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Summary

This work is concerned with autonomous aerial ice observation. Ice observation
is a supporting activity in cold regions marine operations that are disturbed by
various ice features. This supporting activity is motivated by the requirement of
maintaining an awareness map of the surrounding ice conditions in order to execute
an operation in a responsible manner. It is desired that the ice monitoring occurs
both efficiently and as autonomously as possible. A part of the ice monitoring
is thus to construct frameworks that are capable of executing various monitoring
tasks without, or with minimal human intervention.

Chapter 2 covers viable instrumentation configurations for remotely sensing
different ice features from unmanned aerial vehicles. The chapter also motivates
the use of unmanned aerial vehicles together with other sensor platforms, so that
the strengths and weaknesses of the various sensor platforms can be exploited when
maintaining the ice condition awareness map.

The task of monitoring moving surface objects, often called target tracking,
is examined in Chapter 3. We make use of nonlinear programming to construct
feasible continuous trajectories for mobile sensing agents. The proposed framework
uses each object’s Riccati differential equation, which is based on the continuous
extended Kalman filter, in feasibly guiding the mobile agents between the objects.
The framework is validated by a full-scale hybrid experiment where a singular fixed-
wing aircraft monitors three simulated objects in a constricted region of operation.

We also explore the nonlinear programming approach in solving the dynamic
coverage problem in Chapter 4. Here, the task is to remotely monitor a dynamic
process in a planar region with mobile sensor agents. As in Chapter 3, the mo-
bile sensor agents have maneuverability constraints that the framework takes into
consideration when finding paths that the sensors should follow. The framework
employs a simpler model, compared to the Riccati equation in Chapter 3, in describ-
ing how the possible information reward changes in space and time. The machinery
of control theory and Lyapunov functions is investigated in Chapter 5 as a more
computational efficient alternative to the nonlinear programming approach.
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Chapter 1

Introduction

The scope of this work is to construct path planning schemes for unmanned
aerial vehicles (UAVs) with the purpose to remotely collect information about

various ice features in ice-infested waters. This chapter provides relevant motivation
and context for the research problems examined in later chapters.

1.1 Arctic Dynamic Positioning

The United States Geological Survey has estimated that a considerable amount
of the undiscovered oil and gas resources are located north of the Arctic Circle
(Gautier et al., 2009). These resources are becoming increasingly more attractive
to develop. Low-cost petroleum resources are rarer than before, and the recent
retreat of polar ice may make exploration and development of offshore petroleum
in cold regions a reality in the future.

An increased human intervention in cold regions will involve the presence of ves-
sels carrying out various types of tasks such as: lifting, installation, crew change,
evacuation, maintenance, and drilling (Gürtner et al., 2012). These tasks often
require the relevant vessels to perform stationkeeping, that is, remain at a fixed
location, or more generally, to be dynamically positioned (DP), for instance slowly
maneuvering close to an offshore installation (Fossen, 2011, Ch. 6). The existing
technology for performing dynamic positioning is intended for open water condi-
tions. The ice in ice-infested waters greatly contributes to the external forcing on
the DP vessel and Jenssen et al. (2009); Kuehnlein (2009) concluded that new
control systems need to take these forces into account to permit good Arctic DP
performance.

The very first Arctic DP operation was performed in May–June 1999 offshore
the island Sakhalin, Russia in the Pacific Ocean. The purpose of the operation
was to support a diving mission. The DP vessel was assisted by two icebreakers,
whose task was to perform physical ice management. Sea ice physical management
involves reducing the severity of the drifting sea ice moving toward the DP vessel,
see Fig. 1.1. The ice conditions were considered highly dynamic, with ice coverage
of typically 90%, but also as low as 0%. The ice were recorded with thicknesses
ranging from 0.7m to 1.5m, drifting at speeds up to 1.0ms−1. The ice also included

1



1. Introduction

Figure 1.1 Illustration of a dynamic positioning operation, which is supported by
two upstream icebreakers that perform sea ice physical management.

severe ice conditions, such as occasional occurrences of ice ridges (see Fig. 1.2) with
up to 5m sails.

In August–September 2004 another Arctic DP operation, Arctic Coring Ex-
pedition, was conducted in the polar ice pack of the Arctic Ocean (K. Moran et
al., 2006). The operation performed drilling for core sediment samples more than
400m below the seabed, which was at up to 1300m water depths. The operation
experienced severe multi-year ice, but with the help of two icebreakers, the DP
drilling ship remained mostly within the operational envelope without having to
suspend the dynamic positioning. The managed ice that drifted toward the DP
ship necessitated human intervention in controlling the position of the vessel.

The above pioneering full-scale experiments of DP in ice, together with similar
operations, such as iceberg detection and tracking (see Eik (2008)), learned that
a wide range of supporting activities are essential for responsible and safe offshore
operations in cold regions.

1.1.1 Ice Defense

Arctic Marine Solutions (2014) uses ice defense as the aggregate term for sup-
porting activities involved in cold regions marine operations such as Arctic DP.
Important activities in ice defensing include (Eik, 2008; Keinonen, 2008):

• Protecting the DP vessel or structure from hazardous ice through physical
ice management (e.g. ice breaking and/or iceberg towing).

• Gathering and processing information for decision support.
• Decision-making such as operational threat assessment and strategies.

2



1.1. Arctic Dynamic Positioning

Figure 1.2 An ice ridge is a pile of broken ice floes stacked on top of each other,
both over (sail) and under (keel) the water. Photo courtesy of Ben Holt
and Susan Digby.

A utopian objective of ice defense operations includes creating a complete ice fea-
tures awareness map of a vast spatial region and maintaining it continuously over
time. This is neither economically nor practically feasible, so prioritization of the
information gathering is needed. The region surrounding the DP operation is often
divided into different zones depending on the estimated time of arrival (ETA) of
the drifting ice (Edmond et al., 2011; Sheykin, 2010). In the various zones, distinct
monitoring objectives apply with different required level of urgency and detail. We
divide the region into three conceptual surveillance zones:
Far-field zone. Here, we execute regional surveillance/coverage for detection and

classification of hazardous ice features such as icebergs, ice ridges, and ice
cover type. This information is crucial for threat assessment and operation
planning. 1–7 days upstream.

Mid-field zone. This is the area within which ice features may reach the region
where sea ice physical management is finding place. Ice identification (of for
instance ice drift dynamics, ice concentration, and ice thickness) is important
for operational efficiency, such as the choice of both ice breaking strategy and
tactics (Hamilton et al., 2011). 6–24 hours upstream.

Close-field zone. The region of ice that most likely will reach the DP vessel.
Detailed information about the ice feature geometry, ice thickness, ice con-
centration, ice drift velocity, and more may all be important for good DP
performance (Metrikin et al., 2013). Up to a few hours upstream.

The zones have different extents and no single sensor platform is able to perform all
the monitoring tasks by itself. Eik et al. (2009) motivates unmanned underwater
vehicles (UUVs) as a tool in collecting ice intelligence for ice defense, whereas
Haugen et al. (2011) (contained in Chapter 2) motivates UAVs to do the same
together several other sensor platforms in a collaborative effort, see Fig. 1.3.

The sensor platforms constitute an ice observation system, which is an integral
part of both the ice defense and the dynamic positioning. Since the resources are
constrained with respect to cost, physical, and practical considerations, some kind
of high-level task allocation procedures need to choose the appropriate sensor plat-
forms for the required monitoring tasks. This task allocation happens both before
and during the operation execution:
In the planning phase, decisions such as the choice of immobile sensors, type

and number of mobile sensor platforms are made. These choices are made

3



1. Introduction

Figure 1.3 Illustration of a possible future Arctic dynamic positioning operation
that consists of many important components, including icebreakers,
unmanned underwater vehicles, and unmanned aerial vehicles. Picture
courtesy of Bjarne Stenberg.

based on the required level of information and redundancy for the particular
operation in question.

During the operation dynamic mission planning occurs, which involves allocat-
ing needed tasks to the fleet of singular or teams of mobile sensor networks.

The dynamic planning allows for low response times in deployment and may facil-
itate real-time acquisition of information, so that important operational decisions
can be made. There is a wide range of monitoring missions that may be needed in
ice defensing. With respect to the mid-field and far-field zones, possible missions
for remotely piloted aircraft systems (RPASs) are:

Mission 1. Iceberg and ice ridge detection, identification, and tracking.

Mission 2. Sea ice identification and dynamic coverage.

1.2 Remotely Piloted Aircraft Systems in Cold Regions

A remotely piloted aircraft system (RPAS) is a subgroup of the more general cate-
gory of unmanned aircraft systems (UASs). The RPAS consists all the components
needed to operate such a system: one or several UAVs, a ground station includ-
ing the pilot station, launch and recovery systems, communication equipment, and
more (CAA–Norway, 2014). A RPAS may be autonomous in the sense that the

4



1.2. Remotely Piloted Aircraft Systems in Cold Regions

Figure 1.4 A launch system for the CryoWing fixed-wing aircraft operated by Norut
(2014) in Longyearbyen, Svalbard, May 2011.

system can make its own decisions during the course of operation execution, but
with the restriction that an operator can intervene and remotely pilot the UAVs.

The inclusion of RPASs in cold regions comes with a whole range of challenges
that need to be addressed. Common keywords when talking about operations in
Arctic regions are remoteness, darkness, and low temperatures. Robustness against
these attributes is very important and may include sophisticated launch and recov-
ery systems from ships (Crowe et al., 2012), robust communication systems (Frew
et al., 2009), and fault-tolerant guidance, navigation, and control (GNC) systems.
Other aspects that need to be addressed include (Crowe et al., 2012; Haugen et al.,
2011): icing problems, vibration issues, water intrusion, and airspace access. Nor-
wegian research communities working with problems connected to RPAS in cold
regions include AMOS (2014); Norut (2014); Simicon (2011).

1.2.1 Autonomous Aerial Ice Observation

Apart from GNC, one aspect of an autonomous aircraft system is its ability to
create paths that help in solving some monitoring task. In a cold regions operation
setting, one can think of many different tasks that need a specialized system that
can perceive its environment and make intelligent decisions based on the observa-
tions. In this thesis, we are concerned with the following ice observation sub-tasks:
target tracking, related to Mission 1, and dynamic coverage control, related to Mis-
sion 2.

Target Tracking

Suppose a set of possibly hazardous icebergs and ice ridges has been detected in
the far-field zone with the use of satellites. The acquired satellite data are of too
coarse resolution to provide conclusive answers (Eik, 2008; Haugen et al., 2011).
To confirm/refute the possible hazards, current practices involve manned aircraft
(Eik, 2008) and reconnaissance vessels (Sheykin, 2010). We motivate the use of
UAVs as a tool which may reduce costs and environmental footprint when solving
this monitoring task. The task is formulated as a target tracking objective and

5



1. Introduction

approached by assuming that a small number of UAVs is dispatched to remotely
gather more information before further actions are taken.

The target tracking problem is the task of monitoring mobile or immobile ob-
jects using (usually mobile) sensor agents. Many problems can be cast as a target
tracking problem, so the literature is rich on various approaches, see Haugen et al.
(2014b) (contained in Chapter 3) and references therein. Haugen et al. (ibid.) clas-
sify contributions as “nm to no” tracking, where nm is the number of sensors and
no is the number of objects. The above defined problem is a multi-target tracking
objective, where the number of mobile sensor agents are possibly more than one.

In solving the target tracking problem, contributions usually choose between
two main methodologies: resource allocation and information-driven approaches.
In the resource allocation problem, the targets are prescribed to be visited a prede-
fined number of times. It is formulated as a modified traveling salesperson problem
(Looker, 2008; Rathinam et al., 2007; Savla et al., 2008), often taking the lim-
ited turning radius of the mobile sensor into account. Unlike resource allocation,
information-driven methods define the visitations of the targets according to some
information reward. Information gradients are usually utilized in the formulation
of optimization problems, which are seeking to minimize measures related to the
information level, either minimize time between target measurements (Tang et al.,
2005), maximize observation time (Parker, 1999), or minimizing the targets’ esti-
mation error covariance (Haugen et al., 2013a,b, 2014b).

Dynamic Coverage Control

Imagine you want to get an awareness map of a bounded region in the mid-field
zone. When creating this awareness map may, one task may be to get more detailed
information about relevant ice conditions, for instance the ice concentration, which
is the area fraction of ice versus open water. Current approaches include using
satellites, reconnaissance vessels, and marine radars (Sheykin, 2010). We propose
to use UAVs to cover the region of interest. Since the ice has a drifting velocity,
the task can be formulated as a dynamic coverage problem.

Wang et al. (2012) describes the dynamic coverage problem as the problem of
covering a given region using mobile sensor networks. The desired information to
be gathered changes in both time and space, so a non-dynamic coverage algorithm
may not be sufficient to capture the information with the required level of accuracy.
The monitoring task is therefore to perform state estimation of some distributed
parameter system (DPS), usually described as a partial differential equation (PDE).

Previous work on state estimation dynamic coverage falls under two main
approaches: optimal control formulations (Burns et al., 2009; Choi et al., 2010;
Haugen et al., 2014a), and gradient-based guidance algorithms (Demetriou, 2010;
Demetriou et al., 2009; Haugen et al., 2012), for which Haugen et al. (2014a) and
Haugen et al. (2012) are contained in Chapters 4 and 5, respectively. In the optimal
control problem (OCP) formulation, one seeks to minimize some kind of objective
functions that quantify the information reward of visiting a particular region. The
formulations often use a measure based on the estimation error covariance dynam-
ics (Burns et al., 2009; Choi et al., 2010), but to facilitate computational speed,
simplified information dynamics has also been proposed (Haugen et al., 2014a).

6



1.3. Research Methods

Gradient-based guidance algorithms are more computationally efficient, but often
rely on locally available estimation error to guide the vehicles (Demetriou, 2010;
Demetriou et al., 2009; Haugen et al., 2012).

1.2.2 Scope of this Thesis

There are several important aspects that need to be addressed when solving the
given aerial ice observation tasks. We mainly restrict our attention to design frame-
works that promote autonomy of the path determination. Hence, the mobile sen-
sor agents should solve the path planning tasks without, or with minimal human
involvement. We further assume that the agents operate in uncluttered environ-
ments, except the cooperating mobile agents themselves, so collision avoidance of
foreign objects or no-fly-zones inside the convex mission domain are not consid-
ered. However, it is important that cooperating agents avoid collision with each
other, and that the agents remain within a bounded admissible region, since other
missions may occur outside this region. A mobile sensor usually have maneuver-
ability constraints, for instance limited turning radius if it is a fixed-wing aircraft.
To encourage compliance between requested and executed flown paths, the mo-
bile sensors’ maneuverability constraints should be taken into consideration when
planning paths for the monitoring tasks.

It would be beneficial if the solution proposals showed flexibility in the formu-
lations, so that additional requirements could be included without too much dif-
ficulty. This includes the possibility of integrating the frameworks with high-level
manipulation, e.g. to dynamically change the mission parameters during execution,
for instance changing the number of mobile sensors agents or the environment to
monitor. In this work, however, we focus on the task of autonomously finding effi-
cient paths that solve given target tracking or dynamic coverage problems. We will
only consider cooperative and centralized approaches, where the path planning al-
gorithms themselves are the center of attention, not other features of RPASs, such
as communication limitations, et cetera.

1.3 Research Methods

The requirements within the above defined scope need to be taken into consider-
ation when investigating the target tracking and dynamic coverage problems. To
do so, the two main contributions of this thesis involve formulating the research
questions as optimal control problems. We are concerned with constructing path
planning designs that exhibit real-time feasibility. Hence, there should be some fo-
cus on using state of the art tools that facilitate implementations that can be used
in real-world scenarios. In this context, wired communication with a commercial
RPAS’s ground station, as part of a field experiment, is considered as one of the
tasks in verifying the proposed design. The proposed frameworks are mostly veri-
fied through numerical simulations, but some full-scale hybrid experiments are also
performed as proof-of-concept.
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1. Introduction

1.3.1 Optimal Control Problem (OCP)

An optimal control problem deals with finding control inputs of a dynamic system
in such a way that a scalar objective function is locally minimized. There are three
main components of the OCPs used in this thesis, an objective function (1.1a),
an initial value problem (IVP) of an ordinary differential equation (ODE) (1.1b),
and algebraic path constraints (1.1c). Let x(t) be the state vector, u(t) the control
vector, and t the time, with t ∈ [t0, tf ]. The general Bolza-type optimal control
problem (Biegler, 2010, Sec. 8.3) is written as

min
u

J(t, u) = ΦL(t, u) + ΦM (tf ) (1.1a)

subject to (s.t.)
dx

dt
= f(t, x, u), x(t0) = x0, (1.1b)

gI(t, x, u) ≤ 0, gE(t, x, u) = 0 (1.1c)

The above OCP consists of both a Lagrange integral term

ΦL(t, u) =

∫ tf

t0

φL(t, x(t), u(t))dt, (1.2a)

and a Mayer terminal cost term

ΦM (tf ) = φM (tf , x(tf )). (1.2b)

The OCP formulation has the benefit that it often is straightforward to include
various types of dynamic systems and restrictions like the ones outlined in Section
1.2.2. Finding analytic solutions to these problems are often very difficult, but there
exist several approaches to solve the problem numerically.

Numerical Solution to Optimal Control Problems

Biegler (ibid., Sec. 8.6) describes two main approaches for solving OCPs: “opti-
mize then discretize” and “discretize then optimize”. The direct collocation method
(Biegler, 1984), which falls under the latter category, is a simultaneous approach
where both the states and controls are discretized in time, giving a so-called nonlin-
ear programming (NLP) problem. Other methods of the “discretize then optimize”
approach include single and multiple shooting methods. In this thesis, only direct
collocation has been used because the resulting NLP problem is sparse and contains
structure that can be exploited by NLP solvers. A NLP problem has the form

min
z

F (z) (1.3a)

s. t.

g(z) = 0, (1.3b)
h(z) ≤ 0. (1.3c)

These problems quickly become big, so in order to strive for real-time solutions,
the receding horizon approach has been employed, that is, successive finite time
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1.4. Outline and Contributions

horizon problems have been solved. Notable state of the art libraries we use to solve
the NLPs include IPOPT (Wächter et al., 2006), CasADi (Andersson et al., 2012),
and OpenBLAS (Xianyi et al., 2012) on a C++ programming platform. Books on
OCP, NLP, and direct collocation include Betts (2010); Biegler (2010).

1.4 Outline and Contributions

This thesis is divided into four main parts, each considering different aspects of
autonomous monitoring in cold regions. The contents of each chapter are self-
contained, and can therefore be read independently.

Chapter 2 motivates the need for cost-effective ice monitoring systems in polar
marine activities. The main contributions in this part are:

1. The definition of important components in an ice monitoring system.

2. A comparison of possible sensor platforms.

3. The motivation and benefits of an UAV as a sensor platform.

This part consists of Haugen et al. (2011).

Chapter 3 covers the topic of object monitoring using UAVs: The target tracking
problem. The main contributions in this part are:

1. Design of an optimization-based mathematical framework for monitor-
ing moving surface objects.

2. Full-scale hybrid experiments as validation of the framework.

3. An extension to create collision-free flight trajectories in the case of
multiple mobile sensors.

This part is based on Haugen et al. (2013a,b, 2014b).

Chapter 4 contains work on regional monitoring of a distributed parameter sys-
tem: The dynamic coverage control problem. The main contributions in this
part are:

1. Design of an optimization-based mathematical framework for monitor-
ing a planar advection-diffusion PDE.

2. Case study where a drifting sea ice concentration field is monitored using
both a singular, and multiple UAVs.

The work in Chapter 4 consists of Haugen et al. (2014a).

Chapter 5 also considers the dynamic coverage control problem. The main con-
tributions are:

1. A gradient-based guidance scheme for a planar advection PDE.

2. Numerical simulation of the approach with two mass-spring-damper mo-
bile sensors that monitor a drifting sea ice thickness distribution field.

This part consists of Haugen et al. (2012).
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Chapter 2

Ice Observer System for Ice
Management Operations

This chapter describes the structure of an ice observer system, which is intended
to aid decisions regarding risk assessment of the ice environment, as well as con-
trol performance of dynamic positioning systems, in offshore operations. An ice
observer system collects, analyses and employs ice intelligence during operations
in ice. Furthermore, unmanned aerial vehicles (UAVs) are presented as a viable
sensor platform for close and far field ice monitoring. The work presented in this
chapter was published in Haugen et al. (2011).

2.1 Introduction

Marine activities in ice-infested regions rely on information about the envi-
ronment to operate in a safe manner. Shipping activities in Arctic waters are

of interest due to their possible favorable economic properties; the Northern Sea
Route drastically reduces the traveling distance to the Far East compared to alter-
native routes through the Suez Canal or around Africa (Johannessen et al., 2007).
Good ice information increases the confidence when determining routes in Arctic
waters and thus reduces the risk of damage and additional transit time (Kubat
et al., 2007a).

The US Geological Survey suggests that a quarter of the remaining oil and gas
resources in the world are located in the Arctic (Eik, 2008). As a consequence, the
hydrocarbon exploration and exploitation in Arctic waters are expected to increase
in the future. When performing operations in ice-infested waters, reliable informa-
tion about the surrounding environment is crucial. In open waters there exists
extensive experience with respect to the influences of currents, waves, and wind on
offshore installations and vessels. In regions exposed to sea ice and icebergs, on the
other hand, limited experience is available. A convenient overview of previous and
current operations in ice-infested waters can be found in Eik (ibid.). The common
factor of all these operations is the necessity of some kind of ice management to
ensure successful operation.
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2. Ice Observer System for Ice Management Operations

2.1.1 Ice Management

Eik (2008) defines ice management as:

Definition 2.1. “Ice management is the sum of all activities where the objective
is to reduce or avoid actions from any kind of ice features. This will include, but is
not limited to:

• Detection, tracking and forecasting of sea ice, ice ridges and icebergs
• Threat evaluation
• Physical ice management such as ice breaking and iceberg towing
• Procedures for disconnection of offshore structures applied in search for or

production of hydrocarbons.”

The objective of detecting, tracking and forecasting ice features needs ice in-
telligence, which is the process of collecting and analyzing relevant information
about the ice environment in a region of interest. Previous and current ice intel-
ligence approaches include reconnaissance aircraft equipped with radar systems,
satellite imagery, shipboard sensors, drift buoys and visual observations (Timco
et al., 2005). Recently, subsurface ice intelligence systems have been motivated be-
cause the approach is weather-independent and ice characteristics are more distinct
under water (Eik et al., 2009). However, none of the mentioned approaches is able
to supply sufficient information about the ice situation by themselves (Eik, 2008).
A complete ice intelligence system will thus consist of several sensor platforms for
obtaining the required ice information in a collaborated effort; this also ensures a
degree of redundancy, which is needed in a robust solution.

The amount of information provided by one such intelligence system may be
daunting and time consuming to process by humans. Several different products
exist where the purpose is to provide captains and operation managers with rele-
vant information. At the Canadian Ice Service (CIS), a data pre-processing system
called the Ice Services Integrated System (ISIS) makes the incoming data conve-
niently available for analysts and forecasters (Flett, 2003). The analyses are used in
shipping through the software program Ice-Vu (Asmus et al., 1996), which delivers
graphical ice charts, text-based bulletins and other advisory services (Timco et al.,
2005). Other services include ICEWATCH, whose task is to monitor the Northern
Sea Route (Johannessen et al., 1997) and ICEMON; sea ice monitoring in the polar
regions (ICEMON, 2011).

Although these services are invaluable to operators in Arctic marine operations,
an automated system is desired for processing the information in a more sophisti-
cated manner, i.e. reduce the need for analysts and forecasters. Specifically, some
kind of computer software must analyze the input data and provide useful output
information. In this regard, output constitutes visualization to human operators,
suggested operational decisions, and tasks to other automated systems. Previous
work in the topic of automated interpretation of ice intelligence includes Soh et al.
(2004). The authors present a promising approach to automated sea ice classifica-
tion1 using different data sources without human intervention. Other authors who

1Concentration and ice type in accordance with (WMO, 1989).
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2.2. Ice Observer System

also employ data fusion in sea ice remote sensing include Beaven et al. (1996); Bog-
danov et al. (2005); Partington (2000). The mentioned authors provide algorithms
for extracting sea ice concentration from imagery.

To fully understand the spatial and temporal evolution of sea ice with respect
to marine activities, it is of interest to obtain as much information about the sea ice
as possible, for instance using unmanned aerial vehicles as a mobile sensor network.
Later, we will discuss which ice features and parameters that are of relevance in
this context. Once the information has been obtained, the next step is to use it
in models to deduce something meaningful about the ice situation, both presently
and in the future. These models can thus aid the determination of uncertainties
in the picture of the ice situation. Using this knowledge is helpful in operational
planning of mobile sensor networks.

2.2 Ice Observer System

If the environment affecting a marine floater or installation changes rapidly, an un-
derlying control and decision system needs timely predictions of the actions exerted
by the environment on the object in question. With proper design, a computer sys-
tem is able to provide this information systematically in real-time. Thus, designing
an automated ice observer system is beneficial with respect to safety and robustness
in Arctic waters.

Developing one such automated ice observer system gives rise to several chal-
lenging aspects that must be addressed, such as:

• How should the system be structured to be robust and reliable?
• Which models and what fidelity are needed to describe the ice environment?
• What kind of information is needed for updating these models?
• How can this information be obtained?

The following sections will attempt to discuss these aspects in more detail.

2.2.1 Ice Observer System Structure

The urgency of accurate information varies; in some cases hazardous ice features
must be identified in due time to prevent dangerous situations, whereas in other
cases threatening ice features need not be identified at an early stage. These re-
quirements depend on the flexibility of the operation. Specifically, in shipping there
are several stages in planning a route through ice-infested waters. First, an initial
route is set up. At this stage, highly detailed information is not needed since the
ice situation is constantly changing and thus the information becomes less reli-
able after some time. During the journey through the waters, the captain needs
updated information about the ice situation, and the area closest to the vessel is
most critical (Timco et al., 2007). Similar deductions can be made for operations
in search for or production of hydrocarbons in Arctic waters. A dynamically posi-
tioned (DP) vessel performing well intervention in an ice-infested water is affected
by the surrounding ice (Hamilton et al., 2011; Keinonen, 2008). Aiding systems,
such as icebreakers, must somehow minimize the ice actions exerted on the DP
vessel. Since the various ice features need different ice-breaking strategies in order
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2. Ice Observer System for Ice Management Operations

to effectively reduce these ice actions, information about the incoming ice situation
is needed to prepare for these maneuvers. Furthermore, hazardous ice features such
as icebergs must be identified in due time to allow maneuvers to avoid collision,
for instance, by aborting the DP operation or iceberg towing (Eik, 2010).

Economic and practical constraints limit the means that are available to acquire
the ice information. Regardless of the available sensors, a general structure for the
ice observer system can be outlined. The ice observer system can be set up as a
hierarchically divided structure, see Fig. 2.1. In the strategical level the planning
occurs. The geographical region in which the operation is going to find place is
known. By taking ice states and predictions of future ice motion into account,
the areas where better measurements are needed can be determined. Once the
planning is finished, execution of the planned tasks are done on the tactical level,
that is, the measurements are performed. This may include obtaining information
from unmanned underwater vehicles (UUVs), unmanned surface vehicles (USVs), or
UAVs in the region of interest. When the necessary information has been obtained,
the next step is to analyze it. This includes image processing and utilizing the
information in models that describe the current and future ice situation. Finally,
the analyzed information is fed to other parts of the system. New planning occurs
through a feedback to the strategical level. Thus, the system is an iterative process
which constantly provides fresh information for future decisions. This process is
similar to what is known as data assimilation in meteorological communities. In
this paper we call this an ice observer. Once the ice information is readily available,
the human operators receive appropriate visualizations of the existing information
to aid the high-level decisions.

