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Abstract

Earlier experiments indicates that motor unit activity during isometric contrac-

tions can be imaged using a high-definition ultrasound scanner. In this study,

ultrasound raw-data is analysed in MATLAB to localize and quantify the signal

contributions from individual motor units during a muscle twitch. It is believed

that imaging of mechanical response of contracting muscles can contribute to a

more explicit study of muscle physiology and a more dexterous method for pros-

thetic control.

Two different experiments were executed during this study, one for determining the

time delay between ECG electrode and ultrasound response and one for imaging

muscle activity during an isometric contraction. Both test setups consisted of a

GE-Vingmed Vivid E9 ultrasound scanner and an ML6-15 linear probe, where the

scans were executed by using ”Strain rate”-mode in the test option ”Msc TVI”

with a frequency of 15MHz, which resulted in frame rates between 120 and 220,

depending on the depth of the scan.

To determine the time delay, an ECG electrode was connected to the probe and

then submerged in a bucket filled with water and the last two ECG electrodes,

where the time delay between the two responses were measured in MATLAB. To

image muscle activity in a sequence of ultrasound strain rate images, the probe

were placed in a clamped and fixed position over the biceps, giving images per-

pendicular to muscle fibers. Scans of isometric muscle contractions were recorded,

with ECG electrodes placed on each side of the probe to detect associated motor

unit action potentials.

The measurements of the time delay between EMG and ultrasound response shows

that there are an expected time delay between 6.68ms and 15.38ms, depending on

the propagation velocity of the motor unit action potentials. This indicates that

motor unit activity can be captured in ultrasound strain rate image sequences.

Motor unit behaviour in strain rate image sequences can be used for locating

individual motor units, but this method struggles to identify overlapping motor

units as individual. It was found that PCA for feature extraction in combination

with a cluster based classification algorithm would be a more robust and time-

saving method for localization of individual motor units.





Sammendrag

Tidligere eksperimenter indikerer at motoriske enheters aktivitet under isometriske

kontraksjoner kan bli avbildet ved bruk av en høyoppløselig ultralydskanner. I

dette studiet er ultralyd r̊adata analysert i MATLAB for å lokalisere og kvantif-

sere bidragene fra individuelle motoriske enhter under en kontraksjon. Hvis den

mekaniske responsen fra muskler under en sammentrekning kan bli avbildet, kan

dette bidra til en mer eksplisitt studie av muskelfysiologi og være en mulig metode

for protesestyring.

To ulike eksperimenter ble utført i dette studiet, en for å bestemme tidsforsinkelsen

mellom EKG elektroder of ultralyd respons og en for å avbilde muskelaktivitet

under en isometrisk bevegelse. Begge testoppsettene bestod av en GE-Vingmed

Vivid E9 ultralydskanner og en ML6-15 lineær probe, hvor opptakene ble utført

ved å bruke ”Strain rate”-mode i testopsjonen ”Msc TVI” med en frekvens p̊a

15MHz, som resulterte i bildefrekvenser mellom 120 og 220, avhengig av dypden

valgt under opptak.

For å bestemme tidsforsinkelsen, ble en EKG-elektrode festet til proben og deretter

nedsenket i en bøtte med vann og de to siste EKE-elektrodene, der tidsforsinkelsen

mellom responsene ble m̊alt i MATLAB. For å avbilde muskelaktivitet i en sekvens

med ultralyd ”strain rate” bilder, ble proben plassert i en fast posisjon over bi-

ceps, for å avbilde muskelen vertikalt p̊a muskelfibrene. Opptak av isometriske

muskelkontraksjoner ble tatt med EKG elektroder plassert p̊a hver side av proben

for å detektere motoriske enheters aksjonspotensial.

Målingene av tidsfroskjellen mellom EMG og ultralyd respons viser at det er

en forventent tidsforskjell mellom 6.68ms og 15.38ms, avhengig av propagerin-

shastigheten til de motoriske enhetenes aksjonspotensial. Dette indikerer at indi-

viduelle motoriske enheters aktivitet kan sees i ultralyd ”strain rate”-bildesekvenser.

Typisk oppførsel av motoriske enheter i en sekvens av ultralyd ”strain rate”-bilder

kan bli brukt til å lokalisere motoriske enheter, men denne metoden sliter med å in-

dentifisere overlappende motoriske enheter som individuelle. En foresl̊att metode

som benytter seg av prinsipal komponent analyse for å lokalisere individuelle mo-

toriske enheter er presentert i dette studiet. Denne metoden i kombinasjon med

en ”klynge”-basert klassifiseringsalgoritme antas å være tidsbesparende og en mer

robust metode for lokalising av motoriske enheter.
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Chapter 1

Introduction

1.1 History

Skeletal muscles is what makes it possible for humans to move, communicate

and interact with the environment. Knowledge of muscle function is therefore

important when it comes to ergonomy, diagnosing and treating muscle disorders

and controlling prostheses. There have not been much research on the use of

ultrasound to measure muscle fiber activity during contractions, but the results

from M. Heger (2013) [8], indicates that high-end ultrasound scanners can be used

to localize geometric change in skeletal muscles on the scale of motor units (MUs)

under an isometric contraction.

The use of ultrasound as a control method for prostheses is not in use today,

but as ultrasound systems keeps getting smaller and better it may be possible to

integrate ultrasound in the field of prosthetics. In P. W. Hodges et al. (2003) [21],

ultrasound was used to estimate muscle activity by measuring fascicle lengths and

muscle thickness in different muscles. It was found that ultrasound images can be

used to detect low levels of muscle activity and provide a noninvasive method for

detection of isometric muscle contractions, but not discriminate between moderate

and strong contractions. This article is from 2003 and due to increased resolution

in new ultrasound scanners it is believed that it now is possible to discriminate

1
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between different levels of contractions. Sigrid Pillen (2010) [20] proved that small

scale muscle twitches can be detected using ultrasound, which strengthens this

hypothesis.

The possibility of using ultrasound to detect change of an active muscle has been

attempted by Y. P. Zheng et al. (2005) [35] & (2010) [10] in both normal subjects

and subjects missing a limb. In [35], the movement of forearm muscles during wrist

movements were measured using ultrasound, a method they named sonomyogra-

phy (SMG). The image sequence recorded were compared using image matching

in form of 2D cross-correlation, and it was found that it is possible to detect

morphological changes of forearm muscles by using Brightness-mode (B-mode) on

a portable ultrasound system. Even though they did not find SMG feasible for

prosthetic control, they encouraged further studies on the field, as scanners tends

to get smaller with increased resolution and frame rate (FR).

Later studies by Y. P. Zheng et al. (2010) [10] & (2010) [34] showed that SMG

performs better than electromyography (EMG) in tracking guided patterns and

that these studies suggests that SMG control might be better than EMG control.

It was also found that SMG had a huge advantage by providing more intuitive

control, relieving the mental burden on the patient by easing the learning process

of controlling the prosthesis.

Intramuscular EMG and surface EMG (sEMG) are two techniques that are cur-

rently used in the field of prosthetic control, but both methods have drawbacks and

limitations. According to T. R. Farrell et al. (2005) [33], chronic intramuscular

recordings for prosthetic use is not wildly used, but it was found that insertion of

electrodes in muscular tissue increased the accuracy of the EMG signal compared

to sEMG. It was also found that fewer channels were needed for intramuscular

EMG compared to sEMG, indicating that it is only necessary to gather data from

a subset of muscles to maximize classification accuracy. Since this is an invasive

method for control, it is less safe and may be a burden on the patient, which is

not preferable.
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Conventional non-invasive control system relays on the amplitude or acceleration

of EMG signals, but due to cross talk and differentiation between joint motions,

sEMG has limited specificity for deep muscles [26]. To overcome the limitations

of sEMG, sophisticated pattern recognition strategies have been applied, although

these strategies does not produce robust proportional signal for fine control. Even

tough some invasive techniques are fairly good, there continuous to be a need for

a non-invasive robust sensing strategy to improve upon myoelectric systems.

In Siddharta et al. (2014) [26] a system consisting of a wearable mechanically

scanned 7.5 MHz single element ultrasound system were proposed to map muscle

activity in the forearm. The experiments were executed on ten healthy volunteers

by holding a probe fixed relative to the forearm using a cuff. The ultrasound B-

mode images were then spatially filtered with a moving averaging operation and

analysed using MATLAB. The activity pattern in the ultrasound images for differ-

ent finger movements of each test subject were stored and correlated with known

activity patterns and classified using the k nearest neighbour (kNN) method. In-

dividual digit movements were associated with unique maps of activity, and found

to be able to classify digit movements with 98 % accuracy.

The result from Siddharta et al. (2014) [26] shows that ultrasound can be used to

classify single digit movement using a training set. In contrary to the experiments

executed in [26], this study will not focus on classifying known movements, but

individual MUs from a random isometric contraction, which the experiments done

in [26] and M. Heger (2013) [8] indicates is possible. The studies done by Y. P.

Zheng et al. [35], [10] and [34] also shows that SMG is able to detect change of a

muscle in action, which is in accordance with S. Pillen [20] and P. W. Hodges [21].

This literature survey indicates that new high-end ultrasound scanners are able to

image muscle activity on the scale of MUs. If this is possible, it is believed that

MU activity can be localized and classified in a sequence of ultrasound images,

containing one or multiple contractions.
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1.2 Motivation

This project was initiated because it is believed that ultrasound as a method for

prosthetic control have not reached its full potential. It is a fact that people in gen-

eral want smaller, as well as more powerful electronic devices and the same applies

for medical instruments such as ultrasound scanners. Unlike medical equipment

like x-ray and magnetic resonance imaging (MRI), ultrasound has no known per-

manent negative effects on human tissue within the given mechanical index (MI)

and thermal index (TI) limits, which makes it an interesting option when it comes

to diagnostics and prosthetic control.

If individual MUs can be automatically localized when overlapping in time and

space by the use of ultrasound, it is believed that ultrasound can be of use in

the field of ergonomy and rehabilitation technology. If ultrasound can be used

to detect MU activity in real time, ultrasound may improve prosthetic control by

being more robust and increase the number of degrees of freedom (DoFs).

1.3 Objective and interpretation of the assign-

ment

This study is a continuation of earlier work done in M. Heger (2013) [8]. In [8],

all data were analysed using the quantitative analysis (Q-analysis) tool on a GE-

Vingmed Vivid E9 ultrasound scanner. This study will explore the possibility

of using ultrasound raw-data to localize and quantize signal contributions from

individual MUs in recorded ultrasound sequences by using MATLAB. This study

will make use of earlier collected data from [8]. The results from [8] have not

properly accounted for the time delay between the electrocardiography (ECG)

electrodes and ultrasound response, which must be examined before it can be

concluded that individual MU activity has been imaged.
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The project description for this assignment is stated in Appendix A and the as-

signments are divided into four parts. My interpretation of these tasks are stated

in the list below.

