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The terms Tbc and Tpc , Tbg and Tpg , Tbτ and Tpτ and Tbd and Tpd represent the Coriolis and centrifu-

gal, gravity, actuator related torques of the bicycle and inverted pendulum and disturbance torque

due to perturbation, respectively:

Tbc = mp rp l si n θp

(
(Ωb +Ωp )2 + l

rp
cos θp Ω

2
b

)
Tbg = g mp l

((
1+ mbrb

mp l

)
si n θb − cos θp si n(θb +θp )

)
Tbτ =−

(
1+ l

rp
cos θp

)
τ

Tbd = τd

Tpc =−mp rp l si n θp

(
(Ωb +Ωp )2 +

(
mbr 2

b

mp r 2
p
+

(
l

rp

)2
)
Ω2

b +
l

rp
cos θp (Ω2

b + (Ωb +Ωp )2)

)

Tpg =−g mp l

((
1+ mbrb

mp l

)(
1+ l

rp
cos θp

)
si n θb −

(
mbr 2

b

mp rp l
+ l

rp
+ cos θp

)
si n(θb +θp )

)

Tpτ = Kpττ=
(

1+ mbr 2
b

mp r 2
p
+

(
l

rp

)2

+2
l

rp
cos θp

)
τ

Tpd =−
(
1+ l

rp
cos θp

)
τd

By use of the partial feedback linearizing controller in Eq. 4.33 the control input, u, is utilized to

achieve the controller requirements of the bicycle system. Note that the perturbation torque, τd , is

set to zero in simulation of the bicycle system without disturbance.
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PD-Controller

A linear state feedback PD-structured control input is utilized to create oscillation of the inverted

pendulum angle, θp , and move the bicycle tilt angle towards the upright equilibrium of (θb , θp ) =
(0◦,0◦), as the equation of θ̈p in Eq. 4.32b is a linear second order system with u0 as angular reference

input:

u =−kpθp −kd θ̇p +u0

=−kpθp −kdΩp +u0

(4.35)

With the PD-controller structure in the control input, u, the gains kp and kd can be chosen to achieve

oscillatory behavior of the inverted pendulum angle, θp . The idea is to utilize the proportional gain,

kp , to accelerate the inverted pendulum and move the bicycle angle, θb towards the upright equilib-

rium. The derivative gain, kd , is utilized to obtain a desired damping of the system oscillations to

create a controlled counteracting torque from the inverted pendulum onto the bicycle. Unlike the

energy based swing-up controller presented in Section 4.1 and 4.2, the feedback linearizing controller

is able to utilize the inverted pendulum angle instead of the bicycle angle, to create system energy.

Note that the controller does not utilize the states θb and Ωb , which implies that the controller does

not have information of the bicycle angle. The goal is to utilize θ̈p from the PD-controller to control

Ωb such that θb = 0.

When the control input, u, is designed, the reference input, u0, has to be designed. In [20] Spong uti-

lized the saturation function, to give the steady state reference input, whereas in [18] and [19] Spong

utilized the "atan" function give the steady state reference input. The design of the reference input u0

is presented in Section 4.3.2 with the simulation results. The transfer function from θp to u is given

as:

θp (s) = u0(s)

s2 +kd s +kp
= u0(s)

s2 +2ζω0s +ω2
0

(4.36)

Thereby the proportional gain, kp , is equal the undamped resonance frequency, ω, squared. The

derivative gain, kd , is given by the proportional gain and relative damping factor, ζ:

kd = 2ζω0 = 2ζ
√

kp

Throughout the thesis, the proportional gain,ω2
0, and the term of 2ζ, will be tuned for the PD-controller.

Increased resonance frequency will give larger bandwidth, thereby a faster system response. See Ege-

land et al.[3] Chapter 4.7.2 for more information. Note that the steady state value of u0 has to be zero

to achieve θp = 0 in steady state.
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State Space LQR Balance Control

As for the controllers by Lai et al. and Kobayashi et al. in Section 4.1 and 4.2, an LQR controller is

utilized for balance control. With the linearized system matrices of Eq. 3.28, the Matlab® function

utilized in Eq. 4.15, the state feedback gain matrix, K , is equivalent to the previous LQR controllers

presented:

[K ,P,E IG] = l qr (A,B ,Q,R) (4.37a)

K =
[
−975,63 −57,24 −227,34 −19,74

]
(4.37b)

With this feedback controller, the LQR controller is equivalent to the controller derived in Section 4.1.3

and 4.2.2, as the controllers are derived from system linearization around the upright unstable equi-

librium of (θb , θp ) = (0, 0) and weight matrices as given in Eq. 4.14. With the state feedback controller

u = −K x, the time response of the nonlinear system with initial positions (θb , θp ) = (−0.6◦, 1.2◦) is

shown in Figure 4.4. This feedback controller places the eigenvalues of the nonlinear dynamical sys-

tem into the left half plane, giving a closed loop stable system. With the Matlab® function "eig" and

the system matrices A and B in Eq. 3.28, the eigenvalues are given as:

ei g (A−BK ) =



−10.99

−8.09

−4.20

−4.16

 (4.38)
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Partially Feedback Linearized LQR Balance Control

With the linearization of the partially feedback linearized state space representation, as presented in

Section 3.9.2, an LQR balance controller is designed based on the system matrices linearized around

the upright position of the bicycle system. With linearization around the upright equilibrium of

(θb , θp ) = (0◦,0◦), the linear system matrices in Eq. 3.32a and 3.32b is utilized in the Matlab® function

from Section 4.1.3. Through simulation of the nonlinear system with the LQR controller, the wight

matrices Q and R were tuned to get the LQR region of attraction as large as possible:

Q =



1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

 (4.39a)

R = 1 (4.39b)

The resulting state feedback gain matrix, K , is found by the Matlab® function "lqr" with the linear

system matrices A and B of the linearized partially feedback system and the weight matrices Q and R

in Eq. 4.39:

[K ,P,E IG] = l qr (A,B ,Q,R) (4.40a)

K =
[
−918,05 −57,02 −215,48 −17,39

]
(4.40b)

Note that the tuned weight matrix Q gives a feedback gain matrix, K , approximately equal to the

gain matrix of the LQR designed for the linearization of the state space representation in Eq. 3.18,

presented in Eq. 4.37. And that an LQR gain matrix is equivalent to a PD-controller where u0 =
−kpbθb − kdbΩb , which implies that the controller utilizes the angle and angular velocity of the bi-

cycle in a linear state feedback controller.
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The goal of having the gain matrices as similar as possible is to obtain the functionality of angle mea-

surement noise affecting the system behavior uniformly for both LQR controllers. With nominal ac-

tuation torque of 19.44[Nm], as stated in Section 2.5.1, and feedback gains coupled with the system

states and their respective measurement noise, the controller gains must be taken into account. With

a proportional gain of −918,05 in the K matrix, the angle measurement of θb can have an error of

0.063◦ resulting in a torque error of 1[Nm], approximately 5% of the nominal torque of the system ac-

tuator. When the system is implemented, the measurements should be filtered, but nevertheless the

system gains must be taken into account to ensure that the controller gains are not physically unob-

tainable. Through simulation the largest LQR region of attraction, of this LQR controller designed by

the linear system matrices of the linearization of the partially feedback linearized system in Eq. 3.22,

is verified:

(θi
b ,θi

p ) =
(

0.8

180
π,

1.4

180
π

)
[r ad ] (4.41)

Figure 4.23 illustrates how the controller implementation, presented in Section 4.3.4, stabilizes the

nonlinear system with initial angular positions at the maximum angles in the LQR region of attrac-

tion. The figure also shows how the partially feedback linearized LQR controller is slower than the

LQR controller designed on linearization of the state space representation, presented above and illus-

trated in Figure 4.4. As the LQR region of attraction of the partially feedback linearized LQR controller

is not significantly improved, the choice of which LQR controller to be applied is not critical. With the

Matlab® function "eig" and the system matrices A and B in Eq. 3.9.2, the eigenvalues are given as:

ei g (A−BK ) =



−31.767

−1.001

−4.253+ j 0.088

−4.253− j 0.088

 (4.42)

With the poles further into the left half plane and relative damping, the system is able to stabilize

from angles further away from the upright unstable equilibrium, as given in Eq. 4.41, than the previ-

ous LQR controller.



