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Background 

In drilling operations performed in the oil and gas industry it is important to control pressure in the open section of the 

hole by adjusting drilling mud flow and annular back pressure. Drilling mud is used primarily for removing cuttings from 

the well. It is injected at high pressure at the top of the drill string. At the end of the drill string, called the drilling bit, the 

drilling mud gets into the annulus and then rises together with cuttings up to the surface. At the surface, the cuttings are 

separated from the mud and the cleaned mud is reinjected into the drill string for further circulation. Apart from removing 

cuttings from the well, drilling mud is also needed for pressurizing the well. If the pressure in the well is too low, the 

pressure of the surrounding rock formation can make the well collapse, trapping the drill string. At the same time, if the 

pressure exceeds a certain threshold, it may fracture the well leading to costly consequences. 

In underbalanced drilling, the target pressure is slightly below the reservoir pore pressure, allowing for influx of gas from 

the reservoir while drilling. The drawback of drilling underbalanced is the need for equipment on the rig to handle the gas, 

while the advantage is that the method avoids clogging reservoir pores with drilling mud and cuttings. The result is a well 

that produces at higher rates than if drilled conventionally (over-balanced). The objective of this work is to develop 

automatic control algorithms for pressure/influx control during underbalanced drilling. The following points should be 

addressed by the student: 

 

Tasks: 

 

1) Review literature on underbalanced drilling, and particularly on any available automated 

systems. 

2) Set up a simulation framework for simulating an underbalanced drilling operation. Consider 

methods for obtaining simple models that can be used for control design. 

3) Based on the modelling work, design control algorithms that can be used while drilling ahead 

and during pipe connections. 

4) Use the simulation framework to test your control algorithms and demonstrate their 

performance. 

5) Write a report. 

 

Supervisor: Professor Ole Morten Aamo 

- 





Abstract

Oil reservoirs can be sensitive to unfamiliar fluids such as drilling fluids. In order to

prevent fluids to enter the formations surrounding the well, the well pressure can be

lowered below the reservoir pressure, called underbalanced drilling. This technique

calls for injecting of gas into the mud to lower the pressure, with additional inflow

of oil and gas to the well as a result. This thesis evaluates current modelling of two-

phase flow related to underbalanced drilling, and possible simplifications. Through

investigation of simulation data, the current modelling based on first principles,

is considered too complex compared to data of the key dynamics. To simplify

the modelling, a black box system identification approach is used. By identifying

solely from simulation data, low order models with good fit to validation data are

obtained. Through testing, the models’ validity are tested, and it is concluded that

a number of simple models will be needed to represent the whole system given by

the simulator. Models with specific orders are tested at different set points, and

one model order produces good accuracy at all the operating points tested. This

model is likely to be able to accurately represent the whole system with updated

parameters.

The accuracy of the simple models identified reveals simple system dynamics, and

a PI controller is considered to be sufficient. The models are being used to tune the

controller, and the controller perform great on set point changes. In addition, the

controller is tested with an emulated connection, with satisfactory performance.

iii





Sammendrag

Oljereservoarer kan være sensitive for fremmede væsker som for eksempel borevæsker.

For å hindre at væsker trenger inn i formasjonene rundt brønnen må trykket i

brønnen senkes under trykket i reservoaret, kalt underbalansert boring. For å

muliggjøre denne teknikken kan gass bli injesert i borevæska for å senke trykket,

med innflyt av ytterligere gass og olje fra reservoaret som resultat. Denne oppgaven

vurderer n̊aværende modellering av to-fase strømning relatert til underbalansert

boring og mulige forenklinger. Studering av simuleringsdata avslører at model-

leringen basert p̊a fysiske prinsipper kan være unødvendig kompleks, i forhold til

den viktigste dynamikken i systemet. For å forenkle modelleringen blir en ”svart

boks” identifikasjonstilnærming valgt. Ved å utelukkende bruke simuleringsdata

blir enkle og presise modeller identifisert. Modellenes gyldighet blir testet og

det blir konkludert med at et antall enkle modeller trengs for å representere hele

systemet gitt av simulatoren. Modeller med gitt orden blir testet p̊a forskjellige

arbeidspunkt og en enkelt modellorden viser seg å være nøyaktig p̊a alle punktene

med oppdaterte parametere. Denne modellordenen kan sannsynligvis bli brukt

til å representere hele systemet med oppdaterte parametere. Nøyaktigheten til

de enkle modellene som er identifisert avslører enkel systemdynamikk, og en PI

regulator er vurdert til å være god nok. Modellene blir brukt til å stille inn reg-

ulatorparameterne før den suksessfullt blir testet p̊a forandringer i arbeidspunkt.

I tillegg blir regulatoren testet p̊a en emulert forlengelse av drillstrengen, med

brukbart resultat.
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Chapter 1

Introduction

1.1 Motivation

Conventional drilling is today considered to be drilling with higher pressure in the

well than the reservoir. This overbalanced pressure can lead to a loss of drilling

fluids to the surrounding formations. Large losses of mud will fill up the formations

close the the well, and significant resources have to be used to clean up the well

before production can start. What once were easy accessible oil and gas, can get

inaccessible with this technique.

A solution to this problem is to drill with lower pressure than surrounding for-

mations. This is called underbalanced drilling (UBD) and leads to an inflow from

the surrounding formations, rather than an outflow of mud. This inflow of oil and

gas is considered a ”kick” during overbalanced drilling, and can cause a ”blowout”

if not kept under control. A solution to this problem is currently to dimension

the equipment on the rig to handle whatever comes up from the well, rather than

using control tools actively to prevent flow and pressure to escalate. Due to this

approach, underbalanced drilling is often considered unsophisticated. This the-

sis aims to identify simple models of the drilling process. With the knowledge of

structure and complexity of the system, suitable control methods can be developed

making the drilling process more sophisticated.

1
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1.2 Scope

Current modelling of two-phase flow is advanced and too complex to use as a base

when developing control methods. Simplifying current models such as the drift flux

model or identifying new models from scratch, enables for simple control methods

to be developed. This thesis will mainly focus on the system identification part,

with some additional testing of simple controllers.

1.3 Problem Description

1. Review literature on underbalanced drilling, and particularly on any avail-

able automated systems.

2. Set up a simulation framework for simulating an underbalanced drilling op-

eration. Consider methods for obtaining simple models that can be used for

control design.

3. Based on the modelling work, design control algorithms that can be used

while drilling ahead and during pipe connections.

4. Use the simulation framework to test your control algorithms and demon-

strate their performance.

5. Write a report.

1.4 Outline

This thesis is divided into six chapters. Following this introduction with motivation

and problem description, chapter 2 comes, which is about drilling. The chapter

aims to give necessary background information about different drilling techniques

and main challenges related to this work. Chapter 3 summarizes the popular

drift-flux model used to model two-phase flow systems, such as an underbalanced
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well. A simplified model is also mentioned, before further modelling options are

discussed. Chapter 4 starts with a brief introduction to system identification

techniques, relevant data from the drilling process and Matlab tools, before the

systems are identified and tested. Chapter 5 gives a short introduction to PID

controllers, before a controller is tested at the system. Following is the concluding

discussions and suggestions for further work in chapter 6. Appendix A lists the

attached Matlab files and data sets together with their purpose.





Chapter 2

Underbalanced Drilling

2.1 Conventional Drilling

Conventional drilling is today considered to be drilling with higher pressure in

the well than the surrounding formations (overbalanced). The well pressure is

obtained by sending mud with a certain density and volume flow down the pipe to

clean out cuttings and stabilizing the walls. By making sure this mud pressure is

higher than the pressure from the surrounding formations, the risk of inflow into

the well is reduced. In overbalanced drilling, sudden inflow from the formations is

called ”kicks” and can lead to a dramatic increase in well pressure, which is the

beginning of ”blowouts” if not handled properly. The simplicity and safety are

the main reasons this technique today is widely used both onshore and offshore.