1. To assure that MU activity has been captured in M. Heger [8], the time delay

between ECG electrodes and ultrasound recordings has to be determined.

The results found in [8] shows that there are a delay between the detection

of contractions in the EMG signal and the response from the ultrasound

scanner, so it is important to establish to what degree this delay impacts

earlier interpretations of ultrasound data.

2. This task concerns the use of data reduction techniques as a potential method

for decomposing sequences of ultrasound images to localize and quantify the

signal contributions of individual MUs. Multiple MUs can be active during

a contraction, so my interpretation of this task is to find the location and

spread of all individual MUs during a small isometric contraction by the use

of ultrasound strain rate images. This will be referred to as either localization

of individual MUs or classification of MU activity in the rest of the report.

3. In [8], the ultrasound scanner was the only tool used for analysis. In this

study, raw-data recordings from the ultrasound scanner has to be loaded in

MATLAB for computation of strain rate (SR) and further analysis. Chosen

method for localization also has to be implemented.

4. The optimal parameters and test setup for the given task will follow the

optimal setup found in [8], which consisted of equipment and settings that

optimized resolution and FR. If the gathered data from [8] is not sufficient,

new ultrasound scans has to be executed to get satisfying data. Some data

acquisition has to be done to measure the time difference between the ECG

electrodes and ultrasound response, but this data will not be used for local-

ization of individual MUs, as these scans are not executed on human tissue.
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1.4 Outline

Theory: The theory chapter contains details about muscle anatomy and basic

use of EMG and ultrasound, data reduction and classification methods. The

content of this chapter is meant to cover needed background to understand the

used methods and for interpretation of the results in this report. The subsection

that contains information about different data reduction methods and classifica-

tion methods are an overview of some existing methods and are not all used in

this project, but it is a part of the project assignment. The chapters containing

muscle anatomy, EMG and basic ultrasound instrumentation and imaging modes

are taken from the theory chapter in M. Heger (2013) [8], but expressed a bit

different. While the subsection about ”feature extraction using SVD” is my own

work.

Methods and implementation: Contains information on program functional-

ity, how parameters are found and the chosen test setup for measuring the time

delay between EMG and ultrasound response and measuring muscle activity. A

detailed explanation containing important variables and function calls for the

programs can be found in the comments in the programs located on the DVD.

Except for the ”mUDT”-program got from St. Olavs Hospital, all the programs

and test setups are my own work.

Some of the collected data for determine the time delay were eliminated from the

datasets because they did not show a typical response from the ultrasound or the

ECG electrodes.

Results: The result chapter is split in four parts.

1. Results from the experiment concerning the time difference between EMG

and ultrasound response.

2. Result of the strain rate (SR) calculations with a comparison to earlier

experiments from [8].

3. Results from the programs for localizing individual MUs by looking for typ-

ical MU behaviour.
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4. How the proposed method, ”feature extraction using SVD”, can be used for

localization of MUs.

Number 2 is meant to show that the output from the programs are reasonable with

respect to stated MU behaviour in the theory chapter, which have contributed to

making a program for MU localization. The results from the MU behaviour based

localization algorithm helped to verify that the proposed method in number 4

works. The raw-data used for localization of MUs are taken from the term project

[8].

Discussion: The discussion is split in two parts, one concerning the time delay

between EMG and ultrasound response and one concerning MU localization. A

program for localizing MU activity by the use of the ”feature extraction using

SVD”-method has not been made during this study, but a proposed method is

presented and discussed.

Conclusion: Summarises the conclusions that can be drawn from the results in

this study.

Future work: Addresses possible future work based on the achieved results in

this study.

Appendix: Contains five chapters:

A Project description

B Images showing SR images during four different contractions from the same

sequence.

C Contains the abstract submitted to and approved by the ”IEEE Interna-

tional Ultrasonics Symposium”, Chicago, Illinois USA. http://ewh.ieee.

org/conf/ius_2014/.

D DVD overview. Description of where the different programs and ultrasound

raw-data can be found.

E Figure references. References to figures that are not self made.

http://ewh.ieee.org/conf/ius_2014/
http://ewh.ieee.org/conf/ius_2014/




Chapter 2

Theory

The main objective of this study is to localize signal contributions from individual

MUs. To be able to understand gathered raw-data and get satisfying new data,

it is fundamental to have basic knowledge about skeletal muscles, EMG and ul-

trasound. An introduction to basic ultrasound instrumentation, EMG and muscle

anatomy are present in this chapter. For the purpose of locating individual MUs,

an overview of data reduction methods and classification algorithms is also present

in this chapter.

2.1 Skeletal muscles

The definition of a skeletal muscle is a muscle that is under voluntary control and

connected to bones via tendons (Figure 2.1(a)). When a skeletal muscle is inner-

vated by a somatic motor neuron, the muscle contracts and increases the tension

on the tendons, making a joint move by pulling on the bones. Skeletal muscles

contains a set of fascicles that contains numerous muscle fibers. Muscle fibers are

covered by a plasma membrane called sarcolemma and consists of smaller subunits

called myofibrils that consists of subunits called myofilaments. Myofibrils are di-

vided axially by Z-discs and the region between two Z-discs is called a sarcomere,

Figure 2.1(b). A sarcomere has a length between 1.5 and 3.5 µm, depending on

9
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the size of the muscle, and each muscle fiber consists of approximately 20 000

sarcomeres [7].

(a) Skeletal muscle anatomy (b) Muscle fiber anatomy

(c) Cross section of upper arm

Figure 2.1: Skeletal muscle anatomy

When a muscle contracts, the Z-discs gets pulled together resulting in a shortening

of the sarcomeres, which is the source of the muscle contraction. The shortening

of a sarcomere in axial direction also leads to an expansion in radial direction,

making the muscle shorten in length and expand in circumference.

In M. Heger (2013) [8], the lateral muscles in the upper arm, Biceps Brachii (BB)

and Brachialis (Br), shown in figure 2.1(c), were the targeted muscles. Since this

study uses ultrasound data collected from [8], the lateral upper arm muscles are

also the muscles of interest in this study.
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2.1.1 Motor units

A motor unit (MU) is a somatic motor neuron together with all the muscle fibers it

innervates. A somatic motor neuron can contain several axon terminals which are

connected to different muscle fibers, through connection points called neuromus-

cular junctions. When a neurological signal, an action potential (AP), propagates

along a somatic motor neuron, all the muscle fibers it is connected to will be

innervated.

The recruitment of MUs follows the ”size-principle”: when utilizing greater force,

active MUs are stimulated at a greater frequency before larger and larger MUs are

activated. Larger MUs are usually located deeper in the muscles, which means that

small contractions will innervate superficial MUs. Under a voluntary contraction,

different MUs are stimulated fast and asynchronously.

Muscle fibers in BB varies in length and diameter, but according to P. E. Barkhaus

et al. (2013) [19], they are approximately a few cm in length and 40-60 µm in

diameter. The muscle fibers in an MU does not necessarily lie next to each other,

they are mostly spread out inside a region called the ”motor unit territory” (MUT),

which in the upper arm is estimated to be between 5 and 10 mm in diameter.

Different MUs can be situated inside the same region, which means that MUTs

can overlap, like in the illustration of MUTs in Figure 2.2.

Figure 2.2: Motor unit territory (MUT)
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When an AP arrives at the neuromuscular junction, the sarcolemma gets depo-

larized, causing the AP to propagate outwards and along the sarcolemma (Figure

2.3). Since a somatic motor neuron innervates a set of muscle fibers, the combined

APs in all muscle fibers in an MU is called a motor unit action potential (MUAP),

which is a signal that can be measured by EMG electrodes.

Figure 2.3: MUAP propagation in muscle fibers

Compared to AP propagation velocity (80-120 m/s [12]), the propagation velocity

of MUAPs is slow. A typical MUAP last for 50 ms to 150 ms [8], depending on the

size of the contraction, and has a propagation velocity of only 2-6m/s [7]. Figure

2.4 shows an recorded ECG sequence containing two typical EMG responses to

contractions at Time = 0.1s and Time = 0.7s.

Figure 2.4: ECG sequence containing two contractions
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2.2 Electromyography (EMG)

EMG electrodes detects the electrical potential of all MUs. This means that

the detected signal is a combination of one or multiple MUAPs and since MUs

are activated asynchronously, the detected contractions will vary in length. From

the EMG signal, measurements of size, frequency and shape of MUAPs can be

attained. The EMG signal is generally acquired by placing electrodes on the skin

of the patient (sEMG) and the EMG signal is affected by skin condition, tissue

condition, muscle strength, skeletal anatomy and range of motion.

In D. Farina et al. (2008) [5], MUAPs were compared with each other. It

was found that MUAPs were considered indistinguishable and not uniquely in

the sEMG when difference in mean energy was under 5%, and the number of

MUAPs that could be identified depended on the number of used channels. Due

to low-pass filtering effects of the tissues between active muscle fibers and the

electrodes, MUAPs are often indistinguishable, but under some conditions, it is

possible to identify MUAPs using sEMG.

Controlling prostheses by using sEMG electrodes are challenging and has cer-

tain limitations. A drawback for sEMG is the difficulty of differentiating between

a wide specter of different MUAPs. The amplitude and frequency characteris-

tics of the detected signal are most often not sufficient to distinguish between

more than two different kinds of movement, which is a clear limitation of sEMG

controlled prostheses, as the human hand has 22 DoFs [16].

Using ultrasound for controlling a prosthesis would have an advantage at this

point. By detecting where the contraction originates, it may be possible to dis-

tinguish between more than two different classes of movement.

2.3 Ultrasound instrumentation

Ultrasound is deemed one of the safest diagnostic tools in the field of medicine and

is used to diagnose patients in many different medical fields of study, especially



Chapter 1. Theory 14

in cardiac and obstetrics. An ultrasound scanner has multiple settings and modes

and the scanner is set up depending on what one want to examine. This sub

chapter covers the basics of ultrasound instrumentation and how strain rate (SR)

images are calculated in an ultrasound scanner.

2.3.1 Basic Instrumentation

The principle of ultrasound is the same as echo. By transmitting sound waves

into tissue, it is possible to extract information based on the time and amplitude

of received echo. The transducers in the tip of the ultrasound probe converts

electrical energy to sound waves and vice versa, and the quality of the images are

limited by the transducers performance.

(a) Transmit (b) Receive

Figure 2.5: Transmitting and receiving side of an ultrasound scanner

The transmitters steer sound waves by activating different transducer elements

with different time delays, as shown in Figure 2.5(a). The sound waves emitted

from the active transducers are added in a desired focal point and the waves

reflects off any object encountered along the path. Received echoes gets amplified,

converted to digital signals and added together as shown in Figure 2.5(b). After

all emitted sound waves have reflected off the focal point, the transducers emits a

new array of sound waves to a new focal point along the same scan line.

