

104 CHAPTER 8. PROTOTYPE UAS SETUP AND TESTING

during the flights was that take-off should not be performed manually since there are too many
things that could go wrong. A launching ramp or some other approach should be used in order
to get a successful take-off every time. The APM system does possess the capability of perform-
ing the take-off and landing autonomously, but in order for that to work the system needs to be
tuned to make autonomous flight possible. A more experience pilot might be necessary to pilot
the plane before the tuning is complete. Once the tuning is completed, the plane will be easier
to fly, thus possibly enabling inexperienced pilots to use the UAS without any problems.

A different issue that was noticed during take-off and landing, was that this particular flying
wing has the motor mount in a very exposed location which makes it prone to impacts. The
plane has no wheels and thus the motor is very exposed during landings and failed take-offs.
The motor might have to be mounted in a more protected area of the plane in order to increase
the robustness of the system. Figure 8.14 illustrates a similar plane design as used in the pro-
totype UAS of this Thesis. The illustration is from a system called Trimble, which is mentioned
in Section 2.3.2, where the motor and propeller is somewhat protected by the wing frame itself
[Trimble]. The system also has a propeller that fold backwards on impacts, which makes it less
prone to breaking if impacts occur. A similar solution could be adopted for the UAS discussed in
this Thesis and it might improve the durability of the UAS and prevent it from breaking during
landing. Vegard Hammerseth mentioned in his Master Thesis that the motor mount of the UAV,
which is the same as used in this Thesis, is made of plastic and thus not very durable [Hammer-
seth, 2013]. The mount should therefore be replaced with some other material at a later stage of
the development.

Figure 8.14: Trimble UAV [Trimble]

The GCS application of the APM worked very well, both during and after flight. It was easy to
see which mode was selected on the aircraft during flight by viewing the flight information on
the GCS application. The GCS also displayed a map showing the flight path of the aircraft, which
was good to use in order to know which areas were actually flown in. The flight logs were easily
accessed post-flight and could then be used for analysis of different flight aspects. The flight
path extracted from the log, as illustrated in Figure 8.13, can be used by the SAR personnel for
determining which areas that were actually covered by the UAV during its flight and they can use
this information for further planning the mission. The UAV could perhaps be ordered to cover
some area one more time, or cover an area that was not covered properly the first time.

Overall, the APM autopilot system proved very feasible for use as part of a SAR UAS. Many of the
needed features are already implemented with the system and using them was not challenging.

8.7. APM TEST SUMMARY AND DISCUSSION 105

In the vision of a SAR UAS as illustrated in Figure 5.2 in Chapter 5, multiple UAS are used and
this will probably be a highly desired capability of a SAR UAS. The GCS application used in this
Thesis does not currently possess the capability of allowing multiple UAV control. However,
there is a newer version being developed that will allow this, thus making it possible to control
multiple UAV using the APM system.

To show the capabilities of the APM GCS application analysis tools, the following example is
included in this Thesis.

8.7.1 Take-Off Crash Analysis

The reason for reviewing the flight logs post-flight might be many. The most obvious reason is
in order to tune the parameters of the PID controllers enabling autonomous flight, or use the
map feature for determining were the UAV has actually flown during the mission. When tuning
the PID controllers of the APM, the autopilots navigation set points can be plotted by the GCS
along with the actual response of the aircraft in order to look for undesired behavior such as slow
response, overshoot, or porpoise response as illustrated earlier. During this Thesis, the reason
for review the flight logs was to determine why the plane had not taken off successfully during
the first flight of Flight Test 2, causing the propeller and mount to be damaged.

Scenario

During the failed take-off of the first flight in Flight Test 2, the plane hit the ground immediately
after being tossed into the air without gaining any altitude. The mount holding the motor to
the plane, and the propeller itself, broke, and the reason for this happening was not known.
Neither the pilot nor the "tosser" noticed anything wrong with what they were doing and the
crash could therefore not be explained. The plane was glued back together and a new propeller
was acquired, and as mentioned, the plane flew successfully during the next flights of Flight Test
2.

A reason for the error that occurred during the first flight might have been that the motor mount
had been damaged during the landing of the last flight in Flight Test 1. When trying to take off,
vibrations might have caused the mount to loosen and as a result, the plane did not gain enough
speed during take-off and thus hit the ground immediately. Another possibility for the error was
discovered when reviewing the log files of the non-successful flight and comparing this to a
successful flight. The review showed some discrepancies between the two flights and this might
be the reason for the crash.

Flight log analysis

Figure 8.15 is a plot from the flight log of the failed, first flight of Flight Test 2. The plot includes
the planes acceleration along the ground, along with throttle, pitch, and roll input given by the
pilot. Figure 8.16 plots the same data from the flight log of the successful, third flight of Flight
Test 2. The x-axis of the plots is the time axis, the left axis is the unit for acceleration values, and
the axis to the right is the axis for the control input values.

The acceleration of the plane is the green line in both plots and the throttle input is the yellow
line. The light blue and red lines are elevation input from the pilot. When the red line goes

106 CHAPTER 8. PROTOTYPE UAS SETUP AND TESTING

up and the blue goes down, it means that the pilot want the flaps of the plane to tilt upwards,
hence causing the plane to fly upwards. By reviewing both plots, two things were particularly
noticeable. The plane was in both cases launched by hand and the point at which the plane
was tossed can be found at the point where the green acceleration line has a significant spike
upwards. This happens in between 38:22 and 38:27 in Figure 8.15, and between 47:26 and 47:41
in Figure 8.16. It is clear that when the plane was tossed during the failed take-off, the throttle
input was only slightly elevated and not at its maximum. This can be seen by the yellow line
(throttle input) not being elevated before the green spike (acceleration) occurs. When reviewing
the plot from the successful take-off, it can be seen that at the point when the plane was tossed,
the throttle input is almost at its maximum. Throttle input was in the successful case given
before the green spike occurs, i.e. before the plane was tossed. Because the throttle input was
given later in the case of the failed take-off, this might have been the reason causing the plane
not to gain enough speed and thus crashing into the ground. The second thing that was noticed
was that during the failed take-off, the elevation input occurred sometime after the plane had
been tossed. This can be seen by noticing that the red and blue lines separate sometime after the
largest green spike starts to elevate in Figure 8.15. During the successful take-off, the elevation
input was applied directly, or simultaneously as the plane was tossed into the air, as seen in
Figure 8.16. This might have cause the plane to point its nose downwards during the failed take-
off and thus not gaining any altitude before hitting the ground.

This analysis, if correct, showed that the reason for the failed take-off was a human error, and
thus amplifies the assumption that an automated take-off routine is needed during SAR opera-
tions. It cannot be expect that a member of the SAR crew will be able to perform a hand launch
of the aircraft successfully every time the UAS is used. As mentioned in Section 8.5.1, even with
trained personnel like the Portuguese navy, errors do happen.

Flight log analysis Discussion

This small analysis example show the benefits of utilizing a system like the APM. All the tools that
were used comes pre-implemented with the system and the focus can thus be on correcting
problems rather than making the tools themselves. The result of this analysis is probably not
that useful as it only shows the pilot to be a bad one. However, it did show that the failure was
probably not caused by a mechanical or system failure, but a human error, and thus the system
can be continued to be used without any repairs or changes.

8.8 Final Prototype UAS Test

The final test of the prototype UAS was planned to be a test were the UAS was used during a real
SAR operation. Perhaps coordinating this with the Norwegian Red Cross and thus being allowed
to participate in a mission is an approach that can be used. The UAS could then have be eval-
uated based on its performance during the operation in order to determine what is good and
what is bad regarding the system design, and thus valuable feedback could have been acquired.
In order for this test to be possible, the entire UAS has to be developed and operational. A detec-
tion system should be present on board the UAV and autonomous flight needs to be enabled.

The status of the prototype UAS developed in this Thesis is that the autonomous flight capa-

8.9. EVALUATION AND DISCUSSION 107

bilities of the aircraft are not usable, and the human detection system is not completed nor
mounted on the UAV itself. Hence, the prototype UAS will currently not be able to be used prop-
erly during a SAR operations and the final test was therefore not performed.

8.9 Evaluation and Discussion

The setup and tests that have been performed in this Thesis can be summarized as following:

1. Interfacing the BeagleBone Black and APM 2.6 in order to have a detection system that can
perform a localization of objects

2. Testing the range of the XBee-PRO S2B modules in order to determine if they are feasible
for use during SAR operations

3. Interfacing the XBee module and BeagleBone Black for having a data link that can be used
by the detection system

4. Setting up the UAV with the APM 2.6 and its components to evaluate if this could be part
of a SAR UAS

5. Performed flight tests to test the autopilots capabilities and evaluate if the prototype UAS
is feasible for use during SAR operations

6. Testing the APM system analysis capabilities

Most of the setup and tests during this Thesis went well and proved that a UAS consisting of
the components used will be possible to develop for use during SAR operations. As mentioned,
the status of the prototype UAS developed in this Thesis is that the UAS is not fully developed
and thus cannot be used successfully during a SAR mission. The autopilot is not tuned properly,
which means that the systems autonomous flight capabilities are not enabled. The detection
system is not mounted on the aircraft and the UAS cannot for human detection until it is. The
detection system is also setup simply as a proof-of-concept and would thus have to be altered in
order for it to function properly as a human detection system during SAR operations. The data
communication link is not interfaced with the detection application and will have to be in order
for the detection system to notify the operators of any detections it performs.

When comparing the prototype UAS developed with the prototype UAS overview from Fig-
ure 7.1, which was the idea behind the prototype, all parts in the illustration are somewhat im-
plemented and somewhat functional. The communication links between the GCS and UAV are
present in the APM radio module, and the XBee modules tested. The UAV was equipped with a
camera, and this camera could have been exchange for a completed detection system if desired.
The GCS is already provided by the APM system and works as it is. So, the prototype UAS con-
tains all components needed to be used during SAR, but these components have to be setup,
and some further developed and tested properly before the system is feasible to use during a
SAR operation. All components used during this Thesis are listed in Appendix C, and the total
cost of the prototype UAS comes at $661, which is reasonable for a complete SAR UAS.

108 CHAPTER 8. PROTOTYPE UAS SETUP AND TESTING

During this Thesis, many of the flight tests had to be postponed due to rough weather con-
ditions. Rough weather is very likely in the case of a SAR operation and thus the UAS should
manage to operate in relatively harsh weather conditions. The reasons a lot of the testing was
postponed was that the testing personnel was inexperienced regarding RC planes, and thus did
not want to break the equipment. The plane would probably have performed well in some-
what rough weather, but safety was put first and the UAS was not used when the weather was
bad. A complete and fully developed UAS should remove the flight control from the user’s hands
and provide automatic take-off, flight, and landing, thus reducing the need for any experienced
flight personnel and creating the possibility of using the system in somewhat rough weather. A
test performed in windy and harsh weather conditions should be performed to evaluate if the
UAS can be used in such conditions.

Depending on how the UAS is developed, the UAV could either be programmed to cover an area
and report any findings to the SAR crew, or the UAV can follow a member of the SAR crew that
is searching along a track and fly above their heads, as illustrated in Figure 5.3 and Figure 5.4.
This Thesis has not focused on developing a system that can follow a searcher, but that would be
possible if for example a Wi-Fi connection between a mobile phone and the BeagleBone Black
is established and in addition making the BeagleBone Black capable of sending commands to
the APM 2.6. The prototype UAS tested in this Thesis could be used during SAR operations to
cover an area and report its findings when something is found if the detection system is further
developed and mounted on the aircraft. If the autopilot in addition is tuned properly, the UAS
could perform this detection autonomously without the need for a pilot controlling the system.

8.9. EVALUATION AND DISCUSSION 109

Figure 8.15: Log plot of Flight Test 2, Failed take-off

Figure 8.16: Log plot of Flight Test 2, Successful take-off

110 CHAPTER 8. PROTOTYPE UAS SETUP AND TESTING

Chapter 9

Further Work

In order to develop a complete and functional SAR UAS, the prototype UAS created and tested
in this Thesis can be used as a starting point for further development. This chapter will discuss
some possible improvements and additions to the prototype UAS, and in addition explain what
needs to be done to the prototype in order to create a working SAR UAS. The intention is that
others may use this chapter as a starting point for their work in developing a complete and
functional SAR UAS.

9.1 Prototype UAS Status

The prototype UAS created in this Thesis is, as mentioned in Section 8.9, not a working UAS
that can be used during SAR operations. Some issues needs to be resolved for the UAS to be
considered functional enough for being utilized by SAR personnel. This section will provide
some information regarding the current state of the prototype UAS.

The UAS will be discussed as a whole and some parts will be mentioned in more detail than
other parts. The prototype UAS is currently not set up and functional enough to be used during
SAR operations and the following list mentions the parts of the UAS that needs attention before
it can be considered used by SAR personnel.

• Autopilot

• Take-off and landing procedures

• Detection system

9.1.1 Flight System

Autopilot

The autonomous flight capabilities of the autopilot system used on the prototype are not en-
abled due to lack of tuning and the prototype has to be flown manually until they are enabled.
The autopilot is not properly tuned and will need to be in order for its autonomous capabilities

111

112 CHAPTER 9. FURTHER WORK

to work. The autopilot system used is proven to work through a massive community, and should
thus provide no problems in being fixed and set up for the prototype.

The autopilot used for the prototype was during this Thesis borrowed from another project and
unfortunately, it was needed back after this Thesis had been completed. Buying such a system
or a similar one is a solution to this problem. The components of the prototype UAS are listed
in Appendix C and they are marked as present or missing parts of the system.

Take-off and landing procedures

The take-off and landing procedures for the prototype UAS are to use hand launching and belly
landing. The plane is flown manually and thus the pilot has all the control during take-offs
and landings, as well as the flight. The autopilot used does possess the capability of provid-
ing the operator with autonomous take-off and landing, but that only works if the autopilot is
tuned and able to fly autonomously. However, the procedures used for take-off and landing, i.e.
hand launching and belly landing, will also be used by the autopilot system if those features are
enabled. The autopilot will perform the take-off and landing autonomously, but the operator
has to hand launch the aircraft, and it lands by using the belly-landing method. Implementing
some other approach might be necessary for a SAR UAS. Perhaps having some sort of ramp for
take-off, and net for landing will be advantageous. Some methods for take-off and landing are
mentioned and discussed later in this chapter.

The take-off and landing procedures are not essential to implement before the system can be
tested in a SAR scenario. It is fully possible to launch the plane by hand, and experienced RC
pilots does this all the time. Hence, if an experienced test operator is used, hand launching and
belly landing are methods that can be used during a test performed in a real SAR scenario.

