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Summary

With an inverted pendulum mounted on the bicycle frame, the system is corresponding to a bicyclist

who applies balancing torque from the hip. This thesis present a mathematical system model of the

autonomous bicycle, modeled as an inverted double pendulum with actuation at the joint connecting

the two system links, better known as an Acrobot. The Acrobot is a well-known underactuated robot

manipulator, which implies that only the mounted inverted pendulum can obtain instantaneous ac-

celeration in arbitrary direction by use of the system actuator. The goal is to stabilize the autonomous

bicycle around the upright unstable equilibrium by use of the control torque applied from the DC

motor mounted to the bicycle frame and the inverted pendulum. With this single control torque, the

underactuated system introduces a challenging control-problem. By use of the system model in the

authors own work[12], angular limitation of the bicycle tilt angle and the inverted pendulum angle

are included into the derived Acrobot model, to get a complete mathematical model equivalent to

the real life bicycle system. As the goal is to develop a stabilization controller, the thesis further in-

vestigates the most convincing controllers presented in [12] - Lai et al. [11] and Kobayashi et al. [9].

These articles suggests to defined controller subspaces by dividing the system control into balance

and swing-up control. The balance controller is designed by use of system linearization around the

upright unstable equilibrium, where the linear system matrices are used to create an LQR balance

controller for optimal state feedback control by pole placement. The suggested controllers utilizes

nonlinear energy based controllers for system swing-up. As the controller-designs increases system

energy by use of the bicycle outside of the angular limitations, the resulting swing-up control is un-

able to move the system states within the balance subspace. Thereby the controller implementations

are verified as unsuccessful stabilization controllers for the bicycle system, through simulation. Fur-

ther on a new controller strategy is investigated, where the partially feedback linearization is utilized

to cancel out the nonlinearities of the actuated system angle. By dividing the stabilization controller

into balance and swing-up control, the partially feedback linearized system representation is utilized

to design linear PD-controller for system swing-up. A new LQR controller was designed by lineariza-

tion around the upright equilibrium of the partially feedback linearized system. Through simulation

the swing-up PD-controller is tuned and tested to achieve the desired system functionality by utiliza-

tion of the inverted pendulum and counteracting torque onto the bicycle. With torque disturbance

applied onto the bicycle, the stabilization controller functionality is tested and analyzed. The com-

plete controller-design is verified to successfully stabilize the bicycle, from initial positions at the limit,

at its upright position by use of an LQR balance controller and swing-up PD-controller. Without ex-

ceeding the maximum torque able to apply from the system actuator, the complete controller satisfies

the requirements of the autonomous bicycle stabilization.
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Sammendrag

Med en invertert pendel montert på sykkelrammen er sykkelsystemet tilsvarende en syklist som ba-

lanserer med rotasjon i hoften. Denne oppgaven presenterer en matematisk modell av den autonome

sykkelen, modellert som en dobbel-invertert pendel med pådrag påført i leddet hvor sykkelen og den

inverterte pendelen knyttes. Dette er bedre kjent som en Acrobot, en underaktuert robotmanipulator

- som resulterer i at kun den påmonterte inverterte pendelen kan oppnå momentan akselerasjon i

virkårlig retning. Ettersom at målet er å balansere sykkelsystemet ved det oppreiste ustabile likevekts-

punktet ved bruk av DC motoren som pådragsorgan, vil det bli et utfordrende kontrollproblem da det

kun er ett pådragsorgan på systemet. Med bruk av den matematiske modellen utviklet i forfatterens

eget arbeid[12] er fysiske vinkelbegrensinger inkludert i Acrobot-modellen for å gi en systemmodell

som er ekvivalent med det fysiske sykkelsystemet. Videre blir de mest overbevisende kontrollerne, pre-

sentert i [12], undersøkt. Kontrollerdesignene fra Lai m. fl.[11] og Kobayashi m. fl.[9] foreslår og dele

robot-manipulatorens arbeidsområde inn i et balanseområde og oppsvingsområde, hvor henholdsvis

balansekontroller og oppsvings-kontroller blir benyttet. Balansekontrolleren er designet med bruk av

linearisering om det ustabile likevekts-punktet, hvor de lineære systemmatrisene er brukt for å lage

en LQR-kontroller for optimal tilstandskontrollering ved hjelp av pol-plassering. Disse foreslåtte kon-

trollerne utnytter ulineære energibaserte kontrollere for oppsving. Siden disse energibaserte kontrol-

lerne øker systemets energi ved bruk av sykkel-leddet utenfor de definerte vinkelbegrensningene, er

de foreslåtte kontroll-designene ute av stand til å bevege systemet inn i balanseområdet for balan-

sering av sykkelsystemet. Gjennom simulering er disse kontroller-implementasjonene verifisert som

mislykkede stabiliserings-kontrollere for den autonome sykkelen. Videre blir en ny kontrollerstrategi

undersøkt. Ved bruk av delvis tilbakekoblings-linearisering vil ulinearitetene knyttet til den inverter-

te pendelen bli kansellert. Inndelingen av balansekontroll og oppsvings-kontroll er videre utnyttet,

hvor den delvise lineariseringen er brukt til å ha en lineær PD-kontroller i oppsvingsområdet. En ny

LQR-kontroller er også utviklet, basert på linearisering om det ustabile likevekts-punktet av det del-

vis tilbakekoblings-lineariserte systemet. Gjennom simulering blir PD-kontrolleren justert og testet,

for å oppnå ønsket kontrollerfunksjonalitet, hvor den inverterte pendelen blir utnyttet for å påføre

et motvirkende moment på sykkelen. Robustheten blir også testet ved å påføre en forstyrrelse til sys-

temet. Det endelige kontroll-designet, med LQR balansekontroller og PD oppsvings-kontroller, blir

videre verifisert som en vellykket stabiliseringskontroller for sykkelsystemet, med initial posisjoner på

vinkelgrensene. Uten å overgå det maksimale pådraget til pådragsorganet, oppfyller kontroll-designet

systemkravene til det autonome sykkelsystemet.



v

Acronyms

• IMU - Inertial Measurement Unit

• LQR - Linear Quadratic Regulator

• MIMO - Multiple Input Multiple Output

• DOF - Degree Of Freedom

• DC - Direct Current

• P - Proportional

• PI - Proportional Integrating

• PD - Proportional Derivative
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Chapter 1

Introduction

In this thesis balancing of an autonomous bicycle system will be investigated and developed. By use

of an inverted pendulum mounted on the bicycle frame, controllers will be analyzed and tested for

stabilization of the complete bicycle system by use of the actuated inverted pendulum. These con-

trollers will be developed for the autonomous bicycle system designed by Dag Christan Ånnestad at

NTNU in 2011.

1.1 Motivation

In 2011 Dag Christian Ånnestad, [14], succeeded to develop a simple, but functioning system, by de-

signing hardware and software for driving the autonomous bicycle and control the steering. Based

on the idea of Amund Skavhaug an inverted pendulum is mounted to stabilize the bicycle, to make

it balance around the upright position at both zero and nonzero velocity. Thus the bicycle does not

need support for stabilization at the start-up phase and while driving at low velocities. The goal is

to utilize the authors own work done in the project thesis [12] to develop a stabilizing controller for

the bicycle system. By use of the mathematical system model and the controllers presented in [12],

further research of the stabilization controller will be conducted. With the inverted pendulum repre-

senting the upper body of a cyclist, the goal is to investigate various controller strategies for system

stabilization within defined angular limits. As the control torque applied at the joint connecting the

bicycle frame and the mounted inverted pendulum, the system will be represented a robot manipu-

lator better known as an Acrobot, with system limitations. Physical limitations on angles and angular

velocity will be included in the system model to make the model equivalent to a real life humanoid

cyclist. Control theory and physics will be applied to analyze and understand the system for further

investigation and development of the stabilization controller for the bicycle used in recruitment and

motivation of students at the Department of Engineering Cybernetics at NTNU.

3
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Problem Formulation

By utilizing the mathematical model derived in the authors previous work in [12], investigation of

controllers will be conducted through analysis and simulation of the bicycle system. Through sys-

tem simulation, the controllers will be tested and verified for the limited Acrobot system for future

system implementation. In this thesis, Acrobot-controllers from various literature presented in the

authors own work [12] will be investigated, to verify if the controllers works sufficiently for the limited

Acrobot system. If these controllers are not satisfying the system requirements, further research will

be conducted to obtain knowledge and understanding of the control problem to present new con-

troller strategies. By use of these controllers, the goal is to stabilize the system around the upright

equilibrium and balance the bicycle.

• Investigate relevant controllers for system stabilization.

• Design controllers for system simulation.

• Analyze controllers through simulation.

• Obtain knowledge and understanding of the control problem.

For readability, previously derived equations in [12] and solutions of the occurring problems will be

discussed throughout the thesis.

Literature Survey

The articles presenting the Acrobot control, shows how the system stabilizing control is designed by

two types of controllers: balancing and swing-up controllers. It is shown by Lai et al. in [10] and

[11] how the Acrobot stabilization problem can be solved by defining system subspaces. The system

controllers are designed and applied in their corresponding subspaces. Balancing control is designed

as an LQR controller, while the swing-up controllers are energy based controllers, defined by either

system energy or suggested Lyapunov functions. Kobayashi et al. [9] shows that the swing-up and bal-

ancing control can not be designed by a single feedback controller, due to excessively large feedback

gain. The control torque is designed by one LQR balancing control and energy based swing-up con-

trol, as in [10] and [11]. Among the Acrobot literature this system control design often occur. With the

video [1] and the corresponding paper [2], Andersen et al. present various nonlinear controller, both

with and without angular limitations for Acrobot balancing. This video shows a successful attempt

of balancing the Acrobot at the upright equilibrium, which increases the knowledge and understand-

ing of the system behavior. The controller presented in [2] are presented with system time response

and shows that some of the controllers are inapplicable on the bicycle system, as the system angles
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moves outside the defined angular limitations. In [18] energy based control was applied as well. In

addition, this article perform partial feedback linearization, canceling out some of the nonlinearities

of the Acrobot system, to achieve less complex stabilization controllers.

What Remains to be Done?

As the system model is derived and stabilization controllers are developed, the suggested control the-

ories can be utilized for future design and implementation of the complete bicycle system stabiliza-

tion controller. The controller can then be implemented and tested on the real bicycle system to see

how well the theoretical controller theories verified by system simulation works on the physical sys-

tem.

1.2 Objectives

The main objectives of this Master’s project are

1. Analyze and discuss system actuation by DC motor

2. Utilize system model with limitations for simulation of bicycle system

3. Introduce stabilization controllers for system stabilization

4. Analyze and test the stabilization controllers through simulation

5. Test robustness of stabilization controller by perturbation

1.3 Limitations

In this study, the research is limited to analyze and investigate the controller performance of the math-

ematical system model through simulation. The previous work on the autonomous bicycle model

will not be tested until a complete controller is developed. The focus will be on the mathematical ap-

proach and physical understanding. Controller research will be conducted where control theory will

be applied for investigation of possible designs for future implementation of a complete stabilization

controller for the real life bicycle system.
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1.4 Approach

The system will be represented as an inverted double pendulum with the control torque placed at the

link connecting-joint. This system is better known as an Acrobot in various literature. As the goal is to

create a controller for balancing the bicycle system around the upright position, the author will utilize

his own previous work in [12] with a mathematical system model including angular limitation and

suggestions to possible stabilization controllers. These controllers will be further investigated and

tested. If these controllers are not sufficient, further research will be conducted to develop a complete

system controller. The mathematical system model is extend the with angular limitations such that

the model is equivalent to the real life bicycle system. Due to the electrical DC motor, limitation of the

controller torque must be taken into account for the system actuator. Equations for the electrical DC

motor actuator-system will derived and analyzed.

1.5 Structure of the Report

The rest of the report is structured as following:

• Chapter 2: Gives an introduction to the physical bicycle system with description of the angular

limitations, sensors, parameters, gear box and system actuator (DC motor).

• Chapter 2: Presents modifications and illustrations of the real physical bicycle system. The bi-

cycle is shown to provide a clear understanding of the relation between the real system and the

system model derived in [12] and presented in Chapter 3

• Chapter 3: Contains the derivation of the system model of the bicycle system represented as an

Acrobot with angular limitations.

• Chapter 4: Present system controllers for the system model from Chapter 3, where linear and

nonlinear control is presented, investigated and analyzed.



Chapter 2

Bicycle System

In this chapter hardware and software of the autonomous bicycle system, constructed through previ-

ous thesis’ at NTNU, is described. With the goal of stabilizing the bicycle system at the upright posi-

tion, this chapter will present specifications and details of the bicycle design to give an understanding

of the control problem. As the inverted pendulum was not included in the previous model designs of

the physical bicycle, the specifications presented in this chapter are utilized in the derivation of the

new mathematical system model, presented in Chapter 3, and based on the authors own work in [12].

2.1 Bicycle With Limitation

The goal is to stabilize the autonomous bicycle system by use of the inverted pendulum mounted on

the bicycle. When the system is modeled as an Acrobot, the model of the physical bicycle system has

to include angular limitations. Both the bicycle tilt angle and the inverted pendulum angle is lim-

ited due to the fact that neither of the two links are able to make a full rotation about their rotational

axis. The pendulum is limited by the bicycle frame, making it able to rotate about ±156◦. The bicycle

tilt angle is limited to approximately ±30◦ when the mechanical feet, illustrated in Figure 2.1(a), are

elevated. In the implementation made by Ånnestad, the pendulum limitation is set to ±60◦, as an as-

sumed maximum angle to avoid damage to the pendulum motor. Throughout this thesis, the system

simulations will be performed with angular limitations of: θb,l i m =±30◦ and θp,l i m =±110◦, such that

the system is able to perform the stabilization. Thereby the limitation implemented by Ånnestad has

to be modified before complete controller implementation is conducted.

7
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(a) Bicycle tilt angle limitation due to mechanical
feet, marked red

(b) Illustration of angle measurement, lifted feet
marked green

Figure 2.1: Bicycle tilt angle limitation due to mechanical feet
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Figure 2.2: Sensor placement - IMU marked yellow and Potentiometer marked red

2.2 Sensor Placement

The potentiometer measuring the position of the inverted pendulum is mounted on the bicycle frame,

as shown in Figure 2.2. The angle output from the sensor gives a pendulum angle relative to the bicycle

frame, resulting in an angle relative to the bicycle tilt angle. The IMU placed on the bicycle frame gives

two important output measurements: The bicycle frame acceleration in (x, y, z)-coordinates and the

roll, pitch, yaw angles of the IMU. These measurements can be used to calculate the bicycle tilt angle,

θb , which is defined in Section 3.2. When using the roll, pitch, yaw representation from the IMU, the

measured roll angle correspond to the tilt angle, θb , of the bicycle, as shown in Figure 2.3. The of angle

φ correspond to the roll angle measured with the IMU, which states how many degrees the IMU is

rotated about its z-axis. The roll angle, φ is measured, and by the geometry of the system, the bicycle

tilt angle is:

φ= π

2
− (

π

2
−θb) = θb (2.1)

As seen in Eq. 2.1, the roll angle of the IMU correspond to the tilt angle of the bicycle, which is intu-

itive. The tilt angle can also be calculated with the (x, y, z)-coordinates from the IMU. To increase the

reliability of the sensor output, the angle can be calculated with both methods and compared. Note

that the (x, y, z)-coordinates are derived by double differentiating the (x, y, z)-acceleration measured

with the IMU, and thereby the unreliability increases as the system noise can be enlarged.
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Figure 2.3: Bicycle tilt angle represented with roll, pitch, yaw output from IMU

Figure 2.4: Bicycle tilt angle based on (x,y,z)-acceleration from IMU

By use of Figure 2.4 the bicycle tilt angle can be calculated. With the initial IMU position (xi , yi ) =
(0,0), the measured IMU-position, (xI MU , yI MU ), and positive angle defined counterclockwise, two

equations can be derived:

θb = ar csi n

(
∆x

l

)
, wher e ∆x = xi −xI MU (2.2a)

θb = ar ccos

(
l −∆y

l

)
, wher e ∆y = yi − yI MU (2.2b)

where l is the height of the bicycle.
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Figure 2.5: Illustration of the optical gyro functionality by Vik [23]

2.2.1 IMU

In Vik [23] describes the IMU as an inertial measurement unit, which consists of an assembly of in-

ertial sensors (ISA), hardware to interface the ISA and low level software for down-sampling, temper-

ature calibration and vibration compensation. The INS can be divided into two classes - the Gimbal

and strapdown. As the IMU on the bicycle system is attached to the frame and follows the movements,

the system is equipped with a strapdown IMU. The most common inertial instruments are the gyro-

scope and accelerometer.

The classical gyro is a Gimbal system where the spinning wheel that utilizes the momentum to de-

tect rotation. For the strapdown, as the IMU on the bicycle, the optical gyros known as the ring laser

gyro (RLG) and fiber optic gyro (FOG) are the most common designs due to high accuracy. Vik [23],

states: "The optical gyros detects a path between two optical beams going in opposite direction and

interfering with each other. A light source sends light through a beam splitter (B), which sends the

light in opposite directions around the circular path. If the interferometer is non-rotating, the light

beam will meet at point B, where an interference pattern is detected. If the interferometer rotates

counter clockwise with an angular velocity of Ω, the counter clockwise beam will have to travel fur-

ther to reach point B, while the other beam will travel a shorter path. The result is that the interference

pattern will move at the detector." Figure 2.5 illustrates this functionality described by Vik [23].
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Figure 2.6: Illustration of the accelerometer functionality by Vik [23]

In [23] Vik presents the most important accelerometers, the mechanical and the vibratory. The me-

chanical accelerometers are based on Newton’s second law of motion, F = ma. A mass is balanced

by the tension of the mounted springs, illustrated in Figure 2.6, under steady state conditions. When

the instrument is subjected to acceleration along its sensitive axis, the mass tends to resist the change

of movement due to its own inertia. The mass displacement due to acceleration results in exten-

sion of the springs which is proportional with the accelerating force. By measuring the displacement,

the acceleration can be calculated and given as an output from the accelerometer. The vibratory ac-

celerometers are based on measurement of frequency shits due to increased or decreased tension on

a string. Vik [23] states: "When the accelerometer mass attached to a quartz beam is loaded, the fre-

quency of the quartz beam increases. The difference in frequency is measured, and is proportional to

the applied acceleration."

The position of the bicycle, measured with the IMU, can be inaccurate as the system angles are de-

rived by adding detected changes to its previously calculated positions. If errors occur when the sys-

tem operates, the calculation of the system angles at the next time sample is based on the previous

measurement containing an error. This is a phenomenon known as drift, which is a common disad-

vantage in the IMU. In navigational systems, the IMU is often calibrated by use of a GPS. As the IMU

is utilized to find the angles around the rotational axis of the bicycle system, this sort of calibration is

inapplicable, and the system will suffer from the drifting IMU-measurements. The uncertainty of the

angular measurement must be taken into account when the stabilization controller is implemented

on the real life bicycle system, where sensitivity analysis can be performed. As this thesis will focus on

investigating controllers for system stabilization through simulation and analysis, this uncertainty is

neglected and ideal angular measurements are assumed throughout the thesis.
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Parameter Value Description
mb 31.12 Bicycle mass [kg]
mp 5.0 Pendulum mass [kg]
rb 0.4 Distance to bicycle center of mass [m]
rp 0.2 Distance to pendulum center of mass [m]
l 0.72 Height of bicycle [m]

Table 2.1: Bicycle parameter values

2.3 Measured System Parameters

In the work of Ånnestad [14], system parameters were determined and measured. All these parameters

were measured for the derivation of a complete model for the bicycle system. As this thesis presents

the bicycle system as an inverted double pendulum known as an Acrobot, some of the parameters will

change when the bicycle is presented as a manipulator link. As the work has been directed towards

the mathematical modeling of the system, the parameters in Table 2.1 are approximated values, based

on the parameter values from [14], utilized in the system simulation.

Note that the parameter value of the bicycle mass, mb , is a lot larger than the inverted pendulum

mass, mp . Comparing this with a real life bicyclist, the inverted pendulum mass is a lot less than

the upper body weight of the cyclist. Thereby the leaning angle required to balance the bicycle sys-

tem must be larger when the moment of inertia of the inverted pendulum is less than the moment of

inertia of the bicycle.

2.4 GearBox

The system is equipped with a gear between the DC motor and the mounted inverted pendulum. With

the gear ratio of R = 72, the system is able to operate with an inverted pendulum torque, τp , 72 times

as high as the motor torque, τm , as stated in Section 2.5.1. By use of the gear, the system is able to

accelerate the inverted pendulum and create a desirable torque to stabilize the bicycle at the upright

position. For the gearbox data sheet see Appendix C
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SI unit
Nominal voltage, Van 24 V
Nominal speed, Nn 3350 mi n−1
Nominal torque, τn 27 Ncm
Nominal current, Ian 4,9 A
Demagnetization current 33 A
No load speed, N0 3650 mi n−1
No load current, I0 0,4 A
Starting torque 211 Ncm
Efficiency 80 %
Moment of inertia 750 g cm2

Weight 1,7 kg

Table 2.2: Motor performance data from data sheet

2.5 Motor Model For Pendulum System

In this section the model of the system actuator controlling the mounted inverted pendulum is pre-

sented, an audited version of the authors own work in Chapter 6 in [12]. The desired control torque

applied at the link-connecting joint of the bicycle system is generated by a DC motor. When designing

the balancing controller it is important that the motor control is designed as wanted. The pendulum

motor performance will determine quality of the complete bicycle system control, which is equipped

with a "Dunkermotoren D.C. motor GR 63x55" motor. The following motor equations are derived

from [13] by use of parameters from the motor data sheet listed in Table 2.2. For the motor data sheet

see Appendix C.

2.5.1 DC Motor Model

The bicycle system has a torque input to the system, as stated in Eq. 3.8, thus the goal for the motor

model is to control the output torque:

τm = τe −τl oss =φm · Ia −k ·ω (2.3)

Where τe is the ideal magnetic air gap torque. τl oss represent the iron losses (eddy current and mag-

netic hysteresis losses), winding and friction losses. The DC motor drive can be described by the

following equation:

Va = Ra · Ia +La · d Ia

d t
+ω ·φm (2.4)

Where La is the motor inductance, ω is the rotational velocity and φm is the magnetic motor flux,

which is constant. Assuming La to be 0,4 mH, the resulting time constant becomes Ta = La
Ra

≈ 0.9 ms,

Ra is given in Eq. 2.12. Note that the rotational velocity, ω, correspond to the angular velocity of the
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pendulum link of the bicycle system with gear ratio R = 72, i.e. 72 · θ̇p = 72 ·Ωp . Assuming no loss in

the gear, the power of the motor is equal to the power of the inverted pendulum:

ω ·τm =Ωp ·τp (2.5)

Thereby the torque of the inverted pendulum is:

τp = ω

Ωp
·τm = R ·τm (2.6)

With the nominal torque, τn , of the DC motor from Table 2.2, the nominal torque of the inverted

pendulum, τp,n , is given by:

τp,n = R ·τn = 72 ·τn = 19.44[N m] (2.7)

The motor is able to perform with 3-4 times the nominal torque in periods significantly shorter than

the thermal time constant, which is assumed to be within the range of minutes for such a small DC

motor. Thereby the maximum torque of the inverted pendulum can be 50−100[Nm], as the control

torque in the system stabilization is applied within the range of seconds. By potentiometer measure-

ment of θp and calculation of the time derivative, the velocity ω can be found . At steady state the

armature voltage in Eq. 2.4 can be rewritten as:

Va = Ra · Ia +ω0 ·φm (2.8)

At no load steady state, the armature voltage is equal the induced motor voltage:

Va = Ra · I0 +ω ·φm (2.9)

The rotation velocity is given by: ω = π
30 ·N , where N is the speed [rpm]. The no load expression can

be expressed with the given motor no load speed, N0:

ω0 = π

30
·N0 = 382,23 [r ad/s] (2.10)

The nominal operation is given by:

Van = Ra · Ian +ωn ·φm (2.11)
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By use of Eq. 2.9 and 2.11 the resistance; Ra , and flux, ψm , can be calculated by the set of two equa-

tions, no load and nominal load, respectively:

Van = Ra · I0 +ω0 ·φm (2.12a)

Van = Ra · Ian +ωn ·φm (2.12b)

Eq. 2.12 can solved by the following matrix equation:

Ra

φm

=
 I0 ω0

Ian ωn

−1

·
Van

Van

=
0,435

0,062

 (2.13)

The nominal current Ian = 4,9 [A] and no load current I0 = 0,4 [A] are given by the data sheet. ωn =
π
30 ·Nn .

