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QP Problem Formulation

The constraint method setup does not aim to follow a reference trajectory. Therefore,
the cost function emphasizes rate of change, ∆uc(i) = uc(i)− uc(i− 1), instead of
the future trajectory, and the constraints gives a more narrow range for the pressure
to vary within.

min
u

f(u, ε) =
k∑

i=1
∆uc(i)T δ∆uc(i) + ε(i)T γε(i) (4.3)

Subject to

∆uL ≤ ∆uc ≤ ∆uU

− ε(i) + yc,L ≤ yc ≤ yc,U + ε(i) (4.4)

Here, yc,L = yc,ref − α and yc,U = yc,ref + α, where 2α specifies the size of the
drilling window with security threshold, which is shown in figure 4.4. The measure of
deviation from the drilling window, ε, is implemented as an MV in order to minimize
this deviation. In other words, f grows when the pressure exceeds the limitations.

4.1.2 Reference Tracking Method

The target of the second studied optimization problem setup is to attain a desired
set point as effectively as possible. This is achieved by defining a cost function that
penalizes deviation between the desired and the actual trajectory. The function is
designed to find the optimal value of a MV to reach the set point. This optimal
value should not cross the boundaries, or constraints, given by the system. If the
constraints are violated, the problem becomes infeasible, see appendix A.2 for more
details about feasibility.

QP problem formulation

The optimization problem is often a quadratic programming problem, QP problem,
formulated as in equations 4.5-4.6. The weighting matrices Q, P, and S determine
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the significance of the penalties given in order to attain the set point.

min
u

f(x, u) =
k−1∑
i=0
{(xc(i)− xc,ref (i))T Q(xc(i)− xc,ref (i))

+ (uc(i)− uc,ref (i))T P(uc(i)− uc,ref (i))}

+ (xc(k)− xc,ref (k))T S(xc(k)− xc,ref (k)) (4.5)

subject to

xc,0 = given

uL ≤ uc(i) ≤ uU
1 for 0 ≤ i ≤ k + 1

yL(i) ≤ Hixi ≤ yU (i) for 1 ≤ i ≤ k + 1 (4.6)

xc(i) is the i-th state of the system, and are the controlled variable in equation
4.5. xc,ref (i) is the reference desired to follow. uc(i) is the MVs, commonly called
the control variables.

4.2 Choice of Control Method

In this thesis, the control process is not a continuously ongoing process. It is a
process which is only running during drilling, in relatively short periods of time.
Thus, the wear of the choke is not a considerable concern. The choice of procedure
is therefore a matter of preference. It is decided to go further with implementation
of the reference trajectory MPC because there is more material available on this
subject.

4.3 Rewriting the Optimization Problem

An optimization problem often needs to be customized to fit to each specific problem.
In this case, it is desirable to control the down-hole pressure by changing the choke
pressure. The down-hole pressure is not a part of the black-box model identified.
Thus, equation 2.5 is used to map the desired pressure of the down-hole pressure
to a corresponding pressure of p1. Hence, the controlled variable in this problem is
yc = p1, which is not a state, but an output from the system. It is therefore necessary
to formulate the problem to optimize the output deviation rather than the state
deviation. In addition, it is not reasonable to penalize the actual value of the control
variable. It is no extra cost of applying a higher constant reference value. However,

1Remark that the lower and upper limits of u are constant, thus they are not denoted with
index.
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it is desired to keep the rate of change, ∆uc as small as possible. In other words, it
is no extra cost associated with setting the choke position to 60 degrees than appling
a 40 degree opening. Nevertheless, it is not desirable to change the position rapidly.

4.3.1 Integral Action

It is desirable to rewrite the system to include integral action to the MPC controller,
by using the change of input as the MV, v, instead of the actual input variable. This
is achieved by reformulating the system from equations 4.1-4.2 to the following:

x̃(k + 1) =

x(k + 1)

uc(k)

 =

Ac Bc

0 I

 x̃(k) +

Bc

I

 ∆u(k) +

Ec

0

 d(k)

= Ãx̃(k) + B̃∆u(k) + Ẽd(k) (4.7)

yc(k) =
[
Cc 0

]
x̃(k) = C̃x̃(k) (4.8)

Here, ∆uc = uc(k)− uc(k − 1). By inserting these system matrices into the problem
formulation stated in the previous section, the MPC optimizes ∆uc(i) instead of uc.

