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Summary

This thesis considers the problem of controlling fixed-wing unmanned aerial vehicles
(uavs). By estimating the higher order derivatives of the angle of attack and
sideslip, the rotational and translational systems become decoupled. This allows
a rotational control law to be designed first, followed by a speed controller. This
decoupling also allows the dynamics to remain in their original form, such that
control laws derived for general classes of Euler-Lagrange systems can be applied
for flight control.

Several quaternion-based control laws are derived to point the speed in a desired
direction. Specifically, a sliding surface controller, a backstepping controller, a pd+
controller and an adaptive backstepping controller are derived and presented in this
thesis. The adaptive backstepping controller in particular enables adaptive control
in the presence of actuator saturation, which is known for having a deteriorating
effect on the adaptive update laws. The approach uses a reference signal to move the
saturation from the plant to the reference, such that the update laws are unaffected
by the actuator saturation. The same approach is applied for an adaptive speed
controller. Two additional speed controllers are also derived, namely a model-
based proportional controller and a model-based proportional-integral controller.
Using the proposed decoupling, it allows the deflection angles to enter into the
translational dynamics, and can be removed from the closed loop system using the
thrust.

Through an analysis of the rotational control laws, it is observed that the air-
speed directly affects the aerodynamic moments, such that by increasing the air-
speed, saturation of the deflection angles can be avoided. This property is exploited
by designing a reference speed that increases whenever the deflection angles cross
a predefined threshold, and tracks a desired speed otherwise. By following the
reference speed, the saturation problem of the deflection angles are moved to the
translational system. This means that if the uav has sufficiently thrust available,
saturation of the deflection angles can be avoided.

With the possibility of pointing the airspeed in a desired direction and moving
with a desired airspeed, the system is augmented with guidance. Using a mapping
of the position tracking errors to one axis, a desired quaternion and angular velocity
are found that facilitates waypoint tracking. The same idea is extended to trajectory
tracking using a saturated control law that enables a uav to track a point that is
moving as a function of time. This is further extended to formation flight. By
taking basis in rigid body dynamics, it enables desired positions, velocities and
accelerations for any number of followers to be found relative to a virtual leader.
These desired vectors are then mapped to controllable states, which then are tracked
using the proposed control solutions.

In order to point the airspeed in a desired direction, multiple reference frames
are required. This results in a composite quaternion and a corresponding angular
velocity. From this structure, it is observed that behavioral control can be facili-
tated through the desired quaternion and angular velocity. Multiple tasks can be
defined as simple rotations that are defined relative each other, and can be arranged
in a hierarchy. This structure ensures that the primary task will always be fulfilled,
and where lower level tasks will be completed successively. This approach fits per-
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fectly with the subsumption architecture by Rodney Brooks, who derived methods
for creating truly autonomous agents using behavioral control. The subsumption
architecture is applied to a group of uavs which fly through a city without colliding
with each other, the buildings nor the ground, while tracking a series of waypoints.
It is also applied for a terrain avoidance maneuver. The use of composite quater-
nion rotations enable multiple problems to be solved in a modular fashion, and can
be used to make truly autonomous unmanned aerial vehicles.
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Chapter 1

Introduction

I am well convinced that ’Aerial
Navigation’ will form a most
prominent feature in the progress
of civilization.

Sir George Cayley, 1804

An unmanned aerial vehicle (uav) can be defined as a rigid body that uses
aerodynamic forces and moments to produce lift and flies autonomously. This
thesis considers fixed-wing uavs that have wings that are fixed to the fuselage such
that they resemble conventional aircraft, except that they fly autonomously without
human interactions. The problem of flight control can be defined as pointing the
speed in a desired direction, and move with a positive desired airspeed. This basic
problem can be decomposed into two parts: a rotational problem of pointing the
speed direction in a desired direction; and a translational problem of obtaining a
desired airspeed. Each part can be solved by designing a rotational and translational
controller which together enable a fixed-wing uav to reach any point in Euclidean
space, that in general can be moving.

1.1 Anatomy of a fixed-wing uav

The body frame of a fixed-wing uav can be defined as having its x axis aligned
with the fuselage, the y axis pointing through the right wing and the z axis pointing
downwards, completing the orthonormal system. The attitude (or orientation) of
the body frame can be related to an inertial frame using a rotation matrix. The
rotation matrix can be parameterized using e.g. quaternions, Rodrigues parameters
or Euler angles. For aircraft, the use of Euler angles through the roll, pitch and
yaw angles are well established and easy to visualize. The roll angle is defined as
a rotation around the x axis, the pitch angle around the new y axis and the yaw
angle around the new z axis (cf. Egeland and Gravdahl (2002)). Through these
three rotations, the attitude of the body can be related to an inertial frame.

Figure 1.1 shows a standard configuration of a fixed-wing uav. The uav has
four actuators: a propeller that produces thrust which can be used to control the
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Left aileron

Right aileron
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Figure 1.1: Standard configuration of a fixed-wing uav. The propeller generates
thrust which enables the airspeed to be controlled, while the aileron, elevator and
rudder generate aerodynamic moments which can be used to control the orientation
of the uav (illustration by Tom Stian Andersen).

airspeed of the aircraft, and three control surfaces, namely aileron, elevator and
rudder which can be used for rotational control. Note that the aileron consists of
two parts, a left and right aileron that work in pairs in order to change the roll
angle of the aircraft. The rudder is located at the back of the fuselage and is used
to change the yaw angle, while the elevator is used to change the pitch angle of
the aircraft. By changing the deflection angle of a control surface, aerodynamic
moments will be generated, which results in an angular velocity that changes the
orientation of the body. By changing the rotation speed of the propeller, the thrust
can be increased or decreased, enabling the speed to be controlled. Early work on
aerial locomotion is presented in Boulton (1864), where the author depicts using
a screw motion (propeller) similar to that of steamboats in order to obtain aerial
propulsion. The author also consider the energy requirement to produce enough
lift to compensate for the gravity, and advocated the use of gun-cotton until a new
power source could be found. Today, propellers are powered by either a combustion
engine or using an electric power source, but the basic idea by Boulton (1864) of
using a propeller is still employed by many aircraft.

The shape of the wing is called an airfoil and is illustrated in Figure 1.2, and
due to the incoming airflow as the aircraft moves through the air, a lift force will
be generated that is perpendicular to the direction of motion. This lift force is the
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Figure 1.2: Illustration of an airfoil. As the uav moves through the air with a
positive airspeed, a lift force is generated that can be used to compensate for the
gravity vector, while the wing introduces a drag component that must be compen-
sated for using the thrust. By changing the angle of attack, α, the direction of the
resulting force vector can be changed and used to move in any direction.

basic force that enables flight. Drag is another aerodynamic force that is aligned
with the opposite direction of motion and serves as a damping force to slow down
the aircraft. In order to obtain a desired airspeed the available thrust must therefore
be larger than the drag, a force that increases as a function of the airspeed squared.
The lift and drag are functions of the angle of attack. The angle of attack is
defined as the angle between the chord line and the direction of relative motion,
where the chord line is the line going from the leading edge to the trailing edge
of the airfoil. By increasing the angle of attack (up to a limit), the lift force will
be increased, which can be used to increase the altitude of the aircraft. Another
important angle is the sideslip angle, which is defined as the angle between the
centerline of the fuselage and the incoming airflow. Together, the angle of attack
and the sideslip angle relate the direction of the airspeed to the body frame and
are of great importance for flight control.

The lift vector can be tilted by rolling or banking the aircraft. While the roll
angle is defined as a rotation around the x-axis of the body frame, the bank an-
gle is defined as a rotation around the velocity vector. The ailerons, which were
first presented in Boulton (1868), allows the aircraft to change the roll angle and
consequently the bank angle, which results in improved lateral control compared to
using only a yaw maneuver. For this reason, the three main angles that are used
for flight control are the angle of attack, sideslip and bank angle. It is therefore
common to use these angles as state variables.

1.2 Underactuation

In general the dynamics of a rigid body can be decomposed into rotational and
translational dynamics. The rotational dynamics describe the changes in orienta-
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1. Introduction

tion and the angular velocity, while the translational dynamics describe the changes
in position and velocity relative to an inertial frame. A free flying rigid body has
six degrees of freedom. It can translate along three axes and rotate around each
of these axes. In the case of a fully-actuated rigid body; the number of actuators
are equal to the degrees of freedom, such that the control problem can be solved
using any of the general control laws derived for Euler-Lagrange systems (cf. Paden
and Panja (1988), Slotine and Li (1988), Ortega et al. (1998), Bloch et al. (2000),
Luyckx et al. (2001), Kyrkjebø and Pettersen (2005), Mei et al. (2011) and Loría
(2013)). In the case of a rigid body with fewer actuators than degrees of freedom,
the rigid body is said to be underactuated –cf. Reyhanoglu et al. (1999). This
means that the vehicle cannot follow an arbitrary trajectory, but must move as
constrained by its actuators. For example, an aircraft must fly in a circular motion
to reach a position that initially is to the left of the aircraft. It cannot move directly
sideways1.

The fact that fixed-wing uavs and conventional aircraft are underactuated is
rarely mentioned when designing control laws for flight control, even though they
share similar constraints as autonomous underwater vehicles (auvs) that commonly
are defined as being underactuated. To stress this point, consider the actuator con-
figuration of a fixed-wing uav. It has four actuators: thrust for translational control
and three control surfaces for rotational control; and has six degrees of freedom.
With fewer actuators than degrees of freedom, a fixed-wing uav is underactuated
which complicates the controller design. Due to this underactuation it is not pos-
sible to control all degrees of freedom directly. Instead, it is possible to map the
desired states from the unactuated to the actuated states, which can be controlled
using known methods. This is the purpose of the guidance system, which is a stan-
dard component in any flight system. Consider the problem of altitude control.
The only way of generating a lift force is by changing the angle of attack (and
consequently the orientation). For this reason, the altitude error can be mapped to
a desired angle of attack which then can be tracked using the elevator to generate
aerodynamic moments that aligns the angle of attack with its desired value. Had
the vehicle been fully-actuated it would simply have generated a lift force directly to
obtain the desired altitude, instead of using the angle of attack as a state variable.

Accepting the fact that fixed-wing uavs are underactuated, it allows the re-
sults from other underactuated rigid bodies to be applied. Underactuated control
has received much attention such as e.g. ships, auvs, quadrotors, planar vertical
take-off and landing aircraft, spacecraft, the pendubot system, hovercraft and sur-
face vehicles (cf. Wichlund et al. (1995), Leonard (1995), Godhavn and Egeland
(1995), Spong (1998), Pettersen and Egeland (1999), Olfati-Saber (2001), Bullo and
Lynch (2001), Aguiar and Pascoal (2002), Fantoni and Lozano (2002), Fossen et al.
(2003), Børhaug and Pettersen (2005a), Breivik and Fossen (2005), Arrichiello et
al. (2006b), Tayebi and McGilvray (2006), Aguiar and Hespanha (2007), Refsnes et
al. (2007), Lee et al. (2007), Roberts and Tayebi (2009), Hua et al. (2009), López-
Martínez et al. (2010), Lee et al. (2010), Toshimura et al. (2011) and references
therein). The different control solutions that have been derived for these vehicles,

1An aircraft can experience small changes in the lateral direction through the aerodynamic
forces, but these forces are too small to be used for lateral control.
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1.3. Flight Control

have exploited the knowledge about underactuation, and used that as a starting
point for controller design. In the particular case of controlling ships and auvs, the
problem is solved by finding a desired orientation, angular velocity and speed that
make the position (and velocity) tracking errors converge to zero. These results can
easily be adapted for flight control and have served as an inspiration for this thesis.

Another way of defining actuation is presented in Tedrake (2009). The general
form of a second order dynamical system can be written as

q̈ = f1(q, q̇, t) + f2(q, q̇, t)u (1.1)

where q is a vector of positions, q̇ := d
dt
q is a vector of velocities, t is time and u

is the control vector.

Definition 1.1 (fully actuated) A control system described by (1.1) is said to be
fully-actuated in the configuration (q, q̇, t) if it is able to command an instantaneous
acceleration in an arbitrary direction in q:

rank(f2(q, q̇, t)) = dim(q). (1.2)

Definition 1.2 (Underactuated) A control system described by (1.1) is under-
actuated in the configuration (q, q̇, t) if it is not able to command an instantaneous
acceleration in an arbitrary direction in q:

rank(f2(q, q̇, t)) < dim(q). (1.3)

From a control perspective, this means that a fully actuated vehicle is able
to track an arbitrary trajectory which may not be possible for an underactuated
vehicle. Imposing certain constraints on the trajectory allows an underactuated
vehicle to track it, but in order to perform the tracking, the errors of the unactuated
states must be mapped to the actuated states. For aircraft, this means that the
desired position and velocity errors relative to a desired trajectory must be mapped
to a desired speed, orientation, angular velocity and accelerations. These desired
states can then be tracked using the available actuators.

1.3 Flight Control

The first autopilot was designed by the Sperry Corporation in 1912 (Dyer (2001)).
Since then, much research has been performed on aircraft control and many differ-
ent methods have been derived. Recent results on control of fixed-wing uavs are
presented in Ren and Beard (2003), Ren and Beard (2004) and Ren and Atkins
(2005) where problems such as unknown autopilot constants, actuator constraints
and trajectory tracking are solved. The authors consider the kinematic model which
they decouple into two parts: one for altitude and one for motion in the xy-plane.
This enables the authors to apply the results from mobile robots that received much
attention during the 1990’s and early 2000 (cf. Kanayama et al. (1990), Samson
(1995), Fierro and Lewis (1997), Jiang et al. (2001) and Tanner and Kyria (2002)).
By applying the results from mobile robots, the problem of flight control becomes
simple. Other results on kinematic uav control include among others Betser et al.
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(2005), Hao et al. (2005), Jeyaraman et al. (2005), Xie et al. (2005), Ambrosino
et al. (2006) and Beard and Humpherys (2011). When using kinematic control,
the second order dynamics of the system is ignored such that the uav is controlled
directly using the airspeed and the angular velocity. In truth, the uav requires
torques and thrust to change the angular velocity and airspeed which must be
accounted for when designing the control laws.

Nonlinear dynamic inversion (ndi) is considered one of the prominent methods
for controlling aircraft and has resulted in publications such as Lane and Stengel
(1988), Snell et al. (1992), Stiharu-Alexe and Stiharu-Alexe (1993), Ngo and Doman
(2001), Ito et al. (2002), Yu et al. (2009) and Rizwan et al. (2011). In essence,
the method consists of an inner-outer loop, where an outer loop consists of slow
variables (angles), while an inner loop consists of fast variables (angular velocities).
By applying the time-scale separation principle –cf. Reiner et al. (1996) the fast
variables can be treated as constants in the outer loop. This simplifies the problem
and enables the desired angles to be used for generating desired angular velocities,
which then are sent through a linear filter to generate desired angular accelerations.
By inverting the dynamics, the deflection angles that correspond to the desired
angular accelerations are found, which then can be used to control the aircraft. As
a simple example of the ndi approach, consider the linearized roll dynamics which
can be written as (Honeywell and Lockheed Martin (1996))

ṗ = Lpp+ Lδaδa (1.4)

where p is the roll rate, Lp and Lδa are the linearized damping and aileron efficiency
coefficients respectively, while δa is the deflection angle of the ailerons. To find the
deflection angle of the ailerons (1.4) can be inverted as

δa =
1

Lδa

(ṗ− Lpp) . (1.5)

To find a control law; δa can be replaced by the commanded one, δcoma , ṗ can be
replaced by a desired angular acceleration ṗdes, the roll rate, p, can be replaced by
the measured value pmeas, such that the commanded deflection angle is found as

δcoma =
1

Lδa

(
ṗdes − Lpp

meas
)
. (1.6)

Inserting (1.6) into (1.4) assuming that δa = δcoma , p = pmeas it follows that ṗ =
ṗdes, indicating that by using dynamic inversion, the correct output can be found.
However, since actuator dynamics, measurement noise, parameter uncertainty and
actuator saturation must be accounted for, this will rarely be true and can only
be considered an ideal case. Several papers have dealt with ndi using nonlinear
aerodynamics to allow the model to be valid for the whole flight regime. The
method has therefore been augmented with adaptive control and robustness to
address these issues –cf. Wang and Stengel (2000), Wang and Stengel (2005),
MacKunis et al. (2010) and Sieberling et al. (2010).

Model predictive control (Slegers et al. (2006)), feedback linearization (Charlet
et al. (1988), Hauser et al. (1992)) and backstepping (cf. Krstić et al. (1995))
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replaced by a desired angular acceleration ṗdes, the roll rate, p, can be replaced by
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are other methods that are applied for flight control2). Especially backstepping has
received much attention with regards to flight control with results such as Härkegård
and Glad (2000), Lee and Kim (2001), Farrell et al. (2005), Robinson (2007) and
Sonneveldt et al. (2009a).

Rewriting the translational dynamics by defining the angle of attack, sideslip
and bank angle as state variables (cf. Honeywell and Lockheed Martin (1996)), the
system can be put on a lower triangular form to facilitate backstepping design under
certain assumptions. This results in an aggregated dynamics that looses the good
properties of the rotation matrices, cross products and becomes singular at certain
angles. Another major problem, is that the deflection angles enter through both
the aerodynamic forces and moments. The aggregated dynamics can be written on
the form

ẋ1 = f1(x1,u) + g1(x1)x2 (1.7)

ẋ2 = f2(x1,x2) + g2(x1,x2)u (1.8)

where x1 represents the angle of attack, the sideslip angle and the bank angle,
x2 represents the angular velocity and u represents the deflection angles that are
used for control. This enables x2 to be used as virtual control to stabilize the x1

system, while u can be used to stabilize the new system that is designed during
the backstepping process. The important point is that the deflection angles that
also are part of the x1 system must be assumed to be constant during the first
step of the backstepping design which is valid by invoking the time-scale separation
principle (Reiner et al. (1996)). Since the correct deflection angles at a given time-
step are not directly available, the deflection angles from the previous time-step
can be used when stabilizing the x1 system. Naturally this introduces small errors
to the system that can be considered negligible using time-scale separation.

Quaternion-based approaches for flight control are presented in e.g. Ngo and
Doman (2001), Doman and Ngo (2002), Johnson et al. (2008) and Sobolic and
How (2009). In Ngo and Doman (2001) and Doman and Ngo (2002) quaternions
are used in the outer loop to generate angular velocity commands which then are
sent to an inner loop where the deflection angles are found. In Sobolic and How
(2009) and Johnson et al. (2008) quaternion-based control laws are derived to enable
transition between leveled flight and hover for fixed-wing uavs. Quaternion-based
control has also received much attention for other mechanical systems such as space-
craft, auvs, vertical-take-off and landing (vtol) uavs or general rigid bodies (cf.
Wen and Kreutz-Delgado (1991), Fjellstad (1994), Pettersen and Egeland (1996),
Akella et al. (2005), Tayebi (2008), Kristiansen (2008), Roberts and Tayebi (2009),
Schlanbusch (2012) and references therein).

1.3.1 Adaptive Control

With unknown aerodynamics, the aerodynamic model must be estimated which
can be done through adaptive control. One of the first results on adaptive control
is presented in Simon (1956) where the author apply the certainty equivalence

2Note that ndi and feedback-linearization are essentially the same (cf. MacKunis et al. (2010)
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principle to design a controller with unknown parameters. The author estimated the
parameters, and then used the estimated parameters as part of the control law as if
they were the true parameters. As pointed out in Becker et al. (1985), the estimated
parameters are not necessarily the true values. This results in a degradation and a
sub-optimal solution by using the certainty equivalence principle, and has resulted
in more research on adaptive control using an adaptive update law in works such
as Leonessa et al. (2001), Sonneveldt (2010) and Hovakimyan et al. (2011). Even
though the coefficients don’t necessarily converge to their true values, the impact
of modeling imperfection is dealt with by the control law and the adaptive update
law, and in a Lyapunov sense, the impact of the modeling uncertainty does not
affect the stability of the resulting equilibria.

A different problem with adaptive control is actuator saturation. When the ac-
tuators go into saturation, the adaptive update law "believes" that it has converged
to the correct values, which is not true. This leads to a deterioration of the closed
loop system.

1.3.2 Actuator Saturation

Actuator saturation is a common and significant nonlinearity that affects the flight
controller and can have dire consequences. For flight control, saturation resulted in
the yf-22 crash in 1992 and the Gripen jas aircraft in 1993, where rate constraints
resulted in pilot induced oscillations making the closed loop system unstable (Dorn-
heim (1992), Murray (1999), Bak (2000)). It has also been blamed as a contributing
factor to the Chernobyl nuclear plant accident in 1986 as discussed in Stein (2003).
It is therefore critical to take actuator constraints into account when designing con-
trol laws. Note that actuator saturation is not only a bad quality, and it has been
shown in Sourlas et al. (1994) that the disturbance rejection qualities of a system
with saturation is better than that of a system without saturation.

A well-known approach to deal with the saturation nonlinearity is anti-windup.
Originally the phenomenon of integrator windup was observed when using pid con-
trol with saturation. When the actuators are in saturation, the integrator term will
continue to integrate the error, resulting in a large windup that must be removed
when the actuators have desaturated. There are two basic approaches to this prob-
lem: back calculation and conditional integration (clamping). Back-calculation uses
a feedback loop to discharge the integrator while the actuators are in saturation,
while conditional integration simply stops the integrator while the actuators are in
saturation.

When designing a control law using Lyapunov theory, the stability of the result-
ing equilibria usually assume infinite actuation. This means that if the saturation
nonlinearity is not accounted for during the design, it can result in an unstable
closed loop system. In Akella et al. (2005) a quaternion-based control law is de-
signed for a general rigid body that takes both magnitude and rate saturation into
account. Using a filter to estimate the angular velocity together with the natu-
ral bounds on the unit-quaternion, ensures that the required control action always
remain within its bounds by properly choosing the gains and desired trajectories.

In Annaswamy and Wong (1997) the authors account for the saturation non-
linearity when designing the adaptive update laws for a linear plant. This results

8

1. Introduction

principle to design a controller with unknown parameters. The author estimated the
parameters, and then used the estimated parameters as part of the control law as if
they were the true parameters. As pointed out in Becker et al. (1985), the estimated
parameters are not necessarily the true values. This results in a degradation and a
sub-optimal solution by using the certainty equivalence principle, and has resulted
in more research on adaptive control using an adaptive update law in works such
as Leonessa et al. (2001), Sonneveldt (2010) and Hovakimyan et al. (2011). Even
though the coefficients don’t necessarily converge to their true values, the impact
of modeling imperfection is dealt with by the control law and the adaptive update
law, and in a Lyapunov sense, the impact of the modeling uncertainty does not
affect the stability of the resulting equilibria.

A different problem with adaptive control is actuator saturation. When the ac-
tuators go into saturation, the adaptive update law "believes" that it has converged
to the correct values, which is not true. This leads to a deterioration of the closed
loop system.

1.3.2 Actuator Saturation

Actuator saturation is a common and significant nonlinearity that affects the flight
controller and can have dire consequences. For flight control, saturation resulted in
the yf-22 crash in 1992 and the Gripen jas aircraft in 1993, where rate constraints
resulted in pilot induced oscillations making the closed loop system unstable (Dorn-
heim (1992), Murray (1999), Bak (2000)). It has also been blamed as a contributing
factor to the Chernobyl nuclear plant accident in 1986 as discussed in Stein (2003).
It is therefore critical to take actuator constraints into account when designing con-
trol laws. Note that actuator saturation is not only a bad quality, and it has been
shown in Sourlas et al. (1994) that the disturbance rejection qualities of a system
with saturation is better than that of a system without saturation.

A well-known approach to deal with the saturation nonlinearity is anti-windup.
Originally the phenomenon of integrator windup was observed when using pid con-
trol with saturation. When the actuators are in saturation, the integrator term will
continue to integrate the error, resulting in a large windup that must be removed
when the actuators have desaturated. There are two basic approaches to this prob-
lem: back calculation and conditional integration (clamping). Back-calculation uses
a feedback loop to discharge the integrator while the actuators are in saturation,
while conditional integration simply stops the integrator while the actuators are in
saturation.

When designing a control law using Lyapunov theory, the stability of the result-
ing equilibria usually assume infinite actuation. This means that if the saturation
nonlinearity is not accounted for during the design, it can result in an unstable
closed loop system. In Akella et al. (2005) a quaternion-based control law is de-
signed for a general rigid body that takes both magnitude and rate saturation into
account. Using a filter to estimate the angular velocity together with the natu-
ral bounds on the unit-quaternion, ensures that the required control action always
remain within its bounds by properly choosing the gains and desired trajectories.

In Annaswamy and Wong (1997) the authors account for the saturation non-
linearity when designing the adaptive update laws for a linear plant. This results

8



1.3. Flight Control

in global stability3 when the plant is open loop stable4 and minimum phase5, and
locally stable6 otherwise. For flight control, a recent method that has received
some attention is the use of command filtered backstepping (Farrell et al. (2005)).
Instead of using the virtual control in the next step of the backstepping process,
it is instead sent through a saturated filter that ensures that its output remains
within its bounds. This is used to ensure that all the tracking errors are small
enough to make the actuators operate in their linear regions. As stated, the impact
of actuator saturation is especially important for adaptive control. Roughly speak-
ing, an adaptive update law is simply an integrator that integrates up the error.
Similarly as for integrator windup, saturation will result in a system degradation
that must be accounted for. In Johnson and Calise (2000) this problem was han-
dled by feeding back the difference between the commanded and actual actuator
signal to a reference generator. This ensures that the reference signal will deviate
from the desired trajectory whenever the actuators are in saturation, such that the
adaptive update law will not "see" the actuator saturation. The same result was
extended in Johnson and Calise (2001) and Johnson and Calise (2002) and later
applied in a quaternion framework with applications to adaptive spacecraft control
in Tandale and Valasek (2005). The idea has also been applied in Lavretsky and
Hovakimyan (2004), where the actuators can become bounded by a virtual bound
chosen arbitrarily, such that the deflection angles never go into saturation.

1.3.3 Decoupling

The dynamics of an aircraft are strongly coupled since the deflection angles enter
both through the aerodynamic forces and moments. Due to the strong coupling, a
decoupling method is required. A common decoupling method is to assume that
the roll and sideslip angles are zero. This represents a normal flight condition
and enables the nonlinear dynamics to be decoupled into a longitudinal and a
lateral system (cf. Stevens and Lewis (2003) and Lavretsky and Wise (2013)). The
longitudinal motion is described by pitching and translation in the x − y plane,
while the lateral motion is described by rolling, sideslipping and yawing. Hence,
the longitudinal/lateral decoupling results in two systems that contain mixed sets
of both translational and rotational states, and is a well established approach that
is common in the literature.

Instead of decoupling the nonlinear dynamics into a longitudinal and a lateral
system, it can be decoupled into a rotational and a translational system. By ap-
proximating the higher order derivatives of the angle of attack and sideslip angle, it
allows the rotational controller to be designed first, followed by a speed controller.
The use of filters for flight control is common for both backstepping and nonlinear
dynamic inversion. When using the ndi approach, the desired angles are compared
with the measured angles producing an error. This error is sent through a filter to
generate a desired angular velocity. Similarly, the error in angular velocity is sent

3The origin is stable for any initial conditions.
4The origin is stable in the absence of feedback.
5A transfer function is said to be minimum phase when it has all zeros in the open-left half

plane (Khalil (2002)).
6The origin is stable with unknown region of attraction (Khalil (2002)).
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through another filter to generate the desired angular acceleration. By inverting
the dynamics, the control signal can be found. This approach results in an inner-
outer loop, where the inner loop is the fast variables (angular velocities), while the
outer loop contains the slow variables (angles). Instead of filtering the errors, it is
possible to filter the angle of attack and sideslip angle directly. This removes the
need for an outer loop, and it enables the desired trajectory to be defined relative
to an inertial frame. A similar idea is presented in Breivik and Fossen (2005) where
the authors correct the desired angles with the angle of attack and sideslip before
filtering the desired attitude to obtain the higher order derivatives.

In Kaminer et al. (1998) an integrated approach to guidance and control is pre-
sented. The authors present a method for designing controllers for uavs that en-
ables them to track trajectories relative to an inertial frame. They design trimmed
trajectories (at equilibrium) that are parameterized by the linear speed, yaw rate
and flight path angle7, which then enable a uav to track them. With basis in the
angle of attack and the sideslip angle, the authors trim the trajectories to enable
leveled flight and to enable the uav to track a helix trajectory. In order to trim the
trajectory, the authors require the angular acceleration between the body frame
and the inertial frame. Since the angular acceleration is not directly available from
sensor measurements, they approximate it using a linear filter. For this reason,
the filtering of the angle of attack and the sideslip angle to find their higher order
derivatives, share many similarities with the results by Kaminer et al. (1998).

1.4 Guidance

The flight system requires inputs that the controllers can track in order to complete
a mission objective. Guidance is defined by Shneydor (1998) as the process for
guiding the path of an object towards a given point, which in general may be
moving. One of the most well known guidance laws is proportional navigation
(pn) and has received much attention for missiles and aircraft –cf. Murtaugh and
Criel (1966), Guelman (1971), Yang and Yang (1995), Palumbo et al. (2010). By
generating acceleration commands that are proportional to the line-of-sight rate,
the missile or aircraft will be able to intercept a desired point in finite time. The
basic idea has served as an inspiration to similar guidance laws as presented in
Baba et al. (1993), Park et al. (2004), Breivik and Fossen (2008) and Dhananjay
and Kristiansen (2012). Another way of looking at line-of-sight based guidance
such as pn, is to map all the position errors to one axis. By aligning the speed
direction with that axis, it is a simple matter of moving with a positive speed to
make the error go to zero.

The problem of tracking a desired angle of attack, sideslip angle and bank
angle can be solved using the ndi control law as presented previously. One issue
with using a desired angle of attack and sideslip angle, is that these angles are
defined relative to a body frame, and not an inertial frame. An intermediate step
is therefore required to go from a desired trajectory defined relative to an inertial
frame to obtain the desired angle of attack, sideslip angle and bank angle. For
example in Sonneveldt (2010), the presented solution requires an additional step

7The angle between the horizontal plane and the velocity vector.
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in the backstepping process in order to map the desired trajectory to trackable
variables. So from a guidance point of view, it can be argued that uavs should be
able to track trajectories defined relative to an inertial frame, i.e. the output from
the guidance should be directly trackable by the control solution.

Autonomous underwater vehicles and fixed-wing uavs share similar constraints;
guidance laws derived for auvs can therefore be directly applied for fixed-wing
uavs by properly designing the control laws. Some recent results on guidance for
autonomous underwater vehicles are presented in Børhaug and Pettersen (2005a),
Børhaug and Pettersen (2005b), Breivik and Fossen (2005), Breivik and Fossen
(2007) and Breivik and Fossen (2009). In Breivik and Fossen (2005), the authors
show how to derive guidance commands that enable an auv to perform path follow-
ing in three dimensions while Børhaug and Pettersen (2005a) show how to perform
waypoint tracking. The output from these guidance laws are desired pitch and yaw
angles together with a desired speed which can be used for flight control if the
controller is properly designed. Some recent results on guidance methods for uavs
are presented in Osborne and Rysdyk (2005), Rysdyk (2006), Sato et al. (2006),
and Nelson et al. (2007). In Nelson et al. (2007) a guidance law is designed that
enables path following of straight lines, circular arcs and orbits. The authors also
show how wind can be accounted for, an issue that is also addressed in works such
as Osborne and Rysdyk (2005) and Rysdyk (2006).

1.5 Behavioral Control

With the possibility of guiding a uav to any position that in general can be moving,
how can this be extended to make an agent truly autonomous? By simply allowing
a uav or an agent to follow a predefined trajectory, the autonomy of the agent
becomes constrained by its programming. To exceed its programming and to behave
like a truly autonomous agent, behavioral control can be applied.

Some of the first works on behavioral-based control was by Reynolds (1987)
who derived a computer model of bird flocks with application to computer graphics.
Reynolds started with the fact that any individual bird that is part of a flock has two
balanced opposing behaviors as described in Shaw (1975): the desire to stay close
to the flock, and the desire to avoid collision within the flock. Flocking behavior has
been studied intensively, where it is argued that by flying in a flock the individual
birds increase their chances of survival from predators, have an increased chance
of finding a mate and an increased probability for finding food (Werner and Dyer
(1993)). Consider Figure 1.3 which shows a flock of snow geese. To simulate the
flock, three behaviors that lead to a simulated flocking behavior were defined by
Reynolds (1987) with decreasing precedence as

1. Collision avoidance: avoid collisions with nearby flockmates

2. Velocity matching: attempt to match velocity with nearby flockmates

3. Flock centering: attempt to stay close to nearby flockmates.

Each of these behaviors can be treated as a desired acceleration, which can be used
to find a weighted averaged for the whole flock, producing a total acceleration to
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1. Introduction

Figure 1.3: Snow geese in flight. Consider the impressive feat of performing colli-
sion avoidance while moving with high speed as part of a flock (reproduced with
permission by Stephen L. Tabone).

facilitate the flocking behavior. The basic idea of behavioral control has generated
a multitude of publications on different methods for performing coordination of
a group of agents (cf. Jadbabaie et al. (2003), Fax and Murray (2004), Ihle et
al. (2006), Olfati-Saber et al. (2007), Ren and Beard (2008), Yang et al. (2008),
Qu (2009), Tsourdos et al. (2011), Xargay et al. (2012), Lewis et al. (2014) and
references therein). Using averaged accelerations, Reynolds (1987) presented an
example of what can happen if the averaged acceleration from multiple tasks are
used to direct an agent. Consider a grid-based city where the agent is located
at an intersection. One behavior tells the agent to move North, while another
behavior tells the agent to move East. Each of these behaviors alone would provide
a good choice, but the averaged combination of moving North-East would result in
a collision.

Instead of using an averaged approach, it is possible to use a parallel approach.
The subsumption architecture by Rodney Brooks as presented in Brooks (1986),
Brooks (1990), Brooks (1991a), Brooks (1991b) enables the problem of controlling
an agent in a complex dynamic environment to be divided into several simple be-
haviors or tasks that can be arranged in a hierarchy. By letting a higher level task
subsume or suppress the conflicting parts of the lower level tasks, it can be used to
ensure that the primary task always will be fulfilled. As the primary task is com-
pleted, the secondary task will be fully pursued and so on until all the tasks have

12

1. Introduction

Figure 1.3: Snow geese in flight. Consider the impressive feat of performing colli-
sion avoidance while moving with high speed as part of a flock (reproduced with
permission by Stephen L. Tabone).

facilitate the flocking behavior. The basic idea of behavioral control has generated
a multitude of publications on different methods for performing coordination of
a group of agents (cf. Jadbabaie et al. (2003), Fax and Murray (2004), Ihle et
al. (2006), Olfati-Saber et al. (2007), Ren and Beard (2008), Yang et al. (2008),
Qu (2009), Tsourdos et al. (2011), Xargay et al. (2012), Lewis et al. (2014) and
references therein). Using averaged accelerations, Reynolds (1987) presented an
example of what can happen if the averaged acceleration from multiple tasks are
used to direct an agent. Consider a grid-based city where the agent is located
at an intersection. One behavior tells the agent to move North, while another
behavior tells the agent to move East. Each of these behaviors alone would provide
a good choice, but the averaged combination of moving North-East would result in
a collision.

Instead of using an averaged approach, it is possible to use a parallel approach.
The subsumption architecture by Rodney Brooks as presented in Brooks (1986),
Brooks (1990), Brooks (1991a), Brooks (1991b) enables the problem of controlling
an agent in a complex dynamic environment to be divided into several simple be-
haviors or tasks that can be arranged in a hierarchy. By letting a higher level task
subsume or suppress the conflicting parts of the lower level tasks, it can be used to
ensure that the primary task always will be fulfilled. As the primary task is com-
pleted, the secondary task will be fully pursued and so on until all the tasks have

12



1.5. Behavioral Control

been completed. This enables several simple behaviors to be defined and arranged
in a hierarchy. Consider for example behaviors such as: wander around aimlessly,
avoid obstacles, move to a desired position, and map an area. Any of these be-
haviors alone would result in an apparent unintelligent motion for the agent, but
by using the subsumption architecture, it will make the agent appear intelligent
as it purposely moves from point A to B while mapping the area and avoiding
obstacles. As stated in Brooks (1991a), "intelligence is in the eye of the observer",
such that if an agent is able to move around in a complex dynamic environment
without collisions, it will appear intelligent, which is the purpose of the behavioral
control method. The modularity approach to the subsumption architecture makes
it very attractive. Each task is designed individually and can be fully tested before
augmenting the system with additional tasks. By adding an addition task or layer,
the apparent level of intelligence will be further augmented. The basic idea has
resulted in the null-space-based behavioral (nsb) control method as presented in
Antonelli et al. (2005b), Arrichiello (2006) and Arrichiello et al. (2006b). It ad-
heres to the principle of layered control, but where it is only the conflicting velocity
components that are removed by projecting them onto the nullspace. The reference
velocity vector is found as the sum of the individual task velocity vectors, producing
a reference that ensures that the primary task is always fulfilled. When controlling
fixed-wing uavs, the use of a reference velocity vector is not directly applicable
since uavs are underactuated with only translational control in one direction. To
apply this approach to underactuated vehicles, the reference velocity vector must
be mapped to a desired orientation and speed which has been done in work such as
Arrichiello et al. (2006a) where the approach was applied to a formation of under-
actuated surface vessels. The nsb approach has also been applied to problems such
as control of mobile robots (Antonelli et al. (2005a), Antonelli et al. (2006), An-
tonelli et al. (2008), Arrichiello et al. (2009)) performing spacecraft reconfiguration
(Schlanbusch et al. (2008), Oland et al. (2010), Schlanbusch and Oland (2013)) and
control of quadrotors (Oland et al. (2013b)).

1.5.1 Formation Flight

One behavior in particular that is very interesting is formation flight. When snow
geese migrate for the winter to warmer climates they maintain a V-formation as
shown in Figure 1.4. This has several purposes. Flying as part of a flock reduces the
probability of being killed by predators. Predators may stalk lone individuals more
successfully than those in flocks, since the use of flocks have an increased sensing
range and are therefore better to assess their surroundings (Goldman (1980)). Fur-
thermore, predators are more likely to attack birds at the edges of the formation,
making the central birds relatively safe. The use of a V-formation also reduces the
drag of the birds flying in the wake of the leader (central front bird). This reduction
in drag reduces the amount of energy required, and thereby increasing the potential
traveling distance. As pointed out in Lissaman and Shollenberger (1970), 25 birds
flying in a V-formation can theoretically increase their range by 70% compared to
a single bird flying alone.

This means that by using a close formation of aircraft, the operational radius
can be greatly increased, as compared to a single aircraft. By constraining the
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1. Introduction

Figure 1.4: Snow geese in formation (reproduced with permission by Stephen L.
Tabone)

aircraft to the same altitude, Blake (2002) shows that the theoretical range increase
for nine aircraft flying in a V-formation is 80%. Introducing other constraints
such as turbulence, actuator constraints, etc. reduces this value. To maintain a
close formation is very challenging, and manned formation flight is mainly done
for obtaining a visual line of sight and attack purposes. Figure 1.5 shows nine
Red Arrows maintain a V-formation together with two Spitfires during an air show
in 2005. Maintaining such a close formation is considered an impressive feat and
requires many years of practice for a human pilot. For unmanned aerial vehicles,
it is possible to derive control laws that enable the uavs to position themselves
appropriately where they can exploit the drag reduction, and thereby increase their
operational range. This actually makes uavs better suited than manned flight for
observation in the arctic regions, and hence a formation of uavs can travel farther
than a single uav.

From a control perspective, the use of formations for aircraft, spacecraft, ships,
and quadrotors has received much attention (cf. Giulietti et al. (2000), Fierro et
al. (2001), Borrelli et al. (2004), Song et al. (2005), Dogan and Venkataramanan
(2005), Betser et al. (2005), Arrichiello et al. (2006a), Campa et al. (2007), Paul et
al. (2008), Kristiansen (2008), Cui et al. (2010), Abdessameud and Tayebi (2010),
Schlanbusch (2012), and Guerrero et al. (2012)). It poses an interesting control
problem, while its applications have the potential for energy savings, redundancy,
line of sight communication, improved coverage of a region and 3D sensor measure-
ments. Hence, the use of multiple uavs can obtain an increased capacity compared
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1.5. Behavioral Control

Figure 1.5: Red arrows flying in a V-formation together with two Spitfire aircraft
(reproduced with courtesy to Andrew P. Clarke)

with that of a single uav.

1.5.2 Collision Avoidance

With multiple agents flying in a formation or a flock, collision avoidance is an
important behavior that must be maintained at all times. The problem of collision
avoidance can be defined as maintaining the relative distance between two agents
above a threshold. If the relative distance goes to zero, the agents will collide.
Consider the case of an obstacle between an agent and its desired position. The
obvious method of avoiding the collision is to move directly away from the obstacle
which thereby increases the relative distance, but then the secondary objective of
reaching the desired position will not be fulfilled. Another way of avoiding collision
is to move perpendicular to the line of sight vector between the agent and the
obstacle, which will result in a circular motion around any obstacle. Not only will
this avoid collision, but it can also enable the agent to reach its desired position
after it has moved around the obstacle.

Collision avoidance has received a lot of attention the last decades, and has
resulted in solutions such as the artificial potential field method (Khatib (1986)),
navigation functions (Rimon and Koditschek (1992)) and the nsb method (An-
tonelli et al. (2005b)). The artificial potential field method by Khatib (1986) is
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intuitively simple, as an attractive potential is placed at the desired position, while
a repulsive potential is placed around the obstacle. By following the negative gradi-
ent of the total potential field, the agent is able to reach the desired position without
colliding with the obstacle. The beauty of the artificial potential field method is
that it provides both a path planning method and a control law at the same time,
and is a very popular approach (cf. Kim and Khosla (1992), Kyriakopoulos et al.
(1995), Ge and Cui (2000), Paul et al. (2008), Chunyu et al. (2009), Qu (2009), Si-
ciliano et al. (2010) and references therein). Even though it is simple, the potential
field approach has several drawbacks, such as its inability to pass through narrow
gaps, the possibility of getting stuck at a local minimum and becoming trapped, as
discussed in Koren and Borenstein (1991). The navigation function was derived in
Rimon and Koditschek (1992) to counter this, and is an extension of the potential
field method which ensures that the agent will move to the desired position, while
avoiding local minima. For flight control, the navigation function was extended for
nonholonomic vehicles in Roussos et al. (2010), where it is applied to an aircraft-like
nonholonomic vehicle with velocity constraints8.

1.6 Applications

Unmanned aerial vehicles have become very popular the last decade with both
military and civilian applications. The Predator uav as shown in Figure 1.6, was
initially designed for observation and reconnaissance and entered active duty in
1995, and has since then been retrofitted with armaments and been applied for
several military campaigns. The main motivation has been to reduce the loss of
American lives, and instead of using a human pilot that must be inside the uav,
a human operator can remotely control the uav from any location without fearing
for his life. This makes the uavs expendable (although expensive) drones that
can ensure aerial superiority. A Predator moving at high speed makes relatively
little noise, and by launching a Hellfire missile that is supersonic, no sound will be
heard before the missile hits its target, thus making the Predator uav a formidable
weapon.

Civilian applications of uavs include e.g. autonomous mapping, search and res-
cue, communication relay and 3D mapping (cf. Templeton et al. (2007), Goodrich
et al. (2007), Waharte and Trigoni (2010), Dixon and Frew (2007), Burdakov et
al. (2010), Cetin and Zagli (2012), Rogers and Finn (2013) and references therein).
Another application is crop monitoring and pest control and is often highlighted as
one of the most potential civilian applications of uavs (cf. Huang et al. (2009) and
Zhu et al. (2010)). Using uavs to monitor a field, it enables the exact detection of
where the pests are emerging which then can be combated using a targeted spraying
of pesticide to protect the crop. Not only is it faster using uavs over a large area
than using conventional methods, it also enables large savings in pesticide, since it

8Underactuated vehicles have an acceleration constraint also known as a second order non-
holonomic constraint, while in general when speaking of a nonholonomic constraint, it is the
first order nonholonomic constraint that is considered, which is a velocity constraint (cf. Bloch
et al. (2007)). Due to gravity and aerodynamic sideslip forces, an aircraft will always possess
small velocity components along the unactuated axes, such that an aircraft is to be considered an
underactuated vehicle with second order nonholonomic constraints.
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1.7. Contribution and Scope of Thesis

Figure 1.6: An MQ-1 Predator armed with an AGM-114 Hellfire missile flies a
training mission (Courtesy to the U.S. Airforce).

is no longer required to spray the whole field, only where the pests are emerging.
uavs can also be used to perform in-situ measurements which has resulted in many
papers on the subject such as Kuroki et al. (2010), Wegener et al. (2004) and S̆mídl
and Hofman (2013), where it is argued that using multiple uavs as a mobile sensor
network will be less expensive and more accurate compared to ground-based sen-
sors. In Subchan et al. (2008) the problem of tracking a cloud of contaminant was
studied, and they propose an algorithm to track the contaminant cloud based on
waypoints to map the entry and exit points of the cloud to track the cloud itself.
Real-time particle tracking is presented in Oland and Kristiansen (2013c) where
multiple uavs move in a formation to locate the points of a volcanic ash plume
with highest density to provide real-time inputs to analytical plume models.

1.7 Contribution and Scope of Thesis

This thesis considers the problem of controlling fixed-wing uavs. It presents sev-
eral rotational and translational control laws that together with different guidance
methods enable waypoint tracking, trajectory tracking, formation flight and be-
havioral control. In particular, a quaternion framework is presented which enables
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1. Introduction

multiple problems to be dealt with in a modular fashion. Through the desired
quaternion and angular velocity, several different tasks can be defined and fused
together using the subsumption theory. To facilitate control of a fixed-wing uav, a
filter is applied to find the higher order derivatives of the angle of attack and the
sideslip angle. This enables a rotational controller to be designed first, followed
by a speed controller. The airspeed dynamics are found by taking basis in the
Euclidean norm and enables singularity-free speed controllers to be derived. The
presented approach does not apply an inner-outer loop, and enables control of the
uav directly relative to an inertial frame.

By maintaining the dynamics in their original form, it enables control laws
derived for general classes of Euler-Lagrange systems to be directly applied. This
thesis considers the work by Kristiansen (2008) and Schlanbusch (2012) as a starting
point, where quaternion-based control laws are derived to change the orientation
of spacecraft. By using the proposed decoupling, the control laws are adapted to
the case of flight control, which then enable the airspeed to be pointed in a desired
direction. Together with singularity-free speed controllers, a uav is able to obtain
any desired orientation, angular velocity and speed.

1.7.1 Contributions and Summary

• Chapter 2: Based on previous work on aircraft (cf. Etkin (1972), Stevens and
Lewis (2003) and Stengel (2004)), the mathematical modeling of fixed-wing
uavs is presented in this chapter. It is also shown how the speed direction
can be related to an inertial frame through a composite quaternion rotation.
The rotational and translational dynamics are then written in a form that
facilitates controller design by decoupling the systems. Two sets of dynamics
are presented: one that assumes that the aerodynamics are perfectly known
together with infinite actuation, and one that accounts for the unknown aero-
dynamics and the actuator constraints.

• Chapter 3: By using the proposed decoupling, a number of controllers are
derived and presented in this chapter. For rotational control, a backstepping
controller, a sliding surface controller and a pd+ controller are adapted to
the case of flight control based on Kristiansen et al. (2009b), Slotine and Li
(1987) and Paden and Panja (1988) respectively. An adaptive backstepping
controller is also derived, which accounts for the unknown aerodynamics and
the actuator constraints. It adapts the idea by Johnson and Calise (2000) and
uses a reference trajectory to move the saturation problem from the plant to
the reference. Through a comparison of the controllers, it is found that the
pd+ controller, the sliding surface controller and the backstepping controller
produce almost similar results when the gains are chosen appropriately. This
is due to the saturation of the deflection angles. It is also observed that by
using a reference trajectory that deviates from a desired trajectory whenever
the actuators are in saturation, results in improved performance compared
to that of tracking a desired trajectory. Specifically, the reference trajectory
can be designed such that the control deficiency of one actuator can become
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mapped to the other actuators through the reference trajectory. This results
in increased actuation that makes the errors converge faster to zero.

For speed control, model-based proportional and proportional-integral con-
trollers are derived using standard Lyapunov methods. An adaptive speed
controller that accounts for uncertain aerodynamics and actuator constraints
is also presented. It is also observed that the rotational control laws are de-
pendent on the airspeed, such that at higher airspeeds a smaller deflection
angle is required to produce a desired moment. This fact is exploited by
designing a reference airspeed that increases whenever the deflection angles
cross a predefined threshold, such that by tracking this reference speed, the
deflection angles can be kept within their bounds under certain assumptions.

• Chapter 4: Several guidance laws that produce the desired states are pre-
sented in this chapter. A waypoint guidance method is derived which maps
the position error to one axis, resulting in a desired quaternion and angu-
lar velocity. By tracking the desired states, a set containing all the points
in a shell around the origin is shown to be uniformly asymptotically stable.
A similar idea is applied for trajectory tracking, where a virtual saturated
translational controller is designed to make the position and velocity errors
go to zero. The outputs from the virtual controller are then mapped to de-
sired states that can be tracked using the control laws from Chapter 3. The
trajectory tracking solution is then extended to formation flight by defining
desired trajectories relative to a virtual leader, which by tracking, enable the
uavs to maintain a rigid formation.