9.1.2 Detection System

The detection system developed in Chapter 6 was not mounted on the UAV itself and thus not
tested together with the UAS. The prototype UAS will not be able to be used for detection pur-
poses before this is accomplished. The detection application is made simply to prove the ca-
pabilities of the devices used and the detection will probably not work in a real SAR situation.
This is because the application detects humans based on detected facial features, which are not
certain to be visible in a SAR scenario, or possible to detect from the altitude the UAV probably
will fly at. A different algorithm would have to be implemented in order for the system to de-
tect humans in a SAR scenario. Currently, only humans wearing red sweaters and that has their
facial features visible to the camera will be detected. This is probably not very likely in all SAR
scenarios.

The detection application is not developed to include the data communication link between
the processing unit and the GCS. A data communication link application was created between
the detection system’s processing unit and the GCS, but this was not included in the detection
application itself. The communication link was only set up to show that the communication
could be achieved and will have to be implemented with the detection application in order for
the system to be capable of notifying its operators regarding a detection.

A one-way communication application was created between the detection system’s processing

9.2. FURTHER WORK ON THE PROTOTYPE UAS 113

unit and the autopilot, but the communication capabilities was not included in the detection
application, hence the detection application can not use the flight information. This will have to
be implemented with the detection application in order for the localization part of the detection
to work because the detection application needs the location and orientation of the aircraft to
perform the localization of objects. Having a two-way communication link between the devices
would also allow the detection system to control the flight if that was desired.

The localization application created in Section 6.6 is not fully developed. The application only
proved the feasibility of such an application and will have to be studied to make it function cor-
rectly. As explained, the formulas used for calculating the GPS position of objects were not eval-
uated properly and would possibly need to be changed for some other, more correct formulas if
the system is further used.

9.2 Further work on the prototype UAS

This section will list some recommendations for short-, and long-term further work that needs
to be performed in order for the prototype UAS to be considered feasible for use during SAR op-
erations. The short-term recommendations are work that needs to be done in order for the UAS
to be operational and thus possible to use as a demonstration SAR UAS. The long-term recom-
mendations are work needed to be performed in order for the UAS to be considered a complete,
fully functional system, which can be used during SAR operations. Having performed all the
long-term recommendations, the UAS could possibly be considered an efficient and important
tool to be utilized during SAR operations.

9.3 Short-Term

As explained, the short-term recommendations for further work, are the tasks needed to be per-
formed in order for the prototype UAS to be considered possible to utilize during SAR opera-
tions.

9.3.1 Autopilot tuning

The autopilot system currently used, the APM 2.6, needs to be properly tuned in order for its
autonomous flight capabilities to be enabled. Once tuned, the autopilot will provide the user
with mission planning and autonomous flight capabilities, thus making it possible for the plane
to operate on its own without the need for human input during flight.

In order to tune the autopilot, an experience pilot might be needed, or at least several people
understanding the system needs to be present during the tuning. One person has to fly, and the
other needs to be on the computer altering the gains of the PID controller for pitch, roll, and
yaw. Doing this alone is somewhat troublesome.

As explained, the autopilot was borrowed and has now been returned. Further work on this
project would require a new autopilot to be acquired.

114 CHAPTER 9. FURTHER WORK

9.3.2 Autonomous take-off and landing

Whether the current autopilot or some other system is used, autonomous take-off and landing is
probably essential to have during a SAR operation. The current autopilot used in the prototype
UAS does possess these capabilities and once tuned, they will be enabled. However, the autopi-
lot still take advantage of hand launching and belly landing. More clever approaches might be
necessary during SAR operations and some will be mentioned here. The methods are consid-
ered for planes only, as multi-rotor vehicles possess VTOL capabilities.

Launching ramp

Creating a launching ramp is something that is possible in order to make the take-off of a UAV
easier. The ramp can be used to provide the UAV with a surface in order to obtain enough speed
for a take-off to be possible. A solution utilizing a ramp is a bungee-launcher, which is illustrated
in Figure 9.1 [Bungee Launcher]. This solution will provide the UAV with enough speed before
the ramp is left and make the UAV capable of taking off. If a ramp is constructed long enough
such that the UAV gains enough speed by itself before leaving the ramp, the need for a bungee
might not be necessary. These bungee launchers can be constructed quite small and with the
possibility of assembling the ramp in the field. The construction material used can be relatively
light, thus making the ramp ideal for transportation. This will make them very usable during a
SAR operation for launching the plane.

Figure 9.1: Bungee-Launcher [Bungee Launcher]

If a bungee-launcher is constructed and the autopilot system is tuned, the operator only needs
to place the plane on the ramp, set the autopilot on automatic take-off, then release the bungee
and the plane would take-off by itself. This approach will be feasible to use during SAR opera-
tions.

Car ramp

Mounting a ramp on top of a car and putting the plane on top of this ramp is a possible take-off
approach to use during SAR operations. The car can be driven to gain speed and then the plane
is released when enough speed is obtained to accomplish a take-off. The ramp could also be
mounted on a snowmobile if needed and thus the same approach could be used in wintertime.
This approach will require a somewhat straight road with no overhanging trees, which might
not be the case in all SAR scenarios, and thus the approach is perhaps not a good method to
utilize for a SAR UAS.

9.3. SHORT-TERM 115

Computer Vision

Computer vision can be used for both UAV landing and take-off. If used for take-off, a cam-
era can be directed towards the ground and the system could notice when the plane has been
tossed into the air by detecting that the ground is moving. Once the system detects movement,
the UAV can start its engines and applying upwards control output to its actuators, hence mak-
ing the UAV fly up into the air. Several elevation approaches can be used during take-off, for
instance circle elevation and straight elevation. In circle elevation, the plane circles around a
point until a certain altitude is reached. This would be desired if the plane was launched in an
area where there are hills or other objects in all directions, thus making a straight elevation ap-
proach infeasible. The straight elevation approach is exactly that, the plane takes off and flies in
a straight line until a certain altitude is reached.

Using computer vision for landing is an approach where a camera can be used for detecting
some pre-defined objects on the ground. By having for instance a grid defined by some red
objects or lights, the plane could be guided by the camera into this grid and once there, know
that it is fairly close to the ground and thus cut its engines and glide towards the ground. This
would be a similar approach to landing as using radio tubes. Radio tubes can be used for landing
by providing the plane with radio signals. Once the plane is aligned with these radio tubes, all
signals are detected and thus the course of the UAV is known. Holding this course until the
signals disappears, and then stopping the engine could be used as an approach for landing the
plane. A problem using these approaches would be in the scenario where there is side-winds
and the plane has to fly somewhat sideways towards the ground. The grid or radio tubes would
then not be visible or detected.

Catching net

In order for the UAV to land, a net can be used to capture the UAV in flight. The UAV can be
programmed to fly into the net and thus it will be caught and stopped without harming the UAV.
The design of this net can be done in several ways and an example can be taken from a system
found during the pre-study of this Thesis. A system called FULMAR utilizes a catching net for
landing the aircraft [AEROVISION VEHICULOS AEREOS, S.L.]. The UAV is flown into the net and
thus not damaged by any impacts with the ground. This net is however quite large, but so is the
UAV they are utilizing and thus making a smaller net for the prototype UAS developed in this
Thesis is possible.

Parachute

A different approach than the previous ones would be to use a parachute for landing the UAV.
The UAV could be programmed to fly towards a location, and once this location is reached, the
engine stops and the parachute is released. The parachute will thus make the plane descend
with a speed of which will not cause harm to the UAV once the ground is hit. Landing the UAV
this way will of course introduce issues regarding where the UAV will actually hit the ground. If
the area where the UAV is used has many trees, the UAV might end up in the top of a tree, which
is not desirable. Having a system that takes the wind and other parameters into account when
deciding the position to release the parachute related to where it wants to land on the ground,
could make it possible to land the UAV even in windy conditions.

116 CHAPTER 9. FURTHER WORK

9.3.3 Detection System

The further work that needs to be performed on the detection system is implementing an al-
gorithm that can detect humans in a SAR scenario. The current application is only created to
demonstrate that the system units are indeed capable of performing such a detection. The same
algorithm approach can be used, but some changes has to be made. The current application
recognizes faces instead of human bodies and this might not be feasible to use during SAR op-
erations.

The current detection application utilizes, as mentioned in Section 6.4.3, cascade classifiers for
Haar features for detecting faces in the image. By creating a different classifier for a human body
viewed from the air, this could be used for detecting the humans during SAR operations from
a UAV. This is possible and examples online have used the computer vision library OpenCV to
make such files for detecting different objects such as for example bananas [Ball].

The current detection application does not include a data communication link back to a GCS,
nor a communication link to the autopilot. The communication links will have to be included in
the detection application for notification purposes and localization purposes. The localization
application will also have to be combined with the detection application. The test application
created in Section 8.3, which uses the XBee modules, would be possible to incorporate into the
detection program and thus enabling the communication between the GCS and detection ap-
plication. The testing done in Section 8.1 would also be possible to be incorporated with the
detection application to make the flight data available and thus object localization possible.

9.4 Long-Term

The long-term recommendations for further work are the tasks needed to be performed in or-
der to optimize and make the UAS better than simply a prototype system. By performing the
recommendations listed here, the UAS should end up possibly being considered a very efficient
and relevant tool for use during SAR operations.

9.4.1 Thermal Camera

The camera used for detection purposes in the current prototype UAS is a normal webcam. As
explained in Chapter 6, a thermal camera might be a better option to utilize for human detection
in a SAR scenario. Using a combined approach with both a thermal and a color camera is also
possible. By including a thermal camera as part of the UAS, humans could be detected easier
and more accurately than when using a color camera and would make it possible to perform the
detection even in complete darkness.

The detection application created in this Thesis uses a normal webcam, and the application is
written to detect red clothed humans with their faces turned towards the camera. If a thermal
camera is acquired, heat signatures of a human could instead be detected, which was the idea
behind the algorithm used. In the future, the cost of thermal cameras will be lower and thus it
might be possible to utilize such a camera in a low cost UAS.

9.4. LONG-TERM 117

9.4.2 Wi-Fi Connection to User

The embedded computer used for the detection system in this Thesis could also be used in
order to connect a user or searcher and the autopilot together. The searcher could then simply
use his smart-phone, which most people have nowadays, and connect to the UAV using a Wi-Fi
connection. Sending commands over this link and ordering the UAV to perform certain tasks
would be a simple and easy approach for utilizing the UAV during SAR operations. The smart-
phone of the SAR searcher could then be used to control the entire UAS. If the Wi-Fi range does
not cover the entire search region, the UAV could fly autonomously around and when something
is detected, return to a location and then transmit the information gathered.

9.4.3 Velocity Sensor

A velocity sensor should be included as part of the autopilot system. The current solution used,
the APM 2.6 autopilot, has its own velocity sensor and this sensor could simply be connected to
the autopilot in order to be used. This sensor is possible to utilize during landings and take-offs
in order to maintain the correct speed in these situations. The sensor was not connected during
this Thesis, as its usage was not needed.

9.4.4 Path Planning

The mission planning of the prototype UAS was done using the APMs GCS application. This
application allows for point-and-click configurations of GPS waypoints and a mission can thus
be planned using this capability. The path taken by the UAV during these missions are chosen
by the autopilot itself, but having a system that would make the UAV take the shortest path given
some GPS waypoints could be a possible tool to use during SAR operations. The system, which
could create these paths, could also be programmed to include wind information as to save
energy during the flight. The path system could also provide the most optimal flight path for the
UAV such that the detection system has optimal conditions, perhaps by always flying in a way
that makes the camera point downwards.

9.4.5 UAV Communication Network

Developing a UAV communication network is a technology that could be very useful for SAR
UAS. Having more than one UAV in a UAS is beneficial for several reasons, and having a com-
munication system that automatically handles the network between these UAV could be essen-
tial for such a system to function. Including several UAV in the same SAR operation creates the
opportunity of utilizing a mesh topology, thereby extending the range of the network and pro-
viding redundancy. Such a communication network could be constructed and used as part of a
SAR UAS.

9.4.6 Mid-air Collision Avoidance System

Having a MID-air Collision Avoidance System (MIDCAS) might be needed as an essential part of
a SAR UAS. The possibility of a UAV hitting something or somebody else is very small, but still,
situations where this might occur is possible and having a system that handles this is therefore
desirable. The need for MIDCAS could be higher if several UAV are to be in the air at once.

118 CHAPTER 9. FURTHER WORK

In addition, if the UAS is to be used in the same airspace as manned air-traffic, the need for
MIDCAS might be vital for the UAS to be allowed to be used. This collision system might also
have to be incorporated with the manned aircraft systems in order for them to work together.

Computer vision can be used to provide a UAS with MIDCAS capabilities. The system can be
developed on a small, embedded computer and thus be used on board a UAV [Kalvå, 2014].

Radar is also possible to use for avoiding other objects such as UAV, as well as trees and moun-
tains. However, rules of conduct, similar to what is used on car roads, would have to be stan-
dardized for this to work. If one UAS is programmed to turn left when an object is right in front
of it, and the other UAS is programmed to turn right, they will most likely hit each other instead
of turning away from each other.

9.4.7 Gimball camera mount

Having a camera on board a UAV for capturing images of the ground will be hard to accomplish
if the camera is stationary and the plane is turning. If the weather conditions are windy, the UAV
might have to fly a somewhat sideways to correct for the winds direction and will thus not point
its underside directly towards the ground. A stationary camera would in this case perhaps not
point towards the ground at all. A Gimball camera mount can be used for changing the view of a
camera during flight. It can be used to correct for the angles of the UAV, thus pointing the camera
towards a desired location even when the plane is turning, and it can be used for stabilizing a
video feed if that is what the camera is being used for.

9.4.8 Image Mapping

If the SAR UAS is used to send back images to a GCS as to provide the operators with a visual
tool, having single, non-connected images might not be the best solution. Having a system that
creates a mosaic image, or image map, of the received images could be useful. By combining and
stitching the images together, a more completed view of an area is possible to create. Of course,
the separate images can be viewed if desired, but also having an image map will be a useful
visualization tool for the SAR personnel. This map could be used as a "real-time" replacement
map for the one which the SAR personnel probably has of the search area.

9.4.9 Fault detection

A SAR UAS needs to be able to detect faults that occurs with and to the system. If the system
is to be considered safe, fault detection mechanisms needs to be implemented. The current
autopilot does possess features for detecting the loss of a communication link and low battery
voltage, and is able to perform safe actions and warn the user in the event that this occurs.