2.2.2 Ice Information

The goal of the ice observer system is to provide and present information such that
a supervisory system can make assessments with respect to safety and accuracy
of the operation (Eik, 2011). This includes the estimation of ice actions, which
are local and global actions exerted on the structure(s) at hand (Løset et al.,
2006). Different failure modes, such as crushing, buckling, cracking etc., come to
play for various structural geometries, ice properties, and ice features (Sanderson,
1988). Furthermore, various failure modes introduce fundamental differences in
the microscopic mechanics and the properties controlling them. For this reason it
is difficult to determine which ice characteristics that are important to determine
in the general case. Nevertheless, an overview of potentially relevant characteristics
from an ice observer point of view is given in Fig. 2.2.

The ice observer’s objective is, to the extent possible, to identify the parameters
given in Fig. 2.2. This is a challenging objective, since measuring some of the ice
properties are extremely difficult without doing in situ measurements (Eicken et al.,
2009). Scaling effects also complicate the reliability of measurements. To overcome
the inability to measure some parameters directly, estimates of these parameters
can be obtained indirectly from the knowledge of other parameters, models and
statistics (Lubin et al., 2006). For instance, possessing measurements of the sea ice
temperatures aid the determination of its strength.
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Decision Tasks
- Identify uncertainties 
- Acquisition planning

Sensor Platforms
Airborne
- Satellites
- UAVs
- Manned 

Processing Tasks
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  - fusion
Utilise models in state
and parameter estimation

Environment Surface-based
- Shipboard
- Buoys
- USVs

Subsea
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- UUVs

I/O

Strategies

Tactics

Analyses

Intelligence level

Figure 2.1 The structure of an Ice Observer System.

Flett (2003) provides a table which shows the CIS ice information requirements.
The information requirements are prioritized as follows:
Primary: ice edge, ice concentration, ice floe distribution, and stage of develop-

ment.
Secondary: leads, ice thickness, ice topography and roughness, ice strength, and

other ice properties.
The stage of development includes the ice type, i.e., whether it is new ice, first-
year or multi-year ice. It is important to distinguish these ice types since the ice
strength is significantly different. Flett’s (2003) table also indicates required spatial
and temporal resolution of the different information. One must keep in mind that
the table provided by Flett (ibid.) is designed for creating ice charts in shipping,
so local measurement requirements are not included.

2.2.3 Ice Modeling

Sea ice conditions can change rapidly and have big impact on marine activities.
Hence, accurate forecasts are crucial for offshore operations, and therefore numer-
ical ice models are needed to describe the ice environment.

Sea ice dynamics The physics of sea ice dynamics can be divided into four
elements (Leppäranta, 2005):
(i) Conservation of momentum; the forces acting are external forcing from air

and water, internal stresses, Coriolis force, etc.
(ii) Conservation of ice; ice thickness redistribution, ice growth and decay.

15



2. Ice Observer System for Ice Management Operations

Figure 2.2 Ice characteristics of interest.

(iii) Constitutive law; ice rheology, which relates stress to strength and deforma-
tion.

(iv) Ice states; parameters affecting ice strength, such as thickness and floe-size
distribution.

The numerical methodology can either be discrete particle models or continuum
models. Løset (1993) described a discrete element model, but on larger scale dis-
crete models have traditionally been too computationally demanding, so continuum
models are widely used. On the other hand, as pointed out by Leppäranta (2005),
the continuum approach is only valid if the grid sizes are chosen sufficiently large.
As a result, the continuum approach may not be applicable on scales relevant of
operational ice modeling. An important property of the sea ice model is to accu-
rately model ice features such as ice ridges and hummocks, since these features can
consist of significant portion of the total ice volume. Consult Leppäranta (2005,
2011) for an in-depth overview of sea ice drift models.

Iceberg drift and deterioration Smith (1993) mentioned three different ap-
proaches in modeling iceberg drift trajectories:

• Statistical models using probability distributions of previous trajectories to
predict velocity and position.

• Kinematic models with empirical relationships with other parameters, such
as rule-of-thumbs.

• Dynamic models which estimate forces acting on an iceberg, that is, Newton’s
law of motion.

Extensive research efforts have been made to develop precise iceberg drift models
using dynamic models. Long-term forecasting models (months) have been inves-
tigated by Bigg et al. (1997); Death et al. (2006); Eik (2009); Keghouche et al.
(2009); Kubat et al. (2005), while short-term (<month) models have been dis-
cussed in Mountain (1980); Napoleoni (1979); Smith et al. (1983), to mention a
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few. In the Grand Banks region, iceberg drift models are being used operationally
to assess the inflow of icebergs (Kubat et al., 2007b).

External forcing and model fidelity Sea ice and iceberg drift models based
on Newton’s law of motion depend on input from both meteorological and oceano-
graphic models. Models for wind and waves give today decent reproduction of
relevant parameters, whereas oceanographic models still produce biases and offsets
in the ocean current velocities (Eik, 2009). A high-fidelity model is pointless if
the forces driving it are incorrect. On the other hand, a good model will closely
follow the true state if these driving forces are modeled correctly. Thus, a coupled
met-ice-ocean model will not be stronger than its weakest link. Furthermore, the
environmental models in an ice observer structure will continuously be updated
by measurements to reduce these error drifts. A major objective, which can be
accomplished with estimation techniques, is how to optimally combine models and
measurements.

2.2.4 Estimation Techniques

The models just outlined should mimic the true behavior of the ice environment,
and could therefore be used to predict future ice dynamics. However, several issues
reduce the validity and prediction capabilities of these models:

• Inaccurate models due to very complex phenomena.
• Limited complexity of model implementations for computational feasibility.
• Quality/availability of initial conditions, boundary conditions, and driving
forces.

To minimize the effect of at least some of these issues, it is important to obtain as
much additional information (measurements and other relevant information) about
the ice environment, and use estimation techniques to fuse this information with
the models.

There exist numerous estimation methods that are widely used in engineering
and econometric solutions, such as control systems and macroeconomic models (Si-
mon, 2006). The Kalman filter is an example of a recursive estimation method, but
in its general form it is not suitable for nonlinear models. Hence, suboptimal vari-
ants such as extended Kalman filters (EKFs) and unscented Kalman filters (UKFs)
have been developed (ibid.). These estimation methods use uncertainty information
of models and measurements in the form of covariance matrices to determine the
appropriate fusion of model and measurement. In large-scale systems, these covari-
ance matrices become huge and make these Kalman filter algorithms intractable. To
address this problem, the ensemble Kalman filter (EnKF) (Evensen, 2003) avoids
propagating the covariance matrix by replacing it with a sample covariance. The
EnKF is for instance used in environmental data assimilation of both atmospheric
and ocean models (consult Evensen (ibid.) and references therein).

The estimation methods mentioned so far do not have built-in mechanisms
for dealing with constraints in the estimations. For instance, in the case of a sea
ice model, the estimations can in theory yield negative ice thicknesses, which is
non-physical. Kalman filter variants which address constraints can be found in the
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literature, but a more transparent and straightforward way of dealing with con-
straints is perhaps to use methods based on constrained numerical optimization,
such as moving horizon estimation (MHE) (Rao et al., 2003). Moving horizon esti-
mation combines information in previous estimates with a constrained optimization
on a finite horizon of measurements to update the model state. Recent develop-
ments in large-scale optimization have made these approaches viable also for rather
large-scale models.

2.3 Ice Monitoring Systems

In operational detection and monitoring of icebergs in the Grand Banks region
there is extensive use of ice intelligence systems. They are needed to detect and
track icebergs close to offshore installations with sufficient confidence (McClintock
et al., 2007). Equivalently, when also monitoring sea ice in addition to icebergs
and other ice features, several intelligence systems are needed to identify and track
these features with satisfactory accuracy. The different sensor platforms possess
both strengths and weaknesses. These attributes influence coverage, resolution and
frequency of the measurements. As previously mentioned, none of the platforms can
by themselves provide all the information that is needed in an ice observer system.
Thus, considerations must be taken when choosing sensor platforms. The objective
is therefore to create a synergy between the different platforms such that they
complement each other with respect to coverage, spatial and temporal resolution,
in addition to parameters that are measured. Table 2.1 depicts an overview of
platforms and its applicable sensor types which is relevant in an ice observer system.
As can be seen in the table, there is some overlap between the different platforms
and which sensors that are applicable. Note that manned aircraft have the same
instrumentation possibilities as UAVs.

Resolution of the sensing devices is important to consider when obtaining ice
information. To capture the characteristics of remotely sensed objects, several
attributes affect the reliability of the information. The ground sample distance
(GSD), which is the distance between two captured pixels, determines whether or
not an object can be distinguished from the surroundings. Each footprint is an av-
erage of the characteristics in that particular footprint. In terms of identifying ice
features, the GSD must be sufficiently short to allow detection with required prob-
ability (Leachtenauer et al., 2001). Other resolution considerations include spectral
resolution, radiometric resolution and data resolution.

2.3.1 Sensor Types

Different sensors have both appealing features and inherent drawbacks that influ-
ence the measured quantities. These properties are important to consider when
choosing which sensors to utilize on a platform. The theoretical fundamentals of
remote sensors are too comprehensive for this paper, but the main possibilities and
limitations will be stated here for convenience. The material is mainly based on
Lubin et al. (2006).
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Table 2.1 Sensor platform overview.

Platform

Sensor type Sa
te
lli
te
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Sh
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Optical (VNIR and TIR) X X X
Laser altimeter/scanner X X X
Radiometer X X X
SAR X X
Marine radar X
Scatterometer X X
Radar altimeter X X
Acoustic techniques X X
Meteorological suite X X X
Oceanographic suite X X

Visible to near infrared (VNIR) is a part of the electromagnetic spectrum
where reflections dominates the emission from Earth’s surface. For these wave-
lengths, the albedo of the surface varies depending on the object’s molecular struc-
ture, thickness, salinity and density (ibid.). The VNIR spectrum can thus be used
in ice classification. The penetration depth of VNIR is not big, so even a thin snow
cover will alter the albedo significantly. Clouds are also visible in this part of the
spectrum and thus hampers measurements, whereas solar illumination is needed
to obtain reflections. These drawbacks drastically reduce the applicability of such
sensors, but on the bright side, these sensors permit very fine resolutions.

Laser devices emit laser pulses and records the time of the round trips to measure
distances. This technique can be used by laser altimeters or laser scanners. If it
is combined with geographic coordinates from a global navigation satellite system
(GNSS), the surface elevation of the ice cover can be measured. Laser scanners
shoots sequential laser pulses within a swath width and is thus an imaging device.
This device can be used for topographic mapping of the ice cover. A drawback is
its inability to penetrate dense clouds.

Thermal infrared (TIR) sensors measure emission from objects. This emis-
sion depends on temperature and emissivity and can be used to derive ice surface
temperatures. This property can be exploited by high resolution TIR sensors in
determination of ice motion, iceberg detection, and floe-size distribution (ibid.).
Unlike the VNIR spectrum, solar illumination is not needed, but TIR radiation
cannot easily penetrate cloud covers and can therefore only be used as a comple-
mentary sensor in ice intelligence applications.

Passive microwave techniques using radiometers can, as opposed to VNIR and
TIR, penetrate both clouds and polar darkness, but might have problems in pre-
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cipitating clouds. The radiation depends on the physical properties of the object,
such as crystalline structure (Lubin et al., 2006). For this reason, differentiation
of water and sea ice is possible. Unfortunately, there are high variability and un-
certainty in the emissivity of sea ice (Comiso et al., 1989), which complicates the
analysis of the obtained measurements. In addition, the emitted energy levels are
small, so fine spatial resolution is limited.

Active microwave devices emit electromagnetic signals toward a region of in-
terest and the reflections are detected by the device. There are three classes of
commonly used active microwave devices in aerial remote sensing, namely syn-
thetic aperture radars (SARs), scatterometers and radar altimeters (Lubin et al.,
2006). Common for them all is their ability of penetrating clouds, polar darkness
and even precipitation.

SAR is a high spatial resolution imaging technique that provides complex pic-
tures of a region. The reflected signals depend on a number of physical properties
of the depicted objects and are difficult to interpret. Under favorable conditions
it is possible to classify different ice features and differentiate water from sea ice.
This makes it possible to use SAR for ice-type classification, ice motion, ice defor-
mation, et cetera. SAR is one of the few sensor types which, due to the penetration
capabilities, is able to distinguish between first-year and multi-year ice. Favorable
conditions are rarely the case, so interpretation of SAR images is challenging in
the general case. Several techniques exist to overcome this challenge and depend
on the technology of the SAR device. Important device parameters in this con-
text include frequency band, polarization and incidence angle (consult Lubin et al.
(ibid.)). Despite the mentioned difficulties, SAR as a sensory device is appealing
due to all-weather, day and night possibilities.

A scatterometer records the energy backscattered from the surface. For sea
ice, it can provide information about roughness and dielectric properties of the
surface (ibid.). Despite its high temporal resolution and coverage, the coarse spatial
resolution (km for satellite-borne scatterometers) limits usefulness in relatively
small scale ice intelligence operations. On the other hand, SAR devices can operate
as scatterometers (ISRO, 2011), which may be useful in some cases.

Radar altimeters measure the travel time of a pulse from the sensor to the
object in question and back again. From this measurement it is possible to derive
the distance between them. Radar altimeters can to some degree penetrate dry
snow covers. This implies that the freeboard2 can be measured in a similar fashion
as laser altimeters through incorporation of geographic coordinates. By assuming
hydrostatic equilibrium and estimating the density of the ice, the ice thickness can
be estimated (Hendricks et al., 2006). To be able to do this, estimates of both the
density and thickness of the snow cover are needed3. The main limitation of this
device is its narrow footprint and thus limited coverage.

Shipboard marine radars have also been used for ice detection of hazardous
multi-year ice and icebergs. Recently, O’Connell (2008) demonstrated a more so-
phisticated ice hazard radar for use in Arctic waters. This type of radar provides

2The elevation of the ice above the water surface.
3Snow cover thickness can be estimated by utilizing a laser altimeter.
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more detailed images than conventional marine radars and can be used as an in-
telligence device in an ice observer system. The reliability of the measurements
diminishes with distance from the vessel. If, for instance, the disconnection time of
equipment attached to a dynamically positioned vessel is long in comparison to the
reach of the radar, the inflow of hazardous ice features cannot always be detected
in due time with this device.

Acoustic sensors are generally more suited for underwater platforms. Upward-
looking sonars can be used to create the underwater topography of the sea ice
(Wadhams et al., 2008). By employing the Doppler effect, the drift velocity of the
ice cover can be estimated. Furthermore, it is possible to identify multi-year ice
using this sensor type (ibid.). The main drawback of this sensor type is its limited
coverage and propagation delays which greatly varies with temperature and salinity
(Akyildiz et al., 2005).

A meteorological suite of sensors can measure temperature, wind velocity and
humidity of the atmosphere. These measurements are important in meteorological
models. Higher spatial and temporal resolution of these measurements can increase
the accuracy of the weather forecasts in an area of interest. As a consequence, wind
and temperature fields can be fed into the ice model and to achieve higher accuracy
of the ice estimates.

Oceanographic sensor suites are useful in measuring water temperature, salin-
ity, and currents. These states are important through interaction between sea ice
and water, namely drag forces and heat flux. The mentioned states are very difficult
to measure from airborne vehicles when the ocean is covered by ice floes.

Other devices of interest include:
GNSS: NAVISTAR’s global positioning system (GPS), global navigation satellite

system (GLONASS), and Galileo, which are needed for accurate geopostion-
ing of measured data.

Inertial navigation systems (INSs), which are complementary to GNSS.
Electromagnetic systems for thickness measurements. These may be too heavy

(∼ 100 kg (Hendricks et al., 2006)) to be applicable for small UAVs. However,
for USVs it could be relevant.

Ground penetrating radars (GPRs) can be used for ice thickness measure-
ments from a USV, but due to ice salinity, mixed success should be expected
(Maijala et al., 1998).

2.3.2 Sensor Platforms

When evaluating the applicability of a sensor platform in an ice observer system,
attributes such as cost, coverage, spatial and temporal resolution, as well as ro-
bustness, communication, and logistics are important to consider.
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Satellites have for a long time been an invaluable platform for remote sensing.
In the case of sea ice, much research effort has been invested in exploiting the sen-
sors that have been deployed on various Earth orbiting satellites (for a thorough
overview, see Lubin et al. (2006)). Today, a wide range of sea ice parameters can be
estimated from space. However, due to the high altitudes of the satellites, inherent
challenges and limitations exist with respect to the sensory performance. In par-
ticular, there are trade-offs between obtainable temporal and spatial resolution, as
well as coverage (ibid.). Consequently, you cannot obtain fine-resolution imagery
over huge areas at arbitrary sampling interval, one must prioritize one of these
properties. In global climate models, large scale measurements of sea ice extent
are of interest rather than highly detailed measurements at geographically small
regions. Thus, global coverage at intermediate temporal and spatial resolutions is
sufficient in most cases (ibid.).

For operational monitoring and forecasting of the environment, on the other
hand, both fine temporal and spatial resolutions are desired, but with smaller geo-
graphical coverage. These demands are difficult to meet by using satellite sensors.
Although spaceborne passive-microwave sensors provide daily coverage of the global
sea ice cover, their spatial resolution is too coarse to identify ice features such as
ice ridges with confidence (ibid.). Conversely, spaceborne SARs possess the spatial
resolution to do so, but the temporal resolution may not be sufficiently fine for the
sea ice models to predict inter-sample changes with required accuracy. Table 2.2
shows commercial satellites carrying SARs and a selection of their operating modes
and properties. It is important to understand that the repeat cycle; the time span
between two concurrent geographic projections of the satellite, is not the same as
sampling interval (or revisit time; the time span between two consecutive measure-
ments of a point), and it is hence possible to obtain finer temporal resolution than
the repeat cycle in case of variable-swath direction SAR satellites (ibid.). Unfortu-
nately, this is not necessarily true when the highest available spatial resolution of
a satellite’s operation mode is desired. Luckily, though, the revisit time of polar-
orbiting satellites depends on the latitude of the desired measurement location;
it is reduced closer to the poles due to reduced cross-track distance between the
projected trajectories of the satellite’s orbit. In sum, fine-resolution SAR satellite
images can be obtained at sampling intervals in the range of a few days, perhaps
even more often, but with varying spatial resolution depending on which satellite
who provides them. It is also worth mentioning that some of these satellites do
not have multi-polarization capability, which affects the confidence of the derived
geophysical parameters.

As indicated in Table 2.1, there also exist satellites who carry other sensor types.
But as discussed, these sensor types either cannot penetrate darkness and clouds,
have coarse resolution, or provide too limited spatial coverage to operate on their
own. Thus, all the remaining satellite sensors can be viewed as complementary sen-
sors to the SAR. Still, it is important to acknowledge that these sensors indeed can
provide additional information during problematic parts of the year. Specifically,
microwave-based images are difficult to analyze during the melt season (ibid.), so
complementary information are welcome when they are available.
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Table 2.2 Satellites equipped with SAR and some of their properties.
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ERS-2 C 35 - 6− 30× 26 102.5
ENVISAT C 35 Image Mode 30 58− 109
RADARSAT-1 C 24 Fine 8 45
RADARSAT-2 C 24 Ultra-fine 3× 3 20
ALOS L 46 High Res. 7− 44 40− 70
TerraSAR-X X 11 Spotlight 1 5× 10
Cosmo-SkyMed
(4 satellites) X 4? Spotlight 1 10× 10

Source: (ibid., Appendix) and (Cosmo-SkyMed, 2011)

Ships will always be present in surface-based offshore operations. This fact im-
plies that the ship as a sensor platform is relatively cheap and problems with
communication and logistics are almost nonexistent. Table 2.1 shows possible in-
strumentation. Measurements can generally be obtained despite the weather or
darkness. Certainly, some of the sensors are rendered inoperable in unfavorable con-
ditions, but the marine radar is a robust sensor that provides year-round operation.
Unfortunately, heavy sea can make it difficult to detect ice features (O’Connell,
2008). Care must be taken when placing sensors; environmental disturbances such
as icing and ice-floes can damage the equipment.

Buoys provide accurate velocity data of the sea cover. This data can be used to
validate ice drift velocities obtained by remote sensing (Heil et al., 2001). Moreover,
by mounting a meteorological sensor suite on the buoy, atmospheric pressure, wind
velocity, air temperatures can be measured with high geopositional accuracy (Lubin
et al., 2006). Due to the cost, logistical difficulty of deployment and sparse cover-
age, the spatial resolution is limited. Nonetheless, such a platform would provide
invaluable information to an ice observer system.

Underwater sensor platforms are the only sensor platform which are indepen-
dent of weather conditions. This is a big advantage over other platforms, but this
platform has characteristic shortcomings, such as cost, limited coverage, communi-
cation challenges, navigation, and difficulty of logistics. For an overview of research
challenges with respect to underwater acoustic sensor networks, consult Akyildiz et
al. (2005). Eik et al. (2009) specified requirements for a subsurface ice intelligence
system.
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Table 2.3 Sensor platform comparison.

(a) Property comparison.

Resolution

Platform Coverage Space Time Cost per area

Satellites Excellent Intermediate Coarse Intermediate
UAVs Very good Fine Intermediate Intermediate
Shipboard Low Intermediate Fine Low
Buoys High Sparse Intermediate High
USVs Intermediate Sparse Low High
Sub-sea Good Very fine Intermediate

(b) Suitable region of operation.

Platform Suggested regions of operation

Satellites Distant
UAVs Distant, intermediate, close
Shipboard Close
Buoys Distant, intermediate
USVs Intermediate
Sub-sea Close, intermediate

A Summary of the different sensor platforms in terms of coverage, resolution,
and cost per area is given in Table 2.3. Based on these properties, the table also
provides suggested regions of operation for the different sensor platforms.

2.3.3 UAV as a Sensor Platform

Unlike the previously discussed sensor platforms, UAVs demonstrate flexibility in
geographical coverage, spatial and temporal resolution, and these abilities are im-
portant in sensor platforms. Thus, UAV is a strong candidate to operate as a sensor
platform in an ice observer system. Nevertheless, there are many challenges that
must be addressed in order to successfully employ unmanned aerial vehicles as part
of an ice intelligence system.

The UAVs must be economically efficient to deploy, and they must compete
with the other intelligence systems with respect to cost of information per area.
Furthermore, manual intervention and maintenance of the vehicles should be mini-
mal, employing as few people as possible. Thus, launch and recovery systems should
be automated to enable all-weather, day and night operation, in addition to the
data collection itself. Fault tolerance is a requirement since both the vehicles and
the instrumentation are costly. Consequently, having high material quality reduces
maintenance and increases the reliability of the UAVs.

Due to nonnegligible ice-modeling inaccuracies and uncertainties, the predicted
ice conditions will eventually diverge from the true situation if measurements are
not received. Continuity of information gathering is therefore essential to compen-
sate these error drifts and maintain safe operation. Robustness against environmen-
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tal disturbances such as extreme coldness, high wind speeds and icing problems is
crucial to achieve this objective.

Fine resolution imaging produces big data volumes. This information needs to
be processed and utilized as quickly as possible, requiring an efficient data commu-
nication system to a central processing unit. Since the vehicles may travel far away
from the base and out of reach of direct communication, either satellite communi-
cation, or communication chaining is needed to transmit the input information in
a timely manner (Frew et al., 2009).

Other aspects that must be addressed include vibration issues, water intrusion,
fly zones, legislation, electromagnetic noise, guidance, navigation, and control (see
Crowe et al. (2012) and references therein).

UAV classification The Unmanned Vehicle Systems International (UVSI, 2011)
has classified unmanned aerial vehicles according to key properties such as weight,
maximum payload, altitude, endurance, range, speed and so forth. These char-
acteristics are important to consider when designing UAVs for Arctic intelligence
operations. Notably, the UAV is supposed to operate as a sensor platform and the
payload determines which and how many sensors that are possible to equip on the
vehicle. Likewise, other attributes such as maximum altitude, endurance, range,
and speed affect both coverage and spatial and temporal resolution. Moreover,
weight and UAV design influence both maneuverability of the vehicles and robust-
ness against environmental disturbances. There are also constraints in the physical
size of the vehicles, which in particular impact space requirements for launch and
recovery systems. In sum, there are many trade-offs during the design process.
Currently, research and development on UAVs is being performed in a variety of
locations. In Norway, Norut (2014) and Simicon (2011) are both doing research on
UAVs for use in Arctic Environments.

UAV classes that should be considered as a sensor platform are:
Rotary-wing vehicles have vertical take-off and landing (VTOL) capabilities

and good maneuverability, but intermediate range.
Fixed-wing vehicles have higher range capabilities than the other two classes,

but at the cost of complex launch and recovery, and more limited maneuver-
ability.

Aerostats have the least flexibility in terms of mobility, but on the other hand,
endurance is achieved at low costs. A moored aerostat can operate during
bad weather and can give a good overview over the close-field ice situation.

Instrumentation is one element of the UAV-design process which affects the
output information of the sensor platform. In particular, the right choice of sensor
devices is important in order to obtain reliable information about the ice environ-
ment with required degree of redundancy. The sensors have pros and cons, so the
right sensor combination is an issue that must be addressed. Table 2.4 provides
an overview of a selection of currently available sensors that can be mounted on a
relatively small unmanned aerial vehicle. The specifications given in this table are
a subset of all the attributes that affects the performance of the sensor platform.
For instance, the operational temperature range of the Nikon digital camera is cer-
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Table 2.4 Specifications for UAV-applicable sensors.

Sensor type

Properties Visible TIR Laser scanner

Sensor D300s Photon 640 LMS-Q240i
Lens size [mm] 50 35 -
Weight [g] 840 250 ∼ 7000
Day and night No Yes Yes
Fog No Light Light
Range? [m] 140 140 0− 500

Accuracy - 50mK 2 cm†

GSD/footprint∗ [cm] 3.3 20 ∼ 80
Sampling frequency [Hz] 7 30 10000
Temperature range [◦C] 0 to +40 −40 to +80 −10 to +50
Reference Nikon (2011) FLIR (2011) RIEGL (2011)

Sensor type

Properties Laser altimeter Radar altimeter SAR

Sensor ILM-R 300 MRA Type 1 NanoSAR B
Lens size [mm] - - -
Weight [g] 950 400 1600
Day and night Yes Yes Yes
Fog Light Yes Yes
Range? [m] - - -‡

Accuracy 5 cm† 50 cm† -
GSD/footprint∗ [cm] ∼ 90 - 30
Sampling frequency [Hz] 9 10 -‡

Temperature range [◦C] −10 to +60 −40 to +55 -‡

Reference MDL (2011) Roke (2011) ImSAR (2011)
? Horizontal range at 300m altitude, depends on the FOV of the device.
∗ GSD in horizontal direction of image, or footprint diameter of beam.
† Specified instrument accuracy at 300m altitude, absolute accuracy combined with
GPS is poorer.
‡ Not specified by vendor.
See Reuder et al. (2009) for an example of an meteorological sensor suite in UAVs.
A UAV-borne radiometer has been demonstrated by Acevo-Herrera et al. (2010).

tainly not wide enough to operate in a cold climate. Moreover, the temperature
in Arctic regions can get far colder than −10 ◦C and the reliability of some of the
sensors are thereby reduced.