The image acquired from an ultrasound scan shows a granular pattern, called

speckle. Speckle is random, but still deterministic, and the size of the speckle
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”particles” can be seen as the scanner resolution, which for high-end ultrasound

scanners is up to 0.1mm in display of muscle tissue [20]. Figure 2.6 shows a typical

brightness-mode (B-mode) image of the anterior compartment in the upper arm,

where BB, Br and the Humerus are marked.

Figure 2.6: B-mode image of the anterior compartment of the upper arm

In this project, there are two parameters that are of utmost interest, frame rate

(FR) and resolution. The resolution of the ultrasound system depends on the size

of the aperture, frequency and the bandwidth of the transducer. Bigger aperture

gives better resolution at the cost of FR, and the best achievable resolution is

limited by the transducer bandwidth as this can not be altered. Higher frequency

leads to better resolution and higher FR, but because tissue attenuation increases

with frequency at a rate of 1 dB
MHz∗cm , the depth of penetration is limited. This

project will concentrate on superficial muscles in the upper arm, hence a high

frequency is preferable.

The FR depends on number of scan lines and the pulse listen time (PLT), the

maximum time it takes for the most distant echo to reach the transducer [2],

which is dependent of the speed of sound in muscle tissue (c = 1560m
s

) and the

depth of the scan. FR is the inverse of the frame time (FT) which depends on

number of scan lines and the PLT, equation 2.3. For this project the FR should
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be as high as possible without a significant reduction of resolution, so it may be

preferable to decrease the aperture and number of scan lines to increase the FR

at the cost of resolution.

PLT =
2 ∗ depth

c
= 12.8

µs

cm
∗ FOV (2.1)

FT = PLT ∗ n (2.2)

FR =
1

FT
(2.3)

Ultrasound raw data can be stored in different ways and the most common is

to store the data as radio frequency (RF) or in-phase Quadrature (IQ) data. RF

data denotes unprocessed data where the frequency information is intact. The IQ

denotes the complex format, where a complex base-band modulation technique

is applied to the RF data to reduce amount of data without loosing essential

information [13].

2.3.2 Imaging modes

This subsection only contains the imaging modes that has been used during this

study.

• Brightness-mode (B-mode): The amplitude of received echoes determines

the brightness of each point in the image.

• Motion mode (M-mode): Motion from a one-dimensional scan line is dis-

played on a vertical axis over time, and is used in conjunction with B-mode

scanning, where active scan line can be chosen [17].

• Tissue velocity imaging (TVI): Whole image in color, showing tissue velocity.

• Strain rate imaging (SRI): Whole image in color for measuring deformation

of tissue. This mode is often called colour Doppler imaging (CDI).
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2.3.3 Doppler effect

The Doppler effect describes how the frequency of an emitted wave changes with

the velocity of the emitter or observer. The principal of the Doppler effect is: if a

source moves in the direction of the propagation of the waves, it is the frequency

that increases, hence a decrease in wavelength, not the propagation velocity of

the waves, see Figure 2.7. The Doppler effect requires a constant propagation

velocity, which in the case of sound waves in muscle tissue is c = 1560m
s

. The

propagation velocity is then given by the number of oscillations per seconds times

the wavelength [29],

c = λ ∗ f = 1560
m

s
. (2.4)

Figure 2.7: Illustration of the Doppler effect

When ultrasound waves are reflected from a moving structure, scatter, the

wavelength and frequency of the returning waves are shifted. The difference in

frequency, the Doppler frequency fd, can be used to measure tissue velocity. In

ultrasound, positive velocities are seen when an object moves towards the probe

and negative when moving away.

In ultrasound, scatter moving relative to the source result in a Doppler effect that

is twice as great, since the scatter initially is a moving observer that becomes a
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moving source due to reflection. The Doppler equation in ultrasound is therefore

given by [29]:

fd =
2 ∗ f ∗ v

c
(2.5)

2.3.4 Phase analysis

A sound wave can be seen as a sine wave, where every point along the wave can be

described by the phase of the wave point. In CDI, the Doppler shift is calculated

by the use of phase shift. To be able to analyse the Doppler shift in terms of phase

shift between pulses, at least two pulses must be emitted rapidly. If two subsequent

pulses are emitted, a different phase on the reflected signals will indicate that the

scatter has moved at a given velocity. The time between the pulses is given by

the inverse of the pulse repetition frequency (PRF) and the travel distance of the

scatter is given by:

d = v ∗ t = v ∗ 1

PRF
(2.6)

(a) Transmitted pulses (b) Reflected pulses

Figure 2.8: Illustration of phase shift

If the distance travelled by the scatter between pulse 1 and 2 in Figure 2.8 is equal

to d, pulse 2 has to travel a distance of 2d longer than pulse 1. This means that

the displacement of the waveform is 2d, which corresponds to a phase shift of ∆φ.
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This phase shift is calculated by finding the angle of the autocorrelation estimate

with lag 1 (R1) of the pulses, the shift that is needed for the pulse sequences to

be as equal as possible [4].

If the distance 2d in figure 2.8 is equal to the wavelength (λ), this will result in a

phase shift (∆φ) of 2π. Equation 2.7 together with 2.4 and 2.6 results in Equation

2.11 for calculating the velocity [30].

2d

∆φ
=

λ

2π
(2.7)

2d =
c ∗∆φ

2π ∗ f
(2.8)

2 ∗ v
PRF

=
c ∗∆φ

2π ∗ f
(2.9)

∆φ = ∠R1 (2.10)

v =
c ∗ PRF ∗ ∠R1

4π ∗ f
(2.11)

2.3.5 Strain and strain rate

Strain is a measurement of deformation of an object, relative to its original length.

Strain is a dimensionless value that can be defined linearly by the Lagrangian for-

mula 2.12 ([28]) that only describes strain in one dimension. Since SRI with linear

probes only utilizes information in the axial direction, linear strain is sufficient for

measuring strain in an ultrasound sequence from a linear probe.

ε =
L− L0

L0
=

∆L

L0
(2.12)

Positive strain equals stretching, while negative strain is compression. The same

goes for strain rate, instantaneous strain. In ultrasound instrumentation, strain

rate is calculated from the velocity gradient.
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As stated in Asbjørn Støylen [29], the velocity gradient was originally defined as

the transmural velocity difference across the heart wall, divided by the instanta-

neous wall thickness, but this can be generalized to a definition in all directions:

V G =
v2 − v1

L
=

∆v

L
(2.13)

SRI in ultrasound is done by utilizing tissue Doppler, using the longitudinal ve-

locity gradient. SR is calculated by the velocity gradient of two arbitrary points

over a segment with a fixed distance, the strain length ∆x:

SR =
v(x)− v(x+ ∆x)

∆x
= V G (2.14)

The difference between these two definition is that L in 2.13 changes, while ∆x

is constant. Equation 2.14 assumes that the strain is equally distributed over the

length of the object, which results in an SR equal to V G. So Equation 2.14 is

only an estimate of the strain rate [29].

2.3.6 Motor unit behaviour in ultrasound strain rate im-

ages

It is believed that different MUs will have variable size and unequal spatial dis-

tribution, but all MUs should behave equally. The SR images should show a

gradually increasing SR with a gradually increasing region of expansion, before

decreasing. An analogy for this response is the probability density function (PDF)

of a Gaussian distribution, shown in Figure 2.9.

The SR is increasing as a response to a contraction and at the expectation value,

time=5, the muscle fibers in the MU are fully expanded, and after this, the SR

decreases.
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Figure 2.9: PDF of Gaussian distribution as an analogy for MU behaviour.

2.3.7 Time delay between ECG electrodes and ultrasound

response

The results from M. Heger (2013) [8], indicates that it is possible to image muscular

activity on the scale of MUs using a high-end ultrasound scanner. Before it can be

concluded that MU activity has been imaged, the time difference between ECG

electrodes and ultrasound response has to be taken into consideration.

The time delay between the ECG electrodes and ultrasound is supposed to be com-

pensated for by the ultrasound system for the purpose of synchronising PQRST

data with heart beats. Since the PQRST wave normally last for 0.4 to 1.5s, there

can be a time delay negligible for heartbeat measuring that may not be negligible

for measuring a faster response caused by an expansion of an MU.

In the project report [8], the electro-ultrasonic delay (EUD) was calculated to be

between 4.3 and 13ms, depending on MUAP velocity. The EUD was measured

visually from each ultrasound image and all the measurements were found to be

inside the given boundaries (4.3− 13ms).
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2.4 Cross correlation

Cross correlation is a method for estimating the similarity of two waveforms and

the cross correlation function can be defined discretely as:

(f ∗ g)[n] =
∞∑

m=−∞

f ∗[m]g[m+ n], (2.15)

where f and g are two waveforms, n is the lag and f ∗ is the complex conjugate of

f . Cross correlation can be used to find where two waveforms are most similar.

The peak of the cross correlation will indicate the number of steps needed to shift

function g so that g and f overlaps the most. Cross correlation is wildly used in the

field of spectral analysis and computer vision and in this study, cross correlation is

used to find phase angles for estimation of tissue velocity and to locate the arrival

time of contractions in an EMG sequence.

2.5 Data reduction and classification methods

Data reduction is a process for minimizing the amount of data needed to increase

storage efficiency and reduce execution time. A natural way to deal with high

dimensional classification problems is to first reduce the dataset to a lower di-

mensional subspace before applying a classification strategy. In this study, data

reduction and classification techniques will contribute to the classification process

of MUs, localization of individual MU contributions.

2.5.1 Cluster analysis (CA) and factor analysis (FA)

Cluster analysis (CA) is a data reduction technique that tries to find natural

groupings in data by grouping together objects with similar attributes [3]. In the

case of an ultrasound sequence, each individual MU could be assigned to a group

based on how deep the MU lies in the muscular tissue and the MUT. Since MUs
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can overlap in time and space, this technique might not suffice for localization of

individual MUs, unless it is possible to find MU attributes/characteristics that

do not coincide.

Multiple attributes could be chosen, for example location and time of activation

of MUs. Since different MUs gets activated asynchronously, it might be possible

that the clusters could overlap and still locate different MUs based on temporal

and spatial attributes. The result could look something like the example data in

Figure 2.10.

Figure 2.10: Illustration of cluster analysis

Factor analysis (FA) is a data reduction technique that tries to describe the

covariance relationships among variables in terms of a few unobservable random

quantities called factors [22]. The hypothesis when using FA is that there exists

an underlying construct, a variable that has not been measured directly, where

observed variables could be linear combinations of these underlying factors. If

variables are correlated, FA can reduce the dataset to a smaller set of uncorrelated

factors. These factors can then be used in place of the original variables, with

the variation of the original data sustained [24].