Having a UAS that will be used during a SAR operation, will necessarily mean that the UAS needs
to be as safe as possible. A SAR operation include many people and the safety of these people
are essential to maintain. Having a UAS that is not reliable, hence, jeopardizing the safety of
these people is not an option.

9.4. LONG-TERM 119

9.4.10 Make another UAV

Of course, a long-term recommendation is to create a second UAV for testing and development
purposes. A SAR UAS should provide the option of utilizing multiple UAV during an operation,
thus possibly increasing the efficiency of the search. Having several UAV with different capabil-
ities is also a possible scenario during SAR operations. Making a second UAV would allow such
features to be developed and tested.

9.4.11 Collaborate with other projects at the institute

There is currently being done a lot of work regarding UAS and related technology at the De-
partment of Engineering Cybernetics at NTNU. Some projects involves creating algorithms for
dropping packages from the air at the exact location specified even with wind and other con-
ditions, and some involves creating control systems for UAV flight control. Whatever is being
done, much of the development is most likely relevant in some way for use as part of a SAR UAS
as well. Therefore, collaborating with other projects at the institute is a good approach to get a
SAR UAS as good as it possibly can be.

120 CHAPTER 9. FURTHER WORK

Chapter 10

Discussion and Conclusion

The feasibility of developing a low cost UAS for use during SAR operations has been shown
throughout this report. A pre-study and literature study were conducted where the desire and
will for using and developing such a system has been established. There are not that many UAS
works or projects specifically directed towards a SAR scenario, hence studying this particular
application for UAS is important to increase the possibility of UAS being utilized during SAR
operations. This report has listed information as to how a SAR UAS can be developed, and dis-
cussed the issues regarding its design. A prototype UAS was further developed from the same
system as used in the pre-study. Having a human recognition system on board a UAV is highly
advantageous during SAR operations and thus developing this to be part of the UAS is impor-
tant. A low power, low cost detection system was developed and proven functional through
testing. A SAR UAS should be able to operate as autonomously as possible in order to keep the
workload on the SAR personnel to a minimum. In addition, by having an autonomous UAS, the
system could be possible to utilize even by unexperienced operators.

The result of this Master Thesis is a report that can be used for information purposes during the
creation of a complete SAR UAS. Information regarding the design of a SAR UAS has been pro-
vided and a prototype UAS was developed. The prototype UAS is an almost working SAR UAS,
which with some modifications, can be used during a SAR mission as a human detection tool.
The reason for wanting UAS incorporated in SAR operations is that it could possibly increase the
efficiency of the operation, hence increasing the probability of saving more lives than compared
to not using the system. A SAR UAS can also be used in areas that are considered too dangerous
for humans to search in, which is advantageous if such situations occur.

The implications of this Master Thesis on other parts of society are many, and if a SAR UAS is
successfully developed, it can be used for many other applications besides SAR. The prototype
UAS developed in this Thesis was developed to be as environmentally friendly as possible. This
was accomplished by making it possible to use renewable energy sources for charging the bat-
teries of the system; hence, the implications of utilizing this system on the environment will be
minimal. As a comparison, manned helicopter uses a lot of fuel during their operations. Having
a more environmentally friendly system that in some situations could be used in their place,
would be advantageous. Other UAS application areas, like for instance police or military work,

121

122 CHAPTER 10. DISCUSSION AND CONCLUSION

could benefit from the information presented in this report and help making a UAS usable for
these applications as well. A UAS as discussed in this Thesis could also be used for sporting
applications or in TV production.

10.1 Conclusion

The feasibility of developing a Search And Rescue (SAR) Unmanned Aerial System (UAS) has
been stated in this report. A low cost, easy-to-use UAS can be developed and possibly con-
tribute to increasing the efficiency of SAR operations. A solution for such a system using many
pre-made components and devices was presented, and a prototype implemented during this
Master Thesis. The necessary background theory and previous works were studied and used
for determining the design of the prototype UAS. The developed UAS was tested and proven to
work as expected given that the system was not fully developed. Some further work regarding
SAR UAS was presented and also what needs to be done regarding the prototype UAS to make
it functional was explained. A low power, low cost, computer vision detection system to use on
board a UAV has been developed and tested, and the testing proved the feasibility of having an
autonomous detection system on board a UAV during SAR operations.

The main objective of this Master Thesis was to investigate the feasibility of a concept of utiliz-
ing UAS during SAR operations and propose how such a system could be developed, and also
implement a prototype of this concept. All these objectives are explained and implemented
throughout this report, hence proving the feasibility of the concept.

Developing a SAR UAS in order to increase the efficiency of SAR operations, and be a useful
tool for SAR personnel is highly achievable. A UAS can be designed and integrated into the SAR
operations and be a factor that increases the possibilities of finding the missing persons during
an operation. The UAS should be designed in a way that makes it possible to utilize the system
for multiple purposes, like for instance human detection or communication assignments. The
integration of a SAR UAS with the other components and participants of SAR operations has not
been looked into during this Master Thesis. This will have to be studied in order for the system
to be used as efficiently as possible. The developed prototype UAS can be used for determining
how the system can, and should be integrated, and thus take part in a SAR operation.

The possibilities of UAS usage in society are many and not only restricted to the SAR scenario.
Creating a SAR UAS will provide information on how to create UAS for other applications as
well, and thus the development in this Thesis will not necessarily only contribute to the SAR
community. Other UAS application developers may use the discoveries in this Thesis on their
systems resulting in better UAS for other application areas as well.

The UAS developed in this Thesis is far from ready to be a commercialized product, but the sys-
tem can be used as a possible solution and provide information to further research and devel-
opment of SAR UAS. The prototype UAS developed in this Thesis is currently not recommended
to be used during SAR operations, but it could be considered a fully usable and efficient SAR
tool given some small alterations. The continuation of developing a SAR UAS is recommended
and a well-working, functional system should be possible to create.

References

Bearing between GPS locations. http://www.movable-type.co.uk/scripts/latlong.html.
Accessed: 2014-05-31.

Distance between GPS locations. http://williams.best.vwh.net/avform.htm. Accessed:
2014-05-31.

Forum Post. http://stackoverflow.com/questions/7477003/

calculating-new-longtitude-latitude-from-old-n-meters. Accessed: 2014-05-
31.

Global navigation satellite system. http://snl.no/GNSS. Accessed: 2013-09-13.

Maxi swift, flying wing. http://www.electricwingman.com/

maxi-swift-white-epp-flying-wing.aspx. Accessed: 2013-10-16.

3DRobotics. Apm 2.6. http://store.3drobotics.com/products/apm-2-6-kit-1. Ac-
cessed: 2013-12-16.

3DRobotics. Radio Module. http://3drobotics.com/learn/. Accessed: 2014-05-19.

AEROVISION VEHICULOS AEREOS, S.L. FULMAR aerial teledetection system. www.

aerovision-uav.com/. Accessed: 2013-11-06.

APM. APM Planner 2.0. http://planner2.ardupilot.com/. Accessed: 2014-04-24.

APM. ArduPilot for BeagleBone Black. http://dev.ardupilot.com/wiki/

building-for-beaglebone-black-on-linux/. Accessed: 2014-04-28.

APM. Mission Planner. http://planner.ardupilot.com/. Accessed: 2014-04-24.

APM. Multiplatform autopilot. http://ardupilot.com/. Accessed: 2013-12-02.

Ball, T. Traing your own opencv haar classifier. http://coding-robin.de/2013/07/22/

train-your-own-opencv-haar-classifier.html. Accessed: 2014-06-04.

BeagleBoard.org. BeagleBone Black. http://beagleboard.org/products/beaglebone%

20black. Accessed: 2013-12-16.

Bungee Launcher. http://www.radiocontrolinfo.com/EDF/launch.php. Accessed: 2014-
06-04.

123

http://www.movable-type.co.uk/scripts/latlong.html
http://williams.best.vwh.net/avform.htm
http://stackoverflow.com/questions/7477003/calculating-new-longtitude-latitude-from-old-n-meters
http://stackoverflow.com/questions/7477003/calculating-new-longtitude-latitude-from-old-n-meters
http://snl.no/GNSS
http://www.electricwingman.com/maxi-swift-white-epp-flying-wing.aspx
http://www.electricwingman.com/maxi-swift-white-epp-flying-wing.aspx
http://store.3drobotics.com/products/apm-2-6-kit-1
http://3drobotics.com/learn/
www.aerovision-uav.com/
www.aerovision-uav.com/
http://planner2.ardupilot.com/
http://dev.ardupilot.com/wiki/building-for-beaglebone-black-on-linux/
http://dev.ardupilot.com/wiki/building-for-beaglebone-black-on-linux/
http://planner.ardupilot.com/
http://ardupilot.com/
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://coding-robin.de/2013/07/22/train-your-own-opencv-haar-classifier.html
http://beagleboard.org/products/beaglebone%20black
http://beagleboard.org/products/beaglebone%20black
http://www.radiocontrolinfo.com/EDF/launch.php

124 REFERENCES

Burns, A. and Wellings, A. (2009). Real-Time Systems and Programming Languages: Ada, Real-
Time Java and C/Real-Time POSIX. Addison-Wesley, 4th ed. edition. ISBN: 978-0-321-41745-9.

CAN-cia.org. CAN Protocol. http://www.can-cia.org/index.php?id=

systemdesign-can-protocol. Accessed: 2014-04-24.

CLOSE-SEARCH. European project. http://close-search-project.eu/index.php/

aboutclosesearch. Accessed: 2013-11-30.

Diebel, J. (2006). Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors.

Digi International Inc. RF Basics. http://www.digi.com/technology/rf-articles/

rf-basics. Accessed: 2014-05-16.

Digi International Inc. XBee Modules. http://www.digi.com. Accessed: 2014-05-17.

DX7s. Spectrum radio. http://www.spektrumrc.com/Products/Default.aspx?ProdId=

SPM7800. Accessed: 2013-09-12.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control.

Gade, R. and Moeslund, T. (2014). Thermal cameras and applications: A survey. Machine Vision
and Applications, 25(1):245–262.

Gamnes, G. (2013). Autonomous Unmanned Aerial Vehicle in Search and Rescue - A Prestudy.

Google Earth. www.earth.google.com. Accessed: 2013-12-16.

Google.com. www.google.com. Accessed: 2013-12-19.

GoPro. Versatile cameras. http://gopro.com/. Accessed: 2014-05-22.

GPS World. Drone hack: Spoofing attack demonstration on a civili unmanned aerial vehicle.
http://gpsworld.com/drone-hack/. Accessed: 2013-12-19.

Guldbrandsøy, K., Austad, A., Havstein, G., Pukki, A., Øvervoll, J.-M., Halgunset, M., Husum, P.,
Williams, G. S., Torkildsen, P. O., and Himle, A. (2009). Kompendium i søkemetoder. ISBN:
9788272500930.

Hammerseth, V. B. (2013). Autonomous unmanned aerial vehicle in search and recue. Master’s
thesis, NTNU.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge
University Press, ISBN: 0521540518, second edition.

HobbyKing. Brushless motor. http://www.hobbyking.com/hobbyking/store/__19035_

_turnigy_park450_brushless_outrunner_1050kv.html. Accessed: 2014-06-05.

HobbyKing. Metal gear servo. http://www.hobbyking.com/hobbyking/store/ __6340_

_digital_metal_gear_servo_16g_3_9kg_13sec.html. Accessed: 2014-06-05.

http://www.can-cia.org/index.php?id=systemdesign-can-protocol
http://www.can-cia.org/index.php?id=systemdesign-can-protocol
http://close-search-project.eu/index.php/aboutclosesearch
http://close-search-project.eu/index.php/aboutclosesearch
http://www.digi.com/technology/rf-articles/rf-basics
http://www.digi.com/technology/rf-articles/rf-basics
http://www.digi.com
http://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM7800
http://www.spektrumrc.com/Products/Default.aspx?ProdId=SPM7800
http://gopro.com/
http://gpsworld.com/drone-hack/
http://www.hobbyking.com/hobbyking/store/__19035__turnigy_park450_brushless_outrunner_1050kv.html
http://www.hobbyking.com/hobbyking/store/__19035__turnigy_park450_brushless_outrunner_1050kv.html
http://www.hobbyking.com/hobbyking/store/
__6340__digital_metal_gear_servo_16g_3_9kg_13sec.html
__6340__digital_metal_gear_servo_16g_3_9kg_13sec.html

REFERENCES 125

HobbyKing. Turnigy batteries. http://www.hobbyking.com/hobbyking/store/__9184_

_turnigy_5000mah_3s_20c_lipo_pack.html. Accessed: 2014-06-07.

Hovedredningssentralen (2014). Statistikk for hovedredningssentralen (samlet) 2013. http:

//www.hovedredningssentralen.no/. Accessed: 2014-05-09.

ICARUS. European commision’s directorate-general for enterprise and industry, research
project. http://www.fp7-icarus.eu/. Accessed: 2013-11-14.

IEEE. POSIX Standard, IEEE Std 1003.1, 2013. http://pubs.opengroup.org/onlinepubs/

9699919799/basedefs/pthread.h.html. Accessed: 2014-05-14.

Jain, R. and Templin, F. (2012). Requirements, challenges and analysis of alternatives for wireless
datalinks for unmanned aircraft systems. IEEE Journal on Selected Areas in Communications,
30(5):852–860.

Jo, A., Jang, G.-J., Seo, Y., and Park, J.-S. (2013). Performance improvement of human detec-
tion using thermal imaging cameras based on mahalanobis distance and edge orientation
histogram. Lecture Notes in Electrical Engineering, 253 LNEE:817–825.

Johnston Jr., M. (2006). Ground object geo-location using UAV video camera.

Kalvå, A. (2014). Collision detection system using computer vision on low power devices. Mas-
ter’s thesis, NTNU.

Lin, P. The Robot Car of Tomorrow May Just Be Pro-
grammed to Hit You. http://www.wired.com/2014/05/

the-robot-car-of-tomorrow-might-just-be-programmed-to-hit-you/. Accessed:
2014-05-16.

Lockheed Martin Corporation. Kestrel Autopilot fixed wing. http://www.lockheedmartin.

com/us/products/procerus/kestrel.html. Accessed: 2014-04-24.

Logitech. c270 HD Webcam. http://www.logitech.com/no-no/product/hd-webcam-c270.
Accessed: 2014-03-06.

Luftfartstilsynet.no. Civil Aviation Authority - Norway. http://www.luftfartstilsynet.no/.
Accessed: 2013-10-30.

MAVLink. http://qgroundcontrol.org/mavlink/start. Accessed: 2014-02-10.