2.5.2 Motor Losses

At the nominal operation, the system power is expressed as:

Pr = Ra · I 2
an = 10,45 [W ] (2.14)

The power loss is given by:

Ptot al l oss =Van · Ian −τn ·ωn = 22,87 [W ] (2.15)

where τn is 0,27 [Nm], given by Table 2.2. The total loss is then further given by:

Ptot al = Ptot al l oss −Pr = 12,43 [W ] (2.16)

By Eq. 2.3 the motor torque loss is given as: τloss = k ·ω, giving:

k = Ploss

ω2
n

= 1,01 ·10−4 [N ms] (2.17)

Thus, when k is defined, the motor output torque, τm , can be derived by Eq. 2.3. The complete system

without balancing control is shown in Figure 2.7 where the inverted double pendulum model, based

on Eq. 3.8, is the system load. The inverted double pendulum output, q , is the system angles θb and

θp , i.e. q = [
θb , θp

]T .
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Figure 2.7: Complete system model without balancing control, from [13]

2.5.3 Motor Control and Limitation

The converter can be designed with current control or open-loop control. By designing an inner cur-

rent control loop, the current reference can be calculated based on the required torque, as shown

below:

Ia,r e f =
τr e f

φm
(2.18)

Thus by limiting τr e f the current in the motor and converter can be limited. The current controller

is usually selected as a PI-Controller where the parameter values are derived på modulus optimum,

see Table 9.4 row 2.3 − PI control in [3], where Kp is selected to half of the given value. The relative

damping will then be 0,7.

To improve the dynamic performance for small inertia, feed-forward of the induced voltage, ω ·φm ,

is usually implemented. The step response is shown in Figure 2.8, where the torque and current re-

sponse is within the [ms] area. If current sensors are not available, open-loop control has to be imple-

mented. The current reference is calculated based on the torque reference as shown above in Eq.2.18.

The armature voltage can the be calculated as:

Va,r e f = Ra,mod · Ia,r e f +ω ·φm,mod (2.19)
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Figure 2.8: Step response of system with current controller, with model from [13]

Incorrect values of Ra,mod andφm,mod will heavily influence the current control accuracy. Simulations

with correct parameters are shown in Figure. 2.9. In this case measured speed is used in the controller.

If the measured speed is not available, it is not possible to predict the induced voltage. Thereby the

controller can give large currents. By rearranging Eq. 2.12, the steady state armature current of the

motor can be expressed by:

Ia = Va −ω ·φm

Ra
(2.20)

With a battery capacity of 24 [V] the worst case scenario would be when torque is applied with neg-

ative angular velocity, negative ω. With a nominal armature voltage, Van , of 24 [V], and armature

resistance, Ra , of 0.435 [Ω]the power converter has to handle 120 [A]:

Ia,max = Van − (−ω) ·φm

Ra
= 24+24

0,435
≈ 110 [A] (2.21)

Eq. 2.21 shows that the converter has to handle a current of 110 [A], which is approximately 22× Ian .

This is a current much larger than the demagnetization current of 33 [A], which will demagnetize the

motor magnets. To protect the motor, a current controller is preferable.

Due to the system masses, the thermo capacity is quite large. The thermal time constants of the ma-

chine is within the range of minutes, which means that a current can be up to 2−3 times the nominal

current for periods of time shorter than this. The maximum voltage Va is equal to the battery voltage,

Vbat t . If the ω ·φm becomes equal to the battery voltage, the armature current Ia becomes zero. This
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Figure 2.9: Open loop step response, with model from [13]

Figure 2.10: Power converter and DC motor, from [13]

means there is an upper speed limit for which the current can be controlled, and has to be taken into

consideration when selecting motor and gear box for the actual bicycle system. The complete motor

model with a DCDC converter is shown in Figure 2.10, where the battery voltage Vd is fed to the power

converter, giving the motor voltage for the bicycle system actuator. The motor output torque, τm is

the control torque of the bicycle system.
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2.5.4 Power Converter

The converter has very short thermal time constants. This means the converter has to be rated for

maximum motor current, given by the maximum allowed current in the current controller. In addi-

tion, the converter should preferably be able to braking/generator mode. If for instance the DC-link

voltage of the converter is supplied by a battery, this is possible. However, if the input to the DC-link

is a diode rectifier, the braking power will increase the capacitor voltage in the DC-link, then a braking

chopper transistor can be used to discharge the capacitor to the correct level. If such a braking resistor

is not installed, the breaking torque reference has to be limited to zero, if the capacitor voltage is too

high. This will influence the motor control performance of the inverted pendulum system.

2.6 Specified Software

When the autonomous bicycle system was implemented in Matlab by Ånnestad, as in [14], the setup

was made with Matlab 32-bit version. When developing the system on the physical bike, it is necessary

to have the right software installed at the computer. The different type of necessary software is listed:

• Matlab 32-bits version with Windows Real-Time toolbox.

• QNX650 32-bit version.

• Windows terminal and file transfer interface, e.g. Putty

The Matlab software has to be the 32-bits version as the model uses S-Functions, programmed with

simple C-code. By use of MEX ("Matlab Executable") the system is able to use the MEX S-Functions to

run the system. These MEX-files are made as 32-bits versions and are therefore not compatible with

the 64 bit version of Matlab.

The manual for "How to Start The Bicycle" listed in Appendix E of the thesis by Ånnestad [14] is not

entirely correct. The section for checking data transmitting should be performed as following:

• Check that the MTi and analog card is transmitting data(returning a signal with noise):

– "cat /dev/mt/orientation/roll".

– "cat /dev/dmm32at/analog/in/ad0".

Where the "\" in [14] has been replaced with "/".



Chapter 3

System Model

In this chapter the mathematical system model is presented. The bicycle with the inverted pendulum

will be represented as a limited Acrobot system. This mathematical model was derived in the authors’

previous work done in [12], and is presented in Appendix A.

The Acrobot, shown in Figure 3.1, is a two-link robot manipulator with control torque applied at the

second, link-connecting, joint. This system is an underactuated system as no torque is applied at the

first joint, resulting in a passive joint. This underactuated degree of freedom joint results in a sys-

tem with fewer control inputs than configuration variables, making the passive joint angles unable

to follow arbitrary trajectories in the configuration space. For the system presented in Eq. 3.7, an

underactuated system is defined by:

r ank(F (θ)) < di m(θ) (3.1)

The number of actuated degrees of freedom is less than the system degree of freedom, and the actua-

tor can only create instantaneous acceleration in the active joint angles. Due to this system property,

the control becomes more challenging as the bicycle tilt angle, θb , is a passive joint angle. The Acrobot

is based on the idea of a robot representation of an acrobatic gymnastic, where the second joint corre-

spond to the hip of the gymnastic. By swinging the second link, corresponding to the gymnastics legs,

the Acrobot will increase the systems kinetic energy, creating motion in the robot manipulator. The

goal is to swing up the system to the upright position and balance around the unstable equilibrium.

By use of this robot manipulator, the goal is to introduce system angular limitation and present the

bicycle system as a limited Acrobot.

21
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Figure 3.1: Illustration of an Acrobot

3.1 Assumptions

To derive a mathematical model of the bicycle system, some assumptions has to be made:

• Both wheels of the bicycle has contact with the ground at all time, with no slide.

• The ground is level, i.e. no ground inclination in the two dimensional workspace, such that the

gravity vector is parallel with the y-axis of the reference frame (xi , yi ) presented in Figure 3.2.

• A leaning torque from rider is applied at the hip, represented as the pendulum motor.

• Bicycle can be modeled as a manipulator link.

3.2 System Coordinates

With the system represented as an Acrobot, the system model derived in Section 3.5 is presented with

relative coordinates, meaning θp is relative to θb . For equations see Appendix A.1. The angles θb

and θp are corresponding to the bicycle tilt angle and the mounted inverted pendulum angle, respec-

tively. Figure 3.2 shows the angles relative to the reference frame (xi , yi ) and the corresponding (x, y)-

coordinates of the respective angles. The number of generalized coordinates is given as the degree of

freedom (DOF).
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Figure 3.2: Inverted Double Pendulum Relative Coordinates

3.3 Inverted Double Pendulum Representation

The inverted double pendulum represented in Figure 3.3 illustrates the system parameters used to

present the Acrobot manipulator system. The illustrated parameters are described as:

• mb is the bicycle mass, i.e. mass of the first link.

• mp is the pendulum mass, i.e. mass of the second link.

• rb is the distance from the first joint to the center of mass of the first link.

• rp is the distance from the second joint to the center of mass of the second link.

• l is the length of the first link, i.e. height of bicycle.

• θb and θp are the tilt angles of the bicycle and inverted pendulum, respectively.

Based on the geometrical shape of the links, each link of the manipulator has the moment of inertia,

Ii . With n number of links, I1, I2,...,In represents the moment of inertia about the center of mass of

each link. As the system in Eq. 3.8 and 3.9 is derived from energy of the point masses in the Lagranges

equation of motion, Eq. 3.5, the moments of inertia are not included in the equations derived in [12].
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Figure 3.3: Inverted Double Pendulum Parameter Illustration

3.4 System Energy

In [12], the system equation of motion is derived by use of the Lagranges equation of motion, Eq. 3.5.

By use of the equations of position and velocity of the point masses, mb and mp , in Appendix A.2, the

system energy given in Eq. 3.2 was derived. For derivation of these equations see Appendix A.3. Tb

and Tp is the kinetic energy of bicycle and pendulum and Ub and Up is the potential energy of the

bicycle and pendulum, respectively.

Tb = 1

2
mb(rb θ̇b)2 (3.2a)

Tp = 1

2
mp [(l θ̇b)2 +2l rp θ̇p (θ̇b + θ̇p )cos θp + r 2

p (θ̇b + θ̇p )2] (3.2b)

Ub = mbrb g cos θb (3.2c)

Up = mp g (l cos θb + rp cos(θb +θp ) (3.2d)
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The total kinetic and potential energy is then given by Eq. 3.3.

T = Tb +Tp

= 1

2
(mbr 2

b +mp l 2)θ̇2
b +mp rp l θ̇b(θ̇b + θ̇p )cos θp + 1

2
mp r 2

p (θ̇b + θ̇p )2 (3.3a)

U =Ub +Up

= (mbrb +mp l )g cos θb +mp rp g cos(θb +θp ) (3.3b)

Note that the total kinetic energy of the rotational system can be expressed by the inertia matrix pre-

sented in Section 3.5 and θ̇ = [θ̇b , θ̇p ]T :

T = 1

2
θ̇

T
M(θ)θ̇ (3.4)

3.5 Inverted Double Pendulum System - Acrobot

The system equations of motion is derived by use of the Lagranges equation of motion, which is de-

fined by:
d

d t

(
∂L

∂q̇i

)
− ∂L

∂qi
= ui (3.5)

Where ui represent the external torque, τ, applied to the rotational system. L is the Lagrangian func-

tion defined with T and U as the kinetic and potential energy, respectively.:

L = T −U (3.6)

By use of the Lagranges equation of motion, Eq. 3.5, and the system energy given in Eq. 3.3, the system

model for an Acrobot was derived in the authors own work in [12], and is shown in Appendix A.4. The

underactuated manipulator with relative state coordinates θ = [θb ,θp ]T is given as:

M(θ)θ̈+C (θ, θ̇)θ̇+G(θ) = F (θ)τ (3.7)

The matrix M(θ) is the system inertia matrix and C (θ, θ̇) is the Coriolis and centrifugal forces. The

G(θ)-matrix is the force of gravity and F (θ) represent the system actuators. This 2 DOM system can

be presentes as:

m11 m12

m12 m22

θ̈b

θ̈p

+
c11 c12

c21 0

θ̇b

θ̇p

+
g1

g2

=
 f1

f2

τ (3.8)
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Where:

M(θ) =
mbr 2

b +mp l 2 +mp r 2
p +2mp rp l cos θp mp r 2

p +mp rp l cos θp

mp r 2
p +mp rp l cos θp mp r 2

p

 (3.9a)

C (θ, θ̇) =
−2mp rp l θ̇p si n θp −mp rp l θ̇p si n θp

mp rp l θ̇b si n θp 0

 (3.9b)

G(θ) =
−(mbrb +mp l )g si n θb −mp rp g si n(θb +θp )

−mp rp g si n(θb +θp )

 (3.9c)

F =
0

1

 (3.9d)

The rewritten state space representation is given by:

θ̈ = M−1(θ)
[−C (θ, θ̇)θ̇−G(θ)+F (θ)u

]
(3.10)

Note that the moment of inertia of the manipulator links, mentioned in Section 3.3, are neglected.

As the system is derived from the Lagranges equation of motion, Eq. 3.5, the inertia matrix, M(θ),

shown in Eq. 3.9 only consist of the inertia of the point masses mb and mp . As described in Section

3.3 the moment of inertia is dependent of the geometrical shape of the manipulator links. When the

moment of inertia is taken into account and included into the system model, all the system matrices

except from the inertia matrix, M(θ), remains unchanged. Eq. 3.11 shows the resulting inertia matrix

where Ib and Ip are denoted as the moment of inertia about the center of mass of the bicycle and the

mounted inverted pendulum, respectively.

M(θ) =
Ib + Ip +mbr 2

b +mp l 2 +mp r 2
p +2mp rp l cos θp Ip +mp r 2

p +mp rp l cos θp

Ip +mp r 2
p +mp rp l cos θp Ip +mp r 2

p

 (3.11)

Note that Ib and mbr 2
b are only included in m11 of the M(θ)-matrix in Eq. 3.8, thus the bicycle inertia

is only multiplied with the bicycle tilt angles acceleration, θ̈b , to get the bicycle torque. The matrix in

in Eq. 3.11 is verified with the system model of an Acrobot derived by Spong in [18].

In this system, the manipulator joints are the DC motor and the connecting point between the ground

and tires, respectively. The friction between the ground and tires are not significant in the rotational

axis. With the frictionless DC motor friction in both system joints are neglected, resulting in a system

model without joint friction and energy dissipation.
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Figure 3.4: System model in Simulink with limitation, from [12]

3.6 Model Angular Limitations

To complete the system model of the bicycle system, angular limitation has to be included. Figure

3.4 shows Eq. 3.10 implemented in Mathworks Simulink®, where the block "integrators w/limit" is

the integrators with logical angular limitation. This is the most important detail that separates the

bicycle system from a regular Acrobot. The model in Eq. 3.8 derived from the Lagranges equation

of motion, Eq. 3.5, is based on an Acrobot with no state limitations, i.e. the angles of θb and θp can

utilize the whole workspace of the manipulator construction. By including the physical system lim-

itation described in Section 2.1, the mathematical model of the bicycle system is complete. Thereby

the angular limitation gives the possibility of presenting the system as an Acrobot within these limits,

to further investigate various controller strategies for system stabilization.

In [12], the author designed integrators with logical limitation, as shown in Figure 3.5, where one lim-

ited integrator design is applied to the bicycle tilt angle acceleration, θ̈b , and another to the inverted

pendulum acceleration, θ̈p . This design is inside the sub block "integrators w/limit" shown in Figure

3.4. The second cascade integrator, shown in Figure 3.5, gives the system angles and a signal which

is set to 1 if the angles is at the limit. These limits are either upper or lower angular limits. This can

not be detected by the integrator limit signal, thus the hysteresis control is utilized to detect whether

the link positions are at the upper or lower limit. If the system angles are at the lower limit, the LL

hysteresis gives a signal of 1 while the UL hysteresis gives a signal of 0, and vice versa. The logical
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Figure 3.5: Integrators with limitation, from [12]
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"AND" operators gives a positive signal, of 1, when the integrator detects system limitation and the

hysteresis control gives an output of 1. The UL control set to switch on 0.01 [rad] before the upper

limit, and switch off 0.02 [rad] under this limit. The LL control works with the opposite signals, thereby

multiplied with −1. These logical outputs has two functionalities. First, the "OR" block is used to reset

the first integrator, setting the angular acceleration to zero (ground), preventing torque appliance and

system wear and tear. Second, the limits are used to prevent the system actuator to apply torque in

the direction of system limitation. The only torque allowed is the torque moving the system away

from the limit, e.g. at lower limit, positive torque is the only system actuation allowed. At upper

limit, negative torque is the only actuation allowed. Figure 3.6 shows the described functionality of

the integrators with limitation, where a system acceleration is applied to activate both upper and

lower limit detection. τl i mi ted shows the torque applied due to the system limitation handled by the

integrator structure in Figure 3.5.
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Figure 3.7: Stability of second link

3.7 System Stability

When balancing the bicycle system, one has to balance around the upright unstable equilibrium of

the nonlinear dynamical system. The underactuated system is a highly unstable nonlinear system,

which implies that small perturbations will result in the states move away from their unstable equilib-

riums. Assuming a fixed bicycle tilt angle, θb , the mounted inverted pendulum will have an unstable

equilibrium at θp =−θb , see Figure 3.7. The bicycle link has infinite possible angles when θb ∈ [−π,π),

thus the second link will have infinite amount of equilibrium points as it has two equilibrium points,

(π−θb ,θb), for each angle of θb , when θb ∈ [−π,π). When the system is balancing around the upright

equilibrium, the time derivatives of the system angles and control torque, u, are set to zero:

θ̇b ≡ θ̈b ≡ θ̇p ≡ θ̈p ≡ 0 (3.12a)

u = 0 (3.12b)

From the system equations in Eq. 3.9, the system equilibrium points are given by:

G(θ) =
−(mbrb +mp l )g si n θb −mp rp g si n(θb +θp )

−mp rp g si n(θb +θp )

=
0

0

 (3.13)

From Eq. 3.13 and the physical angular limitation presented in Section 2.1 and 3.6 the trivial solution

is:

θb ≡ θp ≡ 0 (3.14)
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The angles of θb and θp given in Eq. 2.1 correspond to the upright unstable equilibrium of the uncon-

trolled bicycle system.

3.8 State Space Model

In [12] the model presented in Eq. 3.8 was presented with change of variables to reduce the number

of system integrators. With θ and θ̇ defined as:

θ =
θb

θp


θ̇ =

θ̇b

θ̇p


The state vector x is introduced, and defined as:

x =
θ
θ̇

 (3.16)

With the change of variables, the state equation in Eq. 3.8 becomes a four dimensional system shown

in Eq. 3.17:

I 0

0 M(θ)

 ẋ +
0 −I

0 C (θ, θ̇)

x +
 0

G(θ)

=
 0

F (θ)

u (3.17)

The corresponding rewritten state space representation, is written as:

ẋ = f (x ,u) =
 θ̇

M−1(θ)
[
F u −C (θ, θ̇)θ̇−G(θ)

]
 (3.18)

where f (x ,u) = [
f1(x ,u), f2(x ,u), f3(x ,u), f4(x ,u)

]T .
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3.8.1 State Space Differential Equations

By multiplying the system matrices in the equations of motion in Eq 3.8, the system can be pre-

sented as two differential equations. To increase the readability, the denominator of the inverse matrix

M−1(θ) is introduced as an inertial term defined as:

Jtot = mbr 2
b +mp l 2si n2θp (3.19)

By use of the notation where θ̇ =Ω and θ̈ = dΩ
d t , the system equations of motion is given as:

Jtot
dΩb

d t
= mp rp l si n θp

(
(Ωb +Ωp )2 + l

rp
cos θp Ω

2
b

)
+ g mp l

((
1+ mbrb

mp l

)
si n θb − cos θp si n(θb +θp )

)
(3.20a)

−
(
1+ l

rp
cos θp

)
τ

Jtot
dΩp

d t
=−mp rp l si n θp

(
(Ωb +Ωp )2 +

(
mbr 2

b

mp r 2
p
+

(
l

rp

)2
)
Ω2

b +
l

rp
cos θp (Ω2

b + (Ωb +Ωp )2)

)

− g mp l

((
1+ mbrb

mp l

)(
1+ l

rp
cos θp

)
si n θb −

(
mbr 2

b

mp rp l
+ l

rp
+ cos θp

)
si n(θb +θp )

)
(3.20b)

+
(

1+ mbr 2
b

mp r 2
p
+

(
l

rp

)2

+2
l

rp
cos θp

)
τ

With these differential equations the simplicity of systematic analysis is increased, as the equations

are sorted with the terms representing Coriolis and centrifugal torques, gravity related torques and

actuator torque, respectively. This derivation has been verified with Wolfram Mathematica ©.
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3.8.2 Partially Feedback Linearized State Space Representation

As the bicycle system is an underactuated system the nonlinearities can not be completely canceled by

feedback linearization. However, when θp can gain instantaneous acceleration in arbitrary direction

from the control torque, partial feedback linearization can be applied to the system. This feedback

cancel out the nonlinear terms of the mounted inverted pendulum, simplifying the nonlinear control

problem. With the definition u = θ̈p = dΩp

d t , the feedback control torque is given as:

τ= 1

1+ mb r 2
b

mp r 2
p
+

(
l

rp

)2 +2 l
rp

cos θp

·

[
Jtot u + g mp l

((
1+ mbrb

mp l

)(
1+ l

rp
cos θp

)
si n θb −

(
mbr 2

b

mp rp l
+ l

rp
+ cos θp

)
si n(θb +θp )

)

+rp mp l si n θp

(
(Ωb +Ωp )2 +

(
mbr 2

b

mp r 2
p
+

(
l

rp

)2
)
Ω2

b +
l

rp
cos θp

(
Ω2

b + (Ωb +Ωp )2))]
(3.21)

With this partially feedback linearization, the state space representation defined in Eq. 3.20 becomes

simplified as the differential equation for the bicycle tilt angle, Eq. 3.20a, has the torque, τ, as given in

Eq. 3.21. Thus, by use of Eq. 3.8, the set of differential equations for the bicycle system becomes:

dθb

d t
=Ωb (3.22a)

dθp

d t
=Ωp (3.22b)

dΩb

d t
= −c11Ωb − c12Ωp − g1 −m12u

m11
(3.22c)

dΩp

d t
= u (3.22d)

where the full expression for θ̈b ≡ dΩb
d t is given as:

dΩb

d t
=

−(mp r 2
p +mp rp lcosθp )u + g (mp l +mbrb)si nθb +mp rp

(
2lΩbΩp si nθp + lΩ2

p si nθp + g si n(θb +θp )
)

mp l 2 +mbr 2
b +mp r 2

p +2mp rp l cos θp
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Thus the state space representation of the Acrobot system is given by the set of differential equations

in Eq. 3.22, where the nonlinear representation is defined as:

f (x ,u) =



f1(x ,u)

f2(x ,u)

f3(x ,u)

f4(x ,u)

=



dθb
d t

dθp

d t

dΩb
d t

dΩp

d t

 (3.23)

where x = (θb , θp , Ωb , Ωp )T .

