IT+ %(t) [Blnuit + TEb + 2T[2Aftgdt

With the observation that the largest interference contributions come from the closest
channels and assumid  to be sufficiently large, doubling the number of channels
in the system equals doubling the CFO. With a tolerated CFO generated SNR degra-
dation Dy erateq » @ Multiplication of the number of channels in the system with any

factor, divides the tolerated CFAF, o1aieq  With the same factor. The tolerated CFO
is thus constant relative to the subchannel bandwidth.

In Chapter 2 it was shown that the use of O-QAM and optimized pulses will reduce
the required number of channels and there by increase the @kStmess, IF the
number of channels is dictated by the spectral requirements. If the number of chan-
nels is decided by another criteria like the frequency correlation, as defined by
(Steele 92), the different systems will use the same number of channels independent
of pulse shaping.

6.2.4 Signal to noise ratio degradation

In this chapter the SNR degradation will be investigated as a function of CFO for
given pulses used in OFDM systems. Assuming a system with limited SNR margin
in the transmission budget, SNR degradations um® will be calculated and plot-
ted. With number of channels influencing the CFO robustness as shown in
Chapter 6.2.3, the investigation for O-QAM systems will be limited to the perform-
ance of the4T length optimized pulse, which gives the lowest number of channels.
The QAM system with rectangular pulse will also be investigated as well as a QAM
single carrier system for the purpose of comparison.

To achieve a SER of07 for a system with constellation BMize , using QAM or
OQAM and without other impairments than the additive Gaussian channel noise, a
SNR of approx10(M —1) is necessary (Pollet et. al 95). This means that the SNR
is a function of the constellation size, and as discussed in Chapter 6.2.2 the SNR
degradation is a function of the SNR. Consequently, with a maximum tolerated deg-
radation, the demands on the accuracy of the estimated carrier frequency in the
receiver will increase with greasing constelteon size.
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Equation 6.16 is evaluated as a function of CFO fiber@dintM .SNR,;-, is chosen

to give SER = 1077 . In Figure 6.1 degradatidh  uplidB is plottedNor 16

channel OFDM systems, QAM with rectangular pulses and O-QAM with and with-
out per channel equalization.

Degradation for 16-QAM, 256-QAM and 1024-QAM

— Rect.
--- opt length 4
- —- opt. w.equal.

0.1

Degradation of SNR, D[dB]

0.01 ! ! :
-6 -5 -4 -3 -2 -1 0
Frequency error relative to total symbol rate, Iog(Af/RTog

Figure 6.1. Degradation as function of carrier frequency offset for 16 channel
OFDM system with constellation size M.

QAM shows the poorest performance forMll , while O-QAM without equalization

is only slightly better. O-QAM with equalization permits approx. 1.5 times the CFO
of the QAM system. Increasing the constellation ke from 16 to 256, the CFO
accuracy must be increased approximately by a factor 4 to keep the SNR constant.
Similarly, increasingM from 256 to 1024, tharger frequency accuracy must be
increased with a factor 2.
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The results of evaluating Equation 6.16 for different number of charyels are
shown in Figure 6.2 with a singlaiwier QAM system for comparison.

16-QAM SNR 21.7dB N=1(SC), 20, 128, 627

- T ! T J -

L —— Rect. i

L --- opt length 4 i

| - - opt. w.equal. i

= L |
S,
[a)
<
=4
%]

S 01f .

c = -

2 L |

g I SC -

© L |
[=2}
[

g L |

0.01 I |
-6 -2 -1 0

Frequency error relative to total symbol rate, Iog(Af/RTm)

Figure 6.2. Degradation as function of carrier frequency offset, N channel
OFDM system with constellation size 16.

If the number of channels is decided by the spectral requirements, systems with a
different number of channels should be camga for differentpulse shapes and
modulation techniques.

In Chapter 2.5.1 example systems with0dB damping at 5% excess bandwidth
were given. 627 channels are needed for QAM with rectangular pulses, while 20
channels are sufficient for O-QAM with optimized pulses of lengith . These two
systems should thus be compared. This reveals a difference in CFO robustness of
almost two decades in favour of the O-QAM system. Tlilerdnce between O-

QAM with and without per channel equalization is relatively small (approx. 1.5).
Comparing OFDM and SC, the SC system tolerates approx. two decades higher
CFO than theN = 20 channel OFDM system.
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6.2.5 Relationship to tracking performance

The SNR degradatiod  as function of normalized CB®,R,., , is calculated
above for stationary transmission channels. A maximum tolerated SNR degradation
Diolerated 9ives a related maximum tolerated CREE erateq - BUt lOOKING at the
carrier frequency tracking algorithms described in Chapter 5, the output of the track-

ing algorithms give a stochastic residual GFQ@ is the residual CFO which is
observed by the receiver and generates SNR degradation. The residual CFO is mod-
elled as zero mean Gaussian with a given variance, it will thus always be a finite

probability to exceed\Fg e ateq

The design criterion for a system is thus piebability to exceed a tolerated SNR
degradationD e, ateq-

The probability for the degradatiddh  to excd®g, ateq equals the probability for
the residual CFO to exce@d~ erateq > Qiven by:

AFoier
pD)DtoIeraled = p‘Aﬂ>AFtoIeraled = 2Q|: = ated:| (622)
JVar(Af)
- _l —02/2
Q[x = «/271'['[6 da (6.23)

AF g erateq: CFO giving a SNR degradation equal to the tolerated SNR degra-
dation

Q[ 1: Q-function, integral of the Gaussian density, (Lee and Messerschmitt 94).

Var(A]A‘) : Variance of the chosen carrier frequen@acking algorithm

Examples

The variance of the DD tracking algorithms proposed in Chapter 5.4, normalized
with total symbol rate, can be written as:

Var(Af) _ 6Y
R2,  (2m)2L3(SNRK(K2-1)

(6.24)

1. The residual CFO is constant over each block used for tracking averaging
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Y = Var(A%)/CRB: Performance loss of the chosen tracking algorithm rela-
tive to the optimal CRB, Chapter 5.4

The SNR in Equation 6.24 is the SNR in the frames used for CFO estimation
SNR= SNR_-o[dB]-D[dB] . This SNR will be stochastic since the SNR degra-

dationD depends on the stochastic CFO. To simplify, for a maximum tolerated deg-
radationD ,e,ateq - the SNR is pessimistically approximated with:

SN F{ dB =SN Fif = O[dB] _Dtoleratec{dB] (6-25)

Inserting Equation 6.24 and 6.25 into Equation 6.22, the probability to exceed a deg-
radationD,erareq €N be calculated for the proposed algorithms.

Example 1: The probabilities to exceed,.,ieq  fOr SOMe estimators are calculated
and shown in Table 6.2 with:

¢ DtoleratecIdB] = 1dB

» 16-QAM, rectangular pulseshaping filters
* SNRy-, = 21.7dB to obtainSER = 107 for no CFO
* Tolerated CFOAF yerateq » @re found in Figure 6.1, usihg= 1dB . The

results are scaled according to number of channels.
» All estimators use uniform windowing and weighting.

» Table 6.1 containy” , loss relative to CRB for the propoaetec frequency
tracking algorithms (Chapter 5.4.2), estimator numbefierring to Table 5.1

Freq.est. Frames  pijstance to
Case Table 5.1 K CRB
1 7 2 Y = 0dB
2 4 2 Y = 1,2dB
3 2,8 2 Y = 2,8dB
4 2,8 3 Y = 2,8dB

Table 6.1. Loss relative to CRB for the investigated estimators 16-QAM
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» The probability to exceed the @whted CFQAF, ¢ a1eq - anthus the toler-

ated degradatiod ¢,a1cq » PECOMES:
ToleratedCFO, | case1  Case2 Case3  Case 4
N AFolerated Table 6.1 Table6.1 Table6.1 Table6.1
16 1,400°3 9,80010% 1,00107 9,50110°6 <1010
20 1, 10103 <1010 2,6010° 7,40107 <1010
128 1, 810+ <1010 <1010 <1010 <1010
627 4,005 <1010 <1010 <1010 <1010

Table 6.2. Probability to exceed tolerated CFOF yjerateq fOr 16-QAM

For the given examples in Table 6.2, timesi@ging is not necessary to keep the

probability of exceeding the tolerated CFO below the SERfarl6

channels.

Example 2:Increasing theanstellation size, the results are found in Table 6.4.

¢ DtoleratecIdB] = 1dB

» 256-QAM, rectangular pulseshaping filters
* SNRys-, = 34.1dB to obtainSER = 107 for no CFO

» Tolerated CFOAF yerateq - @re found in Figure 6.1, usihg= 1dB

results are scaled according to number of channels.
» All estimators use uniform windowing and weighting.