• Chapter 5: Behavioral control of fixed-wing uavs using composite quater-
nion rotations is presented in this chapter. From the previous chapters, it
is observed that several quaternions can be multiplied together where the
quaternions and corresponding angular velocities can be treated individually.
This is used to design a behavioral control method that fits nicely into the
framework by Brooks (1986), where it is possible to define multiple tasks and
arrange them in a hierarchy. This enables different quaternions to be designed
for performing collision avoidance, ground avoidance and waypoint tracking.
By suppressing the inactive quaternions, it is shown that the solution en-
ables multiple uavs to perform waypoint tracking while moving through a
city without colliding with the buildings, the ground nor each other.

• Appendix A: This appendix presents the YF-22 uav model that is used in all
the simulations, and contains all the aerodynamic coefficients that are used
in the modeling.

• Appendix B: This appendix presents the aggregated dynamics which is com-
monly used as a basis when designing flight controllers.

• Appendix C: This appendix shows how the aerodynamics can be extended
to be more accurate than the common representation; an extension that fits
nicely into the framework of this thesis.
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1. Introduction

• Appendix D: This appendix presents different definitions and theorems that
are employed in this thesis.

• Appendix E: This appendix contains detailed proofs of the theorems and
lemmas that are presented throughout this thesis.

1.7.2 Delimitations

This thesis makes several assumptions in order to maintain focus on the individual
contributions and are stated as they are required. On a general level, it is assumed
that all states are perfectly known at all time, the body is rigid such that the inertia
matrix and mass are known and constant, and the direction and magnitude of the
wind is assumed to be known. Furthermore, actuator dynamics are not taken into
account such that the actuators produce a given force or moment instantaneously.
No rate saturation is therefore considered, and the actuators are only limited by
magnitude saturations.

The problem of state estimation can be solved by applying recent results on
nonlinear observer design by Grip et al. (2013) or using an Extended Kalman Filter
(ekf) as in Kingston and Beard (2004). The wind can be estimated by using the
algorithm presented in Langelaan et al. (2010) while rate saturation is considered
in work such as Tandale and Valasek (2005) and Akella et al. (2005).

1.7.3 Publications

The following list contains the publications that have been written during the course
of this work.

• Oland, E., T. S. Andersen and R. Kristiansen (2014). Subsumption Archi-
tecture applied to Flight Control using Composite Rotations. Submitted to
Automatica.

• Oland, E. and R. Kristiansen (2014). A Decoupled Approach for Flight Con-
trol. Submitted to Journal of Guidance, Control, and Dynamics.

• Oland, E. and R. Kristiansen (2014). Trajectory Tracking of an Underactu-
ated Fixed-wing UAV. In: Proceedings of the ICNPAA Congress on Mathe-
matical Problems in Engineering Aerospace and Sciences (In Press), Narvik,
Norway.

• Oland, E., T. S. Andersen and R. Kristiansen (2014). Actuator Desatura-
tion for a Fixed-wing UAV using Speed Modification. In: Proceedings of the
ICNPAA Congress on Mathematical Problems in Engineering Aerospace and
Sciences (In Press), Narvik, Norway.

• Oland, E. and R. Kristiansen (2014). Adaptive Flight Control with Con-
strained Actuation. In: Proceedings of the American Control Conference,
Portland, OR, USA.
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1.7. Contribution and Scope of Thesis

• Oland, E., R. Schlanbusch and R. Kristiansen (2013). Underactuated Way-
point Tracking of a Fixed-wing UAV. In: Proceedings of the 2nd RED-UAS,
Workshop on Research, Education and Development of Unmanned Aerial Sys-
tems, Compiegne, France.

• Oland, E. and T.S. Andersen and R. Kristiansen (2013). Underactuated
Control of Quadrotors with Collision Avoidance. In: Proceedings of the 2nd
RED-UAS, Workshop on Research, Education and Development of Unmanned
Aerial Systems, Compiegne, France.

• Oland, E. and R. Kristiansen (2013). Real-time Particle Tracking using a
Formation of UAVs. In Proceedings of the 2nd RED-UAS, Workshop on
Research, Education and Development of Unmanned Aerial Systems, Com-
piegne, France.

• Oland, E. and R. Kristiansen (2013). Collision and Terrain Avoidance for
UAVs using the Potential Field Method. In: Proceedings of the 34th IEEE
Aerospace Conference, Big Sky, Montana, USA.

• Oland, E. and R. Kristiansen (2013). Quaternion-based Backstepping control
of a Fixed-wing Unmanned Aerial Vehicle. In: Proceedings of the 34th IEEE
Aerospace Conference, Big Sky, Montana, USA.

• Oland, E. and R. Kristiansen (2013). Underactuated Translational Control of
a Rigid Spacecraft. In: Proceedings of the 34th IEEE Aerospace Conference,
Big Sky, Montana, USA.

• Schlanbusch, R. and E. Oland (2013). Spacecraft Formation Reconfigura-
tion with Dynamic Collision Avoidance. In: Proceedings of the 34th IEEE
Aerospace Conference, Big Sky, Montana, USA.

• Kristiansen, R., E. Oland and D. Narayanachar (2012). Operational Concepts
in UAV Formation Monitoring of Industrial Emissions. In: Proceedings of the
3rd IEEE International Conference on Cognitive Infocommunications, Kosice,
Slovakia.

• Kristiansen, R., R. Schlanbusch and E. Oland (2011). PD+ Based Spacecraft
Attitude Tracking with Magnetometer Rate Feedback. In: Proceedings of the
50th IEEE Conference on Decision and Control (CDC), Orlando, FL.

Note that this thesis only considers fixed-wing uavs, while some of the publi-
cations consider other underactuated rigid bodies. The research approach for this
project has been to study how other underactuated rigid bodies are controlled, and
apply that knowledge for flight control. To maintain a strong focus, these results
are not included in this thesis.
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Chapter 2

Modeling

Quaternions came from Hamilton
after his really good work had
been done; and, though
beautifully ingenious, have been
an unmixed evil to those who
have touched them in any way,
including Clerk Maxwell.

Lord Kelvin, 1892

This chapter is based on Oland et al. (2013a), Oland and Kristiansen (2014a)
and Oland and Kristiansen (2014b) and presents the complete model for a fixed-wing
uav, including both rotational and translational dynamics. To facilitate controller
design, two different models are presented: one that assumes that the aerodynamics
are perfectly known together with infinite actuation, and one model that takes the
aerodynamic uncertainty into account together with the constrained actuation.

2.1 Preliminaries

Bold Greek or Latin letters are vectors x ∈ R
n and bold capital Greek or Latin

letters are matrices X ∈ R
n×m, and scalars are non-bold. The time derivative of a

vector is denoted as ẋ = dx/dt and the Euclidean length is written as ||x|| =
√
x�x.

Superscripts denote the reference frame of a vector such that vB is a vector in
frame B. The rotation matrix is denoted RB

A ∈ SO(3) = {R ∈ R
3×3 : R�R =

I, det(R) = 1}, which rotates a vector from frame A to frame B and where I

denotes the identity matrix of sufficient dimension depending on the context. The
angular velocity vector is denoted ωC

B,A ∈ R
3, which represents the angular velocity

of frame A relative to frame B referenced in frame C. Angular velocities between
different frames can be added together as ωB

A,D = ωB
A,C + ωB

C,D (cf. Egeland and
Gravdahl (2002)). The time derivative of the rotation matrix is found as ṘB

A =
RB

AS(ω
A
B,A) where the cross product operator S(·) is such that for two arbitrary

vectors v1,v2 ∈ R
3, S(v1)v2 = v1 × v2, S(v1)v2 = −S(v2)v1, S(v1)v1 = 0 and
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2. Modeling

v�
1 S(v2)v1 = 0 and with v1 =

�
v1 v2 v3

��
the cross-product operator is defined

as

S(v1) =

⎡
⎣

0 −v3 v2
v3 0 −v1
−v2 v1 0

⎤
⎦ . (2.1)

The rotation matrix can be parameterized by quaternions as invented by Hamilton
(1844), where the quaternion that represents a rotation from frame A to frame B
is denoted qB,A ∈ S3 = {q ∈ R

4 : q�q = 1}, and can be written on vector form as

qB,A =
�
ηB,A ��B,A

��
=

�
cos(

ϑB,A

2 ) k�
B,A sin(

ϑB,A

2 )
��

(2.2)

which performs a rotation of an angle ϑB,A around the unit vector kB,A, and

the inverse quaternion is defined as qA,B =
�
ηB,A −��B,A

��
. The scalar part is

denoted ηB,A and the vector part as �B,A ∈ R
3, enabling the rotation matrix to be

constructed as

RB
A = I+ 2ηB,AS(�B,A) + 2S2(�B,A). (2.3)

For a general quaternion q =
�
η �1 �2 �3

��
, the rotation matrix can also be

constructed using the quaternion components as

R =

⎡
⎣
η2 + �21 − �22 − �23 2(�1�2 − η�3) 2(�1�3 + η�2)
2(�1�2 + η�3) η2 − �21 + �22 − �23 2(�2�3 − η�1)
2(�1�3 − η�2) 2(�2�3 + η�1) η2 − �21 − �22 + �23

⎤
⎦ . (2.4)

To ensure that the resulting quaternion maintains the unit length property, compos-
ite rotations are found using the quaternion product as (cf. Egeland and Gravdahl
(2002))

qA,C = qA,B ⊗ qB,C = T(qA,B)qB,C (2.5)

where

T(qA,B) =

�
ηA,B −��A,B

�A,B ηA,BI+ S(�A,B)

�
(2.6)

while the quaternion kinematics is given as

q̇B,A =
1

2
qB,A ⊗

�
0

ωA
B,A

�
=

1

2
T(qB,A)

�
0

ωA
B,A

�
. (2.7)

2.2 Reference Frames

Several basic reference frames are required to describe the rotational and transla-
tional dynamics of a fixed-wing uav. Additional frames are defined as they are
required.
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2.3. Translational Kinematics and Dynamics

North East Down (ned): This frame is denoted Fn and is treated as an inertial
frame. The xn axis points North, yn points East while zn completes the right-
handed orthonormal reference frame by pointing down toward the center of the
Earth. Flying with low speed in a local region, the centripetal and Coriolis effects
of the Earth can be ignored (cf. Stevens and Lewis (2003)), enabling ned frame
to be treated as an inertial frame, which makes the Laws of Newton valid. This is
also known as flat-Earth approximation.

East North Up (enu): This frame is denoted Fu and is treated as an inertial
frame. The xu axis points East, yu points North while zu completes the right-
handed orthonormal reference frame by pointing up relative to the center of the
Earth. This reference frame is only used for visualizations of trajectories since it
fits better with the human perception than that of the ned frame.

Body Frame: This frame is denoted Fb and has its origin in the center of mass
of the rigid body. The xb axis is aligned with the fuselage, yb goes through the
right wing, while zb = xb×yb completes the right handed orthonormal frame. This
reference frame is fixed to the rigid body.

Stability Frame: This frame is denoted Fs and is initially aligned with the
body frame. The xs axis is found through a left-handed rotation around the yb

axis, ys = yb and zs = xs × ys. The stability frame is an intermediate frame used
to find the wind frame and is in general used for studying the flight dynamics.

Wind Frame: This frame is denoted Fw and is initially aligned with the body
frame. The wind frame is defined such that the airspeed, Va, is aligned along the
xw axis, which is found through the rotation of the angle of attack to the stability
frame, and by an additional rotation around the zs axis by the sideslip angle β.
The relation between the body, stability and wind is shown in Figure 2.1.

2.3 Translational Kinematics and Dynamics

The kinematics of the ground velocity is defined as (cf. Stevens and Lewis (2003))

ṗn = Rn
bv

b (2.8)

vb
r = vb −Rb

nw
n (2.9)

where pn is the position of the uav relative to the Earth and where vb is the ground
velocity vector in the body frame. To account for the wind, let the velocity vector
relative to the surrounding air be denoted1 vb

r :=
[
u v w

]�
with wn as the wind

vector. The ground speed and airspeed are denoted respectively as Vg and Va and

1From now on called the relative velocity vector.
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2. Modeling
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Figure 2.1: The body, stability and wind frame. By using the angle of attack and
the sideslip angle, the relation between the body frame and the direction of the
airspeed is obtained (illustration by Tom Stian Andersen).

are given as

Vg = ||vb|| =
�
(vb)�vb (2.10)

Va = ||vb
r|| =

�
(vb

r)
�vb

r. (2.11)

The direction of the ground speed tells how the uav moves relative to the ground,
which is important from a guidance perspective, while the airspeed affects the aero-
dynamic forces and moments and is therefore important from a control perspective.
The wind triangle in Figure 2.2 shows the relation between the air, ground and wind
velocity vectors where vn

r := Rn
b v

b
r and vn

g := Rn
bv

b.
The relative velocity vector can be rotated to the wind frame as

vw
r = Rw

b v
b
r = Rw

b

⎡
⎣
Va

0
0

⎤
⎦ (2.12)

where the airspeed is aligned along the xw axis and where the rotation matrix is
defined as

Rw
b =

⎡
⎣

cos(α) cos(β) sin(β) sin(α) cos(β)
− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)

⎤
⎦ (2.13)
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2.3. Translational Kinematics and Dynamics
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Figure 2.2: The wind triangle shows the relation between the air, ground and wind
velocity vectors.

with the angle of attack and the sideslip angles defined respectively as

α = tan−1
(w
u

)
(2.14)

β = sin−1

(
v

Va

)
. (2.15)

Remark 2.1 With zero wind, the airspeed and ground speed coincide. Hence the
control problem reduces to that of aligning the wind frame in a desired direction and
move with a positive airspeed.

By treating the ned frame as an inertial frame, the translational dynamics are
found through Newton’s Second law as (cf. Stevens and Lewis (2003))

v̇b =
1

m
(f bthrust +Rb

wf
w
aero) +Rb

nf
n
g − S(ωb

n,b)v
b (2.16)

where m is the mass, f bthrust :=
[
T 0 0

]�
is the thrust vector with T as the total

thrust, fwaero is the aerodynamic forces acting on the rigid body, fng :=
[
0 0 g

]�
is the gravity vector where g is the acceleration due to the gravity and ωb

n,b :=[
p q r

]�
is the angular velocity vector. The aerodynamic force vector can be

defined as (cf. Etkin (1972), Stengel (2004), Campa et al. (2007))

fwaero :=
[−D Y −L

]�
=

1

2
ρSV 2

a

[−CD CY −CL

]�
(2.17)

CD :=CD0
+ CDα

α+
c̄

2Va

CDq
q + CDδe

δe (2.18)

CY :=CY0
+ CYβ

β +
b

2Va

CYp
p+

b

2Va

CYr
r + CYδa

δa + CYδr
δr (2.19)

CL :=CL0
+ CLα

α+
c̄

2Va

CLq
q + CLδe

δe (2.20)
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2. Modeling

where D is the drag, Y is the sideforce, L is the lift, ρ is the air density, S is
the wing area, C(·) are aerodynamic coefficients, b is the wing span, c̄ is the mean
aerodynamic chord and δa, δe, δr are the deflection angles of the aileron, elevator
and rudder respectively which are used for rotational control. The drag force, D, is
aligned along the negative xw axis, the sideforce, Y , along the yw axis and the lift,
L, along the negative zw axis. Note that the drag is always positive and provides
damping to the system.

Remark 2.2 The aerodynamic representation that is used in this section is linear
in the angle of attack and the sideslip angle, and is therefore only valid close to
leveled flight. A set of coefficients representing the aerodynamics of the yf-22 uav
are given in Appendix A as described in Campa et al. (2007). A more detailed
discussion regarding aerodynamic modeling is given in Appendix C and details pro-
cedures for obtaining more accurate aerodynamic models that can be used together
with the control laws that are derived in this thesis.

Assumption 2.1 It is assumed that the wind vector is constant or slowly varying.

Assumption 2.2 It is assumed that the airspeed is lower bounded as Va ≥ βv > 0
and that u > 0 ∀ t ≥ t0.

Assumption 2.2 is a common assumption, which in essence states that the aircraft
has a positive speed above stall speed which is a requirement for flight. The as-
sumption that u > 0 ∀ t ≥ t0 states that the aircraft is moving forward, and as such
is another reasonable assumption. Using Assumption 2.1, it follows that ẇn ≈ 0,
enabling the relative acceleration to be found by differentiating (2.9) and using
(2.16) as

v̇b
r =

1

m
(f bthrust +Rb

wf
w
aero) +Rb

nf
n
g − S(ωb

n,b)v
b
r , (2.21)

while the linear acceleration is found by differentiating (2.11), inserting (2.21) and
using that (vb

r)
�S(ωb

n,b)v
b
r = 0 as

V̇a =
u

mVa

T +
(vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g ). (2.22)

Remark 2.3 The derivation of the aggregated translational dynamics (V̇a, α̇, β̇) is
given in Appendix B. When solving for the thrust, the inverse dynamics become
singular when α or β are equal to ±π/2, which can be avoided by using (2.22).

Remark 2.4 The translational dynamics (2.21) can be written in terms of angle
of attack and the sideslip rates such that (cf. (B.4))

α̇ = f(qn,b,ω
b
n,b, Va, α, β, T, δe) (2.23)

β̇ = f(qn,b,ω
b
n,b, Va, α, β, T, δa, δr). (2.24)
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2.4. Rotational Kinematics and Dynamics

When using ωb
n,b to stabilize the angle of attack and the sideslip angle, the deflection

rates must be sufficiently fast to enable the time-scale separation principle to be
applied (cf. Reiner et al. (1996)) and the errors they introduce must be assumed
to be negligible. The stabilization of the angular velocity is then done in the next
step through the deflection angles. This is currently the common approach for flight
control and has resulted in a wealth of research (cf. Lane and Stengel (1988), Reiner
et al. (1996), Lee and Kim (2001), Farrell et al. (2005), Shin and Kim (2006),
Ju and Tsai (2007), Sonneveldt et al. (2009a)) all constrained by the inherent
limitations of angular representation, time-scale separation and deflection angles in
the translational dynamics. Since the rotational dynamics are independent of the
thrust, it is in this thesis proposed to first solve the rotation problem and then the
translation problem. With a control law stabilizing the rotational dynamics through
δa, δe, δr, the translational control problem becomes trivial.

Remark 2.5 With thrust only available along the xb axis, the aircraft is clearly
underactuated. Instead of controlling all the velocity components (u, v, w) it is pos-
sible to control the airspeed, Va, and use the rotation matrix Rw

b to map the control
problem from R

3 × SO(3) to R
1 × SO(3) and with quaternions it becomes mapped

to R
1 × S3.

2.4 Rotational Kinematics and Dynamics

The rotational kinematics are derived using quaternions as (cf. Egeland and Grav-
dahl (2002))

q̇n,b =
1

2
qn,b ⊗

�
0

ωb
n,b

�
(2.25)

which represents the orientation of the body frame relative to the ned frame. The
angular acceleration of the uav is found using Euler’s momentum equation as (cf.
Stengel (2004))

Jω̇b
n,b = −S(ωb

n,b)Jω
b
n,b + τ b

aero (2.26)

where the inertia matrix is defined as

J =

⎡
⎣

Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

⎤
⎦ (2.27)

where Jxx, Jyy, Jzz and Jxz represent constant inertia components. The aerody-
namic moments can be written as (cf. Etkin (1972), Stengel (2004), Campa et al.
(2007))

τ b
aero = f(x)−D(x)ωb

n,b +G(x)u (2.28)

where x =
�
Va α β

��
and u =

�
δa δe δr

��
is the control signal. The aerody-

namic vector f(x) is defined as

f(x) =
1

2
ρSV 2

a

⎡
⎣

b(Cl0 + Clββ)
c̄(Cm0

+ Cmα
α)

b(Cn0
+ Cnβ

β)

⎤
⎦ (2.29)

29

2.4. Rotational Kinematics and Dynamics

When using ωb
n,b to stabilize the angle of attack and the sideslip angle, the deflection

rates must be sufficiently fast to enable the time-scale separation principle to be
applied (cf. Reiner et al. (1996)) and the errors they introduce must be assumed
to be negligible. The stabilization of the angular velocity is then done in the next
step through the deflection angles. This is currently the common approach for flight
control and has resulted in a wealth of research (cf. Lane and Stengel (1988), Reiner
et al. (1996), Lee and Kim (2001), Farrell et al. (2005), Shin and Kim (2006),
Ju and Tsai (2007), Sonneveldt et al. (2009a)) all constrained by the inherent
limitations of angular representation, time-scale separation and deflection angles in
the translational dynamics. Since the rotational dynamics are independent of the
thrust, it is in this thesis proposed to first solve the rotation problem and then the
translation problem. With a control law stabilizing the rotational dynamics through
δa, δe, δr, the translational control problem becomes trivial.

Remark 2.5 With thrust only available along the xb axis, the aircraft is clearly
underactuated. Instead of controlling all the velocity components (u, v, w) it is pos-
sible to control the airspeed, Va, and use the rotation matrix Rw

b to map the control
problem from R

3 × SO(3) to R
1 × SO(3) and with quaternions it becomes mapped

to R
1 × S3.

2.4 Rotational Kinematics and Dynamics

The rotational kinematics are derived using quaternions as (cf. Egeland and Grav-
dahl (2002))

q̇n,b =
1

2
qn,b ⊗

�
0

ωb
n,b

�
(2.25)

which represents the orientation of the body frame relative to the ned frame. The
angular acceleration of the uav is found using Euler’s momentum equation as (cf.
Stengel (2004))

Jω̇b
n,b = −S(ωb

n,b)Jω
b
n,b + τ b

aero (2.26)

where the inertia matrix is defined as

J =

⎡
⎣

Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

⎤
⎦ (2.27)

where Jxx, Jyy, Jzz and Jxz represent constant inertia components. The aerody-
namic moments can be written as (cf. Etkin (1972), Stengel (2004), Campa et al.
(2007))

τ b
aero = f(x)−D(x)ωb

n,b +G(x)u (2.28)

where x =
�
Va α β

��
and u =

�
δa δe δr

��
is the control signal. The aerody-

namic vector f(x) is defined as

f(x) =
1

2
ρSV 2

a

⎡
⎣

b(Cl0 + Clββ)
c̄(Cm0

+ Cmα
α)

b(Cn0
+ Cnβ

β)

⎤
⎦ (2.29)

29



2. Modeling

and the damping matrix is defined as

D(x) = −1

2
ρSV 2

a

⎡
⎢⎣

b2

2Va
Clp 0 b2

2Va
Clr

0 c̄2

2Va
Cmq

0
b2

2Va
Cnp

0 b2

2Va
Cnr

⎤
⎥⎦ . (2.30)

Note that D(x) is positive definite for all Va > 0. The control effectiveness matrix
is defined as

G(x) =
1

2
ρSV 2

a

⎡
⎣
bClδa

0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr

⎤
⎦ (2.31)

which has full rank as long as Va > 0 and Cmδe
(Clδa

Cnδr
−Clδr

Cnδa
) �= 0. Inserting

(2.28) into (2.26), the angular acceleration becomes

Jω̇b
n,b =− S(ωb

n,b)Jω
b
n,b + f(x) −D(x)ωb

n,b +G(x)u. (2.32)

2.5 Total System

Let the aerodynamic force vector (2.17) be rewritten as

fwaero = f2(x,ω
b
n,b) +G2(x)u (2.33)

where

f2(x,ω
b
n,b) =

1

2
ρSV 2

a

⎡
⎣

−(CD0
+ CDα

α+ c̄
2Va

CDq
q)

CY0
+ CYβ

β + b
2Va

CYp
p+ b

2VT
CYr

r

−(CL0
+ CLα

α+ c̄
2Va

CLq
q)

⎤
⎦ (2.34)

and

G2(x) =
1

2
ρSV 2

a

⎡
⎣

0 −CDδe
0

CYδa
0 CYδr

0 −CLδe
0

⎤
⎦ , (2.35)

then the total system can be written using (2.21) and (2.32) as

�
v̇b
r

Jω̇b
n,b

�
=

⎡
⎢⎢⎣

1
m

⎛
⎝
⎡
⎣
T
0
0

⎤
⎦+Rb

w(f2(x,ω
b
n,b) +G2(x)u)

⎞
⎠+Rb

nf
n
g − S(ωb

n,b)v
b
r

−S(ωb
n,b)Jω

b
n,b + f(x) −D(x)ωb

n,b +G(x)u

⎤
⎥⎥⎦ . (2.36)

For this system there are four actuators, the thrust, T , that is acting along the
xb axis, and three deflection angles, u =

�
δa δe δr

��
that produce moments as

well as affecting the aerodynamic drag, lift and sideforce. A critical issue with this
model, and control of aircraft in general, is that the elevator, δe, and the thrust
are producing forces along the xb axis, an issue that often is ignored by simplifying
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2.6. Decoupling the Rotational and Translational Systems

the aerodynamics or solved by using values for the elevator from the previous time-
step. This represents a strong coupling between the rotational and translational
systems that must be accounted for when designing the control laws. The common
approach to address this issue, is to divide the system into a slow system and a
fast system, where the deflection angles are treated as constants in the slow system,
and are only "active" in the fast system. This means that the elevator is assumed
to be constant when designing the speed controller. To be precise, the common
approach is to solve the translational dynamics first, followed by the rotational
dynamics. By studying the dynamics (2.36), it is evident that the thrust only
appears in the translational dynamics, while the deflection angles are part of both
systems. A better approach which will be followed in this thesis would therefore be
to first control the rotational system and then the translational system. With the
deflection angles available from the control law, their impact on the translational
system can be removed from the closed loop dynamics using the thrust.

Remark 2.6 For some aircraft, the thrust is not directly aligned along the xb axis,
but is rotated by a small angle relative to the xb axis. When this is the case,
aerodynamic pitching moments are generated by the thrust which thereby increases
the coupling between the systems.

2.6 Decoupling the Rotational and Translational Systems

The objective of pointing the speed in a desired direction can be performed through
rotational control. More precisely, this can be achieved by pointing the wind frame
in a desired direction. To relate the wind frame to the ned frame, it is possible
to rotate from ned to body using the attitude (e.g. roll, pitch, yaw or qb,n), and
to rotate from the body frame to the wind frame, it is possible to use the angle of
attack and the sideslip angle. Using these angles, the relation between the wind
frame and the ned frame can be established such that the airspeed can be pointed in
a desired direction relative to the ned frame. The decoupling will first be presented
from an Euler perspective since it is more easily understood, and then it will be
presented using quaternions.

2.6.1 Motivation from an Euler Perspective

The motion of a particle moving in R
3 can be expressed using a flight path angle

(γ), a course angle (χ), and a speed. In the vertical plane, the flight path angle is
the difference between the pitch angle (θ) and the angle of attack, γ = θ−α, while
in the horizontal plane, the course angle is the sum of the yaw angle (ψ) and the
sideslip angle, χ = ψ + β (cf. Stengel (2004)). To control the direction of motion
of the particle, let a desired flight path and course angle be defined by γd, χd, and
let the flight path and course errors be defined as

γ̃ := γ − γd = θ − α− γd (2.37)

χ̃ := χ− χd = ψ + β − χd. (2.38)

By differentiating (2.37)-(2.38) twice, the deflection angles enter the system through
θ̈ and ψ̈, where the higher order derivatives of γd and χd are found using linear
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system can be removed from the closed loop dynamics using the thrust.
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but is rotated by a small angle relative to the xb axis. When this is the case,
aerodynamic pitching moments are generated by the thrust which thereby increases
the coupling between the systems.

2.6 Decoupling the Rotational and Translational Systems

The objective of pointing the speed in a desired direction can be performed through
rotational control. More precisely, this can be achieved by pointing the wind frame
in a desired direction. To relate the wind frame to the ned frame, it is possible
to rotate from ned to body using the attitude (e.g. roll, pitch, yaw or qb,n), and
to rotate from the body frame to the wind frame, it is possible to use the angle of
attack and the sideslip angle. Using these angles, the relation between the wind
frame and the ned frame can be established such that the airspeed can be pointed in
a desired direction relative to the ned frame. The decoupling will first be presented
from an Euler perspective since it is more easily understood, and then it will be
presented using quaternions.

2.6.1 Motivation from an Euler Perspective

The motion of a particle moving in R
3 can be expressed using a flight path angle

(γ), a course angle (χ), and a speed. In the vertical plane, the flight path angle is
the difference between the pitch angle (θ) and the angle of attack, γ = θ−α, while
in the horizontal plane, the course angle is the sum of the yaw angle (ψ) and the
sideslip angle, χ = ψ + β (cf. Stengel (2004)). To control the direction of motion
of the particle, let a desired flight path and course angle be defined by γd, χd, and
let the flight path and course errors be defined as

γ̃ := γ − γd = θ − α− γd (2.37)

χ̃ := χ− χd = ψ + β − χd. (2.38)

By differentiating (2.37)-(2.38) twice, the deflection angles enter the system through
θ̈ and ψ̈, where the higher order derivatives of γd and χd are found using linear
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filters. The angle of attack and the sideslip angle are functions of the relative
velocity vector, such that the second derivative of the angle of attack and the
sideslip angle are found from the second derivative of the relative velocity vector,
which is not available. To remedy this issue, let the tracking error be rewritten as

γ̃ = θ − θd (2.39)

χ̃ = ψ − ψd (2.40)

where θd := γd + α and ψd := χd − β. Instead of using a filter to find the higher
order derivatives of the desired flight path and course angles, it can be used on the
desired pitch and yaw angles (θd, ψd). This enables the higher order derivatives of
the angle of attack and the sideslip angle to be approximated using a linear filter,
which simplifies the control problem. Note that the relations (2.37)-(2.38) are only
valid when the roll angle (φ) and the sideslip angle are equal to zero, such that this
represents a particular case. Quaternions will therefore be used to generalize the
results.

In Fossen (2011) the author shows how the sideslip angle can be used for guid-
ance purposes for ships and the same approach is proposed for controlling underac-
tuated auvs in Breivik and Fossen (2005), where the authors apply the particular
case for finding the desired pitch and yaw angle. In Kaminer et al. (1998), the
authors use a filter to find the angular acceleration of the body frame relative to
the ned frame, and use it to trim the desired trajectory and apply it to control a
fixed-wing uav. The approach by Kaminer et al. (1998) is in many ways similar to
what is presented here, except that they estimate the angular acceleration of the
body relative to ned and not the higher order derivatives of the sideslip angle and
angle of attack.

2.6.2 Quaternion Representation

The rotation from the wind frame to the body frame can be written using quater-
nions as

qb,w = qb,s ⊗ qs,w (2.41)

where the two quaternions are defined as

qb,s :=
[
cos

(
α
2

)
0 − sin

(
α
2

)
0
]�

(2.42)

qs,w :=
[
cos

(
β
2

)
0 0 sin

(
β
2

)]�
, (2.43)

and this enables the wind frame to be related to the ned frame through the com-
posite quaternion rotation as

qn,w = qn,b ⊗ qb,s ⊗ qs,w = qn,b ⊗ qb,w. (2.44)

Higher order derivatives of the angle of attack and the sideslip angle can be approx-
imated using linear filters. In Yip et al. (1996), the authors show that higher order
derivatives of the virtual control signals that are used as part of the backstepping
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process, can be approximated by linear filters which greatly simplifies the controller
design. For flight control, this approach has been applied in works such as Farrell
et al. (2005) and Sonneveldt et al. (2009b). A linear filter can be chosen as (cf.
Fossen (2011))

ẋd = Adxd +Bdr (2.45)

with

Ad =

⎡
⎣

0 1 0
0 0 1

−ω3
n −(2ζ + 1)ω2

n −(2ζ + 1)ωn

⎤
⎦ (2.46)

Bd =
�
0 0 ω3

n

��
(2.47)

where ζ is the relative damping ratio, ωn is the natural frequency and r is the
reference signal being either the angle of attack or the sideslip angle. The state
vector can be chosen as xd =

�
α α̇ α̈

��
in the case of the angle of attack and

as xd =
�
β β̇ β̈

��
for the sideslip angle. With the higher order derivatives of

the angle of attack and the sideslip angle, the angular velocity of the wind frame
relative to the body frame is found as (cf. Stevens and Lewis (2003))

ωw
b,w =

⎡
⎣
0
0

β̇

⎤
⎦+

⎡
⎣

cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

⎤
⎦
⎡
⎣

0
−α̇
0

⎤
⎦ =

⎡
⎣
−α̇ sin(β)
−α̇ cos(β)

β̇

⎤
⎦ (2.48)

and the angular acceleration is found through direct differentiation as

ω̇w
b,w =

⎡
⎣
−α̈ sin(β) − α̇β̇ cos(β)

−α̈ cos(β) + α̇β̇ sin(β)

β̈

⎤
⎦ . (2.49)

It is also possible to include saturation in the filter to ensure that the output remains
bounded, which is important for the stability of the resulting tracking errors. The
higher order derivatives can also be found by other methods such as e.g. a high
gain observer (cf. Khalil (2002)). With the second derivative of a desired trajectory
together with the angular velocity and acceleration of the wind frame relative to the
body frame, it simplifies the problem of pointing the airspeed in a desired direction.

2.7 Actuator Saturation and Unknown Aerodynamics

The dynamics (2.21) and (2.32) represent a perfect scenario with infinite actua-
tion and perfectly known aerodynamic models. To incorporate saturation into the
dynamics, let the saturation function for a vector v :=

�
v1 v2 v3

��
be defined

as

σ(v) :=
�
σ(v1) σ(v2) σ(v3)

��
(2.50)
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2. Modeling

where the saturation operator works on a component level and is defined as

σ(vi) :=

⎧
⎪⎨
⎪⎩

vmax if vi ≥ vmax

vi if vmin < vi < vmax

vmin if vi ≤ vmin

(2.51)

where i = 1, 2, 3, vmax and vmin denote the maximum and minimum values of the
output. In the case of the thrust, it can be bounded between zero and a maximum
value denoted Tmax, such that

σ(T ) :=

⎧
⎪⎨
⎪⎩

Tmax if T ≥ Tmax

T if 0 < T < Tmax

0 if T ≤ 0

(2.52)

while the deflection angles can be bounded between a minium and maximum de-
flection angle such that

σ(u) :=
�
σ(δa) σ(δe) σ(δr)

��
(2.53)

and by letting δ represent an arbitrary deflection angle, its component-level satu-
ration becomes

σ(δi) :=

⎧⎪⎨
⎪⎩

δmax if δ ≥ δmax

δ if δmin < δ < δmax

δmin if δ ≤ δmin

(2.54)

where i = a, e, r, δmin and δmax denote the minimum and maximum deflection
angles respectively.

The thrust force vector can now be redefined as f bthrust =
�
σ(T ) 0 0

��
such

that the acceleration becomes (cf. (2.22))

V̇a =
u

mVa

σ(T ) +
(vb

r)
�

Va

�
1

m
Rb

wf
w
aero +Rb

nf
n
g

�
. (2.55)

To facilitate adaptive control, let the aerodynamic force vector be rewritten as
fwaero = Φ1θ1, where θ1 is a vector of coefficients, while Φ1 = Φ1(Va, α, β,ω

b
n,b,u)

is a known matrix. Let the error between the saturated and commanded thrust be
defined as T̃ = σ(T ) − T , and let the difference between the estimated and true
aerodynamic coefficients be defined as θ̃1 = θ̂1−θ1; then the acceleration becomes

V̇a =
u

mVa

T +
u

mVa

T̃ +
(vb

r)
�

Va

�
1

m
Rb

wΦ1θ̂1 − 1

m
Rb

wΦ1θ̃1 +Rb
nf

n
g

�
. (2.56)

For the rotational dynamics (2.26), the aerodynamic moments can be redefined
as

τ b
aero = f(x)−D(x)ωb

n,b +G(x)σ(u) (2.57)
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m
Rb
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nf

n
g

�
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For the rotational dynamics (2.26), the aerodynamic moments can be redefined
as

τ b
aero = f(x)−D(x)ωb

n,b +G(x)σ(u) (2.57)
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2.8. Summary

and by defining the error between the saturated and the actual command signal as
ũ = σ(u)− u, it enables the aerodynamic moments to be rewritten as

τ b
aero = f(x)−D(x)ωb

n,b +G(x)u+G(x)ũ. (2.58)

The aerodynamic moments are unknown and can be written as

τ b
aero = Φ2θ2 +Φ3θ3 (2.59)

where Φ2 = Φ2(Va, α, β,ω
b
n,b) and Φ3 = Φ3(Va, δa, δe, δr) are two known matrices

based on the aerodynamical moments, and θ2 contains the coefficients of f(x) and
D(x), while the control effectiveness coefficients are contained in θ3. Now let the
error between the estimated values and actual values be defined as θ̃2 = θ̂2 − θ2

and θ̃3 = θ̂3 − θ3 such that the angular acceleration becomes

Jω̇b
n,b =− S(ωb

n,b)Jω
b
n,b +Φ2θ̂2 + Ĝ(x)u + Ĝ(x)ũ−Φ2θ̃2 −Φ3θ̃3 (2.60)

where the control effectiveness matrix has been reconstructed using the estimated
aerodynamic coefficients.

Remark 2.7 The aerodynamic coefficients that constitute the control effectiveness
matrix are contained in θ3. To facilitate the design of a control law, it is vital
that the control coefficients never change sign by crossing zero since this will result
in a singularity. Hence, the control coefficients are separated from the rest of the
aerodynamics to enable projection of the coefficients to ensure that they become
bounded to a convex set.

Remark 2.8 The saturation nonlinearity is commonly implemented using the tanh(·)
function. This ensures that the saturation function is smooth, such that there exist
solutions to the differential equations (2.56) and (2.60).

2.8 Summary

In this chapter two different translational and rotational models have been derived.
The first model assumes infinite actuation and perfect aerodynamic modeling, while
the second includes actuator constraints and the unknown aerodynamics. Using
a filter to estimate the higher order derivatives of the angle of attack and the
sideslip angle, the rotational and translational systems become decoupled, which is
an important property that simplifies the controller design.
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The aerodynamic moments are unknown and can be written as

τ b
aero = Φ2θ2 +Φ3θ3 (2.59)

where Φ2 = Φ2(Va, α, β,ω
b
n,b) and Φ3 = Φ3(Va, δa, δe, δr) are two known matrices

based on the aerodynamical moments, and θ2 contains the coefficients of f(x) and
D(x), while the control effectiveness coefficients are contained in θ3. Now let the
error between the estimated values and actual values be defined as θ̃2 = θ̂2 − θ2

and θ̃3 = θ̂3 − θ3 such that the angular acceleration becomes

Jω̇b
n,b =− S(ωb

n,b)Jω
b
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Chapter 3

Controller Design

Without uncertainty there is no
need for feedback.

K. J. Åström, 1999

This chapter is based on Oland et al. (2013a), Oland and Kristiansen (2013b),
Oland and Kristiansen (2014a), Oland et al. (2014a) and Oland et al. (2014b). In
this chapter several attitude and speed controllers are derived for the problem of
flight control. For attitude control, an integrator backstepping controller, a sliding
surface controller and a pd+ controller are derived and modified to be applicable for
flight control. For speed control, a simple proportional speed controller is derived
using standard Lyapunov methods, while a proportional-integral speed controller is
derived based on backstepping. Adaptive backstepping controllers are also derived
for the rotational and translational systems where the actuator saturation and
unknown aerodynamics are accounted for. It is also observed that the control
signals for the attitude controllers are directly dependent on the airspeed of the
uav, a property that is exploited by designing a reference speed that makes the uav
increase its speed whenever the actuators are about to reach saturation, resulting
in desaturation of the deflection angles.

3.1 Control Objective

From Chapter 2 it is apparent that the wind frame must be aligned in a desired
direction and that the airspeed must be positive to enable flight. Let the desired
frame be defined through qn,d ∈ S3 and ωd

n,d, ω̇
d
n,d ∈ L∞ which in general can be

time-varying; then the attitude tracking error can be written as

qd,w = qd,n ⊗ qn,b ⊗ qb,w (3.1)

with the error kinematics as

q̇d,w =
1

2
qd,w ⊗

[
0

ωw
d,w

]
(3.2)
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3. Controller Design

which has two equilibria at q�
d,w =

[±1 0 0 0
]�

that physically represent the
same orientation, but mathematically they are different. From a control perspective
it is more intuitive to control the attitude relative to the origin. Based on the work
by Kristiansen et al. (2009a), let an error function be defined as

eq± =

[
1∓ ηd,w
�d,w

]
∈ S3

e (3.3)

where S3
e = {[1∓ ηd,w ��d,w

]� | qd,w ∈ S3} with the kinematics as

ėq± = Te(eq±)R
w
b ω

b
d,w (3.4)

Te(eq±) =
1

2

[ ±��d,w
ηd,wI+ S(�d,w)

]
(3.5)

ωb
d,w = ωb

n,b −Rb
dω

d
n,d +Rb

wω
w
b,w, (3.6)

where ωb
d,w :=

[
ωx ωy ωz

]�
. Equation (3.6) can be differentiated, and by in-

serting (2.32) the rotational error dynamics become1

Jω̇b
d,w =− S(ωb

n,b)Jω
b
n,b + f(x)−D(x)ωb

n,b +G(x)u

− JRb
dS(ω

d
b,d)ω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w, (3.7)

and by using (3.6) and that ωd
b,d = ωd

n,d − ωd
n,b the error dynamics become

Jω̇b
d,w =− S(ωb

n,b)Jω
b
n,b + f(x) −D(x)ωb

d,w −D(x)(Rb
dω

d
n,d −Rb

wω
w
b,w)

+G(x)u + JS(ωb
n,b)R

b
dω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w. (3.8)
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3.2. Rotational Controllers

Assumption 3.4 The desired trajectory is persistently exciting, i.e., there exist
positive constants, μ and T such that (cf. Panteley et al. (2001))

μI ≤
∫ t+T

t

Φ(τ)Φ�(τ)dτ, ∀ t ≥ 0. (3.10)

Assumption 3.1 can be relaxed by introducing adaptive control (cf. Slotine and Li
(1991), Krstić et al. (1995), Farrell et al. (2005), Sonneveldt et al. (2009a), Hov-
akimyan and Cao (2010)) which will be done later in this chapter. Assumption 3.2
is a reasonable assumption, since it is only natural to track trajectories that the uav
actually can track. That is, the desired trajectory does not move faster than the an-
gular velocity that the control surfaces can produce. Hence, it is reasonable to claim
that if the actuators have gone into saturation, since the desired trajectory is slower
than the uav, the tracking error will eventually go to zero, resulting in a desatura-
tion of the actuators. Assumption 3.3 is also a reasonable assumption that is often
required for adaptive control (cf. Krstić et al. (1995)). In essence, Assumption 3.3
states that when changing a deflection angle by a certain degree, the direction of
the resulting aerodynamic moment is known. Assumption 3.4 states that motion
of the uav must be sufficiently rich, in the sense that it contains enough frequen-
cies to enable the adaptive controller to estimate the unknown coefficients (Boyd
and Sastry (1986)). This is a standard assumption that is required for adaptive
control and can be facilitated by superimposing a sinusoidal signal onto the desired
trajectory (cf. Stepanyan and Hovakimyan (2007) and van Oort et al. (2010)).

3.2 Rotational Controllers

To facilitate controller design, an assumption and a few lemmas are required as
presented below:

Lemma 3.1 Let Assumption 2.2 hold. Then the airspeed, Va, is uniformly globally
ultimately bounded for any T .

Proof. The proof is given in Appendix E.1.

Lemma 3.2 Let Assumption 2.2 hold. Then the angular velocity ωb
n,b of the system

(2.32) is uniformly globally ultimately bounded for any u.

Proof. The proof is given in Appendix E.2

Lemma 3.3 Let Assumption 2.2 hold. Then the angular velocity ωw
b,w is bounded.

Proof. The proof is given in Appendix E.3.

Lemma 3.2 is a direct result of the aerodynamic damping together with the fact that
the deflection angles are physical bounded. Lemma 3.3 follows as a consequence
of Lemma 3.1, Lemma 3.2 and the fact that the thrust and deflection angles are
bounded. Similar arguments can be applied to show that ω̇w

b,w is bounded, but then
the actuators must have rate constraints which are not considered in this thesis.
Instead it can be enforced by applying saturation when approximating the higher
order derivatives of the angle of attack and the sideslip angle.
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3. Controller Design

Assumption 3.5 sign(ηd,w(t)) = sign(ηd,w(t0)) ∀ t ≥ t0.

Assumption 3.5 divides the rotation sphere into two halves enabling the controller
to be derived while focusing on only one of the two equilibria of the quaternion
error. This assumption can be relaxed by introducing hybrid switching as shown
in Schlanbusch et al. (2011). To generalize the following lemma, it considers an
arbitrary quaternion q =

[
η ��

]�
.

Lemma 3.4 Given that sign(η(t)) = sign(η(t0)) ∀ t ≥ t0, then the following in-
equality holds:

e�q±Te(eq±)T
�
e (eq±)eq± ≥ 1

8
e�q±eq±. (3.11)

Proof. The proof is given in Kristiansen et al. (2009a) and Schlanbusch et al.
(2012a) and is reproduced in Appendix E.4.

3.2.1 Quaternion-based Backstepping Controller

Backstepping control is presented in Krstić et al. (1995), and is a method for control-
ling nonlinear systems in strict feedback form. As opposed to feedback-linearization,
the use of backstepping enables the removal of undesirable terms while maintaining
the good terms. For example the term D(x)ωb

d,w in (3.8) can be considered a good
term since it provides damping of the angular velocity error and can therefore be
maintained in the closed loop dynamics. Quaternion-based backstepping has been
applied for spacecraft control in Kristiansen et al. (2009b) and can be adapted to
flight control by taking basis in the error dynamics (3.4) and (3.8) which are in
strict-feedback form. The results are summarized in the following theorem:

Theorem 3.1 Let Assumptions 2.2, 3.1, 3.2 and 3.5 hold. Given qn,d ∈ S3 and
ωd

n,d, ω̇
d
n,d ∈ L∞, then the dual equilibrium points (eq±, z) = (0,0) of the dynamics

(2.25) and (2.32) in closed loop with the controller

u = G−1(x)(JRb
dω̇

d
n,d − JS(ωb

n,b)R
b
dω

d
n,d + S(ωb

n,b)Jω
b
n,b − f(x)

+D(x)(Rb
dω

d
n,d −Rb

wω
w
b,w − kqR

b
wT

�
e eq)− JRb

wω̇
w
b,w

− kqJR
b
wS(ω

w
b,w)T

�
e eq −

kq
2
JRb

w�̇d,w −Rb
wT

�
e eq − kωz) (3.12)

z = ωb
n,b −Rb

dω
d
n,d +Rb

wω
w
b,w + kqR

b
wT

�
e eq (3.13)

where kq > 0, kω > 0, are uniformly exponentially stable.

Proof. The proof is given in Appendix E.5.

Remark 3.1 As (eq, z) → (0,0) if follows from (3.13) that ωb
d,w = ωb

n,b−Rb
dω

d
n,d+

Rb
wω

w
b,w → 0, and thereby completing the control objective.
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3.2. Rotational Controllers

Using this control law, it enables the uav to point its airspeed in any desired
direction which in general can be moving. Note that the airspeed must be positive in
order to invert the control effectiveness matrix G(x), and it is assumed to have full
rank which is true for the aerodynamic coefficients that are defined in Appendix A
(even though they are for a specific flight condition). Note that all the rotational
controllers that are derived in this chapter share many similarities with the dynamic
inversion approach, since the angular velocity dynamics are inverted to find the
control signals that make the errors go to zero.

3.2.2 Paden and Panja PD+ Controller

Takegaki and Arimoto (1981) proposed a very simple solution to the problem of
robot position control and the result was later extended to trajectory tracking in
Paden and Panja (1988) where the authors applied the Matrosov theorem (cf. The-
orem D.4) to prove stability of the tracking errors. Both controllers are passivity-
based (cf. Ortega and Spong (1989)) as emphasized in Berghuis and Nijmeijer
(1993), meaning that the control law exploits the physical structure of the robot
and reshapes the robots natural energy to achieve its control objective. The result
by Paden and Panja has later been applied for spacecraft control in works such as
Kristiansen et al. (2008a), Kristiansen et al. (2011) and Schlanbusch et al. (2012b).
In this section, the control solution is adapted to the problem of flight control which
is summarized in the following theorem:

Theorem 3.2 Let Assumptions 2.2, 3.1, 3.2 and 3.5 hold. Given qn,d ∈ S3 and
ωd

n,d, ω̇
d
n,d ∈ L∞, then the dual equilibrium points (eq±,ωb

d,w) = (0,0) of the dy-
namics (2.25) and (2.32) in closed loop with the controller
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dω̇

d
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n,b)R
b
dω
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n,d + S(ωb
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n,b − f(x)

+D(x)(Rb
dω

d
n,d −Rb

wω
w
b,w)− JRb

wω̇
w
b,w − kqR

b
wT

�
e eq − kωω

b
d,w) (3.14)

where kq > 0 and kω > 0, are uniformly asymptotically stable.

Proof. The proof is given in Appendix E.6.