88 CHAPTER 4. SYSTEM CONTROL

0 2 4 6 8 10

0

20

40

60

Swing−up Control With Partially Feedback Linearized PD−Controller

[d
eg

]

 

 

0 2 4 6 8 10

−600

−400

−200

0

200

[d
eg

/s
]

 

 

0 2 4 6 8 10

−40

−20

0

20

τ 
[N

m
]

time [s]

θ
b

θ
p

dθ
b

dθ
p

Figure 4.23: Time Response of Partially Feedback Linearized LQR Balance Control, (θi ni t
b , θi ni t

p ) =
(0.8◦,1.4◦)

4.3.2 Controller Analysis

PD-Controller with u0 = 0

With the state space model presented in Eq. 4.34 and the partial feedback linearizing controller in

Eq. 4.33, the additional PD-controller, u, in Eq. 4.35 has to be tuned. By choosing the control pa-

rameters, kp and kd , and angular reference, u0, the controller performance can be analyzed through

simulation. As the partial feedback linearization gives a linear second order system as in Eq. 4.32, the

PD-controller, u, is utilized to control the inverted pendulum angle, θp , and move the bicycle angle,

θb , towards its upright position. Note that the controller in Eq. 4.35 only utilizes the states of θp and

Ωp , which implies that the controller is designed to stabilize the angle of θp around a desired angular

value of zero, independently of the bicycle angle, θb . Thereby the controller gains of the PD-controller

are tuned to utilize the angular oscillation of θp and move the bicycle towards its upright position as

a result of the counteracting torque. At first the reference input u0 is set to zero, where Figure 4.24

shows the time response of the feedback linearized system, with initial angle positions at the angular
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Figure 4.24: Time Response of Partially Feedback Linearized PD-Controller, kp = 700, (θi ni t
b , θi ni t

p ) =
(30◦,110◦)

limits, (θi ni t
b , θi ni t

p ) = (30◦,110◦) and control parameters:

kp = 700 (4.43a)

kd = 0.2 ·2
√

kp (4.43b)

u0 = 0 (4.43c)

The simulation illustrates how the control torque oscillates the angle of θp to move the bicycle angle,

θb . First the inverted pendulum is accelerated in negative direction to approximately −58◦, before it

is accelerated in positive direction. As the control torque accelerates the angle θp in positive direction

the counteracting torque applied onto the bicycle accelerates the angle of θb i negative direction. As

shown in Figure 4.24, the angle of θb is moved from the positive angular limit of 30◦ to the negative

limit of −30◦. Thereby the simulation verifies that the controller is able to move the bicycle tilt angle

towards its upright position by use of the inverted pendulum when the initial angle positions are at

the limits. Note that the control torque, τ, is more active throughout the system response compared

with the energy based swing-up controllers by Lai et al. in Figure 4.7, as the inverted pendulum is

utilized to increase system energy.
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Figure 4.25: Time Response of Partially Feedback Linearized PD-Controller, kp = 700, (θi ni t
b , θi ni t

p ) =
(30◦,40◦)

As mentioned, the PD-controller only utilizes the states θp and Ωp , which implies that the controller

is stabilized when the angle of θp reaches the desired angle of zero. Note that when θp andΩp are sta-

bilized the output of the PD-controller is zero, thus no input for controlling the angular velocity of the

bicycle is generated. Thereby the controller, with the presented gains, is unable to apply counteract-

ing torque from the inverted pendulum onto the bicycle and move the angle of θb towards the upright

unstable equilibrium, when the initial angular position of the inverted pendulum is too close to zero.

As shown in Figure 4.25, the presented gains are unable to move the bicycle towards its upright posi-

tion, with initial angles of (θb , θp ) = (30◦,40◦). As the bicycle angle is dependent of the counteracting

torque applied from the inverted pendulum, it is desirable to have a controller which is able to achieve

this performance from any initial angular position. The figure shows the time response of the system

with the PD-controller simulated in Figure 4.24, where the parameters are tuned for initial angular

position at the limits: (θb , θp ) = (30◦,110◦). Thereby the proportional gain, kp , and derivative gain,

kd , results in a controller which is unable to apply enough counteracting torque onto the bicycle, and

move it towards its upright position. The proportional gain is unable to give enough acceleration to

the inverted pendulum whereas the derivative gain damps the oscillations too much, resulting in a

controller which is unable to create a desired counteracting torque onto the bicycle. Thus the param-

eters utilized in these simulations are not applicable for every initial angle position in the workspace.
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Figure 4.26: Time Response of Partially Feedback Linearized PD-Controller,kp = 7000,(θi ni t
b , θi ni t

p ) =
(30◦,40◦)

Even though the PD-controller is unable to move the bicycle angle towards the upright position, Fig-

ure 4.25 shows that the resulting control torque is within the maximum torque which can be applied

from the DC motor actuator.

Figure 4.26 shows the time response of the system with initial positions closer to the upright equi-

librium, (θi ni t
b ,θi ni t

p ) = (30◦,40◦), and new controller parameters:

kp = 7000 (4.44a)

kd = 0.2 ·2
√

kp (4.44b)

u0 = 0 (4.44c)

The time response illustrates how the increased proportional gain is able to move the bicycle angle,

θb , from the positive to the negative limit unlike the simulation with the system parameters in Fig-

ure 4.25. This shows how the linear PD-controller performance depends on the controller parame-

ters when the initial positions are varying. By adjusting the controller parameters the acceleration of

the inverted pendulum becomes larger, as shown in Figure 4.26, resulting in increased counteracting

torque onto the bicycle. Thus it is shown that the PD-controller depends on the controller parame-
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ters and the initial angular positions, when the inverted pendulum is utilized to create counteracting

torque onto the bicycle. The figure also illustrates how the control torque exceeds the maximum pos-

sible torque for the DC motor, which gives a challenge in the design of a stabilization controller. Also

there is no guarantee that the controller is able to control the bicycle towards the upright position as

it is unable to detect the angle of θb , when the states of θb andΩb are not utilized in the state feedback

PD-controller. Thereby the controller is not suitable to control the bicycle angle towards its upright

position as it simultaneously controls the angle of θp towards zero, from arbitrary initial positions in

the workspace.

The goal is to utilize the controller when the system states moves outside the LQR region of attraction

due to perturbation. With the PD-controller, the fixed system gains the controller is only able to move

the bicycle towards the upright equilibrium from a smaller subset of initial positions in the system

workspace. If the initial positions are too close to the desired angles the proportional gain is unable to

create enough acceleration of θp to give the desired counteracting torque onto the bicycle and move

it towards the upright position of θb = 0, as illustrated in Figure 4.25. The time response presented in

Figure 4.24 shows how the swing-up controller is able to move the system states from the limits up to-

wards the upright equilibrium. The PD-controller stabilizes the angle of θp at its desired angle, while

the bicycle angle θb falls to the negative angular limit. As the goal is to swing the system up towards the

upright equilibrium and activate the LQR controller when the states reaches the LQR region of attrac-

tion, the angular velocities must be close to zero. As both LQR controllers in Eq. 4.37b and 4.40b are

designed by linearization around the upright equilibrium with x∗ = (θ∗b ,θ∗p ,Ω∗
b ,Ω∗

p )T = (0,0,0,0)T and

u∗ = 0, the angular velocitiesΩb andΩp has to be close to zero to apply the linear balance controller.

Thereby the PD-controller is tuned to get the system states close to zero simultaneously, to activate

the LQR balance controller. As the PD-controller controller controls the angle of θp towards its de-

sired angle independently of the bicycle angle θb , the controller parameters must be tuned to give the

desired system response from the various initial positions. Through simulation, the controller param-

eters is tuned to obtain angular velocity close to zero when the system angles reaches the LQR region

of attraction for initial values at the limit, (θi ni t
b ,θi ni t

p ) = (30◦,110◦):

kp = 700 (4.45a)

kd = 0.4598 ·2
√

kp (4.45b)

u0 = 0 (4.45c)
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Figure 4.27 shows how the PD-controller is able to move the bicycle system to the upright position,

with angular velocities equal zero. As the PD-controller is unable to verify that the bicycle angle, θb ,

has reached the upright position the controller is unable to balance the system, and the bicycle falls to

the negative angular limit. Thus the LQR controller can be activated for system balancing around the

upright unstable equilibrium. Note that the angle of θp reaches zero before the bicycle angle reaches

the upright position of θb = 0. This implies that the counteracting torque applied from the positive

acceleration of the inverted pendulum is enough to move the bicycle in negative direction towards

the upright position after the first oscillation. As the PD-controller consist of damped oscillations,

the amplitude of each oscillation of θp decreases throughout the time response. Thereby the con-

troller must be able to move the bicycle towards its upright position after one oscillation, as shown

in Figure 4.27. If the oscillations are too large, the positive acceleration will move the bicycle towards

the upright position before the negative acceleration will push the bicycle in positive direction back

towards the initial limit angle. As the property of zero angular velocity is obtained, the LQR balance

controller is applied to the system controller. As the PD-controller is able to reach the LQR region of

attraction of (θb , θp ) = (0.6◦,1.2◦), the LQR controller presented in Eq. 4.37 selected due to more rapid

system response. Figure 4.28 shows how the PD-controller is able to move both system angles within

the LQR region of attraction while simultaneously controlling the angular velocities towards zero and

activating the LQR balance controller. Thus the controller is able to move the system angles from the

maximum excursion at the angular limits and up to the upright position, where the balance control is

activated to stabilize the bicycle system around the upright unstable equilibrium of (θb , θp ) = (0◦,0◦).

