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Project description

The system envisioned to create smarter power grids will enable means for
better monitoring and control of electricity demand. This thesis will explore
autonomy in Smart Grid cells (microgrids) taking part in the future power
distribution grid, using a graph-based data model. By modelling electricity
consumption, generation and storage, instantiated from different sources, the
intention is to investigate measures for autonomously avoiding usage peaks
and power outages in microgrids.

a) Do a literature study on consumption patterns in households, and the
potentials of generation and storage of solar energy. Furthermore, find mea-
sures for reducing consumption and more efficient use of household energy
in microgrids.

b) Study the dynamics of household consumption based on data gathered
from the Demo Steinkjer project1, and examine whether usage patterns are
consistent with the previous investigations (studied in a)).

c) Study the dynamics of solar energy generation based on data gathered
from elia2 and uncover the potentials of solar energy as a local power source
in microgrids aimed at avoiding usage peaks and power outages.

d) Model autonomy in a microgrid scenario using the acquired energy con-
sumption and generation dynamics (from b) and c)) with purpose of:

• shaving usage peaks in high demand periods by utilizing local energy
generation and storage.

• examining how long a microgrid can stay operational using stored en-
ergy reserves and local generation in the event that external energy
supply is disrupted, i.e. with purpose of avoiding power outages.

1http://www.demosteinkjer.no
2http://www.elia.be
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Abstract

Meanwhile environmental concerns and global energy consumption
continue to increase, the current ageing power distribution grid
is becoming increasingly inefficient and unreliable. The vision of
Smart Grid is to create a widely distributed energy supply infras-
tructure by means of information and communications technology
(ICT). By incorporating ICT in all aspects of electricity delivery,
generation and consumption the intention is to ensure a better
match between supply and demand, while also easing the tran-
sition to increased use of renewable energy sources. This study
explores the dynamics of electricity consumption in households
and the potentials of photovoltaic energy generation in residen-
tial Smart Grid cells (microgrids). That is, by analysing actual
consumption patterns and solar generation data, the aim is to in-
vestigate the potential benefits of distributed energy generation
and storage in futuristic microgrids. Furthermore, by using the
acquired dynamics of energy generation and consumption it is at-
tempted to model autonomy in microgrids with purpose of shaving
usage peaks and avoiding power outages by use of local generation
and storage.

Index Terms - microgrids, household consumption, photovoltaic
energy generation, usage peak shaving, complex network theory
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Sammendrag

Hvert år øker verdens befolkning med 80 millioner mennesker som
følgelig fører til en konstant årlig økning i det globale energiforbru-
ket. Samtidig med dette blir de n̊aværende, aldrende kraftdistibu-
sjonsnettene i verden stadig mer up̊alitelig og ineffektive. Hensik-
ten med Smart Grid er å skape et distribuert kraftsystem ved hjelp
av informasjons- og kommunikasjonsteknologi (IKT). Ved å ta i
bruk IKT i alle aspekter av energiforbruk, produksjon og leveranse
er intensjonen å oppn̊a en mer effektiv utnyttelse av den produser-
te energien, samt å forenkle overgangen til fornybare energikilder.
Hensikten med dette studiet er å utforske energiforbruk i hushold-
ninger og energipotensialene til solcellepaneler. Ved å analysere
faktiske forbruksmønstre og energiproduksjon fra solcellepaneler
er m̊alet å kartlegge potensialene for distribuert energiproduksjon
i Smart Grid celler (dvs. ”microgrids”). I tillegg er det forsøkt å
modellere autonomi i microgrid-celler med den hensikt å redusere
forbrukstopper og unng̊a strømbrudd ved hjelp av lokal energilag-
ring og produksjon.
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Chapter 1

Introduction

Each year the world population increases with 80 million, causing the need
for energy to increase accordingly. In fact, estimates show that global annual
energy consumption will more than double from its current level by 2050.
Furthermore, the environmental impact caused by fossil-based energy sys-
tems continue to cause headaches, as we are concerned about the burden we
put on coming generations regarding global warming. Further use of fossil
fuels for energy generation will produce unacceptable levels of carbon dioxide
which may have disastrous effects in the future, e.g. with regards to food
production [1], [9].

Smart Grid represents the future in power distribution by means of informa-
tion and communications technology (ICT). It is a collection of next genera-
tion power delivery concepts that includes new power delivery components,
improved control and monitoring throughout the grid, and more informed
customer options. By using two-way flows of both information and energy
between suppliers and consumers the aim of Smart Grid is to manage elec-
tricity demand in a more sustainable, reliable and economic manner [10].

The transition to a smarter energy delivery network will also include support
for more decentralized production and storage of energy. ICT technology is
intended to be incorporated in all aspects of electricity generation, delivery
and consumption, thereby increasing the potential for distributed generation
and storage. This in turn will contribute to more efficient energy usage and
a better balancing of supply and demand, while also easing the transition to
increased use of renewable energy sources [19], [10].
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Traditionally, the cost of large-scale collection, conversion and storage of
renewable energy has not been feasible compared to conventional energy
generation. However, the need for reducing the environmental impact of
fossil-based energy systems has triggered increased research and develop-
ment on renewable energy technologies in recent years, which consequently
has reduced the costs and made them more competitive. In the dictionary1

renewable energy is defined as ”any naturally occurring, theoretically inex-
haustible source of energy”, and examples of such sources include sunlight,
wind, biomass and hydroelectric power. However, leading scientists have pro-
moted solar driven production of environmentally clean electricity, hydrogen
and other fuels as the only sustainable long-term solution for global energy
needs [7].

Furthermore, the implementation of a smarter distribution grid will also en-
able means for more efficient energy usage in households, by use of advanced
consumption metering and management-and-control systems [10]. In [3] it is
stated that:

”Knowledge of household energy consumption is important for
understanding future energy consumption trends and for making sound
decisions on measures directed at households. (...) In order to secure
sufficient electricity on demand for all consumers, there must be an

equilibrium between production and demand, and adequate transmission
capacity must be in place.”

Smart Grid is currently in a development stage whereas different architec-
tural designs are being examined and tested. Thus, exploring household
consumption patterns and the potentials of solar energy generation with re-
spect to energy efficiency measures is of great importance at this stage.

The aim of this study is to explore autonomy in Smart Grid cells (microgrids)
taking part in the future power distribution grid, using a graph-based data
model. First, the consumption patterns of households will be analysed by
examining data from Demo Steinkjer participant. After which, the energy
generation potential of photovoltaic solar cells is investigated using data from

1http://dictionary.reference.com/browse/renewable+energy
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elia. Finally, the obtained consumption and generation patterns will be uti-
lized to model autonomy in a microgrid scenario. This model will investigate
peak shaving in high demand periods (as described in section 2.5.4) and the
ability of a microgrid to manage the entire energy demand of its participants
temporarily in the event that external energy supply is disrupted, i.e. in
island mode as described in section 2.1.2.

1.1 Structure of document

The thesis is structured as follows:

Chapter 2 addresses the theoretical background needed for performing this
study. Chapter 3 describes two analyses performed on energy consumption
patterns and solar generation potentials, while chapter 4 describes the mi-
crogrid autonomy model, and the results from obtained from simulations. In
chapter 5 important issues arisen during the study is discussed, while chap-
ter 6 concludes the thesis by summarizing its main findings.

Appendix A describes a tutorial on how to setup the database containing
consumption and generation data, in addition to how one can extract data
using python scripts. Appendix B, C and D contains code examples on how
to reproduce the results in the analyses of energy consumption and gener-
ation in chapter 3. Appendix E presents the user interface and some code
extracts from the autonomy model described in chapter 4. Appendix F con-
tains the Demo Steinkjer IDs of the households used in both the analysis on
consumption patterns in chapter 3 and the autonomy model in chapter 4.

Appendix G consists of the preliminary version of a paper called ”Towards a
user-centric mechanism to compile the microgrid status collaboratively”, writ-
ten by the co-advisor on this thesis. Some of the results from the analyses of
consumption patterns and energy generation potentials of solar cells (chap-
ter 3) have been contributed to this paper. However, the paper is currently
incomplete and thus has not been published yet.

Finally, appendix H (the attached CD-ROM) contains the datasets and
python scripts used in the analyses in chapter 3, and the autonomy model
described in chapter 4.
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Chapter 2

Background

This chapter addresses the theoretical background needed for performing this
study. First off, the concept of Smart Grid is described, revealing some of the
benefits and challenges related to the transition into a smarter energy supply
infrastructure. Secondly, the consumption patterns of Norwegian households
are researched based on previous investigations, in addition to several meth-
ods for reduced and more efficient household consumption. After which, solar
energy harnessing is described, in addition to the potentials of battery energy
storage systems. Finally, complex network theory is described with emphasis
on how it can be used to analyse and understand real world networks, such
as e.g. electrical power grids.

2.1 Smart Grid

Historically, power distribution constitute a centralized unidirectional power
delivery system that supplies energy to end users over large areas, using high
voltage power lines. However, the growing demand associated with increased
worldwide energy dependency has led to a need for a smarter and more dis-
tributed infrastructure in order to keep up with the increasing global energy
requirements [10].

The vision of Smart Grid is to create a widely distributed energy supply
infrastructure using two-way flows of both information and energy. It can
be regarded as a system incorporated in all aspects of energy generation,
delivery and consumption to ensure a more reliable, efficient and sustain-
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able power distribution. By utilizing advanced consumption metering and
monitoring, and intelligent management-and-control systems, the intention
is to achieve a better match between demand and production, while also en-
couraging renewable energy to amount to a greater share of the total energy
supply [10].

In [12] they list some of the key aspects that the implementation of Smart
Grid is intended to include, i.e.

• Ability for the grid to self heal following a disturbance

• Power supply free from sags, swells, outages, and other power quali-
ty/reliability issues

• Support for renewable energy sources

• Better asset utilization via monitoring

• Increased monitoring through low cost sensors

To achieve a smarter power distribution, the overall macrogrid will be divided
into a several autonomous cells, called microgrids, each with local energy gen-
eration and storage capabilities. The intention is that these microgrids can
control their own generation and storage in response to e.g. variable sup-
ply conditions and demand in an autonomous fashion. Furthermore, the
increased information flow to end users may also provide means for better
user-centric control of energy consumption, and thereby allow end users to
take a more active role in their electricity management [10].

2.1.1 The microgrid concept

In [19] they emphasise how the best way of realizing the emerging potential of
distributed generation is to take a system approach which views generation
and associated loads as a subsystem or microgrid. As mentioned, micro-
grids are cells where power is produced, transmitted, consumed, monitored
and managed locally, while still being integrated in a larger central grid.
In response to varying demand it will be able to autonomously control its
own generation and storage to e.g. prevent usage peaks. Also, during dis-
turbances in the central grid, the generation and corresponding loads of a

6



microgrid can be isolated from the disturbance without harming the trans-
mission grid’s integrity, i.e. by islanding the microgrid from the central grid
temporarily [19]. Below, in figure 2.1, the basic concept of a microgrid is
illustrated [23].

Figure 2.1: The basic concept of a microgrid [23]

The potential benefits of such an approach are many. Most importantly, it
provides opportunities for better matching energy production with demand,
as it will enable means for e.g. evening out usage peaks in the central grid
and enabling better user-centric control of energy usage. Furthermore, as the
local generation sources are intended to be renewable it will also contribute to
renewable energy amounting to a greater share of the total energy supply [19].

2.1.2 Microgrid operation and structure

The structure of microgrids is an important design decision which will vary
depending on several factors such as e.g. geographical location, and supply
and weather conditions. Furthermore, the intended controller capabilities
and operational features, accompanied by distributed energy generation and
storage, will also require a conceptually different structural approach than
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that of conventional power systems [15]. Some of the main reasons for this
are listed in [15], i.e.

• Steady-state and dynamic characteristics of distributed generation and
storage units, particularly electronically coupled ones, are different than
those of the conventional large turbine-generator units.

• A microgrid is inherently subject to a significant degree of imbalance
due to the presence of single-phase loads and/or distributed generation
and storage units.

• A noticeable portion of supply within a microgrid can be from ”non-
controllable” sources, such as solar- or wind-based units.

• Short- and long-term energy storage units will play a major role in
control and operation of a microgrid.

• A microgrid must readily accommodate connection and disconnection
of distributed generation and storage units while maintaining its oper-
ation.

• A microgrid may be required to provide prespecified power quality lev-
els or preferential services to some loads.

Also, a microgrid is intended to provide sufficient generation capacity, con-
trols, and operational strategies to supply at least a portion of the load after
being disconnected from the distribution system, i.e. remain operational as
an islanded entity. Thus, considering this there must exist provisions for
both islanded and grid-connected modes of operations, and a smooth tran-
sition between the two in order to ensure the best utilization of microgrid
resources [15].

In [22] an example regarding a power system capable of temporarily island-
ing parts of a power grid is described, located on the Danish island of Born-
holm. The Bornholm distribution system supplies 28,000 customers, and
had a peak load in 2007 of 56 MW. The local generation capacity primar-
ily consist of wind turbines and diesel generators, and using this capacity
the system can be operating isolated from the external distribution grid in
islanded mode. Therefore, given this ability, the Bornholm power system
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has become a unique facility for experiments with new Smart Grid technolo-
gies [22], [17].

Moreover, in the paper in appendix G it is proposed a microgrid approach
using a preferential attachment structure (as described in section 2.8), aimed
at end users with both generation and storage capabilities. Here the idea is
that the microgrid participants are rearranged following the energy availabil-
ity as illustrated in figure 2.2 below.

Figure 2.2: Preferential attachment structure (as described in the paper in
appendix G)

The diameter of each node (or household) indicates its generation and stor-
age capacity which is determined according to its degree (i.e. number of
connections to other nodes), as described in section 2.8. This structural
approach is attempted in the distributed generation mode of the autonomy
model described in chapter 4.

2.1.3 Smart Metering

The concept of Smart Grid will depend on an efficient system capable of
handling a tremendous amount of data from different sources in very short
periods of time. The primary goal of Smart Metering is to gather data from
remote consumption meters and transfer this information to power utilities,
where in turn the data can be processed. The proposed implementation of
this concept is referred to as the Advanced Metering Infrastructure (AMI).
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Either on request or on a schedule, AMI systems will be able to measure,
collect and analyse the energy usage in households, and communicate the
results to utility companies [12], [26].

The author of [12] lists some of the key attributes that deployment of AMI
is intended to provide, i.e.

• Two-way communication to the electric meter to enable time stamp-
ing of meter data, outage reporting, communication into the customer
premise, remote service connect/disconnect, on-request reads, and other
functions

• Ability of the AMI network to self register meter points

• Ability of the AMI network to reconfigure due to a failure in commu-
nications

• AMI system interconnection to utility billing, outage management sys-
tems, and other applications

Furthermore, the integration of a smart metering solution will also provide
means for improvements in terms of Demand Side Management (DSM). That
is, in addition to reducing the expenses related to system maintenance (by
e.g. enhanced fault location, faster system restoration after outages etc.)
accompanied by the other benefits obtained from an improved information
flow to utility companies, the AMI is also intended to provide means for
better user-centric monitoring and control of energy consumption. That is,
through providing end users real-time and predictive updates regarding e.g.
consumption and electricity prices, the end users are allowed to take a more
active role in their electricity management [26].

2.2 Household energy consumption in Nor-

way

In 2013, the Norwegian Water Resources and Energy Directorate (NVE) pub-
lished a report on energy consumption in Norwegian households. This report
assessed the historical growth in energy consumption and also derived an av-
erage consumption breakdown of households divided among space heating,
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water heating, and electrical appliances and lighting. In addition, they inves-
tigated how weather conditions affect the annual amount of energy consumed
by households, and what energy sources are most contributing to household
consumption [3].

Their findings yield that consumption growth has flattened out the last 15
years and that use of electricity and fuelwood as energy sources increases,
while oil consumption decreases. Since 1995 the annual consumption in
households has varied between 44 TWh and 46 TWh, with the exception
2010, which was a particularly cold year. This is illustrated in figure 2.3 be-
low, where we can observe how the annual consumption has varied from
1976 until 2010. We can also observe the distribution of energy supply
among the different energy sources, revealing electricity as the most sub-
stantial source [3].

Figure 2.3: Household energy consumption in mainland Norway, 1976-
2010 [3].

In [3] they argue that the flattening in energy consumption is due to several
factors, most important of which are the implementation of energy efficiency
measures, better heating systems, and higher outdoor temperatures as a re-
sult of climate change. However, their research also shows that annual con-
sumption is considerably influenced by outdoor temperatures. In particular
was the consumption in 2010, which had the coldest winter months in over
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two decades, as much as 5 TWh higher than the average in previous years.
Provisional figures from 2011, on the other hand, indicate that annual energy
consumption resumes the flattening trend described above [3].

Furthermore, the reduced growth in floor area per person in recent years has
also impacted this flattening trend, as energy consumption is closely related
to the floor area each consumer occupy. That is, less growth in floor area per
person results in less growth in energy consumption [3].

Moreover, in figure 2.4 below, an average breakdown of household consump-
tion in Norway is illustrated, unveiling the distribution of energy among the
different usage areas for end users.

Figure 2.4: Breakdown of consumption in an average Norwegian house-
hold [3].

The research in [3] concludes that, as of 2011, 66 % of all household en-
ergy in Norway is used for space heating, 12 % is used for water heating,
and 22 % on remaining appliances and lighting. The distribution is based
on an average consumption of 21 kWh/year per household, and thus about
13.9 kWh of which is used for space heating. However, they emphasize that
it is difficult to provide an exact conclusion on the breakdown of end-use
consumption. That is, to determine, with a sufficient degree of certainty,
the consumption patterns of end users in Norway requires comprehensive
measurements, which currently is impossible to provide. Factors such as ge-
ographical location, size of household, behaviour of household occupants etc.
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varies significantly, and thus the average distribution presented in figure 2.4
may not be representative for the variety of households in Norway. They also
underline that end-use consumption is dynamic as building stock, technol-
ogy, and usage patterns change over time [3].