Even though the sampling rates of the sensors are relatively high, a single mea-
surement has very limited coverage. High operational altitude increases the cover-
age, but at the cost of spatial resolution. Thus, the sensor platform must be placed
in an appropriate altitude to accommodate both required coverage and resolution.
Table 2.4 shows the horizontal range at an altitude of 300m and the corresponding
GSD/footprint. As previously discussed, too coarse spatial resolution will increase
the probability of not detecting hazardous ice features. When monitoring a spec-
ified region with the required spatial resolution, the platform must move around.
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This mobility is not instantaneous, so to effectively cover a region, smartness must
be incorporated in the path planning.

2.3.4 Mobile sensor networks

As far as the authors are aware, no published results on a mobile sensor network
for sea ice monitoring exist. However, the problem of mobile sensors has been
addressed by several authors, see e.g. Choi et al. (2010); Daescu et al. (2004); Ma-
jumdar et al. (2002); Palmer et al. (1998). This network, in our context unmanned
(aerial) vehicles, should exploit the strengths of each sensor platform in the sensor
placements and path planning. In ice management operations, this involves the de-
termination of when, where, and which type of sensor platform is needed to achieve
an uncertainty reduction of a region of interest. In this decision making, the sen-
sor platform properties discussed in previous sections are important to consider
in order to make the information gathering economically and practically feasible.
With these attributes in mind, Table 2.3b indicates in which regions each sensor
platform is feasible.

For an ice observer, the following requirements must be considered in the mobile
sensor network problem formulation:
(i) Localization and classification of ice features.
(ii) Urgency of closeness to operation.
(iii) Ice drift velocity and its variability.
(iv) Time since surveillance.
Requirement (i) implies that a relatively big geographical region must be covered.
Requirement (ii) states that as the ice comes closer to the operation, the desired
level of information increases. To minimize the covered region, Requirement (iii)
ensures that the ice drift is incorporated in the path planning, e.g., only the ice
in upstream direction is of interest. Furthermore, the predicted changes in the ice
drift is also important to incorporate in the path planning. The final requirement
accounts for the modeling inaccuracies which can introduce discrepancies between
the modeled and real world. These requirements should be aided by numerical
models and estimation techniques.

2.4 Conclusions

An ice observer structure has been outlined where the important elements have
been presented. The paper emphasizes the need for numerical models combined
with estimation techniques in the forecasting of the ice environment. Furthermore,
the possibility of using this combination in the path planning of mobile sensor
networks has been motivated.

The usefulness of unmanned aerial vehicles as a sensor platform for ice monitor-
ing has been argued. UAVs show flexibility with respect to coverage and resolution,
which are key attributes for a sensor platform. Moreover, UAVs can be equipped
with sensors that provide important information about the surrounding environ-
ment, including temperature, wind velocity, ice-floe distribution, ice velocity, and
other ice parameters. Another important driver pushing the development and use
of UAV is occupational safety and health.
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Chapter 3

Monitoring Moving Objects Using
Aerial Mobile Sensors

We propose an optimization-based path planning framework for an aerial mobile
sensor network. The purpose of the path planning is to monitor a set of moving sur-
face objects. The algorithm provides collision-free mobile sensor trajectories that are
feasible with respect to user-defined vehicle dynamics. The objective of the resulting
optimal control problem is to minimize the uncertainty of the objects, represented
as the trace of the augmented state and parameter estimation error covariance. The
dynamic optimization problem is discretized into a large-scale nonlinear program-
ming (NLP) problem using the direct transcription method known as simultaneous
collocation. The optimization problem is solved with a receding horizon and both a
field experiment and a numerical simulation illustrate the approach. The work in
this chapter is published in Haugen et al. (2014b), which is based on Haugen et al.
(2013a,b).

3.1 Introduction

Remote sensing is useful for several different applications, including urban plan-
ning (Netzband et al., 2007), crop monitoring (M. S. Moran et al., 1997), po-

lar remote sensing (Lubin et al., 2006), other environmental applications (Elachi
et al., 2006), and maritime patrolling. Common sensor platforms in this regard are
satellites and manned aerial vehicles, which in many cases provide the required
accuracy and frequency of acquisition. For some demanding applications, finer res-
olution and higher frequency of acquisition are necessary requirements to enable a
safe operation. One example is the monitoring of icebergs and hazardous ice fea-
tures in ice management operations. In Haugen et al. (2011), the authors argued
that unmanned aerial vehicles may become a cost-effective sensor platform for ice
management operations.

Suppose we have a number of moving objects that we want to keep track of.
At our disposal we have several aerial mobile sensors that are capable of remotely
sensing the objects in question. We assume that each object has at least a mathe-
matical description of its planar displacement dynamics, but that this description
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has modeling uncertainties. The two main tasks we seek to answer are how to
monitor these objects efficiently, and how to minimize the uncertainty of estimated
future trajectories of the objects. Thus, we want to develop an autonomous re-
mote sensing framework that provides object measurements for input to state and
parameter estimation of the objects’ dynamics.

The topic of object monitoring, also known as target tracking, has received
much attention in literature. The main reason for this is because of its various
possible application areas. As a consequence, there also exist many different ap-
proaches, ranging from a single sensor tracking a single object (Geiger, 2009), to
using multiple mobile sensors for tracking multiple moving targets (Morbidi et al.,
2013; Parker, 1999; Tang et al., 2005). Generally, we can classify contributions ac-
cording to the number nm of sensors and no objects being considered, denoted “nm
to no”. For the mobility of sensors, different models have been considered. The use
of mass-spring-damper models for describing mobile sensors (Morbidi et al., 2013;
Parker, 1999; Zhou et al., 2011) are less common than nonholonomic vehicle mod-
els with bounded turning radius (Geiger, 2009; Klesh et al., 2009; Quintero et al.,
2010; Tang et al., 2005), also called Dubins vehicle or Dubins paths. The latter
model is more popular due to its simple, but more realistic description of fixed-
wing aircraft, wheeled ground vehicles, and torpedo-like underwater vehicles. The
measuring capability of the sensors can generally be divided into either globally or
locally supported footprint. Globally supported devices include measurements pro-
viding range, range-bearing, and bearing type of measurements, where the signal-
to-noise ratio for instance can be proportional to the distance between the sensor
and object being measured (Klesh et al., 2009; Morbidi et al., 2013; Zhou et al.,
2011). Locally supported devices have a clear distinction for providing a measure-
ment or not, like a camera with a limited field of view (Geiger, 2009; Parker, 1999;
Quintero et al., 2010; Tang et al., 2005). Objects being tracked are described using
a variety of dynamic models in literature. Common models include zero-velocity
(Klesh et al., 2009; Rathinam et al., 2007; Savla et al., 2008), constant velocity
(Geiger, 2009; Looker, 2008; Quintero et al., 2010), or linear dynamics (Morbidi
et al., 2013). For the path planning algorithm, authors usually consider either re-
source allocation-based applications, where the objects are to be visited once or a
predefined number of times, or information-driven applications that provide paths
based on scalar functions representing information reward of visiting an object.

Geiger (2009) successfully carried out a field experiment of real-time trajectory
planning of an unmanned aerial vehicle. The objective was to maximize observation
time of a single object, moving or static, using direct collocation. Klesh et al. (2009)
used a spatially motivated signal-to-noise ratio as a weighting of the measurement
noise together with a Kalman filter in the path planning of a nonholonomic vehicle.
The purpose was to observe a set of static objects with corrupted visibility or
uncertain object location.

The multi-target tracking objective has also been approached using resource
allocation, where the problem is formulated as a traveling salesperson problem with
nonholonomic vehicle description. Savla et al. (2008) solves the minimum-time “1
to no” visitation path planning with static objects. The more general problem of
minimum distance coverage of “nm to no” is solved in Rathinam et al. (2007), but
with restrictions on the minimum distance between the static objects. The single
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vehicle moving target traveling salesperson problem, where the objects move with
constant velocities was solved by Looker (2008) with minimum distance Dubins
paths.

Early work on the “nm to no” can be found in Parker (1999) where homoge-
neous mobile sensors with local measurement support tracked moving targets in a
bounded and uncluttered region of interest. It was formulated as an optimization
problem and the objective was to maximize observation time of the targets. Non-
holonomic vehicle dynamics was not considered. In Tang et al. (2005), the “nm to
no” was solved using a gradient-based approach with nonholonomic vehicles. The
objective was to minimize the average time duration between consecutive obser-
vations of each target. All the above contributions considered a centralized and
cooperative approach, with the exception of Tang et al. (ibid.), where decentral-
ization by heuristic K-means clustering also was proposed. Recently, Morbidi et
al. (2013) developed a gradient-based control scheme for the “nm to no” problem
that minimized the targets’ covariance matrix using different optimum experimen-
tal design criteria, such as the trace of the estimation error covariance matrix.
In the approach, linear object dynamics is considered, with globally supported
measurements. The sensor dynamics is unconstrained mass-spring-damper models
without considering collision avoidance. The authors discuss both cooperative and
non-cooperative approaches, and provide upper and lower bounds on the position
covariance of the targets.

In Haugen et al. (2013a,b), cooperative autonomous monitoring of moving sur-
face objects was accomplished by formulating and solving an optimal control prob-
lem for the “1 to no” problem. The problem minimized weighted traces of the
objects’ state estimation covariance matrices by determining a feasible path for a
single mobile sensor. Herein, we extend Haugen et al. (2013a) to “nm to no” capa-
bility. Both a field experiment and a numerical simulation successfully demonstrate
the approach. The framework supports multiple mobile sensors with collision-free
trajectories. In addition, the objective function can take into consideration the
possibility of reducing parameter uncertainties of the objects when performing
the path planning. Locally supported measurement models are used. Both non-
holonomic, mass-spring-damper dynamics, and more involved vehicle models are
possible with the proposed framework.

3.1.1 Notation

An n-dimensional column vector of ones is denoted 1n×1. In is the n × n iden-
tity matrix. A countable finite index set of positive natural numbers is defined as
In := {i ∈ N+ : i ≤ n}. A block diagonal matrix of other matrices Xi∈Is ∈ Rmi×ni
is defined as bdiagi∈Is(Xi) :=

⊕
i∈Is Xi, where ⊕ is the direct sum. The verti-

cally stacked matrix of other matrices Xi∈Is ∈ Rmi×n is denoted coli∈Is(Xi) :=
bdiagi∈Is(Xi) · (1s×1 ⊗ In), where ⊗ is the Kronecker product. The diagonal of a
column vector x ∈ Rn is the block diagonal of its scalar elements xi, diag(x) :=
bdiagi∈In(xi). The space of non-zero n-dimensional real vectors is denoted Rn6=0.
Define the set of positive definite real matrices as Πn := {A ∈ Rn×n : ∀x ∈
Rn6=0, x

TAx > 0}. The orientation space is defined by S := [−π, π). Define the Lp-
normed metric space Mp = (Rn, ‖ · ‖p). The corresponding open ball with origin
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η ∈ Rn is Bp(η; r) := {x ∈ Mp : ‖ · ‖p < r}. The first moment of a random
vector x is denoted by the expectation operator E(x). The covariance matrix of
two random vectors x and y is defined as cov(x, y) := E[(x− E(x))(y − E(y))T].
Non-negative real numbers are defined by the set R≥0. A zero-mean continuous-
time white noise process w(t) of dimension n has the properties E(w) = 0 and
cov(w(t), w(τ)) = Q(t)δ(t − τ), where Q : R≥0 → Πn is the deterministic spectral
density and δ(t) is the dirac delta function. The above mentioned properties of
w(t) are written compactly as w(t) ∼ (0, Q(t)).

3.2 Problem Description

We are interested in using multiple aerial mobile sensor to monitor multiple moving
objects. We proceed by defining an illustrating example that serves as a simplified
exposition of the problem description. Once the illustrating example has been de-
fined, we give an overview of the system components needed to solve the problem.
This includes a quantified description of the uncertainties of the objects’ states and
parameters. We will revisit the illustrating example when all the relevant compo-
nents of the monitoring systems have been defined and further generalized.

3.2.1 Illustrating Example

Suppose that we have no objects (e.g. icebergs) moving with almost constant ve-
locity that we want to monitor. We assume that we have estimated initial positions
of the objects at time t0, but that the objects’ states and parameters are uncertain.
In particular, the accurate position and drift velocity of each object are not known.
A mobile aerial sensor is able to sense the objects using for instance a camera with
a limited field of view (FOV). Since the FOV is limited, the objects cannot neces-
sarily be observed simultaneously. The objective is thus to steer the mobile sensor
such that all the objects’ states and parameters can be estimated.

Let {ned} denote a right-handed stationary reference frame whose axes denote
north, east, and down coordinates, respectively. The dynamics of the objects can
be described ∀o ∈ Ino as

Ṅo(t) = vN,o + wN,o(t), (3.1a)

Ėo(t) = vE,o + wE,o(t), (3.1b)

where χo := col(No, Eo) is object o’s north and east coordinates, the uncertain
velocity parameter vector is ρo := col(vN,o, vE,o), and col(wN,o(t), wE,o(t)) =:
wχo (t) ∼ (0, Qo(t)) is process noise.

The sensor dynamics is intended for path-planning purposes and need not be a
high-fidelity model. It is, however, important that the planned paths are feasible
with respect to maneuverability constraints of the mobile sensors. We consider a
constant-altitude kinematic model with the bank angle uθ(t) as control input. Let
xN (t) and xE(t) denote the north and east position of the sensor, and ψ(t) ∈ S
the right-hand screw z-axis rotation of a body-fixed reference frame {b} relative to
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{ned}. The dynamics is

ẋN (t) = Va cos(ψ), (3.2a)
ẋE(t) = Va sin(ψ), (3.2b)

ψ̇(t) =
g

Va
tan(uθ(t)), (3.2c)

where Va is the positive airspeed and g is the standard gravity. We constrain the
commanded bank angle, so that the resulting state trajectories are sufficiently
conservative and feasible. For all t ∈ R≥0 and uθ,L, uθ,H ∈ S, let

uθ,L ≤ uθ(t) ≤ uθ,H . (3.2d)

We also restrict the planar position of the mobile sensor. In particular, we define
a closed convex polygon

K := {y ∈ R2 : m ≥ 3, A ∈ Rm×2, b ∈ Rm, Ay ≤ b},

so that x(t) := col(xN (t), xE(t), ψ(t)) is constrained for all t ∈ R≥0 by

x(t) ∈ K × S =: X. (3.2e)

Problem 3.1. Perform state and parameter estimation of the objects o ∈ I3
of (3.1) for all t ∈ [t0, T ], where T is the final time of interest. This should be
accomplished by determining a feasible input uθ(t) for the mobile sensor (3.2) to
obtain intervals of measurement of all the objects.

3.2.2 System Overview

We consider a monitoring system consisting of three main components:
RPAS: Remotely piloted aircraft system that acts as a mobile sensor network. It

provides measurements of the objects.
Observer: Processes raw measurements and other inputs to return the most likely

model state and parameters of the mobile sensors and the objects.
Path Planner: Generates guidance inputs of where and when we want the mobile

sensors to obtain measurements of the objects.
The monitoring system is governed by a supervision component that decides the
configuration of the containing components. This includes the size of the mobile
sensor network, which objects to monitor, specific mathematical descriptions, and
other relevant considerations. The monitoring system is also influenced by the
environment through both the actual objects being monitored, environmental dis-
turbances, as well as future forecasts. The system under consideration is shown in
Figure 3.1. The main focus of this manuscript is to develop an optimization-based
Path-Planner component.

Mobile Sensor Dynamics

We assume that first-order nonlinear ordinary differential equations (ODEs) with
state and input constraints describe the vehicle dynamics with sufficient fidelity.
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3. Monitoring Moving Objects Using Aerial Mobile Sensors

Figure 3.1 Components of the system under consideration.

Let nm be the number of mobile sensors and define the index set M := Inm . For
all m ∈ M and t ≥ t0 ≥ 0 we have that xm(t) ∈ Rnxm denote the state vector,
um(t) ∈ Rnum the control input, and ϑm ∈ Rnϑm a vector of constant parameters
for mobile sensor m. Then, ∀m ∈M the mobile sensor models are described by the
deterministic systems

ẋm(t) = fm(t, xm(t), um(t), ϑm), (3.3a)
xm(t0) = xm,0, (3.3b)
xm(t) ∈ Xm ⊆ Rnxm , (3.3c)
um(t) ∈ Um ⊆ Rnum , (3.3d)

where fm : R≥0 ×Rnxm ×Rnum ×Rnϑm → Rnxm is a sufficiently smooth function,
and both Xm and Um are convex sets.

Object Dynamics

Let no be the number of objects and define the index set O := Ino . For all o ∈ O
and t ≥ t0 we have that χo(t) ∈ Rnχo is the state vector, wχo (t) ∈ Rnχo ∼ (0, Qχo (t))
is the state process noise, and po ∈ Rnpo is a vector of constant or slowly-varying
parameters. The dynamics of the objects can be described by first-order stochastic
nonlinear ODEs as

χ̇o(t) = fχo (t, χo(t), w
χ
o (t), po), (3.4a)

χo(t0) = χo,0, (3.4b)

where fχo : R≥0 × Rnχo × Rnpo → Rnχo is a sufficiently smooth function.
We separate the parameter vector into two vectors ρo and σo such that po :=

col(ρo, σo), where ρo is regarded as uncertain with parameter process noise wρo(t) ∈
Rnρo ∼ (0, Qρo(t)). The purpose of splitting the vector is for estimating the un-
certain parameters. Define the augmented vector zo := col(χo, ρo), so that the
augmented state dynamics is

żo(t) = col(fχo (t, χo(t), w
χ
o (t), po), w

ρ
o(t))

=: fo(t, χo(t), wo(t), po), (3.5a)
zo(t0) = col(χo,0, ρo,0), (3.5b)

where wo(t) = col(wχo (t), wρo(t)) ∼ (0, Qo(t)) and Qo(t) := bdiag(Qχo (t), Qρo(t)).
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3.2. Problem Description

When a mobile sensor is sufficiently close to an object, it obtains a measurement
of it. This output is for each object o ∈ O and sensor m ∈M defined as

yo,m(t) = ho,m(t, χo(t), vo,m(t)), (3.5c)

where χo(t) is the object state vector, vo,m(t) ∈ Rnyo,m ∼ (0, Ro,m(t)) is measure-
ment noise for sensor m on object o, and ho,m : R≥0 × Rnχo × Rnyo,m → Rnyo,m is
a sufficiently smooth function. We assume that the mobile sensors collectively are
able to measure each object in such a way that some sort of observability property
of the object is satisfied. This property involves obtaining sufficiently informative
measurements to be able to monitor the objects.

Remark 3.1. Knowing whether the objects’ states and parameters are observable
or not is important for the usefulness of the monitoring system. Observability for
nonlinear systems is complicated in general. To illustrate the observability of a
single object, we consider the linear time-varying and noise-free system

ẋ = A(t)x+B(t)u, (3.6a)
y = C(t)x. (3.6b)

It is stated in C.-T. Chen (1999, Th. 6.O11) that (3.6) is observable at time t0 if
and only if there exist t1 > t0 such that the matrix

Wo(t0, t1) =

∫ t1

t0

ΦT(τ, t0)CT(τ)C(τ)Φ(τ, t0) dτ, (3.7)

where Φ(t, τ) is the state transition matrix of ẋ = A(t)x, is nonsingular. In our
monitoring system, the object will either be measured or not, that is, C(t) may
switch between a constant matrix and the zero-matrix at regular intervals. Con-
sequently, the above integral consists of piecewise nonzero interval contributions,
where

W`(t`,0, t`,1) =

∫ t`,1

t`,0

ΦT(τ, t`,0)CT(τ)C(τ)Φ(τ, t`,0) dτ (3.8)

is the `th contribution with t`,1 > t`,0 ≥ t0. The object’s states are observable if
there exist a number `t of intervals such that

Wo(t0, t`t,1) =

`t∑
`=1

W`(t`,0, t`,1) (3.9)

is nonsingular. For systems with time-invariantA-matrix, each interval contribution
is structurally identical. This means that if W` is singular, then the system is
unobservable becauseWo is singular for all t. In case of observability, measurement
windows will gradually improve the estimates.

Object Uncertainty Measure

The augmented states of the objects are random variables and may be characterized
by quantitative measures, such as the mean and covariance descriptions. More
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3. Monitoring Moving Objects Using Aerial Mobile Sensors

specifically, ∀o ∈ O we define E(χo(t)) = χ̂o(t) as the state estimate of χo(t) and
E(ρo) = ρ̂o(t) as the parameter estimate of ρo. For each o ∈ O, we define the state
and parameter estimation errors as

χ̃o(t) = χo(t)− χ̂o(t), (3.10a)
ρ̃o(t) = ρo − ρ̂o(t), (3.10b)

which combined give the augmented estimation error vector

z̃o(t) = col(χ̃o(t), ρ̃o(t)), (3.10c)

and the estimation error covariance

Po(t) = cov(z̃o(t), z̃o(t)). (3.10d)

Problem Statement

The objective is to minimize the uncertainties of the objects’ states and parame-
ters to allow probable estimates of the objects future state trajectories. The task
includes generating feasible collision-free trajectories for the mobile sensors. The
problem will be approached by formulating and efficiently solving a receding hori-
zon optimization problem that mathematically describes the objective. A sub-task
is to find a model for the mobile sensors’ influence on the objects’ covariance dy-
namics.

3.3 Measurement Models

For each m ∈M, define the two-dimensional Cartesian coordinates of sensor m as
%m(t) ∈ R2. Further, ∀o ∈ O we have the object positions qo(t) ∈ R2. We assume
that the positions of each object o will remain within a subset Do of the combined
configuration spaces of the sensors. We also assume that the planar position is part
of the dynamics of both the sensors and the objects, that is, for each m ∈ M and
o ∈ O, knowledge about xm and χo implies knowledge about %m and qo. Some
low-level logic is assumed to properly associate measurements to the respective
objects, for instance through object shape identification.

We assume that the objects are located in such a way that the mobile sensors
cannot necessarily measure all the objects simultaneously. Each mobile sensor has
a limited FOV. This capability has to be properly described using a so-called
sampling function (Tricaud et al., 2012). We propose to use sampling functions
that depend on the coordinates of the mobile sensors to reflect how the output
vectors are sampled by the sensors. In this context, the output vector is a vector
function that depends on the state vector of an object being monitored. A mobile
sensor may consist of a set of measuring devices that samples the states in different
ways. These devices may not have the same measuring capabilities, so in order to
keep the representation general, we assume that each element of the output vector
y(t) ∈ Rny is shaped with its own scalar sampling function.

The characteristics of the sampling functions are different depending on where
they are used. We take a realistic model as a starting point and define two differ-
ent types of sampling functions, which will be used later in the manuscript. More
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3.3. Measurement Models

precisely, we distinguish between non-smooth and smooth sampling functions. The
non-smooth sampling function is a more accurate description of a FOV-type of
measuring device, and is useful in the Observer. The non-smooth property is prac-
tical in the chosen implementation of the Path Planner, so a smooth approximation
also needs to be defined.

Let the family of scalar sampling functions be defined as W and let B be the
codomain of this family. For all i ∈ Iny let wi : R≥0 ×R2 ×R2 × S→ B and define
a diagonal matrix function W (t, %(t), q(t), ψ(t)) = bdiagi∈Iny (wi) with codomain
∈ Bny×ny . The shaped measurement vector is therefore defined as

yw(t) = W (t, %(t), q(t), ψ(t)) y(t). (3.11)

A shaped measurement vector captures the case where a measuring device has
compact support, for instance an image obtained from an optical device with a
limited field of view.

3.3.1 Non-Smooth Sampling Function

The purpose of this model is to simulate that the measuring device has a field of
view, in which it is able to obtain measurements. This includes for instance the cases
of roll and pitch stabilized downward-looking optical devices and spectrometers.

Let ∆xi > 0, i ∈ {1, 2} and define ∆x := col(∆x1
,∆x2

). We define the two-
dimensional FOV metric as a weighted infinity norm

‖x‖∆x
∞ := max

(
|x1|
∆x1

,
|x2|
∆x2

)
. (3.12)

Suppose the position %(t) of a sensor is the origin of a body-fixed Carte-
sian coordinate system {b}. Furthermore, suppose the orientation ψ(t) of {b}
is defined relative some stationary reference frame {i} following the right-hand
rule. Let BC−1 := {0, 1} be the codomain of a binary sampling function wC−1 :
R≥0×R2×R2×S→ BC−1 , such that the codomain is nonzero only if a coordinate
point q(t) ∈ R2 of an object is within the convex set formed by a FOV metric. The
two-dimensional rotation matrix is

R(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
. (3.13)

We can write the binary sampling function as

wC−1(t, %, q, ψ) :=

{
1,
∥∥RT(ψ)(q − %)

∥∥∆x

∞ < 1 (3.14a)
0, otherwise. (3.14b)

Figure 3.2 graphically illustrates the behavior of the binary sampling function. We
see that ∆x1

and ∆x2
quantify respectively the field of view in x and y direction

of the body-fixed reference frame.
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3. Monitoring Moving Objects Using Aerial Mobile Sensors

Figure 3.2 The non-smooth sampling function is one for q(t) inside the box and
zero otherwise. xi and yi denote the axes of the stationary reference
frame.

3.3.2 Smooth Sampling Function

In some cases, for instance in an optimization problem, a continuously defined
sampling function with positive codomain may be preferred as an approximation
to some non-smooth sampling function. Let BC∞ := {w ∈ R : 0 ≤ w ≤ 1}. Define
a smooth sampling function wC∞(t, %, q, ψ) : R≥0 × R2 × R2 × S→ BC∞ , which is
1 if % = q and less than 1 otherwise.

Example 3.1. LetKi∈In ∈ Π2, and q̃ = q−%. A possible smooth sampling function
is the linear combination of n two-dimensional Gaussian functions, for instance

wC∞(t, %, q, ψ) :=
∑
i∈In

λie
−q̃TR(ψ)KiR

T(ψ)q̃, (3.15)

where
∑
i∈In λi = 1, λi ≥ 0. The purpose of having a combination of exponential

functions is that the sampling surface can be shaped in such a way that it ap-
proximates a non-smooth sampling surface while still being smooth and having a
nonzero image. Figure 3.3 displays an example of such a sampling surface.

3.4 Path Planner

3.4.1 Adapted Covariance Dynamics

The estimation error covariance (3.10d) of the objects quantify the uncertainties
of the state vector and the uncertain parameter vector. We want to reduce these
uncertainties by measuring the objects using the mobile sensors. The covariance
response of the objects can be described by the corresponding equation in the
continuous-time extended Kalman filter (Simon, 2006). We present in the following
a version with both time-varying process noise and measurement matrices.