 Table 6.3 containy”

. The

, loss relative to CRB for the proposed carrier frequency

tracking algorithms (Chapter 5.4.2), estimators referring to Table 5.1.

Freq.est. Frames  pijstance to
Case Table 5.1 K CRB
5 7 2 Y = 0dB
6 4 2 Y = 1,4dB

Table 6.3. Loss relative to CRB for the investigated estimators, 256-QAM
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Freq.est. Frames  pistance to

Case Table 5.1 K CRB
7 2,8 2 Y = 5,4dB
8 2,8 3 Y = 5,4dB

Table 6.3. Loss relative to CRB for the investigated estimators, 256-QAM

» The probability to exceed the tolerated CBB,,.,.eq - and thus the toler-
ated degradatioD e,a1eq  » DECOMES:

Tolerated CFO, | case5 Case6 Case7  CaseS8
N AF gierated Table 6.3 Table 6.3 Table 6.3 Table 6.3

16 3, 5010* 1,1010° 410108 5,40104 <1010
20 2, 8110+ <100 8,5010% 1,10105 <100
128 4, 41105 <1010 <10 <1010 <100
627 9, 10105 <10 <107 <10 <100

Table 6.4. Probability to exceed tolerated CFOF  for 256-QAM

Algorithm number two and eight need time averaging for small number of channels,
while algorithm four and seven does not need time averaging.

6.2.6 Simulations

The results in Chapter 6.2.4 were calculated under the assumption of Gaussian
behaviour of the IBI. To achieve a confirmation of the assumption, simulations of
SER as function of CFO are compared with calculations of SER as function of CFO
based on the Gaussian assumption. This is carried out for both a rectangular pulse
QAM system and an O-QAM system with equalization.

SimulatedSERAf) is found foBNR;-, = 10(M —-1) ensurif§ER0) = 10~
(Pollet et. al 95). This is done by Monte Carlo simulations with a confidence of 90%,
(Jeruchim 84). The simulated results are compared with calcuERAf)

According to (Lee and Messerschmitt 94) a system with constellation size 16 has a
SER approx. equal to:
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SER= 3Q%d—“’§NFE (6.26)

d: Distance between points in the constellation

Inserting the SNR as function of CFO add= 0.63 for unity power with 16 QAM
and 16 O-QAM constellations the SER equals:

SERAf) = 3Qg)’ 63JSNF§:°_D(M)E (6.27)

D(Af) given by Equation 6.16.

The results are plotted in Figure 6.3.

Theoretical and simulated SER
107 ‘ T

* Rect puls, simulated
o Opt pulse, simulated
Rect pulse, theo.

—--—:-  Opt. puls, theo.

I
-4 -3.5 -2.5

Frequency error relative to total symbol rate, Iog(Af/RTol)

Figure 6.3. Simulated and calculated SER as functiofdir 16 channel
OFDM systems, with constellation size 16 and gNR21.7 dB.

The agreement of calculations and simulations indicates that signal generated noise
caused by a CFO can be approximated as Gaussian.
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6.3 IBI on flat fadin g AWGN channels

Fading or time varying channels are typical for multipath radio links where transmit-
ter or receiver are in motion. The most common example is the mobile radio chan-
nel. The typical average SNR in mobile radio channels is low compared to the
typical SNR in stationary radio links. In mobile radio channels the time variations
make the signal frequently fade down and give negative SNR. Compared to station-
ary channel systems, in mobile channel systems there is more emphasis on combat-
ing multipath and fading and less on combating neighbour-channel interference.
This gives less stringent frequency masks, allowing a small number of channels. At
the same time there is a wish of keeping the time dispergidn to make each
subchannel to behave close to a non time dispersive system. For channels with long
delay spread, a large number of subchannels must be used. A typical mobile OFDM
system has low SNR, lower order modulation and number of channels decided by
the delay spread of the channel.

The scope of Chapter 6.3 is to analyse the impact of Doppler spread and CFO on
fading channels. Due to mathematical convenience the calculations are limited to
non time dispersive or flat fading channels, Chapter 3.8. Both with and without time

dispersion on the channel, the consequences of Doppler spread and CFO will be
introduction of IBI. The results presented in this work will thus be of interest for

time dispersive channels as well. Investigating the consequences of Doppler spread,
the CFO is set to zero, while investigating the consequences of a CFO the fading will
be slow enough to view the channel as constant during one OFDM frame, i.e. Dop-

pler spreadc 1/ T
6.3.1 Received signal

QAM and Square pulses

The rectangular pulse OFDM system discussed in this section is the same rectangu
lar pulse system that was discussed in Chapter 6.2.1 with the flat Rayleigh fading
channel described in Chapter 2.6.3. Due to the non time dispersive transmission
channel, guard interval is not included. A guard interval would in addition compli-
cate the comparison with other systems since spectral efficiency and transmitted
power would have been changed.

The description of the received signal for the stationary channel case, Equation 6.2 is
still valid and repeated here.
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e :
—jard o
ZO,m = ao,m||0| + Ez aO,nIm—n"' NO, m%e (6-28)
[h=0 0
n#m

The expression for the interference weights is modified, Equation 6.29. This
includes phase crection for the fading channel.

T

—jZTIE'[ ’
l, = %_Ic(t)e Te2mig (6.29)
0

In the OFDM system using M-QAM and rectangular pulses, the fading or Doppler
generated IBI isyst like the CFO generated IBI a pure ICI. One should note that
c(t) is a stochastic function of time, resulting in the interference weights given by
Equation 6.29 to be stochastic and time dependent. This is in contrast to the CFO
generated deterimistic and non time dependent ifenence weaghts for the station-

ary channel, Equation 6.3.

O-QAM with symmetrical filters

The system discussed in this section is identical to the O-QAM system discussed in
Chapter 6.2.1 with exception of the flat stationary channel, which has been replaced
with the flat Rayleigh fading channel.

The description of the received signal, Equation 6.6, is still valid under the assump-
tion of perfect phase corréon.

N-1 o0
Zym = 8 mf\oot z z I AVI (6.30)
n=0 |=-w
nzmOI#£0
N-1 oo
+ z z _Im{ aln} rI,m—n"'jRe{ ar,n}rlwtl,m—n'i'Nm
n=0I=—0

The interference weights are modified to:
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00

jO2m O
JDDT“;[%”ZHAﬂDD

O
Nip = Ih(t—IT)h(t)Ra]C(t)e rdt
O O
- (6.31)
00 D]ﬂ-[ T D
T 0 JDDT’[+;[%)+21TAf’[DD
M = ht—I1T + -=h(t)Imc'(t)e rdt
%[ d 2% 0 0
Where:
c'(t) = c(t)e-iargle(t) (6.32)

t': Sampling instant

Similar to CFO generated IBI on a stationary channel, Doppler generated IBI will be
a combination of ISI and ICI. The Doppler generated O-QAM iaterfce wights,
Equation 6.31, are stochastic and time dependent, while the stationary channel CFO
generated interference whits are deterministic and non time dependent,
Equation 6.7. The weights of the real and imaginary parts will differ since the real
and imaginary part are transmitted at different points of time, but in a statistical
sense the observation made in Chapter 6.2.1 about symmetry in ttierémee is

still valid.

CFO on flat fading channels

If there exists a CFO in addition to the fading channel, trefarence wahts will

still be stochastic. But if the fading is very slow, i.e. small Doppler band width, and
the CFO is large enough to dominate therfetence, the interference igats will
become close to the deterministic weights in the stationary channel. This is easily
realized by examining Equation 6.29 and 6.31. For slow fad{np can be viewed

as constant in the integration interval and the stationary channel scenario is recre-
ated.

6.3.2 SNR at the receiver

A fading channel alone or in combination with CFO, will transform transmitted sig-
nal power to noise power in the receiver. This alters the received SNR.

Assuming a fading channel with average amplification equal to one, Doppler band-
width «1/T, AWGN, no CFO and unity transmitted power, the received SNR
equals:
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1

SNRgi=0 = 5 (6.33)
On
If there exists a CFO or a Doppler bandwidth of significance comparedTo , 1BI

will be created and the received signal power will decrease. The CFO created IBI on
stationary channels was assumed additive white Gaussian with zero mean. This was
motivated in Chapter 6.2.2 while simulations in Chapter 6.2.6 indicated the assump-
tion to be corect. The same motiviah can be used for both Doppler and CFO gen-
erated IBI on fading channels, and they will be assumed white zero mean additive
Gaussian and uncorrelated with the channel noise.

The white Gaussian channel noise is independent of the transmitted signal and chan-
nel fading. The IBI on the other hand is generated from the transmitted signal, and
with a fading channel, the level of the signal component and the level of the IBI must
be checked for coupling. The normalized covariance between the instant signal
power and the instant IBl power can be calculated from Equation 6.28 and 6.30.

