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0.1 Problem Description

Project title: Optimization of the control system software for the multifunctional robotic device
Schunk PG-070.

Trivial friction forces caused by gears, grit and material dynamics are a problem for robotic
mechanisms.
An adaptive controller is to be implemented and tested on the Schunk PG-70 gripper, to com-
pensate for this friction and help with accurate positioning control.

Assignment given: 6. January 2014
Supervisor: Anton Shiriaev, ITK

0.2 Preface

This thesis presents the work done during the spring of 2014 as a part of my Master of Science
degree at the department of Engineering Cybernetics at the Norwegian University of Science
and Technology (NTNU). It is a continuation of my project in TTK4550, and focused on the
Schunk Pg70 robotic gripper.

I would like to thank my supervisor, Anton Shiriaev, his assistance has been invaluable and
his patience astounding.

I would also like to thank Anton Pyrkin for many hours of assistance at the lab both dur-
ing the TTK4550 project and continuing through my thesis, as well as Stepan Pchelkin for
assistance and patience at the lab.
Thank you.

Anders Ringstad
Trondheim, June 30, 2014
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0.3 Summary

The objective of this thesis was to implement an adaptive controller developed by Anton Shiriaev
and Anton Pyrkin, to compensate for the friction forces found internally in the Schunk PG-70
robotic gripper. The goal was to implement the adaptive controller as part of a position control
system.
A brief introduction to the gripper, the IRB140 robot and the robot programming suite, as
well as mentions of some of the more important stability analysis methods used in proving the
controller effectiveness.
The next part describes the implementation in RAPID code, followed by the results when the
program was tested on the gripper. Due to the gripper malfunctioning, further tests had to be
done via simulation.
The results show the potential limitations of real-time control via RobotStudio and RAPID,
while showing that the adaptive controller does have the desired effect on the simulated gripper.
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Chapter 1

Preliminaries

Some relevant topics concerning the rest of this report will be introduced here. These topics
include information about the PG-70 gripper along with its hardware and software requirements,
information about the ABB IRB140 robot, as well as the IRC5 robot controller and RobotStudio.
A few words will also concern the topic , of stability of dynamic systems. The introductions will
be necessarily brief, and the reader is advised to read Robust Adaptive Control [2] by Ioannou
and Sun, Robot Modeling and Control [4] by Vidyasagar, Spong and Hutchinson, Modeling and
Simulation for Automatic Control [3] by Egeland and Gravdahl, as well as [6], [9] and [7] for
more in-depth information on these topics.

1.1 Schunk PG-70 Gripper

The Schunk PG-70 robotic gripper is a servo-electric, 2-finger parallel gripper intended to grip
and to reliably hold objects. Both fingers are connected to one brushless DC-motor through a
spindle, allowing for a conversion of the rotational motion of the motor to the linear motion of
the fingers. The single motor does not allow for independent control of each finger. Control
circuitry along with an encoder and a communications interface, allow for direct control of the
gripper finger position.
The module also supports direct control of the applied current, allowing for custom controllers
to be developed for position and/or force control. The communications interface allows the
module to send and receive data over RS-232, CAN-Bus and PROFIBUS-DP. PROFIBUS-DP
is used for communication throughout this project.
Communication between the module and its controller is dictated by a protocol set down by
the manufacturer, the Schunk Motion protocol. This protocol dictates the data formats and
message structures required for communication with the gripper.

1.1.1 Data Format

Data is represented in floating point values according to the IEEE ”Standard for Binary
Floating-Point Arithmetic” (IEEE 754). Each number is represented by a 32 bit value

consisting of three parts;

Mantissa (23 bits) Exponent (bit 8 bits) Sign (1 bit)

f e s

and are calculated by the formula;

(−1)s ∗ 2e−127 ∗ (1.f)bin
All data sent from the gripper will also be of the ”little Endian” format, meaning the least

significant byte of the data is stored in the lowest memory address allocated in the memory.
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Figure 1.1: The Schunk PG-70 gripper

Negative numbers are represented by the two’s complement method with a leading 1 (sign bit),
positive numbers with a leading 0. Data sent to the gripper must also conform to these properties
to be interpreted correctly.

1.1.2 Data Frames

Data frames of the Schunk Motion protocol consist of a D-Len segment (1 byte) indicating the
length of the data frame, a command code byte specific to the command issued or responded
to, as well as a parameter segment containing required or optional parameters specific to the
command byte. Commands are acknowledged by the gripper with a response message upon
being received.

