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Abstract 

Conventional key performance indicators (KPI) assessed 

in building simulation lack specific measures of how the 

building interacts with the grid and its energy flexibility. 

This paper aims to provide an overview of specific energy 

flexibility performance indicators, together with 

supporting control strategies. If applied correctly, the 

indicators help improving the building performance in 

terms of energy flexibility and can enable minimization 

of operational energy costs. Price-based load shifting, 

self-generation and self-consumption are among the most 

commonly used performance indicators that quantify 

energy flexibility and grid interaction. It has been found 

that the majority of performance indicators, specific to 

energy flexibility, are combined with rule-based control. 

Only a limited amount of specific energy flexibility KPIs 

are used in combination with optimal control or model 

predictive control. Both of these advanced control 

approaches often have a couple of economic or comfort 

objectives that do not take into account an energy 

flexibility KPI. There is evidence that recent model 

predictive control approaches incorporate some aspects of 

building energy flexibility to minimize operational cost in 

conjunction with time varying pricing. 

Introduction 

The transition to a sustainable energy system requires a 

shift to intermittent renewable energy sources, which call 

for increased flexibility in the energy system. There is 

therefore a need for consumers to adopt a more holistic 

approach to energy use beyond the traditional single 

building management. Generally, building energy 

flexibility can be understood as the margin in which the 

building can be operated while respecting its functional 

requirements. 

Demand side management (DSM) in power systems is a 

way to overcome potential challenges of the electricity 

grid, such as balancing the generation and consumption, 

voltage regulation or high peak loads. Demand response 

(DR) has been implemented into power grids for decades, 

with forms ranging from load shedding for blackout 

prevention, to time-of-use (ToU) rates to reduce system 

peak load (O´Connell et al., 2014).  

According to the Building Performance Institute Europe, 

future buildings, e.g. termed nZEBs 2.0, should play a 

significant role in transforming the European energy 

market, as they become interactive players in balancing 

the grid by DSM (D´Angiolella et al., 2016). Steadily 

decreasing prices for communication, sensing and 

computing devices will make future management systems 

more affordable and thus open up possibilities of 

improved controls for DR. The choice or design of an 

appropriate control strategy can be a challenging task, 

thus it is important to focus on the appropriate KPIs to 

ensure desired performance results.  

Common control strategies are rule-based controls 

(RBCs) or model-predictive controls (MPCs). In order to 

operate the energy system in an efficient way, RBCs 

typically apply pre-defined set points for temperatures 

(heating) or CO2 levels (ventilation system). A MPC often 

makes use of a simplified model of the building for 

predicting future states of the system and optimizes the 

schedule over a sliding horizon according to an objective 

function, such as the total energy consumption (Ma et al., 

2012). More details about MPC theory and applications to 

building HVAC and comfort/energy management are 

provided in the extensive reviews by Afram and Janabi-

Sharifi (2014), Dounis and Caraiscos (2009), Shaikh et al. 

(2014) and Li and Wen (2014). 

This paper aims to review and classify the control 

strategies to provide demand side flexibility (DSF). The 

authors give an overview of applied KPIs and present 

control strategies for deploying energy flexibility in 

heating and cooling systems of buildings. 

This review includes 45 articles. Major keywords during 

the literature search were: demand side flexibility, energy 

flexibility, energy flexible buildings, advanced control, 

demand response control in buildings. Firstly, the need for 

energy flexibility and its indicators will be discussed. 

Secondly, an overview of conventional and specific 

energy flexibility KPIs is presented. Thirdly, a summary 

of control strategies aiming to deploy DSF is given and 

associated KPIs in applications are shown. On top of this, 

building simulation tools used for specific energy 

flexibility KPIs are presented considering RBC, optimal 

control (OC), and MPC. 

Background concepts 

Introduction to performance data 

An effective KPI provides an accurate measure of overall 

system status, thus facilitating decision making, by 
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quantification and prioritization of resource allocation. A 

building KPI must be applicable throughout the system’s 

operational lifespan; during all seasons and occupancy 

levels. KPIs differentiate themselves as both “predictive” 

and “persistent” (Mauboussin, 2012). Deru and Torcellini 

(2005) define an indicator as “a high-level performance 

metric that is used to simplify complex information and 

point to the general state or trends of a phenomenon.” 

Different performance metric address different audiences: 

- Indicators:      Policy makers 

- Tier 2 metrics:  Designers, suppliers & owners 

- Tier 1 metrics:  Designers, operators & researchers 

- Monitor data:   Operators & researchers 

Monitoring procedures display data, followed by further 

procedures and analysis to produce higher metrics and 

indicators. Higher level metrics fit over longer timescales. 

Performance goals should drive the design of a building 

to operate towards a desired result. Performance metrics 

measure and track performance towards the performance 

goals. Effective control maintains or even increases the 

value of performance metrics despite the abundance of 

possible monitoring data. 