K(laal® [1BI[®) _ E[(laal®~E[|aal’])(IBI]* ~E[IBI]*])]
E[|aal’] E[[1BI]*] E[|aal’]E[|1BI|’]

(6.34)

I, for QAM with rectangular pulses.

/\0Y 0 for O'QAM.

a

a

The calculations of the covariance are straight forward but quite tedious, the details
can be found in Appendix B and only the results are given here. CFO generated IBI
on fading channels and doppler spreadegated IBIwill be treated separately.

Doppler generated IBI

To examine the doppler generated IBI the CFO is set to zero resulting in

K(loal’, 1BI[*)eading _
E[|aal®]E[|IBI|*]

(6.35)

With uncorrelated IBI power and signal power, the IBI is assumed to be independent
of the channel fading level and is assumed to perform similar to the white additive
Gaussian channel noise. The IBI power and the channel noise power can be added
giving a resulting system similar to a flat fading channel with AWGN and no other
impairments, SNR given by Equation 6.9.
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CFO generated IBI

In the case of CFO created IBI and Doppler bandwidth/ T , the normalized cov-
ariance is close to unity:

K(loa® [1BI]*)cro _
E[|aal*]E[|IBI|?]

(6.36)

This gives an IBI power following the fluctuation of the signal. This demands sepa-
rate treatment of the IBI following the signal fluctuations, and the channel noise
which is independent of the signal fluctuations. In the case of a small CFO, the chan-
nel noise will be dominating, and we will have a scenario with a fading signal and a
non fading (channel) noise, which equals the ordinary fading channel with:

1

SNR= = (6.37)
o

When the CFO is large, the IBI will dominate over the channel noise, which is a sce-
nario with signal and (IBI) noise fading strongly correlated. This can be regarded as
a stationary channel system with

SNR= 2 (6.38)

Between these two extremes the noise will be a sum of IBl and channel noise.

6.3.3 Influence of the number of channels N

The considerations mentioned in Chapter 6.2.3 when compalfiiegedit systems,

are still valid: constant total rate, constant total power and CFO relative to total sym-
bol rate. Similarly, the Doppler bandwidth of the fading must be relative to the total
symbol rate. Looking at mobile radio channels it has been advocated earlier in this
thesis for using the same number of channels independent of pulse shaping. So com-
parison of different pulse shapes should be done with the same number of channels.

Despite these considerations, it is of interest to analyseftbet of changing the
number of channels in an OFDM system with a flat fading AWGN channel. Follow-
ing the procedure of Chapter 6.2.3, thesifdgrence into one channel from a channel

p channels away in a reatgular pulse system witBN  channels and symbol dura-
tion 2T equals, with substitution of the integration variable:



138

System degradation due to non ideal carrier tracking and channel time variations

.
—jZTIET .
I, = %_Ic(Zt)e T g7 g (6.39)

0

Doubling the number of channels equals doubling the CFO and the doppler spread.
The last based on the observation that moving fofth  c(20) equals doubling

the mobile speed, which doubles the doppler. Making the same considerations about
total interference as in the stationary channel case, it can be stated that:

Systems with a sufficiently high number of chanréls  and a given tolerated IBI, a
multiplication of the number of channels in the system with any factor, divides the
tolerated CFQAf  and tolerated mobile spged  with the same factor. This keeps tol-
erated CFOAf and tolerated mobile spaed constartiveel the subchannel
bandwidth.

6.3.4 Design of the example system

An example system is designed according to the procedure in Chapter 2.5.2. With
bandwidthB,, = 50kHz , delay spreag(t) = 50us , which is very conservative,

and N = 64 channels, the frequency correlation across the main lobe for each
subchannel equals 0.8. The Carrier frequency is chosen to be 1800 MHz.

The transmission conditions on the mobile radio channefaarmore challaging

than for the stationary radio channel, lower SNR with smaller constellations must be
accepted. In this work 4-OQAM and 4-QAM are considered for use in mobile chan-
nels. The motivation for using th&T  pulse with O-QAM at the stationary channel
was the low sidelobe level, which gave a low number of channels. Since the sidelobe
level does not decide the number of channels in the mobile case, the @iorter
pulse should be preferred considering complexity in transmitter and receiver filter-
banks. If per channel equalization is implemented, further complexity reductions can
be achieved with theT  pulse compared to4fie pulse2The anAd thelses
should however be investigated for CFO and Doppler spread robustnessniffs.

A coarse estimate of maximum multipath delay, based on an uniform delay profile,
equals 4/3 of the delay spread. Adding a guard intervalpt to the proposed sys-

tem, the bandwidth loss would equal approx. 5%. Guard interval is not included in
the rest of this chapter.
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6.3.5 Symbol error rate

With a stationary channel, the system degradation as function of CFO was measured
by the reduction in SNR, Chapter 6.2.2. According to the result in Equation 6.35,
this can also be done for Doppler generated degradation on a flat fading channel.
Equation 6.29 and 6.3are inserted in Equation 6.10 and 6.11 and finely these
results are inserted in Equation 6.16. CFO generated degradation on the other hand
can not be treated in the same manner. Witleréint properties for the IBI and the
channel noise it would not make sense to add the power of the two to evaluate a SNR
degradation. Instead the SER is calculated as a function of Doppler spread and CFO.

Calculated and simulated results are shown below. All the simulations in this chapter
include pefect phase correction, sampled signal component has zero phase error.

Doppler spread generated degradation

To isolate the effect of the doppler spread, the CFO is set to zero during the analysis.
With carrier frequencyf, = 1800MHz , a Doppler bandwidth of the fading in the
range of By 00 (104, 10-2(BW equals a range of speedvai [B, 300knVv h for
the mobile. Theoretical results and simulations of SER as function of Doppler band-
width are plotted in the same figure for comparison, dtiRg, - = 13dB and
SNRg - = 20dB, Figure 6.4.

o SER as function of Doppler bandwidth, no equalizer, SNR 13 and 20 dB
10 T T T T T T T

* Simulation, Rect. pulse
o Simulation, Opt.pulse length 2
Theoretical, Rect. pulse

- == Theoretical, Opt.pulse length 2

SER

3 | | | | | | | 1 |
-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2 -2
Doppler bandwidth relative to total symbol rate, Iog(Bd/RTm)

Figure 6.4. Calculated and simulated SER as function of Doppler bandwigth B

for 64 channel OFDM systems, constellation size 4 and pulse length for O-
QAM. SNR 13dB, upper, and 20dB, lower.

10
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Replacing the2T pulse shape with #E pulse shape, gives a performance which

is slightly worse, i.e. th@T is a little more robust to Doppler spread thafiTthe
pulse.

SER as function of Doppler bandwidth, no equalizer, SNR 20dB
10 b T T T T T T T

——  Theoretical, Rect. pulse
- == Theoretical, Opt.pulse length 2
—--—+-  Theoretical, Opt.pulse length 4

10 |

SER

107 -
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Doppler bandwidth relative to total symbol rate, Iog(Bd/RT0)

Figure 6.5. Calculated SER as function of Doppler bandwidjfid8 64 channel

OFDM systems, constellation size 4 and pulse leagth  4dnd for O-QAM.
SNR 20dB.

The calculated values are based on the SER formulas for flat Rayleigh fading chan-
nels found in (Proakis 95), witBNR= SNR B) given by Equation 6.9

1 SNR/2
A IR2_ 6.40
Pe 2[ /\/1+SNR/2J (6.40)

SER = 2peq—Paq (6.41)

Peq: Probability of error in one quadrature channel

The match between simulations and calculations indicates that the assumption about
no fading IBbopmerwith properties similar to AWGN is appropriate. The degrada-

tion caused by IBlgpper is Visible from Bp = 10 (30km/h) both for
SNRg -9 = 20dB and 13dB , with a doubled SER &, = 10282  (45km/h) and
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Bp = 10248 (100km/h) for SNR equal to respectively 20 and 13 dB. According to

the calculations, the O-QAM system is slightly more robust to Doppler spread than
the QAM system, but the simulations show equal robustness for the two systems.

CFO generated degradation

To isolate theeffect of the CFO generated IBI for flat fading channels, thpphx
bandwidth B, is set close to zero. The CFO is in the rangafdfl (10, 102(BW ,
comparable with the tolerated CFO in the GSM system.

In Chapter 6.3.2 the total SNR was divided in two scenarios according to the amount
of CFO. For small CFO the channel noise is dominating and the IBI is neglected.
The system experiences AWGN and a fading signal component, and it can be viewed

as a standard flat fading case. TBER 02) for this case is given by Equation 6.40
and 6.41, withSNR= 1/02 and is thus only dependentSi¥Rg, -, . The inde-
pendency of the CFO is shown by the horizontal line in Figure 6.6 for the case of
SNRg - = 20dB.