Below, in figure 2.5, the daily consumption pattern of households and com-
mercial buildings in Norway is illustrated [3].

Figure 2.5: Daily Norwegian consumption pattern in households and com-
mercial buildings [3].

Considering the consumption in households, one can observe that there are
two distinct usage peaks daily, i.e. one occurring in the morning between 8
and 9 AM, and another increasing in energy consumption in the afternoon.
This corresponds to normal end user behaviour where the morning peak is
due to the morning routines of household occupants (e.g. showering and
lighting), and another increasing in energy consumption caused by afternoon
behaviour (e.g. cooking, washing machine, entertainment devices etc.). In
between the usage peaks one can observe a significant drop in energy usage
consistent with the assumption that household occupants leave home for work
or school, causing an overall decreasing in household consumption [3].
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2.3 EU directives

Estimations have predicted that by the year 2050 the global energy require-
ments will more than double from its current level. This fact, accompanied
by the need for reducing greenhouse gas emissions, have led to the emergence
of several EU directives aimed at reducing and ensuring a more efficient en-
ergy consumption. There are in particular three such directives affecting
households, all of which are implemented in Norwegian law [3], [7]. These
are [3]:

1. The Renewable Energy Directive, which purpose is to promote
an increased production and use of renewable energy, sets mandatory
national requirements for the share of energy consumption which must
originate from renewable energy sources. Furthermore, it provides a
common framework for stimulating the construction and upgrading of
installations to generate more renewable energy. More formally, EU
is aiming for 20% of all energy consumption originating from renew-
able energy sources by 2020, in addition to a 20% increasing in energy
efficiency, as part of the EU 20-20-20 initiative.

2. The Energy Performance of Buildings Directive concerns im-
proving the energy efficiency in the building stock. That is, establishing
schemes for energy efficiency certification of all buildings and energy
assessments for the technical installations in buildings.

3. The Energy Labelling Directive aims to increase to consumer aware-
ness regarding the energy consumption of products. That is, through
energy-labelling of consumer goods the consumers are provided infor-
mation on the energy-efficiency of products, giving incentives for choos-
ing more energy-efficient alternatives.

2.4 Battery energy storage systems

In [5] they emphasise how Energy Storage (ES) is expected to play an increas-
ingly important role in future power distribution. As power flow no longer
will be limited to one direction (i.e. from power sector to consumers), the
need for managing distributed generation and demand will require Battery
Energy Storage Systems (BES) for maintaining grid stability and flexibility.
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In particular, the challenges related to integrating renewable energy sources,
given their unpredictable and fluctuating generation patterns, will require
significant investment in smaller-scaled and more flexible storage technolo-
gies [5].

Currently, BES systems range anywhere from 5 kWh up to 50 MWh and
are differentiated by factors such as response time, mobility, and versatility
to be fitted to either high power or high energy applications. As stated in
section 2.3, EU aims for 20% of all energy consumption originating from re-
newable energy sources by the year 2020, in addition to increasing the energy
efficiency by 20%. Thus, BES systems can ensure a better match between
supply and demand, and ease the transition to renewable energy sources
amounting to a greater share of the global energy supply [5].

Also, by employing measures for e.g. peak shaving (as described in sec-
tion 2.5.4) one can compensate with stored energy in high demand peri-
ods, which in turn reduces the need for expensive backup generators specif-
ically targeted at handling peak consumption. That is, the electric utility
infrastructure costs are primarily driven by the need to serve the load dur-
ing peak demand periods. Thus, by utilizing BES systems to compensate
in high demand periods, one can reduce the peak demand seen from the
utility company’s perspective, which consequently will reduce the electricity
costs [25], [5].

There are various services and functions BES systems offer, some of which
are [5]:

• Integration of renewable energy sources: That is, converting
highly variable renewable energy resources into dispatchable ones by
use of storage. By using BES systems for decentralized storage one
may obtain a dynamic behaviour able to compensate for fluctuating
renewable energy generation with fast response times.

• Peak shaving: BES systems may store energy when consumption is
low, which in turn can be compensated with for shaving usage peaks
in high demand periods.

• Voltage control: BES systems can help regulate the voltage profile,
guaranteeing standard voltage supply within a defined range. That is,
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by storing energy when the voltage is high and feeding in when voltage
is low.

• Uninterruptible power supply (UPS): BES systems can act as
a backup power source in the event that the external energy supply
is disrupted. By temporarily islanding the operation (as described
in section 2.1.2), e.g. a microgrid can be able to manage the entire
energy demand of its participants by utilizing the stored energy of BES
systems.

Furthermore, as stated in [25], it is important to consider that the cost of a
BES system is largely associated with its energy storage rating (Wh) rather
than its power rating (W). That is, the required discharge period in different
applications will greatly affect the costs of implementing a storage system.

2.4.1 Battery technologies

In [5] they emphasize that all four battery technologies (lead-based, lithium-
based, nickel-based and sodium-based) can provide distinctive and important
functions to grid operators. Below in table 2.1 some of the similarities and
differences between the battery technologies are listed based on information
gathered from [5].

Technology Capacity Efficiency Life Cycles Temperature
Lead 1 Ah - 16 kAh >85 % 20 years 2000 @ 80% DOD -30 to +50 ◦C

Lithium 1 ≈100 % 20+ years 5000 @ 80% DOD -30 to +60 ◦C
Nickel 0.5 Ah - 2 kAh >90 % 25 years 30002 -40 to +60 ◦C

Sodium 380 V 40 Ah 92 % 10+ years 4500 @ 80% DOD -30 to +60 ◦C

Table 2.1: Similarities and deviations between different battery technologies
(DOD = Depth Of Discharge)

Moreover, due to the current relatively high costs of BES systems, most re-
ported installations thus far are considered as pilot projects either partially

1One of the main advantages with Li-ion technology is its scalability. It can be adapted
to virtually any power or energy requirement, ranging from very high power (i.e. 10 kW
/ 10 kWh) to very high energy [5].

23000 cycles of nominal capacity
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or fully funded by government entities. Hence, further research and devel-
opment is needed to reduce the prices and improve the performance of each
of the above mentioned battery technologies should they become suitable for
smaller-scaled purposes [25], [5].

2.5 Measures for reduced and more efficient

household consumption

Households account for around 30 per cent of the total stationary energy
consumption in Norway and thus exploring usage patterns and measures for
better efficiency is important for achieving an overall reduction in power con-
sumption [3]. In [3] they list several means for both reducing consumption
and increasing the energy efficiency, some of which are described in sec-
tion 2.5.1. Furthermore, in section 2.5.2, the potentials of Smart Grid for
better end user management is described, i.e. through providing real time
and predictive feedback in terms of electricity usage and pricing details to end
users. Moreover, in section 2.5.3, demand shifting is described as a method
for reducing the usage peaks in high demand periods, by shifting demand
to off-peak periods. Finally section 2.5.4 describes how one can compensate
autonomously for daily usage peaks by utilizing the locally generated energy
of microgrids in high demand periods with the purpose of ensuring a less
fluctuating daily consumption seen from the utility company’s perspective.

2.5.1 Energy efficiency measures

Energy efficiency measures concerns reducing the energy requirements, e.g.
for buildings, either by properly planning low energy requirements prior to
construction, or improving older houses by e.g. better insulation of lofts,
basements and walls, in addition to draught proofing windows and doors.
As described in section 2.3, the Energy Performance of Buildings Directive
provides schemes for energy efficiency certification of buildings aimed at en-
suring the previously described improvements. Such means can significantly
reduce the energy requirements for space heating, which as described in sec-
tion 2.2 amount to the majority of all energy consumption in Norwegian
households [3].
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Furthermore, improving the insulation of hot water tanks, installing water-
saving showers etc. can also contribute to reducing consumption and improv-
ing the energy efficiency. Also, replacing old heating sources (such as oil-fired
boilers and paraffin stoves) with better heating systems (e.g., electric heaters
or heat pumps) can result in a more efficient heating of households. In ad-
dition are consumers increasingly choosing more energy efficient household
appliances and entertainment devices due to measures such as the Energy
Labelling Directive described in section 2.3 [3].

2.5.2 Better end user management of energy consump-
tion

Recent investigations have shown that providing real-time and predictive
updates regarding electricity usage and pricing can incentive consumers to
reduce their energy consumption [2], [11], [27].

In [11] they have analysed 15 experiments on household response to dynamic
pricing of electricity. The study uncovered that households in fact respond
to higher prices by lowering their electricity consumption, and that the po-
tential reductions in power generation are considerable. The consumers re-
sponded to higher prices during peak periods by reducing the consumption
and/or shifting it to off-peak periods and, as a matter of fact, they concluded
that providing such information to end users can reduce consumption by 5-
15% [11].

However, the experiments mentioned above all used time-varying pricing of
electricity, which was only applied during the periods they investigated. In
most cases (like e.g. with Norwegian power distribution) the cost of electric-
ity is currently determined day-ahead, and thus provide no economic benefits
for consumers to lower their consumption during usage peak periods. Once
again, this highlights one of the main advantages that the increased informa-
tion flow of Smart Grid is intended to provide. That is, we achieve a better
foundation for employing such pricing schemes, where we can dynamically
determine the cost of electricity based on real-time updates on energy con-
sumption.

Furthermore, as described in [6], the American IT company Opower have
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studied how providing customers information on neighbouring households’
energy usage also can incentive reduction in consumption. That is, they
have examined how social pressure can affect consumption behaviour when
households are made aware of the consumption patterns in neighbouring
homes of similar size and number of occupants. Their results yielded a con-
sumption decrease of 1.9 TWh last year which, in comparison, amount to
approximately half of the generated energy provided by the solar power in-
dustry in the US [6].

Given a user-centric gathering and dissemination of information we can
achieve a foundation for employing measures such as the ones described
above. That is, by providing real-time and predictive updates on consump-
tion to households and/or adding pricing incentives, such as the previously
described dynamic (demand-dependent) pricing scheme.

2.5.3 Shifting demand from high demand periods

As described in section 2.2, there are variations in power demand daily, and
thus, the coinciding habits of consumers causes significant usage peaks to
occur at certain times during the day. Consequently, when constructing a
power grid, one must take in account the hour of the year for which electricity
consumption is at its highest (also known as the power grid’s peak load), and
ensure that the total energy capacity is great enough to cover this demand [3].

For instance, as described in section 2.2, a daily usage peak usually occurs
around 7 or 8 AM on week days due to the morning routines of household
occupants. Thus, considering that most hot water tanks in Norway begin
heating water as soon as it is drawn, it is plausible to assume that the expe-
rienced morning usage peak is caused by this. By employing an automated
home energy management mechanism one can shift demand according to a
user’s preferences with the aim of reducing the overall consumption in usage
peak periods. In particular, given the above mentioned water-tank example,
it would be feasible to postpone the water heating until mid-day when the
overall consumption is significantly less [3].

Considering this, numerous investigations have been performed on measures
for reducing usage peaks by shifting usage from high to low consumption
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periods, with the intention of reducing the peak demand, and consequently
the power grid’s peak load. For instance, in [1] it is proposed such an energy
management system that shifts usage to off-peak hours and lowers the total
energy consumption.

2.5.4 Autonomous peak shaving in high demand peri-
ods using battery energy storage

Another method for reducing peak demand is by compensating with locally
stored energy in high demand periods, henceforth referred to as peak shaving.
That is, peak shaving in the sense that local energy is used to compensate
for usage peaks such that the consumption pattern observed at the utility
company appear as constant during high demand periods, while the actual
energy usage remain unchanged. Such an approach may also contribute to
increased use of renewable energy sources, as this local energy may originate
from e.g. solar or wind power.

In [25] it is described a peak shaving study performed performed in Nevada,
USA. Here, they have investigated the sizing of a utility-owned BES sys-
tem that is planned for installation at the substation end of a residential
feeder. The purpose was to investigate storing of energy in low-demand pe-
riods which in turn could be utilized to compensate for usage peaks. First,
they examined the load demand of a residential feeder in the summer months
(June - September 2008), amounting to a total of 122 days. After which, the
sizing of the BES system was derived from the desired level of peak shaving
by load following. Load following, or power control, means that the demand
dynamically controls the amount of power provided by the battery system.
Finally, the BES system power and energy ratings were quantified. In fig-
ure 2.6, a sketch of the setup is illustrated [25].
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Figure 2.6: Sketch of feeder with BES system and residential area [25]

Below, in the left hand side plot of figure 2.7, the daily load of the residen-
tial feeder in the summer months of 2008 is illustrated. Furthermore, the
maximum peak load, Pmax

load = 1.46MW occurring on July 8th, was used to
determine the boundary for what was considered a usage peak in the whole
time period. That is, the desired amount of peak shaving, σ, was defined
as a percentage of maximum peak load. In this study they used σ = 0.25,
and thus the maximum net power which had to be supplied by the battery
system was [25]:

Pmax
batt = σ ∗ Pmax

load (2.1)

In addition, they assumed a discharge and power conversion loss of 10%,
and denoted the overall system efficiency by η = 0.90. Hence, the maximum
power provided by the BES system was defined as [25]:

PBESS = σ ∗ Pmax
load /η (2.2)

Given σ = 0.25, the BES system had to provide a peak power of Pmax
batt =

0.365MW , which results in a maximum grid power, Pmax
grid = 1.095MW . This

boundary is illustrated as the dotted red line in the left hand side plot of
figure 2.7, and thus any load change in excess of this threshold was considered
a usage peak. The right hand side plot of figure 2.7 illustrates the distribution
of hourly consumption with respect to how often they occur, in per cent of
total time [25].
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Figure 2.7: Left: Daily feeder load during the four investigated months.
Right: Duration of peak period in per cent. [25]

Given the previously described discharge efficiency, η = 0.90, the BES system
power rating was PBESS = 0.4MW . Furthermore, the capacity of the BES
system was determined by computing the daily energy demand that must
be supplied the battery in order to avoid power flow from exceeding the
desired maximum grid power contribution, i.e. Pmax

grid = 1.095MW . This
was achieved by determining the area between hourly consumption and the
maximum grid power boundary [25]. That is [25]:

Ei
batt =

∫ 24

0

(P i
load − Pmax

grid )dt, P i
load ≥ Pmax

grid (2.3)

After which, the maximum value the BES system had to be able to provide
was determined, i.e [25]:

Emax
batt = max{E1

batt, E
2
batt, ..., E

n
batt}, (2.4)

where n = 122 represents the number of days in the summer period. Finally,
they quantified the energy rating of the BES system by dividing the result
obtained in equation 2.4 by the discharge efficiency, η, and adding the min-
imum level of energy must remain at all time in the battery, SOCmin (i.e.
the minimum State of Charge) [25]. That is [25]:

EBESS =
Emax

batt

η
+ SOCmin ∗ Emax

batt (2.5)

Their investigation revealed the maximum energy rating of the BES system as
Emax

batt = 2.12MWh. Consequently, given a discharge efficiency η = 0.90 and a
SOCmin set to 20%, results in a BES system capacity of EBESS ≈ 2.75MWh.
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Below, in the left hand side plot of figure 2.8, the daily BES system energy
generation of the entire time period is illustrated. Furthermore, the right
hand side plot of figure 2.8 illustrates the desired peak power shaving [25].

Figure 2.8: Left: Daily energy provided by BES system. Right: Daily grid
power variations after peak shaving. [25]

In this study, the BES system was intended to recharge during the early
morning hours when the consumption was low, and thus the right hand side
plot of figure 2.8 shows a higher daily minimum load than the base case il-
lustrated in the left hand side plot of figure 2.7 [25].

In the model described in chapter 4, a similar peak shaving approach is
attempted using consumption data gathered from the Demo Steinkjer project
(described in section 2.6) and photovoltaic solar generation data gathered
from elia (described in section 2.7.2).

2.6 Demo Steinkjer

Demo Steinkjer is a Norwegian demonstration project where new solutions
for measuring and use of electricity can be tested. The testing site is located
in Steinkjer and contains about 1.000 households, of which 321 have agreed
to be active participants meaning they will participate in consumer oriented
tests and projects. The remaining households will participate, without direct
involvement, in tests conducted on the grid itself as well as secondary subsys-
tems. The intention of the project is to attract entities to test new technology
aimed at an modernization of the power grid with new products and services.
Thus, Demo Steinkjer is an arena for which smart energy solutions can be
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tested with purpose of exploring a suitable design and implementation of the
future electricity grid in Norway3.

Companies such as SINTEF, Nexans, Telenor, Connexion, SagemCom, and
others have already shown interest in running projects with Demo Steinkjer,
and they will have the opportunity to test new products on real consumers.
Entities will have access to customer database including anonymous AMS
meter data and high-speed communication capabilities with five net/grid
stations. In total, there are about 800 electricity meters installed, including
770 AIDON meters and 30 remotely read units through GSM/GPRS3.

2.7 Solar energy

In [7] it is stated that the solar energy reaching the surface of Earth every
hour is enough to meet the annual global energy needs. The challenge, how-
ever, reside in harnessing this energy at an affordable cost. Thus far the
cost of large-scale collection, conversion, and storage of solar energy has not
been feasible compared to conventional energy generation. Consequently,
solar energy currently makes a negligible contribution to the global energy
supply. However, predictions on future increasing in energy consumption,
in addition to the environmental effects caused by fossil fuels, have arisen
the need for further research on solutions for solar energy generation. Other
renewable energy sources (e.g. wind, hydro etc.) and non-renewable (e.g.
nuclear) are unable to satisfy the expected increased global energy needs,
and thus scientists have proposed solar driven production of environmentally
clean electricity, hydrogen, and other fuels as the only sustainable long-term
solution for global energy needs [7].

In addition to the economic challenges, the availability of solar energy is an-
other source of concern. That is, solar power is not always available where
and when needed, and thus daily and seasonal effects have great impact
on the energy generation. Moreover, the changing dynamics, non-linearities
and uncertainties related to solar energy also make prediction of supply dif-
ficult [9].