Conventional KPIs of energy efficiency at building 

level 

KPIs for individual building energy efficiency are well 

covered in the literature. Common performance indicators 

during operational stage are: 

- Final energy use 

- Energy needs 

- Cost of energy 

- Primary energy use 

- CO2 emissions 

These conventional KPIs can be however complemented 

by specific energy flexibility indicators related to services 

that a building can offer to the grid, as discussed in the 

following parts. 

Demand side flexibility 

Energy system flexibility is proposed as one enabler for 

high levels of  renewable energy penetration (Lund et al., 

2015). This builds upon the well-established concept 

of DSM described in seminal work by Gellings and Smith 

(1989). 

Introduction to demand side flexibility 

In a literature review by Lopes et al. (2016) several 

definitions of “flexibility” and methodologies used to 

quantify the energy flexibility in buildings have been 

proposed.  

The building-to-grid energy flexibility is often reduced to 

the electricity consumption for heating and cooling. For 

example, in a cooling regime (such as in California) 

HVAC systems are a leading demand response resource 

(Watson, 2013). Some form of storage (typically thermal 

mass or water storage tanks) is required to exploit the full 

flexibility potential. As this storage gets activated, it is 

temporarily loaded to higher (or lower) temperatures. As 

a result, the total energy consumption is often increased, 

while operational costs can be actively reduced and a 

service to the electricity grid can be provided. Common 

demand management services are load shifting, peak 

shaving or load balancing. If responsive and reliable at 

short notice, DSM may potentially support other grid 

ancillary services, such as spinning reserves, frequency 

stability or voltage regulation, but often requires electrical 

or battery energy storage. A battery discharge time has an 

upper limit and further depends on its charge state at the 

time when it is directed to discharge. The uncertainty of a 

battery’s charge state disqualifies it from capacity and 

grid ancillary services according to its detractors 

(Huntoon, 2016). In terms of load balancing and non-

spinning reserves the electricity grid can benefit from an 

advanced DSM in order to increase renewable generation 

integration. DSM supports renewable integration 

primarily by load following and grid frequency 

regulation; especially if its ramping rates are high 

(Watson, 2013). 

The flexibility potential often depends on the size of the 

storage. For building engineers and designers, this is 

crucial because the storage size directly influences the 

required capacity of the HVAC system as well as the 

investment costs. As foreseen by Strbac (2008), the 

economic analysis of energy flexibility is still 

challenging.  

The economic benefits of energy flexibility vary over 

time and stage in a heating or cooling season. Increased 

flexibility during winter is quantified in the second 

example of Stinner et al. (2016) similarly by Pallonetto et 

al. (2016). Garnier et al. (2015) analyze different seasons 

of HVAC operation, noting that one source of energy 

flexibility, building thermal inertia, is low during the 

summer. That work also found that seasonal variability is 

one of the reasons that MPC optimizes energy costs 

compared to RBC. 

Practitioners of building simulation tools already use time 

varying inputs such as weather, outside air temperature 

and irradiance. Daily energy markets and real time (i.e. 

hourly or half hourly) pricing introduces electricity 

pricing as another time varying input to a simulation of a 

grid integrated building or district. High grid penetration 

by renewables causes uncertainty in electricity generation 

due to the weather, especially solar irradiance and wind 

speed. The predominant uncertainty means that real-time 

electricity pricing may be analyzed as a stochastic process 

(Kitapbayev et al., 2013). 

Mathematical finance techniques process stochastic 

inputs in order to quantify the flexibility of a possible 

investment. One technique, real options, is a way to make 

a business decision. Applied to a demand site equipped 

with a CHP, the high level control decision is to operate 

or idle the local power plant in favor of utility supplied 

energy based on dynamic energy (Kienzle and Andersson, 

2009). The decisions rely on Monte Carlo simulation of 

stochastic energy price inputs into an Energy Hub model. 

The “Real options” method exceeds the discounted cash 

flow valuations, by modelling uncertainty and operational 

flexibility. Use of simulation requires a time-step, 
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enabling its re-calibration to influence short-term 

operational control. As shown by Kitapbayev et al. (2015) 

“short term flexibility can change the long term business 

case, while the long term investment plan can enable short 

term flexibility”. 

KPIs of energy flexibility 

Table 1 provides an overview of KPIs related to energy 

flexibility. A number of KPIs is presented, together with 

their formal mathematical definition and context of 

application. Notations are introduced in the nomenclature 

at the end of the paper.  

Indicators for load matching and grid interaction are 

gaining importance, particularly for net zero energy 

buildings. Such buildings produce electricity from on-site 

renewable energy sources in order to meet the annual zero 

energy balance. Electricity grids are usually designed to 

cover the peak demands of the connected buildings, but 

not for handling peaks from on-site electricity generation. 

Therefore, considerations about self-consumption of on-

site generated electricity is becoming increasingly 

important (both at design and operation level), especially 

in countries with a large share of on-site renewable energy 

sources (Salom et al., 2014a).  