The controller implementation is shown in Section 4.3.4.
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Figure 4.29: Time Response of PD-Controller Swing-Up and LQR Balance Control w/ τd =
5.4[Nm],u0 = 0, β1 = π

6 , β2 = π
2

Further on the robustness of the LQR controller is tested. By applying a torque disturbance onto the

system after the LQR balance control has stabilized the bicycle system, the time response is analyzed

through simulation. A push onto the bicycle, performed by a person, is assumed to last in 1 [ms]. The

LQR balance controller limits of β1 and β2, presented in Section 4.1.5 and 4.1.7, are tuned to enlarge

the operating workspace of the LQR balance controller:

β1 = π

6
, β2 = π

2
(4.46)

Note that the limits ofβ1 andβ2 correspond to a limitation of θb =β1 = 30◦ and θp =β2 = 90◦. Through

simulation it is verified that the system is able to perform successful stabilization by use of the PD-

controller and LQR balance controller, with LQR workspace limits in Eq. 4.46, as long as the perturba-

tion torque is: τd ≤ 5.4[Nm]. Figure 4.29 shows the time response of the system with swing-up by the

PD-controller with parameters from Eq. 4.43 and the LQR balance controller from Eq. 4.37. The time
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response illustrates how the perturbation torque moves the bicycle angle, θb , resulting in acceleration

of the inverted pendulum angle, θp , to counteract the falling bicycle angle which is moved to a maxi-

mal negative excursion of −6.2◦. When the angle of θp exceeds the maximum limit of β2 for the LQR

control, the PD-controller is applied. As the angle is close to 110◦ the system is able to utilize the PD-

controller and control all the system states towards zero simultaneously. The controller accelerates

θp to create counteracting torque onto the bicycle, to move both system angles within the LQR region

of attraction, by use of the fixed controller parameters in Eq. 4.45. As both system angles are moved

within the LQR region of attraction while the angular velocitiesΩb andΩp are controller towards zero,

the LQR balance controller is applied to stabilize the bicycle system. The balance controller gives a

maximum positive excursion of 4◦ on the bicycle angle, before it is moved towards zero. The figure

also shows that the control torque exceeds the maximum torque which can be applied from the sys-

tem actuator, presented in Section 2.5.1. Thereby the LQR balance controller limits, β1 and β2 are

tuned further increase the operating workspace of the LQR balance controller to prevent exceeding

control torque from the PD-controller:

β1 = π

6
, β2 = 100

180
π (4.47)

This implies that the LQR workspace limitation of θb = β1 = 30◦ and θp = β2 = 100◦. Through simula-

tion, shown in Figure 4.30(a), it is verified that the controller performs successful system stabilization

by use the LQR balance controller, with LQR workspace limits of Eq. 4.47. When the perturbation

torque is: τd ≤ 5.1[Nm], the system is able to utilize the LQR controller throughout the whole stabi-

lization operation. Thereby the PD-controller is not utilized, and the control torque is kept within the

maximum torque able to be applied from the DC motor actuator. Figure 4.30(b) is zoomed in when the

perturbation occurs, and shows the acceleration of the inverted pendulum angle, θp , applied to create

the counteracting torque onto the bicycle angle, θb , for system stabilization. The resulting counter-

acting torque from the inverted pendulum onto the bicycle, moves the angle of θb to the maximum

negative excursion of −4.5◦ before it is moved to 2◦ and further stabilized at the upright equilibrium of

0◦. The perturbation of 5.1[Nm] results in a counteracting controller torque of −47.5[Nm] before it is

controlled to 22.5[Nm], which is approximately equal the nominal actuator torque, τp,n = 19.44[Nm].

As these controller torques are within maximum torque able to be applied from the system actuator,

which is 3-4 times the nominal torque τp,n , the controller simulated in Figure 4.30(a) can be utilized

on the real life bicycle system.
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Figure 4.30: Time Response of PD-Controller Swing-Up and LQR Balance Control w/ τd =
5.1[Nm],u0 = 0, β1 = π

6 , β2 = 100
180π
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Figure 4.31: Time Response of PD-Controller Swing-Up and LQR Balance Control w/ τd =
5.2[Nm],u0 = 0, β1 = π

6 , β2 = 100
180π

As mention previously in this section, the parameters of the PD-controller are dependent of the initial

angular positions and system parameters. Figure 4.31 shows how the controller is unable to stabi-

lize the bicycle system when the perturbation torque becomes too large. With torque perturbation of

τd = 5.2[Nm] and LQR workspace limits from Eq. 4.47, the system is moved outside of the workspace

of the LQR balance controller. The PD-controller, with fixed controller parameters of Eq. 4.45, is

unable to swing the bicycle system back into the LQR region of attraction, while simultaneously con-

trolling the angular velocities toward zero. Thereby the bicycle angle falls to the angular limit of 30◦,

while the PD-controller stabilizes the angle of θp at zero. This verifies that the controller design does

not guarantee that the PD-controller, with fixed controller parameters in Eq. 4.45, is able to move the

system angles back into the LQR region of attraction when perturbation occur. Thus one must allow

the bicycle system to fall closer to the angular limits to apply the PD-controller with fixed controller

gains of Eq. 4.43, to successfully stabilize the system around the upright equilibrium, as shown in Fig-

ure 4.30(a). The swing-up PD-controller can be improved by implementing functionality which adjust

the controller parameters dependent of the system states, to utilize θ̈p from to control Ωb such that

θb = 0. As the system is four dimensional, this approach is a very complicated and time consuming.

Thereby the author will further investigate how the input reference, u0, can be utilized to achieve the

desired swing-up functionality, throughout the thesis.
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Figure 4.32: Time Response of Partially Feedback Linearized PD-Controller, u0 = sat , (θi ni t
b , θi ni t

p ) =
(30◦,110◦)

PD-Controller with u0 as Saturation Function

As mentioned, the PD-controller with controller gains in Eq. 4.43 is unable to create counteracting

torque onto the falling bicycle angle when θp is close to zero. Thus the PD-controller with fixed con-

troller gains from Eq. 4.43 does not guarantee that the wing-up controller is able to move the system

angles back into the LQR region of attraction when large perturbations occur, as shown in Figure 4.31.

Thereby the reference input, u0, is further investigated to see if the controller is able to utilize the

system states θb andΩb to obtain an improved system response. Spong [20] utilizes a saturation func-

tion, equivalent to the implemented Matlab® function "sat2"2:

u0 = 97 · sat2
(
Ez(θ, θ̇)Ωb

)
(4.48)

Where the energy function, Ez(θ, θ̇) = E(θ, θ̇)−E0, is defined in Eq. 4.21, with total system energy,

E(θ, θ̇), and potential energy at the upright equilibrium, E0. The function is multiplied with 97 to in-

crease the magnitude of the reference input and give a larger impact in the controller output, u. This

magnitude factor is tuned through simulation, to achieve angular velocity close to zero as the system

angles moves towards LQR region of attraction, for further utilization of the LQR balance controller.

2Note that "sat2" is a modified version of the function "sat" utilized by the controller implementation in Section 4.1.7
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Figure 4.32 shows the time response of the bicycle system, with u0 from Eq. 4.48 and controller param-

eters of the PD-controller in Eq. 4.45. The figure shows how the controller is able to move the system

states towards zero simultaneously, before the bicycle angle, θb , falls to the negative limit of −30◦

when the balance control is deactivated. It is clear how the choice of u0 results in a more aggressive

controller, as the positive acceleration moves the angle of θp to approximately −75◦, before the in-

verted pendulum is accelerated in negative direction and contributes with counteracting torque onto

the bicycle, moving it towards the upright position. Note that the resulting control torque, τ, thereby

exceeds the maximum torque possible to apply from the system actuator, presented in Section 2.5.1.

By scaling the magnitude of the saturation function in Eq. 4.48 to 100 instead of 97, the controller per-

formance becomes even more aggressive. Figure 4.33(a) illustrates how the inverted pendulum angle,

θp is unable to stabilize around the upright position before the bicycle angle, θb , reaches its upright

position. Thereby the bicycle angle falls to the negative angular limit of −30◦. However, the choice

of u0 shows how the controller continuously tries to move the bicycle angle towards the upright po-

sition, without success. By increasing the magnitude factor to 124.022, the controller is able to move

the bicycle angle from the negative angular limit up towards the upright position by accelerating the

inverted pendulum from the negative to the positive angular limit, as shown in Figure 4.33(b). This is

undesirable as it can ruin the system actuator when the inverted pendulum can hit objects mounted

on the bicycle. Note that when the inverted pendulum is accelerated from the negative limit of −110◦

to the positive limit of 110◦, the resulting torque becomes excessively large. Thereby this choice of

the reference input magnitude is physical impossible to utilize with the given system actuator. The

bicycle angle must be controlled by a counteracting torque from the inverted pendulum, as the PD-

controller simulated in Figure 4.28, where the control torque does not exceed the maximum actuation

torque given in Section 2.5.1.
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Figure 4.34: Time Response of PD-Controller Swing-Up and LQR Balance Control,u0 = sat

By utilizing the reference input, u0, given in Eq. 4.48, the system time response in Figure 4.34 shows

how the swing-up and LQR balance controller is able to stabilize the system around the upright un-

stable equilibrium. As the swing-up controller is able to move both angles towards zero, while simul-

taneously controlling the angular velocities,Ωb andΩp , towards zero, the LQR balance control can be

activated. However, as the control torque, τ, exceeds the maximum torque possible to apply from the

system actuator, the reference input, u0, in Eq. 4.48 is not applicable for the real life bicycle system.
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PD-Controller with u0 as atan Function

In [18] and [19] Spong utilizes the "atan" function in the reference input, u0. The idea is to utilize

a reference input which includes the angular velocity, Ωb , of the bicycle to investigate whether the

performance of the PD-controller is improved or not. The reference input is given as Spong in [18]

and [19]:

u0 = kpα · t an−1(Ωb)

The parameter α is chosen less than β when the second link of an Acrobot is constrained to lie in an

interval of θp ∈ [−δ, δ], where the value of δ is equivalent to the angular limitation of θp in radians.

The idea is to utilize the "atan" function to give a reference depending on the bicycle link. By utilizing

the angular velocity of the bicycle, the resulting PD-controller is given as:

u =−kp
(
θp −α · t an−1(Ωb)

)−kdΩp (4.49)

Note that the smaller the amplitude, α, is, the less affect the reference input, u0, will affect the sys-

tem. If the amplitude is too small, the input reference will not contribute to the output from the PD-

controller, giving a swing-up controller similar to the PD-controller with control parameters from Eq.