There are however some related issues.

2.1.1 Mud Loss

When drilling with higher well than formation pressure, some of the mud will flow

into the formation rather than up the annulus to be reused. This is called mud

loss, and will cause a drop in the well pressure if not handled correctly by the

operators. Some reservoirs seem to absorb endless amounts of drilling fluid, and

5
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the drilling has to stop until well circulation resumes. To avoid abandoning the

well, the solution is often to pump down large amounts of mud until a ”mud-cake”

is formed which blocks further leakage. [1]

2.1.2 Formation Damage

With low formation pressure the mud can start to make new ways through the

formations and react with certain substances. For instance, sand with high content

of mud will react with fresh water based drilling fluids and cause swelling up to

500%. In addition to expansion of the sands, the different reactions can reduce

the permeability of the formations, which make the oil and gas harder to extract.

The damage caused by both the mud loss and the formation damages, makes it

difficult to access the oil and gas, and a ”clean up” is required before the production

can start. Both the mud loss and the clean up cause production delays and reduce

the profit of the operation. [1]

2.1.3 Differential Sticking

Since the formation pressure is lower than the well pressure, there is a risk that

the drill string will get stuck in contact with the wall of the well. This makes it

impossible to rotate or move the string and is considered to be the greatest drilling

problem in terms of time and cost. Millions of pounds of force may be needed to

remove the pipe by brute force, and it often proves impossible. Another solution is

to lower the mud density, thus lower the well pressure. The reduced pressure will

cause less outflow of mud to the surrounding formations, which will help release

the pipe. If none of the mentioned solutions work, a ”fishing” company, which is

specialized in retrieving stuck/lost equipment, will apply more advanced methods

to solve the problem. [1]
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2.2 Managed Pressure Drilling

In a normal drilling well, the mud flow or density has to be adjusted in order to

control the well pressure. Both adjustments are often too slow and limited if a

sudden rise of pressure (kick) should occur. Instead, there is a principle called

managed pressure drilling (MPD) which main control tool is a choke at the outlet

of annulus. By controlling the outflow, the choke can close if the pressure drop,

and vice versa. There are two main MPD techniques:

• Reactive MPD

• Proactive MPD

The reactive MPD reacts on measured kicks in the well and will try to stabilize

the pressure. It is the easiest method and can be applied at drilling operations

not intentionally designed for MPD. The proactive MPD will use measurements

to predict potential kicks and eliminate them before any damage can occur. This

method is more sophisticated and requires good planning ahead of the drilling

operation in addition to accurate measurements and estimations, but will provide

better control of the well pressure. [2]

2.3 Underbalanced Drilling

A remedy for many of the problems related to conventional drilling is to use MPD

techniques together with a lower well pressure. Instead of pressurising the well

like conventional overbalanced drilling, the pressure is maintained under formation

pore pressure. This can be achieved by using a lower density drilling fluid, often

with gas injected, such that the weight of the mud decrease. The lower pressure

will cause inflow of reservoir fluids and gas to the well during the drilling process.
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2.4 Benefits

Both the reservoir and the drilling process itself benefits from maintaining a lower

well pressure than formation pore pressure.

2.4.1 Reduced Mudloss and Formation Damage

By maintaining underbalanced well pressure, the drilling fluids will rather flow in

the annulus than into the formations. The better control of the drilling fluids will

also prevent penetration of the formations. The lack of mud cakes and fluid loss

decrease the need for time consuming ”clean-up” of the well. By avoiding foreign

fluids into the formations, the permeability will be kept at the natural level, which

will result in greater utilization of the well.

In operations, it is proven that applying underbalanced drilling increases the uti-

lization of the reservoir up to eight times. [3]

2.4.2 No Differential Sticking

With a continuous inflow to the well, the drill string will be pushed away from

the well wall. The pipe will drift away from the areas with highest inflow, but

never get stuck in the same way as with conventional drilling. Differential sticking

is considered to be a major problem in drilling, and great cost savings can be

obtained by reducing down-time. [1]

2.4.3 Increased Rate of Penetration

The drill bit is mounted at the end of the drill string and is responsible for the

actual drilling at the bottom of the well. When the bit becomes worn, the whole

drill string have to be pulled out in order to change it. By lowering the pressure in

the well, the bit will meet less resistance and the rate of penetration (ROP) will
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increase in addition to reduce wear and tear. Both the increased ROP and the

longer time between change of drill bits contribute to make the drilling process

more efficient. [1]

2.4.4 Location of Productive Zones

A variety of tools can be used to measure both flow and pressure in different parts

of the drilling process. By interpreting when the inflow is greatest, it is possible

to locate the productive zones and retrieve helpful information to the production

stage. If it is a horizontal directional drilling (HDD) process, these measurements

can also be used as guidance and lead to a more productive well.

2.5 Challenges

The inflow of oil and gas into the well poses some challenges to both equipment

and control methods.

In conventional overbalanced drilling, inflow to the well from the formations is con-

sidered to be a kick and may in the worst case lead to a blowout. Underbalanced

drilling will operate with kicks and unpredictable well pressure continuously. The

solution to this problem is often to dimension the equipment on the rig to with-

stand greater pressure than the potential pressure in the reservoir. This approach

can work fine with predictable low pressure reservoirs, but that is not always the

reality. The current equipment are getting stronger each year, but guaranteeing it

to be strong enough to handle the reservoirs is a big challenge.

Another challenge is offshore rigs with limited space. Equipment that is developed

to handle great pressure, often gets large and heavy. This is no problem in land-

based operations with unlimited space, but on an offshore rig, the equipment has

to be scaled down in order to fit. This clearly restricts which reservoirs to drill

underbalanced offshore. A solution to this problem is to apply control methods

that limits the well pressure within certain limits.
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2.6 Control

The main focus in underbalanced drilling is to keep the well pressure lower than

formation pore pressure. This limit has to be kept strictly since even short periods

of time over this limit can affect the reservoir dramatically.

When it comes to a lower well pressure limit, there are several factors that need

to be considered. The most important is the functionality of the mud itself. A

certain flow is needed in order to clean out the cuttings from the drill bit. This flow

corresponds to a certain pressure which is a strict lower limit. Another concern

is the reservoir collapse pressure, which is the lower pressure needed to keep the

well wall stable. Both the pressure needed to clean out the well and the collapse

pressure, pose as strict lower pressure limits.

2.6.1 Control Target

Upper and lower boundaries are clearly defined, but there are different strategies

for a control set point between these limits.

One approach can be to set the target right in between them in order to maximize

the buffer in case of fluctuations while drilling. This approach is the safest when

it comes to not breaking the boundaries, but simultaneously is the well likely to

produce significant amounts of oil and gas. The returnings from the well have to

be separated in order for the mud to be reused. To avoid environmental pollution,

the resulting oil and gas have to stay within the capacity of what the drilling rig

can handle.

A way to reduce this production is to set the target pressure closer to the reservoir

pressure, without breaking the limit. This approach will, however, leave a smaller

buffer for fluctuations in the well pressure. As a result, the capacity of the topside

equipment has to be taken into consideration when controlling the well. The

pressure target has to be set as far away from the strict boundaries as possible,
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while still manage to set corresponding production below the handling limit of the

equipment.

2.6.2 Tools

Underbalanced drilling use the same basic tools as MPD and conventional drilling.

In addition, there are some equipment needed to handle the production and two-

phase flow.