SER as function of CFO, Rayleigh fading channel, SNR 20dB
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* Simulation Rect. pulse

o Simulation Opt.pulse length 2
—---  Channel noise floor

—— IBI noise floor rect.

- == IBI noise floor opt.
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Frequency error relative to total symbol rate Iog(Af/RTm)
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Figure 6.6. Calculated and simulated SER as function of CFO for 64 channel
OFDM systems with constellation size 4, SNR 20dB and slow Rayleigh fading.
No equalization for O-QAM
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For high CFO the IBI is dominating and the channel noise is neglected. With fading
signal and fading IBI, where the fading of the two components arelated, the

SNR will be constant. This is similar to a stationary channel and AWGN, with
SNRAf) given by Equation 6.38. The resulti®ER IB) is given by inserting
Equation 6.42 into Equation 6.41.

Peq = Q(VSNRAT)) (6.42)

For high CFO,SNRAf) is independent &NRg, -, , but differs between QAM

and O-QAM, explaining the difference in SER behavi&ER IB) is plotted as
the two steep lines to the right in Figure 6.6. The line to the left representing the
QAM system and the line to the right representing OQAM without equalization.

Replacing the2T pulse with th€T  pulse would give slightly worse results.

o SER as function of CFO, Rayleigh fading channel, no equalizer
107 T T T T T T T

Channel noise floor SNR 20dB
—— IBl noise floor rect.
- == IBI noise floor, opt. of length 2
—--—-- IBl noise floor, opt. of length 4
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1072k

10°
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Frequency error relative to total symbol rate Iog(Af/RTol)

Figure 6.7. Calculated SER as function of CFO for 64 channel OFDM systems
with constellation size 4, SNR 20dB and slow Rayleigh fading. No equalization

for O-QAM with pulses of lengthT — amd

A change of channel noise power will only inflict on the horizo®&IR 02) valid
forlow CFO.SER IB) , valid at high CFO will not be altered, but changiag  will
change the insertion points betwee®ER 0?) asER IB) . Decreased



6.3 IBI on flat fading AWGN channels 143

SNRg, -9 = 1/02 will move the insertion point to a higher CFO, but because of
the steep angle o8ER IB) , a largg&NRg, - change will only give a small

change to the CFO value at the insertion point. ResultSfRg, -, = 13dB are
shown below.

SER as function of CFO, Rayleigh fading channel, SNR 13dB
107 T T T T T T T

* Simulation Rect. pulse

o Simulation Opt.pulse length 2
—--  Channel noise floor

—— IBI noise floor rect.

- == IBI noise floor opt.
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Frequency error relative to total symbol rate Iog(Af/RTm)

Figure 6.8. Calculated and simulated SER as function of CFO for 64 channel
OFDM systems with constellation size 4 and SNR 13dB. No equalization for O-
QAM

In the case of stationary channels and small CFO, the CFO robustnessreaseithc

for O-QAM systems by using a per channel zero forcing equalizer. The CFO range
studied for a fading channel is several decades higher, and as shown in Figure 6.9 the
performance gain with per channel equalization is small for the mobile scenario.

The reason for the noise floor to bend up for the case of per channel equalization is
due to noise enhancement caused by the zero forcing equalizer.

The match between calculations and simulations are good for all the simulations,
except for a transition period when both channel noise and IBI is significant. The

match indicates that the assumption of noise behaviour made in Chapter6.3.2 is
valid. This gives a close to constant SER decided by the channel noise for low CFO,

increasing the CFO a breakpoint is reached of approximdtély 2.5 103BW
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o SER as function of CFO, Rayleigh fading channel
10" T T T T T

Channel noise floor with equalizer SNR 13 and 20dB o

+ Channel noise floor without equalizer SNR 20dB /
IBI noise floor rect.
- == IBI noise floor, opt, length 2, no equalizer ,
—--—-- IBI noise floor, opt, length 2 with equalizer
o Simulated opt, length 2 with equalizer ,
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Figure 6.9. Calculated and simulated SER as function of CFO with and without
equalization for 64 channel OFDM systems with constellation size 4. Simulated
SER for O-QAM with equalization.
after which the SER arease rgidly. The CFO robustness for QAM with rectangu-

lar pulses and O-QAM with optimized pulses of lengfh and no equalizer are
close to equal, with a factor of 1.2 in favour of the OQAM system.

6.3.6 Phase slipping due to CFO

The example system hadN = 64 subchannels, a frequency error of
Af = 2.5 163BW equals approx0.16/T . The assumption about zero phase error
for the signal component is not realistic with a CFO. In fact with a CFO
Af = 0.1/ T, BPSK, perfect feedback phase coti@t (one frame delay on the
phase estimate) and slowly fading channel, the noise resistance will be reduced with
approx. 50% due to phase error ®@f1602t . Using 4-QAM the system will not
work at all due to phase slipping sindé>0.125T . Using 4-QAM on flat fading

channels, the CFO robustness is thus not decided by the IBI, but rather by the toler-
ated phase error at the sampling instant. Compared to SC systems the CFO robust-

ness of OFDM systems is reduced with a factor of apphbx. due to increased
symbol length giving increased CFO generated phase error.
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6.3.7 Generalization of results

The example system was designed for ruratm cellular environment, toldnag a

large amount of time dispersion. For micro cellular systems the delay spread will be
reduced to a figure in the order of 5% of the delay spread in the macro cellular sys-
tem. Assuming the number of subchannéls to be sufficiently high, this reduces the
coherence bandwidth and the number of channels with the same factor, increasing
the mobile speed for visible degradation to 600 km/h. While doppler spread gener-
ated degradation is visible for merdte velocities in the example macrdudar sys-

tem, it will only be visible at very high velocities in micro cellular systems. Despite
that delay profiles up td00us have been measured in hilly terrain, the example
system is conservative for macro cellular systems. Reducing the delay spread from
50us to 15us, which equals the maximum delay handled by the GSM, the mobile
speed for visible degradation is increased to 100 km/h. Considering CFO robustness,
the tolerated CFO is increased with a factor of 3.3 forlthes system and a factor
of 20 for the micro cellular system as a result of decreased number of channels, i.e.
decreased symbol length.

Increasing the system bandwidth/capacity while keeping the frequency correlation in
each subchannel constant, i.e. constant subchannel bandwidth, the doppler sensitiv-
ity will stay constant measured in tolerated velocity. The CFO sensitivity compared
to total symbol rate will decrease with the same factor as the capacity was increased,
keeping the CFO robustness constant relative to the channel spacing, i.e. constant
measured in Hz.

6.4 Summary

OFDM systems loose their orthogonality when experiencing a CFO or a Doppler
spread, i.e. fading channel. Some of the signal power will be transformed into inter
bin interference (IBI), reducing the SNR at the receiver. For OFDM with QAM and
rectangular pulses of length one symbol interval, the IBI will be pure inter channel
interference (ICI). Fosystems using O-QAM and pulse lengths of more than one
symbol interval, the IBI will be a combination of inter symbol ifégeence (ISI) and

ICI.

If the total system bandwidth is kept constant, the number of channels influence on
the sensitivity for CFO and dopplerrspd. If a given degradah is tolerated in the
system, the tolerated CFO and doppler bandwidth, i.e. speed of the mobile, will be a
function proportional tal/N , wher® is the number of channels in the system. In
the same manner, systems operating at high SNR will be more sensitive to CFO and
Doppler spread than systems operating at low SNR.
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The effect of IBI generated by CFO at stationary channels and IBl generated by
Doppler spread at fading channels is similar toeffect of AWGN.This IBI can be
viewed as an increase of the AWGN on the channel. The IBI generated by CFO on
fading channels behaves differently from the channel noise, and the two noise contri-
butions must thus be treated separately. The IBI is ignored for low CFO, and the sys-
tem performs like a standard flat fading system with SNR equal to signal to channel
noise power ratio. For high CFO the channel noise is ignored. Because the signal
fade level and IBI power aredtily correlated, this can be viewed as a stationary
channel with SNR equal to the signal to IBI power ratio.

The robustness against CFO for different pulse shapes has been analysed on station-
ary channels. AMN channel OFDM system using optimized pulses in combination

with O-QAM, has shown to be as good as or better thal an  channel OFDM sys-
tem using square pulses and QAM. The performance is only slightly better for the O-
QAM system when no per channel equalization is used. While introducing a per
channel equalization increases the tolerated CFO with a factor of approx. 1.8 com-
pared to the QAM system. In systems where spectral efficiency is an important issue,
the QAM system must use a large number of channels because of the high spectral
side lobe level of the square pulses, while the O-QAM system with optimized pulses
only need a fraction of that number of channels to achieve the same out of band
damping. Because the system performance degradation is a function of the number
of channels, the O-QAM system with fewer channels will tolerate a laayeerc
frequency deviation than the QAM system. In a typical case with 5% excess band-
width for sidelobe level -40 dB, thefféirence intolerated CFO is almostvo dec-

ades.

