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Background 

In drilling operations performed in the oil and gas industry it is important to control pressure in the 

well. Drilling fluid, also called mud, is pumped into the well at a constant rate, and pressure in the 

well is controlled by a choke at the top of the well (in Managed Pressure Drilling). The control 

objective is to keep the pressure at the bottom of the well close to a given set-point. In the project 

work last fall, a model of the pressure and flow in the well was developed based on discretization of a 

distributed parameter model. The model facilitates efficient controller design, yet is detailed enough 

to capture the dominant dynamics within a desired closed-loop bandwidth. 

 

The goal of the present work is to design control algorithms based on the model, which achieve faster 

pressure control than what is possible with conventional control. The following points should be 

addressed by the student: 

 

Tasks: 

 

1. Review current practices for pressure control in MPD. 

2. Review modeling from the project work. Revise the model, if necessary. 

3. Suggest a model based control design procedure for fast pressure control. Compare the 

performance of your controller with current practice (PI-control) in simulations. 

4. Test your controller in the lab – compare with PI-control. 

5. Write a report. 

 

  

Supervisor: Professor Ole Morten Aamo 
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A B S T R A C T

In drilling operations, it is of great importance to efficiently and safely

control the pressure in the well. To avoid possible damage to the

reservoir, equipment, personnel and the environment, the pressure

in the well bore must be kept within certain limits, determined by

the formations around the well. An emerging drilling technique, in-

tended to increase the efficiency and safety of drilling operations, is

known as Managed Pressure Drilling (MPD). MPD differs from con-

ventional drilling by closing the mud system with a controlled choke,

often in combination with a backpressure pump to ensure circula-

tion through the choke. The controller objective is to automatically

adjust the choke to reach the desired downhole pressure. For optimal

control of the downhole pressure, a model describing the flows and

pressures in the well is necessary. A modal discretization method is

considered and implemented in this thesis, resulting in a rational ap-

proximation of a two-dimensional distributed parameter model. The

discretized model is used to design a LQG controller, for comparison

with a PI controller. Both controllers are implemented in MATLAB to

perform computer simulations and experiments in lab. Simulations

indicated that the transient response of the LQG stabilized at the

desired set-point, more efficiently relative to PI controller. This dif-

ference was significantly improved when increasing the length of the

simulated well. In experiments performed on a tailor made experi-

mental lab located at NTNU, the performance of the two controllers

were about equally great. It is discussed whether the lab is inadequate

to demonstrate possible improvements due to the introduction of the

two-dimensional model.
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S A M M E N D R A G

Under boring i olje- og gassindustrien er det svært viktig med sikker

styring av trykket i brønnen for å minimere sjansene for skade på

reservoar, utstyr, arbeidere og miljø. Trykket i brønnen må være in-

nenfor øvre og nedre begrensninger, bestemt av sedimentene rundt

brønnen. En voksende boremetode kalt trykkstyrt boring (MPD) er

utviklet for å løse trykkrelaterte problemer. MPD skiller seg fra kon-

vensjonell boring ved å styre borevæsken gjennom en automatisert

ventil. Hensikten er å styre ventilåpningen slik at et ønsket trykk

i brønnen oppnås. For å oppnå optimal styring av ventilen er det

nødvendig med en modell som beskriver flyt og trykk i brønnen. I

denne avhandlingen er en modal diskretiseringsmetode benyttet for å

utvikle en rasjonell tilnærming til en todimensjonal transmisjonslinje-

modell. Den diskretiserte modellen er videre benyttet til å utvikle

en modellbasert LQG-regulator, for sammenligning med en konven-

sjonell PI-regulator. Begge regulatorene er implementert i MATLAB

for å utføre simuleringer og eksperimenter i lab. Simuleringene indik-

erte at LQG-regulatoren stabiliserte nedhullstrykket ved ønsket verdi,

mer effektivt enn PI-regulatoren. Denne tendensen ble forsterket ved

økt lengden på brønnen. Eksperimenter utført på et laboppsett ved

NTNU indikerte at de to regulatorene gav tilnærmet lik trykkstyring.

Det er i avhandlingen diskutert om laboppsettet ikke er tilstrekkelig

for å påvise eventuelle forbedringer ved å ta i bruk en modellbasert

regulator, basert på en todimensjonal modell.
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1
I N T R O D U C T I O N

1.1 motivation

In drilling operations performed in the oil and gas industry it is

important to control the pressure in the well for safe and efficient

drilling. During the operation a drilling fluid, called mud, is pumped

into the well serving various purposes, including pressure control. To-

day, most ’easily drilled’ wells have already been drilled and the oil

and gas industry is faced with complex drilling operations where the

pressure limits are narrow. Difficult pressure margins require safe, ef-

ficient and precise pressure control. A series of techniques designed

for this purpose is known as Managed Pressure Drilling (MPD). The

principle of a MPD technique called Constant Bottom Hole Pressure

(CHBP) is to control the pressure in the well by closing the mud

circulation with a controlled choke. The control objective is to au-

tomatically adjust the choke to reach a desired bottomhole pressure

set-point. A model describing the pressure and flow in the mud is nec-

essary to achieve optimal pressure control. Simple lumped parameter

models are often applied for this purpose [14, 15, 16], but it is antic-

ipated that an improved model could enhance the performance. The

model must captures the dominating dynamics in the well and at the

same time be simple enough for control applications.

1.2 previous work

During the fall semester a project work was conducted by the author

regarding review, implementation and simulation of a discretized

well model, developed using a Galerkin method [25]. Simulations

and frequency analysis was performed to compare the method with

a simple control volume method. The Galerkin method is applied in

this thesis and parts of the derivations from the project are therefore

revised in this thesis.
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2 introduction

1.3 outline

The reader is in Chapter 2 introduced to conventional drilling and

the emerging drilling technology managed pressure drilling, which

forms the basis for the experimental setup of the presented in Chap-

ter 3. Background for modeling and analytically solving hydraulic

systems is presented in Chapter 4 in addition to a numerical approx-

imation known as the modal method. This method is further used

to obtain a model fit for controller design, developed in Chapter 5.

In Chapter 6 the controller designs are tested and compared in com-

puter simulations and experiments conducted at the lab. The results

are discussed in Chapter 7 before the thesis is concluded in Chapter 8.

1.4 task description

1. Review current practices for pressure control in MPD.

2. Review modeling from the project work. Revise the model, if

necessary.

3. Suggest a model based control design procedure for fast pres-

sure control. Compare the performance of your controller with

current practice (PI-control) in simulations.

4. Test your controller in the lab – compare with PI-control.

5. Write a report.
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B A C K G R O U N D O N D R I L L I N G

The purpose of this chapter is to serve as a brief introduction to con-

ventional drilling in marine environments and to the drilling method

Managed Pressure Drilling (MPD). The content of this chapter is

mainly based on Devereux [7] and Rehm et al. [21].