Mud

The mud has to be adapted to the characteristics of the reservoir and the current

depth of the well. In order to decrease the well pressure, the mud has to be

lightened. This can be done by injecting gas into the original mud, or using foam

or soap mixtures. If the need for higher bottom hole pressure arises, it is possible

to reduce the amount of gas, or using a single phase liquid mud. Typical mud

density range is from near zero to 700 kg
m3 . In addition to mud density, rate of flow

can also be adjusted to alter the pressure and cleaning properties down hole. [1]

Choke

The choke is introduced in section 2.2. In UBD, the pressure will fluctuate and

choke is used actively as the main control tool to keep the pressure within the

limits.

Rotating Control Head and Separator

The mud, including produced fluids and gas, needs to be separated from the rig

floor on the return up to the surface. A rotating control head (RCH) acts as a

seal on the surface, while still letting the drill string rotate. When the fluids pass

the rotating head, they will flow into a separator which will remove cuttings, and
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separate the different fluids and gas. When separated, the mud will be recycled

and sent down the drill string again.

2.6.3 Non-Intuitive Response

A well drilled with overbalanced pressure and single phase mud, can be controlled

with relative simple MPD techniques. With no inflow from the formations and

negligible compressibility, the well pressure will behave in a straightforward way

when applying a control move.

However, with underbalanced well pressure and two-phase liquids, the response

from a control move can be more complex. The bottomhole pressure is given by:

BHCP = WHP + F +G (2.1)

where BHCP is bottom hole circulating pressure, WHP is well head platform,

F is fluid friction and G is the hydrostatic pressure which depends linearly on the

fluid density ρ.

With gas inflow to the well, the fluid density ρ will decrease. In the same way the

fluid friction F will increase, but not with the same rate as the fluid density. The

friction will increase depending on the amount of gas already in the system, and it

can both over and under compensate for the decrease in fluid density. Depending

on the state of the well, a specific change of the choke opening can cause both a

pressure rise or fall. More specifically, the well will move into the non-intuitive

regime when approaching overbalanced pressure and the BHCP is greater than

the WHP.

As a result, the control algorithm needs to take into account the state of the

system before making a control move. Trying to control the system without this

knowledge can cause instability. [4]
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2.7 Instrumentation

Good control methods need accurate measurements to perform properly. The

instrumentation technology is in rapid development and new data get available

for control methods.

2.7.1 Topside Measurements

The rig handles both the fluids that go down the drillstring, and what comes in

return. Even though it is a tough environment and good instrumentation can

be a challenge, it is assumed that good measurements can be obtained from all

processes topside. The most relevant data for control purposes are listed below.

• Pump rate

• Choke opening

• Well Head Pressure

• Choke outlet pressure

• Choke flow

• Fraction of gas and liquid through choke

2.7.2 Downhole Measurements

New technology are being tested and well measurements are starting to become

available for control purposes. The most commonly used measurement technology

is mud-pulse telemetry which send the measurements binary as pulses in the mud

in the drill string. This technique is relatively accurate, but the delay makes it

too slow for control purposes.

A newer and faster technology is a principle called wireline. The downhole in-

formation is sent up to the surface through wires built in all the equipment and
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drill pipes, which offer high bandwith and fast response. Due to some reliability

issues however, control systems have not yet been able to solely be supported by

measurements from this technique. For simplicity and despite the fact that the

instrumentation technology is not functioning properly yet, we assume that the

following downhole measurements are available.

• BHCP

• Flow in annulus

2.8 Applications

Most of the easy accessible reservoirs today are drilled with overbalanced drilling

techniques. As these reservoirs are being emptied, new and more difficult reservoirs

have to be opened in order to maintain a steady production. Many of these

reservoirs are filled with tight gas, where the gas is trapped in rock pores with low

permeability. Overbalanced drilling will in these reservoirs isolate the gas further

with mud, and decrease the potential production. Underbalanced drilling will

on the other hand maintain the permeability and locate the areas with greatest

potential for successful production.

Another key element is the development of tougher equipment. Reservoirs other-

wise well suited for underbalanced pressure, often have to be drilled overbalanced

due to reservoir pressure greater than what current equipment can handle. Rotat-

ing heads with working pressure over 14 000 kPa opens up a wider range of depths

and formations [5].

The need for new reservoirs, tighter economical margins and the development of

tougher equipment have all led to an increasing share of underbalanced drilled

wells. In North America, 25% of the new wells drilled use elements from this

technique and great results have been reported [5]. Wells in Mexico, Texas and

Libya states that circulation loss and formation damage were reduced, differential
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sticking was prevented, a decreased number of drilling bits were used and increased

rate of penetration [1]. In addition, Shell states that the production have improved

up to 800% compared to overbalanced drilled wells [3].

Offshore drilling meets the same basic challenges as landbased underbalanced

drilling operations, but with added complexity due to the often deeper wells and

limited rig area. Despite the added complexity, hundreds of wells have been drilled

offshore with the same tools and elements as onshore underbalanced drilling [6].





Chapter 3

Modelling

In order to lower pressure sufficiently to obtain underbalanced pressure, the mud

can be mixed with gas. In addition, the lower pressure can cause inflow of gas to

annulus. These effects both cause dynamic two-phase flow properties which are

difficult to model accurately. To make suitable control algorithms, good knowledge

of the structure of the system is needed. Evje [7] and Aarsnes [8] have used the

popular, already simplified Drift-Flux model as a base, and made some further

simplifications. The following sections will summarize their work.

3.1 Original Two-Phase Flow Modelling

Modelling of compressible gas-liquid wellbore and porous media two-phase flow

are used as a basis to a simplified model.

3.1.1 Drift-Flux Model

The drift flux model simplify the modelling of two-phase flow by considering the

mixture as one, rather than the phases separately. The assumptions made in

the simplifications cause some key characteristics of two-phased flow to be lost,

but years of testing have proved it accurate enough for many applications. The

17
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model is best suited for mixtures where the fluid and gas are closely coupled,

relative to the dimensions of the system. Large dimension systems, such as oil

wells, will increase the components interaction times, and therefore justify weaker

coupled mixtures. The result of the simplification is a system consisting of energy

equations, mixture continuity, momentum and gas continuity. [9]

Evje [7] states a one-dimensional transient drift flux model the following way

∂αgρg
∂t

+
∂αgρgvg
∂x

= 0 (3.1)

∂αlρl
∂t

+
∂αlρlvl
∂x

= 0 (3.2)

∂αgρgvg + αlρlvl
∂t

+
∂αgρgv

2
g + αlρlv

2
l + P

∂x
= q (3.3)

where ρl, ρg and vl, vg are density and velocity respectively for the liquid and

gas components. The volume fractions αl and αg are given in the same way and

satisfies αl+αg = 1. P is the common pressure for liquid and gas and q represents

external forces.

The relations between density and pressure are stated as

ρl = ρl,0 +
P − p0
a2l

(3.4)

ρq =
P

a2g
(3.5)

where al and ag represent the speed of sound through the liquid and gas, while

ρl,0 and p0 are characteristic values for the liquid.

Finally, a simple slip relation can be given as

ug = c0vM + c1 (3.6)

where c0 is the distribution parameter and c1 is the drift velocity.
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Due to strong nonlinearities and some challenges related to transitions to single

phase regions, this model is difficult to solve and implement. By analysing the

mechanisms of the model, it is possible to make further simplifications.