For each object o ∈ O, the system equations defined by (3.5a)-(3.5b) are lin-
earized along the predicted trajectories of the objects, with both measurement and
process noise set to zero. Let χ̂o(t) be the solution to the initial value problem (IVP)
(Iserles, 1996) (3.4), with χo(t0) = χ̂o,0 and po = p̂o,0, which are the best estimates
at time t0. Then, the predicted trajectory is χ̂o(t) and for each (o,m) ∈ O×M, we
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Figure 3.3 A smooth sampling function. The axes are col(x, y) = q̃ = (q−%), which
are the relative planar coordinates between an object and a sensor. The
green box is the non-smooth sampling function being approximated.

define the following partial derivatives along the augmented trajectory as

Ao(t) =
∂fo
∂zo

(t, χ̂o(t), 0, p̂o), (3.16a)

Lo(t) =
∂fo
∂wo

(t, χ̂o(t), 0, p̂o), (3.16b)

Co,m(t) =
∂ho,m
∂χo

(t, χ̂o(t), 0), (3.16c)

Mo,m(t) =
∂ho,m
∂vo,m

(t, χ̂o(t), 0). (3.16d)

To model the mobile sensors’ influence on the object covariance dynamics we make
use of the measurement models presented in Section 3.3. More specifically, we use
the smooth sampling function to define a diagonal matrix function for each sensor
on each object Wo,m : R≥0 × R2 × R2 × S → Bnyo,m×nyo,mC∞ , where the diagonal
elements are smooth sampling functions. We get ∀(o,m) ∈ O×M

Wo,m(t, %m, qo, ψm) = bdiagi∈Inyo,m
(wC∞,o,m,i). (3.17)

The motivation for using smooth sampling functions is that the chosen solver needs
smoothness and curvature to find a solution to the optimization problem. More
specifically, the solver needs an objective function and constraints that are at least
twice continuously differentiable. The local solver also needs curvature in the ob-
jective to obtain search directions. Hence, non-smooth sampling functions need to
be approximated using smooth sampling function. The proposed shaping can be
tuned in such a way that the codomain approximates the behavior of a field of
view with local support. A mobile sensor will significantly affect the covariance
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3. Monitoring Moving Objects Using Aerial Mobile Sensors

dynamics of the object if it is sufficiently close to it. The closer a mobile sensor is
to the object, the bigger stabilizing impact it will have on the object’s covariance.

We use the matrix sampling functions to shape the measurement operators
Co,m(t) along the predicted trajectories of the objects. So for each (o,m) ∈ O×M
we get

Cwo,m(t) = Wo,m(t, %m, q̂o, ψm)Co,m(t). (3.18)

When a mobile sensor is sufficiently far away from the object, the shaping of the
measurement should be so small that it in practice does not affect the covariance;
the mobile sensor is not able to measure the object. For the sensors to still be
attracted to distant objects, we propose to manipulate the process noise matrices
Qo(t). We use a non-vanishing sampling function to reduce the process noise when
a sensor is close to an object. In this way, the mobile sensor’s movement will always
affect the covariance of the objects, but only slightly. Let % := colm∈M(%m) and
ψ := colm∈M(ψm). Define for all objects o ∈ O

Qwo (t, %, q̂o, ψ) = Qo(t)

(
1− 1

nm

∑
m∈M

wC∞(%m, q̂o, ψm)

)
. (3.19)

Define the shorthand expressions

Q
w

o (t, %, q̂o, ψ) = Lo(t)Q
w
o (t, %, q̂o, ψ)LT

o (t), (3.20a)

Ro,m(t) = Mo,m(t)Ro,m(t)MT
o,m(t). (3.20b)

Now, we have the definitions in place to formulate the adapted covariance dynamics
intended for the optimization problem. For simplicity, we omit the arguments of
the expressions, and so for each o ∈ O we get the differential Riccati equation of
the extended Kalman filter:

Ṗo(t) = AoPo + PoA
T
o +Q

w

o −
∑
m∈M

PoC
w T
o,mR

−1

o,mC
w
o,mPo, (3.21a)

Po(t0) = Po,0. (3.21b)

3.4.2 Collision Avoidance

The mobile sensor trajectories must be constructed so that the sensors do not
collide with each other. Let for each m ∈ M the vector ηm(t) ∈ R3 define the
body-fixed origin of sensor m relative the stationary frame {i}. Each sensor is
enclosed by its own open ball B2(ηm; rm) ⊂ R3 that no other sensor should enter.
We formulate the collision avoidance as constraints between each pair of mobile
sensors. These constraints can be found by defining a complete graph (Ray, 2013).
Each vertex represents a mobile sensor and each edge (i, j) ∈ E is assigned an
orientation such that sensor i has a larger exclusion ball than sensor j, that is
ri ≥ rj . Let G = (M, E) be the described directed graph. Collision avoidance is
obtained if ∀t ∈ R≥0, and for each (i, j) ∈ E

ηj(t) 6∈ B2(ηi(t); ri). (3.22)
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3.4. Path Planner

A similar approach may be used to avoid other aerial objects or to stay away from
surface installations. Non-differentiable convex exclusion regions such as polytopes
are possible, see Patel et al. (2011).

3.4.3 Dynamic Optimization Problem

The object monitoring can be formulated as a Bolza-type optimal control prob-
lem (OCP) (Biegler, 2010). Let t0, tf ∈ R≥0 respectively denote the start and
the end of the optimization horizon. The decision variables are ∀m ∈ M the con-
trol inputs um(t). Define u(t) := colm∈M(um(t)). Let P (t) := bdiago∈O(Po(t)),
Γ(t) := bdiagm∈M(Γm(t)), and Ξ(t) := bdiagm∈M(Ξm(t)), where Γm(t) ∈ Πnum
and Ξm(t) ∈ Πnum

are time-varying design variables.
We define the Lagrange term as

ΦL(t, u) =

∫ tf

t0

tr(P (t) diag(vL(t))) +
du

dt

T

Γ(t)
du

dt
+ uTΞ(t)u dt, (3.23a)

where vL(t) := colo∈O(vLo (t)) is a vector function to be designed.
The Mayer term is

ΦM (tf ) = tr(P (tf ) diag(vM )), (3.23b)

where vM := colo∈O(vMo ) is a design vector.
The resulting optimization problem is to minimize (3.23) constrained by the

mobile sensor network, its collision avoidance, and the objects’ covariance dynam-
ics, that is, ∀t ∈ [t0, tf ], ∀(i, j) ∈ E,∀o ∈ O,∀m ∈M:

min
u

ΦL(t, u) + ΦM (tf ) (3.24a)

s. t. (3.3), (3.22), (3.21). (3.24b)

The solution to (3.24) provides ∀m ∈ M the optimal input vectors u?m(t) ∈ Um
in the interval t ∈ [t0, tf ]. Given the variables u?m, x̂m,0, and ϑ̂m we can ∀m ∈ M
solve the IVP formed by (3.3a)-(3.3b) over the optimization horizon. This results
in optimal mobile sensor state trajectories, denoted for each m ∈M as

x?m(t) ∈ Xm, t ∈ [t0, tf ]. (3.25)

Equation (3.25) serves as guidance input to path-maneuvering controllers for the
mobile sensors.

3.4.4 Receding Horizon

Suppose we want to monitor the objects in the time interval T := [t0, T ]. If T
is sufficiently large, the optimization problem (3.24) needs to be solved using a
receding horizon. There are several factors that motivate this design decision:
(i) The optimization problem may become computationally intractable due to

the problem size.
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3. Monitoring Moving Objects Using Aerial Mobile Sensors

Figure 3.4 The monitoring system consists of a three-step procedure of collecting,
optimizing, and utilizing.

(ii) There are modeling inaccuracies, so the predicted object trajectories may
drift away from the true trajectories.

(iii) The ambient conditions change.
We solve the optimization problem with receding horizon, so that the formu-

lation can take into consideration updated information to improve the monitoring
performance. We utilize a time interval of the optimized control input. Let kt ∈ N1

be the number of optimization intervals and Tk := [t0,k, tf,k] be the optimization
interval for the kth iteration. The desired monitoring time interval is covered by
the receding horizons: T ⊆

⋃
k∈Ikt

Tk. We assume that the end time te,k of the
utilization time interval is less than the optimization horizon, so for horizon k we
have t0,k < te,k < tf,k. The start of the next optimization horizon is therefore equal
to the utilization time of the preceding iteration: t0,k+1 ≡ te,k.

Consider the kth iteration of the monitoring process. We divide it into a three-
step procedure of collecting, optimizing, and utilizing. The first step, which is
performed by the Observer, involves collecting measurements of the objects’ and
sensors’ states. At time t0,k−1 the collected information so far is used to perform
state and parameter estimation. This involves predicting the future state of the
objects and sensors at time t0,k. The next step is to optimize by solving (3.24) to
obtain the desired paths (3.25). This is accomplished by the Path Planner. The
optimized paths should be readily available by the time t0,k, since they at this time
instant should be utilized by the remotely piloted aircraft system (RPAS), which
is the final step.

The three steps of the procedure execute concurrently with earlier and later time
steps: when the monitoring system is optimizing for iteration k, it is collecting for
iteration k + 1, and utilizing iteration k − 1. Figure 3.4 illustrates the three-step
procedure.

In the first few intervals we do as follows. Let the first interval be k = 1, so that
the monitoring starts at t0,0, cf. Figure 3.4. We provide a priori defined paths that
we make sure are feasible with respect to the admissible region as well as collision
avoidance. These offline defined paths are considered as substitute for the output
of the optimization phase from iteration k = 0. The first optimized path will be
utilized from t0,1, but is calculated on the basis of offline collected data t < t0,0.
In that regard, the monitoring system is fully operative from t0,1, but the effect of
the optimized paths in the actual collected data will not be reflected in the path
planning before t0,2.

Remark 3.2. In the above description we have indicated that the collection ends
at t0,k−1. This choice is only made to simplify the presentation of the procedure. In
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3.5. Observer

practice the time instant going from collection to optimization is only governed by
the maximal optimization time Tp. The collection should therefore end at t0,k−Tp.

During a continuous monitoring operation the set of objects may change over
time. Some objects may leave the region of interest, while new objects may appear.
Inclusion and removal of objects in the optimization are straightforward and can
be done between optimization intervals.

3.5 Observer

As mention previously, the purpose of the Observer is to process data to provide
state and parameter estimates. For iteration k, the collection stops at t0,k−1, but
the optimization problem (3.24) needs initial conditions at t0,k. Hence, the Observer
needs to perform a prediction from t0,k−1 to t0,k. To facilitate reasonable covariance
estimates for the objects at t0,k, state trajectories of all the objects and sensors are
required to solve the expected closed-loop covariance response of (3.21).

Criterion 3.1. Given the collected measurements for t ∈ [t0,k−2, t0,k−1], the Ob-
server component must provide the following estimates for iteration k, ∀m ∈M,∀o ∈
O

xm(t0,k−1) = x̂m(t0,k−1), ϑm = ϑ̂m(t0,k−1), (3.26a)
χo(t0,k−1) = χ̂o(t0,k−1), ρo = ρ̂o(t0,k−1), (3.26b)

Po(t0,k−1) = P̂o(t0,k−1). (3.26c)

This leaves flexibility in terms of the choice of observer(s) used in the moni-
toring system. For instance, both hybrid extended Kalman filters (Simon, 2006,
Section 13.2.2) and moving horizon estimators satisfy Criterion 3.1.

Criterion 3.2. The solution to the noise-free IVP in (3.4) ∀o ∈ O for t ∈
[t0,k−1, t0,k] =: Tkk−1, given the initial conditions from Criterion 3.1, is χ̂o,k(t).
The expected closed-loop trajectory for each mobile sensor m ∈ M given the above
initial conditions is denoted x̂?m,k(t). Then, solving (3.21) in t ∈ Tkk−1 for each
o ∈ O and all m ∈M given χ̂o,k(t) and x̂?m,k(t), results in the predicted covariance
response P̂o,k(t), which is valid for t ∈ Tkk−1.

Criterion 3.2 provides the Path Planner with the required initial conditions
∀m ∈M,∀o ∈ O:

xm(t0,k) = x̂?m,k(t0,k), ϑm = ϑ̂m(t0,k−1), (3.27a)

χo(t0,k) = χ̂o,k(t0,k), ρo = ρ̂o(t0,k−1), (3.27b)

Po(t0,k) = P̂o,k(t0,k), (3.27c)

where we notice that the parameter estimates are assumed to be constant ∀t ∈
Tkk−1.

Remark 3.3. If we consider sensor m, it may not have the ideal initial condition
xm(t0,k−1) = x?m(t0,k−1). For instance, the orientation may be slightly different, so
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using the optimized control input u?m(t) to predict the closed-loop behavior is not
wise. This choice would produce a completely different path than we found from
the optimization. Thus, we need a reasonable expected closed-loop response for the
mobile sensor when we are given the initial condition x̂m(t0,k−1) and the desired
closed-loop behavior x?m(t) for all t ∈ Tk−1. This can be achieved by applying a
path-maneuvering controller to the dynamics of the sensor to solve the problem
∀t ∈ Tkk−1:

min
um

|x?m(t)− xm(t)| (3.28a)

s. t. ẋm(t) = fm(t, xm(t), um(t), ϑm), (3.28b)

xm(t0,k−1) = x̂m(t0,k−1), ϑm = ϑ̂m. (3.28c)

See for instance Skjetne et al. (2004).

3.6 Implementation

To efficiently solve the OCP (3.24), we choose a direct transcription approach
where both the state and control variables are discretized into a finite-dimensional
nonlinear programming (NLP) problem. The simultaneous collocation of finite ele-
ments is used to obtain Lagrange interpolation polynomial descriptions of the state
variables. The control input is piecewise constant, whereas the states are described
using K-point Radau collocation, for details consult Biegler (2010).

The resulting large-scale NLP formulation benefits from being sparse and having
structure. These properties can be exploited using an efficient NLP solver. We
formulate the problem in the symbolic framework CasADi (Andersson et al., 2012),
which provides the necessary derivative information required by both the extended
Kalman filter and the NLP solver. The CasADi library contains an interface for
the primal-dual interior-point NLP solver IPOPT (Wächter et al., 2006). IPOPT
is compiled with OpenBLAS (Xianyi et al., 2012) and the linear algebra sparse
direct solvers MA27 in Section 3.7.1 and MA57 in Section 3.7.2 (HSL, 2011).

When solving initial value problems, for instance when finding predicted tra-
jectories of the objects or expected closed-loop behavior of the mobile sensors, we
use the ODE solver CVODES of the SUNDIALS suite (Hindmarsh et al., 2005).

Initial desired paths are provided a priori because paths need to be available
when the first optimization is running. We provide control inputs that ensure col-
lision avoidance and feasible execution within the constrained region. The perfor-
mance of the discretized optimization problem benefits from good initial conditions.
We initialize the object state and covariance variables by solving the matching IVPs
with expected closed-loop behaviors of the sensors given their respective predicted
initial conditions. Since a new optimization horizon goes beyond the previous, we
use the previous iterations final control input as extrapolation.
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Figure 3.5 Maritime Robotics’ Penguin B from UAV Factory that was used during
the experiments.

3.7 Results

3.7.1 Case 1 (Experiment): Problem 3.1 Revisited

In the following, we take a second look at Problem 3.1 with no = 3 and employ
the path-planning framework outlined in the previous sections in an experiment to
serve as proof of concept. The models for the mobile sensor and the objects are as
described in Section 3.7.1.

Setup

A set of simulated objects were monitored by an unmanned aerial vehicle (UAV)
with waypoint-tracking capability. More specifically, a Penguin UAV B from UAV
Factory (UAV Factory, 2013) was used as the mobile sensor platform, see Figure 3.5.
The fixed-wing aircraft is equipped with a Piccolo autopilot and is operated through
the flight management software Piccolo Command Center from Cloud Cap Tech-
nology (Cloud Cap Technology, 2013). The unmanned aircraft system was hosted
by Maritime Robotics AS (Maritime Robotics, 2013) and the experiments were
performed at Eggemoen Aviation and Technology Park, Ringerike, Norway.

The path-planning algorithm was run on a laptop computer and received air-
craft telemetry data at 1Hz (aircraft position and orientation) from the Piccolo
Command Center trough a TCP/IP connection. The continuous-time north and
east trajectories of the planned path were sampled at 1/8Hz. These coordinates,
together with a constant altitude of 600m, were transformed into latitude and lon-
gitude decimal degrees (WGS84) and written to compatible waypoint files. These
files were manually uploaded to the aircraft autopilot by a flight operator in a
timely manner.

The north and east operational region is a closed convex polygon described by
the linear inequality Ay ≤ b. The mobile sensor’s initial condition was x̂(t0) =
col(1360.36, 819.14, 4.14), with t0 = 0.84 s. The bank angle was constrained to be
within [uθ,L, uθ,H ] = [−π9 ,

π
9 ]. The initial condition for the bank was uθ(t) = 0.1.

The standard gravity g was set to 9.81ms−2 and the airspeed Va was 28ms−1. The
field of view of the mobile sensor is defined as in (3.12) with ∆x1

= ∆x2
= 300m.

We use the same smooth sampling functions for all the measurement matrices
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Figure 3.6 The optimized control input that are used together with the low-fidelity
vehicle model to construct the desired paths for the mobile sensor. The
input remains within the upper and lower constraint, which are indicated
by dashed lines.

Wo∈I3,1 = wC∞(·)I2, where wC∞(·) is defined as in Example 3.1 with n = 1, K1 =
3.3× 10−5I2.

All the objects were described with constant velocity dynamics with initial posi-
tions χ̂1(t0) = col(1360, 700), χ̂2(t0) = col(2946,−689), and χ̂3(t0) = col(2400, 440),
where t0 = 1.00 s. The velocity parameters were ρ1 = col(−1.15,−0.96), ρ2 =
col(−0.82, 0.57), and σ3 = col(0, 0). Object 1 and 2 were considered to have un-
certain velocities, so augmented extended Kalman filters were used in the observer
with initial parameter estimates ρ̂1(t0) = col(−2,−0.2) and ρ̂2(−1.2, 0). The es-
timation error covariance matrices in the filters were P1(t0) = P2(t0) = I4 and
P3 = I2. The spectral density used by the Kalman filters were Qχo∈I3 = 0.1I2 and
Qρo∈I2 = 10−3I2. The positions of all the objects were measured with Co∈I3 = I2
with measurement spectral density Ro∈I3 = 10I2 and measurement frequency of
1Hz (if inside the FOV). It is worth pointing out that the path planner itself
modeled the covariance dynamics of the objects as state estimation only, that is,
Po∈I3 = I2 and Qo∈I3 = 0.1I2. The sampling function in (3.19) is for each o ∈ I3
defined as the bell curve of Example 3.1 with n = 1 and K1 = 5.2× 10−7I2.

The optimization horizon was 120 s and the sampling interval 60 s. A 2-point
Radau collocation was used for the state variables with a total of 40 finite ele-
ments at each optimization horizon. The control input was piecewise constant with
20 finite elements over the horizon. The resulting optimization problem had 2540
variables. Variables with unit meter were scaled by 1/100 in the optimization prob-
lem and the following variables were used in the scaled OCP: vLo∈I3(t) = 25 col(1, 1),
Γ1(t) = 5, Ξ1(t) = 0, and vMo∈I3 = 40 col(1, 1). The experiment was run for a total
of 9 sampling intervals.

Experimental Results

The solution time of each sampling interval was on average 19.55 s with a standard
deviation of 11.75 s. The maximal solve time was 30.09 s, so all the optimization
problems found optimal solutions and sampling intervals could be uploaded by
the operator within the time limit of 60 s. The optimized control input used to
construct the executed desired paths are displayed in Figure 3.6. The commanded
input always remains within the indicated bounds, so the paths are feasible with
respect to the low-fidelity vehicle model.
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Figure 3.7 The mobile sensor performs remote sensing of the three objects in
question. The dashed line represents optimized/predicted trajectories,
whereas solid lines are filtered values. Every aircraft marker represents
the instant when a new sampling interval is employed. An object ob-
servation is represented with a line marker. The shaded polygon is the
admissible region.

In Figure 3.7, the position trajectories of the sensor and all the objects are dis-
played. The dashed lines indicate optimized or predicted paths, and the measured
paths are solid. Each measurement observation is indicated by a line marker. A
new sampling interval is indicated by an aircraft marker. We see that with the ex-
ception of the first sampling interval, the mobile sensor followed the planned path
fairly well. The reason why the aircraft did not follow the first sampling interval
was because there was a discrepancy between the a priori uploaded nominal path,
which the aircraft actually followed, and the calculated corresponding path for this
iteration. The first iteration was not found using an optimization, but rather by
solving the low-fidelity model with a constant control input and the mobile sensor’s
initial condition. Since this model did not take into account wind parameters, the
slip-angle of the aircraft at the initial state resulted in the mentioned discrepancy.
Otherwise, we see that the aircraft remained within the shaded operation region,
but had some tendency to circulate close to Object 2 and 3.

As the aircraft moved between the different objects, the uncertainty of an ob-
ject’s position were reduced at each matching object observation. Figure 3.8 illus-
trates the traces of the object’s covariance matrices, which represent the position
uncertainties. Since the velocity parameters of Object 1 and 2 were considered un-
certain in the Observer component, the position variances increased more rapidly
than for Object 3. At each observation of Object 2, we can see from Figure 3.9 that
the estimated velocity parameters got closer and closer to the actual velocities.

A subset of the planned paths are illustrated in Figure 3.10. We can observe
that the paths are connected at the time instant of switching of sampling intervals
(indicated by a perpendicular solid line). The switching occured every 60 s, which is
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Figure 3.8 The trace of each object’s covariance matrix. An object observation is
indicated by a significant reduction in the trace magnitude.
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Figure 3.9 The north and east velocity parameters for Object 2. The parameter
estimates remain constant between observations.

half of the optimization horizon. Each aircraft marker in Figure 3.10 has a period of
15 s. If we count aircraft markers within Iteration 3, we see that the aircraft spent
more than 60 s following this sampling interval. The low-fidelity vehicle model did
not include wind velocity. The aircraft was set to follow the waypoints sampled
from the optimized path at a constant airspeed. As a consequence, the nonzero
wind velocity influenced how fast the aircraft moved along the desired path. This
discrepancy between model and reality forced early or delayed switching of sampling
intervals by the flight operator.
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Figure 3.10 Three iterations of planned paths are displayed. A new sampling inter-
val is indicated by a path-perpendicular bold line, which occurs once
every 60 s. Each optimization horizon is 120 s. The mobile sensor’s ac-
tual position is indicated by an aircraft marker every 15 s.

3.7.2 Case 2 (Simulation) Sensor Network

Setup

We will investigate a bigger case with two mobile sensors and six objects to be
monitored. In this case we employ collision avoidance where the exclusion regions
of the sensors are balls with radius of 1000m. The sensor dynamics of each sensor
is identical to the previous case with the same parameters unless stated otherwise.
The initial conditions for the sensors’ states were x1(0) = col(1000,−1000, 0) and
x2(0) = col(1000, 1000, 0).

The objects were considered to have known parameters and had either constant
velocity dynamics as described in (3.1) or the following circular dynamics:

χ̇N = V cos(2πft+ φ) + wN (t), (3.29a)
χ̇E = V sin(2πft+ φ) + wE(t), (3.29b)

where χN and χE is the north and east coordinates, V (m s−1), f (Hz), and φ
(rad) are known parameters, so σ := col(V, f, φ), and col(wN (t), wE(t)) =: wχ(t) ∼
(0, Q(t)) is process noise. Common for all the objects are the following parameters:
Po∈I6 = I2, Qo∈I6(t) = 0.1I2, Co∈I6(t) = I2, Ro∈I6(t) = 10I2, and the sampling
function in (3.19) is the bell curve of Example 3.1 with n = 2, λ1 = 0.4, K1 =
1.4× 10−8I2 and K2 = 1.2× 10−7I2. Otherwise, the initial conditions, parameters,
and dynamics are indicated in Table 3.1.

We used the same optimization horizon, sampling interval and collocation as in
the previous case. This time the optimization problem had 5080 variables. Variables
with unit meter were again scaled by 1/100 in the optimization problem and the
following variables were used in the scaled OCP: vLo∈I6(t) = 25 col(1, 1), Γm∈I2(t) =

5, Ξm∈I2(t) = 0.5, and vMo∈I6 = 40 col(1, 1). The experiment was run for a total of
17 sampling intervals.
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Table 3.1 Object data for the multi-sensor numerical simulation.

o Initial state [m] Parameters (σo) Dynamics

1 [5200,−3300]T [−2.82, 1.03]T (3.1)
2 [5000, 2400]T [−2,−1]T (3.1)
3 [3000,−1750]T [3, 1800, π/2]T (3.29)
4 [3000, 1000]T [5, 1500, 25π/36]T (3.29)
5 [5500,−1500]T [−2.6, 1.5]T (3.1)
6 [5500, 1500]T [−1, 0]T (3.1)
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Figure 3.11 The optimized control inputs of the two vehicles that are used together
with the low-fidelity vehicle models to construct the desired paths for
the mobile sensors. The inputs are always within the bounded intervals,
whose boundaries are indicated by dashed lines.

Numerical Results

The solution time of each sampling interval was on average 53.48 s with a standard
deviation of 28.23 s. Three of the 17 optimization problems spent more than 60 s
finding an optimal solution. To mitigate the occasional aircraft circling above an
object that was experienced in the previous case, a term penalizing nonzero bank
angle was introduced. We see from Figure 3.11 that this led to a more conservative
use of the bank angle compared to Figure 3.6. Figure 3.12 illustrates that the
Euclidean distance between the mobile sensors always stayed at least 1000m apart
as required by the collision avoidance constraint.

Figure 3.13 illustrates the trajectories of the mobile sensors and the moving
objects. As in the previous case, an observation is indicated by a line marker, and
a new sampling interval starts at every aircraft marker, that is, each aircraft marker
is 60 s apart. The operational region is the shaded trapezoid. If we inspect the trace
of the objects’ covariances in Figure 3.14, we see that all the objects are visited
regularly to avoid huge estimation error covariances, which represent uncertainty.
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Figure 3.12 The Euclidean distance between the two mobile sensors. The minimum
distance constraint is indicated by the dashed line at 1000m.
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Figure 3.13 The mobile sensors perform remote sensing of six objects in question.
Every aircraft marker represents the instant when a new sampling in-
terval is employed. An object observation is represented with a line
marker. The shaded polygon is the admissible region.

3.8 Discussion

The solutions to the optimization problems do not guarantee recursive feasibility.
For this reason it is easy to construct cases where the optimization problem will fail.
This challenge becomes particularly prominent if the admissible region has tight
corners such as wedges or if there are many mobile sensors trying to avoid collision
in a constricted region. One way to reduce the possibility of infeasibility caused by
these challenges is to introduce soft constraints. This is a slippery slope because this
may conceive unwelcome behavior such as vehicle collisions and sensors temporarily
leaving the admissible region. A more comprehensive solution would be to define
terminal constraints that guarantee that an infinite horizon without constraint
violations can be constructed. Finding appropriate terminal constraints is not a
trivial task and may also adversely affect the monitoring performance and solve
times. A third option is to develop infeasibility handling that temporarily suspend
the monitoring operation. In our application, the path planning is constricted to
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Figure 3.14 The trace of each object’s covariance matrix in the multi-sensor simu-
lation. An object observation is indicated by a significant reduction in
the trace magnitude.

planar monitoring, but if the altitude is exploited as a degree of freedom, the
problem becomes even less restricted in the sense that primitive emergency behavior
can be executed to ensure collision avoidance in the event of e.g. feasibility issues. In
practice, infeasibility due to spatial configuration limitations may be less probable
when constructing an operational region with sufficient leeway for a small number
of mobile sensors.