2.1 drilling terms and equipment

This section provides a short explanation of different terminologies

and equipment necessary for understanding drilling operations. For

the remaining parts of this thesis, these terms will be commonly used

and assumed familiar with the reader.

rig : a complete installation with equipment needed for a drilling

operation. Marine rigs are classified as floating rigs such as

semisubmersibles and drill ships, or as bottom supported rigs

such as jackups and platforms.

drillpipe : a string consisting of several connected joints. The joints

are hollow, thick-walled steel pipes most commonly about 9.5

meters long.

drill bit : a device placed in the lower end of the drillpipe, de-

signed for cutting different rock formations. Drill bits are di-

vided in two types – fixed cutter bits and roller cone bits.

bottomhole assembly (bha): a tool extending from the drill pipe

to the drill bit. The BHA can be configured in many ways to im-

prove the drilling operation.

drillstring : the drillpipe, drill bit and BHA connected is referred

to as drillstring.

casing : a steel pipe lowered into the well and cemented in place.

The purpose of a casing is to withstand difficult pressure limits.

3



4 background on drilling

The drilling continues with a smaller drill bit from the casing

point (the lower end of the casing).

drilling mud : a fluid (often water, oil or a combination) pumped

through the drillstring into the bottom of the well serving sev-

eral purposes, e.g. pressure control, stabilize wellbore, remove

cuttings, minimize damage to reservoir and cool down drill bit.

The properties of the mud must be correct for safe and efficient

drilling.

annulus : the space between the drillstring and the inside of the

well where the mud carry cuttings away from the hole.

2.2 introduction to conventional drilling

In order to produce oil and gas from offshore reservoirs, conventional

drilling technologies have developed over the years. A drilling oper-

ation is managed and operated from a drilling rig. Drives, pumps

and other equipment needed for the drilling operation is installed

on the rig and controlled by field engineers and operators. The drill-

string with the drill bit rotates and penetrates the seabed by cutting

rock formations, creating the well. While drilling, mud is pumped

into the drillstring to the bottom of the well and returned through

the annulus. One of the main challenges related to drilling is to main-

tain the pressure in the well within certain boundaries. These bound-

aries (known as the pressure window) are determined by the fracture

pressure, the pressure inside the well that would fracture the sur-

roundings, and the pore pressure, the pressure in the fluids within

the pore spaces. If the pressure in the well increase above the frac-

ture pressure, drilling mud will leak into the reservoir formations,

causing fractions in the rock surrounding the well. If the pressure de-

crease below the pore pressure, unwanted fluids and sediments will

enter the well from the surroundings. Without sufficient control of

the pressure in the well, a blowout could potentially occur, releas-

ing uncontrolled oil and gas to the surface. The results of a blowout

could be disastrous. In 2010, the Macondo blowout in the Gulf of

Mexico resulted in loss of 11 lives and an enormous oil spill of nearly

5 million barrels [18]. A conventional technique for controlling the

bottomhole pressure (BHP) is to add chemicals and weighting mate-
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rials to change the hydrostatic pressure in the well. This is a slow and

time consuming method which increases non-productive time (NPT).

Another technique involves adjusting the mud circulation rate to con-

trol the frictional pressure, leading to an increased or decreased bot-

tomhole pressure. A disadvantage of this method is lack of pressure

control in case of no circulation.

2.3 managed pressure drilling (mpd)

Drilling operations are normally very costly and the oil and gas in-

dustry is therefore searching for new technologies to improve drilling

and minimize economical costs. With conventional drilling, situations

such as differentially stuck pipe, circulation loss, pressure control is-

sues and narrow pressure margins significantly delay drilling oper-

ations, resulting in large economic losses. Today, the average non-

productive time for wells in Europe is 20-25% [12] and reports from

gas wells drilled in the Gulf of Mexico between 1993 and 2003 indi-

cated that 40% of all NPT was related to drilling operations and pro-

cedure [21]. The drilling discipline Managed Pressure Drilling (MPD)

is a result of the high costs related to NPT. The International Associ-

ation of Drilling Contractors (IADC) has defined MPD as an adaptive

drilling process used to more precisely control the annular pressure profile

throughout the wellbore. The objectives are to ascertain the downhole pres-

sure environment limits and to manage the annular hydraulic pressure pro-

file accordingly [21].

2.3.1 Techniques

Managed pressure drilling is a discipline covering different methods

for well pressure management. The most common are

dual gradient drilling (dgd): a drilling operation where the

mud is returned to the rig through one or more small-diameter

lines, or dumped at the sea floor. The mud is removed from the

well annulus through a mud-lift pump, and by adjusting the

pump inlet pressure, the hydrostatic pressure in the well can be

controlled.



6 background on drilling

pressurized mud-cap drilling (pmcd): a technique which im-

plies severe losses of mud. When mud is lost to the formation,

seawater with additives is applied as drilling mud to force mud

and cuttings into the zones where the losses occurred. The BHP

is maintained by applying a back pressure.

constant bottom-hole pressure (cbhp): involves controlling

the mud with a choke, resulting in a closed mud system. The

effective BHP is then given by a sum of the hydrostatic pres-

sure, the choke pressure and the frictional pressure (known as

ECD). A backpressure pump is often applied to provide a pres-

sure drop over the choke, resulting in a controllable pressure

device for compensation of lost frictional pressure in case of no

circulation.

returns flow control (hse): implies closing the mud returns

on the rig floor with a purpose to enhance health, safety and

environmental issues.

2.3.2 Advantages of MPD

In 2005, at least 50% of all offshore drilling prospects were consid-

ered economically not drillable with conventional drilling methods

[13]. The advantage of MPD versus conventional drilling is to reduce

drilling costs due to NPT while increasing the safety of the drilling op-

eration [21]. With conventional methods, casing is the solution when

exposed to difficult pressure margins. However, casing is a time con-

suming process, and for each casing point, the hole size is reduced.

The increased pressure controllability introduced by MPD can allow

for extended casings with and a lower number of casing points. An-

other advantage of a more precise pressure management is avoiding

circulation loss, a major cause of NPT. Such losses occur when mud

weight is increased to the point when the pressure in the well exceed

the fracture pressure. Differential sticking is a condition whereby the

drillstring can not be moved along the axis of the wellbore. Differential stick-

ing typically occurs when high-contact forces caused by low reservoir pres-

sures, high wellbore pressures, or both, are exerted over a sufficiently large
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area of the drillstring1. In case of differentially stuck pipe, drilling op-

erations often encounter significant delays, thus non-productive time

increases. With MPD, the differential pressure can be controlled to

prevent sticking pipe. In addition to the exampled mentioned, drilling

with a closed mud system has several advantages related to drilling

fluid economics and increased safety for personnel and equipment.