3.9 System Linearization

When investigating the nonlinear model, system linearization can be applied. By linearizing the non-

linear model, one can analyze the stability properties of the system around the equilibrium points.

The eigenvalues of the linearized system can be analyzed to show the system properties and see the

system response when small perturbations occur around the equilibrium points of the nonlinear sys-

tem. With a linearized model, linear controllers can be designed, as the LQR controller utilized in the

bicycle stabilization presented in Chapter 4. The linear time-invariant (LTI) system with n states is

presented with input, u, states, x, and output, y :

ẋ(t ) = Ax(t )+Bu(t ) , A ∈Rn×n (3.24a)

y(t ) =C x(t )+Du(t ) (3.24b)

3.9.1 Linearization by Taylor Expansion

In [12] a linear model linearized around the upright unstable equilibrium (θb ,θp ) = (0,0) was derived.

With change of variables, as presented in Eq. 3.18, the bicycle system was linearized by Taylor expan-

sion around the fixed point (x∗,u∗):

ẋ = f (x ,u) ≈ f (x∗,u∗)+
[
∂ f

∂x

]
x=x∗, u=u∗

(x −x∗)+
[
∂ f

∂u

]
x=x∗, u=u∗

(u −u∗) (3.25)
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At the equilibrium of x∗ = (θ∗b , θ∗p , θ̇∗b , θ̇∗p )T = (0,0,0,0)T , with control torque u∗ = τ∗ = 0, the state

derivatives, ẋ , of Eq. 3.18 becomes:

f (x∗,u∗) = 0

From the Taylor expansion the linear state-space representation becomes:

ẋ ≈ A(x −x∗)+B (u −u∗)

Note that x∗ = u∗ = 0, thus the state representation (x − x∗) and (u −u∗) equals x and u. In [12] the

system matrices were derived as 1:

A =
[
∂ f

∂x

]
x=x∗, u=u∗

=
∂ f 1

∂θ

∂ f 1

∂θ̇
∂ f 2
∂θ

∂ f 2

∂θ̇


x=x∗, u=u∗

=
 0 I

−M−1 ∂G
∂θ −M−1C


x=x∗, u=u∗

B =
[
∂ f

∂u

]
x=x∗, u=u∗

=
∂ f 1

∂u
∂ f 2
∂u


x=x∗, u=u∗

=
 0

M−1F


x=x∗, u=u∗

Where G = [g1 , g2]T and:

∂G

∂θ
=

[
∂G(θ)

∂θb

∂G(θ)

∂θp

]
=

∂g1
∂θb

∂g1
∂θp

∂g2
∂θb

∂g2
∂θp


The system matrices, given in Eq. 3.9, linearized around the upright equilibrium are:

M(θ)
∣∣
θ=0 =

mbr 2
b +mp l 2 +mp r 2

p +2mp rp l mp r 2
p +mp rp l

mp r 2
p +mp rp l mp r 2

p

 (3.27a)

C (θ, θ̇)
∣∣
θ=θ̇=0 =

0 0

0 0

 (3.27b)

∂G

∂θ

∣∣∣∣
θ=0

=
−g (mbrb +mp l +mp rp ) −mp rp g

−mp rp g −mp rp g

 (3.27c)

1Note that [12] has a sign error in the B-matrix, which is corrected
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The matrices in Eq. 3.28 are the system matrices in Eq. 3.26, derived symbolically with Maplesoft ©.

A =



0 0 1 0

0 0 0 1
g
rb

−mp l g

mb r 2
b

0 0

− g (rp−rb+l )
rb rp

− g (mb r 2
b+mp l 2+mp rp l )

mb rp r 2
b

0 0


(3.28a)

B =



0

0

− l+rp

mb rp r 2
b

mb r 2
b+mp l 2+mp r 2

p+2mp l rp

mb mp r 2
b r 2

p


(3.28b)

Linear System Eigenvalues

With system parameters presented in Table 2.1 the eigenvalues of the linearized system is found by

use of the Matlab® function:

λ= ei g (A) =



−9.4193

−4.1809

9.4193

4.1809

 (3.29)

As the system has two eigenvalues where Re(λi ) > 0, the system is unstable and is a proof of why a

system controller has to be developed.
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3.9.2 Partially Feedback Linearized System Linearization

As a result of the partially feedback linearization presented in Section 3.8.2, the nonlinear system

representation is given with θ̈p = u. By use of a feedback controller u, the systems nonlinear terms are

simplified and the linearized representation of Eq. 3.22 can be presented as:

A =



0 0 1 0

0 0 0 1
∂ f3(x)
∂θb

∂ f3(x)
∂θp

∂ f3(x)
∂Ωb

∂ f3(x)
∂Ωp

0 0 0 0


x=x∗, u=u∗

(3.30a)

B =



0

0
∂ f3(x)
∂u

1


x=x∗, u=u∗

(3.30b)

where the partial derivatives are:

∂ f3(x)

∂θb
= g

(
(mp l +mbrb) cos θb +mp rp cos(θb +θp )

)
mbr 2

b +mp r 2
p +mp l 2 +2mp rp l cos θp

∂ f3(x)

∂θp
=

mp rp

[(
lΩp

(
2Ωb +Ωp

)+ g cos θb
)(

2mp rp l +
(
mbr 2

b +mp r 2
p +mp l 2

)
cos θp

)]
(
mbr 2

b +mp r 2
p +mp l 2 +2mp rp l cos θp

)2

+
mp rp

[
l
(
mbr 2

b −mp r 2
p +mp l 2

)
u − g

(
−mp l 2 −2mbrbl +mbr 2

b +mp r 2
p

)
si n θb

]
si n θp(

mbr 2
b +mp r 2

p +mp l 2 +2mp rp l cos θp
)2

∂ f3(x)

∂Ωb
= 2mp rp lΩp si n θp

mbr 2
b +mp r 2

p +mp l 2 +2mp rp l cos θp

∂ f3(x)

∂Ωp
= 2mp rp l (Ωb +Ωp )si n θp

mbr 2
b +mp r 2

p +mp l 2 +2mp rp l cos θp

∂ f3(x)

∂u
=−m12

m11
=− mp rp (rp + l cos θp )

mbr 2
b +mp r 2

p +mp l 2 +2mp rp l cos θp
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With these expressions for the linearized state space representation, the system can be linearized

around a desirable operating point. The system states can be set, and the linearized state space rep-

resentation around the upright equilibrium is given by Eq. 3.32, with x∗ = (θ∗b , θ∗p , Ω∗
b , Ω∗

p )T =
(0,0,0,0)T and u∗ = 0.

A =



0 0 1 0

0 0 0 1
g(mb rb+mp rp+mp l)

mb r 2
b+mp r 2

p+mp l 2+2mp rp l

mp rp g

mb r 2
b+mp r 2

p+mp l 2+2mp rp l
0 0

0 0 0 0

 (3.32a)

B =



0

0

− mp r 2
p+mp rp l

mb r 2
b+mp r 2

p+mp l 2+2mp rp l

1

 (3.32b)

where the property of cos θ ≈ 1 and si n θ ≈ θ for θ ≈ 0, is utilized.

Linear System Eigenvalues

With system parameters presented in Table 2.1 the eigenvalues of the linearized system is found by

use of the Matlab® function:

λ= ei g (A) =



4.2610

−4.2610

0

0

 (3.33)

As the system has one eigenvalue where Re(λi ) > 0, the system is unstable and a controller for system

stabilization must be implemented.
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3.9.3 System Controllability

With the state-space matrix A ∈ Rn×n of the linearization around the upright unstable equilibrium,

(x∗,u∗) = (0,0), the number of linear independent rows are equal to the state dimension, n. By use

of Maplesoft ©, the A-matrix has proven full rank, i.e. Rank(A) = 4. As stated in the introduction of

this chapter, the nonlinear system is underactuated, indicating the linear system to be underactuated

as well. This shows how an underactuated system can be controllable and is able to move from one

initial state to a final state in finite time, but not with arbitrary trajectories.

Linear System Controllability

[5] states: A linear system, as Eq 3.24 or the pair (A,B ) is said to be controllable if an external input

can move the internal initial state x(t = 0) = x0 to any final state x1 in a finite time interval.

C =
[

B AB A2B · · · An−1B
]

, C ∈Rn×np (3.34)

The n-dimensional system is controllable if the controllability matrix C has the rank equal the dimen-

sion, r ank(C) = n, which both linearized systems with system matrices in Eq. 3.28 and 3.32 fulfills.
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3.9.4 System Observability

From [5] observability is defined as: "The state equation Eq. 3.24 is said to be observable if for any un-

known initial state x(0), there exists a finite t1 > 0 such that the knowledge of the input u and output

y over [0, t1] suffices to determine uniquely the initial state x(0). Otherwise, the equation is said to be

unobservable."

The bicycle system is observable, as the system states can be measured by the potentiometer and

the IMU mounted on the bicycle frame. Thus the angular positions of the bicycle and the mounted

inverted pendulum can be obtained, and the velocities can be derived through low-pass filtering the

measurements and derivate with respect to time. As the system is nonlinear, Kalman filter is not suit-

able as a state estimator. The low pass filter can be applied where:

Ωp = dθp

d t
(3.35)

With the angular measurements, the torque can be measured by angular incrementation during one

time sample:

Ω̂p = θp (k)−θp (k −1)

Tsamp
(3.36)

By low pass filtering this estimate, the angular velocities can be derived and used in the state space

model:

Ωp,used = Ω̂p

1+T f · s
(3.37)

where s is the complex Laplace operator.



Chapter 4

System Control

In this chapter further research of the system stabilization controllers suggested in the authors own

work in [12], is conducted. Based on previous research, the most relevant controllers from literature

for Acrobot-control is investigated and tested. The goal is to investigate the functionality of these con-

trollers and further on develop a controller stabilizing the bicycle system. These controllers are de-

signed with swing-up control to move the system into a defined subspace where a balance controller

is activated. By use of this structure the author will analyze the controller for further implementation

and simulation. With the results, the controller functionality will be verified for the limited Acrobot

system, shown in Figure 4.1. Based on the results of the controller functionality of the controllers de-

signed by Lai et al. [11] and Kobayashi et al. [9] further research is conducted.

The swing-up controllers designed in [10], [11] and [9] are utilized to move the unlimited Acrobot

from the straight down stable equilibrium and to the upright unstable position. The goal is to utilize

the controller design within the defined angular limits, described in Section 3.6, and move system an-

gles within the defined subspace where the balance controllers are activated to stabilize the system.

Based on the results from simulation and analysis, controller modifications are made. In [9] it has

been shown that swing-up and balance control can not be handled by one single control law, as the

feedback gain becomes too large. With this physical impossible feedback gain on the LQR controller,

separate swing-up and balance controllers has to developed. The goal is to utilize the nonlinear con-

trol to move the system angles back within the balance subspace when perturbations occur.

41
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Figure 4.1: Illustration of system angular limitation, marked red

4.1 System Controller Based on Lai et al.

In [12] the controller designed by Lai et al. in [10] and [11] was presented. This controller design

is based on an energy-based controller functioning in defined subspaces in the Acrobot manipula-

tor workspace. This swing-up controller is utilized to increase system energy and move the system

states within an attractive area, defined as the balance subspace. In this subspace, an optimal lin-

ear controller is utilized to stabilize the system around the upright unstable equilibrium. The goal

is to investigate if this controller design can be utilized on the bicycle system presented as a limited

Acrobot.

4.1.1 System Subspaces

In [12] the controller designed by Lai et al. was presented by two published articles. In both articles,

the system subspace were defined and improved.

System Subspace Based on [10]

In [10] the subspaces are defined as:

• Swing-up subspace:

|θb | >λ1 or |θb +θp | >λ2
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• Balance subspace:

|θb | ≤λ1 and |θb +θp | ≤λ2

Where λ1 and λ2 are small positive values. This theory is further developed in [11], where the idea of

attractive area is introduced. Note that the angular velocity is not included in the criteria functions.

System Subspace Based on [11]

By defining the whole motion space as Σ, an attractive area, where the balance control is activated, is

given by:

• Σ3:
∣∣∣mod

(
θb
2π

)∣∣∣≤β1 and
∣∣∣mod

(
θp

2π

)∣∣∣≤β2

Where mod(•) is the residue modulus 2π. The swing-up subspace is then defined as: Σ−Σ3. Due to

singularity in one of the energy based controllers, Lai et al. designed two swing-up controllers. One

applied in the subspace Σ1 and a second in Σ2. Thus the total swing-up subspace can be expressed as:

Σ1 +Σ2.

In the system simulation presented in Section 4.1.5 and code implementation presented in Section

4.1.7, β1 and β2 is set to π
6 and π

4 , respectively. The parameters are utilized as a maximum limit for the

balance control, as the system angles moves outside the LQR region of attraction when the balance

controller is activated, as shown in Figure 4.4. The LQR region of attraction is defined in Section 4.1.3.

4.1.2 Energy Based Swing-Up Control

The swing-up control presented in [10] and [11] is based on the total mechanical energy of the Ac-

robot system. With kinetic energy, T , as given in Eq. 3.4 with M(θ) from Eq. 3.11 and potential energy,

U , from Eq. 3.3, the energy function is expressed as:

E(θ, θ̇) = T +U = 1

2
θ̇

T
M(θ)θ̇+U

= 1

2
(Ib +mbr 2

b +mp l 2)θ̇b +mp rp l θ̇b(θ̇b + θ̇p ) cos θp + 1

2
(Ip +mp r 2

p )(θ̇b + θ̇p )2

+ (mbrb +mp l )g cos θb +mp rp g cos(θb +θp )

(4.1)

In 2004 Lai et al. designed the first controller in [10]. The design was based on the property of a

positive semi-definite time derivative of the system energy, Eq. 4.1:

Ė(θ , θ̇) ≥ 0 (4.2)
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Thereby the system energy has the property of being non-decreasing at all time when the states are

within the swing-up subspace. The time derivative in Eq. 4.1 is derived as:

Ė(θ , θ̇) = θ̇pτ (4.3)

where [10] has chosen the torque control swing-up to be:

τ= sg n(θ̇p ) · v , v ≥ 0 (4.4)

The constant v is the control amplitude and can bee chosen arbitrary. To get smooth behavior of the

Acrobot system, the control variable should be large when the system energy is low, and decrease as

the system energy increases. Thus the actuation will be large when the system is far away from the

upright unstable equilibrium, and more soft as it comes closer to the balance subspace.

In 2005 Lai et al. presented a further developed energy based control method in [11]. This theory

is based on defining an attractive area and utilize an energy control based on a non-smooth Lyapunov

function, which is a combination of two separate control laws. To achieve quick approach into the

attractive area, the first control law is designed to quickly increase the system energy and make the

state angles and the respective velocities approach zero. By introducing change of variables, as in [11],

the system representation of Eq. 3.18 can be rewritten, with x = [θb , θp , θ̇b , θ̇p ]T = [θb , θp , Ωb , Ωp ]T :

θ̇b =Ωb (4.5a)

θ̇p =Ωp (4.5b)

Ω̇b = fµ(x)+bµ(x)τ (4.5c)

Ω̇p = fη(x)+bη(x)τ (4.5d)

Note that τ is equivalent with u in Eq. 3.18 and 3.20, and:

 fµ(x)

fη(x)

=−M−1(θ)
[
C (θ, θ̇)θ̇+G(θ)

]
(4.6a)

bµ(x)

bη(x)

= M−1(θ)F (θ) (4.6b)
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With f (x) = [Ωb , Ωp , fµ(x) , fη(x)]T and b(x) = [0 , 0 , bµ(x) , bη(x)]T , the vectorial representation of

Eq. 4.5 is given as:

ẋ = f (x)+b(x)τ (4.7)

The first and second Lyapunov function in [11], for energy based swing-up control, are listed with the

corresponding control torque:

V1(x) = 1

2
(kp1θ

2
p +kd1Ω

2
p +ke1[E(θ , θ̇)−E0])+∆1 (4.8a)

τ=−
kp1θp +kd1 fη(x)+λ1sat (

Ωp

φ1
)

kd1bη(x)+ke1(E(θ , θ̇)−E0)
(4.8b)

V2(x) = 1

2
(kp2θ

2
p +kd2Ω

2
p )+∆1 (4.8c)

τ= τ̇−λ2sat (
Ωp

φ2
), where τ̇=−kp2Ωp +kd2 fη(x)

kd2bη(x)
(4.8d)

Where sat (•) is defined as:

sat (x) =
 sg n(x), i f |x| ≥ 1

x, i f |x| < 1

E0 is the potential energy at the upright position, i.e. the unstable equilibrium. The constants: kp1,

kd1, ke1, λ1, φ1, kp2, kd2 > 0. ∆1 is a constant guaranteeing a non-smooth Lyapunov function. λ2 is

defined as:

λ2 =λα(1+ r ), −1 < r < 1 (4.9)

where λα > 0 is a constant. A fuzzy controller is designed to regulate the parameter r . V1(x) en-

sures that V̇1(x) ≤ 0 when the angles are in the swing-up subspace, guaranteeing the energy to in-

crease as the second link straightens out, see [11] for more details. This controller is not suitable when

E(θ , θ̇) < E0, as singularity occurs when:

E(θ , θ̇) = E0 − kd1

ke1
bη(x) (4.10)

Thus the second energy based control law, with Lyapunov function V2(x), is designed.
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Figure 4.2: Block Diagram LQR controller with state feedback u =−K x

4.1.3 LQR Balance Control

To stabilize the system around the upright equilibrium, Lai et al. used an LQR controller for balance

control. In [12] the author designed an optimal linear state feedback controller, as shown in Figure

4.2, where stabilization is performed with pole placement. The MIMO LQR controller was designed

for the linearized state-space system presented in Eq. 3.24 with the linear system matrices from Eq.

3.28. The LQR controller known as an infinite horizon LQ controller, uses optimal feedback theory for

controlling the dynamical system at minimum cost by optimizing the gain matrices Q and R of the

quadratic cost function, J :

J =
∫ ∞

0

(
xT (t )Qx(t )+uT (t )Ru(t )

)
d t (4.11)

The weighted matrices Q and R are real, symmetric and positive definite, i.e. Q =QT , R = RT and Q >
0, R > 0. With the system output y =C x , the term y T C y = xT (C T QC )x is nonnegative. Minimizing its

integral forces y(t ) to approach zero as time goes to infinity. With R > 0 the term uT Ru is positive for

u 6= 0. Minimizing its integral will force u(t ) to remain small. The relative values of Q and R will decide

the amount of control action and speed of the response. The larger value of Q , the more aggressive

controller and the larger value of R , the stricter system actuation. With the system matrices linearized

around the upright equilibrium, (θb , θp ) = (0,0), the state feedback control is given by:

u =−K x (4.12)

where K = RB T P and P is the symmetric positive definite solution of the algebraic Riccati equation:

AT P +P A −P B R−1B T P +M T QM = 0 (4.13)
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When the LQR controller is developed, the weight matrices Q and R has to be defined. By use of

the system parameters from Table 2.1, the following matrices were found through simulation of the

linearized system:

Q =



0.1 0 0 0

0 0.1 0 0

0 0 0.1 0

0 0 0 0.1

 (4.14a)

R = 1 (4.14b)

Notice that the weighted R-matrix, penalizing the system control input u, is scalar. This is intuitive

as there is only one system actuator, giving the dimension of the control input: u ∈ R1. The following

Matlab® function was used to get the optimal feedback gain matrix, K :

[K ,P,E IG] = l qr (A,B ,Q,R) (4.15)

By use of Eq. 4.15 the resulting state feedback gain matrix, K , becomes:

K =
[
−975,63 −57,24 −227,34 −19,74

]
(4.16)

By use of the Matlab® function in Eq. 3.29, the closed-loop system poles becomes:

λ=



λ1

λ2

λ3

λ4

=



−10.99

−8.09

−4.20

−4.16

 (4.17)

Showing the linear system is stable with Re(λi ) < 0. Figure 4.3 shows the system time response with

initial state angles, in radians, of (θi
b , θi

p ) = (0.05,0.05).Figure 4.4 shows the system time response of

the nonlinear system with the state feedback LQR controller. From simulation the maximum initial

angles for the system with parameters from Table 2.1, is:

(θi
b , θi

p ) =
(

0.6

180
π,

1.2

180
π

)
[r ad ] (4.18)

With absolute values of the angles larger than this, the system becomes unstable, making the angles

fall to the angular limit. Thus, the region within the absolute angles given in Eq. 4.18 is defined as the

LQR region of attraction.
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Figure 4.3: Linearized system time response with LQR control
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Figure 4.4: Nonlinear system time response with LQR control
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Figure 4.5: Illustration of switching control mode, from [17]

4.1.4 Control Mode Switching

Figure 4.5 shows an idea of the controller design, where the system switches between balance and

swing-up control. Each controller is activated dependent on which subspace the system states are

in. With two controllers for swing-up control a switching condition is introduced. Eq. 4.19 shows

the condition for switching between the two control torques, dividing the swing-up area into the two

subspaces Σ1 and Σ2.

kd1bη(x)+ke1[E(θ , θ̇)−E0] ≤ ζ (4.19)

where ζ< 0 is a constant. When Eq. 4.19 is satisfied, the control torque τ, of Lyapunov function V1(x),

switches to the second control torque based on V2(x). Thus the first control law is used in subspace

Σ1 and the second control law is used in Σ2. The angle x2 = θp and angular velocity x4 = θ̇p are driven

and attracted toward zero if V̇2(x) < 0.
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Figure 4.6: Illustration of System Implementation of Energy Based Controller by Lai et al.

4.1.5 Controller Analysis

In this section the controller functionality is analyzed and investigated through simulation, to verify

whether the controller can be utilized on the bicycle system or not. With the controller design de-

veloped by Lai et al. in [10] and [11], the energy based swing-up control is combined with the LQR

controller designed in Section 4.1.3 to give a complete controller, stabilizing the system. Figure 4.6

illustrates the design of the controller where the system has to switch between balance and swing-up.

As mentioned in Section 4.1.3 the LQR is able to stabilize when |θb | ≤ 0.6◦ and
∣∣θp

∣∣≤ 1.2◦. In [10] and

[11] Lai et al. designed a controller moving the Acrobot system from the straight down stable equi-

librium up to the upright unstable equilibrium. As the bicycle system is not able to reach the straight

down stable equilibrium of (θb , θp ) = (180◦, 0◦), all system simulations is simulated with initial angu-

lar position within the angular limits presented in Section 3.6 and illustrated in Figure 4.1. Note that

the limitation of the first link is relative to the reference frame, whereas the limitation of the second

link is relative to the yb-axis of the first link. The axis representation is presented in Section 3.2 and

Figure 3.2.
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As mentioned in the Section 4.1.2, the controller parameter r in Eq. 4.9 is regulated by a fuzzy con-

troller. As the bicycle system can not reach the straight down stable equilibrium point due to the an-

gular limitation, the controller will be implemented without fuzzy control. In [10] and [11] the fuzzy

control was utilized to regulate parameter λ2 of the second control law, resulting in regulation of the

gain in the swing-up subspace. With the angular limitations reducing the swing-up subspace and ini-

tial position within these limits, the goal is to neglect fuzzy control and present λ2 as a constant. The

idea is to simulate the bicycle system without angular limitation to investigate the controller func-

tionality. As the system has initial position within the angular limits, there will be nonzero velocity at

the straight down equilibrium. Thus the fuzzy control is not needed to create system energy, as for the

unlimited Acrobot system with initial position at the straight down equilibrium. When the unlimited

Acrobot has initial position at the straight down equilibrium, the fuzzy control is utilized to perturb

the system and increase system energy, such that the energy controllers can move the system states

towards the upright unstable equilibrium.