When the number of mobile sensors or objects increases, the optimization prob-
lem grows accordingly. Due to the non-convexity of the optimization problem, it is
difficult to beforehand determine the maximal solve time. Occasionally, finding a
solution to the optimization problem may not meet the temporal deadline for the
next sampling interval. To ensure operational safety, a nominal aircraft behavior
that can be reached from a set of mobile sensor configurations may be activated if
the deadline is not met. This can for instance be that each aircraft enters distinct
regions and remains there until a new sampling interval is ready. This nominal
aircraft behavior is related to the above discussed infeasibility handling.

This framework is a centralized solution that has the challenge that it does not
scale particularly well with the number of sensors and objects. Therefore, a possible
extension in form of a decentralized system is very attractive. Unfortunately, the
current problem formulation is inherently centralized, so a decentralized solution
is not straightforward. We imagine that an extension still is possible trough region
separation and resource allocation. In particular, one may explore the possibility
of making a more sophisticated Supervision component. This component will be
responsible for defining several regions, in which each region has a few mobile sen-
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sors that perform the monitoring of a limited number of objects. The monitoring
system, which is described in this manuscript, executes decentralized in each re-
gion. Sensors and objects may be reallocated during the course of the operation
depending on the objects movements between regions and each region’s reported
performance index or grade of urgency, that is number of objects and size of the
region. This approach will still have a centralized management behavior that pulls
the strings at a higher logical level than each monitoring team.

The proposed path planning framework includes the assumption that at least
rough estimates of all the objects’ states and parameters are known beforehand, for
instance from satellites. If an object’s parameters or initial conditions are far off, the
sensor may fail to observe the object altogether. The current framework does not
handle such events, but this may be approached by propagating the event to other
system components. For instance, one mobile sensor may be allocated to perform
a detection strategy (Tisdale et al., 2009), while the remaining mobile sensors
continue the object monitoring. One can also imagine extensions that perform
both object monitoring and detection simultaneously. If we perform more frequent
updates of the sampling intervals, loss of object tracking may be less probable,
because the objects’ predicted trajectories are updated more frequently by the
acquired information.

During the experiment, each sampling interval’s corresponding waypoint file was
uploaded manually by the flight operator. This procedure involved human interac-
tion and was error-prone because the flight management software is not designed
for rapid changing of waypoint files. As a consequence, conservative sampling inter-
vals had to be chosen to ensure proper switching of the intervals. The low-fidelity
model was inaccurate in terms of not including wind speeds. This led to tempo-
ral drifts in the execution of the planned paths, since the autopilot followed the
waypoints with constant desired airspeed. If we either had estimated wind speeds
and included them in the low-fidelity vehicle model and/or used an autopilot with
variable airspeed, this phenomenon could perhaps have been less prominent.

3.9 Conclusion

The path planning algorithm presented in this manuscript provides collision-free
vehicle trajectories that seek to minimize the objects’ uncertainties. These uncer-
tainties are quantified by the state and parameter estimation error variances of
the objects. This approach therefore tries to aid efficient state and parameter esti-
mation of the objects while simultaneously providing feasible vehicle trajectories.
The formulated optimal control problem allows flexibility in the description of both
vehicle and object dynamics. This includes nonholonomic vehicle dynamics and ob-
ject dynamics with constant velocity, but could also capture more advanced model
descriptions.

Field experiments demonstrate the framework. It would be interesting to see a
more involved experiment where real objects were tracked combined with real-time
image processing. This should include an aircraft path maneuvering controller that
can follow the planned trajectories more closely without any human-in-the-loop
during the execution of the monitoring.
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Chapter 4

Monitoring an Advection-Diffusion
Process Using Aerial Mobile Sensors

The topic of this chapter is to describe a path planning framework for regional
surveillance of a planar advection-diffusion process. The goal of the path planning
is to produce feasible and collision-free trajectories for a set of aerial mobile sen-
sors that minimize some uncertainty measure of the process under observation.
The problem is formulated as a dynamic optimization problem and discretized into
a large-scale nonlinear programming (NLP) problem using the Petrov-Galerkin fi-
nite element method in space and simultaneous collocation in time. Receding hori-
zon optimization problems are solved in simulations with an advection-dominated
ice concentration field. The simulations illustrate the usefulness of the proposed
method. This work is submitted to Unmanned Systems, October 2014.

4.1 Introduction

The use of unmanned vehicles in various applications has received increasingly
more attention the last decade. Continued technological progress makes both

software and hardware solutions more available and affordable to civilian appli-
cations. Engineering applications that use unmanned vehicles often also consist of
complex components. This complexity has given rise to a new field of study termed
cyber-physical systems (CPSs) (CPS Steering Group, 2008; Tricaud et al., 2012).
In CPS Steering Group (2008), a CPS was loosely defined as “the tight conjoining
of and coordination between computational and physical resources”. In our con-
text this involves a remotely piloted aircraft system (RPAS) in conjunction with a
distributed parameter system (DPS) (Tricaud et al., 2012, Section 1.1.2), which is
described with an advection-diffusion partial differential equation (PDE). A par-
ticular branch of applications in CPS is environmental monitoring. This includes
for instance weather forecasting (Choi et al., 2010), oil-spill estimation (You et al.,
2011), soil moisture estimation (Tricaud et al., 2012, Ch. 8), (Kaheil et al., 2008),
air pollution (Georges, 2013), and polar remote monitoring (Haugen et al., 2012,
2013a,b, 2014b, 2011; Lubin et al., 2006).

Before the increased use of unmanned vehicles, many of the mentioned problems
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utilized satellites, manned vehicles, or even in situ measurements. For safety-critical
or highly dynamical systems, the traditional approach may not offer sufficiently fine
spatiotemporal resolution. Moreover, the use of unmanned observation systems
may reduce cost and promote occupational safety and health compared to manned
operations.

We are motivated by ice management operations, were, among other things, the
ice conditions surrounding a marine operation are of special interest. The marine
operation is safety-critical and accurate knowledge about the surrounding environ-
ment is important to ensure responsible and efficient execution. In Haugen et al.
(2011), the authors argued that unmanned aerial vehicles (UAVs) may serve as a
sensor platform as part of a CPS termed ice observer system. One important aspect
of this system is the monitoring of drifting sea ice concentration (Gürtner et al.,
2012), that is, the fraction area of sea ice versus open water. Suppose we want
to monitor the ice concentration, which can be modeled as an advection-diffusion
process, in a region close to a marine operation. We are interested in estimating the
ice concentration, which moves with the sea current. At our disposal we have one or
several aerial mobile sensor agents that are capable of remotely sensing the planar
advection-diffusion process through appropriate limited-range measuring devices.
The main task that we want to solve is how to efficiently estimate the states and
parameters of the DPS within the prescribed region. The monitoring task should
be autonomous and ensure collision-free and feasible vehicle trajectories within a
bounded admissible region of operation.

The above objective is related to the coverage control problem, which is the
problem of covering a given domain using sensor networks (Wang et al., 2012).
The authors of Wang et al. (ibid.) divide the literature on coverage control prob-
lem into three categories: optimal localization of immobile sensing agents (Omatu
et al., 1978; Vaidya et al., 2012), redistribution of mobile sensors to an optimal final
configuration (Cortés et al., 2005; Georges, 2013), and dynamic cooperative cover-
age control (Burns et al., 2009; Y. Chen et al., 2004; Choi et al., 2010; Demetriou,
2010; Demetriou et al., 2009; Hussein et al., 2007; Song et al., 2005; Tricaud et al.,
2012). The present work falls under the last mentioned category because of sev-
eral reasons. First, the mobile agents have limited-range sensors, only capable of
covering a fraction of the whole domain of interest at any given time. Optimally
placing or redistributing the sensors may not ensure sufficient information gather-
ing. Second, the dynamics of fixed-wing aerial sensors have positive airspeed, which
exclude them from having a constant spatial configuration. Lastly, the desired in-
formation to be gathered evolves in both time and space, so the dynamic behavior
of the DPS warrants a tight interaction between the dynamic environment and the
path planning.

When executing a coverage control problem, several different monitoring tasks
have been considered in the past, including, but not limited to: state estimation
(Burns et al., 2009; Y. Chen et al., 2004; Choi et al., 2010; Demetriou, 2010;
Demetriou et al., 2009; Song et al., 2005), parameter identification (Y. Chen et al.,
2004; Song et al., 2005; Tricaud et al., 2012), and process actuation (Y. Chen et al.,
2004; Demetriou, 2010; Tricaud et al., 2009). In most of these publications a cen-
tralized and cooperative sensor network strategy is considered, with the exception
of (Demetriou, 2010), where they consider both a decentralized and a centralized
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coverage control strategy.
Various fundamental approaches and performance measures are used to achieve

the different monitoring tasks. For the parameter identification path planning prob-
lem, one often wants to achieve a least-squares fit to data of some output operator
(Tricaud et al., 2012). The performance index to determine optimal sensor trajec-
tories is often a function of the Fisher information matrix (FIM) (ibid.), which is
based on the parameters to be estimated. The problem is formulated as an opti-
mal control problem (OCP) that provides the optimal mobile sensor trajectories
subject to the DPS, mobile sensor dynamics, and other relevant constraints (Song
et al., 2005; Tricaud et al., 2009; Tricaud et al., 2012). The OCPs seek to mini-
mize a so-called D-optimality reward function (Tricaud et al., 2012, p. 26), which
indicates the volume of the parameters’ estimation error uncertainty ellipsoid.

The optimal control problem formulation has also been used for state estimation
(Burns et al., 2009; Choi et al., 2010). Both a weighted trace (A-optimality) (Burns
et al., 2009) and a D-optimality (Choi et al., 2010) performance index (of possibly
a subset (ibid.)) of the state estimation variables have been used. In Choi et al.
(ibid.), the goal of the path planning was to find optimal paths in a time interval
to maximize information reward of verification variables some time in the future.
Both Burns et al. (2009) and Choi et al. (2010) have a Riccati matrix differential
equation based on the DPS state variables as a constraint in the OCP. For this
reason, the corresponding nonlinear programming (NLP) problem quickly becomes
huge and computational tractability is a challenge.

Computational efficient alternatives to the distributed state estimation task was
pursued in Demetriou (2010); Demetriou et al. (2009); Haugen et al. (2012). They
used gradient-based guidance algorithms for mass-spring-damper (Haugen et al.,
2012) or massless (Demetriou, 2010; Demetriou et al., 2009) points to minimize
either local or idealized global state estimation error of advection-diffusion PDEs.
These contributions do not include collision avoidance of the mobile sensor agents or
communication constraints, but this was discussed as a straightforward extension.

Herein, we exploit the flexibility of the OCP formulation to easily include vehi-
cle maneuverability constraints and collision avoidance in finding optimal feasible
vehicle trajectories for the state estimation task. We are motivated by Burns et al.
(2009); Choi et al. (2010); Haugen et al. (2013a, 2014b), which make use of the
Riccati differential equation for the estimation error covariance. However, to alle-
viate some of the computational burden that the Riccati equation represents, we
propose a simplified description of the uncertainty time evolution in the OCP.

4.1.1 Notation

An n-dimensional column vector of ones is denoted 1n×1. In is the n × n identity
matrix. A countable finite index set of positive natural numbers is defined as In :=
{i ∈ N+ : i ≤ n} with counting measure |In| = n. For the bounded domain T ⊂ Rn
and x ∈ T , we define |T | :=

∫
T
dx. A block diagonal matrix of other matrices

Xi∈Is ∈ Rmi×ni is defined as bdiagi∈Is(Xi) :=
⊕

i∈Is Xi, where ⊕ is the direct
sum. The vertically stacked matrix of other matrices Xi∈Is ∈ Rmi×n is denoted
coli∈Is(Xi) := bdiagi∈Is(Xi) · (1s×1 ⊗ In), where ⊗ is the Kronecker product. The
vertical stacking of the columns of a matrix X is defined as vec(X). The diagonal
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of a column vector x ∈ Rn is the block diagonal of its scalar elements xi, diag(x) :=
bdiagi∈In(xi). The column vector x ∈ Rn consisting of the diagonal elements of a
matrix X ∈ Rn×n is written x := diag(X). The space of non-zero n-dimensional
real vectors is denoted Rn6=0. Define the set of positive definite real matrices as
Πn := {A ∈ Rn×n : ∀x ∈ Rn6=0, x

TAx > 0}. The orientation space is defined by
S := [−π, π). Define the Lp-normed n-dimensional metric space Mp = (Rn, ‖ · ‖p).
The corresponding open ball with origin η ∈ Rn is Bp(η; r) := {x ∈Mp : ‖ · ‖p < r}.
We denote the support of a function f : X → R as the closure of the non-zero
codomain of f , denoted supp(f) := cl({x ∈ X : f(x) 6= 0}).

The first moment of a random vector x is denoted by the expectation oper-
ator E(x). The covariance matrix of two random vectors x and y is defined as
cov(x, y) := E[(x− E(x))(y − E(y))T]. Non-negative and positive real numbers are
defined, respectively, by the sets R≥0 and R>0. A zero-mean continuous-time white
noise process w(t) of dimension n has the properties E(w) = 0 and cov(w(t), w(τ)) =
Q(t)δ(t− τ), where Q : R≥0 → Πn is the deterministic spectral density and δ(t) is
the dirac delta function. The above mentioned properties of w(t) are written com-
pactly as w(t) ∼ (0, Q(t)).

Let Ω ⊂ R2. Lebesque spaces are denoted Lp(Ω). Sobolev spaces are denoted
W k,p(Ω), where Hk(Ω) = W k,2(Ω). The inner product in the space L2(Ω) is de-
noted by 〈·, ·〉. A closed interval on the real line (particularly in the context of
time) is defined as Tba := {x ∈ R : a < b, a ≤ x ≤ b}. Bochner spaces are denoted
Lp(Tba;X).

4.2 Problem Overview

4.2.1 Illustrating Example

Suppose we want to monitor the sea ice concentration in a region. We define the
sea ice concentration as the area fraction of ice versus water in a unit area. We
are particularly interested in estimating the ice that will drift through or close to
a verification location sv some time in the future. At our disposal we have a set
of aerial mobile sensors that are capable of measuring the ice concentration, for
instance by using optical devices. Suppose the mobile sensors perform monitoring in
an annular sector, see Figure 4.1. The objective is to create collision-free trajectories
for the mobile sensors such that the ice concentration can be estimated.

4.2.2 System Components

We approach the objective by first identifying the three main components in the
surveillance system:
RPAS: Remotely piloted aircraft system that acts as a mobile sensor network. It

provides measurements of the distributed process.
Estimator: Processes raw measurements and other inputs to return the most

likely model states and parameters of the mobile sensors and the process.
Path Planner: Generates guidance inputs of when and where we want the mobile

sensors to obtain measurements of the process.

58



4.2. Problem Overview

Figure 4.1 Mobile sensors monitoring ice concentration in an annular sector. v is
the uniform ice velocity, sv is a verification location, and θ is the sector
opening angle.

Figure 4.2 Components of the system under consideration.

The Supervision component performs management decisions such as how many
mobile sensors to deploy, which region to cover, and other relevant judgment calls.
An overview of the system is found in Figure 4.2. In this manuscript we will mainly
focus on the Path Planner and parts of the Estimator component.

The Estimator component provides relevant estimates for both the process un-
der observation, as well as the mobile sensor network’s variables. In this manuscript
we will only consider the former, namely how to estimate the states and parame-
ters of the environmental process. If the state estimates of the mobile sensors are
needed (e.g. the planar positions), we assume that they are known with sufficient
accuracy. The estimator for the process contains an approximated model of the
phenomenon of interest. This model and its spatial discretization are described in
general in Section 4.5 and further motivated together with the estimator of choice
in Section 4.6.

The Path Planner consists of a dynamic optimization problem. We formulate
the optimization problem by including appropriate descriptions of the involved in-
gredients. In particular, we give the mathematical descriptions of the mobile sensor
dynamics and its collision avoidance in Section 4.3. We choose an information-
driven approach where the objective is to minimize an uncertainty measure of the
process of interest. Motivated by Haugen et al. (2014b), we want to use the trace of
the state estimation error covariance of the process states as our uncertainty mea-
sure. To facilitate computational tractability, we consider a simplified description
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of the uncertainty dynamics in the optimization problem. More specifically, we use
the model described in Section 4.5 as a starting point for the simplified uncertainty
dynamics. In Section 4.7 we elaborate on this simplification and the necessary ex-
tensions that describe the mobile sensors’ influence on the reduced uncertainty
dynamics. The resulting optimization problem and additional considerations are
discussed in Section 4.8.

4.3 Mobile Sensor Dynamics

For the path-planning purposes we employ low-complexity sensor dynamics. The
constant-altitude kinematic model including wind velocity may be considered as
a reasonable description (Beard et al., 2012). It should be pointed out that more
complex vehicle descriptions are indeed possible with the framework proposed in
this paper.

Let xN (t) and xE(t) denote the north and east position of the kinematic vehicle
model, and ψ(t) ∈ S the right-hand screw z-axis rotation of a body-fixed reference
frame {b} relative to {ned}. Further, let the bank angle uθ(t) be the control input.
The dynamics is defined as

ẋN (t) = Va cos(ψ) + wN , (4.1a)
ẋE(t) = Va sin(ψ) + wE , (4.1b)

ψ̇(t) =
g

Va
tan(uθ(t)), (4.1c)

where Va is the positive airspeed, g is the standard gravity, and ϑ := col(wN , wE) is
the wind velocity. The trajectories we obtain by solving the above equations should
be feasible with respect to the maneuverability constraints of the vehicle if the bank
angle is sufficiently restricted. We also restrict the admissible location of the vehicle
to remain within a closed convex polygon. For all t ∈ R≥0 and [uθ,L, uθ,H ] =: U ⊂ S
let uθ ∈ U and define

K := {y ∈ R2 : Ay ≤ b}, (4.2)

where A and b have appropriate dimensions. Let nm be the number of mobile
sensors and define the index set M := Inm . As a result, the state vector for sensor
m ∈ M is defined as xm(t) := col(xm,N , xm,E , ψm) with input um(t) := um,θ(t).
The parameters Va and ϑ for the kinematic vehicle model may differ for different
mobile sensors as well as the sets Um and Km. The resulting mobile sensor network
is ∀m ∈M and ∀t ∈ R≥0

ẋm(t) = fm(xm(t), um(t), ϑm), (4.3a)
xm(t0) = xm,0, (4.3b)
xm(t) ∈ Km × S, (4.3c)
um(t) ∈ Um, (4.3d)

where fm(xm, um, ϑm) is shorthand for the right-hand expressions of the kinematic
vehicle dynamics (4.1a)-(4.1c).
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4.3.1 Collision Avoidance

Collision avoidance is a requirement for enabling multiple mobile sensors to cooper-
ate in the monitoring task. Each sensor has its own exclusion zone. Let ∀m ∈M the
vector ηm(t) ∈ R3 define the body-fixed origin of sensor m relative the stationary
reference frame {i}. Each sensor is enclosed by its own open ball B2(ηm; rm) ⊂ R3

that no other sensor should enter. We formulate the collision avoidance as con-
straints between each pair of mobile sensors. These constraints can be found by
defining a complete graph. The vertices represent mobile sensors and each edge
(i, j) is assigned an orientation such that sensor i has a larger exclusion ball than
sensor j, that is ri ≥ rj . Let G = (M, E) be the described directed graph, which
turns out to be a so-called tournament. Collision avoidance is ensured if ∀t ∈ R≥0

and for each (i, j) ∈ E
ηj(t) 6∈ B2(ηi(t); ri). (4.4)

4.4 Measurement Models

A mobile sensor’s measurement capability of the process depends on the relative
planar position between the sensor and the process being measured. This capability
has to be properly described using a so-called sampling function (Tricaud et al.,
2012). The characteristics of the sampling function are different whether it is used
in the Estimator or in the Path Planner. In particular, we distinguish between a
non-smooth and smooth sampling function. The non-smooth sampling function is
an accurate description of the measurement capability of a process at a location:
either a measurement can be provided or it cannot. This binary property is useful
in the Estimator. In the Path Planner, on the other hand, this switching is not
appropriate in the practical implementation of the optimization problem. This is
because sufficiently smooth functions are a requirement in the chosen software
that seeks the solution to the optimization problem. In the following we present
sampling functions that have previously been defined in Haugen et al. (2013a), but
restated here for convenience.

We define the family of scalar sampling functions as W and let B be the
codomain of this family. The sampling function takes as arguments the planar
position %(t) and the orientation ψ(t) of a mobile sensor, and the planar posi-
tion p(t) of the process of interest. Hence, the sampling function is wCk(t, %, p, ψ) :
R≥0 × R2 × R2 × S → BCk , where Ck, k ∈ {−1,∞} ∪ N signifies the continuity of
the sampling function.

We will use the two-dimensional rotation matrix, which is defined as

R(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
. (4.5)

4.4.1 Non-Smooth Sampling Function

A pitch and roll stabilized downward-looking optical device has a limited field of
view (FOV); Either it measures a specific location or it does not. This behavior is
modeled using a non-smooth sampling function and is well suited as part of fusing
measurements of a process with a model description at discrete time instants.
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Let ∆xi > 0, i ∈ {1, 2} and define ∆x := col(∆x1
,∆x2

). The planar FOV metric
is a weighted infinity norm

‖x‖∆x
∞ := max

(
|x1|
∆x1

,
|x2|
∆x2

)
. (4.6)

Let the codomain of a binary sampling function wC−1(t, %, p, ψ) be BC−1 :=
{0, 1}, such that the codomain is nonzero only if the coordinate point p(t) of the
process is within the convex set formed by a FOV metric. The non-smooth sampling
function is thus

wC−1(t, %, p, ψ) :=

{
1,
∥∥RT(ψ)(p− %)

∥∥∆x

∞ < 1 (4.7a)
0, otherwise. (4.7b)

The field of view at the sensor location % = col(%1, %2) with ψ = 0 is [%1−∆1, %1 +
∆1]× [%2 −∆2, %2 + ∆2].

4.4.2 Smooth Sampling Function

Smooth sampling functions have continuous derivatives of arbitrary degree. For this
reason, these sampling functions are suitable for situations where smooth deriva-
tives of the sampling functions are beneficial. This is the case for solving the opti-
mization problem in our implementation this work. Let BC∞ := {w ∈ R : 0 ≤ w ≤
1} be the codomain of smooth sampling functions

wC∞(t, %, p, ψ) : R≥0 × R2 × R2 × S→ BC∞ , (4.8)

which are 1 if % = p and less than 1 otherwise.

Example 4.1. LetKi∈In ∈ Π2, and p̃ = p−%. A possible smooth sampling function
is the linear combination of n two-dimensional Gaussian functions, for instance

wC∞(t, %, p, ψ) :=
∑
i∈In

λie
−p̃TR(ψ)KiR

T(ψ)p̃, (4.9)

where
∑
i∈In λi = 1, λi ≥ 0. The purpose of having a combination of exponential

functions is that it enables smooth approximations. These approximations can
resemble a non-smooth sampling surface while still being smooth and having a
nonzero image. Figure 4.3 displays an example of such a sampling surface.

4.5 The Advection-Diffusion-Reaction Equation

The advection-diffusion-reaction (ADR) equation is a partial differential equation
where some variable of interest change over time in three different ways.
Advection: The transport of the variable by the field velocity.
Diffusion: The movement of the quantity from a highly concentrated region to a

location with lower concentration.
Reaction: The creation and/or destruction of the quantity.
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Figure 4.3 A C∞ smooth sampling function. The sensor location % is at the origin
and the codomain of the sampling surface is plotted as a function of the
process coordinates p1 and p2. The green rectangle indicates the box the
sampling function approximates.

We intend to use this equation for the description of both sea ice concentration
as well as the dynamics of some uncertainty measure. For this reason we first
describe the equation with a general scalar quantity, and then substitute specific
variables in Sections 4.6 and 4.7.

Let Ω be an open bounded domain in R2. We are interested in a time interval
Ttft0 . The closure of Ω is Γ = δΩ = ΓD ∪ ΓN , were the disjoint boundary sets
ΓD and ΓN , represent the Dirichlet and Neumann boundary, respectively. Then,
Ω := Ω ∪ Γ and let p ∈ Ω be the position of a unit volume. Let n(p) : Γ → R2 be
the unit outward normal at the boundary. We define the boundary sets as

ΓD := {p ∈ Γ : vTn ≤ 0}, (4.10a)

ΓN := {p ∈ Γ : vTn > 0}, (4.10b)

where v ∈ L∞(Ttft0 ;W 1,∞(Ω))2 is the time-varying velocity field. The Dirichlet
boundary is the inlet that supplies the interior with the modeled quantity, whereas
the Neumann boundary is the outlet boundary.

Let ε > 0 be the constant diffusion coefficient and ζ(t, p) the scalar quantity of
interest. We consider the advection-diffusion-reaction equation

ζ̇ + v · ∇ζ −∇ · (ε∇ζ) = s, (t, p) ∈ Ttft0 × Ω, (4.11a)

where s(t, p, ζ) ∈ L2(Ttft0 ;L2(Ω)) is the source/sink and reaction term. The bound-
ary and initial conditions are

ζ(t, p) = fD(t, p), (t, p) ∈ Ttft0 × ΓD, (4.11b)

∇ζ · n = 0, (t, p) ∈ Ttft0 × ΓN , (4.11c)
ζ(t0, p) = ζ0(p), p ∈ Ω, (4.11d)
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where fD(t, p) is an assumed known function and ζ0(p) is the initial surface of the
variable of interest.

4.5.1 Finite Element Discretization

We seek a weak formulation of (4.11). First, define

Hk
g (Ω) := {u ∈ Hk(Ω) : u = g on ΓD}. (4.12)

Given ζ0(p) ∈ L2(Ω) and s(t, p, ζ) ∈ L2(Ttft0 ;L2(Ω)), find ζ(t, p) ∈ L2(Ttft0 ;H1
fD

(Ω))
such that

〈ζ̇, w〉+ a(ζ, w) = l(w), ∀w ∈ L2(Ttft0 ;H1
0 (Ω)), (4.13a)

ζ(t0, p) = ζ0(p), ∀p ∈ Ω, (4.13b)

where a(·, ·) and l(·) are bilinear and linear forms, respectively.
In our case the equation is advection-dominated and the usual Galerkin method

of discretization is not appropriate due to the requirement of very fine resolution
to avoid spurious oscillations (Ern et al., 2004). We choose the popular streamline
upwind Petrov-Galerkin (SUPG) method described in Brooks et al. (1982).

Definition 4.1. The family of sets F (Ω, l) := {Ki}i∈Il is called a tessellation of
Ω if Ki ∩Kj = ∅ for i 6= j and

⋃l
i=1Ki = Ω.

