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Problem Description

Board games can provide a good testing environment for robotics as it often requires
high accuracy and human-robot interaction. With chess gaining massive popularity
in recent years, there is as interest in investigating the possibility of creating a low-
cost robotic chess player. The task will be focused on creating a cheap and reliable
conceptual prototype for entertainment and educational purposes. The system will
primarily be focused on playing chess, with possible adaption to other board games.
The task will consist of:

• Get familiarized with relevant background theory

• Evaluate existing solutions if some exist

• Propose solutions and design of system

• Implement proposed system if time permits

• Test and evaluate implemented system

i





Summary

The goal of this thesis was to create a low-cost chess-playing robot to help progress
the field of small-scale robotics and make it more available for personal use. To
achieve this, methods for moving pieces on a chessboard has been evaluated, result-
ing in the design of a four positional degrees-of-freedom elbow manipulator arm.
Of-the-shelf servo motors were chosen as the arm’s actuators, providing closed-loop
control contained within each motor. Control of the motors was interfaced through
a dedicated servo controller, consisting of both a microcontroller and interfacing
software written in C++. An inverse kinematic based open-loop robot controller
was made to control the overall movements of the arm and ensure that the arm
avoided any potential obstacles in its workspace.

To help the robotic arm with perceiving its surroundings, a wide selection of
sensory configurations and computer vision algorithms were evaluated. The sensory
unit was implemented by capturing images with a Microsoft LifeCam Studio camera
and using OpenCV to process the captured images. The chess engine was not
implemented as part of this thesis, therefore the work done on this part has mainly
been to find a suitable chess engine and incorporating it into the implemented
system.

Based on the results obtained, a complete chess-playing robot was created.
The robot performed with a relatively good accuracy and repeatability, but will
require some improvements to increase the stability and smoothness of motion. The
computer vision results exhibited a good degree of robustness, allowing the robotic
arm to act fully autonomously. Some obstacles were not overcome, specifically the
sensory unit did not provide the robot controller with the chessboard coordinates
necessary to allow manipulation on chessboards of arbitrary size and orientation.

The goal of proving the possibility of making small-scale robotics more available
for personal use is believed to be achieved. With some further work on the chess
robot, it is also believed that the robot could be used for entertainment and to
inspire future student into taking up a study in robotics.
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Sammendrag

Målet med denne avhandlingen var å lage en lavkostnads sjakkspillende robot for
å fremme hobbyrobotikk og gjøre det mer tilgjengelig for personlig bruk. Målet
er forsøkt oppn̊add ved å evaluere forskjellige metoder for å flytte sjakkbrikker,
som resulterte i konstruksjonen av en manipulatorarm med fire frihetsgrader for
posisjonsstyring. Butikkjøpte servomotorer ble brukt for bevege de forskjellige led-
dene i armen. Dette sørger for lukket kontroll av hvert ledd da servomotorene
kommer med innebygget posisjonsstyring. Styring av servomotorene ble utført av
en dedikert servokontroller som inkluderer b̊ade en mikrokontroller og programvare
for å sørge for at styringen kan utføres gjennom C++. Styring av robotarmen som
en helhet ble utført av en robotkontroller basert p̊a inverskinematikk. Robotkon-
trolleren sørger ogs̊a for at armen beveges s̊a den unng̊ar å krasje med potensielle
uønskede objekter i omgivelsene.

Forskjellige varianter av sensorer ble vurdert for å avlese nødvendig sjakkinfor-
masjon mens spillet p̊ag̊ar. Sensorenheten ble implementert ved å ta bilder med et
Microsoft LifeCam Studio-kamera og prosessere bildene med datasynsbiblioteket
OpenCV. Sjakkmotoren har ikke blitt implementert som en del av arbeidet i denne
avhandlingen, dermed har arbeidet rundt dette vært fokusert p̊a å finne en passende
sjakkmotor og tilpasse den for å passe det implementerte systemet.

En automatisk sjakkspillende robot ble laget basert p̊a de oppn̊adde resultatene
i de forskjellige modulene. Robotarmen viste seg å ha gode egenskaper n̊ar det
kom til b̊ade presisjon og gjentakelsen av tidligere utførte bevegelser. Det gjenst̊ar
enda potensielle forbedringer for å øke stabiliteten og f̊a armen til å utføre jevnere
bevegelser. Det ble oppn̊add relativt robuste resultater med de implementerte
datasynmetodene, som resulterte i at sjakkroboten fikk spilt flere runder sjakk uten
menneskelig innblanding. Det største gjenst̊aende problemet er å implementerte
en metode s̊a datasynenheten gir robotkontrolleren de nødvendig sjakk-kordinatene
som er nødvendig for å spille p̊a sjakkbrett av vilk̊arlig størrelse og plassering.

Muligheten for å bringe hobbyrobotikk inn i hverdagen og gjøre det mer tilgjen-
gelig for personlig bruk anses som bevist ved denne avhandlingen. Med videre ar-
beid p̊a den sjakkspillende roboten vil det ogs̊a være mulig å benytte den direkte
b̊ade som underholdning og inspirasjon til potensielle kybernetikkstudenter.
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3.16 Bézier Curve Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.17 Manipulator Arm Model . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.18 x-y plane projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xii



3.19 Projection on joint 2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.20 Angles ω and γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.21 Camera Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.22 Chessboard Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.23 Sampling Masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.24 Chessboard Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.25 Histogram Equalization . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.26 Canny Edge Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.27 Detected Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.28 Chessboard template . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.29 Detected Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.30 Chess Piece Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.31 Occluded View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.32 Grid of Chess Squares . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.33 Absolute Difference of Chess Move . . . . . . . . . . . . . . . . . . . 70
3.34 En Passant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.35 Castling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.36 Absolute Difference of Chessboard . . . . . . . . . . . . . . . . . . . 72
3.37 Example Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.38 Histogram Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.39 Normal test: Accuracy of move detectors . . . . . . . . . . . . . . . 76
3.40 Normal test: Strength of move detectors . . . . . . . . . . . . . . . . 77
3.41 Stress test: Accuracy of move detectors . . . . . . . . . . . . . . . . 78
3.42 Stress test: Strength of move detectors . . . . . . . . . . . . . . . . . 78
3.43 MCU Sequence Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1 Robot Arm Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Chessboard Detection Strength . . . . . . . . . . . . . . . . . . . . . 83
4.3 Processing time: Chessboard recognition . . . . . . . . . . . . . . . . 84
4.4 Accuracy of Move Detectors . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Stress Test: Accuracy of Move Detectors . . . . . . . . . . . . . . . . 85
4.6 Processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



Chapter 1

Introduction

1.1 Background and Motivation

Robotics is a relatively immature field that has seen an immense amount of progress
these past few decades. Initial advances in robotics were mostly motivated by in-
dustries that benefited from replacing humans in repetitive tasks and hazardous
environments. With advances in computer processing power and the affordability
of advance motors and sensory equipment, the use of autonomous robots can ex-
pand from purely industrial to performing household tasks and for entertainment
purposes. With robots becoming more available for the general public, inventions
such as robot toys and robot vacuum cleaners have seen increasing use over the
years.

Robotics paves way for a new form of entertainment that allows humans to
interact or play with artificial intelligent units without the use of computer screens.
One such use saw its first inspiration with The Turk [1], a chess playing machine
that proved to be not so autonomous after all. While The Turk ended up being
nothing more than an elaborate hoax, the concept proved to be one of great interest
to people. This interest reached a new high point when the chess playing computer
Deep Blue [2] managed to beat the world champion chess player Garry Kasparov.
Recent interest has been focused on bringing the power of chess computers into
everyday life by the use of robotics.

Research into robotic chess players is one of many steps that can result in
robotics being used in our everyday lives. The research is also partially motivated
for studying the human-robot interaction [3]. This was the main goal of Gambit
[4], a mid-cost chess-playing robot that was made to further study the human-
robot collaboration. While the results obtained by Gambit are interesting with
respect to its targeted study, the cost of the arm (ca $18K) makes it too expensive
for a small-scale robotic chess player. Most affordable solutions require either
specialized electronic chessboards, or require disjunctively colored chessboards and
are constrained by the reach of the arm [5]. This thesis is motivated by an interest in
making robotics more affordable and available to the general public. Specifically,
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this is hoped to be achieved by studying small-scale robotics in a chess-playing
environment.

1.2 Goal and Method

The goal of this thesis is to investigate the possibility of creating a robust and
low-cost autonomous chess-playing robot. As few similar solutions exist to provide
insight into low-scale chess automation, the main focus will be on developing a com-
plete system based on known methods in robotics and computer vision. Specifically,
the goal is to:

• Research and implement a chess recognition scheme using cheap and available
cameras

• Design a robotic arm well suited for chess-playing and general small-scale
robotics

• Research potential control schemes that is suitable for chess-playing and
small-scale robotics

To accomplish these goals, extensive research into robotics and computer vision
is necessary, as well as how to turn theory into a feasible practical solution. The
various fields will initially be studied separately to ensure that progress is made
on every aspect involved in the creation of a fully autonomous chess robot. This
thesis will not cover the development of a chess engine as extensive research already
exists on the field of chess computers. A suitable open-source chess engine will be
located and integrated into the total system. Later parts of the project will be
focused on making the various modules collaborate and hopefully providing results
stable enough to test the chess-playing robot arm as a whole.

1.3 Outline of Report

This report is divided into two main parts. The first part is covered by chapter 2
and introduces the relevant background information and tools for creating a chess
robot. The fundamentals of each theoretical field is included, therefore some of the
information provided may seem too basic, however, it is included to provide the
necessary information regardless of the reader’s expertise. Sections 2.1-2.3 serve
as a quick introduction into robotics and motors. Section 2.4 covers some basic
computer vision methods that are relevant for a chess detection unit. Section 2.5
presents the core concepts of a chess-game while section 2.6 presents an overview
of the tools and libraries used in the development of the chess robot.

The implemented system is described in chapter 3 with each module being de-
scribed in its own section with section 3.1 serving as an overview of the implemented
system. Section 3.2 introduces the design of a robotic arm, specifically made for
this thesis. Section 3.3 and 3.4 cover the individual control of each motor and a
control scheme for the entire robotic arm. The extensive vision based sensory unit
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for the chess system is presented in section 3.5 and the main controller that han-
dles communication and coordination between the various sub-systems is presented
in section 3.6. Some discussion and testing is included in the various sections of
chapter 3. This is to ease the reading of the thesis and present a reason as to why
some choices were made.

Chapter 4 describes the results obtained with the proposed solution as well as
some discussion of specific results and how different choices could have impacted
the results. As with chapter 3, the discussion in chapter 4 is included to simplify
the reading because of the large scope of the thesis. A general discussion of the
main result and work method is presented in chapter 5, which also includes some
suggestions for future improvements. Chapter 6 provides a quick recap of the
results and serves as the conclusion of this thesis.

3



Chapter 2

Background and Research

2.1 Robotic Systems

This section provides a short introduction to robotic manipulators and how they
can be made to act completely autonomously.

2.1.1 Robot Manipulators

A robotic manipulator is a mechanical construction that uses motors to perform
some functionality similar to that of a human arm. It has seen wide spread use as a
remote controlled arm to aid or replace human arms in tasks where the human arm
is infeasible or insufficient. In recent decades a lot of the focus on robotic arms has
turned to making the entire process automated, with a computer analyzing sensory
data from the arm’s surroundings and controlling the movements.

The mechanical construction of a robotic arm is in itself a complex field. Robotic
arms are generally designed to be highly task specific, with limited use outside of
its intended purpose. There will usually be some tradeoff between rigidness and
weight of an arm, which will affect how smooth and accurate movements the arm
will be capable of. Designing an arm with the concept of “one-size fits all” will be
costly and redundant in most applications.

When designing a robotic arm, the first thing one must consider is the workspace.
A robot manipulator’s workspace is defined as the collection of points in space that
are reachable by the end effector. Any points outside the workspace cannot be ma-
nipulated by the arm. To achieve the desired workspace, the robot’s rotational or
translational joints and links need to be chosen appropriately. Combining a series
of joints through appropriately chosen link lengths one can achieve a workspace of
any size or shape.

The workspace shows the positions the end effector is capable of in “free space”,
however most robotic environments will have some obstacles within that workspace.
To help analyze the entirety of the arms geometry one must also consider its config-
uration space. The configuration space is the set of all configurations that specify
the location of every point on the manipulator arm. Considering the configuration
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Figure 2.1: Workspace of two manipulators from [6]

space when controlling the robotic arm can help in ensuring that no parts of the
arm will be obstructed by known obstacles in the environment.

The robotic arm is just one part of the overall robotic system. For a fully
autonomous robotic system the arm must be integrated with a controller, power
supply, sensors and some decision unit that replaces the need for human instruc-
tions.

2.1.2 Robot Control

Any electrically powered robotic arm will move by applying voltage to of a series
of electrical motors. The translation from the natural language of humans to
movement of motors is not necessarily intuitively easy, therefore there is a need for
an interface controller that translates natural language or motion based instructions
into stable actuation of each separate motor. Section 2.2.2 will explain the inputs
of servo motors and how it is translated into actuation. Section 2.3 will go deeper
into robot control and how a complete configuration of the robotic arm can be
translated into separate instructions for each joint actuator.

2.1.3 Sensing

A robotic system’s purpose is to interact with its surroundings, which is impossi-
ble without some real time information about its environment. In the same way
humans have their senses, a robotic system uses input from sensors to analyze and
react on its surroundings. Data from sensors generally serve two purposes in a
robotic system:

• Input to the system with information needed to make a decision on which
actions it should take.

• Input to the controller that incorporates it as feedback information to control
the motion of the robot.
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The latter kind are often in the form of positional feedback devises for the
motors, such as potentiometers. Vision based feedback information has also become
more prevalent in recent years, the technique of incorporating vision data into
a motion control is known as visual servoing. Sensory information as input in
the decision making process could take any form that is relevant for the task at
hand. In robotics this information often correlates to some human sense, such as
vision or sound, but also comes in the form of for example distance or temperature
measurements.

2.1.4 Computer Control

To make a robotic system fully autonomous there is a need for a computer controller
that decides the actions of the arm based on available information. The unit could
typically instruct the motor controller to move the arm into a given position, pick
up some object and place it somewhere else. The computer controller’s task is
twofold:

• Decide which actions best serve its purpose

• Translate these actions into motion based instructions for the robot controller

The computer controller will often also consist of a module for processing sen-
sory information. Decision making is often closely related to artificial intelligence
and serves as a context specific replacement for human interaction.
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2.2 Electrical motors

Electrical motors are the most common actuators for small-scale robotic systems.
An electric motor is a machine that converts electricity to kinetic energy. Elec-
trical motors can be separated into two main categories, alternating current (AC)
powered motors and direct current (DC) powered motors. This chapter will serve
as a quick introduction to the general information that is necessary to understand
the subsequent chapters. Section 2.2.1 serves as an overview on DC motors, while
section 2.2.2 covers the basic functionality of a servo motor.

2.2.1 DC Motors

When not considering the internal parts, the concept behind the DC motor is quite
simple. Applying a voltage will make the output shaft spin. A high input voltage
will result in a large angular velocity; consequently low input voltage will result in
a smaller angular velocity. Reversing the direction of the spin is done by reversing
the input voltage polarity. DC motors have an operating voltage range; voltages
above this limit can result in an overheated and potentially broken motor, while
voltages bellow the lowest limit might not run the motor at all.

DC motors tend to spin with a high angular velocity; this is only possible as the
output shaft is spinning with no significant external force stopping the movement.
A motors capability of moving an object will depend on its operational torque,
which is usually low at high rotational speed. In robotics a high motor torque
is often more interesting than a high rotational velocity, in fact a high rotational
velocity might have unwanted effects as long stiff objects tend to break when rotated
too quickly. To increase motor torque and therefore decrease speed, motors are
equipped with gears.

The most common gears are toothed circular disks, mounting the gears so the
teeth engage into each other results in a gear train. A gear train allows for trans-
mission of torque, with the possibility of altering the torque, speed and direction
of the rotation. A small rotating gear attached to a larger gear will result in an
increased torque at the expense of rotational velocity. With a substantial amount
of gearing it is possible for a motor rotating at a high velocity to exert high torque
at the final output shaft. The drawback with gearing is that it usually leads to a
reduction in motor efficiency.

