
A Computer Vision Approach for
Autonomous Wind Turbine Inspection
using a Multicopter

Martin Stokkeland

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name:	 	 	 	 Martin	 Stokkeland	
Department: Engineering	 Cybernetics	
Thesis title (Norwegian): Bruk	 av	 bildebehandling	 for	 autonom	 inspeksjon	 av	 vindmøller	

ved	 hjelp	 av	 et	 multicopter
Thesis title (English): A	 computer	 vision	 approach	 for	 autonomous	 wind	 turbine	

inspection	 using	 a	 multicopter	
	

Thesis Description: Investigate and study methods for successful and efficient image processing
techniques to be used in local navigation from a UAV-platform like a multicopter (quad/hexa). In
particular, consider the mission of autonomous wind-turbine inspection. Emphasis on object tracking
and recognition as a solution basis.

The following items should be considered:

1. Discuss	 key	 features	 of	 the	 wind-‐turbine	 to	 be	 used	 as	 features	 for	 image	 processing.	 Define	
characteristics	 of	 a	 turbine	 hub.	

2. Overall	 system	 description	 with	 detailed	 module	 interaction	 schemes	 and	 protocols.	 	
3. Literature	 review	 on	 current	 state-‐of-‐the-‐art	 image	 processing	 techniques	 for	 this	

application.	
4. Design	 and	 implement	 object	 tracking-‐based	 algorithms	 for	 local	 navigation	 in	 OpenCV	 on	 a	

desktop	 computer,	 easy	 portability	 between	 platforms	 are	 a	 requirement.	 Preferably,	 details	
concerning	 video	 drivers	 and	 devices	 on	 a	 Linux-‐based	 operating	 system.	 	

5. The	 implementation	 should	 be	 done	 in	 the	 operating-‐framework	 Dune.	 	
6. Discuss	 how	 the	 output	 from	 such	 an	 algorithm	 can	 be	 used	 to	 create	 mathematical	

observers	 (brief).	
7. Investigate	 and	 discuss	 necessary	 hardware	 (cameras,	 video	 converters,	 etc)	
8. The	 results	 should	 be	 verified	 by	 experiments.	 	
9. Conclude	 findings	 in	 a	 report.	 Include	 Matlab/C-‐code	 as	 digital	 appendices	 together	 with	 a	

user-‐guide.	 	

Start date: 2014-‐01-‐21	
Due date: 2014-‐06-‐17

Thesis performed at: Department	 of	 Engineering	 Cybernetics,	 NTNU
Supervisor: Professor	 Tor	 Arne	 Johansen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	 	
Co-supervisor: MSc	 Kristian	 Klausen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	 	

ii

Abstract

This thesis studies the mission of autonomous inspection of a wind turbine
using a multicopter. Emphasis was placed on recognition and tracking using
image processing methods. The Hough line transform was used to extract
features of the wind turbine. Hub position was estimated by an algorithm
tailored to identify the three-point star resemblance and was tracked by uti-
lizing the Kalman filter. Distance and yaw orientation of the wind turbine
were estimated using the pinhole camera model and coordinate transforma-
tions. Restricting computational demand was a goal in the program design.
Experiments showed accurate position tracking at long range, but with dete-
riorating performance as range was decreased. Lack of distinctive measurable
lengths in the image caused inaccuracy in estimation of distance and yaw ori-
entation. Execution frequency of below 7 Hz was achieved on a single-board
computer which was found to be sufficient for reliable control in flight.

iii

iv

Sammendrag

Denne oppgaven utforsker utføring av autonom inspeksjon av vindmøller
ved hjelp av et multikopter. Gjenkjenning og tracking ved hjelp av bilde-
bearbeiding var i hovedfokus. Hough line transform ble brukt til å registrere
vindmøllens trekk. Navets posisjon ble estimert av en algoritme designet for
å gjenkjenne vindmøllens stjerneform og ble tracket ved hjelp av et Kalman
filter. Avstand og yaw orientering av vindmøllen ble estimert ved hjelp av pin-
hole camera model og koordinattransformasjoner. Programmet ble designet
med kjøretid tatt i betraktning. Eksperimenter viste nøyaktig estimering av
posisjon under lang avstand, men med forringet ytelse ved minkende avstand.
Mangel p̊a lett gjenkjennelige målbare avstander i bildet førte til unøyaktig
estimering av avstand og yaw vinkel. Det ble oppn̊add kjørefrekvens p̊a un-
der 7 Hz p̊a en single-board computer, hvilket viste seg å være tilstrekkelig
for p̊alitelig kontroll under flyvning.

v

vi

Preface

This thesis concludes the final step in my journey towards the degree M.Sc.
in Engineering Cybernetics at the Norwegian University of Science and Tech-
nology.

I would like to thank my supervisor, Professor Tor Arne Johansen, for
giving me the opportunity to work on this project. I would further like to
thank my co-supervisor, Ph.D. student Kristian Klaussen, for sound advice
and valuable feedback, and engineer Lars Semb for his aid in gathering video
data.

I would also like to thank my family for their support throughout my
years of study.

vii

viii

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Previous Work . 2
1.3 Contribution and Scope of this Report 2
1.4 Organization of this Report 3

2 Notation and Coordinate Frame Definitions 4
2.1 Notation . 4
2.2 Coordinate Frame Definitions 5

2.2.1 Body frame, b . 5
2.2.2 Camera frame, c . 5
2.2.3 Image frame, i . 5
2.2.4 Wind turbine frame, w 5

3 Key Features of the Wind Turbine 7

4 Theory 11
4.1 Hough Line Transform . 11

4.1.1 Standard Hough line transform 11
4.1.2 Probabilistic Hough line lransform 15
4.1.3 Progressive probabilistic Hough line transform 16

4.2 Hough Circle Transform . 17
4.3 Edge Detection . 18

4.3.1 Canny edge detection 18
4.4 Corner Detection . 20
4.5 Pinhole Camera Model . 21
4.6 The Gaussian Pyramid and Gaussian Blur 22
4.7 Multiband Thresholding and the HSV Color Space 23
4.8 Kalman Filter . 25

ix

5 System Overview 27
5.1 Hardware Setup . 27

5.1.1 Hexacopter, Arducopter 3DR Hexa B 27
5.1.2 ArduPilot Mega 2.5/2.6 27
5.1.3 Single-Board Computer, PandaBoard ES 29
5.1.4 Video camera . 30
5.1.5 e-CAM51 USB . 31

5.2 Software Overview . 31
5.2.1 Ubuntu . 32
5.2.2 OpenCV . 32
5.2.3 Dune . 32
5.2.4 Neptus . 33
5.2.5 IMC . 33

6 Recognizing and Tracking the Wind Turbine 34
6.1 Recognizing the Wind Turbine 34

6.1.1 Feature detection using the Hough line transform . . . 34
6.1.2 Feature detection using corner detection 36
6.1.3 Detecting the hub using Hough circle transform 37
6.1.4 Image segmentation . 38
6.1.5 Recognizing the wind turbine from detected Hough lines 40

6.2 Object Tracking . 46

7 Maneuvering Plan for Wind Turbine Inspection 48
7.1 Maneuvering Towards the Wind Turbine 48
7.2 Maneuvering Along the Blades 52

7.2.1 Choosing a target blade 52
7.2.2 Following the blade . 52
7.2.3 Navigate around the tip of the blade and back the other

side . 53
7.2.4 Note on blade orientation 54

7.3 Distance Estiation . 54
7.3.1 Distance estimation using video camera 54
7.3.2 Distance estimation using dedicated hardware 55

7.4 Yaw Estimation . 55
7.4.1 Estimation via coordinate transformation 57
7.4.2 A more problem specific yaw estimation approach . . . 58
7.4.3 Compass Approach . 59

8 Designing the Program 60
8.1 The Program Flow . 60

x

9 Results 66
9.1 Factors which affect Recognition Performance 66

9.1.1 Minimum requirements for successful detection 66
9.1.2 Failed detections . 68
9.1.3 False positives . 69

9.2 Runtime performance using video input 70
9.2.1 Position estimation . 72
9.2.2 Position estimation with Kalman filter 77
9.2.3 Distance estimation . 81
9.2.4 Angle estimation . 83

9.3 Computation Time . 84
9.3.1 Desktop analysis . 84
9.3.2 Execution time on PandaBoard 86

9.4 Flight control performance in relation to computation time . . 87

10 Discussion 90
10.1 Sources of error . 90
10.2 Performance evaluation . 91
10.3 Method Evaluation and Additional Suggestions 93
10.4 Comments on system set-up 94
10.5 Conclusion . 95
10.6 Future Work . 95

Appendix A Supplementary Results 97

Appendix B Locations 100
B.1 UAV lab . 100
B.2 Bessakerfjellet wind farm . 101

Appendix C Hardware 102
C.1 GoPro HERO3+ Black Edition 102

xi

xii

List of Figures

2.1 Coordinate frames . 6

4.1 Mapping form image to parameter space 12
4.2 Polar coordinate representation of a line 14
4.3 Accumulated votes in Hough transform (continuous) 14
4.4 Geometry of the ideal pinhole camera. 22
4.5 Intensity thresholding example 24
4.6 Representation of the HSV color space 25

5.1 Hardware configuration . 28
5.2 Hexacopter with payload . 29
5.3 Overview of the Pandaboard 30
5.4 Camera . 31

6.1 Canny edge detection and Hough line transform example . . . 35
6.2 Corner detection example . 37
6.3 Hough circle transform example 38
6.4 Color thresholding example 39
6.5 Detection of tower and blade lines example 41
6.6 Horizon interference in blade detection 42
6.7 Horizon interference in blade detection 43
6.8 Blade and tower lines intersection points 44
6.9 Accepted and rejected intersection points 45
6.10 Estimated hub center position example 45

7.1 Initial UAV position . 49
7.2 Boundaries for accepted hub center position 50
7.3 Path of approach . 51
7.4 Initial position for blade inspection 52
7.5 A blade of a wind turbine . 53
7.6 Semicircle manoeuvre path around blade tip 54
7.7 The yaw angle illustrated . 56

xiii

7.8 Target gap for yaw angle estimation 59

8.1 Activity diagram describing the flow of the computer vision
program. 64

8.2 Class diagram of the computer vision program. 65

9.1 Failed tower detection, shadow interference 69
9.2 Failed blade detection . 70
9.3 False blade line detection . 71
9.4 Representative frames for the tested video clips, with search

radii . 72
9.5 Position estimation, video clip # 1 73
9.6 Position estimation, video clip # 2 75
9.7 Position estimation, video clip # 3 76
9.8 Kalman filtered position tracking, video clip # 1 78
9.9 Kalman filtered and raw estimate comparison, video clip # 1 . 78
9.10 Kalman filtered position tracking, video clip # 2 79
9.11 Kalman filtered position tracking, video clip # 3 80
9.12 Distance estimation . 82
9.13 Yaw angle estimation . 83
9.14 Execution time on desktop . 85
9.15 Execution time on PandaBoard 87
9.16 Roll control behaviour . 89

A.1 Execution time, high resolution input 97
A.2 Execution time, sensitive Canny edge detector 98
A.3 Estimated positions using Hough circles 99

B.1 UAV-lab . 100
B.2 Location of Bessakerfjellet wind farm 101

C.1 GoPro Camera . 102

xiv

List of Tables

4.1 Accumulated votes from Hough transform (discrete) 13

5.1 Key specifications for PandaBoard ES 29
5.2 Specifications for the camera 31

9.1 Chosen parameters for Hough line transform 68
9.2 Blade search radii . 72
9.3 Specifications for the desktop computer. 84

C.1 Specifications for GoPro camera 102

xv

xvi

List of Acronyms

UAV Unmanned Aerial Vehicle

MAV Micro Air Vehicle

IMU Inertial Measurement Unit

HT Hough Transform

PHT Probabilistic Hough Transform

PPHT Progressive Probabilistic Hough Transform

SBC Single-Board Computer

GPS Global Positioning System

APM ArduPilot Mega

USB Universal Serial Bus

xvii

xviii

Chapter 1

Introduction

1.1 Background and Motivation

Over the recent years the unmanned aerial vehicle (UAV) has emerged as
a subject of great interest in robot research. The multicopter in particular,
possesses a multitude of properties which makes it attractive for a wide range
of operations. It has excellent maneuverability thanks to the distributed
rotor structure. This combined with the light weight and small size makes it
suitable for many tasks which would otherwise not be possible.

Among fields where multicopters have been employed are military oper-
ations, search and rescue, surveillance, structure inspection and even pizza
delivery. In this work, however, the focus will be on wind turbine inspection,
a form of structure inspection. For a similar case, inspection of power lines,
Williams et al. (2001) described several reasons why using a small UAV is
preferable. One reason is the hazards involved in flying a manned helicopter
at close range. An autonomous or remotely controlled multicopter on the
other hand would be able to approach the target closely without high risk.
In case of impact the damage would be minor. Another argument is the cost,
which is significantly smaller than it would be by using a heavy manned he-
licopter or a time consuming manual inspection by foot.

The presently utilized approaches of wind turbine inspection are mainly
examining through telescopes, by climbing or by using remotely controlled
unmanned aerial vehicles (UAVs). In order to eliminate the need of human
time investment it would be preferable to perform this task autonomously.
For such a task, the UAV is commonly provided camera sensors, which ac-
companied with an Inertial Measuring Unit (IMU) and the Global Positioning
System (GPS) provide powerful means for solving navigation and guidance
problems. This paper will focus on how a computer vision system can be

1

implemented in order to effectively track a wind turbine, and produce results
which can be provided as useful input to the controller.

1.2 Previous Work
The area of onboard computer vision has grown tremendously in recent past
as computers have progressed to the point of handling such complex tasks at
a decent rate. Liu and Dai (2010) mentions several computer vision appli-
cations for UAV’s including visual servoing, optical flow, visual navigation,
target detection and tracking, and simultaneous localization and mapping
(SLAM).

In many cases the computer vision methods are considered with regard
to a GPS denied environment. Caballero et al. (2009) approached this issue
by identifying natural landmarks through feature tracking, which were inte-
grated into a SLAM scheme. By using such a scheme one can divert from
the use of global states and instead define states relative to a node in the
map, as explained by Leishman et al. (2013).

Another topic of interest is how computer vision can be used to comple-
ment the data provided by the IMU. Optical flow algorithms are a common
approach in this regard, where for instance Kendoul et al. (2009) estimated
velocity and position using a downward facing camera. By employing stereo
vision more sophisticated algorithm involving depth information can be de-
signed, as presented by Schauwecker and Zell (2013) whose algorithm also
provided pose estimation.

Apart from navigation and guidance, the visual information can provide
knowledge which is not easily obtained in any other way. Magree et al.
(2013) illustrates an example of how computer vision provides data for ob-
stacle avoidance. Another issue of interest has been finding safe landing
positions for emergency landing or uncharted environments, where Mejias
and FitzGerald (2013) has proposed a segmentation based solution.

1.3 Contribution and Scope of this Report
To perform the inspection mission for the hexacopter system presented in
this work, it is of interest to describe the position and orientation relative to
a wind turbine during flight. The contribution lies in elaborating on image
processing methods for which the wind turbine can be recognized, and how
its features can provide position and orientation estimations. Videos of a
wind turbine were recorded at Bessakerfjellet wind farm (appendix B.2) for

2

testing and validation. Tools available in the OpenCV library (section 5.2.2)
will utilized in forming the solution. Emphasis will be placed on keeping
computational demand to a level which can be handled by the carried single-
board computer (SBC) which is mounted on the hexacopter.

The scope of this work is limited to what can be called the first part of
an inspection. That is, to approach from an initial point where the UAV has
arrived in adjacency of the wind turbine using (for instance) GPS navigation,
to the destination point which is directly in front of the hub of the wind
turbine. The reason for this is that the project originally split in two, where
the objective of the other student was to continue after the first part to study
how to follow and inspect each of the individual blades. However, the other
student resigned from the project, but a brief discussion will also be given
on blade inspection.

1.4 Organization of this Report
First, the characteristics of wind turbine are be investigated to get a notion
of what information is available to base algorithms upon. Next, some con-
cepts and approaches from the field of computer vision are introduced. The
introductions are more thorough for concepts of higher relevance. In chapter
5 a description of the complete system is given. Some methods for recog-
nition and tracking are discussed in chapter 6. Based on the conclusions
an algorithm is designed and explained. Chapter 7 suggest a method for
approaching the wind turbine in regard of control commands. Additionally,
methods for distance and yaw angle estimation are discussed. In chapter
8, the final program design is described, where algorithms discussed in the
previous analyses are integrated. Results from experiments are presented in
chapter 9. Position, distance and yaw angle estimations obtained from video
input are presented, along with execution time analysis and flight control
performance. At the end follows final discussion and conclusion.

3

Chapter 2

Notation and Coordinate
Frame Definitions

2.1 Notation
• Vectors and matrices are written in bold, e.g. A, v. All vectors are

column vectors. The transpose of a vector v is denoted vT .

• Coordinate frames are given in italic type, and superscript specifies the
coordinate frame for the given vector. E.g vn specifies the vector v
given in coordinate frame n.

• Subscripts are used on various occasions. For a sequence of vectors the
subscript k, in xk, determines the position of the vector in the sequence.
Subscripts are also used to extract single elements from a vector, as in
vn which denotes the value of vector v along the n-axis. Otherwise the
meaning of the subscript is specified.

• Rotations between coordinate frames are performed using rotation ma-
trices, e.g. a rotation matrix denoted Ra

b transforms a vector from b to
a according to

va = Ra
bvb

For a single axis rotation the rotation matrix may be denoted as Ra
b (α),

where α specifies an angle of rotation around a defined axis.

• Axis lines are denoted with capital letters to differentiate from coordi-
nate values, e.g. for a coordinate system in n with axis lines Xn, Y n,
Zn a point is expressed using coordinates (x, y, z)n.