3.1.2 Two-Phase Porous Media Flow

The Buckley-Leverett method successfully find the analytical solution for one-

dimensional porous two-phase flow, such as water and oil. It is well suited for

describing forced injection of one fluid to displace another immiscible and incom-

pressible fluid. The Buckley-Leverett equation is given

st + f(s)x = 0 (3.7)

where f(s) is the fractional flow function and s is water saturation. When a

strongly wetting fluid displaces a nonwetting fluid spontaneously under influence

of capillary forces, the flow can be described by the nonlinear diffusion equation

st =
(
a(s)J(s)x

)
x

(3.8)

where J(s) is related to the capillary pressure and a(s) is nonlinear function de-

pending on the fluid and rock properties of the porous formations. [7]

3.2 Reduced Drift-Flux Model

The reduced drift flux model aims to bring together the functionality of the original

drift flux model in equations 3.1 - 3.3 and the simplicity of the Buckley-Leverett

model in equation 3.7 and 3.8. This section will summarize the final modelling as

stated by Aarsnes [8].
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The drift flux model is now given by

∂αgρg
∂t

+
∂αgρgvg
∂s

= 0 (3.9)

∂αlρl
∂t

+
∂αlρlvl
∂s

= 0 (3.10)

∂P

∂s
= −αlρlg sin(φ(s))− Fvm (3.11)

which can be rewritten with the mass variables m = αlρl and n = αgρg as

∂n

∂t
+
∂nvg
∂s

= 0 (3.12)

∂m

∂t
+
∂mvl
∂s

= 0 (3.13)

∂P

∂s
= −mg sin(φ(s))− Fvm. (3.14)

The closure relations are given as

F = f(αgµg + αlµl) (3.15)

vm = αgvg + αlvl (3.16)

vg = c0vm + v∞ (3.17)

where µg and µl are viscosity for the gas and liquid respectively. The slip pa-

rameters c0 and v∞ must be state dependent to allow for transitions to one phase

flow

c0(αg) =

 1 +
K−(K−1)αr

g−1
α∗
g

αg if 0 ≤ αg ≤ α∗g

K − (K − 1)αrg if α∗g ≤ αg ≤ 1
(3.18)

v∞(αg) = (1− αg)s = αls (3.19)

while the liquid and gas phase are compressible
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ρl = ρl,0 +
P − p0
a2l

(3.20)

ρg =
P

a2g
(3.21)

such that the pressure law becomes

P (n,m) =
a2l
2

(
−B(m,n) +

√
B(m,n)2 + 4

a2g
a2l
C(n)

)
(3.22)

B(m,n) =

(
ρl,0 −

p0
a2l

)
−
a2g
a2l
n−m (3.23)

C(n) = n

(
ρl,0 −

p0
a2l

)
(3.24)

where ρl,0, p0,al and ag depend on the compressibility and density of the gas and

fluid.

3.2.1 Boundaries

In addition, the downhole boundary conditions are depending on the mud and

produced fluids/gas

Amvl|x=0 = kl max
(
Pres − P (0), 0

)
+Wl, inj (3.25)

Amvg|x=0 = kg max
(
Pres − P (0), 0

)
+Wg, inj (3.26)

where A is the cross sectional flow area, kl and kg are production rates for liquid

and gas respectively, and Pres is reservoir pressure. A choke equation relating

topside pressure to mass flow rates represents the topside boundary condition

A [mvl + nvg] |x=l = Cv(z)

√
P (l)− Ps
m√
ρl

+ n
Y
√
ρg

(3.27)
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where Cv(z) is the choke opening and Y is correction factor for gas flow.

3.3 Further Modelling

The already simplified drift-flux model has now been further simplified to the

reduced drift flux model in section 3.2. However, the model is still complex and

does not give any clear signals about the response from possible control moves to

well properties. As further mathematical reduction is likely to impact the accuracy

and create limitations, it is decided to look into alternative modelling options.



Chapter 4

System identification

Despite the fact that the modelling of two-phase flow is complex and difficult

to simplify enough for control purposes, the modelling can be implemented as a

simulator. Instead of trying to simplify the modelling in chapter 3 further, there

are methods that utilize the fact that good simulation data can be obtained. This

chapter will look into methods used for identifying systems partially or solely from

simulation data.

4.1 Simulator

In order to produce rich data sets, a simulator has to be developed. Frameworks

such as Olga 1 and WeMod 2 are based on advanced modelling and will produce

the most accurate results if correctly implemented. They are however advanced

programs, and require good knowledge of the properties of wells with certain

dimensions.

Another approach is to use current modelling, such as the reduced drift flux model

in chapter 3. Aarsnes [8] has implemented the model in section 3.2 with boundary

conditions corresponding to an underbalanced drilling process and specifications

1Drilling simulator framework owned by Schlumberger Information Solutions(SPT)
2Drilling simulator developed by the International Research Institute of Stavanger (IRIS)

23
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Property Parameter name Value z

Length p.L 2530 [m]

Casing diameter p.Dc 0.1548 [m]

Pipe outer diameter p.Dp 0.0889 [m]

Gravitational constant p.g 9.81 [m
s2

]

Table 4.1: The key specifications of the well used in the simulator.

as shown in table 4.1. Although not tested thoroughly for every scenario, it works

satisfactory for normal operating modes and is used as a base when producing

data.

4.2 Identification Technique

The identification process can use existing modelling as a base together with the

simulation data, or identify new models from scratch.

4.2.1 White Box

White box modelling is based on physical laws and principles. These principles

are known as ”first principles”, and can for instance be given as energy equations.

Physical systems identified with this method often get complex and not well suited

for getting an overview of the system dynamics. The modelling in chapter 3 is

trying to simplify a model based on first principles, but the result is still too

complex.

4.2.2 Grey Box

Grey box modelling is based partly or completely on first principles from white

box modelling. There are however a set of free parameters or some structure that

need to be identified from system data.
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Unknown “Black Box” 
system

Input Output

Figure 4.1: The basic ”black box” system identification principle.

4.2.3 Black Box

Black box system identification, shown in figure 4.1, utilizes the fact that good

process data can be obtained from a simulator. By selecting a model structure

likely to fit the system, all parameters are identified solely from process data. The

models are optimized by choosing a basic model structure and preferred input/out-

put data from the simulator, and with the help from basic system identification

tools, minimize the deviation between the new model and the data.

It is expected that the underbalanced drilling process is a slow system. Further

investigations, see figure 4.11, also reveal a relative simple response from possible

control moves to well properties. First principles are likely to result in more

advanced models than necessary, thus it is decided to use a black box approach in

the further work.

4.3 Model Data

All data will be generated by the simulator in section 4.1. Since the theoretical

model in the simulator can provide all possible data, some real life restrictions

apply as stated in section 2.7. In addition, a selection of data have to be selected

in order to only include the key dynamics of the system. Since the identified

model will be made for control purposes, a correlation between well properties

and possible control moves will be investigated.
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4.3.1 Output

The target for the controller is to keep the well pressure within the limits described

in section 2.6.1. Section 2.7 states two possible downhole measurements, but

BHCP will be chosen since the control target is pressure.

4.3.2 Input

The input signal needs to clearly affect the output signal and be able to be persis-

tent excitated(PE). A PE signal has to be rich enough to make sure the identified

model is unique and represent the actual physical system. Lack of PE can cause

the identified system to come up with a correct response for some inputs, but give

incorrect response when other inputs are being applied.

Both the properties of the mud flow and the choke are considered as control tools

in section 2.6. Density and rate of mud is a slow control tool, and is not used

actively to control the well under normal operating modes. If the well pressure

becomes overbalanced however, decreasing the mud density can be the only way

to get it back to an underbalanced state. By avoiding increasing the pressure to

overbalanced state 3, the mud properties are not needed as control tools in this

case.

The choke is able to react rapidly to pressure alterations with great impact, and

is therefore considered to be the only control tool. Note that other inputs and

outputs could be selected by using a multiple input/multiple output (MIMO)

approach. This approach is more relevant for more advanced control methods

with a bigger demand for model data, and will hence not be used in this work.