Response messages are usually sent as acknowledgements to commands from the controller or as
periodic updates if requested, but impulse messages are generated and sent in the case of errors
or the module not being able to complete a command. Using PROFIBUS-DP, some limitations
are placed upon the structure and size of the data frames. The master/controller can only send
data packets of 8 bytes or less, while the gripper can send packets of 16 bytes or less. Two
bytes of response messages sent are also reserved for module state information and a message
counter to facilitate the integrity of the communication. The protocol supports fragmentation
of messages too large to fit the previously mentioned limitations. For more in-depth information
on the Schunk Motion protocol the reader is directed to [6].
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1.1.3 Command/Response Example

As an example of sending a command and receiving a response, consider the MOVE POS (0xB0)
command.

- D-Len Cmd Parameters Description

M → S 0x05 0x0B 0x00 0x00 0x20 0x41 Move to position 10.0

S ←M 0x05 0xB0 0xCD 0xCC 0x04 0x41 Position reached in 8.3 sec.

This example

illustrates the use of the D-Len segment, the command codes, as well as how parameters are
represented when sent to the gripper.

1.2 IRB 140 Industrial Robot and IRC5 robot controller

The gripper is mounted as the end effector on an IRB 140 Industrial Robot from ABB. The
robot has six axes, and can handle payloads up to 6kg. Controlling the robot is a IRC5 robot
controller cabinet, also from ABB. The IRC5 contains all the control (main computer, I/O
boards and memory) and power electronics needed by the robot. IRC5 controllers come paired
with a remote controller called a FlexPendant. This is a handheld device designed to operate
the controller without having a direct network connection to the controller through a desktop
computer. It also allows for easily testing programs and controller code on the gripper attached
to the robot.

1.2.1 RAPID Programming Language

RAPID is a high level programming language designed by ABB for use in controller applications
for ABB robots.
Programs in RAPID are divided into modules, which can be either loaded or unloaded during
runtime. Each program consists of several module files as well as a single file detailing the
relationship between the modules.
For detailed information on syntax and semantics of the RAPID language, the reader is directed
at the manuals [8] [9] [7]. The manuals contain details and examples not given here, as well as
several routines and procedures used for controlling the robot itself.

1.2.2 RobotStudio

RobotStudio is a collection of software from ABB allowing for programming and simulation of
both real and virtual ABB robots connected to a PC. This software is the main tool used for the
design of the gripper controller as well as the required communications interface. The software
allows the user to specify digital and analog I/O signals used to communicate with the gripper.
Commands written to the specified output addresses are sent to the gripper, and responses can
be received by reading the corresponding input signals. Included in RobotStudio is a software
package called ScreenMaker which allows for drag-and-drop design of GUI applications for the
FlexPendant as well as binding variables from the GUI application to variables or objects in the
RAPID code running on the controller.

1.3 Stability

Lyapunov theory concerns the stability of dynamical systems, and seek to make conclusions
about system trajectories without solving the actual differential equations.
A Lyapunov function V (x) can often be seen as a generalized energy function for the system in
question.

Lyapunovs direct method [4][p.455] and the Meyer-Kalman-Yakubovich (MKY) Lemma are
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both useful tools for analysing the stability properties of the dynamical systems in this report.
The Meyer-Kalman-Yakubovich (MKY) Lemma [2][p.129] is a useful lemma to help in the choos-
ing of Lyapunov functions or Lyapunov-like functions for systems with LTI and nonlinear parts.
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Chapter 2

Adaptive Controller design for the
Schunk PG-70 gripper

Presented below is a quick overview of the model used for the gripper, as well as the controller
to be implemented. The controller itself is designed by [1], and all proofs along with further
details can be found there. The gripper is modelled as a second-order linear model, representing
a mechanical system with dry and viscous friction.

m(t) = u(t) + F(2.1)

In this model, y ∈ R1 is the output, u ∈ R1 is the control input, m is the inertial parameter,
F ∈ R1 is the friction force

F = −σ sign(ẏ(t))− µẏ(t),

with σ being the coefficient for dry friction and µ being the coefficient for viscous friction. sign(q)
is a multivalued function;

sign(q) =


−1 q < 0
1 q > 0
ϑ q = 0

.

where ϑ belongs to the interval ϑ ∈ [ϑ−;ϑ+].