4

2.2 Coordinate Frame Definitions
This section defines the various coordinate frames which will be used through-
out this report. They are illustrated in figure 2.1.

2.2.1 Body frame, b
The body frame follows the standard roll-pitch-yaw convention for vehicles.
It is centered at the geometrical center of the UAV. The x-axis points lon-
gitudinally from back to front, the y-axis points laterally from left to right
and the z-axis points from top to bottom.

2.2.2 Camera frame, c
The camera will be mounted on the UAV facing forwards. Therefore, to avoid
confusion, the camera frame is chosen so that the axes are parallel to those
of the body frame. It will, however, be centered at the camera itself. Since
the camera will be mounted close to the center of the UAV, the distinction
between the two frames is usually negligible at the relevant scale.

2.2.3 Image frame, i
The image frame is the 2D image projected by the camera. It is centered
in the center of the image. The y-axis and z-axis are aligned parallel to the
y-axis and z-axis of the camera frame. The actual image produced by the
camera is a discretized and rescaled segment of this plane.

2.2.4 Wind turbine frame, w
This frame is centered at the hub center of the wind turbine. The z-axis
points from top to down, similarly to the body frame. However, the x-axis
points from front to back. It is chosen this way so that Xw and Xb align
when the UAV is directly in front of and facing the hub center. The y-axis
lies laterally from the right side to the left side of the wind turbine (which is
left to right from the UAV’s point of view when facing the front).

5

Figure 2.1: Illustrations of the coordinate frames. The red dot depicts the
mounting point of the camera and defines the origin of the c-frame. (Hex-
acopter modelled by Kristian Klaussen, Wind Turbine modelled by Torjus
Sveier Ottemo.

6

Chapter 3

Key Features of the Wind
Turbine

In order to achieve successful recognition and tracking it is of key importance
to identify the characteristics which distinguish the object from its surround-
ings. The following properties of the wind turbine will now be investigated:

• Texture

• Color

• Geometry

• Size

• Movement

• Point of view

• Environment

Texture

The smooth surface of a wind turbine has virtually no texture. When at
close range e.g. following when following a blade, this can cause problems
for camera based motion detection such as optical flow algorithms. In this
report however, the main focus will be tracking at a longer distance where
this is no significant issue. It should on the contrary provide a benefit, as
the wind turbine is more distinctively separated from the background.

7

Color

Despite being white in color, a wind turbine can appear in any shade of
gray depending on the lighting conditions. However, no particular color tone
should be prominent if a proper camera is used.

Geometry

The distinct shape of the wind turbine is of great importance as it possesses
many features which can be applied to image processing algorithms. In par-
ticular, the straight lines along the rotor blades and the tower are favourable
subjects for edge or line detection algorithms. Furthermore, the radial shape
composed by the tower and the blades provides solid foundation for many
approaches. In addition, a similar shape is not expected to appear elsewhere
in the environment (except for other wind turbines which might be present).

Size

Since the GPS system is more practical to use at a broad scale, the UAV
is expected to be close to the wind turbine when the algorithm is used. At
this range the wind turbine, when in view, should cover a large portion of
the image frame and stretch out of the frame when at close distances. Con-
sequently, as long as the UAV is not moving too fast and is facing the wind
turbine, it should be clearly visible in the image. The size of which the wind
turbine appears in the image can also serve as an estimate for the distance
from the UAV.

Movement and time variance

In a wind turbine inspection scenario it is assumed that the wind turbine is
stopped for maintenance so that the blades are not rotating. On the other
hand, when the UAV moves it is expected to observe a movement of the
wind turbine in relation to the background. However, since there initially is
significant distance between the UAV and the wind turbine it would require
the UAV to move a significant distance before this effect is observed. In
addition, a textured background would be required in order to detect this
movement, which would make an algorithm based on this principle dependent
on the environment.

8

Point of view

It will generally be assumed that the UAV is positioned in front of the wind
turbine such that the rotor blades or tower do not overlap. When directly
in the front or back the angle between the blades are 120 degrees. A change
of perspective skews the image altering both angles and proportions, thus
providing cues for estimating the yaw orientation of the wind turbine.

Environment

Under clear weather conditions a blue sky serves as excellent contrast to
the wind turbine, whereas clouds and gloomy weather might interfere with
detection. Depending on the height and the pitch angle of the camera, the
horizon may appear at varying height in the image. If the horizon appears too
close to the hub, it is expected to interfere with blade detection. Generally
it is preferred that the least possible amount of texture is present in the
background and that the color does not overlap with the color of the wind
turbine.

9

10

Chapter 4

Theory

In this chapter the methods deemed relevant for the project are presented.
Emphasis is placed on their general functionality and their anticipated ben-
efits. They will later be brought up at relevant points to discuss to what
degree they are applicable for the task in question.

4.1 Hough Line Transform

4.1.1 Standard Hough line transform
The Hough transform (HT) is a widely utilized technique for feature de-
tection. It is based on a statistic principle in which a feature is identified
by accumulating a specific amount of votes from points in the image which
contribute to this feature.

A single channel binary image is most commonly used as input for the
method. Therefore it is usually required to perform an edge detection algo-
rithm on the original image before attempting the Hough transform, e.g. the
Canny edge transform (section 4.3.1).

The standard Hough transform works by utilizing a parametrized function
for the feature in question. A line can for instance be represented by equation
(4.1), which is the form of the original Hough transform patent (Hough,
1959).

c(m) = y −m · x (4.1)

The parameters m and c denote slope and intersection respectively. Other
features which can be parameterized in a similar manner can also be detected
by altering equation (4.1) accordingly. For the purpose of wind turbine track-
ing the focus is limited to line and circle detection.

11

Using the chosen parametrization, the program next works through all
active pixels of the image. An active pixel refers to one of the edge pixels
which was produced beforehand by the chosen edge detection algorithm.
For each active pixel, the set of all lines which pass through the pixel is
found. This is done by iterating through the range of one parameter (m) and
calculating the corresponding second parameter (c). Essentially, this leads
to a one-to-many mapping from the image space to the parameter space. In
this case the result is that every pixel in the image space maps to a line in
the mc-space, where each line represents the set of all possible lines which
can pass through the pixel. This is seen in figure 4.1 where every pixel in the
image space (a) produces a corresponding set in the mc-space (b).

An intersection of these sets would mean that a common line exists for
all pixels whose line sets participate in the intersection. Such is the case in
figure 4.1b, where the point of intersection parameterizes the one line which
connects the pixels in figure 4.1a.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

m

c

(b)

Figure 4.1: (a): The image space, containing some points arranged in a
line. (b): The parameter (m,c) space, containing all possible lines which
pass through the points from the image space. The intersection indicates
the one line which is common for all points, i.e. the line formed by the
points.Illingworth and Kittler (1988)

In practice, this is implemented as a voting procedure, referred to as the
voting stage of the algorithm. Every pixel votes for the lines which can
possibly pass through it. These votes are passed to an accumulator which
collects the results from all pixels. Pseudocode for the voting procedure is in
algorithm 1.

After running the voting procedure the accumulator is filled with votes
for each parameter combination as shown in table 4.1. The result is merely a

12

Algorithm 1 The voting stage of the standard Hough transform
for all pixels in image do

if pixel is active then
for entire range of parameter m do

c = pixel.y −m · pixel.x
accumulator(m, c)← accumulator(m, c) + 1

Table 4.1: The accumulated votes for each line candidate.

10 1 1 2 2 1 0 0 0 0 0 0
9 1 1 2 3 5 0 0 0 0 0 0
8 1 1 1 2 5 0 0 0 0 0 0
7 0 0 0 0 0 11 4 2 1 1 0
6 0 0 0 0 0 0 5 2 2 1 1
5 0 0 0 0 0 0 2 3 1 1 1
4 0 0 0 0 0 0 0 2 2 1 1
3 0 0 0 0 0 0 0 2 2 2 1
2 0 0 0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0 2 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

discrete version of the continuous representation shown in 4.1b. In this case,
the line of interest is clearly identified by the high number of votes. Generally,
the lines are found by extracting the local maxima from the accumulator. A
common way to achieve this is through thresholding. This works simply by
setting a threshold, where all lines whose votes surpass this threshold value
are accepted. It is commonly referred to as the Hough threshold and is
usually one of the input parameters for the Hough transform algorithm.

The ideal value for the Hough threshold is highly related to the properties
of the image in question. In particular, long lines receive many votes com-
pared to the rest of the image, which will yield good results for a wider range
of Hough threshold selections. On the other hand, an image containing many
features in addition to the lines of interest, will narrow the range of threshold
values that provide good results. Some versions of the Hough transform use
a relative threshold approach which instead utilizes local maxima in the ac-
cumulator. In the wind turbine inspection scenario however, it is beforehand
known that the lines formed by the turbine appear at significant length in
the image, and few competing lines are assumed to be formed by the back-
ground. This consistency indicates a possibility to experimentally tune the
threshold to a value which performs well in a general case.

An issue which needs to be addressed in this approach is the non-linearity
of the line parametrization, (4.1). It is apparent that a line approaches a
vertical angle, the m-parameter blows up. This is solved by using polar

13

Figure 4.2: Polar coordinate representation of a line.

Figure 4.3: The accumulated votes for each line candidate using polar
parametrization.

coordinates instead, resulting in the new parametrization shown in (4.2).
Duda and Hart (1972) presented this form, and has since become the general
approach for the Hough line transform.

r(θ) = x · cosθ + y · sinθ (4.2)

With the polar parametrization each point now maps to a sinusoidal wave
in the parameter space, rather than a straight line as was seen before. The
most probable line candidate still appears as the point of intersection in the
parameter space, similarly as before. The difference is that the result must
be interpreted as a polar representation of a line (figure 4.2).

14

4.1.2 Probabilistic Hough line lransform
The Standard Hough line transform described in the previous section forms
the basic idea of the method. In order to improve efficiency while maintain-
ing performance, numerous variations of the Hough transform (HT) have
been studied including but not limited to probabilistic HT, adaptive HT,
randomized HT along with numerous combinations and alterations of these.
Many of these methods are designed to perform well under high dimension
features, however the focus in this report will be on the method available in
the OpenCV library as HoughLinesP() which efficiently detects lines (2D).
This method builds further upon the probabilistic Hough transform.

Originally, the probabilistic Hough transform was proposed by (Kiryati
et al., 1991). The idea is that instead of using all the N points to account
for the votes, only a randomly selected subset n (where n < N) is used.
By examining the operations required for the algorithm the benefits are ex-
plained. The method runs for O(N ·Mθ) operations in the voting stage and
O(Mρ ·Mθ) in the search stage (finding the highest votes), where Mρ and Mθ

is the resolution of ρ and θ respectively in the accumulator. Since the voting
stage usually is dominant, a nearly linear reduction can be obtained when
reducing N to the subset n.

The study by (Kiryati et al., 1991) further showed that this approach
exhibits a threshold effect where the performance abruptly jumps from poor
to great for a certain value of n. This value is highly problem dependent,
but was in their experiments often found at an n to N ratio below 0.1. In
other words, it was shown that the probabilistic method has the potential
to drop the computation time below 1/10 without yielding any significant
performance drop. Thus, by making an educated guess or by examining the
problem properties beforehand, one can select a suitable subset ratio for the
probabilistic Hough transform. It should however be mentioned that in the
study correct outputs were strictly predefined in the experiments, while in
a general image example it is somewhat vague and subjective what should
actually be classified as a line.

15

4.1.3 Progressive probabilistic Hough line transform
The progressive probabilistic Hough transform (Matas et al., 2000), builds
further upon the probabilistic Hough transform. In OpenCV an implemen-
tation of the PPHT is available as HoughLinesP, which will be used in the
presented program.

An important distinction from the PHT is that the PPHT does not re-
quire a subset ratio (see section 4.1.2) to be selected beforehand. Rather
than randomly extracting the subset n immediately, the PPHT exploits the
knowledge that there exists a threshold effect for the n to N ratio. So in-
stead the algorithm selects points randomly until end conditions are satisfied,
where the n to N ratio hopefully ends up close to the threshold effect area.

Achieving a low n to N ratio means that a minimal amount of votes are
cast. In order to reduce the amount of votes the PPHT utilizes another
procedure. When a line is detected, the algorithm searches for other points
which further contribute to the same line. All the points which are found
are then denied voting rights, thus reducing the subset n. By this approach,
the worst case scenario would be if no lines are detected i.e. all points are
presumably caused by noise, in which case all points would cast votes such
that n = N. On the other hand, having many lines present will gradually
decrease the subset n for each line which is detected and thus resulting in a
low n to N ratio.

PPHT is available in OpenCV as the function HoughLinesP(). It trans-
forms detected lines back from polar to Cartesian coordinates and also keeps
track of the outermost points of each line. In this way start and end points
of each line is readily available which is particularly useful when examining
how the lines are organized in relation to each other.

16

4.2 Hough Circle Transform
The Hough circle transform is in many ways analogous to the Hough line
transform. When describing the Hough line transform, it was mentioned
that the parametrized function can be altered to detect other shapes instead
of lines. Thus the circle transform can be derived by utilizing the circle
parametrization:

(x− a)2 + (y − b)2 = r2 (4.3)

One observes that in contrast to the line parametrization, a circle requires
three parameters instead of two; radius (r), center x-position (a) and center y-
position (b). This is an issue as the accumulator becomes a three dimensional
volume, which would lead to considerable computational demand using the
same approach as for the line transform.

In order to handle the dimensionality problem, the OpenCV implemen-
tation has utilized the Hough gradient method (Kimme et al., 1975). This
approach makes clever use of the image gradients to boost efficiency. A brief
explanation follows.

As usually done with the normal Hough transform, the method begins by
obtaining the binary edge map using the Canny edge detector (4.3). Addi-
tionally, gradients are computed by using first order Sobel derivatives (Sobel
and Feldman, 1968). For every point in the edge map, all points which lie
inside a maximum and minimum distance and lie along the gradient are in-
cremented in the accumulator. Since the edge gradient in a circle always
points towards the center, the incremented points are candidates for possible
circle centers. The edge points for each circle center are also remembered.

Next, the algorithm selects all center candidates passing a threshold and
which have no neighbours with a higher accumulator value. The selected
centers are then sorted by amount of votes in descending order. Beginning
at the highest supported center, the algorithm considers all points which were
remembered as possible edges for this center candidate. The radius which
is best supported among these points is then chosen, provided the support
passes a threshold value and the radius is inside the accepted range. The
remaining circles are detected in the same way.

In this way, circles can be found efficiently provided the various threshold
parameters are sufficiently strict. For instance, if the radius is known, the
runtime can be greatly decreased by posing strict restrictions the upper and
lower radius bounds. For the wind turbine inspection scenario this method
would be relevant for detecting the hub, which appears circular when viewed
from the front.

The Hough circle transform is available in OpenCV as HoughCircles().

17

4.3 Edge Detection
Edge detection algorithms are among the fundamental tools in the field of
image processing. Their aim is to detect boundary paths in the image sep-
arating segments which display different pixel intensity. For the purpose
of this paper, the main interest of an edge detector lies in that it provides
requisite groundwork for the Hough transform (section 4.1).

A human contemplating an image usually has a clear notion of what
to characterize as an edge. However, describing the theoretical properties
forming the edges can prove less intuitive due to their variety. Edges most
commonly appear as a change between one segment to another, as for in-
stance when one object is covering another. Lines are another form, often
referred to as a ridge, which may or may not be detected as two separate
edges (one along each side) depending on the chosen approach. Lastly, there
are corners, or junctions, referring to areas where two edges or lines cross. At
these areas the directional rate of change properties of one edge is influenced
by the other, which may pose both detection and localization issues for the
algorithm. Furthermore, edges can vary from sharp edges with rapid jumps
in intensity on one end to diffuse edges on the other end. This signifies that
the scale at which the algorithm operates will influence its sensitivity.

Generally, edges are detectable through their spatial change in intensity
in an image, and consequently most edge detection algorithms utilize some
form of directional differentiation in their approach. Because of the noise
intensifying properties of differentiation, some kind of noise reduction may
be necessary to be applied beforehand, like for instance the Gaussian blur
(section 4.6).

A large amount of differentiation operators have been designed to best
capture specific kinds of edges, usually limited to first or second order di-
rectional derivatives. Among the most versatile is the Canny edge detection
(Canny, 1986) which is well known for its accurate performance, and will
for this reason be the edge detector of choice for the wind turbine tracking
program.

4.3.1 Canny edge detection
The Canny edge detection (Canny, 1986), despite its early invention, remains
among the most powerful edge detection algorithms. It is implemented in
OpenCV as the function Canny() and will be explained in this section, yet
many other implementation variations exist.

The first part of the algorithm consists of calculating the directional
derivatives. This is done using the Sobel operator (Sobel and Feldman, 1968)

18

which utilizes two 3x3 kernels, one for horizontal and one for vertical differ-
entiation, depicted by the matrices in equations (4.4) and (4.5). The kernels
are convolved with the original image, such that differentiation is performed
at every image point.

dx =

−1 0 1
−2 0 2
−1 0 1

 ∗ Img (4.4)

dy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ Img (4.5)

This results in the matrices dx and dy which contain directional deriva-
tives along the x and y axis respectively. Using equations (4.6) and (4.7) the
result is mapped to magnitude and direction form.

G =
√

dx2 + dy2 (4.6)

Θ = arctan(dx,dy) (4.7)

In this context, it is irrelevant whether the edge indicates a positive or
negative change in pixel intensity. Therefore the range of the direction (for
a specific point (x,y)) is limited to Θ(x,y) ∈ [0, π).