PCA and FA are sometimes mistaken as the same statistical method, but there

are differences. The biggest difference is that FA account for common variance

in the data, while PCA results in PCs that account for a maximal amount of

variance of observed variables [6].
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Earlier results from M. Heger (2013) [8] indicates that captured MU activity in

an ultrasound SR image basically is a cluster. Based on these results and Figure

2.10, it seems that CA would be good choice for classification of MUs.

2.5.2 Single value decomposition (SVD)

Single value decomposition (SVD) is a method for identifying and ordering the

dimensions along which data points exhibit the most variation [1]. The basic idea

behind SVD, is taking a high dimensional, highly variable set of data and reducing

it to a lower dimensional space that exposes the substructure of the original data

more clearly by ordering it from most variation to least [1].

SVD is based on a theorem which says that a rectangular matrix, X ∈ Rm×n, can

be factorized into three matrices 2.16,

X = USV T , (2.16)

that have certain properties. If m > n and the rank of the data matrix X is r,

these three matrices have the following properties [11]:

• U is anm×r column-orthonormal matrix. A matrix with orthogonal columns

where each column is a unit vector.

• S is a r×r diagonal matrix, where the elements are the singular values (SVs)

of the data matrix X.

• V T is an r × n row-orthonormal matrix. A matrix with orthogonal rows

where each row is a unit vector.
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2.5.3 Principal component analysis (PCA)

Principal component analysis (PCA) is a classical data reduction technique

for doing linear dimensionality reduction. PCA reduces the number of variables

to a smaller number of principal components (PCs) which account for most of

the variance of the observed variables. Classical PCA finds a small number, k,

of linear combinations of the d input variables that capture most variability in

the data, by looking for a k-dimensional linear subspaces that minimizes the sum

of squared errors measured by the squared distances from the data points to

the subspace [31]. PCA can be performed by different algorithms, but the most

common is to perform PCA by taking the eigendecomposition, classical PCA

(CPCA).

The CPCA algorithm is as follows [9]:

1: Subtract data mean from each point, so that the data has zero mean.

2: Scale each dimension by its variance, which ensures that found principal com-

ponent directions is not influenced by the magnitude of the variable, meaning the

units that that variable is measured in.

3: Compute the covariance matrix of the data.

4: Take the eigendecomposition of the covariance matrix:

Σ = V DV T , (2.17)

where V contains the eigenvectors and the diagonal matrix D contains the eigen-

values, where the eigenvalues in D are sorted by size from highest to lowest. The

first vector in V is called the first PC, the second is called the second PC and

so on. PCs are uncorrelated and orthonormal and are a linear combination of

weighted, observed variables.

5: Compute the k largest eigenvectors of S.
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PCA can perform poorly on the reduced data because PCA do not use the response

variable and may therefore exclude components with little variance, but a great

deal of information [31]. In the case of ultrasound strain rate images, places with

small variance do not contain wanted information, so this is not a problem.

Because PCA computes eigenvalues and eigenvectors based on the covariance ma-

trix, it is very sensitive to outlying points (noise). By filtering the data before

taking the PCA, noise in the form of outlying points will be reduced and hope-

fully disappear completely.

PCA is wildly used in many field of studies, and in L. J. Hargrove et al. (2009)

[15], PCA was used to improve classification accuracy in pattern-recognition-based

myoelectric control. As stated in Chapter 2.2, myolectric signals (MES) often

contains contributions from more than one MU. In article [15], the measured MES

were rotated by class-specific PC matrices to spatially decorrelate the measured

data prior to feature extraction. It was shown that this processing technique

significantly (p < 0.01) reduced pattern recognition classification error for both

intact limbed and transradial amputee subjects. This result indicates that PCA

could be a good choice for pattern recognition in ultrasound images as well as for

MES.

PCA can be performed different ways. Instead of taking the eigendecom-

position (CPCA), it is possible to perform PCA by using SVD. If a data matrix,

X, where each column is an image frame (Figure 2.11), the U , S and V matrices

will have the following interpretation [9]:

• U : The columns of U will be orthogonal vectors, containing the principal

component directions. These vectors will be equal to the eigenvectors of the

covariance matrix.

• S ∗ V T : The coefficients.

This gives the following representation for the data matrix X, where i represents

a column and k the number of PCs:
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Xi = S1,1V1,iU1 + S2,2V2,iU2 + ...+ Sk,kVk,iUk, (2.18)

where each original image can be explained by some factor times the first PC,

some factor times the second PC and so on.

Figure 2.11: Conversion from 3D strain rate sequence to 2D data matrix

An example of performing PCA by using SVD is shown in figure 2.12, where

SVD is performed on a two dimensional dataset containing 28 data points. It is

seen that the first PC direction is the direction with the most variance, hence

the largest eigenvector of the covariance matrix, while the second PC direction

is the direction with least variation, the smallest eigenvector.

By using SVD for PCA, a decomposition containing three different matrices

(U, S, V ) is achieved. The image in Figure 2.12 shows only the effect of the

PCs in U , but by utilizing the coefficient SV T , it is possible to extract infor-

mation about the ”importance” of the PCs. If all the points in Figure 2.12 was

located on the first PC, the second PC would still be placed orthogonally on

the first PC, but the coefficients would be zero, which means that the dataset is

actually one dimensional.

Since SVD is a data reduction method, it is a question how many SVs that should

be retained. A useful rule is to retain enough SVs to make up at least 90% of

the ”energy” in the S matrix, 90% of the sum of squares of all the singular values

[11].
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Figure 2.12: Illustration of the SVD algorithm

How SVD for PCA can be applied to localize individual MU contributions is

found in Chapter 2.6.

2.5.4 Partial least squares regression (PLSR)

In Tim Wu et al. (2014) [32], multivariate partial least squares regression (PLSR)

was used to determine the characteristics of a surrogate model of facial expressions.

PLSR is a method for modelling relations between two sets of observed variables,

the input parameters and the output responses [32]. In contrast to principal com-

ponent regression (PCR), which uses PCA to compress the data into orthogonal

components and use the data as regressors for the observed output responses, the

PLSR creates the components by modelling the relationship between input and

output, to ensure that the extracted components from the data are more relevant

to the output. According to [32], PLSR achieves the same or better results as

PCR, while using less and qualitatively different components. Even tough PLSR

may perform better than PCA, the interest lies in the variation of the ultrasound

SR images, so it is believed that PCA by using SVD would be as good as PLSR

for localizing individual MUs.
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2.5.5 Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a commonly used technique for data clas-

sification and dimensionality reduction. In PCA, the shape and location of the

original data set can change when transformed to a different space, whereas LDA

does not change the location, but tries to provide more class separability [25]. LDA

explicitly attempts to model differences between the classes of data, while PCA

does not take the difference in class into account. LDA, PCA and FA all look for

linear combinations of variables that explain the dataset, so these methods might

be good choices for classifying MUs.

2.5.6 k-nearest neighbours (kNN)

The k-nearest neighbour algorithm is a non parametric technique, so it does not

make any assumptions on the underlying data distribution. It is one of the simplest

machine learning algorithms and can be used for both classification and regression.

This method is a type of memory-based learning that compares new instances with

instances earlier seen in training. Given a new instance, the algorithm calculates

the distances to all the instances in the training set and picks the k closest instances

[27]. An illustration of the algorithm for a two dimensional problem containing

two groups, + and −, is shown in figure 2.13.

Figure 2.13: Illustration of the kNN algorithm
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Depending on the k-value, the algorithm will give different answers to which class

the red dot belongs to.

• k = 1: outcome is a plus sign

• k = 2: outcome is unknown

• k = 3: outcome is a minus sign

This algorithm is easy to understand, but sensitive to noise and require large

memory [14]. In the case of classification of individual MUs in SR images, kNN in

combination with some algorithm for determine the distance to nearest neighbour

could recognize new instances (pixels) as an already existing MU or be added to

the training set. If the new instance can not be determined, it could mean that

there are two overlapping MUs in this region and be classified to belong to both

MUs. The kNN algorithm is a possible choice for classification of MUs, but CA,

FA, LDA and PCA seems to be better choices for the task.
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2.5.7 Support vector machine (SVM)

The support vector machine (SVM) algorithm requires a labelled training set to

be of use. The output from the SVM algorithm is an optimal hyperplane, the

hyperplane that gives the largest minimum distance to the different groups in the

training set. Figure 2.14 shows where the optimal hyperplane would lay in a two

dimensional data set containing two groups, circles and squares [18].

Figure 2.14: Illustration of the SVM algorithm

The classification is based on which side of the hyperplane the data point lays. A

line is bad if it passes too close to the points, because it will be sensitive to noise,

so the optimal line would be passing as far as possible from all points. In the case

of classifying individual MUs, SVM would not be the preferred option compared

to CA, FA, LDA or PCA, since individual MUs can overlap in space and therefore

be difficult to classify by using this method.
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2.6 Feature extraction using SVD

SVD is a data reduction method, which can also contribute to localization of in-

dividual MUs. To show this principal, a hypothetical SR ultrasound sequence has

been made by representing MU activity by Gaussian distributions with equal vari-

ance and different expectation value, as seen in figure 2.15. As stated in Chapter

2.3.6, the expectation value indicates where the MU is fully contracted and since

MU activation is asynchronous, the expectation values decides the sequence of MU

activation.

Figure 2.15: Four different Gaussian distributions used to represent MUs

These four different Gaussian distributions (MUs) are spatially distributed at dif-

ferent regions in the SR image. Figure 2.16 shows the chosen regions, where two

of the motor units, 2.16(a) and 2.16(c), overlaps in space. All the MUs overlaps

to some extent in time, so this example can be seen as an ultrasound SR sequence

containing one contraction where four MUs are innervated.

Before taking the SVD of the SR sequence, the SR sequence has to be transformed

into a zero mean 2D-matrix, X (Figure 2.11). In this test case, the dimensions

of the SR data is 150 × 60 × 101, which after conversion is a 9000 × 101 data

matrix (X). Performing SVD on this X-matrix gives the two column-orthonormal

matrices, U and V, and the diagonal matrix S that contains the singular values.
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(a) Motor unit 1 (b) Motor unit 2

(c) Motor unit 3 (d) Motor unit 4

Figure 2.16: Images showing the location of the four motor units.

The column vectors in the U matrix are the PC directions of the data matrix X.

The first column is the vector that coincides with the biggest singular value, the

value that represents the biggest variance. The first column can therefore be seen

as the image that differs most from the normal.

By computing the energy of this S-matrix, the energy function in Figure 2.17 is

obtained. As seen, only four PCs are needed to represent the image sequence of

101 frames with 100% accuracy. With three PCs, it is possible to reconstruct the

image sequence with a accuracy of 86.95%. In this example, only three PCs are

used to be able to visually interpret this method.