Notice the relatively simple structure of the controller. It consists of several nonlin-
ear terms to remove the undesirable terms from the error dynamics (3.8) together
with a proportional and a derivative term to make the tracking errors go to zero
(the last two terms).

Corollary 3.1 The dual equilibrium points (eq±,ωb
d,w) = (0,0) of the dynamics

(2.25) and (2.32) in closed loop with (3.14) can be shown to be uniformly exponen-
tially stable by invoking Lemma 3 from Panteley et al. (2001) by following the same
lines as shown in Schlanbusch (2012) Theorem 3.3.

3.2.3 Sliding Surface Controller

The sliding surface controller by Slotine and Li (1987) is another passivity-based
controller. Instead of tracking the desired trajectory directly, a reference trajectory
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3. Controller Design

is defined which when tracked, obtains desirable reduced order dynamics. The dif-
ference between the actual and the reference trajectory is called the sliding surface.
The method has received much attention and has resulted in a new branch of non-
linear controllers called sliding mode control which employs switching to remain
on the sliding surface. Note that the sliding surface controller that is presented in
Slotine and Li (1987) is a continuous controller and is not to be confused with the
discontinuous sliding mode controller as presented in Slotine and Li (1991). The
sliding surface controller is adapted to the case of flight control and is summarized
in the following theorem:

Theorem 3.3 Let assumptions 2.2, 3.1, 3.2 and 3.5 hold. Given qn,d ∈ S3 and
ωd

n,d, ω̇
d
n,d ∈ L∞, then the dual equilibrium points (eq±, s) = (0,0) of the dynamics

(2.25) and (2.32) in closed loop with the controller

u =G−1(x)(Jω̇b
n,r +D(x)ωb

n,r + S(ωb
n,b)Jω

b
n,b − f(x)− kss

− kqR
b
wT

�
e eq) (3.15)

s =ωb
n,b − ωb

n,r (3.16)

ωb
n,r =Rb

dω
d
n,d −Rb

wω
w
b,w −ΛRb

wT
�
e eq (3.17)

ω̇b
n,r =Rb

dω̇
d
n,d − S(ωb

n,b)R
b
dω

d
n,d −Rb

wω̇
w
b,w

−ΛRb
wS(ω

w
b,w)T

�
e eq −

1

2
ΛRb

w�̇d,w (3.18)

where kq > 0 and ks > 0, Λ = λI, λ > 0, are uniformly exponentially stable.

Proof. The proof is given in Appendix E.7.

Remark 3.2 As (eq, s) → (0,0) if follows from (3.16) that ωb
d,w = ωb

n,b−Rb
dω

d
n,d+

Rb
wω

w
b,w → 0, and thereby completing the control objective.

Remark 3.3 As pointed out in Kristiansen et al. (2008a), the backstepping con-
troller and the sliding surface controller are the same controller if the gains are
chosen appropriately.

3.2.4 Adaptive Backstepping Controller with Constrained

Actuation

Assumption 3.1 has enabled the preceding controllers to be derived. In this section,
this assumption will be relaxed to create a more realistic controller that doesn’t
assume that the aerodynamics are known. This section takes basis in the results by
Johnson and Calise (2000) and Tandale and Valasek (2005) and presents a method
for performing adaptive control of a fixed-wing uav in the presence of the saturation
nonlinearity. The basic idea with this approach is to design a reference trajectory
which deviates from the desired trajectory whenever the actuators are in saturation.
This ensures that the adaptive update laws are not affected by the saturation
nonlinearity which has a deteriorating effect on the parameter estimation. To take
saturation and unknown aerodynamics into account when designing the control law,
the dynamic model (2.60) is used.
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troller and the sliding surface controller are the same controller if the gains are
chosen appropriately.

3.2.4 Adaptive Backstepping Controller with Constrained

Actuation

Assumption 3.1 has enabled the preceding controllers to be derived. In this section,
this assumption will be relaxed to create a more realistic controller that doesn’t
assume that the aerodynamics are known. This section takes basis in the results by
Johnson and Calise (2000) and Tandale and Valasek (2005) and presents a method
for performing adaptive control of a fixed-wing uav in the presence of the saturation
nonlinearity. The basic idea with this approach is to design a reference trajectory
which deviates from the desired trajectory whenever the actuators are in saturation.
This ensures that the adaptive update laws are not affected by the saturation
nonlinearity which has a deteriorating effect on the parameter estimation. To take
saturation and unknown aerodynamics into account when designing the control law,
the dynamic model (2.60) is used.

42



3.2. Rotational Controllers

Let a reference trajectory be defined through qn,r,ω
r
n,r, ω̇

r
n,r with the kinematics

as

q̇n,r =
1

2
qn,r ⊗

[
0

ωr
n,r

]
, (3.19)

where ω̇r
n,r can be designed such that the reference trajectory tracks the desired

trajectory. The reference tracking error can be defined as qd,r = qd,n ⊗ qn,r with
a corresponding error function as

eqr± =

[
1∓ ηd,r
�d,r

]
(3.20)

and with the error kinematics as

ėqr± = Ter (eqr±)ω
r
d,r = Ter (eqr±)(ω

r
n,r −Rr

dω
d
n,d) (3.21)

Ter (eqr±) =
1

2

[ ±��d,r
ηd,rI+ S(�d,r)

]
. (3.22)

Assumption 3.6 sign(ηd,r(t)) = sign(ηd,r(t0)) ∀ t ≥ t0.

Assumption 3.7 sign(ηr,w(t)) = sign(ηr,w(t0)) ∀ t ≥ t0.

These assumptions allow the rotation sphere to be divided into two halves and
enable Lemma 3.4 to be applied.

Lemma 3.5 Let Assumption 3.6 hold and a continuous bounded vector be defined
as ξ1 = f1(ũ) with f1(0) = 0. Given qn,d ∈ S3 and ωd

n,d, ω̇
d
n,d ∈ L∞, then the dual

equilibrium points (eqr±, zr) = (0,0) using the reference

q̇n,r =
1

2
qn,r ⊗

[
0

ωr
n,r

]
(3.23)

ω̇r
n,r = Rr

dω̇
d
n,d − S(ωr

n,r)R
r
dω

d
n,d − k1

�̇d,r

2
−T�

er
eqr − k2zr + ξ1 (3.24)

zr = ωr
n,r −Rr

dω
d
n,d + k1T

�
er
eqr (3.25)

where k1 > 0, k2 > 0, are uniformly asymptotically stable when ξ1 = 0.

Proof. The proof is given in Appendix E.8.

Remark 3.4 As (eqr , zr) → (0,0) if follows from (3.25) that ωr
n,r → Rr

dω
d
n,d

ensuring that the reference tracks the desired angular velocity.

Remark 3.5 The vector ξ1 = f1(ũ) becomes non-zero when the actuators are in
saturation. This will result in a divergence of the reference trajectory away from
the desired trajectory to accommodate for the actuator saturation. Using Assump-
tion 3.2 it follows that ũ → 0 in finite time, such that the reference trajectory will
converge to the desired trajectory again. Hence, the vector ξ1 can be used to move
the saturation problem from the plant to the reference.
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3. Controller Design

Remark 3.6 Since the reference trajectory can be designed with infinite actuation
(i.e. no bound on ω̇r

n,r), it is also possible to show that the origin is uniformly
practically exponentially stable (cf. Grøtli (2010)). The gains can be increased
to infinity, making the errors go to a small ball around the origin that can be
made arbitrarily small (cf. Chaillet (2006)). Due to the physical constraints of
the control surfaces, practical stability cannot be applied to prove stability of the
resulting equilibria for the rotational control laws; since by increasing the gains
toward infinity makes the actuators go into saturation.

Assumption 3.1 can now be relaxed. Let the reference trajectory be defined by
(3.19) and (3.24) such that the attitude tracking error can be redefined as

qr,w := qr,n ⊗ qn,b ⊗ qb,w (3.26)

with the error function as eq± :=
[
1∓ ηr,w ��r,w

]�
which has the error kinematics

as

ėq± = Te(eq±)R
w
b ω

b
r,w (3.27)

ωb
r,w = ωb

n,b −Rb
rω

r
n,r +Rb

wω
w
b,w. (3.28)

Note that the desired angular velocity, ωd
n,d, is subsumed2 by the reference ωr

n,r, a
property that is exploited in Chapter 5. Differentiating (3.28) and inserting (2.60)
and (3.24) the error dynamics become

Jω̇b
r,w =− S(ωb

n,b)Jω
b
n,b +Φ2θ̂2 + Ĝ(x)u+ Ĝ(x)ũ −Φ2θ̃2 −Φ3θ̃3

+ JS(ωb
n,b)R

b
rω

r
n,r − JRb

r(R
r
dω̇

d
n,d − S(ωr

n,r)R
r
dω

d
n,d

− k1
�̇d,r

2
−T�

er
eqr − k2zr + ξ1) + JRb

wω̇
w
b,w. (3.29)

The function ξ1 can now be used to remove the saturation problem during the
derivation of the controller, an adaptive update law can be designed to deal with
the unknown coefficients and a control law can be designed to make the tracking
errors go to zero. This is formalized through the following theorem:

Theorem 3.4 Let Assumptions 2.2, 3.2, 3.3, 3.4 and 3.7 hold. Given qn,d,ω
d
n,d,

ω̇d
n,d ∈ L∞, then the dual equilibrium points (eq±, z, θ̃2, θ̃3) = (0,0,0,0) of the

dynamics (2.25) and (2.60) in closed loop with the controller, bounded function and

2Oxford Dictionaries define "subsume" as: "include or absorb (something) into something
else". The point here is that the desired angular velocity has become a part of the reference
angular velocity, and is thereby subsumed by the reference.
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3.2. Rotational Controllers

update laws

u = Ĝ−1(x)(S(ωb
n,b)Jω

b
n,b −Φ2θ̂2 + J(−S(ωb

n,b)R
b
rω

r
n,r

+Rb
r(R

r
dω̇

d
n,d − S(ωr

n,r)R
r
dω

d
n,d − k1

�̇d,r

2
−T�

er
eqr − k2zr)

− k3R
b
wS(ω

w
b,w)T

�
e eq −

k3
2
Rb

w�̇r,w −Rb
wT

�
e eq −Rb

wω̇
w
b,w − k4z)) (3.30)

ξ1 = Rr
bJ

−1Ĝ(x)ũ (3.31)

ũ = σ(u)− u (3.32)
˙̂
θ2 = Γ2Φ

�
2 J

−1z (3.33)
˙̂
θ3 = proj(Γ3Φ

�
3 J

−1z) (3.34)

z = ωb
r,w + k3R

b
wT

�
e eq (3.35)

zr = ωr
n,r −Rr

dω
d
n,d + k1T

�
er
eqr (3.36)

with k1 > 0, k2 > 0, k3 > 0, k4 > 0, Γ3 = Γ�
3 > 0 and Γ2 = Γ�

2 > 0, are uniformly
asymptotically stable even in the presence of unknown aerodynamics and actuator
constraints.

Proof. The proof is given in Appendix E.9.
The modeling uncertainty is handled through the adaptive update laws (3.33)-

(3.34) and the saturation problem is moved to the reference trajectory through
(3.31). Note that the saturation problem is not solved, but it has been moved
to the reference trajectory such that stability of the origin is not affected by the
saturation nonlinearity.

Remark 3.7 When the actuators have desaturated, it follows from Lemma 3.5 that
(eqr , zr) → (0,0) such that qn,r → qn,d and ωr

n,r → Rr
dω

d
n,d. As (eq, z) → (0,0) it

follows using Lemma 3.5 and (3.35) that ωb
r,w → ωb

d,w → 0 and thereby completing
the control objective.

Remark 3.8 The projection operator is used in (3.34) to ensure that the estimated
control effectiveness matrix never becomes singular by constraining the estimated
coefficients to a convex set which is possible using Assumption 3.3 (cf. Krstić et al.
(1995)).

Remark 3.9 The good property of the damping matrix D(x) is not exploited in
this control law, since its coefficients are allowed to change sign, which can have a
destabilizing effect.

Remark 3.10 When Assumption 3.4 does not hold, it follows from the stability
proof that θ̃2 and θ̃3 are uniformly bounded, and by applying Barbalat’s Lemma (cf.
Slotine and Li (1991)) it can be shown that (eq±, z) → (0,0) as t → ∞.

The vital parameter during this derivation is the vector ξ1 which must be
bounded and go to zero in finite time. In the proceeding lemmas, the bound-
edness of the control law will be studied. With the control law bounded, and the
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3. Controller Design

fact that the actuators will desaturate in finite time, it can be shown that ξ1 is a
bounded vector that will go to zero in finite time.

Lemma 3.6 The control law (3.30) is bounded.

Proof. The proof is given in Appendix E.10.

Lemma 3.7 The function (3.31) is bounded.

Proof. The proof is given in Appendix E.11.

To summarize, the control law (3.30) makes the dual equilibrium point (eq±, z, θ̃2, θ̃3) =
(0,0,0,0) uniformly asymptotically stable even in the presence of actuator con-
straints and unknown aerodynamics. The function ξ1 is a bounded function and
will go to zero in finite time. Since it is only natural to track feasible trajectories,
it is reasonable to assume that the uav will eventually make the tracking error
small enough such that the deflection angles will desaturate, making ξ1 → 0. The
reference trajectory tracks the desired trajectory asymptotically, and as the actua-
tors have desaturated, the reference will track the desired trajectory exponentially.
When all errors have gone to zero, the control objective of making qn,w → qn,d and
ωb

d,w → 0 is completed.

3.3 Translational Controllers

The objective of the translational control laws is to make the uav track a desired
speed profile. In this section three different speed controllers are derived. First
a proportional controller, then a proportional-integral controller based on back-
stepping and finally an adaptive speed controller that accounts for the unknown
aerodynamics and actuator saturation.

3.3.1 Proportional Airspeed Controller

By differentiating Va = ||vb
r ||, the acceleration is found as shown in (2.22). This

expression enables a relatively simple proportional speed controller to be derived
as shown in the following theorem:

Theorem 3.5 Let Assumptions 2.2, 3.1 and 3.2 hold. Given a desired trajectory
defined by Vd, V̇d ∈ L∞, then the origin Ṽ = 0 of the dynamics (2.22) in closed loop
with the controller

T =
mVa

u

(
V̇d − κp(Va − Vd)− (vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

))
, (3.37)

where κp > 0, is uniformly exponentially stable.

Proof. The proof is given in Appendix E.12.
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3.3.2 Proportional-Integral Airspeed Controller

The proportional speed controller can be augmented with integral control using
backstepping as shown in the following theorem:

Theorem 3.6 Let Assumptions 2.2, 3.1 and 3.2 hold. Given a desired trajectory
defined by Vd, V̇d ∈ L∞ with the tracking errors x1 =

∫ t

0
Ṽ (τ))dτ , x2 = Ṽ (t) and

z = x2 + κ1x1 with κ1 > 0 and the dynamics (2.22) in closed loop with the speed
controller

T =
mVa

u

(
V̇d − κp(Va − Vd)− κi

∫ t

0

(Va − Vd(τ))dτ

− (vb
r)

�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

))
(3.38)

where κp > 0 and κi > 0, then the origin (x1, z) = (0, 0) is uniformly exponentially
stable.

Proof. The proof is given in Appendix E.13.

Remark 3.11 As x1, z → 0 it follows that x2 → 0 and thereby completing the
control objective of making Ṽ → 0.

Remark 3.12 Using integral action with constrained actuation can make the sys-
tem unstable (cf. Åström and Rundqwist (1989)), but can however easily be handled
by using conditional integration (cf. Visioli (2003)); i.e. the integrator is switched
off whenever the thrust is in saturation.

Remark 3.13 The main reason for introducing integral control is to make the
closed loop system robust with regards to uncertainties. It should be noted that the
rotational control laws also can be augmented with integral control following the
same lines as in Kristiansen et al. (2008b).

3.3.3 Adaptive Proportional Airspeed Controller with

Constrained Thrust

Using the same procedure as for the adaptive backstepping controller in Section 3.2.4,
it is possible to design an adaptive speed controller that accounts for the thrust con-
straint and unknown aerodynamics. The speed dynamics (2.56) are therefore used
in this section. Let a reference airspeed be denoted Vr which shall be used to move
the saturation problem from the plant to the reference where V̇r is to be designed.
Let the desired speed profile be defined through Vd, V̇d and the tracking error as
Ṽr := Vr − Vd, then the reference acceleration can be designed as shown in the
following lemma:

Lemma 3.8 Let a continuous bounded function be defined as ξ2 = f2(T̃ ) with
f2(0) = 0. Given a desired speed profile defined by Vd, V̇d ∈ L∞, then the origin
Ṽr = 0 using the reference acceleration

V̇r = V̇d − κr(Vd − Vr) + ξ2 (3.39)

where κr > 0, is uniformly globally asymptotically stable when ξ2 = 0.
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by using conditional integration (cf. Visioli (2003)); i.e. the integrator is switched
off whenever the thrust is in saturation.

Remark 3.13 The main reason for introducing integral control is to make the
closed loop system robust with regards to uncertainties. It should be noted that the
rotational control laws also can be augmented with integral control following the
same lines as in Kristiansen et al. (2008b).

3.3.3 Adaptive Proportional Airspeed Controller with

Constrained Thrust

Using the same procedure as for the adaptive backstepping controller in Section 3.2.4,
it is possible to design an adaptive speed controller that accounts for the thrust con-
straint and unknown aerodynamics. The speed dynamics (2.56) are therefore used
in this section. Let a reference airspeed be denoted Vr which shall be used to move
the saturation problem from the plant to the reference where V̇r is to be designed.
Let the desired speed profile be defined through Vd, V̇d and the tracking error as
Ṽr := Vr − Vd, then the reference acceleration can be designed as shown in the
following lemma:

Lemma 3.8 Let a continuous bounded function be defined as ξ2 = f2(T̃ ) with
f2(0) = 0. Given a desired speed profile defined by Vd, V̇d ∈ L∞, then the origin
Ṽr = 0 using the reference acceleration

V̇r = V̇d − κr(Vd − Vr) + ξ2 (3.39)

where κr > 0, is uniformly globally asymptotically stable when ξ2 = 0.

47



3. Controller Design

Proof. The proof is given in Appendix E.14.

Instead of tracking the desired speed, the speed controller can track the refer-
ence speed which is found through integration of (3.39). This enables the reference
to take the actuator saturation into account, and move it out of the closed loop
system. The speed error can be redefined as Ṽ := Va − Vr which can be forced to
zero by using the adaptive speed controller presented in the following theorem:

Theorem 3.7 Let Assumptions 2.2, 3.2 and 3.4 hold. Given a desired speed profile
defined by Vd, V̇d ∈ L∞, then the origin (Ṽ, θ̃1) = (0,0) of the dynamics (2.56) in
closed loop with the controller and update law

T =
mVa

u
(V̇d − κrṼr − κpṼ − (vb

r)
�

Va

(
1

m
Rb

wΦ1θ̂1 +Rb
nf

n
g )) (3.40)

˙̂
θ1 =

Ṽ

mVa

Γ1Φ
�
1 R

w
b v

b
r (3.41)

ξ2 =
u

mVa

T̃ (3.42)

T̃ = σ(T )− T (3.43)

where κr > 0, κp > 0 and Γ1 = Γ�
1 > 0, is uniformly asymptotically stable even in

the presence of unknown aerodynamics and constrained actuation.

Proof. The proof is given in Appendix E.15.

Remark 3.14 When Assumption 3.4 does not hold, it follows from the stability
proof that θ̃1 is uniformly bounded, and by applying Barbalat’s Lemma (cf. Slotine
and Li (1991)) it can be shown that Ṽ → 0 as t → ∞.

To show that the reference airspeed will track the desired airspeed, ξ2 must be
shown to be a bounded function that converges to zero. This is shown through the
following lemmas:

Lemma 3.9 The control law (3.40) is bounded.

Proof. The proof is given in Appendix E.16.

Lemma 3.10 The function (3.42) is bounded.

Proof. The proof is given in Appendix E.17.

To summarize, the reference speed deviates from the desired speed whenever the
thrust is in saturation. Since the desired speed profile is designed such that it is
possible for the uav to track it with its inherent actuator limitations, it follows
that the thrust will desaturate in finite time. As the thrust desaturates, the func-
tion ξ2 goes to zero, making the reference converge to the desired trajectory. The
control law (3.40) makes the airspeed track the reference airspeed which eventu-
ally will converge to the desired airspeed. Hence, it follows that the tracking error
(Va − Vr) → (Va − Vd) → 0 which thereby completes the control objective.
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3.4 Simulations

To validate the different control solutions that have been presented in this chapter,
several simulations have been conducted. The uav model that is employed is the
yf-22 uav from Campa et al. (2007) where the stabilizer is treated as an elevator
and its aerodynamic model is reproduced in Appendix A. The uav has the thrust
constrained as 0 ≤ T ≤ 250 N and the deflection angles are bounded as −0.3491 ≤
δa, δe, δr ≤ 0.3491 radians.

3.4.1 Attitude Maneuver

Let the initial states be given as qn,b(0) =
[
0 0 0 1

]�
, ωb

n,b(0) =
[
0.1 −0.2 0

]�
rad/s, pn(0) =

[
0 0 −100

]�
m, vb(0) =

[
25 0 0

]�
m/s, wn =

[
10 0 0

]�
m/s. With the initial attitude the uav is pointing along the negative xn axis, such
that by defining qn,d =

[
1 0 0 0

]�
, the objective is to perform a rotation of

π radians such that the wind frame becomes aligned with the ned frame resulting
in leveled flight. The desired angular velocity and acceleration are set equal to
zero and the desired airspeed is set to Vd = 40 m/s. All gains are chosen through
empirical testing to obtain the desired performance.

Sliding Surface Control

Consider the case of using the sliding surface controller (3.15) in conjunction with
the proportional speed controller (3.37) where the gains are chosen as kq = 2,
ks = 2, Λ = I and κp = 2.

Figure 3.1 shows the attitude error, angular velocity error and the deflection
angles. The attitude error goes quickly to zero, and the same applies for the angular
velocity error. Note that the deflection angle of the rudder goes into saturation
as the uav performs a rotation of π radians. Also note that due to the control
effectiveness matrix, there is a strong coupling between the aileron and rudder,
such that both actuators can be used to produce yaw moments. This makes the
rudder and aileron work together in producing the required moments. As the
attitude and angular velocity tracking errors have converged to zero, the deflection
angles go to small values close to zero to compensate for the aerodynamic vector
f(x). The airspeed tracking error and thrust are shown in Figure 3.2. The airspeed
error converges exponentially to zero, and the thrust converges to a constant value
maintaining the desired airspeed. The position of the uav is shown in Figure 3.3.
Remember that the objective is simply to align the wind frame with the ned frame
such that the uav moves along the xn axis which is apparent from Figure 3.3.
Also note that the z component converges to a constant, such that the uav obtains
leveled flight.

To better visualize the results, let the orientation of the body relative to the
ned frame be defined through the roll (φ), pitch (θ) and yaw (ψ) angles. This is
visualized in Figure 3.4 where the initial yaw angle is π radians which converges
close to zero. In fact it is only the roll angle that goes to zero. When the roll angle
is zero, there exists a simple relation between the yaw angle and the course angle
as χ = ψ + β, and between the pitch angle and the flight path angle as γ = θ − α.
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Figure 3.4 shows that the pitch and yaw angles do not converge to zero, but to the
angle of attack and the negative sideslip angle. This is highlighted in the bottom
plot, where it is seen that the roll, flight path and course angles all converge to
zero. The plot in the middle shows the angle of attack and sideslip angle during the
maneuver, where it is seen that the sideslip angle is as large as about 0.42 radians
while the uav performs its attitude maneuver. Also note that the angle of attack
does not go to zero, but converges to about 0.0617 radians which produces enough
lift to compensate for the gravity. Conversely, with the angle of attack and sideslip
angle bounded and converging to small values, it follows through (2.14) and (2.15)
that the linear velocity components v, w remain bounded throughout the maneuver.

Backstepping Control

Consider the case of using the backstepping controller (3.12) in conjunction with the
proportional speed controller (3.37) with the gains kq = 2, kω = 2 and κp = 2. The
attitude and angular velocity tracking errors are shown in Figure 3.5 where all the
errors converge quickly to zero. There are some oscillations on the angular velocity
error which is due to the actuator saturation. If the actuators had infinite torque
available, the angular velocity error would have converged exponentially to zero
without oscillations. The same argument also applies for the other controllers. The
airspeed has a similar response as for the simulation of the sliding surface controller
and is therefore omitted for both the backstepping and the pd+ simulation.

PD+ Control

Consider the pd+ controller (3.14) in conjunction with the proportional speed con-
troller (3.37) with the gains kq = 25, kω = 25 and κp = 2. The attitude and angular
velocity tracking errors are shown in Figure 3.6 where all the errors go to zero. The
pd+ controller is in saturation only 10 s, and as such it results in less oscillatory
motion than that of the backstepping controller. On the other hand, it has a slower
convergence rate than the backstepping controller, something that can be remedied
by tuning the gains.

3.4.2 Adaptive Control with Actuator Constraints

Consider the case of using the adaptive backstepping controller (3.30) in con-
junction with the adaptive speed controller (3.40) with the gains gains as k1 =
k2 = k3 = k4 = 2, κr = 2, κp = 4. The aerodynamic coefficients have an
initial 50% mismatch relative their true values and the adaptive gain matrices
are chosen as Γ1 = Γ2 = Γ3 = 0.001I. Let the fixed-wing uav have the ini-
tial conditions: qn,b(0) =

[
0.5 0.5 0.5 0.5

]�
, ωb

n,b(0) =
[
0 0 0

]�
rad/s,

vb(0) =
[
30 0 0

]�
m/s, wn =

[
10 0 0

]�
m/s, pn(0) =

[
0 0 −100

]�
m,

with the desired airspeed Vd = 50 m/s, desired attitude qn,d(0) =
[
1 0 0 0

]�
and desired angular velocity ωd

n,d =
[
0 0 0.05

]�
rad/s. The desired angular

acceleration and desired linear acceleration are set equal to zero. Hence, the uav
will track a circular trajectory and move with a constant airspeed.
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Figure 3.1: Attitude error, angular velocity error and deflection angles using the
sliding surface controller.
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Figure 3.2: Airspeed tracking error and thrust using the proportional speed con-
troller.

Figure 3.7 shows the attitude errors, angular velocity errors and deflection an-
gles. The top plot shows the attitude error between the reference and the desired
trajectory and the second plot shows the angular velocity error between the refer-
ence and the desired trajectory. The third plot shows the attitude error between
the wind frame and the reference trajectory frame while the fourth plot shows the
angular velocity error between the wind and the reference trajectory frame. All
errors converge to zero. Even though the actuators move into saturation as shown
in the bottom plot, the system is able to adapt to the unknown aerodynamics and
make the tracking errors converge to zero.

Figure 3.8 shows the difference between the adaptive and a non-adaptive con-
troller in the presence of unknown aerodynamics. It becomes quite evident that
the non-adaptive case contains more oscillatory motion and therefore has a higher
energy requirement than that of the adaptive control law. Consequently, the fuel
expenditure would be increased using a non-adaptive speed controller. The speed
tracking errors go to zero using both controllers, and the thrust go into saturation
during the initial maneuver before converging to about 64 N to maintain the desired
airspeed.
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Ṽ
(m

/s
)

Figure 3.2: Airspeed tracking error and thrust using the proportional speed con-
troller.

Figure 3.7 shows the attitude errors, angular velocity errors and deflection an-
gles. The top plot shows the attitude error between the reference and the desired
trajectory and the second plot shows the angular velocity error between the refer-
ence and the desired trajectory. The third plot shows the attitude error between
the wind frame and the reference trajectory frame while the fourth plot shows the
angular velocity error between the wind and the reference trajectory frame. All
errors converge to zero. Even though the actuators move into saturation as shown
in the bottom plot, the system is able to adapt to the unknown aerodynamics and
make the tracking errors converge to zero.

Figure 3.8 shows the difference between the adaptive and a non-adaptive con-
troller in the presence of unknown aerodynamics. It becomes quite evident that
the non-adaptive case contains more oscillatory motion and therefore has a higher
energy requirement than that of the adaptive control law. Consequently, the fuel
expenditure would be increased using a non-adaptive speed controller. The speed
tracking errors go to zero using both controllers, and the thrust go into saturation
during the initial maneuver before converging to about 64 N to maintain the desired
airspeed.

52



3.4. Simulations

 

 

0

0 10 20 30 40 50
-200

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (s)

x
y
z

p
n

(m
)

Figure 3.3: Position of the uav. Since no guidance is applied, the uav will only
point its wind frame in the xn direction, which is evident from the simulation as
the position in the xn direction increases, while the other two go to constant values
indicating leveled flight.

3.4.3 Comparison of Rotational Controllers

To enable a comparison between the rotational controllers, consider the problem

of tracking a reference q̇n,d = 1
2qn,d ⊗

[
0

ωd
n,d

]
where qn,d(0) =

[
0 0 0 1

]�
,

ωd
n,d =

[
0 0 0.5

]�
and ω̇d

n,d = 0 using the proportional speed controller (3.37)
with κp = 2 and a desired airspeed of Vd = 50 m/s. The uav has the following

initial conditions: vb(0) =
[
25 0 0

]�
m/s, wn =

[
10 0 0

]�
m/s, qn,b(0) =[

1 0 0 0
]�

and ωb
n,b(0) =

[
0 0 1

]�
rad/s.

The response from the Lyapunov function V = 1
2e

�
q eq +

1
2 (ω

b
d,w)

�ωb
d,w will be

used to compared the different controllers. Even though some of the controllers
have been derived with a different Lyapunov function, the control objective is to
make (eq,ωb

d,w) → (0,0), and as such, this provides a good measure for comparison.
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Figure 3.4: Angular representation. The top plot shows the roll, pitch and yaw
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angle, while the bottom plot shows the roll, flight path and course angles.
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Figure 3.5: Attitude error, angular velocity error and deflection angles using the
backstepping controller.
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Figure 3.7: Attitude errors, angular velocity errors and deflection angles when using
the adaptive attitude controller.
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Figure 3.7: Attitude errors, angular velocity errors and deflection angles when using
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Figure 3.8: Adaptive vs. non-adaptive speed control.

Backstepping vs. Sliding Surface

Consider the backstepping controller (3.12) with the gains kq = 2 and kω = 2 and
the sliding surface controller (3.15) with the gains kq = 2, ks = 2 and λ = 2. The
top plot in Figure 3.9 shows that both controllers behave identically with the se-
lected gains, and the Lyapunov function goes to zero. The fact that they behave
identically is also supported by Remark 3.3. Since the two controllers behave iden-
tically with these gains, the rest of the comparisons will go in two directions. One
part will compare the backstepping controller with the adaptive backstepping con-
troller using a reference signal, while the other part will compare the pd+ controller
with the sliding surface controller.

Backstepping vs. Adaptive Backstepping using a Reference Signal

Consider the the backstepping controller (3.12) with the gains kq = 2 and kω = 2,
and the adaptive backstepping controller (3.30) using the reference signal (3.19)
and (3.24) with the gains k1 = k2 = k3 = k4 = 2. To enable a fair comparison, the
coefficients are assumed to be perfectly known such that the adaptive part of the
control law is not considered. This reduces the comparison to that of a backstepping
controller with and without a reference signal that makes the reference deviate from
the desired trajectory whenever the actuators are in saturation. As shown in the
middle plot in Figure 3.9, using the reference signal results in improved performance
compared to that of the standard backstepping controller. To better understand
this, the actuator signals are shown for both controllers in Figure 3.10, where it is
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Backstepping vs. Sliding Surface

Consider the backstepping controller (3.12) with the gains kq = 2 and kω = 2 and
the sliding surface controller (3.15) with the gains kq = 2, ks = 2 and λ = 2. The
top plot in Figure 3.9 shows that both controllers behave identically with the se-
lected gains, and the Lyapunov function goes to zero. The fact that they behave
identically is also supported by Remark 3.3. Since the two controllers behave iden-
tically with these gains, the rest of the comparisons will go in two directions. One
part will compare the backstepping controller with the adaptive backstepping con-
troller using a reference signal, while the other part will compare the pd+ controller
with the sliding surface controller.

Backstepping vs. Adaptive Backstepping using a Reference Signal

Consider the the backstepping controller (3.12) with the gains kq = 2 and kω = 2,
and the adaptive backstepping controller (3.30) using the reference signal (3.19)
and (3.24) with the gains k1 = k2 = k3 = k4 = 2. To enable a fair comparison, the
coefficients are assumed to be perfectly known such that the adaptive part of the
control law is not considered. This reduces the comparison to that of a backstepping
controller with and without a reference signal that makes the reference deviate from
the desired trajectory whenever the actuators are in saturation. As shown in the
middle plot in Figure 3.9, using the reference signal results in improved performance
compared to that of the standard backstepping controller. To better understand
this, the actuator signals are shown for both controllers in Figure 3.10, where it is
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Figure 3.9: Comparison between rotational controllers using the Lyapunov function
V = 1

2e
�
q eq + 1

2 (ω
b
d,w)

�ωb
d,w as a measure of performance. The top plot shows

the backstepping controller and the sliding surface controller with similar gains.
Both controllers obtain identical convergence to zero. The middle plot shows the
backstepping controller with and without a reference signal. By using the reference,
increased performance can be obtained. The bottom plot compares the sliding
surface controller to the PD+ controller, where the controllers obtain similar results
with the selected gains.

seen that the controller using the reference, employs more control action from the
elevator than the standard backstepping controller. The nonlinear function (3.31)
can in the case of rudder saturation be written as

ξ1 =
1

2
ρSV 2

a R
r
bJ

−1

⎡
⎣
bĈlδa

0 bĈlδr

0 c̄Ĉmδe
0

bĈnδa
0 bĈnδr

⎤
⎦
⎡
⎣

0
0

σ(δr)− δr

⎤
⎦ . (3.44)

From (3.44) it is evident that the control deficiency of the rudder becomes mapped
to the other axes through Ĝ(x) and Rr

b. This fact enables more control action to
be applied from the other actuators, and thus the errors convergence faster to zero
using the reference signal.

PD+ vs. Sliding Surface

Consider the gains for the pd+ controller as kq = 50 and kω = 25 and for the sliding
surface controller kq = 50, ks = 25 and λ = 1. The bottom plot in Figure 3.9
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Both controllers obtain identical convergence to zero. The middle plot shows the
backstepping controller with and without a reference signal. By using the reference,
increased performance can be obtained. The bottom plot compares the sliding
surface controller to the PD+ controller, where the controllers obtain similar results
with the selected gains.
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b. This fact enables more control action to
be applied from the other actuators, and thus the errors convergence faster to zero
using the reference signal.
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Consider the gains for the pd+ controller as kq = 50 and kω = 25 and for the sliding
surface controller kq = 50, ks = 25 and λ = 1. The bottom plot in Figure 3.9
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Figure 3.10: Actuator signals when using the backstepping controller with and
without a reference. In the top plot, no reference signal is used, and the rudder
remains in saturation for about 18 seconds. In the bottom plot, a reference signal
is used which moves parts of the control deficiency to the other actuators. Using
the reference signal, the rudder remains in saturation for only about 6 seconds.

shows the Lyapunov function for both controllers. With the selected gains, the
two controllers produce approximately similar responses, something that is due to
the saturation of the deflection angles. To visualize the difference between the two
controllers, the saturation is removed, and the λ gain is changed. In the top plot of
Figure 3.11 it is evident that when there is sufficient actuation available, a better
performance of the sliding surface controller can be obtained compared to that of
the pd+ controller. But, with actuator saturation as shown in the bottom plot of
Figure 3.11, the two controllers result in similar performance.

Conclusion

The main findings from this comparison is that in general, even though the control
laws have been derived using different techniques, the saturation nonlinearity makes
the trajectories almost identical. Some improved performance of one controller
relative to another can be obtained by fine-tuning the gains, but in general there
is little to gain. Noise has also been added to the signals without any comparable
differences between the trajectories. The use of a reference trajectory that deviates
from the desired trajectory whenever the actuators are in saturation, results in
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remains in saturation for about 18 seconds. In the bottom plot, a reference signal
is used which moves parts of the control deficiency to the other actuators. Using
the reference signal, the rudder remains in saturation for only about 6 seconds.

shows the Lyapunov function for both controllers. With the selected gains, the
two controllers produce approximately similar responses, something that is due to
the saturation of the deflection angles. To visualize the difference between the two
controllers, the saturation is removed, and the λ gain is changed. In the top plot of
Figure 3.11 it is evident that when there is sufficient actuation available, a better
performance of the sliding surface controller can be obtained compared to that of
the pd+ controller. But, with actuator saturation as shown in the bottom plot of
Figure 3.11, the two controllers result in similar performance.

Conclusion

The main findings from this comparison is that in general, even though the control
laws have been derived using different techniques, the saturation nonlinearity makes
the trajectories almost identical. Some improved performance of one controller
relative to another can be obtained by fine-tuning the gains, but in general there
is little to gain. Noise has also been added to the signals without any comparable
differences between the trajectories. The use of a reference trajectory that deviates
from the desired trajectory whenever the actuators are in saturation, results in
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Figure 3.11: Comparison between the sliding surface controller and the pd+ con-
troller. In the top plot, the actuator saturation is removed, which shows that by
changing the gain λ, faster convergence of the errors to zero can be obtained. In
the bottom plot, actuator saturation is included, where it is evident that even by
changing the gain λ the two controllers obtain similar results.

improved performance compared to using standard methods.

3.4.4 Comparison of Speed Controllers

Consider a case of comparing the proportional speed controller (3.37) with the
proportional-integrator controller (3.38). Let the fixed-wing uav have the ini-
tial conditions: qn,b(0) =

[
1 0 0 0

]�
, ωb

n,b(0) =
[
0 0 0

]�
rad/s, vb(0) =[

25 0 0
]�

m/s, wn =
[
10 0 0

]�
m/s, pn(0) =

[
0 0 −100

]�
m, with the

desired airspeed Vd = 40 m/s, desired attitude qn,d(0) =
[
1 0 0 0

]�
and de-

sired angular velocity ωd
n,d =

[
0 0 0.01

]�
rad/s. The desired angular accel-

eration and desired linear acceleration are set equal to zero. The sliding surface
controller is used for rotational control with the gains kq = 2, ks = 2, Λ = I, while
the speed controllers have the gains κ1 = 2, κ2 = 2, such that κp = 4 and κi = 5
(cf. Appendix E.13). Hence, the uav will track a circular trajectory and move with
a constant airspeed.

A simulation has been performed where the aerodynamics are perfectly mod-
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Figure 3.12: p vs. pi controller with perfect modeling.

eled and is shown in Figure 3.12. Both controllers quickly make the speed tracking
error converge to zero, but the speed controller with the integral term has a slight
overshoot of about 0.4 m/s during the initial convergence, which is typical for pi
controllers. The thrust for both controllers are almost the same and converge to a
constant value as the tracking error has converged to zero. The main reason for in-
troducing an integral term to the airspeed controller, is to increase its robustness to
uncertainties and poor modeling. Figure 3.13 shows the results of a simulation that
was performed where the drag is chosen as 50% of its true value. This introduces
an off-set that is apparent in Figure 3.13 where the proportional controller does not
make the tracking error converge to zero, but to −0.3237 m/s. The pi controller
makes the tracking error converge to zero, even though there is an error in the drag
term. From both simulations it is apparent that the thrust reaches its bound of
250 N, while the airspeed converges to zero. As pointed out in Remark 3.12, condi-
tional integration must be used to avoid large overshoots due to the saturation of
the thrust. This has been implemented for the pi controller, but to show the im-
pact of integration when the actuators saturate, an additional simulation has been
performed with results as shown in Figure 3.14. Without conditional integration,
the pi controller makes the speed error diverge by about 15 m/s before converging
again, while the pi controller with condition integration only has a small overshoot
of about 0.5 m/s.
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Figure 3.12: p vs. pi controller with perfect modeling.

eled and is shown in Figure 3.12. Both controllers quickly make the speed tracking
error converge to zero, but the speed controller with the integral term has a slight
overshoot of about 0.4 m/s during the initial convergence, which is typical for pi
controllers. The thrust for both controllers are almost the same and converge to a
constant value as the tracking error has converged to zero. The main reason for in-
troducing an integral term to the airspeed controller, is to increase its robustness to
uncertainties and poor modeling. Figure 3.13 shows the results of a simulation that
was performed where the drag is chosen as 50% of its true value. This introduces
an off-set that is apparent in Figure 3.13 where the proportional controller does not
make the tracking error converge to zero, but to −0.3237 m/s. The pi controller
makes the tracking error converge to zero, even though there is an error in the drag
term. From both simulations it is apparent that the thrust reaches its bound of
250 N, while the airspeed converges to zero. As pointed out in Remark 3.12, condi-
tional integration must be used to avoid large overshoots due to the saturation of
the thrust. This has been implemented for the pi controller, but to show the im-
pact of integration when the actuators saturate, an additional simulation has been
performed with results as shown in Figure 3.14. Without conditional integration,
the pi controller makes the speed error diverge by about 15 m/s before converging
again, while the pi controller with condition integration only has a small overshoot
of about 0.5 m/s.
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3.5 Actuator Desaturation using Speed Modification

In this section, it is established that the airspeed of an aircraft directly affects the
deflection angles which are used for rotational control. Hence, by increasing the
airspeed, smaller deflection angles are required to produce a given aerodynamic
moment. A reference airspeed is therefore designed, which makes the aircraft in-
crease its speed whenever the deflection angles are getting close to saturation, which
directly can be used to avoid saturation of the actuators. Rate saturation is not
considered.

Stall speed, Vs, is the minimum speed required for steady leveled flight. If the
airspeed drops below the stall speed, it results in a loss of control of the aircraft.
As the aircraft performs a banking maneuver, the stall speed increases, meaning
that a higher airspeed is required to maintain leveled flight. When the aircraft
performs a banking maneuver, the airspeed must be larger than 1√

cos(μ)
Vs where

μ is the bank angle to maintain leveled flight (cf. Phillips (2010)). For example
if the aircraft performs a banking maneuver with a bank angle of 60◦, the stall
speed is increased by 41.4% and is illustrated in Figure 3.15. Hence, it is of utmost
importance to keep this in mind when designing control laws for aircraft. From
a control perspective, the rotational control laws are designed to point the wind
frame in a desired direction, while the speed controller is designed to track a desired
speed profile. For waypoint tracking, the airspeed is typically set to a constant value
above the stall speed. Instead of choosing the airspeed as a constant value, it can
be used as an additional degree of freedom, whose purpose is to avoid saturation
of the deflection angles. It is quite intuitive, that at larger airspeeds, a smaller
deflection is required to produce aerodynamic moments, than at low airspeeds.
Hence, whenever the deflection angles reach a threshold, a reference airspeed can
be increased to ensure that the deflection angles remain within their bounds.

3.5.1 Speed Modification

Consider the sliding surface attitude controller (3.15) which can be written as

u =G−1(x)(Jω̇b
n,r +D(x)ωb

n,r + S(ωb
n,b)Jω

b
n,b − f(x) − kss

− kqR
b
wT

�
e eq) (3.45)

where

G−1(x) =
2

ρSV 2
a

⎡
⎣
bClδa

0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr

⎤
⎦
−1

. (3.46)

Note that the inverse control effectiveness matrix contains the square of the airspeed
in the denominator. By increasing the airspeed, the magnitude of the control signal
is reduced3 which can be used to regain control of an aircraft after the deflection
angles have gone into saturation. Let Va → ∞, then any of the control signals

3The right hand side of (3.45)
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(3.12), (3.14) or (3.15) can be written as

u =−G−1(x)f(x) (3.47)

since the term 1
V 2
a

will dominate every term except f(x)4. Note that

D(x) = −1

2
ρSV 2

a

⎡
⎢⎣

b2

2Va
Clp 0 b2

2Va
Clr

0 c̄2

2Va
Cmq

0
b2

2Va
Cnp

0 b2

2Va
Cnr

⎤
⎥⎦ (3.48)

where V 2
a is canceled, but due to the airspeed in the denominator inside the matrix,

it will make this matrix also go to zero. The aerodynamic vector f(x) is defined as
(cf. equation (2.29))

f(x) =
1

2
ρSV 2

a

⎡
⎣

b(Cl0 + Clββ)
c̄(Cm0

+ Cmα
α)

b(Cn0
+ Cnβ

β)

⎤
⎦ (3.49)

which is a function of the angle of attack and the sideslip angle. As Va → ∞ it
follows from (2.15) that β → 0. Similarly, by assuming that u >> w it follows that

4In the case of the sliding surface controller with sufficiently high airspeed, the terms
G−1(x)(Jω̇b

n,r +D(x)ωb
n,r + S(ωb

n,b
)Jωb

n,b
− kss− kqR

b
wT�

e eq) can be approximated to zero.
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α → 0 using (2.14). Hence, by making the airspeed go to infinity, the control signal
reduces to

u =−
⎡
⎣
bClδa

0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr

⎤
⎦
−1 ⎡

⎣
bCl0

c̄Cm0

bCn0

⎤
⎦ (3.50)

which is within the actuator bounds. This means that actuator saturation is not
necessarily due to a poorly designed attitude control law, but it can be that the
aircraft is moving too slow, a notion that corresponds well with the definition of
the stall speed.

This analysis can serve as a basis when designing the reference airspeed that
the speed controller should track. Intuitively, the airspeed should be increased
whenever the deflection angles are in saturation, or are above a chosen threshold.
Let a saturation function be defined as

σmod(u) :=
�
σmod(δa) σmod(δe) σmod(δr)

��
(3.51)

where

σmod(δ) :=

⎧
⎪⎨
⎪⎩

δmod if δ ≥ δmod

δ if − δmod < δ < δmod

−δmod if δ ≤ −δmod

(3.52)

where δ represents any of the three deflection angles. The modified limit δmod ∈�
0, δmax

�
is used to define the threshold when the speed modification is active where

δmax is the physical actuator constraint. Let a dead-zone nonlinearity be defined
as

ũmod :=
�
u1 u2 u3

��
= u− σmod(u), (3.53)

which is zero while −δmod ≤ δa, δe, δr ≤ δmod, and non-zero otherwise. A reference
airspeed that can be used to avoid actuator saturation can now be designed as
shown in the following theorem:

Theorem 3.8 Let Assumptions 2.2, 3.1, 3.2 and 3.5 hold, and let the speed error
be defined as Ṽ = Va − Vr. Given the dynamics (2.25) and (2.32) in closed loop
with the sliding surface controller (3.15) and the airspeed controller (3.37) together
with the reference airspeed

V̇r = V̇d − κr(Vr − Vd) + κuumax (3.54)

umax = max{|u1|, |u2|, |u3|} (3.55)

where κr > 0, κu > 0 are gains, then the dual equilibrium points (eq±, s, Ṽ ) =
(0,0, 0) are uniformly exponentially stable. Furthermore, the reference airspeed
asymptotically tracks the desired airspeed and the deflection angles will desaturate
in finite time.

Proof. The proof is given in Appendix E.18.
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3.5. Actuator Desaturation using Speed Modification

Corollary 3.2 Theorem 3.8 also holds for the backstepping controller (3.12) and
the pd+ controller (3.14).

Assumption 3.8 Let the thrust be unconstrained.

Corollary 3.3 Let Assumption 3.8 hold. Using Theorem 3.8, then the maximum
deflection angle is defined through δmod and saturation is avoided.

Remark 3.15 Since the main objective of a speed controller is to track a desired
speed profile, which often is chosen as a constant, it can be used as an additional
degree of freedom by applying Theorem 3.8. In essence, the saturation problem
is moved from the rotational to the translational dynamics, where it is important
that the aircraft has enough thrust available to compensate for the deflection angle
saturation through speed modification.

3.5.2 Simulation

Consider the case of tracking a series of waypoints using the speed controller (3.37)
with the reference airspeed (3.54) together with a sliding surface controller (3.15)
with the gains as κu = 105, κr = 2, κp = 2, kq = 2, ks = 2 and Λ = 0.5I.

Let the fixed-wing uav have the initial conditions: qn,b(0) =
[
1 0 0 0

]�
,

ωb
n,b(0) =

[
0 0 0

]�
rad/s, vb(0) =

[
30 0 0

]�
m/s, wn =

[
10 0 0

]�
m/s,

pn(0) =
[
0 0 0

]�
m, with the desired airspeed Vd = 40 m/s. The deflection

angles are bounded as −0.3491 ≤ δa, δe, δr ≤ 0.3491 radians while the modified
limit is defined as δmod = 0.5δmax. The objective is to track a series of waypoints
while keeping the deflection angles within their actuation zone. The first and sec-
ond waypoints are chosen respectively as pn

wp,1 =
[
2000 1000 −1000

]�
m and

pn
wp,2 =

[−2000 4000 −1000
]�

m. The waypoint guidance law is presented in
Chapter 4, but is used in this simulation to produce jumps in the tracking error
such that the deflection angles go into saturation unless the problem is addressed
through speed modification.