2.3.3 Offshore Experiences

The number of wells drilled using MPD has increased rapidly over

the last years. Only in Asia Pacific, more than 100 wells were suc-

cessfully drilled using MPD between 2005 and 2009 [20]. These ex-

periences demonstrated that a closed mud circulation system has

numerous advantages and that MPD delivered significant cost sav-

ings by eliminating non-productive time associated with fluid losses

and well control. In the Kvitebjørn field in the northern North Sea,

MPD allowed safe drilling of wells that otherwise not could have

been drilled [12]. Another successful MPD operation was the first

pressurized mud-cap drilling from a floating rig, conducted offshore

Malaysia in 2004 [13]. The operation avoided loss of costly drilling

fluid and significantly reduced NPT.

2.3.4 Control Methods

From an operator’s perspective, MPD introduces additional complex-

ity to a drilling operation, requiring extended coordination of pumps,

chokes, valves and more. For an automation engineer, on the other

hand, this motivates the need for automatic control. Research related

to MPD is often subject to developing control methods. More than

90% of all industrial control loops are based on simple linear PID

controllers [12], and the oil and gas industry is no exception. The

advantage of PID controllers is the simplicity related to both imple-

mentation and tuning, in addition to provide a sufficient solution for

most industrial control problems. The complexity of MPD requires

different layers of control to ensure an optimal process. A multi-level

control hierarchy is presented in [5], typically with PID controllers on

1 Schlumberger Oilfield Glossary
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a feedback control level, to execute given set-points, and a model pre-

dictive controller (MPC), determining optimal controller set-points

based on constraints given by human input. The use of MPC as an

optimal model based controller is common for MPD related research

[3, 5, 12, 19].
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Figure 1: Schematic of a MPD system. [1] Top drive [2] Drillstring [3] Drill

bit [4] Annulus [5] Casing [6] Casing point [7] Marine raiser [8]

Rotating Control Device (RCD) [9] Choke [10] Backpressure pump

[11] Mud pump [12] Mud tank [13] Sea level [14] Sea bed



3
E X P E R I M E N TA L L A B

A tailor made lab known as IPT-Heave Lab, located at the Department

of Petroleum Engineering and Applied Geophysics at NTNU, is in

this thesis used for experimental purposes. The background for and

development of the IPT-Heave Lab is extensively covered by various

theses [2, 4, 8, 10, 11]. This chapter serves only as a brief explanation

of the experimental setup. For further investigation and a user guide

to the lab, the reader is referred to Albert [2].

3.1 connections and heave

When the drill string is to be extended for deeper penetration, new

joints are connected on top of the drill pipe. This scenario is known

as connections and involves ramping down the mud pump, for then

to be disconnected from the drillstring. When drilling from floating

rigs, heave effects from waves are compensated to ensure a steady

position for the drill bit. During connections, on the other hand, the

drill string is fastened to the rig, resulting in rig heave movement

being transferred to the drillstring. In this case, the drill bit traverse

vertically, leading to pressure fluctuations in the well. The MPD tech-

nique constant bottomhole pressure (CBHP) is a possible solution to

ensure a constant pressure in the well, regardless of the drill bit move-

ment.

3.2 experimental setup

The IPT-Heave Lab is a tailor made well experiment built for simula-

tion of heave during joint connections from a floating rig. The MPD

technique CBHP is the basis for the lab, with a controller objective to

control a choke for suppression of wave disturbance and maintaining

a given bottomhole pressure (BHP) set-point. The IPT-Heave Lab is

a scaled model, originally based on a vertical 4000 meters deep well

9



10 experimental lab

with a well bore diameter of 8.5 inches, exposed to heave of ampli-

tude 1.5 meters. A schematic of the experimental setup is shown in

Figure 2 and the different components are described in the following

section.

3.2.1 Components

copper pipe To simulate the flows and pressures in the drilling

mud from the bottom of the well to the rig, 900 meters of copper

pipe is coiled to form a 2.3 meter high cylinder.

piston The bottom of the well is modeled with a vertical PVC pipe,

connected to the end of the copper pipe. In order to see the BHA

inside the well, the pipe is made with a transparent material.

The BHA is vertically moved by an electrical motor driving a

saw tooth belt to simulate heave.

choke The choke is tailor made with a electrical motor turning a

valve from 0 to 90 degrees, corresponding to closed and fully

open respectively.

backpressure pump A backpressure pump is installed to provide

a constant flow, ensuring a necessary pressure drop over the

choke. The pump delivers approximately 31 l/min when run-

ning on full.

water tank Water is used as drilling fluid in the lab. The supply

for the backpressure pump is an open plastic tank, installed

with a feeding pump to ensure sufficient supply for the back-

pressure pump.

safety/manual valves To avoid damage to lab equipment and

personnel, automatic safety valves are installed to release crit-

ical pressures from the system. Manual valves are installed to

drain water from the lab if necessary.

flow transmitters Three flow transmitters are installed at the

lab to measure flow at the end of the copper pipe, through the

choke and flow rate delivered from the back pressure pump.
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pressure transmitters Pressure transmitters are installed in the

top and at the bottom of the well, at the inlet and outlet of the

choke and for every hundred meters of copper pipe.

3.2.2 Interface

The lab interface is implemented with the SIMULINK toolbox in

MATLAB r2012b on a Windows 7 computer. Measurement signals

and control output signals are communicated in real-time through a

control card from National Instruments with 32 analog inputs and 4

analog outputs. The SIMULINK interface is shown in Figure 3 where

the real-time communication for reading measurement and applying

control signals is implemented in the System-block. The Controller-

block is used for choke and piston controller implementation, using

measurements as feedback inputs. A safety module is implemented

to avoid large pressures and vacuum in the lab. The bottomhole pres-

sure P2 is controlled and experiments are automatically stopped if P2

is above 10.5 bar or below -0.5 bar.

Figure 2: Schematic of the experimental setup
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Figure 3: Interface in SIMULINK



4
M AT H E M AT I C A L M O D E L I N G

The use of mud during a drilling operation can mathematically be

treated as a hydraulic system. By modeling the mud in the well as

a hydraulic transmission line, the pressure and flow in the fluid is

considered for the whole space, for all time. This is desired when

modeling viscous and compressible fluids in long pipes, e.g. mud

in a drillstring. This chapter serves as an introduction to hydraulic

transmission lines, before a mathematical modal method for obtain-

ing a numerical solution to a transmission line model is presented.

The content of the first sections in this chapter is based on Egeland

and Gravdahl [9], Stecki and Davis [23] and Canuto et al. [6].

4.1 hydraulic transmission lines

A dynamic model of a hydraulic transmission line is derived in [9].