3http://www.demosteinkjer.no
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There are several methods for generating solar-sourced electricity. Most com-
monly used are direct generation using photovoltaic cells (PV) and indirect
generation, called concentrated solar power (CSP), where collectors use mir-
rors and lenses to concentrate sunlight onto a thermal receiver that absorb
and convert sunlight into heat, which in turn is used to drive a turbine to
provide electric power. In this study, however, only PV energy generation
is discussed as it is the most common method of the two, and arguably also
easier to implement in microgrid architectures due to the space requirements
of CSP generation facilities [18]. This is also supported in [5], where they
state that the primary renewable energy source for future Smart Grids will
be photovoltaic. In section 2.7.1 below, PV energy generation is described
more thoroughly, while section 2.7.2 describe the Belgium transmission sys-
tem operator elia which publishes data on PV energy generation.

2.7.1 Photovoltaic solar energy generation

Solar cells, or photovoltaic (PV) cells, convert solar radiation directly into
electricity and is based on the photovoltaic effect. In general, the photovoltaic
effect is defined as the emergence of an electric voltage between two electrodes
attached to a solid or liquid system when exposed to light [14]. Below, in
figure 2.9, one such PV solar cell installation is depicted [21].

Figure 2.9: A large silicon solar array installed on the roof of a commercial
building [21]
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The efficiency of solar cells, η, can be derived from equation 2.6 below [14],
i.e.

η =
Pmax

ES ∗ Ac

(2.6)

where Pmax is the nominal power output (i.e. maximum achievable power),
ES is the incident radiation flux (i.e. the amount of sunlight power that
reaches the Earth’s surface in W/m2), and Ac is the area of the collector in
m2 [14].

The incident radiation flux is considered to be approximately 1000 W/m2,
and thus, given 100 % efficiency, solar cells generate 1 kW power per square
meter during optimal weather conditions. As of now, however, the efficiency
of photovoltaic cells averages at approximately 15 % [20]. Furthermore, the
daily periods for when solar cells generate power varies significantly in differ-
ent parts of the world, and thus affect the total amount of energy generated.
In figure 2.10 below the annual solar energy potential in all of Europe is
illustrated [8].
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Figure 2.10: Solar energy potential map of Europe [8]

As one can observe the variations are considerable. In particular, comparing
the southern parts of Spain and Portugal (1821 - 1860 kWh/m2) with the
southern parts of Norway (861 - 900 kWh/m2) reveals an annual difference
in energy potential of approximately 1000 kWh/m2.

Furthermore, the power output of solar cell installations are also highly
weather dependent, and thus the nominal power output of an installation
is achieved only during optimal weather conditions. In figure 2.11 below,
the complete solar power output on July 7th 2013 in all of Germany is illus-
trated. In total Germany has, as of 2013, an installed domestic PV capacity
of approximately 34 GW. However, due to the varying angles of their solar
cell installations, some systems peak at 11 AM while others at 2 PM caus-
ing the different installations to achieve generation peaks at different times
during the day. Consequently, they achieve maximum power output peaks
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at about 70-80 % of total capacity [13].

Figure 2.11: German solar energy generation on July 7th 2013 [13]

As one can observe the generation peak this day was 24 GW (occurring at
13 PM), which amounts to approximately 70 % of total capacity [13].

2.7.2 Elia solar cell generation data

Elia is the high-voltage transmission system operator of Belgium responsible
for transmitting electricity from generators to distribution systems, which
in turn deliver power to consumers. In order to provide transparency in
the electricity market, elia publishes generation data from renewable energy
sources (such as wind or solar) as both predictive and actual measurements,
which consequently can be used for scientific research4.

In this study, PV solar cell data from elia is used to uncover the potentials
for solar energy harnessing, and to determine whether or not it is suitable as
a local generation source in microgrids. The data used is gathered from all
of Brussels, Belgium in 2013 as quarter-hourly updates on power generation,
and the total installed PV capacity is 6.92 MW in January until March.

4http://www.elia.be
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However, in March the nominal capacity was increased to 10.2 MW and thus
energy generation becomes greater. Section 3.1.2 describes this investigation.

2.8 Complex network theory

The use of complex network theory is increasing as a measure for analysing
and understanding real world networks. Empirical studies on computer net-
works, social networks and electrical power grids, to name a few, have re-
vealed that behaviour of such networks is not suitable for modelling by use of
traditional mathematical graph theory. Real world networks have structures
that are irregular, complex and dynamically evolving with time, and thus the
models proposed in mathematical graph theory are not able to reproduce the
dynamical and functional behaviour of such topologies [4], [24].

In [4] they emphasize several reasons for why the study of complex networks
are relevant for real world topologies:

• Weighted networks: Often in real topologies the connections be-
tween nodes are weighted in terms of edge capacity and intensity, i.e.
networks in which a value is associated with each link which may vary
as time progresses. Examples of such are existence of weak and strong
ties between individuals in a social network, different physical distance
between nodes, and different capabilities for transmitting e.g. electric
signals.

• Dynamical behaviour: Real world networks are composed by large
numbers of interconnected dynamical units. Thus, the collective dy-
namics in a complex topology and the local properties of individual
nodes greatly affect the interactions in coupled dynamical systems. For
instance, studying synchronization phenomena in sociology has become
very relevant for acquiring a better understanding of the mechanisms
underlying the formation of collective social behaviours, such as e.g.
the emergence of new habits, fashions or leading opinions.

• Adaptive and dynamical wirings: When networks themselves are
dynamical entities, affected by either external or internal actions, the
topology is not fixed. That is, as opposed to dynamical processes with
static connection schemes, the topology may evolve and adapt with
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time. A suitable example here is the islanding of a microgrid (described
in section 2.1.2) where its external energy supply is disrupted and the
cell must adapt by covering the entire energy demand of its participants.

There are some unifying principals and statistical properties common to all
complex networks, some of which are listed below [4]:

• Node degree: The degree (or connectivity) describes the number of
links one node has to other nodes in the network, which can be used
to determine a node’s importance. In fact, the most basic topological
representation of a graph G can be obtained in terms of its degree
distribution, P (k), defined as the probability that a node in G chosen
uniformly at random has degree k. If the graph is directed the degree of
a node has two components, i.e. out-degree (number of outgoing links)
and in-degree (number of ingoing links).

• Betweenness centrality: The term betweenness centrality is another
measure for deriving a node’s importance within a graph. It quantifies
the number of times a node acts as a bridge along the shortest path of
two other nodes. That is,

bi =
∑

i 6=j 6=k∈N

njk(i)

njk

(2.7)

where njk is the number of shortest paths between j and k, while njk(i)
is the number of shortest paths connecting j and k and passing through
i.

• Graph diameter: The diameter is the greatest shortest path between
any pair of nodes in a graph. Thus, to determine the diameter, one
first finds the shortest path between each pair of nodes, where the path
with greatest length is the diameter.

Moreover, the structure of a network always affects its function. For instance,
the robustness and stability of electricity transmission is greatly affected by
the topology of the power grid. The traditional power grid (e.g. the one
described in section 2.8.1 below) has a moderately heterogeneous topology
characterized by an exponential distribution of the number of transmission
lines per substation (i.e. degree distribution). However, as described in sec-
tion 2.1.2, the paper in appendix G proposes a different power grid topology
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using a preferential attachment structure. Here, the basic idea is that nodes
with high degree acquire new links at a higher rate than low-degree nodes,
and thus the power generation and storage capacity of each node in the net-
work depends on the number of connection it has to other nodes [4], [24].

2.8.1 Related investigation: Modelling cascading fail-
ures in the North American power grid

A related investigation with regards to power grids is described in [16]. Here
they have modelled the North American power grid using its actual topology
and investigated the damage inflicted in terms of transmission efficiency in
the event of substation failure. They made plausible assumptions regarding
load and overload conditions of transmission substations and observed how
overloads caused by substation malfunctioning leads to cascading effects in
the power network [16].

More generally, they modelled the power grid as a weighted graph G, with N
nodes (substations) and K edges (transmission lines), and represented it as
an N x N adjacency matrix {eij}. Each element eij represent the line between
nodes i and j and is a number in the range [0,1], where 0 indicate no direct
connection in between the nodes and 1 indicated that the transmission line
works perfectly [16].

Initially all the existing transmission lines in the power network were set to
1 and the efficiency of a path between two substations in the network was
defined as the harmonic composition of efficiency in the transmission lines in
between the substations. That is, the harmonic composition of N numbers
x1, x2, ..., xN is defined as [

∑N
i 1/xi]

−1. After which, they started to remove
nodes from the network and observed how the network progressed. It showed
that when removing a substation, its load needs to be redistributed among
the remaining neighbouring substations in the network, causing other sub-
stations to carry larger loads than their capacity. Ultimately, this leads to
overload conditions de-gradating the neighbouring substation’s performance
as well, which in turn creates an cascading effect on the entire network. In
fact, they concluded that the removal of one single substation can, in a worst
case scenario, cause a degradation of 25% in terms of overall transmission
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efficiency [16].

This investigation illustrates how we can use complex network theory to
analyse real world networks. In chapter 4, a similar model for autonomy in
microgrids is described where the complex network tool NetLogo (described
below in section 2.8.2) is used.

2.8.2 NetLogo

NetLogo is a multi-agent programmable modelling environment using an
agent-based programming language, meaning that actions and interactions of
autonomous agents (i.e. entities or nodes) can be simulated in order to assess
their effects on a system as a whole. The tool allows us to facilitate the struc-
tural properties of complex systems and examine the collective behaviour of
rule-based agents dynamically interacting as in real world networks5.

As the complexity of a system is closely related to the connectedness and be-
haviour of different agents, NetLogo allows us to model robustness in terms of
adapting to internal and external events in a complex system. Thus, we can
model how a complex real world network with dynamically evolving agents
progresses with time, and how to handle situations that emerges from the
agents’ behaviour and interactions5.

In this study, NetLogo is used for developing the microgrid autonomy model
described in chapter 4. The user interface of this model and parts of the
NetLogo-code is presented in appendix E, while the model itself is included in
the folder ”AutonomyModel” on the attached CD-ROM.

5http://ccl.northwestern.edu/netlogo/
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Chapter 3

Analysing dynamics of energy
consumption and generation

In order to model autonomy in microgrids, one must first investigate the
dynamics of energy consumption and generation. This chapter describes two
analyses, one performed to uncover the dynamics of energy consumption in
Norwegian households, and another to reveal the generation potentials of
PV solar cells. The data and patterns obtained in these analyses lay the
foundation for the subsequent autonomy model described in chapter 4.

3.1 Methodology

Section 3.1.1 describes an investigation of energy consumption in Norwegian
households based on data gathered from the Demo Steinkjer project. In
section 3.1.2 an investigation on energy generation in solar cells is described
which purpose is to reveal the current potentials of solar energy harnessing.
Finally, in section 3.1.3, it is described how to setup the database containing
the energy consumption and generation data used in these analyses.

3.1.1 Consumption data from Demo Steinkjer project

As described in section 2.6, the Demo Steinkjer project1 has gathered con-
sumption data from several houses located in the same geographical area as
hourly updates over the last two and a half years. Currently this database

1http://www.demosteinkjer.no
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consists of 7.2 million entries on consumption from 221 buildings, of which
the great majority is ordinary households. The intention of this analysis is to
examine the consumption data and reveal whether the daily usage patterns
of the Demo Steinkjer participants correspond to the description of normal
Norwegian household behaviour in section 2.2. Furthermore, the obtained
consumption patterns gathered from this analysis will lay grounds for the
subsequent model (described in chapter 4) where generation and storage fea-
tures are added in a futuristic microgrid scenario.

More particularly, this analysis will examine usage patterns in a selection of
households participating in the Demo Steinkjer project and determine how
energy consumption varies by investigating:

• hourly consumption over the course of day in different households

• energy usage in different months over a year

• weekday as opposed to weekend consumption

• total and average consumption when aggregating the patterns of mul-
tiple households

Thus, the analysis will uncover e.g. when usage peaks occur, the seasonal
effects on energy consumption, and also determine the total daily usage pat-
tern of several households combined. Detecting a daily usage pattern that
is consistent when summarizing several households will uncover how we can
implement mechanisms for avoiding usage peaks in microgrids, as described
in section 2.5.4. The results from this analysis are described in section 3.2.

3.1.2 Generation data from elia solar cells

As described in section 2.1, the futuristic aim of Smart Grid is to achieve
a more distributed energy supply infrastructure where local generation and
storage sources are added to microgrid cells. Using distributed energy genera-
tion the microgrids can autonomously control its own generation and storage
in response to variable demand and supply conditions. By adding renew-
able energy sources (e.g. solar, wind or hydro) to microgrids, one can e.g.
compensate for daily high demand periods by utilizing locally stored energy
autonomously. Also, in the event that external energy supply from utility
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company is disrupted, local energy generation and storage can be utilized to
avoid power outages.

In this analysis the energy generated from PV solar cells will be examined
with purpose of investigating the dynamics and sustainability of solar energy.
Furthermore, the analysis will also investigate day-ahead predictions, and re-
veal with what certainty the harnessing of solar energy can be predicted. The
data examined is gathered from elia2 and concerns solar energy generation
in Brussels, Belgium in 2013.

In particular, the analysis will examine solar generation dynamics by inves-
tigating:

• the daily variations in generated energy

• the monthly variations in daily generated energy

• the predictability of solar energy

Thus, the aim of this investigation is to derive and analyse the energy gener-
ation potential of PV solar cells. Furthermore, the data obtained from this
analysis will be utilized in the subsequent model on autonomy in microgrids
described in chapter 4. As described in section 2.7.2, elia offer both day-
ahead predictions and corrected data on the daily energy generation in solar
cells, and thus the investigation will also reveal how accurately solar energy
generation can be predicted. The results from this analysis are described in
section 3.3.

As mentioned in section 2.7.2, the PV solar dataset from elia has quarter-
hourly updates on power generation. For simplicity, this is converted to
hourly average updates in this investigation, i.e. by summarizing the quarter-
hourly updates each hour and dividing it by four. Furthermore, the analysis
assumes that this hourly average power output is constant each hour.

3.1.3 Database setup

Both the consumption and generation data used in these analyses can be
downloaded in .csv format from Demo Steinkjer1 and elia2, respectively.

2http://www.elia.be
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However, as described earlier, the datasets are enormous. In particular,
the Demo Steinkjer data alone consists of 7.2 million entries on consumption
from the last two and a half years. Therefore, in order to simplify the work
of investigating this massive amount of data, I needed to represent it in a
more easily accessible manner.

To achieve this, I set up an apache server and configured phpMyAdmin such
that I could create a MySQL database consisting of the datasets. The two
datasets were then separated in different tables in this database, and made
accessible with SQL commands. See appendix A for a more thorough tutorial
on how to set up the database and extract data.

After which, I extracted data from the database using SQL commands in
python scripts, and investigated the dynamics of energy consumption and
generation as described in sections 3.1.1 and 3.1.2, respectively. Appendix A
describes, as mentioned, how to setup the database and extract data. How-
ever, below I have chosen to list some of the most significant and time-
consuming issues that needed to be resolved, in order of appearance. These
are:

1. The Demo Steinkjer dataset only has a column with the accumulated
energy consumption each hour. Thus, one must create a new column
called ”HourlyConsumption” in phpMyAdmin and then run the python
script ”addHourlyConsColumn.py”. This separate column is needed for
deriving the difference between two consecutive measurements, i.e. the
consumption of the last hour. The script is located both in appendix B
and on the attached CD-ROM, and takes approximately four hours to
run on the entire database.

2. There are several ”gaps” in the dataset from DemoSteinkjer, i.e. miss-
ing measurements. Thus, finding longer periods of time, where none
of these gaps are present, is extremely time-consuming. However, the
20 households evaluated in the analysis described in section 3.2 have
consistent measurements in the time period ranging from October 1st
2012 until June 28th 2013. The User IDs of these households are listed
in appendix F.

3. One must manually remove the spaces in column names in the datasets
on solar generation. That is, the column ”Day-Ahead forecast [MW]”
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must be changed to ”Day-AheadforecastMW” and ”Corrected Upscaled
Measurement [MW]” to ”CorrectedUpscaledMeasurementMW”. If this
is not done you get errors when attempting to extract data using python
scripts and subsequently in the NetLogo model (chapter 4).

4. The dataset on solar generation provided by elia uses comma as the dec-
imal mark in numbers. This must be exchanged with period, otherwise
the extracted data is treated as a string instead of a decimal number
in python. The script performing this exchange is ”ReplaceCommaW-
ithPeriodInDatabase.py”, which is located on the attached CD-ROM.

5. In the solar generation data from elia there exist some duplicate mea-
surements, listed consecutively. This issue is resolved by running the
”searchingForDuplicate.py” script located on the CD-ROM, and manu-
ally removing the database entry indicated by the output of the python
script.

In appendix C and D, two scripts (one for extracting and plotting consump-
tion patterns and another for generation patterns) are presented. These
scripts have been included in appendix to give the reader an understanding
on how to access the database using python scripts and reproduce the plots
and results described in sections 3.2 and 3.3. However, these are just ex-
amples, and thus I refer to the folder ”pythonworkspace” on the attached
CD-ROM to see the complete selection of python scripts used in these inves-
tigations.

3.2 Results from analysis: Consumption pat-

terns in Demo Steinkjer households

This section describes the results from the analysis of consumption behaviour
in households participating in the Demo Steinkjer project (as described in
section 3.1.1). The main purpose of this investigation was to uncover if the
consumption patterns of different homes coincide, i.e. to examine whether
multiple homes have similar daily usage patterns. If so, the knowledge of
these patterns can be used in further modelling of microgrid scenarios where
local generation and storage capabilities are added to microgrids. Knowing
such patterns can enable means for e.g. utilizing the locally stored energy
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of microgrids in high consumption periods in order to avoid high electricity
prices and power outages as described in section 2.1.