By plotting the three leading column vectors of U against each other and the

three leading column vectors of V against each other, the Figures 2.19 and 2.20

are obtained, respectively. Since the location and the activation time of the MUs
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Figure 2.17: Energy function

are known, their assigned regions are plotted with different colors in these two

images.

Each column in the U matrix represent an image, so each point in Figure 2.19

can therefore be seen as pixels. Since the data matrix X is zero-mean, most of

the pixels will be situated in the origin, as seen on the projection of the pixels

(black dots) in Figure 2.19 and Figure 2.20. The three leading PC directions are

plotted against each other, so if there are pixel values different from zero in one of

the PCs, these pixels will extend away from the origin. Figure 2.19 displays this

effect, where all the regions containing contractions are extended from the origin.

In the background, all the values from the PCs are plotted in blue, to show that

the extracted regions will overlap the pixels that extends from the origin.

The four leading PCs are shown as SR images in Figure 2.18. It is seen that

all MUs are captured by the three leading PCs and since ”Motor unit 1” and

”Motor unit 3” are present in both the first and third PC, they expand along

both ”Principal component 1” and ”Principal component 3” in Figure 2.19. Some

pixels are still blue in the region of the three first ”Motor units”, which is expected

when looking at the fourth PC in Figure 2.18(d), where ”Motor unit” 1, 2 and 3

are present. Four PCs are needed to represent the original data, but three PCs

are still sufficient for showing this method.
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(a) First PC (b) Second PC

(c) Third PC (d) Fourth PC

Figure 2.18: SR images of the four leading PCs

The plots in figure 2.19 and 2.20 can not be interpreted alone. Figure 2.20 shows

”how much” activity there are at a given time (score per time). The numbers

on the graph displays the time, while the extent from the origin shows the score.

So if the graphs in Figure 2.19 and 2.20 does not expand in the same direction,

it is an indication of no present MU activity. If the two figures are compared, it

is seen that the coloured graphs extends in the same regions in both images and

that the ”Motor units” overlaps in time, which is expected, since the Gaussian

distributions in Figure 2.15 overlaps.

If it is possible to classify the clusters (MUs) based on their extension from the

origin and connected points (pixels) in 2.19 and 2.20, it may be used to locate

individual MUs in a sequence of ultrasound SR images.
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Chapter 3

Methods and implementation

This chapter addresses the methods used in the implementation of the programs

and contains information about used equipment and why this equipment is the

optimal choice for measuring muscle activity using ultrasound.

3.1 Loading ultrasound raw-data in MATLAB

The program for loading ultrasound raw-data into MATLAB (mUDT) were re-

ceived from St. Olavs Hospital. It is a protected time-limited MATLAB file which

have to be renewed every six months. The program can be used to transform

ultrasound B-mode, TVI and ECG data to be compatible for MATLAB analysis.

The ultrasound data can be either IQ or RF data, depending on how the raw-data

was stored on the ultrasound scanner. Most of the raw-data used in this project

is from M. Heger (2013) [8], which was stored as RF-data. The MATLAB codes

for this project therefore requires the use of RF-data.

The mUDT program takes raw-data as input and makes an mUDT class object

that contains all information from the raw-data and is usable in MATLAB. Figure

3.1 shows a class digram for the program and what kind of outputs it is possible

to extract from the object. As seen in Figure 3.1, four of the functions listed in

39
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the mUDT class object are the same, but with different function calls, which leads

to each of the four structs: Bmode, TVI auto corr, TVI and ECG.

Figure 3.1: Class diagram for the mUDT program

When extracting TVI data, there are two different options that can be used,

called TVI or TVI auto corr in the class diagram in figure 3.1. It can either be a

displayable brightness image (TVI), or in the form of the autocorrelation estimates

with no lag (R0) and lag 1 (R1) (TVI auto corr). The latter is what is used in

this project to be able to calculate the velocity field and SR.

Extracting B-mode data is only useful for displaying a typical gray-scale image of

the ultrasound image, but this data has an FR equal to the ultrasound scanner

monitor which is only 60Hz and is therefore not usable for calculating SR.
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3.2 Equipment and test setup

The equipment for the time delay experiment is in accordance with earlier ex-

periments which consists of a GE Vingmed Vivid E9 ultrasound scanner with an

ML6-15 linear probe. High resolution and high FR is crucial to locate small and

fast changes in muscles. The scans was executed at depths between two and four

cm and linear probes are preferable for superficial scanning, since it is possible to

operate with high frequency to increase resolution and FR without much attenu-

ation. To get as high FR as possible, the test-option ”Msc TVI” (Muscular TVI)

in ”strain rate”-mode with a frequency of 15MHz was the chosen option.

Table 3.1 shows the chosen scanner, probe and scanner settings. The optimal PRF

was not examined in the experiments from M. Heger (2013) [8], so the experiments

in this study will use the same PRF, even though this PRF might not be optimal

for the given task.

Scanner: GE Vingmed Vivid E9

Probe: ML6-15

Option: Msc TVI

Mode: Strain Rate mode

Frequency: 15MHz (maximum)

Strain length: 2mm

PRF: 750Hz

Depth: 2-4cm

Frame rate: 120-220 fps

EMG electrodes ECG electrodes on VE9 scanner

Number of pulses: 3

Table 3.1: Test equipment

To localize and classify individual MUs, raw-data gathered from M. Heger [8] was

used and the equipment listed in Table 3.1 were also used in [8]. To image muscle

activity using ultrasound, the probe was placed in a fixed position over the anterior

side of the upper arm, with ECG electrodes placed on each side of the probe for
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detection of MUAPs. The probe were placed distal to the muscle belly, because

the muscle belly contains most of the neuromuscular junctions. The experiment

for measuring time delay between ECG electrodes and ultrasound response uses

the same equipment, but different execution, described in the next chapter.

3.3 Time delay between ECG electrodes and

ultrasound response

3.3.1 Test setup and experiment execution

Earlier scans from M. Heger [8] were executed at different depths, hence different

FRs. The time delay test is therefore also executed at five different depths and

categorized in six groups of FR intervals. Because the sampling frequency for the

ECG is higher than for the ultrasound scan, some small delay will almost always

occur. The size of this time delay will depend on the ultrasound scans FR. A

table containing expected delay due to difference in sample frequency can be seen

in table 3.2.

Depth [cm]: 4 4 3.5 3 2.5 2

Frame rates: 126 194 200 207 213 221

Sampling intervals [ms]: 7.94 5.15 5 4.83 4.69 4.52

Expected time delays [ms]: 3.97 2.58 2.5 2.42 2.35 2.26

Table 3.2: Expected time delays

The experiment were executed by placing two of the ECG electrodes in a bucket

of water and attach the last electrode to the probe by the use of tape, like the

images in Figure 3.2. While recording, the probe was quickly submerged in water.

This resulted in an ECG electrode and ultrasound response equal to the response

in Figure 3.3 and 3.4, respectively. It is important that the tip of the electrode is

aligned with the probe footprint to make it easier for the electrode and probe to

react at the same time when submerging the probe in a directly vertical motion.
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(a) Bucket containing water and ECG elec-
trodes (marked with a circle)

(b) ECG electrode attached
to ML6-15 probe

Figure 3.2: Test set-up for measuring time delay between ECG and ultrasound

Figure 3.3: ECG response when submerging electrode in water, with a vertical
blue line showing when the ECG electrode reacts to the water.

Figure 3.4: Ultrasound response when sinking probe in water, with a vertical
blue line showing when the probe reacts to the water.
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3.3.2 Problems

There are a couple of problems with this method. The ECG electrodes is made

for measuring a continuous heartbeat and not completely suitable for this kind of

testing. The electrodes are dependent of motion and goes to ”sleep”-mode if some

kind of motion is not present. After making the electrodes react, they must be

at rest and the probe needs to be submerged quickly for the test not to fail. In

addition to this problem, it is difficult to submerge the probe exactly vertical by

human motion, which makes it difficult for the electrode and probe to hit the water

simultaneously. Since the probe is quickly submerged, this should not influence

the measurements to a large extent.

3.3.3 Program for calculating time delay

Figure 3.5 shows a flow chart for the program that calculates the time difference

between ECG data and ultrasound image response. Under is a list explaining what

happens in each block in the flow chart.

Figure 3.5: Flow chart for time delay calculation program

• Get raw data: This file starts the program by searching for and making an

object of the raw-data by using the mUDT program got from St. Olavs

Hospital. It iterates through all the folders in the directory containing the
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raw data and runs the find time diff for each raw data it finds. After going

through all the raw-data for each FR, all the time delays is recorded in a

vector to find the mean value and variance. All the time delays independent

of FR is recorded in a separate vector to find the total mean and variance,

which can be used if the time delay is independent of FR.

• Find time diff: This function takes raw data as input and returns the time

difference between ECG data and ultrasound image response.

• Find ECG res: Takes ECG data as input and returns the sample number of

the start of the ECG pulse. The start is found by taking the cross correlation

between a known ECG response and the ECG sequence from the given raw-

data. The peak index of the correlation sequence after halving gives us

information about where the known ECG sequence overlaps the most with

the new ECG sequence.

• Find US res: Returns the sample number of the start of the ultrasound

response. Since the ECG electrode is located in the center of the probe, the

ultrasound data is processed by picking out the eleven middle vertical lines

and taking the mean value of all the data points in this limited rectangle.

This is done for each frame, which gives a response equal to the sequence in

figure 3.4. The US response is found by searching for a slope that increases

with at least 15000 in the next two steps. Because the response is so fast, it

did not seem that filtration would be advantageous and slope search seemed

to be sufficient for the task.

• Plot data: This function plots the ECG data and US data with a vertical

line marking the start of the responses, which is shown in Figure 3.3 and

3.4, respectively.

• Plot and save statistics: This function gives three different plots for inter-

preting the statistical data of the time delay.
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3.4 Program for motor unit localization,

Localization auto

The program for MU localization uses multiple sub-programs and the layout for

the main program is shown in Figure 3.6. As shown in Figure 3.6, it is the

”Localization auto” program that is the start. This program finds raw-data au-

tomatically by searching through a given directory. Each of the sub-programs are

run sequentially after the number in each box. Figure 3.7, 3.9 and 3.11 shows the

layout for program 4, 5 and 6 in Figure 3.6, respectively. Each sub-section in this

section gives a description for the functionality of each of these functions, while

the MATLAB codes located on the DVD contains commenting describing both

functionality and variables.

Figure 3.6: Localization auto program layout

3.4.1 Synchronization of ECG and ultrasound sequence,

align US ECG

Recorded EMG and ultrasound data are almost never synchronized, which means

that the start and end time for the EMG and ultrasound sequence are not the

same. To solve this problem, a program was made to detect which data sequence
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that starts and ends first and then remove the parts that are outside this time

interval.