The model is obtained by considering mass balance and momentum

balance on differential control volumes Adx where A is the cross sec-

tional area and x ∈ {0, L} is the spatial coordinate. By considering an

infinite number of control volumes the dynamics in the transmission

line turn out to be given by the partial differential equations (PDEs)

in (1) where p(x, t) is the pressure in the fluid and q(x, t) is the vol-

umetric flow. The properties of the fluid are determined by the bulk

modulus β and the density ρ0, which is assumed to be constant.

∂p(x, t)
∂t

= −cZ0
∂q(x, t)

∂x
(1a)

∂q(x, t)
∂t

= − c
Z0

∂p(x, t)
∂x

− F[q(x, t)]
ρ0

(1b)

The friction term F is assumed to be a function of q(x, t). Z0 is the

known as the line impedance and c is the speed of sound.

Z0 =
ρ0c
A

, c =

√
β

ρ0

13
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The PDEs (1) are Laplace transformed into equation (2) and a propa-

gation operator Γ is defined by (3).

sP(x, s) = −cZ0
∂Q(x, s)

∂x
(2a)

sQ(x, s) = − c
Z0

∂P(x, s)
∂x

− F[Q(x, s)]
ρ0

(2b)

Z0Γ2(s)
LTs

Q(x, s) =
Z0s

c
Q(x, s) +

Z0F[Q(x, s)]
cρ0

(3)

By defining the propagation operator, the transformed model can be

written in the form of wave equations (4) where L is the length of the

line and T = L/c is the propagation time.

∂Q(x, s)
∂x

= − Ts
LZ0

P(x, s) (4a)

∂P(x, s)
∂x

= −Z0Γ2(s)
LTs

Q(x, s) (4b)

The transmission line model (4) is completed by choosing the desired

friction model, which determines the propagation operator. Various

friction models can be derived by considering the fundamental equa-

tions of fluid dynamics with different initial assumptions. This is fur-

ther investigated in the following sections.

4.2 distributed parameter models

The transmission line model found in Section 4.1 is known as a dis-

tributed parameter model since it is represented by PDEs. Stecki and

Davis [23, 24] presents seven distributed parameter models and the

corresponding analytical solutions. The models are derived from the

state equation, the continuity equation, the Navier-Stokes equations

and the energy equation, all fundamental equations in fluid dynam-

ics. Various assumptions are made for the seven different models,

sorted hierarchically based on how closely they resemble the fun-

damental equations. This property generally implies that the higher

order models are more accurate than the lower. The presented mod-

els include, from higher to lower order, ’Exact’ first-order model, Two-

dimensional thermal viscous compressible model, Two-dimensional viscous

compressible model, Two-dimensional viscous incompressible model, One-

dimensional viscous compressible model, One-dimensional linear resistance

compressible model and One-dimensional inviscid compressible model.
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4.2.1 Two-Dimensional Viscous Compressible Model

Stecki and Davis [23] concluded that the two-dimensional viscous

compressible model is considered to be the most suitable for modeling

alternating flow systems with ’long’ transmission lines. The friction model

is based on the fundamental equations given in (5). Compared to a

simpler one-dimensional model, the two-dimensional model do to a

greater extent account for viscous effects.

∂q
∂t

= − A
ρ0

∂p
∂x

+
µ0

ρ0

(
∂2q
∂r2 +

1
r

∂q
∂r

)
(5a)

∂ρ

∂t
= −ρ0

A
∂q
∂x
− ρ0

(
∂v
∂r

+
v
r

)
(5b)

4.2.2 Analytical Solution

The analytical solutions to the models are given in terms of complex

functions, namely the propagation operator Γ and the characteristic

impedance Zc. In transmission lines where both downstream and up-

stream traveling waves are present, the relation between pressures

and flows at the two ends of the line can be expressed by

P1 = P2 cosh Γ + Q2Zc sinh Γ (6a)

Q1 =
P2

Zc
sinh Γ + Q2 cosh Γ (6b)

For the two-dimensional viscous compressible model, the propaga-

tion operator is stated in (7a). The characteristic impedance is related

to the propagation operator according to (7b).

Γ(s) = Ts
/√

1− 2J1(κ)

κ J0(κ)
κ = jr

√
s/ν (7a)

Zc(s) =
Z0

Ts
Γ(s) (7b)

In (7a) J0 and J1 are Bessel functions of the first kind with order zero

and one, respectively. The propagation operator (7a) is irrational and

there is a need for a rational approximation to derive a model for

simulation and control purposes. This is further investigated when

developing a numerical solution.
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4.3 spectral methods

There exists several methods for obtaining numerical solutions to

differential equations for simulation and control purposes. Spectral

methods is a widely used class of such methods. Spectral methods may

be viewed as an extreme development of the class of discretization schemes for

differential equations known generically as the method of weighted residuals

[6]. Key elements for these methods are the trial and test functions.

The trial functions defines the basis functions used in the series expan-

sion forming the solution. The test functions are used to ensure that

the solution satisfies the differential equations with a minimal error.

Unlike finite-element and finite-difference methods, spectral meth-

ods apply global infinitely differential trial functions, e.g. trigonomet-

ric functions. The choice of trial and test functions distinguish the

common spectral schemes Galerkin, collocation and tau method. The

Galerkin method is probably the most esthetically pleasing method

since the test functions are the same as the trial functions. Mäkinen

et al. [17] use a Galerkin approach to derive what is referred to as the

modal method, for approximating distributed parameter models. In

a comparison study of numerical solution methods for transmission

lines by Watton and Tadmori [26], the modal method is concluded

to be the most accurate, convenient and numerically stable method.

The following sections revise the derivations from [17] to develop a

model for simulations and controller design.

4.4 the modal method

The following sections are based on the variational modal method

presented in Mäkinen et al. [17], used for obtaining discretized nu-

merical models for transient flow simulation in transmission lines.

The modal method and the model derivations in [17] has earlier been

investigated by the author, during a project work [25]. The model pre-

sented in the project is referred to as the Q-model, since the model

inputs are given by flow rates at both ends. The following sections

present a QP-model with flow rate at one end and pressure at the

opposite end as inputs. The QP-model is preferable to the Q-model

for applications related to MPD and the experimental IPT Heave-Lab.
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4.4.1 Boundary Conditions

By combining the equations (4) derived in Section 4.1, the flow rate

can be eliminated to form the wave equation (8) with pressure as

dependent variable. The boundary conditions for the QP-model are

given by the pressure P1 and the flow rate Q2 at location x = 0 and

x = L in the transmission line. Note that the Laplace operator is

normalized with s̄ = Ts.