Section 3.2.1 describes the results from an investigation of monthly average
consumption in several individual households. The purpose of investigating
this was to examine how consumption varies from month to month, and to
reveal similarities and deviations in different households. In section 3.2.2 the
combined daily consumption of several households is examined with purpose
of recognizing a common pattern. In section 3.2.3 the investigation concerns
a three-month period (i.e. January-March 2013) where the total hourly con-
sumption from ten different houses is summarized. Here we can uncover if a
certain usage pattern emerges when the consumption of several households is
merged over a longer time period, and also examine the differences between
week day and weekend consumption. In section 3.2.4 the total number of
homes is increased to 20 and the time period to nine months (October 2012
- June 2013). Here we can examine if the pattern observed in section 3.2.3
remains when increasing the total number of homes and the time period
even further. In section 3.2.5 the monthly variations in consumption is ex-
amined further with purpose of revealing the differences in monthly average,
maximum and minimum hourly consumption. Finally, in section 3.2.6, the
findings of this analysis are summarized.

3.2.1 Average hourly consumption from different houses
excluding weekends

In figures 3.1, 3.2 and 3.3 below, the average hourly consumption from differ-
ent months in three separate houses is depicted. The consumption patterns
of all three households have been gathered from the same time periods, ex-
cluding weekends, and we can observe how the average energy usage varies
over the course of day in six different months. There are deviations from
month to month and in between houses, but common for all houses and
months is that they follow approximately the same curve. That is, we clearly
see a usage peak between 7 and 9 AM and an overall increasing in energy
consumption after 15 PM. Considering this, the patterns observed confirms
the expected behaviour in Norwegian households described in section 2.2.
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Figure 3.1: Monthly average consumption (house ID
7350049083690884): Left: October, November and December 2012
Right: April, May and June 2013

Figure 3.2: Monthly average consumption (house ID
7350049084529299): Left: October, November and December 2012
Right: April, May and June 2013
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Figure 3.3: Monthly average consumption (house ID
7350049084529237): Left: October, November and December 2012
Right: April, May and June 2013

As stated in section 2.2, 12% of all household consumption in Norway is used
for water heating. Given the recurring usage peak between 7 or 9 AM, regard-
less of household, it is plausible to assume that this increasing in consumption
is caused by the morning routines of household occupants. Furthermore, we
can observe how the energy usage during daytime (i.e. after the morning
peak and before 15 PM) drops significantly. This is consistent with the as-
sumption that household occupants leave home for work or school, which
consequently reduces the consumption in the household. Moreover, the fact
that 66% of all household consumption is used for space heating (as stated
in section 2.2) can explain the monthly variations in terms of overall usage.
That is, colder months requiring higher energy consumption compared to
warmer months due to additional need for space heating caused by lower
outdoor temperatures.

There are, however, variations in the different households. As one can ob-
serve in figures 3.1, 3.2 and 3.3, the overall daily pattern described above is
consistent in the different homes, but there are slight differences related to
the exact occurrence and size of usage peaks. This is consistent with how e.g.
size of household, habits of household occupants etc. may vary as described
in section 2.2.
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3.2.2 Combined daily consumption of multiple house-
holds

In figures 3.4 and 3.5 the combined consumption of several households is
depicted. The plotted dates are October 1st 2012 (figure 3.4) and February
1st 2013 (figure 3.5), and one can observe how the combined consumption of
both 10 and 20 households affect the daily usage patterns on these dates.

Figure 3.4: Combined consumption October 1st 2012: Left: 10 house-
holds Right: 20 households.

Figure 3.5: Combined consumption February 1st 2013: Left: 10 house-
holds Right: 20 households.

As one can see, the expected pattern (described above in section 3.2.1) be-
comes more and more visible when increasing the number of homes. Hence,
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the overall pattern when summarizing several homes’ energy usage seems to
disguise some of the slight differences of the separate homes, and we end
up with a pattern that is more similar to what was described as normal
Norwegian household behaviour in section 2.2.

3.2.3 Combined hourly consumption from ten houses
over three months

In figure 3.6 below, the total hourly consumption of ten houses in the months
January, February and March 2013 is depicted. The left hand side plot of
figure 3.6 is week day consumption, while the right hand side plot is the
weekends in the same period. This investigation reveals that when summa-
rizing the total hourly consumption in a group of houses over a three-month
period, we get a pattern that more persistently state a behaviour consistent
with what is expected in households. That is, a usage peak in the morning,
followed by a drop in consumption during daytime, concluded with another
increasing in energy usage between 15 PM and midnight. Furthermore, if
we compare weekday and weekend consumption we clearly see a change in
behaviour particularly related to morning consumption. That is, while the
morning usage peak occurs at around 8 AM on weekdays, it appears closer
to 11 AM in weekends. Also, the drop in consumption after the morning
peak is not as significant in weekends as it is on week days.

Figure 3.6: Ten houses total consumption January, February and
March 2013: Left: Week days Right: Weekends

In figure 3.7 below, the same period is illustrated, only this time as the
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average hourly consumption per house. Here we can observe that average
hourly week day consumption in the chosen households varies approximately
between 2.1 kWh and 3.2 kWh in this three-month period, while average
weekend consumption varies between 2.2 kWh and 3.1 kWh.

Figure 3.7: Ten houses average consumption per household January,
February and March 2013: Left: Week days Right: Weekends

3.2.4 Combined hourly consumption from 20 house-
holds over nine months

In figure 3.8 below, the number of houses is increased to 20 and the time
period to nine months (October 1st 2012 - June 28th 2013). This shows
that the pattern observed in section 3.2.3 remains with further increasing
of households and time period. In fact, the expected pattern becomes even
more apparent when increasing the number of households and the time period
further. That is, the two distinct daily peaks on week days emerges more
persistently and the weekend consumption becomes more and more constant
from 11 AM until evening.

43



Figure 3.8: 20 houses total hourly consumption October 2012 - June
2013: Left: Week days Right: Weekends

Below, in table 3.1, the total consumption of both week days and weekends
in all separate months (i.e. October 2012 - June 2013) is listed.

Month Total week day usage [kWh] Total weekend usage [kWh]
October 19865.999 (23 days) 7199.140 (8 days)
November 23881.559 (22 days) 8419.837 (8 days)
December 28184.173 (20 days) 14005.311 (10 days)
January 29775.016 (23 days) 10203.065 (8 days)
February 25292.664 (20 days) 10398.994 (8 days)
March 25226.638 (21 days) 12440.871 (10 days)
April 21536.233 (22 days) 7935.068 (8 days)
May 14977.876 (23 days) 5168.680 (8 days)
June 10578.394 (20 days) 4411.601 (10 days)

Table 3.1: Comparison (20 households): average hourly consumption (week
days and weekends)

The fact that total consumption of January is approximately 2.8 times higher
than that of June on week days clearly illustrate the impact outdoor tem-
peratures has on energy consumption in Norwegian households.

Furthermore, in table 3.2 the average hourly load of week days and weekends
is calculated in the months January - June 2013 (based on the results ob-
tained in table 3.1). What is interesting is that although the usage patterns
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are different on week days compared to weekends, the amount of consumed
energy is approximately equal.

Month Average week day usage (hourly) [kWh] Average weekend usage (hourly) [kWh]
October 35.99 37.49
November 45.23 43.85
December 58.72 58.36
January 53.94 53.14
February 52.69 54.16
March 50.05 51.84
April 40.79 41.33
May 27.13 26.92
June 22.04 22.98

Table 3.2: Comparison (20 households): average hourly consumption (week
days and weekends)

3.2.5 Examining monthly variations

In figure 3.9 below, the monthly consumption of January and June, and
March and April 2013 is depicted. As one can observe, the consumption in
January varies significantly from that of June, while March and April are
more similar.

Figure 3.9: Combined consumption pattern 20 households Left: Jan-
uary and June 2013 Right: March and April 2013

Based on the consumption patterns derived we can examine the monthly
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variations in average and maximum hourly consumption. In the subsequent
autonomy model (described in chapter 4) this knowledge will be utilized for
determining how to dynamically detect usage peaks in a presumed micro-
grid consisting of the 20 households examined in this analysis. In figure 3.10
below, the total hourly consumption pattern of January is illustrated, high-
lighting the maximum, minimum and average hourly consumption.

Figure 3.10: Consumption pattern highlighting the maximum, minimum and
average hourly consumption in January 2013

Furthermore, in table 3.3 below, the maximum, minimum and average hourly
consumption of January through June in the 20 households are listed.

Month Average [kWh] Max [kWh] Min [kWh] Difference (max - min) [kWh]
January 1240.626 1491.874 935.403 556.471
February 1053.861 1262.196 809.863 452.333
March 1051.110 1302.173 853.439 448.734
April 897.343 1116.093 690.548 425.545
May 624.078 806.253 439.947 366.306
June 440.766 569.496 274.199 295.297

Table 3.3: Aggregated maximum, minimum and average hourly consump-
tion of months January through June 2013 (as highlighted in figure 3.10)
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3.2.6 Conclusion

This section summarizes the most important and interesting results achieved
from the analysis of consumption data in Demo Steinkjer. Based on the
households examined in this analysis, the following conclusions were reached:

• Although energy consumption in households varies, the daily usage
patterns are somewhat similar in the different houses. In all week day
investigations performed, the daily usage curve has approximately the
same shape independent of household. That is, a usage peak in the
morning, followed by a drop in consumption after the morning peak,
and finally, another increasing in energy consumption in the afternoon.
This is consistent with previous investigations on behaviour in Norwe-
gian households described in section 2.2.

• When summarizing the consumption in several houses over longer time
periods, the pattern described above emerges more persistently. That
is, the daily consumption curve becomes more and more similar to the
expected pattern described in section 2.2. In fact, the investigation
shows that further increasing number of houses and time period results
in a pattern more and more similar to what is expected.

• There are considerable differences between weekend and week day con-
sumption in households. In particular, the usage peak associated with
the morning routines of household occupants deviate, i.e. occurring at
7 AM on weekdays and 11 AM in weekends. Moreover, in weekends
the energy usage after the morning peak do not decrease as much as
experienced on week days. However, the differences between week days
and weekends are primarily related to when usage peaks occur, and not
the amount of energy consumed daily.

• As mentioned, the shape of the daily consumption curve remains ap-
proximately the same in all months evaluated. That is, while the over-
all consumption increases in colder months we still experience the same
usage peaks regardless of season. This supports that the variations in
monthly overall consumption is mostly dependent on space heating as
described in section 2.2.
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3.3 Results from analysis: Generation pat-

terns of elia solar cells

This chapter describes the results from the analysis of solar energy genera-
tion in elia solar cells (as described in section 3.1.2). The purpose of this
investigation was to examine the dynamics and sustainability of PV energy
generation. The knowledge on generation patterns obtained from this anal-
ysis will be used in the microgrid autonomy model described in chapter 4.

In section 3.3.1 the daily variations in power output in several months is
examined with purpose of uncovering the day-to-day fluctuations in energy
generation. Furthermore, in section 3.3.2, all twelve months of 2013 are
examined in terms of total monthly and average daily generation each month.
Moreover in section 3.3.3 the deviations between predicted and actual energy
generation is examined. Finally, in section 3.3.4, the results from this analysis
are summarized.

3.3.1 Daily variations in power output

In figures 3.11 and 3.12 below, the daily power output pattern from four con-
secutive days in each of the months January, February, July and August is
illustrated. What we can observe here is how the amount of energy generated
may vary significantly from one day to another in all months. That is, al-
though overall generation is considerably higher during the summer months,
significant day to day variations are present regardless of season. This sup-
ports the presumption that solar energy generation is highly weather depen-
dent as described in section 2.7.
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Figure 3.11: Daily power output on four consecutive days: Left: Jan-
uary 2013 Right: February 2013

Figure 3.12: Daily power output on four consecutive days: Left: July
2013 Right: August 2013

Furthermore, comparing the generation from January and February (fig-
ure 3.11) with the generation from July and August (figure 3.12) reveals
that maximum power output is approximately four times greater in the sum-
mer months compared to the winter. Furthermore, the daily time period in
which the solar cells generate energy is also considerably prolonged during
the summer months. That is, while January and February experience an en-
ergy generation between 9 AM and 18 PM, July and August generate energy
between 7 AM and 22 PM.
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3.3.2 Monthly variations in generated energy

In figures 3.13 and 3.14, the total generated energy in each month of 2013
is illustrated. What we can observe here is how the total generated energy
varies from month to month, and also how the daily time periods for which
the solar cells are active (i.e. generating energy) varies.

Figure 3.13: Monthly variations in total generated energy: Left: Jan-
uary, February and March Right: April, May and June

Figure 3.14: Monthly variations in total generated energy: Left: July,
August and September Right: October, November and December

In table 3.4 below, the total and average daily generation of each month is
listed, in addition to the daily time periods in each month for which the solar
cells are active.
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Month Total generation [MWh] Average daily generation [MWh] Solar cells active
January 110.78 3.57 9 AM - 18 PM
February 304.76 10.88 8 AM - 19 PM
March 716.61 23.12 7 AM - 20 PM
April 1499.88 49.99 7 AM - 21 PM
May 1513.43 48.82 6 AM - 22 PM
June 1689.93 56.33 6 AM - 22 PM
July 2021.69 65.21 6 AM - 22 PM
August 1687.28 54.42 7 AM - 22 PM
September 1195.60 39.85 7 AM - 21 PM
October 745.91 24.06 8 AM - 20 PM
November 243.23 8.10 8 AM - 18 PM
December 312.08 10.06 8 AM - 18 PM

Table 3.4: Monthly variations in solar energy generation, Brussels 2013

As expected, the energy generation is highest during the summer months,
and consequently lowest during the winter. In fact, this investigation shows
that total solar energy generation in July is approximately 18 times higher
than that of January. Although, as described in section 3.3.2, the Brussels
total PV capacity had increased by 3.38 MW in July compared to January,
the difference in generated energy is significant regardless. Furthermore, the
daily time period for which the solar cells are active is 7 hours longer in July
compared to January. Below, in figure 3.15, one can observe how the energy
generation through all of 2013 varies from month to month. It shows that
energy generation, as expected, increases steadily until reaching its peak in
July, after which it starts to decrease.

51



Figure 3.15: Monthly variations in total generated energy 2013

3.3.3 Comparison: predicted and actual energy gener-
ation

As described in section 2.7.2, elia also offer day-ahead predictions on energy
generation in their solar cells. This investigation concerns comparing pre-
dicted and actual energy generation in order to uncover with what certainty
one can predict solar energy generation. Below, in figures 3.16 and 3.17,
the predicted and actual energy generation of January, March, July and
November 2013 is plotted. Furthermore, in table 3.5, the predicted and ac-
tual energy generation of each month in 2013 is listed, in addition to the
corresponding deviation.

Figure 3.16: Comparison predicted and actual energy generation:
Left: January Right: March
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Figure 3.17: Comparison predicted and actual energy generation:
Left: July Right: November

Month Predicted generation [MWh] Actual generation [MWh] Deviation [MWh]
January 106.96 110.78 +3.82 (3.57%)
February 402.26 304.76 -97.5 (24.24%)
March 745.83 716.61 -29.22 (3.92%)
April 1404.41 1499.88 +95.47 (6.80%)
May 1482.95 1513.43 +30.48 (2.10%)
June 1943.36 1689.93 -253.43 (13.04%)
July 2152.06 2021.69 -130.37 (6.06%)
August 1821.61 1687.28 -133.33 (7.32%)
September 1362.56 1195.60 -166.96 (12.25%)
October 812.40 745.91 -66.49 (8.18%)
November 330.92 243.23 -87.69 (26.50%)
December 279.69 312.08 +32.39 (11.58%)

Table 3.5: Predicted vs. actual monthly solar energy generation, Brussel
2013

3.3.4 Conclusion

This section summarizes the findings from the analysis of solar cell energy
generation in Brussels 2013. The investigation reached the following conclu-
sions:
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• Daily energy generation may vary, regardless of month, on a day-to-
day basis. That is, the energy generation of two consecutive days may
differ considerably, confirming how varying weather conditions greatly
affect the amount of generated energy in solar cells. This verifies the
suspected dynamics, nonlinearities and uncertainties of solar energy
generation described in section 2.7.

• There are substantial seasonal differences in solar energy generation.
Table 3.4 in section 3.3.2 shows how the total energy generation varies
in each month of 2013, revealing monthly differences with factors as
large as 18. However, as shown in figure 3.15, the variations follow a
pattern that is expected, i.e. with energy generation increasing steadily
from January until the summer months, and decreasing after its peak
in July.

• The daily time periods for which the solar cells are active (i.e. gener-
ating energy) varies significantly in the different seasons of a year. In
fact, the active period in July is as much as 7 hours longer than that
of January. The active period off all months is listed in table 3.4 in
section 3.3.2.

• The comparison of predicted and actual generation confirms (as stated
in section 2.7) the difficulties regarding prediction of solar energy gen-
eration. Table 3.5 in section 3.3.3 shows that in some months the total
energy generation deviate as much as 26% from the day-ahead predic-
tions. Also, more often than not the predictions are too optimistic, i.e.
greater than the actual generation.
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Chapter 4

Model

This chapter describes a model for autonomy in microgrids based on the ac-
quired dynamics of energy consumption and generation (described in chap-
ter 3). As described in section 2.8.1 the authors of [16] performed a study
where they used complex network theory to model the damage inflicted on
transmission efficiency as a result of substation failure in the North American
power grid.

In this model complex network theory is used to investigate autonomy in
microgrids by modelling consumption, generation and storage, instantiated
from different sources. That is, by adding local generation sources and stor-
age capabilities, the model investigates how a microgrid can control its own
generation and storage in response to varying demand and supply condi-
tions. In order to provide realistic microgrid dynamics, the model uses the
consumption data from Demo Steinkjer and generation data from solar cells
analysed in chapter 3.

More formally, the purpose of this model is to investigate peak shaving (as
described in section 2.5.4) using the two different microgrid structures solar
farm mode and distributed generation mode (described below in sections 4.1.1
and 4.1.2, respectively). Finally, the mode described in section 4.1.3 concerns
a scenario for which external supply is disrupted, and the microgrid need
to operate independently of conventional supply from the utility company.
Here, the intention is to examine the ability of a microgrid to prevent power
outages by covering the entire energy demand of its participants temporarily.
Thus, the latter will uncover how long a microgrid can stay operational in
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different months without external supply by utilizing stored energy and local
generation, i.e. as an islanded entity as described in section 2.1.2.