Table 1. Overview of the KPIs related to energy flexibility 

KPI Mathematical definition of the KPI Characteristics Reference 

Self- 

generation 

(also known 
as load cover 

factor) 

Proportion of electrical demand met by on-site generation. 

𝛾𝑙 =
∫ 𝑚𝑖𝑛[𝑔(𝑡) − 𝑆(𝑡) − 𝜁(𝑡), 𝑙(𝑡)]𝑑𝑡

𝑇

0

∫ 𝑙(𝑡)𝑑𝑡
𝑇

0

 (1) 

The time resolution often is one hour, often over an annual period.  

- Displays daily and seasonal effects 

caused by different generator types 

such as PV, CHP. 
- Comparing control strategies is 

possible 

- Accepted by several research groups, 
such as Annex 52. 

- Independent of any energy or emission 

savings by the whole energy system. 

(Salom et al., 

2014a)  

(Baetens et al., 
2010)  

(De Coninck et 

al., 2014) 
(Vanhoudt et al., 

2014)  

(Salom et al., 
2014b)  

(Klein et al., 
2015) 

Self- 

consumption 

(also supply 
cover factor) 

Proportion of on-site generation consumed by building. 

𝛾𝑠 =
∫ 𝑚𝑖𝑛[𝑔(𝑡) − 𝑆(𝑡) − 𝜁(𝑡), 𝑙(𝑡)]𝑑𝑡

𝑇

0

∫ 𝑔(𝑡)𝑑𝑡
𝑇

0

 (2) 

 

Peak power 
generation 

Peak value of the on-site generation normalized by the designed grid 
connection capacity (Edes). 

𝐺̅ =
𝑚𝑎𝑥[𝑔(𝑡)]

𝐸𝑑𝑒𝑠

 (3) 
 

- Provide boundaries to load duration 
curves and carpet plots. 

- Identify the load or generation peak 

periods. 

- Comparisons to the net export and net 

imports respectively. 

(Salom et al., 
2014a) 

Peak power 
load 

Peak value of the demand normalized to the nominal designed grid 
connection capacity (Edes). 

𝐿̅ =
𝑚𝑎𝑥[𝑙(𝑡)]

𝐸𝑑𝑒𝑠

 (4) 
 

(Salom et al., 
2014a) 

Flexibility 
(optimum 

cost) 

The maximum reachable load is sum of all controllable loads. 
Maximum and minimum load (l), lead to a positive or negative 

flexibility (Φ) (possibility of increased or decreased power 

consumption, respectively) during an interval (t). 

𝛷𝑝𝑜𝑠 = 𝑙(𝑡)𝑚𝑎𝑥 − 𝑙(𝑡)𝑟𝑒𝑓 ≥ 0 

𝛷𝑛𝑒𝑔 = 𝑙(𝑡)𝑚𝑖𝑛 − 𝑙(𝑡)𝑟𝑒𝑓 ≤ 0 

(5) 

(6) 

Relative costs (Γ) vary due to total cost Jc. 

𝛤𝑚𝑎𝑥 = 𝐽𝑐,𝑚𝑎𝑥 − 𝐽𝑐,𝑟𝑒𝑓 ≥ 0 

𝛤𝑚𝑖𝑛 = 𝐽𝑐,𝑚𝑖𝑛 − 𝐽𝑐,𝑟𝑒𝑓 ≥ 0 

(7) 

(8) 
 

- Solves several optimal control 
problems 

- Reference scenario optimally controls 

for thermal comfort and operational 
costs 

- Aggregatable and comparable to 

various buildings, climates and energy 
systems (incl. renewables) 

- Instantaneous cost curves vary over 

time-steps and boundaries. 

(De Coninck and 
Helsen, 2016) 

Flexibility 

factor FFPC  

(costs) 

In terms of procurement costs (PC) avoided. 

𝐹𝐹𝑃𝐶 =
𝑃𝐶𝑚𝑎𝑥 − 𝑃𝐶

𝑃𝐶𝑚𝑎𝑥 − 𝑃𝐶𝑚𝑖𝑛

 (9) 

Dar et al. (2014) call it relative import bill (RIB). 

- Annual PC varies due to electricity 

time of use (ToU) tariffs. 

- FF maximizes as PC → PCmin if all 
heating is done during cheapest ToU. 

(Dar et al., 2014) 

(Masy et al., 

2015) 

Flexibility 

factor FFshift 
(volume) 

In terms of energy shifted compared to a reference profile. 