Meador, B. (2008). A Survey of Computer Network Topology and Analysis Examples.

METRO. Portuguese navy’s drone launch ends in embarrassing
fail. http://metro.co.uk/2014/04/19/portugal-drone-fail-video-

unmanned-aircraft-drops-into-lisbon-harbour-4703360/. Accessed: 2014-05-08.

Mohammed Ali Koteich, K. R. (2011). Overall technical uav solution. Master’s thesis, NTNU.

http://www.hobbyking.com/hobbyking/store/__9184__turnigy_5000mah_3s_20c_lipo_pack.html
http://www.hobbyking.com/hobbyking/store/__9184__turnigy_5000mah_3s_20c_lipo_pack.html
http://www.hovedredningssentralen.no/
http://www.hovedredningssentralen.no/
http://www.fp7-icarus.eu/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
http://www.wired.com/2014/05/the-robot-car-of-tomorrow-might-just-be-programmed-to-hit-you/
http://www.wired.com/2014/05/the-robot-car-of-tomorrow-might-just-be-programmed-to-hit-you/
http://www.lockheedmartin.com/us/products/procerus/kestrel.html
http://www.lockheedmartin.com/us/products/procerus/kestrel.html
http://www.logitech.com/no-no/product/hd-webcam-c270
http://www.luftfartstilsynet.no/
http://metro.co.uk/2014/04/19/portugal-drone-fail-video-
unmanned-aircraft-drops-into-lisbon-harbour-4703360/

126 REFERENCES

Morvan, Y. (2009). Acquisition, Compression and Rendering of Depth and Texture for Multi-View
Video. PhD thesis.

NASA. Aircraft rotations, body axes. http://www.grc.nasa.gov/WWW/K-12/airplane/

rotations.html. Accessed: 2014-05-19.

Ogale, N. A. A survey of techniques for human detection.

OpenCV. Computer Vision Library. http://opencv.org/. Accessed: 2013-12-02.

OutbackChallenge. UAV Challenge - Outback Rescue. www.uavoutbackchallenge.com.au/.
Accessed: 2014-04-23.

Pandaboard.org. http://pandaboard.org/. Accessed: 2013-12-19.

Parkinson, B. W. and Spilker, J. J. (1996). Global positioning system : theory and applications,
volume vol. 163-164. American Institute of Aeronautics and Astronautics.

Post- og teletilsynet. Information. http://www.npt.no/teknisk. Accessed: 2014-05-17.

Post- og teletilsynet (2012). Forskrift om generelle tillatelser til bruk av frekvenser. http://

lovdata.no/dokument/SF/forskrift/2012-01-19-77. Accessed: 2013-12-16.

Radiocrafts. Embedded wireless solutions. http://radiocrafts.no/. Accessed: 2013-12-20.

RECCO. The RECCO System. http://www.recco.com/the-recco-system. Accessed: 2014-
05-19.

Royal Ministry of Justice and Police (2002). Department of civil emergency and res-
cue planning. the norwegian search and recue service. http://www.redningsnett.no/

Redningstjenesten/Informasjonshefter. Accessed: 2013-10-07.

Rudol, P. and Doherty, P. (2008). Human body detection and geolocalization for uav search and
rescue missions using color and thermal imagery. Big Sky, MT.

Scopus. www.scopus.com. Accessed: 2013-12-19.

S.W.A.R.M. Volunteer Search & Rescue Network. http://sardrones.org/. Accessed: 2014-05-
16.

Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer London. ISBN:
9781848829350.

Termios. Terminal I/O API. http://linux.die.net/man/3/termios. Accessed: 2014-05-21.

Thermal-Eye 3600AS. Thermal imaging camera. https://www.pr-infrared.com/shop/

thermal-eye-3600as-thermal-imaging-camera-core/. Accessed: 2014-05-08.

Torkildsen, P. O. (2009). Savnet og ettersøkt: en studie om savnede personer på land i Norge og de
søk som blir iverksatt for å finne dem, volume 2009:2. Politihøgskolen.

http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
http://opencv.org/
www.uavoutbackchallenge.com.au/
http://pandaboard.org/
http://www.npt.no/teknisk
http://lovdata.no/dokument/SF/forskrift/2012-01-19-77
http://lovdata.no/dokument/SF/forskrift/2012-01-19-77
http://radiocrafts.no/
http://www.recco.com/the-recco-system
http://www.redningsnett.no/Redningstjenesten/Informasjonshefter
http://www.redningsnett.no/Redningstjenesten/Informasjonshefter
http://sardrones.org/
http://linux.die.net/man/3/termios
https://www.pr-infrared.com/shop/thermal-eye-3600as-thermal-imaging-camera-core/
https://www.pr-infrared.com/shop/thermal-eye-3600as-thermal-imaging-camera-core/

REFERENCES 127

Trimble. Trimble UX5 Aerial Imaging Rover System. http://www.norgeodesi.no/trimble/

uav-uas-rpas/trimble-ux5-aerial-imaging-rover-system/c-25/c-83/p-187. Ac-
cessed: 2014-05-16.

TTK4155, NTNU (2012). Industrielle og innebygde datasystemers konstruksjon. Lecture notes.

UAS Norway. Non-profit independent organization. http://www.uasnorway.no/. Accessed:
2013-11-22.

UVS-INFO. The international remotely piloted system information source. http://uvs-info.
com/. Accessed: 2013-11-14.

VIKO. Information finding and academic writing guide. http://www.ntnu.no/viko/. Ac-
cessed: 2013-11-30.

Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features.
pages 511–518.

Wang, W., Joshi, R., Kulkarni, A., Leong, W., and Leong, B. (2013). Feasibility study of mobile
phone wifi detection in aerial search and rescue operations. Singapore.

Yanko Design and Rolle, T. Airborne Avalanche Rescue System. http://www.yankodesign.

com/2011/11/10/life-saving-air-drones/. Accessed: 2014-05-19.

ZigBee.org. ZigBee Alliance. http://zigbee.org/. Accessed: 2013-10-31.

http://www.norgeodesi.no/trimble/uav-uas-rpas/trimble-ux5-aerial-imaging-rover-system/c-25/c-83/p-187
http://www.norgeodesi.no/trimble/uav-uas-rpas/trimble-ux5-aerial-imaging-rover-system/c-25/c-83/p-187
http://www.uasnorway.no/
http://uvs-info.com/
http://uvs-info.com/
http://www.ntnu.no/viko/
http://www.yankodesign.com/2011/11/10/life-saving-air-drones/
http://www.yankodesign.com/2011/11/10/life-saving-air-drones/
http://zigbee.org/

128 REFERENCES

Appendix A

BeagleBone Black: Setup and Code

The BeagleBone Black was used during this thesis for performing computer vision tasks, com-
munication with the UAV control system, and testing XBee devices. This appendix will list the
code that was used for these tasks and explain the setup of the BeagleBone.

The BeagleBone Black was setup as explained by the Getting Started with BeagleBone & Beagle-
Bone Black guide [BeagleBoard.org].

The unit was also altered so that the memory was expanded to utilize the uSD card for saving
images while the unit still booted from the internal memory.

A.1 Versions

A.1.1 Operating System

The operating system used on the BeagleBone Black during the testing of this Thesis was deter-
mined by running the following commands: "lsb_release -a", "cat /proc/version", and "uname
-a". The output from the command calls can be seen in Listing A.1.

Listing A.1: Setup of BeagleBone Black

1 root@beaglebone :~/ humanDetection# lsb_release −a
2 Distr ibutor ID : Angstrom
3 Description : Angstrom GNU/Linux v2012 .12 (Core edition)
4 Release : v2012 .12
5 Codename : Core edition
6

7 root@beaglebone :~/ humanDetection# cat /proc/ version
8 Linux version 3 . 8 . 1 3 (koen@rrMBP) (gcc version 4 . 7 . 3 20130205 (prerelease) (Linaro GCC

4.7−2013.02−01)) #1 SMP Wed Sep 4 09:09:32 CEST 2013
9

10 root@beaglebone :~/ humanDetection# uname −a
11 Linux beaglebone 3 . 8 . 1 3 #1 SMP Wed Sep 4 09:09:32 CEST 2013 armv7l GNU/Linux

129

130 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

As seen, the operating system Angstrom GNU/Linux v2012.12 (Core edition) is used. This was a
somewhat unfamiliar operating system for the developer in this Master Thesis, but since most
of the programming did not relate to any specific operating system, it was not exchanged.

A.1.2 OpenCV

The computer vision library OpenCV was also used during this thesis for performing the com-
puter vision algorithms. The library was pre-installed with the Angstrom operating system used
on the BeagleBone Black.

The version of OpenCV was found by printing the variables
CV_MAJOR_VERSION and
CV_MINOR_VERSION
from a computer vision application. The version used was found to be version 2.4.

A.2 CPU Clock Frequency

The BeagleBone Black has the opportunity of altering its CPU clock frequency and altering the
frequency policy that is used for determining the frequency. The policy can be changed between
the modes conservative, ondemand, userspace, powersave, and performance by using the com-
mand "cpufreq-set -g MODE", for example "cpufreq-set -g performance". The mode userspace
was used during the testing with a frequency of 300, and 1000 MHz. The unit is capable of run-
ning at 300, 600, 800, or 1000 MHz, and the frequency can be altered by using the command
"cpufreq-set -f FREQUENCY ", for example "cpufreq-set -f 1000MHz".

To get information regarding the CPU, the command "cpufreq-info" can be run. The output
from this command is listed in Listing A.2, and shows that the unit is currently running at 300
MHz with a userspace policy.

Listing A.2: BeagleBone Black CPU information

1 root@beaglebone :~/ humanDetection# cpufreq−info
2 cpufrequti ls 008: cpufreq−info (C) Dominik Brodowski 2004−2009
3 Report errors and bugs to cpufreq@vger . kernel . org , please .
4 analyzing CPU 0 :
5 driver : generic_cpu0
6 CPUs which run at the same hardware frequency : 0
7 CPUs which need to have t h e i r frequency coordinated by software : 0
8 maximum t r a n s i t i o n latency : 300 us .
9 hardware l i m i t s : 300 MHz − 1000 MHz

10 a v a i l a b l e frequency steps : 300 MHz, 600 MHz, 800 MHz, 1000 MHz
11 a v a i l a b l e cpufreq governors : conservative , ondemand, userspace , powersave , performance
12 current policy : frequency should be within 300 MHz and 1000 MHz.
13 The governor " userspace " may decide which speed to use
14 within t h i s range .
15 current CPU frequency i s 300 MHz (asserted by c a l l to hardware) .
16 cpufreq s t a t s : 300 MHz: nan%, 600 MHz: nan%, 800 MHz: nan%, 1000 MHz: nan%

A.3. SINGLE IMAGE FACE DETECTION 131

A.3 Single image face detection

The code in Listing A.3 is used for doing face detection on a single image. The face detection
function provided by the OpenCV library is either run directly on the image, or run after utiliz-
ing the blob detection approach as explained in Chapter 6 and extracting a region before the
detection is performed. The application assumes that OpenCV is installed and needs the Haar
cascade classifier file "haarcascade_frontalface_alt.xml", provided by the library, to be located
in the same folder as the executable. A timer function, listed in Listing A.6, is also needed for
determining the run-time of the program.

Listing A.3: Face Detection in image

1

2 /*
3 * Find face in s t i l l image with or without Blob detection
4 *
5 * main . cpp
6 *
7 * main . cpp
8 * dependencies : funcTimer . h and . cpp for run−time calculat ions
9 * ; and the cascade f i l e s for the OpenCV function needs to be in the same folder as the

run f i l e
10 *
11 *
12 * Created on : 15. mai . 2014
13 * Author : Gaute Gamnes
14 */
15

16

17

18 /*
19 * Some code i s adapted from http : / / stackoverflow .com/ questions /8166024/how−does−

findcontours−cycle−through−the−image−opencv−2−3
20 * Other code i s adapted from Vegard Hammerseth , 2013.
21 */
22

23 #include <stdio . h>
24 #include <iostream >
25 #include <fstream >
26 #include <str ing >
27 #include <time . h>
28 #include <sstream>
29

30 extern "C" {
31 #include <pthread . h>
32 }
33

34 #include <opencv2/ core / core . hpp>
35 #include <opencv2/ features2d / features2d . hpp>
36 #include <opencv2/ nonfree / nonfree . hpp>
37 #include <opencv2/ calib3d / calib3d . hpp>
38 #include <opencv2/imgproc/imgproc . hpp>
39 #include <opencv2/ objdetect / objdetect . hpp>

132 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

40 #include <opencv2/ contrib / contrib . hpp>
41 #include <opencv2/ highgui / highgui . hpp>
42 #include <opencv2/ s t i t c h i n g / s t i t c h e r . hpp>
43 using namespace std ;
44 using namespace cv ;
45

46 #include "funcTimer . h"
47

48 //#define GUI or BBB mode
49 //#define SAVE_TO_FILE
50 #define GRAPHICS
51 #define DEBUG
52

53 # i f d e f SAVE_TO_FILE
54 #define STF(x) x
55 # else
56 #define STF(x)
57 #endif
58

59 # i f d e f GRAPHICS
60 #define GUI(x) x
61 # else
62 #define GUI(x)
63 #endif
64

65 # i f d e f DEBUG
66 #define DB(x) x
67 # else
68 #define DB(x)
69 #endif
70

71

72 // Extracts the red channel of the image and removes some of the red from other colors
73 void extractRed (const cv : : Mat& src , cv : : Mat& dst) {
74 //Get red channel from src
75 cv : : Mat colorChannel (src . rows , src . cols , CV_8UC1) ;
76 i n t fromTo [] = { 2 , 0 } ;
77 cv : : mixChannels(&src , 1 , &colorChannel , 1 , fromTo , 1) ;
78

79 //Get grayscale of src
80 cv : : Mat gray (src . rows , src . cols , CV_8UC1) ;
81 cv : : cvtColor (src , gray , CV_BGR2GRAY) ;
82

83 //Remove other colors than " r e a l " red (white i s also removed for instance)
84 cv : : Mat pureColor (src . rows , src . cols , CV_8UC1) ;
85 pureColor = colorChannel − gray ;
86

87 dst = pureColor . clone () ;
88 }
89

90

91 // Finds the l a r g e s t Contour in a vector of contours and saves the index in maxIndex .
92 // Returns the area of the l a r g e s t contour .
93 double findLargestContour (const vector < vector <cv : : Point > > &contours , i n t *maxIndex) {