In order to optimize with respect to the output yc instead of the states, it is
necessary to redefine the cost function. Equation 4.8 shows that yc(k) = C̃cx̃c(i).
By rewriting the problem to equations 4.9-4.10, both the output optimization and
the integral action are taken into consideration.

min
u

f(y, u) =
k−1∑
i=0
{(C̃cx̃c(i)− yc,ref (i))TQ(C̃cx̃c(i)− yc,ref (i))

+ ∆u(i)TP∆u(i)}

+ (C̃cx̃c(k)− yc,ref (k))TS(C̃cx̃c(k)− yc,ref (k)) (4.9)

subject to

x̃(0) = given

∆uL ≤ ∆u(i) ≤ ∆uU for 0 ≤ i ≤ k + 1

yc,L(i) ≤ yc(i) ≤ yc,U (i) for 1 ≤ i ≤ k + 1 (4.10)

Further, it is desirable to eliminate the summation sign. This is done by writing the
states on matrix form as shown in appendix B, equations B.1-B.3. In the same way,
the system matrices are stacked to fit into the problem formulation.
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From this, it is possible to write the optimization problem as follows:

min
Y,v

Y

v

T Q̄ 0

0 P̄

 Y

v

 (4.11)

Subject to
I 0

−I 0

0 I

0 −I


Y

v

 ≤


YU −Yref

−YL + Yref

UU

−UL

 (4.12)

Here, there are ny + n∆u optimization variables. To decrease the computation time,
the superposition principle can be applied to reduce the number of optimization
variables to n∆u.

4.3.2 Reducing the Number of Optimization Variables

The future state trajectory is expressed by equation 4.1. As explained above, the
control variable is Y, thus it is required to look at the future output trajectory instead
of the state trajectory. The future output trajectory may be expressed as follows:

Y + Yref = C̄Āx̃0 + C̄B̄v + C̄Ēd (4.13)

See appendix B for the definition of the system matrices Ā, B̄, C̄, and Ē. By using
the superposition principle, equation 4.13 can be divided into two parts, one dependent
of the manipulated variable v and one independent of v:

Ydev = C̄Āx0 + C̄Ēd−Yref (4.14)

Yv = C̄B̄v (4.15)

Ydev denotes the deviation from the desired output trajectory from equation 4.1 and
Yv denotes the effect of the MV on the future state trajectory. The above results
in the optimization problem in equations 4.16-4.17. As can be seen, the number of
optimization variables is now reduced to n∆u.

min
v
f = 1

2vT H̃v + cT v (4.16)

Subject to

Lv ≤ b (4.17)
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where

H̃ = B̄T C̄T Q̄C̄B̄ + P̄

cT = YT
devQ̄B̄

L =


B̄

−B̄

I

−I

 , b =


YU − (C̄Āx̃0 + C̄Ēd)

−YL + (C̄Āx̃0 + C̄Ēd)

∆UU

−∆UL



4.3.3 Solving the QP Problem

In order to solve the QP problem stated above, an algorithm called active set is used.
The name active set describes a condition C(x) ≤ 0 of an inequality constraint and
is defined as follows:

– The condition is active if x is such that C(x) = 0

– The condition is inactive if x is such that C(x) > 0

The following pseudo-code shows the functionality of the active-set algorithm used
to solve the QP problem in the controller.

Algorithm 4.2 Active-set algorithm to solve the QP problem
while not optimal enough solution do
Solve the equality problem defined by the active set
Compute the Lagrange multipliers of the active set
Remove a subset of the constraints with negative Lagrange multipliers
Search for infeasible constraints

end while

The Matlab function quadprog handles the QP problem solving. The solver analyses
the feasibility of the solution, and finds the optimal CV of the problem. Feasibility
is discussed in appendix A.2.
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4.3.4 Convexity of the QP problem

The solution of the QP problem gives the optimal solution, the MV which minimizes
the cost function. To ensure an optimal solution, the cost function must be a convex
function and the feasible set2 must be a convex set3.

A QP problem is defined as a quadratic cost function with linear constraints. This
means that the function is convex if Q is a symmetric, positive semi-definite matrix.
Since all the constraints are linear, the feasible set is convex. Hence, the solution is
optimal if Q satisfies the above requirement. See [6] for a comprehensive paper on
the topic.

4.3.5 Control Input Blocking

Control input blocking is a method to save computational time in the solving of the
QP problem which divides the prediction horizon of MVs into blocks. As can be seen
from figure 4.5, the number of predicions are reduced. In computationally demanding
problems where the aim is to reach a constant reference, this can be beneficial.

In this thesis, it is not advisable to implement blocking in the MPC. The reference
trajectory is periodic due to the waves, thus it is not advantageous to use the blocking
method.

2Feasibility are discussed in appendix A.2.
3Convexity is defined in appendix A.1
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Figure 4.5: This figure shows the concept of control input blocking. The figure is
obtained from lecture notes[6].

4.4 The Regulatory Control

When the MPC has calculated a set-point for the choke pressure, it is necessary to
have lower level controllers to control the process to the set-point given from the
APC layer. A PI-controller is used as an underlying controller of the MPC. Figure
4.3 shows the controller and its relationship to the rest of the control system.