A motors operational torque is the torque it is designed to provide. When the
torque exerted by some load exceeds what the motor can produce, the motor is
said to be stalling, which means the necessary torque for rotation is more than the
motors maximum torque. This torque is also known as the motors stall torque.
A DC motor will draw a certain amount of current depending on what torque is
necessary for the desired rotation. The stall current is the current the motor will
draw when stalling, which is also the highest amount of current a normal DC motor
will draw.
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2.2.2 Servo Motors

A servo motor is a small device that incorporates an electric motor with appropriate
gear train and an integrated closed-loop control scheme. The servo motor includes
a motor, gearing mechanism, a potentiometer and an integrated control circuit.
The motor turns the output shaft through a series of gears to supply the necessary
torque and speed. The potentiometer is used as a positional feedback device that
connects to the control circuit on one end, and rotates with the output shaft on
the other end. Positional information is fed to the control circuit through the
potentiometer and allows for closed-loop control of the output shaft.

Servo motors are commonly rated by their operating voltage and the maximum
torque the motor is able to supply at a given input voltage (stall torque). A lot of
medium sized servos have an operating voltage of 4.8-6 V. If the servos are given
a voltage bellow 4.8V, they might stop working, while feeding the servos anything
above 6V can result in overheating and a damaged motor. A servo motor supplies
the highest torque at its maximum rated operating voltage, reducing the input
voltage will result in a reduced potential torque. Keeping the supply voltage high
might not seem like a big problem at first, however, when using multiple servo
motors at once, the current drawn can become very high, which might result in a
voltage drop on the power supply.

The built in gearing and control circuitry makes servo motors ideal for simple
and precise positioning. A servo motor requires a power supply and an input signal
to adjust the angle. Most servo motors are controlled by sending the integrated
circuit a Pulse Width Modulated (PWM) signal. The pulse width represents a
given servo angular position, increasing or decreasing the pulse width will drive
the servo in a given direction. As long as the PWM signal is present on the servo
motors input line, the servo will maintain the angular position. In most hobby-
scale projects the PWM signal is generated by a microcontroller or dedicated servo
controller. The PWM signals are usually configured by some internal controller
scripts or externally, for example by interfacing the controller to a more powerful
computer
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2.3 Robot kinematics

A robotic arm consists of a base connected to an end effector through a series of
joints and stiff links. The end effector is the tool with which we want to manipulate
our surroundings, similar to a hand on a human arm. The joints connect each link
in the series to the next and are characterized by their potential movement. Each
joint represents a single movement, rotational movement for revolute joints and
translational movement for prismatic joints. An arm is said to have a certain
amount of degrees of freedom (DoF) pertaining to how many parameters that
needs to be specified for the arms configuration. Under the assumption that each
joint has a single degree of freedom, an angle for revolute joints and a distance for
prismatic joints, the complete configuration and position of the robotic arm can
be described by the complete set of joint variables. A core concept of robotic arm
control is to translate positional instructions into individual joint variables. To
understand how this is done, a quick introduction into rigid motions, forward- and
inverse kinematics is necessary.

2.3.1 Rigid motions

In robotics a point in space is usually represented by its Cartesian coordinates
with respect to a specific coordinate frame. However, when introducing multiple
coordinate frames we also introduce multiple ways of representing the same point.
Consider figure 2.2, the point p1 can be represented in the 0-th and 1-th coordinate
frame as respectively:

p01 =

[
x∗0

y∗0

]
(2.1)

p11 =

[
x∗1

y∗1

]
(2.2)

When introducing multiple coordinate frames it becomes useful to be able to
represent one coordinate frames position and orientation with respect to another.
The rotation from coordinate frame 0 to coordinate frame 1 can be represented by
the unit vectors of frame 1 with respect to frame 0 as:

R0
1 =

[
x01 y01

]
(2.3)

In the two-dimensional case represented in figure 2.3, the rotation can be rep-
resented as a rotation θ about the z-axis, resulting in

x01 =

[
cos θ

sin θ

]
, y01 =

[
− sin θ
cos θ

]
(2.4)
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Figure 2.2: Point in two coordinate frames

Figure 2.3: Rotation of Coordinate Frames

The concept is the same when representing the rotation in three dimensions,
the axis of rotation is kept static while we use trigonometry to calculate the new
coordinate frame orientation. This results in the three rotational matrices:
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Rx,θ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.5)

Ry,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 sin θ

 (2.6)

Rz,θ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.7)

Where x,y,z represent the axis of rotation and theta the angle. For proof on how
these rotational matrices are found, see [6, Ch.2.2].

Using these rotational matrices in combination with a distance vector d01 any
point represented with respect to one coordinate frame can be represented in an-
other coordinate frame by simple rotation and translation. Assuming we have a
point p represented in the 1-th frame, and the distance vector o01 from the origins
of frame 0 and 1, we can represent the point p1 in the 0-th frame as:

p0 = R0
1p1 + o01 (2.8)

These types of rotations and translations can be combined into a general ho-
mogeneous transformation matrix between coordinate frame i-1 and i as:

Ai(qi) =

[
Ri−1
i oi−1

i

0 1

]
(2.9)

Performing multiple rotations and translations can be done by considering each
transformation between subsequent coordinate frames to be independent. The
result is that a rotation from coordinate frame 0 to 3 can be represented as three
independent rotations:

R0
3 = R0

1R
1
2R

2
3 (2.10)

The translation from coordinate frame 0 to 3 can be represented as a series of
translations and rotations, as each distance vector is represented in its own reference
frame. Hence the distance from coordinate frame 0 to 3 can be represented as the
distance between each subsequent coordinate frame combined with rotation to the
base coordinate frame 0:

o03 = o01 +R0
1o

1
2 +R0

1R
1
2o

2
3 (2.11)

Using the homogeneous transformation matrix, the movements and rotations form
a kinetic chain, which can be represented as a product of the individual transfor-
mations:

T 0
n = A1(q1)A2(q2). . . An(qn) (2.12)
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2.3.2 Forward kinematics

Kinematics is the process of describing the motion and position of a robot manip-
ulator without considering actuating or external forces. Forward kinematics uses
the principles of rigid motion to describe the end effectors position and orientation
using join variables and link constants. In a kinematic chain, each joint is rep-
resented by a coordinate frame. The Denavit-Hartenberg (DH) convention was a
concept introduced by Jacques Denavit and Richard Hartenberg [7] to standardize
the selection of reference coordinate frames in robotics. Using this convention, the
coordinate frames are chosen to satisfy the DH-conditions:

1. The axis xi is perpendicular to the axis zi−1

2. The axis xi intersects the axis zi−1

The coordinate frames pose and origin for each joint does not need to relate
to any physical position or orientation on the manipulator, as long as it satisfies
these two conditions. For a kinematic chain that satisfies the DH conditions, the
homogeneous transformation between coordinate frames can be represented as a
product of four basic transformations:

Ai = Rotz,theta ∗ Transz,d ∗ Transx,a ∗Rotx,alpha (2.13)

Ai =


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1


(2.14)

With:
θi = joint angle, the angle between xi−1 and xi
di = link offset, the distance from oi to oi−1 along zi−1

ai = link length, the distance from oi to oi−1 along xi
αi = link twist, the angle between zi and zi−1

The matrix Ai is single-variable function, depending only on the joint variable.
The joint variable is represented by θ for revolute joints and d for prismatic joints,
while the three remaining parameters are constant. Using the DH convention we
can describe an end effectors orientation and position in the base reference frame
by knowing the relevant variables θi, di, ai and αi for each joint.

Forward kinematics is quite useful when analyzing a manipulator, however,
when controlling a robotic arm, the end effectors pose and orientation is often
known, while the join variables need to be calculated.

2.3.3 Inverse kinematics

Inverse kinematics is the process of using a robots kinematic equations to calculate
the joint variables that correspond to a given end effector position and orientation.
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The general problem can be stated as finding the joint variables q1,. . . .,qn that
solves the equation

T 0
n(q1, ..., qn) = A1(q1)...An(qn) = H (2.15)

Where H represents the end effectors position and orientation with respect to the
base coordinate system. The general inverse kinematic problem can be quite com-
plex, with multiple nonlinear equations. Inverse kinematics also gives the possibility
of finding multiple solutions, or in fact no useable solutions, as the manipulator will
have some inherent geometrical restrictions. While it is computationally complex,
most inverse kinematic problems can be solved numerically.

The inverse kinematic problem for most simple robotic manipulators can be
decoupled into a geometric and an algebraic problem. By combining some of the
relevant kinematic equations with a geometric approach the problem of solving
equation 2.15 can often be reduced to solving a few geometric equations. The geo-
metric approach is used to find the inverse position kinematics, while the remaining
variables can be found by using the algebraic approach. Using the geometric ap-
proach, the joint variables are projected onto a two-dimensional plane and solved
using trigonometry. The variables that can’t be solved using the geometric ap-
proach can often be solved by combining the relevant kinematic equations with the
results from the geometric approach. Inverse kinematics provides the angular posi-
tion of each separate motor so that the robotic arm achieves its desired end-effector
position. With an accurate model of the arm and correct calculations an inverse
kinematic robot controller can provide accurate and robust control.

2.3.4 Vision-based Control

Vision-based robot control, also known as visual servoing, is a method for control-
ling robot movements by analyzing vision based sensory data. The general method
is using image data to calculate some error function between the robot manipulator
and target object. This error is then fed into the robot controller as feedback and
results in a closed-loop positional control. Vision-based sensors are useful for robot
control as it allows the robot to mimic the human vision sense and often contains
an abundance of relevant data. Visual servoing techniques are commonly separated
into two categories:

Position-Based Visual Servoing (PBVS)
Information extracted from image features is combined with a known camera
model to reconstruct a geometric model of the objects pose and position. This
reconstruction is used as feedback input to calculate the error between the
manipulator and the target and subsequently drive the manipulator arm to
the target location. PBVS can be seen as visual servoing in three dimensional
Cartesian space where an error is calculated based on Cartesian coordinates.

Image-Based Visual Servoing (IBVS)
The error is calculated directly in image space based on current and desired
image features. This error is then used as feedback to the manipulator arm.
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This approach requires no reconstruction of three dimensional pose as the
arm is controlled to bring the current image features to their desired values.

There are also some hybrid approaches that try to combine the PBVS and IBVS
to reduce the impact of problems with either approach. These approaches are also
separated into two sub-categories based on camera configuration:

End-point closed-loop control
The camera is attached to the arm and observes the scene relative to the
manipulator arm. This approach allows the controller to shift the camera to
inspect different areas.

End-point open-loop control
Fixed camera position that observes both the target scene and manipulator
motion.

Position-based visual servoing provides intuitively easy control as it has the
advantage of defining the error in the Cartesian frame of the robot manipulator.
A drawback with PVBS is its need for an exact task space and camera model
which makes it sensitive to intrinsic camera parameters and camera calibration.
This property is not shared by image-based visual servoing controllers as they
are relatively insensitive to camera parameters and calibration. IBVS approaches
require online computation of the control law with respect to image features which
can lead to some problems when such a computation is not possible. Chaumette [8]
takes a more in depth analysis of IBVS and notes the relation between local minima
in image features and unrealizable singularities in robot manipulators. There is also
the challenge of finding adequate visual feature representation for any objects from
any camera position. IBVS approaches in general are highly sensitive to camera
position[9] and often requires multiple cameras to provide adequate stereo vision
when used with the end-point open-loop control approach. Camera placement is
not a challenge unique to IBVS as the position-based approach relies heavily on
being able to acquire and process all relevant image data to ensure a robust model
of the object target. A more in depth introduction to visual servoing can be seen
in [10] and a comparison between image-based and position-based control can be
read in [11].
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2.4 Computer Vision

2.4.1 The image and its properties

A digitized image is represented as a two-dimensional matrix of pixels. The two
dimensions represent the amount of pixels in either direction, also known as the
pixel resolution. Pixel resolution is often represented as width × height, represent-
ing how many pixels the image contains in the two dimensions. An image pixel
is the smallest element in an image and is addressed using its physical location in
the image. In gray scale images the pixel contains a single value representing the
range from black to white, while in color images it usually holds either three or
four values, depending on the color model used. As an image is represented only
by height, width and color, there is a lack of depth perception which is crucial to
humans’ visual perception. The lack of depth in images is compensated by the
human brain with domain knowledge, however, this is knowledge a computer does
not have, thereby making the already complex field of computer vision even harder.

Color images

Color images are usually captured so that each pixel contains an array represent-
ing the Red-Green-Blue(RGB) intensity values. The RGB color model represents
a wide range of colors by adding up the values of red, green and blue. While the
RGB-model is the common color-model in image acquisition, there are other advan-
tageous models used in image processing. One such color-model is Hue-Saturation-
Value(HSV). The HSV-models is popular in many image processing applications
as it separates the pure color component (hue) from the brightness (value) and
colorfulness (saturation). This property is useful in several image enhancement
techniques as well as recognizing color in an environment prone to variation in
brightness. Converting between RGB and HSV is a quick and easy process which
allows the use of both the HSV- and RGB-models without adding too much com-
putational complexity.

2.4.2 Pre-processing

Captured images will usually have some unwanted properties like existence of noise
or low image contrast. To increase the effectiveness of high level image processing
some pre-processing is often needed. Pre-processing usually involves enhancing or
suppressing certain parts of the image to ease further processing.

Histogram equalization

Histogram equalization is a popular method of image enhancement which aims
to increase image contrast by distributing the pixel intensity levels more equally.
The result will be an image with enhanced contrast for pixel values close to the
histogram maxima and reduced contrast near the histogram minima. Histogram
equalization is commonly performed on gray scale images to increase the robustness
to various levels of lighting and contrast. It is also applicable to color images,
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without dramatically changing the color balance, by using a suitable color model
and performing the equalization separately on the channel that does not affect
the color component. In the case of the Hue-Saturation-Value color model, color
histogram equalization could be performed on the value-channel without drastically
changing the image color balance.

Image smoothing

Image smoothing is a pre-processing technique that aims to ease further processing
by suppressing noise in an image. The smoothing is usually performed by assigning
each pixel the value of some weighted average of its neighborhood and results in a
more blurred image. This approach usually entails a loss of information, but using
the right smoothing filters one can reduce the loss around important features. A
popular filter for image smoothing is based on a two-dimensional Gaussian function:

G(x, y) =
1

2πρ2
e
− x2+y2

2ρ2 (2.16)

Where x and y represent the distance from the center of the filter and ρ the
standard deviation. A Gaussian filter approximates a discretized Gaussian func-
tion, resulting in a weighted image smoothing approach with highest weights closest
to the center pixel. An example of a (3x3) spatial Gaussian filter can be expressed
as:

G =
1

16

1 2 1
2 4 2
1 2 1

 (2.17)

Edge detection

Edge detectors are a collection of methods that attempt to locate edges by finding
pixel areas with sharp changes in intensity values. The aim is to identify the
interesting regions of an image, which in general are located near or contained
within edges. As edge detectors typically enhance image noise, it is common to
apply image smoothing before edge detection. There are many different approaches
to edge detection. A common method is computing the gradient magnitude and
direction, and using these to find the edge strength and orientation. A simple way
of calculating the gradients is by first applying a one-dimensional derivative filter
in both the horizontal and vertical direction, then calculating the magnitude and
direction as

Lx =
[
−1 0 1

]
∗ I, Ly =

−1
0
1

 ∗ I (2.18)

|Grad(L)| =
√

(Lx)2 + (Ly)2, Direction = atan2(Ly, Lx) (2.19)
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Where I is the image and Lx the derivative filter in x-direction convolved with the
image. By applying some threshold to the gradient values one can identify edges
in the locations with a significant change in intensity values. From these edges on
could extract useful information such as object contour and region.

Image computational complexity

The amount of pixels in images nowadays typically range anywhere between a few
hundred thousand to tens of millions. This leads to image processing being a very
computationally expensive branch of programming, simply because of the sheer
amount of data that needs to be processed. To speed up the processing of images
and maintain some real-time viability for video processing it is common, in the
case of large images, to reduce the image resolution before performing other image
processing tasks. Reducing the image resolution results in fewer image pixels at
the expense of fine image details. The choice between image resolution and detail
depends on the computational resources available and details needed for further
processing.

A common approach to image downsampling is to smooth the image by some
chosen method, then removing a chosen amount of evenly distributed rows and
columns. For instance reducing the image size by four entails removing every other
row and column after smoothing. Upsampling is performed when there is a need
for higher image resolution, although the fine details lost by downsampling will not
be recovered. A simple approach would be inserting evenly distributed rows and
columns, depending on the amount of upsampling, then assigning each of the new
pixels some weighted average of the neighboring pixels.