Two-phase flow through a choke is given by equation 3.27 and shows that there are

nonlinearities between the choke opening and well behaviour. This behaviour is

caused by the fact that a certain increase in choke opening will have greater effect

3The simulator case becomes overbalanced with a pressure greater than about 293 ∗ 105Pa,
corresponding to the steady state obtained by a choke opening under 6.5%
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f(u) Unknown 
system

BHCPu z

New “Black box” system

Figure 4.2: New ”black box” system with variable change

with small initial choke opening, than with a big initial opening. Using choke

opening as input to the system identification will therefore introduce unnecessary

complexity to the system and should be avoided. Using choke pressure (WHP) as

input will remove the nonlinearity, but also introduce new complexity. By setting

a certain WHP, a controller is needed to set the corresponding choke opening.

When trying to control the well, this WHP controller has to be used actively to

set choke openings and is likely to increase run time and introduce error to the

system.

A remedy for this problem is to introduce a new linear input u which will produce

linear steady states of BHCP. The choke opening z will then be given as a nonlinear

function of u

z = f(u) (4.1)

such that the system identification will have the form shown in figure 4.2. The

input u will then function as choke opening z, just corrected for the nonlinearity.

Figure 4.3 and 4.4 show how linear steps on the choke opening z cause nonlinearties

at the output BHCP. The selected steady state values of the BHCP can be used

to produce simple polynomials by using the Matlab command ”polyfit”. Both the

selected values and the resulting models are shown in figure 4.4 which indicate

both a reasonable order and form of the function f needed to make the response

linear. A physical interpretation makes it clear that the function needs to produce

small steps at small initial choke opening, and then increase the steps as the choke

opening gets larger.
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Figure 4.3: Shows 1% increase in choke opening every 10000 second. Note
that the starting value is greater than 6.5% in order to avoid overbalanced well

pressure.

Both 2nd and 3rd order polynomials are satisfactory, but since the resulting models

are likely to be working within narrower areas in pressure than the simulation in

figure 4.4, a 2nd degree polynomial is selected.

With the knowledge of form and degree of the nonlinearity, a set of choke openings

likely to give a linear BHCP response was chosen. The data were tuned through

several simulations to give the most linear response. The function f in equation

4.2 was then found by using a simple polynomial fit to the choke data, with result

shown in figure 4.5 and 4.6.

z = f(u) = 1.75 ∗ 10−7u2 + 1.75 ∗ 10−5u+ 0.0665 (4.2)

As mentioned in this section, the choke opening has to be greater than 6.5%

in order to keep the well underbalanced. Once underbalanced, the well will not
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Figure 4.4: The nonlinear response on BHCP from the linear input in figure
4.3

become underbalanced again by opening the choke, but rather adjusting the pump

rate. To simplify the modelling, the simulations will mainly focus on data from

choke openings from 6.5% to about 30%. The new input u is scaled to fit within

this scope easily as shown i table 4.2.

For validation of the improved performance, the models in table 4.5 is used as

reference. The properties of the models and the methods used are not important

at this stage, but rather the comparison of fit to validation data shown in table 4.3.

The results clearly show an improvement of the accuracy of the models obtained,

especially for the higher order models.
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Figure 4.5: The linear input values u and the corresponding nonlinear values
of the choke opening z.

Input value u Choke opening z Note

0 0.0665 Lower limit for underbalanced state

200 0.0770

400 0.1015 Set point in the further work

600 0.1400

800 0.1925

1000 0.2590

Table 4.2: The new input u and corresponding choke openings z.
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Figure 4.6: The linearized output due to the variable change at the input
shown in figure 4.5.

Name Input: z Input: u

tf1 90.56 92.34

tf5 93.67 96.32

tf10 93.80 96.22

tf18 -0.5531 97.11

tf23 91.79 97.20

ss5 92.62 96.89

Table 4.3: The fit to validation data [%] of the same models estimated with
both the choke opening z and the new input u as input.
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4.4 Matlab System Identification Toolbox

Matlab contains a toolbox called ”sysid” with various methods to construct math-

ematical models from data. By defining the input and output data as an object

using the ”iddata” command, it is possible to use a wide selection of techniques

to identify a model. The command ”ident” opens up an application which allows

you to upload data, pre-process the data, try out different estimation methods and

compare the different properties of the resulting systems easily. The methods can

in addition be used with direct Matlab commands in scripts if desirable. Follow-

ing are two methods considered to be the simplest and a more advanced method

suitable for complex systems.

4.4.1 Transfer Function Model

”tfest” estimates a transfer function from input/output data with a given number

of poles and zeroes, in addition to optional transport delay and initial parametriza-

tion. By default, the initialization method is set to instrument variable(IV) ap-

proach, but other methods such as state variable filters(SFV) approach can be

selected. Once well defined, the search method for the optimization problem is se-

lected automatically from (adaptive) Gauss-Newton, Levenberg-Marquardt, trust

region reflective Newton and Gradient search. Any of these methods can also be

selected manually in addition to iteration parameters such as number of iterations

and output weighting.

The estimated model is stored as a ”idtf” object with parameters and fit compared

to the estimation data.[10]

4.4.2 State Space Model

”n4sid” is used to estimate state space models. The model structure is given in

equations 4.3 and the parameters are being estimated from input/output data with
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a given order, and some additional options including initial conditions, weighting,

prediction horizon and focus.

dx

dt
= Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t)

(4.3)

The weighting option specify weighting scheme used by the singular value decom-

position used in the estimation. The most important option related to this system

identification is however the focus. The focus option defines how the error between

outputs are being weighed during the minimization. Default setting is ”prediction”

where the weighting function minimize one-step ahead prediction. This setting is

favourable for small time intervals, but can lead to unstable models. For longer

intervals the ”simulation” option is more suited as the weighting is more refined

and provides a stable model. In addition, there are options enabling manually

weighting and weighting with the help of filters.

The resulting model is stored as a ”idss” object with parameters given in matrices

A, B, C, D and K from system 4.3 with dimensions given by the selected order,

and fit compared to the estimation data.[11]

4.4.3 Nonlinear Model

A nonlinear model is more complex than the other model structures. There are two

model types to choose between, Hammerstein-Wiener (”idnlhw”) and Nonlinear

ARX (”idnlarx”). Both model types can be adapted with a great number of

options which enables for great fit even to complex systems. Unlike the previous

methods, the resulting identified model does not have a certain structure and

given parameters. It appears as a ”black box” and does not necessarily simplify

the initial system. Details about the methods can be found in [12] and [13].
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4.4.4 Fit

The ”compare” function compares the prediction of the estimated model with

validation data. The fit is calculated using the normalized root mean square error

(NRMSE) which is able to gather the magnitude of error from many samples into

one measure of fit. The function is given as

fit = 100

(
1− ‖y − ŷ‖
‖y −mean(y)‖

)
(4.4)

where ŷ is the output BHCP of the estimated system and y is the validation data.

[14]

4.5 Identification Data

As the amount of gas in the system varies with the state, the system is dynamic and

some testing is required before settling for data sets used in the final identification.

With increasing amounts of gas in annulus, the system changes properties and it

is therefore assumed that the identified model looses accuracy when operating far

from the original set point. It is therefore decided to use a low initial set point of

400 on input (about 10% choke opening), as a basis for the identification.

All data sets used for estimation come from simulations of 300,000s and is consid-

ered to be PE due to the random fluctuations.

4.5.1 Integral Effect

Because the transfer function models in section 4.4.1 identify prediction models

rather than simulation models, some unwanted effects might occur. A model is

estimated from data shown in 4.7 using the ”tfest” function. Figure 4.8 clearly

shows how the prediction gives the correct response, while the simulation obtains

an integral effect. The reason for the difference is the fact that the predicted

response uses previous validation data when computing the next step, while the
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Figure 4.7: The simulation of the estimation data with integral effect.

simulation is independent of validation data. Since the ”compare” function only

uses the predicted response when validating and calculates a fit value, this effect

does not occur before actually using the model. A remedy for this problem is to

correct both the estimation and validation data such that the set point is zero.