A.3. SINGLE IMAGE FACE DETECTION 133

94 double area ;
95 double maxArea = 0 ;
96

97 for (s i z e _ t i =0; i <contours . s i z e () ; i ++) {
98 area = contourArea (contours [i]) ;
99 // cout << "Area of contour : " << area << endl ;

100 i f (area > maxArea) {
101 maxArea = area ;
102 *maxIndex = i ;
103 }
104 }
105

106 return maxArea ;
107 }
108

109

110 // Find a face in an image . Can also be used for finding other features by choosing
111 // which cascade f i l e to load . The r e s u l t i s shown with a green c i r c l e .
112 i n t findFaceInImage (Mat &img , Mat &r e s u l t) {
113 vector <Rect> found , found_fi l tered ;
114

115 CascadeClassif ier face_cascade ;
116 s t r i n g cascadeFileName1 = " hogcascade_pedestrians . xml" ;
117 s t r i n g cascadeFileName2 = " haarcascade_frontalface_alt . xml" ;
118 s t r i n g cascadeFileName3 = " haarcascade_fullbody . xml" ;
119 s t r i n g cascadeFileName4 = "haarcascade_lowerbody . xml" ;
120 s t r i n g cascadeFileName5 = "haarcascade_mcs_upperbody . xml" ;
121 s t r i n g cascadeFileName6 = "haarcascade_upperbody . xml" ;
122

123 i f (! face_cascade . load (cascadeFileName2)) {
124 cout << " Failed loading cascade f i l e " << endl ;
125 e x i t (0) ;
126 }
127

128 // Parameters for cascade detection
129 double scaleFactor = 1 . 1 ; //How much the image s i z e i s reduced each image scale
130 i n t minNeighbors = 2 ; //How many neighbor each candidate rectangle should have to

retain i t
131 i n t f l a g s = 0 |CV_HAAR_SCALE_IMAGE; //Not used in new cascade
132 Size minSize = Size (8 , 8) ; //Minimum possible object s i z e
133 Size maxSize = Size (32 ,32) ; //Maximum possible object s i z e
134

135 Size s = img . s i z e () ;
136 cout << " Detecting faces . . . on img of s i z e : " << s . height << " " << s . width << endl ;
137 face_cascade . detectMultiScale (img , found , scaleFactor , minNeighbors , f l a g s , minSize) ; //

, maxSize) ;
138 cout << "Number of objects found : " << found . s i z e () << endl ;
139

140 for (s i z e _ t j =0; j <found . s i z e () ; j ++) {
141 Point center (found [j] . x + found [j] . width * 0 . 5 , found [j] . y + found [j] . height *0 .5) ;
142 i n t radius = cvRound((found [j] . width + found [j] . height) *0.25) ;
143 c i r c l e (result , center , radius , Scalar (0 ,255 ,0) , 4 , 8 , 0) ;
144 }
145

134 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

146 return found . s i z e () ;
147 }
148

149 // Threshold values for The binary segmentation . Might need to be altered to f i t the red
value that i s desired

150 #define THRESHOLD_RED 50
151 #define MAX_BINARY_VALUE 255
152

153 // The algorithm which find a face in the s t i l l image . I t can choose to perform the face
detection on the entire image ,

154 // or , do the face detection on the segmented image . Chosen by Argument 1 . Argument 2 i s
the path to the image

155 i n t main(i n t argc , char ** argv) {
156

157 i f (argc < 3) {
158 cout << "Arguments needs to be input to t h i s program . " << endl ;
159 cout << "Arg 1 : mode s e l e c t o r between blob (1) or no blob (0) detection " << endl ;
160 cout << "Arg 2 : path to input image" << endl ;
161 e x i t (0) ;
162 }
163 i n t modeSelector = ato i (argv [1]) ;
164

165 Mat frame ;
166 frame = imread (argv [2]) ;
167

168 funcTimer duration ;
169 // Process image : SELECT BETWEEN BLOB OR NOT BLOB DETECTION
170 cout << " Processing started " << endl ;
171 i f (! modeSelector) {
172 Mat faceResult ;
173 faceResult = frame . clone () ;
174

175 DB(duration . t imerStart () ;) // Timer s t a r t
176 i f (findFaceInImage (frame , faceResult)) {
177 DB(duration . timerEnd () ;) // Timer end
178 DB(cout << duration . getTimeInMS () << endl ;)
179

180 DB(cout << "Face found" << endl ;)
181 imwrite ("images/ faceNoBlobResult . jpg " , faceResult) ;
182 }
183 } e lse i f (modeSelector) {
184 DB(duration . t imerStart () ;) // Timer s t a r t
185

186 // Extract red blobs
187 DB(cout << "### Extract red blobs " << endl ;)
188 Mat redMat ;
189 extractRed (frame , redMat) ;
190

191 // Threshold into binary
192 DB(cout << "### Threshold into binary " << endl ;)
193 cv : : threshold (redMat , redMat , THRESHOLD_RED, MAX_BINARY_VALUE, THRESH_BINARY) ;
194

195 // Save image
196 imwrite ("images/BLOB_thresRed . jpg " , redMat) ;

A.3. SINGLE IMAGE FACE DETECTION 135

197

198 // Extract contours
199 DB(cout << "### Extract contours " << endl ;)
200 vector < vector <cv : : Point > > contours ;
201 vector <Vec4i > hierarchy ;
202 findContours (redMat , contours , hierarchy , CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point

(0 , 0)) ;
203 DB(cout << "Contours found : " << contours . s i z e () << endl ;)
204

205 // Find l a r g e s t contour
206 DB(cout << "### Find l a r g e s t contour" << endl ;)
207 i n t largestContourArea = −1;
208 i n t largestContourIndex = −1;
209 i f (contours . s i z e () != 0) {
210 largestContourArea = findLargestContour (contours , &largestContourIndex) ;
211 DB(cout << " Largest contour index : " << largestContourIndex << endl ;)
212 }
213

214 // Process contour area :
215 DB(cout << "### Process contour area " << endl ;)
216 i f (largestContourIndex != −1) {
217 DB(cout << " Object found . Size : " << largestContourArea << endl ;)
218 // Extract contour area from frame
219 cv : : Mat imgROI ;
220 cv : : Rect rect = cv : : boundingRect (contours [largestContourIndex]) ;
221

222 // Since the object used was only wearing a red sweater ,
223 // the ROI needs to be expanded somewhat l a r g e r in order to do the detection of a

face
224 cv : : Rect newRect ;
225 newRect = rect + cv : : Size (rect . area () * 0 . 0 5 , rect . area () * 0 . 0 5) ;
226 Size imgSize = frame . s i z e () ;
227 // Make sure the ROI i s contained to the o r i g i n a l image
228 i f (newRect . height > imgSize . height) newRect . height = imgSize . height ;
229 i f (newRect . width > imgSize . width) newRect . width = imgSize . width ;
230

231 // Set location of rect
232 newRect . x −= newRect . width / 2 ;
233 newRect . y −= newRect . height / 2 ;
234

235 // Make sure the ROI stays within the boundaries of the o r i g i n a l image
236 i f (newRect . x < 0) newRect . x = 0 ; // Test l e f t side
237 i f (newRect . y < 0) newRect . y = 0 ; // Test top
238 i f ((newRect . x + newRect . width) > imgSize . width) newRect . width −= ((newRect . x +

newRect . width) − imgSize . width) ;
239 i f ((newRect . y + newRect . height) > imgSize . height) newRect . height −= ((newRect . y

+ newRect . height) − imgSize . height) ;
240

241 imgROI = frame (newRect) ;
242 Mat r e s u l t = imgROI . clone () ;
243

244 imwrite ("images/BLOB_ROI . jpg " , imgROI) ;
245

246 // Do the actual processing

136 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

247 i f (largestContourArea > 100) {
248 DB(cout << " Object found and above threshold " << endl ;)
249 i f (findFaceInImage (imgROI , r e s u l t)) {
250 DB(cout << "Face found" << endl ;)
251 imwrite ("images/BLOB_faceResult . jpg " , r e s u l t) ;
252 }
253 }
254 DB(duration . timerEnd () ;) // Timer end
255 DB(cout << duration . getTimeInMS () << endl ;)
256 }
257 }
258

259 return 0 ;
260 }

A.4 Webcam face detection

The code in Listing A.4 is used for doing face detection on a webcam stream. The face detection
function provided by the OpenCV library, as in the single image face detection application, is
either run directly on the images, or run by utilizing the blob detection approach and extracting
a region before the detection is performed. The application assumes OpenCV is installed, and
needs the "haarcascade_frontalface_alt.xml" file provided by the OpenCV library to be located
in the same folder as the executable. A timer function, listed in Listing A.6, is also needed for
determining the run-time of the program. The BeagleBone Black needs to be setup for utilizing
the uSD card for storing the images because the application saves the results to the external uSD
card once the detection on an image is completed.

Listing A.4: Face Detection in webcam stream

1 /*
2 * Find face in webcam frame with or without Blob detection
3 *
4 * main . cpp
5 * dependencies : funcTimer . h and . cpp for run−time calculat ions
6 * ; and the cascade f i l e s for the OpenCV function needs to be in the same folder as the

run f i l e
7 *
8 * Created on : 15mai2014
9 * Author : Gaute Gamnes

10 */
11

12

13 /*
14 * Some code i s adapted from http : / / stackoverflow .com/ questions /8166024/how−does−

findcontours−cycle−through−the−image−opencv−2−3
15 * Other code i s adapted from Vegard Hammerseth , 2013.
16 */
17 #include <stdio . h>
18 #include <iostream >
19 #include <fstream >
20 #include <str ing >

A.4. WEBCAM FACE DETECTION 137

21 #include <time . h>
22 #include <sstream>
23 #include <unistd . h>
24

25 extern "C" {
26 #include <pthread . h>
27 }
28

29 #include <opencv2/ core / core . hpp>
30 #include <opencv2/ features2d / features2d . hpp>
31 #include <opencv2/ nonfree / nonfree . hpp>
32 #include <opencv2/ calib3d / calib3d . hpp>
33 #include <opencv2/imgproc/imgproc . hpp>
34 #include <opencv2/ objdetect / objdetect . hpp>
35 #include <opencv2/ contrib / contrib . hpp>
36 #include <opencv2/ highgui / highgui . hpp>
37 #include <opencv2/ s t i t c h i n g / s t i t c h e r . hpp>
38 using namespace std ;
39 using namespace cv ;
40

41 #include "funcTimer . h"
42

43 //#define GUI or BBB mode
44 #define GRAPHICS
45 #define DEBUG
46

47

48 # i f d e f DEBUG
49 #define DB(x) x
50 # else
51 #define DB(x)
52 #endif
53

54 // Extracts the red channel of the image and removes some of the red from other colors
55 void extractRed (const cv : : Mat& src , cv : : Mat& dst) {
56 //Get red channel from src
57 cv : : Mat colorChannel (src . rows , src . cols , CV_8UC1) ;
58 i n t fromTo [] = { 2 , 0 } ;
59 cv : : mixChannels(&src , 1 , &colorChannel , 1 , fromTo , 1) ;
60

61 //Get grayscale of src
62 cv : : Mat gray (src . rows , src . cols , CV_8UC1) ;
63 cv : : cvtColor (src , gray , CV_BGR2GRAY) ;
64

65 //Remove other colors than " r e a l " red (white i s also removed for instance)
66 cv : : Mat pureColor (src . rows , src . cols , CV_8UC1) ;
67 pureColor = colorChannel − gray ;
68

69 dst = pureColor . clone () ;
70 }
71

72 // Finds the l a r g e s t Contour in a vector of contours and saves the index in maxIndex .
73 // Returns the area of the l a r g e s t contour .
74 double findLargestContour (const vector < vector <cv : : Point > > &contours , i n t *maxIndex) {

138 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

75 double area ;
76 double maxArea = 0 ;
77

78 for (s i z e _ t i =0; i <contours . s i z e () ; i ++) {
79 area = contourArea (contours [i]) ;
80 // cout << "Area of contour : " << area << endl ; // For debugging
81 i f (area > maxArea) {
82 maxArea = area ;
83 *maxIndex = i ;
84 }
85 }
86

87 return maxArea ;
88 }
89

90

91 // Find a face in an image . Can also be used for finding other features by choosing
92 // which cascade f i l e to load . The r e s u l t i s shown with a green c i r c l e .
93 i n t findFaceInImage (Mat &img , Mat &r e s u l t) {
94 vector <Rect> found , found_fi l tered ;
95

96 CascadeClassif ier face_cascade ;
97 s t r i n g cascadeFileName1 = " hogcascade_pedestrians . xml" ;
98 s t r i n g cascadeFileName2 = " haarcascade_frontalface_alt . xml" ;
99 s t r i n g cascadeFileName3 = " haarcascade_fullbody . xml" ;

100 s t r i n g cascadeFileName4 = "haarcascade_lowerbody . xml" ;
101 s t r i n g cascadeFileName5 = "haarcascade_mcs_upperbody . xml" ;
102 s t r i n g cascadeFileName6 = "haarcascade_upperbody . xml" ;
103

104 i f (! face_cascade . load (cascadeFileName2)) {
105 cout << " Failed loading cascade f i l e " << endl ;
106 e x i t (0) ;
107 }
108

109 // Parameters for cascade detection
110 double scaleFactor = 1 . 1 ; //How much the image s i z e i s reduced each image scale
111 i n t minNeighbors = 2 ; //How many neighbor each candidate rectangle should have to

retain i t
112 i n t f l a g s = 0 |CV_HAAR_SCALE_IMAGE; //Not used in new cascade
113 Size minSize = Size (8 , 8) ; //Minimum possible object s i z e
114 Size maxSize = Size (32 ,32) ; //Maximum possible object s i z e
115

116 Size s = img . s i z e () ;
117 cout << " Detecting faces . . . on img of s i z e : " << s . height << " " << s . width << endl ;
118 face_cascade . detectMultiScale (img , found , scaleFactor , minNeighbors , f l a g s , minSize) ; //

, maxSize) ;
119 cout << "Number of objects found : " << found . s i z e () << endl ;
120

121 for (s i z e _ t j =0; j <found . s i z e () ; j ++) {
122 Point center (found [j] . x + found [j] . width * 0 . 5 , found [j] . y + found [j] . height *0 .5) ;
123 cout << " Object found at ; x : " << found [j] . x + found [j] . width *0.5 << " and y : " <<

found [j] . y + found [j] . height *0 .5 << endl ;
124 i n t radius = cvRound((found [j] . width + found [j] . height) *0.25) ;
125 c i r c l e (result , center , radius , Scalar (0 ,255 ,0) , 4 , 8 , 0) ;