At this point, the algorithm is ready to continue to the second part which
is non-maxima suppression. In this method the edges are thinned by keeping
only the strongest gradients along the edge. To achieve this, one begins by
defining four different direction angles: 0, π

4 , π
2 and 3·π

4 . Each direction in the
Θ matrix is next rounded to the nearest of these angles. The algorithm now
begins tracing each edge beginning in one of the four groups (note that the
edge is perpendicular to the gradient direction). If along the edge, a neigh-
bouring point in the gradient direction is of higher brightness, the current
point is suppressed by setting its value to zero. When all points in this angle
group have been examined in this fashion, the same procedure is performed
on the remaining groups. Eventually, every edge is reduced to a width of
only one point, where each point contains the highest gradient magnitude of
the local cross-section of the original edge.

The last part involves converting the result to a binary edge image and
removing weak edges which are not likely to be of significance. This is done
through hysteresis thresholding which incorporates two threshold values in
the following manner. A high threshold is used as a lower bound to initially

19

accept a point in an edge. When this point is accepted, however, neighbour-
ing points on the edge may also be accepted if they pass a low lower bound.
As a result, points with a weak gradient magnitude can be accepted as edge
points if they are supported by stronger points elsewhere on the same line.

The Canny edge detector is available as Canny() in OpenCV, and is used
to provide the necessary edge map for the Hough transform.

4.4 Corner Detection
Along with edge detection methods, the closely related corner detection
methods provide another set of tools for feature detection. While edge de-
tection methods are concerned about the rate of change in image intensity,
corner detection algorithms extend this idea by examining how these edges
curve in the image frame. Such curves can be exhibited by various features
in the image. Some of which include intersecting edges, the ends of ridges,
simple points and actual corners (sharp localized curvature of edge direc-
tions). Because of this diversity in appearance of corners the results from
corner detection methods vary depending on what approach is used.

Among the most common methods are the SUSAN corner detector (Smith
and Brady, 1997) and the Harris corner detector (Harris and Stephens, 1988).
Zou et al. (2008) compared these detectors and concluded that the Harris
corner detector performed better on the whole. Especially execution time was
significantly quicker when running Harris, and will therefore be the choice
for corner detection in this work.

The Harris corner detector works by first defining a weighted window
w(x, y). For each point in the image, the variance in intensity, I(x, y), is
found by comparing the neighbouring points inside this window. Neighbour-
ing points are expressed as displacements, (u, v), resulting in the following:

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (4.8)

Harris and Stephens (1988) further showed that using Taylor expansion
this can be approximated by (4.9), where Ix, Iy, Ix,y denote the directional
derivatives of I(x, y).

E(u, v) ≈
[
u v

] (∑
x,y

w(x, y)
[

I2
x Ix,y

Ix,y I2
y

]) [
u
v

]
(4.9)

From (4.9), one can define the Harris matrix, M.

20

M =
∑
x,y

w(x, y)
[

I2
x Ix,y

Ix,y I2
y

]
(4.10)

The intensity variance can thus be quantified by the eigenvalues of M,
but they are however not calculated individually. Instead the method utilizes
the fact that λ1λ2 = det(M) and λ1 + λ2 = trace(M) to define a value R:

R = det(M)− k(trace(M))2 (4.11)

In order for the first term of R to dominate, it needs two high eigenvalues.
This signifies presence of high variance of intensity in two directions, i.e. a
corner. Corners can thus be identified where values of R bypass an imposed
threshold.

The Harris corner detector is available in OpenCV as cornerHarris().

4.5 Pinhole Camera Model
In computer vision, a major limitation is the loss of the third dimension
when the world is projected to the image plane. However, some of this
information can be restored if this mapping is known. The pinhole camera
model describes this relation as if an ideal pinhole camera is used. Although
it neglects some effects from lens cameras such as distortion, it still provides
decent approximation for most quality cameras.

The ideal pinhole camera is modelled with an aperture where all light
passes through a single point before hitting the image plane (figure 4.4).
Thus each point is simply mapped by following a line through the pinhole,
and equation (4.12) is obtained.

−z
i

f
= zc

xc
(4.12)

The same applies along the y-axes.

−y
i

f
= yc

xc
(4.13)

After modifying to get correct image orientation the final model is ob-
tained:

[
y
z

]i
= f

xc

[
yc

zc

]
=
[
0 f

xc 0
0 0 f

xc

] xy
z

c

(4.14)

21

X
c

Z
c

Y
c

Z
i

Y
i

-z
i

z
c

O
c

f x
c

Figure 4.4: Geometry of the ideal pinhole camera.

The focal length, f, is the distance from the pinhole to the image plane.
For a lens camera, the equivalent parameter can be found by taking multiple
photos of an object of known size at different known distances. The result is
then obtained from (4.14) by comparing the size at which the object appears
in the images.

With the focal length known, one can utilize (4.14) to for instance es-
timate distances to objects or their size if one of those properties is known
beforehand.

4.6 The Gaussian Pyramid and Gaussian Blur
The resolution of an image has a direct impact on computation time for
most of the basic image processing functions. Hence, reducing the resolution
is often the easiest and most effective way to reduce computational costs.
Since the UAV on which the program is developed for will have limited
processing power it would be preferable to keep the resolution as small as
possible without prohibiting a usable result.

This part can be omitted if a camera which can readily stream images
at an acceptable resolution is chosen. Otherwise the method halves the
image resolution incrementally until it becomes lower than a user specified
threshold.

22

The challenge of downsampling resides in deciding how to reduce pixel res-
olution while simultaneously minimizing change in visual appearance. Usu-
ally this is done by using image pyramids. An image pyramid refers to a
representation where an image is repeatedly filtered and downsampled, in
which the filtering method defines the type of image pyramid. For this pro-
gram, a Gaussian image pyramid is used, elaborated by Birt (1981). The
Gaussian filter is a smoothing (low-pass) filter where every pixel has its new
value given as a weighted average of its surrounding pixels. In this particular
case the kernel given by (4.15) is used, indicating how the surrounding pixels
are weighed centered on the pixel being calculated.

H = 1
256

1 4 6 4 1
4 16 24 16 4
16 24 36 24 16
4 16 24 16 4
1 4 6 4 1

 (4.15)

The downsampled image is the obtained by selecting every other pixel
from the smoothed image. Gaussian blur is performed in the same way
except the smoothed image remains at the same resolution.

Downsampling using the Gaussian pyramid is available through the func-
tion pyrDown() in the OpenCV library, while Gaussian blur is available is
GaussianBlur().

4.7 Multiband Thresholding and the HSV Color
Space

Thresholding is a segmentation technique that outputs a binary image based
on which pixels pass a threshold value. For a grayscale image this corresponds
to keeping the pixels which are above a certain intensity, as defined in (4.16).
This is illustrated by figure 4.5.

dst(x, y) =
{

1 if src(x,y) ≥ threshold
0 otherwise (4.16)

One can convert images from one color space to another by using the
function cvtColor() from the OpenCV library.

If the image is represented in a color space (such as RGB) the method
must be augmented to include all channels. Hence, a separate threshold
value is added for each parameter, thus creating the multiband thresholding

23

(a) (b)

Figure 4.5: (a) A grayscale picture of the earth. Source: NASA (2002). (b)
The resulting output after thresholding the image. Only the brightest pixels
which are above the threshold constitute the final shape.

method. In addition, an upper bound is added in order to permit an arbitrary
range to be chosen. The resulting method is expressed in (4.17)

dst(x, y) =

1 if lowerR ≤ src(x,y,R) ≤ upperR
and lowerG ≤ src(x,y,G) ≤ upperG
and lowerB ≤ src(x,y,B) ≤ upperB

0 otherwise

(4.17)

The wind turbine, however, has a color distribution for which BGR is not
the most preferable color space. As mentioned in section 3, no particular
color should dominate the tone of the wind turbine, and thus BGR has no
apparent advantage in terms of object recognition.

Instead, the HSV color space is better suited for this purpose (Smith,
1978). It consists of the channels hue, saturation and value, which can be
represented in a cylindrical coordinate system, as seen in figure 4.6. The
hue parameter defines what one would call the pure color, e.g. blue, green
and magenta. How intense these colors appear is given by the saturation
parameter. This works in such a way that reducing the saturation to a
minimum would convert the image to a grayscale image. Lastly, the value
parameter can be equated to brightness. Increasing value reduces the amount

24

Figure 4.6: Cylindrical representation of the HSV color space (SharkD, 2010).

of shade in the color, but does not add white. The result is that saturation
and brightness, which are the properties of interest of the wind turbine in
terms of colors, can be easily manipulated. Since the wind turbine is color
neutral, the wind turbine could be segmented by including areas which lack
color and find appropriate saturation and value ranges.

4.8 Kalman Filter
The well-known Kalman filter (Kalman, 1960) has proved itself useful in a
tremendous amount of applications, and numerous extension and variations
of the Kalman filter have been developed.

The method works by utilizing measured data along with a system model
to estimate the states of the system. By modelling system and measurement
noise, the algorithm calculates the statistically optimal solution from the
provided information.

The Kalman filter is designed by first defining the system model as follows:

xk = Fkxk−1 + Bkuk + wk (4.18)

zk = Hkxk + vk (4.19)

where xk is the system states, Fk is the transition matrix, uk is the
control-input vector, Bk is the control-input model, wk is the process noise,
zk is system measurements, Hk is the observation model mapping xk to zk,
vk is the observation noise.

The process noise and observation noise are modelled by the process co-
variance matrix, Qk, and the measurement covariance matrix, Rk, as follows:

wk ∼ N(0,Qk), vk ∼ N(0,Rk)

25

For each iteration of the Kalman filter loop, the following steps are per-
formed in the given order

Prediction of states and covariance matrix

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (4.20)

Pk|k−1 = FkPk−1|k−1F
T
k + Qk (4.21)

Calculate Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (4.22)

Update states and covariance matrix

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (4.23)

Pk|k = (I −KkHk)Pk|k−1 (4.24)

A computer vision program is usually strongly exposed to noise. The cam-
era itself can be a significant source, and (especially outdoor) environments
are of constant change. Furthermore, flying with an UAV causes vibrations
and quick movements. All these are factors which will produce frame-to-
frame inconsistency in the results of the computer vision methods, which
makes utilizing the Kalman filter very attractive. In addition, the predic-
tions from the filter can be utilized to keep track of an object even when no
measurement is made.

26

Chapter 5

System Overview

This chapter offers an overview over both hardware and software in the sys-
tem. A base set-up common for the whole student team working with hex-
acopters was provided at the beginning of this project. Only video camera
and software was further altered in the project.

5.1 Hardware Setup
The system topology is shown in figure 5.1. The PandaBoard is the core
of the system, where the computer vision software is run, implemented in
the Dune environment. From USB connection Dune has access to the video
camera, in addition to IMU and GPS data from the ArduPilot board. During
flight a computer may send commands and supervise via Neptus over a WiFi
connection. Direct control of the hexacopter via radio control is supported
by the ArduPilot. A description of the individual components follows.

5.1.1 Hexacopter, Arducopter 3DR Hexa B
The Arducopter 3DR Hexa B (Robotics, 2014) was used for the project.
It is composed of six aluminum arms, and fiberglass boards and landing
gears, ensuring a both lightweight and robust structure. With the six motors
it is capable of lifting over 1 kg of additional payload. The hexacopter was
designed and manufactured by 3D Robotics. Figure 5.2 shows the hexacopter
along with carried payload.

5.1.2 ArduPilot Mega 2.5/2.6
The ArduPilot Mega (APM), is an open source autopilot system. It is
equipped with an IMU providing 3-axis gyros and accelerometers. Addition-

27

Figure 5.1: System overview, showing how the various hardware components
are integrated.

28

Figure 5.2: The hexacopter as configured for the project, with payload.
Photo: Thor Audun Steen

Table 5.1: Specifications for PandaBoard ES

Processor Dual-core ARM Cortex-A9 MPCore, 1.2 GHz
Memory 1 GB DDR2 RAM
Weight 81.5 g
Dimensions 114.3 mm x 101.6 mm
Power Requirement 5V/1A

ally, it carries altimeter, GPS, interface to motors, telemetry link and USB
for external connectivity. Together with control software it allows the user to
operate the hexacopter from radio control and also supports GPS missions
via waypoints. The open source code can be altered for specific needs, and
the USB support is used to connect the more powerful PandaBoard. For the
connection between PandaBoard and APM, the MAVLink protocol is used.

5.1.3 Single-Board Computer, PandaBoard ES
A single-board computer (SBC) is a board comprised of all necessary com-
ponents required to function as a computer. The task of the SBC in this
system is to run the control and computer vision software, and to provide
access to periphery components through its I/O interface. The Pandaboard
ES (PandaBoard, 2014) is the SBC of choice, by recommendation of Leira
(2013). Specifications are shown in table 5.1. An overview of the PandaBoard
is shown if figure 5.3.

29

Figure 5.3: Overview of the PandaBoard. Source: PandaBoard (2014)

5.1.4 Video camera

As this work is heavily focused on computer vision, the video camera is
perhaps the most important component in the system. The camera should
provide decent image quality, while as all components in general, be small in
weight and size. Fortunately, by the current state of technology this is not
an issue seeing high speed and high resolution video cameras by the size of
a thumb are available. Furthermore, the computational demands of image
processing methods usually increase with resolution, requiring resolution to
be limited anyway.

Because the line detection plays a major role in the computer vision
program, it is desirable to have a minimal amount of distortion in the image.
Distortion is problematic as it causes straight lines to bend, which may leave
them undetected or segmented. It is a radial effect which becomes more
prominent towards the edges of the image. Since the blades of the wind
turbine are expected to stretch past the edges of the image, distortion is
expected to have significant impact. It should be avoided altogether by using
a camera where distortion is not prevalent.

Regarding interface, OpenCV provides uncomplicated support for the
Video4Linux (V4L) driver framework which is closely integrated with the
Linux kernel. V4L supports most USB cameras, which makes using a USB
camera a natural choice.

30

5.1.5 e-CAM51 USB
The e-CAM51 USB camera was used for testing in this work. It is small and
light, which makes it suitable for UAV applications. The shape, however,
made it somewhat impractical to mount (see figure 5.4). It is connectible by
USB, and supported configuration via V4L, giving control over parameters
such as autofocus and exposure time. Most importantly it could be config-
ured to provide lower resolution video to reduce computation demands for
the image processing methods. No notable distortion was observed using the
camera. Specifications are given in table 5.2.

Figure 5.4: The camera. Source: e-con Systems (2014)

Table 5.2: Specifications for the camera

Video properties
Max video resolution 1080p
Max frame rate 30fps
Field of view 60◦ Diagonal
Physical properties
Dimensions 71mm×13mm×7.8mm
Interfacing
Power requirements 5V/400mA
Video and power connection USB

5.2 Software Overview
The program described in this report was written in the Dune environment,
as a task named Vision.WindmillTrack. By the modular design of Dune, the
task is simply included when needed in the system, and similarly other parts
of the system, e.g. control tasks, are available for the computer vision pro-
gram. These parts communicate via the IMC protocol. The implementation
also utilized the OpenCV library to a high degree, because of the extensive

31

amount of image processing methods it provides. It all runs on the Ubuntu
operating system and is installed on a memory card on the PandaBoard.
The software can be supervised and given commands from a remote com-
puter using Neptus, which also communicates via the IMC protocol. A brief
description of the mentioned software follows.

5.2.1 Ubuntu
Ubuntu is a Debian-based open source operating system which was initially
released in 2004. Over the years it has become fairly widespread and been
provided continuous updates. Meanwhile, a notable development community
has emerged, where advice and support can be received as more applications
are investigated. Some of the merits of the operating system are its relia-
bility and customizability. Customization allows the operating system to be
tailored to the specific usage. For this purpose, this includes stripping off
functionality which is not required, thus releasing resources to be focused on
the essential tasks. In addition, Ubuntu is the operating system favoured by
the PandaBoard development community, and thus there exist considerable
amounts of helpful documentation for this set-up.

5.2.2 OpenCV
The Open Source Computer Vision (OpenCV) library was developed by Intel
Russia research center aimed for real time computer vision applications. It
contains a variety of algorithms ranging from the most basic image process-
ing methods to more sophisticated implementations. Additionally, it contains
core functionality including interface to video devices and a variety of struc-
ture definitions allowing convenient management of image arrays and other
relevant entities. Furthermore, it provides means for quickly setting up a
graphical user interface. All this adds up to a great tool for development
which is both powerful and easy to use. OpenCV has also been implemented
with emphasis on being computationally efficient, making it suitable for an
on-board system where computation power is limited.

5.2.3 Dune
DUNE: Unified Navigational Environment is an on-board software solution
for unmanned vehicles. The hexacopter will run on this software, and the
presented program is written as an extension to this environment. The soft-
ware solution provides means for interacting with the connected components
as well as control, navigation, supervision and plan execution. Furthermore

32

it is both CPU architecture independent and OS independent. It is writ-
ten in C++ and developed by LSTS: Underwater Systems and Technology
Laboratory.

5.2.4 Neptus
Neptus is a command and control software operated from a ground station.
It is designed to operate well together with Dune and was also developed by
LSTS. Neptus provides tools for remotely monitoring UAVs and assigning
plans and commands in real-time missions, supporting multiple connections
dynamically. Furthermore, it provides possibilities for both simulating mis-
sions and reviewing previously performed operations. This is presented in
a customizable interface equipped with map layers and control panels. It is
written in Java and available for both Windows and Linux systems.

5.2.5 IMC
The Inter-Module Communication (IMC) protocol was developed by LSTS
to provide reliable communication between the systems. The protocol is
message-oriented, such that messages can be sent and received from a bus
which connects independently run threads or systems. Thus it functions as a
method of communication between tasks internally in Dune, and can also be
passed to and from other vehicles or computers running Dune or Neptus. In
this project specifically, the IMC bus provides the link between the computer
vision task and the other rest of Dune, and also between the vehicle and any
connected computer.