4.45. Through simulation, the amplitude was tuned toα= 105
180π, which is within the angular limitation

of δ= 110
180π, giving:

u0 = kp
105

180
π · t an−1(Ωb) (4.50)

As shown in Figure 4.35, the PD-controller with input reference, u0, of Eq. 4.50 is verified to success-

fully control the system states towards zero, simultaneously. Thereby the angles are moved close to

the upright position as the angular velocities are controlled towards zero. As the LQR balance control

is not applied, the PD-controller is unable to stabilize the system around the upright unstable equilib-

rium, and bicycle angle, θb , falls back to the positive angular limit of 30◦. The improved controller is

then able to accelerate the inverted pendulum from the positive limit in negative direction to thereby

accelerate in positive direction and move the bicycle angle towards the upright position, as a result

of counteracting torque. This system response is similar to the input reference presented in Eq. 4.48

with magnitude of 124.022, but smaller control torque. When the bicycle angle, θb , is moved to the

upright position, the inverted pendulum angle, θp , is moved slowly towards the desired angle of zero.

Thereby both system angles are within the LQR region of attraction, while the angular velocities, Ωb

andΩp , are controlled towards zero. As the LQR balance controller is not applied, the system is unable

to stabilize and the bicycle angle moves away from the upright equilibrium once more.
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Figure 4.35: Time Response of Partially Feedback Linearized PD-Controller, u0 = at an, α = 105
180π,

(θi ni t
b , θi ni t

p ) = (30◦,110◦)
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Figure 4.36: Time Response of Partially Feedback Linearized PD-Controller and LQR Balance Control,
u0 = at an, α= 105
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p ) = (30◦,110◦)
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Figure 4.37: Time Response of Partially Feedback Linearized PD-Controller and LQR Balance Control
w/ τd = 5.2[Nm], u0 = at an, α= 105

180π, (θi ni t
b , θi ni t

p ) = (30◦,110◦)

As the goal is to improve the performance of the stabilization controller by utilization of the reference

input, u0, the LQR balance controller is activated. Figure 4.36 shows how the PD-controller is able to

move the system angles within the LQR region of attraction, while simultaneously controlling the an-

gular velocities towards zero. Thereby the LQR balance controller is applied and the system stabilizes

around the upright equilibrium.

In Figure 4.30(a) the LQR controller is proven to be able to stabilize the system when the perturbation

torque, τd , is less than 5.1[Nm]. Thus a disturbance pulse of 5.2[Nm] is applied for 1[ms] at t = 3[s]

to move the system outside of the LQR workspace and test the functionality of the reference input in

Eq. 4.50. Figure 4.37 shows how the system is able to utilize the reference input, u0, when the system

moves outside the LQR balance controller workspace, with limits from Eq. 4.47. The controller is able

to accelerate the inverted pendulum angle, θp , from the angular limitation of 110◦ in negative direc-

tion to thereby accelerate in positive direction, and move bicycle angle towards its upright position

due to the counteracting torque. As the angle of θb is moved slowly towards the upright position, the

PD-controller slowly controls the angle of θp towards the desired angle of zero. Thereby the angu-

lar velocities, Ωb and Ωp , are moved towards zero and the LQR balance controller is activated when

the system angles reaches the LQR region of attraction. However, as the figure shows that the con-
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trol torque becomes excessively large, and exceeds the maximum torque possible to apply from the

system actuator, the reference input, u0, in Eq. 4.50 is not applicable for the real life bicycle system.

4.3.3 Concluding Remarks

As the swing-up design only utilizes the states of θp andΩp in the PD-controller of Eq. 4.35, the con-

troller is designed to stabilize the angle of θp around a desired angular value of zero, independently

of the bicycle angle, θb . Thus the PD-controller is not designed to control θp dependent of the bi-

cycle angle. Rather the gains are tuned to utilize the angular oscillations of θp and move the bicycle

towards its upright position as a result of the counteracting torque. First the PD-controller, with in-

put reference u0 = 0, is utilized as a swing-up controller, where the parameters are tuned based on

an initial positions at the angular limitations of (θi ni t
b ,θi ni t

p ) = (30◦,110◦) as in Eq. 4.45. As illustrated

in Figure 4.28, the system is able to utilize the PD-controller and move the system states within the

LQR region of attraction and activate the LQR balance controller for system stabilization. Further on

the system is able to stabilize when perturbation occur. By enlarging the LQR workspace limits, β1

and β2, as presented in Eq. 4.47, the system is able to utilize the LQR balance controller to stabilize

the system angles when perturbation occur. As shown in Figure 4.30(a) the system stabilization is

performed without exceeding the maximum torque of the DC motor actuator, when the perturbation

torque, τd , is less or equal to 5.1[Nm]. If the perturbation torque becomes larger, the system is un-

able to utilize the LQR controller for system stabilization, and the angles are moved outside the LQR

workspace. As the system angles are too far away from the angular limits, the PD-controller with fixed

controller parameters of Eq. 4.45 is unable to move the system angles towards the LQR region of at-

traction, while simultaneously controlling the angular velocities Ωb and Ωp towards zero. Thereby

the system controller is unable to stabilize the state angles at the upright position, as shown in Figure

4.31. By utilizing a more strict workspace limit of θp , as in Eq. 4.46, the controller is able to utilize the

PD-controller and move the system states towards zero to activate the LQR balance controller when

perturbation occur, as shown in Figure 4.29. The disadvantage of this controller functionality is that

the control torque exceeds the maximum torque possible to apply from the system actuator. Thereby

the larger workspace limit of θp , as given in Eq. 4.47, has to be utilized on the real life bicycle system.

This implies that the system must be allowed to fall to the angular limits and obtain angular velocities

Ωb = Ωp = 0 to reinitialize the PD-controller with (θi ni t
b , θi ni t

p ) = (30◦,110◦), when the angles moves

outside of the workspace of the LQR balance controller. Therefrom the PD-controller is activated, with

controller parameters from Eq. 4.45, to move the angles back into the LQR region of attraction, while

simultaneously controlling the angular velocities towards zero, to activate the LQR balance controller

for system stabilization.
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As the PD-controller oscillates the inverted pendulum angle, θp , independently of the bicycle an-

gle, θb , to move the system angles within the LQR region of attraction, the input reference, u0, was

investigated to improve the controller performance. By use of the saturation function of Eq. 4.48, the

input reference is able to utilize the large inverted pendulum acceleration and move the bicycle to-

wards its upright position. As the control torque exceeds the maximum possible actuation torque, the

controller design and tuning is not applicable for the bicycle system with angular limitation.

Further on the "atan" function, of 4.50, is utilized, including the angular velocity of the bicycle. With

the idea of utilizing the reference input function when perturbation occur, the robustness is tested.

The system simulation in Figure 4.37 illustrates how the swing-up controller is able to move the system

states back within the LQR region of attraction when perturbation occur. With the slow outer control-

loop, the angle of θp is following the reference of u0, as shown in Figure 4.35. This property should be

taken into account when a new input reference controller, u0, is designed. Similar to the saturation

function, the "atan" reference input function results in large acceleration of the inverted pendulum

to move the bicycle angle towards the upright position. Thereby the resulting control torque exceeds

the maximum actuation torque. Thus, to improve the stabilization controller by use of the reference

inputs of Eq. 4.48 and 4.50, the system actuator has to be upgraded to give the desired control torque

required for these controller designs.
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4.3.4 Controller Implementation

Partially Feedback Linearized LQR Controller:

"controller_FeedbackLinearizedLQR" is the implementation of the LQR controller designed by lin-

earization around the upright equilibrium of the partially feedback linearized system, presented in

Eq. 4.40 and Section 4.3.1.

1 function tau = FeedbackLinearization_LQR(x)

2 l = 0.72; % [m] approximately

3 rb = 0.4; % [m] approximately

4 rp = 0.2; % [m] approximately

5 mb = 31.118; % [kg] approximately

6 mp = 5; % [kg] approximately

7 g = 9.81; % [m/s^2] gravity acceleration

8 Ib = 0; % [Nm^2] Moment of Inertia of bicycle

9 Ip = 0; % [Nm^2] Moment of Inertia of pendulum

10

11 % System Energy

12 m11 = Ib+Ip+mb*rb^2+mp*l^2+mp*rp^2+2*mp*rp*l*cos(x(2));

13 m12 = Ip+mp*rp^2+mp*rp*l*cos(x(2));

14 m22 = Ip+mp*rp^2;

15

16 T = 1/2*m11*x(3)^2+m12*x(3)*x(4)+1/2*m22*x(4)^2;

17 U = (mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

18 E = T+U;

19 E0 = (mb*rb+mp*l)*g+mp*rp*g;

20 E_c = E-E0;

21

22 J_tot = mb*rb^2+mp*l*sin(x(2))^2;

23

24 % Torque parts of the diff.eq. of Omegap, J_tot*dOmegap/dt = T_pc+T_pg+Tptau*tau:

25 T_pc = rp*mp*l*sin(x(2))*((x(3)+x(4))^2+((mb*rb^2)/(mp*rp^2)+(l/rp)^2)*...

26 (x(3)^2)+(l/rp)*cos(x(2))*(x(3)^2+(x(3)+x(4))^2));

27 T_pg = -g*mp*l*((1+(mb*rb)/(mp*l))*(1+(l/rp)*cos(x(2)))*sin(x(1))-...

28 ((mb*rb^2)/(mp*rp*l)+l/rp+cos(x(2)))*sin(x(1)+x(2)));

29 T_ptau = 1+(mb*rb^2)/(mp*rp^2)+(l/rp)^2+2*(l/rp)*cos(x(2));

30

31 % Controller u:

32 u = -1000*[-9.1805 -0.5702 -2.1548 -0.1739]*[x(1) x(2) x(3) x(4)]';

33 tau = (J_tot*u-T_pc-T_pg)/T_ptau;
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Partially Feedback Linearized Stabilization Controller w/ input reference u0:

"FeedbackLinearization_StateSpace" is the implementation of the feedback linearized stabilization

controller, with LQR balance controller and swing-up PD-controller. Note that the controller imple-

mentation shows the different choices of reference input, u0, which can be chosen in simulation. The

function "hysteresis" is equivalent to the function presented in the controller implementation in Sec-

tion 4.1.7, and is utilized to set the limits of the LQR balance controller in real time.