Assume that the thrust is unconstrained. This crude assumption enables the
maximum deflection angles to be directly defined through δmod and saturation will
be avoided. By including a thrust constraint, the deflection angles may go into
saturation and will require some time before they desaturate. In Figure 3.16 the
attitude and angular velocity errors are shown which both go to zero. Note that
there are spikes in the tracking error at about 52 s, which is due to the switching
to the next waypoint. In the bottom plot, the deflection angles are shown, which
keep within the bounds defined through δmod, and saturation of the actuators have
therefore been avoided. Normally the actuators would have gone into saturation
during the switching, but due to the reference airspeed the saturation has been
avoided. In the top plot of Figure 3.17 the position tracking error is shown, which
go toward zero, and switches at about 52 s. In the middle plot, the airspeed error
is shown. Note that this is the error between the reference and the actual airspeed.
Observe that the airspeed error increases to about 70 m/s during the switching to
the next waypoint which is due to the increase in the reference airspeed as shown
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in Figure 3.18. This ensures that the deflection angles of the actuators remain
below δmod. The thrust, since it has no upper bound, goes as high as 1180 N. This
makes the speed modification happen almost instantly, and thereby ensuring that
the deflection angles do not go into saturation. In Figure 3.18 the reference airspeed
is shown, which goes as high as about 135 m/s before converging to the constant
desired airspeed of 40 m/s. Hence, the reference airspeed is only active when the
deflection angles are exceeding a predefined limit, and can therefore be used as a
tool to keep them within a desired bound.

Consider the case when the thrust is bounded by 250 N, which is a more realistic
scenario. From simulations with leveled flight using the model by Campa et al.
(2007), the maximum airspeed that can be obtained is 140.8 m/s. Considering
Figure 3.18, the reference speed is below this value, such that it is reasonable to
assume that in finite time, even with constrained actuation, the deflection angles
will desaturate.

3.6 Summary

In this chapter several control laws have been derived for both rotational and trans-
lational control. These control laws enable the uav to track a desired attitude and
angular velocity that are defined relative to the North East Down frame and track
a desired speed profile. Problems such as unknown aerodynamics and actuator con-
straints have been addressed through the use of a reference trajectory. The control
laws that have been presented in this chapter enable the uav to point the airspeed
in a desired direction. The desired airspeed, attitude, angular velocity and accel-
eration can be defined through a guidance law to complete any mission objective,
which will be done in the next chapter.
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Figure 3.16: Attitude error, angular velocity error and deflection angles.
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Chapter 4

Guidance

Guidance is defined as the
process for guiding the path of an
object towards a given point,
which in general may be moving.

N. A. Shneydor, 1998

This chapter is based on Oland and Kristiansen (2013a), Oland et al. (2013a)
and Oland and Kristiansen (2014c) and presents different solutions for obtaining
the desired states that serve as inputs to the control solutions from Chapter 3. The
objective of guidance is to guide the uav to a desired point which in general can be
moving. This can be considered as two different problems, waypoint tracking and
trajectory tracking. Waypoint tracking enables constant coordinates to be defined
in Euclidean space that the uav must track. As the uav comes within a sphere of
acceptance (i.e. sufficiently close to the waypoint), the waypoint algorithm switches
to the next waypoint. Trajectory tracking on the other hand, can be considered
as the problem of tracking a point that is moving as a function of time, meaning
that the point is at a given position at a given time. The time dependence can be
removed by introducing a path variable, which results in path following. This gives
an addition degree of freedom which can be used to reduce the complexity of the
control problem (cf. Aguiar et al. (2008)). In order to perform formation flight, the
uavs must be at a given position at a given time, such that this thesis focuses on
waypoint tracking, trajectory tracking and formation flight, where formation flight
in many ways can be seen as an application of trajectory tracking1.

A fixed-wing uav has only actuation along the x axis of the body frame, while
the y and z axes are unactuated. This means that for example to reach a waypoint
that is initially to the side of the uav, the uav must move in a circular trajectory
to reach the desired waypoint. Using guidance, the position errors along the y
and z axes are mapped to a desired orientation that makes these errors go to zero.

1This thesis only consider the ideal case where every uav has perfect knowledge of the other
uavs, such that formation flight can be facilitated by tracking trajectories relative to a virtual
leader. By incorporating time lags and uncertainties the problem of formation flight becomes
much more challenging.
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4. Guidance

Consider for example control of ships as shown in Fossen et al. (2003). To make
the position error in the y direction go to zero, a desired yaw angle can be chosen
as ψd = atan2(yd − y, xd − x) where xd and yd represent the desired position and
atan2 ensures that ψd ∈ (−π, π). This means that guidance of an underactuated
rigid body can be defined as a mapping from the unactuated states to the actuated
states (in this case the error along the y axis is mapped to a desired yaw angle
which can be tracked using the rudder).

This chapter shows how to map position and velocity errors from R
3 to R

1×S3

resulting in desired states that can be tracked using the proposed controllers in
Chapter 3. Firstly, waypoint tracking is considered where a desired orientation and
angular velocity is designed such that the position error goes to zero. Secondly,
trajectory tracking is considered, where the desired position is allowed to move as a
function of time, which then can be tracked using a combination of a virtual trans-
lational controller and a mapping of the control signal to the controllable states.
Thirdly, the desired trajectory can be shifted relative to a virtual leader, enabling a
group of followers to perform formation flight using the proposed trajectory tracking
method.

4.1 Waypoint Tracking

A desired trajectory for a uav is commonly expressed as a set of waypoints, which
the uav shall track as accurately as possible. The simplicity of defining the tra-
jectory through several points has made the use of waypoints very popular as it is
adaptable for many missions and the operator requires little knowledge about the
control system in order to complete the mission objective. This has made waypoint
tracking popular for commercial flight such as over the North Atlantic, where the
trajectory is defined by a set of waypoints such that the head winds are minimized
and thereby reducing the propellant consumption. From a control perspective, way-
point tracking has received a lot of attention and different solutions are presented
in works such as Aguiar and Pascoal (2002), Osborne and Rysdyk (2005), Børhaug
and Pettersen (2005a), Fossen et al. (2003) and references therein. In Roberts and
Tayebi (2009), the authors presented a method for controlling an underactuated
vertical take-off and landing (vtol) uav which has its thrust aligned with the
zb axis and full rotational control. By first assuming that the vtol-uav has full
translational control and then map the resulting control signal to a desired thrust
and a desired attitude, it enables the vtol-uav to perform position tracking. More
precisely, consider the acceleration of an underactuated vtol-uav in the ned frame

p̈n =
1

m
Rn

b

⎡
⎣

0
0
−T

⎤
⎦+

⎡
⎣
0
0
g

⎤
⎦ :=

1

m
Rn

b f
b
t + fng (4.1)

where the thrust is constrained along the zb axis. Their approach is to first consider
a fully-actuated control signal fnd which can be designed using known methods.
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4.1. Waypoint Tracking
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Figure 4.1: Position vectors in the xy-plane.

Then, by comparing the control signal to the actuator constraint as
⎡
⎣

0
0

−Td

⎤
⎦ = Rd

nf
n
d (4.2)

where Td = ||fnd || and the rotation matrix Rd
n can be constructed using quaternions,

it enables control of an underactuated vtol-uav by tracking the desired thrust,
quaternion, angular velocity and acceleration. This approach is valid as long as
Td �= 0, which is true most of the time due to the gravity vector. The desired
angular velocity and acceleration can be found from the derivatives of the control
law or using observers. For fixed-wing uavs, this approach is not directly applicable
since the aerodynamic force vector contains the deflection angles, and the thrust is
aligned along the xb axis. Instead of starting at the acceleration level as in Roberts
and Tayebi (2009), it is possible to start at the position level, which can be used to
facilitate waypoint tracking.

A waypoint can be defined as pn
wp ∈ R

3 while the controllers from Chapter 3
control of the attitude, angular velocity and acceleration together with the airspeed
and acceleration. A mapping is therefore required to map the tracking error from
R

3 to R
1 × S3 such that the uav receives the correct inputs to track the desired

waypoint. With basis in Figure 4.1 let a position error frame, denoted by superscript
e, be defined through the relation

ee :=

⎡
⎣
||en||
0
0

⎤
⎦ = Re

ne
n = Re

n(p
n
wp − pn) (4.3)

where the objective is to make ee → 0. To facilitate waypoint tracking, consider
the following assumption and property:

Assumption 4.1 wn = 0.

Property 4.1 The waypoint algorithm switches to the next waypoint whenever
Δ ≥ ||en|| ≥ δ > 0.
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4. Guidance

Assumption 4.1 simplifies the waypoint problem and will later be removed by a
correction angle, while Property 4.1 is required to avoid the singularity which exists
when en = 0. Since the origin en = 0 is singular when determining the angular
velocity, the control objective must be redefined. For waypoint tracking, it is typical
to move close to the origin, and then switch to the next waypoint. Through the
following lemma, a set containing the points in a shell around the origin is defined.
Thus, by moving to the set, and then switch to the next waypoint, it ensures that
the origin en = 0 is never reached, but that the uav moves sufficiently close to the
origin before switching.

Lemma 4.1 Let Assumptions 2.2 and 4.1, Property 4.1, ||en(t0)|| > δ > 0 hold,
and let a set be defined as H(δ,Δ) := {x ∈ R

3|δ ≤ ||en|| ≤ Δ} where δ > 0
represents an inner radius and Δ > δ > 0 represents an outer radius. Given the
position error as in (4.3) and by tracking the quaternion and angular velocity

qn,e =
[
cos

(
ϑn,e

2

)
k�
n,e sin

(
ϑn,e

2

)]�
(4.4)

ϑn,e = cos−1

(
ee · en
||en||2

)
kn,e =

ee × en

||ee × en|| (4.5)

ωe
n,e = S†(ee)Re

bv
b (4.6)

then the set H(δ,Δ) is uniformly asymptotically stable.

Proof. The proof is given in Appendix E.19.

Remark 4.1 The presented solution shares many similarities with the work by
Børhaug and Pettersen (2005a) where the authors consider adaptive waypoint track-
ing for underactuated autonomous underwater vehicles. However, in this solution a
quaternion based approach is applied, which has some interesting properties. Con-
sider the case when the angular velocity and acceleration are found using filters
(as in Børhaug and Pettersen (2005a)). Then; since the designed quaternions are
unitary, it follows that qn,e → [

1 0 0 0
]�

as ||en|| → 0, meaning that as long
as ||en(t0)|| > 0 the origin en = 0 can be shown to be uniformly asymptotically

stable. By using a desired yaw angle ψd = tan−1
(

y−yd

x−xd

)
and a desired pitch an-

gle as θd = tan−1

(
z−zd√

(x−xd)2+(y−yd)2

)
, then the origin en = 0 becomes unstable

(since the desired angles are not defined at the origin) and a similar approach as in
Lemma 4.1 or in Børhaug and Pettersen (2005a) should be used.

Remark 4.2 Using similar notation, the line of sight rate used for the proportional
navigation (pn) law can be defined as ( cf. Siouris (2003))

ωn
e,n =

S(en)ėn

||en||2 (4.7)

and using that ωn
e,n = −ωn

n,e and rotating to the position error frame, the line of
sight rate becomes

ωe
n,e =

S(ee)Re
bv

b

||en||2 = S†(ee)Re
bv

b, (4.8)
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4.1. Waypoint Tracking

which is identical to (4.6).

In the presence of wind and using Lemma 4.1, it is the airspeed that is aligned
with the position error frame, such that the wind will perturb the tracking error.
Since the objective is to track a desired position relative to the Earth, it is the
ground speed that must be aligned with the position error frame, which can be
done by adding a correction angle by studying the wind triangle (cf. Figure 2.2).
Assumption 4.1 can be removed by defining a wind correction angle, ϑe,d, as the
angle between vb and vb

r. Hence, by designing a quaternion as

qe,d =
[
cos

(
ϑe,d

2

)
k�
e,d sin

(
ϑe,d

2

)]�
(4.9)

ϑe,d = cos−1

(
vb · vb

r

||vb|| ||vb
r||

)
ke,d =

vb × vb
r

||vb × vb
r||

(4.10)

a rotation that compensates for the wind is obtained. Since the quaternion is de-
signed using velocity vectors, obtaining the angular velocity through differentiation
requires the acceleration, which is not available. Instead the angular velocity, ωd

e,d,
can be found using a linear filter with saturation (cf. Fossen (2011)) which ensures
that the angular velocity becomes bounded.

Remark 4.3 Wind compensation is usually done using a crab angle which assumes
leveled flight. Up- and downdrafts ( e.g. mircobursts) produce wind components in
the vertical plane which also affect the aircraft and are taken into account using the
proposed quaternion, qe,d.

Waypoint tracking with wind compensation can therefore be solved as the com-
posite quaternion with the corresponding angular velocity as

qn,d = qn,e ⊗ qe,d (4.11)

ωd
n,d = Rd

eω
e
n,e + ωd

e,d (4.12)

where ωd
e,d is found using filters.

Remark 4.4 The waypoint algorithm produces spikes in the desired quaternion and
angular velocity whenever it switches between waypoints which can make the actu-
ators go into saturation. This can be remedied by using linear filters to smoothen
the desired states (cf. Fossen (2011)).

Remark 4.5 The placement of waypoints is of critical importance, since by placing
two waypoints too close may result in a limit cycle. The placement problem of
waypoints is not considered in this thesis.

4.1.1 Simulation

To validate the proposed approach, the backstepping controller (3.12) is used in
conjunction with the proportional speed controller (3.37). The gains are chosen
as kq = 2, kz = 2, κp = 2 and the waypoints are defined in Table 4.1. The
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4. Guidance
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Figure 4.2: Waypoint tracking with wind compensation.

sphere of acceptance is defined by Δ = 50 m, which defines when the waypoint
algorithm shall switch to the next waypoint. Let the initial states be given as
qn,b(0) =

[
1 0 0 0

]�
, ωb

n,b(0) =
[
0 0 0

]�
rad/s, pn(0) =

[
0 0 −100

]�
m, vb(0) =

[
25 0 0

]�
m/s, wn =

[
0 10 0

]�
m/s and let the uav have a

desired airspeed of Vd = 50 m/s.

Wind Compensation

To validate the wind compensation, consider the problem of tracking a desired
waypoint located at pn

wp =
[
4000 0 −100

]�
while the wind is moving with a

velocity of wn =
[
0 10 0

]�
m/s. In Figure 4.2 the uav is able to track the desired

waypoint without problems using the wind compensation, while in Figure 4.3 the
guidance is not using any wind compensation and the uav starts to drift away
from the optimal trajectory. Hence, the wind compensation is required to keep the
trajectory between the waypoints as short as possible.

3D Waypoint Tracking

Consider the case of tracking multiple waypoints as shown in Table 4.1. The 3D
plot is shown in Figure 4.4 where the uav perfectly tracks the desired waypoints.
In Figure 4.5 the speed error, position error and thrust are shown. The speed error
goes to zero during the tracking. Note that it diverges from zero at about 338
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[
25 0 0

]�
m/s, wn =

[
0 10 0

]�
m/s and let the uav have a

desired airspeed of Vd = 50 m/s.

Wind Compensation

To validate the wind compensation, consider the problem of tracking a desired
waypoint located at pn

wp =
[
4000 0 −100

]�
while the wind is moving with a

velocity of wn =
[
0 10 0

]�
m/s. In Figure 4.2 the uav is able to track the desired

waypoint without problems using the wind compensation, while in Figure 4.3 the
guidance is not using any wind compensation and the uav starts to drift away
from the optimal trajectory. Hence, the wind compensation is required to keep the
trajectory between the waypoints as short as possible.

3D Waypoint Tracking

Consider the case of tracking multiple waypoints as shown in Table 4.1. The 3D
plot is shown in Figure 4.4 where the uav perfectly tracks the desired waypoints.
In Figure 4.5 the speed error, position error and thrust are shown. The speed error
goes to zero during the tracking. Note that it diverges from zero at about 338
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Figure 4.3: Waypoint tracking without wind compensation.

Table 4.1: List of waypoints

# pn
wp (m)

1
[
2000 1000 −1000

]�
2

[
2000 4000 −1000

]�
3

[
0 6000 −5000

]�
4

[
0 7000 −10000

]�
5

[
0 5000 −10000

]�
6

[−2000 6000 −5000
]�

7
[
0 0 −2000

]�

seconds, which is due to the fact that the uav is moving downwards to the next
waypoint. Since the thrust is bounded between zero and a positive value, it is not
able to break as it moves towards the next waypoint, and thereby it increases its
speed. As the uav regains leveled flight, the speed error goes to zero again. The
position error goes to zero between each waypoint, while the thrust remains within
its bounds. In Figure 4.6 the quaternion error, angular velocity error and deflection
angles are shown. All errors go to zero while the deflection angles go to constant
values as the errors go to zero. The quaternion error, angular velocity and deflection
angles for the whole simulation are shown in Figure 4.7 where all the errors go to
zero. The spikes are due to the switching between the waypoints.
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4.2 Trajectory Tracking

The basic idea from waypoint guidance can easily be extended to that of trajectory
tracking, where the errors can be mapped to desired states that can be tracked
by the given control laws. First, the translational system is assumed to be fully
actuated (similarly as proposed in Roberts and Tayebi (2009)), where a control
law can be designed using known methods, and then the output can be mapped to
controllable variables.

4.2.1 Trivial Solution

Consider the double integrator

ṗn = vn (4.13)

v̇n = un (4.14)

where pn is the position in the ned frame, vn is the velocity and un is a virtual
control signal that is to be designed. Let a desired trajectory be defined through
pn
d , ṗ

n
d , p̈

n
d ∈ L∞ and the tracking errors as e1 := pn −pn

d and e2 := vn − ṗn
d ; then
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the tracking error dynamics can be written as

ė1 = e2 (4.15)

ė2 = un − p̈n
d . (4.16)

It is now possible to use a wealth of different approaches to make the tracking error,
e1, e2 → 0 through un since it is assumed to be fully actuated. The important part
is to ensure that the resulting control law is bounded, such that it does not produce
commands that the attitude and speed controllers are not able to track. The virtual
control law can be summarized in the following theorem:

Theorem 4.1 Let a desired trajectory be defined through pn
d , ṗ

n
d , p̈

n
d ∈ L∞, then

the origin (e1, z) of the dynamics (4.13)-(4.14) in closed loop with the control law

un = p̈n
d − kpσ̇1(e1)e2 − kdσ2(z) (4.17)

z = e2 + kpσ1(e1) (4.18)

where kp > 0, kd > 0 and σ1(·), σ2(·) are saturation functions, is uniformly globally
asymptotically stable. Furthermore, as e1, z → 0 it follows from (4.18) that e2 → 0.

Proof. The proof is given in Appendix E.20.
Note that any saturated control law can be applied to solve the trajectory

tracking problem. There are several other control laws that can be applied, such as
those presented in Teel (1992), Sussmann et al. (1994), Tyan and Bernstein (1999),
Marconi and Isidori (2000), Rao (2001) and Tarbouriech et al. (2011). Especially
note that if the term kpσ̇1(e1)e2 is dominated through the Lyapunov analysis (which
is possible), the resulting control law is similar to the nested saturation controller
by Teel (1992).

4.2.2 Mapping from R
3 to R

1 × S3

A fixed-wing uav has full attitude control and only translational control in one
direction, such that the control problem of performing position tracking in R

3 must
be mapped to R

1×S3. Let the velocity vector vn be decomposed into two parts as

vn := vn
r +wn (4.19)

where vn
r is the velocity vector relative the surrounding air and wn is the wind

vector. The relative velocity vector can now be mapped to a desired frame through
the relation

vd
r =

⎡
⎣
||vn

r ||
0
0

⎤
⎦ = Rd

nv
n
r (4.20)

where Rd
n can be constructed using quaternions. This can be summarized in the

following lemma:
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4.2. Trajectory Tracking

Lemma 4.2 Let Assumptions 2.1 and 2.2 hold. Then, by tracking the desired
quaternion, angular velocity, airspeed and acceleration

q̇n,d =
1

2
qn,d ⊗

�
0

ωd
n,d

�
(4.21)

ωd
n,d = −S†(vd

r )R
d
nu

n (4.22)

Vd = ||vn
r || (4.23)

V̇d =
�
1 0 0

�
Rd

nu
n (4.24)

where un is given in (4.17), then the origin (e1, z) = (0,0) is uniformly asymptot-
ically stable.

Proof. The proof is given in Appendix E.21.

Remark 4.6 From (4.19) the relation between the ground velocity and air velocity
is given. This relation enables the desired orientation to be found directly by using
the relative velocity vector. The wind vector is assumed to be known, but it can be
estimated by using extended matching when designing the translational control law
(cf. Krstić et al. (1995)).

Remark 4.7 The desired quaternion must be properly initialized to apply the pro-
posed mapping, i.e. it must point in the desired direction at t0. For waypoint
tracking, the desired quaternion is found at each instant as shown in Lemma 4.1,
but it can also apply a method similar to that of trajectory tracking. Note that
the desired quaternion must then be reinitialized each time the waypoint algorithm
switches to a new waypoint.

4.2.3 Simulation

The objective is to apply the virtual control law (4.17) which is mapped to a desired
quaternion, angular velocity and acceleration as well as airspeed and acceleration
using (4.21)-(4.24). These desired states are then tracked using the sliding sur-
face control law and the proportional speed controller. Consider a desired circular
trajectory defined as

pn
d =

⎡
⎣
R cos(ωt)
R sin(ωt)

−zd

⎤
⎦ (4.25)

where R is the radius of the circle, ω is the angular speed of the trajectory, t is the
time and zd is a constant desired altitude. The desired velocity and acceleration
are found through direct differentiation as

ṗn
d =

⎡
⎣
−Rω sin(ωt)
Rω cos(ωt)

0

⎤
⎦ (4.26)

p̈n
d =

⎡
⎣
−Rω2 cos(ωt)
−Rω2 sin(ωt)

0

⎤
⎦ . (4.27)
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The radius is chosen as R = 1000 m, the angular speed as ω = 0.05 rad/s, t0 = 0 s
and zd = 100 m. In the following simulation the sliding surface control law (3.15)
is used together with the proportional speed controller (3.37) where the gains are
set equal to kq = 2, ks = 2, Λ = 2I, κp = 2. The virtual controller (4.17), has the
following gains kp = 0.3, kd = 0.4, λ1 = 10, λ2 = 10. The uav has the following

initial states: qn,b =
[
1 0 0 0

]�
, ωb

n,b(0) = 0 rad/s, vb(0) =
[
30 0 0

]�
m/s, pn(0) =

[
0 0 −50

]�
m. The deflection angles are bounded as −0.3491 ≤

δa, δe, δr ≤ 0.3491 radians, the thrust as 0 ≤ T ≤ 250 N and the uav is exposed to
a constant wind vector wn =

[
10 0 0

]�
m/s.

Figure 4.8 shows the 3D plot of the simulation. The objective is to track the
desired trajectory which is a point that is moving in a circular motion illustrated
by the red circle. As shown in the figure, the uav is able to track the desired
trajectory. This is also highlighted in the position and velocity error plot as shown
in Figure 4.9 where both the position and velocity error go to zero. The attitude,
angular velocity and deflection angles are shown in Figure 4.10 where the attitude
and angular velocity quickly go to zero. The deflection angles go into saturation
during the initial maneuver as the uav have to make a π radians maneuver to
follow the trajectory, and as it is approaching the desired point the deflection angles
remain within their bounds. In Figure 4.11 the airspeed and thrust are shown. The
airspeed is perfectly tracked while the thrust remains within its bounds.

4.3 Formation Flight

Rigid body dynamics assumes that any body can be represented as a number of
particles that do not move relative to each other. To enable multiple uavs to fly in a
formation, each uav can be treated as a particle that must be located at a constant
displacement, ρl

i ∈ R
3 away from the leader, where superscript l denotes the leader

frame. The easiest way of designing a rigid formation is to let the formation be
designed through the desired trajectory, such that the desired position of the i’th
uav can be chosen as

pn
d,i = pn

l +Rn
l ρ

l
i (4.28)

where pn
l is the position of a virtual leader, and Rn

l is the rotation matrix from the
leader frame to the ned frame representing the orientation of the virtual leader.
Equation (4.28) can be differentiated twice, resulting in

ṗn
d,i = ṗn

l +Rn
l S(ω

l
n,l)ρ

l
i (4.29)

p̈n
d,i = p̈n

l +Rn
l (S

2(ωl
n,l)ρ

l
i + S(ω̇l

n,l)ρ
l
i). (4.30)

where ωl
n,l is the angular velocity of the virtual leader, relative to the ned frame

referenced in the leader frame. This approach enables a desired trajectory to be
defined through the virtual leader by pn

l , ṗ
n
l , p̈

n
l ,

...
pn
l , which then is used to obtain

desired trajectories for the followers. Note that the angular acceleration of the
leader is required to find the desired translational acceleration of the i’th follower,
which is one of the main motivations for using a virtual leader. Similarly as for
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which is one of the main motivations for using a virtual leader. Similarly as for
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Figure 4.8: A single uav tracking a circle.

trajectory tracking, it is possible to map the trajectory of the virtual leader to
a quaternion, angular velocity and acceleration. Let the leader frame be defined
through the relation

ṗl
l =

⎡
⎣
||ṗn

l ||
0
0

⎤
⎦ = Rl

nṗ
n
l (4.31)

where Rl
n can be constructed using quaternions. The mapping can be summarized

in the following lemma:

Assumption 4.2 Assume that ||ṗn
l || > 0.

Lemma 4.3 Let Assumption 4.2 hold. Given the trajectory of the virtual leader
defined by pn

l , ṗ
n
l , p̈

n
l ,
...
pn
l , then the velocity, acceleration and jerk can be mapped to

a desired quaternion, angular velocity and acceleration as

q̇n,l =
1

2
qn,l ⊗

�
0

ωl
n,l

�
(4.32)

ωl
n,l = −S†(ṗl

l)R
l
np̈

n
l (4.33)

ω̇l
n,l = −S†(ṗl

l)(R
l
n
...
pn
l + S2(ωl

n,l)R
l
nṗ

n
l − 2S(ωl

n,l)R
l
np̈

n
l ). (4.34)
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Figure 4.9: Position and velocity tracking errors.

Proof. The proof is given in Appendix E.22.
This approach enables desired trajectories for a group of followers to be designed

relative to the virtual leader, which by properly defining the constant displacement
vectors, ρl

i, enables any rigid formation to be constructed.

Remark 4.8 This thesis only considers rigid formations, where it is assumed that
the optimal position relative to the leader that reduces the drag is constant. This
might not always be the case, but can be remedied by allowing the vector ρl

i to be
time-varying.

4.3.1 Simulation

Consider the case of eleven uavs that shall move in a rigid formation to exploit the
aerodynamic reduction to increase their operational radius. The initial conditions
are the same as for the trajectory tracking scenario, except that the gains are chosen
as kp = kd = 0.05 and where the initial positions and constant displacements
relative to the virtual leader are given in Table 4.2.

The virtual leader is defined through the trajectory pn
l =

[
50t 0 −zd

]�
m,

ṗn
l =

[
50 0 0

]�
m/s, which represents a trajectory moving along the xn axis
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Figure 4.11: Airspeed error and thrust. Note that the airspeed in essence tracks
itself through the definition of the desired frame, such that changes in speed enters
through the desired acceleration.

Table 4.2: Initial positions and constant displacements of uavs

uav pn
i (0) (m) ρl

i (m)

uav-1
[
100 100 −50

]� [
0 0 0

]�
uav-2

[
200 0 −50

]� [−10 −10 0
]�

uav-3
[
0 300 −50

]� [−10 10 0
]�

uav-4
[
300 300 −50

]� [−20 −20 0
]�

uav-5
[
300 200 −50

]� [−20 20 0
]�

uav-6
[−100 300 −50

]� [−30 −30 0
]�

uav-7
[
0 100 −50

]� [−30 30 0
]�

uav-8
[
100 0 −200

]� [−40 −40 0
]�

uav-9
[
0 −100 −200

]� [−40 40 0
]�

uav-10
[−100 0 −200

]� [−50 −50 0
]�

uav-11
[−100 −100 −200

]� [−50 50 0
]�
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4.4. Summary

with a speed of 50 m/s at an height of zd = 100 m. Since p̈n
l = 0, it follows that

both the angular velocity and acceleration of the leader relative to the ned frame
is zero, simplifying the trajectories. Even though the following simulation only
considers tracking a straight line, the proposed approach can easily be applied to
any trajectory defined through pn

l , ṗ
n
l , p̈

n
l ,
...
pn
l ∈ L∞.

The uavs start in the positions as shown in Table 4.2, and converge to the
rigid formation as shown in Figure 4.12. In Figure 4.12, the red line represents
the trajectory of the virtual leader, while the final positions of the uavs are shown
as red circles. Due to the scale on the yu axis, an additional plot is required to
study the relative positions between the uavs as shown in Figure 4.13 where the
uavs enter a V-formation enabling them to exploit the aerodynamic advantages
and thereby increasing their operational radius. A visualization of the formation
is shown in Figure 4.14 where both the position and attitude at the end of the
simulation are visualized. Note that collisions between the uavs are not considered
in this simulation, but methods such as the null-space based behavioral control
(Antonelli et al. (2005b)), subsumption theory (Brooks (1986)) or using potential
fields (Khatib (1986)) can be used to ensure that the uavs perform a collision free
reconfiguration.

4.4 Summary

In this chapter, solutions to the problem of waypoint tracking, trajectory tracking
and formation flight have been proposed and simulations have been performed
to validate the proposed methods. The main observation of this chapter is that
guidance of a vehicle is simply a mapping of the errors from the unactuated states
to the actuated states which can be driven to zero by applying any of the control
laws from Chapter 3.
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Figure 4.12: Formation flight in 3D.
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Figure 4.13: Rigid formation. The followers track the virtual leader with constant
displacement vectors and enter into a V-formation which enable them to exploit
the aerodynamic drag reduction.
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Figure 4.14: Eleven uavs flying in a V-formation (visualization by Tom Stian An-
dersen).
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Chapter 5

Subsumption Architecture

Planning is just a way of avoiding
figuring out what to do next.

Rodney Brooks, 1987

This chapter is based on Oland et al. (2014b) and applies the subsumption
architecture to flight control through composite rotations where multiple tasks are
defined as simple rotations. The approach ensures that the primary task is always
fulfilled, and conflicting lower level tasks are removed by the primary rotation. The
method is applied to a group of uavs that must fly through a city without colliding
with each other, the buildings nor the ground, while tracking a desired waypoint.
The generality of the presented solution enables any number of tasks to be defined
as simple rotations that are multiplied together producing a desired orientation.

5.1 Subsumption Architecture

To facilitate the design of a truly autonomous agent, the controller must enable the
agent to perform multiple tasks in a complex dynamic environment. The layered
approach to behavioral control is presented in Brooks (1986), where multiple tasks
are arranged in a hierarchy and where higher level tasks subsumes lower level tasks.
This ensures that the primary task is always fulfilled, while the lower level tasks are
performed as the higher level tasks are completed. This layered structure enables
the complex problem of behavioral control to be defined as several simple tasks that
are handled using subsumption. By adding an additional layer, the competence of
the agent is further augmented, increasing the apparent level of intelligence.

The basic idea has resulted in the null-space-based behavioral (nsb) control
method as presented in Antonelli et al. (2005b), Arrichiello (2006) and Arrichiello
et al. (2006b). The nsb method adheres to the principle of layered control, where
multiple tasks can be defined as individual velocity vectors and arranged in a hi-
erarchy where higher level tasks subsume lower level tasks. The subsumption is
done by projecting conflicting lower level velocity components onto the nullspace,
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5. Subsumption Architecture

thereby removing them from the resulting reference velocity vector. By following
the reference velocity vector, the primary task will always be fulfilled.

When controlling a fixed-wing uav, the use of a reference velocity vector is not
directly applicable since the uav is underactuated with only translational control
in one direction. Instead of defining the tasks as velocity vectors, it is possible to
design them directly as rotations that are multiplied together, producing a reference
orientation that ensures that the primary task is always fulfilled.

The work presented in this chapter can be seen as an extension of the subsump-
tion and the nsb approach, where conflicting lower level rotations are removed by
the higher level rotations. Similarly as for the nsb approach, this framework only
removes the conflicting parts of the lower level rotations such that e.g. a uav will
move toward the next waypoint while avoiding obstacles.

5.2 Layered Control

The subsumption architecture is based on a set of layers, where higher level lay-
ers subsume lower level layers. With this approach the highest active task is first
pursued subsuming lower level tasks. As the highest active task is completed, the
second highest task will be fully pursued and so on until the lowest level task is
fully pursued. The tasks enter the system through the desired quaternion, and by
designing composite rotations, each layer can be represented by a simple rotation,
where the desired quaternion is a product of multiple tasks arranged in a hierar-
chy. For unmanned aerial vehicles, the most important task is to avoid hitting the
ground, and this can be design as the primary rotation. Moving through the air at
low altitudes, there can be both static and dynamic obstacles that must be avoided.
This can be handled by adding an additional layer of competence which enables
collision avoidance through a secondary rotation. A third layer can be added to
enable the uav to move to a desired waypoint through a tertiary rotation. These
three tasks can be arranged in a hierarchy as shown in Figure 5.1 and represented
using quaternions as

• Task 1: Ground avoidance, qc,h

• Task 2: Collision avoidance, qe,c

• Task 3: Waypoint tracking, qn,e

where e denotes the position error frame, c denotes the collision avoidance frame
and h denotes the ground avoidance frame. The individual tasks can be written as
a composite rotation with the corresponding angular velocity vector as

qn,h = qn,e ⊗ qe,c ⊗ qc,h (5.1)

ωh
n,h = Rh

eω
e
n,e +Rh

cω
c
e,c + ωh

c,h. (5.2)

Note that the collision avoidance quaternion is defined relative to the position error
frame: that is, the output of the tertiary rotation. Similarly, the ground avoidance
is defined relative to the collision avoidance frame. This enables higher level tasks
to subsume lower level tasks, such that when the ground avoidance quaternion
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qe,h = qe,c ⊗ qc,h

qn,h = qn,e ⊗ qe,c ⊗ qc,h

Sensors

qc,h

qe,c

qn,e

Figure 5.1: Layered control using composite rotations.

is active, the conflicting lower level rotations will be removed. Consider the case
when the ground avoidance and waypoint tracking quaternions are active, while the
collision avoidance quaternion is inactive. Then qe,c =

[
1 0 0 0

]�
resulting in

the reference quaternion qn,h = qn,e ⊗ qe,c ⊗ qc,h = qn,e ⊗ qc,h such that the
collision avoidance quaternion does not contribute to the reference. This structure
enables several tasks to be defined, where it is only the active quaternions that
contribute to the resulting reference quaternion.

Remark 5.1 It is also possible to define all the rotations relative to the ned frame
and switch between them, but then the subsumption property will be lost. Also note
that this can result in an averaged desired rotation that can lead to a collision.

Remark 5.2 Consider the case where the position error quaternion qn,e is repre-
sented by a desired course and flight path angle and where the collision avoidance
quaternion qe,c only performs course corrections. Then, using this framework, it
is only the course that is subsumed by the collision avoidance method, enabling the
uav to still track the desired flight path angle. This shares similarities with the nsb
approach where it is only conflicting velocity components that are removed.

5.2.1 Position Error Frame

From Figure 5.2 the position tracking error can be defined as en = pn
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wp is the position of a desired waypoint. The position error frame can be defined
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with the collision avoidance frame, the uav will move perpendicular to the line of
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Figure 5.2: Position vectors relative to the ned frame. In the case of waypoint
tracking, the objective is to align the wind frame with the position error frame which
will make the position error go towards zero. In the case of collision avoidance, the
objective is to align the wind frame with the collision avoidance frame, resulting
in a circular motion around obstacles. By combining the two quaternions, it is
possible to move to a desired waypoint without collision.

sight vector to the obstacle, and thereby avoid collision. Note that the sign of the
collision avoidance frame can be chosen arbitrarily, which can be used to move left
or right around an obstacle.

5.2.3 Ground Avoidance

Following a similar procedure as for the collision avoidance frame, let the clos-
est point on the ground be denoted pn

g , and an error function as hn = pn
g −

pn. The ground avoidance frame can then be defined using the relation hh =[
0 0 ||hc||]� = Rh

cR
c
eR

e
nh

n, where Rh
c can be constructed using quaternions

resulting in qc,h.

5.2.4 Detection Box

The performance of any collision avoidance method is naturally constrained by the
method of detecting obstacles. Using only the relative distance to an obstacle is
dangerous, since a high negative relative velocity may result in collision as the uav
is unable to avoid the given obstacle in time. Furthermore, the actuator constraints
of a fixed-wing uav leads to maneuverability constraints that must be taken into
account. Inspired by Borenstein and Koren (1991), let a detection box be fixed
with the wind frame of the uav as shown in Figure 5.3. Then the objective of the
uav is to maneuver the detection box such that it avoids obstacles. If an obstacle
is detected, the uav checks on which side the obstacle is detected, and simply
maneuvers left if the obstacle is on the right side, and to the right otherwise. A
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Figure 5.3: Detection box in the xy-plane. When detecting obstacles in sector S1,
the uav will turn to the left, and if it detects an obstacle in sector S2 it will turn
to the right which is done by defining the sign of the collision avoidance frame.

similar method can be applied for ground avoidance, where the uav pulls up if it
detects the ground. This idea corresponds well with how birds navigate, who use
cues from image motions that are generated during flight to detect obstacles. In
Bhagavatula et al. (2011) the authors show that birds are able to navigate through
narrow gaps by balancing the image motions that are experienced by each eye, and
use that as a sensory information to avoid collisions. If the image motion on the
right eye is faster than on the left eye, they change their orientation to balance the
images, which relates to that of changing the detection box depending on which
side the obstacle is detected.

Property 5.1 When no obstacles are within the detection box, qe,c is set equal
to the identity quaternion, and ωc

e,c is set equal to zero. This also applies for the
ground avoidance quaternion and angular velocity.

Remark 5.3 This detection box only considers obstacles in front of the uav, but
it can be extended to consider obstacles behind the uav. This can allow better
cooperation between the uavs, as they can help each-other by reducing the risk of
collision by increasing the relative distance.
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5. Subsumption Architecture

5.3 Composite Quaternion Rotations

In the following, each of the individual quaternions are derived with their corre-
sponding angular velocities and then put together resulting in a desired quaternion
and angular velocity that ensures that the primary task will always be fulfilled. The
waypoint algorithm in Lemma 4.1 can be used to design the quaternion qn,e and
the angular velocity ωe

n,e. Using a similar approach as for the waypoint algorithm,
the collision avoidance and ground avoidance quaternions can be constructed as
shown in the following lemmas:

Lemma 5.1 Let Assumptions 2.2 and 4.1 hold. Given the position error between
the closest obstacle and the uav as ce = Re

n(p
n
o −pn), and by following the attitude

and angular velocity

qe,c =
[
cos

(
ϑe,c

2

)
k�
e,c sin

(
ϑe,c

2

)]�
(5.3)

ωc
e,c = S†(cc)(Rc

eS(ω
e
n,e)R

e
nc

n −Rc
nċ

n) (5.4)

ϑe,c = cos−1

(
cc · ce
||ce||2

)
ke,c =

cc × ce

||cc × ce|| (5.5)

cc =
[
0 ±||ce|| 0

]�
= Rc

eR
e
nc

n = Rc
ec

e, (5.6)

then ||cc|| ≥ βc > 0 ∀t ≥ t0.

Proof. The proof is given in Appendix E.23.

Remark 5.4 Note that ||ωc
e,c|| → ∞ as ||cn|| → 0, which will produce an angular

velocity that will saturate the rotational control law. For waypoint guidance, this
property is undesirable, but for collision avoidance it is a desirable property. By
tracking the angular velocity, the actuators will go into saturation such that the
uav makes its best effort to avoid the obstacle. In many ways it shares the same
properties as with potential fields (cf. Khatib (1986)) that go to infinity as the
relative distance between an agent and an obstacle approaches zero.

Lemma 5.2 Let Assumptions 2.2 and 4.1 hold. Given the position error between
the closest point on the ground and the uav as hc = Rc

eR
e
nh

n = Rc
n(p

n
g −pn), and

by following the attitude and angular velocity

qc,h =
[
cos

(
ϑc,h

2

)
k�
c,h sin

(
ϑc,h

2

)]�
(5.7)

ωh
c,h = S†(hh)(Rh

cS(ω
c
e,c)R

c
nh

n +Rh
eS(ω

e
n,e)R

e
nh

n −Rh
b ḣ

n) (5.8)

ϑc,h = cos−1

(
hh · hc

||hc||2
)

kc,h =
hh × hc

||hh × hc|| (5.9)

hh =
[
0 0 ||hc||]� = Rh

cR
c
eR

e
nh

n = Rh
ch

c, (5.10)

then ||hh|| ≥ βh > 0 ∀t ≥ t0.

Proof. The proof is given in Appendix E.24.
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5.3. Composite Quaternion Rotations

Remark 5.5 The lower bounds βc and βh are functions of initial speed, detection
range, actuator constraints and the rotational control law. Hence, it is important to
design the detection range to account for this, to ensure collision free trajectories.

Theorem 5.1 Let Assumptions 2.2 and 4.1 hold. By following the attitude and
angular velocity (5.1)-(5.2) where the terms are given in lemmas 4.1, 5.1 and 5.2,
then ||cc|| ≥ βc > 0, ||hh|| ≥ βh > 0 ∀t ≥ t0 and ||ee|| → H(δ,Δ).

Proof. The proof is given in Appendix E.25.

Remark 5.6 The proposed approach enables collision avoidance by mapping the
position errors in the yn and zn axes to desired orientations that result in a
collision-free path. This can be extended to path following, by encompassing a vir-
tual tube around a desired path. Instead of defining the objective as that of following
the path, the objective can be defined as avoiding the walls of the virtual tube, and
hence collision avoidance can be used to perform path following.

5.3.1 Wind Compensation

Assumption 4.1 can be removed similarly as for the waypoint guidance method as
shown in Section 4.1, but where the notation of the quaternion must be changed in
order to fit into this framework. Let the wind correction angle be redefined as ϑh,d

which is the angle between vb and vb
r . The wind correction quaternion can thereby

be designed as

qh,d =
[
cos

(
ϑh,d

2

)
k�
h,d sin

(
ϑh,d

2

)]�
(5.11)

ϑh,d = cos−1

(
vb · vb

r

||vb|| ||vb
r||

)
kh,d =

vb × vb
r

||vb × vb
r ||

(5.12)

which compensates for the wind. The angular velocity and acceleration are found
using linear filters with saturation.

5.3.2 Desired Orientation

The tasks from the subsumption architecture defined through (5.1) and (5.2) to-
gether with wind compensation produce the desired quaternion and angular velocity
as

qn,d = qn,e ⊗ qe,c ⊗ qc,h ⊗ qh,d (5.13)

ωd
n,d = Rd

eω
e
n,e +Rd

cω
c
e,c +Rd

hω
h
c,h + ωd

h,d (5.14)

which also shows the extendability of the proposed approach. The addition of a new
task is simply done by expanding the quaternion product, and where the resulting
angular velocity is found by adding an additional term.

Lemma 5.3 qn,d, ωd
n,d and ω̇d

n,d are bounded.

Proof. The proof is given in Appendix E.26.
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5. Subsumption Architecture

Remark 5.7 The rotations that have been derived in this section are based on the
position errors between a uav and obstacles/ground. It is therefore only possible
to prove stability for stationary obstacles. Even though this is remedied by using
the detection box, the desired orientations can instead be designed at a velocity level
using the mapping methods from Section 4.2.2 which can enable dynamic obstacles
to be avoided.

5.4 Simulation

Each uav has the following initial conditions: qn,b(0) =
[
1 0 0 0

]�
, ωb

n,b =[
0 0 0

]�
rad/s, vb(0) =

[
30 0 0

]�
m/s, Vd = 25 m/s and are exposed to a

constant wind vector wn =
[
3 0 0

]�
m/s. For the simulation, the pd+ controller

(3.14) and the proportional airspeed controller (3.37) are used, where the gains are
chosen as kq = 10, kω = 20 and κp = 2. The detection box measures 150 m in
length, and each sector has a width of 10 m and a height of 40 m. To facilitate
collision avoidance between the uavs, each uav are encompassed with a protective
sphere with radius of 5 m. If the detection box of a uav detects a point on the
protective sphere from any of other the uavs, the current uav will maneuver to
avoid collision.

5.4.1 Urban Avoidance

Consider seven uavs that shall track a desired waypoint pn
wp =

[
2000 500− 50

]�
m

while moving through a city. During the maneuver, the uavs must avoid colliding
with each other, the buildings and the ground.

Figure 5.4 shows the 2D plot of the simulation where the uavs move through
the city without collision. The altitudes of the uavs are shown in the top plot of
Figure 5.5. Initially none of the uavs are trimmed (at steady state), such that
they will start to loose altitude. This makes the detection box point toward the
ground such that the ground avoidance maneuver is initiated and the ground is
avoided. Also note that none of the uavs go below 40 m, which is the height of the
detection box. The middle plot of Figure 5.5 shows the relative distances between
the uavs and the buildings. No uavs come closer than 10 m, except uav-4, which
comes as close as about 8 m, before diverging from the building. The bottom plot
shows the shortest distances between the uavs, where none come closer than 10
m, and therefore no collisions have occurred. The position tracking error of all the
uavs are shown in Figure 5.6. Figure 5.7 shows the attitude dynamics of uav-
4, where the attitude and angular velocity errors go to zero, but contain several
spikes throughout the simulation. These spikes are a result of the collision and
ground avoidance methods which produce changes in the reference as obstacles
are detected. Also note that the deflection angles go into saturation at about 19
seconds, which contribute to the fact that uav-4 comes closer to the building than
10 m. The speed error and thrust are shown in Figure 5.8. Note the spike at about
19 seconds, which is due to the saturation of the thrust as uav-4 moves downwards.
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Figure 5.4: Obstacle avoidance in urban terrain where the first waypoint is shown
as a red circle, the buildings are illustrated as rectangles and the final positions of
the uavs at t = 150s are shown as triangles.

5.4.2 Terrain Avoidance

The same method can be applied for terrain avoidance. Consider a fixed-wing uav
that shall avoid the ground and a radio tower located on the top of a mountain.
A desired waypoint is located on the other side of the tower, and the uav must
avoid both the ground and the tower. The tower is represented as a cubic building
similar as for urban avoidance, while the mountain is generated using a paraboloid
representing the top of the mountain. Using the same method as for urban avoid-
ance, the uav is able to follow the terrain, while maneuvering around the tower as
shown in Figure 5.9. No collision has occurred as shown in Figure 5.10 where the
relative distance between the uav and the mountain or the radio tower never goes
below 41 m.
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5.5 Discussion

The problem of collision avoidance has received much attention the last decades and
the most well known approach is the use of potential fields as presented in Khatib
(1986). By encompassing repulsive potentials around obstacles and an attractive
potential around the desired position, it enables an agent to reach the desired
position without collisions by following the negative gradient of the total potential
field. Even though the approach is intuitively simple and appealing, it suffers from
several problems such as local minima, inability to pass through narrow gaps, and
the possibility of becoming trapped as shown in Koren and Borenstein (1991). These
facts motivated further research and resulted in the navigation function by Rimon
and Koditschek (1992) which addresses the local minima problem, and has later
has been extended to nonholonomic vehicles in Tanner et al. (2003) and applied
for nonholonomic aircraft-like vehicles in Roussos et al. (2010). The problems that
were pointed out in Koren and Borenstein (1991) are applicable to many of the
local collision avoidance methods. As such, they deserve special attention. In this
chapter, a detection box is applied for obstacle detection, similar to the vector
histogram as proposed in Borenstein and Koren (1991), which enables an agent to
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pass through narrow gaps. Furthermore, the subsumption architecture facilitates
an arbitrary number of layers, and as such, even though it is not implemented here,
it is possible to add an addition layer that serves as a global navigation function
that defines no-fly-zones wherever an agent can become trapped. This highlights
some of the possibilities that exist when using this framework.

5.6 Summary

In this chapter the problem of maneuvering in a complex dynamical environment
has been solved using the subsumption architecture. Multiple tasks can be defined
as simple rotations that are multiplied together producing a desired quaternion.
The architecture ensures that the primary task will always be completed while lower
level tasks will be fully pursued as higher level tasks are completed. The presented
approach has been validated through simulations where the uavs performed tasks
such as collision avoidance, ground avoidance and waypoint tracking.
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Chapter 6

Conclusion

This thesis has presented several solutions to the problem of flight control of fixed-
wing unmanned aerial vehicles in a quaternion framework. From the basic notion
that it is the speed that must be pointed in a desired direction, the translational and
rotational systems were decoupled by employing a linear filter to find the higher
order derivatives of the angle of attack and the sideslip angle. This decoupling
enabled a rotational controller to be derived first, followed by a speed controller. To
that end, several quaternion-based controllers were derived based on the Paden and
Panja pd+ controller, the sliding surface controller and a regular and an adaptive
backstepping controller. For speed control, both a proportional and a proportional-
integral model-based controller were derived to enable the uav to obtain a desired
airspeed. The result was also improved using adaptive control in the presence of
actuator saturation using a reference to move the saturation problem from the plant
to the reference. Another important observation is that the airspeed directly affects
the magnitude of the rotational control laws. A reference airspeed was therefore
designed that enables a virtual bound to be placed on the deflection angles such
that given sufficient thrust, the deflection angles remain within their linear regions
and actuator saturation can be avoided.