Mathematical Morphology

Mathematical morphology is a technique for processing geometric structures using
point sets, connectivity and shape. The process is commonly used for geometric
enhancement, object description and various image pre and post-processing. The
concepts behind mathematical morphology can be quite complex, therefore only
the basic parts of geometric shape enhancement will be presented here. For more
details on mathematical morphology see [12, chap. 14].

A morphological transformation is performed by moving a structuring element
across the entire image. The structuring element is placed with its reference point
on the location of the current pixel. The resulting image contained in the element
is then processed according to the chosen morphological operation. The two ba-
sic morphological operations, dilation and erosion, can be used independently, or
combined, to perform various geometric enhancements. Dilation is a morphological
transformation that combines two point sets by vector addition and is usually per-
formed to expand an object, either by filling holes or expanding boundaries. The
dilation X ⊕ B is defined as the result after all possible vector additions of the two
vectors:
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X ⊕B = [p ∈ E2, p = x+ b, x ∈ X, b ∈ B] (2.20)

With E2 representing the two-dimensional Eucledian space.
The other basic morphological operation erosion, which has functionality op-

posite of dilation, is usually performed to reduce or shrink a geometric structure.
However, erosion and dilation are not inverse transformations as performing ero-
sion followed by dilation, or opposite, will not result in the original image. Erosion
combines two point sets by vector subtraction, meaning the result is given by the
points for which all possible combinations of the image and structuring element are
present.

X 	B = [p ∈ E2, (p = x+ b) ∈ X ∀b ∈ B] (2.21)

Dilation and erosion by themselves serve no function if one wishes to preserve
as much of the shape and size of an object as possible. However, combining them
yields some useful results. Opening and Closing combine erosion and dilation to
eliminate specific image details smaller than the structuring element while still
keeping the general shape of the object. Opening performs erosion followed by
dilation and its main functionality is removing small objects from the background.
Similarly closing applies dilation followed by erosion and is used to fill up small
holes within or around an object. Mathematical morphology is commonly used
in the post-processing stage of segmentation to remove noise and merge adjacent
shapes.

2.4.3 Segmentation

Image segmentation is the process of dividing an image into labeled parts that
correlate with some real life objects or areas. This process is often impossible
without global domain knowledge; therefore partial segmentation is often the result.
In partial segmentation every pixel in a segment shares some common property,
usually brightness or color. These partial segments do not necessarily represent
some real life objects as they only rely on local pixel value. The main goal of
segmentation is to simplify the representation of an image for further analysis. A
good segmentation is often necessary before performing further processing such as
object description, recognition and attaining general image understanding. In an
application that seeks to process a chessboard, the segmentation result will seek to
extract the entire chessboard region. As a chessboard cannot be robustly located
based on partial segmentation results, some global domain knowledge and use of
higher level processing is necessary.

2.4.4 Feature Detection

Feature detection is the process of searching an image for a specified type of feature.
There is no clear definition on what an image feature is, but in general it refers to
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interesting regions in an image that helps describe some aspects of the image. Such
features are often edges or objects or even the result of a general feature extraction
method. The choice of object features has a large impact on object detection as
they serve as the general descriptors of the object.

Canny Edge Detection

The Canny edge detector was first proposed by Canny [13] with the aim of finding
the optimal edge detection approach. Canny cited three criteria that any good
edge detector must fulfill:

1. Low error rate: Edges in the image should not be missed, and no edges should
be detected where there are none in the image.

2. Good localization: The detected edges should be as close to the center of the
image edge as possible.

3. Single edge detection: An image edge should only be detected once and avoid
detection of noisy step edges.

The core concept of the Canny edge detector can be explained as a four step
process:

1. Noise reduction: As with normal edge detection the image needs to be
smoothed over to reduce the amount of noisy edges in subsequent stages.
Typically this is done by applying a Gaussian filter as in section 2.4.2, image
smoothing.

2. Gradient Calculation: This step is done in a similar manner to the edge
detection in section 2.4.2, but a more advanced derivative filter that retains
gradient size and direction in both vertical, horizontal and diagonal direction
is applied. A common derivative filter used with the Canny edge detector is a
Sobel filter [14]. The gradient strength and direction for each pixel is stored
for the following steps.

3. Non-maxima Suppression: The calculated gradients in the previous step are
analyzed using their gradient directions. The gradient pixel is removed if the
gradient value is not larger than that of its’ two neighboring pixels in the
gradient direction. This is a popular method of edge thinning that ensures
an edge is represented by the thinnest line possible.

4. Hysteresis thresholding : This step starts by defining two thresholds, one defin-
ing strong gradients and another defining weak gradients. The concept of
hysteresis thresholding is that a gradient is deemed classified as an edge if it
passes the initial upper threshold. Any gradient that passes the lower thresh-
old but not the upper threshold is classified as an edge if it is connected to a
previously located edge. All other gradients are then discarded.
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The advantage of using the Canny edge detector is its robustness to noise and
spurious edge responses while still retaining most real image edges. These proper-
ties are useful to ensure that no important edges are missing and the chessboard
can be accurately located.

Hough Transform

Hough transform is a technique for detecting and extracting image features. The
classic Hough transform requires the feature to be described by some parametric
equation, such as a line or a circle. The generalized Hough transform can detect fea-
tures of arbitrary shape and size, however, it suffers from increased computational
complexity compared to the classical approach. This section will cover the basics
behind the classical Hough transform, henceforth referred to as the Hough trans-
form. In an ideal world, the edge detection would locate the complete edge, and
thus the feature could be found by simply traversing along the edges. In computer
vision, the detection of edges often results in noisy edges with partial occlusions or
missing segments. The Hough transform seeks to locate and connect these edges
by searching the image for known shapes of arbitrary size and orientation. The
concept behind the Hough transform can be seen from detecting a straight line in a
binarized edge image. A straight line can be described by its slope a and intercept
b as:

y = ax+ b (2.22)

By discretizing the slope and intercept we can represent every possible line in an
image by forming an accumulator array containing all combinations of the dis-
cretized slope and intercept. This accumulator array will represent not only the
lines present in the image, but any conceivable line slope and position that could
exist. For each edge pixel all possible lines that could intersect the point is found
and the accumulator cells of the corresponding lines slope and intersections are in-
cremented. For any lines actually present in the image, the accumulator cells will
see as many increments as they have pixels along the line. The problem of finding
image lines has now been reduced to locating high-valued accumulator cells.

Using the parametric equation 2.22 will cause problems when vertical lines are
present, as a→∞. The solution to this problem was presented by Duda and Hart
[15] and involved representing the lines by their polar coordinates as:

ρ = x cos(θ) + y sin(θ) (2.23)

The concept remains the same, with each line being represented by a point in
theta-rho space as in figure 2.4. The discretization of the parameters are commonly
confined to 0 ≤ θ ≤ π, and –ρ∗ ≤ ρ ≤ ρ∗, however, one could also confine θ as
0 ≤ θ ≤ 2π and use purely positive values for ρ.

The strength of the Hough transform is its insensitivity to noise, partially
missing lines or other non-line structures in the image. To better understand its
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(a) Line parametrization in x-y space (b) Line in ρ-θ parameter space

Figure 2.4: Line parametrization

strength, a few example images and the corresponding Hough line transform pa-
rameter space can be seen in figure 2.5. The noisy image details result in sporadic
responses in the accumulator array, nevertheless the lines can be easily detected by
the four local maxima. The added circle results in increased accumulator values in
a larger area without altering the existing lines which are still distinguishable in
the Hough transformed image.The last figures represents a typical edge detection
result with partially occluded lines, while the four lines now provide less impact on
the accumulator array, the lines can still be found as local maxima.

A weakness of the presented Hough transform approach is its need to either
threshold the resulting accumulator array or search for local maxima. Either ap-
proach, or even a combination of the approaches, could result in some lines not
being detected or the detection of lines as a result from random objects. Some
a priori knowledge such as expected number of lines or line directions will often
ensure a more robust result.
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Figure 2.5: Hough transform with noise, occlusion and foreign objects
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2.5 Chess

Chess is a two-player turn based strategic board game and is one of the oldest and
most popular board games to date. What makes chess unique is that there is no
random factor in the game, every game starts the same and is impacted solely by
the choices of the players.

Chess is played on a square board that is separated evenly into an 8x8 grid of
squares of alternating light and dark color. A square on the grid is referred to by
its chess board coordinates, spanning from a-h on one axis and 1-8 on the other.
The square in the lower left-most corner is thus named a1, and a chess move can
be recorded by supplying the source and destination of a move, such as a1 → a2.
The players are referred to as “white” and “black” which usually reflect the colors
of their chess pieces. Both players start the game with 16 pieces: eight pawns, two
rooks, two bishops, two knights, one queen and one king. The placement of each
piece can be seen in figure 2.6.

Figure 2.6: Initial Chess Game Position

For the white player the rules go as follows:

• Eight pawns placed on the second row, between a2-h2

• Two rooks placed in the two nearest corners, a1 and h1

• Knights placed on the left and right side of their respective rooks: b1 and g1

• Bishops: Similar to knight placement, one further step inwards: c1 and f1

• Queen and King are placed on the two remaining positions, Queen: d1,
King:e1
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The black player places the pieces in a similar manner on his side of the table.
A chess game starts with the white players move followed by alternating black and
white moves. The various types of chess pieces can move according to the rules
stated later in this chapter. A piece is captured, and subsequently removed from
the game, when a piece of the opposite color is moved onto its square. Note that
at any time only one piece may occupy a given square. The game ends when the
king of either side is captured or one of the players concedes the game.

2.5.1 Regular Movement

The various movements of each piece will be explained, as well as certain “special”
moves that apply in unique situations. Note that any subsequent use of the word
“forward” will mean movement in the direction towards the other player’s side.
Unless explicitly stated otherwise, a movement to an occupied square without cap-
turing or movement through an occupied square is not possible. Each turn a player
must perform one legal move, if no moves are legal the turn is passed to the other
player.

Pawn
A pawn can move one square forward as long as this square is not occupied
by any other piece. If the pawn is in its initial position, meaning it has not
been moved so far, the player may move the pawn two squares forwards. A
pawn may only capture another piece situated on an adjacent square in a
diagonally forward direction, shown in figure 2.7 as black squares. Pawns are
also governed by the special moves “en passant” and “pawn promotion” as
explained later in this section.

(a) Regular Moves

’

(b) Capturing Moves

Figure 2.7: Pawn Movements
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Knight
A knight can move to a square situated two squares in either direction and one
to the side, so the complete move forms an “L” shape as seen in figure 2.8.
The knight is the only piece that can move through a square occupied by
either player.

Figure 2.8: Knight Movements

Bishop
A bishop can move any number of squares in a diagonal direction as long as
the path is not blocked by another piece.

Figure 2.9: Bishop Movements
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Rook
A rook can move any number of squares in a vertical or horizontal direction
as long as the path is not blocked by another piece.

Figure 2.10: Rook Movements

Queen
The queen can be seen as a combination of the bishop and rook with moves
being allowed both horizontally, vertically and diagonally as long as the path
is not obstructed.

Figure 2.11: Queen Movements
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King
The king may move to any adjacent square, both vertically, horizontally and
diagonally. As the game ends with the kings’ capture, a king may not move
into a square that would result in his capture.

Figure 2.12: King Movements

Check
When a move puts the king as risk of being captured in the king is said to
be in check. A player whose king is in check must either move the king to
a legal position or stop the checking piece by capturing it or obstructing its
path to the king. If no legal moves can be done to get the king out of check
it is known as checkmate and the game is won by the checking player.

2.5.2 Special Moves

En passant
When a pawn moves two squares forwards, standing on either side of an op-
posing paw, the opposing pawn may capture the pawn “en passant”, meaning
the capture occurs at the position the first pawn moved past. This is best
illustrated by figure 2.13. En passant is only possible if done the turn right
after the initial pawn moves two squares.
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Figure 2.13: En Passant

Castling
Castling is a special move that allows the player to move the king two squares
in horizontal direction and set the rook in the chosen direction to the square
passed by the king. Castling is the only chess move that allows a player to
move two pieces in one turn. Castling is only possible if neither of the pieces
involved have previously been moved and there are no pieces in the path
between them. The king may not be in check when castling is done and the
squares moved to or through may not be under attack by enemy pieces.

Figure 2.14: Castling

Pawn Promotion
Pawn promotion occurs when either player gets a pawn to the opposite side
of the table. The pawn is promoted to a piece of the players own choosing,
usually a queen. A king is the only piece that a pawn may not be promoted
to, but the player may promote a pawn to a queen even though he already
has one in play. Multiple pawn promotions may occur during any game.

2.5.3 Chess Computers

Chess poses an interesting problem in the field of artificial intelligence as it exhibits
a property known as perfect information. A decision-making unit having perfect
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information means it has all the relevant information necessary to make an informed
decision. Perfect information is not common in most AI applications as most
situations exhibit some randomness or simplifying models. In theory it should be
possible to solve the game of chess, meaning to calculate the perfect moves at any
given time. The problem with solving chess arises when considering the number
of variations that need to be calculated from an initial position. Shannon [16]
estimated that for a 40-move chess game the number of variations would be 10120,
a number too large for any current technology to process.

While no chess engine to date has solved chess, the engines have exhibited in-
creasing capability of making chess move decisions. A lot of chess engines use some
variety of a decision tree as a basis for its decision. The rood node typically spec-
ifies the current game state with branches representing legal moves to other game
states. These nodes branch further out with all possible moves of the opponent.
The depth of the tree represents how many future moves the computer will process
and is usually limited by the amount of time the process is given. Representing a
chess game as a decision tree allows the engine to predict the consequences of each
possible move and chose the move that maximizes its reward. Typically the reward
is some function of chosen chess piece values and their positions on the board.
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2.6 Tools and Libraries

2.6.1 OpenCV

OpenCV [17] ( Open Source Computer Vision Library) is a multi-platform program-
ming library aimed at handling and processing image and video data. OpenCV
was initially developed by Intel with the aim of creating an open, common and
optimized computer vision infrastructure that would allow developers to more eas-
ily share and transfer applications. From its initial development, with the support
of Willow Garage and Itseez, the library has grown from containing methods for
basic image capturing and processing to complex object detection and classifica-
tion. The uses for OpenCV is many, but most importantly it allows developers
to focus on high-level image processing without the need for programming basic
functionality. The highly optimized OpenCV algorithms and data structures also
facilitate real-time computer vision programming.

2.6.2 Pololu Servo Controller

The Pololu servo controller is a microcontroller that can control servo motors either
through internal scripting or directly through USB. The servo controller features
individual speed and acceleration control of each servo motor and a resolution of
0.25µs, less than what most servo motors can resolve. The usage of a dedicated
servo controller takes the development stage one step up, allowing developers to
focus on general system functionality instead of basic servo control methods. The
Pololu micro maestro servo controller, seen in figure 2.15, has six PWM output
channels that can send a pulse width in the range of 64→ 3280 microseconds. For
more details on pololu servo controllers see [18].

Figure 2.15: Pololu Micro Maestro [18]
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2.6.3 libusb

Libusb [19] is a programming library that provides functions for controlling data
transfer to and from USB devices. Libusb is popular because of its simplicity as it
requires no special privilege and is portable across multiple platforms, USB versions
and programming languages.

2.6.4 Chenard the Chess Engine

Chenard [20] is an open source chess program developed by Don Cross. Chenard
was chosen for this system mainly because of its simplicity, as it requires no addi-
tional chess software and features an easily readable and modifiable source code.
To evaluate moves, Chenard uses a min-max algorithm that seeks to minimize the
potential loss of a worst case scenario. Chenard seeks to analyze each move and
countermove by each player and thus chose the move that result in a minimal prob-
able loss. With this approach one can alter the difficulty of the chess engine by
limiting the allowed processing time before a move has to be decided upon.
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Chapter 3

Design and Implementation

3.1 System overview

This section aims to give a general overview of the chess-playing robot as well as the
interaction between the systems main components. Sections 3.2-3.6 will provide a
more detailed description of each module.