Section 4.1 describes the implementation of the model including a description
of each separate mode, while section 4.2 presents some of the most interesting
results obtained from simulations.

4.1 Modelling autonomy in microgrids

As described above, the purpose of this model is to examine how we can
compensate for daily usage peaks in a futuristic microgrid cell by storing
and utilizing locally generated energy in high demand periods. In addition,
the model also examines how we can avoid power outages when external en-
ergy supply to the microgrid is disrupted, again by using local generation and
stored energy temporarily. The research performed on consumption patterns
in section 3.2 revealed that the usage curve of households has approximately
the same shape regardless of season, identified by two distinct daily usage
peaks on week days. Thus, this consistent consumption pattern, combined
with the dynamics of solar energy generation obtained in section 3.3 lay the
foundation for this model.

As described in section 3.1.3, it was difficult to find households in Demo
Steinkjer where there was consistent hourly consumption measurements over
longer periods of time. This was due to ”gaps” in the dataset where mea-
surements were missing. However, the analysis (section 3.2) uncovered 20
households which had consistent measurements over a time period of ap-
proximately nine months (Oct 1st 2012 until June 28th 2013). Furthermore,
the solar generation data (analysed in section 3.3) used data gathered from
the time period January 1st 2013 until December 31st 2013. Hence, this
model uses consumption and generation data from the overlapping time pe-
riod of the two analyses, i.e. from January 1st until June 28th 2013.

For simplicity, as with the analysis described in section 3.3, it is assumed
that the solar power output is constant in each hour in the model.

The model consists of the three different modes listed below, i.e.

• Solar farm mode where there is one large energy source in the mi-
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crogrid responsible for all local energy generation. Using the energy
produced by this local source, the intention is to compensate for daily
high demand periods in the microgrid as a whole.

• Distributed generation mode where the microgrid consists of sev-
eral households both generating and storing energy, and the structur-
ing of connections between households is arranged in a preferential
attachment manner following the energy availability, as described in
section 2.1.2. In other words, households with the largest degree (i.e.
most connections to other houses) are the ones with the largest gener-
ation and storage capacity. Consequently, this approach aims to com-
pensate for usage peaks in each household individually, as opposed to
the solar farm mode which deals with the overall consumption of the
microgrid cell.

• Island mode stages a scenario where the external supply is disrupted
and a microgrid must operate independently, i.e. responsible for cov-
ering the entire energy demand of its participants temporarily through
local energy generation and storage. Here, the structure is similar as
the solar farm mode, i.e. one large generation source responsible for all
local energy generation.

Sections 4.1.1, 4.1.2 and 4.1.3 below describes these three modes more thor-
oughly, while section 4.1.4 describes how the model is set up using the com-
plex network tool NetLogo.

4.1.1 Solar farm mode

In solar farm mode the microgrid consists of 20 households, one solar gen-
eration farm, and one storage unit. As mentioned, the intention here is to
model peak shaving by utilizing the locally generated energy from solar cells
in high demand periods. By compensating with local energy during usage
peak periods one can dynamically regulate the external energy supply and,
from the utility company’s perspective, ensure a less fluctuating daily usage
curve.

In order to examine realistic consumption patterns the model uses data ob-
tained from households investigated in the analysis in section 3.2. Further-
more, for the solar generation farm, the data analysed in section 3.3 is used.
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However, as described in section 2.7.2, the data used in the analysis in sec-
tion 3.3 concerns solar energy generation in all of Brussels, Belgium. Thus,
for simplicity, this energy generation data is scaled down by a factor of 250
making it more suitable for this scenario, while still preserving the dynam-
ics of solar energy generation. As described in section 2.7.1, given 100%
efficiency, PV solar cells generate 1 kW per square meter during optimal
weather conditions. Thus, if we assume that the nominal power output of
the photovoltaic farm is scaled down by a factor of 250 (i.e. from 10.3 MWp
to 41.2 kWp), in addition to a 15 % efficiency in solar generation, we can
derive the area of solar cells needed in m2 for this microgrid scenario (using
equation 2.6 in section 2.7.1). That is,

Required solar cell area =
41.2kWp

0.15 ∗ 1kW/m2
≈ 275m2 (4.1)

Moreover, the model assumes a BES system with a energy capacity of 1
MWh. Thus, if stored energy at any time exceeds this limit, the surplus
energy is immediately used regardless of whether or not a usage peak has
occurred. Also, the model has implemented a discharge and power conver-
sion loss of 10% in the BES system, similar to that used in the investigation
described in section 2.5.4. Consequently, 10 % of all generated energy in the
solar farm is lost in the BES system.

In total we are able to model a period ranging from January 1st until June
28th 2013, with exact and consecutive hourly updates on both consump-
tion and generation throughout this time period. Below, in figure 4.1, the
structure of this approach is illustrated.
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Figure 4.1: Solar farm mode structure, as displayed in model

In order to compensate for usage peaks we must be able to identify when
they occur. In the peak shaving investigation described in section 2.5.4 they
used the maximum daily usage peak that occurred in a four-month period and
determined a constant peak boundary as a percentage of this maximum daily
peak load. In this model, a slightly different approach is attempted where
hourly load is evaluated instead. That is, the identification of usage peaks is
based on the results from maximum and average hourly consumption in each
month derived in table 3.3 in section 3.2.4. Evaluating this data allow us to
derive the boundaries for how to detect hourly usage peaks in each month.
That is, by calculating the peak ratio

Monthly peak ratio =
Monthlymaximumhourly consumption

Monthly averagehourly consumption
(4.2)

we can derive an upper boundary for normal hourly consumption in differ-
ent months. Consequently, an hourly load exceeding this boundary can be
considered a usage peak, in need of compensation.

Below, in table 4.1, the peak ratios (calculated by equation 4.2) for the
months January through June 2013 is listed based on the results derived
in section 3.2.4. Furthermore, the suggested start boundary for identifying
peaks is for each month proposed as the acquired peak ratio multiplied by
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the last day average hourly usage. That is, the last day average usage is a
variable dynamically calculated and updated after simulating each day in the
model.

Month Peak ratio (PR) Start boundary
January 1.203 PRJan∗Last day average
February 1.198 PRFeb∗Last day average
March 1.240 PRMar∗Last day average
April 1.244 PRApr∗Last day average
May 1.292 PRMay∗Last day average
June 1.292 PRJun∗Last day average

Table 4.1: Start boundaries in each month

However, as described in section 3.3.2, there are significant monthly varia-
tions in solar energy generation and thus the boundaries need to dynamically
adjust dependent on how much energy is generated. That is, months where
the solar energy generation is higher have the potential of compensating for a
larger share of the energy consumption, while months with less energy genera-
tion primarily must focus on shaving the most significant usage peaks. Thus,
the model has implemented a dynamic scheme which determines the peak
boundaries based on the amount of stored energy available. Consequently,
months with a modest energy generation (e.g. January or February) have
boundaries close to or equal with their start boundary, while months with
greater energy generation have boundaries that deviate more.

In table 4.2 below, the dynamic relationship between stored energy amount
relative to storage capacity, and peak boundaries are listed. If the stored
amount is less than 20% the peak boundary equals the start boundary de-
scribed in table 4.1. However, if stored power exceeds 20%, the peak bound-
ary decreases by 10% relative to previous peak boundary for each 10% in-
creasing in storage capacity. That is,
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Storage status Peak boundary (PB)
<20% PR∗Last day average (start boundary)
>20% (PR− PR ∗ 0.1)∗Last day average
>30% (1− 0.1) ∗ (PR− PR ∗ 0.1)∗Last day average
>40% (1− 0.1)2 ∗ (PR− PR ∗ 0.1)∗Last day average
>50% (1− 0.1)3 ∗ (PR− PR ∗ 0.1)∗Last day average
>60% (1− 0.1)4 ∗ (PR− PR ∗ 0.1)∗Last day average
>70% (1− 0.1)5 ∗ (PR− PR ∗ 0.1)∗Last day average
>80% (1− 0.1)6 ∗ (PR− PR ∗ 0.1)∗Last day average
>90% (1− 0.1)7 ∗ (PR− PR ∗ 0.1)∗Last day average

Table 4.2: Relationship between stored amount and peak boundary

Thus, the peak shaving procedure with the solar farm mode structure is as
follows:

1. After each day of simulation, the microgrid’s last day average hourly
usage is calculated.

2. For each hour the following day, the hourly usage is compared to the
last day average and potential peaks are identified by the monthly
boundaries described in tables 4.1 and 4.2.

3. If a peak occurs, the amount of energy which can be compensated for
is determined according to the available energy in the storage unit as
described in table 4.2. Hence, the compensation is calculated as:

Compensated amount = Total hourly usage− PB ∗ LDA (4.3)

where PB is the current peak boundary according to storage status,
and LDA is the last day average hourly usage.

4.1.2 Distributed generation mode

As with solar farm mode (described in section 4.1.1) the intention of the dis-
tributed generation mode is also to compensate for daily high demand periods
by utilizing local energy generation and storage in microgrids. However, un-
like the previous mode where there was one large generation source in charge
of all local energy generation, the distributed generation mode attempts a
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more distributed approach where households themselves are capable of both
generating and storing energy. Hence, in this mode the model attempts to
compensate for usage peaks in each household individually.

In figure 4.2 below, a simple model representing the end user of a microgrid is
depicted, as proposed in the paper in appendix G. The user is represented as
a circle which diameter indicates the storage capacity, the arrow to the node
indicate consumption, and the arrow from the node indicate generation.
The loop (denoted charging) represent energy produced locally being stored
or consumed.

Ø Storage
(Ah)

Charging
Consumption

din (KwH)

Generation
dout (KwH)

Figure 4.2: End user data model (as described in the paper in appendix G)

By modelling several end users as depicted in figure 4.2 we can observe the
microgrid behaviour when it is consisting of several dynamical entities con-
suming, generating and storing energy individually. That is, by modelling
the network as a complex directed graph G(N,E), with N nodes (users) and
E edges (transmission lines). The structure of this approach is illustrated in
figure 4.3 below, where the diameter of each node indicate its generation and
storage capacity.
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Figure 4.3: Distributed generation mode structure, as displayed in model.

In this mode the energy generation occurs in each of the households, and
the structuring of connections between households is arranged in a prefer-
ential attachment manner following the energy availability (as described in
section 2.1.2). Once again, the solar data analysed in section 3.3 is used,
and as with solar farm mode described above, this generation data is scaled
down by a factor of 250. However, the amount of generated energy in each
household is set to vary depending on the out-degree of each node in the
network (i.e. number of connections to other nodes). The total number of
edges in this model is 38, and below the distribution of energy generation for
each node is listed based on their respective out-degrees.

• Two nodes with out-degree 7: Energygenerated = 7
38
∗Total generation

• Two nodes with out-degree 3: Energygenerated = 3
38
∗Total generation

• Two nodes with out-degree 2: Energygenerated = 2
38
∗Total generation

• 14 nodes with out-degree 1: Energygenerated = 1
38
∗Total generation

Hence, the total energy generated in the microgrid is equal to that of the
solar farm mode, only here it is divided among the different nodes based on
the degree distribution.
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Potential usage peaks are identified in the same manner as with the solar
farm mode, i.e. by using the boundaries as described above in section 4.1.1.
However, as the peak shaving now is enforced on each household, the model
calculates last day average hourly usage in each individual household as op-
posed to just the overall microgrid average. Also, once again the model
assumes a discharge and power conversion loss of 10%.

Furthermore, in order to achieve a more optimal utilization of available en-
ergy, it is implemented upper storage boundaries in each of the nodes except
the two most central (i.e. the ones denoted 0 and 1 in figure 4.3). Conse-
quently, any surplus energy in smaller-degree nodes exceeding their respective
boundary is transferred to connected higher-degree nodes, with purpose of
ensuring a better utilization of the available energy resources in the microgrid
as a whole. The boundaries are set as follows:

• Nodes with out-degree 3: maximum energy capacity 30 kWh

• Nodes with out-degree 2: maximum energy capacity 20 kWh

• Nodes with out-degree 1: maximum energy capacity 10 kWh

Thus, the peak shaving procedure using distributed generation mode is as
follows:

1. After each day of simulation, the last day average hourly usage of each
household is calculated.

2. For each hour the following day the hourly usage is compared to the
last day average and potential peaks are identified using the monthly
boundaries described in tables 4.1 and 4.2.

3. If a peak occurs, the amount of energy which can be compensated for
is determined according to the available energy in the storage unit as
described in table 4.2. Hence, the compensation is calculated as:

Compensated amount = Total hourly usage− PB ∗ LDA (4.4)

where PB is the current peak boundary according to storage status,
and LDA is the last day average hourly usage. Also, if the stored
amount at smaller-degree nodes is insufficient to cover the required
peak shaving, the smaller-degree node may receive contributions from
connected higher-degree nodes if there is available resources there.
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4. Finally, if an household has generated more energy than it is allowed to
store, the surplus energy is transferred to the neighbouring household
with the largest out-degree.

4.1.3 Island mode

In island mode we are able to investigate how long a microgrid can man-
age the entire energy demand of its participants, as an islanded entity (as
described in section 2.1.2). The purpose of enabling such a feature is to pre-
vent potential power outages when the external energy supply is disrupted.
Thus, the intention here is to examine the duration for which a microgrid can
stay operational in different months using local generation and stored energy
reserves. Obviously, this will vary as both consumption and generation varies
significantly in the different months of the model. The structure of this ap-
proach is similar to that of the solar farm mode described in section 4.1.1,
i.e. one solar farm, one storage unit and 20 households.

At any time during simulation one can cut the external energy supply and
observe how the microgrid starts to utilize its stored energy reserves in ac-
commodation to local generation to prevent a power outage. Moreover, the
model assumes a discharge and power conversion loss of 10 % and a BES
system with a energy capacity of 1 MWh.

4.1.4 Model setup and user interface guide

The model is developed using the complex network tool Netlogo, described in
section 2.8.2. Thus, to open the model (located in folder ”AutonomyModel”
on attached CD-ROM) one must install NetLogo, which can be downloaded
from1. Furthermore, the model is also connected to the database containing
the consumption and generation data analysed in chapter 3, and thus will not
work before the database is set up as described in section 3.1.3. Moreover,
to be able to set up a connection with a MySQL database one must first
download a MySQL wrapper for NetLogo that needs to be included in the
same directory as the model. However, this wrapper is currently included
as required in the model on the attached CD-ROM. Below, a code extract

1http://ccl.northwestern.edu/netlogo/
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illustrating how to set up the database connection in NetLogo is described,
i.e.

to setup -database -connection

sql:configure "defaultconnection" [["host" "localhost"] ["

port" 3306] ["user" "root"]

["password" "root"] ["database" "demosteinkjer"]]

end

The user interface in the model (presented in appendix E) shows the differ-
ent user settings which can be manipulated in order to investigate different
scenarios. These are:

• Mode: This setting determines which of the three previously described
modes the model should run.

• Number of homes: Here one can choose the number of households
in the microgrid. Maximum amount and default setting is 20.

• Choose house ID for individual plots (1 and 2): Here the user can
choose specific household IDs for individual consumption plots. This
is particularity useful when running the distributed generation mode
of the model as you then can observe the peak shaving in individual
households. One may choose any of the model’s 20 households for this
purpose.

• Number of days for simulation: The simulation starts at January
1st 2013, however the user may choose the number of days for which
the simulation lasts. Maximum amount of days is 179, i.e. until June
28th.

• Initial storage state: Here the initial stored amount in per cent of
total storage capacity can be specified. By default this is set to 20 %
(i.e. 200 kWh).

• External supply: This setting is restricted to the island mode of the
model. The external supply can be switched off at any point in the
simulation, causing the microgrid to solely depend on stored energy
and local generation to handle the demand of its participants.
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The user interface and parts of the NetLogo-code is presented and explained in
appendix E, while the model itself is included in the folder ”AutonomyModel”
on the attached CD-ROM.

4.2 Simulations

This section describes some of the most interesting results obtained from
simulating the three different modes of the autonomy model described above
in section 4.1.

4.2.1 Results: Solar farm mode

Using solar farm mode I have simulated the entire time period (i.e. Jan-
uary 1st until June 28th) and investigated how peak shaving varies in differ-
ent months. The number of households was set to 20 and the initial storage
status was set to 20 % of total capacity (i.e. 200 kWh). Below, some of the
most interesting results from this investigation is presented.

As suspected, the model achieved a modest peak shaving in January and
February. In figure 4.4 below, the total consumption pattern of January 4th
2013 is illustrated with the corresponding peak shaving. This day, usage peak
compensation only occurred in two hours, i.e. at 16 and 17 PM. However,
during these two hours the most significant usage peak this day occurred,
and thus the most critical peak was handled.

Figure 4.4: Consumption pattern January 4th (solar farm mode)
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In figure 4.5 below, the consumption pattern of the last day of the model,
June 28th, is illustrated. Here, one can observe how we achieve a far greater
peak compensation than that of January 4th above. In fact, each hour from 5
AM until 23 PM the energy supplied by the utility company to the microgrid
is held constant at 15.2 kWh, while the actual usage varies significantly.

Figure 4.5: Consumption pattern June 28th (solar farm mode)

Figure 4.6 below illustrates the greatest hourly peak shaving that occurred
in the entire time period. It occurred at 19:00 PM on April 2nd, and the
energy compensated for was ≈ 29kWh of the total consumption this hour.

Figure 4.6: Consumption pattern April 2nd (solar farm mode). Maximum
peak occurring at 19 PM.
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Furthermore, in figure 4.7 below the maximum daily usage peak shaving in
the entire time period is illustrated. This occurred on April 24th, and the
total energy compensation was 275.15 kWh.

Figure 4.7: Consumption pattern April 24th (solar farm mode)

In table 4.3 below the maximum hourly peak shaving, maximum daily peak
shaving, and total monthly peak shaving of each month is listed.