From Eq. 4.8 one can see that the expression for τ of V1(x) and V2(x) contains the gains kp1, kd1,

kp2 and kd2. These system gains has are proportional and derivative gains. The proportional gains

are multiplied with the system angles, θb and θp , whereas the derivative gains are multiplied with the

expressions of fη(x) and bη(x). Thus the energy based swing-up control has the structure similar to

the linear PD-controller, where the derivative gains are used to damp the system oscillations. The

proportional gain multiplied with θp is used to increase the control torque, dependent on the system

angle.

First the system simulation is performed without angular limitation, to verify the controller func-

tionality on an unlimited Acrobot. The initial angle positions is set to (θb , θp ) = (2◦,−2◦), close to the

upright unstable equilibrium, as the goal is to utilize the swing-up control to move the angles back

into the LQR region of attraction. With the angular limitation presented in Section 3.6 and Figure 3.5

deactivated, the resulting time response is given in Figure 4.7. With initial angle position outside the

LQR region of attraction and controller parameters as presented in [11] the system is able to utilize

the energy based swing-up and switch to linear balance control. The controller parameters presented

in [11] are: 
β1 = π

4 , β2 = π
6 , λ1 = 38, φ1 = 10

kp1 = kd1 = 1, ke1 = 0.2, ζ=−2

kp2 = kd2 = 1, φ2 = 5, λa = r = 0.5
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Figure 4.7 illustrates how the system swings up by use of the first Lyapunov function, denoted with

controller state 1. As singularities does not occur, the second Lyapunov function, denoted with con-

troller state 2, is never activated by the controller. The figure also illustrates how the LQR is activated

as the link angles are within the region of attraction. The LQR balancing control, denoted with con-

troller state 3, is successful and the system stabilizes at the upright equilibrium. Figure 4.8 shows the
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p ) = (10◦,−10◦)

control torque applied to the system. It is clear that the energy based controllers utilize the kinetic en-

ergy generated as the system falls towards the straight down equilibrium. As the actuator only creates

instantaneous acceleration in θp , the small change of the angle is not enough to counteract the oscil-

latory behavior of θb shown in Figure 4.7. The bicycle link uses four swings before the system angles

reaches the LQR region of attraction and switches to balance control. As the system oscillates, the an-

gle of θp illustrated in Figure 4.8 attracts towards zero, making it possible for the system to utilize the

LQR controller. When the bicycle link angle, θb , reaches the LQR region of attraction, the controller

has already controlled θp towards zero, making both angles fulfill the initial angle requirements for

the LQR controller, stated in Section 4.1.3. Simulation of initial positions further away from the up-

right unstable equilibrium is also performed. Figure 4.9 shows how the system is able to stabilize with

initial angle position of (θb , θp ) = (10◦,−10◦). As for the simulation with initial positions closer to

the upright equilibrium, the system is able to utilize the energy based swing-up controller and swing

the system back and forth until both states are within the LQR region of attraction. When the system

angles are within the balance subspace, the balance controller is activated, and the system is able to

stabilize around the upright unstable equilibrium. Figure 4.10 shows the time response of θp , where

the angle is controlled towards zero throughout the simulation. Thus the controller is able to move

both system angles within the LQR region of attraction to activate the LQR balance control, as shown

in Figure 4.9.
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In Figure 4.7 it is shown that the angles moves outside the angle limits for the bicycle system, thus

the controller parameters has to be tuned. By tuning the controller parameters, the goal is to verify

whether or not the controller can perform system stabilization within the angular limits. By activating

the angular limitation presented in Section 3.6 the model becomes a limited Acrobot, equivalent to

the bicycle system. With these limits defining the workspace of the bicycle system, simulation will be

conducted to verify if the controller is satisfying the requirements - utilizing the swing-up control to

move the system within the LQR region of attraction.

Through multiple simulations and tuning of controller parameters, the controller is unsuccessful to

stabilize the bicycle system. From Figure 4.7 this can be intuitively described. As the bicycle angle,

θb , is outside of the LQR region of attraction, the controller does not apply torque to move the bicy-

cle link towards the upright equilibrium, but it allows the system to fall down and swing up on the

opposite side. As the bicycle links swings, the control torque is utilized to increases system energy to

oscillate the bicycle angle and move both system states within the LQR region of attraction. Thus the

energy based swing-up controller is not designed to apply control torque and create instant accelera-

tion towards the upright equilibrium, when the bicycle angle, θb , starts to fall. The controller applies

torque to swing up the system from the initial position of (θb , θp ) = (2◦,−2◦), moving counter clock-

wise towards the upright equilibrium of (θb , θp ) = (360◦,0◦), which is equivalent to (θb , θp ) = (0◦,0◦)

in the rotational system. As mentioned in the introduction of this chapter, the Acrobot is based on the

idea of an acrobat gymnastic. The controller designed by Lai et al. has the functionality of a real life
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gymnastic, where he swings up from the straight down position by swinging back and forth until he

reaches the upright position. This is further described in Section 4.3. Thus the control torque applied

from the controller is not able to stabilize the bicycle system within the angular limits.

As shown in Figure 4.11 the bicycle tilt angle, θb , falls to the limit, and the controller is not able to

stabilize the system. The control torque stabilizes the inverted pendulum angle, θp , at approximately

11◦, with the required input torque, τ, of approximately 2[Nm]. Thus the energy based swing-up con-

troller is not able to control the angle of θb or the angle θp within the angular limits. A lot of time was

spent on parameter tuning, without success. As the swing-up control is not able to move the system

within the LQR region of attraction, the balance control is never activated. With the controller func-

tionality described above, the energy based swing-up controller designed by Lai et al. does not satisfy

the requirements for the bicycle system. The simulation in Figure 4.11 was simulated with initial po-

sitions of (θb , θp ) = (2◦,−2◦) and the following system parameters:


β1 = π

4 , β2 = π
6 , λ1 = 38, φ1 = 10

kp1 = 50, kd1 = 10, ke1 = 0.2, ζ=−2

kp2 = 50, kd2 = 20, φ2 = 5, λa = r = 0.5
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4.1.6 Concluding Remarks

As the controller does not satisfy the system requirements of stabilizing the bicycle system within the

angular limitations, the energy based swing-up controller designed by Lai et al. is not applicable as a

stabilizing controller. Thus other controller methods is investigated to derive a functional stabilizing

controller for the bicycle system presented as a limited Acrobot. However, the controller shows how

the inverted pendulum angle, θp , has to be controlled towards zero simultaneously as the bicycle

angle, θb , is moved towards the LQR region of attraction to apply the LQR balance controller. This

property is utilized further on in the controller investigation in this thesis.



4.1. SYSTEM CONTROLLER BASED ON LAI ET AL. 57

4.1.7 Controller Implementation

The following code is controller implementation of the energy based swing-up control, where func-

tions "SysChangeOfVar" and "hysteresis" are designed for the complete controller functionality. De-

scription of the controller implementation is given after each Matlab® function presented. The con-

troller parameters were tuned and tested through simulation, and are presented with the respective

figures in Section 4.1.5.

EnergyBasedNonlinearCOntrollerLaiEtAl:

1 function [u, LQR_control, state]=EnergyBasedNonlinearControllerLaiEtAl(x,t,...

2 control_state)

3 l = 0.72; % [m] approximately

4 rb = 0.4; % [m] approximately

5 rp = 0.2; % [m] approximately

6 mb = 31.118; % [kg] approximately

7 mp = 5; % [kg] approximately

8 g = 9.81; % [m/s^2] gravity acceleration

9 Ib = 0; % [Nm^2] Moment of Inertia of bicycle

10 Ip = 0; % [Nm^2] Moment of Inertia of pendulum

11

12 M =[Ib+Ip+mb*rb^2+mp*l^2+mp*rp^2+2*mp*rp*l*cos(x(2)) Ip+mp*rp^2+mp*rp*l*cos(x(2));

13 Ip+mp*rp^2+mp*rp*l*cos(x(2)) Ip+mp*rp^2 ];

14

15 C = [-2*mp*rp*l*x(4)*sin(x(2)) -mp*rp*l*x(4)*sin(x(2)) ;

16 mp*rp*l*x(3)*sin(x(2)) 0 ];

17

18 G = [-(mb*rb+mp*l)*g*sin(x(1))-mp*rp*g*sin(x(1)+x(2)) ;

19 -mp*rp*g*sin(x(1)+x(2)) ];

20

21 F = [0 1]';

22

23 % Energy at Upright eq.pt (potential energy)

24 E0 = (mb*rb+mp*l)*g+mp*rp*g;

25 % Kinetic Energy

26 T = 1/2*(Ib+mb*rb^2+mp*l^2)*x(3)^2+mp*rp*l*x(3)*(x(3)+x(4))*cos(x(2))+...

27 1/2*(Ip+mp*rp^2)*(x(3)+x(4))^2;

28 % Potential Energy

29 U = (mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

30 % Total System Energy
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31 E = T+U;

32

33 [f, b] = SysChangeOfVar(x,M,C,G,F);

34

35 f_mu = f(3);

36 f_eta = f(4);

37 b_mu = b(3);

38 b_eta = b(4);

39

40 % Controller Constants:

41 lambda_1 = 38; % > 0

42 phi_1 = 10; % > 0

43 k_p1 = 1; % > 0

44 k_d1 = 1; % > 0

45 k_e1 = 0.2; % > 0

46

47 lambda_a = 0.5;

48 r = 0.5; % -1 < r < 1

49 lambda_2 = lambda_a*(1+r);

50 phi_2 = 5; % > 0

51 k_p2 = 1; % > 0

52 k_d2 = 1; % > 0

53

54 beta_1 = pi/8;

55 beta_2 = pi/6;

56

57 % LQR limitations:

58 LQR_lim_x1 = 0.6/180*pi;

59 LQR_lim_x2 = 1.2/180*pi;

60

61 limit = [beta_1 beta_2 LQR_lim_x1 LQR_lim_x2];

62 if t == 0

63 [x_lim, LQR_control] = hysteresis(x,limit,false);

64 else

65 [x_lim, LQR_control] = hysteresis(x,limit,control_state);

66 end

67

68 x1_lim = x_lim(1);

69 x2_lim = x_lim(2);

70

71 if mod(abs(x(1)),2*pi)<=x1_lim && mod(abs(x(2)),2*pi)<=x2_lim && LQR_control==1
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72 %Control law 3

73 u = -[-975.6281 -57.2364 -227.3441 -19.7419]*x;

74 state = 3;

75 elseif E == E0-k_d1/k_e1*b_eta %if singularity occurs

76 %Control law 2

77 du = -(k_p2*x(2)+k_d2*f_eta)/(k_d2*b_eta);

78 u = (du-lambda_2*sat(x(4)/phi_2));

79 state = 2;

80 else

81 %Control law 1

82 u = -(k_p1*x(2)+k_d1*f_eta+lambda_1*sat(x(4)/phi_1))/...

83 (k_d1*b_eta+k_e1*(E-E0));

84 state = 1;

85 end

In the function "EnergyBasedNonlinearCOntrollerLaiEtAl", the system energy in Eq. 4.1 is calculated.

The function "SysChangeOfVar" is applied to calculate the values of fµ, fη, bµ and bη for use in the

energy based control torque, given in Eq. 4.8b and 4.8d. The controller implementation utilizes the

function "hysteresis" to set the limitations of the LQR control in real time as the simulation is running.

The limits are either defined as the LQR region of attraction or the maximum angles needed for the

LQR to stabilize the system. If the system is within the LQR region of attraction, the LQR control is

activated, and the angular limits are set to maximum. As long as the system angles are within these

limits after the LQR is activated, the state feedback controller is utilized. If the system moves outside

the angular controller limits, the LQR is deactivated and the system switches to energy based swing-

up control.
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SysChangeOfVar:

1 function [f, b] = SysChangeOfVar(x, M, C, G, F)

2

3 [rowq, columnq] = size(x);

4 if columnq ~= 1 && rowq ~= 0

5 disp('state vector consist of mutiple columns')

6 return;

7 else

8 if columnq ~= 1 && rowq == 1

9 x = x'; % if q is row vector, make q column vector

10 end

11 f = zeros(length(x),1);

12 b = zeros(length(x),1);

13

14 f(1:length(x)/2,1) = x(length(x)/2+1:end,1);

15

16 %Make the row vector C(q,q')*x'

17 [~, columnC] = size(C);

18 Cq = C;

19 if columnC > 1

20 Cq = C*[x(3) x(4)]';

21 end

22

23 CG = -(Cq+G);

24 f(length(x)/2+1:end,1) = M\CG;

25 b(length(x)/2+1:end,1) = M\F;

26 end

The output of "SysChangeOfVar" is the rewritten system state vectors f (x) and b(x) presented in Eq.

4.6, where the input vector x is presented in Eq. 3.16 and the input matrices M , C , G and F are the

system matrices presented in Eq. 3.10. Note that the notation of q is the system states before change

of variables, as in Eq. 3.16, i.e. q = θ.
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hysteresis:

1 function [x_lim, LQR_control] = hysteresis(x,limit,LQR_state)

2

3 x1_max_lim = limit(1);

4 x2_max_lim = limit(2);

5 x1_LQR_lim = limit(3);

6 x2_LQR_lim = limit(4);

7

8 if mod(abs(x(1)),2*pi) <= x1_LQR_lim && mod(abs(x(2)),2*pi) <= x2_LQR_lim

9 x_lim = [x1_max_lim x2_max_lim];

10 LQR_control = 1;

11 elseif mod(abs(x(1)),2*pi)<=x1_max_lim && mod(abs(x(2)),2*pi)<=x2_max_lim...

12 && LQR_state==true

13 x_lim = [x1_max_lim x2_max_lim];

14 LQR_control = 1;

15 elseif mod(abs(x(1)),2*pi) > x1_max_lim || mod(abs(x(2)),2*pi) > x2_max_lim

16 x_lim = [x1_LQR_lim x2_LQR_lim];

17 LQR_control = 0;

18 else

19 x_lim = [x1_LQR_lim x2_LQR_lim];

20 LQR_control = 0;

21 end

"hysteresis" is designed to give the desired angular limitation for use in the LQR control. As the system

reaches the region of attraction of the LQR, the function changes the system limits to β1 and β2 to

enlarge the controller workspace when the LQR stabilization is activated. The function defines the

angular limits to maximum such that the LQR control can operate outside the angles of θb ≤ 0.6 and

θp ≤ 1.2 to perform the balance control, as shown in Figure 4.4. The function also returns the control

state: tr ue if the LQR control is activated and f al se otherwise. tr ue and f al se are denoted 1 and

0, respectively. The use of mod(abs(x,2π)) is used to check whether the absolute angular value is

between 0 and 2π.
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4.2 System Controller Based on Kobayashi et al.

In the authors previous work in [12] the controller design by Kobayashi et al. in [9] was presented.

As stated in the introduction of this chapter, Kobayashi et al. has proven that swing-up and balance

control can not be handled by one single control law, due to excessively large feedback gain. Thus

the controller presented is, as the controller by Lai et al., an energy based swing-up controller. The

controller is utilized to increase system energy and move the system states of the Acrobot towards

the upright equilibrium. As the system moves towards the upright position, the controller switches

to balance control when the states reaches the attractive area to stabilize the system. The goal is to

investigate whether or not the control design can be utilized on the bicycle system presented as a

limited Acrobot.

4.2.1 Energy Based Swing-Up Control

The swing-up controller presented in [9] is based on system energy, as the design by Lai et al. Thus

the energy function is given as:

E(θ , θ̇) = T +U

= 1

2
(Ib +mbr 2

b +mp l 2)θ̇b +mp rp l θ̇b(θ̇b + θ̇p ) cos θp + 1

2
(Ip +mp r 2

p )(θ̇b + θ̇p )2

+ (mbrb +mp l )g cos θb +mp rp g cos(θb +θp )

(4.20)

By defining an energy function Ez(θ , θ̇) Kobayashi et al. defined a swing-up controller to move the

system states towards the upright unstable equilibrium:

Ez(θ , θ̇) = E(θ , θ̇)−E0 (4.21)

where E0 is the potential energy at the upright inverted equilibrium point, i.e. U |θb=θp=0. Passivity of

the two-link Acrobot yields as uT y = V̇ , see Definition 6.3. in Khalil[8]:

Ė = [0 τ]

θ̇b

θ̇p

= θ̇pτ (4.22)
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Note time derivative of the system energy is equal to Eq. 4.3. The defined system energy function

Ez(θ , θ̇) is considered by:

Ėz(θ , θ̇) =−µEz(θ , θ̇) (4.23)

where µ> 0.

By Eq. 4.23 the property of Ez(θ , θ̇) → 0 is obtained, thereby the system will move towards the up-

right unstable equilibrium. By Eq. 4.21 and the negative semi-definite time derivative of Ez(θ , θ̇) the

energy function in Eq. 4.21 goes to zero, as the system energy E(θ , θ̇) is equal to the upright equi-

librium point potential energy, E0. Thereby the energy based control function from [9] in Eq. 4.24 is

able to move the system towards the upright unstable position based on a negative semi-definite time

derivative of the Lyapunov function, Ez(θ , θ̇). From Eq. 4.22 and 4.23 the control torque is given by:

τ=−µEz(θ , θ̇)

θ̇p +ε (4.24)

where ε¿ 1 and θ̇p ≡Ωp .

One can see from Eq. 4.24 that the system control torque does not contain any proportional or deriva-

tive gains as the control torques in Eq. 4.8. Thus there are no gains directly coupled with the system

states to control the angles with a PD-structure and create controllable oscillations of θp to counteract

the movement of θb .
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Figure 4.12: Nonlinear system time response with LQR control

4.2.2 LQR Balance Control

As for the energy based swing-up controller by Lai et al. the controller designed in [9] utilize the LQR

controller. When the swing-up controller moves the system states within the LQR region of attraction,

the balance control is activated. The LQR controller uses the optimal feedback gain, K , in Eq. 4.16,

derived by use of the Matlab® function given in Eq. 4.15:

[K ,P,E IG] = l qr (A,B ,Q,R)

K =
[
−975,63 −57,24 −227,34 −19,74

]

The LQR controller is equivalent to the controller derived in Section 4.1.3, as both controllers are

derived from system linearization around the upright unstable equilibrium of (θb , θp ) = (0, 0) and

weight matrices as given in Eq. 4.14. With the state feedback controller u = −K x, the time response

of the nonlinear system with initial positions (θb , θp ) = (−0.6◦, 1.2◦) is shown in Figure 4.12. With

the LQR activated through the entire simulation, the mounted inverted pendulum is utilized to coun-

teract the falling bicycle angle of θb . The bicycle angle is moved past the upright equilibrium and

the inverted pendulum angle θp is moved slowly up towards the upright unstable equilibrium from

maximum negative excursion. As the inverted pendulum is accelerated slowly in positive direction,

the counteracting torque moves the bicycle angle in negative direction, stabilizing both system angles

around the upright unstable equilibrium of (θb , θp ) = (0◦,0◦).
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4.2.3 Control Mode Switching

In [9] the energy based swing-up controller is utilized for both balance and swing-up control. As the

bicycle system has initial positions around the upright equilibrium, the goal is to utilize the optimal

linear controller for system stabilization, when the state angles are within the LQR region of attraction.

If perturbations occur, the system states might move further away from the upright position, and en-

ergy based swing-up control is activated. Thus the goal is to combine the energy based swing-up and

LQR controller in a complete controller for stabilization. Note that Kobayashi et al. designed a swing-

up controller based on linear system representation, where a pole assigning controller was designed

to move the system angles away from the initial straight down position of the unlimited Acrobot. This

controller is not satisfactory as the pole assignment is used to create an unstable equilibrium and per-

turb the system from the initial straight down position. Thus the swing-up control designed by pole

assignment is not applicable as the non-smooth system behavior is undesirable to utilize for moving

the states within the LQR region of attraction.

When the system angles are within the LQR region of attraction, the balance control is activated. The

maximum controller angles for the LQR controller is then set to β1 and β2, as for the controller by Lai

et al., such that the system is able to stabilize, as shown in Figure 4.12. If the system angles moves out-

side these limits, the swing-up controller is activated to move the system states within the LQR region

of attraction, shown in Eq. 4.18.
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Figure 4.13: Illustration of System Implementation of Energy Based Controller by Kobayashi et al.

4.2.4 Controller Analysis

Throughout the semester, the author spent a lot of time on the design by Kobayashi et al., shown in

Figure 4.13, without successfully implementing a functionally controller. Through simulations of the

unlimited Acrobot it has been verified that the controller implementation is unable to stabilize the

system around the unstable upright equilibrium. Multiple attempts of parameter tuning were per-

formed, without success. The controller design by Kobayashi et al. is based on the energy function

Ez(θ, θ̇) without state feedback in the controller. There are no gains coupled with the system state an-

gles in the control design, resulting in a controller which is unable to apply a desired trajectory of θp

to counteract the repelling bicycle angle, θb , and move the states within the LQR region of attraction.

By looking at Eq. 4.24, the control output of the energy based swing-up controller can be analyzed.

With the angular velocity of the second link, θ̇p , in the denominator, the control torque becomes larger

as the velocity decreases. At very small values, θ̇p ¿ 1, the system control output becomes excessively

large, especially at the initial position of the simulations, when θ̇p = 0. Thus the controller gives a

physical impossible control torque to the bicycle system. As mentioned in Section 4.2.1, the swing-up

controller does not contain any derivative gains coupled with the system states. Thus the controller

only utilizes Eq. 4.21, where the property of Ez(θ, θ̇) → 0 is obtained. The controller is the based on

the negative definite time derivative of the energy function. This verifies that the system is able to sta-

bilize, but is not any guarantee of system stability within a desirable time range. As none of the system

states are coupled in the feedback control, the controller is unable to control each system state as de-

sired with respect to the reference angles. Without gains directly coupled with the system states in the
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p ) = (2◦,−5◦)

controller, the system is unable to create instantaneous acceleration in the inverted pendulum angle,

θp , to counteract the repelling bicycle angle, θb . The design by Lai et al. shows how the system states

can be utilized to control the angle of θp in the swing-up subspace such that both system angles are

within the LQR region of attraction when the angle of θb reaches the balance subspace. As the design

by Kobayashi et al. does not utilize the system states it is unable to control the angle of θp towards zero

throughout the system swing-up within the angular limits. Based on the property of negative semi-

definite time derivative energy function, the design only utilizes the mathematical property of system

stability based on the Lyapunov function without consideration of state trajectories and a desirable

time range for system swing-up. Thus the author has not been able to tune the design by Kobayashi

et al. to be a well functioning controller for the bicycle system, as it is unable to utilize the inverted

pendulum to counteract the repelling bicycle tilt angle and move the states back towards the upright

equilibrium within the angular limitations. As the controller is not able to control both system angles,

θb and θp , towards zero and into the balance subspace, the implementation based on Kobayashi et al.

does not meet the requirements of the bicycle system.
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Figure 4.14 illustrates how the controller is unable to stabilize the bicycle system around the upright

unstable equilibrium, with initial angular positions of (θb , θp ) = (2◦,−5◦). As the controller is not able

to accelerate the inverted pendulum angle, θp , enough to counteract the falling bicycle tilt angle, θb ,

both system angles falls to the limits. Thus the controller is unable to move the system states within

the LQR region of attraction for balancing control. The figure shows how the inverted pendulum tries

to move the bicycle tilt angle towards the upright equilibrium without success. The torque output

becomes excessively large and gives a physical impossible control torque to the system. Even though

the controller is not able to stabilize the system within the angular limits, it shows an important prop-

erty. The inverted pendulum is utilized to move the bicycle tilt angle towards the upright position of

θb = 0. By applying positive acceleration to the inverted pendulum, the bicycle angle is moved with

negative acceleration from the positive angle limit back towards the upright equilibrium. By applying

acceleration to the angle of θp , the bicycle angle is accelerated in the opposite direction. Thus the

inverted pendulum is utilized to create torque and lift the bicycle up towards the upright position,

which is an essential property utilized in the further investigation of the limited Acrobot presented

in Section 4.3. Figure 4.15 shows the time response with initial positions of (θb ,θp ) = (2◦,−30◦). In

Figure 4.15(b) it is shown how the system angles are close to the LQR region of attraction at −1◦. As

the controller does not utilize the system states counteract the repelling bicycle angle, it is not able

to control each system angle towards the upright equilibrium of (θb , θp ) = (0◦,0◦) and into the LQR

region of attraction. From Figure 4.14 and 4.15 it is shown how different the controller performance

is based on the initial angular positions. None of the system angles in Figure 4.14 are close to the LQR

region of attraction at the same time sample, whereas for time response in Figure 4.15 the inverted

pendulum is accelerated in positive direction to counteract the falling bicycle angle θb . With the ini-

tial positions of (θb ,θp ) = (2◦,−30◦) the inverted pendulum is accelerated to move θb back towards the

upright unstable equilibrium, without being able to apply the linear balance controller.
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4.2.5 Concluding Remarks

With no PD-structure in the energy based swing-up controller, the design by Kobayashi et al. is not

able to control the system states into the balance subspace. As no gains are directly coupled with

the system state angles and their respective time derivatives, the controller is unable to control the

system states towards the upright equilibrium within a desired time range for the unlimited Acrobot.