We tessellate our domain Ω into Nl control volumes. Define INl =: E = ED∪EI
and let {Ke}e∈E be the tessellation of Ω. Further, define two set of points PI =
{pe}e∈EI , pe ∈Ω\ΓD and PD = {pe}e∈ED , pe ∈ΓD. These points are the vertices of
the domain tessellation often called the mesh. Let Pk(Ke) be the set of polynomials
of degree at most k on Ke. Define

V hg (Ω) := {v ∈ H1
g (Ω) : ∀e ∈ E, v|Ke ∈ P1(Ke)}. (4.14)

We seek a semi-discrete finite dimensional approximation ζh ∈ L2(Ttft0 ;V hfD (Ω)),
with the linear combination of basis functions ϕe:

ζh(t, p) =
∑
e∈E

ζ(t, p)ϕe(p), (4.15)

where ϕe ∈ P1(Ke) with the property

∃ pe ∈Ω : ϕe(pe) = 1, ϕe(pj) = 0, ∀j 6= e, pj ∈Ω, (4.16)

so that
ζi(t) := ζh(t, pi), (4.17)

which is the shorthand notation for the nodal value at the discrete point pi. The
weak form is now

〈ζ̇h, w〉+ a(ζh, w) = l(w), ∀w ∈ L2(Ttft0 ;V h0 (Ω)), (4.18a)

ζh(t0, p) = ζ0, ∀p ∈ PI . (4.18b)
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We proceed by choosing the test function presented in Brooks et al. (ibid.). It is
w̃ = ϕ+τ(v)v ·∇ϕ, where τ(v) ∈ L∞(Ttft0 ;L∞(Ω)) is called the intrinsic parameter.
The second term of w̃ is defined on element interiors only. We use the divergence
theorem, integrate by parts, do some reordering, and get the ordinary differential
equations for nodal point ζi(t) :∑

e∈E

(∫
Ke

(ϕi + τivi · ∇ϕi)ϕe dp
)
ζ̇e = (4.19a)

−
∑
e∈E

(∫
Ke

(ϕi + τivi · ∇ϕi)(ve · ∇ϕe) dp
)
ζe (4.19b)

− ε
∑
e∈E

(∫
Ke

∇ϕi · ∇ϕe dp
)
ζe (4.19c)

+
∑
e∈E

∫
Ke

(ϕi + τivi · ∇ϕi)se dp, (4.19d)

where vi = v(t, pi), τi = τ(vi), and se(·) will be defined later. The piecewise inte-
grals in (4.19) are usually approximated using quadrature rules of sufficient degree.
In our application we use n-by-n point Gauss-Legendre quadratures (Dunavant,
1985; Gene H Golub, 1969). For more implementation details on SUPG and the
finite element discretization, consult Brooks et al. (1982) and for instance Ern et al.
(2004).

Definition 4.2. The coordinate system {adr} is the reference frame where the
planar domain Ω is defined.

Assumption 4.1. The velocity field is uniform, so v(t, p) = v(t) = col`∈I21(v`(t)),
where v`(t) is the flux speed along the standard basis e` of the Euclidean space R2

in {adr}.

Define χ(t) := cole∈EI (ζe(t)) ∈ R|EI |, and χΓD (t) := cole∈ED (ζe(t)) ∈ R|ED|. We
obtain the following ordinary differential equation (ODE) and initial condition:

M(v(t))χ̇(t) = (A(v(t))− εD)χ(t) +B(v(t))χΓD (t) + r(·), (4.20a)
χ(t0) = cole∈EI (ζ0(pe)), ∀pe ∈ PI , (4.20b)

where r(·) is the source/sink and reaction term with incomplete argument list to
be determined depending on the application of the equation.

4.6 Estimator for Sea Ice Concentration

To be able to estimate the sea ice concentration we need a dynamic model that can
describe the drift of the sea ice. The physics of sea ice is described in Leppäranta
(2011). This description includes the dynamic sea ice model, which consists of
two elements: conservation of momentum and conservation of ice. These elements
describe in detail how the ice interact with the water, the surrounding ice, et cetera.
In our application we argue that a low-fidelity description is more appropriate
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because we consider a relatively small spatial scale (kilometers) and short time
horizon. We assume that the velocity field of the water are known and that ice
floes are carried in steady-state with the water, that is, without velocity relative
to the water current. Hence, the conservation of momentum is not necessary to
include in our sea ice description. The remaining element conservation of ice is
modeled by the ADR equation, which we presented in the previous section.

Let φ(t, p) be the ice concentration to model for p ∈ Ω with the tessellation
F (Ωφ, Nφ) and pe ∈ PφI ∪P

φ
D. We abuse notation and write the analogous discrete

counterparts φ(t) : Ttft0 → R|E
φ
I | and φΓD (t) : Ttft0 → R|E

φ
D|. The concentration

is taken as the area fraction of ice in a control area with the dimensionless unit
m2 m−2. There is a process noise source and some minimal diffusion. The resulting
differential equation is

M(v)φ̇(t) = (A(v)− εφD)φ(t) +B(v)φΓD (t) + w(t), (4.21a)
φ(t0) = φ0, (4.21b)

where v(t) is the ice drift velocity and w(t) ∼ (0, Q(t)) is process noise.

4.6.1 Batch-Sequential Kalman Filter

We are interested in performing state and parameter estimation of (4.21) using
a Kalman filter. Define the state and parameter estimates E(φ(t)) = φ̂(t) and
E(φΓD (t)) = φ̂ΓD (t). The corresponding estimation errors are

φ̃(t) = φ(t)− φ̂(t), (4.22a)

φ̃ΓD (t) = φΓD (t)− φ̂ΓD (t), (4.22b)

Define the augmented state vector z(t) := col(φ, φΓD ), z̃(t) = z(t) − ẑ(t), and the
estimation error covariance

P (t) = cov(z̃(t), z̃(t)), (4.22c)

where we note that the covariance Pφ(t) of φ̃(t) is part of P (t) (for later utilization).
The matrices in (4.21) are sparse. The inverse ofM may be dense, so we refrain

from inverting the matrix to keep the sparse structure. We assume that φΓD (t) is
constant or slowly-varying and write the augmented system matrices

M(v) = bdiag(M(v), I|EφD|
), (4.23a)

A(v) =

[
A(v)− εφD B(v)
0|EφD|×|E

φ
I |

0|EφD|×|E
φ
D|

]
. (4.23b)

The augmented state dynamics along the predicted profiles φ̂(t) and φ̂ΓD is

M(v) ˙̂z(t) =A(v)ẑ. (4.23c)

The Riccati differential equation of the augmented system (4.23c), which is used
in the hybrid Kalman filter (see for instance Simon (2006)), can be written without
invertingM(v) as

MṖ (t)M
T

=AP (t)M
T

+MP (t)A
T

+MQz(t)M
T
, (4.24a)
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where we have omitted the arguments ofM(v) and A(v), and

Qz(t) = bdiag(Q(t), QφΓD
(t))

is the augmented spectral density. The above matrix differential equation, which
is equipped with an appropriate initial condition

P (tk|tk) = Ptk , (4.24b)

has to be solved between measurement instants. This can for instance be achieved
by formulating the initial value problem (IVP) as an implicit equation using collo-
cation in time. Then, solving the implicit equation for the collocated P gives the
covariance state trajectory (see e.g. Biegler (2010) for details on collocation).

Remark 4.1. If the ice drift velocity and the process noise covariance are both
constant, we get time-invariant covariance dynamics. We rewrite (4.24a) into ex-
plicit linear form as follows. First, invertM. Next, exploit the properties defined in
e.g. Horn et al. (1994): vec(AXB) = (BT⊗A) vecX and Ia⊗A+B⊗ Ib = A⊕B,
where ⊗ and ⊕ are the Kronecker product and sum. This results in the linear
time-invariant system

vec Ṗ =
(
M
−1
A⊕M

−1
A
)

vecP + vecQz, (4.25)

which can be solved exactly between measurement instants by utilizing the matrix
exponential function eA as described in for instance C.-T. Chen (1999).

Remark 4.2. It is well known that the Kalman filter quickly becomes a compu-
tational burden for large-scale systems and for instance an ensemble Kalman filter
(Evensen, 1994) may be preferable with respect to computational speed. Never-
theless, we stick to the computational inferior choice and proceed with the under-
standing that we must operate with a moderate number of states.

Let Cm,−1(t, v, %m(t), ψm(t)) be the |EφI | × |E
φ
I | measurement matrix for sensor

m created with non-smooth sampling functions. Since a mobile sensor is unable to
measure all the states at a given time instant, the measurement matrix will have
rows with only zeros. To more efficiently calculate the Kalman gain, we propose to
select the submatrix without zero-rows and the corresponding rows and columns
of the measurement spectral density matrix Rm(t). This action can be justified
by acknowledging that the measurement noise is infinity for states that are not
measured. Let Cm,⊂(t) and Rm,⊂(t) denote the resulting submatrices. It is worth
pointing out that these matrices may change dimensions from one measurement
to the next, but since measurements are received at discrete time instants tk+1

and employed accordingly, this fact does not affect the a posteriori Kalman filter
updating.

Different mobile sensors may measure the same state variables at the same
time. This occurrence complicates the state estimate and covariance update step
of the Kalman filter. We use an approach that we call batch-sequential Kalman
filter, where the estimates are updated sequentially, one measurement vector at
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the time, similar to the method described in Simon (2006, Section 6.1). Define the
initial estimate and covariance in the sequential filter as the a priori estimates

ẑ0(tk+1) = ẑ(tk+1|tk), (4.26a)
P0(tk+1) = P (tk+1|tk). (4.26b)

Let the augmented measurement matrix for sensor m be

Cm,⊂(t) =
[
Cm,⊂(t) 0

]
, (4.27)

so that it is consistent with the augmented state vector. When measurements are
received at time tk+1 we calculate for each m ∈M

Km = Pm−1C
T

m,⊂(Cm,⊂Pm−1C
T

m,⊂ +Rm,⊂)−1, (4.28a)

ẑm = ẑm−1 +Km(ym(tk+1)−Cm,⊂ẑm−1), (4.28b)

Pm = (I −KmCm,⊂)Pm−1(I −KmCm,⊂)T +KmRm,⊂K
T
m, (4.28c)

where ym(tk+1) is the measurement vector from sensor m. The a posteriori esti-
mates are

ẑ(tk+1|tk+1) = max(0Nφ×1,min(ẑ|M|, 1Nφ×1)), (4.29a)
P (tk+1|tk+1) = P|M|. (4.29b)

where the state estimates are clipped to be within [0, 1]. We do this to avoid un-
physical concentration estimates. For a single sensor the batch-sequential Kalman
filter is identical to a standard Kalman filter.

Remark 4.3. In the case where the measurement supports of the sensors are
disjoint, there is no need to perform sequential updates of the estimates and the
estimation error covariance; All measurements can be collected into a single mea-
surement vector with corresponding measurement matrix and then proceed as in
a standard Kalman filter update.

4.6.2 Downsampling High-Resolution Measurements

When fusing measurements y(t) with the model, the measurements have to be
represented at the discretized locations. Often, measurements have finer spatial
resolution than the set of nodes that constitute the discretized representation. For
instance, sea ice images from aerial mobile sensors have much finer resolution than
the ODE describing the concentration. We can treat the image as a continuum and
use quadratures similar to the method in Section 4.5.1. In cases where the image
exhibits rapid variation of the measured quantity, very high degree quadratures for
each Ke are needed to get a good approximation. We propose to use a different
approach where the quantity in a region surrounding the node pe ∈ Ω is represented
in a single value. Downsampling using pixel averaging is a common image processing
technique that we intend to use. More sophisticated image processing techniques
for ice concentration can be found in Zhang et al. (2012).
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We assume that the input images have been pre-processed into a binary image
(i.e. {water = 0, ice = 1}) and transformed into the {adr} coordinate system. Let
the image function provided by mobile sensor m be

Im(t, p) : Ttft0 × supp(wC−1(t, %m, p, ψm))→ {0, 1}. (4.30)

Definition 4.3 ((Du et al., 1999)). Given a set of points {zi}ri=1 : zi ∈ Ω, called
generators, the Voronoi tessellation of Ω is defined by the family of sets FV (Ω, r) =
{Vi}i∈Ir where region Vi belonging to zi is defined as

Vi := {x ∈ Ω : ∀j ∈ Ir, j 6= i, ‖x− zi‖2 < ‖x− zj‖2}. (4.31)

We can see that all points in a Voronoi cell Vi is closer to zi than any other
point zj . Hence, Vi is a sensible region to find an averaged concentration value for
the point zi.

We use the points pe ∈ PφI ∪ P
φ
D as generators for the Voronoi tessellation

FV (Ωφ, Nφ). Define the measurement support of the mobile sensor m at t = tk+1

as

Ωm,FOV := {x ∈ Ω : x ∈ supp(wC−1(tk+1, %m, x, ψm))}. (4.32)

Let Em,FOV := {e ∈ INφ : ∃pe ∈ PφI , pe ∈ Ωm,FOV} be the indices of the nodes
contained in the field of view of sensor m. We denote ∀i ∈ Em,FOV

V m,FOV
i = Vi ∩ (Ωm,FOV) , (4.33)

as the corresponding (possibly clipped) Voronoi cells.
The average intensity in a clipped cell is the measured concentration. For the

ordered pair (i, j) with i ∈ Em,FOV and j ∈ I|Em,FOV| we write the jth element of
the measurement vector ym(tk+1) ∈ R|Em,FOV| as

ym,j(tk+1) =
1

|V m,FOV
i |

∫
Vm,FOV
i

Im(tk+1, p) dp. (4.34)

The measurement vector now contains averaged ice concentration fractions in the
range [0, 1] for all the discrete points covered by the field of view of the correspond-
ing mobile sensor. ym(tk+1) is used in the correction step (4.28b). Figure 4.4a dis-
plays a Delaunay tessellation of an annular sector including the Voronoi cells for
each node point. In Figure 4.4b we can see the results of pixel averaging of an ice
field over each of the Voronoi cells. The same figure also displays the field of view of
a sensor including the measured cells. In this particular example the measurement
vector returns five measurements.

4.7 Reduced Uncertainty Dynamics

In Haugen et al. (2014b) the trace of the estimation error covariance matrix was
used as a performance measure in the path planning optimization problem. The ob-
jects being monitored were independent, so the resulting Riccati differential equa-
tions had limited dimensions and could be solved without much difficulty as part
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(a) (b)

Figure 4.4 (a) A Delaunay tessellation of an annular sector and the corresponding
Voronoi cells; (b) An ice field downsampled over the Voronoi cells with
pixel averaging. The field of view of a sensor and the corresponding
measured cells are also shown.

of the optimization problem. In this manuscript, however, the Riccati differential
equation (4.24a) has many more states and quickly becomes a computational bur-
den if included in the optimization problem. To overcome this issue, we propose
a simplified description of the uncertainty dynamics when performing the path
planning. In particular, we apply the ADR equation from Section 4.5 as a drifting
quantity of uncertainty that can be influenced by the mobile sensor network. This
simplification is motivated by our intuition that the uncertainty moves together
with the ice and if a mobile sensor visits a region, the uncertainty reduces in that
region.

4.7.1 The Source/Sink and Reaction Term

In order to describe the reduced uncertainty dynamics, we further extend the ADR
equation of Section 4.5 by introducing two new terms:
(i) Stabilizing reaction.
(ii) Vehicle-dependent source.

The stabilizing reaction mimics the behavior of reducing the uncertainty of regions
the mobile sensors visit. The vehicle-dependent source accommodate the increasing
uncertainty of regions not being visited. This term also has a limited influence
on distant regions for the mobile sensors. The latter property is desired because
our implementation of the optimization problem benefits from it. A very similar
property was more thoroughly discussed and motivated in Haugen et al. (2014b).

Assumption 4.2. To simplify exposition, the reference frames {adr} and {ned}
are identical, so there is no need for transforming between coordinate systems.
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Stabilizing Reaction

Suppose we are interested in controlling our quantity to a desired level ζd(p) ∈
L2(Ω). In this context our mobile sensors act as mobile actuators with the field
of view as actuator support. Define ζ̃(t, p) = ζ(t, p) − ζd(p). For sensor m with
position %m(t) and orientation ψm(t), consider ∀p ∈ Ω

sm,1(t, %m, p, ψm, ζ) = −γm(p)wC∞(t, %m, p, ψm)ζ̃(t, p), (4.35)

where γm(p) ∈ L2(Ω) is positive and wC∞ is the C∞ sampling function defined in
Section 4.4.2. This reaction drives ζ(t, p) toward ζd(p) for all unit volumes within
the support supp(wC∞) of the sensor. The magnitude of the reaction depends on
both γm and the weight wC∞ , for which the latter approaches zero as the distance
between a unit volume and the sensor increases.

Let χd := cole∈EI (ζd(pe)), ∀pe ∈ PI , so that χ̃(t) = χ(t) − χd. Define q(t) :=
colm∈M(%m(t)) and Ψ(t) := colm∈M(ψm(t)). The weak form of (4.35) can be ob-
tained by substituting sm,1 for se in (4.19d). We do this for all sensors m ∈M and
obtain the expression

r1(t, v, χ, q,Ψ) = −
∑
m∈M

LmCm,∞(t, v, %m, ψm)χ̃(t), (4.36)

where in this case Lm ∈ Π|EI | is a design matrix that depends on γm.

Vehicle-Dependent Source

Define a source σ(t, p) ∈ L∞(Ttft0 ;L∞(Ω)) that covers the whole domain Ω. We
seek to make the source dependent on the location of the sensor. In particular, the
mobile sensors influence the creation rate of the quantity at a unit volume p ∈ Ω
even if it is located such that reaction presented in the previous section is negligible.
We construct the source such that the closer a mobile sensor is to a location, the
weaker the source. We get ∀m ∈M

s2(t, q, p,Ψ) =
1

|M|
∑
m∈M

(1− wC∞(t, %m, p, ψm))σ(t, p). (4.37)

Let χσ(t) := cole∈EI (σ(t, pe), ∀pe ∈ PI . The corresponding discretized weak form
is

r2(t, v, q,Ψ;χσ) =
1

|M|
∑
m∈M

Wm,∞(t, v, %m, ψm)χσ(t), (4.38)

where we see that in the case of a single sensor the source magnitude vanish at a
unit volume when the sensor is sufficiently close to it.

4.7.2 Reduced Uncertainty Dynamics

The quantity of interest is ν(t, p), which is the approximated variance of the ice
concentration at the unit volume p ∈ Ω∩. Again, by abusing notation we write the
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discretized variance as ν(t) : Ttft0 → R|EνI |. To facilitate computational tractability,
ν(t) is discretized into much fewer states than φ(t), with the coarser tessellation
F (Ω∩, |EνI | + |EνD|), so the nodes in PνI generally do not coincide with any points
in PφI .

We employ the previously defined reaction and source terms (4.36) and (4.38)
with appropriate dimensions and get the discretized uncertainty ADR equation

Mν(v)ν̇(t) = (Aν(v)− ενDν)ν(t) +Bν(v)νΓD

+ r1(t, v, ν, q,Ψ) + r2(t, v, q,Ψ; νσ), (4.39a)
ν(t0) = ν0, (4.39b)

where νΓD ∈ R|E
ν|
D

≥0 is a provided inlet uncertainty, ν̃ = ν, and ν0 is sampled from
the variance estimation error of the Kalman filter (4.28c). Let νφ(t) := diag(Pφ(t))
and recall from (4.15) that a quantity at an arbitrary location can be sampled
from a linear combination of the finite dimensional approximation. Since we are
downsampling, local maxima may be lost if we only sample at the coarse locations
PνI . To avoid loss of maxima, we assign the variance at each coarse node point as
the local maximum. The local maximum is set to the maximum variance of all fine
nodes points within the Voronoi cell that belongs to the corresponding coarse point.
More precisely, use pe ∈ PνI ∪ PνD as generators for the coarse Voronoi tessellation
F∩ν (Ω∩, |EνI |+ |EνD|) with the Voronoi cells V ∩i belonging to the ith state variable
ν0,i. Further, we define the index set of points from the fine tessellation within V ∩i
as E∩i := {e ∈ INφ : ∃pe ∈ PφI , pe ∈ V ∩i }. Then for each i ∈ I|EνI | we have

ν0,i = max
e∈E∩i

(νφ,e), (4.40)

where νφ,e is the eth row of νφ.

4.8 Path Planning

4.8.1 Dynamic Optimization Problem

The optimization problem is to minimize ν(t) using the mobile sensor network.
We choose an appropriate region Ω∩ and formulate the regional surveillance as
a Bolza-type OCP. Let Ttft0 denote the horizon of interest. The decision variables
are ∀m ∈ M the control inputs um(t). Define u(t) := colm∈M(um(t)), Λ(t) :=
bdiagm∈M(Λm(t)), and Ξ(t) := bdiagm∈M(Ξm(t)), where Λ(t) ∈ Π|M| and Ξ(t) ∈
Π|M| are time-varying design matrices. Define the Lagrange term as

ΦL(t, u) =

∫ tf

t0

νT(t)GL(t)ν(t) +
du

dt

T

Λ(t)
du

dt
+ uTΞ(t)u dt, (4.41a)

where GL(t) ∈ Πnν is a user-defined matrix.
We define the Mayer term as

νT(tf )GMν(tf ), (4.41b)
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where GM ∈ Πnν is a design matrix.
The optimization problem is to minimize (4.41) constrained by the mobile sensor

network, its collision avoidance, and the simplified uncertainty dynamics. That is,
∀t ∈ Ttft0 , ∀(i, j) ∈ E,∀m ∈M:

min
u

ΦL(t, u) + ΦM (tf ) (4.42a)

s. t. (4.3), (4.4), (4.39). (4.42b)

The solution to (4.42) provides us with optimal mobile sensor trajectories, denoted
for each m ∈M as

x?m(t) ∈ Km × S, t ∈ Ttft0 . (4.43)

4.8.2 Receding Horizon

For a real-world operation with some duration, the optimization problem (4.42)
quickly becomes computationally intractable. To remedy this challenge, we solve
the optimization problem using a receding horizon. This design decision comes
with two added benefits; The modeling inaccuracies of the approximated drifting
uncertainty field are removed at every re-optimization, and changes in ambient
conditions may be promoted through adaptive behavior in the formulation of the
optimization problem. In particular, updating parameters such as drift velocity and
changing monitoring region Ω∩ are straightforward.

Let T := [t0, T ] be the interval in which the objective of estimating the ice con-
centration finds place. We partition the time line into kt ∈ N+ strictly overlapping
intervals, where Tk := [t0,k, tf,k] is the kth interval. The interval of interest is con-
tained within the overlapping intervals: T ⊂

⋃
k∈Ikt

Tk. Two consecutive intervals
overlap such that t0,k < t0,k+1 < tf,k. The non-overlapping part Tk\Tk+1 is consid-
ered the utilization interval of the kth iteration. By this we mean the time interval
in which we utilize the planned path found from the kth optimization problem.

The mechanism of an iteration can be divided into a three-step procedure of
collecting, optimizing, and utilizing. Consider the kth iteration. The collecting step
is performed by mobile sensors and provided to the Estimator for state and param-
eter estimation. At time t0,k−1 all the collected measurements are used in finding
the best estimates of the drifting field and mobile sensor states of interest. An
open-loop prediction forward in time is executed to accommodate the formulation
of the kth optimization problem. This open-loop prediction consists of finding the
expected closed-loop behavior of the mobile sensors and its expected influence on
the low-fidelity uncertainty field (4.39) in the interval [t0,k−1, t0,k]. The goal is to
determine relevant initial conditions at t0,k. Details on how to do this are provided
in Haugen et al. (2014b). The optimizing step is executed by the Path Planner
component and involves formulating and solving (4.42) to provide the desired tra-
jectories (4.43). The final step is to deliver the desired paths (4.43) to the RPAS,
so that it can be utilized in collecting more information.

The three steps of the procedure execute concurrently with earlier and later
time steps: when the monitoring system is optimizing for the kth iteration, it is
collecting for iteration k+ 1, and utilizing iteration k− 1. Figure 4.5 illustrates the
three-step procedure.
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Figure 4.5 The monitoring systems consists of a three-step procedure of collecting,
optimizing, and utilizing.

4.8.3 Implementation

To efficiently solve the OCP (4.42), we choose a direct transcription approach
where both the state and control variables are discretized into a finite-dimensional
NLP problem. The simultaneous collocation of finite elements is used to obtain
Lagrange interpolation polynomial descriptions of the state variables. The control
input is piecewise constant, whereas the states are described using K-point Radau
collocation, for details consult Biegler (2010).

The resulting large-scale NLP formulation benefits from being sparse and having
structure. These properties can be exploited using an efficient NLP solver. We
formulate the problem in the symbolic framework CasADi (Andersson et al., 2012),
which provides the necessary derivative information required by the NLP solver.
The CasADi library contains an interface for the primal-dual interior-point NLP
solver IPOPT (Wächter et al., 2006). IPOPT is compiled with OpenBLAS (Xianyi
et al., 2012) and the linear algebra sparse direct solver MA57 (HSL, 2011).

Tessellation of region geometries were performed using Gmsh (Geuzaine et al.,
2009), where we used Delaunay triangulation. Image processing such as pixel av-
eraging, translation, and image masking were performed with the aid of OpenCV
(Bradski, 2000).

Initial desired paths are provided a priori because paths need to be available
when the first optimization is running. We provide control inputs that ensure col-
lision avoidance and feasible execution within the constrained region. The perfor-
mance of the discretized optimization problem benefits from good initial conditions.
We initialize the uncertainty field variables by solving the matching IVPs with ex-
pected closed-loop behaviors of the sensors given their respective initial conditions.
Since a new optimization horizon goes beyond the previous, we use the previous
iterations final control input as extrapolation.

4.9 Case Study

4.9.1 Setup

We are interested in performing estimation of ice concentration in an annular sector.
As our real-world simulator we construct an artificial ice field using the image
displayed in Figure 4.6a. The ice texture is repeated horizontally and vertically
sufficiently many times to allow a periodic, but seamless ice field. The ice field is
equipped with a constant north-to-south uniform drift velocity v = col(−1.5, 0)
m. The field exhibits no diffusion, only transport of ice concentration. Figure 4.6b
is the same field the after binary thresholding used in the image processing part
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(a) (b)

Figure 4.6 (a) 8-bit grayscale ice image of 800× 800 pixels used in the case study.
The image has manually been turned into a seamlessly tiled texture by
blending edges in a photo editing software; (b) Same image with binary
thresholding with cutoff at normalized intensity 0.157.

of the simulation. The real-world ice field is simulated by simply translating the
image given its drift velocity and the ground sample distance of a pixel.

We let all the mobile sensors operate at the same altitude of 400m and simu-
late that they are equipped with pitch and roll stabilized downward-looking optical
devices. In particular, the mobile sensors have measurement capability similar to
FLIR’s thermal infrared camera Tau 2 (FLIR, 2013) with a 9mm lens and a de-
tector pitch of 17 µm and a 640 × 512 detector array. This gives a field of view of
550m× 425m at the specified altitude and an average ground sample distance of
0.86m.

Remark 4.4. Our ice field simulator has fixed pixel orientation and geometry. The
pixels are aligned with the detector when obtaining ice images using the mentioned
optical device. Since we only use the field of view of the camera when sampling
from our simulator, the pixels do not have truly realistic orientation or geometry.