The complete system was made as a fully autonomous chess playing robot with
the goal of playing on chessboards of arbitrary color, size and orientation. There
are some requirements that must be fulfilled for a robot to operate without human
interaction. The robot must be able to:

1. Move and manipulate objects within its environment

2. Avoid movement that is harmful to people or its surroundings

3. Gain information about the environment

4. Decide on actions without human intervention

To fulfill the first requirement, the system uses a robotic arm whose main task
is to accurately pick up and place pieces at any location on the chessboard. The
robotic arm has four degrees of freedom to control position and an additional degree
of freedom for the gripper. These degrees of freedom are implemented as a series
of servo motors located at each joint on the arm. Control of each individual servo
motor is done through a Pololu micro maestro servo controller that also connects
the power supply to the motors. Each servo motor has its own closed loop control,
however, in this paper the motor controller is defined as the system that includes
both the Pololu servo controller and a software interface that stores individual
motor variables. For the individual motors to provide smooth motion there is
need for a robot controller that regards the robotic arm as a whole. The robot
controller ensures that the individual motors collaborate to provide the desired
movement. The robot controller is also tasked with finding an obstacle free path
as well as executing the various instructions in a timely manner to ensure the
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path is followed. The architecture of the robot arm and controllers can be seen in
figure 3.1.

Figure 3.1: Robot Controller Overview

Gaining information about the robotic arm’s environment is achieved by the sen-
sory unit. The sensory unit uses a camera placed above the chess board to capture
relevant image data. The image is then processed by computer vision algorithms
to acquire segmented and readable information about the current chessboard state.
Using this information in combination with previous game state knowledge allows
the system to gain all the necessary information to make an informed decision on
the actions it needs to take. The sensory unit is not directly involved in controlling
the robotic arm, but rather serves to acquire information about its surroundings
to support the decision making process.

The decision making process is carried out by Chenard [20], a chess engine that
uses information about the current game state to predict and recommend future
chess moves. The unit itself is an open source chess engine that has been adapted
and integrated into the overall system. The control flow of the overall system is
managed by a main controller unit. The main controller unit’s task is to handle
communication and coordination between modules as well as monitor the flow of
the program to ensure that errors do not propagate between modules. The main
controller unit handles communication with the robot controller through an inter-
face that translates chess moves into instructions based on Cartesian coordinates.
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Figure 3.2: Sensory and Decision Overview
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3.2 The Robotic Arm

The robotic arm is the main actuator of the chess playing system. Its main task is
to provide stable and accurate manipulation of the chess environment. This task
can be completed by a large variety of robots, therefore the solution proposed in
this chapter is not necessarily the only suitable approach to manipulating chess
pieces. The proposed solution for the robotic chess player is mainly focused on
playing chess, however, the arm is designed to allow for possible adaptions to other
game environments. To design a robotic arm suitable for chess, the arm would
have to be made to fulfill the requirements listed in section 3.2.1.

3.2.1 Requirements

Workspace
The arm would need to be able to reach any targets on the chess board. In
addition to the square sized chess board the resulting workspace will have to
include some movement on the side of the board for the arm to be able to
remove pieces.

End-effector
The end-effector would have to pick up and release pieces of varying sizes and
forms. The pieces would need to be placed in the same pose as they were
picked up to ensure that each piece reaches its destination with the base of
the piece facing down. This means that the end-effector needs to grasp the
pieces tightly enough so that they are not skewed while moving.

Accuracy
The accuracy of the arm is a measure of how close the arm can get to the
instructed position. There is no exact measure of the accuracy needed, but
any deviation from instructed position would need to be small enough for the
arm to pick up the right pieces without disrupting other game elements.

Repeatability
The repeatability of a robotic arm defines how close the arm can get to a
position it has already been to, meaning how well the arm can repeat any
movement. Repeatability is crucial in a robotic system as any controllers of
the robotic arm needs to be certain that identical instructions are performed
the same.

Price
The complete robotic system is mostly designed for entertainment and should
thus be made with price in mind. There is usually a tradeoff between price
and quality, so the robotic arm should be made from components that allow
the lowest price that fulfills the other requirements.
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3.2.2 General Design

When designing the mechanical arm the main focus was on fulfilling the workspace
requirement as accuracy, repeatability and price would rely more on the choice
of materials and actuators. Some arrangements that fulfilled the workspace re-
quirement were considered. The SCARA and Cartesian manipulators depicted
in figure 3.3 were both considered when designing the chess robot. The SCARA
manipulator has two revolute joints to account for chess board position and a pris-
matic joint to account for object height. The Cartesian manipulator is somewhat
simpler as it features three prismatic joints that correspond to movements in the
three spatial dimensions.

(a) SCARA Manipulator (b) Cartesian Manipulator

Figure 3.3: Manipulators and workspace with positive direction of actuation

While both the manipulators fulfilled the workspace requirement, their move-
ments would also be more intrusive as they would take up more space around them.
The aim was to create a robot that fulfilled the workspace requirement, was un-
intrusive and left options open for added functionality in the future. The chosen
design was an articulated manipulator that uses three revolute joints to control the
position and a fourth revolute joint to control the end-effector direction, as seen in
figure 3.4.

When designing a robotic arm one would like the least amount of joints that
fulfills the requirements for the application at hand, as added joints will need more
motors and more complex control algorithms. While adding an extra revolute
joint before the end-effector would allow the arm to control the direction as well
as orientation of the end-effector, it was deemed unnecessary for picking up chess
pieces. The articulated manipulator has the advantage of mimicking a simplified
human arm and can reach most points within the total length of the arm. The
robot would be able to reach high above the ground, which could allow us to add
improved functionality such as an end-effector camera that surveys game states and
moves with the arm. The manipulator has a spherical workspace, the projection
of this workspace onto the x-y plane can be seen in figure 3.5
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Figure 3.4: 4 DoF - Articulated Manipulator

Figure 3.5: 4 DoF - Articulated Manipulator Workspace
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3.2.3 Materials

When constructing a robotic arm one needs to ensure that the combined weight of
links, motors and end-effector does not exceed the amount the motors can lift at
each joint. Any increase in weight would result in either a decrease in functionality
or a need for stronger motors, which would increase the overall price. Each link
must also be strong enough to sustain acting forces without bending or breaking.
Outside of the motors, the link strength has the largest mechanical impact on
accuracy as any positional error that is not sensed by the controller, such as links
bending, would decrease accuracy. Assuming a total arm length of 50cm, and the
innermost link bending 2 degrees, the resulting end-effector error would be:

Error(2◦) =
√

(50− 50 cos 2)2 + (50 sin 2)2 = 1.75cm

An error this large would make the robotic arm unusable for chessboard ma-
nipulation, therefore the materials must provide a sufficient amount of strength to
ensure a low end-effector error. In addition to being strong and light the mate-
rial chosen for the prototype should be easy to work with, as one would expect
the first prototype to need a lot of adjustments and improvements before the de-
sign is complete. Aluminum was the first considered material because of its bend
strength to weight ratio. It was dismissed as each link would require a minimum
amount of material to function with the given configuration, so even though alu-
minum is strong, the amount of weight would be excessive compared to the needed
strength for lifting up chess pieces. The chosen material for the robotic arm was
the plastic-like material Styrene acrylonitrile resin (SAN) which exhibits some of
the characteristics of glass. The material had a relatively good bend strength com-
pared to its mass density of ρ = 1.08g/cm3 and allows for heat-bending, drilling
and sawing.

3.2.4 End-effector

The end-effector is the device, usually attached at the end of the arm, which is
used to interact with the environment. As the arm is being used for playing chess,
the end-effectors task is to pick up and hold a piece, preferably without the piece
moving while being held. The end-effector needs to be light, as it is placed at the
point furthest away from the base of the arm, and will thus have the greatest impact
on required motor torque. The end-effector requirements are loosely termed, which
means a lot of different end-effector designs could fulfill the task.

One considered solution for the end-effector was by using a magnet and magnetic
chess pieces. The first problem encountered with this approach is that there would
be a need for specialized equipment in the form of magnetic chess pieces, which
is not preferable when designing a general purpose chess robot. Another problem
would be the changing pose of the chess piece, we wish to pick up and place the
chess piece while retaining its original pose. By using a magnet the pose is likely to
shift when picked up and placed. A problem arising from the inherent properties
of magnetism is that the gripper would have no way of ensuring that undesirable
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pieces are not pulled in or shifted towards the gripper. The idea of using a magnetic
end-effector was scrapped as it was deemed an unnecessarily complex method for
moving chess pieces.

The most common end-effector is designed as a gripper that actuates a force
on the object through mechanical fingers. The simplest version of this is a two
finger gripper that grabs an object by pinching its fingers together, as depicted in
figure 3.6.

Figure 3.6: Two-finger gripper

One could design the gripper according to the shape of the object to increase
lifting power; however, this would also lead to a very task-specific gripper that
might not hold all varieties of shapes and forms of chess pieces. With a two finger
gripper the force holding the object in place is based on the friction between the
object and the fingers surface. By attaching a material with a high coefficient of
friction to the fingers one can reduce the force necessary to hold the object in place.

The end-effector was chosen based on the simplest type that would fulfill the
weight and strength requirements of moving chess pieces. The chosen end-effector
was the Lynxmotion gripper depicted in figure 3.7 with an approximate weight of
25g and compatible with most standard-sized Hitec servos. The gripper opens to
a maximum distance of 3.3cm, allowing it to grip any objects within this size.

3.2.5 Actuators

Servo motors were chosen as the main actuators of the robotic arm as they have
gearing and control circuitry included, which would ease further implementation
and motor control. The end-effector does not have a specific torque requirement as
most standard-sized servos would provide the force necessary to lift chess pieces.
To find the necessary motor torque for each joint, an approximate maximum acting
force was calculated. Increased motor torque usually entails an increase in motor
weight, which means that force calculations for each joint would have to begin at
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Figure 3.7: Lynxmotion gripper [21]

the end-effector and backtrack to the base motor.

The maximum force acting on the shoulder, elbow and wrist motor can be found
by assuming the weight attached to the motor is placed at an angle perpendicular
to gravity as in figure 3.8.

Figure 3.8: Force calculation

By simplifying the end-effector and motors to a single point with a given weight
we can find the approximate maximum force acting on the shoulder, elbow and
wrist motor as:
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F2 =
a2
2
m2 + a2M3 + (a2 +

a3
2

)m3 + (a2 + a3)M4 (3.1)

+(a2 + a3 +
a4
2

)m4 + (a2 + a3 + a4)M5

F3 =
a3
2
m3 + a3M4 + (a3 +

a4
2

)m4 + (a3 + a4)M5 (3.2)

F4 =
a4
2
m4 + a4M5 (3.3)

Type Dimensions [cm] Weight [g]
Link 1 N/A N/A
Link 2 (30x5x0.4) 64.8
Link 3 (30x5x0.4) 64.8
Link 4 (5x3x0.4) 6.8
Gripper N/A 25

Table 3.1: Weights and dimensions

The required torque of each motor would have to be greater than the maximum
acting force to account for some loss due to inertia, friction and motor inefficiency.
The initial calculations were done using the rectangular cuboid link values in ta-
ble 3.1, the resulting maximum force at each joint and the chosen motors are listed
in table 3.2. Required torque of the base motor cannot be calculated using the
procedure above as it rotates on a plane perpendicular to gravity. The base mo-
tor would mainly have to combat friction and inertia which would be very time
consuming to calculate. The base motor was chosen with a torque high enough to
ensure it could easily rotate the arm.

Placement Type Weight [g] Stall Torque (6V) [N-m] Max Acting Torque [N-m]
Base HS-805MG 197 2.42 N/A
Shoulder HS-805MG 197 2.42 1.3
Elbow HS-5645MG 60 1.19 0.488
Wrist HS-22BB 27 0.47 0.0433
Gripper HS-5645MG 60 1.19 N/A

Table 3.2: Chosen Hitec [22] servo motors

3.2.6 The Prototype

The prototype made in accordance with the findings in previous sections can be
seen in figure 3.9. While the length of each link was made to fulfill the requirements
in table 3.1, the effective link length, meaning the length from one actuating motor
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to the next, was somewhat reduced as the motors could not be effectively attached
at the extreme end of either link. The first and second motors are attached to wood,
as it provided a cheap, robust and easily modified material for experimenting with
prototype design. The entire arm is weighted down by a stone block to ensure that
it does not tip over when fully stretched. If one was to produce an arm based on
the prototype, the wood and stone could be changed to metal or hardened plastic
to give it a more stylish look.

Figure 3.9: Robotic Arm Prototype

A problem with the end-effector occurred when it tried to pick up a small chess
piece with large chess pieces nearby, as the motor attached to the end-effector would
sometimes hit the nearby large pieces. A solution to this problem was devised by
adding an additional wrist rotating joint to ensure that the gripper motor was
facing away from large pieces, however, as there could be scenarios with large
pieces completely surrounding a smaller one, this solution was deemed infeasible.
The problem was solved by extending the grippers reach to ensure that the end-
effector could pick up pieces of any size without crashing into other pieces. The
added extensions were also bent outwards to increase the maximum end-effector
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opening distance. The increase in maximum opening distance allows for some
anticipated inaccuracies when approaching objects.

A geometric model of the arm with relevant dimensions is shown in figure 3.10.
This model will be the basis of the controller implemented in section 3.4.

Figure 3.10: Robotic Arm Model
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3.3 Motor Control

The motor controller task is to provide individual control of each motor as well as
serve as an interface to translate angular positions into PWM signals for the servo
motors. The advantage of using servo motors is that closed-loop control of the
motors is kept inside each individual motor. The result is that the overall motor
controller implemented does not need to concern itself with the inner functionality
of a servo motor, but rather serve as an interface between a computer controller
and the motors.

Figure 3.11: Motor Controller

The motor controller takes a joint angle as input and uses a Pololu micro mae-
stro servo controller [18] to control each individual servo motor to the target angle
by sending a series of PWM signals. The servo motors have a neutral position
when receiving a PWM signal of width 1500µs and, depending on the servo, op-
erate in a signal range of approximately 600-2400µs. The Pololu micro maestro
includes a communication protocol that defines the rules for micro maestro’s data
exchange through USB. This protocol allows custom software to set the output
to the servo motors, as well as allowing restrictions on speed and acceleration for
increased control over the complete motion.

The computer is connected to the Pololu servo controller through USB. Commu-
nication between the motor controller and servo controller is achieved by using the
libusb library [19] for controlling data transfers through USB. The motor controller
connects to the micro maestro by searching USB-ports for connected devices and
comparing each device to the known product- and vendor ID of the micro maestro.

vendorID = 0 x1 f fb ;
productId [ ]={0 x0089 , 0x008a , 0x008b , 0x008c } ;

The subsequent transfer of data is performed as synchronous I/O, meaning the
process waits for the transfer to complete, as opposed to asynchronous I/O where
the process can continue while the data transfer is pending. The latter approach
is generally better for data transferring as it does not block the process while
transferring data, however in this case the data transfer means actuating the arm,
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which will make the processing time gained by using asynchronous data transfer
negligible compared to the added programming complexity.

The motor controller translates joint angles to pulse width as a function of the
neutral position and an angular gain as:

PulseWidth = neutralposition+ angle× gain (3.4)

This angular gain is defined as the increase in pulse width that would result in a
1◦ rotation. Initial testing of the servo motors revealed that the motors specified
angular gain of 10µs

1◦ was inaccurate, as an increase in pulse width of 900µs resulted
in a rotation that did not reflect the expected 90◦ rotation. It was found necessary
to calibrate the motor controller to ensure that the correct pulse width was sent to
the motors.

3.3.1 Motor Calibration

The servo motors specification rated the neutral position at a pulse width of 1500µs
and an angular gain of 10µs

1◦ . To find the correct gain and set a neutral position
that reflects the neutral configuration in the robotic arm controller the motors had
to be calibrated.

Calibration was done by using a chess board with known dimensions. The
reference points were chosen to be evenly spaced across the chess board, and the
corresponding joint angles that ensured the correct arm configuration for each
point was found by using the inverse kinematic procedure in 3.4.2. The arm was
controlled manually to each of these reference points, and the corresponding pulse
width value for each motor at every point was stored. The pulse width values and
their corresponding angles were compared between each pair of points that featured
a significant angular change. By only comparing points where a motor has seen
significant angular change, the error from manually controlling and reading pulse
width values was reduced as the error was divided by a larger change in value. The
calculated values were averaged across all compared points which resulted in the
following neutral position and angular gain:

Motor Motor Type Neutral value Gain
Motor 1 HS-805MG 1590 -9.39
Motor 2 HS-805MG 917 9.93
Motor 3 HS-5645MG 1319 -10.64
Motor 4 HS-22BB 973 -7.83

Table 3.3: Motor calibration values

The negative gain values come as a result of direction of rotation compared to
the inverse kinematic configuration, when considering the gains of each motor the
absolute value should be considered. The calculated angular gains were found to
vary greatly from the specified gains supplied by the manufacturer. The calculated
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gains are subject to human error, as measurements and control was performed
manually. The calculated gains were briefly tested by instructing each motor to
turn 90◦ and inspecting the resulting rotation. Using the new angular gains the
resulting rotations was found to reflect the instructions. A more detailed discussion
about the accuracy of the arm will be dealt with later in this paper.