As illustrated in Figure 4.14 and 4.15, the controller performance is varying dependent on the initial

positions of the system angles. Thus when the controller only utilize the property of a negative definite

time derivative of the energy function, and does not control the system states directly, it is not able to

stabilize the bicycle system within the angular limits. Thereby the controller implementation based

on Kobayashi et al. is not satisfying the requirements for system stabilization. However, the design

shows how the acceleration of θp moves the bicycle angle, which is desirable. This idea is utilized

further on in the controller investigation in this thesis.
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4.2.6 Controller Implementation

The following code is controller implementation of the energy based swing-up control, where func-

tion "hysteresis", shown in Section 4.1.7, is utilized in to set the limits of the LQR balance controller.

Description of the controller implementation is given after the Matlab® function presented. The pa-

rameters were tuned and tested through system simulation.

1 function [u, LQR_control, state] = EnergyBasedNonlinearController(x,t,...

2 control_state)

3 l = 0.72; % [m] approximately

4 rb = 0.4; % [m] approximately

5 rp = 0.2; % [m] approximately

6 mb = 31.118; % [kg] approximately

7 mp = 5; % [kg] approximately

8 g = 9.81; % [m/s^2] gravity acceleration

9 Ib = 0; % [Nm] Moment of Inertia of bicycle

10 Ip = 0; % [Nm] Moment of Inertia of pendulum

11

12 % States:

13 thetab = x(1);

14 thetap = x(2);

15 dthetab = x(3);

16 dthetap = x(4);

17

18 % Energy at Upright eq.pt (potential energy)

19 E0 = (mb*rb+mp*l)*g+mp*rp*g;

20

21 % Total System Energy

22 E = 1/2*(Ib+mb*rb^2+mp*l^2)*x(3)^2+mp*rp*l*x(3)*(x(3)+x(4))*cos(x(2))+1/2*...

23 (Ip+mp*rp^2)*(x(3)+x(4))^2+(mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

24

25 Ez = E-E0;

26

27 % Controller Constants:

28 mu = 100; % mu > 0

29 epsilon = 0.001; % epsilon << 1

30

31

32 beta_1 = pi/8;

33 beta_2 = pi/6;
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34

35 LQR_lim_x1 = 0.6/180*pi;

36 LQR_lim_x2 = 1.2/180*pi;

37

38 limit = [beta_1 beta_2 LQR_lim_x1 LQR_lim_x2];

39 if t == 0

40 [x_lim, LQR_control] = hysteresis(x,limit,false);

41 else

42 [x_lim, LQR_control] = hysteresis(x,limit,control_state);

43 end

44 x1_lim = x_lim(1);

45 x2_lim = x_lim(2);

46

47

48 % Controller:

49 if mod(abs(x(1)),2*pi)<=x1_lim && mod(abs(x(2)),2*pi)<=x2_lim && LQR_control==1

50 u = -[-975.6281 -57.2364 -227.3441 -19.7419]*x; % LQR

51 state = 2;

52 else

53 u = -mu*Ez/(dthetap+epsilon); %Energy Swing-Up Controller

54 state = 1;

55 end

The controller calculates the system energy given in Eq. 4.20 and the potential energy at the upright

equilibrium, E0. With the energy function defined in Eq. 4.21, the nonlinear energy based swing-up

controller is defined by Eq. 4.24. The function "hysteresis" is utilized to defined the angular limitations

of the balance subspace. When the system is outside the LQR region of attraction and the previous

controller state was not in LQR mode, the limits are set to (|θb |, |θp |) = (0.6◦,1.2◦) as stated in Section

4.1.3. If the system states are within the LQR region of attraction, the balance control is activated, and

the limits are set to β1 and β2, respectively.
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(a) Falls from initial state (b) Swings past stable eq.
pt.

(c) Reaches highpoint

(d) Falls down from
highpt.

(e) Swings past stable eq.
pt.

(f) Swings into LQR ROA

Figure 4.16: Illustration of Energy Based Swing-Up Control by Lai et al. on unlimited Acrobot

4.3 System Controller for Feedback Linearized System

As shown in the previous sections, the controllers by Lai et al. and Kobayashi et al. were not able to

stabilize the bicycle system within the angular limits. As the controllers were originally designed for an

unlimited Acrobot, the energy based swing-up controllers were not able to satisfy the requirements for

the bicycle system. From Figure 4.7 and 4.11 it is shown how the controller designed by Lai et al. makes

the system fall away from the upright equilibrium when the initial position is outside the LQR region of

attraction. As shown in Figure 4.16, this energy based controller utilizes the increasing kinetic energy

as the angular velocities increases when the system falls towards the straight down equilibrium of the

unlimited Acrobot. As the system swings, the control torque is applied to increase the kinetic energy

and move the system angles closer to the LQR region of attraction for each swing. This behavior is

similar to the real life acrobat gymnastic. When the acrobat swings up from the straight down position,

he starts by swinging his legs back and forth, as the Acrobot would do from the same initial position.

By applying torque from the hip, the acrobat is able to swing his legs and increase the kinetic energy

and move his body closer to the upright position.
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(a) Without actuation (b) With actuation giving Ω̇p > 0

Figure 4.17: Illustration of Negative Torque Contribution of Inverted Pendulum Onto Bicycle

When the acrobat reaches the highpoint of each swing, he stops the movement of the legs, which is

equivalent to having Ωp = 0 on the bicycle system, to maximize the swing-up. This is to prevent the

legs to push the upper body downwards from the highpoint. From Eq. 3.20a it is shown how the ac-

celeration of θb is dependent of the inverted pendulum angle velocity, Ωp . At the highpoint of each

swing, both velocities are close to zero, giving:

Jtot
dΩb

d t
=+ g mp l

((
1+ mbrb

mp l

)
si n θb − cos θp si n(θb +θp )

)
−

(
1+ l

rp
cos θp

)
τ

With the legs parallel to the upper body, the acrobat will have θp ≈ 0 and the equation for dΩb
d t is

mainly dependent on the gravitation force and the torque applied from the system actuator. The

gravity forces divided on the inertia-term Jtot will reduce the angular velocity of the bicycle as it moves

up towards the upright equilibrium. By analyzing the torque-term of the equation, it is shown how

the actuator torque contributes with negative acceleration to the bicycle angle, θb , with respect to

its direction of movement. The increasing angle of θb contributes with negative torque as long as

θp = cos−1
(
− rp

l

)
> 0, which decreases the acceleration of θb . With a swing-up controller utilizing

this functionality, the angle of θp is kept close to zero at the highpoint of each swing and the balance

controller can be applied when the angle of θb reaches LQR region of attraction. Figure 4.17 illustrates

how the inverted pendulum contributes with negative torque onto the bicycle.
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The most important property that separates the limited and unlimited Acrobot system is the angular

velocities at the angle limits. When the controller by Lai et al. is able to stabilize the unlimited Acrobot,

it utilizes the increasing system energy. By applying torque from the system actuator, the Acrobot is

able to move the angles closer to the upright equilibrium for each swing. When the system angles θb

and θp moves past the respective limit angles of ±30 and ±110, the angular velocities are unequal to

zero. As the energy based swing-up controller utilizes the angular velocity ofΩb , it is able to increase

the system energy and move the states towards the balance subspace by controlling the angle of θp

towards zero. Unlike the unlimited Acrobot, the system with angular limitations is not able to utilize

this property. As the angular velocities are zero at the limits, the bicycle system is unable to utilize

the angular velocity of Ωb as the energy based swing-up controllers do. To move the system angles

towards the upright equilibrium, the controller has to accelerate the inverted pendulum to increase

the kinetic energy of the bicycle system. From Eq. 3.20a and Figure 4.7 it is clear how the velocities

in squared affects the acceleration of the bicycle angle, θb . The figure also shows how large the an-

gular velocity of the bicycle angle is relative to the velocity of the inverted pendulum. Thus the main

difference from the swing-up controller for the limited and the unlimited Acrobot, is that the limited

Acrobot has to increase the system energy with the inverted pendulum instead of the bicycle link, to

move the system angels towards the upright position. Thereby the challenge is to create a controller

which is able to utilize the inverted pendulum to stabilize the bicycle angle, θb , at its upright position

as it simultaneously controls the angle of θp towards zero.

Figure 4.18(a) and 4.18(b) shows the time response of the limited Acrobot with the controller design

by Lai et al. and Kobayashi et al., respectively. The initial positions are at the angular limitation of

(θb , θp ) = (30◦,110◦). As for the simulation of the limited Acrobot in Figure 4.11, the controller by

Lai et al. is unable to move the bicycle angle away from the limit and towards the upright position.

The controller oscillates the angle of θp which stabilizes at the approximate value of 11◦ with the cor-

responding torque of approximately 2 [Nm]. The control design is unable to utilize the oscillatory

behavior of the inverted pendulum to move the bicycle from the limit. The implementation based on

Kobayashi et al. also fail to move the system towards the upright equilibrium. As the controller does

not utilize the system states directly with controller gains, it is unable to utilize the inverted pendu-

lum to create torque, moving the bicycle towards its upright position. Due to zero angular velocity,

Ωb = Ωp = 0 at the limits, the control torque becomes excessively large, as the denominator of Eq.

4.24 is equal to ε, pushing the angles towards the limit.
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Figure 4.18: Time response of Energy Based Swing-up Controllers with initial positions at limits
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4.3.1 Swing-Up Control with Feedback Linearization

During the semester of working with the project thesis, the author came across a video [1] of a func-

tional Acrobot. Throughout the semester of working with the master thesis, the author was able to

find the corresponding paper [2] by Andersen, Skovgaard and Ravn, which presents several nonlinear

controllers, both with and without angular limitation, for stabilization of the underactuated unlim-

ited Acrobot. With the system parameters used in [2], Andersen et al. presents the corresponding

time responses of the unlimited Acrobot, with the respective controllers. All the nonlinear controllers

moves outside the angular limitations of the bicycle system, whereas the LQR balance controller is

able to stay within the limits. It is not specified which controller is applied in the video, but Figure

4.19 illustrates the system behavior when perturbation occur at the upright position. After swing-up

and system stabilization, the inner link, corresponding to the bicycle, is perturbed, as shown in Figure

4.19(a), and the outer link, corresponding to the mounted inverted pendulum, is utilized to stabilize

the inner link. By accelerating the outer link in the same direction of the falling inner link, the actuator

and outer link contributes with a counteracting torque onto the inner link, pushing it back towards the

upright equilibrium. When the angular velocity Ωb reaches zero, the outer link angle θp has reached

maximum negative excursion, as shown in Figure 4.19(c). An important property, is that the angle of

θb is not set to zero, but is moved past the upright equilibrium in positive direction to balance the

system before the angle of θp is the slowly moved towards its upright equilibrium as well. When the

angle of θp is accelerated in positive direction, the counteracting torque onto the inner link moves

the angle of θb in negative direction, as shown in Figure 4.19(d). When the angle of θp reaches the

maximum positive excursion, the inner link angle is placed slightly past the upright equilibrium at a

negative angle, as shown in Figure 4.19(e), to balance the system. Thus, as shown in Figure 4.19(f),

the angle of θp is accelerated in negative direction and the counteracting torque onto the inner link

moves the angle of θb in positive direction. Thereby both angles are moved towards the upright equi-

librium of (θb , θp ) = (0◦,0◦) as shown in Figure 4.19(g). The balance control performance by Andersen

et al. [2] illustrated in Figure 4.19 has the same system behavior of the LQR balance control described

in Section 4.2.2.
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(a) System perturbation, Fp (b) Counteracting acceleration of θp onto θb

(c) θp at maximum negative excursion (d) Moving θp towards upright eq. pt.

(e) θp at maximum positive excursion (f) Moving θp towards upright eq. pt.

(g) System balancing around urpight eq. pt.

Figure 4.19: Illustration of time response of system balance with controller by Andersen et al. [2] from
video [1]
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Figure 4.20: Illustration of feedback linearization in a nonlinear system

Based on the theory of the acrobat gymnastic presented above and the results of the controller per-

formance of the controllers designed by Lai et al. [11], Kobayashi et al. [9] and Andersen et al. [2] a

new controller structure for the limited Acrobot system representation can be developed and investi-

gated. When controlling an actuated nonlinear system, a feedback linearizing inner controller, which

cancels the nonlinear terms of the dynamical system, can be applied. From Khalil [8], the nonlinear

system in Eq. 3.18 can be presented as:

ẋ = f (x)+g (x)u (4.26a)

y = h(x) (4.26b)

The goal is to develop a state feedback control, u:

u =α(x)+β(x)v

where α(x) is the function canceling the nonlinearities in the system, and β(x) is the function giving

the new input v to the system. Figure 4.20 shows how the inner loop feedback linearization gives a

linear system where an outer loop linear controller can be designed. As the bicycle system is underac-

tuated, it is not feedback linearizable 1 due to the fact that the actuator can not create instantaneous

acceleration in arbitrary system angle, as mentioned in the introduction of Chapter 3. Thus the actu-

ated subsystem of the underactuated manipulator system can be linearized by use of partial feedback

linearization, as Spong et al. [22]. The goal is to simplify the nonlinearities of the system by use of the

1The set {g , ad f (g ), ad f
2(g )} is involutive when the term ad f

k (g ) denotes the iterative Lie Bracket
[

f , ad f
k−1(g )

]
,

where the Lie Bracket of f and g is defined as:
[

f , g
]= ∂g

∂x f − ∂ f
∂x g , see Khalil [8]
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actuated joint, creating a feedback linearized subsystem coupled with the remaining non-linearized

terms of the original system representation. Due to the simplified nonlinearities, a less complicated

controller can be designed in the complete system control. The state space representation presented

in Section 3.8.2 and 3.9.2 is derived based on the theory of partial feedback lineraization of the equa-

tions of motion on matrix form by Spong in [18], [19], [20] and [17]. From Spong [20] the partial

feedback linearized system with matrix elements of Eq. 3.17 can be written as:

m11θ̈b +m12θ̈p + c1 + g1 = 0 (4.27a)

m12θ̈b +m22θ̈p + c2 + g2 = τ (4.27b)

where c1 = c11θ̇b + c12θ̇p and c2 = c21θ̇b of Eq 3.8. By rearranging Eq. 4.27a it can be solved for θ̈b :

θ̈b =−m−1
11

(
m12θ̈p + c1 + g1

)
(4.28)

and substitution of Eq. 4.28 into Eq. 4.27b obtains:

m22θ̈p + c2 + g 2 = τ (4.29)

where the terms of m22, c2 and g 2 are given by:

m22 = m22 −m12m−1
11 m12

c2 = c2 −m12m−1
11 c1

g 2 = g2 −m12m−1
11 g1

The partial feedback linearizing controller can thereby be defined for Eq. 4.29:

τ= m22u + c2 + g 2 (4.31)

where u ∈ Rn is an additional control input, giving the complete system representation:

m11θ̈b + c1 + g1 =−m12u (4.32a)

θ̈p = u (4.32b)

Thus the acceleration of the inverted pendulum angle θp is set equal to the controller output, u, giving

a linear second order system in Eq. 4.32b. By applying the partial feedback linearizing controller on

the bicycle system, the nonlinearities are simplified and the actuated joint angle, θp , is directly cou-
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Figure 4.21: Implemented State Space Representation of Bicycle System, Eq. 3.20, in Simulink®

pled with the controller output, as the inverted pendulum acceleration, θ̈p , is equal to the controller

output, u. This implies that the actuated system angle, θp , is utilized to move the bicycle angle, θb ,

towards its upright position as it simultaneously is controlled towards zero. Note that the system rep-

resentation in Eq. 4.32 is equivalent to the state space representation in Eq. 3.22, with control torque

in Eq. 4.31 equivalent to Eq. 3.21 and angular velocity Ω equivalent to θ̇ in Eq. 4.27. To improve the

readability for the system analysis, the author will further on present the equations of motion as a set

of differential equations, equivalent to the state space representation in Eq. 3.22 with Eq. 3.21. Thus a

new system model was implemented in Simulink®, as shown in Figure 4.21. With the state space rep-

resentation given in Eq. 3.20, the categorizing structure is utilized to analyze the inertial, centrifugal,

Coriolis and gravity related torques in the system time response. The blocks of "J_tot*dOmegab/dt"

and "J_tot*dOmegap/dt" is the right hand side of the differential equations in Eq. 3.20a and 3.20b,

respectively. The implementation of the sub-blocks are shown in Figure B.1 and B.2 in Appendix B.1.

The blocks "Bicycle" and "Inverted Pendulum" are the integrator structure with logical limitation, pre-

sented in Section 3.6 and illustrated in Figure 3.5.
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Figure 4.22: Implemented State Space Representation of Bicycle System in Simulink®

Figure 4.22 shows the complete feedback linearized state space representation of the bicycle system

implemented in Simulink®, where the sub-block "FeedbackLinearization_StateSpace" is the feedback

linearizing controller implemented with code in Matlab®, as shown in Section 4.3.4. The controller

given in Eq. 3.21 can be presented as:

τ= Jtot u −Tpc −Tpg

Kpτ
(4.33)

The torque terms Tpc , Tpg and Tpτ are given by the differential equations in Eq. 3.20a and 3.20b

presented as:

Jtot
dΩb

d t
= Tbc +Tbg +Tbτ+Tbd (4.34a)

Jtot
dΩp

d t
= Tpc +Tpg +Tpτ+Tpd (4.34b)
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The terms Tbc and Tpc , Tbg and Tpg , Tbτ and Tpτ and Tbd and Tpd represent the Coriolis and centrifu-

gal, gravity, actuator related torques of the bicycle and inverted pendulum and disturbance torque

due to perturbation, respectively:

Tbc = mp rp l si n θp

(
(Ωb +Ωp )2 + l

rp
cos θp Ω

2
b

)
Tbg = g mp l

((
1+ mbrb

mp l

)
si n θb − cos θp si n(θb +θp )

)
Tbτ =−

(
1+ l

rp
cos θp

)
τ

Tbd = τd

Tpc =−mp rp l si n θp

(
(Ωb +Ωp )2 +

(
mbr 2

b

mp r 2
p
+

(
l

rp

)2
)
Ω2

b +
l

rp
cos θp (Ω2

b + (Ωb +Ωp )2)

)

Tpg =−g mp l

((
1+ mbrb

mp l

)(
1+ l

rp
cos θp

)
si n θb −

(
mbr 2

b

mp rp l
+ l

rp
+ cos θp

)
si n(θb +θp )

)

Tpτ = Kpττ=
(

1+ mbr 2
b

mp r 2
p
+

(
l

rp

)2

+2
l

rp
cos θp

)
τ

Tpd =−
(
1+ l

rp
cos θp

)
τd

By use of the partial feedback linearizing controller in Eq. 4.33 the control input, u, is utilized to

achieve the controller requirements of the bicycle system. Note that the perturbation torque, τd , is

set to zero in simulation of the bicycle system without disturbance.
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PD-Controller

A linear state feedback PD-structured control input is utilized to create oscillation of the inverted

pendulum angle, θp , and move the bicycle tilt angle towards the upright equilibrium of (θb , θp ) =
(0◦,0◦), as the equation of θ̈p in Eq. 4.32b is a linear second order system with u0 as angular reference

input:

u =−kpθp −kd θ̇p +u0

=−kpθp −kdΩp +u0

(4.35)

With the PD-controller structure in the control input, u, the gains kp and kd can be chosen to achieve

oscillatory behavior of the inverted pendulum angle, θp . The idea is to utilize the proportional gain,

kp , to accelerate the inverted pendulum and move the bicycle angle, θb towards the upright equilib-

rium. The derivative gain, kd , is utilized to obtain a desired damping of the system oscillations to

create a controlled counteracting torque from the inverted pendulum onto the bicycle. Unlike the

energy based swing-up controller presented in Section 4.1 and 4.2, the feedback linearizing controller

is able to utilize the inverted pendulum angle instead of the bicycle angle, to create system energy.

Note that the controller does not utilize the states θb and Ωb , which implies that the controller does

not have information of the bicycle angle. The goal is to utilize θ̈p from the PD-controller to control

Ωb such that θb = 0.

When the control input, u, is designed, the reference input, u0, has to be designed. In [20] Spong uti-

lized the saturation function, to give the steady state reference input, whereas in [18] and [19] Spong

utilized the "atan" function give the steady state reference input. The design of the reference input u0

is presented in Section 4.3.2 with the simulation results. The transfer function from θp to u is given

as:

θp (s) = u0(s)

s2 +kd s +kp
= u0(s)

s2 +2ζω0s +ω2
0

(4.36)

Thereby the proportional gain, kp , is equal the undamped resonance frequency, ω, squared. The

derivative gain, kd , is given by the proportional gain and relative damping factor, ζ:

kd = 2ζω0 = 2ζ
√

kp

Throughout the thesis, the proportional gain,ω2
0, and the term of 2ζ, will be tuned for the PD-controller.