𝐹𝐹𝑠ℎ𝑖𝑓𝑡 =
𝐹𝐹𝑃𝐶 − 𝐹𝐹𝑃𝐶,𝑟𝑒𝑓

𝐹𝐹𝑃𝐶,𝑟𝑒𝑓

 (10) 
 

- FFPC,ref: flexibility in terms of PC for a 

flat tariff reference case 

(Masy et al., 

2015) 

Flexibility 
factor (FF) 

Ability to shift the energy use from high to low price periods: 

𝐹𝐹 =
∫ 𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔𝐿𝑃𝑇

𝑑𝑡 − ∫ 𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔𝐻𝑃𝑇
𝑑𝑡

∫ 𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔𝐿𝑃𝑇
𝑑𝑡 + ∫ 𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔𝐻𝑃𝑇

𝑑𝑡
 (11) 

 

- Gives a quick indication of when 
heating energy is consumed 

- FF = 0 if demand is similar during both 

price periods 
- FF = 1 (max) or -1 (min), if demand in 

single pricing period 

(Le Dréau and 
Heiselberg, 2016) 

Load shift for 

CO2 

Optimization value function to minimizing carbon emissions:  

𝑉 = ∫ 𝐶𝐶𝑂2
(𝑡) ∙ 𝑙(𝑡)𝑑𝑡

𝑇

0

 
(12) 
 

 

- Requires carbon emissions per kWh for 

time-steps t 

(Favre and 

Peuportier, 2014) 
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KPI Mathematical definition of the KPI Characteristics Reference 

Energy 

flexibility ɛ 

Amount of flexible energy that could be delivered. 

𝜀𝑓𝑜𝑟𝑐𝑒𝑑(𝑡) = ∫ 𝑙𝑓𝑙𝑒𝑥.𝑓𝑜𝑟𝑐𝑒𝑑  𝑑𝑡

𝑇𝑓𝑜𝑟𝑐𝑒𝑑

0

 (13) 

𝜀𝑑𝑒𝑙𝑎𝑦𝑒𝑑(𝑡) = ∫ 𝑙𝑓𝑙𝑒𝑥.𝑑𝑒𝑙𝑎𝑦𝑒𝑑 𝑑𝑡

𝑇𝑑𝑒𝑙𝑎𝑦𝑒𝑑

0

 (14) 

 

- “Forced flexibility”: charging or 

heating the TES by a grid connected 
heater.  

- Negative flexibility: increase generation 

- “Delayed flexibility”: discharging 
TES, while grid connected heater is off  

- Positive flexibility:  reduce generation 

- Two other metrics: ramp-up capability 
(MW/min) and power capacity (MW) 

(Stinner et al., 

2016) 

Available 
structure 

storage 

capacity 

Amount of heat that can be added to a building’s thermal mass during 
a predefined charging event, while constrained by thermal comfort. 

𝐶𝐴𝐷𝑅 = ∫(𝑙𝐴𝐷𝑅 − 𝑙𝑟𝑒𝑓)

𝑇

0

𝑑𝑡 (15) 

 

- A characteristic property of a building, 
but time varying. 

- CADR varies due to boundary conditions 

of climate, occupant behavior and 
heating system. 

- The ADR event starts at a minimum 

comfort temperature 

(Reynders et al., 
2015) 

Storage 

efficiency 

Fraction of heat that is stored during an ADR event, later used to 

reduce heating load power to maintain the thermal comfort. 

𝜂𝐴𝐷𝑅 = 1 −
∫ (𝑙𝐴𝐷𝑅 − 𝑙𝑟𝑒𝑓)𝑑𝑡

∞

𝑜

∫ (𝑙𝐴𝐷𝑅 − 𝑙𝑟𝑒𝑓)
𝑇

0
𝑑𝑡

 (16) 

 

- Can be seen as a characteristic property 

of a building 
- The integral in the denominator equals 

the heat stored in the storage event or 

the CADR 

(Reynders et al., 

2015) 

Shifting 
efficiency 

Heating energy shifted compared to a reference case: 

𝜂𝑠ℎ𝑖𝑓𝑡 =
−∆𝑙ℎ𝑒𝑎𝑡 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑

∆𝑙ℎ𝑒𝑎𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑑

 (17) 

 

- Used to characterize the thermal mass 
as a storage medium  

- Methodology can also be used for 

water storage tanks 

(Le Dréau and 
Heiselberg, 2016) 

Loss of load 
probability 

(LOLP) 

Time (%) when on-site generation is less than local demand. 

𝐿𝑂𝐿𝑃𝑏 =
∫ 𝑓(𝑡)𝑑𝑡

𝑇

0

𝑇
 {

𝑓(𝑡) = 1, 𝑖𝑓 𝑛𝑒(𝑡) < 0

𝑓(𝑡) = 0, 𝑖𝑓 𝑛𝑒(𝑡) ≥ 0
 (18) 

Energy autonomy:                𝐴𝑏 = 1 − 𝐿𝑂𝐿𝑃𝑏 (19) 
 

- Measures proportion of the year 
requiring grid electricity imports 

- Omits the volume of grid imports 

- Can be used for designing the control 
of the PV / energy system 

- Links to energy autonomy (Ab)  

(Salom et al., 
2014a)  

Power 

shifting 

capability 

Difference between heating power during the ADR event and the 

reference heating power during normal operation. 