1 function [tau, LQR_control] = FeedbackLinearization_StateSpace(x,t,control_state)

2

3 l = 0.72; % [m] approximately

4 rb = 0.4; % [m] approximately

5 rp = 0.2; % [m] approximately

6 mb = 31.118; % [kg] approximately

7 mp = 5; % [kg] approximately

8 g = 9.81; % [m/s^2] gravity acceleration

9 Ib = 0; % [Nm^2] Moment of Inertia of bicycle

10 Ip = 0; % [Nm^2] Moment of Inertia of pendulum

11

12 % System Energy

13 m11 = Ib+Ip+mb*rb^2+mp*l^2+mp*rp^2+2*mp*rp*l*cos(x(2));

14 m12 = Ip+mp*rp^2+mp*rp*l*cos(x(2));

15 m22 = Ip+mp*rp^2;

16

17 T = 1/2*m11*x(3)^2+m12*x(3)*x(4)+1/2*m22*x(4)^2;

18 U = (mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

19 E = T+U;

20

21 E0 = (mb*rb+mp*l)*g+mp*rp*g;

22 E_c = E-E0;

23

24 % Inertia-term J_tot:

25 J_tot = mb*rb^2+mp*l*sin(x(2))^2;

26

27 % Torque parts of the diff.eq. of Omegap, J_tot*dOmegap/dt = T_pc+T_pg+Tptau*tau:

28 T_pc = -rp*mp*l*sin(x(2))*((x(3)+x(4))^2+((mb*rb^2)/(mp*rp^2)+(l/rp)^2)*...

29 (x(3)^2)+(l/rp)*cos(x(2))*(x(3)^2+(x(3)+x(4))^2));

30 T_pg = -g*mp*l*((1+(mb*rb)/(mp*l))*(1+(l/rp)*cos(x(2)))*sin(x(1))-...

31 ((mb*rb^2)/(mp*rp*l)+l/rp+cos(x(2)))*sin(x(1)+x(2)));

32 T_ptau = 1+(mb*rb^2)/(mp*rp^2)+(l/rp)^2+2*(l/rp)*cos(x(2));
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33

34 % PD-Controller parameters:

35 kp = 700; % w0^2

36 kd = 0.4598*2*sqrt(kp); % 2*zeta*sqrt(kp)

37

38 % LQR Region of attraction:

39 LQR_lim_x1 = 0.6/180*pi;

40 LQR_lim_x2 = 1.2/180*pi;

41

42 %Set LQR balance controller workspace limits:

43 beta_1 = pi/6;

44 beta_2 = 100/180*pi;

45 limit = [beta_1 beta_2 LQR_lim_x1 LQR_lim_x2];

46 if t == 0

47 [x_lim, LQR_control] = hysteresis(x,limit,false);

48 else

49 [x_lim, LQR_control] = hysteresis(x,limit,control_state);

50 end

51

52 % CONTROLLER:

53 x1_lim = x_lim(1);

54 x2_lim = x_lim(2);

55 % LQR balance controller:

56 if mod(abs(x(1)),2*pi)<=x1_lim && mod(abs(x(2)),2*pi)<=x2_lim && LQR_control == 1

57 tau = -[-975.6281 -57.2364 -227.3441 -19.7419]*[x(1) x(2) x(3) x(4)]';

58 state = 2;

59 % Swing-up PD-controller:

60 else

61 u0 = 0;

62

63 % Uncomment if u0 with saturation is to be utilized:

64 % u0 = 97*sat2(E_c*x(3));

65

66 % Uncomment If u0 with atan is to be utilized:

67 % alpha = 105/180*pi;

68 % u0 = kp*alpha*atan(x(3));

69

70 u = -kp*x(2)-kd*x(4)+u0;

71 tau = (J_tot*u-T_pc-T_pg)/T_ptau;

72 state = 1;

73 end
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Discussion and Further Work

5.1 Discussion

In this thesis, the bicycle system is presented as an Acrobot with angular limitations. The system

equations of motion are derived by use of Lagrange, without joint friction and energy dissipation as

the system joints does not contribute with friction in their respective rotational axis. Utilization of

Lagranges equation of motion is based on the property of a structured set of operations for derivation

of system equations. Further on the moments of inertia, Ib and Ip , can be included into the inertia

matrix (M)(θ) for the complete design of the stabilization controller, if required.

With system actuation from the DC motor mounted on the bicycle frame, Chapter 2.5 shows how

the system response is highly improved when the motor is equipped with a current controller. Not

only is the system response improved with the current controller, but the motor can be protected to

prevent demagnetization of the permanent magnets and a smaller converter can be used. This mo-

tor investigation shows preliminaries for the motor system, needed to give a reliable actuator for the

physical bicycle system.

When the system is modeled as an Acrobot, limitations has to be included into the system model

to get the complete model of the autonomous bicycle with a mounted inverted pendulum. These

limits are set by the physical angular limitations of the bicycle system to obtain an equivalent mathe-

matical system model. As the goal is to model the real bicycle system as an Acrobot within the angular

limitation region, this is a very important part of the system model as the inverted pendulum systems

presented in the various literature has system angles in the range of [−π,π) and utilizes full swing-up

control. To move the bicycle angle, θb , away from the limit of 30◦, a negative acceleration of θp has to

be applied for thereafter apply a torque accelerating θp in the positive direction, generating a coun-
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teracting torque onto the bicycle. This counteracting torque moves the bicycle from the angular limit

towards the upright position. The requirement of using the mounted inverted pendulum to increase

the system energy and move the bicycle results in a challenging control design.

When the control theory was applied, the system was linearized and the LQR controller was designed.

This controller was designed for balancing control around the upright unstable system equilibrium.

Due to the sing-input multiple-output system, the LQR controller was designed due to the fact that

it is an optimal pole placing controller, giving a more suitable control design than the single-input

single-output controllers, as P-, PI- and PID-controllers. The system could also be linearized around

the measured system angles in real time, for utilization of the LQR as a swing-up controller. This was

not performed in this thesis as the time was spent on investigation of nonlinear controllers for system

swing-up.

Due to the angular limitations the nonlinear energy-based Acrobot swing-up controllers, presented in

Section 4.1 and 4.2, does not satisfy the system requirements of bicycle stabilization within the limits.

The idea was to utilize the designs by Lai et al. and Kobayashi et al. to obtain a functional stabiliza-

tion controller. As the controllers are designed to rotate outside of the bicycle system limited angular

region, by swinging back and forth, the control torque is applied to increase the energy by use of the

bicycle angle. By moving the angle of θb closer to the upright equilibrium for each swing while simul-

taneously controlling the angle of θp towards zero, the stabilization designs applies the LQR balance

controller when the angles are moved within the LQR region of attraction for system stabilization.

Thereby the controllers are designed for an unlimited Acrobot, and does not satisfy the system re-

quirement of utilizing the inverted pendulum to increase system energy and move the states towards

zero within the bicycle angular limits.

As the stabilization control is unsuccessful for the controllers presented by Lai et al. and Kobayashi

et al., the partially feedback linearization is introduced. The feedback linearized system gives a lin-

ear second order system of the inverted pendulum acceleration, θ̈p , which can simplify the controller

design for the bicycle system. By implementing a swing-up PD-controller, the goal is to utilize a con-

trolled oscillatory system response of the inverted pendulum angle, θp , to give a counteracting torque

onto the bicycle link and move the system states. As the PD-controller oscillates the angle of θp , the

goal is to utilize the controller output, u = θ̈p , to control the bicycle angular velocity, Ωb , such that

θb = 0. The control input, u0, was investigated to improve the controller performance and include the

states of θb andΩb into a nonlinear input reference function. As these input references is not applica-
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ble to the bicycle system, due to a control torque exceeding the maximum actuation torque, the input

reference of u0 = 0 must be utilized. When the input reference of u0 = 0 is utilized, the system must

be allowed to fall to the limits and obtain zero angular velocities and reinitialize the PD-controller,

when the system moves outside of the LQR balance controller workspace. Otherwise the controller

can be further investigated by improved functions of u0, or by finding new swing-up controllers. An-

other solution is to utilize the current swing-up controller and further investigate an improved balance

controller with larger region of attraction.

5.2 Further Work

Improve Balance Controller:

Design an improved balance controller which has a larger region of attraction. Thereby the

existing PD-controller can be utilized to move the system angles within the region of attraction

of the balance controller, when the states are moved outside of the balance workspace.

Improved Swing-Up Controller:

By designing an improved swing-up controller, the complete stabilization controller can utilize

the existing LQR balance controller. The swing-up controller can be improved by further inves-

tigation of the PD-controller input reference, u0, or by looking at a new controller strategy for

system swing-up.