The annular sectors we are interested in can be described by the circle center,
minor and major radii, sector midpoint angle, and sector opening angle. The major
circular arc is the inlet (Dirichlet) boundary, whereas the remaining boundaries are
outlet (Neumann) boundaries. A benefit of using an annular sector is that ice drift
velocity has an orientation range robustness equal to the opening angle without
having to deal with time-varying boundary condition sets.

We distinguish between the finely and coarsely tessellated annular geometries.
The former is used in the estimator and the latter in the optimization problem. The
number of tessellation volumes is determined by adjusting the characteristic length
` in the Delaunay triangulation algorithm. The parameters defining the geometries
and the tessellations are given in Table 4.1, with corresponding tessellations shown
in Figure 4.7. The coarse geometry has a slightly larger major radius, so that the
vertices of the fine tessellation are contained by the coarse one.

We define a single operational region K for all the mobile sensors. This region
contains the annular sector and is indicated in the coming north-east plots.
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Table 4.1 Parameter values for the tessellated geometries. Recall that {adr} is
aligned with {ned}.

(a) Fine tessellation.

Parameter Value

Circle center [km] [−1.6, 0]T

Minor radius 1700m
Major radius 4000m
Sector opening 30°
Sector midpoint 0°
`φ 210m
Triangles 163
|EφI | 89
|EφD| 10
Quadrature degree 2-by-2

(b) Coarse tessellation.

Parameter Value

Circle center [km] [−1.6, 0]T

Minor radius 1700m
Major radius 4100m
Sector opening 30°
Sector midpoint 0°
`ν 550m
Triangles 24
|EνI | 15
|EνD| 4
Quadrature degree 2-by-2
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Figure 4.7 Tessellated annular sectors including their belonging Voronoi cells.

The mobile sensor network consists of identical mobile sensors with bounded
bank angle um∈M(t) ∈ U = [−0.35, 0.35]. The initial conditions are x1(t0) =
col(0,−500, 0) and x2(t0) = col(0, 500, 0), with t0 = 0 s. Collision avoidance is
required to be enforced with exclusion balls that have radii 500m. The standard
gravity g was set to 9.81ms−2, vehicle airspeeds Va = 10ms−1, and the wind
speeds to zero. The field of view of the mobile sensors are dictated by the as-
sumed optical devices, and using the notation in (4.6) we have ∆x1

= 212.5m and
∆x2 = 275m.

The ice drift estimation is model as described by (4.23) with εφ = 10−4 and
τ = 0. The initial state and boundary estimates for the ice concentration are
φ̂(t0) = 0.3× 1|EφI |×1 and φ̂ΓD (t0) = 0.3× 1|EφD|×1. The estimation error covariance
is set to P (t0|t0) = bdiag(10I|EφI |

, 10I|EφD|
). We set the process noise matrix to
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Qz = bdiag(0.05I|EφI |
, 0.05I|EφD|

). We assume that the measurements arrive in an
orderly manner every 3.5 s. The measurement noise matrices are assumed to be
diagonal with the same variance whenever available, that is Rjj = 5× 10−5.

The uncertainty field is initialized as described in Section 4.8.2 with the addi-
tional modification that νΓD ≡ 1|EνD|×1 and

ν =
ν

maxi∈|EνI |(νi)
, (4.44)

which is the scaled uncertainty used in initializing the open-loop prediction. This
scaling ensures that the uncertainty in the optimization problem has a bounded
magnitude regardless of the variance magnitude in the estimator. The stabilizing
gain is γ = 0.1, the source magnitude σ(t, p) = ×10−3, εν = 10−4, and τ = 183.33.
The measurement model for r1(·) in (4.39) is as described in Example 4.1 with
n = 1 and K1 = 5.1× 10−5I2. Moreover, r2(·) in (4.39) is also similar with n = 1
and K1 = 5.2× 10−7I2.

Each optimization problem is formulated with 2-point Radau over a horizon of
91 s. There are totally 26 finite elements with input blocking over two elements, so
the control inputs are piecewise constant divided over 13 elements. The realization
duration is 35 s. The monitoring is scheduled to run for 20 optimization horizons.

The uncertainty states close to the boundary outlet at the minor circular arc are
considered more important than the upstream states. We reflect this prioritization
in the optimization problem by increasing the penalization of uncertainty magni-
tude close to this boundary outlet compared to upstream states. In particular, we
define time-invariant inclined planes fi∈{L,M}(p) : Ω∩ → R>0, which are, respec-
tively, the diagonal Lagrange and Mayer weighting at the position p. With these def-
initions, for each ordered pair (i, e) : i ∈ I|EνI |, e ∈ EνI and pe ∈ PνI , the ith diagonal
terms areGL,ii = fL(pe) andGM,ii = fM (pe). Let fL(p) = col(−1/120, 0)·p+143/6
and fM (p) = col(−1/160, 0) ·p+245/8. The remaining parameters for the objective
function are Λ = 10I|M| and Ξ = 7.5I|M|.

4.10 Numerical Results

The same objective were solved in two different cases:

Case 1. With a singular mobile sensor.

Case 2. With a two-sensor network.

4.10.1 Case 1 Single Sensor

The optimization problems had 1435 variables each. All the sampling intervals
solved in due time on a laptop computer. The utilization time is effectively the
deadline of each optimization problem and we can see in Figure 4.8 that they
solved well within the deadline. None of the commanded control inputs exceeded
the required bounds (see Figure 4.9), so the resulting paths are feasible with respect
to the prescribed maneuverability constraints of the mobile sensor.
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Figure 4.8 The solve time of each optimization problem is less that the utilization
time (i.e. deadline), which is indicated by the dashed line.
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Figure 4.9 The optimized control input that is used to construct the desired paths
for the mobile sensor. The input remains within the upper and lower
constraint, which are indicated by dashed lines.

The optimization problems seek to minimize the magnitude of an uncertainty
field. The two first optimization horizons together with their respective terminal
uncertainty surface snapshots are displayed in Figure 4.10. The aircraft markers
indicate the end of the utilization of that particular sampling interval. We can see
that the uncertainty decreased wherever the mobile sensor traveled.

Figure 4.11 shows that the 2-normed estimation error ‖z̃(t)‖2 decreased steadily
the first 500 s before stabilizing at around ‖z̃‖ ≈ 2. Likewise, the trace of the
covariance tr(P (t)) stopped increasing at the same time. In Figure 4.12 we can see
snapshots of the estimation error surface together with the executed trajectories.
We can clearly see that the estimation error decreases between the three first
snapshots. Moreover, the mobile sensor never leaves the operational region.

4.10.2 Case 2 Sensor Network

The optimization problems had 1685 variables each. Again, all the optimization
problems found optimal solutions, however only 12 of the 20 iterations found a
solution in due time, see Figure 4.13. Figure 4.14 indicates that the commanded
control inputs respect the upper and lower constraints. The Euclidean distance
between the two mobile sensors is never less than 500m (Figure 4.15), so collision
avoidance is enforced.

If we compare the data in Figure 4.11 and Figure 4.16 we see that the estimation
error ‖z̃(t)‖2 decreases more rapidly with the use of two mobile sensors. We can
also see that the tr(P (t)) never attains the same magnitude as the first case with
the use of two mobile sensors. This performance increase is further illustrated in
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Figure 4.10 Uncertainty surface snapshots at tf,k resulting from the optimization
problems. They include optimized sensor trajectories with duration
91 s. The airplane markers indicate the end of the utilization of the
sampling interval (t0,k + 35 s): (a) tf,1 = 126 s; and, (b) tf,2 = 161 s.
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Figure 4.11 Time series of the 2-normed estimation error ‖z̃‖2 and the trace of the
covariance tr(P ) in the case of a single mobile sensor.

Figure 4.17. In particular, the two mobile sensors quickly cover the whole annular
sector. We can also see that the mobile sensors never collide or leave the admissible
region.

4.11 Discussion

The two simulation cases support the expected improved performance of increasing
the number of mobile sensors. This improved performance comes at the cost of
increased solve times for the optimization problems, and even cases where the
optimization problem failed to find a solution in due time. There are several things
we can do to deal with this issue. It is helpful to provide good initial guesses for the
optimization problems. Regardless of the mechanisms employed, the optimization
problems do not have a fixed maximum solve time. For this reason a fail-safe

79



4. Monitoring an Advection-Diffusion Process Using Aerial Mobile Sensors

0 0.2 0.4 0.6 0.8 1
|z̃| [-]

-750 0 750
East [m]

0

500

1000

1500

2000

2500
N

or
th

[m
]

(a)

0 0.20.40.60.8 1
|z̃| [-]

-750 0 750
East [m]

0

500

1000

1500

2000

2500

N
or

th
[m

]

(b)

-750 0 750
East [m]

0

500

1000

1500

2000

2500

N
or

th
[m

]

(c)

-750 0 750
East [m]

0

500

1000

1500

2000

2500

N
or

th
[m

]

(d)

Figure 4.12 Estimation error surface snapshots with sensor trajectories. The air-
plane markers indicate the switching of sampling intervals (every 35 s).
The gray box is the admissible region:
(a) Trajectory interval [0, 175] s with |z̃| surface snapshot at 175 s;
(b) Trajectory interval [175, 350] s with |z̃| surface snapshot at 350 s;
(c) Trajectory interval [350, 525] s with |z̃| surface snapshot at 525 s;
and,
(d) Trajectory interval [525, 700] s with |z̃| surface snapshot at 700 s.
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deadline. 8 optimization problems spent too much time finding the
optimal solution.
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lower constraint, which are indicated by dashed lines.
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Figure 4.15 The Euclidean distance between the two mobile sensors. The minimum
distance constraint is indicated by the dashed line at 500m.

mechanism should initialize in the case of failure to find a solution in time. One
possible mechanism can for instance be that each aircraft switches to a nominal
trajectory that are in distinct regions, e.g. circular paths. The mobile sensors remain
in this state until new trajectories are available. This mechanism and recursive
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Figure 4.16 Time series of the 2-normed estimation error ‖z̃‖2 and the trace of the
covariance tr(P ) in the case of two mobile sensors.

feasibility have briefly been discussed in Haugen et al. (2014b).
Our simulation region suffers from being a bit on the small side in terms of

being a realistic case. The region could not be made much larger before the opti-
mization problem became too demanding with respect to the available hardware
specifications on the laptop computer. Still, we argue that the results display a
proof-of-concept simulation. It is also worth pointing out that the optimization
horizon length, which also affects the problem size, has an impact on the generated
trajectories. A too short horizon is quicker to solve, but gives more greedy trajec-
tories than a long horizon. Finding an appropriate horizon length is one of several
tuning challenges in this framework. Other tuning challenges include finding rea-
sonable parameters for the sampling functions and relative weighting between the
various terms of the objective function.

The proposed path planning framework is to a large extent dictated by the
coarsely tessellated geometry; the generated trajectories tend to move between
the coarse vertices. If the tessellation is too coarse in comparison to the field of
view of each sensor, some regions may remain uncovered for all times. This is
not necessarily a deal-breaker, but will indeed degrade the performance of the
estimation. Nevertheless, care must be taken when defining the coarse tessellation.
Trying to cover a too large region at the time with too fine tessellation will result
in a huge optimization problem. Conversely, for a too small region, the problem is
almost trivial in nature. If the estimated region Ω is too large for the optimization
region Ω∩, one should consider extensions of the currently proposed framework. We
imagine the possibility of a time-varying observation region where between each
re-planning the Ω∩ may change by translating and rotating the coordinate system
{adr}. Another possibility is to use independent teams of sensors each focusing on
their own region of interest. These teams then form optimization problems that can
be solved independently. This is a step toward a decentralized observation system
and may be a beneficial approach to alleviate the scaling issue of the currently
proposed approach.

The ice concentration estimation performance presented in this manuscript does
not provide satisfying results. In our opinion the main reason for this inefficiency is
the challenge of accurately discretizing advection-dominated transport equations.
As mentioned earlier, the process of discretizing one such hyperbolic partial dif-
ferential equation is particularly difficult with coarse spatial tessellation. Using a
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Figure 4.17 Estimation error surface snapshots with sensor trajectories. The air-
plane markers indicate the switching of sampling intervals (every 35 s).
The gray box is the admissible region:
(a) Trajectory interval [0, 175] s with |z̃| surface snapshot at 175 s;
(b) Trajectory interval [175, 350] s with |z̃| surface snapshot at 350 s;
(c) Trajectory interval [350, 525] s with |z̃| surface snapshot at 525 s;
and,
(d) Trajectory interval [525, 700] s with |z̃| surface snapshot at 700 s.
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naive approach with the Galerkin method will most definitely cause spurious os-
cillations. We used the Galerkin method for the ice drift in the Kalman filter and
spurious oscillations readily occur (see e.g. the isolated peaks in Figure 4.17d). The
SUPG method used for the drifting uncertainty does not sufficiently suppress the
oscillations when an unstructured mesh is employed (John et al., 2008). We have
increased the diffusion coefficient ε to avoid excessive oscillations at the cost of
degraded ice concentration estimates over time. There is a vast body of literature
dealing with methods for improving the numerical solution of the advection equa-
tion (see John et al. (2007) for a comprehensive comparison of methods). Many of
these methods are complicated and do not easily fit into our optimization frame-
work. Improving the ice concentration model and its estimation by choosing an
appropriate method is considered future work.

4.12 Conclusion

This chapter presented a monitoring system that minimized a simplified descrip-
tion of a distributed parameter system’s state uncertainty. The purpose of the
monitoring system was to create feasible and collision-free paths for a set of mobile
sensors. The objective was to efficiently perform state and parameter estimation
of an advection-dominated transport equation. The problem was formulated as an
optimal control problem that used planar kinematic vehicle descriptions and finite
element discretization of a uniformly drifting sea ice concentration field.

The planned paths were employed in simulations on a sensor network that
monitored a drifting sea ice field. The measurements were fused with a model
description of the sea ice using a batch-sequential Kalman filter. The simulation
results demonstrated a potential for the path planning network. We would like to
see an extension of this framework where the scaling issue has been dealt with, as
well as an improved estimation performance of the distributed parameter system.
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Chapter 5

State Estimation of Ice Thickness
Distribution Using Mobile Sensors

This chapter considers the problem of guiding a mobile sensor network in a dis-
tributed parameter system. The ice thickness distribution of sea ice is an example of
such a system. The objective is to improve the convergence of the state estimation
error, compared to a nominal sensor network, by employing a gradient-based guid-
ance scheme. The ice thickness is modeled as a continuity equation and the sensor
dynamics as fully actuated 2-input-2-output mass-spring-damper systems. The ap-
proach builds on Lyapunov functions to construct the guidance law that achieves,
under certain assumptions, a uniformly globally asymptotically stable system. A
numerical example illustrates the approach. This work was published in Haugen et
al. (2012).

5.1 Introduction

Knowledge about the surrounding ice conditions, that is, detection, tracking,
and forecasting of sea ice, ice ridges, and icebergs (Eik, 2008) is vital for the

safety of marine operations in ice-infested regions. A system performing this task
could be termed an ice observer system (Haugen et al., 2011), which consists of
several sensor platforms that solves the task in a collaborated effort.

As stated in Haugen et al. (ibid.), unmanned vehicles are considered to become
an important tool for the information gathering in an ice observer system. An
unmanned vehicle can operate in harsh environments, the well-known dirty, dull,
dangerous, in a safe and cost-effective manner. Motion spaces such as sub sea, on
the surface, and in the air are all relevant in an ice observer system. We can choose
the most suited subset of sensor platforms depending on the spatial scale that we
want to estimate relevant ice features and ice properties.

Level ice is among the ice features of interest in an ice-monitoring setting. The
physics of level ice dynamics is complex and consists of four elements (Leppäranta,
2011):
(i) Conservation of momentum; the forces acting are external forcing from air

and water, internal stresses, Coriolis force, etc.
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(ii) Conservation of ice; ice thickness redistribution, ice growth and decay.
(iii) Constitutive law; ice rheology, which relates stress to strength and deforma-

tion.
(iv) Ice states; parameters affecting ice strength and pressure, such as thickness

and floe size distribution.
For illustration purposes, we will use a somewhat simple, but distributed ice model
in this study. When employing a simple model in an ice observer structure, the
complexity is manageable, whereas continuous updates from measurements are
needed to keep the error drifts at bay. A major objective, which can be accomplished
with estimation techniques, is to optimally combine models and measurements.

5.1.1 Previous Work

As far as the authors are aware, there exist no published results on a mobile
sensor network for state estimation of level sea ice thickness. However, the more
general problem of mobile sensors in distributed parameter systems is addressed
in literature. Several different approaches have been investigated depending on the
specific objectives and constraints posed on the problem.

Optimization-based approaches use some kind of uncertainty measure of the
states in a region of interest to find efficient trajectories for the sensing devices.
These sensors reduce the uncertainty of the state estimates (see Choi et al. (2010);
Daescu et al. (2004); Majumdar et al. (2002); Palmer et al. (1998) and references
therein).

A drawback of optimization-based methods is the computational cost. For this
reason, several authors have investigated more computationally efficient algorithms
that are based on nonlinear control theory (see Burns et al. (2009); Demetriou
(2010); Demetriou et al. (2009, 2011) and references therein). In Demetriou et al.
(2011) state estimation of a spatially distributed process on a one dimensional
domain was illustrated using a Luenberger observer. A Lyapunov-based guidance
law steered mobile sensor agents, which had mass-spring-damper models, to reduce
the estimation error while simultaneously avoiding collisions. Lyapunov analysis
showed stability of the error dynamics.

5.1.2 Contributions

This paper establishes necessary assumptions for a spatially discretized continuity
equation, which describes level ice drift, to be applicable for the framework outlined
in Demetriou et al. (ibid.). Furthermore, it demonstrates that fully actuated mass-
spring-damper mobile sensors can be used to reduce the state estimation error.
Uniform global asymptotic stability of the overall system is shown.

5.2 Problem Formulation

5.2.1 Continuum Model

Suppose we have an open, connected set of interest Ω ⊂ R2. Let ∂Ω form the closure
of Ω, such that we have a closed set Ω̄ := Ω ∪ ∂Ω. The entity p = [x, y]T ∈ Ω̄ is
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the position of a unit volume, and u(t, p) : R≥0 × Ω̄ → R2 is the flux field of the
ice thickness h(t, p) : R≥0 × Ω̄→ R, both dependent on the location p and time t.
The level ice may be described by the continuity equation

∂h

∂t
+∇ · (uh) = Sh(t, p, h), (5.1)

where Sh : R≥0 × Ω̄ × R → R is a source/sink term describing the genera-
tion/destruction rate of the ice thickness. Assume that the velocity flux field u(t, p)
is known, which is a significant simplification, as the extra complexity of the mo-
mentum equation and the constitutive law is avoided.

Since we wish to simulate ice drift and the domain Ω̄ is a subset of the whole ice
floe, we propose to use mixed boundary conditions of Dirichlet and Neumann to
allow a realistic representation of the ice drift. Concretely, the Neumann boundary
conditions establish the possibility of ice to exit the domain, whereas the Dirichlet
boundary conditions supply the domain with new ice. Define two distinct sets
Σ1,Σ2 ⊆ ∂Ω such that Σ1 ∪ Σ2 = ∂Ω holds. The set Σ1 contains the Neumann
boundary conditions and Σ2 is the set with Dirichlet boundary conditions. We
want to have Neumann conditions whenever the flux field at the boundary has
a component in the same direction as the outward normal n : ∂Ω → R2 of the
boundary. The inner product uT(t, p)n(p) is used to determine the set where we
have Neumann boundary conditions as

Σ1 := {p ∈ ∂Ω : uT(t, p)n(p) > 0}, (5.2)

since u(p, t) and n(p) are column vectors. Then, ∀p ∈ Σ1 we have the normal
derivative

∂h

∂n
(t, p) = ∇h(t, p) · n(p) = κ(p), (5.3)

where κ(p) is a function describing the outward derivative. In the following we set
κ(p) = 0, which means that h(t, p) : p ∈ Ω is unaffected by h(t, p) : p ∈ Σ1. To let
Σ1 and Σ2 describe the whole set ∂Ω, we define the set where we have Dirichlet
boundary conditions as

Σ2 := {p ∈ ∂Ω : uT(t, p)n(p) ≤ 0}. (5.4)

For the Dirichlet condition, h(t, p) is defined ∀p ∈ Σ2 as

h(t, p) = ℘(p), (5.5)

where ℘(p) is a known function. An interesting property of this choice of mixed
boundary conditions is that we have time-varying sets, since the flux field u(t, p)
is time dependent and may change the sign of the inner product defining the two
sets Σ1 and Σ2.

Equation (5.1) can be written as an ordinary differential equation by using
spatial discretization

χ̇(t) = f(t, χ,U) + g(t, χ∂Ω,U), (5.6)

where χ(t) consists of spatially discretized values of h(t, p), χ∂Ω(t) is the boundary
values of h, and U(t) is a matrix function of corresponding velocities.
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We assume that the ice is (slowly) melting and use a simplified model for the
melting rate (Leppäranta, 1993)

Sh(h) = −a1
1

h+ a2
− a3, (5.7)

where a1, a2, a3 > 0. The melting rate is slow compared to the time horizon we
plan to investigate. Hence, (5.7) can be linearized such that (5.6) becomes a linear
time-varying system

χ̇(t) = A(t)χ+B(t)χ∂Ω, (5.8)

where U is incorporated through t.
For simplicity, we assume that Ω̄ = [0, Lx] × [0, Ly] with spatial discretization

step size dxy in both directions. With a carefully chosen domain size, we get r, c ∈ N
interior grid points in x and y direction, respectively, in the Cartesian coordinate
system. The thickness h(t, p) at the location pm,n = [mdxy, ndxy] is denoted χm,n.
The state vector is thus χ ∈ Rrc with the discrete thicknesses χm,n arranged in a
suitable ordering, for instance natural ordering (Kincaid et al., 2009).

5.2.2 Measurement Model for the Mobile Sensors

Measurements of the state variables χ are obtained using mobile sensor devices.
Let qi = [xi, yi]

T ∈ R2 be the time-varying position of a sensor. The measurement
operator for this sensor is defined as Ci : R2 → R4×rc. If we have N mobile sensors
and let q(t) = [q1(t)T, · · · , qN (t)T]T, the measurement vector can be written as

y(q(t)) = C(q)χ(t) =

 C1(q1(t))
...

CN (qN (t))

χ(t). (5.9)

Since the model uses spatially discretized grid points in Ω ⊂ R2, whereas the
sensors move continuously in R2, we choose to use weighting functions that describe
how the sensors measure the discretized process variables. The grid points may be
coarsely distributed, so the vehicles may spend considerable time relatively far away
from the grid points. We require the measurement operator C(q) to output weighted
pointwise measurements of the grid points in a neighborhood of the sensor positions.
The operator therefore consists of bounded weighting surfaces wm,n ∈ C2(R2,R)
for grid point (m,n) ∈ Ir1 × Ic1, where

Iba := {a, a+ 1, · · · , b}, a, b ∈ Z, (5.10)

and C2(R2,R) denotes the space of twice continuously differentiable functions with
domain R2 and codomain R.

Let xm = mdxy, yn = ndxy, and qm,n = [xm, yn]T. We require for a given
position qi ∈ Ω that ∀(m,n) ∈ Ir1 × Ic1

wm,n(qi) > 0 ⇐⇒ ‖qi − qm,n‖∞ < dxy. (5.11)

A consequence of this property is that a measurement at the location qi will in-
fluence at most the four closest discretized ice thickness grid points. Suppose qi is
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contained in the box formed by the grid points (pv,w, pv+1,w, pv+1,w+1, pv,w+1). Let
[a]i,j be an all-zero matrix with appropriate dimensions, except at index (i, j) where
the element is a. The measurement matrix Ci(qi) ∈ R4×rc can then be written as

Ci(qi) = [wv,w(qi)]1,(w−1)r+v + [wv+1,w(qi)]2,(w−1)r+v+1

+ [wv,w+1(qi)]3,wr+v + [wv+1,w+1(qi)]4,wr+v+1, (5.12)

where the weighting functions are indexed in correspondence with the ordering of
the state vector, namely natural ordering.

Since the weighting surfaces are bounded and of class C2, we have the following
properties for the measurement operator Ci(qi):

Ci(qi) ∈ C2(R2,R4×rc), (5.13a)
‖Ci(qi)‖ ≤ cw. (5.13b)

5.2.3 Problem Statement

The objective is to propose a state estimation scheme with a guidance law for the
mobile sensors such that the ice thickness estimates converge faster than a nominal
sensor network1. This problem is an application of the framework reported in
Demetriou et al. (2011) with some simplifications and modifications.

5.3 State Estimation with a Mobile Sensor Network

The state estimation and mobile guidance objectives can be approached using
a Lyapunov-based analysis of the closed-loop dynamics. We make the following
assumption:

Assumption 5.1. The system χ̇(t) = A(t)χ with a continuous and bounded A(t)
is globally exponentially stable.

Let Q(t) be a continuous, bounded, positive definite, symmetric matrix, that
is, ∀t ≥ 0

0 < c1I ≤ Q(t) ≤ c2I. (5.14)

Then, as a consequence of Assumption 5.1, the following properties hold (Khalil,
2002, Theorem 4.12):

Property 5.1. (i) There exists an L > 0 such that ∀t ≥ 0

‖A(t)‖ ≤ L. (5.15)

(ii) There exists a continuously differentiable, positive definite symmetric matrix
P (t) with

0 < c3I ≤ P (t) ≤ c4I (5.16)

that satisfies the matrix differential equation

Ṗ (t) + P (t)A(t) +AT(t)P (t) = −Q(t). (5.17)
1We denote a nominal sensor network as sensors following predefined trajectories.

89



5. State Estimation of Ice Thickness Distribution Using Mobile Sensors

5.3.1 Sensor Dynamics

Let qi ∈ R2 be the position of sensor i. The sensor dynamics of a single sensor can
be written as the 2-input-2-output system

q̇i(t) = ri, (5.18a)

ṙi(t) = M−1
i (−Di(ri)ri −Ki(qi)qi + ui), (5.18b)

where i ∈ IN1 , ri ∈ R2, and ui ∈ R2. Mi is a bounded, positive definite symmetric
matrix. Moreover, Di(ri) and Ki(qi) are all bounded, positive semidefinite sym-
metric matrices. The sensors are decoupled from each other, so we write the sensor
system compactly as

q̇(t) = r, (5.19a)

ṙ(t) = M−1(−D(r)r −K(q)q + u), (5.19b)

where the state vectors are q = col[q1, · · · , qN ], r = col[r1, · · · , rN ], and the system
matrices are block diagonal: M = bdiagi∈IN1 (Mi), D(r) = bdiagi∈IN1 (Di(ri)), and
bdiagi∈IN1 (Ki(qi)).

We want the mobile sensors to follow the reference trajectories defined ∀i ∈ IN1
by qr,i(t), written compactly as qr(t) = col[qr,1(t), · · · , qr,N (t)]. In addition, we
assume that these trajectories are sufficiently smooth, such that max{‖qr‖, ‖q̇r =
rr‖, ‖q̈r = ṙr‖} ≤ βd. We define the error coordinates

q̃(t) = q(t)− qr(t), (5.20a)
r̃(t) = r(t)− rr(t). (5.20b)

Lemma 5.1. The control law

u = Mṙr +D(r)rr +K(q)q −Kpq̃ −Kdr̃ + ũ(e, q̃), (5.21)

where Kp,Kd ∈ R2N×2N are user-defined, bounded, and positive definite symmetric
matrices, gives the closed-loop dynamics

˙̃q(t) = r̃, (5.22a)
˙̃r(t) = M−1(−D(r)r̃ −Kpq̃ −Kdr̃ + ũ(e, q̃)). (5.22b)

Moreover, the control law renders the system (5.22) uniformly globally stable when
ũ(e, q̃) = 0.