Increased resonance frequency will give larger bandwidth, thereby a faster system response. See Ege-

land et al.[3] Chapter 4.7.2 for more information. Note that the steady state value of u0 has to be zero

to achieve θp = 0 in steady state.
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State Space LQR Balance Control

As for the controllers by Lai et al. and Kobayashi et al. in Section 4.1 and 4.2, an LQR controller is

utilized for balance control. With the linearized system matrices of Eq. 3.28, the Matlab® function

utilized in Eq. 4.15, the state feedback gain matrix, K , is equivalent to the previous LQR controllers

presented:

[K ,P,E IG] = l qr (A,B ,Q,R) (4.37a)

K =
[
−975,63 −57,24 −227,34 −19,74

]
(4.37b)

With this feedback controller, the LQR controller is equivalent to the controller derived in Section 4.1.3

and 4.2.2, as the controllers are derived from system linearization around the upright unstable equi-

librium of (θb , θp ) = (0, 0) and weight matrices as given in Eq. 4.14. With the state feedback controller

u = −K x, the time response of the nonlinear system with initial positions (θb , θp ) = (−0.6◦, 1.2◦) is

shown in Figure 4.4. This feedback controller places the eigenvalues of the nonlinear dynamical sys-

tem into the left half plane, giving a closed loop stable system. With the Matlab® function "eig" and

the system matrices A and B in Eq. 3.28, the eigenvalues are given as:

ei g (A−BK ) =



−10.99

−8.09

−4.20

−4.16

 (4.38)
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Partially Feedback Linearized LQR Balance Control

With the linearization of the partially feedback linearized state space representation, as presented in

Section 3.9.2, an LQR balance controller is designed based on the system matrices linearized around

the upright position of the bicycle system. With linearization around the upright equilibrium of

(θb , θp ) = (0◦,0◦), the linear system matrices in Eq. 3.32a and 3.32b is utilized in the Matlab® function

from Section 4.1.3. Through simulation of the nonlinear system with the LQR controller, the wight

matrices Q and R were tuned to get the LQR region of attraction as large as possible:

Q =



1000 0 0 0

0 1000 0 0

0 0 1000 0

0 0 0 1000

 (4.39a)

R = 1 (4.39b)

The resulting state feedback gain matrix, K , is found by the Matlab® function "lqr" with the linear

system matrices A and B of the linearized partially feedback system and the weight matrices Q and R

in Eq. 4.39:

[K ,P,E IG] = l qr (A,B ,Q,R) (4.40a)

K =
[
−918,05 −57,02 −215,48 −17,39

]
(4.40b)

Note that the tuned weight matrix Q gives a feedback gain matrix, K , approximately equal to the

gain matrix of the LQR designed for the linearization of the state space representation in Eq. 3.18,

presented in Eq. 4.37. And that an LQR gain matrix is equivalent to a PD-controller where u0 =
−kpbθb − kdbΩb , which implies that the controller utilizes the angle and angular velocity of the bi-

cycle in a linear state feedback controller.
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The goal of having the gain matrices as similar as possible is to obtain the functionality of angle mea-

surement noise affecting the system behavior uniformly for both LQR controllers. With nominal ac-

tuation torque of 19.44[Nm], as stated in Section 2.5.1, and feedback gains coupled with the system

states and their respective measurement noise, the controller gains must be taken into account. With

a proportional gain of −918,05 in the K matrix, the angle measurement of θb can have an error of

0.063◦ resulting in a torque error of 1[Nm], approximately 5% of the nominal torque of the system ac-

tuator. When the system is implemented, the measurements should be filtered, but nevertheless the

system gains must be taken into account to ensure that the controller gains are not physically unob-

tainable. Through simulation the largest LQR region of attraction, of this LQR controller designed by

the linear system matrices of the linearization of the partially feedback linearized system in Eq. 3.22,

is verified:

(θi
b ,θi

p ) =
(

0.8

180
π,

1.4

180
π

)
[r ad ] (4.41)

Figure 4.23 illustrates how the controller implementation, presented in Section 4.3.4, stabilizes the

nonlinear system with initial angular positions at the maximum angles in the LQR region of attrac-

tion. The figure also shows how the partially feedback linearized LQR controller is slower than the

LQR controller designed on linearization of the state space representation, presented above and illus-

trated in Figure 4.4. As the LQR region of attraction of the partially feedback linearized LQR controller

is not significantly improved, the choice of which LQR controller to be applied is not critical. With the

Matlab® function "eig" and the system matrices A and B in Eq. 3.9.2, the eigenvalues are given as:

ei g (A−BK ) =



−31.767

−1.001

−4.253+ j 0.088

−4.253− j 0.088

 (4.42)

With the poles further into the left half plane and relative damping, the system is able to stabilize

from angles further away from the upright unstable equilibrium, as given in Eq. 4.41, than the previ-

ous LQR controller.
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Figure 4.23: Time Response of Partially Feedback Linearized LQR Balance Control, (θi ni t
b , θi ni t

p ) =
(0.8◦,1.4◦)

4.3.2 Controller Analysis

PD-Controller with u0 = 0

With the state space model presented in Eq. 4.34 and the partial feedback linearizing controller in

Eq. 4.33, the additional PD-controller, u, in Eq. 4.35 has to be tuned. By choosing the control pa-

rameters, kp and kd , and angular reference, u0, the controller performance can be analyzed through

simulation. As the partial feedback linearization gives a linear second order system as in Eq. 4.32, the

PD-controller, u, is utilized to control the inverted pendulum angle, θp , and move the bicycle angle,

θb , towards its upright position. Note that the controller in Eq. 4.35 only utilizes the states of θp and

Ωp , which implies that the controller is designed to stabilize the angle of θp around a desired angular

value of zero, independently of the bicycle angle, θb . Thereby the controller gains of the PD-controller

are tuned to utilize the angular oscillation of θp and move the bicycle towards its upright position as

a result of the counteracting torque. At first the reference input u0 is set to zero, where Figure 4.24

shows the time response of the feedback linearized system, with initial angle positions at the angular
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Figure 4.24: Time Response of Partially Feedback Linearized PD-Controller, kp = 700, (θi ni t
b , θi ni t

p ) =
(30◦,110◦)

limits, (θi ni t
b , θi ni t

p ) = (30◦,110◦) and control parameters:

kp = 700 (4.43a)

kd = 0.2 ·2
√

kp (4.43b)

u0 = 0 (4.43c)

The simulation illustrates how the control torque oscillates the angle of θp to move the bicycle angle,

θb . First the inverted pendulum is accelerated in negative direction to approximately −58◦, before it

is accelerated in positive direction. As the control torque accelerates the angle θp in positive direction

the counteracting torque applied onto the bicycle accelerates the angle of θb i negative direction. As

shown in Figure 4.24, the angle of θb is moved from the positive angular limit of 30◦ to the negative

limit of −30◦. Thereby the simulation verifies that the controller is able to move the bicycle tilt angle

towards its upright position by use of the inverted pendulum when the initial angle positions are at

the limits. Note that the control torque, τ, is more active throughout the system response compared

with the energy based swing-up controllers by Lai et al. in Figure 4.7, as the inverted pendulum is

utilized to increase system energy.



90 CHAPTER 4. SYSTEM CONTROL

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

0

20

40

Swing−up Control With Partially Feedback Linearized PD−Controller

[d
eg

]

 

 
θ

b

θ
p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−500

0

500

[d
eg

/s
]

 

 
dθ

b

dθ
p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−100

−50

0

50

τ 
[N

m
]

time [s]

Figure 4.25: Time Response of Partially Feedback Linearized PD-Controller, kp = 700, (θi ni t
b , θi ni t

p ) =
(30◦,40◦)

As mentioned, the PD-controller only utilizes the states θp and Ωp , which implies that the controller

is stabilized when the angle of θp reaches the desired angle of zero. Note that when θp andΩp are sta-

bilized the output of the PD-controller is zero, thus no input for controlling the angular velocity of the

bicycle is generated. Thereby the controller, with the presented gains, is unable to apply counteract-

ing torque from the inverted pendulum onto the bicycle and move the angle of θb towards the upright

unstable equilibrium, when the initial angular position of the inverted pendulum is too close to zero.

As shown in Figure 4.25, the presented gains are unable to move the bicycle towards its upright posi-

tion, with initial angles of (θb , θp ) = (30◦,40◦). As the bicycle angle is dependent of the counteracting

torque applied from the inverted pendulum, it is desirable to have a controller which is able to achieve

this performance from any initial angular position. The figure shows the time response of the system

with the PD-controller simulated in Figure 4.24, where the parameters are tuned for initial angular

position at the limits: (θb , θp ) = (30◦,110◦). Thereby the proportional gain, kp , and derivative gain,

kd , results in a controller which is unable to apply enough counteracting torque onto the bicycle, and

move it towards its upright position. The proportional gain is unable to give enough acceleration to

the inverted pendulum whereas the derivative gain damps the oscillations too much, resulting in a

controller which is unable to create a desired counteracting torque onto the bicycle. Thus the param-

eters utilized in these simulations are not applicable for every initial angle position in the workspace.
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p ) =
(30◦,40◦)

Even though the PD-controller is unable to move the bicycle angle towards the upright position, Fig-

ure 4.25 shows that the resulting control torque is within the maximum torque which can be applied

from the DC motor actuator.

Figure 4.26 shows the time response of the system with initial positions closer to the upright equi-

librium, (θi ni t
b ,θi ni t

p ) = (30◦,40◦), and new controller parameters:

kp = 7000 (4.44a)

kd = 0.2 ·2
√

kp (4.44b)

u0 = 0 (4.44c)

The time response illustrates how the increased proportional gain is able to move the bicycle angle,

θb , from the positive to the negative limit unlike the simulation with the system parameters in Fig-

ure 4.25. This shows how the linear PD-controller performance depends on the controller parame-

ters when the initial positions are varying. By adjusting the controller parameters the acceleration of

the inverted pendulum becomes larger, as shown in Figure 4.26, resulting in increased counteracting

torque onto the bicycle. Thus it is shown that the PD-controller depends on the controller parame-
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ters and the initial angular positions, when the inverted pendulum is utilized to create counteracting

torque onto the bicycle. The figure also illustrates how the control torque exceeds the maximum pos-

sible torque for the DC motor, which gives a challenge in the design of a stabilization controller. Also

there is no guarantee that the controller is able to control the bicycle towards the upright position as

it is unable to detect the angle of θb , when the states of θb andΩb are not utilized in the state feedback

PD-controller. Thereby the controller is not suitable to control the bicycle angle towards its upright

position as it simultaneously controls the angle of θp towards zero, from arbitrary initial positions in

the workspace.

The goal is to utilize the controller when the system states moves outside the LQR region of attraction

due to perturbation. With the PD-controller, the fixed system gains the controller is only able to move

the bicycle towards the upright equilibrium from a smaller subset of initial positions in the system

workspace. If the initial positions are too close to the desired angles the proportional gain is unable to

create enough acceleration of θp to give the desired counteracting torque onto the bicycle and move

it towards the upright position of θb = 0, as illustrated in Figure 4.25. The time response presented in

Figure 4.24 shows how the swing-up controller is able to move the system states from the limits up to-

wards the upright equilibrium. The PD-controller stabilizes the angle of θp at its desired angle, while

the bicycle angle θb falls to the negative angular limit. As the goal is to swing the system up towards the

upright equilibrium and activate the LQR controller when the states reaches the LQR region of attrac-

tion, the angular velocities must be close to zero. As both LQR controllers in Eq. 4.37b and 4.40b are

designed by linearization around the upright equilibrium with x∗ = (θ∗b ,θ∗p ,Ω∗
b ,Ω∗

p )T = (0,0,0,0)T and

u∗ = 0, the angular velocitiesΩb andΩp has to be close to zero to apply the linear balance controller.

Thereby the PD-controller is tuned to get the system states close to zero simultaneously, to activate

the LQR balance controller. As the PD-controller controller controls the angle of θp towards its de-

sired angle independently of the bicycle angle θb , the controller parameters must be tuned to give the

desired system response from the various initial positions. Through simulation, the controller param-

eters is tuned to obtain angular velocity close to zero when the system angles reaches the LQR region

of attraction for initial values at the limit, (θi ni t
b ,θi ni t

p ) = (30◦,110◦):

kp = 700 (4.45a)

kd = 0.4598 ·2
√

kp (4.45b)

u0 = 0 (4.45c)
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Figure 4.27 shows how the PD-controller is able to move the bicycle system to the upright position,

with angular velocities equal zero. As the PD-controller is unable to verify that the bicycle angle, θb ,

has reached the upright position the controller is unable to balance the system, and the bicycle falls to

the negative angular limit. Thus the LQR controller can be activated for system balancing around the

upright unstable equilibrium. Note that the angle of θp reaches zero before the bicycle angle reaches

the upright position of θb = 0. This implies that the counteracting torque applied from the positive

acceleration of the inverted pendulum is enough to move the bicycle in negative direction towards

the upright position after the first oscillation. As the PD-controller consist of damped oscillations,

the amplitude of each oscillation of θp decreases throughout the time response. Thereby the con-

troller must be able to move the bicycle towards its upright position after one oscillation, as shown

in Figure 4.27. If the oscillations are too large, the positive acceleration will move the bicycle towards

the upright position before the negative acceleration will push the bicycle in positive direction back

towards the initial limit angle. As the property of zero angular velocity is obtained, the LQR balance

controller is applied to the system controller. As the PD-controller is able to reach the LQR region of

attraction of (θb , θp ) = (0.6◦,1.2◦), the LQR controller presented in Eq. 4.37 selected due to more rapid

system response. Figure 4.28 shows how the PD-controller is able to move both system angles within

the LQR region of attraction while simultaneously controlling the angular velocities towards zero and

activating the LQR balance controller. Thus the controller is able to move the system angles from the

maximum excursion at the angular limits and up to the upright position, where the balance control is

activated to stabilize the bicycle system around the upright unstable equilibrium of (θb , θp ) = (0◦,0◦).

The controller implementation is shown in Section 4.3.4.
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Figure 4.29: Time Response of PD-Controller Swing-Up and LQR Balance Control w/ τd =
5.4[Nm],u0 = 0, β1 = π

6 , β2 = π
2

Further on the robustness of the LQR controller is tested. By applying a torque disturbance onto the

system after the LQR balance control has stabilized the bicycle system, the time response is analyzed

through simulation. A push onto the bicycle, performed by a person, is assumed to last in 1 [ms]. The

LQR balance controller limits of β1 and β2, presented in Section 4.1.5 and 4.1.7, are tuned to enlarge

the operating workspace of the LQR balance controller:

β1 = π

6
, β2 = π

2
(4.46)

Note that the limits ofβ1 andβ2 correspond to a limitation of θb =β1 = 30◦ and θp =β2 = 90◦. Through

simulation it is verified that the system is able to perform successful stabilization by use of the PD-

controller and LQR balance controller, with LQR workspace limits in Eq. 4.46, as long as the perturba-

tion torque is: τd ≤ 5.4[Nm]. Figure 4.29 shows the time response of the system with swing-up by the

PD-controller with parameters from Eq. 4.43 and the LQR balance controller from Eq. 4.37. The time
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response illustrates how the perturbation torque moves the bicycle angle, θb , resulting in acceleration

of the inverted pendulum angle, θp , to counteract the falling bicycle angle which is moved to a maxi-

mal negative excursion of −6.2◦. When the angle of θp exceeds the maximum limit of β2 for the LQR

control, the PD-controller is applied. As the angle is close to 110◦ the system is able to utilize the PD-

controller and control all the system states towards zero simultaneously. The controller accelerates

θp to create counteracting torque onto the bicycle, to move both system angles within the LQR region

of attraction, by use of the fixed controller parameters in Eq. 4.45. As both system angles are moved

within the LQR region of attraction while the angular velocitiesΩb andΩp are controller towards zero,

the LQR balance controller is applied to stabilize the bicycle system. The balance controller gives a

maximum positive excursion of 4◦ on the bicycle angle, before it is moved towards zero. The figure

also shows that the control torque exceeds the maximum torque which can be applied from the sys-

tem actuator, presented in Section 2.5.1. Thereby the LQR balance controller limits, β1 and β2 are

tuned further increase the operating workspace of the LQR balance controller to prevent exceeding

control torque from the PD-controller:

β1 = π

6
, β2 = 100

180
π (4.47)

This implies that the LQR workspace limitation of θb = β1 = 30◦ and θp = β2 = 100◦. Through simula-

tion, shown in Figure 4.30(a), it is verified that the controller performs successful system stabilization

by use the LQR balance controller, with LQR workspace limits of Eq. 4.47. When the perturbation

torque is: τd ≤ 5.1[Nm], the system is able to utilize the LQR controller throughout the whole stabi-

lization operation. Thereby the PD-controller is not utilized, and the control torque is kept within the

maximum torque able to be applied from the DC motor actuator. Figure 4.30(b) is zoomed in when the

perturbation occurs, and shows the acceleration of the inverted pendulum angle, θp , applied to create

the counteracting torque onto the bicycle angle, θb , for system stabilization. The resulting counter-

acting torque from the inverted pendulum onto the bicycle, moves the angle of θb to the maximum

negative excursion of −4.5◦ before it is moved to 2◦ and further stabilized at the upright equilibrium of

0◦. The perturbation of 5.1[Nm] results in a counteracting controller torque of −47.5[Nm] before it is

controlled to 22.5[Nm], which is approximately equal the nominal actuator torque, τp,n = 19.44[Nm].

As these controller torques are within maximum torque able to be applied from the system actuator,

which is 3-4 times the nominal torque τp,n , the controller simulated in Figure 4.30(a) can be utilized

on the real life bicycle system.
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6 , β2 = 100
180π

As mention previously in this section, the parameters of the PD-controller are dependent of the initial

angular positions and system parameters. Figure 4.31 shows how the controller is unable to stabi-

lize the bicycle system when the perturbation torque becomes too large. With torque perturbation of

τd = 5.2[Nm] and LQR workspace limits from Eq. 4.47, the system is moved outside of the workspace

of the LQR balance controller. The PD-controller, with fixed controller parameters of Eq. 4.45, is

unable to swing the bicycle system back into the LQR region of attraction, while simultaneously con-

trolling the angular velocities toward zero. Thereby the bicycle angle falls to the angular limit of 30◦,

while the PD-controller stabilizes the angle of θp at zero. This verifies that the controller design does

not guarantee that the PD-controller, with fixed controller parameters in Eq. 4.45, is able to move the

system angles back into the LQR region of attraction when perturbation occur. Thus one must allow

the bicycle system to fall closer to the angular limits to apply the PD-controller with fixed controller

gains of Eq. 4.43, to successfully stabilize the system around the upright equilibrium, as shown in Fig-

ure 4.30(a). The swing-up PD-controller can be improved by implementing functionality which adjust

the controller parameters dependent of the system states, to utilize θ̈p from to control Ωb such that

θb = 0. As the system is four dimensional, this approach is a very complicated and time consuming.

Thereby the author will further investigate how the input reference, u0, can be utilized to achieve the

desired swing-up functionality, throughout the thesis.
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Figure 4.32: Time Response of Partially Feedback Linearized PD-Controller, u0 = sat , (θi ni t
b , θi ni t

p ) =
(30◦,110◦)

PD-Controller with u0 as Saturation Function

As mentioned, the PD-controller with controller gains in Eq. 4.43 is unable to create counteracting

torque onto the falling bicycle angle when θp is close to zero. Thus the PD-controller with fixed con-

troller gains from Eq. 4.43 does not guarantee that the wing-up controller is able to move the system

angles back into the LQR region of attraction when large perturbations occur, as shown in Figure 4.31.

Thereby the reference input, u0, is further investigated to see if the controller is able to utilize the

system states θb andΩb to obtain an improved system response. Spong [20] utilizes a saturation func-

tion, equivalent to the implemented Matlab® function "sat2"2:

u0 = 97 · sat2
(
Ez(θ, θ̇)Ωb

)
(4.48)

Where the energy function, Ez(θ, θ̇) = E(θ, θ̇)−E0, is defined in Eq. 4.21, with total system energy,

E(θ, θ̇), and potential energy at the upright equilibrium, E0. The function is multiplied with 97 to in-

crease the magnitude of the reference input and give a larger impact in the controller output, u. This

magnitude factor is tuned through simulation, to achieve angular velocity close to zero as the system

angles moves towards LQR region of attraction, for further utilization of the LQR balance controller.

2Note that "sat2" is a modified version of the function "sat" utilized by the controller implementation in Section 4.1.7
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Figure 4.32 shows the time response of the bicycle system, with u0 from Eq. 4.48 and controller param-

eters of the PD-controller in Eq. 4.45. The figure shows how the controller is able to move the system

states towards zero simultaneously, before the bicycle angle, θb , falls to the negative limit of −30◦

when the balance control is deactivated. It is clear how the choice of u0 results in a more aggressive

controller, as the positive acceleration moves the angle of θp to approximately −75◦, before the in-

verted pendulum is accelerated in negative direction and contributes with counteracting torque onto

the bicycle, moving it towards the upright position. Note that the resulting control torque, τ, thereby

exceeds the maximum torque possible to apply from the system actuator, presented in Section 2.5.1.

By scaling the magnitude of the saturation function in Eq. 4.48 to 100 instead of 97, the controller per-

formance becomes even more aggressive. Figure 4.33(a) illustrates how the inverted pendulum angle,

θp is unable to stabilize around the upright position before the bicycle angle, θb , reaches its upright

position. Thereby the bicycle angle falls to the negative angular limit of −30◦. However, the choice

of u0 shows how the controller continuously tries to move the bicycle angle towards the upright po-

sition, without success. By increasing the magnitude factor to 124.022, the controller is able to move

the bicycle angle from the negative angular limit up towards the upright position by accelerating the

inverted pendulum from the negative to the positive angular limit, as shown in Figure 4.33(b). This is

undesirable as it can ruin the system actuator when the inverted pendulum can hit objects mounted

on the bicycle. Note that when the inverted pendulum is accelerated from the negative limit of −110◦

to the positive limit of 110◦, the resulting torque becomes excessively large. Thereby this choice of

the reference input magnitude is physical impossible to utilize with the given system actuator. The

bicycle angle must be controlled by a counteracting torque from the inverted pendulum, as the PD-

controller simulated in Figure 4.28, where the control torque does not exceed the maximum actuation

torque given in Section 2.5.1.



4.3. SYSTEM CONTROLLER FOR FEEDBACK LINEARIZED SYSTEM 101

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

Swing−up Control With Partially Feedback Linearized PD−Controller

[d
eg

]

 

 θ
b

θ
p

0 0.5 1 1.5 2 2.5 3 3.5 4

−1000

0

1000
[d

eg
/s

]

 

 dθ
b

dθ
p

0 0.5 1 1.5 2 2.5 3 3.5 4
−400
−200

0
200
400
600

τ 
[N

m
]

0 0.5 1 1.5 2 2.5 3 3.5 4
−2000

0

2000

time [s]

[d
eg

/s
2 ]

 

 u
u

0

(a) magnitude:100

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

Swing−up Control With Partially Feedback Linearized PD−Controller

[d
eg

]

 

 
θ

b

θ
p

0 0.5 1 1.5 2 2.5 3 3.5 4

−1000

0

1000

[d
eg

/s
]

 

 
dθ

b

dθ
p

0 0.5 1 1.5 2 2.5 3 3.5 4

−500

0

500

τ 
[N

m
]

0 0.5 1 1.5 2 2.5 3 3.5 4

−2000

0

2000

time [s]

[d
eg

/s
2 ]

 

 u
u

0

(b) magnitude:124.022
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Figure 4.34: Time Response of PD-Controller Swing-Up and LQR Balance Control,u0 = sat

By utilizing the reference input, u0, given in Eq. 4.48, the system time response in Figure 4.34 shows

how the swing-up and LQR balance controller is able to stabilize the system around the upright un-

stable equilibrium. As the swing-up controller is able to move both angles towards zero, while simul-

taneously controlling the angular velocities,Ωb andΩp , towards zero, the LQR balance control can be

activated. However, as the control torque, τ, exceeds the maximum torque possible to apply from the

system actuator, the reference input, u0, in Eq. 4.48 is not applicable for the real life bicycle system.
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PD-Controller with u0 as atan Function

In [18] and [19] Spong utilizes the "atan" function in the reference input, u0. The idea is to utilize

a reference input which includes the angular velocity, Ωb , of the bicycle to investigate whether the

performance of the PD-controller is improved or not. The reference input is given as Spong in [18]

and [19]:

u0 = kpα · t an−1(Ωb)

The parameter α is chosen less than β when the second link of an Acrobot is constrained to lie in an

interval of θp ∈ [−δ, δ], where the value of δ is equivalent to the angular limitation of θp in radians.