For flat fading channels both the consequence of CFO and doppler bandwidth are
examined under the assumption of zero phase error at the sampling instant. On
mobile channels it is not likely that spectral requirements will dictate the number of
channels in the system, but rather the delay spread of the channel, resulting in the
same number of channels independent of pulse shaping strategy. This gives close to
equal tolerated CFO armbppler spread independent of pulse shaping strategy. In an
example macro cellular systemE#00MHz |, degradation due to Doppler spread is
visible from approx. 30km/h. For a micro cellular system wittréased subchannel
spacing and identical modulation and SNR, degradation will be visible from
600km/h . The example macro cellular system SER is unchanged (no 1Bl degrada-
tion) with increasing CFO until it reaches a threshol@,& 10°R,,;, 0.46/T ,
after which it increases rapidly. Removing the assumption about zero grnaisat

the sampling instani\f >0.12% T  give phase slipping with 4-QAM. On flat fading
channels, the CFO robustness is thus not decided by the IBI, but rather by the toler-
ated phase error which is a function of CFO and symbol length.



Chapter 7
Conclusion

This work has presented research on the topi@wofer synchronization in OFDM.

The main focus has been carrier asgign and tacking without the use of pilots on
stationary transmission channels using higher order modulation. Further, conse-
guences of residual carritequency offset (CFO) during carrier tkirog has been
investigated for stationary channels and flat fading channels. Consequences of the
doppler spread on flat fading channels have been investigated as well.

The OFDM carrier acquisition and tracking algorithms have been developed for use
with M-QAM and rectamgular pulses, but the algorithms can be modified for use
with other modulation schemes and pulse shapes. The algorithms do not depend on
pilots or other redundant signalling, maintaining spectral efficiency. The conse-
guences of carrier frequency tracking error and doppler spread have been investi-
gated for QAM withrectangular pulses and O-QAM with pulses optimized for
minimum out of band power.

Acquisition

Critically sampled LMS carrier frequency acquisition algorithms have been devel-
oped for OFDM systems, using a single filterbank inrdeeiver to maintain mini-

mum complexity. Error functions for the LMS carrier frequencyjusition
algorithm has been developed by identifying similarities between OFDM carrier
acquisition and single carrier (SC) timing, where as other error functions have been
developed by identifying similarities with SC blind equalization. The carrier acquisi-
tion algorithms in this work are developed by viewing each OHidvhe as one
sequence, but the carrier estimate in the LMS algorithm is updated only once per
frame.

147
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Conclusion

The performances of the developed algorithms have been compared to each other
and to the performance of the ML OFDM carrier frequenquesition algorithm of
(Daffra and Chouly 93). The Daffara algorithm assumes a critically sampled OFDM
system, but applies a double set of filterbanks in the receiver. Adopting acquisition
time for a given steady state variance as a performance measure, the developed algo-
rithm with the best performance is based on the second order blind equalization
algorithm of (Godard 80). The performance of the Daffara algorithm is heavily
dependent on the SNR and little dependent on the number of subchannels in the
OFDM system. For the second order Godard based algorithm it is opposite. For
moderate SNR and low number of subchannels in the OFDM system affegeD
algorithm performs better than the second order Godard algorithm, while for a high
number of channels and low SNR the second order Godard algorithm performs bet-
ter than the Daffara algorithm.dreasing the CFO to severmlbchannel bandwidths
(channel number offset), the acquisition time of the &affalgoithm increase,

while the second order Godard based algorithm is little influenced. Hifar®
algorithm is also sensitive to time dispersive transmission channels. If the transmis-
sion channel introduces zeros close to the edges of the total OFDM signal spectra,
the acquisition time of the Daffara algorithm will increase rapidly. The second order
Godard algorithm is little influenced by time dispersive transmission channels.

Compared to the Daffara carrier frequency asijon algorithm, the second order
Godard based algorithm developed in this work is more robust against low SNR,
high CFO and time dispersive transmission channels. The second order Godard
based algorithm also give lower receiver complexity.

Tracking

Methods for decision directed (DD) carrier phase tracking and cdreguency
tracking in OFDM have been presented for use with M-QAM. The methods are
based on feedback solutions. When averaging the carrier estimate over several
received symbols, non-overlapping windows are used in the time direction (the
weights put on each symbol is NOT an uniformly decaying function of the symbol
age). This is in opposition to the well known method of SC tracking with first order
phase locked loops (PLL), which equals decaying weights for older symbols and
overlapping windows. Another ddfence compared to S§ystems is the need for
separate carrier phase and frequency tracking in OFDM. All discussed methods are
based on removal of the modulation influence by use of the receiver estimate of the
transmitted symbol. Phase error is estimated by phase extraction, while the CFO is
estimated from the phase change between subsequent frames.

The performance has been investigated by comparing estimator variance with
Cramer Rao Bound (CRB). The best of the proposed estimators perform close to or
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equal to CRB. The proposed DD tracking algorithms perform better than DA track-
ing with a factor close (or equal) to the pilot spacing in the DA systems.

The proposed phasaror estimator performs equal to CRB, with the exception of
when averaging over a small number of symbols while using higher order modula-
tion. This gives a moderate loss.

Six different ver®ns of a carrier frequency tracking algorithm have been developed
based on the frequency estimator of (Kay 89). Considering complexity and perform-
ance, four of them are excluded. These six estimators does not need phase unwrap-
ping. With constant amplitude modulation they obtain CRB independent of humber
of frames and channels used for averaging. With higher order modulation one of the
estimators has a constant, moderate loss relative to CRB, while the other estimator
has a loss relative to CRB which is proportional to the second power of the number
of frames used for averaging.

In addition, two arrier frequency estimators based on per frame phase tidrac

and explicit phase flerence have been dduped. These two estimators depend on
phase unwrapping. Of the two estimators, one obtains CRB in all situations, while
the other has a moderate loss compared to CRB for higher order modulation and no
frame averaging.

For the examples in Chapter 6, averaging over only a few frames was necessary to
obtain adequateagrier estimation accuracy.

Compared to pilot based methods, several of the presented DD carrier tracking meth-
ods give better trackinggpformance and system with higher bandwid#fficiency.

Performance loss due to imperfect carrier tracking and fading
channels

Degradation due to Inter Bin Interence (IBI) generated by CFO and flat Rayleigh
fading transmission channels have been calculated and simulated.

OFDM systems loose their orthogonality when experiencing a CFO or a Doppler
spread, i.e. fading channel. Some of the signal power will be transformed into B,
reducing the SNR at the receiver. For OFDM with QAM and rectangular pulses of
length one symbol interval, the IBI will be pure inter channarference (ICI). For
systems using O-QAM and pulse lengths of more than one symbol interval, the 1BI
will be a combination of inter symbol inference (ISI) and ICI.
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Conclusion

The IBI generated by CFO at stationary channels and doppler spread at fading chan-
nels are dund to behave similar to the channel noise. This IBI can be viewed as an
increase of the AWGN on the channel. On the other hand, if the IBI is generated by
CFO on a fading channel, signal fade level and IBI power are highiglated. The

IBI can be ignored for low CFO, and the system performs like a standard flat fading
system with SNR equal to signal to channel noise power ratio. For high CFO the
channel noise is ignored and the system can be viewed as a stationary channel with
SNR equal to the signal to IBI power ratio. Systems operating at high SNR will be
more sensitive to CFO and Doppler spread than systems operating at low SNR. In
the same manner, sensitivity to CFO and doppler spread is proportional to the
number of subchannels in the system.

On stationary transmission channel where spectral efficiency is an important issue,
QAM systems with square pulses must use a higher number of subchannels than O-
QAM system with optimized pulses, due to the difference in spectral side lobe level.
The O-QAM system with fewer subchannels will thus tolerate a |lageier fre-
guency deviation than the QAM system with square pulses. An typical example is
shown, with 5% excess bandwidth for sidelobe lev&#dB the difference in toler-
ated CFO between the two systems is almost two decades.