4.4.1 The PI-controller

The PI-controller is as mentioned a proportional-integral controller, and is described
mathematically as follows:

uP I(t) = MVP I(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ (4.18)

where e is the difference between the CV, the set-point for the choke pressure pc, and
the measured choke pressure. Kp is the proportional gain, while Ki is the integral
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gain. These specifies the impact of the controller, and are tuned for performance.
The tuning is done experimentally, and can be a source of error. A poorly tuned
controller can do more harm than good, hence the controller tuning requires some
work. In addition, the tuning have an impact on the runtime of the controller. It
is necessary that the dynamics of the regulatory control layer is faster than the
dynamics of the APC-layer.

The process takes the opening of the choke in percentage as input, thus it is
necessary to map the output to a choke opening setpoint. In addition to make the
choke pressure follow the desired setpoint, the PI-regulator are supposed to handle
the mapping. Equation 4.19 states the characteristics, where u is the choke opening.

G(u) = qc

√
ρ

pc − p0
(4.19)

Inverting this and insertion of the desired choke pressure instead of the measured
choke pressure leads to a non-linear expression of the choke opening:

u = G−1(qc

√
ρ

pc − p0
) (4.20)

The PI-regulator implementation was done by Anders Albert in the spring of 2013.
In the fall of 2013, the controller was reviewed. Although the choke characteristics
are well studied, it turned out that a PI-controller with a look-up table that mapped
the reference choke pressure to a choke opening gave a more precise control. Thus,
the PI-controller with look-up table as shown in appendix C was used. See Albert’s
Master’s thesis[1] for additional details about the implementation.

4.5 Nominal Experiments

In the nominal tests, the model derived in chapter 2 is used as process. This is
the same model used in the controller itself, and gives perfect conditions for the
controller. Waves with different periods, from 3 to 10 seconds, are applied. In
addition to the MPC performance, the Kalman filter and the disturbance observer
are tested. Results can be seen in section 7.3.1.





Chapter5MPD Simulator

5.1 The Simulator

After running the nominal experiments of the MPC, it is tested against an MPD-
simulator. The simulator was developed by Ole Morten Aamo and reviewed in the
spring of 2013 by Jussi Mikael Ånestad[11]. It is based on a mathematichal model
describing the IPT Heave Lab1, and implemented as a function block in Matlab©.
The simulator, shown in figure 5.1 allows the user to specify input parameters and
provides output parameters from this, see table 5.1 for details about each parameter.
The sketch of the lab in figure 6.1 shows the placement of each element in the lab.

Figure 5.1: The simulator block from Matlab©, developed by Ånestad in the spring
of 2013.

1The IPT Heave Lab is discussed in chapter 6.

33
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Parameter Name Symbol Unit Description
Input Parameters
Choke Opening Command 0-1 The choke opening ordered, 0 is

shut and 1 is fully opened
Piston Velocity m/s The velocity of the piston, called

the disturbance
Back Pressure Pump flow m3/s The flow from the back pressure

pump into the system
Output Parameters
Pipe Inlet Pressure P1 Pa Pressure in the inlet of the pipe
Outlet Volumetric Flow FT3 m3/s Flow in the outlet of the well
Choke Pressure C2 Pa Pressure at the choke
Choke Opening * [0-1] The actual choke opening
Downhole Pressure P1 Pa Pressure in the well, downhole
Pipe Inlet Volumetric Flow FT4 m3/s Flow in the inlet of the pipe
Pipe Outlet Volumetric
Flow

FT1 m3/s Flow in the outlet of the pipe

Pipe Pressure PT1-
PT10

Pa Pressure nodes along drillstring,
where PT10 is the node closest to
the choke and PT1 closest to the
downhole pressure node2.

Table 5.1: Description of the parameters in the simulator.

5.2 Experiments With The Simulator

The simulator is developed to emulate the behavior of the IPT Heave Lab, thus it is
reasonable to test the controller performance with the simulator as process before
testing it in the lab. These tests are conducted with wave periods between 3 and 10
seconds, and with a back pressure pump rate of 32 m3/s to resemble the maximum
flow rate in the lab.

The PI controller is adjusted to the lab and is therefore conservatively tuned. This
precaution is due to real-time aspects, to ensure that the controller is sufficiently fast.
In simulations, this is not a concern. Thus, it is adjusted to achieve optimal results,
regardless of the resulting runtime. This optimizes the PI controller’s performance
significantly.

2Remark that the notation PT1-PT10 in the simulator block in figure 5.1 differs from the
description. This is due to wrong notation in the simulator interface relative to the implementation.



Chapter6IPT Heave Lab

6.1 Brief Introduction

The IPT Heave Lab is a model of a connection scenario during drilling from a floating
rig. The lab installation is a collaboration between the Department of Petroleum
Engineering and Geophysics, NTNU, and Statoil, and simulates a vertical well 4000
meters deep. The lab is scaled down, and consists mainly of a 900 meters long coiled
copper pipe connected to the choke by a rubber pipe, the BHA, and a back-pressure
pump. Figure 6.1 shows a schematic setup of the lab, and the symbols correspond to
table 5.1. For a more detailed documentation, see [1] and [5]

A Simulink© diagram is designed to handle measurements from the lab, and to
apply the desired signals. It converts the signals to voltage and vice versa, and
communicates with the sensors through a control card. Two electrical motors are
controlling the choke valve and the piston movements, and communicate with the
computer through a set of inverters.