𝑙𝑠ℎ𝑖𝑓𝑡 = 𝑙𝐴𝐷𝑅 − 𝑙𝑟𝑒𝑓 (20) 
 

- Load/power flexibility of  building 

- Associated metric “power shifting 

capability” combines lshift and its 
duration tshift 

(Reynders et al., 

2015) 

Grid feed-in 

𝐺𝑟𝑖𝑑 𝑓𝑒𝑒𝑑 𝑖𝑛 =  ∫ 𝑛𝑒(𝑡)𝑑𝑡

𝑇

0

 (21) 

 

- Minimizing grid feed-in increases self-

consumption 

- More efficient than curtailment to 
achieve grid integration regulation 

(Salpakari and 

Lund, 2016) 

Demand 
recovery ratio 

𝐷𝑅𝑅 =
∫ 𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔(𝑡)𝑑𝑡

𝑇

0

∫ min[𝑙ℎ𝑒𝑎𝑡𝑖𝑛𝑔(𝑡)] 𝑑𝑡
𝑇

0

 (22) 

  
 

- Quantifies the increase in energy use 
due to load shifting at the demand side 

- If ADR = 0, then DDR = 1 (min) 

- Indicates reduced thermal losses with 
increasing number of flexible buildings 

- System level: different temperature set 

points and storage technologies 

(Arteconi et al., 
2016) 

 

Flexibility indicators can describe physical characteristics 

of a building (e.g. storage capacity) or quantify the 

magnitude of the building´s reaction to external signals 

(e.g. electricity price) within the context of the power grid.  

Load matching and grid interaction indicators (e.g. 

equations 1-4, 18, 21) give a coarse overview of the ratio 

of the building energy load vs. on-site electricity 

generation as well as identify the load and generation peak 

periods. Energy flexibility indicators (e.g. equations 9-11) 

are often price-based and show whether energy/electricity 

is consumed during high- or low-price periods. Their 

generic nature allows their application to various building 

types, climates and energy systems. All the presented 

parameters can be used for determining the energy 

flexibility (or related characteristics) of a building and can 

either be calculated during post processing of the building 

simulation results or be included into a model-based 

control algorithm directly. Limitations of the indicators 

include the availability of the data used to compute them, 

so that the simulation software must be able to provide the 

data. 

Control strategies for deploying energy 

flexibility 

RBC strategies are a common approach for controlling 

energy systems of buildings. They use pre-defined 

conditions (or decision rules) to change the current state 

of a system and can easily be implemented into dynamic 

building simulation tools. Depending on the decision 

criteria of the RBC (e.g. weather, price, occupancy), it can 

aim at activating the energy flexibility of the building to 

improve grid interaction, lower energy costs, perform 

load shifting or reduce energy needs by varying the 

temperature set points of the buildings zones or the water 
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storage tanks. RBCs mainly fulfill a certain control 

objective, but are not designed to achieve optimization of 

the overall system behavior. Therefore, a balance between 

different control objectives, such as a low energy 

consumption and reduced energy costs, but a high load 

shifting potential has to be found, for instance by 

advanced control strategies, such as MPC.  

Afram and Janabi-Sharifi (2014) point out that advanced 

control systems (OC, fuzzy logic, MPC) in combination 

with thermal storages show a great opportunity for peak 

shaving, hence reducing infrastructure and operational 

costs. These controls can use external information for 

minimizing the energy consumption and therefore have a 

higher potential to fully deploy the flexibility of a building 

compared to rule-based control. Classical control 

strategies, such as thermostatic on/off control, PI or PID 

control are state-of-the-art for HVAC applications and are 

not able to adapt to time-varying disturbances or changes 

in environmental conditions (Afram and Janabi-Sharifi, 

2014) and thus may fail to provide flexibility in a dynamic 

manner. A control strategy that enables the flexibility of 

the HVAC system operation, such as MPC, permits 

optimization of the energy consumption while preserving 

or even improving thermal comfort (Afram and Janabi-

Sharifi, 2014). Predictive and optimal controls show a 

great potential for deploying DSF because they can deal 

with time-varying operating conditions and can interact 

with the energy system and the grid (De Coninck and 

Helsen, 2016). In this manner, they have a potential to 

contribute to peak shaving and load shifting of the 

electricity consumption (Haghighi, 2013). MPC is seen as 

one of the most promising developments as it can take into 

account future weather, electricity price forecasts 

(including their uncertainties (Oldewurtel, 2011)) as well 

as occupant behavior when computing an optimal 

consumption decision. Research at a district scale argues 

that the value of building energy flexibility depends on 

time varying energy prices (Kitapbayev et al., 2015). 