A full state feedback control law is to be designed so that all trajectories of the closed
loop system are bounded , and convergence to zero for the output variable and its derivative,
limt→∞ y(t) = y0 and limt→∞ ẏ(t) = 0.
y0 is here assumed to be equal to zero, however in the implemented controller the variable y
will instead represent the positional error between the reference position and the actual gripper
position.
ϑ− = −1 and ϑ+ = 1 is also assumed.
The control law is chosen as;

u(t) = −k1v(t)− k2y(t)− k3ẏ(t) + ϕ(c1v(t) + c2y(t) + c3ẏ(t))
v̇(t) = α1v(t) + α2y(t) + α3ẏ(t).

(2.2)
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For parameters α1 = 0, α2 = 1, α3 = 0, c1 < 0 and ϕ chosen as

ϕ(z) = σϕ0(z)

ϕ0(z) =


−1 z < 0
1 z > 0
0 z = 0

.

the stationary set Λ of the closed loop system is v = 0, y = 0 and ẏ = 0, which reflect the
desired state variables of the closed loop system.

The resulting model of the closed loop system can now be expressed as;

ẋ(t) = Ax(t) +Bw(t)

x(t) being the vector xT = [v, y, ẏ],

A =

 0 1 0
0 0 1

−k1
m −k2

m −k3+µ
m

 , B =

0
0
1


w(t) = ϕ(c1x1(t) + c2x2(t) + c3x3(t))− σsign(x3(t)).

The control law (2.2) with parameters as specified earlier as well as in equations (31)-(36)
in [1] can be shown to guarantee that the system is asymptotically stable.

Choosing

c1 = −1, c2 = −ρ1, c3 = −ρ2,
k2 = ρ1k1, k3 = ρ2k1

with ρ1, ρ2 > 0 being coefficients set by the user.
Since the control law 2.2 is dependent on system parameters to be known a priori, a set

of equations are developed to estimate these parameters. This gives the completed adaptive
controller to be implemented to the gripper control software;

u(t) = k̂z(t) + σ̂(t)ϕ0(z(t))
˙̂
k(t) = γ1z

2(t)
˙̂σ(t) = γ2z(t)ϕ0(z(t))
z(t) = −ρ2ẏ(t)− ρ1y(t)− v(t)

(2.3)

It is proven in [1] that this controller assures that output variables y(t) and ẏ(t) goes asymp-
totically to zero along with k̂(t), σ̂(t), the estimated values of k1 and σ converging to some
constants.
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Chapter 3

Adaptive controller implementation

The gripper itself has a nontrivial amount of friction due to the physical interaction of the
different parts and mechanisms. This can stem from gears, dirt and grit in the mechanism or
from the DC-motors themselves, as well as general static friction between sliding materials. The
plots below highlight the problem with these friction forces. Figure 3.1 is a simulation of a
Simulink model built on (2.1) combined with a simple PD controller. The resulting plots show
how when the gripper position gets close to the reference position, the control input calculated
becomes too small to overcome the friction forces present in the gripper, and the gripper stops
moving, while the control input remains at a nonzero value, unable to move the gripper fingers.

Figure 3.1: Simulated PD-controller, position y(t)

The adaptive controller was implemented in RAPID on the IRC5 robot controller connected
to the gripper. Following the work of Anton Pyrkin and Anders Ringstad in [5], an interrupt
based controller was deemed to be the best solution, as this allows for high priority of the control
calculations. Except for setting the position reference input to the controller, the program does
all its work during trap routines triggered by periodic interrupt signals. RAPID itself limited
the frequency of these interrupts to 10Hz, as to not overflow the interrupt queue and drop mes-
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Figure 3.2: Simulated PD-controller, position error y(t)− y0

sages. Depending on the calculations performed during the interrupt, the possible frequency was
determined to be somewhere between 5 and 10Hz, as the program would send an error message
and stop if overflow of the interrupt queue was detected. Some approximations were also made
specifically for the RAPID implementation, as the controller depended on v(t) the integral of
the output variable y(t). The integral was approximated by accumulating the approximated
definite integral between controller time-steps. A trapezoidal rule approximation was used, as
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Figure 3.4: Simulated PD-controller, control input u(t)