This can be obtained by simply subtracting the set point on the input and output.

Beside eliminating the integral effect, adjusting the set point to zero also simplify

the control problems in chapter 5.

4.5.2 Data Testing

The range of the identified models are investigated through a series of estimation

and validation data sets. The estimation script, see appendix A.2, is used for

the estimations and produce 38 transfer functions and state space models. The

nonlinear model estimations are not being used due to the potential complexity
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Figure 4.8: The prediction use validation data when predicting the next step,
thus avoiding integral effect.

of the models. Note that the set point (400 on input) has been subtracted from

all data due to the effects discussed in 4.5.1.

To find well suited estimation data, models are identified from data set 1-5 with

increasing amplitude on the fluctuations shown in figure 4.9. Each set of estimated

models is then tested with validation data 1-5 shown in figure 4.10, also with

increasing amplitude on the fluctuations. Note that the data sets with the same

number (Estimation 1 and Validation 1 etc.) have the same amplitude on the

fluctuations, but different behaviour.

Since some models can produce a good fit for one set of validation data and other

models produce good fit for other validation data, one model is selected from each

estimation data set. The model selected is the model with the best overall fit

when compared to all the validation data. The fit values of the model from each

estimation data set compared to all the validation data are shown in table 4.4.
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Figure 4.9: The estimation data sets with increasing amplitude on the fluc-
tuations. [Input set point: 400]

Validation1 Validation2 Validation3 Validation4 Validation5

Estimation1 99.02 98.06 96.98 95.78 94.45

Estimation2 98.97 98.10 97.09 95.94 94.65

Estimation3 97.73 97.64 97.20 96.50 95.57

Estimation4 98.43 97.84 97.16 96.26 95.15

Estimation5 95.14 96.04 96.28 96.10 95.58

Table 4.4: The fit [%] of the best model from each estimation data set com-
pared to each validation data set.

Table 4.4 shows how small fluctuations leave less room for error and the best fit

values often are obtained for the first validation data sets. The best model from

the estimation data with greatest amplitude (Estimation 5), does not seem to

obtain high accuracy for any of the validation data tested, but is likely not to

deteriorate as fast as the other models when moving away from the set point.

Models from Estimation data 1 to 4 are all accurate enough compared to validation

data with small amplitude, but estimation data 1 and 2 are considered to have
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Figure 4.10: The validation data sets with increasing amplitude on the fluc-
tuations. [Input set point: 400]

too poor range. Although not the most accurate for Validation 1, the model from

Estimation 3 seems to have consistent and good accuracy over the whole range

tested. Further investigations also reveal a selection of low order models with

good accuracy for the whole range. It is therefore decided to use estimation data

3, shown if figure 4.11, as the estimation data when identifying the final models.

To validate the final models, validation data 3 shown in figure 4.12, will be used.

4.6 Identified Systems

The estimation script, see appendix A.2, is used to produce the models with

estimation data in figure 4.11 and validation data in figure 4.12. When selecting

the best estimations, models of lower order are preferred as long as they produce

what is considered to be ”accurate enough” results. Besides the fit values, the
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Figure 4.11: The input and output of Estimation 3 in table 4.4 and figure 4.9,
that will be used for final identifications. [Input set point: 400]

response has to be studied to determine if the error is caused by minor deviations

over time or sudden transients.

An overview of the best models are shown in table 4.5, while figure 4.13 and 4.14

show the typical error in steps and stationary error respectively.

All models produce accurate responses compared to validation data in figure 4.10.

For control purposes however, the models have some different properties to be

discussed in next section.

4.6.1 Stability and Properties

The transfer functions in table 4.5 represents continuous-time LTI systems. Since

all the poles and zeroes are placed in the left half plane, the models are stable

and minimum phase. The state space model is discrete, and the pole-zero plot is
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Figure 4.12: The input and output of Validation 3 in table 4.4 and figure
4.10, that will be used to validate the final models. [Input set point: 400]

shown in figure 4.15. Since the poles and zeroes are placed within the unit circle,

the model is stable and minimum phase. All models seem to match the stable

steady state behaviour of the simulation data.

The relative degree for the transfer function models are listed in 4.6. Functions

with positive degree are proper, while degree greater or equal one are strictly

proper. The strictly proper transfer functions will trend towards zero as s ap-

proaches infinity and will therefore also be physically realisable [15].

All of the models in table 4.5 are likely to function properly as a base for control

purposes. There are however some features that are preferred in order to maintain

simplicity in the further work:

• Strictly proper functions as they are more applicable on a general basis.

• Lower order models if they deliver satisfactory accuracy.
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Figure 4.13: The typical error when applying steps on estimated models in
table 4.5.

Model Poles/zeroes Relative degree Property

tf1 1/0 1 Strictly proper

tf5 2/1 1 Strictly proper

tf10 2/2 0 Biproper

tf18 5/3 2 Strictly proper

tf23 5/4 1 Strictly proper

Table 4.6: The relative degree of the transfer functions and corresponding
property.
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Figure 4.14: The stationary error for the estimated models in table 4.5.

tf5 satisfies these requirements together with a good accuracy within a wide pres-

sure window, and will therefore be used as base for the control problem.

4.6.2 Range of Identified Model

Due to underlying non-linearities, the simple models identified are expected to

become inaccurate when moving away from the initial set point used for estimation.

To investigate the range of the selected model tf5, the model is validated with data

given in figure 4.16. The resulting output of the model is shown in figure 4.17.

When the input value increases to 500 of the set point (equivalent to a choke

opening of about 22% from a set point of 10%) the modelled pressure is 8 ∗ 105 Pa

higher than the validation data. The fact that the validation data do not obtain

this steady state pressure before an input value of about 1000 (equivalent to a

choke opening of about 26%) emphasizes the magnitude of this error.
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Figure 4.15: The position of the poles and zeroes of the state space model ss5
in table 4.5. The poles are indicated by a X, while the zeroes are indicated by

a circle.

Input values less than 400 however (equivalent to a choke opening of about 19%),

seem to produce accurate response with error less than 2 ∗ 105 Pa. The model is

then proved to have a valid response from 8% (lower limit in the test) to about

19%.

4.7 General Model

Section 4.6.2 confirms that the model identified from data fluctuating around a

certain set point has a limited range due to underlying non linearities. By changing

the set point it can be clarified whether the same models with updated parameters

are able to become accurate at other set points, or if a new model order is needed.
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Figure 4.16: The input of the validation data used to investigate the range
of the selected model. The set point is the same as used when estimating the

model. [Input set point: 400]

4.7.1 Increased Set Point

To investigate if the previous models can be used as a general basis, new estima-

tion and validation data are created with the same fluctuations as the previous

estimations, see figure 4.11 and 4.12, but with set points increased to 1500 and

2000 (choke opening of about 49% and 81% respectively).

Since the fluctuations on the data are the same as the previous identification in

section 4.6, the results can be compared to table 4.5.

The results are shown in table 4.7 and the new models perform in general poorer

than the original. In addition, it seems to be random which models are able

to maintain good accuracy with new parameters and which deteriorates. The

model order with the best overall performance is tf5, which is used in the final

identification used for control purposes in chapter 5.
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Figure 4.17: The response of model tf5 compared to the validation data.
Input of the data is shown in figure 4.16. [Input set point: 400]

Model Set point: 400 Set point: 1500 Set point: 2000

tf1 92.34 83.53 81.69

tf5 96.32 86.53 90.78

tf10 96.22 68.09 76.84

tf18 97.11 96.06 53.43

tf23 97.20 58.64 47.03

ss5 96.89 76.16 67.05

Table 4.7: The fit values of the models originally identified in table 4.5 com-
pared to models of the same order identified from similar data with greater set

point.
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Model Poles/zeroes Fit

tf1 1/0 87.18

tf5 2/1 88.40

tf10 2/2 89.07

tf18 5/3 84.03

tf23 5/4 87.58

ss5 5/4 88.33

Table 4.8: The fit values of the best models identified from estimation data
near overbalanced state in figure 4.18 compared to validation data in figure 4.19.