A.4. WEBCAM FACE DETECTION 139

126 }
127

128 return found . s i z e () ;
129 }
130

131 // Data used for communication between the threads
132 s t r u c t thread_data_t {
133 Mat frame ;
134 i n t t e s t ;
135 i n t algorithmModeSelector ;
136 } GLOB_thread_data_t ;
137

138 pthread_mutex_t frameLock ;
139 pthread_barrier_t getStartedBarr ier ;
140

141 // R e t r i e v a l thread . Gets the frames from the webcamera
142 void * getWebcamFrames(void * argument) {
143 // thread_data_t * data = (reinterpret_cast <thread_data_t * >(argument)) ;
144 VideoCapture capture (0) ; // 0 for standard camera , 1 for other . I f laptop has camera ,

might need to use 1 .
145 i f (! capture . isOpened ()) {
146 cout << "Cannot open the video capture " << endl ;
147 e x i t (0) ;
148 }
149

150 capture . set (CV_CAP_PROP_FRAME_HEIGHT, 720) ; // set camera rate
151 capture . set (CV_CAP_PROP_FRAME_WIDTH, 1280) ; // set camera rate
152 capture >> GLOB_thread_data_t . frame ;
153 pthread_barrier_wait (& getStartedBarr ier) ;
154

155 while (1) {
156 pthread_mutex_lock(&frameLock) ;
157 capture >> GLOB_thread_data_t . frame ;
158 pthread_mutex_unlock(&frameLock) ;
159 usleep (100) ;
160 // pthread_yield () ; // give up CPU
161 //WITHOUT SLEEP OTHER THREAD HAS TO WAIT FOR A LONG TIME BEFORE GAINING ACCESS TO

IMAGE!
162 }
163 pthread_exit (NULL) ;
164 return 0 ;
165 }
166

167 // Threshold values for The binary segmentation . Might need to be altered to f i t the red
value that i s desired

168 #define THRESHOLD_RED 50
169 #define MAX_BINARY_VALUE 255
170

171 // The algorithm which find a face in the webcamera frame . I t can choose to perform the
face detection on the entire image ,

172 // or , do the face detection on the segmented image . Chosen by Argument .
173 void * objectAlgorithm (void * argument) {
174 // thread_data_t * data = (reinterpret_cast <thread_data_t * >(argument)) ;
175 pthread_barrier_wait (& getStartedBarr ier) ;

140 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

176 DB(funcTimer duration ;)
177

178 DB(i n t saveImageCounter = 0 ;)
179 DB(s t r i n g fileName ;
180 ofstream myFile ;)
181

182

183 i n t modeSelector_FindRedBlobs = GLOB_thread_data_t . algorithmModeSelector ;
184 //USE t h i s for select ion i f blob detection i s to be performed or not . 1 => use blob , 0

=> no blob .
185

186 i f (! modeSelector_FindRedBlobs) myFile . open(" /media/mmc0/noBlob/ timeResults . t x t ") ;
187 else myFile . open(" /media/mmc0/blob/ timeResults . t x t ") ;
188

189

190 while (1) {
191 //Get frame from webcam
192 DB(duration . t imerStart () ;) // Timer s t a r t
193 pthread_mutex_lock(&frameLock) ;
194 Mat frame = GLOB_thread_data_t . frame . clone () ;
195 pthread_mutex_unlock(&frameLock) ;
196 DB(duration . timerEnd () ;) // Timer end
197 DB(cout << " ! ! ! Get frame wait : " << duration . getTimeInMS () << endl ;)
198

199 // Keep track of the images :
200 DB(stringstream ss ;
201 ss << saveImageCounter ;
202 saveImageCounter ++;)
203

204 // Process image : SELECT BETWEEN BLOB OR NOT BLOB DETECTION
205 i f (! modeSelector_FindRedBlobs) {
206

207 Mat faceResult ;
208 faceResult = frame . clone () ;
209

210 DB(duration . t imerStart () ;) // Timer s t a r t
211 i f (findFaceInImage (frame , faceResult)) {
212 DB(duration . timerEnd () ;) // Timer end
213 DB(cout << duration . getTimeInMS () << endl ;)
214

215 DB(cout << "Face found" << endl ;)
216

217 DB(fileName = " /media/mmc0/noBlob/ r e s u l t _ " + ss . s t r () + " . jpg " ;
218 imwrite (fileName , faceResult) ;
219 myFile << "Time used on f i l e : " << fileName << " \ t was : " << duration .

getTimeInMS () << endl ;)
220 }
221 } e lse i f (modeSelector_FindRedBlobs) {
222 DB(duration . t imerStart () ;) // Timer s t a r t
223

224 // Save Frame
225 DB(fileName = " /media/mmc0/blob/Frame_" + ss . s t r () + " . jpg " ;
226 imwrite (fileName , frame) ;)
227

A.4. WEBCAM FACE DETECTION 141

228 // Extract red blobs
229 DB(cout << "### Extract red blobs " << endl ;)
230 Mat redMat ;
231 extractRed (frame , redMat) ;
232

233 // Threshold into binary
234 DB(cout << "### Threshold into binary " << endl ;)
235 cv : : threshold (redMat , redMat , THRESHOLD_RED, MAX_BINARY_VALUE, THRESH_BINARY) ;
236

237 // Save binary image
238 DB(fileName = " /media/mmc0/blob/ Binary_ " + ss . s t r () + " . jpg " ;
239 imwrite (fileName , redMat) ;)
240

241 // Extract contours
242 DB(cout << "### Extract contours " << endl ;)
243 vector < vector <cv : : Point > > contours ;
244 vector <Vec4i > hierarchy ;
245 findContours (redMat , contours , hierarchy , CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE,

Point (0 , 0)) ;
246 DB(cout << "Contours found : " << contours . s i z e () << endl ;)
247

248 // Find l a r g e s t contour
249 DB(cout << "### Find l a r g e s t contour" << endl ;)
250 i n t largestContourArea = −1;
251 i n t largestContourIndex = −1;
252 i f (contours . s i z e () != 0) {
253 largestContourArea = findLargestContour (contours , &largestContourIndex) ;
254 DB(cout << " Largest contour index : " << largestContourIndex << endl ;)
255 }
256

257 // Process contour area :
258 DB(cout << "### Process contour area " << endl ;)
259 i f (largestContourIndex != −1) {
260 DB(cout << " Object found . Size : " << largestContourArea << endl ;)
261 // Extract contour area from frame
262 cv : : Mat imgROI ;
263 cv : : Rect rect = cv : : boundingRect (contours [largestContourIndex]) ;
264

265 DB (cout << " Extracting ROI from image , h : " << rect . height << " w: " << rect .
width << endl ;)

266 // Since the object used was only wearing a red sweater ,
267 // the ROI needs to be expanded somewhat l a r g e r in order to do the detection of a

face
268 cv : : Rect newRect ;
269 newRect = rect + cv : : Size (rect . area () * 0 . 0 5 , rect . area () * 0 . 0 5) ;
270 Size imgSize = frame . s i z e () ;
271 // Make sure the ROI i s contained to the o r i g i n a l image
272 i f (newRect . height > imgSize . height) newRect . height = imgSize . height ;
273 i f (newRect . width > imgSize . width) newRect . width = imgSize . width ;
274

275 // Set location of rect
276 newRect . x −= newRect . width / 2 ;
277 newRect . y −= newRect . height / 2 ;
278

142 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

279 // Make sure the ROI stays within the boundaries of the o r i g i n a l image
280 i f (newRect . x < 0) newRect . x = 0 ; // Test l e f t side
281 i f (newRect . y < 0) newRect . y = 0 ; // Test top
282 i f ((newRect . x + newRect . width) > imgSize . width) newRect . width −= ((newRect . x +

newRect . width) − imgSize . width) ;
283 i f ((newRect . y + newRect . height) > imgSize . height) newRect . height −= ((newRect .

y + newRect . height) − imgSize . height) ;
284

285 DB (cout << " Extracting ROI from image , h : " << newRect . height << " w: " <<
newRect . width << endl ;)

286 imgROI = frame (newRect) ;
287 Mat r e s u l t = imgROI . clone () ;
288

289 // Save ROI
290 DB(fileName = " /media/mmc0/blob/ROI_" + ss . s t r () + " . jpg " ;
291 imwrite (fileName , imgROI) ;)
292

293 // Do the actual processing
294 i f (largestContourArea > 100) {
295 DB(cout << " Object found and above threshold " << endl ;)
296 i f (findFaceInImage (imgROI , r e s u l t)) {
297 DB(duration . timerEnd () ;) // Timer end
298 DB(cout << duration . getTimeInMS () << endl ;)
299

300 DB(cout << "Face found , image saved" << endl ;)
301 DB(fileName = " /media/mmc0/blob/ r e s u l t _ " + ss . s t r () + " . jpg " ;
302 imwrite (fileName , r e s u l t) ;
303 myFile << "Time used on f i l e : " << fileName << " \ t was : " << duration .

getTimeInMS () << endl ;)
304 }
305 }
306 }
307 }
308 }
309 pthread_exit (NULL) ;
310 return 0 ;
311 }
312

313 // S t a r t s the two threads and never ends .
314 // Argument 1 i s the mode s e l e c t o r between blob or no blob detection .
315 i n t main(i n t argc , char ** argv) {
316 i f (argc < 2) {
317 cout << "Arguments needs to be input to t h i s program . " << endl ;
318 cout << "Arg 1 : mode s e l e c t o r between blob (1) or no blob (0) detection " << endl ;
319 e x i t (0) ;
320 }
321 i n t modeSelector = ato i (argv [1]) ;
322 i f ((modeSelector == 0) | | (modeSelector == 1)) {
323 GLOB_thread_data_t . algorithmModeSelector = ato i (argv [1]) ;
324 }
325 else {
326 cout << " Error in input argument 1 . Needs to be 1 for blob , or 0 for no blob" << endl

;
327 e x i t (0) ;

A.5. TIMER FUNCTION 143

328 }
329

330 pthread_t getImageFromWebcam , objectAlgorithm_t ;
331

332 pthread_mutex_init(&frameLock , NULL) ;
333 pthread_barr ier_init (& getStartedBarrier , NULL, 2) ;
334

335 i n t createThread1 = pthread_create(&getImageFromWebcam , NULL, getWebcamFrames , NULL) ; //
reinterpret_cast <void*>(& thread_data_t)) ;

336 i f (createThread1 ! = 0) e x i t (EXIT_FAILURE) ;
337 i n t createThread2 = pthread_create(&objectAlgorithm_t , NULL, objectAlgorithm , NULL) ; //

reinterpret_cast <void*>(& thread_data_t)) ;
338 i f (createThread2 ! = 0) e x i t (EXIT_FAILURE) ;
339

340 pthread_join (getImageFromWebcam , NULL) ;
341 pthread_join (objectAlgorithm_t , NULL) ;
342

343 return 0 ;
344 }

A.5 Timer Function

The code in Listing A.5 and Listing A.6 is used for determining the run-time of the algorithms
that are tested on the BeagleBone Black in this thesis. The code assumes that the OpenCV library
is installed.

Listing A.5: Header file for run-time calculations

1

2

3 # i fndef FUNCTIMER_H_
4 #define FUNCTIMER_H_
5

6 c l a s s funcTimer {
7 private :
8 double duration ;
9 public :

10 funcTimer () ;
11 v i r t u a l ~funcTimer () ;
12 void timerStart () ;
13 void timerEnd () ;
14 double getTimeInMS () ;
15 } ;
16

17

18

19 #endif

Listing A.6: Functions for run-time calculations

1

2

3

144 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

4

5 #include "funcTimer . h"
6 #include <iostream >
7 #include <opencv2/ core / core . hpp>
8

9 funcTimer : : funcTimer () {
10 duration = 0 ;
11 }
12

13 funcTimer : : ~ funcTimer () {
14 // TODO
15 }
16

17 void funcTimer : : t imerStart () {
18 duration = s t a t i c _ c a s t <double >(cv : : getTickCount ()) ;
19 }
20

21 void funcTimer : : timerEnd () {
22 duration = s t a t i c _ c a s t <double >(cv : : getTickCount ()) − duration ;
23 }
24

25 double funcTimer : : getTimeInMS () {
26 return (duration / cv : : getTickFrequency ()) ;
27 }

A.6 APM 2.6: Sniffing Application

The BeagleBone Black was used during this Thesis for sniffing the packets sent from the APM
2.6 autopilot system to its radio module. The code in Listing A.7 is an application that reads the
packets sent by the APM 2.6 and writes some of the contents to the terminal.

Listing A.7: APM 2.6 Sniffing Application

1 /*
2 *
3 * Written by Gaute Gamnes, NTNU
4 * spring of 2014. Date : 140521
5 *
6 * /* Code borrowed and modified from several sources . . .
7 * S e r i a l information :
8 * http : / / en . wikibooks . org / wiki /Serial_Programming/ termios
9 * http : / / blog . eduardofleury .com/ archives /2007/11/16

10 * MAVLink : as well as s e r i a l :
11 *
12 http : / / diydrones .com/forum/ topics /need−help−for−s e r i a l−comunication ? id=705844%3ATopic%3

A1038239&page=1#comments
13 *
14 * Compile with :
15 * gcc main . c −o programExe −I . . / . . / mavlink/ Hello−World/mavlink/ include /mavlink/v1

. 0 /common
16 *
17 * Before running the program UART needs to be enabled on the BeagleBone .