In addition to the communication, the diagram ensures safety by stopping simula-
tions if the pressure exceeds certain limits. The lower limit is set to −0.5 bar, which
prevents vacuum to occur in the system. The upper limit is set to 10 bars.

35
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Figure 6.1: Sketch of the lab
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6.2 Lab Preparation

In order to test the MPC controller in the lab, some alterations must be conducted.
These are discussed in the following section.

6.2.1 Model Identification

A new model based on experimental data collected in the lab must be created. Data
was obtained from the lab, and the identification process described in chapter 2 was
conducted for these data. This model was adjusted and implemented into the system,
i.e. the Kalman filter and the MPC matrices were changed.

6.2.2 Real-Time Aspects

It was assumed that the MPC controller runtime would exceed the real-time aspect
of the lab. The MPC can be down-sampled to decrease the computational load. In
addition, the model dimension can be decreased by not including all the pressure
measurements in the model identification. This is discussed more thoroughly in
section 7.1.1.

6.3 Experiments In The Lab

By performing tests of the control system in the lab, both the observer design
and the controller performance are examined. The disturbance estimator is tested
under imperfect conditions, in contradiction to the nominal tests. Experiments with
different wavelengths and magnitudes are planned.

The experiments could not be conducted as planned, as problems with the setup
occurred. These are discussed in section 7.3.4, and suggestions for changes to avoid
the problems are presented in chapter 8.





Chapter7Results and Discussion

In the previous chapters, several testing scenarios for the MPC are described. In
addition, a process model is derived, while observers are discussed and implemented.
This chapter presents and discusses the results.

7.1 Model Identification Results

By performing system identification using black-box approximation, the results vary
based on the choice of mathematical order. All orders up to 30 were tested. The
choice of order was based on the deviation between the test-set output and the model
output. As mentioned above, the goal was to obtain a mathematical model that
generates output-data as close to the test-data as possible. The deviation between
the model and test-set output should also not exceed an upper limit of a given
threshold of 2.5 bar per measurement, since it is desirable to keep the drilling window
as narrow as possible. As well as minimizing the model deviation, it is desirable to
choose the lowest possible order because the computational runtime is dependent of
the order.

As previously mentioned, it is not necessarily advantageous to include all the
pressure measurement nodes in the model identification. The top pressure node in
the drill string, p10, has almost the exact same dynamics as the choke pressure, pc. It
was therefore decided to remove p10 from the model identification, and the identified
model has 9 measurements instead of 10, as shown in equation 2.1. It can further be
considered whether more pressure nodes should be removed.

The sampling time of the process model is crucial to the result. The model is
sampled every 0.01 seconds, which is sufficient to obtain an adequate model. An

39
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Figure 7.1: This figure shows the RMSE between the output of the test set and
the model output.

incrementation of the sampling time leads to a less accurate process model.

By examining the results, the approximation using 20 as the maximal order and a
mathematical order of 7 showed to be a reasonable choice, where the sum of the error
is approximately 5 bars. This corresponds to an average error per measurement node
of 0.55 bars. A model of order 12 and of maximal order 26 gives the smallest deviation
between the process and model output, with a deviation of 4.3 bars, approximately
0.48 bars per measurement. Nevertheless, the model of order 7 is the favorable choice
considering the trade-of between accuracy and complexity.

Figure 7.1 shows the total RMSE for models of order 1 to 20, with a maximal
order of 20. It is clear that order 7 is the best choice. By comparing the model with
the simulator, it was seen that p1 was the node with the largest deviation. Figure 7.2
shows the deviation between the measurement of p1 and the model estimate using
a step from 50% to 60% opening in the choke opening. In the first 20 seconds, a
stationary deviation can be seen. Here, the system is further from the working point,
thus the model is less accurate. The oscillations at 0 and 20 seconds are caused by
the sudden change in the choke opening.

7.1.1 Discussion Of The Identified Model

The results show that a model with 7 states is able to model a process with 9 outputs.
From this, it can be argued that it is insufficient dynamics in the system to justify
the number of outputs in the identification. By including redundant parameters in
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Figure 7.2: This figure shows the deviation between the measured pressure p1 = yp

from the process and the modeled pressure ym.

the model, over-parametrization occurs. This leads to excessive computational load
and should be avoided.

7.1.2 Review of Identification from Project Work

In the project work from the Fall 2014 [4], a pure black-box model of the system was
identified, with the following inputs and outputs:

um = [pc vd]T (7.1)

ym = [p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 pdh]T (7.2)

When reviewing the project work, several major errors in the implementation was
found. Thus the model identification was redone based on the same identification
data in order to obtain an equitable basis for comparison.