Proof. Choose the energy-based Lyapunov function

Vq(t, q̃, r̃) =
1

2
(r̃TMr̃ + q̃TKpq̃), (5.23)

which is positive definite, decrescent, and radially unbounded. The derivative of Vq
along the trajectories of the sensor system is given by

V̇q = 〈r̃,M ˙̃r〉+ 〈q̃, Kpr̃〉 (5.24)
= −〈r̃, D(r)r̃ +Kpq̃ +Kdr̃ − ũ〉+ 〈q̃, Kpr̃〉 (5.25)

= −r̃T(D(r) +Kd)r̃ + r̃Tũ(e, q̃). (5.26)
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If we let the perturbing signal be ũ(e, q̃) ≡ 0, the last term disappears and we get

V̇q(t, q̃, r̃) = −r̃T(D(r) +Kd)r̃ ≤ 0, (5.27)

and the conclusion follows.

Remark 5.1. Stronger results can be obtained by invoking Barbălat’s Lemma
(Loría et al., 2005), but this is not relevant at this point.

To accommodate the error coordinates in the measurement operator C(q), we
define a similar operator such that

C̄(q̃) = C(q). (5.28)

For simplicity we write C̄(q̃) as C(q̃) in the following analysis.
The boundedness and positive definiteness of the sensor matrices provide us

with the following properties that will be relevant later in this chapter.

Property 5.2. The upper and lower bounds of the system matrices are
(i) 0 < c5I ≤M ≤ c6I,
(ii) 0 ≤ c7I ≤ D(r) ≤ c8I,
(iii) 0 ≤ c9I ≤ K(q) ≤ c10I,
(iv) 0 < c11I ≤ Kp ≤ c12I,
(v) 0 < c13I ≤ Kd ≤ c14I.

5.3.2 State Estimator

Let the state estimator be a Luenberger observer:

˙̂χ(t) = (A(t)− L(q̃)C(q̃))χ̂(t) +B(t)χ̂∂Ω(t) + L(q̃)y(q̃), (5.29a)
χ̂(0) = χ̂0 6= χ(0), (5.29b)

with filter gain similar to the one proposed in Demetriou et al. (2011):

L(q̃) = CT(q̃)Γ, (5.30)

where Γ is a user-defined, bounded 4N × 4N positive definite symmetric matrix.
This matrix can be used as a weighting of how fast the model states should converge
to the measurements.

Assumption 5.2. The boundary function is perfectly known, that is, ∀t ∈ R≥0 we
have

χ̂∂Ω(t) = χ∂Ω(t). (5.31)

Define e(t) = χ(t) − χ̂(t) as the estimation error of the state estimator. The
error dynamics becomes

ė(t) = Acl(t, q̃)e, e(0) 6= 0, (5.32)

where Acl(t, q̃) = A(t)− CT(q̃)ΓC(q̃).
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Remark 5.2. We consider neither the error dynamics, nor the measurements to
be contaminated by noise. This is a significant simplification and in reality they
are both noisy due to modeling inaccuracies. In the case of white, zero mean,
and uncorrelated Gaussian process and measurement noise that are additive, the
Luenberger observer yields unbiased estimates (Demetriou et al., 2009; Simon,
2006).

Property 5.3. We have ‖Γ‖ < cΓ and from (5.13b) that ‖Ci(q̃i)‖ ≤ cw, so we
know that for some c15 > 0

0 ≤ CT(q̃)ΓC(q̃) ≤ c15I. (5.33)

The output estimation error is defined as

ε(t) =

 ε1(t)
...

εN (t)

 =

 C1(q̃1)e(t)
...

CN (q̃N )e(t)

 . (5.34)

5.3.3 Lyapunov-based Guidance Law

When constructing a guidance law for the state estimation problem, we consider a
Lyapunov function that consists of two terms

V (t, e, q̃, r̃) = Ve(t, e, q̃) + kγkqVq(t, q̃, r̃), (5.35)

where kγ , kq > 0. Consider

Ve(t, e, q̃) =
1

2
eTP (t)e− kγ

2
eTC(q̃)T︸ ︷︷ ︸
εT(t)

ΓC(q̃)e︸ ︷︷ ︸
ε(t)

(5.36)

as the composite Lyapunov function for the error dynamics. The motivation for
using this Lyapunov function is that the estimation error will be introduced in the
guidance law for the mobile sensors. Without loss of generality we assume that the
sensor dynamics is homogeneous, that is, each vehicle has the same dynamics. This
allows us to extract the scaling kq from the Lyapunov function and simplifies the
analysis. As we will see, this tunable gain accommodates an appropriate response
in the guidance law.

Lemma 5.2. Ve(t, e, q̃) is positive definite, decrescent and radially unbounded in
e.

Proof. Use (5.16) and (5.33) and choose kγ = c3−γ
c15

, where c3 and c15 are defined
in the mentioned equations, and 0 < γ < c15. The Lyapunov function satisfies

Ve(t, e, q̃) =
1

2
eTP (t)e− kγ

2
eTC(q̃)TΓC(q̃)e (5.37)

≥ 1

2
c3‖e‖22 −

kγ
2
c15‖e‖22 (5.38)

=
γ

2
‖e‖22 > 0, (5.39)
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which confirms that Ve(t, e, q̃) is positive definite in e and radially unbounded in e.
To show that it also is decrescent, use (5.16) and (5.33) once more to verify

Ve(t, e, q̃) ≤
1

2
c4‖e‖22 − 0, (5.40)

which concludes the proof.

Remark 5.3. Even though q̃ is part of the Lyapunov function, we do not require
V (t, e, q̃) to be positive definite for this variable at this point. Hence, we use the
terminology ‘positive definite in e’.

Lemma 5.3. The time derivative of Ve(t, e, q̃) along the trajectories of the estima-
tion error (5.32) is

V̇e(t, e, q̃) = −1

2
eTQ(t)e− eTP (t)CT(q̃)ΓC(q̃)e− kγεTΓ

∂ε

∂q̃
r̃. (5.41)

Proof. See Appendix.

Lemma 5.4. The perturbing guidance law

ũ(e, q̃) =
1

kq

∂εT(t)

∂q̃
Γε(t), (5.42)

which is Lipschitz continuous, renders the time derivative of the Lyapunov candi-
date function V (t, e, q̃, r̃) negative semidefinite.

Proof. Lipschitz continuity follows from (5.13a). The time derivative of the Lya-
punov function V (t, e, q̃, r̃) is

V̇ (t, e, q̃, r̃) = V̇e(t, e, q̃) + kγkqV̇q(t, q̃, r̃). (5.43)

Lemmas 5.1 and 5.3 are used to get

V̇ = V̇e + kγkqV̇q (5.44)

= −1

2
eTQ(t)e− eTP (t)CTΓCe− kγεTΓ

∂ε

∂q̃
r̃

− kγkq
(
r̃T(D(r) +Kd)r̃ − ũTr̃

)
(5.45)

= −1

2
eTQ(t)e− eTP (t)C(q̃)TΓC(q̃)e

− kγkq r̃T(D(r) +Kd)r̃ + kγ

(
−εTΓ

∂ε

∂q̃
+ kqũ

T

)
r̃.

(5.46)

Inserting the perturbing guidance law (5.42) into the above equation cancels the
last term and we get

V̇ = −1

2
eTQ(t)e− eTP (t)C(q̃)TΓC(q̃)e− kγkq r̃T(D(r) +Kd)r̃ ≤ 0, (5.47)

and the conclusion follows.
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5. State Estimation of Ice Thickness Distribution Using Mobile Sensors

The perturbing guidance law makes the mobile sensors move away from the
reference trajectories in the steepest ascent direction of the output estimation error.

Theorem 5.1. The closed-loop dynamics of the system (5.22) and (5.32) with the
perturbing guidance law of Lemma 5.4 is uniformly globally asymptotically stable.

Proof. In the following, we refer to the necessary conditions of Matrosov’s theorem,
which is stated in Paden et al. (1988, Theorem 1). Relevant bounds ci can be found
in (5.14), Properties 5.1, 5.2, and 5.3. Condition 1 is satisfied since V (t, e, q̃, r̃) is a
radially unbounded, positive definite and decrescent Lyapunov function.

Define V ∗(e, q̃, r̃) : Rrc × R2N × R2N → R as

V ∗(e, q̃, r̃) = −c1
2
‖e‖22 − kγkq(c7 + c13)‖r̃‖22 ≤ 0. (5.48)

Since
V̇ (t, e, q̃, r̃) ≤ V ∗(e, q̃, r̃), (5.49)

we conclude that Condition 2 is satisfied. Conditions 1 and 2 actually state that
the origin of the system is uniformly globally stable (UGS).

We propose the auxiliary function

W (t, e, q̃, r̃) = q̃TMr̃. (5.50)

Since the system is UGS, q̃ and r̃ are bounded. Furthermore, by Property 5.2 we
have that ‖M‖ ≤ c6, so ‖W (t, e, q̃, r̃)‖ is bounded and Condition 3 is fulfilled.

The time derivative of W (t, e, q̃, r̃) is

Ẇ = r̃TMr̃ + q̃T(−D(r)r̃ −Kpq̃ −Kdr̃ + ũ(e, q̃)) (5.51)

= r̃TMr̃ − q̃TKpq̃ − r̃T(D(r) +Kd)q̃ + q̃Tũ(e, q̃). (5.52)

Once again, since the system is UGS and the system matrices are continuously
bounded, and by recalling that ũ(e, q̃) is Lipschitz continuous, we conclude that
Ẇ (t, e, q̃, r̃) is continuous in all arguments and does not depend on t explicitly.
Hence, Condition 4’(a) is satisfied.

Define the set where V ∗(e, q̃, r̃) = 0 as

S = {(e, q̃, r̃) ∈ Rrc × R2N × R2N : V ∗(e, q̃, r̃) = 0}. (5.53)

We observe that in this set e ≡ 0, r̃ ≡ 0, and q̃ ∈ R2N . There exists a class K
function k(‖ col(e, q̃, r̃)‖) such that ∀(t, col(e, q̃, r̃)) ∈ R≥0 × S we have

|Ẇ (t, e, q̃, r̃)| ≥ k(‖ col(e, q̃, r̃)‖). (5.54)

More specifically, we choose

k(‖ col(e, q̃, r̃)‖) = c11‖q̃‖22 + ‖e‖22 + ‖r̃‖22, (5.55)

and can conclude that Condition 4’(b) holds.
Finally, by Property 5.1i) and the boundedness of the states and system matri-

ces, Condition 5 holds. All conditions of Matrosov’s theorem are satisfied and since
these conditions hold globally, we conclude that the origin is uniformly globally
asymptotically stable.
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5.4. Calculation of the Gradient

5.4 Calculation of the Gradient

The gradient ∂ε(t)∂q̃ is the Jacobian of the output estimation error and can be written
as

∂ε(t)

∂q̃
=


∂ε1
∂x̃1

∂ε1
∂ỹ1

· · · ∂ε1
∂x̃N

∂ε1
∂ỹN

∂ε2
∂x̃2

∂ε2
∂ỹ2

· · · ∂ε2
∂x̃N

∂ε2
∂ỹN

... · · ·
...

...
∂εN
∂x̃N

∂εN
∂ỹN

· · · ∂εN
∂x̃N

∂εN
∂ỹN

 . (5.56)

Unfortunately, this Jacobian is not immediately available because it depends on
the actual system that is being estimated. The authors of Demetriou et al. (2011)
state that “each sensing device only uses its own sensor to estimate its own output
estimation error ”. We adopt this assumption and consequently, we have that for
each sensor i ∈ IN1

∂εi
∂q̃i

=
[
∂εi
∂x̃i

∂εi
∂ỹi

]
∈ R4×2. (5.57)

Hence, the Jacobian is an upper block diagonal matrix

∂ε(t)

∂q̃
= bdiag

[
∂ε1
∂q̃1

, ∂ε2
∂q̃2

, · · · , ∂εN
∂q̃N

]
. (5.58)

Ideally, the gradient matrix ∂εi
∂q̃i

consists of a gradient vector for each of the four
closest output estimation error grid points for that particular vehicle. Approxi-
mations of these output estimation error gradient vectors can be calculated using
a four-pronged probe (Demetriou, 2007; Demetriou et al., 2011). This basically
means that each sensing vehicle provides four distinct measurements at any time,
that is, ∀j ∈ I41 we have pj ∈ R2 and the measurements C(pj)χ(t). Let 1a ∈ Ra be a
a-dimensional column vector of ones. We choose to estimate (5.57) with the steep-
est ascent direction of the spatial estimation error surface at the sensor positions,
that is, ∀i ∈ IN1 we have

∂εi(t)

∂q̃i
= 14 ⊗

∂h̃(t, p)

∂p

∣∣∣∣∣
p=qi

, (5.59)

where p = [x, y]T ∈ R2 is the spatial coordinate vector, h̃(t, p) = h(t, p)− ĥ(t, p) is
the spatially continuous error surface, and ⊗ is the Kronecker product.

The linear combination of the four measurement values provided by each probe
constitutes a value for that particular probe location. A spatial gradient vector is
approximated using the finite central difference in the x and y direction for these
probe values. We can write

∂εi
∂q̃i
≈ 14 ⊗

1

4

[
14 · (C(qi+∆x)−C(qi−∆x))e(t)

2‖∆x‖
14 · (C(qi+∆y)−C(qi−∆y))e(t)

2‖∆y‖

]T
, (5.60)

where ∆x = [δx, 0]T and ∆y = [0, δy]T with constants δx, δy > 0.
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Remark 5.4. Recall that the state estimator uses a measurement located at qi
for vehicle i. Since qi is the centroid of the four probe locations, it can be ap-
proximated by these probe measurements. Alternatively, each vehicle provides yet
another measurement at this location.

5.5 Numerical Example

5.5.1 Setup

We consider the region Ω̄ = [0, 600]× [0, 300] m2 with a spatial discretization step
size dxy = 50m, such that r = 11 and c = 5. Define a constant, uniform velocity flux
field u(t, p) = [0, 1]T ms−1. Following (5.2), we have Neumann boundary conditions
∀p ∈ R2 : p = [x, 300]T m, and otherwise Dirichlet boundary conditions, that is,
∀p ∈ Σ2 we let ℘(p) = 1m. By introducing a different Dirichlet boundary function
℘̂(p) = 0.8m in the observer, the process will be introduced to a continuous inflow
of estimation error χ̃∂Ω = 0.2m, and the error dynamics becomes

ė(t) = Acl(q)e(t) +B(t)(χ∂Ω(t)− χ̂∂Ω(t)︸ ︷︷ ︸
χ̃∂Ω(t)

). (5.61)

Suppose the initial discretized ice thickness state vector is

χ(0) = 1rc + v, (5.62)

where v ∼ N (0, 1
100 diag(1rc)) is a vector of independent zero mean Gaussian

random variables. Further, let χ̂(0) = 0.8 · 1rc m. We choose a uniform and linear
sink term Sh(h) = −10−7h ms−1.

Measurement Model

We implement the weighting surfaces wm,n ∈ C2(R2,R) for all (m,n) ∈ Ir1 × Ic1 as
bilinear interpolations. Define the values

wm,n(qm,n) = 1, (5.63a)
wm,n(qm±1,n±1) = 0, (5.63b)

such that wm,n(p) becomes

wm,n(p) =



(x−xm−1)(y−yn−1)
(xm−xm−1)(yn−yn−1) , (x, y) ∈ [xm−1, xm]× [yn−1, yn]

(x−xm)(yn−y)
(xm+1−xm)(yn−yn−1) , (x, y) ∈ [xm, xm+1]× [yn−1, yn]

(xm−x)(y−yn)
(xm−xm−1)(yn+1−yn) , (x, y) ∈ [xm−1, xm]× [yn, yn+1]

(xm+1−x)(yn+1−y)
(xm+1−xm)(yn+1−yn) , (x, y) ∈ [xm, xm+1]× [yn, yn+1]

0 , otherwise.

(5.63c)

This weighting surface is basically a square pyramid with apex at the grid point
(m,n). To illustrate, consider a cross section through a sensor’s position qi =
[qx, w · dxy]T along the x-axis. Fig. 5.1 depicts the weighting of the neighboring
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Figure 5.1 The neighboring grid points of the vehicle are measured with the spec-
ified weights.

grid points. The chosen weighting surface does not satisfy the twice continuously
differentiable requirement. Therefore, the perturbing guidance law is not Lipschitz
continuous. This is more a technical problem than it is practical, as it is most
likely possible to construct a sufficiently smooth weighting surface that is almost
identical to the one chosen here.

Mobile Sensor Dynamics

We choose a homogeneous sensor network consisting of N = 2 sensors. The sensors
are modeled as two independent mass-spring-damper systems in x and y direction,
respectively. The closed-loop dynamics of sensor i is thus

˙̃qi = r̃i, (5.64a)

˙̃ri = −
[
k
m 0
0 k

m

]
q̃i −

[
d
m 0
0 d

m

]
r̃i +M−1ũi(e, q̃). (5.64b)

The input ũi is part of the perturbing guidance law of Theorem 5.1. If we let ũi = 0,
we get the nominal sensor network, that is, the guidance law depends only on a
predefined trajectory. We choose elliptic reference trajectories

qr,i(t) =

[
px,i +Rx cos(ωt)
py,i −Ry sin(ωt)

]
, (5.65)

where relevant parameters are given in Table 5.1. The estimator gain matrix Γ is
chosen as

Γ = diag(14N ). (5.66)

5.5.2 Results

The system was simulated for 300 s in Matlab® using the ode15s solver. The sim-
ulation was performed using both gradient-based and nominal guidance laws. Fig.
5.2 displays snapshots of the state estimation error in the simulated region at the
times t = {0, 100, 300} s for the case of gradient-based guidance law. In addition,
the figures show the traveled paths of the moving sensors. In Fig. 5.3 it can be
observed that the state estimation error norm ‖χ(t) − χ̃(t)‖2 becomes smaller in
the case of gradient-based guidance compared to the case of nominal trajectories.
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Table 5.1 Parameters for mobile sensors.

Parameter Value Unit

m 30 kg
px,1, py,1 150, 150 m
px,2, py,2 450, 150 m
Rx 100 m
Ry 50 m

Parameter Value Unit

ω π
50

rad s−1

k 2π2

15
kgm−2

d 2π kg s−1

δx 100
3

m
δy 100

3
m

kq 7 · 10−7 -
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Figure 5.2 Snapshots of the state estimation error surface including executed tra-
jectories.
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Figure 5.3 The norm of all the discrete state estimation error values as a function
of time. The reason why the error norm fails to converge to zero is due
to the error in the boundary conditions, which is not assumed in the
analysis.

5.6 Discussion

The guidance law of Theorem 5.1 consists of a term guiding the vehicles in the
direction of increasing estimation error. Since the grid points of the discretized
process have a coarse resolution, the length scales of the probe measurements need
to be sufficiently large in order to get an appropriate response. This introduces the
additional complication of determining appropriate length scales to obtain good
approximations of the error gradients. Recent work on this problem is reported in
Court et al. (2012).

The analysis proves uniformly globally asymptotically stable error dynamics.
To make an illustrative relevant example, an error is introduced through an un-
derestimated boundary vector χ̂∂Ω. Thus, χ̃∂Ω 6= 0, which was assumed zero in
the analysis. Furthermore, the melting process also contributes to the convergence.
This process is very slow compared to the speed of the flux field in relation to the
simulated region. Consequently, convergence to zero of the state estimation error
is not achieved within the region of interest.

Even though the gradient-based estimation scheme displays better performance
compared to the case of nominal trajectories, more sophisticated paths can most
likely be constructed such that it results in a smaller state estimation error. This
is especially true if knowledge about the flux field is utilized in the path planning.

A weakness in the proposed approach is that certain states may remain un-
visited. The guidance law only guides the mobile sensors using the local error
gradients. In general, the error surface is non-convex, so error regions might not
be visited. Also, the spring forces of the mass-spring-damper system may domi-
nate the gradient-based force when the mobile sensors are far from their reference
trajectories.

A collision-free operation is not guaranteed. One advantage of the Lyapunov-
based guidance law is that it can be extended with additional objectives. More
concretely, as reported in Demetriou et al. (2011), by introducing yet other energy-
like signals in the Lyapunov function, the sensors can repel each other and thereby
avoid collision. However, adding too many simultaneous objectives may result in
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responses that counteract the individual objectives.
In real-world applications wireless mobile sensor networks do experience loss of

communication, delay and corruption in measurements, et cetera. The proposed
approach is computationally efficient and can probably be implemented in a partly
decentralized manner. This may reduce the need for continuous communication
between the individual sensing agents. Still, this challenge is of major concern with
respect to the robustness and safety of the estimation scheme.

5.7 Conclusion

We have investigated a scheme for estimating the ice thickness distribution of an
ice cover. The mobile sensor network was controlled using a gradient-like guidance
law that steers the mobile sensors in the direction of increasing state estimation
error. Numerical simulations demonstrated an improved performance compared to
a nominal sensor network.

Simulations also show that the underestimated boundary conditions signifi-
cantly impact the estimation performance. By extending this estimation scheme
to also estimate the boundary parameters, an improved estimation performance
is predicted. This topic is considered as an interesting extension to the presented
result.

5.A Proof of Lemma 5.3

Proof. For simplicity, we omit the arguments of the states and operators. The time
derivative of the Lyapunov function Ve(t, e, q̃) is

V̇e =
1

2

{
〈ė, P e〉+ 〈e, Ṗ e〉+ 〈e, P ė〉 − 2kγ〈ε̇,Γε〉

}
. (5.67)

We use the matrix differential equation in Property 5.1ii and (5.32) to get

V̇e =
1

2

{
〈Acle, Pe〉+ 〈e,−(PA+ATP +Q)e〉+ 〈e, PAcle〉 − 2kγ〈

∂ε

∂q̃
˙̃q,Γε〉

}
.

(5.68)

Recall that Acl(t, q̃) = A(t)−C(q̃)TΓC(q̃). By appreciating that P (t) is symmetric,
we can write

〈CTΓCe, Pe〉 = 〈e, PCTΓCe〉. (5.69)

Moreover, we observe that some terms cancel, so the time derivative of Ve simplifies
to

V̇e = −1

2
〈e,Qe〉 − 〈e, PCTΓCe〉 − kγ〈

∂ε

∂q̃
˙̃q,Γε〉, (5.70)

or equivalently (using ˙̃q = r̃)

V̇e(t, e, q̃) = −1

2
eT(t)Q(t)e− eTP (t)CT(q̃)ΓC(q̃)e− kγεTΓ

∂ε

∂q̃
r̃. (5.71)
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Conclusion

In this thesis, we have acknowledged the possible benefit of aerial ice observation
as a supporting activity in cold regions offshore operations. In Chapter 1, we iden-
tified two different ice monitoring tasks, which were solved as target tracking and
dynamic coverage control problems in later chapters. We have investigated the vi-
ability of using unmanned aerial vehicles as remote mobile sensors for various ice
features in Chapter 2, and concluded that useful instrumentation for small air-
craft is possible. The theoretical contributions include path planning designs with
practical applications and experimental results.

In Chapter 3, the aerial monitoring of moving surface objects was formulated as
a target tracking problem. A nonlinear programming approach used each object’s
state and parameter estimation error covariance dynamics as a basis for some in-
formation measure when minimizing the object system’s uncertainty. The resulting
paths were collision-free, feasible with respect to given maneuverability constraints,
and remained within a convex mission domain. A hybrid field experiment success-
fully demonstrated the functionality of the path planning design.

Regional monitoring of a spatially distributed process has been analyzed in
Chapters 4 and 5. The tasks were identified as dynamic coverage control prob-
lems and approached in two different ways: the nonlinear programming approach
in the former chapter, and control theory design in the latter. The nonlinear pro-
gramming approach enjoyed the same benefits as when solving the target tracking
problem: respecting vehicle maneuverability constraints, staying inside a convex
mission domain, and planning paths according to some spatial information reward
dynamics.

With the control theory design approach we were able to show uniform global
asymptotic stability (under some restricting conditions) of the combined mobile
sensors path tracking and distributed parameter system under observation. The
approach used gradient-based guidance signals that were based on local state esti-
mation errors. These perturbing signals may give infeasible commanded behavior
and are not designed for nonholonomic vehicle dynamics. This approach relied on
predefined paths that were subsequently perturbed, but collision avoidance and
mission domain compliance were not included in the formulation. Future work in
this direction include removing the above limitations in the guidance law. It may
also be interesting to relax the restricting conditions, namely adding parameter
estimation of the boundary conditions and not assuming an asymptotically stable
distributed parameter system. Dynamically changing the predefined paths is also
expected to improve the monitoring performance.
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Conclusion

The path planning designs show promise as sophisticated approaches in solving
the defined monitoring tasks. Nevertheless, as briefly mentioned in Chapter 1.2,
there are numerous challenges that need to be addressed before any commercial
product even think of employing the designs in any monitoring system. The nonlin-
ear programming approach suffer from the curse of dimensionality, so simplifying
measures have been initiated to retain real-time solutions. The receding horizon
approach help in creating optimization problems that solve in timely manners. The
length of the optimization time interval can be adjusted to give a trade-off between
solve times and greediness of the resulting paths. More specifically, the longer the
horizons, the less greedy the planned paths are in general. A terminal constraint
is commonly introduced to mitigate the greedy behavior. In our problems, how-
ever, we have not been successful in robustly and sufficiently reducing greediness
for short horizons. Besides, when either the number of sensors or the size of the
environment under surveillance increases, the optimization problem size grows ac-
cordingly. At some point it is very difficult to produce real-time paths with desired
behavior and necessary frequency of re-planning. Future work may include mitigat-
ing these issues by somehow reformulating the problem, perhaps by decomposing
the problem into smaller ones that can be solved in parallel.

Possible Future Research Directions for Aerial Ice Observation

This thesis only considered a small part of the collective activity of aerial ice
observation. Numerical solutions to the proposed path planning designs indicate
that real-time capability may be displayed, but only if the size of the monitored
environment and number of unmanned vehicles both are kept relatively small.
Thus, to fully enjoy the capabilities of the developed algorithms, they must be
implemented with care. This includes providing the path planners with deliberately
designed tasks that take the limitations into consideration. This restriction may
indicate that a higher-level intelligent activity should be responsible for assigning
tailored tasks. This activity is part of dynamic mission planning, which was defined
in Chapter 1. In general, dynamic mission planning involves human operators that
are responsible for allocating top-level missions and monitoring the results. An
interesting future research activity may be on an intermediate level: given a complex
mission that consists of many different tasks, how can these tasks be partitioned
into smaller objectives and distributed among available resources, for instance a
limited pool of unmanned aerial vehicles. In this setting, the intermediate logic is
responsible for dynamically manipulating the lower-level path planning activity,
like those presented herein, so that the complex mission completes successfully.
Rowaihy et al. (2007) may serve as a starting point for this activity.
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