For flat fading transmission channels both consequences of CFO and fading doppler
bandwidth are examined, under the assumption of zero ghnaweat the saming

instant. In a mobile communications environment, the number of subchannels will
be equal, independent of modulation and pulse shaping strategy. This results in
almost equal tolerated CFO and Doppler spread for the discussed QAM and O-QAM
systems. Increment in symbaidror rate (SER) is used as degradation measure. In an

example macro cellular systemE#00MHz , degradation due to Doppler spread is
visible from approx30km h . For a micro cellular system with increased subchannel
spacing and identical modulation and SNR, degradation will be visible from
600k h. The example macro cellular system SER is unchanged (not influenced by
IBI) with increasing CFO until it reaches a threkhat 2, 50103R,,; (orreferring

to the subchannel spacing,16/T ), after which the BER increases rapidly. Remov-

ing thezero phase error assumption, 4-QAM ca operate with a CFO @f.16/T
due to phase slipping. The tolerated CFO is thus not decided by the IBI but rather the
phase error/slipping, which is a function of symbol length.
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7.1 Future work

This work has discussed carrieadking and arrier frequency acdgsition without

the use of pilots, guard interval or repeated signals. To complete the work on pilot
less carrier synchronization in OFDM, methods for Non Data Aided (NDA) carrier
phase acquisition should be investigated. Possible approaches are indicated earlier in
this work. Similar, the transition between acquisition an tracking should be investi-
gated, including how to detect sufficient carrier synchronization for the tracking
algorithms to operate.

Spectral efficient méibds for frame acquisition is another research topic. Several
methods foframe acqusition in OFDM is proposed, but all methods assume the use

of either pilots, guard intervals or repeated signals. All these methods will thus
reduce system capacity. NDA alternatives might be developed both by a time
approach where subsequent frames are investigated and by a frequency approach
where neighbouring subchannels are investigated. Methods for spefficeint

frame tracking are referred &arlier in this work.

The methods developed for carrier synchronization assuaréscpframesynchro-
nization, even though some carrier acquisition algorithms in this work have been
tested with frameynchronization error. Similar, many frame synchronization algo-
rithms assume perfectrrier synchroniza&in. With simultaneous frame and carrier
errors in addition to a multipath transmission channel, care must be taken to ensure
that the synchronization algorithms and the equalizer converges. The same problems
are known from SC systems. To overcome these difficulties, methods for joint syn-
chronization, equalization and detection in SC systems have been proposed. Some of
these theories can be adapted to joint frame and carrier acquisition in OFDM, even
including equalization and detection. This will give a challenging, rather complex,
multi dimensional problem.
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Appendix A

Weighting factors and variance for
frequency estimation over two
frames

As discussed in Chapter 5.4.2, during calculations of the carrier frequency offset
estimate, averaging over several independent OFDM subchannels wahseacthe
estimate performance, i.e. reducdimate variance. With non constant amplitude
modulation each term in the averaged CFO estimator has symbol dependant SNR.
To obtain maximum performance, symbol dependant weights should be applied for
each term. In this appendix the optimum weighits calculated fotwo different
estimators, together with the estimator variance with and without use of the weights.

Only the case of estimators basedkorr 2 frames is investigated.

With K = 2 frames there is no time windowing, only channel weighting. Without
loss of generality, the caselof= 1  is investigated, i.e. frequency estimate based on

frame numberl an@ . The estimators of Equation 5.24 and 5.25 can be rewritten
as:

N-1
~ l ~ ~

Afy = o= S U(M)D(2, 20k malh mas, m) (A1)
m=20
N-1

Af, = — u(m)(zy, mzHh alb nay m) (A-2)

onT Z amThmeE S e .

m=20
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u(m) : Weight due to channel weighting, channel

The received signa, ,, can be rewritten as:

Zom = @K +n (A.3)
Giving:
Opy m = 02z, nzHh mah mady n = 2MAfT+n (A.4)
n: Noise

Still without loss of generality, CF@Qf is set to zero:

pl, m = ZZ, mZDl, maDZ, mal, m = |a1, m| 2|a2, m| 2 (A-5)
+|ay m2akh, mn,, m
+ al, m|a2, m|2nDlv m
+ 8y malh mnh, Ny, m

The following approximations are made under the assumption of sufficient SNR:

‘al, malL, mntL, N, m‘ « “al, ml 28L% mNy, i+ @y, ml@y, w200, m‘ (A.6)

0Py, m= Niy m/ (|81, m?|@2,m?) (A.7)
Where:

Niy m = IM{|ay n/2ah mN, m + @y s, m/ 2NEL m} (A.8)

Channel averaging before phase extraction

The frequency estimator with averaging across subchannels before phastoext
is given by Equation A.2. For uniform channel weightin@n) = 1 the variance of
the frequency estimate equals:
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r r N-1 277
z Nig m
Va.r(AfChY phasa = %gEa Eni N_lm:0 (Ag)
z |81, m/*[, |2
L “lm=o0 .

E,i: Expectation with respect to noise

E, : Expectation with respect to symbols

[N-1 T
z |al, m|2|a2, m|2(|a1, m|2 + |a2, m|2)
P DLDZO’Z =0
Va.r(AfChY phasa = EQT[TD EEa m= |j\l—1 E?r (AlO)
g5 1as w22 nl’g
i B 0

AssumingN to be sufficiently large and normalized po#&gtal?] = 1

A 2
Var(Afen phas) = EQ%TEZ% E.[lal*] (A11)

To increase the estimator performance, symbol dependent weighting should be
applied to each channel. Minimum variance is given by weights equal to:

EnilPy ml 2/ 02
u(m) = ———= = (A.12)
Eni[|n|1, m|2] |al, m|2+ |a2, m|2
The common facto2/ o2 can be removed:
u(m) = 1 (A.13)

Including weighting the frequency estimator variance equals:
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[ N-1

z |a1 ml 2|82, ] ?
|

ay m?+ |8 2

~ 2
Va.r(AfChY phasa = Ijil:%O-_E (A14)

LTl 2 f
|a1 m?|,m? O
Dz |al ml?+ |2y m|ZD

_nt DZGZE 1

z [ ml?aem®
|y, m 2+ |2, m|2

“m=0

_olfo’ 1
(ot N |ay|?|ay?
2 R I S =) S
a[|al|2 + |a2|2J

Channel averaging after phase extraction

The frequency estimator with phase extraction before averaging across subchannels
is given by Equation A.1. For uniform channel weightin@gn) = 1 the variance of
the frequency estimate equals:

2

B _ Dz Z niy
Var(AfPhase CI) -_ EQ TND |al m| |a: m| (A15)
g NE [ }
EQT[TD N 2| |al2

Equation A.15 is valid independent of the sizeNof . The optimum weighting factor
to minimize estimator variance equals:
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1 _ 2|ay 4 ?|ay, 2/ 02
ZJ |2y, m® + |2z, m|?

u'(m) = (A.16)

nll m
|3y, ml?[8z, 2

=

With removal of the common fact@/c2  and scaling to keep the estimator unbi-
ased, the channel weights equal:

|y, m|?[32, m|?
|8y, + |85 m|?

u(m) = = (A.17)
B o
N Z |al o2+ |2 o2
Variance with weighting equals:
DZ 2
Var(Af ol _u(mniy A.18
(Bfpnase e = EQT[TND z |al ml 2|8, m|2 ( :
- Ne1 -
z O P
o1 DZNZGZE 2l e ol?
LonTNL 2 * DZ
HEEC
Dz oy
AssumingN to be sufficiently large:
A 2
Var(Afphase c) = 01 DZO'_ 1 (A.19)

LbnTO N EREERE
a[|al|2 + |a2|2J
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Appendix B
IBI power and signal power
covariance

As discussed in Chapter 6.3, a time varying transmission channel and/or a CFO gen-
erates IBl in an OFDM system. The time varying transmission channel investigated

in this work is the frequency flat fading chanmét) described in Chapter 2.6.2. In
this appendix the coupling or covariance between the instant signal hm{/%r and

the instant IBI powe[iBI|® is investigated.

K(laa® [1BI®) _ E[(laal®~E[aal’])([1BI|* ~ E[|I1BI|*])]
E[|aal’] E[|1BI]*] E[|aal*]E[|1BI]*]

(B.1)

Without loss of generality framke = 0  is investigated. The number of chaRNnels
is assumed to be sufficiently large to neglect special effects due to cltannel and
N-1.

For OFDM using QAM and square pulses without guard interval, the signal compo-

nent and IBI in channem , framek at the receiver is found by rewriting
Equation 6.28:

(0@g, m)oam = 8, m|lol (B.2)
S
—jard g
(IBIO, m)QAM = Ez aO,nIm—rJéE (B-3)
[h=0 0
nzm
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Where:
T D
_1 2 ot
I, = TJ’c(t)e et (B.4)
0
Using O-QAM with symmetrical pulse shaping filters, Equation 6.30 can be rewrit-
ten as:
(0@, m)o.gam = ao,m/\o,0 (B.5)
N-1 o0
(IBIO, m)O-QAM = z z al,n/\l,m—n (B-6)
n=0 |=-w
nzmOIZ£0
N-1 o
+ z z _Im{ aln} rI,m—n"'jRe{ ar,n}rlwtl,m—n
n=0l=-w
Where:
® jo2n O
O j t+’—TEP+2nAft O
Ay = Ih(t—IT)h(t)Ra]C(t)emT 2 “Hit
O O
- (B.7)
° (2, T O
T 0 jDDT’[+;[%J+2TtAf’[DD
M = hgt=IT + () Imc(t)e ot
o =[ Mg =IT+ ch(OImD E
c'(t) = c(t)ejage() (B.8)

t': Sampling instant

It is assumed unity transmitted power and unity amplification by the fading trans-
mission channel:

Elld’] = 1 (B.9)

Ellc(t)’] = 1 (B.10)
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B.1 CFO generated IBI

QAM and rectangular pulses

In the case of Doppler bandwidtkk 1/T , the fading channel can be approximated
as constant over one frame, for simplicity denated . The IBI is thus CFO created.