Γ2P(x, s̄)− L2 ∂2

∂x2 P(x, s̄) = 0 (8)

P(0, s̄) = P1, P′(L, s̄) =
Z0Γ2

Ls̄
Q2 (9)

A variational formulation of the wave equation is shown in (10) where

(8) is multiplied by the variation δP and integrated by parts.∫ L

0
L2P′δP′ + Γ2PδPdx = LZ0

Γ2

s̄
Q2δP2 (10)

An approximate solution of the wave equation (8) can be obtained by

minimizing the quadratic function I(P) (11). In the following section,

the Ritz method is applied for this purpose.

I(P) =
1
2

∫ L

0
L2(P′)2 + Γ2P2dx− LZ0

Γ2

s̄
Q2P2 (11)

4.4.2 Ritz Method

The Ritz method assumes the solution P̃ to be in terms of adjustable

parameters ri (Ritz coefficients) shown in (12). The shape functions

ψi(x) are trigonometric, forming a linearly independent and complete

set of functions which satisfies the boundary conditions.

P̃(x) = P1 +
∞

∑
i=1

riψi(x) (12a)

ψi(x) = sin
(
(2i− 1)πx

2L

)
(12b)

With the Galerkin approach, as noted in Section 4.3, the test functions

are the same as the trial functions. This implies that the variation

δP must satisfy the shape functions ψi(x). By applying ψi(x) to the

quadratic function (11), the Ritz coefficients can be found to be

ri = −
(

2
(2i− 1)π

P1 + (−1)i Z0

s̄
Q2

)
2Γ2

Γ2 +
(
(2i−1)π

2

)2 (13)
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Giving the approximate solution for P2 derived from (12a) with x = L

P̃2 = P1 +
∞

∑
i=1

(−1)i+1ri (14)

4.4.3 Rational Approximations and Corrections

The solution found using the Ritz method is infinite dimensional and

results in irrational transfer functions when applying the propagation

operator Γ for the two-dimensional viscous compressible model, pre-

sented in Section 4.2.1. This is due to the Bessel-functions. The model

must be truncated to a finite number of modes n and the propagation

operator must be approximated to obtain a rational solution. In [17],

the suggested rational approximation of the propagation operator is

based on Woods approximation (15).

Γ2(s) =
s̄

1− 1√
1+2s̄/ε

(15)

This approximation is used to express the irrational terms in (13) with

the rational transfer functions shown in (16a). The modal natural fre-

quency ωi and the damping coefficient ε i are dependent on the fric-

tion coefficient, assumed to be ε = 8Tν/r2.

2Γ2

Γ2 + α2
i
≈ 2(s̄2 + εs̄)

s̄2 + ε i s̄ + ω2
i

(16a)

αi =
(2i− 1)π

2
(16b)

ωi = αi −
1
4
√

αiε +
1
16

ε (16c)

ε i =
1
2
√

αiε +
7
16

ε (16d)

When the solution is truncated to a finite number of modes, non-

physical oscillations known as Gibbs phenomenon will occur if the

model input face discontinuities, e.g. step change. This effect is in

[17] filtered with attenuation factors wi. For the QP-model the attenu-

ation factors are given by the Riemann window functions (17b). The

attenuation factors apply to the approximate solution P̃ resulting in

the filtered solution P shown in (17a).

P2 = P1 +
n

∑
i=1

(−1)i+1riwi (17a)

wi =
sin (βi)

βi
, βi =

(2i− 1)π
2n + 1

(17b)
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It is necessary to make a small modification to the Γ approximation

in order to obtain the correct steady-state pressure. The adjustment

applies to the friction coefficient by replacing ε with b1ε in (16a) where

b1 =

(
2

n

∑
i=1

wi/ω2
i

)−1

(18)

4.4.4 Model Summary

Applying the approximations and corrections above, results in the

transmission line model shown in (19). By adapting relevant MPD

drilling terms, P1, P2 and Q2 are respectively renamed pc, pdh and qdh,

referring to choke pressure and downhole flow rate as inputs, and

downhole pressure as output. This rewriting is useful to highlight

the connection between the transmission line model and the MPD

model, later used for simulations and experiments.

pdh = pc +
n

∑
i=1

(−1)i+1ri (19a)

ri = −
(

2
(2i− 1)π

pc + (−1)i Z0

s̄
qdh

)
2wi(s̄2 + b1εs̄)
s̄2 + ε i s̄ + ω2

i
(19b)

4.5 frequency analysis

The QP-model can be compared to the exact analytical solution, given

in Section 4.2.2, using frequency analysis. The same approach was

discussed and applied in the project work [25]. By defining the rela-

tion between flow and pressure at location 2 as the load impedance

ZL = P2/Q2, the solutions found in (6) can be combined to give the

following relation at location 1

P1

Q1
= Zc

ZL + Zc tanh Γ
Zc + ZL tanh Γ

(20)

Figure 4 presents a frequency analysis of the transfer function (20)

with Γ and Zc corresponding to the two-dimensional viscous com-

pressible model (7). The load impedance ZL = 0 implies constant

pressure at the end of the line. For the QP-model, the corresponding

frequency response is found considering the transfer function from

qdh to pdh. The QP-model is calculated with 2, 4 and 16 modes and

the physical parameters are found in Table 1. The peaks indicates
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Figure 4: Frequency analysis of the modal method

resonances occurring when the inflow is in phase with the reflected

waves. With two modes, the model is relatively accurate at frequen-

cies below 0.3 rad/sec. Adding two more modes increase the accuracy

up till 0.6 rad/sec. With 16 modes, the figure indicates that the model

is converging toward the exact solution. The frequency analysis indi-

cates similar results as for the Q-model in the project work, where the

load impedance ZL = ∞ implied zero flow at the outlet.
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C O N T R O L L E R D E S I G N

One of the main goals of this thesis is to develop a model based bot-

tomhole pressure (BHP) controller, based on the model derived in

Section 4.4. In this chapter, both a model based controller and a sim-

ple PI controller is developed, for comparison in simulations and lab

experiments. Two different choke controllers are developed to handle

the nonlinear dynamics introduced by the choke in the experimental

lab. Note that u is referred to as system input in Section 5.2-5.3 and

as choke opening (in degrees) in Section 5.4.

5.1 selecting model based controller

As noted in Section 2.3.4, model predictive control (MPC) is often pre-

ferred for optimal control in MPD. Among several strengths of the

MPC is the handling of constraints on inputs and outputs. However,

demanding computational calculations is a disadvantage, in addi-

tion to a relatively complex implementation. In this thesis, the linear-

quadratic-Gaussian regulator (LQG) is selected as control method to

design a model based controller. LQG can be considered as MPC

without constraints, and implies a simpler implementation where the

calculated controller gain is valid for all time. For the purpose of this

thesis, LQG is considered to be sufficient for demonstrating the per-

formance of a model based controller, compared with a conventional

PI controller.