this calculation has low time- and data complexity. Other, more precise approximations were
briefly tested, but could not reliably run without dropping interrupt messages.
The main module (MainModule.mod) contains the main procedure, which is run when the pro-
gram is started. The main procedure connects connects the control and logging trap procedures
to timers, allowing them to be called periodically in the background. The gripper then executes
a position movement (controlled by the grippers internal software), and a command is sent to
the gripper to update its state (position, velocity) with a given frequency. The desired reference
position is set and the adaptive controller started. The main procedure then goes into an infinite
loop, letting the interrupts handle the control.
When the timer for the controller triggers, an interrupt is sent and the corresponding TRAP
procedure is run. The InterruptController.mod contains the procedure for calculating the grip-
pers control input. Each time the TRAP procedure is run, state data sent from the gripper is
read and saved to variables in the RAPID program. These values are then used for the required
approximations and calculations. It is important to notice that the value being fed into the con-
troller the grippers position, is actually the positioning error relative to the reference position.
The controller attempts to drive this error to zero, resulting in a tracking controller.

A rough relation between the applied current and the force measured over the jaw of the
gripper was found, F = 0.01u giving the best results. The log file TRAP procedure contains
the necessary code to log signal data to a file, to be imported to MATLAB later.
The GripControl module contains the procedures responsible for sending commands to the grip-
per, while GripGetState.mod handles the conversion of the data received from the gripper. For
a more detailed description of the sending and receiving of commands, the reader is referred to
chapter 2 in [5], detailing the functionality of the procedures in GripControl and GripGetState,
as well as an explanation of the digital I/O address system used to communicate with the grip-
per. Figure 3.5 shows the general relationships between each of the modules in the program.
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Figure 3.5: How the modules of the program work together

In the interest of easier interaction between the user and controller, a sample GUI was
designed in ScreenMaker that allows for basic control of the controller properties through the
use of the touch screen on the FlexPendant. The use of this however proved to be of little to no
use in the current situation, as switching between the gripper own position movement control
and the implemented adaptive controller is not possible without severely modifying the controller
program. Figures 3.6, 3.7 show screenshots from the sample GUI run on a virtual FlexPendant in
RobotStudio. It was designed by dragging and dropping the various components into the scene,
and connecting each of them to a variable in the GUI application, called Application Variables in
RobotStudio. The application variables were then connected to corresponding persistent (PERS)
variables in the RAPID program, and were set to update the RAPID variables whenever changes
occurred in the application variables (i.e. when the user inputs new values). The application
file is not included in the report because it does not work with the controller program described
in the report. It should however be relatively simple to reproduce a similar GUI application for
use with a with a fitting RAPID controller program.

Figure 3.6: Screenshot of the sample GUI application interface
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Figure 3.7: Screenshot of the sample GUI application interface
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Chapter 4

Experiment Results

The first tests of the controller program showed severe instability, with strong oscillations in the
calculated control input resulting in unstable oscillations in the position of the gripper. Figures
4.1-4.6 show the initial results of the controller.

There are several factor potentially contributing to the poor performance of the controller,
mainly the frequency updating the control input, the integral approximations and the general
structure of the parameter estimations. The estimation of k̂ in (2.3) consists of integrating a

squared variable, resulting in
˙̂
k ≥ 0. Any digital error or noise introduced into this equation

will most likely result in aggressive and potentially unbounded growth. This in turn would
drive the control output higher as it depends on the calculation of k̂ as a controller gain. This
could be solved by modifying the adaptive scheme and proving some convergence to zero for the
derivative of k̂, but a simpler potential solution would be to set upper bounds on the estimated
parameters, giving the controller functionality similar to very basic projection. While projection
typically is based on knowledge of the plant parameters and their potential bounds are located.
It should however also be possible to tune these boundaries as one would a controller parameter,
and through this get the desired results from the controller.
This very basic bounding of the estimated parameters was implemented into the controller code,
but due to the gripper malfunctioning, further tests concerning the controller could not be made
with the physical gripper.

To test the new controller, a Simulink model of the gripper with the modified controller was cre-
ated. The model was based on the equations (2.3), but was modified with some new constraints
to achieve behaviour similar to the gripper. The position and control input was run through a
saturation block to limit the amplitude of the signals to what the gripper was able to achieve.