Energy price data sources are publicly available in a 

number of countries seeking to improve transparency on 

the market, which facilitates the use of real world data for 

building simulations. In particular, data for the 

Scandinavian markets and neighboring countries is 

provided by NordPool (Nord Pool Spot, 2016), Energinet 

for Denmark (Energinet, 2016) and Statnett for Norway 

(Statnett, 2016). For Ireland, data is available on the 

single electricity market platform (Single Electricity 

Market Operator, 2016), and for Britain and the 

Netherlands data is provided by power exchange (Apx 

Power Spot Exchange, 2016). Estimations of time-

varying CO2 intensity of the power due to electricity 

generation are available from the Eco-Invent database 

(Ecoinvent, 2016). 

Compared to RBCs, which are often designed to improve 

one control objective, MPCs allow the computation of an 

optimum schedule that can compromise between different 

control objectives. Several software tools were used in the 

reviewed articles to assess building energy flexibility. 

Commonly used tools for building simulation are 

EnergyPlus (Le Dréau and Heiselberg, 2016), IDA ICE 

(Alimohammadisagvand et al., 2016) or TRNSYS 

(Esfehani et al., 2016). These tools apply detailed 

numerical models for modelling the building energy 

performance, where RBCs can be implemented easily. If 

MPC is to be tested in combination with these tools, the 

optimization problem of the MPC is to be solved in 

another software, such as MATLAB. Furthermore, an 

interface, which couples the optimization software and 

the building simulation software, is required. The BCVTB 

and MLE+ interfaces were used by Ma et al. (2011) and 

Garnier et al. (2015), respectively. MATLAB and 

Modelica can be used for both, modelling the building 

performance and running the optimization. In Modelica, 

RC-models (used by Klein et al. (2015)) or component 

models from different libraries (De Coninck and Helsen, 

2016; Reynders et al., 2015) can be applied for building 

simulation. RC-models lead to simplified building models 

which express the building properties properly. Halvgaard 

et al. (2012) used RC-models in MATLAB in order to test 

an economic MPC.  

Table 2 provides an overview of control strategies that 

have been implemented in building performance 

simulations to deploy demand side flexibility. All the 

control strategies are either a RBC, an optimal control or 

a MPC. The characteristics of each strategy are shown for 

easier reproduction.

Table 2. Summary of control strategies to deploy demand side flexibility 

Building 

energy 

control 

Control design 

consideration 

Characteristics References 

 
LS1 ORM2 1LS – Load shaping, 2ORM – On-site renewable energy maximization 

 

RBC (1) x x Increase of 12K in DHW set point caused by three triggers 

- RBC 1a: time based at 12:00 every day, activating the heat pump 
- RBC 1b: if the power injection to the grid exceeds a threshold 

- RBC 1c: if voltage of buildings grid connection exceeds a threshold 

(De Coninck et 

al., 2014) 

RBC (2) x x Load shifting takes place if either local PV surplus generation or high proportion of RE in grid 

electricity 

- Zone heating curve heating increases by 3K, compared to reference 
- Zone cooling curves cooling decreases by 3K, compared to reference 

(Klein et al., 

2015) 

RBC (3) x 
 

Set point of zone temperature responds to ToU pricing 

- Decreases by 2K during high price period (maximum duration 4-24h) 

- Increases by 2K during low price period (maximum duration 4-24h) 

(Le Dréau and 

Heiselberg, 

2016) 
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Building 

energy 

control 

Control design 

consideration 

Characteristics References 

 
LS1 ORM2 1LS – Load shaping, 2ORM – On-site renewable energy maximization 

 

RBC (4) x x While comfort constrained, a TES coupled heat pump activates for,  

- Self-consumption: If surplus PV electricity generation 
- Power-exchange:  PV surplus > limit & TES or space heating possible 

- Price based control: If hourly tariff < specified threshold 

(Dar et al., 

2014) 

RBC (5) x 
 

- Temperature set point increased by dTcomf [K], a set of (1, 2, 3, 4), for a period that ranges from 

15 min to 6 h.  

- Heating load subsequently reduced but minimum comfort maintained. 

(Reynders et 

al., 2015) 

RBC (6) x x Surplus (off peak) scenario: heat pump consumes surplus grid electricity 

- DHW and space heating set point deadband of ±2K, 15min time-step 
- Minimize peak time consumption by 5K DHW set point reduction 

(Esfehani et al., 

2016) 

RBC (7) x 
 

Price based control called “Momentary control algorithm”:  
- Hourly tariff ≤ limit: normal set points of DHW (55°C) and space heating (21°C). TES maximum 

set point experimented over 55-95°C 

- Hourly tariff > limit: minimum set points of DHW & space heating. 
- If heating off, available TES energy heats DHW and space 

(Alimohammad
isagvand et al., 

2016) 

RBC (8) x 
 

- 1) Occupancy set points: 21°C (24°C bathroom), else 18°C  

- 2) Constant set points: 21°C (24°C bathroom) 

- 3) Occupancy set points from 1) and overnight TES heating to 55°C for use during peak time of 
10:00 - 12:00 

(Masy et al., 

2015)  

RBC (9) 
 

x - If PV generation surplus, self-consumed by shiftable (inside 24 h) appliances, battery or TES.  
- PV generation insufficient, battery discharged and deficit from grid  

(Salpakari and 
Lund, 2016)  

Optimal 
control 

(OC) (1) 

x  - Heat pump operation scheduled over 24 h horizon for cost-optimality 
- Challenging due to heat pump COP non-linearity with temperature 

- Computation time depends on flexibility (TES, battery or appliances). 