The theoretical changes done with the model identification from the project work
[4] are the known output Y. pdh is no longer a part of the black-box approximation.
Figure 7.3 shows that the best model is created by using the mathematical order of
9, with maximal order of 261. The sum of error was approximately 6 bars ≈ 0.55
bars per measurement. This is the same deviation as the new model. Nevertheless,
the total model error is smaller, assuming that the known dynamics used in the
gray-box model are more accurate. In addition, the model order is higher for the
pure black-box model than for the gray-box model. Thus, it can be concluded that

1Remark that there is no point for the 2. and 26. pressure node deviations in figure 7.3. The
reason for this is that the deviations were very large, and did not fit into the graph.
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Figure 7.3: This figure shows the RMSE between the output of the test set and
the model output from the model identification done in the project work from the
Fall of 2013 [4].

the gray-box model is a better representation of the system than the pure black-box
model.

7.1.3 Model Identification In The Heave Lab

A model of the Heave Lab was derived based on experimental data collected in the
lab. Here, a similar evaluation of the results as above were done. Moreover, a model
of order 13 was created. During the implementation of the Kalman filter, conversion
of the model from discrete-time to continuous-time was necessary, using Matlab©

function d2c. Throughout the conversion, negative real poles were found in the
model, thus a state was added. This caused a problem with the dimensions of the
system relative to the Kalman gain found by the dsr-algorithm. Difficulties arose as
a result of this, thus it is limited amount of results from the lab, showed in section
7.3.4.
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7.2 Observer Design

This section handles the results of the disturbance prediction and the ability of the
Kalman filter to produce state estimates.

7.2.1 Disturbance Estimator

Simulator Results

Chapter 3 concerns the estimation and prediction of the disturbance. It is of interest
to examine the accuracy of this prediction. In the simulator, the relationship between
p1 and pdh is modeled by equation 2.5, thus the estimate v̂d was assumed to be
correct. Figure 7.4 shows that the estimate is identical to the actual disturbance, as
anticipated.

Figure 7.4: This figure shows the accuracy of the disturbance estimator.

Lab Results

The disturbance estimator and observer were tested in the lab. Here, the conditions
were not perfect, unlike the previous case. As can be seen in figure 7.5, the estimate
deviated considerably from the actual piston velocity. The reason for this is assumed
to be that the pressure does not propagate in the same manner in the lab as in the
simulator. In other words, the parameters in equation 2.5 does not give an adequate
description of the down-hole dynamics in the lab, and need to be tuned.

The equation parameters identified by Aanestad [11] need to be reviewed in order
to improve the disturbance estimate. The parameters require tuning, which in this
case is done by examining the pressure propagation in terms of the piston velocity. In
the experimental lab, this measurement can be obtained. However, it is unavailable
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Figure 7.5: This figure shows the accuracy of the disturbance estimator illustrated
by the deviation between the real and the estimated piston velocity, vd − v̂d.

in practical applications, and the tuning of the parameters may be challenging.
Consequently, it is desirable to find another solution to the tuning problem.

A method to avoid the bias in the estimated disturbance is to add an offset. By
looking at the steady-state case of equation 2.5, the pressure difference between pdh

and p1 should be equal to the hydrostatic pressure, ρgh. By adjusting the equation
to fulfill this, the bias is eliminated. It is suggested as a point in further work to
examine this relationship.

7.2.2 Kalman Filter

During the nominal tests of the Kalman filter, the state of both the process (xm)
and the estimated state (x̂m) were available. These were compared, and found to
be identical. Since the process model was the same as the process, this was as
anticipated.

During simulator experiments, the process state was not available, and comparison
was unattainable. However, the filter performance was evaluated by looking at the
output deviation yp − ym. Figure 7.6 shows the deviation between the real and the
estimated output of pressure node p1. As the figure shows, the deviation is significant,
which indicates that the filter have a potential of improvement.
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Figure 7.6: This figure illustrates the performance of the Kalman filter. The graph
shows the deviation between the process output and the estimated output from the
kalman filter, yp − ym. Only pressure node p1 is plotted.
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7.3 Controller Performance

7.3.1 Results of Nominal Experiments

Several nominal2 tests were conducted, showing good performance of the controller.
The figures 7.7-7.8 show the controller’s ability to reject waves with amplitude 0.65
meters and period of 10 and 3 seconds, respectively.

Figure 7.7: The disturbance rejection of waves with a period of 10 seconds.

Waves With Period Of 10 Seconds

The results above show that the controller is able to reject the wave disturbance
when it contains a feed-forwarding, as illustrated by the blue graph. The green graph
shows the pressure when the disturbance is not feed-forwarded. From this, it is
clear that the pressure change due to the vertical movement of the piston is greatly
suppressed, from an amplitude of approximately 5 bars to 1 bar. This corresponds
to an 80% reduction of the wave impact.