Month Max hourly peak shave Max daily peak shave Total peak shaving
Jan 17.21 kWh 105.66 kWh 402.21 kWh
Feb 12.67 kWh 99.81 kWh 750.50 kWh
Mar 23.15 kWh 180.74 kWh 1804.84 kWh
Apr 28.89 kWh 275.15 kWh 3940.15 kWh
May 23.73 kWh 234.56 kWh 3968.24 kWh
June 25.55 kWh 250.04 kWh 4370.21 kWh

Table 4.3: Max hourly, max daily and total monthly peakshaving in each
month (solar farm mode)

In figure 4.8 below, the status of the BES system in use over the entire time
period is illustrated, revealing how the amount of stored power varies.
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Figure 4.8: Variations in stored power (solar farm mode)

Furthermore, in table 4.4 the maximum stored power in each month is listed.
Here one can observe how the maximum amount for the entire time period
is 972.14 kWh, occurring on June 8th.

Month Max stored energy [kWh]
Jan 210.52
Feb 304.19
Mar 582.00
Apr 667.99
May 855.45
June 972.14

Table 4.4: Maximum amount of energy stored in each month (solar farm
mode)

4.2.2 Results: Distributed generation mode

When simulating the distributed generation mode I used the same initial set-
tings as with solar farm mode, i.e. 20 households, initial storage status at
20 % of total capacity and simulation period January 1st until June 28th.
However, the resulting peak shaving is significantly different.
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In general, the distributed generation mode achieve in most cases a worse
overall peak shaving than that of the solar farm mode. As peak shaving
is attempted on each household individually, the varying usage patterns in
different homes causes the peak shaving of the total microgrid consumption
to suffer. In solar farm mode, the model considers the total load demand of
the microgrid participants when attempting to shave peaks, and thus achieve
a better overall result. In distributed generation mode, however, the available
stored energy is not concentrated on handling the most critical usage peaks
of the microgrid as a whole. This is especially the case in periods where the
generation is low (e.g. January and February), as one can see in figure 4.9
below. This is the same day as illustrated with solar farm mode in figure 4.4,
and what one can observe is how the most critical peak this day (occurring
at 19 PM) is not handled at all.

Figure 4.9: Consumption pattern Jan 4th (distributed generation mode)

Furthermore, in figure 4.10 below the peak shaving of June 28th is illustrated.
If one compares this to the solar farm mode peak shaving of the same day
(illustrated in figure 4.5), one can observe how the total amount compensated
for actually is greater using distributed generation mode. However, the energy
provided by the utility company is varying far more as opposed to solar farm
mode where it was held constant at 15.2 kWh.
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Figure 4.10: June 28th

Below, in figure 4.11, the greatest hourly peak shaving in the entire time
period using distributed generation mode is illustrated. This occurred at
18 PM on June 2nd, and the total compensation was ≈ 23kWh of total
consumption this hour.

Figure 4.11: Consumption pattern June 2nd (distributed generation mode)

In figure 4.12 the maximum daily usage peak shaving in the entire time period
using distributed generation mode is illustrated. As with solar farm mode,
this occurred on April 24th. However, the total compensation was less, i.e.
approximately 237 kWh.
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Figure 4.12: Consumption pattern April 24th (distributed generation mode)

In table 4.5 below the maximum hourly peak shaving, maximum daily peak
shaving, and total monthly peak shaving of each month is listed, using dis-
tributed generation mode. Comparing this to table 4.3, one can observe how
the total peak shaving of each month in fact is greater using distributed gen-
eration mode than that of solar farm mode. However, the maximum hourly
and daily peak shaving is less in each month.

Month Max hourly peak shave Max daily peak shave Total peak shaving
Jan 10.26 kWh 87.47 kWh 516.14 kWh
Feb 11.09 kWh 75.66 kWh 847.09 kWh
Mar 14.94 kWh 137.34 kWh 1812.35 kWh
Apr 21.68 kWh 236.65 kWh 3999.59 kWh
May 20.96 kWh 212.07 kWh 4158.68 kWh
June 22.72 kWh 229.24 kWh 4479.18 kWh

Table 4.5: Max hourly, max daily and total monthly peakshaving in each
month (distributed generation mode)

In figure 4.13 below, the combined status of the BES systems in use over the
entire time period is illustrated, revealing how the amount of stored energy
varies in distributed generation mode. Comparing this to solar farm mode
(figure 4.8) one can see how the utilization of stored energy is significantly
greater using distributed generation mode. Particularly in the three first
months (January - March) the stored amount is rarely significant, indicating
that all produced energy is used immediately to compensate for usage peaks.
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Figure 4.13: Variations in stored power (distributed generation mode)

In table 4.6 below the maximum stored power of each month is listed. As
with solar farm mode the maximum amount for the entire simulation period
occurred on June 8th, however the amount was less (i.e. 799.79 kWh).

Month Max stored energy [kWh]
Jan 198.59
Feb 71.73
Mar 376.06
Apr 492.02
May 630.60
June 799.79

Table 4.6: Maximum amount of power stored in each month (distributed
generation mode)

4.2.3 Results: Island mode

Using the island mode of the model it is examined how long a microgrid can
stay operational without external supply. The external supply was turned
off at 2 AM on the 15th of each month and what we can observe is how the
island mode duration varies in different seasons. When the external energy
supply was turned off the BES system was fully charged (i.e. 1000 kWh), and
thus this investigation reveals how long the microgrid can stay operational
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using its stored reserves in addition to local generation in different months.
As with the investigations described in sections 4.2.1 and 4.2.2 above, the
number of households was set to 20.

In figure 4.14 below the island mode duration on January 15th is illustrated.
Average hourly energy usage in the microgrid this day was 55.03 kWh. As
one can observe the microgrid is able to manage the entire demand of its
residents for 16 hours.

Figure 4.14: Island mode January 15th

In figure 4.15 below the island mode duration on March 15th is illustrated.
Average hourly energy usage in the microgrid this day was 52.88 kWh. As
one can observe, the island mode duration is one hour longer in March, i.e.
17 hours.
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Figure 4.15: Island mode March 15th

Furthermore, in figure 4.16 island mode on May 15th is illustrated. Here, the
average hourly energy usage in the microgrid was 27.90 kWh, and one can
observe that the microgrid is able to manage the entire demand the rest of
the day. In fact, it is able to manage the demand until 21 PM on May 16th
(43 hours in total).

Figure 4.16: Island mode May 15th

Below, in table 4.7 the island mode duration on the 15th in each of the
months in the model is listed.
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Month Average hourly energy usage [kWh] Island mode duration
Jan 55.03 (Jan 15th) 2 AM - 18 PM (16 hours)
Feb 51.48 (Feb 15th) 2 AM - 20 PM (18 hours)
Mar 52.88 (Mar 15th) 2 AM - 19 PM (17 hours)
Apr 32.01 (Apr 15th) 2 AM (15th) - 7 AM (16th) (29 hours)
May 27.90 (May 15th) 2 AM (15th) - 21 PM (16th) (43 hours)
June 24.90 (June 15th) 2 AM (15th) - 7 AM (17th) (53 hours)

Table 4.7: Island mode duration in each month
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Chapter 5

Discussion

This chapter reflects on some of the results obtained and key issues arisen
during this study.

5.1 Demo Steinkjer consumption patterns

There are some issues worth addressing regarding the results obtained in
the analysis of consumption patterns in Demo Steinkjer (section 3.2). First
off, even though the monthly differences in total energy consumption varies
considerably, the usage peaks are present regardless of season. The analysis
showed that we experience the same usage peaks in all months, occurring at
approximately the same time during the day. Hence, as concluded in sec-
tion 3.2.6, this supports how monthly differences in consumption is mostly
dependent on space heating caused by the seasonal variations in outdoor tem-
peratures. Clearly, this consistency in daily high and low demand periods
emphasize the potentials of many of the efficiency measures made possible
by a transition to a smarter distribution grid, such as the ones presented in
section 2.5. In particular, the potential benefits gained from enabling means
for shaving and shifting of demand in usage peak periods are evident, given
the knowledge of this consistent daily pattern.

Secondly, the investigation of daily usage patterns in single households (sec-
tion 3.2.1) revealed a much more fluctuating pattern than what was achieved
when analysing the combined energy usage of several homes. The analysis
showed, however, that when aggregating the consumption patterns of several
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households, the fluctuating behaviour of different homes is disguised, and we
achieve a pattern more similar to what is expected. This is also important
to take in account with regards to efficiency measures in microgrids. That is,
in order to achieve the best overall microgrid efficiency, using measures such
as autonomous peak shaving, one must focus on handling usage peaks in the
microgrid as a whole as opposed to treating usage peaks in each household
individually. Once again, this emphasizes the importance of the increased
information flow that Smart Grid technology is intended to provide. That
is, given real-time reporting on consumption from each of the users in a mi-
crogrid one can enforce efficiency measures on the microgrid as a whole, and
thus ensure a better overall efficiency in energy usage. As discussed in sec-
tion 5.3 below, this was also the conclusion reached from the peak shaving
modelling described in sections 4.2.1 and 4.2.2.

Furthermore, the analysis also revealed the apparent differences between
week day and weekend consumption in households. While the week day pat-
tern revealed two distinct high demand periods daily (one between 7 and 9
AM, and another in the afternoon), weekends had a more constant high con-
sumption from 11 AM until evening. However, as described in section 3.2.4,
the differences between the two was primarily related to when usage peaks
occur, and not the amount of energy consumed daily. In fact, as one can
observe in table 3.2 in section 3.2.4, the collective average hourly consump-
tion of 20 households is approximately equal when comparing week days and
weekends. Thus, if peak detection is determined according to last day aver-
age hourly usage (as proposed in the model described in chapter 4), we do
not need to distinguish between week days and weekends in terms of identi-
fying a usage peak.

Finally, as discussed earlier, the consumption data provided by Demo Steinkjer
had numerous measurement gaps in the dataset. Thus, finding longer peri-
ods of time, where none of these gaps were present, was extremely time-
consuming. However, the 20 households used in both the analysis (sec-
tion 3.2) and the autonomy model (chapter 4) all have consistent and con-
secutive measurements in the time period ranging from October 1st 2012
until June 28th 2013. The database IDs of these households are presented in
appendix F. The reason for these measurement gaps is unknown. One could
argue that it is caused by packet losses in the communication infrastructure,
however this is unlikely due to the fact that when measurements are missing
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it is not just one hourly update that is lost, it is usually between 10 and 48
hours worth of consecutive consumption updates. Thus, it is likely to assume
that the missing data is caused by individual or multiple households ceasing
to report as result of e.g. system maintenance or improvement.

5.2 Solar cell energy generation

The investigation of solar cells (section 3.3) also revealed some results worth
addressing. In particular, the substantial seasonal differences in energy gen-
eration calls into questioning the suitability of solar energy for Norwegian
conditions. As a matter of fact, the analysis showed that total generated
energy in July was as much as 18 times greater than that of January. Al-
though, as described in section 3.3.2, the Brussels total PV capacity had
increased by 3.38 MW in July compared to January, the difference in gen-
erated energy is significant regardless. Hence, given the weather conditions
in Norway, whereas winter months are the clearly most energy demanding,
would suggest that solely relying on solar energy in Norwegian microgrids
might not be the best choice compared to other renewable resources. That
is, the potential benefits of solar energy harnessing is clearly greater in parts
of the world with a milder climate and greater generation potentials.

Also, one must bear in mind that the data used in the analysis in section 3.3
originates from Belgium, and consequently does not give a precise impression
of what the potentials are for solar energy harnessing in Norway. As described
in section 2.7.1, photovoltaic energy generation is highly weather dependent,
and nominal power output (i.e. maximum achievable generation) will only
occur during optimal weather conditions. Thus, installing a capacity similar
to that of Brussels might, or most probably will, result in a different power
output pattern in Norway. In fact, given the variations in solar energy poten-
tials in Europe (figure 2.10, section 2.7.1) it is plausible to assume that total
energy generated in Norway would be significantly less than that of Belgium.
Considering this, it would have been interesting to study solar generation
data gathered in Steinkjer in order to provide dynamics more representative
for Norwegian conditions, and consequently more suitable with regards to
the consumption patterns analysed.

Furthermore, the main problem with solar energy, or any other renewable
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source for that matter, is that supply cannot be manipulated (i.e. we are un-
able to control the power output). Consequently, this causes the difficulties
with regards to prediction of supply. The analysis showed that day-ahead
predictions on solar energy supply could vary as much as 26 % from the
actual generated amount each month. Also, more often than not these pre-
dictions were optimistic (i.e. greater than actual generation). Moreover,
as described in section 3.3.1, the day-to-day variations in supply was con-
siderable, once again confirming the suspected weather dependency of solar
energy generation. These observations clearly state the challenges associated
with solar energy, and emphasize the need for a storage technology capable
of transforming this highly variable resource into a dispatchable one. That
is, the most efficient utilization of solar energy would depend on a storage
system capable of charging during high generation periods, and discharging
in non-generating hours.

Finally, in section 4.1.1 the area of PV cells required to obtain the capacity
used in the solar farm mode of the autonomy model was derived (i.e. nominal
power output of 41.2 kW). The calculation revealed that one needs an area
of approximately 275 m2 of photovoltaic cells, given 15 % cell efficiency, in
order to obtain the desired capacity. Arguably, such a size for a solar farm
installation is manageable in futuristic microgrids, and will be possible to
implement regardless of geographical location. That is, by e.g. installing PV
cells on several rooftops one would easily meet such a space requirement.

5.3 Autonomy model

The purpose of the microgrid autonomy model (chapter 4) was to investigate
usage peak shaving and islanding of microgrid operation. As described in
sections 4.2.1 and 4.2.2, the two different modes for which peak shaving was
attempted (i.e. solar farm and distributed generation mode) resulted in sig-
nificantly different utilization of available stored resources. The simulations
showed that although total peak shaving performed in distributed generation
mode was greater than that of solar farm mode in each month, the maxi-
mum hourly and daily peak shaving was less. That is, as peak shaving in
distributed generation mode was performed on each individual household, the
different usage patterns caused a suboptimal storage utilization in the mi-
crogrid as a whole, as available resources was not concentrated on handling
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the usage peaks of the overall microgrid consumption.

Furthermore, when comparing the variations in stored energy throughout
the entire simulation period in both modes (depicted in figures 4.8 and 4.13),
one can observe the differences in available stored energy in different months.
This revealed that using distributed generation mode the capacity in storage
was in the first three months rarely significant, indicating that most of the
produced energy was used immediately. Using solar farm mode, however,
there was at all times some resources available, and thus critical usage peaks
(i.e. peaks exceeding the start boundary described in section 4.1.1) was never
ignored. On the other hand, in the three first months using distributed gen-
eration mode all BES systems was often completely discharged, consequently
causing critical usage peaks to be ignored, both in individual households and
in the microgrid as a whole. In particular, this is illustrated in figure 4.9 in
section 4.2.2 where one can observe how the most critical usage peak this
day (occurring at 19 PM) is not handled at all.

The observations made by these simulations clearly emphasize the potentials
of the increased information and power flow provided by a smarter distribu-
tion grid. As mentioned, employing peak shaving on individual households
in a microgrid, as opposed to the combined consumption of all microgrid
participants, results in a significantly worse utilization of available resources.
Thus, in order to achieve the best overall result it is more feasible to take
a subsystem approach that considers a microgrid’s total consumption and
generation when enforcing efficiency measures. This, however, will require
a continuous collaboration between the microgrid users, and a centralized
control system for utilizing the stored reserves most optimally.

Simulating islanding of microgrid operation also showed significant monthly
differences. In fact, comparing the island mode duration in January (16
hours) and June (53 hours) revealed a difference of 37 hours for which the
microgrid was able to manage its entire energy demand. The simulation also
showed that midday energy generation in May and June in fact often was
greater than the consumption, causing the battery to start charging. Worth
addressing, however, is that in island mode the microgrid instantaneously
took over when the external energy supply was switched off. This assump-
tion is unlikely as some response time is required to switch between the two
modes of operation.
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Regarding the development of the model there are several issues worth ad-
dressing. First off, as described in section 4.1, to simplify I assumed that the
solar power output is constant in each hour. As discussed in section 5.2, this
is rarely the case given the high weather dependency of solar energy genera-
tion. Furthermore, I have used the same peak boundaries in both the solar
farm mode and distributed generation mode of the model for detecting usage
peaks. In retrospect, given the varying consumption patterns of individual
households (discussed in section 5.1), this might not have been the best ap-
proach. That is, a better solution would clearly be to calculate individual
peak boundaries for each household. Finally, as described in section 2.7.2, the
nominal solar generation in the data used had an increasing in power output
capacity in March, which greatly affected the energy generation. Perhaps it
would have been more feasible to use a dataset that had a constant power
output capacity in the entire modelling period.

Also, the model uses hourly updates on both energy consumption and gener-
ation. This simplification is inaccurate as the actual load in households and
power output from solar cells may vary significantly within one hour. Thus,
in order to achieve a better model it would have been feasible to use data
with greater precision.

5.4 Storage in microgrids

As described in chapter 1, the main focus of this study has been to analyse
and model consumption and generation patterns in residential area micro-
grids. Thus, the potential issues related to storage of energy is not well
covered. In the model in chapter 4 it is implemented a discharge and power
conversion loss of 10 % in the BES system used, however other storage-related
issues such as e.g. minimum state of charge (SOCmin, as described in sec-
tion 2.5.4), and further energy loss in the battery system is not taken into
consideration. Also, as described in section 2.4, the cost of a BES system
is mainly associated with its energy capacity rather than its power rating.
Thus, the required period of discharge will greatly affect the costs of the
storage system. In the model (chapter 4) it was simply assumed a 1 MWh
battery system, not considering issues such as response time and required
period of discharge etc. In particular, as described in section 4.2.1, by sim-
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ulating using the solar farm mode of the model we achieved a maximum
hourly consumption shaving of ≈29 kWh and a maximum daily energy com-
pensation of 275.15 kWh. Clearly, these observations must be addressed if
one is to design a suitable storage system for this purpose.