By setting the simulations time-step to a fixed 10Hz, performance similar to the physical
gripper was produced. The results (Figures 4.7-4.13) show the same kind of instability and pa-
rameter growth, albeit ordered, perhaps due to better integral approximations and less potential
for noise and disturbances.
Introducing the parameter bounding to the model resulted in a response fairly similar to the
original, but the oscillations are not as strong and more closely grouped around the reference
position. The bounding of the parameters removed the unboundedness of the control input,
with it now being oscillating within a bounded interval. This is an improvement, however a very
small one.

The first significant difference is seen when raising the frequency of the solver to 100Hz.
This seems to result in a stable response with the desired behaviour exhibited by the output
variables (Figures 4.14-4.20). Both y(t) − y0 and ẏ(t) converges to zero (or very close to zero)
asymptotically, the speed of the convergence dependent on the controller parameters ρ1 and ρ2.

The simulated gripper does not converge exactly to the reference position, but this result is
a significant improvement of the ordinary PD-controller results.

Figure 4.20: Simulation with fixed time step 0.01s, control input u(t)
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Figure 4.1: Test with real gripper, position y(t)

Figure 4.2: Test with real gripper, velocity ẏ(t)
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Figure 4.3: Test with real gripper, integral of position v(t)

Figure 4.4: Test with real gripper, parameter k̂(t)
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Figure 4.5: Test with real gripper, parameter ˆsigma(t)

Figure 4.6: Test with real gripper, control input u(t)
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Figure 4.7: Simulation with fixed time step 0.1s, position y(t)

Figure 4.8: Simulation with fixed time step 0.1s, velocity ẏ(t)
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Figure 4.9: Simulation with fixed time step 0.1s, positioning error y(t)− y0

Figure 4.10: Simulation with fixed time step 0.1s, integrated position v(t)
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Figure 4.11: Simulation with fixed time step 0.1s, parameter k̂

Figure 4.12: Simulation with fixed time step 0.1s, parameter ˆsigma
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Figure 4.13: Simulation with fixed time step 0.1s, control input u(t)

Figure 4.14: Simulation with fixed time step 0.01s, position y(t)
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Figure 4.15: Simulation with fixed time step 0.01s, velocity ẏ(t)

Figure 4.16: Simulation with fixed time step 0.01s, positioning error y(t)− y0

26



Figure 4.17: Simulation with fixed time step 0.01s, integrated position v(t)

Figure 4.18: Simulation with fixed time step 0.01s, parameter k̂
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Chapter 5

Conclusions and Further Work

The results clearly show that the implementation of an adaptive controller helped to compen-
sate for the friction in the gripper, and thereby more accurate positioning control was achieved.
However, the results also show that the success of the controller is somewhat dependent on the
implementation. Software limitations on update timers, rough approximations and the potential
of noise and disturbances, make choosing the correct platform or technique for implementation
very important for the effectiveness of the solution. The simulations seem to show the effective-
ness of the adaptive controller, but as always they are only simulations, and not subject to the
hazards of physical testing.
The controller itself showed good results in the simulation, but improvements might be made
by attempting to make it less dependent on the integral and derivative of the output variable,
as these are often calculated, and with calculation comes potential errors and approximations.
Seeing the apparent limitations of the RAPID control program, means better and easier solu-
tions might be found in other software/hardware suites. It should also be noted that it might be
possible somehow to find another method of driving a control loop via RobotStudio and RAPID,
that is not subject to the limitations of the interrupt system.
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Appendix A

Code

A.1 MainModule.mod

1 MODULE MainModule
2 var iodev l o g f i l e ;
3 var c l o ck c l o ck prog ;
4 PERS num p o s r e f ;
5 PERS num pos move ;
6 var num s t a r t f l a g :=0;
7 var num l o g s t a r t :=0;
8 VAR s t r i n g f i leName ;
9

10 PROC main ( )
11 var num stop button := 0 ;
12
13 f i leName := CDate ( ) + ” ” + StrMap ( CTime ( ) , ” : ” , ”−”) + ”