First OFDM using QAM and rectangular pulses is investigérathek = 0 ):

K(laa? |IBI|?)cro = (B.11)
N-1 2 N-1 2|0
O
E| (|20, mld*~Ellaomld DAY @0 nlmr —E/| S @nlm-vq |0
,m0| | ,m0| z ,n'm-n z ,nim-n 0
n=0 n=0 O
nzm nzm

Equation B.1 can be rewritten as:

K(laa? [1BI|*)cro = (B.12)
N-1 2 N-1 2

E |a0,m|0|2 z aO,nIm—n _E[|a0,m|0|2]E z aO,nlm—n
n=0 n=0
nzm nzm

Defining:
lp = Gy (B.13)
T P
v e T o
Iy = i[e e dt (B.14)

0

Inserting Equation B.3 into B.2:
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N-1 N-1
2
K(laal®, [1BI%)cro = [lo]" Y [ln-al "ELlcd T~ [16]" 5 [1m-ol"El| &l T (B.15)
n=20 n=20
nzm nzm

Recognizingc(t) as a filtered zero mean complex Gaussian signal, the expectation
of the fourth power equals (Nikias and Petropulu 93):

Ellcl] = 2E[|cl1” (B.16)

Combining Equation B.10, B.5 and B.6:

N-1

K(laal®, [1BI%)cro = [Ig]" Y [ln-dl’ (8.17)
n=20
nzm

At the same time:

N-1

EllaaIE[IBIT = [16]" S [In-dl” (B.18)
n=20
nZm

Resulting in:

K(laal®, |1BI[*)cro _
E[|aal]E[|I1BI|’]

(B.19)

O-QAM with symmetrical pulseshaping filters

For O-QAM with symmetrical pulseshaping filters, the covariance edfralsme
k = 0):

K(laa? [1BI®)cro = E[(| Mo, d*—El| 8, mMo.d ) (8:20)
(1Bl m)o-oam” = EI|(1Blg m)o-oam )]

Giving:
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K(laal?, 1BI|*)cro = E[|ag, mAo, o |(1Blo mo.oam ] (B.21)
—E[|20,mo,d “TE|(1Blo,m)o-qand ]

With c(t) approximated as constant over the observation interval and phase correc-
tion as defined in Equation B.8 the following definition is valid:

00

o2m T |
0 jmTt+£[%J+2TtAftDD

Nip= lc(OIN = IC(t)Ijh(t—lT)h(t)ReDe dt
O O
- (B.22)
* [I2m T O
_ L T O JDDT“;[%J‘LZHAﬂDD
M= 1e(OIT ), _|c(t)|jh§_|T+§§q(t)|mEe Edt
Applying Equation B.12:
E[|ao,m/\0,o|2] =N, o'2 (B.23)
N-1 Y N-1 o
E[[(IBlomoca 1= 5 5 Ama™+ Y Y Timed” (B.24)
n=0 Il=— n=0l=—o
nzm0OI#£0
E N-1 )
E[|a0,mA0,O|2|(IBIO,m)O-QAM|2] = E[|C(t)|4]/\o,o'28 z z /\I,m—nlz(B-zs)
[0 n=0 l==
nzmOI£0
N-1 o 0
+E||a |Zz ZIm{ai yor, .2+ Re{ a,}2r ‘ZB
0, m| ,n I,m-n N I+1, m-n 0
n=0l= o 0
In the last double sum of EquationB.15, term=m | =20 includes

El|a m|2Im{ ay mt 2] andE[|ay, m|2Re{ & m} 2] . Assuming this term not to be domi-
nating in the total sum the following approximations is used:

El| @, “IM{ 8, m} 2] = El |8, | “TEL 1M @ 1} 2] (B.26)

El|2o, ol "R @& m} 2] = E[|ag o 1E[RE @} 2] (B.27)
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For 4-QAM the approximations in Equation B.16 and B.17 is fulfilled with equality,
while for larger constellation sizes there will be an error increasing with increasing
constellation size (an error approx. equal to a factof for 256-QAM).
Equation B.15 can be rewritten as:

El|ag m/\o, o|2|(|B|0, m)O-QAM|2] = (B.28)
O N-1 ® N-1 o O
O il
E[|C(t)|4]/\0, 0‘25 z z /\I,m—n‘2+ z z rI,m—nlzg
On=0 I== n=0l=-o 0
nzmOI#£0

Applying Equation B.6 and inserting EquationB.13, B.14 and B.18 into
Equation B.11:

K(laal’, [1BII*)cro = E |8, mo o TEL|(1Blo, m)o-am ] (8.29)
Resulting in:

K(aal’, [1BI*)cro _ 4
E[|aal’]E[|1B1|’]

(B.30)

B.2 Fading generated IBI

QAM and rectangular pulses

In the case of zero CFO and transmission channel variations large enough to be
observable within each frame, the IBI is Doppler spreacdgead. Firsinvestigat-

ing OFDM using QAM and rectangular puldésmek = 0 ):
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K(laal? |IBI|?)rading = (B.31)
N-1 2 N-1 2

Ellamld| Y @nlm-q |-Ellaomld IE|| S @ nlm-n
n=20 n=20
nzm nzm

Where mean signal power equals:

El|ag, mldl’] = E{ [e(ddt ] = [[Elc(t)cHt)ldtdt, (B.32)
0

00

Repeating the model @f(t) , Chapter 2.6.3:.

WGN ——»{ LP(%)
Re{ W 9}

c(t)

WGN —» LP(1)

Im{y(t)}
Figure 7.1. Rayleigh fading model

WGN: White Gaussian noise
LP(t): Impulse response of Butterwort low pass filter

y(1) : Complex white Gaussian noise

TT o o

E[|ag,mlo’] = IIIILP(t3)LP(t4)Ry(t2—tl—t3+t4)dtldt2dt3dt4 (B.33)

0 0—00—00

Ry(t) : Auto correlation function of(t)
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Fory(t) white:

TT o

Elag ulol’] = [ [ LP(t~ty + t)LP(t,)dtydt,ct, (B.34)

00—

Mean IBI power equals:

N-1 2 N-1TT
- 2”@“1 -t3)
E z nlmn | = z UE[c( t;)cH(t,)]e dt,dt, (B.35)
n=20 n=000
nzm nzm
Expandingc(t) and rewriting:
N-1 2 N-1TT
—jZH@(tl—tz)
E z A nlmd | = ZIIILP(tZ—t1+t4)LP(t4)e dt,dt,dt,(B.36)
n=0 n=000-w
nzm nzm
The cross term between signal and IBI:
N-1 2
E |80,m|0|2 z Ao nlm-n | = (B.37)
n=20
nzm
N-1TTTT
- 2”@“3 —ty)
z HUE[C(tl)CE(tz)C(ts)CE(u)]e dt, dt,dt;dt,
n=00000
nzm

Recognizingc(t) as an filtered zero mean complex Gaussian signal, (Nikias and
Petropulu 93):

E[ c(t)ct(t,)c(ty)ct,)] = (B.38)
E[ c(t)cH(t,)1E[ c(t)c(t,)] + E[ c(ty) cl(t,)1 E[ cH(t,) c(ts)]

Resulting in:
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2 N-1 2

N-1
El |20 nldl” > @onln-o | = Ellagm o °1E > nln- (B.39)
n=0 h=o
nzm n#m
N-1TTTT
-2t -ty)
+ 3 JJJJEle(etIE[H ) o(t)le dt dt,dtsdt
n=00000

nzm

Combining Equation B.1 and B.9:

N-1TT 0
2 2 U jz"@“ U
K(laa® [1B1|*)rading = Ez j j E[c(t)cHt,)]e dtldt% (B.40)
[h=000 O
nZm
N-1TT 0
a —j2nT 0
Ez [JElHt)e(t)]e dtzdtsg
[h=000 O
n#Zm

Expandingc(t) and rewriting:

D\l 1TT - D
K(Jaal? [1BI]*)rading = Dz Ue ILP(tl—t4+I1)LP(I1)dI1dt dt4D(B 41)
[h=000 —oo D
n#m
D\l 1TT O
0
O e LP(t;—t, + T,)LP(1,)dr,dt,dt;0
ZII I 3 2 2 2 242 3E
[m=o000 —o0

n#m
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D\l 1TT [l
O
K(laal? [1BI)®)rading = O e il “R (t, —t,)dt,dt, (B.42)
ZII Lty — 4 1D
[h=000 O
n#m
D\l 1TT D
Dz Ue T RLP(ts—t )t dtZD
[h=000 D
n#m

Where the corretaon function equals:

00

R.p(t) = ILP(t+I)LP(I)dI (B.43)

—00

T
m-n

j2
R p(t) is even, resulting irje T ARLP(tl—t4)dt4 to be an odd function around

0
t, = % Integrating by respectta  froth T  give zero.