5.5 NetLogo

NetLogo proved to be a useful tool for developing the model in chapter 4,
and can be recommended for others attempting to model something similar.
The agent-based programming language is easy to learn, and there is a lot
of online support (e.g. tutorials, troubleshooting forums etc.) that can be
of help. On the downside, however, as one can see from the code in the
folder ”AutonomyModel” on the attached CD-ROM, you are required to use
a large amount of global variables in order to connect the user interface with
the code. That is, every user-setting, plotting variable, monitoring variable
etc. must all be defined as global. This combined with all other shared global
variables results in a somewhat messy code. Furthermore, when accessing the
database using SQL commands in the NetLogo model, the data extractions
can be extremely slow. The advice is to reduce the amount of SQL queries
executed in the model, by e.g. providing the start-IDs in the database of the
different households’ consumption and generation measurements in the code.

Also, NetLogo is not a supported programming language in editors such
as notepad++. On the attached CD-ROM (in folder ”AutonomyModel”)
the code of the model can be viewed by either opening the actual NetLogo
model and pressing the ”code-bar”, or by opening the file ”NetLogoCode.py”.
However, the latter interprets it as a python code, and thus the advice is to
view the code as intended in NetLogo.

84



Chapter 6

Conclusion

This study has focused on addressing the energy usage patterns of house-
holds, and investigating means for reduced and more efficient household con-
sumption in futuristic microgrids. Furthermore, two analyses have been per-
formed with purpose of examining the dynamics of energy consumption in
households and the energy generation potentials of photovoltaic solar cells.
Finally, I have attempted to model autonomy in a microgrid cell using the
acquired dynamics of energy generation and consumption obtained from the
two previously described analyses. The purpose of this model was to exam-
ine:

• usage peak shaving in high demand periods using local energy genera-
tion and storage.

• how long a microgrid can stay operational using stored energy reserves
and local generation when external energy supply is disrupted, i.e. with
purpose of avoiding power outages.

To conclude the thesis, I will summarize the study’s main findings.

The analysis of Demo Steinkjer households (section 3.2) revealed that con-
sumption patterns are consistent with previous investigations on behaviour
in Norwegian households. The analysis showed that when aggregating the
consumption of several households over longer periods of time, we obtain a
daily pattern that varies as expected, with two distinct usage peak periods
on week days. Furthermore, the analysis also showed that there are consid-
erable differences in consumption when comparing week day and weekend
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consumption. That is, while we experience these two distinct usage peaks
on week days (one between 7 and 9 AM, and another in the afternoon), the
weekend consumption has a different pattern. In particular, the usage peak
associated with the morning routines of household occupants is shifted sev-
eral hours in weekends, from approximately 7 AM to 11 AM. However, as
discussed in section 5.1 the differences between week day and weekends are
primarily related to when usage peaks occur, and not the amount of energy
consumed daily.

Moreover, the expected patterns of both week day and weekend consump-
tion seem to emerge even more persistently when increasing the time period
and the number of households further, despite the monthly variations in total
consumption. This supports the presumption that usage peaks are consistent
regardless of season, and that monthly differences in overall consumption is
mostly due to the varying need for space heating in households depending
on outdoor temperatures. However, even though the aggregated consump-
tion results in this presumed pattern, the behaviour of individual households
may vary significantly. That is, the investigation of consumption in single
households (section 3.2.1) revealed a much more fluctuating daily usage pat-
tern as opposed to what was experienced when the consumption of several
households was aggregated. Once again, this is consistent with previous in-
vestigations (described in section 2.2) as consumption in different households
may vary depending on factors such as geographical location, size of house-
hold and behaviour of household occupants.

The analysis of solar energy potentials (section 3.3) clearly verified the unpre-
dictable dynamics, nonlinearities and uncertainties of solar energy harnessing
described in section 2.7. In particular, the investigation on day-to-day varia-
tions (section 3.3.1) revealed how the power output on consecutive days may
differ considerably, confirming the great impact weather conditions have on
energy generation in solar cells. The analysis also showed that day-ahead
predictions on supply could vary as much as 26 % from actual generation
each month, and that the predictions more often than not were too opti-
mistic. Furthermore, as discussed in section 5.2, the considerable seasonal
differences in solar energy generation questions the suitability of solely relying
on solar energy for local microgrid generation given Norwegian conditions.
In particular, the analysis showed that energy generation in July was signifi-
cantly greater than that of January. Thus, given that winter months are the
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clearly most energy demanding in Norway would suggest that, in addition to
solar power, it perhaps would be feasible to include other renewable energy
sources (e.g. wind) in Norwegian microgrids.

As discussed in section 5.2, to obtain a nominal capacity of 41.2 kW, given
15 % cell efficiency, one needs an area of approximately 275 m2 of photo-
voltaic cells. However, this nominal capacity represent the maximum achiev-
able output power which only occurs during optimal weather conditions.
Hence, given that global solar radiation varies, installing such a capacity will
result in considerably different energy supply potentials in different parts of
the world. Thus, Norwegian conditions will require a significantly greater
installed capacity in order to achieve a given energy supply compared to
other parts of the world with a milder climate and greater solar generation
potentials.

The potential benefits of local energy generation and storage in microgrid
cells are evident. In particular, given the consistent daily usage pattern in
households, much can be gained from employing measures such as e.g. peak
shaving. However, as discussed in section 5.3, the modelling of peak shaving
showed that in order to achieve the most optimal result, it is important to
consider a microgrid’s total consumption and stored reserves when compen-
sating in high demand periods. Such a centralized monitoring and control
can be achieved with the increased information and energy flow intended with
Smart Grid. Furthermore, the varying dynamics of solar energy generation
emphasizes the need for a storage system capable of charging during genera-
tion periods, and discharging in non-generating hours. However, as described
in section 2.4, one of the main advantages with BES systems is this ability
to convert highly variable renewable energy resources into dispatchable ones.
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Appendix A

Tutorial for setting up database
and extracting data
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Setting up database:
The following three steps must be taken in order for the attached python
scripts and the autonomy model to work.

1. Set up apache server and configure phpMyAdmin and MySQL, e.g. as
described in 1

2. Create a database named ”demosteinkjer” in phpMyAdmin.

3. Upload .sql files on consumption and generation (located in folder
”Database” on the attached CD-ROM) to database ”demosteinkjer”
in separate tables (four tables in total), i.e.

• Create one table called ”consumption” in the ”demosteinkjer”
database and import the ”consumption.sql” dataset. Worth notic-
ing, however, is that this import must be done via command line
as the file is to large to be imported directly in phpMyAdmin.

• Create one table called ”generationjanfebmaraprmayjun2013” in
the ”demosteinkjer” database and import the ”generationjanfeb-
maraprmayjun2013.sql” dataset.

• Create one table called ”generationjulaugsept2013” in the ”de-
mosteinkjer” database and import the ”generationjulaugsept2013.sql”
dataset.

• Create one table called ”generationoctnovdec2013” in the ”de-
mosteinkjer” database and import the ”generationoctnovdec2013.sql”
dataset.

As described in section 3.1.3 there are some preprocessing steps that needs to
be performed on the consumption and generation datasets, i.e.

• Add a column called ”HourlyConsumption” to the ”consumption” table
in the database, and run python script ”addHourlyConsColumn.py”,
located on the attached CD-ROM (in folder ”pythonworkspace”).

• Remove spaces from all column names in all three generation tables.

• Run python script ”searchingForDuplicate.py” (located in folder ”python-
workspace” on attached CD-ROM) on the database, and manually re-
move the database entry indicated by output of the python script.

1https://www.youtube.com/watch?v=kZ2zbO6PABk
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• Run python script ”ReplaceCommaWithPeriodInDatabase.py” on ”Day-
AheadforecastMW” and ”CorrectedUpscaledMeasurementMW” columns
in all generation tables in order replace comma with period as decimal
mark in numbers.

However, these last four steps are necessary only if one intends to use the
data downloaded from Demo Steinkjer and elia directly. In other words, us-
ing the datasets included on the CD-ROM makes it unnecessary to perform
these last four steps. Below, in figure A.1 the resulting representation of the
database in phpMyAdmin is illustrated.

Figure A.1: Database representation in phpMyAdmin
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Extracting consumption and generation data from database:

In the folder ”pythonworkspace” on the attached CD-ROM the python scripts
used for extracting and plotting consumption and generation patterns in the
analyses in chapter 3 is located. However, in order to run any of these scripts
there are some python packages that must be installed, these are:

• MySQLdb

• dateutil

• pyparsing

• matplotlib

• numpy

• re

• six

After having set up the database as described earlier, and installed the neces-
sary python packages, all scripts in the folder ”pythonworkspace” can be run
without any other preprocessing steps. Hence, one can reproduce the results
obtained in the analyses described in sections 3.2 and 3.3. As described in
section 3.1.3, in appendix C and D two of these scripts is presented (one for
extracting and plotting consumption patterns and one for generation pat-
terns).

Worth noticing is that the consumption dataset provided by Demo Steinkjer
has a lot of ”gaps”, i.e. missing measurements. However, the 20 UserIDs
presented in appendix F all have consistent and consecutive hourly mea-
surements in the time period October 1st 2012 until June 28th 2013. As
mentioned, these are also the households analysed in section 3.2.
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Appendix B

Code: Adding hourly
consumption column to Demo
Steinkjer dataset
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’’’addHourlyConsColumn.py - ’’’

’’’This script calculates the consumption update each hour in

the entire database ’’’

import MySQLdb

import sys

conn = MySQLdb.connect(host="localhost", # host

user="root", # username

passwd="root", # password

db="demosteinkjer") # name of database

conn.autocommit(True)

cur = conn.cursor ()

idcount = 2, data1 = 0, data2 = 0, maxID = 0, hourlycons = 0

cur.execute("SELECT MAX(‘ID ‘) FROM ‘consumption ‘ WHERE ‘

Method ‘=’ ActivePlus ’")

for row in cur.fetchall ():

maxID = row[0]

while(idcount <= maxID):

idcount = idcount - 1

cur.execute("SELECT ‘Consumption ‘ FROM ‘consumption ‘

WHERE ‘ID ‘= %s AND ‘Method ‘=’ ActivePlus ’", idcount)

for row in cur.fetchall ():

data1 = row[0]

idcount = idcount +1

print "IDCOUNT: %d" % idcount

cur.execute("SELECT ‘Consumption ‘ FROM ‘consumption ‘

WHERE ‘ID ‘= %s AND ‘Method ‘=’ ActivePlus ’", idcount)

for row in cur.fetchall ():

data2 = row[0]

hourlycons = data2 - data1

cur.execute("UPDATE ‘consumption ‘ SET ‘HourlyConsumption

‘= %s WHERE ‘ID ‘= %s AND ‘Method ‘=’ ActivePlus ’", [

hourlycons , idcount ])

print "Hourly cons: %.3f" % hourlycons

idcount = idcount + 1

cur.close()

conn.close()
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Appendix C

Code: Extracting consumption
data from database
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’’’ConsumptionTwentyHouseholdsNineMonths.py -

This script extracts and plots the aggregated daily

consumption pattern on week days of 20 households in

January and February 2013.

’’’

import MySQLdb

import sys

import dateutil

import pyparsing

import matplotlib.pyplot as plt

import numpy

import re

import six

#Connect to database

conn = MySQLdb.connect(host="localhost", # host

user="root", # username

passwd="root", # password

db="demosteinkjer") # name of database

conn.autocommit(True)

cur = conn.cursor ()

maxID = 0, prevID = 0, IDcount = 0

cons = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

howmany = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

#Get max measurement ID in database

cur.execute("SELECT MAX(‘ID ‘) FROM ‘consumption ‘ WHERE ‘

Method ‘=’ ActivePlus ’")

for row in cur.fetchall ():

print(maxID)

maxID = row[0]

print(maxID)

#The 20 chosen households in Demo Steinkjer database

IDs = [7350049083690884 ,

7350049084530592 ,

7350049084529299 ,

7350049084531155 ,

7350049084529251 ,

7350049084529213 ,

7350049084531209 ,

7350049084529565 ,

7350049084529497 ,
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7350049084529459 ,

7350049084529404 ,

7350049084531339 ,

7350049084531292 ,

7350049084531537 ,

7350049084531469 ,

7350049084531346 ,

7350049084530974 ,

7350049084530912 ,

7350049084530813 ,

7350049084530745]

#Define x axis for plot

x =

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]

#JANUARY#

for IDcount in range (0,20):

prevID = IDs[IDcount]

cur.execute("SELECT ‘ID ‘ FROM ‘consumption ‘ WHERE ‘UserID

‘ = %s AND ‘Date ‘ = ’2013-01-01’ AND ‘Time ‘ =

’00:00:00 ’ AND ‘Method ‘= ’ActivePlus ’", prevID)

for row in cur.fetchall ():

ID = row [0]

print "ID = %d" % ID

for day in range (1,32):

if (day !=5 and day !=6 and day !=12 and day !=13 and

day !=19 and day !=20 and day !=26 and day != 27)

:#Week days only

for hour in range (0,24):

cur.execute("SELECT ‘HourlyConsumption ‘ FROM

‘consumption ‘ WHERE ‘ID ‘ = %s", ID)

for row in cur.fetchall ():

cons[hour] = cons[hour] + row [0]

howmany[hour] = howmany[hour] + 1

ID = ID + 1

print "day = %d" % day

else:

ID = ID + 24 # Skip weekend

print "Skip weekend"

#FEBRUARY#

for IDcount in range (0,20):
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prevID = IDs[IDcount]

cur.execute("SELECT ‘ID ‘ FROM ‘consumption ‘ WHERE ‘UserID

‘ = %s AND ‘Date ‘ = ’2013-02-01’ AND ‘Time ‘ =

’00:00:00 ’ AND ‘Method ‘= ’ActivePlus ’", prevID)

for row in cur.fetchall ():

ID = row [0]

print "ID = %d" % ID

for day in range (1,29):

if (day !=2 and day !=3 and day !=9 and day !=10 and

day !=16 and day !=17 and day !=23 and day != 24):

#Week days only

for hour in range (0,24):

cur.execute("SELECT ‘HourlyConsumption ‘ FROM

‘consumption ‘ WHERE ‘ID ‘ = %s", ID)

for row in cur.fetchall ():

cons[hour] = cons[hour] + row [0]

howmany[hour] = howmany[hour] + 1

ID = ID + 1

print "day = %d" % day

else:

ID = ID + 24 # Skip weekend

print "Skip weekend"

#IF AVERAGE

#for hour in range (0 ,24):

# cons[hour] = cons[hour] / howmany[hour]

cur.close()

conn.close()

plt.plot(x,cons)

plt.xticks

([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23])

plt.ylabel("Consumption [kWh]")

plt.xlabel("Time [hour]")

#plt.axis ([0 ,23 ,2600 ,4400]) #To specify axis

plt.grid()

plt.savefig(’test.png’)

plt.show()
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Appendix D

Code: Extracting generation
data from database
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’’’

SolarGenerationJanFebMar2013.py - This script gathers and

plots the solar energy generation from January 2013

’’’

import MySQLdb

import sys

import dateutil

import pyparsing

import matplotlib.pyplot as plt

import numpy

import re

import six

conn = MySQLdb.connect(host="localhost", # host

user="root", # username

passwd="root", # password

db="demosteinkjer") # name of database

conn.autocommit(True)

cur = conn.cursor ()

IDcounter = 1, hour = 0

gen = [0] * 24

x =

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]

howmany = [0] * 24

tempgen = [0] * 24

total1 = 0

#JANUAR 2013#

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘ FROM ‘

generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘ = %s",

IDcounter)

for row in cur.fetchall ():

gen[hour] = float(row [0])

IDcounter = IDcounter + 1

howmany[hour] = howmany[hour] + 1

102



for hour in range (1,24):

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘ FROM

‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘ = %s",

IDcounter)

for row in cur.fetchall ():

gen[hour] = float(row [0])

howmany[hour] = howmany[hour] + 1

IDcounter = IDcounter + 1

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘ FROM

‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘ = %s",

IDcounter)

for row in cur.fetchall ():

gen[hour] = gen[hour] + float(row [0])

IDcounter = IDcounter + 1

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘ FROM

‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘ = %s",

IDcounter)

for row in cur.fetchall ():

gen[hour] = gen[hour] + float(row [0])

IDcounter = IDcounter + 1

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘ FROM

‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘ = %s",

IDcounter)

for row in cur.fetchall ():

gen[hour] = gen[hour] + float(row [0])

gen[hour] = gen[hour] / 4

IDcounter = IDcounter + 1

print "IDcounter before rest of January = %s" % IDcounter

for day in range (0,30):

for hour in range (0,24):

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘

FROM ‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘

= %s", IDcounter)

for row in cur.fetchall ():

tempgen[hour] = tempgen[hour] + float(row [0])

howmany[hour] = howmany[hour] + 1

IDcounter = IDcounter + 1

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘

FROM ‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘

= %s", IDcounter)

for row in cur.fetchall ():

tempgen[hour] = tempgen[hour] + float(row [0])

IDcounter = IDcounter + 1
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cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘

FROM ‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘

= %s", IDcounter)

for row in cur.fetchall ():

tempgen[hour] = tempgen[hour] + float(row [0])

IDcounter = IDcounter + 1

cur.execute("SELECT ‘CorrectedUpscaledMeasurementMW ‘

FROM ‘generationjanfebmaraprmayjun2013 ‘ WHERE ‘ID ‘

= %s", IDcounter)

for row in cur.fetchall ():

tempgen[hour] = tempgen[hour] + float(row [0])

tempgen[hour] = tempgen[hour] / 4

gen[hour] = gen[hour] + tempgen[hour]

IDcounter = IDcounter + 1

#IF average

#for hour in range (0 ,24):

# gen[hour] = gen[hour] / howmany[hour]

cur.close()

conn.close()

for hour in range (0,24):

total1 = total1 + gen[hour]

print total1

total1 = total1 / 31

print total1 # average daily generation

print("Disconnect OK")

plt.plot(x,gen)

plt.xticks

([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23])

plt.ylabel("Generation [MWh]")

plt.xlabel("Time [hour]")

#plt.axis ([0 ,23 ,0 ,12]) #To specify axis

plt.grid()

plt.savefig(’test.png’)

plt.show()
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Appendix E

Autonomy model: user
interface and code extracts
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Below I have included some parts of the NetLogo code, however the com-
plete code is 42 pages long and thus not included in appendix due to space
requirements. To see the complete code either

• open the NetLogo model located in folder ”AutonomyModel” on the
attached CD-ROM and click the ”code-bar”,

• or open the file named ”NetLogoCode.py” in the folder ”Autonomy-
Model” on the attached CD-ROM.