Anders ” ;
14
15
16 ! Manage t imer i n t e r r u p t i o n (may not be l e s s than 0 .1

sec )
17
18 CONNECT t i m e i n t c o n t r o l WITH c o n t r o l l a w ;
19 ITimer 0 . 1 , t i m e i n t c o n t r o l ;
20
21 CONNECT t i m e i n t l o g WITH l o g f i l e ;
22 ITimer 0 . 1 , t i m e i n t l o g ;
23
24 Open ”HOME: ” \ F i l e := ” . . / . . / Logs /” + fi leName + ” . dat ” ,

l o g f i l e \Write ;
25
26 ! SetVel 80 , 2 . 0 ;
27 ! GripMovPos 0 , 5 ;
28 ! GripMovPos 60 , 5 ;
29
30 p o s r e f := 20 ;
31
32 GripCheckState 0 . 0 1 ;
33
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34 ClkStart c l o ck prog ;
35 l o g s t a r t := 1 ;
36 s t a r t f l a g := 1 ;
37
38 whi l e s top button = 0 do
39
40 endwhi le
41
42 stop button := 1 ;
43
44 ENDPROC
45
46
47
48
49 ENDMODULE

A.2 GripControl.mod

1 MODULE GripControl
2
3 PROC SetVel (num v e l o c i t y ,num delay )
4 VAR rawbytes raw data ;
5 VAR dnum v e l o c i t y c o d e d ;
6
7 SetGO GRIP go Cmd , 0 ;
8 ClearRawBytes raw data ;
9 PackRawBytes v e l o c i t y , raw data , 1 ,\ Float4 ;

10 UnpackRawBytes raw data , 1 , v e l o c i t y c o d e d \ IntX:=DINT;
11 SetGO GRIP go DLen , 5 ;
12 SetGO GRIP go Data , v e l o c i t y c o d e d ;
13 SetGO\SDelay :=0 ,GRIP go Cmd , 0 xa0 ;
14 WaitTime delay ;
15 ENDPROC
16
17 PROC GripMovPos (num pos i t i on ,num delay )
18 VAR rawbytes raw data ;
19 VAR dnum p o s i t i o n c o d e d ;
20
21 SetGO GRIP go Cmd , 0 ;
22 ClearRawBytes raw data ;
23 PackRawBytes po s i t i on , raw data , 1 , \Float4 ;
24 UnpackRawBytes raw data , 1 , p o s i t i o n c o d e d \ IntX:=DINT;
25 SetGO GRIP go DLen , 5 ;
26 SetGO GRIP go Data , p o s i t i o n c o d e d ;
27 SetGO \SDelay :=0 , GRIP go Cmd , 0xb0 ;
28 WaitTime delay ;
29 ENDPROC
30
31 PROC GripMovGrip (num current ,num delay )
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32 VAR rawbytes raw data ;
33 VAR dnum current coded ;
34
35 SetGO GRIP go Cmd , 0 ;
36 SetGO GRIP go Cmd , 0 ;
37 ClearRawBytes raw data ;
38 PackRawBytes current , raw data , 1 ,\ Float4 ;
39 UnpackRawBytes raw data , 1 , cur rent coded \ IntX:=UDINT;
40 SetGO GRIP go DLen , 5 ;
41 SetGO GRIP go Data , cur rent coded ;
42 SetGO\SDelay :=0 ,GRIP go Cmd , 0 xb7 ;
43 WaitTime delay ;
44
45 SetGO GRIP go DLen , 1 ;
46 SetGO GRIP go Cmd , 0 x8b ;
47 ENDPROC
48
49 PROC GripMovCur (num current ,num delay )
50 VAR rawbytes raw data ;
51 VAR dnum current coded ;
52
53 SetGO GRIP go Cmd , 0 ;
54 ClearRawBytes raw data ;
55 PackRawBytes current , raw data , 1 ,\ Float4 ;
56 UnpackRawBytes raw data , 1 , cur rent coded \ IntX:=UDINT;
57 SetGO GRIP go DLen , 5 ;
58 SetGO GRIP go Data , cur rent coded ;
59 SetGO\SDelay :=0 ,GRIP go Cmd , 0 xb3 ;
60 WaitTime delay ;
61
62 ! SetGO GRIP go DLen , 1 ;
63 ! SetGO GRIP go Cmd , 0 x8b ;
64 ! WaitTime de lay ;
65 sendAck delay ;
66 ENDPROC
67
68 PROC sendAck (num delay )
69 SetGO GRIP go DLen , 1 ;
70 SetGO GRIP go Cmd , 0 x8b ;
71
72 WaitTime delay ;
73 ENDPROC
74
75
76
77
78 ENDMODULE