33

Chapter 6

Recognizing and Tracking the
Wind Turbine

6.1 Recognizing the Wind Turbine
The act of object recognition refers to the task of detecting and identifying
objects in an image. In most practical applications, one has limited the
problem to detecting one or a specific set of objects, thus greatly simplifying
the issue. In this case, the task is focused on attempting to detect the
presence of a wind turbine. This section will investigate some approaches to
detect characteristics in the image and discuss if they offer a reliable base for
a complete detection, and describes the approach which was implemented in
section 6.1.5. How the approach is implemented into the rest of the system
is explained in chapter 8.

6.1.1 Feature detection using the Hough line trans-
form

The Hough transform (described in section 4.1) is attractive because the
produced lines offer very practical material for further analysis. An example
is show in figure 6.1. Figure 6.1a shows an image taken at Valsneset wind
farm. The binary edge map in figure 6.1b is the output after performing
the Canny edge detection on the original image. One can see the contour is
clearly extracted. The result from the Hough transform is shown as the blue
lines in figure 6.1c, which match the contours from the edge map tightly.

Considering the detected Hough lines, there are some lesser issues which
will be addressed. Sometimes a line which optimally should be detected as a
single line is broken into smaller segments. This is apparent at for instance

34

(a) (b)

(c)

Figure 6.1: (a): An image of a wind turbine taken at the wind farm at
Valsneset, Norway. (b): The binary edge map obtained from running the
Canny edge detector on the raw image (a). (c): The result after performing
the Hough transform using the edge map in (b).

35

the lower left blade in figure 6.1c, where due to the slightly bent edge at one
side of the blade the edge is detected as two separate and almost connected
lines.

Another issue may appear if there is a significant amount of noise in the
image. Small changes can affect the resulting edge map, resulting in frame
to frame varieties of the Hough transform. This has specifically a notable
effect of the start and end points of the detected lines.

Those matters aside, the Hough transform provides an accurate descrip-
tion of the contours of the wind turbine. The direction and location of the
lines makes it a simple matter to identify the blades and tower along with
their orientation. One approach for this could be to detect the vertical tower
lines and then searching for blade lines intersecting the top. If this approach
yields a match, the probability is high of having found an actual wind turbine,
due to its distinct shape. In addition as described in section 4.1, the Hough
transform version which is available as houghLinesP() in OpenCV runs rel-
atively efficiently. These properties make the Hough transform attractive,
and the Hough transform was therefore chosen as the basis the recognition
program. The approach mentioned earlier in this paragraph will compose the
remaining steps of the wind turbine recognition and is explained in detail in
section 6.1.5.

6.1.2 Feature detection using corner detection
Corner features in an image often indicate particularly interesting points. An
example is shown in figure 6.2 where the Harris corner detector was used.
One observes that some of the essential points are indeed found, and one
could image to connect the dots and obtain a good description of the object.

A problem arises, however, when other objects which exhibit strong fea-
tures are present. Then, one does not know which detection belongs to what
object. By comparison, the Hough transform is different in this regard, since
the lines are organized in a pattern where orientation and end points can be
related to the whole shape.

Furthermore, there is more uncertainty related to the corner detection.
As seen in figure 6.2, for instance the tip of the lower blade and the sharp
corner below the hub are points which were expected to be detected, but were
not. They could actually be detected by increasing the sensitivity, but the
problem remains to find this sensitivity. The optimal input parameters for the
algorithm where found to vary significantly depending on image properties,
specifically lightning and noise.

A suggestion could be to use corner detection in conjunction with a
method such as the Hough transform, such that the detected points are

36

Figure 6.2: The red circles show the detected corners using the Harris corner
detector on the image from figure 6.1a.

easier to identify as a part of the whole. In this way, one could apply the
corner detection to more accurately locate points of interest and thus provide
means for more exact measurements of lengths in the image.

6.1.3 Detecting the hub using Hough circle transform

The circular shape of the hub could be a suitable target for the Hough circle
transform. If a circle was successfully detected enclosing the hub, the hub
position could by estimated from the circle center position.

An example from a result using the circle transform is shown in figure
6.3. The figure shows that one of the circles encloses the hub as desired, but
similarly to the corner detection there is uncertainty regarding the correctness
of the result. One does not know whether or which circle resembles the hub.

For this reason, this method was not utilized in the recognition program.
However, as will be mentioned later, for further development of the program
it is suggested to investigate the method further. One approach could be
to limit the radius bounds to a tight range, where the radius bounds match
the expected size of the hub in the image based on a distance estimation.
Another application could be to detect the hub by searching for a Hough
circle centered along the direction of the tower.

37

Figure 6.3: The red circles, centered at the green dots, show detected Hough
circles. One of the circles encloses the hub as desired.

6.1.4 Image segmentation
Another way of identifying an object of interest is through image segmenta-
tion. This refers to dividing the image into several segments such that the
content of each segment possesses a certain characteristic. In the case of the
wind turbine, it is recognizable by its homogeneous gray color.

Among the most basic image segmenting algorithms are the color thresh-
olding methods (section 4.7). Figure 6.4 shows a result of running the multi-
band thresholding method using the HSV color space. In figure 6.4a the
thresholding bounds are tuned to properly extract the wind turbine from the
image. From such a distinct segmentation there are many ways to further
inspect the wind turbine. For instance, a border following algorithm such
as presented by Suzuki and Abe (1985), would identify the contours of the
wind turbine. Further one could utilize convexity analysis and identify the
convex hull which is the minimal convex set containing all the points of the
contour. The corners of the convex hull would thus identify the tip of the
blades and tower, while the hub would lie close to the points furthest away
from the edge of the convex hull.

Obtaining such a segmentation of the quality as depicted in figure 6.4a is
hard without manual tuning. The threshold bounds need not be far off before
the segmented image becomes drastically less useful, as shown in figure 6.4b.
The difference from 6.4a to 6.4b is merely the upper bound for the value

38

(a) (b)

Figure 6.4: The results from running color thresholding on 6.1a. (a): Thresh-
olding bounds are tuned for optimal segmentation. (b): Thresholding bounds
are not tuned well.

parameter (V in the HSV color space) has been increased from 95 to 125
(the range is 0-255). Determining the optimal bounds is a tough task as
the result can vary strongly with lightning conditions and the background.
Therefore the approach is deemed too unpredictable for this purpose.

A more sophisticated approaches could for instance include an adaptive
scheme for thresholding. However, since the thresholding process is relatively
slow, an adaptive approach utilizing feedback from several iterations would
require excessive computation demand.

39

6.1.5 Recognizing the wind turbine from detected Hough
lines

This section explains how recognition was implemented based on the results
from the Hough line transform. A step by step description is given to clarify
the process.

6.1.5.1 Locating the tower

Search for vertical lines

Among the parts of the wind turbine, the tower is arguably the most certain
to correctly identify due to its consistency in appearance. Similarly to the
blades it tends to exhibit long and distinct edges. But whereas the blades
are free to settle in any orientation, the tower is fixed in its vertical stance.
Therefore one could begin by searching for vertical lines, with a few degrees
tolerance.

Compensate for roll

An issue arises due to the prevalent roll rotation of a hexacopter. Naturally,
this translates to a corresponding rotation of the image frame, and a coun-
teraction must be made. One solution which was implemented is to use the
current estimated roll orientation from the IMU to adjust the search angle.
Another option is to mount the camera on a gimbal stabilizer to physically
prevent rotation of the image frame.

Restrict end points of lines

Because the UAV expectedly flies at an altitude at level with the hub, the
base of the tower will be below the bounds of the image and consequently
the lines exhibited by the tower span beyond the lower edge of the image
frame. Based on this knowledge another restriction is imposed; the lines
representing the tower must possess an ending point near the lower bound of
the image.

6.1.5.2 Locating the blades

If at least one line was identified as part of the tower, the program proceeds
to search for the lines exhibited by the blades. By locating the tower, a much
better evaluation can be made on whether a line belongs to a blade, by using
their relative geometric properties.

40

Figure 6.5: Example on how Hough lines get classified as tower lines (red)
and blade lines (green).

Search in vicinity of estimated hub position

By identifying the highest point among all the tower lines an estimate is
provided for the hub. Thus by searching for lines in a circular area around
this point one can expect to find lines belonging to the blades. In specific,
the search is conducted for ending points of lines, such that lines which start
or end close to the estimated hub center are found, but lines which pass
through the area are ignored. Lines which already where identified as tower
lines are ignored.

A search radius which worked well at about a 30 meter distance was 0.3
times the image height. Using the pinhole model this search radius can be
adjusted for other distances by equation (4.14)). This can be done by using
the radius as zi, and then change the distance, xc, and find the matching zi
which keeps the expression constant. Due to uncertainty in distance mea-
surement, this approach for search radius adjustment was not implemented
to run dynamically but rather set manually prior to detection.

A typical issue with this approach occurs when the horizon appears at a
height level close to the hub, which can potentially lead to it being incorrectly
identified as a blade. Unfortunately, one cannot simply ignore horizontal
lines, because (as is apparent in figure 6.5) a blade may also be horizontally
aligned. But since the horizon most of the time lies some distance below
the hub, the issue was disregarded. The implications are discussed in section

41

(a) (b)

Figure 6.6: (a): The green lines correspond to the initially detected blade
lines. There are false detections caused by the horizon and the UAV. (b):
The false detections have been removed by the voting procedure. Only the
green lines corresponding to the actual blades remain.

10.1.

Orgranize the blade lines

The lines which were determined to belong to blades are sorted by angle
and grouped with other lines of adjacent angles. Together each group form a
single blade object, where their average angle determines the estimated angle
of the blade. The tower lines similarly form a tower object.

Eliminate false blade detections

Lines which were missed in tower detection could later mistakenly be detected
as blade lines. Therefore, a blade is removed if has been detected with an
angle pointing downwards such that it overlaps the tower angle.

Furthermore, the property of there being a 120 degree angle between the
blades was utilized by implementing a voting system. A blade which receives
a certain amount of votes is assumed to be a false detection and is removed.
The voting is conducted by comparing each detected blade to each other. If
the angle between two blades is not close enough to 120 degrees by a certain
tolerance, both blades obtain a vote. The tolerance was set to 20 degrees to
accommodate for measurement error and skewed angles due to potential yaw
angle between the UAV and wind turbine.

Setting the vote limit to 3, such that three votes or more signifies a false
blade, proved to work well. Thus, if for instance, the three actual blades
plus a fourth false blade is detected, then the false blade receives three votes
in total from the actual blades and is removed. Meanwhile, the true blades

42

(a) (b)

Figure 6.7: (a): The green lines correspond to the initially detected blade
lines. There are false detections caused by the horizon and the UAV. (b):
The false detections have been removed by the voting procedure. Only the
green lines corresponding to the actual blades remain.

receive only one vote from the false blade. Clearly a higher limit would
not remove the false blade in this case, and would defeat the purpose of
the voting. Furthermore, the limit is high enough to provide small a buffer
against mistakenly removing the true blades. Figure 6.7 shows how the false
blade lines are removed when voting is successful.

6.1.5.3 Locate the hub center

Calculate intersections
Since all the blades beam out from the hub, the hub location can be found
by calculating their common intersection point. However, can be observed in
figure 6.5 the detected lines for the blades are sources of disagreement. For
instance, by looking at the upper right blade one observes that the curvature
on the lower edge causes a steeper angle on the corresponding line compared
to the lines from the upper edge. Furthermore, since lines are detected at
both edges of the limbs there will be a spatial disagreement as well. At
this point it is unclear which lines provide the appropriate result. This issue
was handled by calculating the intersection points between every line, except
between lines belonging to the same limb (figure 6.8), then computing the
average.

Obtain average intersection point
From the previous step there may appear some stray intersection points caus-
ing discrepant results. For instance, if the horizon is incorrectly detected as
a blade it can intersect with the other blades at a distance far from the hub.
To prevent such kinds of scenarios, restrictions are imposed on the points

43

Figure 6.8: The green circles show the points where the blade lines intersect
each other.

of intersection. Points which have horizontal position far from the line ex-
tended by the tower are ignored. Since the actual vertical position of the
hub is more uncertain, a slightly less strict restriction is imposed on vertical
distance based on the temporary estimated hub center (highest point among
the tower lines). Figure 6.9 show an example of how points are filtered via
this approach. After the points caught by the restrictions have been removed,
an average is calculated from the remaining points which should result in the
final estimated hub center position, similarly to figure 6.10.

44

Figure 6.9: In this case there where some bad intersection points due to the
horizon being detected as a blade line. The red circles show intersection
points which were removed by posed restrictions, leaving the better green
points for the calculation of average.

Figure 6.10: The red circle shows the estimated hub center position calculated
from the average of the intersections points from figure 6.8.

45

6.2 Object Tracking
Object tracking in computer vision refers to gathering information on how
an object moves or evolves over time in the image. This requires state infor-
mation of the object being saved or updated between frames. Usually, these
states contain position and its derivatives, although depending on the prob-
lem one might be inclined to track orientation, size, color or other properties.

For this program the interest lies in tracking the position of the hub
center, so that the UAV can be maneuvered in the fashion described in
section 7.1. In an object tracking routine one is commonly faced with two
problems which prevent smooth tracking. Firstly, there is noise, which is
an accumulated result of the collected sources of error from the camera and
the various algorithms in the program. Secondly, there may occur frames
where the tracked object is not detected. This can happen for instance if the
objects disappears behind another object. For this report, a more relevant
scenario is when others entities produce interfering Hough lines or if a crucial
edge fails to be captured by the edge detector. Often this happens for several
frames in succession, therefore some amendment should be devised for this
event in order to prevent unpredictable behaviour.

Both of these problems can be dealt with using the Kalman filter (section
4.8). The noise is handled through filter’s noise reducing properties. For
the case when the object is not detected one may estimate its state using
a prediction from the model of the filter. This is done by only running the
prediction update in the Kalman filter, while skipping the other update steps.
In other words, when no new measurements are made, it is assumed that the
object strictly follows the model. Consequently, the program will still have
knowledge of the states of the object, and can act accordingly.

Now, the implemented procedure will be described. First, a temporary
state model of the hub center is defined as follows.

x
y
ẋ
ẏ

k︸ ︷︷ ︸

xk

=

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

Fk

x
y
ẋ
ẏ

k−1︸ ︷︷ ︸

xk−1

+wk (6.1)

Here the input term, uk, is disregarded. One could imagine using the
movement of the UAV to describe its effect on the image, but this would
result in an overly complex model which would also be heavily dependent on
accurate distance estimation.

Equation (6.1) is simply a model where the x and y positions are described

46

by constant velocity:

xk = xk−1 + ẋk−1 + wx,k
yk = yk−1 + ẏk−1 + wy,k

(6.2)

The measurements are the x and y positions of the hub center, as identi-
fied through the recognition part (section 6.1.5.3), leading to the following.

[
zx
zy

]
︸ ︷︷ ︸

zk

=
[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

Hk

x
y
ẋ
ẏ

︸︷︷︸

xk

+vk (6.3)

The result from this scheme will be that if the program fails to recognize
the hub center from the image, it will assume that it follows constant velocity
from its current position and velocity. However, if this goes on for a significant
period of time, the hub center position will eventually continue moving past
and beyond the edge of the frame. To counter this issue, damping is included
into the model, which is done by altering the transition matrix, Fk, to the
following.

Fk =

1 0 1 0
0 1 0 1
0 0 γx 0
0 0 0 γy

 (6.4)

Where γx, γy ∈ [0, 1] Leading to the x and y position evolving according
to

xk = xk−1 + γxẋk−1 + wx,k
yk = yk−1 + γyẏk−1 + wy,k

(6.5)

Which means that for each frame, only the magnitude specified by γx, γy
of ẋk, ẏk carries over to the next frame, such that ẋk and ẏk exponentially
decay over time.

However, if the program the program is not able to locate the hub after
an extended period of time, instead of continuing to blindly relying on the
model it should switch to a searching state where movement is stopped until
the wind turbine has again been identified (for instance by simply rotating
around the yaw axis). Mainly because the issue is more likely caused by no
hub in sight or other detection issues rather than an unlucky sequence of
video frames.

47

Chapter 7

Maneuvering Plan for Wind
Turbine Inspection

7.1 Maneuvering Towards the Wind Turbine

This section gives a suggestion for an approach on how to maneuver the
UAV to reach the target destination. The target destination for the program
documented by this report is a position about 5 meters in front of the hub
of the wind turbine, starting from an initial position.

In this context, the initial position refers to the position of the UAV at
the time when the computer vision program is activated. It is assumed that
the GPS system is used to navigate to this position. Due to the limited
GPS accuracy the target initial position (depicted by the red cross in figure
7.1) should be assigned at a safe distance from the wind turbine. For both
simplicity and in order to avoid the blades of the wind turbine the target
should also be assigned directly in front of turbine (wind turbine facing UAV).
The actual initial position is expected to appear in a limited area around the
target initial position, as illustrated by the blue area in figure 7.1. In this
way, the program initiates at a position where it is ensured to be on the front
side of the wind turbine and at an angle which captures the characteristic
shape of the wind turbine.

The ultimate goal of the wind turbine tracking program will be to position
the UAV at a distance of about 5 meters in front of the hub of the wind
turbine. Naturally, there are numerous approaches on how to navigate to this
position. The method which was designed and implemented in the program
will now be presented.

The method can be viewed as three separate tasks (T1, T2 and T3).
Each task is given a priority from T1 at highest to T3 at lowest. Only

48

Wind Turbine

Figure 7.1: Top-down perspective of target initial position (red cross) in re-
lation to the wind turbine. The blue area shows where actual initial position
can be expected to appear.

when the conditions for one task is fulfilled the program moves to the next.
Furthermore, if during one task the conditions for a higher prioritized task is
invalidated the method reverts back to complete the former task. A summary
of the procedure is given by algorithm 2.