5.2 model based bhp controller

Linear-quadratic-Gaussian (LQG) is a result of Wiener’s work on op-

timal filtering from the 1940’s, leading to what is known as optimal

control [22]. LQG is a composition of the linear-quadratic regulator

(LQR) and a Kalman filter for state estimation. LQR is a model based

optimal controller, applying the input u = −Krx where Kr is the con-

21



22 controller design

troller gain and x is a state feedback from the plant, modeled with

the LTI system shown in (21).

ẋ = Ax + Bu + w (21a)

y = Cx + Du + v (21b)

By solving the algebraic Riccati equation, the optimal state-feedback

gain Kr is calculated to minimize the cost function (22) where Q =

QT ≥ 0 and R = RT > 0 are weight matrices for the states and input,

respectively.

J =
∞∫

0

(
xTQx + uTRu

)
dt (22)

The states are often not accessible, and a Kalman filter is therefore

applied for state estimation. The optimal state estimate x̂ minimize

E
(
[x− x̂]T[x− x̂]

)
and is applied to give the optimal controller (23a).

The Kalman filter is implemented as shown in (23b).

u = −Kr x̂ (23a)

˙̂x = Ax̂ + Bu + K f (y− (Cx̂ + Du)) (23b)

A, B, C, D are system matrices for a system on the form of (21) where

w and v are assumed to be white noise. The Kalman filter gain K f is

dependent on the noise variance Qn = E[wwT] and Rn = E[vvT].

5.2.1 Controller Objective

For the QP-model derived in Section 4.4, the input is u = [qdh pc]
T

and the output is y = pdh. The control objective is to control pc to

ensure pdh adjust to the given set-point pdh,re f . A possible approach

to fulfill this objective is to add a new state ż = e = pdh,re f − pdh, pro-

viding the controller with integral action. Adding the integral action

results in the following state space representationẋ

ż

 =

 A 0

−C 0

x

z

+

 B

−D

 u +

0

1

 pdh,re f (24)

The new weight matrix Q is shown in the cost function (24) where

only the integrated deviation from the set-point is weighted to ful-
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fill the objective of the controller. The new state z is not selected for

estimation by the Kalman filter.

J =
∞∫

0

[xT zT
] 0 0

0 q

x

z

+ uTRu

 dt (25)

5.2.2 Controller Implementation

The Kalman and LQR gains are calculated with a MATLAB-script us-

ing basic predefined functions, and the controller is implemented ac-

cording to (23) in SIMULINK. The Kalman gain K f is calculated using

the kalman-function and the optimal control gain Kr is found using

the lqr-function. When tuning the LQG controller, Q is selected to be

constant with q = 1, leaving only the weight R to be adjusted. This

approach is valid since the ratio between Q and R is the determining

factor affecting the controller gain.

5.3 simple bhp controller

PI (and PID) controllers are by far the most common regulators in

industrial control loops. The controller computes an output based

on the error e, the proportional gain Kp and integral gain Ki. The

integral term reduces the steady-state error by accounting for error

accumulated over time. The PI controller is shown in (26). Kp and

Ki are tuning parameters necessary to optimize the performance and

ensure a stable controller. Several methods are developed for tuning

PI controllers. For the purpose of this thesis, it is considered to be

sufficient to determine the tuning parameters by trial and error. The

controller objective is the same as for the LQG controller – to control

the pressure pdh to the given set-point pdh,re f by adjusting pc.

pc = Kpe + Ki

∫ t

0
edt (26a)

e = pdh,re f − pdh (26b)
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5.4 choke controllers

5.4.1 Operating the Lab Choke

The operational area for the tailor made choke at the IPT-Heave Lab

is from 0 to 90 degrees, corresponding to closed and fully open. The

choke opening is controlled via the lab interface, where the desired

opening is converted to the corresponding voltage signal, applied to

the motor controller. In this thesis, a cascade approach is considered

for controlling the choke. This implies that a low level controller must

be implemented to ensure pc is following the desired pc,re f . Two dif-

ferent approaches to this problem are explored in this thesis. Firstly, a

forward linearization describing the relation between the choke open-

ing, pressure and flow rate measured in real-time. Secondly, a PI con-

troller using the error pc,re f − pc to control the opening.

5.4.2 Choke Characteristics

To implement the forward linearization, it is necessary to describe the

relation between choke opening, flow rate and pressure drop. This

relation is for valves often approximated with the functional shown

in (27a) where pc and p0 is the pressure at the choke inlet and outlet,

respectively, and qc is the flow through the choke. G(u) is a strictly

increasing function know as the choke characteristics with the choke

opening u as input.

qc = G(u)

√
pc − p0

ρ
(27a)

G(u) = qc

√
ρ

pc − p0
(27b)

To approximate G(u) for the lab choke, it is necessary to measure

qc, pc and p0 for various choke openings. In the experiment performed

to gather necessary data, the choke opening is slowly ramped over a

desired operational area. The choke input is slowly ramped to ensure

steady conditions in the fluid without including unwanted dynam-

ics. During the experiment, the backpressure pump is constantly run-

ning on full, delivering approximately 31 l/min. The choke is slowly

closed from 90 to 40 degrees and then reopened to 90 degrees. The
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Figure 5: Choke characteristics

opening is not decreased below 40 degrees, to avoid exceeding the

safety pressure limits in the lab. G(u) is calculated using (27b) with

measured data C1, C2 and FT3 (see Figure 2 for experimental setup).

The data is filtered to remove measurement noise. Inspired by [2], the

pressures are filtered with 50
s+50 and the flow rates are filtered with

20
s+20 . Figure 5 shows G(u) calculated with measured data (red).

5.4.3 Forward Linearization

The forward linearization is shown in (28). To ease the implementa-

tion, the MATLAB function polyfit is applied to approximate G(u)

with linear functions. Shown in Figure 5, three intervals between 40

and 70 degrees are chosen for approximation of G(u). For most ex-

periments, the lab choke operates between 40 and 60 degrees, corre-

sponding to approximately 7.5 and 1.5 bar downhole. Below 40 de-

grees, pressure transients and steady-state pressures can potentially

increase above the determined pressure limit. Between 70 and 90

degrees, the choke is practically open and the pressure drop over

the choke can occasionally be negative due to measurement noise.

This effect will cause problems during computations and is therefore

avoided with a saturation-block with 70 degrees as upper limit. A lin-

ear approximations of G(u) can easily be inverted to obtain the for-

ward linearization (28). By replacing the choke pressure with a pres-
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sure reference pc,re f , the choke opening can be calculated and applied

as a forward controller (28), with qc and p0 measured in real-time.

u = G−1

(
qc

√
ρ

pc,re f − p0

)
(28)

The three approximated linear functions (29) are shown in Figure 5.

The controller is implemented with standard blocks in SIMULINK

and a tailor made function to automatically swap between the linear

approximations, according to the measured choke pressures at u = 50

and u = 60.