The neutral pulse width position supplied by the manufacturer reflects the
midpoint of rotation for a servo motor, meaning the motor can rotate an equal
amount in either direction. This value was not found to be incorrect, however,
offsetting the neutral pulse width to reflect the neutral inverse kinematic rotation
simplifies the control and makes it more intuitively easy to understand. Offsetting
the neutral value also helps with reducing the impact a potential error in angular
gain would have. By choosing the neutral position as the midpoint between the
maximum and minimum angle needed to cover the entire chess board we ensure
that the maximum difference from target pulse width to neutral pulse width is
minimized. As a result the total angular error resulting from an error in angular
gains would be minimized as the pulse width changes linearly as a product of angle
and gain. To see this consider a motor that needs to operate in the range of 0◦−90◦.
The hypothetical correct angular gain for this motor is 9, but motor calibration
resulted in a gain of 9.1. Using a neutral position of 0◦, the error resulting from
miss-calibration is:

|Error(90◦)| = |90× 9.1− 90× 9|
9

= 1◦ (3.5)

Offsetting the neutral to a 45◦ angle would result in a maximum error in either
direction of:

|Error(45◦)| = |Error(−45◦)| = |45× 9.1− 45× 9|
9

= 0.5◦ (3.6)

The error is minimized with respect to the calculated gain error by choosing the
neutral pulse width at the center of the operational range of each motor. Choosing
the right neutral position depends on knowing the operational range of each motor,
which might be unknown depending on the position of the chess board relative to
the arm. In this case the robotic arm’s base has been assumed to have a position
at the approximate center of the chessboard.

Motor calibration was done once for the chosen kinematic configuration, neutral
position and angular gain was stored for future use. If one were to change the
design of the arm or replace some of the motors a new calibration would need to
be performed. The motor controlling the gripper was not calibrated in a similar
manner as the others as it had no kinematic angle of reference. The accuracy of
the gripper motor is also less important as it only relies on opening and closing,
which does not require a lot of accuracy. With correct calibration, the control of
the individual motors should provide the desired accuracy for the robotic arm. Any
reduced accuracy could potentially be compensated for by the overall robotic arm
controller.
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3.4 Robot Control

The motor controller ensures stable control of each separate motor, however, there
is still a need for a control scheme that considers the movement of the entire arm.
The task of the robotic arm controller is to control the arm to a specified point or
object while avoiding collision with the environment. The robot controller is im-
plemented as an open-loop controller that accepts input in the form of coordinates
and achieves its movement by instructing the motor controller to move each motor
to the desired angle. The coordinates represent the desired position of the end
effector relative to the base frame. The controller uses spatial domain knowledge
about the chess board in combination with a known geometric model of the arm
to calculate the desired angles based on an inverse kinematic approach.

The robotic arm controller is open-loop as it relies solely on its model of the
robotic arm and the current state of the joints to calculate the series of joint angles
that ensures a stable movement to the target location. The robotic arm controller
receives no feedback in terms of its real-time angular positions or pose of the arm, as
such it has no knowledge of its current position while moving. When standing still,
the robotic arms position is assumed to be known and equal to the output position
of the robotic arm controller. We can make this somewhat crude assumption as
the closed-loop controllers in the servo motors ensures that they stop at, or close
to, the correct angular value. In general, an open-loop control of a robotic arm can
pose some problems:

1. Complex path planning and obstacle avoidance is not possible, as it requires
knowledge of the arms configuration at all times

2. Information about the current state is unknown, the arm cannot be known
to be idle or currently moving because of an unknown duration of motion.

Figure 3.12: Robot Controller

The path planner breaks the desired movement down into multiple discrete
movements and estimates the time at which they can be sent to the motor controller
to ensure a collision free motion. The implemented path planner is described
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in further detail in section 3.4.1. Before the instructions are sent to the motor
controller they are translated from positions in Cartesian coordinates to motor
angle instructions for the motor controller. The angles are calculated by using a
geometric approach to inverse kinematics on the known model of the robotic arm,
as describes in section 3.4.2.

3.4.1 Path planning

For a robot controller to perform online path and trajectory planning one would
need feedback information in the form of obstacle positions and exact current state
of the motors. As the controller only has information about the angles it has
instructed the robotic arm of achieving, we have no real-time information about
the current state of each joint. To find a path that avoids collision with chess pieces
we can make some context specific simplifications about the obstacles. The arm
is made to play chess, therefore one can make the simplified assumption that the
area above the highest chess piece is obstacle free. The collision zone is represented
by a square that covers the entire chess board, with a height of the highest chess
piece, as seen in figure 3.13a. Avoiding collision with the chess pieces can be done
by ensuring that any movement of the arm between chess board positions, i.e. on
the base x-y plane, is done above the collision zone. An example of an obstacle
free path between two points on the chess board can be seen in figure 3.13b.

(a) Collision Zone (b) Obstacle avoiding path

Figure 3.13: Obstacle Avoidance

For the arm to interact with chess pieces there is an obvious need for the arm to
go into the collision zone. To avoid obstacles within the collision zone, pieces that
should be picked up are approached from above. The end effector moves towards
a piece parallel to the base z-axis, in a line perpendicular to the chess board. An
example of a collision avoiding path followed when picking up a piece is shown in
figure 3.14
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Figure 3.14: Movement towards a piece

The path planner is implemented as a wave front algorithm on a three dimen-
sional map with known obstacle positions. The map is created by discretizing the
robotic arm’s workspace with assumed known obstacles represented by the colli-
sion zone and the robotic arm’s base. Each discretized point is then mapped into a
three-dimensional vector space with −1 representing obstacle points. The path is
found by propagating the distance from the destination to each discretized position
based on a breadth-first search. The collision avoidance problem is now reduced to
the task of traversing the map from the source position (S) to the destination (D)
by finding the path with lowest distance scores. This path will also ensure that
the shortest route from source to destination is taken while avoiding obstacles. A
simplified path planner for a two dimensional problem with obstacles represented
by −1 can be seen in figure 3.15.

(a) Discretized Map (b) Distance Map (c) Path

Figure 3.15: Two Dimensional Path Planning

To ensure that the end-effector approaches pieces from above the discretized
space above the target piece is mapped as obstacle free. The accuracy lost to the
discretized map is regained by using the original source and destination position
near the start and end of the path. The resulting path will be something akin
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to an upside down ”U”. With this approach the path will be affected by the
discretized map resulting in a non-smooth trajectory. A smooth path can be found
by approximating the discretized path points with a Bézier curve. A Bézier curve
can be calculated by recursively interpolating the path points using an increasing
interpolation variable. A quadratic Bézier curve for three points is calculated as
the interpolation of the interpolated points between P1, P2 and P2, P3:

B(t) = (1− t)[(1− t)P0 + tP1)] + t[(1− t)P1 + tP2] (3.7)

To generalize this to higher order, the Bézier curve is found as the interpolation
of previous Bézier curves:

BP0
(t) = P0 (3.8)

B(t) = (1− t)BP0P1...Pn−1
(t) + tBP1P1...Pn(t)

Bézier curves have some properties that are advantageous for the chess playing
robot:

1. Endpoint interpolation, meaning the Bézier curve’s start and endpoint will
be the same as the original path’s.

2. The start and end of the curve is tangent to the respective start and end of
the original path.

3. The curve is represented by a straight line only if the original path is also a
straight line.

The implications of (1) means the arm is assured to reach the correct position,
so its start and endpoint accuracy is unaffected by the Bézier curve. (2) ensures
that the approximated path will approach pieces from above, in a similar manner to
the original path. These two properties of the Bézier curve is extremely important
in our system as they ensure that accuracy is kept and the overall path does not
collide with any objects. (3) is only useful if the discretized path is a straight
line, as the resulting path should also be a straight line. An example path and its
Bézier curve viewed in the direction straight from source to destination can be seen
in figure 3.16.

While this simple obstacle avoidance ensures that the end effector does not
collide with any obstacles, there is also the possibility of the intermediate links and
joints colliding with objects. As we shall see in subsection 3.4.2 one can choose
appropriate joint angles to ensure an upright pose of the arm, and thus avoiding
collision with the table or pieces. The controller ensures that the arm follows a path
free of collisions by instructing the arm to move to a series of intermediate points
before reaching the desired position. This leads to problem (2) stated earlier, the
controller does not know when a point has been reached and thus does not know
when the arm is ready for new instructions. This problem is solved by using the
arc length of each joint in combination with the acceleration and speed restrictions
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(a) Original Path (b) Bézier Curve Approximation

Figure 3.16: Bézier Curve Path

of each separate motor to approximate the time needed for each motor to get
in position. The approximate duration of the entire move is then found as the
maximum of the durations for each individual motor.

A possible solution to monitor whether the arm has completed a move is to
incorporate vision data from the main controller unit. The vision data in the cur-
rent application does not provide the accuracy needed for visual servoing, however,
monitoring whether the arm is moving could be possible.

3.4.2 Inverse Kinematics

The robotic controller uses an inverse kinematic approach to calculating the desired
angles for a given end-effector position, thereby providing the motor controller with
the necessary positional instructions for each motor. To solve the inverse kinematic
problem of a robotic manipulator one needs an accurate geometric model of the
arm. The construction of a robotic arm often results in a series of offsets that need
to be accounted for when calculating inverse kinematics for the arm. Some of these
offsets can be reduced by choosing the correct placement for the motors. However,
some joint offsets will usually remain where the motors are attached to the joints.

As seen in figure 3.17a the joint offsets result in the end effector being shifted
along the x-axis. The only joint with an axis of rotation that is not parallel to the
x-axis is the base motor, which allows us to simplify the configuration by combining
all the joint offsets into one. The resulting end effector position and joint angles
remain the same, but the simplified model shown in figure 3.17b allows for an easier
geometric analysis.

The inverse kinematic problem consists of calculating the four joint angles θ1...θ4
from known link and joint paramters as well as the end effector position (xc, yc, zc).
By considering the simplified model with θi representing the angle of the i’th joint,
we can make some observations:

51



(a) Manipulator arm with joint offsets (b) Simplified manipulator arm

Figure 3.17: Manipulator Arm Model

1. θ1 is only dependent on joint offset and end effector position.

2. θ4 ensures the end effector facing downwards, it can therefore be assumed to
have a constant impact along the z-axis, and none along the y- or x-axis.

3. θ2 and θ3 are the variables that affect the total length of the arm, from base
joint to end effector.

Under observation (1) we can ignore joint 2-4 when calculating θ1, and project
the base joint, end effector and link between them onto the x-y plane as in fig-
ure 3.18.

The angle θ1 can be found from the end effector position xc, yc and joint offset
d as:

θ1 = α− β (3.9)

By considering the triangle formed by xc, yc and r we find:

α = Atan2(yc, xc) (3.10)

And from the triangle formed by a, r, d

β = Atan2(d, a) = Atan2(d,
√
x2c + y2c − d2) (3.11)

Which results in:

θ1 = Atan2(yc, xc)−Atan2(d,
√
x2c + y2c − d2) (3.12)

Note that there are multiple solutions for θ1 for every set of coordinates, how-
ever, as the joint rotations are restricted by the servo motors rotations, the solution
from the left arm configuration has been chosen.
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Figure 3.18: x-y plane projection

Given θ1 we can find θ2 and θ3 by analyzing the plane formed by joint 2-4,
shown in figure 3.19

Where h is the height from the second joint to the end effector, and a is the
distance to the end effector from joint 2, along the direction of the arm. One can
see that the distance from the center of joint 2 to the center of joint 4 can be found
as:

d2,4 =
√
a2 + (h+ a4)2 (3.13)
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Figure 3.19: Projection on joint 2-4

By combining equation 3.13 with the law of cosines on the triangle formed by
the centers of joint 2, 3 and 4, θ3 can be calculated as:

d22,4 = a22 + a23 − 2a2a3cos(π − θ3)

cos(θ3) =
a2 + (h+ a4)2 − a22 − a23

2a2a3
(3.14)

Considering figure 3.18, a can be found as:

a2 = r2 − d2

a2 = x2c + y2c − d2 (3.15)

Since joint 4 is always pointing straight down, the height from joint 2 to the
end effector is calculated as:

h = zc − d1 (3.16)

where d1 represents the height along the z-axis from the base to joint 2. Combining
equations 3.14 - 3.16 results in:
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cos(θ3) =
x2c + y2c − d2 + (zc + a4 − d1)2 − a22 − a23

2a2a3
(3.17)

To get a general result for θ3 that includes both solutions, one for elbow up and
one for elbow down, one can note that,

cos(θ3) = D

sin(θ3)2 + cos(θ3)2 = 1

sin(θ3) = ±
√

1−D2

θ3 = Atan2(±
√

1−D2, D) (3.18)

Choosing the positive root funtion will result in θ3 facing upwards, and conse-
quently the negative root will give the solution where θ3 is facing downwards. θ2
can now be calculated as the sum of angles ω and γ in figure 3.20.

Figure 3.20: Angles ω and γ

ω can be found by the right traingle formed by joint 2, a and joint 4 as:
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ω = Atan2(a4 + h, a) = Atan2(a4 + zc − d1,
√
x2c + y2c − d2) (3.19)

By considering the the axis along a2 and its normal axis towards joint 4, γ is
calculated as:

γ = −Atan2(a2 + a3 cos(θ3), a3 sin(θ3)) (3.20)

and as a result:

θ3 = Atan2(a4 + zc − d1,
√
x2c + y2c − d2)−Atan2(a3 sin(θ3), a2 + a3 cos(θ3))

(3.21)

To ensure that the end effector is pointing straight downwards, θ4 can be found
from θ2 and θ3 as:

θ4 = −π/2− θ2 − θ3 (3.22)

The calculated angles represent the complete configuration of the robotic arm.
Assuming the initial model was accurate, complete control of the robotic arm is
performed by using the path planning and calculated angles as instructions to the
motor controller.
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3.5 Sensory unit

Any fully autonomous unit that wishes to interact with its environment needs
information about its surroundings. Retrieving usable information that is accurate
enough for a robotic arm proved a challenging task. The sensory unit was set up
with a camera placed above the table and facing downwards to capture an image
containing all the relevant data about the chess game. The camera used for this
project was a Microsoft LifeCam Studio [23], however, any standard webcam would
suffice as neither a high resolution nor special properties is necessary. The camera
position needs to fulfill the following requirements:

1. Observe the entire chessboard

2. View the chessboard in a relatively downright manner

The second requirement is loosely termed, however, its main purpose is to
reduce the amount of chess piece occlusion and perspective distortion. The unit
would need to not only capture the image data but also interpret it into information
that would be usable for a chess processing unit. In general, chess engines accept
input that represents current game state and movement of pieces.

Computer vision processing was done using the OpenCV [17] library which
contains a large amount of functions to aid in capturing, storing and processing
images and real time video. The process behind capturing and analyzing images in
any programming language is in itself complex. Using OpenCV allows us to shift
the focus from implementing trivial functions towards integrating and adapting
existing functions into a complex program that can process chess games in real
time.

3.5.1 Capturing the image

The camera is located above the chessboard, as shown mounted on the arm in
figure 3.21. The captures images will therefore exhibit less perspective distortion
and occlusion than if the camera was mounted on any side of the chessboard.

The VideoCapture class enables the opening of a channel to any supported
video format or camera connected to the computer, and storing the connection as
a VideoCapture object. A video stream is merely a series of images, to analyze
the video one needs to process the images it contains. OpenCV reads and stores
the image data as a two dimensional matrix for positional image data, with a third
dimension for representing pixel values.