(Salpakari and 
Lund, 2016) 

OC (2) x 
 

- Heat pump operation is optimized by model predictive control for two tariff structures: day/night 

and ToU spot pricing. 
- Zone temperatures set point 20-22°C either i) continuously or ii) daily time interval 08:00-12:00. 

- Control objective is operational costs minimization of the heat pump 

(Masy et al., 

2015) 

OC (3) x 
 

- Comfort constrained, cost minimization produces a reference plan 

- Electricity ToU tariffs stimulate consumption deviation from the reference plan during specific 

intervals in order  to minimize cost. 
- Discomfort cost calculated during occupancy and outside 21.8-23.5°C  

- Special case of temperature reference tracking about set point  

(De Coninck 

and Helsen, 

2016)  

Economic 

MPC (1) 

x 
 

- Comfort constrained, electricity cost minimization by heat pump 

- Heat energy storage of floor shifts consumption to lower tariff periods 

(Halvgaard et 

al., 2012) 

Economic 

MPC (2) 

x 
 

- Comfort constrained, energy minimization by HVAC system 

- Potential for grid frequency regulation by exports of active power 

- Parameter adaptive building model contains four flexibility variables: air flow and power, both 
increase and decrease flexibility. 

- Novel proposal to co-design the control algorithm and HVAC system 

(Haghighi, 

2013) 

Economic 

MPC (3) 

x 
 

- Minimization and shaping of aggregated building electricity demand, by scheduling of residential 

cooling set points. 

- Energy systems integration of aggregated building demand with grid 

(Corbin and 

Henze, 2016a) 

Economic 

MPC (4) 

x x - Shape residential demand profile from grid feeder 

- Minimization of the deviation from reference demand curves by steps 
- (1)  Compute a reference demand curve aggregated at the feeder level 

- (2) Disaggregate to a reference demand curve per residence; then modify for renewables 

generation. 
- (3) Minimize the difference between the actual residence demand curve and the modified 

reference demand curve 

- MPC controllers of each residence adjust the cooling set points depending on their pre-defined 
boundaries 

(Corbin and 

Henze, 2016b) 

MPC (5) x  - Balances energy consumption and, when applicable, discomfort 
- Output is an optimal sequence of heating supply temperatures 

- Patented 

(Lindelöf et al., 
2015) 

MPC (6) x  - Minimization of energy consumption by a multi-zone HVAC system 

- Thermal comfort constraints are indicated by predicted mean vote 

- Artificial neural network schedules both cooling and heating 

(Garnier et al., 

2015) 

Economic 

predictive 
control 

x x - Minimization of heat pump energy costs by shifting its operation to times that match high on-site 

PV generation 

(Kandler et al., 

2015) 
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In order to see the aims of each control strategy, they are 

distinguished between two control design considerations: 

load shaping (LS) and maximum use of on-site renewable 

energy (ORM). Load shaping includes peak shaving and 

load shifting to off-peak hours. 

It can be seen from Table 2, that among the investigated 

literature, RBC and MPC are both used for load shifting. 

However, RBC is more often used for achieving a 

maximization of the use of on-site renewable energy than 

MPC. This may be due to the easier implementation of 

RBC into building performance simulations. 

Mapping of KPIs with control strategies 

Table 3 provides an overview of the reviewed references 

focusing on combinations of investigated control 

strategies and KPIs. For most of the respective studies, 

MPC is used with conventional KPIs, whereas flexibility 

indicators are used with RBC. This can be due to the 

greater ease of implementation of RBC strategies in 

building performance simulations, compared to MPC 

which is still a relatively new field of research. KPIs can 

be calculated based on output data available from building 

performance simulation, thus MPC could easily be used 

together with specific energy flexibility KPIs. 

Conclusion 

Key performance indicators measuring energy flexibility 

are becoming increasingly important for building 

performance simulations, especially with the inclusion of 

DSM or time-varying energy pricing. The authors are 

convinced that model-based control applied to energy 

flexibility improves a building´s sustainable design and 

operation. Generally, RBCs as well as OCs and MPCs can 

have energy flexibility embedded in the control 

objectives.  

The main findings from this paper are: 

- Multiple specific energy flexibility KPIs exist, 

which allow quantifying different aspects of DSF. 

- Services covered by energy flexibility KPIs (mainly 

focusing on the building) do not cover all possible 

services for DSM such as grid integration or grid 

ancillary services. 

- Most KPIs specific to energy flexibility are found in 

RBC studies, whereas OC or MPC studies focus 

mainly on conventional KPIs. 