4.7.2 Operational Limit

When operating near the limit to overbalanced drilling, the fraction of gas in the

system can change rapidly and cause effects discussed in section 2.6.3. To test

if simple models are able to behave accurately when approaching overbalanced

state, data sets shown in figure 4.18 and 4.19 with a set point at 95 (choke open-

ing of about 7%) are created (the behaviour of the fluctuations remains the same

as previous data). The settings on the current simulator made it difficult to ob-

tain non-intuitive response, but the figures clearly show how the system becomes

dramatically slower when decreasing the choke opening and the well pressure in-

creases. The results are shown in table 4.8 and reveals that the models accuracy

still are satisfactory4.

Since the performance of tf5 is satisfying both at other set points and near over-

balanced state, the model order has the potential to become a general basis for

models to cover the whole pressure range. This can however not be confirmed

before further testing is performed. The results do, however, confirm that under-

balanced drilling, as stated in the simulator, can be modelled by simple transfer

functions under normal operating modes. This knowledge of the simple system

dynamics is helpful for creating a suitable controller.

4Note that the decreased amplitude in the data might impact the fit value.
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Figure 4.18: The estimation data used to explore model properties when
operating close to overbalanced pressure. [Input set point: 95]
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Figure 4.19: The validation data used to explore model properties when op-
erating close to overbalanced pressure. [Input set point: 95]





Chapter 5

Control

5.1 Theory

Simple control methods such as proportional integral derivative controllers (PID)

have been applied since the beginning of the 20. century. Even though the design

and principles are simple, the controllers often perform good. The PID controllers’

main focus is to minimize the error between a process variable and desired set

point. The error is processed by three separate terms which focus on different

parts of the minimizing problem. Since the control target is to keep the pressure

within certain limits, see section 2.6.1, the controller set point is given as pressure.

The simple control sections are based on [16] and [17].

5.1.1 Proportional

The proportional term up is given as

up = Kp(Psp −BHCP ) (5.1)

where Kp is the proportional gain, Psp is the pressure set point and BHCP is the

actual bottom hole pressure. This part of the controller corrects the present error

in the system.

51
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5.1.2 Integral

The integral term ui is given as

ui = Ki

∫ t

0

(Psp −BHCP )dτ (5.2)

where Ki is the integral gain. The integral term uses the sum of error over time to

correct the offset not corrected earlier. The gain depends on both the magnitude

and duration of the error, and is therefore well suited to remove stationary offset

not corrected by the other terms.

5.1.3 Derivative

The derivative term ud is given as

ud = Kd
d

dt
(Psp −BHCP ) (5.3)

where Kd is the derivative gain. The derivative term uses the derivative of the error

to predict the behaviour of the system, thus improving the controllers performance.

Systems conflicted with noise however, will have a very variable contribution from

this term. These effects can impact the stability of the system, and the term is

therefore often omitted in real applications.

5.1.4 PID

The final output of the PID controller, called the manipulated variable (MV), is

the sum of the three terms. Due to the fact that the identified system has a simple

and slow response, the derivative term can be removed. The PI controller is then

considered to be a suitable control method.
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Figure 5.1: The model tf5 with a PI control loop.

5.2 Set Point Control

The system identified in chapter 4 is imported to Simulink and the controller

is constructed as feedback control loop according to equation 5.1 and 5.2. The

system is shown in figure 5.1, and the parameters Kp and Ki are tuned by trial

and error. With confirmation of the controllers performance on the identified

model in Simulink, it is also implemented as part of the simulator.

5.2.1 Performance

To test the controllers performance, the validation data in figure 4.12 were again

put to use. By setting the validation output BHCP as the controller reference, the

controlled input should match the validation input. The resulting model output

compared to the reference, and the controlled input compared to the validation

input can be found in figure 5.2 and 5.3 respectively.



Chapter 5. Control 54

0 500 1000 1500 2000 2500 3000

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
6

time [100 s]

P
re

ss
ur

e 
[P

a]
BHCP

 

 
Reference pressure
Controlled pressure

Figure 5.2: The controlled output compared to the reference pressure.

The results show that a PI controller with simple tuning are able to control set

point changes accurately. This is expected due to the simplicity and slow nature

of the response from choke opening to BHCP generated by the simulator.

5.3 Connection

Connections are an important part of the drilling process as they have to be done

often when drilling effectively. When performing a connection, the drilling drive

and mud flow are stopped in order to connect a new drill pipe to the string.

The process can be emulated in the simulator by ramping down the mud flow to

zero, and then ramping it up again to normal after a period of time. The system

properties when varying the flow are unfamiliar since all the system identifications

have been done with constant flow. The target for the controller is to keep the

BHCP at a given value through the connection without any major oscillations.
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Figure 5.3: The controlled input compared to the validation input.

The flow, see figure 5.4, is initially set to the same value as previous estimations,

then ramped down to zero during 2 minutes, stay stationary at zero for 21 minutes

and then ramped up again to the initial flow during 3 minutes. The pressure set

point for the controller is set to match the stationary value of a given constant

choke opening for comparison. The result of the controlled process compared to

the constant choke opening is given in figure 5.5. Note that the time horizon is

significantly shorter than the previous data sets.

When ramping down the pump rate, the system will gradually be drained for fluids

and the BHCP will drop, see figure 5.5. As the BHCP drop, gas inflow from the

formations increases together with the WHP. With the constant choke opening

this will lead to a blowout. The controller avoid this by quickly closing the choke

and maintaining a steady BHCP.

Despite oscillations with amplitude up to 10 ∗ 105 Pa on the BHCP, the controller

seems to be performing satisfactory. In addition to control the pressure during the
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Figure 5.4: The pump rate during an emulated connection.

connection, the controller also manage to reach the initial set point quicker than

the constant choke opening. When running longer connections, the controller

maintain the same performance, while the simulator is having trouble with the

constant choke opening as it develops to a blowout.

These results emphasize that the controller perform satisfactory, and that it is

needed during connections to avoid disasters.

5.4 Gain Scheduling

The tuning of the PI controller is optimized for the chosen model and the perfor-

mance is likely to decrease when changing to a slightly different model at another

set point. If all the models representing the complete underbalanced drilling sys-

tem are known, a principle called gain scheduling can be used.



Chapter 5. Control 57

20 40 60 80 100 120 140 160 180 200

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

z

Choke opening

 

 
Constant choke opening
Controlled choke opening

20 40 60 80 100 120 140 160 180 200

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

7

time [100 s]

P
re

ss
ur

e 
[P

a]

BHCP

 

 
Constant choke opening
Controlled choke opening

Figure 5.5: The controlled input and responding BHCP compared to the
response of a constant choke opening.

The principle behind gain scheduling is to find the optimal controller parameters

for each operating point (i.e. each identified model), and then make the final

controller switch between the parameters depending on the state of the system.

Even though unpredictable changes in the well can lead the controller to fail, gain

scheduling is known for good performance and is a popular choice for dynamic

systems. [15]





Chapter 6

Concluding Discussion and

Future Work

This chapter will summarize the discovered results, in addition to suggest future

improvements and expansion of the modelling and control methods.