3.4.2 Get and filter strain rate data,

get and filter SR data

Figure 3.7: get and filter SR data program layout

Velocities and strain rate in ultrasound image,

calc velocity field and calc SR data

The velocity field of the ultrasound sequence was found by using formula 2.11. This

formula uses the autocorrelation estimate with lag 1 (R1), which is automatically

extracted from the mUDT class object. The frequency and PRF variables used to

calculate the velocities in the program is extracted from the parameter list from

the getParams-function from the mUDT object and is therefore the same as when

the scans were executed.

Ultrasound SRI is based on the velocity gradient as explained in Chapter 2.3.5.

To find the SR, the velocity difference between pixels has to be calculated. To

reduce noise, the velocity difference is calculated between pixels with a distance

equal to the strain length (∆x) between each other. The program calculating the
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SR sets the strain length to 2mm, which means that the 2mm closest pixels to the

probe head gets excluded in the image. Some information gets lost, but since this

is only 2mm in the near field, it does not compromise the data to a great extent.

Filters, SR filter

Due to a lot of noise in the SR images, so to get desired SR images, the SR images

gets filtered with three different filters:

• Spatial filter: This filter is made as a weighted window filter. The weighting

is based on the distance from the center pixel in the window, where the value

is equal to 1
center+1

. The window size can be chosen, but since the SR images

has better resolution in the axial direction, it is recommended to have a

window that is higher than it is wider, like the one shown in Figure 3.8. A

window that was nine pixels in height and seven in width was found to be

preferable.

The drawback with this filter is that some information around the edges is

lost. In example window in Figure 3.8, this will result in a loss of three

pixels on the top and bottom part of each image, as well as two pixels left

and right.

Figure 3.8: Weighted spatial filter
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• Temporal filter: The temporal filter is designed as a low pass butter-worth

filter. The cut-off frequency were designed by averaging over a window con-

taining a known contraction, finding the power spectral density (PSD) func-

tion and choosing a suitable cut-off frequency.

• Statistical filter: To remove unwanted small humps that are present through-

out the SR images, the statistical filter removes values that are lower than

the mean and standard deviation (STD) of the entire sequence.

3.4.3 Data representation and response to contraction,

make isosurf obj

Figure 3.9: make isosurf obj program layout

To get a 3D-representation of the SR data, the ”isosurface”-function in MATLAB

was used. This function takes in the filtered SR data (filt SR) and a parameter,

isovalue, that in this case sets a threshold value for how great the SR has to be to

be a part of the representation.

The ”isosurface” object is a struct containing ”vertices” and ”faces”. The ”ver-

tices” matrix are points in space, encapsulating contractions found by the ”isosur-

face” function. This matrix is therefore used to locate contractions and mark it

in the SR images. The ”isosurface”-function contributes with both localization of

muscle fiber activity and making a three dimensional plot of the ”density” of the

SR sequences.
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Finding the isovalue, calc isovalue

The isovalue is found automatically by reshaping the SR data into a vector and

finding the histogram for the data. After finding the histogram, the value that is

most present in the sequence is found, and a percentage of 3.67 ∗ 10−4% of this

value marks the wanted threshold for the isosurface function. This percentage was

found by testing different isovalues based on the histogram of a known sequence

of SR data. For each set of SR data, the closest value to the wanted threshold

value is found, and the isovalue becomes the position (group) that contains this

wanted threshold.

Detection of contraction using EMG data,

find US response

Detection of contractions from EMG data is done by the use of cross correla-

tion. By loading a known EMG response of a contraction and cross correlate

this response with the unknown EMG response, the output is a function with

peaks that shows the time of arrival of a contraction. For a sequence containing

one contraction, this peak is easily located by the maximum value in the output.

For a sequence containing multiple contractions, the peaks are found by setting

a threshold value that the peaks have to surpass to be counted as a contraction.

In addition to this, the peak can not have neighbourhood peaks inside a region of

150 ms, which is the expected maximum time for a single muscle twitch. Figure

3.10 shows the result of this algorithm, where the known EMG sequence (pink)

gets correlated with an unknown EMG sequence (red).

The blue vertical lines in the middle graph shows the chosen peak values from the

cross correlation function. The second contraction marked by the cross correlation

function shows the reason for checking the neighbourhood after peaks, since the

first peak gets chosen even tough it is lower than the next peak. The bottom graph

showing the unknown EMG sequence indicates that this check is necessary, since

the greater peak would result in a time later than the start time of the contraction.
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Figure 3.10: EMG data for locating start time of contractions

The returned vector from this function, ”US responses”, contains the frame num-

bers where contractions have been detected. This vector is used to exclude regions

in the ”isosurface”-object that is not a result from a known contraction seen in

the EMG sequence. These regions is typically located near the start or end of

the ultrasound sequence, were unwanted effects can occur due to movement of the

arm when starting and stopping the recorded sequence.
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3.4.4 Localization of regions of contraction,

make and plot projections

Figure 3.11: make and plot projections program layout

This program takes the output from make isosurf obj as input and use it to project

the filtered SR data during a contraction to the depth-width-plane. All the frames

belonging to a contraction gets integrated over before being projected, so if a

sequence contains two contractions, two SR images are stored by this function.

Localization of muscle activity,

check distance & side check

To locate regions of contraction, a search for all SR values at least 50 % of the max-

imum SR value in the image is done. The side check function checks surrounding

pixels to check if the found value is the maximum value in its neighbourhood. If

the value is the largest in its neighbourhood, this value is stored. The area around

these peak values are checked in the find distance function to find the dissemina-

tion of the muscle activity. Images containing SR data with circles around the

located regions of contractions are then stored.
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3.5 Data reduction as a method for localization,

feature extraction

3.5.1 Data reduction method

Based on the functionality of the different data reduction methods and classifi-

cation methods proposed in Chapter 2.5 and 2.6, PCA in the form of SVD for

feature extraction was the preferred option for a data reduction based MU local-

ization algorithm. In addition to being able to localize MU activity, it is easy to

use and one of the simplest methods presented in the theory chapter. The leading

PCs of a zero mean filtered ultrasound SR sequence contains information of the

position as well as the duration of the MU activity, as shown in the example in

Chapter 2.6.

3.5.2 Program for feature extraction using SVD,

feature extraction

A communication diagram for the feature extraction using SVD method is shown

in Figure 3.12. The program is launched by running the feature extraction func-

tion and the function calls has to be done in the order of the numbers in the

communication diagram.

Figure 3.12: Communication diagram for the classification program
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feature extraction sets the directory containing stored data from the localiza-

tion algorithm and loads SR data.

make data matrix subtracts the mean from each frame in the SR sequence

to make it zero mean and transforms it to a two dimensional data matrix X,

according to Figure 2.11.

eigenFace takes the SVD of the data matrix X and calls upon the ”pick PCs”-

function which chooses a number of principal components (k) based on the energy

of the S matrix. The number of PCs should at least add up to 90% of the total

energy of the S matrix, as stated in Chapter 2.5.3.

display FE plots the three leading PC directions against each other. The in-

formation about the centers and radii found by the Localization auto algorithm

is used to display individual MUs in different colours to show how the ”feature

extraction using SVD” method works.

This program is not automatized, so the SR data that is going to be analysed

by the feature extraction function has to be chosen manually. The centers and

radii found by the ”localization auto”-function gets saved and can be loaded into

this program, but since this program is made to explain how this method works,

manually selecting the regions based on the SR data that is analysed is sufficient.

It is also possible to set a window encapsulating the detected contractions, which

is used to decrease the number of PCs needed to represent at least 90% of the

dataset.
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Results and analysis

4.1 Time delay between EMG and ultrasound

response

Table 4.1 shows the measured mean delay (MMD) and STD for each group of

frame rates, where the ”MMD - ETD”-field is ”measured mean delay” minus the

”expected time delay” due to the difference in sample frequency between ECG

electrodes and ultrasound, shown in Table 3.2.

Frame rates: 126±1 194±1 200±1 207±1 213±1 221±1

Number of samples: 6 5 9 11 9 10

MMD [ms]: 4.63 4.02 5.84 5.24 4.52 5.27

MMD - ETD [ms]: 0.66 1.44 3.34 2.82 2.17 3.01

STD [ms]: 2.64 2.95 1.94 3.89 2.34 4.27

Table 4.1: Mean delays and standard deviation

The reason why there are different number of samples for each FR group is that a

lot of data were not usable, because of bad response in either EMG or ultrasound

sequences which were not noticed before loading the data in MATLAB. The reason

for the ±1 in each FR group is that a small increase in sample width will decrease

55
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the FR and vice versa, so some variance in FR for each sample is present in the

data set.

Table 4.1 indicates that the MMD is independent of FR, since the MMD does not

consequently increase or decrease with respect to FR, even though the ETD is

higher for lower FRs. Since Table 4.1 shows that the MMD is independent of FR,

the total MMD and STD for all the 50 samples were calculated. The total mean

delay was measured to be 5.06 ms and after subtracting the mean ETD, which is

2.68 ms, the time delay is estimated to be 2.38 ms. The STD of the complete data

set was measured to be 3.11 ms.

Figure 4.1: Statistical data for time delay between ECG and ultrasound re-
sponse

Figure 4.1 shows three different ways of showing statistical data for the time delay

independent of FRs. The red line in the two first plots shows the mean value of

the data set, while the blue area in the box-plot is the area where 50% of the data
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lies. The second sub-plot is an estimation of the PDF, made by the ”ksdensity”-

function in Matlab and seems to be a reasonable PDF with respect to the data,

except that the tails seems a bit wide. The blue lines in the PDF indicates the

area between -1 STD and +1 STD (1.98 and 8.13 ms), where 68% of the data lies.

The histogram shows that the intervals at -1 STD and +1 STD contains the

most samples, which explains why the PDF estimation has two local tops. Four

samples indicates that the ultrasound response is faster than the ECG response

which should not be the case. The reason for this is most probably that the ECG

electrodes is dependent on a continuous wave, explained in Chapter 3.2.2. This

makes the ECG electrode react when it already is submerged in the water, which

makes the probe react to the water before the ECG electrode.

A time delay of 2.38ms and STD of 3.11ms indicates that the time difference

between ECG electrodes and ultrasound response is almost negligible. If a con-

traction is detected in an EMG sequence when scanning for muscle activity, the

ultrasound response is expected to be seen after a certain time, equal to the delay

caused by propagation velocity of the MUAP (EUD = 4.3 − 13ms), in addition

to the time delay between ECG electrode and ultrasound response. So the ultra-

sound response is expected to be seen between 6.68ms and 15.38ms after the EMG

response.