Below the code executed when pressing setup in the user interface is presented
(see user interface above). This function sets up the model with the chosen
user settings. That is, it connects the model to the database, sets the initial
values on consumption and generation, ensures the correct layout of the
microgrid according to chosen mode etc.

to setup

clear -all

reset -ticks

setup -database -connection

setup -mode

setup -generation

setup -inital -houses

setup -initial -date -and -time

set prevmonth 1 ; start January

end

Below the code executed when pressing the button go in the user interface is
presented. This button starts the simulation, and thus must be executed after
first setting up the model. For each ”tick” of simulation (i.e. each hour) this
function runs one time until the time period (determined by the initial setting
number-of-days-for-simulation) is finished. Here, new hourly consumption
and generation updates in the microgrid is continuously extracted from the
database and the peak shaving (solar farm and distributed generation mode)
or islanding of microgrid operation (island mode) occurs.

to go

if ticks >= (number -of -days -for -simulation * 24 - 1) [stop]

update -consumption
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update -total -consumption

update -date -and -time

update -generation

tick

end

Finally, the code extract below describes the peak shaving procedure using
the solar farm mode of the model. Here, the total consumption each hour is
compared to the current peak boundary according to storage status in the
microgrid (as described in section 4.1.1), and the resulting peak shaving is
performed.

to peakshaving -solar -farm

...

ifelse (totalcons > currentpeakboundary * lastdayaverage)[

set need totalcons - (currentpeakboundary *

lastdayaverage)

ifelse (totalstoredenergy > 200 and totalcons < (item

index peakboundaries) * lastdayaverage )[

ifelse (need > totalstoredenergy - 200)[

set need totalstoredenergy - 200

set totalstoredenergy totalstoredenergy - need

set macrogrid totalcons - need

]

[

set totalstoredenergy totalstoredenergy - need

set need need + need2

set macrogrid totalcons - need

]

]

[

set need totalcons - (currentpeakboundary *

lastdayaverage)

ifelse (totalstoredenergy > 0)[
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ifelse (need > totalstoredenergy)[

set need totalstoredenergy

set totalstoredenergy totalstoredenergy - need

set macrogrid totalcons - need

]

[

set totalstoredenergy totalstoredenergy - need

set need need + need2

set macrogrid totalcons - need

]

]

[

set macrogrid totalcons

set need 0

]

]

]

[

set macrogrid totalcons

set need 0

]

end
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Appendix F

20 Demo Steinkjer households
with consistent measurements
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Below in table F.1, the 20 households analysed in section 3.2 are listed.
These households all have consistent and consecutive hourly measurements
on consumption in the time period October 1st 2012 until June 28th 2013.

Household ID
7350049083690884
7350049084530592
7350049084529299
7350049084531155
7350049084529251
7350049084529213
7350049084531209
7350049084529565
7350049084529497
7350049084529459
7350049084529404
7350049084531339
7350049084531292
7350049084531537
7350049084531469
7350049084531346
7350049084530974
7350049084530912
7350049084530813
7350049084530745

Table F.1: Consistent households in time period October 1st 2012 until June
28th 2013
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Towards an user-centric mechanism to compile the
microgrid status collaboratively
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Abstract—The system envisioned to create smarter power grids
allows the end users take an active role in their electricity
management. Recent investigations reported significant reduction
in consumption by users accessing the amount and price of the
electricity being used at home. Precise information can incentive
the users reduce consumption and behave in accordance to
collective interests (e.g., avoid outages and high prices). Here, we
go further reusing the crowd sensing concept to gather electricity-
related data in a continuous loop of collaboration among users
sharing a microgrid. It is done modelling electricity consumption,
generation and storage in a graph-based data model instantiated
from different sources. The research reported here is the first
steps towards the development of an user-centric mechanism to
compile the microgrid status collaboratively.

Index Terms—Crowd sensing, user-centric electricity data,
power consumption/storage models.

I. INTRODUCTION

Smart grid’s users are organized in cells called microgrids
which would operate autonomously by managing its own
consumption coupled with its generation and storage capacities
[11]. To achieve autonomy, the information system relies on
sensors and intelligent services to process the sensed data
and actuate properly (e.g., identify usage peak and shift the
operation of certain appliances). As a result, the users can
control their electricity usage in response to variable supply
conditions or prices [7], [13]. To achieve it, the future energy
management systems (EMS) will rely on an internet of things
(IoT) sensing and actuating in the environment.

Here, we reuse the crowd sensing concept, [4], [9] also
called people-centric sensing, to create a continuous loop of
interactions to compile the microgrid status, as illustrated in
Fig. 1. This figure shows the status being compiled from dif-
ferent sources and shared through the gateways available at the
user, such as broadband links, private wide area networks and
mobile networks. This scenario makes feasible the deployment
of user-centric systems to gather, compile and share electricity-
related data. From a software engineering perspective, the
smart house will be an open platform for new applications.

This investigation was motivated by recent papers reporting
that accurate information about the amount, the price and the
sustainability index of the electricity being used can drive users
to reduce consumption and achieve collective aims [2], [7],
[12], [13]. We go further designing the tools to allow the users
compile the microgrid status in a collaborative way. It is an

Compile

Energy source

Storage

Sensors

Consumption
Publish/Share

Microgrid status

<geotagged and timestamped>

End user 01 of X

75 % from the macro grid
25 % generated locally
40 % storage capacity

User(s)User(s) Smart meter/controller

Gateways:
Broadband links
Wide area networks
Mobile devices

Fig. 1: Gathering user-centric data.

attempt to merge the typical IoT monitor and control loop with
people-centric sensing.

Gather and compile data are important tasks because smart
services may require a certain amount of information to make
well-timed decisions [6], [11]. The future challenges include
response to the varying demand meeting the users preferences
and collective interests. Given the diversity of electricity sup-
pliers and the growing deployment of local generation/storage
at the end user, the microgrid status should also be compiled
from the users perspective. The data gathered is structured in a
graph-based data model to represent consumption, generation
and storage. The present investigation will unfold towards a
strategy to disseminate good consumption practices from the
users to the users.

This paper is organized as follows. The next section sum-
marizes the background listing the information used in smart
grids, presenting the microgrids functionalities and describing
the state-of-the-art of the feedback mechanisms for users. Sec-
tion III discuss the design and development of the continuous
loop to gather, compile and share user-centric data. Then, in
section V, the data model employed to represent user-centric
data is detailed. Finally, we conclude and provide further work.

II. BACKGROUND

A. Information used in smart grids

Smart grids rely on information systems to efficiently match
production and demand of electricity. The power grid is
divided in cells called microgrids which has a local system
aiming at integrate distributed generation. This system gathers
a diverse set of information regarding electricity genera-
tion (centralized or distributed), consumption (real-time or



predictive) and storage (batteries) through a communication
infrastructure [5], [11]. The information gathered or learned
are the input for intelligent control algorithms. Examples of
information are:

• Network topology: power network topology, including the
geographical localization of suppliers, distribution grid
and end users;

• Supplier information: characteristics of each electricity
provider such as reliability, capacity, price and sustain-
ability index;

• User-centric data: consumption history, preferences, local
generation and storage.

This information is likely to be structured in standard for-
mats with well-defined semantics, such as Common Informa-
tion Model (CIM) [13]. More importantly, the distributed in-
formation flow must be created and maintained autonomously
[11]. In this paper, we propose a user-centric information
flow to compile the microgrid status and measure the users
participation in terms of consumption, generation and storage.

B. Microgrids functionalities

Microgrids are power grid cells using distributed electricity
generation and storage [11]. It is an important design deci-
sion because distributed generation/storage can use renewable
energy sources such as sunlight and wind [2]. The microgrid
information system can control the electricity generation and
storage (e.g., solar panels and batteries) in response to variable
energy supply conditions or prices [7], [13]. The aim is reach
a certain level of autonomy to be able to prevent usage peaks,
avoid outages and provide a better user-centric control.

The open challenges towards autonomy include the de-
ployment of electric vehicles without overloading the power
grid and the integration of dispersed battery storage systems.
Moreover, different local suppliers, including small generators
at end users, should be able to sell some of their production
to the grid [2]. Another challenge is design a communication
architecture for energy trading among the suppliers and users.

At the end users, smart meters and local controllers act as in-
terfaces between the distribution and communication networks,
measuring/controlling consumption (e.g., shifting appliances
operation when the price is over a defined threshold) [2].
These devices are part of an advanced metering infrastructure
(AMI) which can monitor electricity consumption, quality and
generation/storage.

As a result, smart services can exploit the metering data
and price to pre-emptively identify failures and take appro-
priate countermeasures, or to implement techniques to control
electricity consumption [10]. In the present investigation, we
assume the availability of an open platform to deploy these
smart services at the end user. In practice, it requires the
adoption of standardized technologies to integrate EMSs and
other systems at home.

C. Feedback mechanisms

If we combine the set of informations previous described
in the subsection A and the microgrid’s functionalities at

subsection B, we can provide feedback services. Recent inves-
tigations suggest that provide accurate feedback to the users is
the first step to incentive them reduce consumption and behave
towards collective aims [1]–[3], [13].

More specifically, studies have shown that providing real-
time electricity usage information reduces consumption by
5-15% [3]. Adding pricing incentives and automated home
energy management tools can double the savings, i.e. 10-30%.
It requires EMSs to monitor/control the consumption applying
user defined preferences. Finally, incentives could be given to
promote the adoption of cleaner energy sources (e.g., lower
prices for renewable sources) [2].

Concerning electricity sources, the investigation in [2] pro-
posed a framework to footprint the electricity provided by
multiple suppliers and compile its respective sustainability
index. Given a set of suppliers at a microgrid, the framework
determines the compound sustainability index considering the
amount of electricity provided to the grid by each supplier [2].

Regarding automated management systems, the survey in
[1] compared eight EMSs using as criteria features such as
monitoring/controlling, data disaggregation, information inte-
gration, security and intelligence. Most of the systems have
a web or mobile user interface and are integrating data from
others systems or sensors. However, just one of them provides
control mechanisms.

It is still subject of research how to track the users con-
sumption/storage and how to show its impact in the microgrid.
Here, we start with the hypothesis that crowd sensing concept
can be used to gather user-centric electricity data to compile
the microgrid status in a continuous cycle of interactions. We
argue that given the fast deployment of distributed genera-
tion/storage the microgrid status should also be compile from
the users’ perspective.

III. GATHERING AND SHARING USER-CENTRIC DATA

A. Designing

The challenge is how to compile the user-centric data related
to consumption, generation and storage. Fig. 2 illustrates
the continuous loop of data sensing which orchestrates the
system to compile and share the microgrid status. This figure
highlights the components to (1) gather, (2) compile and (3)
share the user-centric information [4], [9]. Empowered by the
data model, later described in section V, the loop is also
able to track new users, generators/storages and consumption
behaviours.

The gathering component collects sensors data (e.g., current
amount of energy stored in a battery at the user), and the
compiling component extracts information from the data set
(e.g., total amount of energy stored in the microgrid). Then, it
is necessary do something useful with the information e.g., use
the stored energy to avoid outages. Finally, this data set should
be shared within the microgrid to collaboratively measure and
map the current status.

The loop in Fig. 2 supports the necessity of continuously
match supply and demand, because both can change over time
[7], [13]. The aim is provide better quality electricity-related
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Fig. 2: Loop to compile the microgrid status: (1) gathering, (2) compiling and (3) sharing.

data in terms of freshness and accuracy. Moreover, consumers
need to be informed about the current status of the microgrid in
a comprehensible format and given incentives to reduce their
consumption [7]. The next step is use this loop disseminate
good consumption practices based on real users experiences.

B. Developing

Picturing the whole process, it starts with the sensors
at the user gathering data such as electricity consumption,
generation and storage. In sequence, all the microgrid users
asynchronously send this data to a common server or central
controller in charge of compile its status. Once compiled, the
information is shared among the users ending the process.
Then it starts again to update the status and keep track of
changes such as new users or generators. Regarding connec-
tivity, this loop requires a two-way communication channel
between the users and the server at the cloud.

One way to connect such a large scale system is plug
all the entities to an representational state transfer (REST)
framework, as illustrated in Fig. 3. It is a web-based archi-
tecture which allows data exchange using publish/subscribe
services (e.g., Enterprise Service Bus - ESB and Constrained
Application Protocol - CoAP). At the web is possible to assign
a naming authority to assure the semantic validity of the
objects in the system. In addition, a REST framework can
provide the basic communication infra-structure for an open
platform among users, providers and third party services.

It can be summarized as a cyber-physical system developed
to give automatic or human controlled feedbacks, here called
opportunistic or participatory respectively:

• Opportunistic sensing: requires no user involvement to
gather data [9] (e.g., automatic metering reading). We
assume the availability of an open software platform for
data gathering at the user. Then, the local controller can
run a routine to gather data in a specific time interval or
when it is available. To illustrate, this routine could be
implemented as an EMS module;

• Participatory sensing: the user manually determines what,
how and when to collect the data (e.g., post a good
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Fig. 3: System components connected to a REST framework.

practice to save energy). May occur when the user want
to report a new generator/storage, buy or sell energy
or share a information about a supplier (e.g., price and
sustainability index).

These two sensing paradigms can track the incremental
deployment of alternative generation and storage aiming at
increase the microgrid autonomy level. The awareness of
the microgrid status can motivate the community invest in
renewable energy.

IV. DEMOSTEINKJER

Demo Steinkjer is a Norwegian demonstration project where
new solutions for measuring and use of electricity can be
tested. The testing site is located in Steinkjer and contains
about 1.000 households, of which 321 have agreed to be
active participants meaning they will participate in consumer
oriented tests and projects. The remaining households will
participate, without direct involvement, in tests conducted on
the grid itself as well as secondary subsystems. The intention
of the project is to attract entities to test new technology aimed
at an modernization of the power grid with new products and
services. Thus, Demo Steinkjer is an arena for which smart



energy solutions can be tested with purpose of exploring a
suitable design and implementation of the future electricity
grid in Norway1.

Companies such as SINTEF, Nexans, Telenor, Connexion,
SagemCom, and others have already shown interest in running
projects with Demo Steinkjer, and they will have the opportu-
nity to test new products on real consumers. Entities will have
access to customer database including anonymous AMS meter
data and high-speed communication capabilities with five
net/grid stations. In total, there are about 800 electricity meters
installed, including 770 AIDON meters and 30 remotely read
units through GSM/GPRS1.

V. COMPILING THE USER-CENTRIC DATA

Complex network theory has been used to understand the
power grid behaviours from a system perspective [8]. We reuse
this approach defining a graph-based data model to represent
consumption, generation and storage, as show in Fig. 4a. In
this figure, the user or supplier is represented as a circle which
diameter indicates the installed storage capacity. The arrow to
the node indicate consumption, the arrow from the node is
generation, and the loop means electricity produced locally
being stored or consumed. To simplify, we use the terms user,
generator and node interchangeably.

Ø Storage
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Charging
Consumption

din (KwH)

Generation
dout (KwH)

(a) Data model
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Fig. 4: Data model semantics and degree distribution of
random networks.

For instance, the microgrid’s autonomy in a specific point
in time can be compiled by the Equation 1. First we sum
up the storage capacity available at the nodes, N . Then we
subtract the generation and consumption, which are the sum
of the in degrees, din, minus the sum of out degrees, dout,
respectively. In sequence we divide it by the voltage in use to
get the result in Ah (ampere hour). Then we subtract it from
the storage capacity previously calculated. The low complexity
of this computation highlights the advantage of such a simple
model.

Autonomy =
N∑

i=1

Storagei −
(∑N

i=1 dini
−∑N

i=1 douti
V olts

)

(1)

1http://www.demosteinkjer.no

Formally, it is as a weighted graph G(N,E), with N nodes
(users, generators and storages) and E edges (the transmission
and distribution lines). Fig. 4b shows the degree distribution of
two network growing models: exponential (a) and preferential
attachment (b). Both models have an inverse exponential
degree distributions, however preferential attachment has a
longer tail. It means that few nodes have several connections,
high degree, and the difference can be visually compared in
Fig. 6 (a) and (b). The exponential model, in Fig. 6a, is used
to represent the current power grid distribution network [8].
The nodes are towers or substations and the edges are the
power lines, it is used to simulate failures observing its cascade
effects in the network.

(a) Exponential (b) Preference attachment

Fig. 5: Examples of random networks.

The preferential attachment, in Fig. 6b, can represent the
microgrid operating autonomously which requires a rearrange
in the grid following the energy availability. As a result, the
nodes with generation and storage, bigger nodes in Fig. 6b,
keep the microgrid functioning. The next step is model the
microgrid’s dynamics, which can widely vary depending on
the geographical localization, type of energy generation (e.g.,
hydro, solar, wind and biomass) and weather conditions.

VI. DATA MODEL

A. Structure

The structure of the microgrid will vary in case of an outage
or when it is necessary operate in island mode.

TODO: find papers with different structures...

B. Dynamics

VII. CONCLUSION

In this paper, we discussed the design and development
of a mechanism to compile the microgrid status in terms of
consumption, generation and storage from the end user per-
spective. We reused the crowd sensing concept to orchestrate
the functions to gather, compile and share electricity-related
data. We assume the availability of an open platform at the end
user for third party services. The data is compiled in graph-
based model to represent consumption, generation and storage.
By means of the research reported herewith, we are closer to
achieve an model to disseminate good consumption behaviours
among the users.
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