Moreover, the controller ensures that the pressure follows the reference pressure
value, which is represented by the orange graph.

2A nominal test in this case is testing of the controller with the model of the process as the
controlled process, i.e. the same model as the internal model in the MPC.
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Waves With Period Of 3 Seconds

In the slightly more demanding case, where the period of the waves was 3 seconds,
the pressure oscillation amplitude was decreased from approximately 4.5 bars to 1.2
bars, which is a reduction of about 73%.

Figure 7.8: The disturbance rejection of waves with a period of 3 seconds.

Weighting

The MPC controller was tuned during the initial tests, and the weights in equation
7.3 showed to be the preferred choice.

Weight on ∆u(i) = P = 2000

Weight on yc(i)− yc,ref (i) = Q = 2000

Weight on yc(k)− yc,ref (k) = S = 4000 (7.3)

7.3.2 Results from Simulator Experiments

By testing the controller system against the simulator, the ambient was more realistic
than in the nominal tests. The process model is not exactly the same as the simulator
model, thus the testing scenario is more arduous. It is expected that the results from
the simulator tests are less successful.



48 7. RESULTS AND DISCUSSION

Figure 7.9: The disturbance rejection of waves with a period of 10 seconds, simulator
test.

Waves With Period Of 10 Seconds

By comparing figure 7.7 and 7.9, it can be seen that the wave motion has greater
effect on the process model than the simulator, i.e. the amplitude of the pressure
oscillations is higher in the nominal tests. This is a model error, which can lead to
errors in the regulation of the process.

From figure 7.9, it is clear that the disturbance rejection was quite successful.
The waves of 10 seconds period was attenuated effectively, and the amplitude of
the pressure oscillations were reduced from about 4 bars to about 1 bar. This is a
reduction of 75%, 5% lower than in the nominal test.

Waves With Period Of 3 Seconds

In the case of waves of 3 seconds period, the disturbance is rejected to a lesser extent
than in the previous case. The amplitude of the pressure oscillation is reduced from
approximately 4 bars to 1.5 bars, decreased with 63%.

7.3.3 Discussion Of Results

In the previous sections, the results from the nominal experiments and the simulator
tests were presented. It is clear from these tests that it is more attainable to suppress
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Figure 7.10: The disturbance rejection of waves with a period of 3 seconds, simulator
test.

the impact of waves with longer period. The propagation time of the wave effect can
be a reason for this. In the process model, the propagation is taken into account
automatically, since the experimental data includes these properties. However, rapid
changes in pressure are harder to suppress.

The controller suppressed the disturbance in a greater extent under perfect condi-
tions in the nominal tests, as anticipated. The wave impact is 5% more suppressed
in the nominal test compared to the simulator test with 10 seconds period, similarly
10% in the 3 seconds period case.

Sources of Error

In the nominal tests, the sources of error should be few. The weighting matrices are
not necessarily optimal, as these were found by trial and error.

The simulator tests are more realistic than the nominal tests, thus more sources of
error occur. The process model is not an exact description of the process. This can
easily be seen by comparing figure 7.7 and 7.9. The heave motion causes a larger
amplitude in the pressure oscillations in the simulator than in the process model.
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The PI controller is not able to follow the desired pressure reference the MPC
controller requests exactly. This causes a deviation between the ordered choke pressure
and the actual choke pressure, which leads to a less accurate regulation of the down-
hole pressure. However, the deviation is minor in the simulation experiments. The
deviation pc,ref − pc can be seen in figure 7.11. Even though the lab experiment

Figure 7.11: The deviation between the reference choke pressure and the actual
choke pressure indicates the performance of the PI controller. This figure shows the
deviation in a case with waves of period 10 seconds.

results are limited, the PI controller were expected to perform less accurate in that
case. The gain can not be tuned aggressively in the lab, because the runtime would
have exceeded the real-time, and the problem would become infeasible.

Another source of error that can be seen in figure 7.11 is the noise in the system.
The origin of this noise is believed to be the PI controller. This is clear from
exploration of the plots of pc and pc,ref separately, which are not remarkably noisy.

7.3.4 Results and Discussion from Lab Experiments

MPC experiments were not successful in the IPT Heave lab. In the process of making
the continuous Kalman filter, the Matlab© function d2c() was used3. This function
found that the model contained a real negative pole, and replaced this pole with a
pair of complex conjugate poles, and thus increased the model order. The Kalman
gain is calculated from the dsr algorithm, and is of the original order of the system.

3For more information about the function, see [8].
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Thus, the Kalman filter matrices and the gain do not match in dimensions. Because
of this, the MPC controller performance was not examined.

The problem with order incrementation could be avoided by developing a time-
discrete Kalman filter. Theory from [3] and the procedure of developing the discrete
filter were examined. However, due to lack of time, the implementation was not
completed.