Fixed-wing uavs are underactuated, such that several guidance laws had to be
derived in order to make the errors along the unactuated axes go to zero. First
a waypoint guidance scheme was presented that mapped all the position tracking
errors to one axis producing a desired quaternion and angular velocity. By moving
with a positive speed and tracking the quaternion and angular velocity, a desired
waypoint will be reached in finite time. This idea was then extended to trajectory
tracking using a virtual saturated translational controller to make the position and
velocity tracking errors go to zero. These errors were then mapped to desired
states that the control laws could track, making the position and velocity errors
go to zero. With the possibility of performing trajectory tracking, the approach
was further augmented to enable formation flight where a formation of uavs were
shown to move in a V-formation to enable them to exploit the drag reduction that
is possible using close formations.

Another important observation is that it is possible to define multiple tasks as
composite rotations. This enabled the subsumption architecture to be applied for
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6. Conclusion

flight control which can enable autonomous vehicles to behave more intelligently.
Specifically, the approach was applied to a group of uavs that had to perform way-
point tracking while avoiding collisions with each other, the ground and a number
of buildings. The approach was also applied to a single uav performing terrain
avoidance. The subsumption architecture applied for flight control using composite
rotations has a good potential to increase the overall autonomy of fixed-wing uavs,
and can be a first step towards truly autonomous unmanned aerial vehicles.

6.1 Future Work

6.1.1 Rate Saturation

One of the main delimitations of this thesis is that rate saturation has not been
accounted for. It is believed that it should have relatively little impact on the
derivation of the control laws, but the fact that it enables the angular acceleration
ω̇w

b,w to become bounded is a very attractive feature that is worth future research.

6.1.2 Observer-based Decoupling

Another aspect that should be augmented is the way that the higher order deriva-
tives of the angle of attack and sideslip are found. In this thesis a simple linear filter
is applied, which for some cases might be too slow to converge to the true values.
A high gain observer or another approach should be studied to see if it is possible
to obtain increased performance. For example, consider using a Kalman filter to
estimate the position, velocity, acceleration and jerk. Then the angle of attack and
sideslip can be found from the velocity vector, the angular rates from the acceler-
ation vector and the angular accelerations from the jerk vector. The same applies
for the wind quaternion that also can be handled more elegantly. Specifically, by
improving the estimation of the wind quaternion, it can enable wind gusts to be
accounted for, which will improve the presented solutions.

6.1.3 Extending the Quaternion Framework

One of the main contributions of this thesis is the fact that multiple tasks can be
defined as simple rotations such that

qd,w = qd,n ⊗ qn,b ⊗ qb,w (6.1)

where the desired quaternion can be expanded with multiple tasks using the sub-
sumption architecture. This thesis has not considered the problem of state es-
timation such as the attitude and angular velocity of the body relative to the
ned frame. This can actually be handled in the same framework by defining
qn,b := qn,est ⊗ qest,b where qn,est is a quaternion representing an estimated ori-
entation, while qest,b is the error between the body orientation and its estimated
value. This enables observers to be applied within this framework and multiple new
problems can be dealt with in a modular fashion.
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6.2. Acknowledgements

6.1.4 Extending the Aerodynamics

In Appendix C an extension of the aerodynamic modeling is discussed. By using
the proposed decoupling, there is no limit (from a control perspective) to the num-
ber of terms that can be added to the aerodynamics. This enables very accurate
aerodynamic models to be applied. An interesting contribution would be to extend
the aerodynamics to contain multiple additional terms and use it together with
any of the presented control solutions to see if it is possible to obtain aerodynamic
models that cover the whole flight envelope.

6.2 Acknowledgements

The 3D visualization of the aircraft in Figures 4.2, 4.3, 4.4 and 4.8 is done using
"Trajectory and Attitude Plot Version 3" from Matlab File-Exchange1 with per-
mission by Valerio Scordamaglia. I would also like to thank the TeXample website2

that has shared many inspirational visualization aids using the TikZ environment.
The airfoil in Figure 1.2 has been created by taking basis in "Airfoil Profiles"3 by
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111

6.2. Acknowledgements

6.1.4 Extending the Aerodynamics

In Appendix C an extension of the aerodynamic modeling is discussed. By using
the proposed decoupling, there is no limit (from a control perspective) to the num-
ber of terms that can be added to the aerodynamics. This enables very accurate
aerodynamic models to be applied. An interesting contribution would be to extend
the aerodynamics to contain multiple additional terms and use it together with
any of the presented control solutions to see if it is possible to obtain aerodynamic
models that cover the whole flight envelope.

6.2 Acknowledgements

The 3D visualization of the aircraft in Figures 4.2, 4.3, 4.4 and 4.8 is done using
"Trajectory and Attitude Plot Version 3" from Matlab File-Exchange1 with per-
mission by Valerio Scordamaglia. I would also like to thank the TeXample website2

that has shared many inspirational visualization aids using the TikZ environment.
The airfoil in Figure 1.2 has been created by taking basis in "Airfoil Profiles"3 by
Kjell Magne Fauske.

1http://www.mathworks.se/matlabcentral/fileexchange/5656-trajectory-and-attitude-plot-
version-3

2http://www.texample.net
3http://www.texample.net/tikz/examples/airfoil-profiles/

111





Bibliography

Abdessameud, A. and A. Tayebi (2010). Formation control of VTOL UAVs without
linear-velocity measurements. In: Proceedings of the American Control Confer-
ence. Baltimore, MD, USA.

Aguiar, A. P. and A. M. Pascoal (2002). Dynamic positioning and way-point track-
ing of underactuated AUVs in the presence of ocean currents. In: Proceedings of
the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA.

Aguiar, A. P. and J. P. Hespanha (2007). Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling uncertainty.
Transactions on Automatic Control Vol. 52, No. 8, pp. 1362–1379.

Aguiar, A. P., J. P. Hespanha and P. V. Kokotović (2008). Performance limitations
in reference tracking and path following for nonlinear systems. Automatica Vol.
44, No. 3, pp. 598–610.

Akella, M. R., A. Valdivia and G. R. Kotamraju (2005). Velocity-free attitude con-
trollers subject to actuator magnitude and rate saturations. Journal of Guidance,
Control, and Dynamics Vol. 28, No. 4, pp. 659–666.

Ambrosino, G., M. Ariola, U. Ciniglio, F. Corraro, A. Pironti and M. Virgilio
(2006). Algorithms for 3D UAV path generation and tracking. In: Proceedings of
the 45th IEEE Conference on Decision and Control. San Diego, CA, USA.

Annaswamy, A. M. and J. Wong (1997). Adaptive control in the presence of satura-
tion non-linearity. International Journal of adaptive control and signal processing
Vol. 11, No. 3, pp. 3–19.

Antonelli, G., F. Arrichiello and S. Chiaverini (2005a). The null-space-based behav-
ioral control for mobile robots. In: Proceedings of IEEE International Symposium
on Computational Intelligence in Robotics and Automation. Espoo, Finland.

Antonelli, G., F. Arrichiello and S. Chiaverini (2006). Experiments of formation
control with collision avoidance using the null-space-based behavioral control.
In: Proceedings of the Mediterranean Conference on Control and Automation.
Ancona, Italy.

Antonelli, G., F. Arrichiello and S. Chiaverini (2008). The null-space-based be-
havioral control for autonomous robotic systems. Journal of Intelligent Service
Robotics Vol. 1, No. 1, pp. 27–39.

113

Bibliography

Abdessameud, A. and A. Tayebi (2010). Formation control of VTOL UAVs without
linear-velocity measurements. In: Proceedings of the American Control Confer-
ence. Baltimore, MD, USA.

Aguiar, A. P. and A. M. Pascoal (2002). Dynamic positioning and way-point track-
ing of underactuated AUVs in the presence of ocean currents. In: Proceedings of
the 41st IEEE Conference on Decision and Control. Las Vegas, NV, USA.

Aguiar, A. P. and J. P. Hespanha (2007). Trajectory-tracking and path-following
of underactuated autonomous vehicles with parametric modeling uncertainty.
Transactions on Automatic Control Vol. 52, No. 8, pp. 1362–1379.

Aguiar, A. P., J. P. Hespanha and P. V. Kokotović (2008). Performance limitations
in reference tracking and path following for nonlinear systems. Automatica Vol.
44, No. 3, pp. 598–610.

Akella, M. R., A. Valdivia and G. R. Kotamraju (2005). Velocity-free attitude con-
trollers subject to actuator magnitude and rate saturations. Journal of Guidance,
Control, and Dynamics Vol. 28, No. 4, pp. 659–666.

Ambrosino, G., M. Ariola, U. Ciniglio, F. Corraro, A. Pironti and M. Virgilio
(2006). Algorithms for 3D UAV path generation and tracking. In: Proceedings of
the 45th IEEE Conference on Decision and Control. San Diego, CA, USA.

Annaswamy, A. M. and J. Wong (1997). Adaptive control in the presence of satura-
tion non-linearity. International Journal of adaptive control and signal processing
Vol. 11, No. 3, pp. 3–19.

Antonelli, G., F. Arrichiello and S. Chiaverini (2005a). The null-space-based behav-
ioral control for mobile robots. In: Proceedings of IEEE International Symposium
on Computational Intelligence in Robotics and Automation. Espoo, Finland.

Antonelli, G., F. Arrichiello and S. Chiaverini (2006). Experiments of formation
control with collision avoidance using the null-space-based behavioral control.
In: Proceedings of the Mediterranean Conference on Control and Automation.
Ancona, Italy.

Antonelli, G., F. Arrichiello and S. Chiaverini (2008). The null-space-based be-
havioral control for autonomous robotic systems. Journal of Intelligent Service
Robotics Vol. 1, No. 1, pp. 27–39.

113



Bibliography

Antonelli, G., F. Arrichielo and S. Chiaverini (2005b). The null-space-based be-
havioral control for mobile robots. In: Proceedings of the IEEE International
Symposium on Computational Intelligence in Robotics and Automation. Espoo,
Finland.

Arrichiello, F. (2006). Coordination control of multiple mobile robots. PhD thesis.
Universitá degli Studi di Cassino, Cassino, Italy.

Arrichiello, F., S. Chiaverini and T.I. Fossen (2006a). Formation control of marine
surface vessels using the null-space-based behavioral control. In: Group Coordi-
nation and Cooperative Control (K.Y. Pettersen, T. Gravdahl and H. Nijmeijer,
Eds.). Chap. 1, pp. 1–19. Springer-Verlag’s Lecture Notes in Control and Infor-
mation Systems series, ISBN 3-540-33468-8.

Arrichiello, F., S. Chiaverini and T.I. Fossen (2006b). Formation control of underac-
tuated surface vessels using the null-space-based behavioral control. In: Proceed-
ings of the International Conference on Intelligent Robots and Systems. Beijing,
China.

Arrichiello, F., S. Chiaverini, G. Indiveri and P. Pedone (2009). The null-space-
based behavioral control for a team of cooperative mobile robots with actuator
saturations. In: Proceedings of the International Conference on Intelligent Robots
and Systems. St. Louis, MO, USA.

Åström, K.J. and L. Rundqwist (1989). Integrator windup and how to avoid it. In:
Proceedings of the American Control Conference. Pittsburgh, PA, USA.

Baba, Y., M. Yamaguchi and R. M. Howe (1993). Generalized guidance law for
collision courses. Journal of Guidance, Control, and Dynamics Vol. 16, No.
3, pp. 511–516.

Bak, M. (2000). Control systems with constraints. PhD thesis. Technical University
of Denmark, Kgs. Lyngby, Denmark.

Beard, R. W. and J. Humpherys (2011). Following straight line and orbital paths
with input constraints. In: Proceedings of the American Control Conference. San
Francisco, CA, USA.

Becker, A., P. R. Kumar and C. Wei (1985). Adaptive control with the stochastic
approximation algorithm: Geometry and convergence. IEEE Transactions on
Automatic Control Vol. 30, No. 4, pp. 330–338.

Berghuis, H. and H. Nijmeijer (1993). A passivity approach to controller-observer
design for robots. IEEE Transactions on Robotics and Automation Vol 9, No.
6, pp. 740–754.

Betser, A., P. A. Vela, G. Pryor and A. Tannenbaum (2005). Flying in formation
using a pursuit guidance algorithm. In: Proceedings of the American Control
Conference. Portland, OR, USA.

114

Bibliography

Antonelli, G., F. Arrichielo and S. Chiaverini (2005b). The null-space-based be-
havioral control for mobile robots. In: Proceedings of the IEEE International
Symposium on Computational Intelligence in Robotics and Automation. Espoo,
Finland.

Arrichiello, F. (2006). Coordination control of multiple mobile robots. PhD thesis.
Universitá degli Studi di Cassino, Cassino, Italy.

Arrichiello, F., S. Chiaverini and T.I. Fossen (2006a). Formation control of marine
surface vessels using the null-space-based behavioral control. In: Group Coordi-
nation and Cooperative Control (K.Y. Pettersen, T. Gravdahl and H. Nijmeijer,
Eds.). Chap. 1, pp. 1–19. Springer-Verlag’s Lecture Notes in Control and Infor-
mation Systems series, ISBN 3-540-33468-8.

Arrichiello, F., S. Chiaverini and T.I. Fossen (2006b). Formation control of underac-
tuated surface vessels using the null-space-based behavioral control. In: Proceed-
ings of the International Conference on Intelligent Robots and Systems. Beijing,
China.

Arrichiello, F., S. Chiaverini, G. Indiveri and P. Pedone (2009). The null-space-
based behavioral control for a team of cooperative mobile robots with actuator
saturations. In: Proceedings of the International Conference on Intelligent Robots
and Systems. St. Louis, MO, USA.

Åström, K.J. and L. Rundqwist (1989). Integrator windup and how to avoid it. In:
Proceedings of the American Control Conference. Pittsburgh, PA, USA.

Baba, Y., M. Yamaguchi and R. M. Howe (1993). Generalized guidance law for
collision courses. Journal of Guidance, Control, and Dynamics Vol. 16, No.
3, pp. 511–516.

Bak, M. (2000). Control systems with constraints. PhD thesis. Technical University
of Denmark, Kgs. Lyngby, Denmark.

Beard, R. W. and J. Humpherys (2011). Following straight line and orbital paths
with input constraints. In: Proceedings of the American Control Conference. San
Francisco, CA, USA.

Becker, A., P. R. Kumar and C. Wei (1985). Adaptive control with the stochastic
approximation algorithm: Geometry and convergence. IEEE Transactions on
Automatic Control Vol. 30, No. 4, pp. 330–338.

Berghuis, H. and H. Nijmeijer (1993). A passivity approach to controller-observer
design for robots. IEEE Transactions on Robotics and Automation Vol 9, No.
6, pp. 740–754.

Betser, A., P. A. Vela, G. Pryor and A. Tannenbaum (2005). Flying in formation
using a pursuit guidance algorithm. In: Proceedings of the American Control
Conference. Portland, OR, USA.

114



Bibliography

Bhagavatula, P. S., C. Claudianos, M. R. Ibbotson and M. V. Srinivasan (2011).
Optic flow cues guide flight in birds. Current Biology Vol 21, No. 21, pp. 1794–
1799.

Blake, W. (2002). Drag reduction from formation flight - Flying aircraft in bird-like
formations could significantly increase range. Technical report. Wright-Patterson
Air Force Base, Ohio, USA.

Bloch, A. M., J. Baillieul, P. Crouch and J. Marsden (2007). Nonholonomic me-
chanics and control. Springer, ISBN 978-0-387-95535-3.

Bloch, A. M., N. E. Leonard and J. E. Mardsen (2000). Controlled Lagrangians
and the stabilization of mechanical systems I: the first matching theorem. IEEE
Transactions on Automatic Control Vol. 45, No. 12, pp. 2253–2270.

Borenstein, J. and Y. Koren (1991). The vector field histogram - fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and Automation
Vol. 7, No. 3, pp. 278–288.

Børhaug, E. and K. Y. Pettersen (2005a). Adaptive way-point tracking control for
underactuated autonomous vehicles. In: Proceedings of the 44th IEEE Conference
on Decision and Control. Seville, Spain.

Børhaug, E. and K. Y. Pettersen (2005b). Cross-track control for underactuated
autonomous vehicles. In: Proceedings of the 44th IEEE Conference on Decision
and Control. Seville, Spain.

Borrelli, F., T. Keviczky and G. J. Balas (2004). Collision-free UAV formation flight
using decentralized optimization and invariant sets. In: Proceedings of the 43rd
IEEE Conference on Decision and Control. Atlantis, Bahamas.

Boulton, M. P. W. (1864). On aërial locomotion. London: Bradbury & Evans, 11,
Bouviere Street.

Boulton, M. P. W. (1868). Aërial locomotion etcetera. Patent number No. 392.

Boyd, S. and S. S. Sastry (1986). Necessary and sufficient conditions for parameter
convergence in adaptive control. Automatica Vo. 22, No. 6, pp. 629–639.

Breivik, M. and T. I. Fossen (2005). Guidance-based path following for autonomous
underwater vehicles. In: Proceedings of the MTS/IEEE OCEANS. Washington,
DC, USA.

Breivik, M. and T. I. Fossen (2007). Applying missile guidance concepts to motion
control of marine craft. In: Proceedings of the 7th IFAC Conference on Control
Applications in Marine Systems. Bol, Croatia.

Breivik, M. and T. I. Fossen (2008). Guidance laws for planar motion control.
In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun,
Mexico.

115

Bibliography

Bhagavatula, P. S., C. Claudianos, M. R. Ibbotson and M. V. Srinivasan (2011).
Optic flow cues guide flight in birds. Current Biology Vol 21, No. 21, pp. 1794–
1799.

Blake, W. (2002). Drag reduction from formation flight - Flying aircraft in bird-like
formations could significantly increase range. Technical report. Wright-Patterson
Air Force Base, Ohio, USA.

Bloch, A. M., J. Baillieul, P. Crouch and J. Marsden (2007). Nonholonomic me-
chanics and control. Springer, ISBN 978-0-387-95535-3.

Bloch, A. M., N. E. Leonard and J. E. Mardsen (2000). Controlled Lagrangians
and the stabilization of mechanical systems I: the first matching theorem. IEEE
Transactions on Automatic Control Vol. 45, No. 12, pp. 2253–2270.

Borenstein, J. and Y. Koren (1991). The vector field histogram - fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and Automation
Vol. 7, No. 3, pp. 278–288.

Børhaug, E. and K. Y. Pettersen (2005a). Adaptive way-point tracking control for
underactuated autonomous vehicles. In: Proceedings of the 44th IEEE Conference
on Decision and Control. Seville, Spain.

Børhaug, E. and K. Y. Pettersen (2005b). Cross-track control for underactuated
autonomous vehicles. In: Proceedings of the 44th IEEE Conference on Decision
and Control. Seville, Spain.

Borrelli, F., T. Keviczky and G. J. Balas (2004). Collision-free UAV formation flight
using decentralized optimization and invariant sets. In: Proceedings of the 43rd
IEEE Conference on Decision and Control. Atlantis, Bahamas.

Boulton, M. P. W. (1864). On aërial locomotion. London: Bradbury & Evans, 11,
Bouviere Street.

Boulton, M. P. W. (1868). Aërial locomotion etcetera. Patent number No. 392.

Boyd, S. and S. S. Sastry (1986). Necessary and sufficient conditions for parameter
convergence in adaptive control. Automatica Vo. 22, No. 6, pp. 629–639.

Breivik, M. and T. I. Fossen (2005). Guidance-based path following for autonomous
underwater vehicles. In: Proceedings of the MTS/IEEE OCEANS. Washington,
DC, USA.

Breivik, M. and T. I. Fossen (2007). Applying missile guidance concepts to motion
control of marine craft. In: Proceedings of the 7th IFAC Conference on Control
Applications in Marine Systems. Bol, Croatia.

Breivik, M. and T. I. Fossen (2008). Guidance laws for planar motion control.
In: Proceedings of the 47th IEEE Conference on Decision and Control. Cancun,
Mexico.

115



Bibliography

Breivik, M. and T. I. Fossen (2009). Guidance laws for autonomous underwater
vehicles, underwater vehicles. In: Underwater vehicles (A. V. Inzartsev, Ed.).
Chap. 4, pp. 51–76. InTech, ISBN 978-953-7619-49-7.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation Vol. RA-2, No. 1, pp. 14–23.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Sys-
tems Vol. 6, pp. 3–15.

Brooks, R. A. (1991a). Intelligence without reason. In: Proceedings of the 12th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-91). Sydney, New
South Wales, Australia.

Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence
Vol. 47, pp. 139–159.

Bullo, F. and K. M. Lynch (2001). Kinematic controllability for decoupled tra-
jectory planning in underactuated mechanical systems. IEEE Transactions on
Robotics and Automation Vol. 17, No. 4, pp. 402–412.

Burdakov, O., P. Doherty, K. Holmberg, J. Kvarnström and P. Olsson (2010).
Relay positioning of unmanned aerial vehicle surveillance. International Journal
of Robotics Research Vol. 29, No. 8, pp. 1069–1087.

Campa, G., Y. Gu, B. Seanor, M. R. Napolitano, L. Pollini and M. L. Fravolini
(2007). Design and flight-testing of non-linear formation control laws. Control
Engineering Practice Vol. 15, pp. 1077–1092.

Cetin, O. and I. Zagli (2012). Continuous airborne communication relay approach
using unmanned aerial vehicles. Journal of Intelligent and Robotic Systems Vol.
64, No 1-4, pp. 549–562.

Chaillet, Antoine (2006). On the stability and robustness of nonlinear systems -
applications to cascades. PhD thesis. Université Paris Sud - LSS - Supélec, Orsay.

Charlet, B., J. Levine and R. Marino (1988). Dynamic feedback linearization with
application to aircraft control. In: Proceedings of the 27th IEEE Conference on
Decision and Control. Tampa, FL, USA.

Chunyu, J., Z. Qu, E. P. and M. Falash (2009). A new reactive target-tracking
control with obstacle avoidance in a dynamic environment. In: Proceedings of the
American Control Conference. St. Louis, MO, USA.

Cui, R., S. S. Ge, B. V. E. How and Y. S. Choo (2010). Leader-follower formation
control of underactuated autonomous underwater vehicles. Ocean Engineering
Vol. 37, pp. 1491–1502.

Dhananjay, N. and R. Kristiansen (2012). Guidance strategy for gradient search by
multiple UAVs. In: Proceedings of the AIAA Guidance, Navigation and Control
Conference. Minneapolis, MN, USA.

116

Bibliography

Breivik, M. and T. I. Fossen (2009). Guidance laws for autonomous underwater
vehicles, underwater vehicles. In: Underwater vehicles (A. V. Inzartsev, Ed.).
Chap. 4, pp. 51–76. InTech, ISBN 978-953-7619-49-7.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation Vol. RA-2, No. 1, pp. 14–23.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Sys-
tems Vol. 6, pp. 3–15.

Brooks, R. A. (1991a). Intelligence without reason. In: Proceedings of the 12th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-91). Sydney, New
South Wales, Australia.

Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence
Vol. 47, pp. 139–159.

Bullo, F. and K. M. Lynch (2001). Kinematic controllability for decoupled tra-
jectory planning in underactuated mechanical systems. IEEE Transactions on
Robotics and Automation Vol. 17, No. 4, pp. 402–412.

Burdakov, O., P. Doherty, K. Holmberg, J. Kvarnström and P. Olsson (2010).
Relay positioning of unmanned aerial vehicle surveillance. International Journal
of Robotics Research Vol. 29, No. 8, pp. 1069–1087.

Campa, G., Y. Gu, B. Seanor, M. R. Napolitano, L. Pollini and M. L. Fravolini
(2007). Design and flight-testing of non-linear formation control laws. Control
Engineering Practice Vol. 15, pp. 1077–1092.

Cetin, O. and I. Zagli (2012). Continuous airborne communication relay approach
using unmanned aerial vehicles. Journal of Intelligent and Robotic Systems Vol.
64, No 1-4, pp. 549–562.

Chaillet, Antoine (2006). On the stability and robustness of nonlinear systems -
applications to cascades. PhD thesis. Université Paris Sud - LSS - Supélec, Orsay.

Charlet, B., J. Levine and R. Marino (1988). Dynamic feedback linearization with
application to aircraft control. In: Proceedings of the 27th IEEE Conference on
Decision and Control. Tampa, FL, USA.

Chunyu, J., Z. Qu, E. P. and M. Falash (2009). A new reactive target-tracking
control with obstacle avoidance in a dynamic environment. In: Proceedings of the
American Control Conference. St. Louis, MO, USA.

Cui, R., S. S. Ge, B. V. E. How and Y. S. Choo (2010). Leader-follower formation
control of underactuated autonomous underwater vehicles. Ocean Engineering
Vol. 37, pp. 1491–1502.

Dhananjay, N. and R. Kristiansen (2012). Guidance strategy for gradient search by
multiple UAVs. In: Proceedings of the AIAA Guidance, Navigation and Control
Conference. Minneapolis, MN, USA.

116



Bibliography

Dixon, C. R. and E. W. Frew (2007). Cooperative electronic chaining using small
unmanned aircraft. In: Proceedings of the AIAA Infotech@Aerospace Conference
and Exhibit. Rohnert Park, CA, USA.

Dogan, A. and S. Venkataramanan (2005). Nonlinear control for reconfiguration of
unmanned-aerial-vehicle formation. Journal of Guidance, Control, and Dynamics
Vol. 28, No. 4, pp. 667–678.

Doman, D. B. and A. D. Ngo (2002). Dynamic inversion-based adap-
tive/reconfigurable control of the X-33 on ascent. Journal of Guidance, Control,
and Dynamics Vol. 25, No. 2, pp. 275–284.

Dornheim, M. (1992). Report pinpoints factors leading to the YF-22 crash. Aviation
Week and Space Technology Vol. 137, No. 19, pp. 53–54.

Dyer, S. A., Ed. (2001). Wiley survey of instrumentation and measurement. John
Wiley & Sons, ISBN 0-471-39484-X.

Egeland, O. and J. T. Gravdahl (2002). Modeling and simulation for automatic
control. Marine Cybernetics, Trondheim, Norway, ISBN 82-92356-01-0.

Etkin, B. (1972). Dynamics of atmospheric flight. Dover Publications, Inc., ISBN 0-
486-44522-4.

Fantoni, I. and R. Lozano (2002). Non-linear control for underactuated mechanical
systems. Springer-Verlag London, ISBN: 978-1-4471-1086-6.

Farrell, J., M. Sharma and M. Polycarpou (2005). Backstepping-based flight con-
trol with adaptive function approximation. Journal of Guidance, Control, and
Dynamics Vol. 28, No. 6, pp. 1089–1101.

Fax, J. A. and R. M. Murray (2004). Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control Vol. 49, No.
9, pp. 1465–1476.

Fierro, R. and F.L. Lewis (1997). Control of nonholonomic mobile robot: backstep-
ping kinematics into dynamics. Journal of Robotic Systems Vol. 14, No. 3, pp.
149–163.

Fierro, R., C. Belta, J. P. Desai and R. V. Kumar (2001). On controlling aircraft for-
mations. In: Proceedings of the 40th IEEE Conference on Decision and Control.
Orlando, FL, USA.

Fjellstad, O. (1994). Control of unmanned underwater vehicles in six degrees of free-
dom: A quaternion feedback approach. PhD thesis. Norges Tekniske Høgskole,
Trondheim, Norway.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons Ltd., ISBN: 978-1-119-99149-6.

117

Bibliography

Dixon, C. R. and E. W. Frew (2007). Cooperative electronic chaining using small
unmanned aircraft. In: Proceedings of the AIAA Infotech@Aerospace Conference
and Exhibit. Rohnert Park, CA, USA.

Dogan, A. and S. Venkataramanan (2005). Nonlinear control for reconfiguration of
unmanned-aerial-vehicle formation. Journal of Guidance, Control, and Dynamics
Vol. 28, No. 4, pp. 667–678.

Doman, D. B. and A. D. Ngo (2002). Dynamic inversion-based adap-
tive/reconfigurable control of the X-33 on ascent. Journal of Guidance, Control,
and Dynamics Vol. 25, No. 2, pp. 275–284.

Dornheim, M. (1992). Report pinpoints factors leading to the YF-22 crash. Aviation
Week and Space Technology Vol. 137, No. 19, pp. 53–54.

Dyer, S. A., Ed. (2001). Wiley survey of instrumentation and measurement. John
Wiley & Sons, ISBN 0-471-39484-X.

Egeland, O. and J. T. Gravdahl (2002). Modeling and simulation for automatic
control. Marine Cybernetics, Trondheim, Norway, ISBN 82-92356-01-0.

Etkin, B. (1972). Dynamics of atmospheric flight. Dover Publications, Inc., ISBN 0-
486-44522-4.

Fantoni, I. and R. Lozano (2002). Non-linear control for underactuated mechanical
systems. Springer-Verlag London, ISBN: 978-1-4471-1086-6.

Farrell, J., M. Sharma and M. Polycarpou (2005). Backstepping-based flight con-
trol with adaptive function approximation. Journal of Guidance, Control, and
Dynamics Vol. 28, No. 6, pp. 1089–1101.

Fax, J. A. and R. M. Murray (2004). Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control Vol. 49, No.
9, pp. 1465–1476.

Fierro, R. and F.L. Lewis (1997). Control of nonholonomic mobile robot: backstep-
ping kinematics into dynamics. Journal of Robotic Systems Vol. 14, No. 3, pp.
149–163.

Fierro, R., C. Belta, J. P. Desai and R. V. Kumar (2001). On controlling aircraft for-
mations. In: Proceedings of the 40th IEEE Conference on Decision and Control.
Orlando, FL, USA.

Fjellstad, O. (1994). Control of unmanned underwater vehicles in six degrees of free-
dom: A quaternion feedback approach. PhD thesis. Norges Tekniske Høgskole,
Trondheim, Norway.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons Ltd., ISBN: 978-1-119-99149-6.

117



Bibliography

Fossen, T. I., M. Breivik and R. Skjetne (2003). Line-of-sight path following of
underactuated marine craft. In: Proceedings of the 6th IFAC MCMC. Girona,
Spain.

Ge, S. S. and Y. J. Cui (2000). New potential functions for mobile robot path
planning. IEEE Transactions on Robotics and Automation Vol. 16, No. 5, pp.
615–620.

Giulietti, F., L. Pollini and M. Innocenti (2000). Autonomous formation flight.
IEEE Control System Magazine Vol. 20, No. 6, pp. 34–44.

Godhavn, J. M. and O. Egeland (1995). Attitude control of an underactuated satel-
lite. In: Proceedings of the 34th IEEE Conference on Decision and Control. New
Orleans, LA, USA.

Goldman, P. (1980). Flocking as a possible predator defense in dark-eyed juncos.
The Wilson Bulletin Vol. 92, No. 1, pp. 88–95.

Goodrich, M. A., J. L. Cooper, J. A. Adams, C. Humphrey, R. Zeeman and B. G.
Buss (2007). Using a mini-UAV to support wilderness search and rescue: practices
for human-robot teaming. In: IEEE International Workshop on Safety, Security
and Rescue Robotics. Rome, Italy.

Grip, H. F., T. I. Fossen, T. A. Johansen and A. Saberi (2013). Nonlinear observer
for GNSS-aided inertial navigation with quaternion-based attitude estimation.
In: Proceedings of the American Control Conference. Washington, DC, USA.

Grøtli, E. (2010). Robust stability and control of spacecraft formations. PhD thesis.
Norwegian University of Science and Technology, Trondheim, Norway.

Guelman, M. (1971). A qualitative study of proportional navigation. IEEE Trans-
action on Aerospace and Electronic Systems Vol. 7, No. 4, pp. 637–643.

Guerrero, J. A., P. Castillo, S. Salazar and R. Lozano (2012). Mini rotorcraft flight
formation control using bounded inputs. Journal of Intelligent and Robotic Sys-
tems Vol 65, pp. 175–186.

Hahn, W. (1967). Stability of Motion. Springer-Verlag Berlin Heidelberg New York,
ISBN: 978-3-642-50087-9.

Hamilton, W. R. (1844). On quaternions: or a new system of imaginaries in algebra.
Philosophical Magazine 25 pp. pp. 489–495.

Hao, Y., A. Davari and A. Manesh (2005). Differential flatness-based trajectory
planning for multiple unmanned aerial vehicles using mixed-integer linear pro-
gramming. In: Proceedings of the American Control Conference. Portland, OR,
USA.

Hauser, J., S. Sastry and G. Meyer (1992). Nonlinear control design for slightly
non-minimum phase systems: application to V/STOL aircraft. Automatica Vol.
28, No. 4, pp. 665–679.

118

Bibliography

Fossen, T. I., M. Breivik and R. Skjetne (2003). Line-of-sight path following of
underactuated marine craft. In: Proceedings of the 6th IFAC MCMC. Girona,
Spain.

Ge, S. S. and Y. J. Cui (2000). New potential functions for mobile robot path
planning. IEEE Transactions on Robotics and Automation Vol. 16, No. 5, pp.
615–620.

Giulietti, F., L. Pollini and M. Innocenti (2000). Autonomous formation flight.
IEEE Control System Magazine Vol. 20, No. 6, pp. 34–44.

Godhavn, J. M. and O. Egeland (1995). Attitude control of an underactuated satel-
lite. In: Proceedings of the 34th IEEE Conference on Decision and Control. New
Orleans, LA, USA.

Goldman, P. (1980). Flocking as a possible predator defense in dark-eyed juncos.
The Wilson Bulletin Vol. 92, No. 1, pp. 88–95.

Goodrich, M. A., J. L. Cooper, J. A. Adams, C. Humphrey, R. Zeeman and B. G.
Buss (2007). Using a mini-UAV to support wilderness search and rescue: practices
for human-robot teaming. In: IEEE International Workshop on Safety, Security
and Rescue Robotics. Rome, Italy.

Grip, H. F., T. I. Fossen, T. A. Johansen and A. Saberi (2013). Nonlinear observer
for GNSS-aided inertial navigation with quaternion-based attitude estimation.
In: Proceedings of the American Control Conference. Washington, DC, USA.

Grøtli, E. (2010). Robust stability and control of spacecraft formations. PhD thesis.
Norwegian University of Science and Technology, Trondheim, Norway.

Guelman, M. (1971). A qualitative study of proportional navigation. IEEE Trans-
action on Aerospace and Electronic Systems Vol. 7, No. 4, pp. 637–643.

Guerrero, J. A., P. Castillo, S. Salazar and R. Lozano (2012). Mini rotorcraft flight
formation control using bounded inputs. Journal of Intelligent and Robotic Sys-
tems Vol 65, pp. 175–186.

Hahn, W. (1967). Stability of Motion. Springer-Verlag Berlin Heidelberg New York,
ISBN: 978-3-642-50087-9.

Hamilton, W. R. (1844). On quaternions: or a new system of imaginaries in algebra.
Philosophical Magazine 25 pp. pp. 489–495.

Hao, Y., A. Davari and A. Manesh (2005). Differential flatness-based trajectory
planning for multiple unmanned aerial vehicles using mixed-integer linear pro-
gramming. In: Proceedings of the American Control Conference. Portland, OR,
USA.

Hauser, J., S. Sastry and G. Meyer (1992). Nonlinear control design for slightly
non-minimum phase systems: application to V/STOL aircraft. Automatica Vol.
28, No. 4, pp. 665–679.

118



Bibliography

Honeywell and Lockheed Martin (1996). Application of multivariable control the-
ory to aircraft control laws. final report: multivariable control design guidelines.
Technical report. Honeywell TC. and Lockheed Martin Skunk Works and Lock-
heed Martin TAS.

Hovakimyan, N. and C. Cao (2010). L1 Adaptive Control Theory: Guaranteed Ro-
bustness with Fast Adaptation. Society for Industrial and Applied Mathematics,
ISBN 978-0-89717-04-4.

Hovakimyan, N., C. Cao, E. Kharisov, E. Xargay and I. M. Gregory (2011). L1

adaptive control for safety-critical systems. IEEE Control Systems Magazine Vol.
31, No. 5, pp. 54–104.

Härkegård, O. and S. T. Glad (2000). A backstepping design for flight path angle
control. In: Proceedings of the 39th Conference on Decision and Control. Sydney,
New South Wales, Australia.

Hua, M-D., T. Hamel, P. Morin and C. Samson (2009). A control approach for
thrust-propelled underactuated vehicles and its application to VTOL drones.
IEEE Transactions on Automatic Control Vol. 54, No. 8, pp. 1837–1853.

Huang, Y., W. C. Hoffmann, Y. Lan, W. Wu and B. K. Fritz (2009). Development
of a spray system for an unmanned aerial vehicle platform. Applied Engineering
in Agriculture Vol. 25, No. 6, pp. 803–809.

Ihle, I. F., J. Jouffroy and T. I. Fossen (2006). Formation control of marine surface
craft: A lagrangian approach. IEEE Journal of Oceanic Engineering Vol. 31,
No. 4, pp. 922–934.

Ito, D., J. Georgie, J. Valasek and D. T. Ward (2002). Reentry vehicle flight controls
design guidelines: dynamic inversion. Technical report. Flight Simulation Labo-
ratory, Texas Engineering Experiment Station, Texas A&M University, NASA.

Jadbabaie, A., J. Lin and A. S. Morse (2003). Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control Vol. 48, No. 6, pp. 988–1001.

Jeyaraman, S., A. Tsourdos, R. Zbikowski and B. White (2005). Formal techniques
for the modelling and validation of a co-operating UAV team that uses Dubins set
for path planning. In: Proceedings of the American Control Conference. Portland,
OR, USA.

Jiang, Z., E. Lefeber and H. Nijmeijer (2001). Saturated stabilization and tracking
of a nonholonomic mobile robot. Systems & Control Letters Vol. 42, pp. 327–332.

Johnson, E. and A. J. Calise (2000). Pseudo-control hedging: a new method for
adaptive control. In: Proceedings of the Workshop on Advances in Guidance and
Control Technology. Redstone Arsenal, Alabama, USA.

119

Bibliography

Honeywell and Lockheed Martin (1996). Application of multivariable control the-
ory to aircraft control laws. final report: multivariable control design guidelines.
Technical report. Honeywell TC. and Lockheed Martin Skunk Works and Lock-
heed Martin TAS.

Hovakimyan, N. and C. Cao (2010). L1 Adaptive Control Theory: Guaranteed Ro-
bustness with Fast Adaptation. Society for Industrial and Applied Mathematics,
ISBN 978-0-89717-04-4.

Hovakimyan, N., C. Cao, E. Kharisov, E. Xargay and I. M. Gregory (2011). L1

adaptive control for safety-critical systems. IEEE Control Systems Magazine Vol.
31, No. 5, pp. 54–104.

Härkegård, O. and S. T. Glad (2000). A backstepping design for flight path angle
control. In: Proceedings of the 39th Conference on Decision and Control. Sydney,
New South Wales, Australia.

Hua, M-D., T. Hamel, P. Morin and C. Samson (2009). A control approach for
thrust-propelled underactuated vehicles and its application to VTOL drones.
IEEE Transactions on Automatic Control Vol. 54, No. 8, pp. 1837–1853.

Huang, Y., W. C. Hoffmann, Y. Lan, W. Wu and B. K. Fritz (2009). Development
of a spray system for an unmanned aerial vehicle platform. Applied Engineering
in Agriculture Vol. 25, No. 6, pp. 803–809.

Ihle, I. F., J. Jouffroy and T. I. Fossen (2006). Formation control of marine surface
craft: A lagrangian approach. IEEE Journal of Oceanic Engineering Vol. 31,
No. 4, pp. 922–934.

Ito, D., J. Georgie, J. Valasek and D. T. Ward (2002). Reentry vehicle flight controls
design guidelines: dynamic inversion. Technical report. Flight Simulation Labo-
ratory, Texas Engineering Experiment Station, Texas A&M University, NASA.

Jadbabaie, A., J. Lin and A. S. Morse (2003). Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control Vol. 48, No. 6, pp. 988–1001.

Jeyaraman, S., A. Tsourdos, R. Zbikowski and B. White (2005). Formal techniques
for the modelling and validation of a co-operating UAV team that uses Dubins set
for path planning. In: Proceedings of the American Control Conference. Portland,
OR, USA.

Jiang, Z., E. Lefeber and H. Nijmeijer (2001). Saturated stabilization and tracking
of a nonholonomic mobile robot. Systems & Control Letters Vol. 42, pp. 327–332.

Johnson, E. and A. J. Calise (2000). Pseudo-control hedging: a new method for
adaptive control. In: Proceedings of the Workshop on Advances in Guidance and
Control Technology. Redstone Arsenal, Alabama, USA.

119



Bibliography

Johnson, E. N., A. Wu, J. C. Neidhoefer, S. K. Kannan and M. A. Turbe (2008).
Flight-test results of autonomous airplane transitions between steady-level and
hovering flight. Journal of Guidance, Control, and Dynamics Vol. 31, No. 2, pp.
358–370.

Johnson, E. N. and A. J. Calise (2001). Neural network adaptive control of sys-
tems with input saturation. In: Proceedings of the American Control Conference.
Arlington, VA, USA.

Johnson, E. N. and A. J. Calise (2002). A six degree-of-freedom adaptive flight
control architecture for trajectory following. In: AIAA Guidance, Navigation,
and Control Conference and Exhibit. Monterey, CA, USA.

Ju, H. and C. Tsai (2007). Longitudinal axis flight control law design by adaptive
backstepping. IEEE Transactions on Aerospace and Electronic Systems Vol. 43,
No. 1, pp. 311–329.

Kaminer, I., A. Pascoal, E. Hallberg and C. Silvestre (1998). Trajectory tracking for
autonomous vehicles: an integrated approach to guidance and control. Journal
of Guidance, Control, and Dynamics Vol. 21, No. 1, pp. 29–38.

Kanayama, Y. J., Y. Kimura, F. Miyazaki and T. Noguchi (1990). A stable tracking
control method for an autonomous mobile robot. In: Proceedings of the IEEE
International Conference on Robotics and Automation.

Khalil, H. K. (2002). Nonlinear systems. 3rd ed., Prentice Hall, ISBN 0-13-067389-7.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research Vol 5. No. 1, pp. 90–98.

Kim, J. and P. K. Khosla (1992). Real-time obstacle avoidance using harmonic
potential functions. IEEE Transactions on Robotics and Automation Vol. 8,
No. 3, pp. 338–349.

Kingston, D. B. and R. W. Beard (2004). Real-time attitude and position estima-
tion for small UAVs using low-cost sensors. In: AIAA 3rd Unmanned Unlimited
Technical Conference, Workshop and Exhibit.

Koren, Y. and J. Borenstein (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In: Proceedings of the IEEE Conference
on Robotics and Automation. Sacramento, CA, USA.

Kristiansen, R. (2008). Dynamic synchronization of spacecraft. PhD thesis. Norwe-
gian University of Science and Technology, Trondheim, Norway.

Kristiansen, R., A. Loría, A. Chaillet and P. J. Nicklasson (2009a). Spacecraft
relative rotation tracking without angular velocity measurements. Automatica
Vol. 45, No. 3, pp. 750–756.

120

Bibliography

Johnson, E. N., A. Wu, J. C. Neidhoefer, S. K. Kannan and M. A. Turbe (2008).
Flight-test results of autonomous airplane transitions between steady-level and
hovering flight. Journal of Guidance, Control, and Dynamics Vol. 31, No. 2, pp.
358–370.

Johnson, E. N. and A. J. Calise (2001). Neural network adaptive control of sys-
tems with input saturation. In: Proceedings of the American Control Conference.
Arlington, VA, USA.

Johnson, E. N. and A. J. Calise (2002). A six degree-of-freedom adaptive flight
control architecture for trajectory following. In: AIAA Guidance, Navigation,
and Control Conference and Exhibit. Monterey, CA, USA.

Ju, H. and C. Tsai (2007). Longitudinal axis flight control law design by adaptive
backstepping. IEEE Transactions on Aerospace and Electronic Systems Vol. 43,
No. 1, pp. 311–329.

Kaminer, I., A. Pascoal, E. Hallberg and C. Silvestre (1998). Trajectory tracking for
autonomous vehicles: an integrated approach to guidance and control. Journal
of Guidance, Control, and Dynamics Vol. 21, No. 1, pp. 29–38.

Kanayama, Y. J., Y. Kimura, F. Miyazaki and T. Noguchi (1990). A stable tracking
control method for an autonomous mobile robot. In: Proceedings of the IEEE
International Conference on Robotics and Automation.

Khalil, H. K. (2002). Nonlinear systems. 3rd ed., Prentice Hall, ISBN 0-13-067389-7.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. The International Journal of Robotics Research Vol 5. No. 1, pp. 90–98.

Kim, J. and P. K. Khosla (1992). Real-time obstacle avoidance using harmonic
potential functions. IEEE Transactions on Robotics and Automation Vol. 8,
No. 3, pp. 338–349.

Kingston, D. B. and R. W. Beard (2004). Real-time attitude and position estima-
tion for small UAVs using low-cost sensors. In: AIAA 3rd Unmanned Unlimited
Technical Conference, Workshop and Exhibit.

Koren, Y. and J. Borenstein (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In: Proceedings of the IEEE Conference
on Robotics and Automation. Sacramento, CA, USA.

Kristiansen, R. (2008). Dynamic synchronization of spacecraft. PhD thesis. Norwe-
gian University of Science and Technology, Trondheim, Norway.

Kristiansen, R., A. Loría, A. Chaillet and P. J. Nicklasson (2009a). Spacecraft
relative rotation tracking without angular velocity measurements. Automatica
Vol. 45, No. 3, pp. 750–756.

120



Bibliography

Kristiansen, R., E. Oland and D. Narayanachar (2012). Operational concepts in
UAV formation monitoring of industrial emissions. In: Proceedings of the 3rd
IEEE International Conference on Cognitive Infocommunications. Kosice, Slo-
vakia.

Kristiansen, R., P. J. Nicklasson and J. T. Gravdahl (2008a). Spacecraft coor-
dination control in 6DOF: Integrator backstepping vs. passivity-based control.
Automatica Vol. 44, No. 11, pp. 2896–2901.

Kristiansen, R., P. J. Nicklasson and J. T. Gravdahl (2009b). Satellite attitude con-
trol by quaternion-based backstepping. IEEE Transactions on Control Systems
Technology Vol. 17, No. 1, pp. 227–232.

Kristiansen, R., R. Schlanbusch and E. Oland (2011). PD+ based spacecraft at-
titude tracking with magnetometer rate feedback. In: Proceedings of the 50th
IEEE Conference on Decision and Control. Orlando, FL, USA.

Kristiansen, R., T. R. Krogstad, P. J. Nicklasson and J. T. Gravdahl (2008b).
PID+ tracking in a leader-follower spacecraft formation. In: Proceedings of the
3rd International Symposium on Formation Flying, Missions and Technologies
(ISFF). Estec, Holland.

Krstić, M., I. Kanellakopoulos and P. V. Kokotović (1995). Nonlinear and adaptive
control design. John Wiley & Sons, inc., ISBN 0-471-12732-9.

Kuroki, Y., G. S. Young and S. E. Haupt (2010). UAV navigation by an expert
system for contaminant mapping with a genetic algorithm. Expert Systems with
Applications Vol. 37, No. 6, pp. 4687–4697.

Kyriakopoulos, K. J., P. Kakambouras and N. J. Krikelis (1995). Potential fields
for nonholonomic vehicles. In: Proceedings of the 1995 IEEE Symposium on In-
telligent Control. Monterey, CA, USA.

Kyrkjebø E. and K. Y. Pettersen (2005). Output synchronization control of Euler-
Lagrange systems with nonlinear damping terms. In: Proceedings of the 44th
IEEE Conference on Decision and Control. Seville, Spain.

Lane, S. H. and R. F. Stengel (1988). Flight control design using non-linear inverse
dynamics. Automatica Vol. 24, No. 4, pp. 471–483.

Langelaan, J. W., N. Alley and J. Neidhoefer (2010). Wind field estimation for small
unmanned aerial vehicles. In: Proceedings of the AIAA Guidance, Navigation and
Control Conference. Toronto, Canada.

Lavretsky, E. and K. A. Wise (2013). Robust and adaptive control. Advanced Text-
books in Control and Signal Processing, Springer-Verlag London, ISBN 978-1-
4471-4395-6.

Lavretsky, E. and N. Hovakimyan (2004). Positive μ-modification for stable adap-
tion in the presence of input constraints. In: Proceedings of the 2004 American
Control Conference. Boston, MA, USA.

121

Bibliography

Kristiansen, R., E. Oland and D. Narayanachar (2012). Operational concepts in
UAV formation monitoring of industrial emissions. In: Proceedings of the 3rd
IEEE International Conference on Cognitive Infocommunications. Kosice, Slo-
vakia.

Kristiansen, R., P. J. Nicklasson and J. T. Gravdahl (2008a). Spacecraft coor-
dination control in 6DOF: Integrator backstepping vs. passivity-based control.
Automatica Vol. 44, No. 11, pp. 2896–2901.

Kristiansen, R., P. J. Nicklasson and J. T. Gravdahl (2009b). Satellite attitude con-
trol by quaternion-based backstepping. IEEE Transactions on Control Systems
Technology Vol. 17, No. 1, pp. 227–232.