The first task, T1, makes sure that the UAV is facing the target position
i.e. the hub of the wind turbine. This is done by defining a rectangular
boundary in the image frame in which the UAV attempts to keep the target,
as illustrated in figure 7.2. If the target is inside the boundary, the conditions
for this task are fulfilled and the next task is initiated. Else if the target is
above or below the boundary, the UAV simply moves up or down to bring
the target back in the frame. One could imagine also achieving this by
altering the pitch. However, since the pitch is crucial to movement and
stability of a multicopter it is not a viable option for this system. On the
other hand, if the target is outside the horizontal bounds of the rectangle
there are two choices of action; move the UAV laterally or rotate the yaw
angle. Rotating is preferred for several reasons. First it requires less work,
which also means that a rotation is more probable to have brought the target
outside the boundary in the first place. Second, by assuming the UAV already
has maneuvered to a position which minimizes the yaw angle relative to the
wind turbine, repositioning the UAV instead of rotating it could cancel this
by increasing the angle again. Instead, left and right movement is reserved

49

Figure 7.2: The red rectangle illustrates the boundary in which the UAV
attempts to keep the target (blue dot). In this example it is clear that the
target is above the upper bound, and the UAV will fly upwards as commanded
by T1.

for the next task.
For the second task, T2, the objective is to minimize the relative yaw

angle of the wind turbine (figure 7.7). This is done by measuring the yaw
angle as described in section 7.4. By flying laterally, the relative angle is
reduced until a certain tolerance is reached. Naturally, by laterally one will
also experience the wind turbine moving horizontally in the camera frame,
albeit slowly compared to the effect of UAV rotation. By consequence, once
the target moves outside the rectangle described in the first task, the first
task becomes prioritized and adjusts the attitude to bring the target back
inside the boundary. The result of the combined alteration of T1 and T2 is
thus a circular motion around the wind turbine, as illustrated in figure 7.3
by the segments marked T1 and T2. As the relative yaw is reduced past a
certain threshold indicated by the green triangle, the relative yaw is deemed
as sufficiently small and the method proceeds to the third task.

The third and last task, T3, simply commands the UAV to move forward
towards the target until the desired distance has been reached. A correct
course is ensured and maintained by the former tasks. Should a disturbance
cause the UAV to lose its heading or get a too big angle, it reverts to T1
or T2, respectively, to correct the error. As the UAV gets close the desired
distance can be detected using the camera or a sonar as described in section
7.3.

50

T1

T2
T1

T2

T3

T1

T2

Figure 7.3: Top-down perspective showing an example scenario of the naviga-
tion path (red line), with a slightly exaggerated initial position. Indications
show when each task is run. The green triangle depicts the tolerated range
for relative yaw.

Algorithm 2 Navigation method
while not reached desire distance do

if target not in boundary then . T1
if target above/below then

move vertically
if target too far left/right then

rotate along yaw axis
else if |relative yaw| > yaw tolerance then . T2

move laterally
else . T3

move forward

The result is an approach with a predictable behaviour which can be easily
implemented. It also has the advantages of keeping the wind turbine in the
field of view of the camera at all times and utilizes the available data in a
simple and practical way. As seen in figure 7.3, the formed path keeps a safe
distance from the blades. In addition, keeping the low yaw angle is beneficial
for the computer vision part. A low angle also places the UAV directly in
front of the wind turbine when the desired distance is reached, providing a
favourable starting point for the subsequent blade inspection program.

51

Figure 7.4: An example on what the starting position might look like when
the blade inspection program is initiated.

7.2 Maneuvering Along the Blades
The task of flying along the individual blades was not a part of the assigned
problem for this thesis. Therefore the coverage of this task will be merely
anecdotal. A proposed approach follows along with potential problems and
comments.

7.2.1 Choosing a target blade
The previous part of the program should have left the UAV in a position
directly in front of the hub where the base of all blades are visible, similarly
to figure 7.4, with knowledge about blade angles. An arbitrary blade would
then be chosen, and it could be locked on by using Hough lines restricted to
the corresponding angle.

7.2.2 Following the blade
When following the blade the most obvious task is to move in the direction
of the blade. Since the blade should span across the whole image frame as
the UAV moves along, the Hough line transform is assumed to produce a
clear result making it straightforward to maintain the angle.

Another task is to keep the UAV at a suitable distance from the blade.
To avoid crashing it should maintain a safe distance, but simultaneously it
should fly close enough for the camera to obtain quality footage (for inspec-
tion). Approximately 5 meters is suggested. Estimating the distance using

52

Figure 7.5: A blade of a wind turbine

the camera (via the pinhole camera model as described in section 7.3) might
prove problematic because the blade varies in width from base to end (fig-
ure 7.5). Using a sonar instead, or a similar device, is presumably the better
solution. The relevant distance should be suitable for accurate measurement.

Optimally the front of the UAV should point perpendicularly to the sur-
face of the blade. If the edges of the blade were parallel, one could utilize
how the angle between the edges change with perspective to determine orien-
tation. However, the curvature of the blade makes designing such a scheme
non-trivial. Perhaps a more beneficial approach would be to simply maintain
a steady compass angle of the UAV which is obtainable from the IMU.

7.2.3 Navigate around the tip of the blade and back
the other side

If the Hough line transform was chosen for following the blade, then the tip of
the blade should be detectable by the point where the Hough lines eventually
come to an end. A corner detector could also prove suitable for this task.

When moving around the tip, it is questionable how applicable the com-
puter vision methods which have been discussed are. The problem is that
the features of the wind turbine become less apparent when viewed from the
side. A solution could be to instead rely on a pre-programmed maneuver like
for instance a semicircle motion around the tip, as illustrated in figure 7.6.

After having arrived at the other side and again identified the blade,
the UAV can return to the hub using the same blade following procedure as
before, but this time from the back. When the hub is reached, the next blade
can be selected for inspection.

53

Figure 7.6: A top-down perspective illustrating a semicircle maneuver around
the tip of the blade.

7.2.4 Note on blade orientation
As can be seen for instance in figure 7.5 or 7.4, when the turbine is halted
the individual blades are rotated so that their narrow side points forward,
presumably to reduce the force exerted by the wind. However, this results
in the wide sides pointing upward and downward, and thus the UAV which
navigates the blades from the side will have a poor angle of view of these
areas. Since the wide side of a blade is pointing forward (toward the wind)
when the wind turbine operates, this side is more susceptible to damage.
For this reason, it should be further investigated whether it is sufficient to
inspect the blades from the side. If not, a more complicated navigation
approach could be considered, or perhaps a more flexible camera set-up could
be composed.

7.3 Distance Estiation
The navigation approach (section 7.1) relies on being able to detect when the
UAV has reached a desired distance. To address this matter, some options
for distance estimation will be discussed.

7.3.1 Distance estimation using video camera
The first option is to estimate distance from the camera output by using
computer vision. This can be achieved by applying the pinhole camera model

54

(section 4.5). By rearranging equation (4.14) with respect to the object’s
distance to the camera, xc, one obtains the following:

xc = f
yiy

c

xc = f
zi z

c
(7.1)

Now, let the measured width and height of the object of interest be given
by ∆yi and ∆zi. If the corresponding width and height of the same object is
known in reality and given by ∆yc and ∆zc, the distance can be estimated
by either of the following:

xc = f
∆yi ∆yc

xc = f
∆zi ∆zc

(7.2)

A suitable target in the wind turbine tracking program would be the width
of the tower. Since tower detection has regardless been given considerable
care and has easily distinguishable edges it provides a reliable basis for this
approach. One should keep in mind that the tower is usually wider at its base,
therefore a specific area of the tower should be targeted. The uppermost area
would possibly be the best choice because this area persists inside the field
of view at all distances. Additionally, since it is desired to point the camera
such that the hub is centered in the image, the area will also be close to the
image center and thus not notably affected by image distortion.

This method was implemented into the program and was used for the
experiments presented in section 9.2.3.

7.3.2 Distance estimation using dedicated hardware
Under appropriate conditions dedicated instruments will provide more accu-
rate results than the camera based procedure. However, for most of the time
the wind turbine will be a small target due to the distance. A sonar will
for instance become inaccurate as the propagation distance increases. On
the other hand, good performance can be expected at the range where the
final desired distance will actually be measured. Another suggestion could
therefore be to use camera for estimation at longer ranges, before relying on
a sonar when getting close.

7.4 Yaw Estimation
It is desirable to approach the wind turbine from its direct front. This will
both ascertain the position of the UAV in relation to the wind turbine and
ensure the approach being made from a safe angle. For this purpose, a

55

Wind Turbine

X
w

Y
w

�

X
b

Y
b

Figure 7.7: An illustration of the yaw orientation between the b-frame and
the w-frame.

56

method is sought to estimate the yaw orientation between the UAV and the
wind turbine i.e. the yaw component of Ri

w (figure 7.7). As seen from the
figure, the coordinate frames are defined in such a way that when the UAV
is directly in front of the hub and facing the wind turbine, the X axes are
aligned and ψ = 0.

7.4.1 Estimation via coordinate transformation
One way to approach this issue is to examine how an yaw rotation relates
to the image frame. For simplicity it is assumed that the z-axes are parallel
(i.e. no roll or pitch rotation), which is fulfilled if the UAV hovers stably. If
so, a certain vector, vw =

[
xw yw zw

]T
in the wind turbine frame can

be rotated to the camera frame (which is essentially identical to the body
frame) as follows:

vc = Rc
w(ψ)vw (7.3)

where the rotation matrix is a pure yaw rotation.

Rc
w(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (7.4)

In order to transfer points (pc = Tc
wpw) the position also needs to be

accounted for and transferred. Before doing that, another simplification will
be made. It will be assumed that the hub of the wind turbine is centered in
the image frame, so that the xc-axis intersects the origin of the wind turbine
frame. In practice, this is achieved by through T1 in the navigation approach
(7.1). The consequence of this simplification is that the distance between
the origins of the two coordinate frames, denoted rcw, can be expressed as a
length purely along the Xc axis. Expressed in the camera frame this becomes
the following:

rccw =

x
c
cw

0
0

 (7.5)

Points can then be transferred by using the homogeneous transformation
matrix, which is defined as:

Tc
w =

[
Rc
w rccw

0T 1

]
(7.6)

57

The method also requires expanding the dimensionality of the point such
that: pc =

[
pcx pcy pcz 1

]T
, pw =

[
pwx pwy pwz 1

]T
Thus one obtains

pc = Tc
wpw =

cosψ − sinψ 0 xccw
sinψ cosψ 0 0

0 0 1 0
0 0 0 1

pcx
pcy
pcz
1

 (7.7)

pcx
pcy
pcz
1

 =

pwx cosψ − pwy sinψ + xccw

pwy cosψ + pwx sinψ
pwz
1

 (7.8)

Using the pinhole model, equation (4.14) from section 4.5, the point can
be expressed in the image plane as:[

piy
piz

]
= f

pwx cosψ − pwy sinψ + xccw

[
pwy cosψ + pwx sinψ

pwz

]
(7.9)

By looking at how the wind turbine frame is defined, as for instance
illustrated in figure 7.7, one can observe that the relevant points of the wind
turbine lie close to the Y w − Zw plane , such that pwx ≈ 0. By using this
approximation the equation is greatly simplified.[

piy
piz

]
= f

−pwy sinψ + xccw

[
pwy cosψ
pwz

]
(7.10)

Using the lower low yields the most practical expression:

piz(pwy sinψ − xccw) = −fpwz (7.11)

ψ = arcsin
 fpw

z

pi
z
− xccw
pwy

 (7.12)

7.4.2 A more problem specific yaw estimation approach
Rather than using a general approach as described above, a better option
could be to use a more specialized approach which takes advantage of the
features of the wind turbine. A method will now be presented which utilizes
the depth variation of the wind turbine.

58

Figure 7.8: Illustrates the gap between the hub center and tower which
appears as the yaw angle increases.

One can observe from figure 7.8 that as the yaw angle increases, two
points which were initially behind each other drift apart. In particular, the
center of the hub and the tower of the wind turbine, which are among the
easiest points to determine, form the gap denoted δ.

δ, which is a distance given in the image frame, can be expressed as a
function of the actual distance between the two points in 3D (|pw1 −pw2 |) along
with the yaw orientation (ψ) and the distance from the camera (d). Using
the pinhole camera model:

δ = f

d
|pw1 − pw2 | sinψ (7.13)

Which yields the following relation

ψ = arcsin
(

δd

f‖pw1 − pw2 |

)
(7.14)

This method was implemented into the program and was used for the
experiments presented in section 9.2.4.

7.4.3 Compass Approach
If the yaw orientation of the wind turbine relative to the NED frame is known,
it could be compared to the measurements of the on-board compass of the
UAV. However, the orientation of the wind turbine changes in correspondence
with the wind direction to optimize efficiency. So either the wind turbine
would have to be stopped in a predetermined orientation before shutting
down for inspection, or the orientation has to be measured and updated to
an interface accessible to the UAV.

59

Chapter 8

Designing the Program

Chapters 6 and 7 described the approaches which are used in the program.
In this chapter, it will be explained how these parts are implemented into a
complete application.

8.1 The Program Flow
The program runs in a loop where a new iteration is initiated at the arrival
of a new image frame. How the individual iteration is structured will now
be explained in a step-by-step fashion. A corresponding activity diagram of
the program flow is given in figure 8.1. Under way, it will also be referred to
some of the main functions and data structures which are used, for which a
class diagram is shown in figure 8.2.

Obtaining an image frame

The first task is to obtain an image frame. Every iteration in the computer
vision task processes one separate frame. The image may come from either an
actual still image, a frame from a video sequence or a frame from a camera
stream. Only the camera stream is relevant for the final system in actual
operation, whereas image and video input is used for development.

Using an image as input simply involves reading the file. Since videos
are intended for off-board testing there are no time restrictions, therefore
the next frame in the sequence is simply read when the previous iteration is
finished.

For the camera stream, however, it is important that the program is able
to keep up. If not, one may experience the program working with frames
which were actually produced a while earlier. Naturally, this could lead
to disastrous results if employed in flight. To prevent this issue, a thread

60

is created which runs in parallel to the main computer vision task. This
thread continuously captures the stream from the camera and pushes the
frames communication bus, thus preventing the frame queue from stacking
up. When the main task is ready to receive a new frame, the most recent
frame is readily available on the bus.

A received frame is stored in the Image class which contains the original
image along with all derived images from processing methods and images for
the GUI which provides visual feedback.

Downsampling

Because the image resolution has a negative effect on the efficiency of most
image processing methods, it is desirable to limit it to a reasonable level. This
is done in two different ways. The first is to directly instruct the camera
to stream at a lower resolution. In this case, the downsampling step is
skipped, and no processing is needed locally by the computer thus reducing
computational demand.

A second approach was implemented in case either the camera does not
support to limit its resolution or if a video or image is used as input. In this
case the image is down-sampled using the Gaussian pyramid (section 4.6).
It is done using the function downsampling(), from the Image class.

The image resolution should lie in the range of 200-500 pixels for both
axes. This offers an acceptable trade-off between performance and image
quality. In addition, keeping the resolution in a specified range yields con-
sistent results from processing methods which are scale dependent. For in-
stance, most edge detectors work by comparing the current pixel to the near-
est neighbouring pixels. Thus, when the image resolution is increased, the
same amount of neighbouring pixels cover a smaller portion of the whole
image, leading to decreased sensitivity for the method.

Gaussian blur

In some cases it is desirable blur the image before proceeding to the Canny
edge detector and Hough transform. The reason is that if the image is sharp,
the edge map from the Canny detector can become very dense and noisy.
Since the Gaussian blur is in practice a low pass filter, these effects would be
reduced and a more predictable result is obtained. Care should however be
taken, as excessive blurring can eliminate wanted the features in the image.

Using the camera configurations in this work, however, blurring needed
not to be done directly. It was done indirectly via downsampling when using
the high resolution GoPro videos. Also, the video stream from the USB

61

camera, which was configured to readily deliver low resolution images, did
not deliver notably sharp images.

Canny edge detection

To provide the binary edge map required by the Hough line transform, the
Canny edge detector (section 4.3.1) needs to be executed first. It is available
from the OpenCV library as Canny(). The high and low hysteresis thresh-
olds in the detector should be set relatively high (thus decreasing sensitivity),
since the edges produced by the contours of the wind turbine are generally
rather prominent compared to most edges exhibited by features in the envi-
ronment. By consequence fewer irrelevant edges are included, thus reducing
computation time for the detector itself and for the subsequent Hough trans-
form which will detect fewer lines.

The resulting edge map is saved in Image.canny

Hough line transform

Having obtained the edge map from the edge detector the Hough line trans-
form can be executed. This is done by generateHoughLines() which utilizes
the function HoughLinesP() from OpenCV, and stores it in the class Hough-
Transform as HoughLine objects.

Recognition

Next the recognition algorithm is performed as descrived in section 6.1.5.
findTowerLines and findBladeLines detects and labels Hough lines which
matches the conditions. A WindTurbine object is created, where the lines are
grouped into Blade and Tower objects. The remaining logical operations are
performed using findBladeAngles(), findTowerAngle(), removeFalseBlades(),
and findHubCenter() from the WindTurbine class, and hopefully a successful
detection is obtained with an estimated hub center position.

The rest of the relevant functions in the WindTurbine class are performed
to perform all logical operations required to finally obtain a successful detec-
tion along with a position estimation.

If the detection failed, i.e. the tower was not detected or insufficient
amount of blades were detected, then the program gets prediction from
Kalman filter as the current position estimation, by updating the Kalman
filter and extracting HubCenterKF.statePt. But if this has already happened
for a prolonged period of time, movement should be halted a search proce-
dure should be initiated. This could include simple yaw rotation until the
wind turbine is spotted, and if also this should fail the best course of action

62

might be to let GPS navigation to take over and return to the initial start
position.

Update Kalman filter

If detection was successful, the estimated position is added as a measurement
to the Kalman filter. The filter is updated using HubCenterKF.update() and
filtered position obtained from HubCenterKF.statePt.