G(u) =


25.9u− 715.9 u ∈ [40, 50]

41.7u− 1513.7 u ∈ [50, 60]

90.1u− 4465.5 u ∈ [60, 70]

(29)

5.4.4 PI Choke Controller

The second alternative developed for controlling choke opening is a

simple PI controller, similar to the bottomhole controller developed

in Section 5.3. The controller calculates an output choke opening u

from the input e = pc,re f − pc. The implementation of the controller is

conducted with standard blocks in SIMULINK and the parameters ki

and kp are tuned by trial and error in lab experiments.

u = kpe + ki

∫ t

0
edt (30)

5.4.5 Tests in Lab

Both controllers are tested in lab with a step input pc,re f , similar to the

step test later performed on the downhole pressure controllers. The

desired set-point and measured choke pressure for the two alterna-

tives are shown in Figure 6 and Figure 7. The upper figure indicates

that the forward linearization do not to reach the desired choke pres-

sure. The PI choke controller is manually tuned during experiments,

two of which are shown in the lower figure. The effects of the varying

choke performances are shown with closed-loop experiments in the

following chapter.
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6
S I M U L AT I O N S A N D E X P E R I M E N T S

This chapter describes and presents both computer simulations and

experimental results from the IPT-Heave Lab. The basis for the sim-

ulated scenarios is introduced in the following section before sim-

ulations results are presented. The main part of this chapter is the

presentation of experimental results.

6.1 basis for simulations and experiments

The main scenario for the simulations is to ramp the downhole pres-

sure reference to increase the pressure set-point. This scenario is rele-

vant when the mud pump is ramped down and disconnected during

connections. Using MPD, the pressure formerly imposed by mud cir-

culation and friction can be compensated with the choke pressure

to maintain a desired bottomhole pressure (BHP). The experimen-

tal setup is designed for simulation of bottomhole heave disturbance

during connections and is therefore not configured to apply mud cir-

culation. The simulations are therefore conducted with zero flow rate

into the bottom of the well.

Simulation well IPT-Heave Lab

L 10.000 900 [m]

r 0.1 0.016 [m]

ρ 1420 998.2 [kg/m3]

ν 30 · 10−6 1.004 · 10−6 [Pa · s]

β 1.4 · 109 2.2 · 109 [Pa]

Table 1: Well bore and drilling fluid parameters for simulation and lab

29
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Figure 8: Computer simulation SIMULINK diagram

6.2 computer simulations

The computer simulations are performed with the MATLAB r2013a

SIMULINK toolbox on a Windows 7 computer. In the simulations, the

process is represented by a high order (24th) QP-model with physi-

cal parameters as shown in Table 1. The simulation parameters are

inspired by [1]. The QP-model is implemented using the derived

transfer functions (19) and converted to a LTI sys-object using the

ss-function. The sys-object can easily be implemented in SIMULINK

with standard blocks. The model used for controller implementation

is a low order (4th) QP-model with the same physical parameters.

6.2.1 Controlling BHP in Well Simulations

Figure 9 shows a ramping (2 bar/sec) of the downhole pressure set-

point, from 100 to 150 bar. The red line indicates the downhole pres-

sure controlled with LQG, based on a low order model. The blue

line indicates the downhole pressure controlled with the PI controller.

The upper figure is obtained using a 2.000 meters long well while the

lower is 10.000 meters long. For the short well, it takes about 40 sec

using LQG and 1 min 40 sec using the PI controller, to reach 150 bar.

For the longer well, it takes about 1 min 20 sec using LQG and 5 min

using the PI controller. This indicates that the performance of the

model based controller is improved for long wells, relatively to the

performance of the simple controller. The figure also indicates the in-

creased propagation time for longer wells, considering the downhole

pressure transient delay.
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Figure 9: Simulation of Pdh for a 2.000 m (upper) and a 10.000 m (lower) well.

The pressure is controlled with PI (blue) and LQR (red) controllers

6.2.2 Introducing Model Error

A model is not likely to exactly describe the original process. To inves-

tigate the performance of the LQG when the model deviates from the

process, the mud properties are modified to introduce model error.

The bulk modulus β is the most important property in determining

the transient response of a hydraulic system [14] and an important

aspect is the rapid decrease in the effective bulk modulus when only

a small amount of gas is entrained. In Figure 10 the effective bulk

modulus is reduced without tuning or adjusting the controller. Intro-

ducing a 50% error lead to significant oscillations when ramping the

pressure set-point, relative to the case of no or small model error. The

kinematic viscosity is another physical parameter which is difficult to

determine. In Figure 11, the effective kinematic viscosity is changed

with +/- 50% relatively to the model. The error affects the transient

response but do not significantly worsen the performance.
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Figure 10: Bulk modulus (β) test where the effective bulk modulus reduced

with 10, 25 and 50%
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Figure 11: Kinematic viscosity (ν) test where the effective kinematic viscos-

ity is changed +/- 50%
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6.3 experimental results

The experimental results are obtained using the IPT-Heave Lab intro-

duced in Chapter 3. In the computer simulations, the choke pressure

pc was assumed to perfectly follow the desired controller output refer-

ence pc,re f , i.e. the nonlinearities normally introduced by a choke was

neglected. To perform experiments, the dynamics of the choke must

be considered. In Section 5.4, two choke controllers were developed

with pc,re f and measurements as inputs, generating the correspond-

ing choke opening u. Both controllers are tested in cascade with the

downhole pressure controllers. The controller implementation is seen

in Figure 12.

6.3.1 Model Based BHP Controller

The following experimental results are obtained using the model based

downhole pressure controller, indicated with the red box in Figure 12.

The LQG is based on a 8th order QP-model with physical parameters

and drilling fluid properties listed in Table 1. The density, viscosity

and bulk modulus is based on listed properties for water at 20
◦C. The

length and radius of the copper pipe is found in [2].

6.3.1.1 Initial Tuning of LQG Weight Parameter

Figure 13 presents experiments with three different values for the

LQG input weight R and a step input on the reference from 3 to 6

bar. The experiments are conducted with the PI choke controller with

initial tuning parameters ki = 10 and kp = 5. An increasing weight R

implies less use of the output, resulting in a slower response. Using

R = 8 is considered to give a satisfying performance.

6.3.1.2 Experiment Using the Forward Linearization

In Figure 14 the PI controller in the previous experiment is replaced

with the forward linearization. Recall from Section 5.4.5 that the for-

ward linearization did not achieve the desired choke pressure pc,re f

but in closed-loop, the integral action in the LQG removes most of the

steady-state error. However, the transient response is not faster than

with the PI controller, and the dependence on measured flow and
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Figure 12: Controller implementation in lab interface
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Figure 13: Experiment with different weights on R
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Figure 14: Experiment using the forward lineatization

pressure results in a less robust controller with occasional steady-

state errors. The PI controller is preferred in the following experi-

ments.