Kristiansen, R., R. Schlanbusch and E. Oland (2011). PD+ based spacecraft at-
titude tracking with magnetometer rate feedback. In: Proceedings of the 50th
IEEE Conference on Decision and Control. Orlando, FL, USA.

Kristiansen, R., T. R. Krogstad, P. J. Nicklasson and J. T. Gravdahl (2008b).
PID+ tracking in a leader-follower spacecraft formation. In: Proceedings of the
3rd International Symposium on Formation Flying, Missions and Technologies
(ISFF). Estec, Holland.

Krstić, M., I. Kanellakopoulos and P. V. Kokotović (1995). Nonlinear and adaptive
control design. John Wiley & Sons, inc., ISBN 0-471-12732-9.

Kuroki, Y., G. S. Young and S. E. Haupt (2010). UAV navigation by an expert
system for contaminant mapping with a genetic algorithm. Expert Systems with
Applications Vol. 37, No. 6, pp. 4687–4697.

Kyriakopoulos, K. J., P. Kakambouras and N. J. Krikelis (1995). Potential fields
for nonholonomic vehicles. In: Proceedings of the 1995 IEEE Symposium on In-
telligent Control. Monterey, CA, USA.

Kyrkjebø E. and K. Y. Pettersen (2005). Output synchronization control of Euler-
Lagrange systems with nonlinear damping terms. In: Proceedings of the 44th
IEEE Conference on Decision and Control. Seville, Spain.

Lane, S. H. and R. F. Stengel (1988). Flight control design using non-linear inverse
dynamics. Automatica Vol. 24, No. 4, pp. 471–483.

Langelaan, J. W., N. Alley and J. Neidhoefer (2010). Wind field estimation for small
unmanned aerial vehicles. In: Proceedings of the AIAA Guidance, Navigation and
Control Conference. Toronto, Canada.

Lavretsky, E. and K. A. Wise (2013). Robust and adaptive control. Advanced Text-
books in Control and Signal Processing, Springer-Verlag London, ISBN 978-1-
4471-4395-6.

Lavretsky, E. and N. Hovakimyan (2004). Positive μ-modification for stable adap-
tion in the presence of input constraints. In: Proceedings of the 2004 American
Control Conference. Boston, MA, USA.

121



Bibliography

Lee, D., T. C. Burg, B. Xian and D. M. Dawson (2007). Output feedback tracking
control of an underactuated quad-rotor UAV. In: Proceedings of the American
Control Conference. New York, NY, USA.

Lee, T. and Y. Kim (2001). Nonlinear adaptive flight control using backstepping
and neural networks controller. Journal of Guidance, Control and Dynamics Vol.
24, No. 4, pp. 675–682.

Lee, T., M. Leok and N. H. McClamroch (2010). Geometric tracking control of
a quadrotor UAV on SE(3). In: Proceedings of the 49th IEEE Conference on
Decision and Control. Atlanta, GA, USA.

Leonard, N. E. (1995). Periodic forcing, dynamics and control of underactuated
spacecraft and underwater vehicles. In: Proceedings of 34th IEEE Conference on
Decision and Control. New Orleans, LA, USA.

Leonessa, A., W. M. Haddad and T. Hayakawa (2001). Adaptive tracking for non-
linear systems with control constraints. In: Proceedings of the American Control
Conference. Arlington, VA, USA.

Lewis, F. L., H. Zhang, K. Hengster-Movric and A. Das (2014). Cooperative control
of multi-agent systems. Springer, ISBN 978-1-4471-5573-7.

Lissaman, P.B.S. and C. A. Shollenberger (1970). Formation flight of birds. Science
Vol. 168, No. 3934, pp. 1003–1005.

López-Martínez, M., J. Á. Acosta and J.M. Cano (2010). Non-linear sliding mode
surfaces for a class of underactuated mechanical systems. IET Control Theory
and Applications Vol. 4, No. 10, pp. 2195–2204.

Loría, A. (2013). Uniform global position feedback tracking control of mechanical
systems without friction. In: Proceedings of the American Control Conference.
Washington, DC, USA.

Loría, A. and E. Panteley (2002). Uniform exponential stability of linear time-
varying systems: revisited. System & Control Letters Vol. 47, No. 1, pp. 13–24.

Loría, A. and E. Panteley (2005). Cascaded nonlinear time-varying systems: anal-
ysis and design. In: Advanced Topics in Control Systems Theory. Vol. 311 of
Lecture Notes in Control and Information Sciences. Chap. 2, pp. 23–64. Springer
Verlag, ISBN 1-85233-923-3.

Luyckx, L., M. Loccufier and E. Noldus (2001). On the design of nonlinear con-
trollers for Euler-Lagrange systems. Nonlinear Dynamics and Systems Theory
Vol. 1, No. 1, pp. 99–110.

MacKunis, W., P. M. Patre, M. K. Kaiser and W. E. Dixon (2010). Asymptotic
tracking for aircraft via robust and adaptive dynamic inversion methods. IEEE
Transactions on Control Systems Technology Vol. 18, No. 6, pp. 1448–1456.

Marconi, L. and A. Isidori (2000). Robust global stabilization of a class of uncertain
feedforward nonlinear systems. Systems & Control Letters 41, pp. 281–290.

122

Bibliography

Lee, D., T. C. Burg, B. Xian and D. M. Dawson (2007). Output feedback tracking
control of an underactuated quad-rotor UAV. In: Proceedings of the American
Control Conference. New York, NY, USA.

Lee, T. and Y. Kim (2001). Nonlinear adaptive flight control using backstepping
and neural networks controller. Journal of Guidance, Control and Dynamics Vol.
24, No. 4, pp. 675–682.

Lee, T., M. Leok and N. H. McClamroch (2010). Geometric tracking control of
a quadrotor UAV on SE(3). In: Proceedings of the 49th IEEE Conference on
Decision and Control. Atlanta, GA, USA.

Leonard, N. E. (1995). Periodic forcing, dynamics and control of underactuated
spacecraft and underwater vehicles. In: Proceedings of 34th IEEE Conference on
Decision and Control. New Orleans, LA, USA.

Leonessa, A., W. M. Haddad and T. Hayakawa (2001). Adaptive tracking for non-
linear systems with control constraints. In: Proceedings of the American Control
Conference. Arlington, VA, USA.

Lewis, F. L., H. Zhang, K. Hengster-Movric and A. Das (2014). Cooperative control
of multi-agent systems. Springer, ISBN 978-1-4471-5573-7.

Lissaman, P.B.S. and C. A. Shollenberger (1970). Formation flight of birds. Science
Vol. 168, No. 3934, pp. 1003–1005.

López-Martínez, M., J. Á. Acosta and J.M. Cano (2010). Non-linear sliding mode
surfaces for a class of underactuated mechanical systems. IET Control Theory
and Applications Vol. 4, No. 10, pp. 2195–2204.

Loría, A. (2013). Uniform global position feedback tracking control of mechanical
systems without friction. In: Proceedings of the American Control Conference.
Washington, DC, USA.

Loría, A. and E. Panteley (2002). Uniform exponential stability of linear time-
varying systems: revisited. System & Control Letters Vol. 47, No. 1, pp. 13–24.

Loría, A. and E. Panteley (2005). Cascaded nonlinear time-varying systems: anal-
ysis and design. In: Advanced Topics in Control Systems Theory. Vol. 311 of
Lecture Notes in Control and Information Sciences. Chap. 2, pp. 23–64. Springer
Verlag, ISBN 1-85233-923-3.

Luyckx, L., M. Loccufier and E. Noldus (2001). On the design of nonlinear con-
trollers for Euler-Lagrange systems. Nonlinear Dynamics and Systems Theory
Vol. 1, No. 1, pp. 99–110.

MacKunis, W., P. M. Patre, M. K. Kaiser and W. E. Dixon (2010). Asymptotic
tracking for aircraft via robust and adaptive dynamic inversion methods. IEEE
Transactions on Control Systems Technology Vol. 18, No. 6, pp. 1448–1456.

Marconi, L. and A. Isidori (2000). Robust global stabilization of a class of uncertain
feedforward nonlinear systems. Systems & Control Letters 41, pp. 281–290.

122



Bibliography

Mei, J., W. Ren and G. Ma (2011). Distributed coordinated tracking with a dynamic
leader for multiple Euler-Lagrange systems. IEEE Transactions on Automatic
Control Vol. 56, No. 6, pp. 1415–1421.

Morelli, E. A. (1998). Global nonlinear parametric modeling with application to F-
16 aerodynamics. In: Proceedings of the American Control Conference. Philadel-
phia, PA, USA.

Murray, R. M. (1999). Geometric approaches to control in the presence of magni-
tude and rate saturations. Technical Report 99-001. Division of Engineering and
Applied Science, California Institute of Technology.

Murtaugh, S. A. and H. E. Criel (1966). Fundamentals of proportional navigation.
IEEE Spectrum Vol. 3, No. 12, pp. 75–85.

Nelson, D. R., D. B. Barber, T. W. McLain and R. W. Beard (2007). Vector field
path following for miniature air vehicles. IEEE Transactions on Robotics Vol.
23, No. 3, pp. 519–529.

Ngo, Anhtuan D. and David B. Doman (2001). Dynamic inversion-based adap-
tive/reconfigurable control of the X-33 on ascent. In: Proceedings of the IEEE
Aerospace Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013a). Collision and terrain avoidance for UAVs
using the potential field method. In: Proceedings of the 34th IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013b). Quaternion based attitude control for a
fixed-wing UAV using backstepping. In: Proceedings of the 34th IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013c). Real-time particle tracking using a forma-
tion of UAVs. In: Proceedings of the 2nd RED-UAS, Workshop on Research,
Education and Development of Unmanned Aerial Systems. Compiegne, France.

Oland, E. and R. Kristiansen (2013d). Underactuated translational control of a
rigid spacecraft. In: Proceedings of the 34th IEEE Aerospace Conference. Big
Sky, MT, USA.

Oland, E. and R. Kristiansen (2014a). Adaptive flight control with constrained
actuation. In: Proceedings of the American Control Conference. Portland, OR,
USA.

Oland, E. and R. Kristiansen (2014b). A decoupled approach for flight control.
Submitted to Journal of Guidance, Control, and Dynamics.

Oland, E. and R. Kristiansen (2014c). Trajectory tracking of an underactuated
fixed-wing UAV. In: Proceedings of the ICNPAA Congress on Mathematical prob-
lems in engineering, aerospace and sciences. Narvik, Norway.

123

Bibliography

Mei, J., W. Ren and G. Ma (2011). Distributed coordinated tracking with a dynamic
leader for multiple Euler-Lagrange systems. IEEE Transactions on Automatic
Control Vol. 56, No. 6, pp. 1415–1421.

Morelli, E. A. (1998). Global nonlinear parametric modeling with application to F-
16 aerodynamics. In: Proceedings of the American Control Conference. Philadel-
phia, PA, USA.

Murray, R. M. (1999). Geometric approaches to control in the presence of magni-
tude and rate saturations. Technical Report 99-001. Division of Engineering and
Applied Science, California Institute of Technology.

Murtaugh, S. A. and H. E. Criel (1966). Fundamentals of proportional navigation.
IEEE Spectrum Vol. 3, No. 12, pp. 75–85.

Nelson, D. R., D. B. Barber, T. W. McLain and R. W. Beard (2007). Vector field
path following for miniature air vehicles. IEEE Transactions on Robotics Vol.
23, No. 3, pp. 519–529.

Ngo, Anhtuan D. and David B. Doman (2001). Dynamic inversion-based adap-
tive/reconfigurable control of the X-33 on ascent. In: Proceedings of the IEEE
Aerospace Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013a). Collision and terrain avoidance for UAVs
using the potential field method. In: Proceedings of the 34th IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013b). Quaternion based attitude control for a
fixed-wing UAV using backstepping. In: Proceedings of the 34th IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E. and R. Kristiansen (2013c). Real-time particle tracking using a forma-
tion of UAVs. In: Proceedings of the 2nd RED-UAS, Workshop on Research,
Education and Development of Unmanned Aerial Systems. Compiegne, France.

Oland, E. and R. Kristiansen (2013d). Underactuated translational control of a
rigid spacecraft. In: Proceedings of the 34th IEEE Aerospace Conference. Big
Sky, MT, USA.

Oland, E. and R. Kristiansen (2014a). Adaptive flight control with constrained
actuation. In: Proceedings of the American Control Conference. Portland, OR,
USA.

Oland, E. and R. Kristiansen (2014b). A decoupled approach for flight control.
Submitted to Journal of Guidance, Control, and Dynamics.

Oland, E. and R. Kristiansen (2014c). Trajectory tracking of an underactuated
fixed-wing UAV. In: Proceedings of the ICNPAA Congress on Mathematical prob-
lems in engineering, aerospace and sciences. Narvik, Norway.

123



Bibliography

Oland, E., R. Kristiansen and P. J. Nicklasson (2010). Spacecraft formation re-
configuration with plume avoidance. In: Proceedings of the 31st IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E., R. Schlanbusch and R. Kristiansen (2013a). Underactuated waypoint
tracking of a fixed-wing UAV. In: Proceedings of the 2nd RED-UAS, Workshop on
Research, Education and Development of Unmanned Aerial Systems. Compiegne,
France.

Oland, E., T. S. Andersen and R. Kristiansen (2013b). Underactuated control of
quadrotors with collision avoidance. In: Proceedings of the 2nd RED-UAS, Work-
shop on Research, Education and Development of Unmanned Aerial Systems.
Compiegne, France.

Oland, E., T. S. Andersen and R. Kristiansen (2014a). Actuator desaturation
for a fixed-wing UAV using speed modification. In: Proceedings of the ICN-
PAA Congress on Mathematical problems in engineering, aerospace and sciences.
Narvik, Norway.

Oland, E., T. S. Andersen and R. Kristiansen (2014b). Subsumption architecture
applied to flight control using composite rotations. Submitted to Automatica.

Olfati-Saber, R., A. Fax and R. M. Murray (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE Vol. 95, No. 1, pp.
215–233.

Olfati-Saber, Reza (2001). Nonlinear control of underactuated mechanical systems
with application to robotics and aerospace vehicles. PhD thesis. Massachusetts
Institute of Technology, Cambridge, MA, USA.

Ortega, R., A. Loría, P. J. Nicklasson and H. Sira-Ramírez (1998). Passivity-based
control of Euler-Lagrange systems: Mechanical, electrical and electromechanical
applications. ISBN 978-1-85233-016-3. Springer-Verlag, London.

Ortega, R. and M. W. Spong (1989). Adaptive motion control of rigid robots: A
tutorial. Automatica Vol. 25, pp. 877–888.

Osborne, J. and R. Rysdyk (2005). Waypoint guidance for small UAVs in wind. In:
Proceedings of the AIAA Infotech@Aerospace. Arlington, VA, USA.

Paden, B. and R. Panja (1988). Globally asymptotically stable ’PD+’ controller
for robot manipulators. International Journal of Control Vol. 47, No. 6, pp.
1697–1712.

Palumbo, N. F., R. A. Blauwkamp and J. M. Lloyd (2010). Modern homing missile
guidance theory and techniques. John Hopkins APL Technical Digest Vol. 29,
No. 1, pp. 42–59.

Panteley, E., A. Loría and A. Teel (2001). Relaxed persistency of excitation for
uniform asymptotic stability. IEEE Transactions on Automatic Control Vol. 46,
No. 12, pp. 1874–1886.

124

Bibliography

Oland, E., R. Kristiansen and P. J. Nicklasson (2010). Spacecraft formation re-
configuration with plume avoidance. In: Proceedings of the 31st IEEE Aerospace
Conference. Big Sky, MT, USA.

Oland, E., R. Schlanbusch and R. Kristiansen (2013a). Underactuated waypoint
tracking of a fixed-wing UAV. In: Proceedings of the 2nd RED-UAS, Workshop on
Research, Education and Development of Unmanned Aerial Systems. Compiegne,
France.

Oland, E., T. S. Andersen and R. Kristiansen (2013b). Underactuated control of
quadrotors with collision avoidance. In: Proceedings of the 2nd RED-UAS, Work-
shop on Research, Education and Development of Unmanned Aerial Systems.
Compiegne, France.

Oland, E., T. S. Andersen and R. Kristiansen (2014a). Actuator desaturation
for a fixed-wing UAV using speed modification. In: Proceedings of the ICN-
PAA Congress on Mathematical problems in engineering, aerospace and sciences.
Narvik, Norway.

Oland, E., T. S. Andersen and R. Kristiansen (2014b). Subsumption architecture
applied to flight control using composite rotations. Submitted to Automatica.

Olfati-Saber, R., A. Fax and R. M. Murray (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE Vol. 95, No. 1, pp.
215–233.

Olfati-Saber, Reza (2001). Nonlinear control of underactuated mechanical systems
with application to robotics and aerospace vehicles. PhD thesis. Massachusetts
Institute of Technology, Cambridge, MA, USA.

Ortega, R., A. Loría, P. J. Nicklasson and H. Sira-Ramírez (1998). Passivity-based
control of Euler-Lagrange systems: Mechanical, electrical and electromechanical
applications. ISBN 978-1-85233-016-3. Springer-Verlag, London.

Ortega, R. and M. W. Spong (1989). Adaptive motion control of rigid robots: A
tutorial. Automatica Vol. 25, pp. 877–888.

Osborne, J. and R. Rysdyk (2005). Waypoint guidance for small UAVs in wind. In:
Proceedings of the AIAA Infotech@Aerospace. Arlington, VA, USA.

Paden, B. and R. Panja (1988). Globally asymptotically stable ’PD+’ controller
for robot manipulators. International Journal of Control Vol. 47, No. 6, pp.
1697–1712.

Palumbo, N. F., R. A. Blauwkamp and J. M. Lloyd (2010). Modern homing missile
guidance theory and techniques. John Hopkins APL Technical Digest Vol. 29,
No. 1, pp. 42–59.

Panteley, E., A. Loría and A. Teel (2001). Relaxed persistency of excitation for
uniform asymptotic stability. IEEE Transactions on Automatic Control Vol. 46,
No. 12, pp. 1874–1886.

124



Bibliography

Panteley, E. and A. Loría (1998). On global uniform asymptotic stability of non-
linear time-varying systems in cascade. Systems & Control Letters Vol. 33, No.
2, pp. 131–138.

Panteley, E. and A. Loría (2010). A new characterisation of exponential stability.
In: Proceedings of the 19th International Symposium on Mathematical Theory of
Networks and Systems. Budapest, Hungary.

Park, S., J. Deyst and J. P. How (2004). A new nonlinear guidance logic for tra-
jectory tracking. In: Proceedings of the AIAA Guidance, Navigation and Control
Conference. Providence, RI, USA.

Paul, T., T. R. Krogstad and J. T. Gravdahl (2008). Modelling of UAV formation
flight using 3D potential field. Simulation Modelling Practice and Theory Vol.
16, No. 9, pp. 1453–1462.

Pettersen, K. Y. and O. Egeland (1999). Time-varying exponential stabilization of
the position and attitude of an underactuated autonomous underwater vehicle.
IEEE Transactions of Automatic Control Vol. 44, No. 1, pp. 112–115.

Pettersen, K.Y. and O. Egeland (1996). Position and attitude control of an under-
actuated autonomous underwater vehicle. In: Proceedings of the 35th Conference
on Decision and Control. Kobe, Japan.

Phillips, W. F. (2010). Mechanics of flight. John Wiley & Sons, Inc., ISBN 978-0-
470-53975-0.

Qu, Z. (2009). Cooperative control of dynamical systems. Springer-Verlag London
Limited, ISBN 978-1-84882-324-2.

Rao, V. G. (2001). Naive control of the double integrator. IEEE Control Systems
Vol. 21, pp. 86–97.

Refsnes, J., A. J. Sørensen and K. Y. Pettersen (2007). Output feedback control of
a slender body underactuated AUV with experimental results. In: Proceedings of
15th Mediterranean Conference on Control and Automation. Athens, Greece.

Reiner, J., G. J. Balas and W. L. Garrard (1996). Flight control design using robust
dynamic inversion and time-scale separation. Automatica Vol. 32, No. 11, pp.
1493–1504.

Ren, W. and E. Atkins (2005). Nonlinear trajectory tracking for fixed wing UAVs
via backstepping and parameter adaptation. In: Proceedings of the AIAA Guid-
ance, Navigation and Control Conference and Exhibit. San Francisco, CA, USA.

Ren, W. and R. Beard (2003). CLF-based tracking control for UAV kinematic
models with saturation constraints. In: Proceedings of 42nd IEEE Conference on
Decision and Control. Maui, HI, USA.

Ren, W. and R. W. Beard (2004). Constrained nonlinear tracking control for small
fixed-wing unmanned air vehicles. In: Proceedings of the American Control Con-
ference. Boston, MA, USA.

125

Bibliography

Panteley, E. and A. Loría (1998). On global uniform asymptotic stability of non-
linear time-varying systems in cascade. Systems & Control Letters Vol. 33, No.
2, pp. 131–138.

Panteley, E. and A. Loría (2010). A new characterisation of exponential stability.
In: Proceedings of the 19th International Symposium on Mathematical Theory of
Networks and Systems. Budapest, Hungary.

Park, S., J. Deyst and J. P. How (2004). A new nonlinear guidance logic for tra-
jectory tracking. In: Proceedings of the AIAA Guidance, Navigation and Control
Conference. Providence, RI, USA.

Paul, T., T. R. Krogstad and J. T. Gravdahl (2008). Modelling of UAV formation
flight using 3D potential field. Simulation Modelling Practice and Theory Vol.
16, No. 9, pp. 1453–1462.

Pettersen, K. Y. and O. Egeland (1999). Time-varying exponential stabilization of
the position and attitude of an underactuated autonomous underwater vehicle.
IEEE Transactions of Automatic Control Vol. 44, No. 1, pp. 112–115.

Pettersen, K.Y. and O. Egeland (1996). Position and attitude control of an under-
actuated autonomous underwater vehicle. In: Proceedings of the 35th Conference
on Decision and Control. Kobe, Japan.

Phillips, W. F. (2010). Mechanics of flight. John Wiley & Sons, Inc., ISBN 978-0-
470-53975-0.

Qu, Z. (2009). Cooperative control of dynamical systems. Springer-Verlag London
Limited, ISBN 978-1-84882-324-2.

Rao, V. G. (2001). Naive control of the double integrator. IEEE Control Systems
Vol. 21, pp. 86–97.

Refsnes, J., A. J. Sørensen and K. Y. Pettersen (2007). Output feedback control of
a slender body underactuated AUV with experimental results. In: Proceedings of
15th Mediterranean Conference on Control and Automation. Athens, Greece.

Reiner, J., G. J. Balas and W. L. Garrard (1996). Flight control design using robust
dynamic inversion and time-scale separation. Automatica Vol. 32, No. 11, pp.
1493–1504.

Ren, W. and E. Atkins (2005). Nonlinear trajectory tracking for fixed wing UAVs
via backstepping and parameter adaptation. In: Proceedings of the AIAA Guid-
ance, Navigation and Control Conference and Exhibit. San Francisco, CA, USA.

Ren, W. and R. Beard (2003). CLF-based tracking control for UAV kinematic
models with saturation constraints. In: Proceedings of 42nd IEEE Conference on
Decision and Control. Maui, HI, USA.

Ren, W. and R. W. Beard (2004). Constrained nonlinear tracking control for small
fixed-wing unmanned air vehicles. In: Proceedings of the American Control Con-
ference. Boston, MA, USA.

125



Bibliography

Ren, W. and R. W. Beard (2008). Distributed consensus in multi-vehicle cooperative
control. Springer-Verlag London Limited, ISBN 978-1-84800-014-8.

Reyhanoglu, M., A. van der Schaft, N. H. McClamroch and I. Kolmanovsky (1999).
Dynamics and control of a class of underactuated mechanical systems. IEEE
Transactions on Automatic Control Vol. 44, No. 9, pp. 1663–1671.

Reynolds, C. (1987). Flocks, herd and schools: A distributed behavioral model.
Computer Graphics Vol. 21, No. 4, pp. 25–34.

Rimon, E. and D. E. Koditschek (1992). Exact robot navigation using artificial
potential functions. Transactions on Robotics and Automation Vol. 8, No. 5, pp.
501 – 518.

Rizwan, Y., S. L. Waslander and C. Nielsen (2011). Nonlinear aircraft modeling
and controller design for target tracking. In: Proceedings of the American Control
Conference. San Francisco, CA, USA.

Roberts, A. and A. Tayebi (2009). Adaptive position tracking of VTOL UAVs. In:
Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai,
China.

Robinson, J. W. C. (2007). Block backstepping for nonlinear flight control law
design. In: Nonlinear Analysis and Synthesis Techniques for Aircraft Control
(D. Bates and M. Hagström, Eds.). Springerlink, ISBN: 978-3-540-73718-6.

Rogers, K. J. and A. Finn (2013). Frequency estimation for 3D atmospheric to-
mography using unmanned aerial vehicles. In: Proceedings of the 8th IEEE In-
ternational Conference on Intelligent Sensors, Sensor Networks and Information
Processing. Melbourne, Australia.

Roussos, G., D. V. Diamarogonas and K. J. Kyriakopoulos (2010). 3D navigation
and collision avoidance for nonholonomic aircraft-like vehicles. Intl. Journal of
Adaptive Control and Signal Processing Vol 24, No. 10, pp. 900–920.

Rysdyk, R. (2006). Unmanned aerial vehicle path following for target observation
in wind. Journal of Guidance, Control, and Dynamics Vol. 29, No. 5, pp. 1092–
1100.

Samson, C. (1995). Control of chained systems application to path following and
time-varying point-stabilization of mobile robots. IEEE Transactions on Auto-
matic Control Vol. 40, No. 1, pp. 64–77.

Sato, Y., T. Yamasaki, H. Takano and Y. Baba (2006). Trajectory guidance and
control for a small UAV. KSAS International Journal Vol. 7, No. 2, pp. 137–144.

Schlanbusch, R. (2012). Control of rigid bodies - with applications to leader-follower
spacecraft formations. PhD thesis. Norwegian University of Science and Technol-
ogy, Trondheim, Norway.

126

Bibliography

Ren, W. and R. W. Beard (2008). Distributed consensus in multi-vehicle cooperative
control. Springer-Verlag London Limited, ISBN 978-1-84800-014-8.

Reyhanoglu, M., A. van der Schaft, N. H. McClamroch and I. Kolmanovsky (1999).
Dynamics and control of a class of underactuated mechanical systems. IEEE
Transactions on Automatic Control Vol. 44, No. 9, pp. 1663–1671.

Reynolds, C. (1987). Flocks, herd and schools: A distributed behavioral model.
Computer Graphics Vol. 21, No. 4, pp. 25–34.

Rimon, E. and D. E. Koditschek (1992). Exact robot navigation using artificial
potential functions. Transactions on Robotics and Automation Vol. 8, No. 5, pp.
501 – 518.

Rizwan, Y., S. L. Waslander and C. Nielsen (2011). Nonlinear aircraft modeling
and controller design for target tracking. In: Proceedings of the American Control
Conference. San Francisco, CA, USA.

Roberts, A. and A. Tayebi (2009). Adaptive position tracking of VTOL UAVs. In:
Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai,
China.

Robinson, J. W. C. (2007). Block backstepping for nonlinear flight control law
design. In: Nonlinear Analysis and Synthesis Techniques for Aircraft Control
(D. Bates and M. Hagström, Eds.). Springerlink, ISBN: 978-3-540-73718-6.

Rogers, K. J. and A. Finn (2013). Frequency estimation for 3D atmospheric to-
mography using unmanned aerial vehicles. In: Proceedings of the 8th IEEE In-
ternational Conference on Intelligent Sensors, Sensor Networks and Information
Processing. Melbourne, Australia.

Roussos, G., D. V. Diamarogonas and K. J. Kyriakopoulos (2010). 3D navigation
and collision avoidance for nonholonomic aircraft-like vehicles. Intl. Journal of
Adaptive Control and Signal Processing Vol 24, No. 10, pp. 900–920.

Rysdyk, R. (2006). Unmanned aerial vehicle path following for target observation
in wind. Journal of Guidance, Control, and Dynamics Vol. 29, No. 5, pp. 1092–
1100.

Samson, C. (1995). Control of chained systems application to path following and
time-varying point-stabilization of mobile robots. IEEE Transactions on Auto-
matic Control Vol. 40, No. 1, pp. 64–77.

Sato, Y., T. Yamasaki, H. Takano and Y. Baba (2006). Trajectory guidance and
control for a small UAV. KSAS International Journal Vol. 7, No. 2, pp. 137–144.

Schlanbusch, R. (2012). Control of rigid bodies - with applications to leader-follower
spacecraft formations. PhD thesis. Norwegian University of Science and Technol-
ogy, Trondheim, Norway.

126



Bibliography

Schlanbusch, R., A. Loría and P. J. Nicklasson (2012a). On the stability and stabi-
lization of quaternion equilibria of rigid bodies. Automatica Vol. 48, No. 12, pp.
3135–3141.

Schlanbusch, R., A. Loría, R. Kristiansen and P. J. Nicklasson (2012b). PD+ based
output feedback attitude control of rigid bodies. IEEE Transactions on Auto-
matic Control Vol. 57, No. 8, pp. 2146–2152.

Schlanbusch, R. and E. Oland (2013). Spacecraft formation reconfiguration with
dynamic collision avoidance. In: Proceedings of the 34th IEEE Aerospace Con-
ference. Big Sky, MT, USA.

Schlanbusch, R., E. Grøtli, A. Loría and P. J. Nicklasson (2011). Hybrid attitude
tracking of output feedback controlled rigid bodies. In: Proceedings of the 50th
IEEE Conference on Decision and Control. Orlando, FL, USA.

Schlanbusch, R., R. Kristiansen and P. J. Nicklasson (2008). Spacecraft formation
reconfiguration with collision avoidance. In: Proceedings of the 3rd International
Symposium on Formation Flying, Missions and Technologies (ISFF). Estec, Hol-
land.

Shaw, E. (1975). Fish in schools. Natural History Vol. 84, No. 8, pp. 40–46.

Shin, D. and Y. Kim (2006). Nonlinear discrete-time reconfigurable flight control
law using neural networks. IEEE Transactions on Control Systems Technology
Vol. 14, No. 3, pp. 408–422.

Shneydor, N. A. (1998). Missile guidance and pursuit: kinematics, dynamics and
control. Woodhead Publishing, ISBN 978-1-904275-37-4.

Siciliano, B., L. Sciavicci, L. Villani and G. Oriolo (2010). Robotics modelling,
planning and control. Springer, ISBN 978-1-84628-641-4.

Sieberling, S., Q. P. Chu and J. A. Mulder (2010). Robust flight control using incre-
mental nonlinear dynamic inversion and angular acceleration prediction. Journal
of Guidance, Control, and Dynamics Vol. 33, No. 6, pp. 1732–1742.

Simon, H. A. (1956). Dynamic programming under uncertainty with a quadratic
criterion function. Econometrica Vol. 24, No. 1, pp. 74–81.

Siouris, G. M. (2003). Missile guidance and control systems. Springer-Verlag New
York, Inc., ISBN 0-387-00726-1.

Slegers, N., J. Kyle and M. Costello (2006). Nonlinear model predictive control
technique for unmanned air vehicles. Journal of Guidance, Control and Dynamics
Vol. 29, No. 5, pp. 1179–1188.

Slotine, J. J. E. and W. Li (1987). On the adaptive control of robot manipulators.
International Journal of Robotics Research Vol. 6, No. 3, pp. 49–59.

Slotine, J. J. E. and W. Li (1988). Adaptive manipulator control: a case study.
IEEE Transactions on Automatic Control Vol. 33, No. 11, pp. 995–1003.

127

Bibliography

Schlanbusch, R., A. Loría and P. J. Nicklasson (2012a). On the stability and stabi-
lization of quaternion equilibria of rigid bodies. Automatica Vol. 48, No. 12, pp.
3135–3141.

Schlanbusch, R., A. Loría, R. Kristiansen and P. J. Nicklasson (2012b). PD+ based
output feedback attitude control of rigid bodies. IEEE Transactions on Auto-
matic Control Vol. 57, No. 8, pp. 2146–2152.

Schlanbusch, R. and E. Oland (2013). Spacecraft formation reconfiguration with
dynamic collision avoidance. In: Proceedings of the 34th IEEE Aerospace Con-
ference. Big Sky, MT, USA.

Schlanbusch, R., E. Grøtli, A. Loría and P. J. Nicklasson (2011). Hybrid attitude
tracking of output feedback controlled rigid bodies. In: Proceedings of the 50th
IEEE Conference on Decision and Control. Orlando, FL, USA.

Schlanbusch, R., R. Kristiansen and P. J. Nicklasson (2008). Spacecraft formation
reconfiguration with collision avoidance. In: Proceedings of the 3rd International
Symposium on Formation Flying, Missions and Technologies (ISFF). Estec, Hol-
land.

Shaw, E. (1975). Fish in schools. Natural History Vol. 84, No. 8, pp. 40–46.

Shin, D. and Y. Kim (2006). Nonlinear discrete-time reconfigurable flight control
law using neural networks. IEEE Transactions on Control Systems Technology
Vol. 14, No. 3, pp. 408–422.

Shneydor, N. A. (1998). Missile guidance and pursuit: kinematics, dynamics and
control. Woodhead Publishing, ISBN 978-1-904275-37-4.

Siciliano, B., L. Sciavicci, L. Villani and G. Oriolo (2010). Robotics modelling,
planning and control. Springer, ISBN 978-1-84628-641-4.

Sieberling, S., Q. P. Chu and J. A. Mulder (2010). Robust flight control using incre-
mental nonlinear dynamic inversion and angular acceleration prediction. Journal
of Guidance, Control, and Dynamics Vol. 33, No. 6, pp. 1732–1742.

Simon, H. A. (1956). Dynamic programming under uncertainty with a quadratic
criterion function. Econometrica Vol. 24, No. 1, pp. 74–81.

Siouris, G. M. (2003). Missile guidance and control systems. Springer-Verlag New
York, Inc., ISBN 0-387-00726-1.

Slegers, N., J. Kyle and M. Costello (2006). Nonlinear model predictive control
technique for unmanned air vehicles. Journal of Guidance, Control and Dynamics
Vol. 29, No. 5, pp. 1179–1188.

Slotine, J. J. E. and W. Li (1987). On the adaptive control of robot manipulators.
International Journal of Robotics Research Vol. 6, No. 3, pp. 49–59.

Slotine, J. J. E. and W. Li (1988). Adaptive manipulator control: a case study.
IEEE Transactions on Automatic Control Vol. 33, No. 11, pp. 995–1003.

127



Bibliography

Slotine, J. J. E. and W. Li (1991). Applied nonlinear control. Prentice Hall, ISBN
0-13-040890-5.

S̆mídl, V. and R. Hofman (2013). Tracking of atmospheric release of pollution using
unmanned aerial vehicles. Atmospheric Environment Vol. 67, pp. 1–12.

Snell, S. A., D. F. Enns and W. L. Garrard (1992). Nonlinear inversion flight control
for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics
Vol. 15, No. 4, pp. 976–984.

Sobolic, F. M. and J. P. How (2009). Nonlinear agile control test bed for a fixed-
wing aircraft in a constrained environment. In: Proceedings of the AIAA In-
fotech@Aerospace Conference. Seattle, WA, USA.

Song, Y. D., Yao Li and X. H. Liao (2005). Orthogonal transformation based robust
adaptive close formation control of multi-UAVs. In: Proceedings of the American
Control Conference. Portland, OR, USA.

Sonneveldt, L. (2010). Adaptive backstepping flight control for modern fighter air-
craft. PhD thesis. Delft University of Technology, Delft, The Netherlands.

Sonneveldt, L., E. R. van Oort, Q. P. Chu and J. A. Mulder (2009a). Nonlinear
adaptive trajectory control applied to an F-16 model. Journal of Guidance, Con-
trol and Dynamics Vol. 32, No. 1, pp. 25–39.

Sonneveldt, L., E. R. van Oort, Q.P. Chu and J.A. Mulder (2009b). Nonlinear
adaptive flight control design and handling qualities evaluation. In: Proceedings
of the 48th IEEE Conference on Decision and Control. Shanghai, China.

Sourlas, D., J. Choi and V. Manousiouthakis (1994). Best achievable control system
performance: the saturation paradox. In: Proceedings of the 33rd IEEE Confer-
ence on Decision and Control. Lake Buena Vista, FL, USA.

Spong, M. W. (1998). Underactuated mechanical systems. In: Control Problems
in Robotics and Automation (B. Siciliano and K. P. Valavanis, Eds.). Springer-
Verlag, London UK, ISBN 978-3-540-76220-1.

Stein, G. (2003). Respect the unstable. IEEE Control Systems Magazine Vol. 23,
No. 4, pp. 12–25.

Stengel, R. F. (2004). Flight dynamics. Princeton University Press, ISBN 0-691-
11407-2.

Stepanyan, V. and N. Hovakimyan (2007). Adaptive disturbance rejection controller
for visual tracking of a maneuvering target. Journal of Guidance, Control, and
Dynamics Vol. 30, No. 4, pp. 1090–1106.

Stevens, B. L. and F. L. Lewis (2003). Aircraft control and simulation. 2nd ed.,
Wiley, ISBN 978-0-471-37145-8.

128

Bibliography

Slotine, J. J. E. and W. Li (1991). Applied nonlinear control. Prentice Hall, ISBN
0-13-040890-5.

S̆mídl, V. and R. Hofman (2013). Tracking of atmospheric release of pollution using
unmanned aerial vehicles. Atmospheric Environment Vol. 67, pp. 1–12.

Snell, S. A., D. F. Enns and W. L. Garrard (1992). Nonlinear inversion flight control
for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics
Vol. 15, No. 4, pp. 976–984.

Sobolic, F. M. and J. P. How (2009). Nonlinear agile control test bed for a fixed-
wing aircraft in a constrained environment. In: Proceedings of the AIAA In-
fotech@Aerospace Conference. Seattle, WA, USA.

Song, Y. D., Yao Li and X. H. Liao (2005). Orthogonal transformation based robust
adaptive close formation control of multi-UAVs. In: Proceedings of the American
Control Conference. Portland, OR, USA.

Sonneveldt, L. (2010). Adaptive backstepping flight control for modern fighter air-
craft. PhD thesis. Delft University of Technology, Delft, The Netherlands.

Sonneveldt, L., E. R. van Oort, Q. P. Chu and J. A. Mulder (2009a). Nonlinear
adaptive trajectory control applied to an F-16 model. Journal of Guidance, Con-
trol and Dynamics Vol. 32, No. 1, pp. 25–39.

Sonneveldt, L., E. R. van Oort, Q.P. Chu and J.A. Mulder (2009b). Nonlinear
adaptive flight control design and handling qualities evaluation. In: Proceedings
of the 48th IEEE Conference on Decision and Control. Shanghai, China.

Sourlas, D., J. Choi and V. Manousiouthakis (1994). Best achievable control system
performance: the saturation paradox. In: Proceedings of the 33rd IEEE Confer-
ence on Decision and Control. Lake Buena Vista, FL, USA.

Spong, M. W. (1998). Underactuated mechanical systems. In: Control Problems
in Robotics and Automation (B. Siciliano and K. P. Valavanis, Eds.). Springer-
Verlag, London UK, ISBN 978-3-540-76220-1.

Stein, G. (2003). Respect the unstable. IEEE Control Systems Magazine Vol. 23,
No. 4, pp. 12–25.

Stengel, R. F. (2004). Flight dynamics. Princeton University Press, ISBN 0-691-
11407-2.

Stepanyan, V. and N. Hovakimyan (2007). Adaptive disturbance rejection controller
for visual tracking of a maneuvering target. Journal of Guidance, Control, and
Dynamics Vol. 30, No. 4, pp. 1090–1106.

Stevens, B. L. and F. L. Lewis (2003). Aircraft control and simulation. 2nd ed.,
Wiley, ISBN 978-0-471-37145-8.

128



Bibliography

Stiharu-Alexe, I. and C. Stiharu-Alexe (1993). A full-authority 4D guidance algo-
rithm for conventional aircraft. In: Proceedings of the American Control Confer-
ence. San Francisco, CA, USA.

Subchan, S., B.A. White, A. Tsourdos, M. Shanmugavel and R. Zbikowski (2008).
Dubins path planning of multiple UAVs for tracking contaminant cloud. In: Pro-
ceedings of the 17th IFAC World Congress. Seoul, Korea.

Sussmann, H. J., E. D. Sontag and Y. Yang (1994). A general result on the stabiliza-
tion of linear systems using bounded controls. IEEE Transactions on Automatic
Control Vol. 39, No.12, pp. 2411–2425.

Takegaki, M. and S. Arimoto (1981). A new feedback method for dynamic control
of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control
Vol. 103, No. 2, pp. 119–125.

Tandale, M. D. and J. Valasek (2005). Adaptive dynamic inversion control with
actuator saturation constraints applied to tracking spacecraft maneuvers. The
Journal of Astronautical Sciences Vol. 52, No. 4, pp. 517–530.

Tanner, H. G. and K. J. Kyria (2002). Discontinuous backstepping for stabiliza-
tion of nonholonomic mobile robots. In: Proceedings of the IEEE International
Conference on Robotics & Automation. Washington, DC, USA.

Tanner, H. G., S. G. Loizou and K. J. Kyriakopoulos (2003). Nonholonomic nav-
igation and control of cooperating mobile manipulators. IEEE Transactions on
Robotics and Automation Vol. 19. No. 1, pp. 53–64.

Tarbouriech, S., G. Garcia, J. M. Gomes da Silva Jr. and I. Queinnec (2011).
Stability and stabilization of linear systems with saturating actuators. Springer,
ISBN 978-0-85729-940-6.

Tayebi, A. (2008). Unit quaternion-based output feedback for the attitude tracking
problem. IEEE Transactions on Automatic Control Vol. 53, No. 6, pp. 1516–
1520.

Tayebi, A. and S. McGilvray (2006). Attitude stabilization of a VTOL quadrotor
aircraft. IEEE Transaction on Control Systems Technology Vol. 14, No. 3, pp.
562–571.

Tedrake, R. (2009). Underactuated robotics: learning, planning, and control for
efficient and agile machines: course notes for MIT 6.832.

Teel, A. R. (1992). Global stabilization and restricted tracking for multiple integra-
tors with bounded controls. Systems & Control Letters Vol. 18, pp. 165–171.

Templeton, T., D. H. Shim, C. Geyer and S. S. Sastry (2007). Autonomous vision-
based landing and terrain mapping using an MPC-controlled unmanned rotor-
craft. In: Proceedings of the IEEE International Conference on Robotics and
Automation. Roma, Italy.

129

Bibliography

Stiharu-Alexe, I. and C. Stiharu-Alexe (1993). A full-authority 4D guidance algo-
rithm for conventional aircraft. In: Proceedings of the American Control Confer-
ence. San Francisco, CA, USA.

Subchan, S., B.A. White, A. Tsourdos, M. Shanmugavel and R. Zbikowski (2008).
Dubins path planning of multiple UAVs for tracking contaminant cloud. In: Pro-
ceedings of the 17th IFAC World Congress. Seoul, Korea.

Sussmann, H. J., E. D. Sontag and Y. Yang (1994). A general result on the stabiliza-
tion of linear systems using bounded controls. IEEE Transactions on Automatic
Control Vol. 39, No.12, pp. 2411–2425.

Takegaki, M. and S. Arimoto (1981). A new feedback method for dynamic control
of manipulators. ASME Journal of Dynamic Systems, Measurement, and Control
Vol. 103, No. 2, pp. 119–125.

Tandale, M. D. and J. Valasek (2005). Adaptive dynamic inversion control with
actuator saturation constraints applied to tracking spacecraft maneuvers. The
Journal of Astronautical Sciences Vol. 52, No. 4, pp. 517–530.

Tanner, H. G. and K. J. Kyria (2002). Discontinuous backstepping for stabiliza-
tion of nonholonomic mobile robots. In: Proceedings of the IEEE International
Conference on Robotics & Automation. Washington, DC, USA.

Tanner, H. G., S. G. Loizou and K. J. Kyriakopoulos (2003). Nonholonomic nav-
igation and control of cooperating mobile manipulators. IEEE Transactions on
Robotics and Automation Vol. 19. No. 1, pp. 53–64.

Tarbouriech, S., G. Garcia, J. M. Gomes da Silva Jr. and I. Queinnec (2011).
Stability and stabilization of linear systems with saturating actuators. Springer,
ISBN 978-0-85729-940-6.

Tayebi, A. (2008). Unit quaternion-based output feedback for the attitude tracking
problem. IEEE Transactions on Automatic Control Vol. 53, No. 6, pp. 1516–
1520.

Tayebi, A. and S. McGilvray (2006). Attitude stabilization of a VTOL quadrotor
aircraft. IEEE Transaction on Control Systems Technology Vol. 14, No. 3, pp.
562–571.

Tedrake, R. (2009). Underactuated robotics: learning, planning, and control for
efficient and agile machines: course notes for MIT 6.832.

Teel, A. R. (1992). Global stabilization and restricted tracking for multiple integra-
tors with bounded controls. Systems & Control Letters Vol. 18, pp. 165–171.

Templeton, T., D. H. Shim, C. Geyer and S. S. Sastry (2007). Autonomous vision-
based landing and terrain mapping using an MPC-controlled unmanned rotor-
craft. In: Proceedings of the IEEE International Conference on Robotics and
Automation. Roma, Italy.

129



Bibliography

Toshimura, Y., T. Matsuno and S. Hokamoto (2011). Position and attitude control
of an underactuated satellite with constant thrust. In: Proceedings of the AIAA
Guidance, Navigation, and Control Conference. Portland, OR, USA.

Tsourdos, A., B. White and M. Shanmugavel (2011). Cooperative path planning of
unmanned aerial vehicles. John Wiley & Sons, Inc., ISBN 978-0-470-74129-0.

Tyan, F. and D. S. Bernstein (1999). Global stabilization of systems containing
a double integrator using a saturated linear controller. International Journal of
Robust and Nonlinear Control Vol. 9, pp. 1143–1156.

van Oort, E. R., L. Sonneveldt, Q. P. Chu and J. A. Mulder (2010). Full envelope
modular adaptive control of a fighter aircraft using orthogonal least squares.
Journal of Guidance, Control and Dynamics Vol. 33, No. 5, pp. 1461–1472.

Visioli, A. (2003). Modified anti-windup scheme for PID controllers. In: IEE Pro-
ceedings - Control Theory and Applications.

Waharte, S. and N. Trigoni (2010). Supporting search and rescue operations with
UAVs. In: Proceedings of the International Conference on Emerging Security
Technologies. Canterbury, UK.

Wang, Q. and R. F. Stengel (2000). Robust nonlinear control of a hypersonic air-
craft. Journal of Guidance, Control, and Dynamics Vol. 23, No. 4, pp. 577–585.

Wang, Q. and R. F. Stengel (2005). Robust nonlinear flight control of a high per-
formance aircraft. IEEE Transactions on Control Systems Technology Vol. 13,
No. 1, pp. 15–26.

Wegener, S. S., S. M. Schoenung, J. Totah, D. Sullivan, J. Frank, F. Enomoto,
C. Frost and C. Theodore (2004). UAV autonomous operations for airborne sci-
ence missions. In: Proceedings of the AIAA "Unmanned Unlimited" Technical
Conference, Workshop and Exhibit. Chicago, IL, USA.

Wen, J. T. and K. Kreutz-Delgado (1991). The attitude control problem. IEEE
Transactions on Automatic Control Vol. 36, No. 10, pp. 1148–1162.

Werner, G. M. and M. G. Dyer (1993). Evolution of herding behavior in artificial
animals. In: Proceedings of the 2nd International Conference on From Animals
to Animats: Simulation of Adaptive Behavior. Honolulu, HI, USA.

Wichlund, K. Y., O. J. Sørdalen and O. Egeland (1995). Control properties of
underactuated vehicles. In: Proceedings of the IEEE International Conference
on Robotics and Automation. Nagoya, Japan.

Xargay, E., V. Dobrokhodov, I. Kaminer, A. M. Pascoal, N. Hovakimyan and C. Cao
(2012). Time-critical cooperative control of multiple autonomous vehicles. IEEE
Control Systems Magazine Vol. 32, No. 5, pp. 49–73.

Xie, F., X. Zhang, R. Fierro and M. Motter (2005). Autopilot-based nonlinear UAV
formation controller with extremum-seeking. In: Proceedings of the 44th IEEE
Conference on Decision and Control. Seville, Spain.

130

Bibliography

Toshimura, Y., T. Matsuno and S. Hokamoto (2011). Position and attitude control
of an underactuated satellite with constant thrust. In: Proceedings of the AIAA
Guidance, Navigation, and Control Conference. Portland, OR, USA.

Tsourdos, A., B. White and M. Shanmugavel (2011). Cooperative path planning of
unmanned aerial vehicles. John Wiley & Sons, Inc., ISBN 978-0-470-74129-0.

Tyan, F. and D. S. Bernstein (1999). Global stabilization of systems containing
a double integrator using a saturated linear controller. International Journal of
Robust and Nonlinear Control Vol. 9, pp. 1143–1156.

van Oort, E. R., L. Sonneveldt, Q. P. Chu and J. A. Mulder (2010). Full envelope
modular adaptive control of a fighter aircraft using orthogonal least squares.
Journal of Guidance, Control and Dynamics Vol. 33, No. 5, pp. 1461–1472.