The idea is to utilize the "atan" function to give a reference depending on the bicycle link. By utilizing

the angular velocity of the bicycle, the resulting PD-controller is given as:

u =−kp
(
θp −α · t an−1(Ωb)

)−kdΩp (4.49)

Note that the smaller the amplitude, α, is, the less affect the reference input, u0, will affect the sys-

tem. If the amplitude is too small, the input reference will not contribute to the output from the PD-

controller, giving a swing-up controller similar to the PD-controller with control parameters from Eq.

4.45. Through simulation, the amplitude was tuned toα= 105
180π, which is within the angular limitation

of δ= 110
180π, giving:

u0 = kp
105

180
π · t an−1(Ωb) (4.50)

As shown in Figure 4.35, the PD-controller with input reference, u0, of Eq. 4.50 is verified to success-

fully control the system states towards zero, simultaneously. Thereby the angles are moved close to

the upright position as the angular velocities are controlled towards zero. As the LQR balance control

is not applied, the PD-controller is unable to stabilize the system around the upright unstable equilib-

rium, and bicycle angle, θb , falls back to the positive angular limit of 30◦. The improved controller is

then able to accelerate the inverted pendulum from the positive limit in negative direction to thereby

accelerate in positive direction and move the bicycle angle towards the upright position, as a result

of counteracting torque. This system response is similar to the input reference presented in Eq. 4.48

with magnitude of 124.022, but smaller control torque. When the bicycle angle, θb , is moved to the

upright position, the inverted pendulum angle, θp , is moved slowly towards the desired angle of zero.

Thereby both system angles are within the LQR region of attraction, while the angular velocities, Ωb

andΩp , are controlled towards zero. As the LQR balance controller is not applied, the system is unable

to stabilize and the bicycle angle moves away from the upright equilibrium once more.
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Figure 4.35: Time Response of Partially Feedback Linearized PD-Controller, u0 = at an, α = 105
180π,
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b , θi ni t

p ) = (30◦,110◦)
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Figure 4.36: Time Response of Partially Feedback Linearized PD-Controller and LQR Balance Control,
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Figure 4.37: Time Response of Partially Feedback Linearized PD-Controller and LQR Balance Control
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As the goal is to improve the performance of the stabilization controller by utilization of the reference

input, u0, the LQR balance controller is activated. Figure 4.36 shows how the PD-controller is able to

move the system angles within the LQR region of attraction, while simultaneously controlling the an-

gular velocities towards zero. Thereby the LQR balance controller is applied and the system stabilizes

around the upright equilibrium.

In Figure 4.30(a) the LQR controller is proven to be able to stabilize the system when the perturbation

torque, τd , is less than 5.1[Nm]. Thus a disturbance pulse of 5.2[Nm] is applied for 1[ms] at t = 3[s]

to move the system outside of the LQR workspace and test the functionality of the reference input in

Eq. 4.50. Figure 4.37 shows how the system is able to utilize the reference input, u0, when the system

moves outside the LQR balance controller workspace, with limits from Eq. 4.47. The controller is able

to accelerate the inverted pendulum angle, θp , from the angular limitation of 110◦ in negative direc-

tion to thereby accelerate in positive direction, and move bicycle angle towards its upright position

due to the counteracting torque. As the angle of θb is moved slowly towards the upright position, the

PD-controller slowly controls the angle of θp towards the desired angle of zero. Thereby the angu-

lar velocities, Ωb and Ωp , are moved towards zero and the LQR balance controller is activated when

the system angles reaches the LQR region of attraction. However, as the figure shows that the con-
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trol torque becomes excessively large, and exceeds the maximum torque possible to apply from the

system actuator, the reference input, u0, in Eq. 4.50 is not applicable for the real life bicycle system.

4.3.3 Concluding Remarks

As the swing-up design only utilizes the states of θp andΩp in the PD-controller of Eq. 4.35, the con-

troller is designed to stabilize the angle of θp around a desired angular value of zero, independently

of the bicycle angle, θb . Thus the PD-controller is not designed to control θp dependent of the bi-

cycle angle. Rather the gains are tuned to utilize the angular oscillations of θp and move the bicycle

towards its upright position as a result of the counteracting torque. First the PD-controller, with in-

put reference u0 = 0, is utilized as a swing-up controller, where the parameters are tuned based on

an initial positions at the angular limitations of (θi ni t
b ,θi ni t

p ) = (30◦,110◦) as in Eq. 4.45. As illustrated

in Figure 4.28, the system is able to utilize the PD-controller and move the system states within the

LQR region of attraction and activate the LQR balance controller for system stabilization. Further on

the system is able to stabilize when perturbation occur. By enlarging the LQR workspace limits, β1

and β2, as presented in Eq. 4.47, the system is able to utilize the LQR balance controller to stabilize

the system angles when perturbation occur. As shown in Figure 4.30(a) the system stabilization is

performed without exceeding the maximum torque of the DC motor actuator, when the perturbation

torque, τd , is less or equal to 5.1[Nm]. If the perturbation torque becomes larger, the system is un-

able to utilize the LQR controller for system stabilization, and the angles are moved outside the LQR

workspace. As the system angles are too far away from the angular limits, the PD-controller with fixed

controller parameters of Eq. 4.45 is unable to move the system angles towards the LQR region of at-

traction, while simultaneously controlling the angular velocities Ωb and Ωp towards zero. Thereby

the system controller is unable to stabilize the state angles at the upright position, as shown in Figure

4.31. By utilizing a more strict workspace limit of θp , as in Eq. 4.46, the controller is able to utilize the

PD-controller and move the system states towards zero to activate the LQR balance controller when

perturbation occur, as shown in Figure 4.29. The disadvantage of this controller functionality is that

the control torque exceeds the maximum torque possible to apply from the system actuator. Thereby

the larger workspace limit of θp , as given in Eq. 4.47, has to be utilized on the real life bicycle system.

This implies that the system must be allowed to fall to the angular limits and obtain angular velocities

Ωb = Ωp = 0 to reinitialize the PD-controller with (θi ni t
b , θi ni t

p ) = (30◦,110◦), when the angles moves

outside of the workspace of the LQR balance controller. Therefrom the PD-controller is activated, with

controller parameters from Eq. 4.45, to move the angles back into the LQR region of attraction, while

simultaneously controlling the angular velocities towards zero, to activate the LQR balance controller

for system stabilization.
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As the PD-controller oscillates the inverted pendulum angle, θp , independently of the bicycle an-

gle, θb , to move the system angles within the LQR region of attraction, the input reference, u0, was

investigated to improve the controller performance. By use of the saturation function of Eq. 4.48, the

input reference is able to utilize the large inverted pendulum acceleration and move the bicycle to-

wards its upright position. As the control torque exceeds the maximum possible actuation torque, the

controller design and tuning is not applicable for the bicycle system with angular limitation.

Further on the "atan" function, of 4.50, is utilized, including the angular velocity of the bicycle. With

the idea of utilizing the reference input function when perturbation occur, the robustness is tested.

The system simulation in Figure 4.37 illustrates how the swing-up controller is able to move the system

states back within the LQR region of attraction when perturbation occur. With the slow outer control-

loop, the angle of θp is following the reference of u0, as shown in Figure 4.35. This property should be

taken into account when a new input reference controller, u0, is designed. Similar to the saturation

function, the "atan" reference input function results in large acceleration of the inverted pendulum

to move the bicycle angle towards the upright position. Thereby the resulting control torque exceeds

the maximum actuation torque. Thus, to improve the stabilization controller by use of the reference

inputs of Eq. 4.48 and 4.50, the system actuator has to be upgraded to give the desired control torque

required for these controller designs.
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4.3.4 Controller Implementation

Partially Feedback Linearized LQR Controller:

"controller_FeedbackLinearizedLQR" is the implementation of the LQR controller designed by lin-

earization around the upright equilibrium of the partially feedback linearized system, presented in

Eq. 4.40 and Section 4.3.1.

1 function tau = FeedbackLinearization_LQR(x)

2 l = 0.72; % [m] approximately

3 rb = 0.4; % [m] approximately

4 rp = 0.2; % [m] approximately

5 mb = 31.118; % [kg] approximately

6 mp = 5; % [kg] approximately

7 g = 9.81; % [m/s^2] gravity acceleration

8 Ib = 0; % [Nm^2] Moment of Inertia of bicycle

9 Ip = 0; % [Nm^2] Moment of Inertia of pendulum

10

11 % System Energy

12 m11 = Ib+Ip+mb*rb^2+mp*l^2+mp*rp^2+2*mp*rp*l*cos(x(2));

13 m12 = Ip+mp*rp^2+mp*rp*l*cos(x(2));

14 m22 = Ip+mp*rp^2;

15

16 T = 1/2*m11*x(3)^2+m12*x(3)*x(4)+1/2*m22*x(4)^2;

17 U = (mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

18 E = T+U;

19 E0 = (mb*rb+mp*l)*g+mp*rp*g;

20 E_c = E-E0;

21

22 J_tot = mb*rb^2+mp*l*sin(x(2))^2;

23

24 % Torque parts of the diff.eq. of Omegap, J_tot*dOmegap/dt = T_pc+T_pg+Tptau*tau:

25 T_pc = rp*mp*l*sin(x(2))*((x(3)+x(4))^2+((mb*rb^2)/(mp*rp^2)+(l/rp)^2)*...

26 (x(3)^2)+(l/rp)*cos(x(2))*(x(3)^2+(x(3)+x(4))^2));

27 T_pg = -g*mp*l*((1+(mb*rb)/(mp*l))*(1+(l/rp)*cos(x(2)))*sin(x(1))-...

28 ((mb*rb^2)/(mp*rp*l)+l/rp+cos(x(2)))*sin(x(1)+x(2)));

29 T_ptau = 1+(mb*rb^2)/(mp*rp^2)+(l/rp)^2+2*(l/rp)*cos(x(2));

30

31 % Controller u:

32 u = -1000*[-9.1805 -0.5702 -2.1548 -0.1739]*[x(1) x(2) x(3) x(4)]';

33 tau = (J_tot*u-T_pc-T_pg)/T_ptau;
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Partially Feedback Linearized Stabilization Controller w/ input reference u0:

"FeedbackLinearization_StateSpace" is the implementation of the feedback linearized stabilization

controller, with LQR balance controller and swing-up PD-controller. Note that the controller imple-

mentation shows the different choices of reference input, u0, which can be chosen in simulation. The

function "hysteresis" is equivalent to the function presented in the controller implementation in Sec-

tion 4.1.7, and is utilized to set the limits of the LQR balance controller in real time.

1 function [tau, LQR_control] = FeedbackLinearization_StateSpace(x,t,control_state)

2

3 l = 0.72; % [m] approximately

4 rb = 0.4; % [m] approximately

5 rp = 0.2; % [m] approximately

6 mb = 31.118; % [kg] approximately

7 mp = 5; % [kg] approximately

8 g = 9.81; % [m/s^2] gravity acceleration

9 Ib = 0; % [Nm^2] Moment of Inertia of bicycle

10 Ip = 0; % [Nm^2] Moment of Inertia of pendulum

11

12 % System Energy

13 m11 = Ib+Ip+mb*rb^2+mp*l^2+mp*rp^2+2*mp*rp*l*cos(x(2));

14 m12 = Ip+mp*rp^2+mp*rp*l*cos(x(2));

15 m22 = Ip+mp*rp^2;

16

17 T = 1/2*m11*x(3)^2+m12*x(3)*x(4)+1/2*m22*x(4)^2;

18 U = (mb*rb+mp*l)*g*cos(x(1))+mp*rp*g*cos(x(1)+x(2));

19 E = T+U;

20

21 E0 = (mb*rb+mp*l)*g+mp*rp*g;

22 E_c = E-E0;

23

24 % Inertia-term J_tot:

25 J_tot = mb*rb^2+mp*l*sin(x(2))^2;

26

27 % Torque parts of the diff.eq. of Omegap, J_tot*dOmegap/dt = T_pc+T_pg+Tptau*tau:

28 T_pc = -rp*mp*l*sin(x(2))*((x(3)+x(4))^2+((mb*rb^2)/(mp*rp^2)+(l/rp)^2)*...

29 (x(3)^2)+(l/rp)*cos(x(2))*(x(3)^2+(x(3)+x(4))^2));

30 T_pg = -g*mp*l*((1+(mb*rb)/(mp*l))*(1+(l/rp)*cos(x(2)))*sin(x(1))-...

31 ((mb*rb^2)/(mp*rp*l)+l/rp+cos(x(2)))*sin(x(1)+x(2)));

32 T_ptau = 1+(mb*rb^2)/(mp*rp^2)+(l/rp)^2+2*(l/rp)*cos(x(2));
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33

34 % PD-Controller parameters:

35 kp = 700; % w0^2

36 kd = 0.4598*2*sqrt(kp); % 2*zeta*sqrt(kp)

37

38 % LQR Region of attraction:

39 LQR_lim_x1 = 0.6/180*pi;

40 LQR_lim_x2 = 1.2/180*pi;

41

42 %Set LQR balance controller workspace limits:

43 beta_1 = pi/6;

44 beta_2 = 100/180*pi;

45 limit = [beta_1 beta_2 LQR_lim_x1 LQR_lim_x2];

46 if t == 0

47 [x_lim, LQR_control] = hysteresis(x,limit,false);

48 else

49 [x_lim, LQR_control] = hysteresis(x,limit,control_state);

50 end

51

52 % CONTROLLER:

53 x1_lim = x_lim(1);

54 x2_lim = x_lim(2);

55 % LQR balance controller:

56 if mod(abs(x(1)),2*pi)<=x1_lim && mod(abs(x(2)),2*pi)<=x2_lim && LQR_control == 1

57 tau = -[-975.6281 -57.2364 -227.3441 -19.7419]*[x(1) x(2) x(3) x(4)]';

58 state = 2;

59 % Swing-up PD-controller:

60 else

61 u0 = 0;

62

63 % Uncomment if u0 with saturation is to be utilized:

64 % u0 = 97*sat2(E_c*x(3));

65

66 % Uncomment If u0 with atan is to be utilized:

67 % alpha = 105/180*pi;

68 % u0 = kp*alpha*atan(x(3));

69

70 u = -kp*x(2)-kd*x(4)+u0;

71 tau = (J_tot*u-T_pc-T_pg)/T_ptau;

72 state = 1;

73 end
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Discussion and Further Work

5.1 Discussion

In this thesis, the bicycle system is presented as an Acrobot with angular limitations. The system

equations of motion are derived by use of Lagrange, without joint friction and energy dissipation as

the system joints does not contribute with friction in their respective rotational axis. Utilization of

Lagranges equation of motion is based on the property of a structured set of operations for derivation

of system equations. Further on the moments of inertia, Ib and Ip , can be included into the inertia

matrix (M)(θ) for the complete design of the stabilization controller, if required.

With system actuation from the DC motor mounted on the bicycle frame, Chapter 2.5 shows how

the system response is highly improved when the motor is equipped with a current controller. Not

only is the system response improved with the current controller, but the motor can be protected to

prevent demagnetization of the permanent magnets and a smaller converter can be used. This mo-

tor investigation shows preliminaries for the motor system, needed to give a reliable actuator for the

physical bicycle system.

When the system is modeled as an Acrobot, limitations has to be included into the system model

to get the complete model of the autonomous bicycle with a mounted inverted pendulum. These

limits are set by the physical angular limitations of the bicycle system to obtain an equivalent mathe-

matical system model. As the goal is to model the real bicycle system as an Acrobot within the angular

limitation region, this is a very important part of the system model as the inverted pendulum systems

presented in the various literature has system angles in the range of [−π,π) and utilizes full swing-up

control. To move the bicycle angle, θb , away from the limit of 30◦, a negative acceleration of θp has to

be applied for thereafter apply a torque accelerating θp in the positive direction, generating a coun-
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teracting torque onto the bicycle. This counteracting torque moves the bicycle from the angular limit

towards the upright position. The requirement of using the mounted inverted pendulum to increase

the system energy and move the bicycle results in a challenging control design.

When the control theory was applied, the system was linearized and the LQR controller was designed.

This controller was designed for balancing control around the upright unstable system equilibrium.

Due to the sing-input multiple-output system, the LQR controller was designed due to the fact that

it is an optimal pole placing controller, giving a more suitable control design than the single-input

single-output controllers, as P-, PI- and PID-controllers. The system could also be linearized around

the measured system angles in real time, for utilization of the LQR as a swing-up controller. This was

not performed in this thesis as the time was spent on investigation of nonlinear controllers for system

swing-up.

Due to the angular limitations the nonlinear energy-based Acrobot swing-up controllers, presented in

Section 4.1 and 4.2, does not satisfy the system requirements of bicycle stabilization within the limits.

The idea was to utilize the designs by Lai et al. and Kobayashi et al. to obtain a functional stabiliza-

tion controller. As the controllers are designed to rotate outside of the bicycle system limited angular

region, by swinging back and forth, the control torque is applied to increase the energy by use of the

bicycle angle. By moving the angle of θb closer to the upright equilibrium for each swing while simul-

taneously controlling the angle of θp towards zero, the stabilization designs applies the LQR balance

controller when the angles are moved within the LQR region of attraction for system stabilization.

Thereby the controllers are designed for an unlimited Acrobot, and does not satisfy the system re-

quirement of utilizing the inverted pendulum to increase system energy and move the states towards

zero within the bicycle angular limits.

As the stabilization control is unsuccessful for the controllers presented by Lai et al. and Kobayashi

et al., the partially feedback linearization is introduced. The feedback linearized system gives a lin-

ear second order system of the inverted pendulum acceleration, θ̈p , which can simplify the controller

design for the bicycle system. By implementing a swing-up PD-controller, the goal is to utilize a con-

trolled oscillatory system response of the inverted pendulum angle, θp , to give a counteracting torque

onto the bicycle link and move the system states. As the PD-controller oscillates the angle of θp , the

goal is to utilize the controller output, u = θ̈p , to control the bicycle angular velocity, Ωb , such that

θb = 0. The control input, u0, was investigated to improve the controller performance and include the

states of θb andΩb into a nonlinear input reference function. As these input references is not applica-
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ble to the bicycle system, due to a control torque exceeding the maximum actuation torque, the input

reference of u0 = 0 must be utilized. When the input reference of u0 = 0 is utilized, the system must

be allowed to fall to the limits and obtain zero angular velocities and reinitialize the PD-controller,

when the system moves outside of the LQR balance controller workspace. Otherwise the controller

can be further investigated by improved functions of u0, or by finding new swing-up controllers. An-

other solution is to utilize the current swing-up controller and further investigate an improved balance

controller with larger region of attraction.

5.2 Further Work

Improve Balance Controller:

Design an improved balance controller which has a larger region of attraction. Thereby the

existing PD-controller can be utilized to move the system angles within the region of attraction

of the balance controller, when the states are moved outside of the balance workspace.

Improved Swing-Up Controller:

By designing an improved swing-up controller, the complete stabilization controller can utilize

the existing LQR balance controller. The swing-up controller can be improved by further inves-

tigation of the PD-controller input reference, u0, or by looking at a new controller strategy for

system swing-up.

Sensitivity Analysis on System and Controller Parameters:

It is a large uncertainty to the controller parameters as they are tuned based on the approx-

imate system parameter values. The PD-controller parameters, kp and kd , were finely tuned

through simulation, thereby a sensitivity analysis should be performed to analyze and verify the

controller functionality before the complete controller is implemented on the real life bicycle

system.

Limitation modification:

As the system limitations are defined in the implementation made by Ånnestad in [14], as pre-

sented in Section 2.1, the system has been proven to utilize state angles outside the limits as-

sumed by Ånnestad. Thereby the simulations of the nonlinear control verifies that these con-

troller limits on the system implemented by Ånnestad in [14] has to be changed, before com-

plete controller implementation.
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Controller implementation

When the complete stabilization controller is derived, the controller should be implemented

for use in the real bicycle system. The implementation should be included in the bicycle system

implementation from [14] done in Simulink.

Filter theory and measurements:

The required accuracy of the position and speed measurements has to be further investigated.

Different types of filter theory can be applied. The system consist of sensor measurements,

which contains noise and can be filtered by use e.g. a first order low-pass filter, as presented in

Section 3.9.4. Further research can be conducted, and observers can be included. Due to the

nonlinear system the Extended Kalman filter might be applicable.

Testing complete controller implementation on the physical bicycle system

When the complete controller is implemented in the bicycle system model designed by Ånnes-

tad, testing should be performed. These test results will verify if the complete stabilizing con-

troller satisfies the requirements for stabilization of the physical system. The results can be

compared with results from system simulation, and analyzed.
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Conclusion

The goal of this thesis was to investigate and develop a stabilization controller for the bicycle system,

by use of the previously mathematical system model in the authors own work [12]. By presenting the

system as an Acrobot with angular limitations, the two controller strategies of Acrobot control, pre-

sented in [12] has been investigated. Through simulation, the controller implementations by Lai et al.

and Kobayashi et al. has been verified as inapplicable stabilization controllers for the bicycle system.

The design by Lai et al., presented in Section 4.1, utilizes the energy-based swing-up controller with

PD-structure to swing up the system states to the upright unstable equilibrium. As illustrated in the

simulation in Figure 4.7, the controller utilizes the angular velocity of the bicycle, Ωb , to increase the

system energy, and thereby moves the angles outside the angular limits of the bicycle. By applying

a small control torque, the controller moves the system states closer to the upright position by each

swing. The PD-structure is utilized to give the desired control torque and control the inverted pen-

dulum angle towards zero, for utilization of the LQR balance controller. Neither the implementation

based on Kobayashi et al. was able to stabilize the system within the angular limitations. This design

did not utilize the system states in the same way as Lai et al. The controller was based on the property

of a negative semi-definite time derivative of the energy function, Ez(θ, θ̇), and was unable to move

the system states within the balance subspace in simulation. However, both controllers illustrated

how the increased system energy has to be applied from the inverted pendulum angle, θp , instead of

the bicycle angle. As the angular velocities are zero when the angles are at the limits of the bicycle

system, the inverted pendulum must be utilized to increase the system energy and move the bicycle

angle towards its upright position.

When the controller designs presented in the authors previous work [12], was verified as inapplicable

stabilization controller for the bicycle system, further research was conducted. The partially feedback

linearized system was derived, resulting in a linear second order system coupled with a nonlinear
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system, as the presentation in Eq. 4.32. A simplified swing-up controller was designed by use of a

PD-controller, presented in Eq. 4.35. As the swing-up design only utilizes the states of θp and Ωp ,

the controller was designed to stabilize the angle of θp around a desired angular value of zero, inde-

pendently of the bicycle angle, θb . Thus the gains are tuned to utilize the angular oscillations of θp

and move the bicycle towards its upright position as a result of the counteracting torque. First the

PD-controller, with input reference u0 = 0, was utilized as a swing-up controller, where the parame-

ters are tuned based on an initial positions at the angular limitations of (θi ni t
b ,θi ni t

p ) = (30◦,110◦), as

in Eq. 4.45. As illustrated in Figure 4.28, the system was able to utilize the PD-controller and move the

system states within the LQR region of attraction and activate the LQR balance controller for system

stabilization. Further on the controller robustness was tested. As shown in Figure 4.30(a) the sys-

tem stabilization was performed without exceeding the maximum torque of the DC motor actuator,

when the perturbation torque, τd , was less or equal to 5.1[Nm]. If the perturbation torque became

larger, the system was unable to utilize the LQR controller for system stabilization, and the angles are

moved outside the LQR workspace. As the system angles were too far away from the angular limits,

the PD-controller with fixed controller parameters of Eq. 4.45 was unable to move the system angles

towards the LQR region of attraction, while simultaneously controlling the angular velocities Ωb and

Ωp towards zero. Thereby the system controller was unable to stabilize the state angles at the upright

position, as shown in Figure 4.31. The system must be allowed to fall to the angular limits and obtain

angular velocities Ωb =Ωp = 0, when the angles moves outside of the workspace of the LQR balance

controller. From the limits, the PD-controller can be reinitialized, with controller parameters from Eq.