Mat image ;
VideoCapture cap (webcam ID ) ;
Image = imread ( cap ) ;
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Figure 3.21: Camera Position

3.5.2 Locating the chess board

A lot of chess recognition methods use some sort of assisting mechanism to recognize
the location of the chessboard in an image. Some use pre-placed markers of specific
colors that stand out, others need manual input from the user to locate the board.
Other methods used for camera calibration makes some assumptions about the
chessboard such as the camera having an unobstructed view of the board or the
board being placed at a certain rotation relative to the camera. The method
presented in this section attempts to locate and segment a populated chessboard
of arbitrary size, rotation and color.

The goal is for the image to be segmented so the chessboard region can be
compared to previous instances. As the board might shift any time during the
game, the chessboard region must be extracted and represented in a fashion that
is invariant to board rotation and translation. A typical chessboard model from a
given perspective can be seen in figure 3.22a. The goal is to segment the chessboard
and transform the region so its corner points align with a square region as in
figure 3.22b.

Locating and transforming the chessboard region in this way enables detection
methods to be made without considering board rotation or translation. Each square
can then be accessed by assuming a perfectly square board with chess square length
and width equal to 1/8 of the board size.
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(a) Chessboard model (b) Perspective transformed chessboard

Figure 3.22: Chessboard Perspective

As all chessboards are based on the same concept, some assumptions can be
made:

1. The chessboard has squares of alternating light and dark color

2. The board is placed correctly, with the top left and bottom right squares of
light color.

3. The camera is positioned above the table, but one cannot guarantee that
pieces are not obstructing the lines and corners of the chessboard.

One approach to finding the chessboard is to perform a corner detection to
locate both the extreme corners of the chessboard as well as the corners of each
chessboard square. The board could be located by a maximum probability align-
ment of the located corners. A problem occurs when false corners are detected
while some real corners are missing as a result of assumption (3). False corners
could come as a result of image noise, variable lighting conditions or chessboard
texture. The resulting chessboard detection would also rely on finding a good
corner threshold to locate the correct corners. While a corner detection based
chessboard locater would have some success, the result was found to give varying
results in segmenting the board which would impact the detection of pieces on the
chessboard.

The chessboard detection scheme in this paper is inspired by a probabilistic
approach presented in [24]. The general idea is to find a set of possible square-like
regions based on image edges and transforming the regions to fit a perfect square.
A chessboard template is generated and projected with perspective transform onto
the square region. The method in [24] generates the template colors by sampling
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each square for its average intensity value and uses a variety of masks depicted in
figure 3.23 to sample around potential pieces. A drawback with such a method is
the assumption of pieces being centered in their respective chess squares, relative
to the image frame, a condition that might not hold when a human places the
pieces. The method presented in this paper generates the template colors based on
domain knowledge about chessboard colors.

Figure 3.23: Sampling Masks

3.5.3 Chessboard detection: A Hough lines based template
matching approach

The first step in locating the chess board is image pre-processing. The colored
image is captured in the RGB color spectrum and is usually influenced by some
noise or unimportant details. To get a proper edge detection result the image is
converted to a gray scale image with pixel values ranging from 0 (black) to 255
(white). A gray scale mathematical morphology operation is performed using a
circular structuring element to erode then dilate the image. Figure 3.24 represents
a gray scale noise-reduced image and the originally captured image.

(a) Original Image (b) Gray Scale Image

Figure 3.24: Chessboard Image

To allow for robust line detection there is a need for a robust edge detection
scheme. Edge detection often relies on stable lighting conditions to ensure that
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results are relatively consistent over time. A typical solution to ensure a robust
result is to perform histogram equalization. The histogram equalization increases
the contrast of the image so the edge detector can provide more stable results
independent of lighting. The resulting image is based on stretching the histogram
to expand across all possible values as seen in figure 3.25.

(a) Gray Scale Image (b) Gray Scale Histogram

(c) Histogram Equalized Image (d) Equalized Histogram

Figure 3.25: Histogram Equalization

As the chessboard will be located based on image edges the accuracy of the
chessboard detection will be influenced by the accuracy of the edge detection
scheme. The chosen method for edge detection is the Canny edge detector. The
Canny edge detector is chosen based on the requirements:

• Low error rate

• Good edge localization

• Single edge response

Good edge localization is crucial to ensure an accurate chessboard detection that
fits the actual chessboard as closely as possible. The single edge detection ensures
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that each edge only votes once on a line in a given direction and thus increases the
accuracy and reduces the number of duplicate lines. The edge detection resulting
from the gray scale image can be seen in figure 3.26.

Figure 3.26: Canny Edge Image

As image edges can be partially occluded or influences by noise a more robust
line estimate is found by using the Hough transform to detect image lines. The
Hough transform is implemented by modifying the existing OpenCV algorithm to
get lines more relevant for detecting the chessboard. As the image is searched
for a chosen number of lines, the detected lines should be relevant to locating the
chessboard and are thus subject to the following two constraints:

1. Two lines may not be of similar angle and position.

2. Two lines that are not normal on each other may not intersect within the
image.

In either case, if there are two conflicting lines, the line with the smallest number
of votes is discarded. Constraint (1) is necessary to ensure a true local maxima
is found when detecting lines as two lines in close proximity has no relevance to
detecting a chessboard. Constraint (2) ensures that detected lines are either normal
or relatively parallel to each other, and thereby representing potential chessboard
lines. The intersection between two polar lines is found by calculating the length
along one line to the intersection as:
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x1 = r1cos(θ1)

y1 = r1sin(θ1)

x2 = r2cos(θ2)

y2 = r2sin(θ2)

b =
(y2 − y1) sin θ1 + (x2 − x1) cos θ1

cos θ1 sin θ2 − cos θ2 sin θ1
(3.23)

The intersection’s x and y coordinates relative to the image frame is then:

xI = x2 − b sin θ2 (3.24)

yI = y2 + b cos θ2 (3.25)

If an intersection is found it is compared to the image size to verify if the inter-
section occurs within the image frame. The reason for restricting the intersection
to the image range is that detected lines may not be perfectly parallel as a result
of perspective transform or Hough transform’s inaccuracy. The modified Hough
transform finds the strongest lines that fulfill the two requirements. The strength
of modifying the Hough transform to fit the application at hand is reflected in in-
creased robustness and reduced processing time as irrelevant lines are not accepted
for further processing. An edge image with a requested 35 lines drawn in blue can
be seen in figure 3.27.

Figure 3.27: Detected Lines

To reduce the amount of detected lines one could request fewer lines or increase
the threshold. Fewer lines would reduce processing time, however, it would result
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in a lower probability of detecting the correct four chessboard lines. The choice
of line detection parameters will involve a tradeoff between processing time and
accuracy. Since a low processing time is not the focus for this application, the
method is implemented to allow for some redundant lines to ensure more accurate
results.

The detected lines are processed to find all combinations of four intersecting
lines that form a square-like region. A region is classified as square-like if two
vertices have at most a 10% error from forming a square. This restriction is possi-
ble to reduce the amount of squares found given the current camera position and
orientation, however, it may need to be relaxed if camera pose is changed consid-
erably. To further reduce computation time the four square corners are required
to be located in the four image quadrants. This assumption comes as a result of
the inherent restriction of the robotic arm that requires for the board to be located
relatively close to the center of the arm, and thus near the center of the captured
image. Each square-like region now represents a region of interest in the original
image.

To find the most likely chessboard region a chessboard template is generated
for each region based on sampled intensity values within that region. The gray
scale intensity values of the chessboard template can be found by making two
assumptions:

1. The squares are of alternating light and dark color, i.e. high and low gray
scale intensity values

2. The color frequency of a populated chessboard will be dominated by the
colors of the chess squares

Assumption (2) can be made as a fully populated chessboard contains 32 pieces,
16 of each color. As there are 16 unpopulated squares of each color one can assume
that the chess square colors will dominate any gray scale histogram of the region as
the squares make up a larger portion of the image. This assumption is strengthened
when assuming that most pieces do not cover an entire square, and thus some chess
square color will be present on populated squares as well.

To locate the chessboard colors each pixel is sampled and a gray scale his-
togram that represents the frequency of each intensity value is generated. The
gray scale value of the chess squares can be found as the two largest local maxi-
mum intensity values. A chessboard template can now be generated, however, the
regions populated by chess pieces may give a substantial error when compared to
the unpopulated template. As the region surrounding the chessboard squares often
consists of a color similar to that of the chess squares there is a possibility that
the error resulting from the populated squares is large enough to give inconclusive
matching results. This problem can be solved by using knowledge about chess piece
positions from previous game states to generate a populated chessboard template.
The chess piece colors are found in a similar manner as earlier but now by search-
ing for two local maximum intensity values that are distinct from the previously
calculated chess square values. The search begins on intensity values outside a re-
gion around each of the previously found chess square values. The excluded region
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shrinks if no distinct local maxima can be found, resulting in the chess piece colors
eventually defaulting as the respective chess square colors if no distinct colors are
found. This would occur more frequently as the game progresses and the number
of pieces is reduced. In this case the error that ensues from using an unpopulated
chessboard template is also reduced. An example chessboard template generated
from the intensity value histogram is shown in figure 3.28.

Figure 3.28: Chessboard template

The pieces are assumed to be located near the center of the chess square, how-
ever, the total error will be more robust to non-centered pieces as the error will be
averaged out across the entire board.

To compare the located square regions with the template image one needs to
perform a perspective transform to ensure that both images are viewed in the same
perspective. A perspective transform is calculated so that the four corner points
of the square region are shifted to form a perfect square of the same size as the
chessboard template. The transformation is performed by finding the perspective
matrix M that matches the four points (x∗i , y

∗
i ) to four square points (xi, yi) as:

tix
∗
i

tiy
∗
i

ti

 = M

xiyi
1

 (3.26)

Perspective transform is applied to the image by mapping every pixel to a
chessboard image as:
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Chessboard(x, y) = Image(
M1,1x+M1,2y +M1,3

M3,1x+M3,2y +M3,3
,
M2,1x+M2,2y +M2,3

M3,1x+M3,2y +M3,3
)

(3.27)

For each square region the perspective transform is calculated and applied to
the original image region. The probability is derived by comparing each region to
its respective template by calculating the sum of absolute differences between the
images. Since both images are of equal size, the difference can be found by taking
the absolute difference between each square region pixel value and its corresponding
template pixel value:

SAD =

n∑
i=1

m∑
j=1

|Image(i, j)− Template(i, j)| (3.28)

The square region representing the chessboard is found as the region with the
lowest total absolute difference from the template. Based on a given board situation
the two most likely square regions and the absolute difference to their respective
templates can be seen in figure 3.29. The correct chessboard region had a lower
sum of absolute difference, and was therefore chosen as the segmented chessboard
region.

The template matching is only performed on extracted line regions, therefore
the approach is only as accurate as the line detection method. By properly pre-
processing each image the number of false positives and undetected chessboards
resulting from inaccurate line detection can be kept small. The approach taken to
chessboard detection performed well in a variety of lighting conditions and chess
piece positions, further results will be analyzed in chapter 4.

The perspective transformed and extracted chessboard region is stored for each
processing time step. It is important to note here that the stored chessboard region
is of the original image, hence not the one that was histogram equalized. The reason
for storing the original image is that the images will be compared to previous time
steps and pre-processing such as histogram equalization can give variable results
depending on strong variations in lighting. The advantage of such an approach is
that the stored chessboard image stays the same for each time step regardless of
the board being shifted or rotated during gameplay. This allows the detection of
chess moves to occur without considering movement of the board. Some changes
in the region extracted will occur as the detected lines cannot be guaranteed to be
the completely identical for each time step. Therefore the subsequent chess move
detection would have to be robust to small changes in chessboard region detection.
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(a) Chessboard region (b) Board-Template difference

(c) False chessboard region (d) False board-template difference

Figure 3.29: Detected Regions

3.5.4 Chess move detection

A robust chess move detection scheme is necessary to update the game state based
on the moves of a human player. The method must fulfill some requirements:

1. Robust to changes in lighting and noise.

2. Must detect movement of pieces of arbitrary size, position and orientation.

3. Robust to variations of chessboard detections
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A general game state could be found by performing a set of object recognition
on each individual piece. This would however require a different camera placement
as objects would need to be viewed from the site to perform robust detection. As
the camera stands it would be near impossible to provide stable object recognition
as the pieces are viewed from above and thus the program lacks information such
as object height. A piece viewed from above and the side is shown in figure 3.30.

(a) Queen Above (b) Queen Side (c) Bishop Above (d) Bishop Side

Figure 3.30: Chess Piece Perspective

Placing the camera at a more tilted angle would give rise to a new problem
as a fully populated chessboard will result in primarily occluded and partially
visible chess pieces. An extreme example of this is shown in figure 3.31 with
blue rectangles marking completely occluded pawns. To ensure a robust detection
scheme one would need to create a more complex camera system with multiple
cameras viewing the board from different angles. Note that the problems of an
object recognition approach to chess move detections has so far assumed that all
chess sets are the same. Chess pieces come in a large variety of shapes, colors
and sizes which makes it highly doubtful that a single piece recognition scheme
could perform robustly on any given chess set. The approach taken in this paper
therefore assumes no knowledge about the shape or size of the chess pieces, but
rather relies on game state knowledge to locate chess moves.

The implemented detection of chess moves is based on using information about
previous game states to compare the before and after images of the respective game
states. Since each game of chess starts in the same initial state, the position and
appearance of each piece is known based on its initial position and the history of
moves. The chess squares are formed as an 8x8 grid of equally sized squares on the
previously segmented chessboard image with applied perspective transform. The
grid of chess squares from the previous segmented image can be seen in figure 3.32.

By considering a new game state where a move has occurred, the task of locat-
ing the move is reduced to comparing each respective chess square from the two
states. With a perfect segmentation result and no changes in lighting between the
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Figure 3.31: Occluded View

two time steps, the task is trivial as the move can be found by comparing each
region based on absolute difference. The move can be found by calculating the
regions with the highest difference. Such a simple approach may face problems
when lighting conditions change between game states or the segmentation result
experiences minor shifts in translation or rotation.As a general absolute difference
approach will not take into account pieces moving within their own square, the
approach is also prone to errors resulting from human players accidentally bump-
ing into other pieces. Generally the difficulty of robustly comparing chess squares
is increased in cases where piece colors are similar to the underlying chess square
colors. To see this consider the two different scenarios when an unoccupied light
square is populated by a dark and light piece. By comparing the two scenarios by
absolute difference of a perfectly segmented square the sum of difference is much
larger for the scenario with the dark piece although both represent a possible move,
as seen in figure 3.33.

The comparison of the light piece on the light square may be too weak compared
to the difference resulting from changes in lighting conditions, shade caused by
moving pieces or variable segmentation results. Some approaches will be presented
and tested with the aim of finding a method that provides robust results regardless
of piece colors, lighting conditions or human error. The presented methods make
the assumption that any normal valid chess move will consist of changes occurring
in two different positions. Therefore a normal chess move is located by finding the
two chess squares that have the highest probability being involved in the move.
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Figure 3.32: Grid of Chess Squares

(a) Difference Dark Piece (b) Difference Light Piece

Figure 3.33: Absolute Difference of Chess Move

Some special moves will result in the move being characterized by changes in
more than two chess squares. Specifically:

En passant: Special move that results in a move being characterized by the source
and destination of the piece, as well as the position of the pawn that is hit.
In this case, three chess squares marked in figure 3.34c must be detected.
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(a) (b) (c)

Figure 3.34: En Passant

Castling: A special move where a castle and king are swapped and placed on two
new squares. The move is characterized by the four squares in figure 3.35,
two source and two destination squares.

(a) Step 1 (b) Step 2

Figure 3.35: Castling

For the reasoning behind these cases see the introduction of special moves sec-
tion 2.5.2. Both of these special moves can be detected by using information about
the previous game state to determine if the most probable chess square changes
were a result of a special move. For the sake of simplicity the presented methods
will assume that a normal move has occurred. The concept of detecting the two
special moves is the same as for a regular move with the difference of using previous
game state information to check for the possibility of a special move. The subse-
quent methods are presented as possible solutions to comparing the various chess
square regions and thereby detecting the two regions that experience the largest
amount of change.

Sum of absolute differences

The sum of absolute differences approach, as mentioned earlier, locates moves by
finding the areas that experienced the largest amount of pixel by pixel change. To
account for some inaccuracies as a result of similar colors the absolute difference of
pieces on similarly colored chess squares receive a larger weight than other squares.
Consider figure 3.36a showing the absolute difference between two identically seg-
mented game state images. The move can easily be located by locating the two
grid locations that experience the largest amount of difference. Figure 3.36b is a
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result of the absolute difference between two game state images with a small change
in segmentation. Locating the correct grid position of the chess move is no longer
quite as trivial. This result highlights the weakness of using a pixel-by-pixel based
comparison method as it relies on a perfect segmentation result and no human-error
in the form of shifted pieces.