A.3 GripGetState.mod
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1 MODULE GripGetState ! (SYSMODULE, VIEWONLY)
2
3 PROC GripCheckState (num i n t e r v a l )
4 VAR rawbytes raw data ;
5 VAR dnum i n t e r v a l c o d e d ;
6 !
7 SetGO GRIP go DLen , 1 ;
8 SetGO GRIP go Cmd , 0x8b ;
9 WaitTime 1 . 0 ;

10
11 SetGO GRIP go Cmd , 0 ;
12 ClearRawBytes raw data ;
13 PackRawBytes i n t e r v a l , raw data , 1 ,\ Float4 ;
14 UnpackRawBytes raw data , 1 , i n t e r v a l c o d e d \ IntX:=UDINT;
15 SetGO GRIP go DLen , 6 ;
16 SetGO GRIP go Data , i n t e r v a l c o d e d ;
17 SetGO GRIP go Data5 , 0 x07 ;
18 SetGO GRIP go Cmd , 0 x95 ;
19 WaitTime 1 . 0 ;
20 ENDPROC
21
22 ! Coverts bytes sent from gr ippe r to r e a l value , and re tu rn s t h i s

va lue
23 FUNC num GripGetPos (dnum p o s i t i o n )
24 VAR rawbytes raw data ;
25 VAR num meas pos i t i on ;
26 ClearRawBytes raw data ;
27 PackRawBytes po s i t i on , raw data , 1 , \ IntX:=UDINT;
28 UnpackRawBytes raw data , 1 , meas pos i t i on \Float4 ;
29 RETURN meas pos i t i on ;
30 ENDFUNC
31
32 FUNC num GripGetVel (dnum v e l o c i t y )
33 VAR rawbytes raw data ;
34 VAR num meas ve l o c i ty ;
35 ClearRawBytes raw data ;
36 PackRawBytes v e l o c i t y , raw data , 1 , \ IntX:=UDINT;
37 UnpackRawBytes raw data , 1 , meas ve l o c i ty \Float4 ;
38 RETURN meas ve l o c i ty ;
39 ENDFUNC
40
41 FUNC num GripGetCur (dnum current )
42 VAR rawbytes raw data ;
43 VAR num meas current ;
44 ClearRawBytes raw data ;
45 PackRawBytes current , raw data , 1 , \ IntX:=UDINT;
46 UnpackRawBytes raw data , 1 , meas current \Float4 ;
47 RETURN meas current ;
48 ENDFUNC
49
50 ENDMODULE
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A.4 InterruptController.mod

1 MODULE I n t e r r u p t C o n t r o l l e r ! (SYSMODULE, VIEWONLY)
2
3 VAR intnum t i m e i n t c o n t r o l ;
4 VAR intnum t i m e i n t l o g ;
5
6 VAR bool f i r s t t i m e := TRUE;
7
8 VAR num p o s i t i o n ;
9 VAR num p o s i t i o n i n t ;

10 VAR num v e l o c i t y ;
11
12 VAR num s e t c u r ;
13
14 VAR num approxFrom ;
15 VAR num approxTo ;
16 VAR c lock approxClock ;
17 VAR num approxTime ;
18 VAR num lastApproxTime ;
19 VAR num l a s t P o s i t i o n ;
20 VAR num posError ;
21 VAR num las tPosEr ro r ;
22
23 VAR num u ;
24 VAR num k hat ;
25 VAR num k hat dot ;
26 VAR num k h a t d o t l a s t ;
27 VAR num sigma hat ;
28 VAR num sigma hat dot ;
29 VAR num s i g m a h a t d o t l a s t ;
30 VAR num z ;
31
32 CONST num gamma 1 := 0 . 1 ;
33 CONST num gamma 2 := 0 . 2 ;
34 CONST num rho 1 := 15 ;
35 CONST num rho 2 := 4 ;
36
37
38 VAR num cur bound := 0 . 4 ;
39
40 TRAP c o n t r o l l a w
41 IF s t a r t f l a g =1 THEN
42 IF ( f i r s t t i m e ) THEN
43 ClkStart approxClock ;
44 p o s i t i o n := GripGetPos (GInputDnum( Grip gi Param1 ) ) ;
45 v e l o c i t y := GripGetVel (GInputDnum( Grip gi Param2 ) ) ;
46 p o s i t i o n i n t := 0 ;
47 lastApproxTime := 0 ;
48 l a s t P o s i t i o n := p o s i t i o n ;
49 la s tPosEr ro r := p o s i t i o n − p o s r e f ;
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50
51 k h a t d o t l a s t := 0 ;
52 s i g m a h a t d o t l a s t := 0 ;
53
54 f i r s t t i m e := FALSE;
55 ENDIF
56
57 IF GInputDnum( Grip gi DLen ) = 0 x0f AND GInputDnum(