4.45, to move the angles back into the LQR region of attraction, while simultaneously controlling the

angular velocities towards zero, to activate the LQR balance controller for system stabilization.

As the PD-controller oscillates the inverted pendulum angle, θp , independently of the bicycle an-

gle, θb , to move the system angles within the LQR region of attraction, the input reference, u0, was

investigated to improve the controller performance, without success. The reference input functions

presented in Eq. 4.48 and 4.50 was utilized to include bicycle angle, θb , and the angular velocity of the

bicycle, Ωb , for improved swing-up control. The reference inputs were unable to improve the system

performance, as the input reference gave a controller torque which exceeded the maximum actuation

torque when perturbation occurred. When the disturbance torque was applied onto the system, the

resulting controller torque gave an excessively large acceleration of the inverted pendulum. Thus, to

improve the stabilization controller by use of the reference inputs from Eq. 4.48 and 4.50, the system

actuator has to be upgraded to give the desired control torque required for these controller designs.
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Thereby the swing-up PD-controller with u0 = 0 is the only stabilization controller which success-

fully stabilizes the bicycle system without exceeding the maximum actuation torque. To improve the

complete stabilization controller for system implementation, the future work should focus on utiliza-

tion of the LQR balance controller and improve the swing-up controller. Another method is to focus

on utilization of the current PD swing-up controller and further investigate a balance controller with

larger region of attraction.
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Appendix A

Appendix A

In this appendix, the derivation and calculations of the system model presented in Chapter 3 will be

shown. The model was derived in the authors own work in [12].

A.1 System Coordinates

In Section 3.2 the system coordinates was presented. The relative generalized coordinates used in the

model derivation are illustrated in Figure 3.2, where (xi , yi , zi ) is the initial frame and θp is relative

to θb . The rotation is around the zi -axis, as shown in Figure A.1, with respect to the right-hand rule.

The coordinate frames of the bicycle and inverted pendulum are denoted (xb , yb , zb) and (xp , yp , zp ),

respectively. The two coordinate systems are defined as:

~xb = cos θb ·~xi + si n θb ·~yi

~yb =−si n θb ·~xi + cos θb ·~yi

~zb =~zi

~xp = cos(θb +θp ) ·~xi + si n(θb +θp ) ·~yi

~yp =−si n(θb +θp ) ·~xi + cos(θb +θp ) ·~yi

~zp =~zi

(A.1)
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Figure A.1: Rotation About The z-axis

A.2 Vectorial Length and Velocity

When the system masses are presented as point masses, the coordinates system presented in Section

3.2 are presented as vectorial, giving the elements both size and direction. The system energy was

derived by use of vectorial notation, and use of Eq. (6.400) in [7]:

~va ≡
i d

d t
~ra

=~v0 +
ad

d t
~ra +~ωi a ×~ra

(A.2)

where subscript a denotes a reference coordinate frame relative to the initial reference frame denoted

i . Note that ~v0 is zero in the upcoming equations, derived in [12]. The system parameters are illus-

trated in Figure 3.3.
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A.2.1 System Mass mb

The position of mb , denoted~rb , is placed along the defined y-axis of the bicycle coordinate frame:

~rb = rb ·~yb (A.3)

By use of Eq. A.2, the resulting vectorial velocity was derived as:

~vb =
i d

d t
~rb

=
bd

d t
(rb ·~yb)+~ωi b × (rb ·~yb)

b d
d t represents time derivative with respect to the bicycle coordinate frame, b. As neither rb or ~yb

changes in time with respect to the bicycle frame, the equation becomes:

~vb =~ωi b × (rb ·~yb)

Where ~ωi b is the angular velocity of the bicycle mass center, mb , rotating around the defined zb-axis

in Eq. A.1. This gives: ~ωi b =−θ̇b ·~zb , resulting in:

~vb = (−θ̇b ·~zb)× (rb ·~yb)

=−(θ̇brb)~zb ×~yb

= rb θ̇b ·~xb

(A.4)

A.2.2 System Actuator Joint

As the system actuator joint is not a mass point, the joint does not contribute with system energy.

Nonetheless, in [12], the vectorial length and velocity was derived for use in the derivation of the

length and velocity of the system mass mp . The joint position is placed along the defined y-axis of the

bicycle coordinate frame, with length l :

~r j = l ·~yb (A.5)

By use of Eq. A.2, the time derivative of the joint position gives the vectorial velocity:

~v j =
bd

d t
(l ·~yb)+~ωi b × (l ·~yb)

=~ωi b × (l ·~yb)

=−(θ̇ ·~zb)× (l ·~yb)

= l θ̇b ·~xb

(A.6)
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A.2.3 System Mass mp

With the pendulum mounted on the system actuator joint, the position~rp was derived as:

~rp =~r j + rp ·~yp

= l ·~yb + rp ·~yp

(A.7)

As for the mass point mb , Eq. A.2 was applied, giving:

~vp =~v j oi nt +
i d

d t
~rp

=~v j oi nt +
p d

d t
(rp ·~yb)+~ωi p × (rp ·~yp )

(A.8)

Where
p d
d t represents time derivative with respect to the pendulum coordinate frame, p. As for the

bicycle, neither rp or ~yb changes in time with respect to the pendulum frame. The velocity is then

written as:

~vp =~v j oi nt +~ωi p × (rp ·~yp )

~ωi p is the angular velocity of mp rotating around the defined zp -axis in Eq. A.1. This gives: ~ωi p =
−(θ̇b + θ̇p ) ·~zp , resulting in:

~vp =~v j oi nt − (θ̇b + θ̇p ) ·~zp × (rp ·~yp )

= l θ̇b ·~xb + rp (θ̇b + θ̇p ) ·~xp

(A.9)
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Figure A.2: Defined heights for system potential energy

A.3 System Energy

As the position and velocity of the system masses has been derived, the potential and kinetic energy of

the point masses was derived. These energy expressions are utilized in the Lagranges equation of mo-

tion, Eq. 3.5, for derivation of the mathematical equation of motion of the bicycle system presented

in Section 3.5.

A.3.1 Potential Energy

Figure A.2 illustrates the defined heights for the bicycle system, giving the potential energy of the

system masses mb and mp , with heights hb and hp defined as:

hb = rb cos θb

hp = l cos θb + rp cos(θb +θp )

The corresponding potential energy of the system masses becomes, as shown in Section 3.4:

Ub = mb g hb

= mbrb g cos θb

Up = mp g hp

= mp g (l cos θb + rp cos(θb +θp )
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A.3.2 Kinetic Energy

By use of the vectorial velocity equations derived in [12] and shown in Appendix A.2, the kinetic energy

of the point masses was derived. For the system mass mb , the kinetic energy is given by:

Tb = 1

2
mb~vb ·~vb

= 1

2
mb[−rb θ̇b ·~xb] · [−rb θ̇b ·~xb]

= 1

2
mb(rb θ̇b)2

(A.12)

where the dot product of~xb is: ~xb ·~xb = |~xb ||~xb |cos θxb xb = 1.

The kinetic energy of the system mass mp is a bit more complex. By use of the vectorial velocity

equation of ~vp , the derivation in [12] was:

Tp = 1

2
mp~vp ·~vp (A.13a)

= 1

2
mp [l θ̇b ·~xb + (θ̇b + θ̇p )rp ·~xp ] · [l θ̇b ·~xb + (θ̇b + θ̇p )rp ·~xp ] (A.13b)

= 1

2
mp [(l θ̇b)2 ·~xb ·~xb + l rp θ̇b(θ̇b + θ̇p ) ·~xb ·~xp + l rp θ̇b(θ̇b + θ̇p ) ·~xp ·~xb + r 2

p (θ̇b + θ̇p )2 ·~xp ·~xp ]

(A.13c)

= 1

2
mp [(l θ̇b)2 +2l rp θ̇b(θ̇b + θ̇p )~xb ·~xp + r 2

p (θ̇b + θ̇p )2] (A.13d)

= 1

2
mp [(l θ̇b)2 +2l rp θ̇p (θ̇b + θ̇p )cos θp + r 2

p (θ̇b + θ̇p )2] (A.13e)

Where the rule of vectorial dot product has been utilized, giving: ~xb ·~xb = 1, ~xp ·~xp = 1 and ~xb ·~xp =
~xp ·~xb in Eq. A.13c.

Further on the dot product of ~xb and ~xp in Eq. A.13d was calculated. Using Eq. A.1 and the fact

that the perpendicular basis vectors ~xa and ~ya has the property: ~xa ·~ya =~ya ·~xa = 0, the dot product

is:

~xb ·~xp = [cos θb ·~xi + si n θb ·~yi ] · [cos(θb +θp ) ·~xi + si n(θb +θp ) ·~yi ]

= cos θb cos(θb +θp )+ cos θb si n(θb +θp ) ·~xi ·~yi + si n θb cos(θb +θp ) ·~yi ·~xi + si n θb si n(θb +θp )

= cos θb cos(θb +θp )+ si n θb si n(θb +θp )
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Using the trigonometric addition formula: cos(α−β) = cos α cos β+ si n α si n β, the dot product can

be written as:

~xb ·~xp = cos(θb − (θb +θp )) = cos(−θp ) = cos θp

Giving the final expression for the kinetic energy of mp in Eq. A.13e.

A.4 The System Lagrange Equation of Motion

The equation of motion of the bicycle system, presented as an Acrobot, in Section 3.5, was derived

by use og the Lagrangian function in Eq. 3.6 and the Lagranges equation of motion, Eq. 3.5. The

Lagrangian function is defined as:

L = T −U

= 1

2
(mbr 2

b +mp l 2)θ̇2
b +mp rp l θ̇b(θ̇b + θ̇p )cos θp + 1

2
mp r 2

p (θ̇b + θ̇p )2

− (mbrb +mp l )g cos θb −mp rp g cos(θb +θp )

(A.14)

The two degrees of freedom q = [θb ,θp ]T in Eq. 3.5 gives the set of Lagrangian Equations of motion:

d

d t

(
∂L

∂θ̇b

)
− ∂L

∂θb
= 0 (A.15a)

d

d t

(
∂L

∂θ̇p

)
− ∂L

∂θp
= τ (A.15b)

Where:

∂L

∂θb
= (mbrb +mp l )g si n θb +mp rp g si n(θb +θp ) (A.16a)

∂L

∂θ̇b
= (mbr 2

b +mp l 2)θ̇b +mp rp l cos θp (2θ̇b + θ̇p )+mp r 2
p (θ̇b + θ̇p ) (A.16b)

∂L

∂θp
=−mp rp l θ̇b(θ̇b + θ̇p ) si n θp +mp rp g si n(θb +θp ) (A.16c)

∂L

∂θ̇p
= mp rp l θ̇b cos θp +mp r 2

p (θ̇b + θ̇p ) (A.16d)
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By use of the equations Eq. A.15 and Eq. A.16 the equation of motion for θb has been derived as:

d

d t

(
∂L

∂θ̇b

)
− ∂L

∂θb
= d

d t

(
(mbr 2

b +mp l 2)θ̇b +mp rp l cos θp (2θ̇b + θ̇p )+mp r 2
p (θ̇b + θ̇p )

)
(A.17a)

− (mbrb +mp l )g si n θb +mp rp g si n(θb +θp )

= (mbr 2
b +mp l 2)θ̈b +2mp rp l θ̈b cos θp −2mp rp l θ̇b θ̇p si n θp

+mp rp l θ̈p cos θp −mp rp l θ̇2
p si n θp +mp r 2

p (θ̈b + θ̈p ) (A.17b)

− (mbrb +mp l )g si n θb −mp rp g si n(θb +θp )

= (mbr 2
b +mp l 2 +mp r 2

p +2mp rp l cos θp )θ̈b + (mp r 2
p +mp rp l cos θp )θ̈p

−2mp rp l θ̇b θ̇p si n θp −mp rp l θ̇2
p si n θp − (mbrb +mp l )g si n θb (A.17c)

−mp rp g si n(θb +θp )

For the mounted inverted pendulum, θp , the equation of motion has been derived as:

d

d t

(
∂L

∂θ̇p

)
− ∂L

∂θp
= d

d t

(
mp rp l θ̇b cos θp +mp r 2

p (θ̇b + θ̇p )
)
+mp rp l θ̇b(θ̇b + θ̇p ) si n θp (A.18a)

−mp rp g si n(θb +θp )

= mp rp l θ̈b cos θp −mp rp l θ̇b θ̇p si n θp +mp r 2
p (θ̈b + θ̈p ) (A.18b)

+mp rp l θ̇b(θ̇b + θ̇p ) si n θp −mp rp g si n(θb +θp )

= (mp r 2
p +mp rp lcos θp )θ̈b +mp r 2

p θ̈p +mp rp l θ̇2
b si n θp (A.18c)

−mp rp g si n(θb +θp )

From Eq. A.15, A.17c and A.18c the final system equation of motion was derived, as presented in Eq

3.8 and 3.9.
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Appendix B

In this appendix, some of the system implementations for controllers in Chapter 4 are presented. The

implementations are developed in Matlab®and Simulink®.

B.1 Implementation of State Space Representation in Simulink

Figure B.1 shows the implementation of right hand side of the differential equation in Eq. 3.20a. The

terms are categorized in centrifugal and Coriolis, gravity and actuator related torques for system anal-

ysis.
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Figure B.1: Implemented State Space Representation of Bicycle System in Simulink®
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Figure B.2: Implemention of Right Hand Side of Eq. 3.20b in Simulink®

Figure B.2 illustrates the implementation of the right hand side of the differential equation in Eq.

3.20b, where the terms are categorize in centrifugal and Coriolis, gravity and actuator related torques,

as the implementation in Figure B.1. Both implementations are utilized in the complete system model

of Eq. 3.20 presented in Figure 4.21.
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Appendix C

This appendix presents the data sheets for the gearbox and system actuator DC motor, presented in

Section 2.4 and 2.5.

C.1 Harmonic Drive AG PMG-14A-72-S

On the next page, the data sheet of the gearbox is presented. The gearbox is produced by Harmonic

Drive AG, and is the model PMG-14A-72-S, which is a PMG series gearbox of size 14A and gear ratio

72. The mark S implies that the gearbox is equipped with input shaft.
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PM
G

Bestellbezeichnungen und Technische Daten
Ordering Code and Technical Data

Baureihe 
Series

Baugröße  
Size

Untersetzung   
Ratio

Version 
Version

Sonderausführung 
Special design

Mini-Getriebeboxen 
Baureihe PMG

PMG series 
precision gearboxes

5A 50 80 100 M 
mit Eingangsnabe für Motoradaption

Close coupled model for motor adaption

S  
mit Eingangswelle 
with input shaft

Nach  
Kundenanforderung

According to 
customer requirements

8A 50 72 100

11A 50 72 100

14A 50 72 88 100 110

Bestellbezeichnung
Ordering Code

        PMG         – 8A – 100    –                         M –                   SP

1)	 Die maximale radiale Last bezieht sich auf die Wellenmitte der Antriebs- bzw. 
Abtriebsseite.

2)	 Massenträgheitsmoment auf der Antriebsseite.

1)	 The radial load is based on a force applied at the midpoint of the shaft 
extension.

2) 	The moment of inertia is measured at the input of the gearbox.

Bestellbezeichnungen■■ Ordering Code■■

Leistungsdaten■■ Rating Table■■

PMG 
Baugröße

Unter- 
setzung

Grenze für 
wieder-

holbares 
Spitzendreh- 

moment

Grenze 
für Durch-

schnittsdreh-
moment

Nenn- 
dreh- 

moment

Grenze für 
Kollisions-
drehmo-

ment

Nenn- 
dreh- 
zahl

[min-1]

Maximale 
Antriebs-
drehzahl 

Fett-
schmierung

[min-1]

Grenze für
mittlere 
Antriebs-
drehzahl
[min-1]

Abtriebswelle
Output shaft

Antriebswelle 
Typ S

Input shaft
type S

Massenträg-
heitsmoment 2)

Moment 
of inertia 2)

Gewicht
Weight

Max.  
radiale 
Last 1)

Max. 
radial 
load 1)

Max.  
axiale 
Last
Max. 
axial 
load

Max.  
radiale 
Last 1)

Max. 
radial 
load 1)

Max.  
axiale 
Last
Max. 
axial 
load

Typ 
M

Type 
M

Typ 
S

Type 
S

Typ 
M

Type  
M

Typ
S

Type 
S

PMG  
size

Ratio

i

Limit for 
repeated 

peak 
torque

Limit for 
average 
torque

Rated  
output 
torque

Limit for 
momentary 

peak 
torque

Rated 
input 
speed
[rpm]

Max. input 
speed gre-

ase 
lubrication

[rpm]

Limit for 
Average

Input
Speed
[rpm]

TR 
[Nm]

TA 
[Nm]

TN 
 [Nm]

TM 
[Nm] [N] [N] [x 10-4 kgcm2] [kg]

5
50 0,3 0,3 0,2 0,4 4500

10000 4900 59 29 8 5 2,5 2,5 0,03 0,03180 0,45 0,45 0,3 0,6 4500
100 0,55 0,55 0,3 0,7 4500

8
50 1,9 1,9 1,5 2,5 3500

6000 3500 196 98 10 5 30 30 0,12 0,12572 2,4 2,3 2,0 3,1 3500
100 2,7 2,7 2,0 3,8 3500

11
50 5,0 4,7 2,5 6,8 3500

5000 3500 245 196 20 10 120 140 0,25 0,2772 5,6 5,4 4,0 8,8 3500
100 7,9 7,6 4,0 10,8 3500

14

50 9,8 7,0 5,4 14,0 3500

5000 3500 392 392 29 10 330 340 0,42 0,495
72 11,8 9,0 7,8 16,0 3500
88 12,7 11,0 7,8 18,0 3500

100 14,7 11,0 7,8 20,0 3500
110 14,7 11,0 7,8 20,0 3500

Tabelle / Table 109.2

Tabelle / Table 109.1

Siehe „Erläuterungen zu Technischen Daten“ im Kapitel „Projektierung mit 
Harmonic Drive Getrieben”.

Please refer to the notes on “Understanding the Technical Data” in section 
“Engineering Data for Harmonic Drive Gears”.
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C.2 Dunkermotoren DC Motor GR 63x55 Performance Data Sheet

On the next page, the performance data sheet of the system actuator DC motor is attached. The sys-

tem parameters applied in Chapter 2.5 is with the nominal battery voltage of 24 [V]. These parameters

from the data sheet are listed in Table 2.1.



10

D.C. Motors
Series GR 63x25 and GR 63x55 

The type GR 63 motors have perma-
nent magnets and high power at small
volume and thus especially suited for
industrial applications, such as 
– Computer and office machines 
– Pumps and compressors 
– Industrial blowers 
– Welding technics 
– General machine construction 
– Medical equipment 
– Door operating drives

Design
These motors are rigidly built and need
no maintenance during their lifetime.

The rotor runs in ball bearings.
The bearing plates are of die cast zinc.

Depending on case-length two ver-
sions are available with max.continuous
torque of 14 Ncm resp.28 Ncm. 

The motors can be combined with
different gears and actual value enco-
ders resp.generators. 

The GR 63 series motors can be
delivered with brakes and/or actual
value encoders resp.generators.

Standard version without second
drive straft and without connector.

Features
– Mount-on dimensions according

to DIN 42016. 
– Independent of mounting position.
– Clockwise and counter-clockwise 

rotation. 
– Insulation according to VDE 0530,

insulation class E. 
– Surface protection.

Standard program
Motors with nominal voltages
12 V, 24 V, 40 V and 60 V represent
our standard motor program 
and should preferably be used.

Load characteristics
The characteristics are examples 
for the standard program with 
the possible winding configurations
of the motors, type GR 63.

Angle dimensions and angle offset
See page 2

Nominal voltage
Nominal speed2)
Nominal torque2)
Nominal current2)
Demagnetization current1)
No load speed1)
No load current1)
Starting torque1)
Efficiency2)
Moment of inertia
Weight

Performance data of motor GR 63x25 

12
3100
13,7
5,2
50
3600
0,6
82
71
400
1,2

12
3000
24
8,7
66
3500
0,8
202
80,5
750
1,7

24
3300
14
2,7
24
3600
0,36
108
74
400
1,2

24
3350
27
4,9
33
3650
0,4
211
80
750
1,7

40
3450
27
2,95
20
3600
0,28
210
82
750
1,7

60
3350
28,3
2,0
13
3600
0,2
200
82
750
1,7

40
3500
13,3
1,65
16
3800
0,205
118
74
400
1,2

60
3300
14,5
1,1
9,5
3600
0,135
116
76
400
1,2

Nominal voltage
Nominal speed2)
Nominal torque2)
Nominal current2)
Demagnetization current1)
No load speed1)
No load current1)
Starting torque1)
Efficiency2)
Moment of inertia
Weight

Performance data of motor GR 63x55

V
min–1

Ncm
A 
A
min–1

A 
Ncm 
%
gcm2

kg

V
min–1

Ncm
A 
A
min–1

A 
Ncm 
%
gcm2

kg

150N
150N applied 20mm from mounting surface

Shaft load capacity axial max.
Shaft load capacity radial max.

All output data are referred to 1) ∂R = 20°C resp. 2) ∆∂w =100 K
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The simulation models designed throughout the semester is included in the zip-file, where the con-

troller implementations in Matlab®/Simulink® are sorted into folders as following:

Controller by Kobayashi et al.:

The folder includes the controller implementation based on Kobayashi et al., presented in Sec-

tion 4.2. This controller implementation is simulated with the bicycle system model with matrix

representation, as given in Eq. 3.8 and 3.9.

Controller by Lai et al.:

The folder includes the controller implementation based on Lai et al., presented in Section 4.1.

This controller implementation is simulated with the bicycle system model with matrix repre-

sentation, as given in Eq. 3.8 and 3.9.

Partially Feedback Linearized System Controllers:

The folder includes the controller implementation of the partially feedback linearized system

controllers presented in Section 4.3. In the controller implementation one can choose between

the different reference input functions of u0, presented in Section 4.3.2. This controller imple-

mentation is simulated with the State Space Differential Equation system, presented in Eq. 3.20.

Note that the LQR-controller utilized in the stabilization controller is the balance controller pre-

sented in Eq. 4.37. The implementation of the partially feedback linearized LQR-controller of

Eq. 4.40 is given in the additional system model in the Simulink®-file.

State Space Differential Equations System Model

This folder includes the system model presented in Section 3.8.1, with the set of differential

equations utilized in Section 4.3.1.
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System Model With Matrix Representation

This folder includes the system model on matrix form, presented in Section 3.5, and utilized in

the simulations of the controller implementations based on Lai et al. and Kobayashi et al., in

Section 4.1 and 4.2.

A "readme.txt"-file is included for description of how to run the system simulations. execution
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