The lack of results from the MPC controller tests in the lab makes it hard to
compare the results from this thesis with previous work. Anders Albert [1] achieved
a 46% suppression of the heave motion from waves of period 3 seconds in the lab.
The results from the simulator experiments indicate a good performance of the MPC
controller. However, these results are not comparable to Alberts lab results, and it is
impossible to consider whether the controller performance is improved.





Chapter8Conclusion and Future Work

8.1 Conclusion

8.1.1 Model Identification

The model identification conducted in chapter 2 was successful, and the black-box
model was improved compared to the model from the project work[4]. This was clear
from the reduced order of the model, and a decreased overall model error.

The modification in the model identification was to remove two pressure measure-
ments in the model identification, p10 and pdh. p10 has nearly the same dynamics as
the choke pressure pc, thus it is unnecessary to include it in the identification.

The number of measurements in the model identification exceeds the mathematical
order of the optimal model describing the process. This raises questions concerning
over-parameterization. Over-parametrization leads to unnecessary computational
load, which should be avoided.

The known non-linearities describing the down-hole dynamics were utilized. Thus,
the down-hole pressure measurement was removed from the black-box model identifi-
cation. This is assumed to improve the model further. The white-box model uses
two measurements from the well. Thus, it is required to measure p1.

8.1.2 Observer Design

The disturbance estimator worked as anticipated in the simulator tests. Equation
2.5 is used in the description of the down-hole dynamics both in the estimator and
the simulator, thus the estimate was expected to be correct.
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In the IPT Heave Lab, the estimate of the disturbance was significantly less accurate.
This might be caused by different pressure propagation in the lab compared to the
simulator. Tuning of the parameters in equation 2.5 may increase the accuracy of
the estimates, and thus improve the performance of the disturbance observer. There
are suggested several procedures to the tuning process in section 8.2.

8.1.3 Controller Performance

The MPC controller was implemented and the results from the nominal tests and the
simulations were positive. The down-hole pressure managed to follow the reference
value, and the disturbance was attenuated. A reduction of the wave impact of as
much as 80% in the nominal tests, and 75% in the simulator tests was satisfactory.
However, it is unreasonable to compare the simulator test results with the previous
work on the matter since no lab results of the MPC controller performance from this
thesis were obtained.

It was observed that the PI controller introduced noise to the system in the
simulations. Moreover, it was a deviation between the real and the desired reference.
This was not noticeably in the simulator experiments, however it is expected to be
less satisfying in the lab due to tuning considerations.

8.2 Future Work

8.2.1 Review Number Of Measurements Needed

As can be seen from the results of the model identification, the number of measure-
ments was higher than the number of states in the optimal process model. This
indicates that the model is over-parametrized, and that the model dimension, and
consequently the runtime, can be decreased by reducing the number of measurements
in the identification. An example is to include every other measurement in the
drill-string.

8.2.2 Tuning of the Disturbance Estimator

The performance of disturbance estimator in relation to the lab is discussed. It
is necessary to adjust equation 2.5 to ensure estimation accuracy. The parameter
tuning may be performed by considering equation 2.5 with the known disturbance
from the lab. On the other hand, the disturbance is assumed unknown, and the
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tuning may be done without this measurement by adding a bias calculated from
steady-state calculations.

8.2.3 Improvements of the Kalman Filter

In order to avoid the problem discussed in section 7.2.2 that occurred in the Kalman
filter, a possible solution are suggested. A discrete-time Kalman filter can be used.
This should be achievable to obtain, and would not affect the performance noticeably
if the sampling time is reasonable.

8.2.4 Avoid The PI Controller

As mentioned in the results, the PI controller is a relatively extensive source of error
in the system. An alternative model identification can be performed, where the
choke opening replaces the choke pressure as an input. By doing this, the CV in
the controller is the choke opening, which can be applied direct to the process. This
setup completely eliminates the PI controller, and avoids a considerable source of
error.
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AppendixATheorems and Definitions

A.1 Convexity

In [12, p. 8], convexity of both sets and functions are defined. A set is convex if it
is possible to draw a straight line between two arbitrary points inside the set. In
the same way, a function is convex if the straight line drawn between two arbitrary
points on the function lies above the function itself. Figure A.1 illustrates this:

(a) A convex function. (b) A non-convex function.

Figure A.1: Figure A.1a shows a convex function, and figure A.1b shows a non-
convex function. Figure obtained from lecture notes[6].

Defined more formally, a set S ∈ Rn is convex if the following holds: for x ∈ S
and y ∈ S, αx+ (1− α)y ∈ S for all α ∈ [0, 1].