Visioli, A. (2003). Modified anti-windup scheme for PID controllers. In: IEE Pro-
ceedings - Control Theory and Applications.

Waharte, S. and N. Trigoni (2010). Supporting search and rescue operations with
UAVs. In: Proceedings of the International Conference on Emerging Security
Technologies. Canterbury, UK.

Wang, Q. and R. F. Stengel (2000). Robust nonlinear control of a hypersonic air-
craft. Journal of Guidance, Control, and Dynamics Vol. 23, No. 4, pp. 577–585.

Wang, Q. and R. F. Stengel (2005). Robust nonlinear flight control of a high per-
formance aircraft. IEEE Transactions on Control Systems Technology Vol. 13,
No. 1, pp. 15–26.

Wegener, S. S., S. M. Schoenung, J. Totah, D. Sullivan, J. Frank, F. Enomoto,
C. Frost and C. Theodore (2004). UAV autonomous operations for airborne sci-
ence missions. In: Proceedings of the AIAA "Unmanned Unlimited" Technical
Conference, Workshop and Exhibit. Chicago, IL, USA.

Wen, J. T. and K. Kreutz-Delgado (1991). The attitude control problem. IEEE
Transactions on Automatic Control Vol. 36, No. 10, pp. 1148–1162.

Werner, G. M. and M. G. Dyer (1993). Evolution of herding behavior in artificial
animals. In: Proceedings of the 2nd International Conference on From Animals
to Animats: Simulation of Adaptive Behavior. Honolulu, HI, USA.

Wichlund, K. Y., O. J. Sørdalen and O. Egeland (1995). Control properties of
underactuated vehicles. In: Proceedings of the IEEE International Conference
on Robotics and Automation. Nagoya, Japan.

Xargay, E., V. Dobrokhodov, I. Kaminer, A. M. Pascoal, N. Hovakimyan and C. Cao
(2012). Time-critical cooperative control of multiple autonomous vehicles. IEEE
Control Systems Magazine Vol. 32, No. 5, pp. 49–73.

Xie, F., X. Zhang, R. Fierro and M. Motter (2005). Autopilot-based nonlinear UAV
formation controller with extremum-seeking. In: Proceedings of the 44th IEEE
Conference on Decision and Control. Seville, Spain.

130



Bibliography

Yang, C. and C. Yang (1995). Analytical solution of generalized 3D proportional
navigation. In: Proceedings of the 34th Conference on Decision and Control. New
Orleans, LA, USA.

Yang, P., R. A. Freeman and K. M. Lynch (2008). Multi-agent coordination by
decentralized estimation and control. IEEE Transactions on Automatic Control
Vol. 53, No. 11, pp. 2480–2496.

Yip, P. P., J.K. Hedrick and D. Swaroop (1996). The use of linear filtering to
simplify integrator backstepping control of nonlinear systems. In: Proceedings of
the IEEE International Workshop on Variable Structure Systems. Tokyo, Japan.

Yu, Z., G. Fan and J. Yi (2009). Indirect adaptive flight control based on nonlinear
inversion. In: Proceedings of the IEEE International Conference on Mechatronics
and Automation. Changchun, China.

Zhu, H., Y. Lan, W. Wu, W. C. Hoffmann, Y. Huang, X. Xue, J. Liang and B. Fritz
(2010). Development of a PWM precision spraying controller for unmanned aerial
vehicles. Journal of Bionic Engineering Vol. 7, pp. 276–283.

131

Bibliography

Yang, C. and C. Yang (1995). Analytical solution of generalized 3D proportional
navigation. In: Proceedings of the 34th Conference on Decision and Control. New
Orleans, LA, USA.

Yang, P., R. A. Freeman and K. M. Lynch (2008). Multi-agent coordination by
decentralized estimation and control. IEEE Transactions on Automatic Control
Vol. 53, No. 11, pp. 2480–2496.

Yip, P. P., J.K. Hedrick and D. Swaroop (1996). The use of linear filtering to
simplify integrator backstepping control of nonlinear systems. In: Proceedings of
the IEEE International Workshop on Variable Structure Systems. Tokyo, Japan.

Yu, Z., G. Fan and J. Yi (2009). Indirect adaptive flight control based on nonlinear
inversion. In: Proceedings of the IEEE International Conference on Mechatronics
and Automation. Changchun, China.

Zhu, H., Y. Lan, W. Wu, W. C. Hoffmann, Y. Huang, X. Xue, J. Liang and B. Fritz
(2010). Development of a PWM precision spraying controller for unmanned aerial
vehicles. Journal of Bionic Engineering Vol. 7, pp. 276–283.

131





Appendix A

The YF-22 UAV Model

The uav model that is used in the simulations is based on the nonlinear model from
Campa et al. (2007) with the only difference being that the stabilizer is treated
as an elevator. At steady flight with Va = 42m/s, α = θ = 0, δe = −0.0175
rad, δa = δr = 0, T = 54.62 N and an altitude of h = 240 m, the aerodynamic
coefficients are given as

m = 20.64 kg Jxx = 1.607 kgm2 Jyy = 7.51 kgm2 Jzz = 7.18 kgm2

Jxz = 0.59 kgm2 b = 1.96 m c̄ = 0.76 m S = 1.37 m2

CL0
= −0.049 CLα

= 3.258 CLq
= 0 CLδe

= 0.189
CD0

= 0.008 CDα
= 0.508 CDq

= 0 CDδe
= −0.034

CY0
= 0.015 CYβ

= 0.272 CYp
= 1.215 CYr

= −1.161
CYδa

= 0.183 CYδr
= −0.459 Clp = −0.213 Clr = 0.114

Clδa
= −0.056 Clδr

= 0.014 Cm0
= 0.022 Cmα

= −0.473
Cmq

= −3.449 Cmδe
= −0.364 Cn0

= 0 Cnβ
= 0.036

Cnp
= −0.151 Cnr

= −0.195 Cnδa
= −0.036 Cnδr

= −0.055.
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Appendix B

Derivation of the Aggregated

Dynamics

The relative velocity can be written in the wind frame using Rb
wv

w
r = vb

r where

vw
r =

�
Va 0 0

��
and v̇w

r =
�
V̇a 0 0

��
, and can be differentiated as

Rb
wS(ω

w
b,w)v

w
r +Rb

wv̇
w
r = v̇b

r. (B.1)

Let ωw
b,w :=

�
pw qw rw

��
and

S(ωw
b,w)v

w
r = −S(vw

r )ω
w
b,w =

⎡
⎣
0 0 0
0 0 Va

0 −Va 0

⎤
⎦
⎡
⎣
pw
qw
rw

⎤
⎦ ; (B.2)

then (B.1) can be rewritten using (2.21) as
⎡
⎣

V̇a

rwVa

−qwVa

⎤
⎦ =

1

m
(Rw

b f
b
thrust + fwaero) +Rw

n f
n
g −Rw

b S(ω
b
n,b)v

b
r, (B.3)

which can be written using the angle of attack and sideslip rate using (2.48) as
⎡
⎣

V̇a

β̇Va

α̇Va cos(β)

⎤
⎦ =

1

m
(Rw

b f
b
thrust + fwaero) +Rw

n f
n
g −Rw

b S(ω
b
n,b)v

b
r , (B.4)

which is singular with regards to the angular rates if β = ±π
2 or Va = 0. By

expanding Rw
b and multiplying with the thrust, the equations become

⎡
⎣

V̇a

β̇Va

α̇Va cos(β)

⎤
⎦ =

1

m

⎡
⎣
T cos(α) cos(β)
−T cos(α) sin(β)

−T sin(α)

⎤
⎦+

1

m
fwaero +Rw

n f
n
g −Rw

b S(ω
b
n,b)v

b
r, (B.5)

where it is obvious that the dynamics of the airspeed become singular when solving
for the thrust whenever α ∨ β = ±π

2 .
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Appendix C

Aerodynamic Modeling

The basic forces and moments that enable flight are the aerodynamics. By properly
designing the wing, a lift force is produces while flying, which compensates for the
gravity vector and is crucial for flight. The aerodynamic force vector in the wind
frame is defined as (cf. (2.17))

fwaero =
1

2
ρSV 2

a

⎡
⎣
−CD

CY

−CL

⎤
⎦ (C.1)

where ρ is the air density, S is the wing area, Va is the airspeed, CD is the drag coef-
ficient, CY is the sideforce coefficient and CL is the lift coefficient. The coefficients
are usually found through wind tunnel testing or by using estimation methods using
sensor measurements and approximated using a polynomial. The lift coefficient is
often defined as a function of the angle of attack, such that

CL = CL0
+ CLα

α (C.2)

where CL0
represents the lift coefficient when the angle of attack is zero. This

approximation is valid at low angles of attack, but as the angle of attack becomes
larger, this approximation becomes inaccurate. The aerodynamic polynomial is
actually a truncated Taylor expansion, such that by increasing the number of terms
it becomes more accurate. This has been applied from a modeling perspective in
Morelli (1998), where the coefficients are modeled using a higher order Taylor series.
Equation (C.2) can be augmented with additional terms,

CL = CL0
+ CLα

α+ CL
α2
α2 + CL

α3
α3 (C.3)

where the two additional coefficients easily can be found from wind tunnel testing
or by estimation.

As a comparison, consider the lift coefficient as a function the angle of attack as
shown in Figure C.1. Using the linear approximation (C.2), the coefficient is correct
only in the linear region, and becomes inaccurate at high angles of attack. Adding
an addition term, CLα2

α2 it becomes more accurate than the linear approximation,
but still it is inaccurate at high angles of attack. Finally, by using a third order
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Figure C.1: Lift coefficient as a function of angle of attack.

polynomial as in (C.3), the lift coefficient is perfectly modeled, even at high angles
of attack.

The lift force is not only dependent on the angle of attack, but also additional
variables such as the angular velocities and the deflection angles. The aerodynamic
coefficients are therefore commonly written as (cf. (2.18)-(2.20))

CD = CD0
+ CDα

α+
c̄

2Va

CDq
q + CDδe

δe (C.4)

CY = CY0
+ CYβ

β +
b

2Va

CYp
p+

b

2Va

CYr
r + CYδa

δa + CYδr
δr (C.5)

CL = CL0
+ CLα

α+
c̄

2Va

CLq
q + CLδe

δe, (C.6)

but are still only valid close to a trimmed point, requiring either switching of co-
efficients or adaptive control. Since this is a truncated Taylor expansion around a
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given flight condition, by applying similar arguments as for the lift coefficient, the
nonlinear aerodynamics can be extended as

CD = CD0
+ CDα

α+ CDα2
α2 + CDα3

α3 + CDα4
α4 + CDα5

α5 + . . . )

+
c̄

2Va

(CDq
q + CDq2

q2 + CDq3
q3 + CDq4

q4CDq5
q5 + . . . )

+ (CDδe
δe + CD

δ2e

δ2e + CD
δ3e

δ3e + CD
δ4e

δ4e + CD
δ5e

δ5e + . . . ) (C.7)

CY = CY0
+ CYβ

β + CY
β2
β2 + CY

β3
β3 + CY

β4
β4 + CY

β5
β5 + . . .

+
b

2Va

(CYp
p+ CYp2

p2 + CYp3
p3 + CYp4

p4 + CYp5
p5 + . . . )

+
b

2Va

(CYr
r + CY

r2
r2 + CY

r3
r3 + CY

r4
r4 + CY

r5
r5 + . . . )

+ (CYδa
δa + CY

δ2a

δ2a + CY
δ3a

δ3a + CY
δ4a

δ4a + CY
δ5a

δ5a + . . . )

+ (CYδr
δr + CY

δ2r

δ2r + CY
δ3r

δ3r + CY
δ4r

δ4r + CY
δ5r

δ5r + . . . ) (C.8)

CL = CL0
+ CLα

α+ CL
α2
α2 + CL

α3
α3 + CL

α4
α4 + CL

α5
α5 + . . . )

+
c̄

2Va

(CLq
q + CL

q2
q2 + CL

q3
q3 + CL

q4
q4CL

q5
q5 + . . . )

+ CLδe
δe + CLδ2e

δ2e + CLδ3e

δ3e + CLδ4e

δ4e + CLδ5e

δ5e + . . . ). (C.9)

Remark C.1 This type of modeling is presented in Morelli (1998), but it is not
common to use it for control. The main reason is probably due to the common
approach of flight control, where the angle of attack and sideslip angles are stabilized
using the angular velocity, which again are stabilized using the deflection angles in
the rotational dynamics. By using this aerodynamic model, it is not possible to use
the angular rates to stabilize the angle of attack and sideslip since the angular rates
are represented as a power series.

Similarly as for the aerodynamic forces, the aerodynamic moments can be extended.
The common representation for the nonlinear aerodynamic moments is given as

τ b
aero =

1

2
ρSV 2

a

⎡
⎣
bCl

c̄Cm

bCn

⎤
⎦ (C.10)

where Cl,Cm and Cn represents the aerodynamic moment coefficients and are de-
fined as (cf. Etkin (1972), Stengel (2004), Campa et al. (2007))

Cl = Cl0 + Clββ +
b

2Va

Clpp+
b

2Va

Clrr + Clδa
δa + Clδr

δr (C.11)

Cm = Cm0
+ Cmα

α+
c̄

2Va

Cmq
q + Cmδe

δe (C.12)

Cn = Cn0
+ Cnβ

β +
b

2Va

Cnp
p+

b

2Va

Cnr
r + Cnδa

δa + Cnδr
δr. (C.13)

139

given flight condition, by applying similar arguments as for the lift coefficient, the
nonlinear aerodynamics can be extended as

CD = CD0
+ CDα

α+ CDα2
α2 + CDα3

α3 + CDα4
α4 + CDα5

α5 + . . . )

+
c̄

2Va

(CDq
q + CDq2

q2 + CDq3
q3 + CDq4

q4CDq5
q5 + . . . )

+ (CDδe
δe + CD

δ2e

δ2e + CD
δ3e

δ3e + CD
δ4e

δ4e + CD
δ5e

δ5e + . . . ) (C.7)

CY = CY0
+ CYβ

β + CY
β2
β2 + CY

β3
β3 + CY

β4
β4 + CY

β5
β5 + . . .

+
b

2Va

(CYp
p+ CYp2

p2 + CYp3
p3 + CYp4

p4 + CYp5
p5 + . . . )

+
b

2Va

(CYr
r + CY

r2
r2 + CY

r3
r3 + CY

r4
r4 + CY

r5
r5 + . . . )

+ (CYδa
δa + CY

δ2a

δ2a + CY
δ3a

δ3a + CY
δ4a

δ4a + CY
δ5a

δ5a + . . . )

+ (CYδr
δr + CY

δ2r

δ2r + CY
δ3r

δ3r + CY
δ4r

δ4r + CY
δ5r

δ5r + . . . ) (C.8)

CL = CL0
+ CLα

α+ CL
α2
α2 + CL

α3
α3 + CL

α4
α4 + CL

α5
α5 + . . . )

+
c̄

2Va

(CLq
q + CL

q2
q2 + CL

q3
q3 + CL

q4
q4CL

q5
q5 + . . . )

+ CLδe
δe + CLδ2e

δ2e + CLδ3e

δ3e + CLδ4e

δ4e + CLδ5e

δ5e + . . . ). (C.9)

Remark C.1 This type of modeling is presented in Morelli (1998), but it is not
common to use it for control. The main reason is probably due to the common
approach of flight control, where the angle of attack and sideslip angles are stabilized
using the angular velocity, which again are stabilized using the deflection angles in
the rotational dynamics. By using this aerodynamic model, it is not possible to use
the angular rates to stabilize the angle of attack and sideslip since the angular rates
are represented as a power series.

Similarly as for the aerodynamic forces, the aerodynamic moments can be extended.
The common representation for the nonlinear aerodynamic moments is given as

τ b
aero =

1

2
ρSV 2

a

⎡
⎣
bCl

c̄Cm

bCn

⎤
⎦ (C.10)

where Cl,Cm and Cn represents the aerodynamic moment coefficients and are de-
fined as (cf. Etkin (1972), Stengel (2004), Campa et al. (2007))

Cl = Cl0 + Clββ +
b

2Va

Clpp+
b

2Va

Clrr + Clδa
δa + Clδr

δr (C.11)

Cm = Cm0
+ Cmα

α+
c̄

2Va

Cmq
q + Cmδe

δe (C.12)

Cn = Cn0
+ Cnβ

β +
b

2Va

Cnp
p+

b

2Va

Cnr
r + Cnδa

δa + Cnδr
δr. (C.13)
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Similarly as for the forces, the aerodynamic moment equations can be extended as

Cl = Clext
+

b

2Va

Clpp+
b

2Va

Clrr + Clδa
δa + Clδr

δr (C.14)

Cm = Cmext
+

c̄

2Va

Cmq
q + Cmδe

δe (C.15)

Cn = Cnext
+

b

2Va

Cnp
p+

b

2Va

Cnr
r + Cnδa

δa + Cnδr
δr (C.16)

with

Clext
= Cl0 + Clββ + Clβ2

β2 + Clβ3
β3 + Clβ4

β4 + Clβ5
β5 + . . .

+
b

2Va

(Cl
p2
p2 + Cl

p3
p3 + Cl

p4
p4 + Cl

p5
p5 + . . . )

+
b

2Va

(Clr2
r2 + Clr3

r3 + Clr4
r4 + Clr5

r5 + . . . ) (C.17)

Cmext
= Cm0

+ Cmα
α+ Cm

α2
α2 + Cm

α3
α3 + Cm

α4
α4 + Cm

α5
α5 + . . .

+
c̄

2Va

(Cm
q2
q2 + Cm

q3
q3 + Cm

q4
q4 + Cm

q5
q5 + . . . ) (C.18)

Cnext
= Cn0

+ Cnβ
β + Cnβ2

β2 + Cnβ3
β3 + Cnβ4

β4 + Cnβ5
β5 + . . .

+
b

2Va

(Cnp2
p2 + Cnp3

p3 + Cnp4
p4 + Cnp5

p5 + . . . )

+
b

2Va

(Cn
r2
r2 + Cn

r3
r3 + Cn

r4
r4 + Cn

r5
r5 + . . . ) (C.19)

enabling the aerodynamic moments to be written in compact form as

τ b
aero = fext(x)−D(x)ωb

n,b +G(x)u (C.20)

where D(x) and G(x) are defined in Section 2.4 and

fext(x) =
1

2
ρSV 2

a

⎡
⎣
bClext

c̄Cmext

bCnext

⎤
⎦ . (C.21)

Remark C.2 Note that the deflection angles have not been extended in order to be
able to use them for control. It is worth mentioning that the aerodynamics can be
augmented using actuator dynamics (δ̇a, δ̇e, δ̇r) for control, which then would allow
the deflection angles themselves to be extended similarly as the other variables.

Remark C.3 It is well established that dynamics containing terms of even powers
provide a destabilizing effect to the system. Since there is full control of the speed
and the attitude, these terms can simply be removed from the closed loop system
by properly designing the control law, and as such do not pose a problem from a
control point of view.
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Remark C.4 Note that cross terms can also be included into these aerodynamic
models, since all undesirable terms can be removed.

Remark C.5 There is an upper bound on the number of terms used for param-
eterizations, where an over-parametrization degrades the aerodynamic model (cf.
Morelli (1998)).

The main point with this appendix is to emphasize that using the decoupling
method such that the rotational controller can be designed before a translational
controller, it enables the aerodynamics to contain multiple additional terms without
increasing the control problem.
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Appendix D

Lyapunov Stability

This appendix contains the different theorems and lemmas that are used to prove
stability. It is based on the work by Khalil (2002), and is included to allow the
thesis to be self-sustained. On a general level all desired states are assumed to be
time-varying, such that this thesis considers non-autonomous systems.

D.1 Non-autonomous Systems

Definition D.1 (Khalil (2002)) Consider the non-autonomous system

ẋ = f(t,x) (D.1)

where f : [0,∞) × D → R
n is piecewise continuous in t and locally Lipschitz in x

on [0,∞)×D, and D ⊂ R
n is a domain that contains the origin x = 0. The origin

is an equilibrium point for (D.1) at t = 0 if

f(t,0) = 0, ∀t ≥ 0. (D.2)

Lemma D.1 (Khalil (2002)) If f(t,x) and ∂f
∂x

(t,x) are continuous on [a, b]×D,
for some domain D ⊂ R

n, then f is locally Lipschitz in x on [a, b]×D.

Lemma D.2 (Khalil (2002)) If f(t,x) and ∂f
∂x

(t,x) are continuous on [a, b]×R
n,

then f is globally Lipschitz in x on [a, b]×R
n if and only if ∂f

∂x
is uniformly bounded

on [a, b]× R
n.

Definition D.2 (Khalil (2002)) A continuous function α : [0, a) → [0,∞) is
said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong
to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

Definition D.3 (Khalil (2002)) A continuous function β : [0, a) × [0,∞) →
[0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s) be-
longs to class K with respect to r and, for each fixed r, the mapping β(r, s) is
decreasing with respect to s and β(r, s) → 0 as s → ∞.

Definition D.4 (Khalil (2002)) The equilibrium point x = 0 of (D.1) is
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D. Lyapunov Stability

• stable if, for each � > 0, there is δ = δ(�, t0) > 0 such that

||x(t0)|| < δ ⇒ ||x(t)|| < �, ∀ t ≥ t0 ≥ 0 (D.3)

• uniformly stable if, for each � > 0, there is δ = δ(�) > 0, independent of t0,
such that (D.3) is satisfied.

• unstable if it is not stable.

• asymptotically stable if it is stable and there is a positive constant c = c(t0)
such that x(t) → 0 as t → ∞, for all ||x(t0)|| < c.

• uniformly asymptotically stable if it is uniformly stable and there is a positive
constant c, independent of t0, such that for all ||x(t0)|| < c,x(t) → 0 as
t → ∞, uniformly in t0; that is, for each η > 0, there is T = T (η) > 0 such
that

||x(t)|| < η, ∀ t ≥ t0 + T (η), ∀ ||x(t0)|| < c (D.4)

• uniformly globally asymptotically stable (ugas) if it is uniformly stable, δ(�)
can be chosen to satisfy lim�→∞ δ(�) = ∞, and, for each pair of positive
numbers η and c, there is T = T (η, c) > 0 such that

||x(t)|| < η, ∀ t ≥ t0 + T (η, c), ∀ ||x(t0)|| < c. (D.5)

Theorem D.1 (Khalil (2002)) Let x = 0 be an equilibrium point for (D.1) and
D ⊂ R

n be a domain containing x = 0. Let V := [0,∞)×D → R be a continuously
differentiable function, such that

W1(x) ≤ V (t,x) ≤ W2(x) (D.6)

∂V

∂t
+

∂V

∂x
f(t,x) ≤ 0 (D.7)

∀ t ≥ 0 and ∀ x ∈ D, where W1(x) and W2(x) are continuous positive definite
functions on D. Then, x = 0 is uniformly stable.

Theorem D.2 (Khalil (2002)) Suppose the assumptions for Theorem D.1 are
satisfied with inequality (D.7) strengthened to

∂V

∂t
+

∂V

∂x
f(t,x) ≤ −W3(x) (D.8)

∀ t ≥ 0 and ∀ x ∈ D, where W3(x) is a continuous positive definite function on D.
Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen
such that Br = {||x|| ≤ r} ⊂ D and c < min||x||=r W1(x), then every trajectory
starting in {x ∈ Br|W2(x) ≤ c} satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t ≥ t0 ≥ 0 (D.9)

for some class KL function β. Finally, if D = R
n and W1(x) is radially unbounded,

then x = 0 is uniformly globally asymptotically stable.
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D.1. Non-autonomous Systems

Theorem D.3 (Khalil (2002)) Let x = 0 be an equilibrium point of (D.1) and
D ⊂ R

n be a domain containing x = 0. Let V : [0,∞)× D → R be a continuously
differentiable function such that

k1||x||a ≤ V (t,x) ≤k2||x||a (D.10)

∂V

∂t
+

∂V

∂x
f(t,x) ≤− k3||x||a (D.11)

∀ t ≥ 0 and ∀ x ∈ D, where k1, k2, k3 and a are positive constants. Then, x = 0

is uniformly exponentially stable1. If the assumptions hold globally, then x = 0 is
uniformly globally exponentially stable.

Theorem D.4 (Matrosov, Hahn (1967)) Let two functions V (t,x), W (t,x) be
given which are continuous on the domain D and satisfy:

1. V (t,x) is positive definite and decrescent.

2. The derivative V̇ can be estimated from above by a non-positive continuous
t-independent function

V̇ ≤ U(x) ≤ 0 (D.12)

3. The function W (t,x) is bounded.

4. The derivative Ẇ is definitely non-zero on the set N := {x : U(x) = 0}.

Then the equilibrium x = 0 of (D.1) is uniformly asymptotically stable.

Definition D.5 (Khalil (2002)) The solutions of (D.1) are

• Uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0,
and for every a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that

||x(t0)|| ≤ a ⇒ ||x(t)|| ≤ β, ∀ t ≥ t0. (D.13)

• Uniformly globally bounded if (D.13) holds for arbitrarily large a.

• Uniformly ultimately bounded with ultimate bound b if there exists positive
constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is
T = T (a, b) ≥ 0, independent of t0, such that

||x(t0)|| ≤ a ⇒ ||x(t)|| ≤ b ∀ t ≥ t0 + T. (D.14)

• Uniformly globally ultimately bounded if (D.14) holds for arbitrary large a.

1Even though Khalil (2002) does not use the term "uniformly" exponentially stable, it is in-
cluded here to follow the definitions by Loría and Panteley (2002). The same theorem is presented
in Panteley and Loría (2010) where "uniformly" is included.
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D. Lyapunov Stability

Theorem D.5 (Khalil (2002)) Let D ⊂ R
n be a domain that contains the origin

and V : [0,∞)×D → R be a continuously differentiable function such that

α1(||x||) ≤ V (t,x) ≤ α2(||x) (D.15)

∂V

∂t
+

∂V

∂x
f(t,x) ≤ −W3(x), ∀ ||x|| ≥ μ > 0 (D.16)

∀ t ≥ 0 and ∀ x ∈ D, where α1 and α2 are class K functions and W3(x) is a
continuous positive definite function. Take r > 0 such that Br ⊂ D and suppose
that

μ < α−1
2 (α1(r)). (D.17)

Then, there exists a class KL function β and for every initial state x(t0), satisfying
||x(t0)|| ≤ α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and μ) such that the
solution of (D.1) satisfies

||x(t0)|| ≤ β(||x(t0)||, t− t0), ∀ t0 ≤ t ≤ t0 + T (D.18)

||x(t)|| ≤ α−1
1 (α2(μ)), ∀t ≥ t0 + T. (D.19)

Moreover, if D = R
n and α1 belongs to class K∞, then (D.18) and (D.19) hold for

any initial state x(t0), with no restriction on how large μ is.

D.2 Input-to-State Stability

Consider the system

ẋ = f(t,x,u) (D.20)

where f : [0,∞)×R
n×R

m → R
n is a piecewise continuous in t and locally Lipschitz

in x and u. The input u(t) is a piecewise continuous, bounded function of t for all
t ≥ 0.

Definition D.6 (Khalil (2002)) The system (D.20) is said to be input-to-state
stable if there exit a class KL function β and a class K function γ such that for any
initial state x(t0) and any bounded input u(t), the solutions x(t) exists for t ≥ t0
and satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ( sup
t0≥τ≥t

||u(τ)||). (D.21)

Theorem D.6 (Khalil (2002)) Let V : [0,∞)× R
n → R be a continuous differ-

entiable function such that

α1(||x||) ≤ V (t,x) ≤ α2(||x||) (D.22)

∂V

∂t
+

∂V

∂x
f(t,x,u) ≤ −W3(x), ∀ ||x|| ≥ ρ(||x||) > 0 (D.23)

∀ (t,x,u) ∈ [0,∞)×R
n ×R

m, where α1, α2 are class K∞ functions, ρ is a class K
function, and W3(x) is a continuously positive definite function on R

n. Then, the
system (D.20) is input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.
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ẋ = f(t,x,u) (D.20)

where f : [0,∞)×R
n×R

m → R
n is a piecewise continuous in t and locally Lipschitz

in x and u. The input u(t) is a piecewise continuous, bounded function of t for all
t ≥ 0.

Definition D.6 (Khalil (2002)) The system (D.20) is said to be input-to-state
stable if there exit a class KL function β and a class K function γ such that for any
initial state x(t0) and any bounded input u(t), the solutions x(t) exists for t ≥ t0
and satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0) + γ( sup
t0≥τ≥t

||u(τ)||). (D.21)

Theorem D.6 (Khalil (2002)) Let V : [0,∞)× R
n → R be a continuous differ-

entiable function such that

α1(||x||) ≤ V (t,x) ≤ α2(||x||) (D.22)

∂V

∂t
+

∂V

∂x
f(t,x,u) ≤ −W3(x), ∀ ||x|| ≥ ρ(||x||) > 0 (D.23)

∀ (t,x,u) ∈ [0,∞)×R
n ×R

m, where α1, α2 are class K∞ functions, ρ is a class K
function, and W3(x) is a continuously positive definite function on R

n. Then, the
system (D.20) is input-to-state stable with γ = α−1

1 ◦ α2 ◦ ρ.
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D.3. Stability of Cascades

D.3 Stability of Cascades

An interconnected cascaded system is commonly expressed as (Loría and Panteley
(2005))

Σ1 : ẋ1 = f1(t,x1) + g(t,x)x2 (D.24)

Σ2 : ẋ2 = f2(t,x2) (D.25)

where x1 ∈ R
n , x2 ∈ R

m, x =
[
x�
1 x�

2

]�
and the functions f1(t,x1), f2(t,x2)

and g(t,x) are continuous in their arguments, locally Lipschitz in x, uniformly in t,
and f1(t,x2) is continuously differentiable in both arguments. The use of cascade
theory, enables a divide and conquer approach to be applied, where each problem
can be solved in a modular fashion. This enables the stability of the system

ẋ1 = f1(t,x1). (D.26)

to be determined first and independently from the cascade. Then the stability
properties of the driving system (D.25) can be established followed by an analysis
of the interconnection term g(t,x) to determine the stability of the cascaded system
(D.24)-(D.25). In the following, a lemma and a theorem will be presented based on
the work by Panteley and Loría (1998) and Loría and Panteley (2005) that enable
the stability properties of cascaded systems to be determined.

Lemma D.3 (Loría and Panteley (2005)) The cascade (D.24)-(D.25) is ugas
if and only if the system (D.25) and (D.26) are ugas and the solutions of (D.24)-
(D.25) are uniformly globally bounded.

Assumption D.1 There exist constants c1, c2, η > 0 and a Lyapunov function
V (t,x1) for (D.26) such that V : R≥0 ×R

n → R≥0 is positive definite and radially
unbounded, which satisfies:

∣∣∣∣
∣∣∣∣
∂V

∂x1

∣∣∣∣
∣∣∣∣ ||x1|| ≤ c1V (t,x1) ∀ ||x1|| ≥ η (D.27)

∣∣∣∣
∣∣∣∣
∂V

∂x1

∣∣∣∣
∣∣∣∣ ≤ c2 ∀ ||x1|| ≤ η. (D.28)

Assumption D.2 There exist two continuous functions θ1, θ2 : R≥0 → R≥0, such
that g(t,x) satisfies

||g(t,x)|| ≤ θ1(||x2||) + θ2(||x2||)||x1||. (D.29)

Assumption D.3 There exists a class K function α(·) such that, for all t0 ≥ 0,
the trajectories of the system (D.25) satisfy

∫ ∞

t0

||x2(t, t0,x2(t0))||dt ≤ α(||x2(t0)||). (D.30)

Theorem D.7 Under assumptions D.1-D.3 the origin of the cascaded system is
uniformly asymptotically stable if the respective origins of (D.25) and (D.26) are
uniformly asymptotically stable; see Panteley and Loría (1998).
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D. Lyapunov Stability

To consider input-to-state stability for cascaded systems, let the system be written
as

ẋ1 = f1(t,x1,x2) (D.31)

ẋ2 = f2(t,x2) (D.32)

where f1 : [0,∞) × R
n1 × R

n2 → R
n1 and f2 : [0,∞) × R

n2 → R
n2 are piecewise

continuous in t and locally Lipschitz in x =
[
x�
1 x�

2

]�
, and where the unforced

system can be written as

ẋ1 = f1(t,x1,0). (D.33)

Lemma D.4 (Khalil (2002)) If the system (D.31), with x2 as input, is input-to-
state stable and the origins (D.32) and (D.33) are uniformly globally asymptotically
stable, then the origin of the cascaded system (D.31) and (D.32) is uniformly glob-
ally asymptotically stable.
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Appendix E

Detailed Proofs

E.1 Proof of Lemma 3.1

The drag force is a positive force that is working in the opposite direction of motion
and is defined as D = 1

2ρSV
2
a CD cf. (2.17). Since the air density, surface area and

airspeed are positive, it follows that the drag coefficient must be positive. From
(B.5) the linear acceleration can be written as

V̇a =
1

m
(T cos(α) cos(β) − 1

2
ρSV 2

a CD +
[
m 0 0

]
Rw

n f
n
g ) (E.1)

which can be rewritten as

V̇a = − 1

2m
ρSCDV 2

a + γ(T, α, β,qn,b, g) (E.2)

where the first term provides damping while the second term is a bounded function.
The thrust is physically bounded, 0 ≤ T ≤ Tmax, the angle of attack and the
sideslip angle are bounded by ±π

2 , ||qn,b|| = 1 and ||fng || = g. A Lyapunov function
candidate can now be proposed as

V :=
1

2
V 2
a > 0 ∀ Va �= 0. (E.3)

and by differentiating (E.3) and inserting (E.2), it results in

V̇ = − 1

2m
ρSCDV 3

a + Vaγ(T, α, β,qn,b, g) (E.4)

V̇ ≤ − 1

2m
ρSCDV 3

a ∀ Va ≥ 2m||γ(T, α, β,qn,b, g)||
ρSCD

, (E.5)

and by applying Assumption 2.2 it follows that Va > 0 ∀ t ≥ t0 such that the first
term will always provide damping to the system. Hence, by applying Theorem D.5
and Definition D.5 it follows that all the solutions are uniformly globally ultimately
bounded1.

1Note that Theorem D.5 requires that a ∈ (0, c) with c as a constant, while Va ≥ βv > 0, such
that this is a slight abuse of the theorem.
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E. Detailed Proofs

E.2 Proof of Lemma 3.2

The actuators are physically upper and lower bounded by a maximum and minimum
deflection angle, such that ||u|| ≤ βu. Let a Lyapunov function candidate be chosen
as

V =
1

2
(ωb

n,b)
�Jωb

n,b > 0 ∀ ωb
n,b �= 0 (E.6)

and by differentiation of (E.6) and inserting (2.32) it becomes

V̇ = −(ωb
n,b)

�D(x)ωb
n,b + (ωb

n,b)
�(f(x) +G(x)u) (E.7)

≤ −βD||ωb
n,b||2 ∀ ||ωb

n,b|| ≥
||f(x)||+ ||G(x)||βu

βD

, (E.8)

where βD is the smallest eigenvalue of the damping matrix D(x) when Va = βv.
Hence, by applying Theorem D.5 and Definition D.5 it follows that all the solutions
are uniformly globally ultimately bounded.

E.3 Proof of Lemma 3.3

Let ωw
b,w :=

�
pw qw rw

��
. From (B.3), the translational dynamics can be written

as
⎡
⎣

V̇a

rwVa

−qwVa

⎤
⎦ =

1

m
(Rw

b f
b
thrust + fwaero) +Rw

n f
n
g −Rw

b S(ω
b
n,b)v

b
r, (E.9)

where m is constant, ||Rw
b || = ||Rw

n || = 1, ||f bthrust|| = |T | ≤ Tmax using its physical
constraint, ||fng || = g which is a constant, ||ωb

n,b|| ≤ βω as shown in Lemma 3.2
and ||vb

r|| = Va ≤ βVmax
by applying Lemma 3.1, and ||f baero|| ≤ βfaero

since the
aerodynamics are a function of bounded variables. Hence, all the terms of the
translational dynamics are bounded, and hence it follows that V̇a, rw and qw are
bounded. Furthermore, the angular velocity between the wind and body frame can
be expanded using (2.48) as

ωw
b,w =

⎡
⎣
pw
qw
rw

⎤
⎦ =

⎡
⎣
−α̇ sin(β)
−α̇ cos(β)

β̇

⎤
⎦ (E.10)

where pw

qw
= tan(β) such that pw = qw tan(β) indicating that pw is also bounded.

Hence, all the terms of ωw
b,w are bounded.

E.4 Proof of Lemma 3.4

Expanding the terms it becomes

e�q±TeT
�
e eq± =

1

4
��� ≥ 1

8

�
(1∓ η)2 + ���

�
=

1

8
e�q±eq± (E.11)
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E.5. Proof of Theorem 3.1

where the inequality in (E.11) is found by

1

8

(
(1∓ η)2 + ���

) ≤ 1

4
��� (E.12)

(1∓ η)2 ≤ ��� = 1− η2 (E.13)

1∓ 2η + η2 ≤ 1− η2 (E.14)

∓2η ≤ 0, (E.15)

and it follows that the inequality holds for eq+ ∀ 0 ≤ η ≤ 1 and eq− ∀ −1 ≤ η ≤ 0.

E.5 Proof of Theorem 3.1

Without loss of generality, consider the positive equilibrium point and let eq := eq+
and Te := Te(eq+). A Lyapunov function candidate can now be chosen as

V1 =
1

2
e�q eq > 0 ∀ eq �= 0 (E.16)

which can be differentiated and by inserting (3.4) it becomes

V̇1 = e�q TeR
w
b ω

b
d,w (E.17)

= e�q TeR
w
b (ω

b
n,b −Rb

dω
d
n,d +Rb

wω
w
b,w). (E.18)

The angular velocity ωb
n,b can now be used for control, and using standard back-

stepping procedure (cf. Krstić et al. (1995)), let

ωb
n,b := Rb

dω
d
n,d −Rb

wω
w
b,w − kqR

b
wT

�
e eq + z (E.19)

where kq > 0 is a gain and z is a new variable to be defined. Inserting (E.19) into
(E.18), the Lyapunov derivative becomes

V̇1 = −kqe
�
q TeT

�
e eq + e�q TeR

w
b z (E.20)

which is negative definite as long as z = 0. To stabilize the dynamics of the new
variable, it can be written using (E.19) as

Jz = Jωb
n,b − JRb

dω
d
n,d + JRb

wω
w
b,w + kqJR

b
wT

�
e eq (E.21)

and by differentiating (E.21), inserting (2.32) and using (E.19) it becomes

Jż = −S(ωb
n,b)Jω

b
n,b + f(x) −D(x)(Rb

dω
d
n,d −Rb

wω
w
b,w − kqR

b
wT

�
e eq)

−D(x)z +G(x)u+ JS(ωb
n,b)R

b
dω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w

+ kqJR
b
wS(ω

w
b,w)T

�
e eq +

kq
2
JRb

w �̇d,w (E.22)

where T�
e eq =

εd,w
2 has been used. Let a second Lyapunov function candidate be

defined as

V2 = V1 +
1

2
z�Jz > 0 ∀ eq, z �= 0 (E.23)
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E. Detailed Proofs

which by using (E.20) and (E.22) can be differentiated as

V̇2 = −kqe
�
q TeT

�
e eq + e�q TeR

w
b z

+ z�(−S(ωb
n,b)Jω

b
n,b + f(x) −D(x)(Rb

dω
d
n,d −Rb

wω
w
b,w − kqR

b
wT

�
e eq)

−D(x)z +G(x)u + JS(ωb
n,b)R

b
dω

d
n,d − JRb

dω̇
d
n,d + JRb

wω̇
w
b,w

+ kqJR
b
wS(ω

w
b,w)T

�
e eq +

kq
2
JRb

w �̇d,w). (E.24)

Inserting the control law (3.12) into (E.24) the Lyapunov derivative becomes

V̇2 = −kqe
�
q TeT

�
e eq − z�(D(x) + kωI)z (E.25)

and using Lemma 3.4 it reduces to

V̇2 ≤ −kq
8
||eq||2 − (βD + kω)||z||2 (E.26)

which is negative definite. The damping matrix D(x) is positive definite as long as
Va > 0 and can be lower bounded using Assumption 2.2 as βD ≤ λmin(D(xmin))
where λmin(D(xmin)) is the smallest eigenvalue of the damping matrix where
xmin =

[
βv 0 0

]�
. Given qn,d ∈ S3 and ωd

n,d, ω̇
d
n,d ∈ L∞ it follows using

Theorem D.3 that the origin (eq, z) = (0,0) is uniformly exponentially stable. A
similar proof can be shown for the negative equilibrium point by defining eq := eq−
and Te := Te(eq−).

E.6 Proof of Theorem 3.2

Without loss of generality, consider the positive equilibrium point such that eq :=
eq+ and Te := Te(eq+). Let a Lyapunov function candidate be defined as

V =
1

2
kqe

�
q eq + (ωb

d,w)
�Jωb

d,w > 0 ∀ eq,ω
b
d,w �= 0 (E.27)

where kq is a positive scalar gain. Equation (E.27) can be differentiated, and by
inserting (3.4) and (3.8) it becomes

V̇ =kqe
�
q TeR

w
b ω

b
d,w + (ωb

d,w)
�(−S(ωb

n,b)Jω
b
n,b + f(x) −D(x)ωb

d,w

−D(x)(Rb
dω

d
n,d −Rb

wω
w
b,w) +G(x)u + JS(ωb

n,b)R
b
dω

d
n,d

− JRb
dω̇

d
n,d + JRb

wω̇
w
b,w). (E.28)

By inserting the control law (3.14) into (E.28), the Lyapunov derivative becomes

V̇ = −(ωb
d,w)

�(D(x) + kωI)ω
b
d,w ≤ −(βD + kω)||ωb

d,w||2 (E.29)

which is negative semidefinite and where βD is a smallest eigenvalue of the damping
matrix D(x) when Va = βv. Given qn,d,ω

d
n,d, ω̇

d
n,d ∈ L∞ and by applying The-

orem D.1, it follows that the origin (eq,ωb
d,w) = (0,0) is uniformly stable. The

closed loop dynamics are found by inserting (3.14) into (3.8) as

Jω̇b
d,w = −kqR

b
wT

�
e eq − (D(x) + kωI)ω

b
d,w. (E.30)
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which by using (E.20) and (E.22) can be differentiated as

V̇2 = −kqe
�
q TeT

�
e eq + e�q TeR

w
b z

+ z�(−S(ωb
n,b)Jω

b
n,b + f(x) −D(x)(Rb

dω
d
n,d −Rb

wω
w
b,w − kqR
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�
e eq)

−D(x)z +G(x)u + JS(ωb
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dω
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n,d − JRb

dω̇
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n,d + JRb

wω̇
w
b,w

+ kqJR
b
wS(ω

w
b,w)T

�
e eq +

kq
2
JRb

w �̇d,w). (E.24)

Inserting the control law (3.12) into (E.24) the Lyapunov derivative becomes

V̇2 = −kqe
�
q TeT

�
e eq − z�(D(x) + kωI)z (E.25)

and using Lemma 3.4 it reduces to

V̇2 ≤ −kq
8
||eq||2 − (βD + kω)||z||2 (E.26)

which is negative definite. The damping matrix D(x) is positive definite as long as
Va > 0 and can be lower bounded using Assumption 2.2 as βD ≤ λmin(D(xmin))
where λmin(D(xmin)) is the smallest eigenvalue of the damping matrix where
xmin =

[
βv 0 0

]�
. Given qn,d ∈ S3 and ωd

n,d, ω̇
d
n,d ∈ L∞ it follows using

Theorem D.3 that the origin (eq, z) = (0,0) is uniformly exponentially stable. A
similar proof can be shown for the negative equilibrium point by defining eq := eq−
and Te := Te(eq−).

E.6 Proof of Theorem 3.2
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d,w) = (0,0) is uniformly stable. The

closed loop dynamics are found by inserting (3.14) into (3.8) as

Jω̇b
d,w = −kqR

b
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�
e eq − (D(x) + kωI)ω

b
d,w. (E.30)
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To show that eq → 0, the Matrosov theorem can be applied (cf. Hahn (1967)). Let
an auxiliary function be defined as

W := e�q TeR
w
b Jω

b
d,w (E.31)

which is continuous and bounded since ||eq|| ≤ 1, ||Rw
b || = 1 and ||ωb

d,w|| ≤ βωe

using (E.29). The auxiliary function can be differentiated and by inserting (E.30)
and evaluating it in the set N = {eq ∈ S3

e |ωb
d,w = 0} it becomes

Ẇ = −kqe
�
q TeT

�
e eq ≤ −kq

8
e�q eq (E.32)

where Lemma 3.4 has been used. The Lyapunov function (E.27) is decrescent and
positive definite, and V̇ is negative semidefinite and can be bounded by a time-
independent function. The auxiliary function, W , is bounded and its derivative,
Ẇ , is definitely non-zero in the set N . Thus, all conditions of Theorem D.4 are
met, and it follows that the origin (eq,ωb

d,w) = (0,0) is uniformly asymptotically
stable. A similar proof can be done for the negative equilibrium point by defining
eq := eq− and Te := Te(eq−).

E.7 Proof of Theorem 3.3

Without loss of generality, consider the positive equilibrium point and let eq := eq+
and Te := Te(eq+). The sliding variable is defined as

s = ωb
n,b − ωb

n,r (E.33)

ωb
n,r = Rb

dω
d
n,d −Rb

wω
w
b,w −ΛRb

wT
�
e eq (E.34)

where Λ = λI with λ > 0, enabling the angular velocity error to be written as

ωb
d,w = s−ΛRb

wT
�
e eq, (E.35)

and the sliding variable can be differentiated using (2.32) and (E.33) as

Jṡ = −S(ωb
n,b)Jω

b
n,b + f(x)−D(x)s −D(x)ωb

n,r +G(x)u − Jω̇b
n,r. (E.36)

A Lyapunov function candidate be now chosen as

V1 =
kq
2
e�q eq +

1

2
s�Js > 0 ∀eq, s �= 0 (E.37)

where kq > 0 is a scalar gain. Equation (E.37) can be differentiated using (3.4),
(E.35) and (E.36) as

V̇1 = −kqe
�
q TeΛT�

e eq + kqe
�
q TeR

w
b s

+ s�(−S(ωb
n,b)Jω

b
n,b + f(x)−D(x)s −D(x)ωb

n,r +G(x)u− Jω̇b
n,r) (E.38)

and by inserting (3.15) into (E.38) it results in

V̇1 = −kqe
�
q TeΛT�

e eq − s�(D(x) + ksI)s

≤ −kqλ

8
||eq||2 − (βD + ks)||s||2 (E.39)
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where Lemma 3.4 has been used and where βD is the smallest eigenvalue of the
damping matrix D(x) when Va = βv. The Lyapunov Function (E.37) is posi-
tive definite and decrescent while its derivative (E.39) is negative definite. Given
qn,d,ω

d
n,d, ω̇

d
n,d ∈ L∞ it follows by applying Theorem D.3 that the origin (eq, s) =

(0,0) is uniformly exponentially stable. A similar proof can be done for the negative
equilibrium point by defining eq := eq− and Te := Te(eq−).

E.8 Proof of Lemma 3.5

Without loss of generality let eqr = eqr+ and Ter = Ter (eqr+). A Lyapunov
function candidate can be defined as

V1 =
1

2
e�qreqr > 0 ∀eqr �= 0 (E.40)

and differentiated along the trajectories of (3.21) as

V̇1 = e�qrTer (ω
r
n,r −Rr

dω
d
n,d). (E.41)

Using backstepping (cf. Krstić et al. (1995)), the reference angular velocity can be
chosen as

ωr
n,r = Rr

dω
d
n,d − k1T

�
er
eqr + zr (E.42)

where k1 > 0 is a gain and zr is a new variable to be defined. By inserting (E.42)
into (E.41), the Lyapunov derivative becomes

V̇1 = −k1e
�
qr
TerT

�
er
eqr + e�qrTerzr , (E.43)

which is negative definite as long as zr = 0. The new variable is found using (E.42)
as

zr = ωr
n,r −Rr

dω
d
n,d + k1T

�
er
eqr (E.44)

and its derivative is found as

żr = ω̇r
n,r + S(ωr

n,r)R
r
dω

d
n,d −Rr

dω̇
d
n,d + k1

�̇d,r

2
(E.45)

where T�
er
eqr = 1

2�d,r has been used. A second Lyapunov function candidate can
now be defined as

V2 = V1 +
1

2
z�r zr > 0 ∀ eqr , zr �= 0. (E.46)

By differentiating (E.46) and inserting (E.43) and (E.45), it becomes

V̇2 =− k1e
�
qr
TerT

�
er
eqr + e�qrTerzr + z�r

(
ω̇r

n,r + S(ωr
n,r)R

r
dω

d
n,d

−Rr
dω̇

d
n,d + k1

�̇d,r

2

)
, (E.47)
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and by inserting (3.24) into (E.47) it results in

V̇2 = −k1e
�
qr
TerT

�
er
eqr − k2z

�
r zr + z�r ξ1 (E.48)

≤ −k1
8
||eqr ||2 − k2||zr||2 ∀ ||zr || ≥

∣∣∣∣
∣∣∣∣
ξ1
k2

∣∣∣∣
∣∣∣∣ (E.49)

where Lemma 3.4 has been used. Let ẋr :=
[
ė�qr ż�r

]�
denote the system. Con-

sider the case when ξ1 is nonzero and perturbs the system. The Lyapunov function
(E.46) is positive definite and decrescent, while its derivative (E.49) is negative

definite ∀ ||zr|| ≥
∣∣∣
∣∣∣ξ1

k2

∣∣∣
∣∣∣ and the function ξ1 is bounded. By applying Theorem D.6

it is concluded that the system ẋr is input-to-state stable. Being input-to-state
stable, it follows from Definition D.6 that the solution xr(t) exists for all t ≥ t0 and
satisfies

||xr(t)|| ≤ β(||xr(t0)||, t− t0) + γ

(
sup

t0≤τ≤t

||ξ1(τ)||
)

(E.50)

where β is a class KL function while γ is a class K function. As the bounded
function ξ1 → 0, equation (E.50) reduces to

||xr(t)|| ≤ β(||xr(t0)||, t− t0) (E.51)

showing that the origin (eqr , zr) = (0,0) is uniformly asymptotically stable when
ξ1 = 0. A similar proof can be done for the negative equilibrium point by defining
eqr = eqr− and Ter = Ter (eqr−).