Sensitivity Analysis on System and Controller Parameters:

It is a large uncertainty to the controller parameters as they are tuned based on the approx-

imate system parameter values. The PD-controller parameters, kp and kd , were finely tuned

through simulation, thereby a sensitivity analysis should be performed to analyze and verify the

controller functionality before the complete controller is implemented on the real life bicycle

system.

Limitation modification:

As the system limitations are defined in the implementation made by Ånnestad in [14], as pre-

sented in Section 2.1, the system has been proven to utilize state angles outside the limits as-

sumed by Ånnestad. Thereby the simulations of the nonlinear control verifies that these con-

troller limits on the system implemented by Ånnestad in [14] has to be changed, before com-

plete controller implementation.
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Controller implementation

When the complete stabilization controller is derived, the controller should be implemented

for use in the real bicycle system. The implementation should be included in the bicycle system

implementation from [14] done in Simulink.

Filter theory and measurements:

The required accuracy of the position and speed measurements has to be further investigated.

Different types of filter theory can be applied. The system consist of sensor measurements,

which contains noise and can be filtered by use e.g. a first order low-pass filter, as presented in

Section 3.9.4. Further research can be conducted, and observers can be included. Due to the

nonlinear system the Extended Kalman filter might be applicable.

Testing complete controller implementation on the physical bicycle system

When the complete controller is implemented in the bicycle system model designed by Ånnes-

tad, testing should be performed. These test results will verify if the complete stabilizing con-

troller satisfies the requirements for stabilization of the physical system. The results can be

compared with results from system simulation, and analyzed.
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Conclusion

The goal of this thesis was to investigate and develop a stabilization controller for the bicycle system,

by use of the previously mathematical system model in the authors own work [12]. By presenting the

system as an Acrobot with angular limitations, the two controller strategies of Acrobot control, pre-

sented in [12] has been investigated. Through simulation, the controller implementations by Lai et al.

and Kobayashi et al. has been verified as inapplicable stabilization controllers for the bicycle system.

The design by Lai et al., presented in Section 4.1, utilizes the energy-based swing-up controller with

PD-structure to swing up the system states to the upright unstable equilibrium. As illustrated in the

simulation in Figure 4.7, the controller utilizes the angular velocity of the bicycle, Ωb , to increase the

system energy, and thereby moves the angles outside the angular limits of the bicycle. By applying

a small control torque, the controller moves the system states closer to the upright position by each

swing. The PD-structure is utilized to give the desired control torque and control the inverted pen-

dulum angle towards zero, for utilization of the LQR balance controller. Neither the implementation

based on Kobayashi et al. was able to stabilize the system within the angular limitations. This design

did not utilize the system states in the same way as Lai et al. The controller was based on the property

of a negative semi-definite time derivative of the energy function, Ez(θ, θ̇), and was unable to move

the system states within the balance subspace in simulation. However, both controllers illustrated

how the increased system energy has to be applied from the inverted pendulum angle, θp , instead of

the bicycle angle. As the angular velocities are zero when the angles are at the limits of the bicycle

system, the inverted pendulum must be utilized to increase the system energy and move the bicycle

angle towards its upright position.

When the controller designs presented in the authors previous work [12], was verified as inapplicable

stabilization controller for the bicycle system, further research was conducted. The partially feedback

linearized system was derived, resulting in a linear second order system coupled with a nonlinear
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system, as the presentation in Eq. 4.32. A simplified swing-up controller was designed by use of a

PD-controller, presented in Eq. 4.35. As the swing-up design only utilizes the states of θp and Ωp ,

the controller was designed to stabilize the angle of θp around a desired angular value of zero, inde-

pendently of the bicycle angle, θb . Thus the gains are tuned to utilize the angular oscillations of θp

and move the bicycle towards its upright position as a result of the counteracting torque. First the

PD-controller, with input reference u0 = 0, was utilized as a swing-up controller, where the parame-

ters are tuned based on an initial positions at the angular limitations of (θi ni t
b ,θi ni t

p ) = (30◦,110◦), as

in Eq. 4.45. As illustrated in Figure 4.28, the system was able to utilize the PD-controller and move the

system states within the LQR region of attraction and activate the LQR balance controller for system

stabilization. Further on the controller robustness was tested. As shown in Figure 4.30(a) the sys-

tem stabilization was performed without exceeding the maximum torque of the DC motor actuator,

when the perturbation torque, τd , was less or equal to 5.1[Nm]. If the perturbation torque became

larger, the system was unable to utilize the LQR controller for system stabilization, and the angles are

moved outside the LQR workspace. As the system angles were too far away from the angular limits,

the PD-controller with fixed controller parameters of Eq. 4.45 was unable to move the system angles

towards the LQR region of attraction, while simultaneously controlling the angular velocities Ωb and

Ωp towards zero. Thereby the system controller was unable to stabilize the state angles at the upright

position, as shown in Figure 4.31. The system must be allowed to fall to the angular limits and obtain

angular velocities Ωb =Ωp = 0, when the angles moves outside of the workspace of the LQR balance

controller. From the limits, the PD-controller can be reinitialized, with controller parameters from Eq.

4.45, to move the angles back into the LQR region of attraction, while simultaneously controlling the

angular velocities towards zero, to activate the LQR balance controller for system stabilization.

As the PD-controller oscillates the inverted pendulum angle, θp , independently of the bicycle an-

gle, θb , to move the system angles within the LQR region of attraction, the input reference, u0, was

investigated to improve the controller performance, without success. The reference input functions

presented in Eq. 4.48 and 4.50 was utilized to include bicycle angle, θb , and the angular velocity of the

bicycle, Ωb , for improved swing-up control. The reference inputs were unable to improve the system

performance, as the input reference gave a controller torque which exceeded the maximum actuation

torque when perturbation occurred. When the disturbance torque was applied onto the system, the

resulting controller torque gave an excessively large acceleration of the inverted pendulum. Thus, to

improve the stabilization controller by use of the reference inputs from Eq. 4.48 and 4.50, the system

actuator has to be upgraded to give the desired control torque required for these controller designs.
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Thereby the swing-up PD-controller with u0 = 0 is the only stabilization controller which success-

fully stabilizes the bicycle system without exceeding the maximum actuation torque. To improve the

complete stabilization controller for system implementation, the future work should focus on utiliza-

tion of the LQR balance controller and improve the swing-up controller. Another method is to focus

on utilization of the current PD swing-up controller and further investigate a balance controller with

larger region of attraction.
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Appendix A

Appendix A

In this appendix, the derivation and calculations of the system model presented in Chapter 3 will be

shown. The model was derived in the authors own work in [12].

A.1 System Coordinates

In Section 3.2 the system coordinates was presented. The relative generalized coordinates used in the

model derivation are illustrated in Figure 3.2, where (xi , yi , zi ) is the initial frame and θp is relative

to θb . The rotation is around the zi -axis, as shown in Figure A.1, with respect to the right-hand rule.

The coordinate frames of the bicycle and inverted pendulum are denoted (xb , yb , zb) and (xp , yp , zp ),

respectively. The two coordinate systems are defined as:

~xb = cos θb ·~xi + si n θb ·~yi

~yb =−si n θb ·~xi + cos θb ·~yi

~zb =~zi

~xp = cos(θb +θp ) ·~xi + si n(θb +θp ) ·~yi

~yp =−si n(θb +θp ) ·~xi + cos(θb +θp ) ·~yi

~zp =~zi

(A.1)
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Figure A.1: Rotation About The z-axis

A.2 Vectorial Length and Velocity

When the system masses are presented as point masses, the coordinates system presented in Section

3.2 are presented as vectorial, giving the elements both size and direction. The system energy was

derived by use of vectorial notation, and use of Eq. (6.400) in [7]:

~va ≡
i d

d t
~ra

=~v0 +
ad

d t
~ra +~ωi a ×~ra

(A.2)

where subscript a denotes a reference coordinate frame relative to the initial reference frame denoted

i . Note that ~v0 is zero in the upcoming equations, derived in [12]. The system parameters are illus-

trated in Figure 3.3.
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A.2.1 System Mass mb

The position of mb , denoted~rb , is placed along the defined y-axis of the bicycle coordinate frame:

~rb = rb ·~yb (A.3)

By use of Eq. A.2, the resulting vectorial velocity was derived as:

~vb =
i d

d t
~rb

=
bd

d t
(rb ·~yb)+~ωi b × (rb ·~yb)

b d
d t represents time derivative with respect to the bicycle coordinate frame, b. As neither rb or ~yb

changes in time with respect to the bicycle frame, the equation becomes:

~vb =~ωi b × (rb ·~yb)

Where ~ωi b is the angular velocity of the bicycle mass center, mb , rotating around the defined zb-axis

in Eq. A.1. This gives: ~ωi b =−θ̇b ·~zb , resulting in:

~vb = (−θ̇b ·~zb)× (rb ·~yb)

=−(θ̇brb)~zb ×~yb

= rb θ̇b ·~xb

(A.4)

A.2.2 System Actuator Joint

As the system actuator joint is not a mass point, the joint does not contribute with system energy.