4.2 Strain rate

To know that the SR measurements gives correct response, the SR data produced

by the ”calc SR data”-function after filtration is compared to the result from the

Q-analysis tool on the ultrasound scanner. Figure 4.2 shows an example of the

SR data calculated in MATLAB versus what is seen in the Q-analysis window on

the ultrasound scanner. These two images are taken from the same ultrasound

sequence which contains one contraction.
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(a) Localization of motor units in matlab (b) Localization of motor units on an ultrasound
scanner

Figure 4.2: Localization of motor units

The SR image in 4.2(a) is the result from the ”make and plot projection”-function,

where all the frames during the contraction are integrated over and seen from the

width-depth-plane (cross-section of the upper arm). These types of pictures will

be referred to as projections of integrated SR images. As seen in Figure 4.2(b),

the yellow region corresponds to the region between 7.5mm and 10mm in depth

and between 5mm and 12.5mm in width in Figure 4.2(a).

The size of the detected regions of contractions is smaller than the maximum

MUT, found to be 1cm by P. E. Barkhaus et al. (2013) [19], which may indicate

that the detected regions are single MUs. Figure 4.3 shows two images from the

same sequence as in Figure 4.2(a), where the upper image marks the time of the

strain rate image at the bottom. If the SR image in figure 4.2(a) and 4.3 are

compared, it is seen that the projection of the integrated SR images are not able

to locate individual MUs. The MU located to the right in 4.2(a) is actually two

different MU, which are visible in the surface plot in Figure 4.3.
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Figure 4.3: Strain rate image with ECG to shown time frame

4.3 Localization based on motor unit behaviour

4.3.1 Motor unit behaviour

To show how an MU behaves, a sequence of six image frames at six different

times during a contraction is presented in Figure 4.4. The time for each of the six

different frames are marked in Figure 4.5 with different coloured vertical lines.

As seen in Figure 4.4, the present MUs behaves as expected. After the contraction

starts, the SR increases in the region of the motor unit before decreasing. The

same conclusion can be drawn from the ”isosurface”-objects shown in Figure 4.6,

which shows a 3D representation of the SR sequence in Figure 4.4.
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(a) Time step 1 (blue) (b) Time step 2 (green)

(c) Time step 3 (black) (d) Time step 4 (light blue)

(e) Time step 5 (purple) (f) Time step 6 (grey)

Figure 4.4: Six strain rate images showing different frames during a contrac-
tion

Figure 4.5: EMG response with marked time steps
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In Figure 4.6(a), all the areas containing contractions happens a couple of frames

after the detected contraction in the EMG sequence, which is at time ”frames =

45”. The yellow clusters in Figure 4.6(b) are located in the same regions showing

contractions in the image sequence in Figure 4.4.

(a) Isosurface image showing time and width (b) Isosurface image showing cross-section of up-
per arm

Figure 4.6: Isosurface images

4.3.2 Localization

To automatically detect regions of contraction based on MU behaviour, the ”Lo-

calization auto”-function was used and an example of the result of this algorithm is

shown in Figure 4.7, which is a projection of integrated SR images in the sequence

shown in Figure 4.4.

Three MUs are detected in Figure 4.7. The same regions are encricled in the

isosurface image in Figure 4.6(b) by using different colors, corresponding the to

”Motor units” coloured in the next section (Figure 4.10(b)).

By looking at Figure 4.7, it seems that the region of contraction to the right is

big, but inside the boundaries of an MU (1cm). It is also seen that this region is

not circular, but it can still be a singular MU, since the MUT is not necessary a

circle.
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Figure 4.7: All strain rate images during a contraction added together

4.4 Feature extraction using SVD for localiza-

tion of motor units

4.4.1 Ultrasound sequence containing one contraction

To show the result from the ”feature extracting using SVD”-method, the same

data set as in Figure 4.4 is used. Figure 4.8 shows the energy function for this

dataset, which shows that six PCs are needed to represent over 90% of the data,

but the three leading PCs adds up to 81.37% of the total energy, which is enough

to make a good 3D-representation of the result.

The three leading column vectors (PCs) of the U and SV matrices are plotted

against each other in Figure 4.10 and 4.9, respectively. Since the regions of con-

traction in the dataset is known, these three regions are picked out and displayed

in three different colors in figure 4.10(b), corresponding to the coloured circles

in Figure 4.6(b). As explained in chapter 2.7, most of the points are situated

around the origin, which is seen on the projection of the graph (black dots) in

Figure 4.10(a). The ”motor units” in Figure 4.10 may not be individual MUs,

but regions of contractions. They will still be referred to as MUs to ease the

interpretation and analysis of the figures.
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Figure 4.8: Energy function

Figure 4.9: Feature extracting using SVD, activity at time steps
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The three ”Motor units” (green, red and black) are clearly distinguishable when

looking at Figure 4.10(b), but picking them out from Figure 4.10(a) is not straight

forward. The red and green graphs are distinguishable, but it seems that there

are another MU overlapping with the black region, in addition to a region that

lies along the second PC.

The projection of the graph displaying the amount of activity for a given time

(Figure 4.9) shows that there are much activity along the first and second PC,

which corresponds to the red and green regions respectively. There are signs of

activity in the black region as well, but less than for the green and red, which is

expected based on the image sequence in Figure 4.4 which shows less activity in

the black region.

Figure 4.11 shows the three leading PCs formed back into SR images. The second

PC shows a region with a contraction in the upper right quadrant, which is not

present in any of the images in Figure 4.4. There are signs of activity near the end

of the SR sequence in this region, but this is because of probe lift when stopping

the ultrasound recording. Based on the images in Figure 4.11, this ”contraction”

is the region that lies along the second PC axis in Figure 4.10(a), since this region

is located in the upper right corner in image 4.11(b).

(a) First PC (b) Second PC (c) Third PC

Figure 4.11: Strain rate images of the three leading principal components

It looks like it will be possible to localize individual motor units with the ”fea-

ture extraction with SVD”-method, but because the sequence contains time steps

before and after the contraction, there are some unwanted regions containing ”con-

tractions” that is a result from unwanted motion when starting and stopping the
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ultrasound recording. In addition, four PCs are needed to represent at least 90%

of the data, so it is difficult to visually illustrate this method. To illustrate this, a

time window encapsulating the contraction has been picked out before taking the

SVD of the sequence. The first PC in this case covered 91% of the total energy.

The 3D-representation of this is shown in Figure 4.13. The coloured regions (MUs)

in Figure 4.13(b) now overlaps with almost all the pixels in Figure 4.13(a). This

indicates that it may be easier to show to what extent the ”feature extraction

using SVD”-method works if the frames encapsulating the contraction captured

in the EMG sequence is picked out before taking the SVD of the data.

Figure 4.12: Feature extracting using SVD, activity at time steps
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Since this sequence only contains the encapsulated contraction, the graph showing

score per time in Figure 4.12 is a simple arc, which spreads out in the same

direction as the graphs in Figure 4.13. It is difficult to pick out the clusters in

4.13, but it is seen that all the ”Motor units” are expanding from the origin, and

by looking at connected dots (pixels), it should be possible to separate the three

”Motor units”.

4.4.2 Ultrasound sequence containing multiple contractions

In this subsection, feature extraction is used on a data set containing four contrac-

tions. The EMG sequence for this dataset is shown in Figure 4.14, where the start

of each contraction is marked with a vertical blue line. The four SR images in Fig-

ure 4.15 are surface plots showing the cross section of the upper arm, projections

of integrated SR images.

Figure 4.14: ECG sequence containing four contractions

From these SR images, it is possible to see where the individual MUs are located.

As in the previous example, some regions that contains known contractions have

been picked out. These regions are marked with coloured circles in 4.16 and the

colour of the circle corresponds to the colours on the graph in Figure 4.18(b).

This is a sequence containing multiple contractions and 818 frames and 24 PCs

are needed to represent at least 90% of the energy. Because of this and the result

found from encapsulating the contraction in the example in Chapter 4.4.1, the

frames between contractions are removed, which resulted in a need for five PCs

instead of 24 to represent at least 90% of the data.
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(a) Contraction 1 (b) Contraction 2

(c) Contraction 3 (d) Contraction 4

Figure 4.15: Strain rate images of the four contractions in figure 4.14

Figure 4.16: Isosurface plot of strain rate data with chosen regions of con-
traction marked
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Most the chosen regions marked in 4.16 are present in all the three leading PCs

shown in Figure 4.17. As a result, there are no ”Motor units” in Figure 4.18(b)

that expands in only one PC direction. The two Figures in 4.18 overlaps almost

completely, which means that the chosen regions in Figure 4.16 covers most of the

active MUs in the ultrasound sequence.

(a) First PC (b) Second PC (c) Third PC

Figure 4.17: Strain rate images of the three leading principal components

If the two figures in 4.18 are compared with Figure 4.19, the one showing amount of

activity per frame, it is seen that ”Motor unit 1” through ”Motor unit 5” expands

in the same direction as ”Contraction 4”. This means that these five MUs are

active during ”Contraction 4”, which is also shown in figure 4.15(d). The red

region in Figure 4.18(b) represents ”Motor unit 1”. This ”Motor unit” expands

in a region which covers all the contractions in Figure 4.19, which is also seen in

Figure 4.15, where all the contractions in Figure 4.19 expands up two the right at

first, a region covered by both ”Motor unit 1” and ”Motor unit 6”. ”Contraction

1” and ”Contraction 2” extends further from the origin. This means that ”Motor

unit 6” is less active during ”Contraction 3” and ”Contraction 4”, which is also

seen when looking at projections of the integrated SR images in Figure 4.15
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Figure 4.19: Feature extracting using SVD, showing score per time

As stated in Chapter 2.1.1, MUs are innervated asynchronously, which means that

the visible MUs in each of the SR images in Figure 4.15 will not expand at the same

time. This may happen, as the time between each frame is between 4.5ms and 8ms,

depending on the FR, but this does not seems to be a problem in this sequence. By

comparing Figure 4.18(b) and 4.19, it is possible to see the sequential activation

of the MUs during each contraction. To show that the following interpretation of

the data is satisfactory, four figures is shown in Appendix B, containing SR images

during each contraction. If the numbers for each point Figure 4.19 are followed

sequentially, it is possible to pick out the same sequence of MU activation. Below

is a list containing the sequential activation of individual MUs when comparing

Figure 4.18(b) and 4.19.
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• ”Contraction 1”: ”Motor unit 6” is followed by ”Motor unit 1”

• ”Contraction 2”: ”Motor unit 6” is followed by ”Motor unit 1” and some

activity from ”Motor unit 3” and ”Motor unit 5”

• ”Contraction 3”: ”Motor unit 1” is followed by ”Motor unit 3” and ”Motor

unit 5”

• ”Contraction 4”: ”Motor unit 6” is followed by ”Motor unit 1”, ”Motor unit

3”, ”Motor unit 5”, ”Motor unit 3”, ”Motor unit 4” and ”Motor unit 2”.

This corresponds to the Figures in Appendix B.