Estimate yaw and distance

Next, the yaw angle and distance are estimated using estimateWindTur-
bineYaw and estimateDistance from the WindTurbine class, using the ap-
proaches described in section 7.3 and 7.4.

Maneuver towards the wind turbine

Finally, based on estimated data, the wind turbine sends the commands in
correspondence with the approach described in section 7.1, and goes back to
start to receive a new image frame.

63

Get image

Downsampling

Canny

Hough line
transform

Recognition

Update
Kalman filter

Estimate yaw
and distance

Maneuver
towards

wind turbine

Get predic-
tion from

Kalman filter
Search for

wind turbine

Failed detection
Successful detection

Prolonged failed detection

Figure 8.1: Activity diagram describing the flow of the computer vision pro-
gram.

64

H
ou

gh
T

ra
ns

fo
rm

ge
ne

ra
te

H
ou

gh
Li

ne
s(

im
g:

Im
ag

e*
,.

..)
dr

aw
H

ou
gh

Li
ne

s(
im

g:
Im

ag
e*

)
fin

dT
ow

er
Li

ne
s(

im
g:

Im
ag

e*
,.

..)
fin

dB
la

de
Li

ne
s(

)
co

rr
ec

tA
ng

le
s(

)

W
in

dT
ur

bi
ne

bl
ad

es
:

ve
ct

or
<

Bl
ad

e*
>

to
we

r:
To

we
r*

hu
bC

en
te

r:
Po

in
t

fin
dB

la
de

A
ng

le
s(

ho
ug

h:
H

ou
gh

Tr
an

sfo
rm

*)
re

m
ov

eF
al

se
Bl

ad
es

()
fin

dT
ow

er
A

ng
le

()
fin

dH
ub

C
en

te
r(

im
g:

Im
ag

e*
)

es
tim

at
eW

in
dT

ur
bi

ne
Ya

w
(im

g:
Im

ag
e*

,.
..)

fin
dD

ire
ct

io
nF

or
C

en
te

rin
gH

ub
(im

g:
Im

ag
e*

)

B
la

de
bl

ad
eL

in
es

:
ve

ct
or
<

H
ou

gh
Li

ne
*>

an
gl

e:
in

t
vo

te
sT

ow
ar

ds
Fa

lse
Bl

ad
e:

in
t

Im
ag

e
ca

p:
V

id
eo

C
ap

tu
re

ra
w

:
M

at
ra

w
LR

:M
at

ca
nn

y:
M

at
bl

ur
:

M
at

ge
tF

ra
m

eC
en

te
r(

)

T
ow

er
to

we
rL

in
es

:
ve

ct
or
<

H
ou

gh
Li

ne
*>

an
gl

e:
in

t
hi

gh
es

tT
ow

er
Po

in
t:

Po
in

t

H
ou

gh
L

in
e

ra
w

Li
ne

:
ve

c4
i

an
gl

e:
in

t
pS

ta
rt

:
Po

in
t

pE
nd

:
Po

in
t

isT
ow

er
Li

ne
:

bo
ol

isB
la

de
Li

ne
:

bo
ol

isH
ig

he
st

To
we

rL
in

e:
bo

ol
sw

ap
St

ar
tE

nd
Po

in
ts

()
ca

lc
ul

at
eA

ng
le

(li
ne

:
Ve

c4
i)

H
ub

C
en

te
rK

F
K

F:
K

al
m

an
Fi

lte
r

st
at

eP
t:

Po
in

t
up

da
te

(w
t:

W
in

dT
ur

bi
ne

*)

Fi
gu

re
8.

2:
C

la
ss

di
ag

ra
m

of
th

e
co

m
pu

te
r

vi
sio

n
pr

og
ra

m
.

65

Chapter 9

Results

This chapter will examine the performance of the system through a vari-
ety of experiments. Several aspects of the program were investigated to get
an overall impression. First, an overview is given over factors which affect
whether a detection is successful and its accuracy. Next, the program is run
using different video sequences as input, and the performance for estimates
of hub position, distance and yaw angle is evaluated. Lastly, the computa-
tion requirements were investigated, and an on-board test was performed to
observe what iteration frequencies are feasible for maintaining stable control.

9.1 Factors which affect Recognition Perfor-
mance

The aim of this section is to evaluate what conditions affect the recognition
algorithm, in order to get an overall understanding of what sources of error
are present. To do this, it will be attempted to isolate the circumstances
which disturb or disrupt a detection, accompanied with representative im-
ages.

In this analysis, the terms successful or failed detection will be used. This
simply indicates whether a wind turbine was detected in the image. It does
not, however, imply anything about the accuracy of estimated position, angle
or distance.

9.1.1 Minimum requirements for successful detection
In order to get a successful detection there certain conditions need to be
fulfilled. These can be divided in two parts. The position of the wind turbine
and tuning matching environment conditions.

66

The restrictions of the position of the wind turbine are posed directly
and indirectly by the program itself. First, the tower of the wind turbine has
to be in view, since the recognition algorithm begins by searching for tower
lines. Since the only angles sufficiently close to 90 degrees are accepted, it is
required that if the UAV currently has a significant roll angle the IMU must
provide a good enough estimation to compensate. Furthermore the tower
must reach the lowest 20% of the image. In addition, at least two blades
have to be in view such that an intersection can be calculated to estimate
the hub center. The yaw orientation must also be sufficiently small so that the
angles between the blades are not skewed past the range of 100-140 degrees.

The second set of conditions are related to the image processing param-
eters. If the image properties vary too much from what the parameters are
tuned against, the output from the Canny edge detector or the Hough Trans-
form may not be suitable for further analysis. Image properties can differ if
the camera is changed, however should not be a problem if a single camera is
used in practice. More important are lighting and weather conditions, which
alter the suitable range for the parameters. This will now be examined.

Parameter dependency

The Canny edge detector is the critical part under lighting variation. A
change in lighting can affects the intensity distribution in the image, and can
thus alter the strength of the edges. The hysteresis threshold values need to
be adjusted low enough to accept the most prominent edges, but high enough
to filter weaker unwanted edges (section 4.3).

A brief test was run on a single video clip to examine the threshold ranges
which produced successful or meaningful detection. First the threshold values
were progressively increased. It was found that the edges of the wind turbine
began to diminish at about the following values:
High hysteresis threshold: 500
Low hysteresis threshold: 400
Next the values were lowered. The amount of noise was having a significant
impact on accuracy of detection when the values reached the following:
High hysteresis threshold: 200
Low hysteresis threshold: 100

It should be emphasized that the transitions from good to bad were very
gradual, and these limits are thus fairly subjective. In addition, there is
an interplay between the high and low threshold which is hard to grasp.
Nevertheless, the point persists that the range at which the method produces
useful output is not too narrow to allow room for environment change or
suboptimal tuning.

67

Table 9.1: Chosen parameters for the Hough line transform

Hough threshold 43
Minimum line length 50 pixels
Maximum gap in lines 13 pixels

The Hough line transform, on the other hand, is a different matter. Be-
cause the shape of the wind turbine always remains the same, a specific set
of parameters will produce similar results unless the Canny detector outputs
a drastically different edge map, in which case the Canny detector should
be adjusted. By experimentation the parameters in 9.1 were found to work
well under any tested lighting conditions. It should be noted that since some
of the parameters are given in pixels, they would have to be altered if a
significantly different display resolution were to be used.

9.1.2 Failed detections
Assuming the minimum requirements for successful detection are met, it will
now be investigated how else a detection can fail. A failed detection is simply
when a wind turbine is not recognized anywhere in the image. This can occur
when either the tower was not detected, or in case the tower was detected
the sufficient amount of valid blades was not detected. These cases will now
be examined.

Failure to detect tower

In order to detect a tower, one merely needs to identify a sufficiently long ver-
tical line starting inside the lower 20% of the image. The length requirement
fails if the wind turbine appears too low in the image, such that just a small
part of the tower is visible. If the minimum length for Hough lines is set to
50 pixels (with image height of 270 pixels), as it was in these experiments,
the hub cannot fall below the lowest fifth of the image height.

If there is an interference such that the tower edges are split into smaller
lines, it can lead to failed detections at higher hub positions. Such an issue
arose with the appearance of a shadow cast by the hub onto the tower. Figure
9.1 shows how this shadow disrupts the canny detector and consequently also
the Hough transform. Worse than segmenting the lines, it also can hide the
edges completely in the shadow area if the background is of matching color,
such that the highest point among the tower lines (which form the center for
the blade search area) is lower than it should be. The effect is stronger when

68

(a) (b)

(c) (d)

Figure 9.1: (a) Shows how the shadow under the hub causes a split left edge
of the tower which in (b) results in two separate Hough lines. (c) Shows how
the same shadow blends into the background and hides the edge, which leads
to no Hough line in (d).

the distance to the wind turbine is shorter, because then the shadow appears
larger in the image.

Failure to detect blades

Since the estimated top of tower was based on the highest point among the
tower lines, this point may in some cases be found too low, as in figure 9.2b.
Again, the shadow is the cause of the problem. Blades are thus not detected,
since they have to be close to the estimated top of tower position which
defines the center of the blade search radius. Another scenario is when too
many (incorrect) blades are detected, either due to a poor Hough transform
or too many disturbances in the image. Then there is much uncertainty as
to which detections are true blades, and the voting procedure (described in
section 6.1.5.2) will discard all detections.

9.1.3 False positives
A successful detection does not necessarily imply a correct detection, due
to the occurrence of false positives. In this context, false positives refer to
detected tower lines or blade lines which do not actually correspond to the

69

(a) (b)

Figure 9.2: (a): Failed detection because the tower does not exhibit any
lines which are long enough to be detected. (b): Failed detection because
the highest point among the tower lines (blue circle) is not high enough and
thus the blade search radius (green) does not capture any of the blades.

true edges of the tower and the blades.
A false tower detection was only experienced when another wind turbine

was visible in the image, close enough to produce a long enough line, and at
a specific height such that the bottom of the tower was in the lower 20 %
of the image. This had no effect on successful detection, because the blade
search radius is centered at the highest point among the tower lines, and the
correct tower would always reach higher.

On the other hand, false blade detections occurred more frequently. Every
detected line which has an end point inside the blade search radius yields
a true or false positive. This was most commonly caused by the horizon
and the visible parts of the hexacopter itself, and to a lesser degree the
environment when the blade search radius was big (at close ranges). However,
the environment produced very few edges in general. Many of the false
edges are however removed by the voting procedure (section 6.1.5.2) or are
dominated by the usually more numerous true blade edges.

9.2 Runtime performance using video input
In this section the program will be evaluated by using video sequences as
input. The videos were recorded by at Bessakerfjellet wind farm, Norway
(appendix B.2). For recording a GoPro (appendix C.1) camera was used.
The camera was mounted on the same type of hexacopter as described for
the system, but with no payload except for the bare minimum required for
flying via remote control. A gimbal was also used to stabilize the camera. The
recordings were done in such a way to attempt to mimic the maneuvering plan

70

Figure 9.3: The interference of the hexacopter is an example of where the
edge of another entity is falsely detected as a blade edge, illustrated by the
incorrect green line.

(described in 7.1) for an inspection scenario, in order to get representative
footage at the expected range and angles.

When evaluating the performance, the estimated hub center position from
the program will be compared to the actual hub center position. The actual
position was measured by following the position in the video manually using
a computer mouse. For this reason the measured actual position can be off
by a few pixels and lag slightly behind under quick movements, but still
provides useful means for comparison.

The video sequences are downscaled from the original GoPro display res-
olution to 480x270. In the plots, the pixel positions are bounded to match
these numbers, such that the edges of the plot reflect the edges if the image.
Furthermore, since the pixel coordinates count y-position from top to bot-
tom, the y-axis of the plots is inverted when representing the y-pixel position
in order to match the direction visually.

In addition, the detection values will be accompanied by a Boolean plot
which indicates whether the detection was successful (green) or failed (red)
for each frame. If a detection is false for a frame and no Kalman filter have
yet been added, the output value will simply be equal to the value from the
last successful detection.

Three of the video clips will be presented, each captured at a different
distance. Because the hexacopter was remotely controlled from the ground
and was flying at about 50 meter height, exact distances between the hexa-
copter and the wind turbine were not obtained. The distances were however
estimated during flight to be around 30 meters, 15 meters and 8 meters for
the first, second and third clip respectively.

In section 6.1.5.2 it was mentioned how the search radius can be adjusted

71

Table 9.2: The search radius used for each distance. Radii are given as
fraction of image height

Clip # Distance [m] Search Radius
1 25 0.3
2 15 0.5
3 8 0.9

(a) (b) (c)

Figure 9.4: Representative frames for the three video clips, and also showing
the size of the blade search radius used for each clip. (a): Video clip # 1.
(b): Video clip # 2. (c): Video clip # 3.

to according to distance. Using this approach the search radii given in table
were 9.2 found and used. How this relates to each video clips can be seen in
figure 9.4. The figure also provides a representative image of how the wind
turbine appears from the UAV’s point of view from the given distance.

9.2.1 Position estimation
The Canny edge detector was set to the same bounds for all the three clips,
which provided a good balance between desired detection and noise rejection:
High hysteresis threshold: 400
Low hysteresis threshold: 300

Long distance, video clip # 1

The result described here can be viewed in the file ”Clip 1 estimation.mp4”
in the digital attachment.

First, the performance was examined for a video clip where the distance
was long, about 30 meters (near the initial position of the maneuvering plan).
A representative frame from the clip is shown in figure 9.4a. During the
clip the wind turbine moves from the top to the bottom of the frame while
distance remains roughly constant. Figure 9.5 show estimated hub center

72

Detection result: success(green)/failure(red)

Frame number

200 400 600 800 1000

200 400 600 800 1000
0

100

200

300

400

Frame number

x
−

p
o
s
it
io

n
 [

p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

200 400 600 800 1000

0

50

100

150

200

250

Frame number

y
−

p
o
s
it
io

n
 [
p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.5: Video clip # 1 detection results where the distance from the
wind turbine is around 30 m. The estimated position follows the real location
reasonably well. Detection is lost when y-position approaches the lower edge.

73

positions, both horizontal and vertical, along with the Boolean plot showing
success/failure.

The results shows accurate tracking for this range. In x-position the
tracking varies slightly less than in y-position where there are some occa-
sional spikes in the y-position towards the center caused due to false pos-
itives by interference from the horizon. It is observed, as expected, that
the program loses detection when the wind turbine reaches a sufficient low
y-position around the lower third of the image. This happens due to failed
tower detection, since the remaining visible parts of the tower produce too
short Hough lines. The shadow located under the hub is also shortening the
Hough lines, such that detection is lost a bit earlier than it would under
optimal conditions (just as was explained in section 9.1.2).

Medium distance, video clip # 2

Next, the program was examined for a clip recorded at a closer distance,
around 15 meters, as represented by figure 9.4b. The results shown in figure
9.6 were obtained. Position estimation is still rather accurate, but compared
to the results from video clip # 1, there is both slightly more noise in the
estimations along with a higher number of detection failures. The increased
noise can be seen as a consequence of the expanded search radius. When
a larger area is covered, the amount of false positives is also potentially
increased. The new interfering entities were primarily the propellers from
the hexacopter itself along with the most distinct contours of the landscape.
The amount of false positives (falsely detected as blades) is also responsible
for an increased amount of false detections, because the actual blades cannot
be distinguished from the false detections.

The shadow on the upper part of the tower does now interfere more than
in video clip 1, because due to the closer distance it appears bigger in the
image. This causes the detection to be lost just before the y-position reaches
the lower half.

74

Detection result: success(green)/failure(red)

Frame number

100 200 300 400 500 600

100 200 300 400 500 600
0

100

200

300

400

Frame number

x
−

p
o
s
it
io

n
 [

p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

100 200 300 400 500 600

0

50

100

150

200

250

Frame number

y
−

p
o
s
it
io

n
 [
p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.6: Video clip # 2 detection results where the distance from the
wind turbine is around 15 m. The estimated position follows the real location
reasonably well. Detection is lost when y-position approaches the lower edge,
but earlier than at the longest range.

75

Detection result: success(green)/failure(red)

Frame number

50 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

Frame number

x
−

p
o
s
it
io

n
 [
p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

Frame number

y
−

p
o
s
it
io

n
 [
p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.7: Video clip # 3 detection results where the distance from the wind
turbine is around 8 m. Successful detection is obtained only at the upper
third of the image. Detection is also less reliable.

76

Short distance, video clip # 3

The results from video clip 3 (a representative image shown in figure 9.4c)
are shown in figure 9.7. This was the nearest recording, filmed at around 8
meters from the wind turbine. The issues which arose at medium distance,
were even more prevalent here. Successful detections were not achieved before
the wind turbine had reached the uppermost third of the image, due to the
disrupting shadow covering an even larger area.

Since the blade search radius was set bigger than at medium distance,
even more false positive blade detections were present, causing inaccurate
position estimation and a significant amount of failed detections. In addi-
tion, towards the end the upper blade disappears from view, and thus other
falsely detected detected blade lines are more easily accepted. Especially the
propellers caused much interference and are mainly responsible for the bias
in y-position towards the end.

9.2.2 Position estimation with Kalman filter
The program was then again run using the same video clips as input and
using the exact same configurations, but with Kalman filter tracking enabled
as described in section 6.2. The Q and R matrices were experimentally tuned
to the following
Q = 10−4 · I2x2
R = 10−1 · I2x2

This configuration assumes weak covariance in process noise, i.e. move-
ment of the hub center in the image. On the other hand, heavier covariance
in measurement noise is assumed, which achieves valuable noise reduction
of inaccurate estimations. This matches the observation that, especially at
short distance, the measurement error varies significantly more than the ac-
tual position.

For video clip 1, which initially had rather good estimation results (figure
9.5), a slight improvement can be observed after filtering, see figure 9.8. The
spikes in y-position towards the center caused by interference by the horizon
are practically removed, and a smoother tracking is achieved in overall. See
direct comparison in y-position in figure 9.9.