A function f is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ [0, 1] (A.1)
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A.2 Feasibility

The term feasible set refers to the set of points in an optimization problem which
satisfies its constraints. If the solution of the optimization problem lies in this set,
the problem is called feasible. Feasibility can be checked mathematically, but it is
decided to take an experimental approach in this thesis. The Matlab© function used
to solve the QP problem, quadprog(), sets an exit-flag describing the exit condition
of the function. Feasibility of the QP problem in this thesis is ensured by looking
at this exit-flag. For more information about this function, see [9] for additional
information about the quadprog() function.

Another aspect of the feasibility problem is the real-time aspect. This concerns
the capacity of running the program written in real-time in the lab. This is crucial
in order to obtain reasonable data from the lab. If the computational time exceeds
real-time, the controller will not be able to convey data in time.



AppendixBQP Problem Formulation, Details

In order to reduce the problem to equation 4.11, the states are stacked into the
following matrices:

Y =


yc(1)− yc,ref (1)

yc(2)− yc,ref (2)
...

yc(n)− yc,ref (n)

 , Yref =


yc,ref (1)

yc,ref (2)
...

yc,ref (n)



v =


v(0)

v(1)
...

v(n− 1)

 , d =


d(0)

d(1)
...

d(n− 1)

 , ∆uref = 0 (B.1)

Here, v(i) = ∆u(i). The weighting matrices are expressed as follows:

Q̄ =



Q 0 · · · 0 0

0 Q · · · 0 0
...

...
. . .

...
...

0 0 · · · Q 0

0 0 · · · 0 S


, P̄ =



P 0 · · · 0 0

0 P · · · 0 0
...

...
. . .

...
...

0 0 · · · P 0

0 0 · · · 0 P


(B.2)

Likewise, the constraint matrices are written as follows:

∆UL =


∆uL

...

∆uL

 , ∆UU =


∆uU

...

∆uU

 , YL =


yL

...

yL

 , YU =


yU

...

yU

 , (B.3)
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62 B. QP PROBLEM FORMULATION, DETAILS

In equation 4.13, the matrices are defined as follows:

Ā =


Ã

Ã2

...

Ãn

 , B̄ =


B̃ 0 · · · 0

ÃB̃ B̃ · · · 0
...

...
. . .

...

Ãn−1B̃ Ãn−2B̃ · · · B̃

 (B.4)

C̄ =


C̃c 0 · · · 0

0 C̃c · · · 0
...

...
. . .

...

0 0 · · · C̃c

 , Ē =


Ẽ 0 · · · 0

ÃẼ Ẽ · · · 0
...

...
. . .

...

Ãn−1Ẽ Ãn−2Ẽ · · · Ẽ

 (B.5)



AppendixCThe PI Controller

Figure C.1 shows the implementation of the PI controller. The look-up tables are
in the Integral Gain-block, and determines the magnitude of the integral gain. The
saturation block ensures that the ordered choke opening never exceeds the physical
upper limit of the choke1, and it also specifies that the lower bound for the choke
is an opening of 35 degrees. This lower limitation is set to avoid excessively high
pressures in the well.

Figure C.1: This figure shows the implementation of the PI-controller.

1The choke is fully open at 90 degrees.
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AppendixDUser Manual to Matlab Code

D.1 Model Identification

The experimental data is created by running the script identification_data_generator.m.
The data files ident_wp.mat and test_wp.mat is created, which is used in the model
identification. Remember to add the whole folder to the Matlab path.

To run the model identification, select and run the file model_identification.m.
When finished, the order and the optimal maximal order is found and saved in the
workspace, and the data file dsr_error.mat contains the RMSE for every possible
combination of maximal orders and orders.

After running the model identification, a model of the desired order is created by
specifying this and running the file model_identification_single.m.

D.2 Nominal Tests and Simulator Tests

To conduct the nominal tests, run the script setup_mpc.m from the folder MPC.
Select the Simulink diagram nominal_test_mpc.slx and click run. The same applies
to the simulator tests: run the script setup.m, and select the Simulink diagram
system_implementation.slx. To change the reference value of the down-hole pressure,
pdh, simply change the value in the pdh,ref block in the Simulink diagram. To change
the wave period, go to the script setup.m and change variable period.

D.3 IPT Heave Lab

To run the model identification with the experimental data from the lab, open the
folder Lab_Identification and follow the same procedure as in section D.1.
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66 D. USER MANUAL TO MATLAB CODE

Due to the problems occuring when running setup_lab.m, it was not done testing
of the MPC in the lab. However, the Simulink diagram interfaceIPT_0506_mpc.slx
is designed to run the lab tests. It was tested with a poor process model, and it ran
without problems. Thus, it is possible to use this when a proper model is derived.


	
	
	
	
	
	
	
	

	
	
	
	
	

	

	
	
	
	
	

	
	

	
	
	
	

	
	
	
	
	
	
	

	
	

	

	
	
	

	
	
	
	
	

	

	
	
	
	
	

	
	
	

	
	
	
	
	


	
	
	
	
	

	
	
	
	
	


	
	
	
	

	
	
	
	
	
	