E.9 Proof of Theorem 3.4

Without loss of generality, let eq := eq+ and Te := Te(eq+). A Lyapunov function
candidate can be defined as

V1 :=
1

2
e�q eq > 0 ∀ eq �= 0. (E.52)

Equation (E.52) can be differentiated as

V̇1 = e�q TeR
w
b ω

b
r,w (E.53)

where ωb
r,w can be used for control. Using backstepping, let the angular velocity

error be chosen as

ωb
r,w := −k3R

b
wT

�
e eq + z (E.54)

where k3 > 0 is a gain and z is a new variable, then

V̇1 =− k3e
�
q TeT

�
e eq + e�q TeR

w
b z (E.55)
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error be chosen as

ωb
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�
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where k3 > 0 is a gain and z is a new variable, then
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�
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which is negative definite as long as z = 0. The new variable is found from (E.54)
and differentiated using (3.29) as

z = ωb
n,b −Rb

rω
r
n,r +Rb

wω
w
b,w + k3R

b
wT

�
e eq (E.56)

ż = J−1(−S(ωb
n,b)Jω

b
n,b + f̂(x)− D̂(x)ωb

n,b + Ĝ(x)u+ Ĝ(x)ũ −Φ2θ̃2

−Φ3θ̃3) + S(ωb
n,b)R

b
rω

r
n,r −Rb

r(R
r
dω̇

d
n,d − S(ωr

n,r)R
r
dω

d
n,d − k1

�̇d,r

2

−T�
er
eqr − k2zr + ξ1) +Rb

wω̇
w
b,w + k3R

b
wS(ω

w
b,w)T

�
e eq +

k3
2
Rb

w�̇r,w. (E.57)

A second Lyapunov function candidate can be defined as

V2 := V1 +
1

2
z�z+

1

2
θ̃�
2 Γ

−1
2 θ̃2 +

1

2
θ̃�
3 Γ

−1
3 θ̃3 > 0 ∀ eq, z, θ̃2, θ̃3 �= 0 (E.58)

where Γ2 > 0 and Γ3 > 0 are adaptive gain matrices. Differentiating (E.58) and
inserting (E.55) and (E.57), the Lyapunov derivative becomes

V̇2 = −k3e
�
q TeT

�
e eq + e�q TeR

w
b z+ z�(J−1(−S(ωb

n,b)Jω
b
n,b + f̂(x)

− D̂(x)ωb
n,b + Ĝ(x)u + Ĝ(x)ũ−Φ2θ̃2 −Φ3θ̃3) + S(ωb

n,b)R
b
rω

r
n,r

−Rb
r(R

r
dω̇

d
n,d − S(ωr

n,r)R
r
dω

d
n,d − k1

�̇d,r

2
−T�

er
eqr − k2zr + ξ1)

+Rb
wω̇

w
b,w + k3R

b
wS(ω

w
b,w)T

�
e eq +

k3
2
Rb

w �̇r,w) + θ̃�
2 Γ

−1
2

˙̂
θ2 + θ̃�

3 Γ
−1
3

˙̂
θ3. (E.59)

The first problem that can be solved is to remove the saturation problem from the
closed loop dynamics and into the reference trajectory by defining ξ1 as in (3.31).
The control law (3.30) and the two adaption laws (3.33)-(3.34) can now be inserted,
resulting in the Lyapunov derivative as

V̇2 ≤ −k3
8
||eq||2 − k4||z||2 < 0 ∀ eq, z �= 0, (E.60)

which is negative semi-definite. Given qn,d ∈ S3 and ωd
n,d, ω̇

d
n,d ∈ L∞ it follows by

using Theorem D.1 that the origin (eq, z, θ̃2, θ̃3) = (0,0,0,0) is uniformly stable,
indicating that the terms eq, z, θ̃2 and θ̃3 are bounded. To show that the origin is
uniformly asymptotically stable, Matrosov’s theorem will be applied. The closed
loop error dynamics can now be found as

ėq = −k3R
b
wT

�
e eq +TeR

w
b z (E.61)

ż = −Rb
wT

�
e eq − k4z− J−1(Φ2θ̃2 +Φ3θ̃3) (E.62)

˙̃
θ2 = Γ2Φ

�
2 J

−1z (E.63)
˙̃
θ3 = proj(Γ3Φ

�
2 J

−1z), (E.64)

and a continuous bounded auxiliary function can now be chosen as

W := e�q TeR
w
b (Φ2θ̃2 +Φ3θ̃3) + z�J−1(Φ2θ̃2 +Φ3θ̃3) (E.65)
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A second Lyapunov function candidate can be defined as
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1

2
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2
θ̃�
2 Γ

−1
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1

2
θ̃�
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−1
3 θ̃3 > 0 ∀ eq, z, θ̃2, θ̃3 �= 0 (E.58)

where Γ2 > 0 and Γ3 > 0 are adaptive gain matrices. Differentiating (E.58) and
inserting (E.55) and (E.57), the Lyapunov derivative becomes
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The first problem that can be solved is to remove the saturation problem from the
closed loop dynamics and into the reference trajectory by defining ξ1 as in (3.31).
The control law (3.30) and the two adaption laws (3.33)-(3.34) can now be inserted,
resulting in the Lyapunov derivative as

V̇2 ≤ −k3
8
||eq||2 − k4||z||2 < 0 ∀ eq, z �= 0, (E.60)

which is negative semi-definite. Given qn,d ∈ S3 and ωd
n,d, ω̇

d
n,d ∈ L∞ it follows by

using Theorem D.1 that the origin (eq, z, θ̃2, θ̃3) = (0,0,0,0) is uniformly stable,
indicating that the terms eq, z, θ̃2 and θ̃3 are bounded. To show that the origin is
uniformly asymptotically stable, Matrosov’s theorem will be applied. The closed
loop error dynamics can now be found as

ėq = −k3R
b
wT

�
e eq +TeR

w
b z (E.61)

ż = −Rb
wT

�
e eq − k4z− J−1(Φ2θ̃2 +Φ3θ̃3) (E.62)

˙̃
θ2 = Γ2Φ

�
2 J

−1z (E.63)
˙̃
θ3 = proj(Γ3Φ

�
2 J

−1z), (E.64)

and a continuous bounded auxiliary function can now be chosen as

W := e�q TeR
w
b (Φ2θ̃2 +Φ3θ̃3) + z�J−1(Φ2θ̃2 +Φ3θ̃3) (E.65)
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E.10. Proof of Lemma 3.6

Note that Φ2 = Φ2(Va, α, β,ω
b
n,b) and Φ3 = Φ3(Va, δa, δe, δr). The angle of attack,

α, and the sideslip angle β are bounded by ±π
2 , Va is shown to be bounded in

Lemma 3.1, the angular velocity, ωb
n,b is shown to be bounded in Lemma 3.2 and the

deflection angles are physically bounded. The remaining terms are bounded since
the origin is shown to be uniformly stable. Equation E.65 can now be differentiated,
and by evaluating it in the set N := {θ̃2 ∈ R

11, θ̃3 ∈ R
5|eq = 0, z = 0}, it becomes

Ẇ = −(J−1(Φ2θ̃2 +Φ3θ̃3))
�(J−1(Φ2θ̃2 +Φ3θ̃3))

≤ −
∣∣∣
∣∣∣J−1(Φ2θ̃2 +Φ3θ̃3)

∣∣∣
∣∣∣
2

, (E.66)

which is definitely non-zero as long as the matrices Φ2 and Φ3 are persistently
exciting (Assumption 3.4). The Lyapunov function (E.58) is positive definite and
decrescent while its derivative (E.60) is negative semi-definite and can be bounded
by a time-independent function. The auxiliary function (E.65) is bounded and its
derivative (E.66) is definitely non-zero in the set N . Hence, all the conditions of
Theorem D.4 are fulfilled, and it follows that the origin (eq, z, θ̃2, θ̃3) = (0,0,0,0)
is uniformly asymptotically stable. A similar proof can be done for the negative
equilibrium point by defining eq := eq− and Te := Te(eq−).

E.10 Proof of Lemma 3.6

The error functions are naturally constrained ||eq||, ||eqr || ≤ 2, the rotation matrices
||R|| = 1 and the inertia matrix is constant. From the Lyapunov function (E.58) and
its derivative (E.60) it follows that eq, z, θ̃1, θ̃2 are bounded. Since θ1 and θ2 are
assumed to be constants, it follows that ||θ̂1|| ≤ β

θ̂1
and ||θ̂2|| ≤ β

θ̂2
implying that

f̂(x), D̂(x), Ĝ(x) are bounded. Using Assumption 2.2, the airspeed becomes lower
bounded, such that ||Ĝ−1(x)|| ≤ β

Ĝ
. Lemma 3.2 can be used to show that ||ωb

n,b|| ≤
βω and by design it follows that qn,d ∈ S3 and ωd

n,d, ω̇
d
n,d ∈ L∞. The angular

velocity between the wind and the body frame can be shown to be bounded by using
Lemma 3.3 such that ||ωw

b,w|| ≤ βωw
while its angular acceleration can be shown to

be bounded by imposing rate saturation or using filters with saturation to ensure
that ||ω̇w

b,w|| ≤ βω̇w
. By expanding ωb

r,w = −Rb
rω

r
n,r −Rb

dω
d
n,d + ωb

n,b +Rb
wω

w
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where all the terms have been shown to be bounded except ωr
n,r it follows that

ωr
n,r must also be bounded. With ||ωr

n,r|| ≤ βωr
, the reference variable zr can

be expanded as zr = ωr
n,r − Rr

dω
d
n,d + k1T

�
er
eqr , where ||T�

er
eqr || = || �d,r2 || ≤ 1

2
indicating that ||zr|| ≤ βzr . The quaternion vector rates can be written as ||�̇r,w|| =
||(ηr,wI + S(�r,w))ω

w
r,w|| ≤ β�̇ and similar for ||�̇d,r|| = ||(ηd,rI + S(�d,r))ω

r
d,r|| =

||(ηd,rI + S(�d,r))(ω
r
n,r −Rr

dω
d
n,d)|| ≤ β�̇r . Hence all the terms of the control law

(3.30) are bounded and consequently, ||u|| ≤ βu.

E.11 Proof of Lemma 3.7

The function is given as ξ1 = Rr
bJ

−1Ĝ(x)(σ(u) − u) where ||u|| ≤ βu by using
Lemma 3.6, the saturated control signal is bounded by its physical bound, ||Rr

b|| =
1, the inertia matrix is constant and nonsingular, and Ĝ is shown to be bounded as
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E. Detailed Proofs

part of the proof of Lemma 3.6. Hence, all the parts of the function ξ1 are bounded
and consequently, ||ξ1|| ≤ βξ

1
.

E.12 Proof of Theorem 3.5

Let a Lyapunov function candidate be chosen as

V1 =
1

2
Ṽ 2 > 0 ∀ Ṽ �= 0 (E.67)

which can be differentiated using (3.9) as

V̇1 = Ṽ

(
u

mVa

T +
(vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

)
− V̇d

)
(E.68)

and by inserting (3.37), the Lyapunov derivative becomes

V̇1 = −κpṼ
2 (E.69)

which is negative definite. Given Vd, V̇d ∈ L∞, it follows by applying Theorem D.3
that the origin (Ṽ = 0) is uniformly exponentially stable. Since the thrust is
constrained between zero and an upper bound, the stability does not hold globally.

E.13 Proof of Theorem 3.6

With x1 =
∫ t

0
(Va − Vd(τ))dτ and x2 = Va − Vd(τ), the airspeed tracking error

dynamics can be written using (3.9) as

ẋ1 = x2 (E.70)

ẋ2 =
u

mVa

T +
(vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

)
− V̇d. (E.71)

Using backstepping, let a Lyapunov function candidate be defined as

V1 :=
1

2
x2
1 > 0 ∀ x1 �= 0 (E.72)

which can be differentiated as

V̇1 = x1x2 (E.73)

and where x2 can be used for control. Let x2 := −κ1x1 + z where κ1 > 0 and z is
a new variable, then

V̇1 = −κ1x
2
1 + x1z. (E.74)

The dynamics of the new variable are found through differentiation, and by inserting
(E.71) it becomes

ż =
u

mVa

T +
(vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

)
− V̇d + κ1x2. (E.75)
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Ṽ 2 > 0 ∀ Ṽ �= 0 (E.67)

which can be differentiated using (3.9) as

V̇1 = Ṽ
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E.14. Proof of Lemma 3.8

Let a second Lyapunov function candidate be defined as

V2 := V1 +
1

2
z2 > 0 ∀ x1, z �= 0 (E.76)

which can be differentiated, and by using (E.74) and (E.75) it becomes

V̇2 = −κ1x
2
1 + x1z + z

(
u

mVa

T +
(vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

)
− V̇d + κ1x2

)
.

(E.77)

The control law can now be chosen as

T :=
mVa

u

(
V̇d − κ1x2 − x1 − κ2z − (vb

r)
�

Va

(
1

m
Rb

wf
w
aero +Rb

nf
n
g

))
(E.78)

where κ2 > 0 and which can be written in original coordinates as in (3.38) where
κp = κ1 + κ2 and κi = 1 + κ1κ2. Inserting (E.78) into (E.77), the Lyapunov
derivative becomes

V̇2 = −κ1x
2
1 − κ2z

2 ≤ −κ1||x1||2 − κ2||z||2 (E.79)

which is negative definite. Given Vd, V̇d ∈ L∞, it follows by applying Theorem D.3
that the origin (x1, z) = (0, 0) is uniformly exponentially stable. Since the thrust is
constrained between zero and an upper bound, the stability does not hold globally.

E.14 Proof of Lemma 3.8

Let a Lyapunov function candidate be defined as

V :=
1

2
Ṽ 2
r > 0 ∀ Ṽr �= 0 (E.80)

which is positive definite, decrescent and radially unbounded. By differentiating
(E.80) and inserting (3.39) the Lyapunov derivative becomes

V̇ = −κrṼ
2
r + Ṽrξ2 (E.81)

V̇ ≤ −κr|Ṽr |2 ∀ |Ṽr| ≥ |ξ2|
κr

(E.82)

which is negative definite if ξ2 = 0 (unforced system). To take ξ2 into account,
consider the closed loop error dynamics which can be written as

˙̃Vr = −κrṼr + ξ2 := f(Ṽr, ξ2). (E.83)

The function ξ2 is bounded and has the property that ξ2(0) = 0, such that it is a
class K function. The Lyapunov function (E.80) is positive definite and decrescent,
while its derivative (E.82) is negative definite when |Ṽr | ≥ |ξ2|

κr
, hence by applying

Theorem D.6 it follows that the system f(Ṽr, ξ2) is input-to-state stable. Being
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E. Detailed Proofs

input-to-state stable, it follows from Definition D.6 that the solution Ṽr(t) exists
for all t ≥ t0 and satisfies

|Ṽr(t)| ≤ β(|Ṽr(t0)|, t− t0) + γ

(
sup

t0≤τ≤t

|ξ2(τ)|
)

(E.84)

where β is a class KL function while γ is a class K function. As the bounded
function ξ2 → 0, equation (E.84) reduces to

|Ṽr(t)| ≤ β(|Ṽr(t0)|, t− t0) (E.85)

showing that the origin (Ṽr = 0) of the unforced system is uniformly globally
asymptotically stable.

E.15 Proof of Theorem 3.7

Let a Lyapunov function candidate be defined as

V :=
1

2
Ṽ 2 +

1

2
θ̃�
1 Γ

−1
1 θ̃1 > 0 ∀ Ṽ �= 0, θ̃ �= 0 (E.86)

which is positive definite, radially unbounded and decrescent. Differentiating (E.86)
and inserting (2.56) and (3.39) the derivative is found as

V̇ = Ṽ

(
u

mVa

T +
u

mVa

T̃ − V̇d + κrṼr − ξ2

+
(vb

r)
�

Va

(
1

m
Rb

wΦ1θ̂1 − 1

m
Rb

wΦ1θ̃1 +Rb
nf

n
g

))
+ θ̃�

1 Γ
−1
1

˙̂
θ1 (E.87)

and by inserting (3.40), (3.41) and (3.42) it reduces to

V̇ ≤ −κpṼ
2 < 0 ∀ Ṽ �= 0, (E.88)

which is negative semi-definite. By applying Theorem D.1 it follows that the origin
(Ṽ, θ̃1) = (0,0) is uniformly stable. To show that the origin is uniformly asymp-
totically stable, Matrosov’s theorem will be applied. To that end, the closed loop
error dynamics can be written as

˙̃V = −κpṼ − (vb
r)

�

mVa

Rb
wΦ1θ̃1, (E.89)

and a continuous bounded auxiliary function can be chosen as

W := Ṽ (vb
r)

�Rb
wΦ1θ̃1. (E.90)

The terms Ṽ and θ̃1 are bounded through (E.88); ||vb
r|| = Va ≤ βVmax

by using
Lemma 3.1 and ||Rb

w|| = 1. The regressor matrix Φ1 = Φ1(Va, α, β,ω
b
n,b,u) where

α, β are bounded by ±π
2 , the angular velocity, ωb

n,b, is shown to be bounded in
Lemma 3.2 and the deflection angles, u, are physically bounded. Hence, all the
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+
(vb

r)
�

Va

(
1

m
Rb

wΦ1θ̂1 − 1

m
Rb

wΦ1θ̃1 +Rb
nf

n
g

))
+ θ̃�

1 Γ
−1
1

˙̂
θ1 (E.87)

and by inserting (3.40), (3.41) and (3.42) it reduces to

V̇ ≤ −κpṼ
2 < 0 ∀ Ṽ �= 0, (E.88)

which is negative semi-definite. By applying Theorem D.1 it follows that the origin
(Ṽ, θ̃1) = (0,0) is uniformly stable. To show that the origin is uniformly asymp-
totically stable, Matrosov’s theorem will be applied. To that end, the closed loop
error dynamics can be written as

˙̃V = −κpṼ − (vb
r)

�

mVa

Rb
wΦ1θ̃1, (E.89)

and a continuous bounded auxiliary function can be chosen as

W := Ṽ (vb
r)

�Rb
wΦ1θ̃1. (E.90)

The terms Ṽ and θ̃1 are bounded through (E.88); ||vb
r|| = Va ≤ βVmax

by using
Lemma 3.1 and ||Rb

w|| = 1. The regressor matrix Φ1 = Φ1(Va, α, β,ω
b
n,b,u) where

α, β are bounded by ±π
2 , the angular velocity, ωb

n,b, is shown to be bounded in
Lemma 3.2 and the deflection angles, u, are physically bounded. Hence, all the
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E.16. Proof of Lemma 3.9

terms of (E.90) are bounded. The auxiliary function can now be differentiated and
by inserting (E.89) and evaluating it in the set N = {θ̃1 ∈ R

14|Ṽ = 0} it becomes

Ẇ = −
(
(vb

r)
�

mVa

Rb
wΦ1θ̃1

)(
(vb

r)
�Rb

wΦ1θ̃1

)
= −

∣∣∣∣
∣∣∣∣
(vb

r)
�

mVa

Rb
wΦ1θ̃1

∣∣∣∣
∣∣∣∣
2

(E.91)

which is definitely non-zero in the set N as long as Φ1 is not zero (which is fulfilled
through Assumption 3.4). The Lyapunov function (E.86) is decrescent and positive
definite, while its derivative (E.88) is negative semi-definite. The auxiliary function
is continuous and bounded, while its derivative is definitely non-zero in the set
N . Hence, it follows by applying Theorem D.4 that the origin (Ṽ, θ̃1) = (0,0) is
uniformly asymptotically stable.

E.16 Proof of Lemma 3.9

From the Lyapunov function (E.86) and its derivative (E.88) it follows that |Ṽ | ≤
βṼ and ||θ̃1|| ≤ βθ̃1

. Using Lemma 3.1 it follows that ||vb
r|| = Va ≤ βVmax

and
consequently using |Ṽ | = |Va − Vr| ≤ βṼ it follows that |Vr| ≤ βVr

. The desired
acceleration is bounded V̇d ∈ L∞, the rotation matrices as ||Rb

w|| = ||Rb
n|| = 1,

the estimation error is bounded as ||θ̃1|| ≤ βθ̃1
, and with constant coefficients

it follows that ||θ̂1|| ≤ β
θ̂1

. The matrix Φ1 is a function of bounded variables
(Va, α, β,ω

b
n,b,u) and is therefore bounded, the gravity vector is bounded as ||fng || =

g and using Assumption 2.2 and the fact that u >> v,w it follows that u > 0 and
Va > 0. Hence, all the terms in the control law are bounded, and consequently
T ≤ βT .

E.17 Proof of Lemma 3.10

Expanding ξ2, it can be written as ξ2 = u
mVa

(σ(T )− T ) where T ≤ βT is shown to
be bounded in Lemma 3.9 and σ(T ) ≤ Tmax by imposing its physical constraints.
Using Assumption 2.2 the airspeed is lower bounded as Va ≥ βv > 0 and using
Lemma 3.1 it follows that Va ≤ βVmax

and as a consequence |u| ≤ βu, such that
|ξ2| ≤ βu

mβv
(Tmax + βT ) and hence the function is bounded.

E.18 Proof of Theorem 3.8

The dual equilibrium points (eq±, s, Ṽ ) = (0,0, 0) can be shown to be uniformly
exponentially stable by applying Theorem 3.3 and 3.5. To show that the reference
asymptotically tracks the desired speed, let Ṽr := (Vr−Vd) and a Lyapunov function
candidate as

V :=
1

2
Ṽ 2
r > 0 ∀ Ṽr �= 0. (E.92)
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The dual equilibrium points (eq±, s, Ṽ ) = (0,0, 0) can be shown to be uniformly
exponentially stable by applying Theorem 3.3 and 3.5. To show that the reference
asymptotically tracks the desired speed, let Ṽr := (Vr−Vd) and a Lyapunov function
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E. Detailed Proofs

By differentiating (E.92) and inserting (3.54), the Lyapunov derivative becomes

V̇ = −κrṼ
2
r + κuumaxṼr (E.93)

V̇ ≤ −κr|Ṽr |2 ∀ |Ṽr| ≥ κu

κr

|umax|. (E.94)

The Lyapunov function (E.92) is positive definite and radially unbounded, while
its derivative (E.94) is negative definite when umax = 0 (unforced system), and by
applying Theorem D.3, it follows that the the origin (Ṽr = 0) is uniformly globally
exponentially stable. To take the function umax into account, the closed loop system

can be written as ˙̃Vr = −κrṼr + κuumax := f(Ṽr, umax). The Lyapunov function
(E.92) is positive definite and decrescent, while its derivative (E.94) is negative
definite for all |Ṽr| ≥ κu

κr
|umax| where umax is a class K function2. By applying

Theorem D.6 it is concluded that the system f(Ṽr, umax) is input-to-state stable.
Being input-to-state stable, it follows from Definition D.6 that the solution Ṽr(t)
exists for all t ≥ t0 and satisfies

|Ṽr(t)| ≤ β(|Ṽr(t0)|, t− t0) + γ

(
sup

t0≤τ≤t

|umax(τ)|
)

(E.95)

where β is a class KL function while γ is a class K function. As the bounded
function umax → 0, equation (E.95) reduces to

|Ṽr(t)| ≤ β(|Ṽr(t0)|, t− t0) (E.96)

indicating that |Ṽr(t)| → 0 as t → ∞. When umax �= 0, the reference airspeed
increases and diverges from the desired airspeed. This will make Va → ∞ which
makes umax → 0 removing the second term of (E.93), and the exponential stability
properties of the origin is thereby regained which makes the reference track the
desired speed profile. As umax → 0, the deflection angles will desaturate.

E.19 Proof of Lemma 4.1

The following proof first designs the position error frame by taking basis in ee =
Re

ne
n, and then the stability of the set H(δ,Δ) is shown by looking at the error

function

eeδ =
[||en||δ 0 0

]�
= Re

ne
n (E.97)

||en||δ = inf
x∈H

||x− pn||, (E.98)

which considers all errors except a small ball around the origin of en = 0. Consider
the position error which can be defined in the position error frame as

ee =
[||en|| 0 0

]�
= Re

ne
n = Re

n(p
n
wp − pn) (E.99)

2By design umax(0) = 0. The function is bounded since by increasing the reference speed
the airspeed becomes increased, and consequently the output from the rotational control law is
decreased; making umax → 0
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Being input-to-state stable, it follows from Definition D.6 that the solution Ṽr(t)
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E.19. Proof of Lemma 4.1

where the rotation matrix Re
n can be constructed with quaternions using (4.4). The

angular velocity can be found by differentiating (E.99) resulting in

ėe = S(ee)ωe
n,e −Re

bv
b (E.100)

where −S(ωe
n,e)e

e = S(ee)ωe
n,e and ṗn

wp = 0 and ṗn = Rn
b v

b have been used. The
skew symmetric matrix can be expressed as

S(ee)ωe
n,e =

⎡
⎣
0 0 0
0 0 −||en||
0 ||en|| 0

⎤
⎦ωe

n,e, (E.101)

and its pseudoinverse as

S†(ee) =

⎡
⎣
0 0 0
0 0 − 1

||en||

0 1
||en|| 0

⎤
⎦ (E.102)

where superscript † denotes the pseudoinverse. Notice that the pseudoinverse ma-
trix removes any components along the xe axis, such that S†(ee)ėe = 0. This can
be exploited to solve (E.100) for the angular velocity as

ωe
n,e = S†(ee)Re

bv
b. (E.103)

Notice that as ||en|| → 0 the angular velocity ||ωe
n,e|| → ∞, such that a switching

algorithm must be applied to ensure that the angular velocity does not go to infinity.
More precisely, as long as ||en|| ≥ δ > 0, the angular velocity will remain bounded.
To that end, the set H(δ,Δ) is defined as a shell around the origin en = 0, such
that by using Property 4.1, the uav will never reach the interior of the shell which
ensures that ||en|| ≥ δ > 0 such that the angular velocity (4.6) is upper bounded as
||ωe

n,e|| ≤ 1
δ
Vmax and the equality (E.97) holds for all ||en|| ≥ δ. Equation (E.97)

can be differentiated as

ėeδ = −S(ωe
n,e)e

e
δ +Re

n(ṗ
n
wp − ṗn) (E.104)

where by using Assumption 4.1 it follows that vb = vb
r = Rb

wv
w
r where vw

r :=�
Va 0 0

��
with Va ≥ βv using Assumption 2.2. The waypoint is a fixed point,

such that ṗn
wp = 0, enabling the position error kinematics to be written as

ėeδ = −S(ωe
n,e)e

e
δ −Re

wv
w
r . (E.105)

By inserting the rotation matrix Re
w = I+2ηe,wS(�e,w) + 2S2(�e,w) into (E.105) it

is obtained that

ėeδ = −S(ωe
n,e)e

e
δ − vw

r − (2ηe,wS(�e,w) + 2S2(�e,w))v
w
r (E.106)

where the term vw
r provides damping to the system. Using Assumption 4.1, it

follows that qn,d = qn,e, i.e. there is no quaternion for wind compensation. Thus,

by making the error (eq±,ω
b
d,w) → (0,0) the quaternion qe,w → �

1 0 0 0
��
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E. Detailed Proofs

such that the last term in (E.106) will disappear. The system can now be written
on cascaded form as

ẋ1 = f1(t,x1) + g(t,x)x (E.107)

ẋ2 = f2(t,x2) (E.108)

where x =
[
x�
1 x�

2

]�
, x1 := eeδ, x2 =

[
e�q± (ωb

d,w)
�
]�

,

f1(t,x1) := −S(ωe
n,e)e

e
δ − vw

r (E.109)

g(t,x) :=
[
0 2ηe,wS(v

w
r ) + 2S(�e,w)S(v

w
r ) 0

]
, (E.110)

and where f2(t,x2) represents the rotational dynamics in closed loop with any of
the rotational control laws from Chapter 3. Consider first the unforced system
ẋ1 = f1(t,x1) which can be written as

ẋ1 = −S(ωe
n,e)x1 − vw

r . (E.111)

Let a Lyapunov function candidate be defined as

V :=
1

2
x�
1 x1 > 0 ∀ x1 �= 0 (E.112)

which through differentiation and inserting (E.111) becomes

V̇ = −x�
1 (S(ω

e
n,e)x1 + vw

r ) (E.113)

V̇ = −x�
1 v

w
r (E.114)

since x�
1 S(ω

e
n,e)x1 = 0. Note that both x1 =

[||en||δ 0 0
]�

and vw
r =

[
Va 0 0

]�
are positive with only components on the x-axis, such that the Lyapunov derivative
can be written as

V̇ = −||x1||βv (E.115)

where βv represents the lower bound of the airspeed. This means that as x1(t) →
0, the trajectories will converge to the set H(δ,Δ). Hence, it follows by using
Theorem D.2 that the set H(δ,Δ) is uniformly asymptotically stable when x2 = 0.

To prove that the cascade is uniformly asymptotically stable, Assumptions D.1-
D.3 must be fulfilled in order to invoke Theorem D.7. Since the set H(δ,Δ) of the
system ẋ1 = f1(t,x1) is uniformly asymptotically stable, it follows from converse
theorems (e.g. Khalil (2002)) that there exist a suitable V (t,x1), and as such the
Assumption D.1 is fulfilled. The second assumption requires that the intercon-
nection term g(t,x) has a linear growth bound. The interconnection term can be
bounded as

||g(t,x)|| ≤ [
0 2||ηe,wS(vw

r )||+ 2||S(�e,w)S(vw
r )|| 0

]
, (E.116)

where |ηe,w | ≤ 1, ||�e,w|| ≤ 1, ||vw
r || ≤ βVmax

(cf. Lemma 3.1), and consequently
Assumption D.2 is fulfilled. The third assumption states that the trajectories of
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E.20. Proof of Theorem 4.1

system (E.108) must converge sufficiently fast to the origin through an integrability
constraint. Any of the rotational control laws from Chapter 3 (except the adaptive
controller) in closed loop with (2.25) and (2.32) results in uniformly exponential
stability of the equilibrium x2 = 0. This means that ||x2|| → 0 exponentially, and
as such Assumption D.3 is fulfilled. With Assumptions D.1-D.3 fulfilled, it follows
by invoking Theorem D.7 that the set C := {x1 ∈ R

3,x2 ∈ S3
e × R

3|δ ≤ ||x1|| ≤
Δ,x2 = 0} of the cascaded system (E.107)-(E.108) is uniformly asymptotically
stable.

E.20 Proof of Theorem 4.1

Let a Lyapunov function candidate be chosen as

V1 =
1

2
e�1 e1 > 0 ∀ e1 �= 0 (E.117)

which can be differentiated as

V̇1 = e�1 e2. (E.118)

The error term e2 can be used for control and chosen as

e2 := −kpσ1(e1) + z (E.119)

where kp > 0 and z is a new variable, and where

σ1(e1) = λ1 tanh

�
e1

λ1

�
=

�
λ1 tanh(

ex
λ1

) λ1 tanh(
ey
λ1

) λ1 tanh(
ez
λ1

)
��

(E.120)

with λ1 as a constant bound. Note that e�1 σ1(e1) > 0. Inserting (E.119) into the
(E.118) the Lyapunov derivative becomes

V̇1 = −e�1 (kpσ1(e1)− z) (E.121)

which is negative definite as long as ||z|| ≤ kpλ1. The dynamics of the new variable
are found using (E.119) and (4.16) as

ż = un − p̈n
d + kpσ̇1(e1)e2 (E.122)

where

kpσ̇1(e1)e2 = kp

⎛
⎜⎝I−

⎡
⎢⎣
tanh2( ex

λ1

) 0 0

0 tanh2(
ey
λ1
) 0

0 0 tanh2( ez
λ1

)

⎤
⎥⎦

⎞
⎟⎠ e2 (E.123)

which is zero when the position tracking error is in saturation. A second Lyapunov
function candidate can be chosen as

V2 = V1 +
1

2
z�z > 0 ∀ e1, z �= 0 (E.124)
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E.20 Proof of Theorem 4.1
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�
e1

λ1

�
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�
λ1 tanh(

ex
λ1

) λ1 tanh(
ey
λ1

) λ1 tanh(
ez
λ1

)
��
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and differentiated as

V̇2 = −e�1 (kpσ1(e1)− z) + z�(un − p̈n
d + kpσ̇1(e1)e2). (E.125)

Inserting the control law (4.17) into (E.125), the Lyapunov derivative becomes

V̇2 = −e�1 (kpσ1(e1)− z)− kdz
�σ2(z) (E.126)

V̇2 ≤ −kpe
�
1 σ1(e1)− kdz

�σ2(z) ∀ ||z|| ≤ kpλ1. (E.127)

The second saturation function is defined as σ2(z) = λ2 tanh
(

z

λ2

)
. Applying Theo-

rem D.2 it follows that the origin (e1, z) = (0,0) is uniformly asymptotically stable.
When ||z(0)|| ≥ kpλ1, the Lyapunov function is not negative definite, and by using
Lemma 3.1 it follows that ||z|| ≤ βVmax

+ ||ṗn
d ||+kpλ1. With z bounded, its trajec-

tories have no finite escape time. Hence, ∃ t1 ≥ t0 such that ||z(t1)|| ≤ kpλ1, from
where the origin becomes asymptotically attractive. This means that initially the
trajectories may diverge, but after a time t1, the trajectories will converge to the
origin.

The stability properties of the origin can be further studied by considering the
closed loop system as a cascade, which can be written as

ė1 = −kpσ(e1) + z (E.128)

ż = −kdσ(z). (E.129)

Let x1 := e1 and x2 := z, then the cascaded system is obtained as

ẋ1 = f(t,x1,x2) (E.130)

ẋ2 = f(t,x2). (E.131)

Both (E.131) and ẋ1 = f(t,x1,0) have uniformly globally asymptotically stable
equilibrium points at their respective origins. Furthermore, with z and consequently
x2 bounded, it follows that

||x1(t)|| ≤ β(||x1(t0)||, t− t0) + γ( sup
t0≤τ≤t

||x2||) (E.132)

implying that the system (E.130) is input-to-state stable. Hence, it follows by
applying Lemma D.4 that the origin of the cascaded system (x1,x2) = (e1, z) =
(0,0) is uniformly globally asymptotically stable.

E.21 Proof of Lemma 4.2

Equation (4.20) can be differentiated as

v̇d
r = −S(ωd

n,d)v
d
r +Rd

nu
n (E.133)

which can be solved for the angular velocity as

ωd
n,d = −S†(vd

r)R
d
nu

n (E.134)
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d
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since S†(vd
r )v̇

d
r = 0. Also note that with constant wind, the relative acceleration is

found as

vn
r = vn −wn (E.135)

v̇n
r = un. (E.136)

The desired airspeed is found as Vd = ||vn
r || while its acceleration is found using

(E.133) by noting that the term S(ωd
n,d)v

d
r does not produce any xd components,

such that the desired acceleration is found as

V̇d =
�
1 0 0

�
Rd

nu
n. (E.137)

Since this is a simple mapping, the same stability results as for Theorem 4.1 holds.

E.22 Proof of Lemma 4.3

The velocity vector (4.31) can be differentiated as

p̈l
l = −S(ωl

n,l)ṗ
l
l +Rl

np̈
n
l (E.138)

ωl
n,l = −S†(ṗl

l)R
l
np̈

n
l (E.139)

where S†(ṗl
l)p̈

l
l = 0 has been used. Similarly, by differentiating (E.138) the jerk is

found as

...
pl
l = −S(ω̇l

n,l)ṗ
l
l − S(ωl

n,l)p̈
l
l − S(ωl

n,l)R
l
np̈

n
l +Rl

n
...
pn
l (E.140)

and by inserting (E.138) it becomes

...
pl
l = −S(ω̇l

n,l)ṗ
l
l + S2(ωl

n,l)ṗ
l
l − 2S(ωl

n,l)R
l
np̈

n
l +Rl

n
...
pn
l (E.141)

which can now be solved for the angular acceleration as

ω̇l
n,l = −S†(ṗl

l)(R
l
n
...
pn
l + S2(ωl

n,l)R
l
nṗ

n
l − 2S(ωl

n,l)R
l
np̈

n
l ). (E.142)

E.23 Proof of Lemma 5.1

The quaternion can be found by studying (5.6) where the rotation matrix Rc
e can

be constructed using quaternions as shown in (5.3). Equation (5.6) can be differ-
entiated as

ċc = −S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n +Rc
nċ

n (E.143)

where S(ωc
e,c)c

c = −S(cc)ωc
e,c with

S(cc) =

⎡
⎣

0 0 ∓||ce||
0 0 0

±||ce|| 0 0

⎤
⎦ (E.144)
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nṗ

n
l − 2S(ωl

n,l)R
l
np̈

n
l ). (E.142)

E.23 Proof of Lemma 5.1

The quaternion can be found by studying (5.6) where the rotation matrix Rc
e can

be constructed using quaternions as shown in (5.3). Equation (5.6) can be differ-
entiated as
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which filters out any yc components such that S†(cc)ċc = 0. Solving (E.143) for
the angular velocity results in

ωc
e,c = S†(cc)(Rc

eS(ω
e
n,e)R

e
nc

n −Rc
nċ

n). (E.145)

Consider static obstacles, that is ṗn
o = 0, then equation (E.143) can be rewritten

as

ċc = −S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n −Rc
wv

w
r (E.146)

where ṗn = Rn
b v

b = Rn
b v

b
r = Rn

wv
w
r follows from Assumption 4.1. Let the rotation

matrix be written as Rc
w = I+2ηc,wS(�c,w)+2S2(�c,w), which can be inserted into

(E.146) as

ċc = −S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n − (I+ 2ηc,wS(�c,w) + 2S2(�c,w))v
w
r . (E.147)

Let the collision avoidance quaternion be the primary task, such that qn,d = qn,c,
then by making (eq±,ω

b
d,w) → (0,0) through rotational control, it follows that

qc,w → �
1 0 0 0

��
. The system can now be written on cascaded form as

ẋ1 = f1(t,x1) + g(t,x)x (E.148)

ẋ2 = f2(t,x2) (E.149)

where x =
�
x�
1 x�

2

��
, x1 := cc, x2 =

�
e�q± (ωb

d,w)
�
��

,

f1(t,x1) := −S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n − vw
r (E.150)

g(t,x) :=
�
0 2ηc,wS(v

w
r ) + 2S(�c,w)S(v

w
r ) 0

�
, (E.151)

and where f2(t,x2) represents the rotational dynamics in closed loop with any of the
rotational control laws from Chapter 3. Consider the unforced system ẋ1 = f1(t,x1)
which can be written in original coordinates as3

ċc = −S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n − vw
r . (E.152)

Let a Lyapunov function candidate be defined as

V =
1

2
(cc)�cc (E.153)

which by differentiation and inserting (E.152) results in

V̇ = (cc)�(−S(ωc
e,c)c

c −Rc
eS(ω

e
n,e)R

e
nc

n − vw
r ). (E.154)

The terms can be shown to be zero as

(cc)�(S(ωc
e,c)c

c = 0 (E.155)

(cc)�Rc
eS(ω

e
n,e)R

e
nc

n = (cc)�Rc
eS(ω

e
n,e)R

e
cc

c = 0 (E.156)

(cc)�vw
r =

�
0 ±||ce|| 0

�
⎡
⎣
Va

0
0

⎤
⎦ = 0 (E.157)

3To avoid confusion with the different frames, the system is kept in its original coordinates.
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E.24. Proof of Lemma 5.2

such that

V̇ = 0. (E.158)

This means that as long as the collision avoidance quaternion is perfectly tracked,
the relative distance between the obstacle and the uav will neither increase nor
decrease, such that the uav will move in a circular trajectory around the obstacle.
Furthermore it follows that the unforced system ẋ1 = f1(t,x1) is bounded. The
interconnection term can be bounded as

||g(t,x)|| ≤ �
0 2||ηc,wS(vw

r )||+ 2||S(�c,w)S(vw
r )|| 0

�
, (E.159)

where |ηc,w| ≤ 1, ||vw
r || ≤ βVmax

using Lemma 3.1 and ||�c,w|| ≤ 1. The origin of the
rotational error dynamics ẋ2 = f2(t,x) can be shown to be uniformly exponentially
stable by using any of the rotational control laws in Chapter 3 (except the adaptive
controller). Even though Theorem D.7 considers the stability of cascades, similar
arguments can be applied to prove collision avoidance. From (E.158) the Lyapunov
derivative is zero whenever the collision avoidance quaternion is perfectly tracked.
The collision avoidance quaternion and corresponding angular velocity are fed back
through the desired trajectories to the rotational control laws, which are tracked by
the control laws making x2 → 0 exponentially fast. As x2 → 0, V̇ → 0 it follows
that the distance to the obstacle goes to a constant, βc > 0. Hence, it follows that
the position error between the obstacle and the uav becomes lower bounded as
||cc|| ≥ βc > 0, and collision with the obstacle is avoided.

E.24 Proof of Lemma 5.2

This proof follows the same lines as for collision avoidance. The quaternion can be
found by studying (5.10) where the rotation matrix Rh

c can be constructed using
quaternions as shown in (5.7). Equation (5.10) can be differentiated as

ḣh = −S(ωh
c,h)h

h −Rh
cS(ω

c
e,c)R

c
nh

n −Rh
eS(ω

e
n,e)R

e
nh

n +Rh
nḣ

n (E.160)

where S(ωh
c,h)h

h = −S(hh)ωh
c,h with

S(hh) =

⎡
⎣

0 −||hc|| 0
||hc|| 0 0
0 0 0

⎤
⎦ (E.161)

which filters out any zh components such that S†(hh)ḣh = 0. Solving (E.160) for
the angular velocity results in

ωh
c,h =S†(hh)(Rh

cS(ω
c
e,c)R

c
nh

n +Rh
eS(ω

e
n,e)R

e
nh

n −Rh
b ḣ

n). (E.162)

Since the ground is stationary, ṗn
g = 0, such that equation (E.160) can be rewritten

as

ḣh = −S(ωh
c,h)h

h −Rh
cS(ω

c
e,c)R

c
nh

n −Rh
eS(ω

e
n,e)R

e
nh

n −Rh
wv

w
r (E.163)
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Let the ground avoidance quaternion be the primary task, such that qn,d = qn,h,
then by making (eq±,ω

w
d,w) → (0,0) through rotational control, it follows that

qh,w → �
1 0 0 0

��
. The system can now be written on cascaded form as

ẋ1 = f1(t,x1) + g(t,x)x (E.165)
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, (E.168)

and where f2(t,x2) represents the rotational dynamics in closed loop with any of the
rotational control laws from Chapter 3. Consider the unforced system ẋ1 = f1(t,x1)
which can be written in original coordinates as4
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Let a Lyapunov function candidate be defined as

V =
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which by differentiation and inserting (E.169) results in
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The terms can be shown to be zero as
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�
0 0 ||hc||�

⎡
⎣
Va

0
0

⎤
⎦ = 0 (E.175)

such that

V̇ = 0. (E.176)

4To avoid confusion with the different frames, the system is kept in its original coordinates.
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ḣh = −S(ωh
c,h)h

h −Rh
cS(ω

c
e,c)R

c
nh

n −Rh
eS(ω

e
n,e)R

e
nh

n

− (I+ 2ηh,wS(�h,w) + 2S2(�h,w))v
w
r . (E.164)

Let the ground avoidance quaternion be the primary task, such that qn,d = qn,h,
then by making (eq±,ω

w
d,w) → (0,0) through rotational control, it follows that

qh,w → �
1 0 0 0

��
. The system can now be written on cascaded form as
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ẋ2 = f2(t,x2) (E.166)

where x =
�
x�
1 x�

2

��
, x1 := hh, x2 =

�
e�q± (ωb

d,w)
�
��

,

f1(t,x1) := −S(ωh
c,h)h

h −Rh
cS(ω

c
e,c)R

c
nh

n −Rh
eS(ω

e
n,e)R

e
nh

n − vw
r (E.167)

g(t,x) :=
�
0 2ηh,wS(v

w
r ) + 2S(�h,w)S(v

w
r ) 0

�
, (E.168)

and where f2(t,x2) represents the rotational dynamics in closed loop with any of the
rotational control laws from Chapter 3. Consider the unforced system ẋ1 = f1(t,x1)
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E.25. Proof of Theorem 5.1

This means that as long as the ground avoidance quaternion is perfectly tracked
(x2 = 0), the relative distance between the ground and the uav will neither increase
nor decrease, such that the uav will move tangentially to the ground. Furthermore
it follows that the unforced system ẋ1 = f1(t,x1) is bounded. The interconnection
term can be bounded as

||g(t,x)|| ≤ [
0 2||ηh,wS(vw

r )||+ 2||S(�h,w)S(vw
r )|| 0

]
, (E.177)

where |ηh,w| ≤ 1, ||vw
r || ≤ βVmax

using Lemma 3.1 and ||�h,w|| ≤ 1. The origin of the
rotational error dynamics ẋ2 = f2(t,x) can be shown to be uniformly exponentially
stable by using any of the rotational control laws in Chapter 3 (except the adaptive
controller). From (E.176) the Lyapunov derivative is zero whenever the ground
avoidance quaternion is perfectly tracked. The ground avoidance quaternion and
corresponding angular velocity are fed back through the desired trajectories to the
rotational control laws, which are tracked by the control laws making x2 → 0

exponentially fast. As x2 → 0, V̇ → 0 such that the distance to the ground goes to
a constant βh > 0. Hence, it follows that the position relative the ground becomes
lower bounded as ||hh|| ≥ βh > 0, and collision with the ground is avoided.

E.25 Proof of Theorem 5.1

The quaternion is given as qn,h = qn,e ⊗ qe,c ⊗ qc,h. When the primary task is
active, it follows from Lemma 5.2 that ||hc|| ≥ βh > 0 ∀t ≥ t0. As the primary task
is completed, it follows from Property 5.1 that qc,h =

[
1 0 0 0

]�
reducing the

quaternion to qn,h = qn,c = qn,e ⊗ qe,c where the secondary task becomes active.
Using Lemma 5.1, the secondary task ensures that ||cc|| ≥ βc > 0 ∀t ≥ t0. As the
secondary task is completed, Property 5.1 reduces the quaternion to qn,h = qn,e

which by using Lemma 4.1 ensures that ||ee|| → H(δ,Δ).

E.26 Proof of Lemma 5.3

The quaternion qn,d is naturally constrained to the set S3 such that ||qn,d|| =
1. The angular velocity vector can be written as ωd

n,d = Rd
eω

e
n,e + Rd

cω
c
e,c +

Rd
hω

h
c,h + ωd

h,d where the the rotation matrices are bounded as ||R|| = 1 and
where ωd

h,d is bounded by design such that ||ωd
h,d|| ≤ βωw

. From (E.103) ωe
n,e =

S†(ee)Re
bv

b where by using Lemma 3.1 and Assumption 2.1 the ground velocity
becomes bounded as ||vb|| ≤ βVmax

+βVwind
and by using Property 4.1 it follows that

||ee|| > 0, such that ||ωe
n,e|| ≤ βωe

. From (E.145) ωc
e,c = S†(cc)(Rc

eS(ω
e
n,e)R

e
nc

n −
Rc

nċ
n) where ||cc|| ≥ βc from Lemma 5.1, ||ċn|| = ||Rn

b v
b|| ≤ βVmax

+ βVwind
,

||cn|| ≤ βc,max since obstacles outside the detection box are ignored, and hence
||ωc

e,c|| ≤ βωc
. From (E.162) ωh

c,h = S†(hh)(Rh
cS(ω

c
e,c)R

c
nh

n +Rh
eS(ω

e
n,e)R

e
nh

n +

Rh
bv

b) where ||hh|| > 0 using Lemma 5.2, ||hn|| ≤ βh,max since points of the
ground outside the detection box are ignored, and hence ||ωh

c,h|| ≤ βωh
. It follows

that ||ωd
n,d|| ≤ βωe

+βωc
+βωh

+βωw
≤ βωd

, and where the the angular acceleration
is found using a saturated filter which ensures that ||ω̇d

n,d|| ≤ βω̇d
.
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