Chapter 5

Discussion

5.1 Time delay between EMG and ultrasound

response

By looking at the time difference between EMG and ultrasound response in the

data from M. Heger (2013) [8] (example Figure 5.1), a time delay between 6.68ms

and 15.38ms seems reasonable, which supports the claim that MU activity is cap-

tured in the ultrasound sequences. It is difficult to see the exact time delay in

Figure 5.1 because of noise, but it is seen that the ultrasound response comes

after the EMG response, but not by a greater delay than 15ms, which is marked

with vertical red lines in Figure 5.1.

75
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Figure 5.1: Figure showing an example of the Q-analysis window marked with
a time delay of approximately 15 ms

5.2 Motor Unit Localization

The results from Chapter 4.3 and 4.4 shows that it is possible to locate individual

MUs in a sequence of ultrasound SR images. The ”Localization auto” algorithm,

which locates MUs based on MU behaviour, manages to capture the MUs, but

have problems locating overlapping MUs and smaller MUs. Even though this

algorithm is not suitable to detect all the individual MUs present in a SR sequence,

it might be a feasible algorithm for prosthetic use to increase the number DoFs.

It manages to locate multiple MUs in ultrasound SR sequences containing one or

multiple contractions, which can be used to classify different prosthetic actions.

This algorithm has to be improved before it can be used in a real-time system,

since the data processing is time consuming, but it might be feasible.

The projections of integrates SR images helped picking out the regions of con-

traction and contributed to show that the ”feature extraction with SVD”-method

is a potential method for spatial and temporal MU localization. In this study,

the ”feature extraction with SVD”-method is only a proposed method for MU

localization and not an elaborated program. The results shows how this method

can be used for localization of individual MUs in sequences containing single or

multiple contractions. The analysis done in Chapter 4 indicates that this method
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is a more robust and time-saving method for real-time systems, but calculation of

SR and filtering is still needed for this method to work properly. In the examples

in Chapter 4.4, only three PCs have been used to visualize the principal of this

technique, but when automatised, more PCs can be used to localize all present

MUs.

There have not been made any programs for automatic classification in this study,

but a couple of data reduction and classification techniques have been proposed

in Chapter 2.5. By looking at the Figures in 4.18, each MU is clustered together,

where connecting pixels in the image is connected to each other. An algorithm

for automatically finding clusters, like the proposed CA method in Chapter 2.5,

could be used to classify each of these clusters (MUs).

A MATLAB tool-box, called multivariate image analysis (MIA), proposed by Har-

ald Martens, is a possible tool for analysis of the kind of data shown in Figure

4.18. This tool-box provides a graphical interface and makes it easier to analyse

multivariate images. It contains higher-level command-lines for performing PCA

and different kinds of classification tools, like K-Means clustering, which can be

useful for classification of MUs [23]. This package also makes it possible to auto-

matically converting each point in Figure 4.18 to pixel position in SR images for

better interpretation of the data.





Chapter 6

Conclusion

The time delay between the ECG electrodes and ultrasound response

had an expected value of 2.38ms, which is small compared to the delay caused by

the propagation velocity of a MUAP, which is between 4ms and 13ms. Because

of this, the time delay between the ECG electrodes and the ultrasound scanner

is almost negligible. An expected total time delay consisting of velocity propaga-

tion of biological signals and mechanical time delay was calculated to be between

6.68ms and 15.38ms.

Motor unit localization is possible by processing scans of isometric contrac-

tions from a state of the art ultrasound scanner in MATLAB. Ultrasound SR

sequences can be used to locate MUs by picking out regions containing typical

MU behaviour, but struggles to identify overlapping MUs as individual.

The ”feature extraction using SVD”-method can be used for MU localization and

quantification and is believed to have better prospects for future use, as it is able

to localize all individual MUs present in an ultrasound SR sequence during one

or multiple isometric contraction. No program for automatic localization of MUs

were made for this method, but it may be accomplished by using this method in

combination with a cluster based classification algorithm. The MIA tool-box in

MATLAB is believed to ease the process of automatic localization.
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Chapter 7

Future work

7.1 Data acquisition

This study indicates that the ”feature extraction using SVD”-method could be

used for classification of MUs. It has been tested on several raw-data from the

ultrasound scanner, but more testing should be done to verify this method. To

know that this method works satisfactory, new data should be collected and tested

with the proposed method for feature extraction using SVD.

7.2 Automatic localization

The first step for further development would be to implement an automatic local-

ization program by using the ”feature extraction using SVD”-method presented in

Chapter 2.6 in combination with a cluster based classification method. The MIA

tool-box in MATLAB has build-in functions for image-enhanced cluster analysis

and makes it possible to automatically display the results in image format. It also

has importing and building functions to ease the work of assembling multivariate

images.
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7.3 Mapping of motor units

If a satisfactory program for localization of individual MUs has been made, it

would be interesting to see if it could be used to map individual MUs activity

for typical human movements. This study only analyses data from small isometric

contractions, so new experiments should be executed, where movements are carried

out with a greater impact on the joints. If the proposed method manages to

locate individual MU activity in ultrasound scans of muscle activity during normal

movements, a map of which MUs that are active during different movements can

be made. This could have a positive impact on the field of ergonomy, movement

science, prosthetics and be of use to diagnose and treat muscle deficiencies.

7.4 Prosthetics

If it is possible to map human motion by MU activity with the use of ultrasound,

it could be a potential method for prosthetic control. The localization algorithm

have to be optimized to work in real-time and ultrasound transducers has to be

placed around the residual limb for this system to be functional as a method for

prosthetic control, but it is believed that an ultrasound controlled prosthesis would

increase the number of DoFs and be a more robust method for control compared

to existing methods.
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Sequences of strain rate images

(a) EMG data for contraction 1

(b) Time step 1 (blue) (c) Time step 2 (green) (d) Time step 3 (purple)

Figure B.1: EMG and SR data showing different frames during contraction 1
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(a) EMG data for contraction 2

(b) Time step 1 (blue) (c) Time step 2 (green)

(d) Time step 3 (purple) (e) Time step 4 (black)

Figure B.2: EMG and SR data showing different frames during contraction 2
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(a) EMG data for contraction 3

(b) Time step 1 (blue) (c) Time step 2 (green)

(d) Time step 3 (purple) (e) Time step 4 (black)

Figure B.3: EMG and SR data showing different frames during contraction 3
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(a) EMG data for contraction 4

(b) Time step 1 (blue) (c) Time step 2 (green)

(d) Time step 3 (purple) (e) Time step 4 (black)

Figure B.4: EMG and SR data showing different frames during contraction 4
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Abstract for IEEE article

C.1 Ultrasound Strain Rate Imaging of

Individual Muscle Motor Units

Max Heger, Øyvind Stavdahl & Hans Torp 1. April, 2014

Skeletal muscle is organized in motor units, each comprising a motor neuron and

all its connected muscle fibres. The arrival of an action potential (a neural “im-

pulse”) causes the fibers to contract – they exhibit a twitch. This study aimed for

the spatiotemporal detection of individual twitches, which may allow for a more

explicit study of muscle physiology and more dexterous prosthesis control.

We used a GE-Vingmed Vivid E9 ultrasound scanner and an ML6-15 linear probe

in a clamped and fixed position over the biceps, giving images perpendicular to

muscle fibers. The scans were executed by using ”Strain rate”-mode in the test

option ”msc TVI” with a frequency of 15MHz, which results in a frame rate

between 120 and 220 FPS, depending on depth. Recordings of tiny voluntary

isometric muscle contractions were made, with ECG electrodes placed on each

side of the probe to detect the associated motor unit action potentials (MUAPs).

The recordings were analyzed using the scanners quantitative analysis (Q-analysis)

tool for measuring strain rates inside elliptical regions of interest (ROIs). Figure

91



Appendix C. Abstract for IEEE article 92

1 shows an image containing eight ROIs. The figure includes b-mode images with

and without strain rate measurements, respectively, and a graph showing the mean

strain rate of the ROIs marked in the strain rate image. The turquoise graph at

the lower right shows a single MUAP recorded simultaneously with the ultrasound

data. The yellow strain rate graph shows what is believed to be the mechanical

contraction associated with this single MUAP. The time delay from MUAP onset

to twitch onset (approx. 8.75ms) and the spatial extent of the contracting region

supports this claim. To our best knowledge, this is the first ultrasound image of a

single motor unit twitch.

The results show that it is possible to image the mechanical response of a contract-

ing muscle caused by a single motor unit by using ultrasonic strain rate imaging.

This technique could thus be a future supplement to electromyography in certain

applications.

Figure C.1: Image of the Q-analysis tool showing one contraction
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DVD overview

The DVD contains three main folders:

• Data

• MATLAB

• Report

The MATLAB folder contains five programs:

• ECG US TD: Program for calculating time delay between the ECG elec-

trodes and ultrasound response.

• localization MU behaviour: Program for localization of individual MUs based

on MU behaviour.

• mUDTDist: Program for loading ultrasound raw-data in MATLAB.

• SVD feature extraction: Program for feature extraction using SVD.

• SVD feature extraction ex: Program for the example for feature extracting

using SVD in Chapter 2.6.
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In the ”Report files” folder, all the files for the report are found.

The ”Data” folder contains two folders, one containing the data used to calculate

the time delay between ECG electrode and ultrasound response and one containing

the data for localization of MUs. Each folder in the ”localization raw data” con-

tains raw-data, saved information about centers, radii, arrival time of contractions

and saved SR and EMG sequences.
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Figure references

• Figure 2.1(a). Skeletal muscle anatomy: http://training.seer.cancer.

gov/anatomy/muscular/structure.html

• Figure 2.1(b). Muscle fiber anatomy: http://droualb.faculty.mjc.edu/

Course%20Materials/Elementary%20Anatomy%20and%20Physiology%2050/

Lecture%20outlines/skeletal_muscle_physiology.htm

• Figure 2.1(c). Cross section of upper arm: http://www.dartmouth.edu/

~humananatomy/figures/chapter_9/9-1.HTM

• Figure 2.2. Motor unit territory: From Javier Rodriguez-Falces et al. [20]

• Figure 2.3. MUAP propagation: http://storm.uni-mb.si/semg/

• Figure 2.5. Front end transmitting and receiving side:

http://www.maximintegrated.com/app-notes/index.mvp/id/4038

• Figure 2.6. B-mode image of the anterior compartment of the upper arm:

Got from M. Heger (2013) [8].

• Figure 2.7. Illustration of the Doppler effect:

http://www.school-for-champions.com/science/waves_doppler_effect.

htm#.U2kmLvmSyPY
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• Figure 2.8. Illustration of phase shift: http://folk.ntnu.no/stoylen/

strainrate/mathemathics/index.html#Doppler

• Figure 2.10. Cluster analysis:

http://www.pentalibra.com/content/cluster-analysis

• Figure 2.14. Illustration of the SVM algorithm: http://docs.opencv.org/

doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
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