Nonetheless, in [12], the vectorial length and velocity was derived for use in the derivation of the

length and velocity of the system mass mp . The joint position is placed along the defined y-axis of the

bicycle coordinate frame, with length l :

~r j = l ·~yb (A.5)

By use of Eq. A.2, the time derivative of the joint position gives the vectorial velocity:

~v j =
bd

d t
(l ·~yb)+~ωi b × (l ·~yb)

=~ωi b × (l ·~yb)

=−(θ̇ ·~zb)× (l ·~yb)

= l θ̇b ·~xb

(A.6)
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A.2.3 System Mass mp

With the pendulum mounted on the system actuator joint, the position~rp was derived as:

~rp =~r j + rp ·~yp

= l ·~yb + rp ·~yp

(A.7)

As for the mass point mb , Eq. A.2 was applied, giving:

~vp =~v j oi nt +
i d

d t
~rp

=~v j oi nt +
p d

d t
(rp ·~yb)+~ωi p × (rp ·~yp )

(A.8)

Where
p d
d t represents time derivative with respect to the pendulum coordinate frame, p. As for the

bicycle, neither rp or ~yb changes in time with respect to the pendulum frame. The velocity is then

written as:

~vp =~v j oi nt +~ωi p × (rp ·~yp )

~ωi p is the angular velocity of mp rotating around the defined zp -axis in Eq. A.1. This gives: ~ωi p =
−(θ̇b + θ̇p ) ·~zp , resulting in:

~vp =~v j oi nt − (θ̇b + θ̇p ) ·~zp × (rp ·~yp )

= l θ̇b ·~xb + rp (θ̇b + θ̇p ) ·~xp

(A.9)
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Figure A.2: Defined heights for system potential energy

A.3 System Energy

As the position and velocity of the system masses has been derived, the potential and kinetic energy of

the point masses was derived. These energy expressions are utilized in the Lagranges equation of mo-

tion, Eq. 3.5, for derivation of the mathematical equation of motion of the bicycle system presented

in Section 3.5.

A.3.1 Potential Energy

Figure A.2 illustrates the defined heights for the bicycle system, giving the potential energy of the

system masses mb and mp , with heights hb and hp defined as:

hb = rb cos θb

hp = l cos θb + rp cos(θb +θp )

The corresponding potential energy of the system masses becomes, as shown in Section 3.4:

Ub = mb g hb

= mbrb g cos θb

Up = mp g hp

= mp g (l cos θb + rp cos(θb +θp )



124 APPENDIX A. APPENDIX A

A.3.2 Kinetic Energy

By use of the vectorial velocity equations derived in [12] and shown in Appendix A.2, the kinetic energy

of the point masses was derived. For the system mass mb , the kinetic energy is given by:

Tb = 1

2
mb~vb ·~vb

= 1

2
mb[−rb θ̇b ·~xb] · [−rb θ̇b ·~xb]

= 1

2
mb(rb θ̇b)2

(A.12)

where the dot product of~xb is: ~xb ·~xb = |~xb ||~xb |cos θxb xb = 1.

The kinetic energy of the system mass mp is a bit more complex. By use of the vectorial velocity

equation of ~vp , the derivation in [12] was:

Tp = 1

2
mp~vp ·~vp (A.13a)

= 1

2
mp [l θ̇b ·~xb + (θ̇b + θ̇p )rp ·~xp ] · [l θ̇b ·~xb + (θ̇b + θ̇p )rp ·~xp ] (A.13b)

= 1

2
mp [(l θ̇b)2 ·~xb ·~xb + l rp θ̇b(θ̇b + θ̇p ) ·~xb ·~xp + l rp θ̇b(θ̇b + θ̇p ) ·~xp ·~xb + r 2

p (θ̇b + θ̇p )2 ·~xp ·~xp ]

(A.13c)

= 1

2
mp [(l θ̇b)2 +2l rp θ̇b(θ̇b + θ̇p )~xb ·~xp + r 2

p (θ̇b + θ̇p )2] (A.13d)

= 1

2
mp [(l θ̇b)2 +2l rp θ̇p (θ̇b + θ̇p )cos θp + r 2

p (θ̇b + θ̇p )2] (A.13e)

Where the rule of vectorial dot product has been utilized, giving: ~xb ·~xb = 1, ~xp ·~xp = 1 and ~xb ·~xp =
~xp ·~xb in Eq. A.13c.

Further on the dot product of ~xb and ~xp in Eq. A.13d was calculated. Using Eq. A.1 and the fact

that the perpendicular basis vectors ~xa and ~ya has the property: ~xa ·~ya =~ya ·~xa = 0, the dot product

is:

~xb ·~xp = [cos θb ·~xi + si n θb ·~yi ] · [cos(θb +θp ) ·~xi + si n(θb +θp ) ·~yi ]

= cos θb cos(θb +θp )+ cos θb si n(θb +θp ) ·~xi ·~yi + si n θb cos(θb +θp ) ·~yi ·~xi + si n θb si n(θb +θp )

= cos θb cos(θb +θp )+ si n θb si n(θb +θp )
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Using the trigonometric addition formula: cos(α−β) = cos α cos β+ si n α si n β, the dot product can

be written as:

~xb ·~xp = cos(θb − (θb +θp )) = cos(−θp ) = cos θp

Giving the final expression for the kinetic energy of mp in Eq. A.13e.

A.4 The System Lagrange Equation of Motion

The equation of motion of the bicycle system, presented as an Acrobot, in Section 3.5, was derived

by use og the Lagrangian function in Eq. 3.6 and the Lagranges equation of motion, Eq. 3.5. The

Lagrangian function is defined as:

L = T −U

= 1

2
(mbr 2

b +mp l 2)θ̇2
b +mp rp l θ̇b(θ̇b + θ̇p )cos θp + 1

2
mp r 2

p (θ̇b + θ̇p )2

− (mbrb +mp l )g cos θb −mp rp g cos(θb +θp )

(A.14)

The two degrees of freedom q = [θb ,θp ]T in Eq. 3.5 gives the set of Lagrangian Equations of motion:

d

d t

(
∂L

∂θ̇b

)
− ∂L

∂θb
= 0 (A.15a)

d

d t

(
∂L

∂θ̇p

)
− ∂L

∂θp
= τ (A.15b)

Where:

∂L

∂θb
= (mbrb +mp l )g si n θb +mp rp g si n(θb +θp ) (A.16a)

∂L

∂θ̇b
= (mbr 2

b +mp l 2)θ̇b +mp rp l cos θp (2θ̇b + θ̇p )+mp r 2
p (θ̇b + θ̇p ) (A.16b)

∂L

∂θp
=−mp rp l θ̇b(θ̇b + θ̇p ) si n θp +mp rp g si n(θb +θp ) (A.16c)

∂L

∂θ̇p
= mp rp l θ̇b cos θp +mp r 2

p (θ̇b + θ̇p ) (A.16d)
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By use of the equations Eq. A.15 and Eq. A.16 the equation of motion for θb has been derived as:

d

d t

(
∂L

∂θ̇b

)
− ∂L

∂θb
= d

d t

(
(mbr 2

b +mp l 2)θ̇b +mp rp l cos θp (2θ̇b + θ̇p )+mp r 2
p (θ̇b + θ̇p )

)
(A.17a)

− (mbrb +mp l )g si n θb +mp rp g si n(θb +θp )

= (mbr 2
b +mp l 2)θ̈b +2mp rp l θ̈b cos θp −2mp rp l θ̇b θ̇p si n θp

+mp rp l θ̈p cos θp −mp rp l θ̇2
p si n θp +mp r 2

p (θ̈b + θ̈p ) (A.17b)

− (mbrb +mp l )g si n θb −mp rp g si n(θb +θp )

= (mbr 2
b +mp l 2 +mp r 2

p +2mp rp l cos θp )θ̈b + (mp r 2
p +mp rp l cos θp )θ̈p

−2mp rp l θ̇b θ̇p si n θp −mp rp l θ̇2
p si n θp − (mbrb +mp l )g si n θb (A.17c)

−mp rp g si n(θb +θp )

For the mounted inverted pendulum, θp , the equation of motion has been derived as:

d

d t

(
∂L

∂θ̇p

)
− ∂L

∂θp
= d

d t

(
mp rp l θ̇b cos θp +mp r 2

p (θ̇b + θ̇p )
)
+mp rp l θ̇b(θ̇b + θ̇p ) si n θp (A.18a)

−mp rp g si n(θb +θp )

= mp rp l θ̈b cos θp −mp rp l θ̇b θ̇p si n θp +mp r 2
p (θ̈b + θ̈p ) (A.18b)

+mp rp l θ̇b(θ̇b + θ̇p ) si n θp −mp rp g si n(θb +θp )

= (mp r 2
p +mp rp lcos θp )θ̈b +mp r 2

p θ̈p +mp rp l θ̇2
b si n θp (A.18c)

−mp rp g si n(θb +θp )

From Eq. A.15, A.17c and A.18c the final system equation of motion was derived, as presented in Eq

3.8 and 3.9.
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Appendix B

In this appendix, some of the system implementations for controllers in Chapter 4 are presented. The

implementations are developed in Matlab®and Simulink®.

B.1 Implementation of State Space Representation in Simulink

Figure B.1 shows the implementation of right hand side of the differential equation in Eq. 3.20a. The

terms are categorized in centrifugal and Coriolis, gravity and actuator related torques for system anal-

ysis.
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Figure B.1: Implemented State Space Representation of Bicycle System in Simulink®
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Figure B.2: Implemention of Right Hand Side of Eq. 3.20b in Simulink®

Figure B.2 illustrates the implementation of the right hand side of the differential equation in Eq.

3.20b, where the terms are categorize in centrifugal and Coriolis, gravity and actuator related torques,

as the implementation in Figure B.1. Both implementations are utilized in the complete system model

of Eq. 3.20 presented in Figure 4.21.