6.3.1.3 Retuning the PI Choke Controller

The results from the LQG tuning motivated for further improvement

of the closed-loop performance, by adjusting the choke controller tun-

ing parameters. In Figure 15, the integral gain ki is adjusted while the

proportional gain kp is held constant. Reducing the integral gain to

2.5 improved the performance of the closed-loop controller. It was

further experimented to increase the integral action of the LQG, to

compensate for the reduced integral effect of the choke controller.

This attempt did not improving the performance. It was also experi-
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Figure 15: Retuning the PI choke controller

mented to increase the number of modes for the QP-model from 8th

to 16th order, without indicating improved performance.

6.3.1.4 Hydrostatic Feedforward Implementation

When the experimental lab is in steady-state, a pressure difference

between pdh and pc is measurable. This difference is due to the hydro-

static pressure ph = ρgh. In the previously conducted experiments,

this difference is neglected, implying that the integral action in the

controller compensates for the hydrostatic difference. In Figure 16,

this difference is implemented as a known disturbance with feedfor-

ward, by subtracting ph from controller input pdh and adding ph to

the controller output pc,re f . The figure shows that the known hydro-

static pressure in feedforward did not significantly improve the per-

formance of the transient response. The hydrostatic pressure is calcu-

lated with ph = pdh − pc when the lab is in steady-state.

6.3.2 Simple BHP Controller

The following experiments are conducted with the simple downhole

pressure controller developed in Section 5.3, indicated with the blue

box in Figure 12.

6.3.2.1 Tuning PI Controller

The PI controller was tuned by trial and error with repeating exper-

iments using different values on the integral and proportional gains.
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Figure 16: Compensating for hydrostatic pressure difference
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Figure 17: Experiments with different tuning Ki

The experiments shown in Figure 17 are conducted with Kp = 0.05

and three different values for Ki. The most satisfying performance is

considered to be obtained using Ki = 0.3, when emphasizing to reach

the desired set-point most effectively.

6.3.3 Comparing BHP Controllers

In Figure 18, the most satisfying performances of the two controllers

are compared. The figure indicates that both the LQG and the PI con-

troller reach the desired downhole pressure after approximately the

same delay. It could be justified to state that the LQG is closer to

reaching the desired set-point, when comparing the performances 5

seconds after the step input. However, it is possible that the differ-
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ence in performance could decrease with more accurate tuning. The

corresponding choke pressure and choke pressure reference from the

downhole controllers, is shown in Figure 19. The figure indicates an

error for both controllers, possibly affecting the closed-loop perfor-

mances.
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Figure 18: Comparing BHP controllers
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Figure 19: Comparing choke performance for LQG and PI
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D I S C U S S I O N

The main objective of this thesis was to design a model based con-

troller for controlling the downhole pressure in a well, based on

the discretization method presented in Mäkinen et al. [17]. A model

based LQG controller was implemented and compared to the well-

known PI controller in simulations and in experiments performed in a

lab. In simulations, the LQG controller reached the desired downhole

set-point ahead of the PI controller. However, experimental results

from the IPT-Heave Lab did not show the same significant advantage

using the model based controller, relative to the simpler controller.

Different factors could singlehandedly or in combination affect the

results found in the performed simulations and experiments. One

possible source of error affecting downhole controller lab performance

is the behavior of the choke. As shown in Section 5.4.5, the choke was

difficult to control for efficiently achieving pc = pc,re f . The PI con-

troller oscillated 0.5 bar from the reference and the forward lineariza-

tion did not achieve the desired choke pressure. The oscillations could

partly be caused by measurement noise. As seen in Figure 7, the pres-

sure oscillations are slightly reduced at lower pressures, with a larger

choke opening giving decreased turbulence in the flow at the choke

outlet. Integral action in the downhole controller could potentially

compensate for the steady-state error caused by the choke, neverthe-

less, the closed-loop performance indicated that the choke controller

did not operate as well as intended. Figure 15 highlights the impacts

related to choke tuning and Figure 19 display the difference between

the outputs from the BHP controlles and the respective measured

choke pressures, indicating a deviation possibly affecting the BHP

controller performances.

The IPT-Heave Lab used for experiments in this thesis is only 900

meters long. As shown with simulations, increasing the length of the

well from 2.000 to 10.000 meters, significantly improved the LQG per-

formance, relative to the PI controller. This probably implies that the

design of the experimental lab makes it difficult to demonstrate the
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advantages of introducing a controller based on a discretized two-

dimensional viscous compressible model.

In computer simulations, the system used to simulate the well was

based on the same QP-model, used to develop the LQG controller.

The well was modeled with a 24th order model while the LQG was

based on a 4th order system. When applied to a experimental setup,

the model will most probably differ from the process. Considering

this, the simulation performance of the LQG probably differ further

from an expected experimental performance, than the PI controller.

However, for small model errors, simulations indicated that the LQG

performance remained preferable, relatively to the PI controller.

The basis for the control methods applied during this thesis have

been according the current practice, with a low level controller to ad-

just the choke to the correct pressure, and a higher level controller to

determine the choke pressure set-point. To apply this cascade connec-

tion, it is critical that the lower level controller is faster than the higher

level. Another possible approach to control the downhole pressure in

the lab could have been to linearize the choke and merge this with the

transmission line model, developing a model based controller with

choke opening as output. Whether this method is practically feasible

to implement and results in a more satisfying performance, can only

be considered as speculations.



8
C O N C L U S I O N

In this master’s thesis, a modal method was applied to discrete a

two-dimensional viscous compressible model. The discretized model

formed the basis for a model based controller, developed for fast

pressure control using managed pressure drilling. A model based

LQR controller was designed and compared to the well-known PI

controller in simulations and experiments.

Simulations indicated that the model based controller stabilized

the downhole pressure at the desired set-point, more efficiently than

what could be achieved with the PI controller. The LQG performance

was further improved when increasing the length of the well, relative

to the PI controller. Experiments were performed on a tailor made lab

setup known as IPT-Heave Lab. The results from these experiments

indicated that the LQG controller was close to reach the set-point be-

fore the PI controller but both controllers stabilized at about the same

time. In other words, the results did not indicate the same advantage

by using the model based controller, as achieved with simulations.

The experimental lab used during this thesis is concluded to be in-

adequate to demonstrate any significant advantages of introducing a

discrete two-dimensional distributed parameters model for controller

design. The length of the copper pipe in lab is assumed to be too

short, to show any prominent strengths of the model based controller

and corresponding weaknesses of the PI controller. As further work,

it could therefore be suggested to apply the controller based on the

two-dimensional model on a larger scale experimental lab. However,

large scale installations are normally very costly, and for the time

being, no such facility is available at NTNU.
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