(a) Absolute Difference (b) Shifted Absolute Difference

Figure 3.36: Absolute Difference of Chessboard

Histogram matching

For every chess square two histograms are generated, one for the previous time step
and one for the current time step. These histograms contain the frequency of colors
in the chess square regions and thus do not depend on the position of colors. An
advantage with this approach is the fact that pieces can be positioned arbitrarily
within a chess square without its position impacting the result. To compare two
histograms one needs to define a robust comparison metric. The simplest approach
is finding the sum of the absolute difference of the histograms, however, small shifts
in lighting may cause large errors as histograms may shift in either direction. To
see this consider the histograms of figure 3.37, histogram 1 is clearly most similar
to histogram 2, however, as the absolute differences does not distinguish between
histogram position, histogram 1 and histogram 3 would be deemed the most similar.

With variable lighting, a shift like the one presented in 3.37 may occur, therefore
a robust histogram comparison method must account for both the value and posi-
tion of a given histogram color. Additionally the comparison must be performed
quickly as a large number of histograms will be compared. The Wasserstein met-
ric, also known as the Earth Mover’s Distance(EMD), is a method that defines
the difference between two probability distributions of equal size by accounting for
both the value and position of each histogram bin. A histogram containing the
frequency of color in an image region can also be viewed as the probability distri-
bution of color. Informally EMD can be defined as the minimum amount of work
necessary to turn one distribution into the other. By using a popular analogy of the
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(a) Histogram 1 (b) Histogram 2 (c) Histogram 3

Figure 3.37: Example Histograms

distributions being piles of dirt, the work is defined as the amount of dirt times the
distance it needs to be moved for the two piles of dirt to be equal. For a discrete
distribution on a one-dimensional array the EMD can be calculated by iterating
through the array and keeping track on how much work is performed between each
consecutive step:

EMD[ 0 ] = 0 ;
for i :=0 to h i s togramSize do
begin
EMD[ i +1] = (H1 [ i ] + EMD[ i ] ) − H2 [ i ]

end ;
Distance = s

Where EMDi is the earth movers distance at each step and Distance the total
difference between the two histograms H1 and H2. An advantage of using color
frequency to compare squares is that the pixel position of color, and hence position
of chess pieces, is insignificant as long as the piece is positioned on a square. By
using the earth movers distance the result is also more robust to small changes in
lighting or noise.

Template matching

A template based approach to locating chess moves is implemented by generating
a template based on previous known square configurations. For a chess game this
involves creating six templates, one for each possible situation:

• Light piece on light square

• Light piece on dark square

• Dark piece on light square

• Dark piece on dark square

• Empty light square

• Empty dark square
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The purpose of creating a template at each interval is that it allows the move de-
tector to adapt the templates to account for changes in lighting. Two template-like
approaches can be taken, one based on the absolute difference between a template
and the underlying square, another based on generating histogram templates and
comparing the histogram templates to the underlying square’s histogram based
on earth mover’s distance. This approach would locate the most likely content of
each chess square, and thus locate a move based on observing a change in square
contents relative to the previous game state. For a histogram based template ap-
proach, the histogram template of the various gray scale square contents can be
viewed in figure 3.38.

(a) Light Square (b) Dark Square (c) Light Piece,Light Square

(d) Light Piece, Dark Square (e) Dark Piece, Light Square (f) Dark Piece, Dark Square

Figure 3.38: Histogram Templates
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3.5.5 Move detection testing

An intuitive decision could be hard to make based on the comparison methods
presented. To decide on which method should be used, they were all tested in
parallel on the same images. Four variations of the histogram matching approach
were tested:

• Gray scale histogram

• Gray scale histogram with histogram equalization

• Y CBCR color histogram

• Y CBCR color histogram with equalized luma (brightness)

The Y CBCR color representation is similar to the HSV representation repre-
sented in section 2.4.1, in that it separates the color components, CB and CR,
from the brightness Y . The advantage of using such a color representation is that
the brightness component can be manipulated separately to make the recognition
process more robust to lighting changes without altering the color components.

Each method is tested based on the number of correctly classified instances and
the strength of which these classifications are made. The strength of a classification
is defined as the difference of the weakest detected square divided by the difference
of the strongest undetected square. The strength of a classification shows how well
the correctly detected moves are separated from other squares with the various
chosen methods. As the methods will see a limited amount of testing, a method
that classifies with a stronger conviction may in the long run outperform a method
that has a higher number of correct classifications on the test set. The strength will
also serve to separate methods that correctly classify the same amount of moves.

The classification of moves is separated into four categories ranging from best
to worst scenarios:

• Positive: Correctly classified instances

• Weak positive: Correctly classified instances with a weak strength

• Weak false: Incorrectly classified instances with a weak strength

• False positive: Incorrectly classified instances.

Weakly classified instances result in an inconclusive matching as the gap be-
tween correct and false moves is too small. Weak classifications are preferable to
false positives as the classification is recognized to be inconclusive and a new at-
tempt can be made on a new image or by using another classification method. The
threshold for weak classifications was chosen to be 1.1, meaning the strength of the
correct move must be atleast 10% larger than the largest incorrect move. Reducing
this threshold would result in a potential larger amount of true positive and false
positive classifications, while an increased threshold would result in more classifi-
cations being inconclusive. The threshold was chosen to ensure a low false positive
rate without classifying a large amount of positive instances as inconclusive.
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To compare the methods a normal test and stress test was performed. Dur-
ing the normal test, the testing environment was ensured to fulfill the following
requirements:

• Stable lighting conditions

• Stationary chessboard

• Unmoved pieces remain stationary

• No obtrusive shadows

The resulting classifications of each method is shown in figure 3.39. The tem-
plate matching approach was not included in the graphs as initial testing proved
it incapable of providing the robust results necesarry for the chess robot. Based
on the normal test, the absolute difference and equalized color histogram approach
performed best, reaching a positive classification rate of 99% with 1% weak classi-
fications which were correctly classified on a second attempt. The strength of each
method shown in figure 3.40 reflects the mean strength of each correctly classified
instance. By using the same threshold as earlier, a strength bellow 1.1 would re-
sult in a weak, and therefore inconclusive, classification. Combining the detection
strength and classification results proved the absolute difference approach to be
the stronger method on a normal test.

Figure 3.39: Normal test: Accuracy of move detectors
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Figure 3.40: Normal test: Strength of move detectors

The requirements for the normal test cannot be guaranteed during regular use,
therefore a stress test was performed. The stress test was performed by altering
each of the previously assumed static variables between each move, meaning the
chessboard was subject to:

• Varying lighting conditions

• Rotated and shifted chessboard

• Shifted unmoved chess pieces

• Shadows from multiple light sources

The stress test’s classification results is shown in figure 3.41 and mean strength
in figure 3.42. The absolute difference approach as well as the gray scale and color
histogram approaches are shown to perform considerably worse during the stress
test. The absolute difference approach struggled to correctly classify instances
where inter-square shifting occurred at the location of unmoved pieces, and in-
stances where the chessboard segmentation result shifted as a result of varying
lighting conditions. Both equalized histogram approaches performed reasonably
well on the stress test with a small reduction in correctly classified instances when
compared to the normal test. The biggest difference is the occurrence of a false
positive as a result of shadows on the chessboard and was incorrectly classified with
every tested method.

The comparison method that uses a Y CBCR color histogram with equalized
brightness was chosen for the overall detection method with the gray scale equalized
histogram approach being used as backup in the case of a weak detection.
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Figure 3.41: Stress test: Accuracy of move detectors

Figure 3.42: Stress test: Strength of move detectors

The results obtained with the detection methods are considered robust enough
to be used to update game state information without the need for manual instruc-
tions. With the chess unit calculating moves based on the sensory information, the
robotic arm can play a game of chess fully autonomously.
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3.6 Main Controller Unit

The main controller unit serves as the systems central controller that handles com-
munication and coordination between the various modules of the system. Its main
tasks are to keep track of the current game state and ensure that the various mod-
ules execute their desired functions at the correct time. The MCU also serves as an
interface between the chess and vision unit by ensuring that each module receives
appropriate instructions.

The MCU initializes the vision unit, robot arm and the chess unit, with the
chess unit running on a separate thread that communicates with the MCU through
shared variables and thread locks. A chess round starts with a player moving a piece
and informing the MCU that a piece has been moved. The MCU then instructs
the vision unit to locate and store the current chessboard image as well as detect
the chess move by comparing the image to the previous game state. If the previous
step fails an error prompts the user to ensure that a correct move was performed.
If the chess move is correct, the user may allow the system another attempt at
detecting the move or manually enter the move. Once a valid move has been
found the game state is updated and the chess unit is prompted for its move. The
round is completed once the robot arm has completed the chess unit’s move and a
subsequent chessboard image has been captured. The sequence of a round of chess
from the human player’s move to the corresponding chess unit move can be seen
in figure 3.43

3.6.1 Robot Arm Interface

A typical chess move is categorized by the source and destination coordinates in
the form of C2E3 which translates to Cartesian coordinates as (x1, y1, z1) and
(x2, y2, z2). A chess robot interface is necesarry to translate chess moves into
instructions for the robotic arm. These chess instructions are separated into five
categories based on the necessary movement of the robot arm:

• Regular move: Move piece from (x1, y1, z1) to (x2, y2, z2)

• Hit move: Remove piece from (x2, y2, z2), move piece from (x1, y1, z1) to
(x2, y2, z2)

• Casteling move: Move king from (x1, y1, z1) to (x2, y2, z2) and tower from
(x3, y3, z3) to (x4, y4, z4)

• Pawn promotion: Remove piece from (x1, y1, z1), place promoted piece at
(x2, y2, z2)

• En passant: Remove piece from (x3, y3, z3), move piece from (x1, y1, z1) to
(x2, y2, z2).

Where (x1, y1, z1) and (x2, y2, z2) represent the Cartesian coordinates of the
respective source and destination chess coordinates. In the case of a casteling or
en passant move, the remaining chess coordinates can be calculated based on move
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Figure 3.43: MCU Sequence Diagram

type. Chess coordinates are translated to Cartesian coordinates by assuming the
chessboard’s size and orientation, as well as the distance from the robot arm to
the chessboard, is known. For the robot arm to move pieces on a chessboard of
arbitrary size and orientation without the need for manual readings, one would need
a computer vision method that either calculates these chessboard sizes accurately
or a robot arm control that uses vision data for direct feedback control. These
approaches will be discussed more thoroughly in section 5.3.

The placement of removed chess pieces is instructed by the chess robot interface
by storing a 2x8 grid along both sides of the chessboard where removed pieces can
be placed. Previously placed pieces are recorded so the arm retains the information
and can place future pieces on available locations alongside the chessboard. The
drawback of this approach is that it would require the area on the sides of the
chessboard to remain free of any external objects. A more robust solution that
involves creating a custom box to room the chess pieces is briefly discussed in
section 4.3.

The main controller unit constitutes the last necessary module that ties all the
previously implemented systems together.
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Chapter 4

Testing and results

This chapter will provide a discussion of the results obtained by testing the various
modules, as well as a video test of the complete system. Section 4.1 describes the
results obtained from the robotic arm prototype. Section 4.2 provides a discus-
sion on the main results of the chosen computer vision methods as well as a brief
discussion of the overall vision system. A discussion of the complete system and
some possible improvements will be covered in section 4.3.

4.1 The Mechanical Arm

The robotic arm was tested by instructing the arm to move a variety of chess
pieces on a chessboard. The test chessboard was square with a length of 47cm
and the robotic arm was placed at the center of one side with a 6.3cm distance
from the center of the arm to the edge of the chessboard. Initially, all chess pieces
were placed at the center of their respective chess squares. Initial testing proved
that the robotic arm managed to move pieces from and to any positions on the
chosen chessboard. Some inaccuracies were observed, however, by using a gripper
of adequate size, the inaccuracies had negligible impact on the total move.

If the robotic arm is to be used reliably it needs to exhibit a high degree of
repeatability. To test the repeatability of the arm, some pieces were instructed to
be moved back and forth between two points. Previous movement was repeated
with no observable difference. The precision of the robotic arm was tested more
thoroughly by instructing the arm to move to a set of test points of known coordi-
nates and measuring the distance from the end effector to the desired test points.
The mean error in length and width direction can be seen in figure 4.1.

The error in height was measured somewhat more arbitrarily, ranging from 2-
8mm, with larger error occurring further away from the robot arm’s base. With
the chosen gripper, a height error of less than the object piece would result in a
successful move, therefore the height error is less important than the error in width
and length direction. Some of the inaccuracies are attributed to the necessary
manual calibration of the servo motors. With a maximum chess piece width of
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Figure 4.1: Robot Arm Accuracy

2cm and a gripper that extends to a maximum of 3.8cm, the maximum absolute
error is required to be less than 9mm. With these requirements, the accuracy
of the robotic arm is sufficient for the current application. The most notable
errors occurred at the far extreme positions of the arm. The arm was found to
resolve small changes in position better in close proximity to the arm’s base. The
reduction in accuracy is suspected to come as a result of the arm struggling to
hold accurate positions when fully stretched. Even though the robotic arm moves
sufficiently accurate for the current application, increased accuracy may be possible
by using servo motors that are better suited by providing a higher amount of torque.
Within the desired price range, no servo motors were found that was better suited
for the current application. The chosen servo motors provide a larger amount of
angular velocity than what is necessary for the system, therefore one could apply
heavier gears, thereby decreasing speed and increasing maximum torque. This
would involve either modifying the existing servo motors, or building a new set of
custom actuators from base DC motors. This road was not taken for the current
project, however, it does stand as a potential improvement by using custom-made
motors that are specifically designed for the robotic chess player.

4.2 The sensory unit

4.2.1 Chessboard Detection

Chessboard detection is the core of the vision unit as all subsequent processing is
performed on the segmented region. The chessboard detection method was tested
under a variety of lighting conditions with various piece placements. By searching
the image for 35 lines, the approach performed well during both a normal and
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stress test, as can be seen by the detection strength in figure 4.2. The stress
test was performed by moving pieces within their respective chess squares and
altering the lighting conditions. During a stress test with the sum of absolute
differences approach, the correct board was separated by false regions by an average
of approximately 35%, reflecting the board detection strength of 1.35. The method
was found to segment the chessboard region well during both the stress test and
normal test, however, some small variations in the detected region occurred during
both tests. These variations were expected as the line detections experienced small
shifts under varying lighting conditions.

Figure 4.2: Chessboard Detection Strength

The biggest drawback of the chessboard detection method was the need for
accurate line detection results. Detection was only performed on regions located
by the image lines, therefore the four edges of the chessboard would have to be
detected for the chessboard detection to succeed. The change of detecting the four
chessboard lines increases with the total number of detected lines, which is chosen
as a maximum number of lines. The drawback of detecting a large number of lines
is the increase in processing time as more regions are compared to the chessboard
template. Processing time with various number of lines is shown in figure 4.3.

As no requirement has been set on how fast the system must react to the
opponents move, no correct solution exists on how many lines should be chosen.
In general one should seek to use the least number of lines necessary for a robust
result. A chessboard will contain at least 18 lines, with multiple additional false
lines located at the edges of the chessboard. With the current test environment, 30
lines were shown to be sufficient for a robust chessboard detection scheme, resulting
in an average processing time of approximately 1 second. If multiple foreign objects
are present around the chessboard, some lines could be shifted to these objects and
thus resulting in a wrongly detected chessboard region. Even with the maximum
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Figure 4.3: Processing time: Chessboard recognition

number of lines chosen at 40, the average processing time does not exceed 2.5
seconds, which should be sufficient for a chess detection scheme. Note that no time
has been spent on optimizing the processing time of the current solution, therefore
one could expect there to be some room for improvements.

4.2.2 Chess Move Detection

A robust move detector would need to recognize moves on any kind of chess set
with a high accuracy. A chess move detection approach based on color histogram
equalizing was chosen based on the tests in section 3.5.4. Based on some differences
in weak positive and weak false classifications, a gray scale equalizing approach was
chosen in case of an inconclusive result in the former approach. The methods were
tested on a chessboard without requiring disjunctive piece colors or known chess
piece shapes. A normal test was run with no distinct lighting changes between
moves, and a stress test was run by changing the lighting conditions between moves
as well as shifting pieces arbitrarily within their respective chess squares. The
results of the two approaches can be seen in figures 4.4 and 4.5.