130 APPENDIX B. APPENDIX B



Appendix C

Appendix C

This appendix presents the data sheets for the gearbox and system actuator DC motor, presented in

Section 2.4 and 2.5.

C.1 Harmonic Drive AG PMG-14A-72-S

On the next page, the data sheet of the gearbox is presented. The gearbox is produced by Harmonic

Drive AG, and is the model PMG-14A-72-S, which is a PMG series gearbox of size 14A and gear ratio

72. The mark S implies that the gearbox is equipped with input shaft.
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PM
G

Bestellbezeichnungen und Technische Daten
Ordering Code and Technical Data

Baureihe 
Series

Baugröße  
Size

Untersetzung   
Ratio

Version 
Version

Sonderausführung 
Special design

Mini-Getriebeboxen 
Baureihe PMG

PMG series 
precision gearboxes

5A 50 80 100 M 
mit Eingangsnabe für Motoradaption

Close coupled model for motor adaption

S  
mit Eingangswelle 
with input shaft

Nach  
Kundenanforderung

According to 
customer requirements

8A 50 72 100

11A 50 72 100

14A 50 72 88 100 110

Bestellbezeichnung
Ordering Code

        PMG         – 8A – 100    –                         M –                   SP

1)	 Die maximale radiale Last bezieht sich auf die Wellenmitte der Antriebs- bzw. 
Abtriebsseite.

2)	 Massenträgheitsmoment auf der Antriebsseite.

1)	 The radial load is based on a force applied at the midpoint of the shaft 
extension.

2) 	The moment of inertia is measured at the input of the gearbox.

Bestellbezeichnungen■■ Ordering Code■■

Leistungsdaten■■ Rating Table■■

PMG 
Baugröße

Unter- 
setzung

Grenze für 
wieder-

holbares 
Spitzendreh- 

moment

Grenze 
für Durch-

schnittsdreh-
moment

Nenn- 
dreh- 

moment

Grenze für 
Kollisions-
drehmo-

ment

Nenn- 
dreh- 
zahl

[min-1]

Maximale 
Antriebs-
drehzahl 

Fett-
schmierung

[min-1]

Grenze für
mittlere 
Antriebs-
drehzahl
[min-1]

Abtriebswelle
Output shaft

Antriebswelle 
Typ S

Input shaft
type S

Massenträg-
heitsmoment 2)

Moment 
of inertia 2)

Gewicht
Weight

Max.  
radiale 
Last 1)

Max. 
radial 
load 1)

Max.  
axiale 
Last
Max. 
axial 
load

Max.  
radiale 
Last 1)

Max. 
radial 
load 1)

Max.  
axiale 
Last
Max. 
axial 
load

Typ 
M

Type 
M

Typ 
S

Type 
S

Typ 
M

Type  
M

Typ
S

Type 
S

PMG  
size

Ratio

i

Limit for 
repeated 

peak 
torque

Limit for 
average 
torque

Rated  
output 
torque

Limit for 
momentary 

peak 
torque

Rated 
input 
speed
[rpm]

Max. input 
speed gre-

ase 
lubrication

[rpm]

Limit for 
Average

Input
Speed
[rpm]

TR 
[Nm]

TA 
[Nm]

TN 
 [Nm]

TM 
[Nm] [N] [N] [x 10-4 kgcm2] [kg]

5
50 0,3 0,3 0,2 0,4 4500

10000 4900 59 29 8 5 2,5 2,5 0,03 0,03180 0,45 0,45 0,3 0,6 4500
100 0,55 0,55 0,3 0,7 4500

8
50 1,9 1,9 1,5 2,5 3500

6000 3500 196 98 10 5 30 30 0,12 0,12572 2,4 2,3 2,0 3,1 3500
100 2,7 2,7 2,0 3,8 3500

11
50 5,0 4,7 2,5 6,8 3500

5000 3500 245 196 20 10 120 140 0,25 0,2772 5,6 5,4 4,0 8,8 3500
100 7,9 7,6 4,0 10,8 3500

14

50 9,8 7,0 5,4 14,0 3500

5000 3500 392 392 29 10 330 340 0,42 0,495
72 11,8 9,0 7,8 16,0 3500
88 12,7 11,0 7,8 18,0 3500

100 14,7 11,0 7,8 20,0 3500
110 14,7 11,0 7,8 20,0 3500

Tabelle / Table 109.2

Tabelle / Table 109.1

Siehe „Erläuterungen zu Technischen Daten“ im Kapitel „Projektierung mit 
Harmonic Drive Getrieben”.

Please refer to the notes on “Understanding the Technical Data” in section 
“Engineering Data for Harmonic Drive Gears”.



C.2. DUNKERMOTOREN DC MOTOR GR 63X55 PERFORMANCE DATA SHEET 133

C.2 Dunkermotoren DC Motor GR 63x55 Performance Data Sheet

On the next page, the performance data sheet of the system actuator DC motor is attached. The sys-

tem parameters applied in Chapter 2.5 is with the nominal battery voltage of 24 [V]. These parameters

from the data sheet are listed in Table 2.1.
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D.C. Motors
Series GR 63x25 and GR 63x55 

The type GR 63 motors have perma-
nent magnets and high power at small
volume and thus especially suited for
industrial applications, such as 
– Computer and office machines 
– Pumps and compressors 
– Industrial blowers 
– Welding technics 
– General machine construction 
– Medical equipment 
– Door operating drives

Design
These motors are rigidly built and need
no maintenance during their lifetime.

The rotor runs in ball bearings.
The bearing plates are of die cast zinc.

Depending on case-length two ver-
sions are available with max.continuous
torque of 14 Ncm resp.28 Ncm. 

The motors can be combined with
different gears and actual value enco-
ders resp.generators. 

The GR 63 series motors can be
delivered with brakes and/or actual
value encoders resp.generators.

Standard version without second
drive straft and without connector.

Features
– Mount-on dimensions according

to DIN 42016. 
– Independent of mounting position.
– Clockwise and counter-clockwise 

rotation. 
– Insulation according to VDE 0530,

insulation class E. 
– Surface protection.

Standard program
Motors with nominal voltages
12 V, 24 V, 40 V and 60 V represent
our standard motor program 
and should preferably be used.

Load characteristics
The characteristics are examples 
for the standard program with 
the possible winding configurations
of the motors, type GR 63.

Angle dimensions and angle offset
See page 2

Nominal voltage
Nominal speed2)
Nominal torque2)
Nominal current2)
Demagnetization current1)
No load speed1)
No load current1)
Starting torque1)
Efficiency2)
Moment of inertia
Weight

Performance data of motor GR 63x25 

12
3100
13,7
5,2
50
3600
0,6
82
71
400
1,2

12
3000
24
8,7
66
3500
0,8
202
80,5
750
1,7

24
3300
14
2,7
24
3600
0,36
108
74
400
1,2

24
3350
27
4,9
33
3650
0,4
211
80
750
1,7

40
3450
27
2,95
20
3600
0,28
210
82
750
1,7

60
3350
28,3
2,0
13
3600
0,2
200
82
750
1,7

40
3500
13,3
1,65
16
3800
0,205
118
74
400
1,2

60
3300
14,5
1,1
9,5
3600
0,135
116
76
400
1,2

Nominal voltage
Nominal speed2)
Nominal torque2)
Nominal current2)
Demagnetization current1)
No load speed1)
No load current1)
Starting torque1)
Efficiency2)
Moment of inertia
Weight

Performance data of motor GR 63x55

V
min–1

Ncm
A 
A
min–1

A 
Ncm 
%
gcm2

kg

V
min–1

Ncm
A 
A
min–1

A 
Ncm 
%
gcm2

kg

150N
150N applied 20mm from mounting surface

Shaft load capacity axial max.
Shaft load capacity radial max.

All output data are referred to 1) ∂R = 20°C resp. 2) ∆∂w =100 K
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The simulation models designed throughout the semester is included in the zip-file, where the con-

troller implementations in Matlab®/Simulink® are sorted into folders as following:

Controller by Kobayashi et al.:

The folder includes the controller implementation based on Kobayashi et al., presented in Sec-

tion 4.2. This controller implementation is simulated with the bicycle system model with matrix

representation, as given in Eq. 3.8 and 3.9.

Controller by Lai et al.:

The folder includes the controller implementation based on Lai et al., presented in Section 4.1.

This controller implementation is simulated with the bicycle system model with matrix repre-

sentation, as given in Eq. 3.8 and 3.9.

Partially Feedback Linearized System Controllers:

The folder includes the controller implementation of the partially feedback linearized system

controllers presented in Section 4.3. In the controller implementation one can choose between

the different reference input functions of u0, presented in Section 4.3.2. This controller imple-

mentation is simulated with the State Space Differential Equation system, presented in Eq. 3.20.

Note that the LQR-controller utilized in the stabilization controller is the balance controller pre-

sented in Eq. 4.37. The implementation of the partially feedback linearized LQR-controller of

Eq. 4.40 is given in the additional system model in the Simulink®-file.

State Space Differential Equations System Model

This folder includes the system model presented in Section 3.8.1, with the set of differential

equations utilized in Section 4.3.1.
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System Model With Matrix Representation

This folder includes the system model on matrix form, presented in Section 3.5, and utilized in

the simulations of the controller implementations based on Lai et al. and Kobayashi et al., in

Section 4.1 and 4.2.

A "readme.txt"-file is included for description of how to run the system simulations. execution
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