Grip gi Cmd ) = 0x95 THEN
58 p o s i t i o n := GripGetPos (GInputDnum( Grip gi Param1 ) ) ;
59 v e l o c i t y := GripGetVel (GInputDnum( Grip gi Param2 ) ) ;
60 ELSE
61 sendAck 0 . 0 1 ;
62 ENDIF
63
64 approxTime := ClkRead ( approxClock ) ;
65 posError := p o s i t i o n − p o s r e f ;
66 p o s i t i o n i n t := p o s i t i o n i n t + t rapezo ida l approx (

l a s tPosEr ro r /1000 , posError /1000 , lastApproxTime ,
approxTime ) ;

67
68 z := −rho 2 ∗ v e l o c i t y /1000 − rho 1 ∗( posError /1000) −

p o s i t i o n i n t ;
69
70 ! IF k hat < 4 .5 THEN
71 k hat dot := gamma 1∗z∗z ;
72 !ELSE
73 ! k hat dot := 0 ;
74 !ENDIF
75
76
77 ! IF sigma hat < 2 .5 THEN
78 s igma hat dot := gamma 2∗z∗ c a l c p h i ( z ) ;
79 !ELSE
80 ! s igma hat dot := 0 ;
81 !ENDIF
82
83 k hat := k hat + t rapezo ida l approx ( k h a t d o t l a s t ,

k hat dot , lastApproxTime , approxTime ) ;
84 s igma hat := sigma hat + t rapezo ida l approx (

s i g ma ha t do t l a s t , s igma hat dot , lastApproxTime ,
approxTime ) ;

85
86 u := k hat ∗z + sigma hat ∗ c a l c p h i ( z ) ;
87
88 s e t c u r := 0.01∗u ;
89
90
91 IF s e t c u r > cur bound then s e t c u r := cur bound ; e n d i f
92 IF s e t c u r < −cur bound then s e t c u r := −

cur bound ; e n d i f
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93
94 GripMovCur s e t cu r , 0 ;
95
96
97 k h a t d o t l a s t := k hat dot ;
98 s i g m a h a t d o t l a s t := s igma hat dot ;
99 l a s t P o s i t i o n := p o s i t i o n ;

100 lastApproxTime := approxTime ;
101 la s tPosEr ro r := posError ;
102
103 ENDIF
104 ENDTRAP
105
106 TRAP l o g f i l e
107 VAR num time ;
108 IF l o g s t a r t = 1 THEN
109 time :=ClkRead ( c l o ck prog ) ;
110 Write l o g f i l e , CTime ( ) \NoNewLine ;
111 Write l o g f i l e , ” ”\Num:= time\NoNewLine ;
112 Write l o g f i l e , ” ”\Num:= p o s i t i o n \NoNewLine ;
113 Write l o g f i l e , ” ”\Num:= v e l o c i t y \NoNewLine ;
114 Write l o g f i l e , ” ”\Num:= p o s i t i o n i n t \NoNewLine ;
115 Write l o g f i l e , ” ”\Num:=u \NoNewLine ;
116 Write l o g f i l e , ” ”\Num:= k hat \NoNewLine ;
117 Write l o g f i l e , ” ”\Num:= sigma hat \NoNewLine ;
118 Write l o g f i l e , ” # ” ;
119 ENDIF
120
121 ENDTRAP
122
123 FUNC num trapezo ida l approx (num f a , num f b , num timeA , num

timeB )
124
125
126 RETURN ( ( timeB − timeA ) ∗( f a + f b ) /2) ;
127 ENDFUNC
128
129 FUNC num c a l c p h i (num input )
130 IF ( input < 0) THEN
131 RETURN −1;
132 ELSEIF( input > 0) THEN
133 RETURN 1 ;
134 ELSE
135 RETURN 0 ;
136 ENDIF
137 ENDFUNC
138
139 ENDMODULE
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Appendix B

Attached Files

Attached with the thesis is a .zip archive with relevant Simulink models and MATLAB code, as
well as the RAPID code for the program and all plots.
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