77

200 400 600 800 1000
0

100

200

300

400

Frame number

x
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

200 400 600 800 1000

0

50

100

150

200

250

Frame number

y
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.8: Video clip # 1 tracked position using Kalman filter. Shows a
smoother result than without the filter (figure 9.5).

100 200 300 400 500 600

0

100

200

Frame number

y
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Raw estimated vertical pos. of hub center

Estimated position

Real position

100 200 300 400 500 600

0

100

200

Frame number

y
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

(Kalman filter enabled) estimated vertical pos. of hub center

Estimated position

Real position

Figure 9.9: A copmarison between Kalman filtered and raw y-position esti-
mation. Video clip # 1, was used as input.

78

100 200 300 400 500 600
0

100

200

300

400

Frame number

x
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

100 200 300 400 500 600

0

50

100

150

200

250

Frame number

y
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.10: Video clip # 2 tracked position using Kalman filter. Shows a
smoother result than without the filter (figure 9.6).

A similar observation is made for the middle distance video clip 2. The
filtered tracking results, shown in figure 9.10, show a favourable decrease in
noise compared to the unfiltered detection (figure 9.6) which had a significant
amount of false positive detections present.

The filtered tracking results from video clip 3 are shown in figure 9.11.
The noise from the unfiltered date (figure 9.7) is enough to produce significant
deviation from the real position, especially in the y-direction. The bias in y-
position towards the end could also not be corrected. This differs from what
was seen for video clip 1, where spikes towards the middle were essentially
removed since there were enough accurate estimations in between.

Arguably this could still be used to determine control commands, during
the parts of successful detection. The prolonged sequences of failed detection
can, however, not be remedied by the Kalman filter.

79

50 100 150 200 250 300 350 400 450 500
0

100

200

300

400

Frame number

x
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated horizontal position of hub center

Estimated position

Real position

50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

Frame number

y
−

p
o

s
it
io

n
 [

p
ix

e
ls

]

Real and estimated vertical position of hub center

Estimated position

Real position

Figure 9.11: Video clip # 3 tracked position using Kalman filter. Shows a
great improvement over the unfiltered result (figure 9.7).

80

9.2.3 Distance estimation

Distance was estimated using equation (7.2) from section 7.3. The width of
the tower was used as target for estimation. This was done by first finding
the outermost tower lines, and extending them to a common height and
measuring the length between them (in pixels). It was considered to use
the highest point among all tower lines as the common height, but since this
point can vary significantly between frames the bottom edge of the image was
chosen instead. This causes a more stable estimation, but will correspond to
a wider point of the tower.

When using the same Canny detector parameters as for position estima-
tion, a shadow along the right edge of the tower caused the edge often to
be detected closer to the center than it should be or to not be detected at
all. For this reason, the Canny edge detector bounds were lowered to the
following:
High hysteresis threshold: 300
Low hysteresis threshold: 150

Next, the estimated focal length value of the GoPro camera was exper-
imentally estimated to be approximately f = 0.33. Furthermore, the actual
width of the tower was assumed to be 2 meters at the top, but one needs to
keep in mind that the width increases towards the bottom.

The results are shown in figure 9.12. Video clip # 3 was excluded even
with the lowered canny thresholds the right tower edge would not be detected.
It is observed that the resolution on the distance estimations is limited, which
is due to the small display resolution in the image were the tower width is
measured. For instance, a single pixel in difference causes a jump in distance
estimation from 35.2 m to 39.6 m.

As mentioned earlier, the exact actual distances were not measured, but
were estimated to lie around 30 m and 15 m for video clip # 1 and #
2 respectively. The results show estimations lie a bit further than this in
general. For clip # 1 and towards the end of clip # 2, the actual distance is
roughly unchanged, but the results showed the estimated distance increasing.
This is because the hexacopter was flying upwards, and thus a higher part
of the tower (which is thinner) is measured. The spikes almost reaching
zero from video clip # 1 are caused by detection of a tower of another wind
turbine. In video clip # 2 there is much variation at the beginning towards
the 150th frame because the hexacopter moves fast forwards and upwards.

It is clear that to get a more precise distance estimation, a more distinct
length needs to be measured in the image.

81

100 200 300 400 500 600 700 800
0

10

20

30

40

50

60
Estimated distance, video clip #1

D
is

ta
n
c
e

 [
m

]

Frame number

50 100 150 200 250 300 350 400 450
10

12

14

16

18

20
Estimated distance, video clip #2

D
is

ta
n
c
e
 [
m

]

Frame number

Figure 9.12: Estimated distances for video clip # 1 and 2. Actual distances
were roughly estimated to lie around 30 and 15 meters for clip # 1 and 2
respectively.

82

100 200 300 400 500 600 700 800
−100

−50

0

50

100
Estimated yaw angle, video clip #1

Y
a
w

 [
d
e
g

]

Frame number

50 100 150 200 250 300 350 400 450
−100

−50

0

50

100
Estimated yaw angle, video clip #2

Y
a

w
 [
d
e
g
]

Frame number

Figure 9.13: Yaw angle estimation for video clip # 1 and 2. The actual
angles were roughly estimated to lie around -10 and 30 degrees for clip # 1
and 2 respectively.

9.2.4 Angle estimation

Yaw estimation was done using equation (7.14) from section 7.4. Distance es-
timations from the previous section were used as distance, d, in the equation,
and the same focal length, f = 0.33, was used. The actual distance between
the hub center and the top of the tower was assumed to be |pw1 − pw2 | = 5m.

Actual yaw angles are visually estimated to lie around -10 degrees for
video clip # 1 and close to 30 degrees for video clip # 2. The results are
shown in figure 9.13. One observes the mean value for each does not lie too
far from the expected areas, but there is significant amounts of noise.

An essential cause for the high sensitivity is that the actual distance be-
tween the hub center and the top of the tower is low compared to the distance

83

from the hexacopter and the measured length, δ. Since the lowered threshold
values for the Canny detector were used, the hub center estimation was less
accurate, affecting the measurement of δ which relies on this value. By in
addition having the noisy distance estimation as basis for the calculation,
the inaccuracy was not surprising.

9.3 Computation Time
The computational demands of the program will here be examined. To get a
notion of which procedures require the most computation power, the runtime
of each major procedure was tracked. The procedures which were examined
are the Canny edge detector, the Hough transform, downsampling and logic.
In this context, logic refers to everything which is done after the Hough
transform to recognize the wind turbine and estimate position, distance and
yaw angle. The runtime for these procedures were obtained by measuring
tick counts between selected checkpoints in the program.

9.3.1 Desktop analysis
For convenience some aspects of the program were first tested on a desktop
computer. Specifications for the computer are given in table 9.3.

Figure 9.14 shows execution time when video clip # 1 was used as input.
The execution time was mostly around 22-28 ms for each iteration, which is
around 36-45 Hz. Due to the high resolution of the GoPro camera which pro-
duced the clip, the downsampling part (from 1920x1080 to 480x270) requires
a significant amount of time. However, downsampling is heavily preferred
over running the program in full resolution (as can be seen from figure A.1
in appendix). In either way, it shows that a high display resolution has a
negative impact on the overall performance, and the best option is to use a
camera which supports to readily provide video of lower resolution. Neglect-
ing downsampling, the execution frequency lies around 53-77 Hz.

Among the remaining parts one observes that the Hough transform is the
most demanding procedure. In addition, it is the most sensitive part. This

Table 9.3: Specifications for the desktop computer.

Processor Intel Core i5-2500 @ 3.30GHz×4
Memory 7.9 GiB
Graphics Gallium 0.4 on AMD CAICOS
OS Ubuntu 13.10 32-bit

84

200 400 600 800 1000
0

5

10

15

20

25

30

35

Frame number

T
im

e
 [
m

s
]

Execution time per iteration on desktop

Total

Canny

Hough

Logic

Downsampling

Figure 9.14: The execution time per iteration for the different parts of the
program when run on the desktop computer, using the high resolution video
clip # 1 as input. Therefore much time is used on downsampling. Otherwise
the Hough transform is most significant.

85

can be seen by for instance the variations around the 100th frame. What
happened there was that the propellers and frame of the hexacopter covered
especially big areas of the image, which produced more Hough lines. This
shows that the runtime of the Hough transform is significantly affected by
the amount of limes. The logic part, however, is only mildly affected by this,
while the increased amount of contours in the image seemed to be negligible
impact on the Canny edge detector.

In figure 9.14 the Canny hysteresis threshold values were set as 400 and
200 for high and low threshold, respectively. In figure A.2, execution times
are shown for a threshold values lowered to 300 and 200 for high and low
threshold, respectively. This produces more edges in the edge map, and as
expected causes an increase in computation time for the Hough transform.
Surprisingly, the effect on the Canny runtime itself and the runtime for the
logic part were mild by comparison. However, since the Hough transform
(disregarding downsampling) has the highest cost, here even more so, it shows
that one should be careful with lowering the threshold values too far.

9.3.2 Execution time on PandaBoard
Next the computation time was examined on the PandaBoard (specifications
were given in section 5.1.3. Camera input was now used instead, to conform
to the actual system setup. The target was still the wind turbine from video
clip # 1, but now obtained by using the camera to record the video clip which
played on the computer screen. Otherwise the same settings were used as in
the first desktop test (figure 9.14).

The results are shown in figure 9.15, and a periodicity mostly in the
range of 90-140 ms which translates to around 7-11 Hz. If the downsample
time from the desktop computer is disregarded (subtracted) from the total
time (resulting in 53-77 Hz), the results show that execution time for the
Pandaboard is generally around 7-9 times higher. However, different image
properties from the camera could have affected these numbers. Nevertheless,
it is clear that the Hough transform still accounts for the majority of the
computational effort. This means the computer vision program cannot be
expected to run at a frequency much higher than 11 Hz on the Pandaboard.
It also shows that with the current set-up the Canny threshold values should
preferably be carefully based on lighting conditions, in order to prevent an
excessive amount edges for the Hough transform.

Since the camera was configured to deliver frames at a low resolution,
there was no need for downsampling. From the desktop results, it was ob-
served that downsapling time (from 1920x1080) was even higher than the
runtime of the Hough transform. If this was to be done on the Pandaboard,

86

50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

Frame number

T
im

e
 [

m
s
]

Execution time per iteration on PandaBoard

Total

Canny

Hough

Logic

Downsampling

Figure 9.15: The execution time per iteration for the different parts of the
program when run on the Pandaboard, using camera as input. The Hough
transform has the highest computation demands.

the execution time could easily be doubled making the frequency fall down
to the 5 Hz range, which shows the importance of having a low resolution
input.

9.4 Flight control performance in relation to
computation time

From the previous section it was found that the program cannot be expected
to run faster than at about 10 Hz iteration frequency on the PandaBoard. In
addition, this means that there is a 0.1 s delay from when something happens
until it has been registered by the camera, analysed in the program and sent
as an output reaction to the actuators. The purpose of this section is to
examine whether this delay is sufficiently small to provide reliable control for

87

the hexacopter.
The test was run on an indoor UAV-lab (appendix B.1). For the test the

hexacopter was set up to use computer vision to maintain a stable yb-position
(in the body-frame) in front of a plank placed vertically along the wall, using
the camera described in section 5.1.4. Distance in the xb-direction from the
plank was about 2 meters. A stripped down version of the computer vision
program was used, which simply tracked vertical lines in the image. This
means that the of the logic part of the program was greatly reduced, but this
had a small effect since this part initially required relatively small computa-
tion power, as was seen in figure 9.15. In addition, the PandaBoard was also
running dune, but the effect on iteration frequency was small. Eventually,
during flight the program proved to mostly maintain iteration periodicity
between 0.10 s and 0.13 s.

For the test, only left/right movement i.e. roll was controller by the
computer vision program. Due to the physical properties of the hexacopter,
applying control in other dimensions can also transfer to left/right velocity.
Thus, the roll was isolated in this way in order to make the relation between
the camera stream and roll reaction as direct as possible. The movement in
the other dimensions were limited manual control for pitch and yaw (at best
effort) and by a sonar based altitude controller.

The roll controller was implemented as a simple PD-controller. Input was
received from the computer vision program containing a position displace-
ment length corresponding to the horizontal pixel distance, dx, from the im-
age center to the plank. This length was specifically given as ex = 0.01 · dx.
Additionally, right/left velocity was estimated from the IMU, given as vy
[m/s]. Using y as desired roll, and the gains Kp, Kd, the PD-controller was
then given as follows:

y = Kp · ex +Kd · vy (9.1)

The gains Kp = 0.13 and Kd = 0.13, were experimentally to work well and
produced the behaviour shown in figure 9.16. It shows that the hexacopter
oscillated slightly around the plank position, and the desired roll transfers
well to measured roll. Except at the very start and end, the hexacopter
maintained a roll angle between -0.1 and 0.1 radians and a velocity between
-0.6 m/s and 0.6 m/s. The spikes at the beginning were due to an imbalance
in the hexacopter which caused an uneven take-off, while manual landing is
initiated at 62 s.

The oscillations in the system are caused by a number of factors. There
was some turbulence due to the lab being indoors. In addition, there was
some noise in the detection of vertical lines, as seen in the measured distance
from the image center to the plank, due to some minor contours in the

88

0 10 20 30 40 50 60 70

−0.2

−0.1

0

0.1

0.2

Measured and desired roll

Time [s]

R
o
ll

[r
a
d
]

 Desired roll

Measured roll

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5
Image center to plank distance

D
is

ta
n
c
e
 [
p
ix

e
ls

*0
.0

1
]

Time [s]

0 10 20 30 40 50 60 70
−1

0

1

Measured velocity

Time [s]

y
−

v
e
lo

c
it
y
 [
m

/s
]

Figure 9.16: The resulting behaviour when attempting to follow the plank
via roll control. The hexacopter oscillated slightly around the plank position.

background. Lastly, there is obviously the system delay which was the main
purpose of this test. The delay and iteration frequency seem to lie inside the
bounds for reliable control in this case, although the system is anticipated to
struggle at further increased computational demand.

It should be noted, however, that since the hexacopter was hovering at
about 2 meters from the plank, small movements caused significant shift
in plank position in the image. At greater distances, as in a wind turbine
inspection scenario, the target’s position in the image will be less sensitive
to UAV movement, giving more room for the controller.

A video of a roll control test flight with this setup is given in the file
”roll.mp4” included in the digital appendix.

89

Chapter 10

Discussion

10.1 Sources of error

While the main sources of error were identified in section 9.1, a more in depth
discussion will now follow.

The shadows in the video were responsible for most of the unfortunate
effects in results. Tower lines did not reach the very top of the image, causing
a lowered center for the blade search region, and the right tower edge was in-
accurately detected for distance estimation. The reason why shadows caused
these disruptions is essentially because the Canny edge detector was not sen-
sitive enough to detect edges in these areas. Especially if the background also
was dark in this area, the local intensity gradient in the image would be too
low for an edge to be identified. A detection could be forced if the threshold
values for the detector were lowered, but in the worst cases that would be to
an excessive point resulting in an edge map filled with disturbance.

To omit this issue without utilizing a completely different approach a
suggestion could be to utilize Hough circles. Instead of using the highest
point among the tower lines as center for blade search, one could search for a
circle further in the direction pointed by the tower lines which could identify
the hub. If successful, this would in turn allow using a smaller search radius,
and less false positives would be detected. Furthermore the radius of the
detected Hough circle could then have been used to provide a measured width
which could have been a more reliable base for distance estimation. The
main reason Hough circles were not integrated in the algorithm is because
of computational demand. Such an algorithm as proposed would require
both Hough lines and Hough circles to be run in the same iteration. Not
only does the Hough lines and Hough circles require high computational
costs by themselves (as was shown for Hough lines in 9.3), but in addition,

90

as implemented in OpenCV they rely on different types of edge maps and
would thus require double edge map calculation. This would presumably
bring the iteration frequency past or right at the edge of bounds for reliable
control.

The horizon proved to interfere with the accuracy by creating falsely
detected blade lines. Due to the various restriction this was prevented to
happen for most circumstances, but not when the horizon was too close to the
hub. A quick solution could be to remove all horizontal lines, but this would
obviously risk removal of any blade which would happen lie horizontally.
Another more sophisticated and suggested approach would be to first identify
the horizon by searching for horizontal lines spanning the entire image, before
removing blade lines which were aligned at the same height. In this case,
differentiation between the blade and the horizon would only be an issue in
the specific case where a blade lies both horizontally and appears at the same
level as the horizon in the image. However, since the lines then are aligned
it would not be a problem anymore, because the intersection points with the
other blades would be the identical and thus the estimated position would
not be disordered. Unfortunately, this method was added as it was not easily
applicable on the current test data, because of the distortion caused by the
GoPro camera which makes the horizon curved.

As with most image processing methods the result changes along with the
chosen parameters. The Canny edge detector is the bottleneck in this regard,
since the rest of the program is mostly based on geometric properties rather
than environment conditions. Nevertheless, the program proved to behave
consistently over a relatively wide range of parameters, which suggests that
the susceptibility to environment, weather and lighting changes is of lesser
extent. If it were to be used under significantly different condition in practice,
one could consider designing a mapping from lighting intensity to a parameter
set or simply set up fitting weather profiles. A more sophisticated approach
could utilize adaptive techniques, but based on the testing results this was
not deemed necessary for further investigation.

10.2 Performance evaluation
Position estimation proved to work well at long distances, while losing accu-
racy at closer range. With the Kalman filter tracking enabled, the estimation
was also fairly accurate at closer ranges, provided a successful detection was
in fact made. The amount of successful detections followed a similar pattern.
When reducing the distance, the range of y-positions providing successful
detection was gradually limited. If the main issues can be resolved, as men-

91

tioned in the previous section, the performance can be expected to improve
considerably at closer distances.