During normal testing the color based detector reached a positive classification
rate of 99%, with 1% inconclusive classifications. If no conclusive classification
can be made with either approach, the detection is rerun on a new image. With
this approach, all moves during normal testing were correctly classified. The only
drawback of an inconclusive classification is the necessity of processing another
image, thus increasing processing time.

The stress test highlighted a problem with the current detection approaches as
one move was misclassified. The misclassification occurred as a result of a light
source placed by the side of the chessboard and therefore casting dark shadows
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Figure 4.4: Accuracy of Move Detectors

Figure 4.5: Stress Test: Accuracy of Move Detectors

on various places on the chessboard. The error occurred as the chosen chess piece
colors were similar to the underlying chessboard colors, therefore a square that ex-
perienced a dark shadow also experienced a stronger change in color than the square
containing the moved piece. No tested method was found to be robust to these
types of shadows with the chosen chess piece colors, however, the misclassification
did not occur on a test run with black chess pieces on brown squares and light chess
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squares. To ensure a robust detection result one would either have to use chess
pieces colors that differ from the chessboard colors or ensure stable lighting with
few obtrusive shadows. As discussed briefly in section 3.5.4, object recognition
using standard cameras was deemed infeasible due to camera placement and the
large variations of chess pieces. A possible improvement to the current solution is
to add a time-of-flight camera that provides depth information in the image. Using
depth information the current system could be more robust to various dark shad-
ows and changes in lighting. A depth camera was not pursued as an option because
of a substantial increase in total cost, nonetheless, future advances in depth camera
technology may provide cheap alternatives that could make it a viable option.

The total processing time for the complete sensory unit with 25 and 30 line
detections is shown in figure 4.6. Move detection takes a negligible amount of
processing time when compared to the three methods involved in chessboard de-
tection. This leaves room for further improving the robustness of the move detector
by adding more functionality, such as by adding a depth camera, or running mul-
tiple different methods in parallel and choose a result based on weighted voting.

Figure 4.6: Processing time

4.3 The Robotic Chess Player

This section will cover the combined system as a whole and discuss some potential
improvements to the overall system. The complete system was tested under rela-
tively stable lighting conditions. A short video demonstrating the performance of
the chess playing robot has been added as a digital attachment to the paper. The
video serves as the basis for discussing the results of the robotic chess player, there-
fore any reader of this section is advised to view some of the added video footage.
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Note that the video is taken to reflect the ability of the robotic chess player, and
therefore does not represent the author’s own chess ability.

As seen in the videos, the robotic chess player manages to play a game fully
autonomously, with the only human interaction occurring to signal the turn-taking.
The sensory unit manages to recognize chess moves with a high degree of accuracy,
however, the video shows a significant amount of time being spent on processing
the images between moves. The chessboard detection scheme in the video is slower
than an improved version as the method used 40 detected lines while storing some
data for troubleshooting. The findings of section 4.2.1 proved that this could be
reduced to 30 lines, thereby decreasing the processing time by approximately 1.5
seconds. The total processing time of the updates sensory unit is in the region of
3-3.5 seconds, which was deemed sufficient for a chess playing robot.

The robotic chess player performed well when both picking up and placing
pieces. The pieces were all approached in a relatively downright manner, and
picked up without significantly bumping into nearby pieces. The placement of
pieces occurred in a similar manner, with most of the chess pieces being completely
contained within the target chess square. Later inspection of the source code
revealed a rounding error of the coordinates that resulted in a small shift of the
end effector after a piece was placed. This small shift can be seen in the video, and
while it had no significant impact on the overall result, it was fixed after the video
was made. The robotic arm remained consistent over a significant amount of time,
with no observed deteriorating behavior as a result of prolonged run time.

Both speed and acceleration of each motor is limited to ensure that no unnec-
essary strain is put on the robotic arm. Increasing these limits would result in
the arm performing its actions quicker, at the expense of reduced stability. As
displayed in the video, the link between the third and fourth motor experiences
some instability during rotation of the base motor. This comes as a result of poor
quality of the servo motor’s attachment horn. The system compensates for this
instability by waiting for the link to adjust itself back into the correct position.
For a more stable solution it is possible to experiment with different servo motors
or design a custom-made motor attachment that ensures a more rigid connection.

The biggest drawback of the current system is the lack of accurate time control
of the motors. The control circuit is integrated into the servo motors, therefore the
overall motor controller and robot controller has no feedback information about
the current position of each motor. The only known positional information exists
in the form of the position each motor has been instructed to achieve. The lack
of accurate time management is shown in the video as the robotic arm pauses at
certain checkpoints based on an estimate of the duration of the previous move. At
some points the estimated time exceeds the actual travelling time, resulting in a
non-smooth movement as the arm waits longer than what is necessary. In contrast a
lower estimated time results in the arm potentially moving into areas with obstacles.
While the robotic arm is capable of playing chess, feedback information from the
motors would result in smoother movement and a reduction in total time necessary
for the arm to move a piece. Some potential improvements to the current solution
will be discussed in chapter 5.
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Chapter 5

Discussion

A detailed discussion on specific results and modules was presented in chapter 4.
This chapter will serve as a more general discussion about the project and the work
process used to develop the robotic chess player.

5.1 Goal and Method

The goal was to create a fully autonomous chess playing robot, with all necessary
software and hardware. The focus was on creating a functioning system by using a
breadth-first approach, meaning each module would be developed up to its simplest
working point before focusing on further improvement to any specific part of the
system. This approach was used to focus on creating the overall system without
going into too much detail on one specific module, but rather create the basis for
each module and improve them as time progressed.

Given the author’s lack of experience with creating a mechanical arm, a com-
plete robotic arm was initially going to be bought and the focus shifted to adapting
and creating a system around it. Unfortunately the robotic arms currently on the
market were either too expensive or did not fulfill the requirements in section 3.2.1.
Consequently the decision was made to build the mechanical arm as well. The pro-
cess of designing and creating the mechanical arm was very time consuming, but
it was interesting to see if one could create a robust robot arm by using relatively
cheap motors and equipment. Developing an arm for the project also allowed a
large degree of freedom when it came to adapting and altering the arm to better
suit the application.

In hindsight it may have been a bit ambitious to create a complete chess playing
robot given the time restrictions. While working with such a large project from
start to finish provided some interesting results, it may have been better to focus
on a smaller portion of the overall chess robot. With a more narrow focus on some
modules, the results obtained from each module could have been more interesting
in regards to a fully commercialized product. Even so, designing the entire system
was an interesting task that resulted in a basis for further work to improve the
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chess playing robot. This paper also has the advantage of providing a guide on the
complete design of a fully autonomous robot, including mechanical construction,
sensory equipment and robot control.

With practical projects there will always be a significant amount of time spent
searching for errors and making the modules of different theoretical fields compat-
ible with the rest. To reduce the amount of time spent implementing, the project
could have been approached in a more theoretical fashion with simulations replac-
ing real world testing. While this would free some time for researching each part
of the system more thoroughly, it would also result in a less satisfactory outcome
as no actual development would have been made.

When it comes down to playing chess against a computer opponent one could
envision simpler approaches than the one taken in this paper. One such approach
would be an electronic chess board with integrated sensors and chess unit that uses
moving magnets inside the board to move pieces. While an electronic chess board
could exhibit better results, it would also suffer from needing expensive sensors
and specialized equipment. For entertainment purposes it is not likely that people
will want to spend a large amount of money on a board with one single purpose.
By using a robotic arm and camera to provide movement and sensory data the
system serves as a more general purpose entertainment system that could play any
number of games by swapping the decision-making and computer vision software.
With the approach taken in this paper each part of the system is created to be
general and self-sustaining, so any one module could be replaced or modified as
long as new modules respect the current communication protocols.

5.2 Main Result

The goal was to create an affordable chess playing robot, capable of playing chess
using a variety of different chess boards and pieces. The resulting system managed
to play chess with a sufficient amount of accuracy and stability in the testing envi-
ronment. With a total prize of approximately 2000 NOK, the goal of creating an
affordable robot has been achieved. A further reduction in price could be possible
by using mass produced parts and custom-made motors. The largest obstacle that
remains unsolved is the increase in stability and robustness that would be necessary
for a fully commercialized product.

The robotic arm performed its actions well, however, it did exhibit some lack of
accuracy when moving pieces situated far away from its neutral position. While the
cheap materials, fasteners and manual measurements can account for some of these
errors, there was no doubt that the servo motors lacked the accuracy to achieve
near zero error. Choosing other servo motors that fulfill the torque requirements
could improve the system, but in general the added accuracy would lead to more
expensive servo motors. The focus when building the arm was to buy components
at a level that provided adequate control of each component, however, in the case
of the servo motors it could have proven advantageous to build the motors from
scratch. While it is no guarantee that the result would have been better it would
have given better control and allowed for the implementation of closed-loop control
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from of the robotic arm. This in turn would allow for more complex path and
trajectory planning. The reason servo motors were chosen as the main actuators
comes down to the same reasoning as stated earlier, too much focus on one specific
module would not give an adequate amount of time to explore the full system
solution.

The obstacle of using computer vision to calculate exact board orientation and
chess square positions relative to the robotic arm was not overcome. The system as
it stands needs manually measured chess board dimensions to function, a feature
that is not desirable for a commercial product. Needing chess board dimensions
came as a result of the open-loop robot controller relying on accurate spatial co-
ordinates and inverse kinematics to provide control. Another solution would be
to use vision-based robot control, also known as visual servoing, where the error
between the end-effector and desired object is processed based on visual data and
fed directly into the robots feedback loop. This approach could result in a more
general solution for control of the robot manipulator, however, it would require an
extensive amount of research and work to accomplish, and given the scope of the
task it would most likely have diminished other parts of the project. An approach
based on visual servoing may give rise to new problems as it introduces another
module prone to error. It is believed that further work in the chosen direction
could result in a more general purpose game playing robot, while still retaining its
ase functionality.

When designing the robot manipulator most of the focus was on achieving a
certain degree of functionality, therefore the arm was made in a way that allowed
for easy modification and testing. The downside with this approach is that the arm
did not end up being very aesthetically pleasing. If one were to commercialize such
a product, the constructed arm would serve as more of a concept platform than an
actual visual representation of the product.

The results obtained in this paper can be used for many purposes. A robotic
chess player could see its use as a replacement for human interaction in scenarios
where a human player is necessary. While some of this need has been replaced by
computers and gaming consoles, playing on a physical board would provide a more
natural feel and a more intuitive interface as most people are familiar with a large
variety of board games. In a retirement home, a chess playing robot could provide
good entertainment for lonely elderly people who are not as comfortable with using
computers. Moreover, a physical game playing robot could provide entertainment
for hospital patients that spend a large amount of time by themselves. With people
spending a large amount of time in front of computer and TV screens, the author
believes that most people would find it more enjoyable to play a game of chess on
a physical board.

With the increase in popularity of chess in Norway, a robotic chess player is a
good way of inspiring Norwegian students to take an interest in the field of robotics.
The robotic chess player presents the large range of fields necessary to create a fully
autonomous robot, thereby providing an intuitive and interesting introduction to
robotics.
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5.3 Future Work

Although the robotic chess player achieved good results, there is still room for
improvement in some areas. Some ideas for improvement has been mentioned in
previous chapters, thus this section will provide a summary of previously mentioned
ideas as well as present some new possibilities for improving the overall system.

5.3.1 The Robotic Arm

The mechanical construction of the robotic arm could be improved by altering
the choice of materials. The materials were chosen to provide a high degree of
flexibility in case of modifications, once a complete prototype has been designed,
easily modifiable materials is no longer necessary. Using more suitable materials
and making the arm more aesthetically pleasing is the last step in finishing up the
mechanical arm.

Recall that most of the instability and lack of accurate control of the robotic arm
was attributed to the motors. Given that the motors did not operate as specified
by the manufacturer, there may be a need to design custom-made motors that
are more suited for the robotic arm. This would allow increased control over the
torque and speed of each motor, as well as ensuring that the gears are equipped to
handle prolonged strain. It was also shown that a change of the current motors is
needed to include positional feedback information and thereby provide necessary
information for smooth and stable motion. The existing solution could be improved
by extracting the positional feedback information contained within the servo motors
and feed it back to the robot controller. In the case of custom-made motors, one
would need to ensure that the robot controller can read the positional feedback
device of each motor.

5.3.2 The Sensory Unit

The current sensory unit requires some modifications for it to be used on chess-
boards of arbitrary size and orientation without manually reading chessboard di-
mensions. By using known intrinsic camera parameters combined with a known
camera position it may be possible to provide size estimates that are accurate
enough to be used by the robotic arm. Such a method would require extensive
research as a high degree of accuracy and robustness is necessary. A further im-
provement of the sensory unit is possible by including a time-of-flight camera to
provide depth information. This, in combination with a camera mounted inside
the gripper could assist both the chess detection methods as well as the robot
controller.

5.3.3 Human Interaction

Human-robot interaction is one of the areas that did not receive any attention
during this thesis. The current system requires the user to notify the system of a
completed move by pressing a button on the computer. Information is displayed to
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the user in the form of console commands, and while a proper computer interface
could display the information in a more readable way, this would still require using
the computer to communicate with the robotic chess player. A suggested approach
to solve the interaction between the user and the system is by implementing a
voice interface based on natural language. The idea is that necessary information
about system status and the notification of turn-taking could be shared through
the voice interface. No real research was done to progress this approach to human-
robot interaction, it is therefore left open as a potential improvement to the chess
playing robot.

5.3.4 Pawn Promotion

While it did not occur during normal testing of the robotic chess player, the current
system is unable to perform unassisted pawn promotion. This is because of the
problem occurring with the pieces removed by the human player as the robotic
chess player receives no information about the placement of the removed pieces.
This results in the chess robot being unable to perform a proper pawn promotion,
as it is unable to locate and place the desired piece back on the table. A proposed
solution to this is to include a box that is shaped to give room to the various chess
pieces at specific locations. With this approach both the chess robot and human
player would place removed pieces into the box, thereby allowing the robotic arm
to properly perform pawn promotion by inserting previously removed pieces. This
is more of a conceptual idea, as no progress was made towards creating such the
box that would allow for unassisted pawn promotion.
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Chapter 6

Conclusion

This thesis has investigated the possibility of creating a low-cost and robust chess
playing robot. A variety of robotic arm designs has been considered, resulting in
the design of a four degrees of freedom elbow manipulator arm. Standardized servo
motors were chosen as the manipulator’s actuators, providing closed loop control
contained within the motors. Each motor was calibrated and control of the motors
was interfaced to a computer through a dedicated servo controller. A look-and-
move vision based open-loop controller was implemented as the main controller of
the robotic arm. The robotic arm was combined with a vision unit that interpreted
chess moves and a chess unit that served as the main decision-maker in the system.

The robotic chess player presented in this thesis was nicknamed the Magnus,
named after the famous Norwegian chess player Magnus Carlsen. The system is
fully autonomous, in the sense that it can perceive moves, decide on a countermove
and execute the chosen move. The robotic arm was found to have a relatively high
performance considering the use of cheap and standardized motors. The system
managed to complete multiple games of chess without human intervention, proving
the possibility of creating a relatively robust and affordable autonomous small scale
robot. While there is still some room for improvement, the largest obstacles of
building a chess playing robot is believed to have been overcome.

The goal of this project was not only to create a chess playing robot, but to
contribute to bringing robotics into our everyday lives. This project proved the
possibility of using cheap robots for entertainment in average households. As the
technology necessary gets cheaper more robots will emerge in our everyday lives,
some in the form of household assistants, others in the form of entertainment
systems. With further research in the area of small scale robotics, the future could
hold an endless amount of possibilities that involve human-robot interaction.

The robotic chess player developed in this thesis could serve as both a great
entertainment robot as well as a good inspiration for students to seek a future in
robotics.
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Appendix A

Appendix

A.1 Digital Attachment Contents

The digital attachment includes the following directories:

• ”Test Video” that contains a video of the robotic chess-player in action.

• ”Images” that contains various images of the robotic arm that was not in-
cluded in the project

• ”Source Code” that contains the entire source code of the project as well as
necessary external library files.
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