- RBCs are reported as effective, if focused on a single 

KPI (including conventional and specific energy 

flexibility KPIs). 

Table 3. Overview of KPIs used in control (1 rule-based control, 2 optimal control, 3 (economic) model-predictive control) 

 Controller 

RBC1 OC2 and MPC3 

KPIs for 

energy 
flexibility 

Self-generation RBC (1) (De Coninck et al., 2014) 

RBC (2) (Klein et al., 2015) 

 

Self-consumption RBC (1) (De Coninck et al., 2014) 

RBC (2) (Klein et al., 2015) 

RBC (4) (Dar et al., 2014) 

RBC (9) (Salpakari and Lund, 2016) 

 

Flexibility factor FF RBC (3) (Le Dréau and Heiselberg, 2016)  

FFPC and FFshift RBC (4) (Dar et al., 2014) 

RBC (8) (Masy et al., 2015) 

OC (2) (Masy et al., 2015) 

Flexibility (optimum cost)  OC (3) (De Coninck and Helsen, 2016) 

Grid feed-in  OC (1) (Salpakari and Lund, 2016) 

Available structure storage 

capacity 

RBC (5) (Reynders et al., 2015)  

Storage efficiency RBC (5) (Reynders et al., 2015)  

Shifting efficiency RBC (3) (Le Dréau and Heiselberg, 2016)  

Power shifting capability RBC (5) (Reynders et al., 2015)  

Conventio-

nal KPIs 

Energy consumption RBC (6) (Esfehani et al., 2016) 

RBC (7) (Alimohammadisagvand et al., 2016) 

E-MPC (3) (Corbin and Henze, 2016a) 

E-MPC (4) (Corbin and Henze, 2016b) 

MPC (5) (Lindelöf et al., 2015) 

MPC (6) (Garnier et al., 2015) 

Energy costs RBC (7) (Alimohammadisagvand et al., 2016) E-MPC (1) (Halvgaard et al., 2012) 

E-MPC (2) (Haghighi, 2013) 

OC (1) (Salpakari and Lund, 2016) 
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- OC and MPC can consider different “objective 

functions” that optimize the system behavior by 

taking into account energy flexibility. Moreover, 

they can be assessed with a broader variety of KPIs 

beyond the sole objective they focus on. 

- Energy flexibility KPIs relying on RBC can be 

derived rather easily from simulation tools, such as 

EnergyPlus, TRNSYS or IDA ICE. 

- Advanced control strategies including optimization 

procedures (MPC and OC) typically use simulations 

in MATLAB and Modelica. 

Furthermore, information on grid energy data sources 

were provided to encourage the use of realistic data in 

future simulation work. Future research should 

concentrate on the limitations and robustness of existing 

energy flexibility KPIs as well as their implementation in 

OCs and MPCs. Furthermore, development of additional 

KPIs addressing DSM services towards the power grid is 

also expected to provide valuable contribution. 
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  Nomenclature 

  Ab  Energy autonomy Subscripts 
 

  ADR Active demand response b Building 

  C Capacity des Design 

  𝐶𝐶𝑂2
 CO2 intensity of power [kgCO2/kWh] l Load 

  e(t) Electricity exported to the grid neg Negative 

  Edes Nominal design connection capacity between  

the building and the grid 
pos Positive 

ref Reference 

  f(t) Binary function indicating net import shift Shifting 

  g(t) On-site electricity generation s Supply 

  𝐺̅ Maximum electricity generation normalized to Edes   

  i(t) Electricity imported from the grid Acronyms  

  Jc Energy costs COP Coefficient of performance 

  l(t) Energy load, e.g. heating power. Optional time  

step (t) 

DHW Domestic hot water 

DR Demand response 

  𝐿̅ Maximum electricity load normalized to Edes DSF Demand side flexibility 

  LOLPb Loss of load probability of the building DSM Demand side management 

  ne(t) Net exported energy to the grid EMPC Economic model-predictive control 

  S(t) Energy storage balance FF Flexibility factor 

  t Index of observation time-step HPT High price time 

  T Time interval under consideration (e.g. year) KPI Key performance indicator 

  V Objective function for CO2 emissions LPT Low price time 

  LS Load shaping 

  Greek  max Maximum 

  𝛾𝑙 Self-generation / load cover factor min Minimum 

  𝛾𝑠 Self-consumption / supply cover factor MPC Model-predictive control 

  𝛷𝑛𝑒𝑔 Negative flexibility OC Optimal control 

  𝛷𝑝𝑜𝑠 Positive flexibility ORM On-site renewable energy maximization 

  𝛤𝑚𝑎𝑥 Maximum relative costs PC Procurement costs 

  𝛤𝑚𝑖𝑛 Minimum relative costs RBC Rule-based control 

  ζ(t)  Energy losses RE Renewable energy 

  ɛ Energy flexibility TES Thermal energy storage 

∆l Load difference ToU Time-of-use 
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