6.1 System Identification

It was expected that the response from possible control moves to BHCP would

be slow moving, but the testing also revealed that it was fairly simple. As the

first principles of two-phase flow processes are likely to cause more complexity

than necessary, the black box system identification method is the best choice. To

remove unnecessary non-linearities not caused by the well itself, the input was

changed from choke opening z to a new input u. Due to some problems with

the calculations and run time in Matlab, this function was found and tuned by

trial and error. The resulting function improved performance of the models and is

satisfactory for the purposes of this work, but for improved accuracy of the models

the function can be further tuned or the order can be increased.

The data sets used for estimating the models are considered PE and increasing the

length or change the behaviour of the fluctuations does not seem to impact the
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models noticeably. Choosing higher order models than the transfer function tf5

with 2 poles and 1 zero used for main parts of this work, have some potential for

increased accuracy as seen in table 4.5. However, studying the response in figure

4.13 and 4.14 does reveal that the increased accuracy is caused by minor changes

in the step response and will most likely be negligible in rough environment such

as drilling processes in addition to cause increased computational time. The tested

steady states of the system all proved to be stable, the models identified from this

data are thus also stable and minimum phase.

The final range of the models are tested in section 4.6.2. It is concluded that the

model perform satisfactory with choke openings from 8% to 19 %. If this trend

is general for all the models identified at different set points, in addition to the

case close to overbalanced state discussed in section 4.7.2, the whole spectrum

of choke openings in the underbalanced drilling process can be modelled by 8-

10 models. Section 4.7 investigates the performance of the identified models of

different order at other set points. As far as the investigation goes, the model order

corresponding to tf5 seems to perform satisfactory at the set points tested, and

can be an alternative for a general model order. By having a specific order, only

a simple parameter update is needed at a new set point, instead of a full system

identification process. This will simplify the process and enable for increased

number models to be used, each with a smaller pressure area to cover, such that

the overall accuracy increases.

As mentioned in section 2.6.3, the response can in some cases be more complex

than the data obtained from the simulator in this work. These effects did not

occur when testing the behaviour of the simulator at different set points, but

should nonetheless be investigated if attempting to create a complete model of the

process. Aarsnes [4] has done some investigation of these effects and discovered

both the non-intuitive regime and even an unstable regime when testing steady

states. His work suggests that there are strict limits where the system becomes

non-minimum phase and his control methods based on WHP will become unstable.

While not being able to test these effects, it is hard to predict the modelling

needed to represent them accurately. Should the low order transfer function and
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state space models not be able to perform when approaching these regimes, the

nonlinear models mentioned in section 4.4.3 can be an alternative.

However, for the simulator case investigated, the identified models are able to

represent the underbalanced drilling dynamics with great accuracy.

6.2 Control

The slow nature of the oil well investigated was not expected to demand an ad-

vanced high performance controller. As the response was identified with low order

models it turned out that a simple PI controller will suffice. Implementing the

controller in Simulink together with the identified model in section 5.2, revealed

that set point changes are performed with great accuracy even with simple tuning.

Testing the controllers performance during an emulated connection in the simu-

lator was unfamiliar territory as the pump rate is constant throughout the work.

Despite the uncertainty the controller performed satisfactory also in this case, and

simulations made it clear that the controller is needed to avoid blowouts.

When setting a new set point far away from the initial set point, a new model

becomes active and the controllers performance is likely to decrease. To update

the controller with new parameters, gain scheduling discussed in section 5.4 can be

used. A suggestion for future work is to implement a parameter update algorithm

such that the controller will perform satisfactory for the whole process.

If the non-intuitive effects are modelled, the control methods can become more

advanced depending on the complexity of the models obtained. This will compli-

cate the controller as a simple parameter update will no longer suffice to maintain

good performance through the whole drilling process. A remedy for this problem

can be an adaptive algorithm that is able to change the structure of the controller

depending on the state of the system.
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6.3 Selecting Set Point

The set point has to be selected within the limits discussed in section 2.6.1. There

are however different strategies of how to select this value with knowledge of the

systems current limits. To be able to maximize the effectiveness and safety of

the operation, an optimization is needed. The algorithm needs to use current

measurements and knowledge of the well to estimate the lower and upper pressure

limits, and optimize the set point within the handling limits of the rig.

In addition, merging this optimization with the controller can be used as a base

when developing a model predictive controller (MPC).



Appendix A

Simulation and Identification

Software

Some of the Matlab code attached are based partly or solely on Aarsnes [8] and

Evje [7]. In addition to code used to simulate and identify models, some key data

sets are included as these are time consuming to generate. All the work have been

performed with Matlab 2013a.

A.1 Simulation

The simulation code is taken solely from Aarsnes [7] and Evje [8], except some

minor parameter changes. The files with their purpose are given in table A.1.

A.2 Identification and Control

The identification script and PI controller are listed in table A.2.
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File Properties

main.m The main base for the simulations. Enables for choke open-
ings, control parameters and pump rate to be set before the
simulation is run.

redDFMFun.m The reduced drift flux model from section 3.2, implemented
by Aarsnes [7].

redDFMparams The parameters of the well, the fluids involved and the dis-
cretization, in addition to the duration and time-steps of the
simulation. There are two different cases implemented, the
”Rune2013” case is used throughout this work.

ssInt Used the given parameters to initialize the system.

pressure 2p Calculates some parameters used in the initialization and the
plotting.

Table A.1: List of the different files used to simulate.

File Properties

Identify.m Script that takes in simulation data, defines it as in-
put/output data objects and runs 38 system identifi-
cations with models of different structure and order.
The models are being compared to data by a plot and
corresponding fit values.

PIcontroller.m Function that takes in the controller parameters and
pressure set value defined in Main.m and returns a new
choke value.

Simulink controller.slx A Simulink diagram used to test and tune controllers
on the identified models.

Table A.2: List of the different files used to identify and control new models.

A.3 Data Sets

Due to long run time, the key data sets used during this work are included. The

sets are listed in table A.3 together with their purpose, and include all data gen-

erated by the simulator.
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Name Purpose

Data estimation1 Data used for estimation in section 4.5.2

Data estimation2 Data used for estimation in section 4.5.2

Data estimation3 Data used for estimation in section 4.5.2

Data estimation4 Data used for estimation in section 4.5.2

Data estimation5 Data used for estimation in section 4.5.2

Data Estimation nearoverbalanced Data used for estimation in section 4.7.2

Data Estimation set1500 Data used for estimation in section 4.7

Data Estimation set2000 Data used for estimation in section 4.7

Data Validation1 Data used for validation in section 4.5.2

Data Validation2 Data used for validation in section 4.5.2

Data Validation3 Data used for validation in section 4.5.2

Data Validation4 Data used for validation in section 4.5.2

Data Validation5 Data used for validation in section 4.5.2

Data Validation nearoverbalanced Data used for validation in section 4.7.2

Data Validation set1500 Data used for validation in section 4.7

Data Validation set2000 Data used for validation in section 4.7

Data Validation rangetest Data used for validation in section 4.6.2

Data Connection Data of connection without controller in
section 5.3

Data Connection controlled Data of connection with controller in sec-
tion 5.3

Data Overbalanced Data of a simulation which become over-
balanced

Data Inputfunction testing Data from the validation of the choke
function f in section 4.3.2

Table A.3: List of the data sets included.
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A.4 How To:

A.4.1 Run Simulation

• The choke openings have to be set or the PI controller has to be activated

• The mud flow can either be set as constant, or the interpolation function

can be activated to vary the pump rate

• The simulation time parameters can be set in redDFMparams.m

When these parameters are set, the simulation is started by running main.m.

Note that the simulation is sensitive for increased calculations, which will increase

run time dramatically. Thus several of the calculations are performed before the

simulation process. If the simulator crash, it will enter a debug mode.

A.4.2 Identify Models

New models can be identified by setting desired estimation and validation data

before running Identify.m.
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