For distance and yaw angle estimation, the results were not too far to
the expected area but there was significant noise in the output. The main
problem was to find easily recognizable key points for measuring lengths in
the image. Using the tower width proved difficult due to the shadow along
the edge which caused a too narrow measurement and thus an exaggerated
estimate. If a more reliable method is found to identify key points or a
specific length in the image, it is expected provide more reliable estimates.
Using Hough circles to identify the diameter of the hub could be a possible
solution.

On the other hand, among the main reasons to utilize distance estimation
in the first place, was to detect when the UAV arrived at the desired dis-
tance. At this range, if some key points were in fact recognized, the estimated
position would be rather accurate since the size of objects are inversely pro-
portional with distance. However, this distance would also be an attractive
range to use a sonar, which would avoid the issue altogether.

Yaw angle estimation also suffers from the key point recognition issue.
The approach which was presented utilized key points which were already
provided by the steps required for position estimation. Since the points were
fairly close to each other compared to the distance from the wind turbine, it
was susceptible to noise, a was further affected by relying on noisy distance
estimation.

If some points of known actual length were easily recognizable, such as
the tips of the wind turbine, the yaw orientation could be estimated in the
fashion described in 7.4.1. The tips are however outside of view, and the
remaining parts of the wind turbine lack features.

Some more general information can however be obtained from the yaw
angle estimation. The result form video clip # 2, for instance, (figure 9.13)
showed that a tendency towards a high positive angle, which matched the
fact that the actual angle was around 30 degrees. By using a low pass filter
one would have observed a sustained high angle measurement, and could
thus have made a meaningful decision reduce the angle. The purpose was,
however, to decide the movement direction needed to minimize the angle,
rather than calculating the exact angle. Therefore, by further improving the
distance estimation, and by utilizing a deadband in conjunction with a low
pass filter, it might be used as a basis for a decision.

92

10.3 Method Evaluation and Additional Sug-
gestions

In overall the Hough line transform provided a robust way to extract the
contours of the wind turbine, when not disrupted by shadows. Addition-
ally, the implementation of the probabilistic Hough transform in OpenCV is
efficient and the remaining parts of the algorithm has low computational de-
mand. Therefore, the algorithm was able to run efficiently enough to provide
a reasonable runtime iteration frequency on the PandaBoard.

The evident trend of diminishing performance at reduced distance reflects
the fact that the program was primarily designed on the idea to capture the
three-point star shape of the wind turbine. As the distance is reduced, this
shape becomes less prominent in the image, and the various disturbances
gain a greater influence.

On the other hand, at closer distance the circular shape of the hub grad-
ually becomes dominant. For this reason, a suggestion could be to utilize
the Hough circle transform. At long to medium distance, the Hough circle
was determined too unpredictable. Up close, however, the hub is big enough
to provide a stronger match. By also restricting the search to circles of con-
siderable size the reliability improved drastically. Figure A.3 in appendix A
shows a result where simple the center of the detected Hough circle is plotted.
With some refinement this could be utilized in the program, for instance by
switching from the current algorithm to a circle based detection method at
an appropriate distance.

While the objective of the recognition algorithm was to provide necessary
information for the UAV to find a suitable path for approach, the posi-
tion data could also be used in a state observer scheme for better control.
By the control layer of the system (see Høglund (2014)), the system was
known to drift if movement in y-direction (sideways in the body frame) is
merely based on integrated estimation from the accelerometer. Employing
the position data for roll control could thus provide more stable control in
y-direction, especially with presence of significant wind. Similarly, the esti-
mated z-position could be used alongside the barometer to maintain stable
height control. Other objects than a wind turbine can obviously be used
as reference points, provided tracking can be performed reliably. An optical
flow approach could be used in a similar manner, but the advantage of us-
ing a fixed object is that one can easier translate a movement to a specific
length in reality, provided the distance to the object is estimated. A gimbal
should also be used by utilization of such a method, because pitch rotation
would change the z-position in the image and thus disrupting any mean-

93

ingful height data. Similarly a yaw rotation would disrupt any y-direction
movement estimation.

10.4 Comments on system set-up
While camera based pitch and height control was not tested due to limited
space at the UAV lab, there is concern regarding their performance because
of how they affect each other. Since a pitch rotation tilts the camera along,
both pitch and height determine the height at which the target appears in the
image. However, in the video clips this was not an issue, because the camera
was mounted on a gimbal which maintained a stable pitch orientation for
the camera. Another benefit is that detection of vertical lines will not need
to rely on roll data from the IMU to compensate for vehicle roll. For these
reasons, it is suggested to consider adding a gimbal as part of the system
set-up.

For a full scale operation, the flight time is expected to be a major is-
sue. When the video clips were recorded, the hexacopter was able to keep
itself airborne for a total of 5-6 minutes before running out of battery power.
Moreover, the time required to reach the desired height and fly back down
totalled at up to 3 minutes for each flight, leaving about 2 minutes of inspec-
tion time. It should be noted that it was windy, and under calmer conditions
some minutes could be saved by less stabilization effort. Hopefully, by opti-
mizing the hexacopter for the task and with better battery technology, flight
time can be increased to a more feasible range for this mission.

94

10.5 Conclusion
In this thesis, a computer vision algorithm for recognition and tracking of a
wind turbine has been presented. Based on knowledge from the tracking data
a method was suggested for approaching the wind turbine for inspection. The
wind turbine recognition algorithm was based primarily on the Hough line
transform, due to its ability to capture the main features of the wind turbine
and its low computational demand. The hub center position was estimated
by analysing Hough lines and tracked using a Kalman filter. Distance and
yaw angle were estimated by using the pinhole camera model and coordinate
transformations.

Test video data was recorded at Bessakerfjellet wind farm. Running the
program on the test data showed that the recognition and hub center track-
ing worked well at long distance. The performance deteriorated for shorter
distances where the three-point star resemblance was less distinct. Distance
and yaw angle estimation was inaccurate due to lack of strong recognizable
lengths in the image. Computational demands were low enough to obtain a
iteration frequency of 7-10 Hz on the PandaBoard. This proved to be ad-
equate for stable control, although by a limited margin. If the addressed
issues can be resolved, the program might be prepared for testing on wind
turbine scale. The challenge remains, however, regarding the inspection of
the individual blades, which was outside the scope of this work.

The findings might prove relevant for other missions involving tracking of
objects where the Hough transform is preferred for recognition. Particularly
for unmanned vehicles, the analysis on computational demand raises points
which might be taken in consideration for decisions in both software design
and hardware selection.

10.6 Future Work
The main sources of error described in section 10.1 should be addressed.
Adding the Hough circle transform to the algorithm was suggested as a pos-
sible solution for better recognition of the hub. Investigating Hough circles in
terms of performance and computational demand could therefore be a logical
next step.

If computational requirements becomes an issue by addition of other
methods, it could be considered to employ a scheme were the program per-
forms a different task for each iteration. It was seen that by using Kalman
filter aided tracking, the estimated position was smooth even when a signifi-
cant amount of failed detections were present. Therefore, if another method

95

is performed in between, which for instance utilized another method spe-
cialized for distance estimation, the position can still be obtained from the
predicted estimation.

Pitch, yaw and height control also remain to be tested for the system.
Both pitch and height control were deemed to unreliable to test inside the
confined space of the UAV lab without gimbal support. In addition, more
accurate distance estimation should be obtained before attempting camera
based pitch control.

Investigating distance estimation through other means could be consid-
ered. A laser rangefinder (LFR) could be used for the purpose. The Light-
Ware SF02 (suggested by Høglund (2014)) might be a good choice, since it
is light and compact and allegedly operates well in the relevant 0-40 meter
range. Since the program’s position estimation was accurate at long ranges,
it could be possible to target the laser onto the wind turbine from these
distances.

96

Appendix A

Supplementary Results

5 10 15 20
0

50

100

150

200

250

Frame number

T
im

e
 [
m

s
]

Execution time per iteration

Total

Canny

Hough

Logic

Figure A.1: Execution time per iteration on the desktop computer using a
high resolution (1920x1080) video as input. Downsampling is not applied,
and thus the computational demand is drastically increased.

97

200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

Frame number

T
im

e
 [

m
s
]

Execution time per iteration on desktop, lower Canny parameters.

Total

Canny

Hough

Logic

Downsampling

Figure A.2: Execution time per iteration on the desktop computer. The
canny hysteresis threshold values were lowered, which due to a denser edge
map caused an increase in processing time for the Hough transform.

98

50 100 150 200 250 300 350 400
0

100

200

300

400

Real and estimated horizontal position of hub center, video clip # 3

Frame number

x
−

p
o

s
it
io

n

Estimated position

Real position

50 100 150 200 250 300 350 400

0

50

100

150

200

250

Real and estimated vertical position of hub center, video clip # 3

Frame number

y
−

p
o
s
it
io

n

Estimated position

Real position

Figure A.3: Using Hough circle transform for position estimation of the
hub center. The estimated point is simply obtained from the center of the
detected circle. Imposed limits for circles were maximum radius = 70 pixels,
minimum radius = 50 pixels. Minimum gap between detected circles was set
to an amount much bigger than display resolution so that only a single circle
is obtained.

99

Appendix B

Locations

B.1 UAV lab
The UAV-lab is located at the roof and built of wood to providing strong
GPS signals. Inside a 5x5x3 meter net is placed to protect the hexacopter
and spectators from damage in case something goes wrong.

Figure B.1: UAV-lab

100

Figure B.2: The marker shows the location of Bessakerfjellet wind farm.
Source: Google Maps.

B.2 Bessakerfjellet wind farm
The wind farm at Bessakerfjellet is owned and run by TrønderEnergi, and
consists of 25 wind turbines. It is located about 100 km north of Trondheim.
The wind turbines which are in use are of the type E-70, delivered by Enercon
(ENERCON, 2014).

101

Appendix C

Hardware

C.1 GoPro HERO3+ Black Edition
When gathering video data at the wind farms, a GoPro HERO3+ Black
Edition was used.

Figure C.1: GoPro HERO3+ Black Edition

Table C.1: Specifications for GoPro camera

Video mode used in project
Video resolution 1920×1080
Frame rate 24
Field of view 69.5◦×118.2◦
Physical properties
Weight 74g
Weight with housing 136g
Dimensions 42mm×60mm×30mm

102

Bibliography

Peter J. Birt. Fast filter transforms for image processing. Computer Graphics
and Image Processing, 16(1):20–51, 1981.

F. Caballero, L. Merino, J. Ferruz, and A. Ollero. Vision-based
odometry and slam for medium and high altitude flying uavs.
In KimonP. Valavanis, Paul Oh, and LesA. Piegl, editors, Un-
manned Aircraft Systems, pages 137–161. Springer Netherlands, 2009.
ISBN 978-1-4020-9136-0. doi: 10.1007/978-1-4020-9137-7 9. URL
http://dx.doi.org/10.1007/978-1-4020-9137-7 9.

John Canny. A computational approach to edge detection. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–698,
Nov 1986. ISSN 0162-8828. doi: 10.1109/TPAMI.1986.4767851.

Richard O. Duda and Peter E. Hart. Use of the hough transformation
to detect lines and curves in pictures. Commun. ACM, 15(1):11–15,
January 1972. ISSN 0001-0782. doi: 10.1145/361237.361242. URL
http://doi.acm.org/10.1145/361237.361242.

e-con Systems. e-cam51 usb, 2014. URL
http://www.e-consystems.com/5mp-usb-cameraboard.asp. Accessed
13 Jun 2014.

ENERCON. E-70 wind turbine, 2014. URL
http://www.enercon.de/en-en/61.htm. Accessed 14 Jun 2014.

Chris Harris and Mike Stephens. A combined corner and edge detector. In
In Proc. of Fourth Alvey Vision Conference, pages 147–151, 1988.

Sondre Høglund. Autonomous inspection of wind turbines and buildings
using a uav. Master’s thesis, NTNU, 2014.

P.V.C. and Hough. Machine Analysis Of Bubble Chamber Pictures.
Conf.Proc., C590914:554–558, 1959.

103

J. Illingworth and J. Kittler. A survey of the hough transform. Computer
Vision, Graphics, and Image Processing, 44(1):87 – 116, 1988. ISSN
0734-189X. doi: http://dx.doi.org/10.1016/S0734-189X(88)80033-1. URL
http://www.sciencedirect.com/science/article/pii/S0734189X88800331.

R. E. Kalman. A New Approach to Linear Filtering and
Prediction Problems. Transactions of the ASME - Jour-
nal of Basic Engineering, (82 (Series D)):35–45, 1960. URL
http://www.cs.unc.edu/˜welch/kalman/media/pdf/Kalman1960.pdf.

Farid Kendoul, Isabelle Fantoni, and Kenzo Nonami. Optic flow-based
vision system for autonomous 3d localization and control of small
aerial vehicles. Robotics and Autonomous Systems, 57(6-7):591–602, 2009.
ISSN 0921-8890. doi: http://dx.doi.org/10.1016/j.robot.2009.02.001. URL
http://www.sciencedirect.com/science/article/pii/S0921889009000396.

Carolyn Kimme, Dana Ballard, and Jack Sklansky. Finding circles
by an array of accumulators. Commun. ACM, 18(2):120–122, Febru-
ary 1975. ISSN 0001-0782. doi: 10.1145/360666.360677. URL
http://doi.acm.org/10.1145/360666.360677.

N. Kiryati, Y. Eldar, and A.M. Bruckstein. A probabilistic hough
transform. Pattern Recognition, 24(4):303 – 316, 1991. ISSN 0031-
3203. doi: http://dx.doi.org/10.1016/0031-3203(91)90073-E. URL
http://www.sciencedirect.com/science/article/pii/003132039190073E.

Frederik S. Leira. Infrared object detection & tracking in uavs. Master’s
thesis, NTNU, 2013.

R.C. Leishman, T.W. McLain, and R.W. Beard. Relative navigation ap-
proach for vision-based aerial gps-denied navigation. In Unmanned Air-
craft Systems (ICUAS), 2013 International Conference on, pages 343–352,
2013. doi: 10.1109/ICUAS.2013.6564707.

Yu-Chi Liu and Qiong-Hai Dai. A survey of computer vision applied in aerial
robotic vehicles. In Optics Photonics and Energy Engineering (OPEE),
2010 International Conference on, volume 1, pages 277–280, 2010. doi:
10.1109/OPEE.2010.5508131.

D. Magree, J.G. Mooney, and E.N. Johnson. Monocular visual map-
ping for obstacle avoidance on uavs. In Unmanned Aircraft Systems
(ICUAS), 2013 International Conference on, pages 471–479, 2013. doi:
10.1109/ICUAS.2013.6564722.

104

J. Matas, C. Galambos, and J. Kittler. Robust detection of lines
using the progressive probabilistic hough transform. Computer
Vision and Image Understanding, 78(1):119 – 137, 2000. ISSN
1077-3142. doi: http://dx.doi.org/10.1006/cviu.1999.0831. URL
http://www.sciencedirect.com/science/article/pii/S1077314299908317.

L. Mejias and D. FitzGerald. A multi-layered approach for site detection in
uas emergency landing scenarios using geometry-based image segmenta-
tion. In Unmanned Aircraft Systems (ICUAS), 2013 International Con-
ference on, pages 366–372, 2013. doi: 10.1109/ICUAS.2013.6564710.

Goddard Space Flight Center NASA. Globe east, February 2002. URL
<http://eoimages.gsfc.nasa.gov/images/imagerecords/57000/57723/
globe east 540.jpg>. Accessed 26 Nov 2013.

PandaBoard. Pandaboard es platform, 2014. URL
http://pandaboard.org/content/platform. Accessed 10 Jun 2014.

3D Robotics. Arducopter 3dr hexa b, 2014. URL
http://store.3drobotics.com/products/arducopter-3dr-hexa-b-1.
Accessed 10 Jun 2014.

K. Schauwecker and A. Zell. On-board dual-stereo-vision for au-
tonomous quadrotor navigation. In Unmanned Aircraft Systems
(ICUAS), 2013 International Conference on, pages 333–342, 2013. doi:
10.1109/ICUAS.2013.6564706.

SharkD. Hsv color solid cylinder alpha lowgamma, March 2010. URL
<http://en.wikipedia.org/wiki/File:HSV color solid cylinder alpha
lowgamma.png>. Accessed 07 Des 2013.

Alvy Ray Smith. Color gamut transform pairs. SIGGRAPH Comput. Graph.,
12(3):12–19, August 1978. ISSN 0097-8930. doi: 10.1145/965139.807361.
URL http://doi.acm.org/10.1145/965139.807361.

Stephen M. Smith and J. Michael Brady. Susan—a new approach
to low level image processing. Int. J. Comput. Vision, 23(1):45–78,
May 1997. ISSN 0920-5691. doi: 10.1023/A:1007963824710. URL
http://dx.doi.org/10.1023/A:1007963824710.

I. Sobel and G. Feldman. A 3x3 Isotropic Gradient Operator for Image Pro-
cessing. Never published but presented at a talk at the Stanford Artificial
Project, 1968.

105

S. Suzuki and K. Abe. Topological structural analysis of digitized
binary images by border following. Computer Vision, Graph-
ics, and Image Processing, 30(1):32 – 46, 1985. ISSN 0734-
189X. doi: http://dx.doi.org/10.1016/0734-189X(85)90016-7. URL
http://www.sciencedirect.com/science/article/pii/0734189X85900167.

M. Williams, D.I. Jones, and G.K. Earp. Obstacle avoidance during aerial
inspection of power lines. Aircraft Engineering and Aerospace Technology,
73(5):472–479, 2001.

Li-hui Zou, Jie Chen, Juan Zhang, and Li hua Dou. The comparison of
two typical corner detection algorithms. In Intelligent Information Tech-
nology Application, 2008. IITA ’08. Second International Symposium on,
volume 2, pages 211–215, Dec 2008. doi: 10.1109/IITA.2008.275.

106