A.6. APM 2.6: SNIFFING APPLICATION 145

18 * UART 4 i s used in t h i s application ; Pin 11(Rx) and Pin 13(Tx) on Header P9 .
19 * To enable UART 4 : run command
20 * echo BB−UART4 > / sys / devices /bone_capemgr . * BACKSLASHslots
21 * The BACKSLASH i s a / but can not be inserted in the comment section of t h i s code .
22 *
23 * Using MAVLink : Download the newest . zip f i l e from https : / / github .com/mavlink/mavlink/

downloads
24 * Unzip on the BeagleBone Black and include <mavlink . h> in the code .
25 * When compiling the program , include the −I f l a g during compile and append the path to

the
26 * / include /mavlink/v1 . 0 /common folder .
27 * I f the MAVLink headers are included in the PATH environment of the BeagleBone i t

might not be needed with
28 * the compile f l a g .
29 *
30 */
31

32 #include <termios . h>
33 #include <stdio . h>
34 #include < s t d l i b . h>
35 #include <unistd . h>
36 #include < f c n t l . h>
37 #include <errno . h>
38 #include < s t r i n g . h>
39 #include <sys / i o c t l . h>
40

41 #include <mavlink . h>
42

43 #define TTY_SERIAL_PORT " /dev/ ttyO4 " // Path to s e r i a l port , UART 4 , pin 11(Rx) and 13(Tx
)

44

45 i n t init_serial_communication (char * port) {
46 i n t t t y _ f d = 0 ; // The returned f i l e handle for the device
47 t t y _ f d = open(port , O_RDWR | O_NOCTTY | O_NDELAY) ;
48 // O_RDWR − opens port for read and write
49 // O_NOCTTY − The port never becomes the control l ing terminal of the process
50 // O_NDELAY − Non−blocking IO
51 i f (t t y _ f d == −1) {
52 p r i n t f (" Failed to open port \n") ;
53 return t t y _ f d ;
54 }
55

56 s t r u c t termios serial_options , o r i g i n a l _ s e r i a l _ o p t i o n s ;
57 // Get current terminal s e t t i n g s
58 i f (t c g e t a t t r (tty_fd , &o r i g i n a l _ s e r i a l _ o p t i o n s) == −1) {
59 p r i n t f (" Error gett ing t t y a t t r i b u t e s %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) , errno)

;
60 return −1;
61 }
62 ser ia l_options = o r i g i n a l _ s e r i a l _ o p t i o n s ; // Copy s e t t i n g s to new and play with them
63

64 // Set termianl to something l i k e raw mode
65 // Input i s a v a i l a char by char , echoing i s disabled , no special processing of IO char
66 cfmakeraw(& seria l_options) ;

146 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

67 // Set input and output speed ?
68 cfsetspeed (& serial_options , 57600) ;
69 // 8N1
70 ser ia l_options . c_cf lag &= ~PARENB;
71 ser ia l_options . c_cf lag &= ~CSTOPB;
72 ser ia l_options . c_cf lag &= ~CSIZE ;
73 ser ia l_options . c_cf lag | = CS8 ;
74 // no flow control
75 ser ia l_options . c_cf lag &= ~CRTSCTS ;
76 ser ia l_options . c_cf lag | = CREAD | CLOCAL; // turn on READ & ignore c t r l l i n e s
77 ser ia l_options . c _ i f l a g &= ~(IXON | IXOFF | IXANY) ; // turn o f f s /w flow c t r l
78 ser ia l_options . c _ l f l a g &= ~(ICANON | ECHO | ECHOE | ISIG) ; // make raw
79 ser ia l_options . c_oflag &= ~OPOST; // make raw
80 // see : http : / / unixwiz . net / techtips / termios−vmin−vtime . html
81 ser ia l_options . c_cc [VMIN] = 0 ;
82 ser ia l_options . c_cc [VTIME] = 20;
83

84 // Apply s e t t i n g s
85 i f (t c s e t a t t r (tty_fd , TCSANOW, &seria l_options) == −1) {
86 p r i n t f (" Error s e t t i n g t t y a t t r i b u t e s %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) , errno)

;
87 return −1;
88 }
89 // clear a l l f l a g s on descriptor , enable d i r e c t IO
90 i f (f c n t l (t ty_fd , F_SETFL , 0)) {
91 p r i n t f (" Error s e t t i n g t t y non−blocking %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) ,

errno) ;
92 e x i t (EXIT_FAILURE) ;
93 }
94

95 return t t y _ f d ;
96 }
97

98 i n t main(i n t argc , char * argv) {
99 const char *dev = " /dev/ ttyO4 " ; // Path to s e r i a l port , UART 4 , pin 11 and 13

100

101 i n t t t y _ f d = init_serial_communication (TTY_SERIAL_PORT) ;
102 i f (t t y _ f d == −1) {
103 p r i n t f (" Error opening s e r i a l port ! \ n") ;
104 e x i t (EXIT_FAILURE) ;
105 }
106

107 /* Receive information from s e r i a l port */
108 char rec_byte ;
109 //NEEDS MAVLINK for t h i s to work
110 mavlink_status_t msg_status ;
111 mavlink_message_t msg ;
112 s t a t i c const i n t FIXED_HEADER_LEN = MAVLINK_NUM_HEADER_BYTES +

MAVLINK_NUM_CHECKSUM_BYTES;
113 i n t s e r i a l _ f d = t t y _ f d ; //would have to be used i f sent into a thread , thus taking the

value of args .
114 while (1) {
115 i n t rdChar = read (s e r i a l _ f d , &rec_byte , 1) ;
116 i f (rdChar == −1) {

A.6. APM 2.6: SNIFFING APPLICATION 147

117 perror (" Error reading s e r i a l port ") ;
118 }
119 i f (rdChar == 0) {
120 usleep (10*1000) ; // wait 10msec t r y again
121 continue ;
122 }
123 // Read the packet that i s receive using the MAVLink provided function parse char .
124 i f (mavlink_parse_char (MAVLINK_COMM_0, rec_byte , &msg, &msg_status)) {
125 // Packet received
126 p r i n t f (" S e r i a l −> BBB: SYS : %d , COMP: %d , LEN: %d , MSG ID : %d\n" ,
127 msg . sysid , msg . compid , msg . len , msg . msgid) ;
128 // Print the packet
129 i n t j ;
130 for (j =0; j <msg . len + FIXED_HEADER_LEN; j ++) {
131 p r i n t f ("0x%02x " , * ((uint8_t *)&msg . magic + j) & 0 x 0 0 f f) ;
132 i f (((j +1) % 8) == 0) p r i n t f (" \n") ;
133 }
134 // To tidy up the print outs
135 i f (! ((j +1) % 8) == 0) p r i n t f (" \n") ;
136

137 // Switch case to handle messages ,
138 // Take mavlink_message_t * msg as input .
139 switch (msg . msgid) {
140 case MAVLINK_MSG_ID_HEARTBEAT:
141 p r i n t f (" Heartbeat received \n") ;
142 break ;
143 case MAVLINK_MSG_ID_COMMAND_LONG:
144 p r i n t f ("Command long received \n") ;
145 break ;
146 case MAVLINK_MSG_ID_GPS_RAW_INT:
147 p r i n t f ("GPS raw i n t received \n") ;
148 break ;
149 case MAVLINK_MSG_ID_GPS_STATUS:
150 p r i n t f ("GPS status received \n") ;
151 break ;
152 case MAVLINK_MSG_ID_RAW_IMU: //#27
153 p r i n t f ("Raw IMU received \n") ;
154 break ;
155 case MAVLINK_MSG_ID_SCALED_PRESSURE: //#29
156 p r i n t f (" Scaled pressure received \n") ;
157 break ;
158 case MAVLINK_MSG_ID_ATTITUDE: //#30
159 p r i n t f (" Attitude received \n") ;
160 mavlink_attitude_t packet ;
161 mavlink_msg_attitude_decode(&msg, &packet) ;
162 p r i n t f (" Pitch : %f , yaw : %f , r o l l : %f \n" ,
163 packet . pitch , packet . yaw , packet . r o l l) ;
164 break ;
165 case MAVLINK_MSG_ID_GLOBAL_POSITION_INT : // #33 , f i l t e r e d GPS
166 p r i n t f (" Global position i n t received \n") ;
167 mavlink_global_position_int_t packet2 ;
168 mavlink_msg_global_position_int_decode(&msg, &packet2) ;
169 p r i n t f (" Latitude : %d , Longitude : %d , Alt i tude : %d \n" ,
170 packet2 . l a t , packet2 . lon , packet2 . a l t) ;

148 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

171 // Lat and lon expressed as *1E7 . A l t in meters , * 1000 (mm) .
172 break ;
173 case MAVLINK_MSG_ID_VFR_HUD: // #74 , Metrics for f ixed wing
174 p r i n t f ("VFR_HUD received \n") ;
175 break ;
176 default :
177 //Do nothing
178 p r i n t f ("MSG ID not handled\n") ;
179 }
180 }
181 }
182

183 /* Done receiving from s e r i a l port */
184

185 // Restore terminal s e t t i n g s NO NEED in t h i s p a r t i c u l a r case , cause program never ends
186 // t c s e t a t t r (0 , TCSANOW, &o r i g i n a l _ s e r i a l _ c o n f i g) ;
187

188 close (t t y _ f d) ;
189

190 return 0 ;
191 }

A.7 XBee: Serial Communication Application

The code listed in Listing A.8 is the code used for achieving communication between the Bea-
gleBone Black and XBee modules. The application consists of two threads, one for handling
received messages and one for sending messages.

Listing A.8: XBee Serial Communication Application

1 /*
2 * Written by Gaute Gamnes, NTNU
3 * spring of 2014. 140521
4 *
5 * Code borrowed and modified from several sources . . . ,
6 * S e r i a l information :
7 * http : / / en . wikibooks . org / wiki /Serial_Programming/ termios
8 * http : / / blog . eduardofleury .com/ archives /2007/11/16
9 *

10 * compile with : g++ main . cpp −o programExe −pthread
11 *
12 * UART1 needs to be enabled for t h i s to work
13 * Run command: echo BB−UART1 > / sys / devices /bone_capemgr . * BACKSLASHslots
14 * BACKSLASH must be replaced with an actual backslash /
15 * Run the command on the BBB i t s e l f to enable UART1 on pin
16 * P9:24 (Tx) , P9:26 (Rx) .
17 *
18 */
19

20 #include <termios . h>
21 #include <iostream >
22 #include <stdio . h>

A.7. XBEE: SERIAL COMMUNICATION APPLICATION 149

23 #include < s t d l i b . h>
24 #include <unistd . h>
25 #include < f c n t l . h>
26 #include <errno . h>
27 #include < s t r i n g . h>
28 #include <sys / i o c t l . h>
29

30 using namespace std ;
31

32 extern "C" {
33 #include <pthread . h>
34 }
35

36 #define TTY_SERIAL_PORT " /dev/ ttyO1 " // Path to s e r i a l port , UART 1 , UART1 pins are P9 :
TX(24) , RX(26)

37

38 i n t init_serial_communication (char * port) {
39 i n t t t y _ f d = 0 ; // The returned f i l e handle for the device
40 t t y _ f d = open(port , O_RDWR | O_NOCTTY) ; // | O_NDELAY) ; Could use delay ?
41 // O_RDWR − opens port for read and write
42 // O_NOCTTY − The port never becomes the control l ing terminal of

the process
43 // O_NDELAY − Non−blocking IO
44 i f (t t y _ f d == −1) {
45 p r i n t f (" Failed to open port \n") ;
46 return t t y _ f d ;
47 }
48

49 s t r u c t termios serial_options , o r i g i n a l _ s e r i a l _ o p t i o n s ;
50 i f (t c g e t a t t r (tty_fd , &o r i g i n a l _ s e r i a l _ o p t i o n s) == −1) { // Get current terminal

s e t t i n g s
51 p r i n t f (" Error gett ing t t y a t t r i b u t e s %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) , errno)

;
52 return −1;
53 }
54 ser ia l_options = o r i g i n a l _ s e r i a l _ o p t i o n s ; // Copy s e t t i n g s to new and play with them
55

56 cfsetspeed (& serial_options , 9600) ; // Set input and output speed
57 // 8N1
58 ser ia l_options . c_cf lag &= ~PARENB;
59 ser ia l_options . c_cf lag &= ~CSTOPB;
60 ser ia l_options . c_cf lag &= ~CSIZE ;
61 ser ia l_options . c_cf lag | = CS8 ;
62 // no flow control
63 // ser ia l_options . c_cf lag &= ~CRTSCTS ;
64 ser ia l_options . c_cf lag | = CREAD | CLOCAL; // turn on READ & ignore c t r l l i n e s
65 ser ia l_options . c _ i f l a g = 0 ;
66 ser ia l_options . c _ l f l a g = 0 ;
67 ser ia l_options . c_oflag = 0 ;
68

69 //Might not be needed
70 // ser ia l_options . c_cc [VMIN] = 0 ; // Wait for an array of a certain s i z e to enter buffer

before moving on?
71 // ser ia l_options . c_cc [VTIME] = 1 ; //Timeout a f t e r 0.1 seconds

150 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

72

73 // Apply s e t t i n g s
74 i f (t c s e t a t t r (tty_fd , TCSANOW, &seria l_options) == −1) {
75 p r i n t f (" Error s e t t i n g t t y a t t r i b u t e s %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) , errno)

;
76 return −1;
77 }
78 // clear a l l f l a g s on descriptor , enable d i r e c t IO
79 i f (f c n t l (t ty_fd , F_SETFL , FNDELAY)) {
80 p r i n t f (" Error s e t t i n g t t y non−blocking %s − %s(%d) . \ n" , tty_fd , s t r e r r o r (errno) ,

errno) ;
81 e x i t (EXIT_FAILURE) ;
82 }
83

84 return t t y _ f d ;
85 }
86

87 void * receiveFromSerial (void * argument) {
88 i n t t t y _ f d = * (reinterpret_cast < i n t * >(argument)) ;
89

90 /* Receive /send information from s e r i a l port */
91 char rec_byte ;
92 while (1) {
93 i n t rdChar = read (tty_fd , &rec_byte , 1) ;
94 i f (rdChar > 0) {
95 cout << "Rec_byte : " << rec_byte << endl ;
96 }
97

98 }
99 /* Done receiving /sending from s e r i a l port */

100

101 return 0 ;
102 }
103

104 void * sendToSerial (void * argument) {
105 i n t t t y _ f d = * (reinterpret_cast < i n t * >(argument)) ;
106

107 while (1) {
108 char input [2 5 6] ;
109 cout << (">") ;
110 f g e t s (input , 256 , stdin) ;
111 i n t s i z e = s t r l e n (input) ;
112 cout << " Input : " << input << " s i z e : " << s i z e << endl ;
113

114 write (tty_fd , input , s i z e) ;
115 }
116

117 return 0 ;
118 }
119

120 i n t main(i n t argc , char ** argv) {
121 i n t t t y _ f d = init_serial_communication (TTY_SERIAL_PORT) ;
122 i f (t t y _ f d == −1) {
123 p r i n t f (" Error opening s e r i a l port ! \ n") ;

A.7. XBEE: SERIAL COMMUNICATION APPLICATION 151

124 e x i t (EXIT_FAILURE) ;
125 }
126

127 pthread_t receive_t , send_t ;
128

129 i n t createThread1 = pthread_create(& receive_t , NULL, receiveFromSerial ,
re interpret_cast <void*>(& t t y _ f d)) ;

130 i f (createThread1 ! = 0) cout << " Error creating receive thread " << endl ;
131 i n t createThread2 = pthread_create(&send_t , NULL, sendToSerial , re interpret_cast <void

*>(& t t y _ f d)) ;
132 i f (createThread2 ! = 0) cout << " Error creating send thread " << endl ;
133 pthread_join (receive_t , NULL) ;
134 pthread_join (send_t , NULL) ;
135

136 close (t t y _ f d) ;
137

138 return 0 ;
139 }

152 APPENDIX A. BEAGLEBONE BLACK: SETUP AND CODE

Appendix B

GPS Localization

In order to test the object localization application explained in this Thesis, some GPS formulas
had to be used in order to calculate the bearing and distance between two GPS locations, and
to calculate a new GPS location given an old one and some movement along the latitude and
longitude axis from this old location. Some of these formulas were not evaluated properly and
thus their credibility was not determined. The formulas might have to be changed to get a more
accurate and reliable result.