K(|O(a|2, ||B||2)Fading —
Ellaa® E[|IBI|’]

(B.44)

O-QAM with symmetrical pulseshaping filters

For O-QAM with symmetrical pulseshaping filters and Doppler generated IBI, the
covariance equals (frame= 0 ):

K(laal?, [1BI®)cading = E[|8,mMo.d*|(1Blo.m)o-oan’] (B.45)
—E[]ag m/\o, o|2]E[|(|B|0, m)O-QAM|2]
Mean signal power, avoiding phase correctiorc(dj , equals:

[C )

El|agmo.d’] = IIh(tl)zh(tz)zE[Re{ d H)}Re{ A B)}]dtdt, (B.46)

—00 —00
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h(t) : Pulse shaping filter

Mean IBI power equals:

E[|(1Blo,m)o-oam ] = (8.47)
N-1 o0 N-1 o 2
E z z al,n/\l,m—n+ z z _Im{ aI,n}rl,m—n"'jRe{ an} r|+1,m—n
n=0 |=-w m=0l = -
nzmOI£0
N-1 =Y N-1 o
E[|(IB|0,m)O-QAM|Z] = z z E[/\I m-— n] + z z E[rl m-— n] (B-48)
| = -0 m=0I| = -
n#mDI#O
Expanding:
E[Afm_n] = (B.49)

[C )

[ [ n(ts=IMh(t)h(t - 1T)h(t)
"EIRY ¢ )}Re{ o 1)}]cosTHETt, + Im— meos &, + lm-— nJ
—anmqgnmqqmngn Tty + %m m%mihu T%m N

dtdt,
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E[Mfmd] = (B.50)
IIh%3—IT+g%q(t3)h%4—lT+gaq(t4)

"EIRe ¢ D} Re{ o )} IsinTt, + Tm— nFsinfEl, + Tm - )]
+ E[Im{ o{ )} Im{ ¢(1,)}] cosLE" 2Tty + Jm- ) oosTE, + +Tqm-nfF
3 4 3 SEI]T 4

dtadt,

Cross product between signal and noise power equals (including the approximations
of Equation B.16 and B.17):

El|ag, m/\o, o|2|(|B|0, m)O-QAM|2] = (B.51)
N-1 oo
z z E[AO O/\I m-— n] + z z E[AO Orl m-— n]
n=20 = m=0I| = -

nzmOIZ£0
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2
EIAS oA m_n] = (B.52)

IIIIh(tl)Zh(tz)zh(ts_ IT)h(ts)h(t, = 1T)h(t,)

—00 —00 —00 —00

HE[RE € D}Re{ d £)}Re{ ¢ §)}RE ( 1)} ]

co%z—t3 HE(m n)gcos t4 T%m n)D
—E[Re{ d 1)} Rel d t)}E[IM{ c(t)} Im{c(ty)}]
smujz—t3 Z%m n)%ln t4 g%m— n)%
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2
E[AS, Orl,m—n] = (B-53)

00 00 0 00

[ [ f [ntn(e)zhf -1 + Sh(t)hH, - 1T+ Zh(t)

—00 —00 —00 —00

%[Re[ ¢ )IRe{ d t)}Re( )} Re{ 1)} ]
sin%Ttg + g%m— n)%sin%[u + g%m— n)%
+E[Re ¢ 1)} Re{ d t)}E[IM{ (&)} Im{c(t)}]

127, | T Do 20 T [
COST ty + ;E(m— n)DCOSEDT t,+ ;%m— n)EI]

Where, (Nikias and Petropulu 93):

E[Re ¢ {)}Re{ d t)}Re[ A §)}Ref { 1)}] =
E[Re ¢ )}Re{ d )} E[RY ¢ §)} Re{ d 1)} ]
+E[Re[ ¢ {)}Re{ A t)}]E[Re ¢ §)}Re( d 1)}
+E[Re[ ¢ {)}Re{ d 1)} E[Re ¢ §)}Re{ q 1)}

Inserting Equation B.17, B.18, B.22 and B.23 into Equation B.15:

(B.54)

[R——
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K(laa? [1BI|*)rading= (B.55)

e pees
, ET['['['[h(tl)zh(tz)zh(ts—|T)h(t3)h(t4—|T)h(t4)

nN=0 |=—0"—=00—-00—00—0

nzmOI#£0

(E[RE ¢ D)}Re{ d §)}E[RE ¢ )} Re{ (1)} ]

+E[Re ¢ 1)} Re{ 1)} IE[Re ¢ §)}Re{ C £)}])

O
ERALN [T2T | T 0
* COSDDT ty + ;E(m— n)%cosmT t, + ;B(m— n)%dtldtzdgdtE

N-1 o 0 00 00 00

d
. )3 %j [ [ [n)2h(e)20Hs — 1T + St - 1T + Zh(t)

m = 0l = —00 —=00—00—00 —c0

(E[RE ¢ D}Re d §)}E[RE ¢ §)}Re{ (1)} ]

+E[Re ¢ )} Re{ A 1)} IE[Re ¢ §)}Re{ C £)}])

*smujz—t3 T[B(m n)DsmEDTt4 T[B(m n)%dtldtzdt3dt4D
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A = (B.56)

N-1 [ ©
> > Er[h(tl)z'[ h(t;—IT)h(ts) Ry p(t, —ts)
|'= 0 =00 —0

n=0 =
nzmOI#£0

ERALN
COSDDT t;+ ;E(m— n)Eptadtl

00 00

Jh(t)? [ h(ts = IT)h(L)Rp(to o) cog T2t + Tom— .,

00 00

+ [ ()2 [ (= Ih(L)R p(t ~ t) cosTEnt, + Tm - . dt,

00 00

O
[ ()2 [ At = ITN(LIR p(t,~ t) cosmt, + T m— niaci
—o o O
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B = (B.57)

ooDoo

DD éjh(tl)ZI hHy—1T + gaq(ts)RLp(tl_ts)

n=0 | = —0 =00

nzmOI#£0

2T T
SinT t;+ Z%m— n)%jtg,dtl

[ ()2 [ =17+ %gq(u) R,_P(tz—t4)sinéll%r[t4 + D m- it

+ [n(t)? [ =17 + Zh(t)R ot ~ t) sinfERt, + Jm— rfit,dt,

00 00

0
[ ()2 [ =T+ %gq(tg,) RLP(tz—t3)sinE..%T[t3 + Hm- n)%jtg,dtzé

To obtain zero IBI for zero CFO and staary channel, the OFDM pulse shaping
filters must fulfill the requirements of Equation B.28 for m 1£ 0

Ih(t3—IT)h(t3)cos%Tt3+ m-nmft, = 0

- (B.58)
[hE-1T+ %Eﬁ(tg,)sin%[tg, + 2 m- i, = o
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The integrandsre odd functions around respectiveb}!'é—r an _12/2 T . With
R p(t; —t;) even around; with respectt9 , Equation B.29 is an odd function
T
dt, = —
aroundt, >
T
[ (= IMh(B)R(t; ~ ;) cos%ts + Dm- nf, (B.59)
Similar is Equation B.30 odd around = — I _12/2 T
T . Tt
Ih%s— IT + E%ﬁ(ts) R,_P(tl—t3)S|nE|.%t3 + gg(m— Nt (B.60)
With h(t,)2 even around zero, and the results of Equation B.29 and B.30:
A(l) = -A(-
(1 (1) (B.61)
B(| + l) = —B(—l)
A(D,B(D): Terml in the sums of Equation B.26 and B.27.
Inserting Equation B.31 in B.26, all terms cancels exceptlfer 0 . Inserting
Equation B.31 in B.27, all terms cancels. For 0 , Equation B.29 is odd around
t; = 0, resulting in:
Inserting in Equation B.25:
K(laal’, [1B1]*)Fading _ (B.63)

Ellaal’]E[|1BI|]
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