In most of the formulas used, the angles in radians are used to calculate the different results.

B.1 Calculate the bearing and distance between two GPS loca-
tions

In order to determine the bearing, or compass course between two GPS locations, a formula was
found and tested to be functional, and thus used in the work of this Thesis [GPS, a].

Equation B.1 shows a formula for calculating the bearing between two GPS locations.

bearing= MOD(

arctan(cos(lat1)∗ sin(lat2)− sin(lat1)∗cos(lat2)∗cos(long2−long1);

sin(long2−long1)∗cos(lat2))

; 2∗π)

(B.1)

All variables are in radians. The Lat1 variable is the latitude of the first GPS location. Lat2 is the
latitude of the second location. Long1 and Long2 are the longitude of the positions. The result
is the bearing between the first GPS location to the second location in radians.

To calculate the distance between two GPS locations, another formula was found and tested to

153

154 APPENDIX B. GPS LOCALIZATION

provide satisfactory results [GPS, b]. Equation B.2 shows a formula for calculating this distance.

distance(km) = arccos(cos(lat1)∗cos(lat2)∗cos(long1−long2)

+ sin(lat1)∗ sin(lat2))∗earthRadius (B.2)

The variables lat1, lat2, long1, long2 are the same as in the bearings formula, and the result of
Equation B.2 is the distance between the two GPS locations in km.

B.2 Calculate a new GPS location given movement in meters
along latitude and longitude axis

Since the testing and implementation of the localization application was done as the last task
of this Master Thesis, there was not enough time to study how the new latitude and longitude
could be calculated given a movement in meters from another location. A formula found on
a forum website was tested, and the tests proved the function to perform quite well given the
distances needed during this project, and was therefore decided to be used in the localization
application. Equation B.3 lists a formula for calculating a new latitude and longitude position,
given a starting GPS position, and movement from that position in meters along the latitude and
longitude axis [GPS, c]. All positions are in this formula in decimal degrees.

newLat(deg) = cameraLat+ [(
moveInX

1000
)/(earthRadius))]∗ (180/π)

newLong(deg) = cameraLong[(
moveInY

1000
)/(earthRadius∗cos(newLat∗π/180))]∗ (180/π)

(B.3)

As explained, the formula gives the new latitude and longitude after a move from one GPS posi-
tion, given a movement in meters, moveInX, along the latitude axis, and a movement in meters,
moveInY, along the longitude axis.

As explained, this function was not evaluated properly, which possibly resulted in some small
errors in the results when it was used. Due to time limitations, this was however not corrected
during this Thesis and will have to be fixed in future implementations in order to give a correct
GPS localization result. However, since the formula was tested to work, and the distances used
in this Thesis were so small, the formula will probably not have caused that much error in the
result.

B.3 OpenCV webcam application for calculating GPS position
of an object

The code listed in this section are utilizing the formulas listed previously in this appendix re-
garding GPS location calculations. The application is also stationary, meaning that the rotation

B.3. OPENCV WEBCAM APPLICATION FOR CALCULATING GPS POSITION OF AN OBJECT155

and position of the camera needs to be coded into the source code and the application compiled
before it can be tested. The camera matrix used for determining the camera frame coordinate
given the pixel coordinate was found using the calibration program of the OpenCV library. This
calibration matrix will thus only be valid for this particular webcam and the resolution settings
chosen to be used during the calibration.

Listing B.1: Find GPS location of object given pixel position

1 /*
2 * findGPSlocationGivenPixel
3 *
4 * Created on : 31. mai . 2014
5 * Author : Gaute Gamnes
6 */
7

8

9 // This applications finds the GPS location of an object in the frame , given
10 // that the GPS location of the camera and i t s orientation and heading are known
11 /*
12 * This application assumes that a webcamera i s connected , i . e . f ind a webcam at capture

(1)
13 * and also that OpenCV i s i n s t a l l e d and the l i b r a r i e s are c o r r e c t l y linked .
14 *
15 * The camera orientation and GPS location / height needs to be hardcoded into the program ,
16 * could be done in run−time i f desired .
17 */
18

19 #include <stdio . h>
20 #include <iostream >
21 #include <str ing >
22 #include <time . h>
23 #include <sstream>
24

25 extern "C" {
26 #include <pthread . h>
27 }
28

29 #include <opencv2/ core / core . hpp>
30 #include <opencv2/ features2d / features2d . hpp>
31 #include <opencv2/ nonfree / nonfree . hpp>
32 #include <opencv2/ calib3d / calib3d . hpp>
33 #include <opencv2/imgproc/imgproc . hpp>
34 #include <opencv2/ objdetect / objdetect . hpp>
35 #include <opencv2/ contrib / contrib . hpp>
36 #include <opencv2/ highgui / highgui . hpp>
37 #include <opencv2/ s t i t c h i n g / s t i t c h e r . hpp>
38 using namespace std ;
39 using namespace cv ;
40

41 #define PI 3.14159265358979323846264
42

43 s t r u c t thread_data_t {
44 Mat frame ;
45 i n t t e s t ;

156 APPENDIX B. GPS LOCALIZATION

46 i n t pixelX ;
47 i n t pixelY ;
48 } GLOB_thread_data_t ;
49

50 void onMouse(i n t event , i n t x , i n t y , int , void *) {
51 i f (event != CV_EVENT_LBUTTONDOWN) return ;
52 Point pt = Point (x , y) ;
53 for (i n t i =0; i <10; i ++) {
54 cout << "x : " << pt . x << " \ t y : " << pt . y << endl ;
55 GLOB_thread_data_t . pixelX = pt . x ;
56 GLOB_thread_data_t . pixelY = pt . y ;
57 }
58 }
59

60 void * getWebcamFrames(void * argument) {
61 // thread_data_t * data = (reinterpret_cast <thread_data_t * >(argument)) ;
62 VideoCapture capture (1) ;
63 capture . set (CV_CAP_PROP_FRAME_HEIGHT, 480) ;
64 capture . set (CV_CAP_PROP_FRAME_WIDTH, 640) ;
65

66 Mat frame ;
67 namedWindow("frame" , CV_WINDOW_AUTOSIZE) ;
68

69 // Rotation matrices etc , pi i s declared as PI
70

71 // −−−−−−−−−−−−−INPUT, camera orientation −−−−−−−−−−−−−−−−−−−−−−−−−−−
72 double phi = 1.3474889519; // om x
73 double theta = 0 ; // om y
74 double psi = PI /2 + 1.0847126821; // om z
75 // −−
76

77 Mat rotX = (Mat_<double >(3 ,3) << 1 ,0 ,0 ,
78 0 , cos (phi) , sin (phi) ,
79 0 , −sin (phi) , cos (phi)) ;
80 Mat rotY = (Mat_<double >(3 ,3) << cos (theta) , 0 , −sin (theta) ,
81 0 , 1 , 0 ,
82 sin (theta) , 0 , cos (theta)) ;
83 Mat rotZ = (Mat_<double >(3 ,3) << cos (psi) , sin (psi) , 0 ,
84 −sin (psi) , cos (psi) , 0 ,
85 0 , 0 , 1) ;
86 Mat rotW2C = rotX * rotY * rotZ ;
87 // cout << "RotXYZ" << " " << rotXYZ << endl ;
88 Mat K = (Mat_<double >(3 ,3) << 8.1331102645202134e+02 , 0 , 3.1950000000000000e+02 ,
89 0 , 8.1331102645202134e+02 , 2.3950000000000000e+02 ,
90 0 , 0 , 1) ;
91

92

93 // −−−−−−−−−−−−−INPUT, camera height and location l a t long−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 Mat Cw = (Mat_<double >(3 ,1) << 0 ,0 ,−16) ;
95 double cameraLatitudeCoordinate = 63.41856;
96 double cameraLongitudeCoordinate = 10.40109;
97 // −−−
98

99 Mat IandCw = (Mat_<double >(3 ,4) << 1 ,0 ,0 , −Cw. at <double >(0 ,0) ,

B.3. OPENCV WEBCAM APPLICATION FOR CALCULATING GPS POSITION OF AN OBJECT157

100 0 ,1 ,0 , −Cw. at <double >(1 ,0) ,
101 0 ,0 ,1 , −Cw. at <double >(2 ,0)) ;
102 Mat P = K * rotW2C * IandCw ;
103 // cout << "MAT: " << " " << P << endl ;
104 Mat Pwith3columnRemoved = (Mat_<double >(3 ,3) <<
105 P . at <double >(0 ,0) , P . at <double >(0 ,1) , P . at <double >(0 ,3) ,
106 P . at <double >(1 ,0) , P . at <double >(1 ,1) , P . at <double >(1 ,3) ,
107 P . at <double >(2 ,0) , P . at <double >(2 ,1) , P . at <double >(2 ,3)) ;
108

109 // Calculate Xw homogeneous using the p i x e l Xi
110 Mat Xi = (Mat_<double >(3 ,1) << 320 , 240 , 1) ;
111 Mat Xw = Pwith3columnRemoved . inv () * Xi ;
112 Xw = Xw / Xw. at <double >(2 ,0) ;
113 cout << "MAT: " << " " << Xw << endl ;
114

115 // Declare to make sure they contain value
116 GLOB_thread_data_t . pixelX = 0 ;
117 GLOB_thread_data_t . pixelY = 0 ;
118

119 i n t key = 0 ;
120 while (key != 27) {
121 capture >> frame ;
122 cv : : c i r c l e (frame , Point (320 ,240) , 5 , CV_RGB(0 ,0 ,250) , 2 , 8) ;
123 setMouseCallback ("frame" , onMouse, 0) ;
124 //mat , point , radius , color , thickness , connect iv i t iy
125 imshow("frame" , frame) ;
126 imwrite (" locationResult . jpg " , frame) ;
127

128 Xi . at <double >(0 ,0) = GLOB_thread_data_t . pixelX ;
129 Xi . at <double >(1 ,0) = GLOB_thread_data_t . pixelY ;
130 Xw = Pwith3columnRemoved . inv () * Xi ;
131 Xw = Xw / Xw. at <double >(2 ,0) ;
132 // Radius earth i s assumed to be 6371 , new LAT and LONG are calculated based on

formulas found
133 // http : / / stackoverflow .com/ questions /7477003/ calculating−new−longtitude−lat i tude−

from−old−n−meters
134 double newLatCoordinate = cameraLatitudeCoordinate + ((Xw. at <double >(0 ,0) /1000) /

6371) * (180/ PI) ;
135 double newLongCoordinate = cameraLongitudeCoordinate +
136 ((Xw. at <double >(1 ,0) /1000) / (6371* cos (PI * newLatCoordinate /180))) * (180/ PI) ;
137 cout << "World Coordinate : (" << Xw. at <double >(0 ,0) << " , " << Xw. at <double >(1 ,0) <<

") , New GPS l a t / long : ("
138 << newLatCoordinate << " , " << newLongCoordinate << ") " << endl ;
139

140 key = waitKey (1) ;
141 }
142 pthread_exit (NULL) ;
143 return 0 ;
144 }
145

146 i n t main(i n t argc , char ** argv) {
147 pthread_t getImageFromWebcam ;
148

149 std : : cout . precision (8) ;

158 APPENDIX B. GPS LOCALIZATION

150

151 i n t createThread1 = pthread_create(&getImageFromWebcam , NULL, getWebcamFrames , NULL) ; //
reinterpret_cast <void*>(& thread_data_t)) ;

152 i f (createThread1 ! = 0) e x i t (EXIT_FAILURE) ;
153

154 pthread_join (getImageFromWebcam , NULL) ;
155

156 return 0 ;
157 }

Appendix C

System Components

Table C.1 is a table listing all the components included in the prototype UAS created in this
Thesis. The status of the components is either OK, or MISSING. If the status of a components
if OK, the components is present in the system and possible to use for further development. If
the status is MISSING, the components is not present and will thus have to be acquired for the
system to work. The other equipment not necessarily mounted on board the prototype UAS,
but which needs to be acquired to be able to utilize the system is listed in Table C.2.

Table C.1: System Components

Component Details Quantity Weight Price /unit Status

Airframe: MaxiSwift Flying wing 1 700g $98 OK
Battery: Turnigy 5000mAh 3S 20C 2 412g $25 OK

Lipo Pack
Motor: Turnigy Park450 Brushless 1 66g $15 OK

Outrunner 1050kv
Propeller: Composite Propeller, 1 75g $2 OK

10 x 5 E
ESC: 20A 2-4S 5V/3A BEC 1 30g $7 OK

Servo: HD-1810MG Digital Servos 2 16g $15 OK
Autopilot: APM 2.6 1 33g $160 MISSING
GPS and Compass: u-blox GPS with 1 17g $79 MISSING

compass XT60
Power Module: APM Power Module with 1 ~20g $25 MISSING

Connectors Kit
Telemetry Radio: APM Telemetry Radio 1 ~4g $100 MISSING

433MHz

Embedded Computer: BeagleBone Black 1 40g $45 MISSING
Webcam: Logitech c270 HD Webcam 1 227g $50 MISSING

Total all units: Weight: 1801g
Price: $661

159

160 APPENDIX C. SYSTEM COMPONENTS

Table C.2: Extra Components

Component Details Price /unit Status

Battery Charger: Hobbyking ECO SIX 80W 6A 2 6S $25 OK
Battery Balance Charger AC/DC w/PSU

RC Controller and Receiver: DX7s and AR8000 $433 OK
GoPro Camera: GoPro Hero 3 MISSING
Laptop: Acer, Windows 7 MISSING

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	

	

	
	
	
	

	
	
	

	
	

	
	
	

	
	
	

	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	

	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	

	

	
	
	
	
	
	

	
	
	

	
	
	
	

	
	
	

	
	
	
	

	

	
	
	
	
	
	
	
	

	
	

	
	
	
	

	
	

	
	

	

	
	
	
	
	
	
	

	
	
	
	

	
	
	

	
	

	
	
	

	
	
	

	
	

	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	

