
Ba
ch

el
or

’s
 th

es
is Sensitivity Analysis of Topology

Optimization Programs Using the SIMP,
Optimality Criteria and Level-Set
Method

May 2019

NTNU
Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Jørgen Petlund
Morten Jørgensen
Bartosz Jakubowski

Bachelor’s thesis
2019

Bachelor’s thesis

Sensitivity Analysis of Topology
Optimization Programs Using the SIMP,
Optimality Criteria and Level-Set
Method

May 2019

NTNU
Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Jørgen Petlund
Morten Jørgensen
Bartosz Jakubowski

Dedication

The thesis is written as a product of a bachelor’s degree carried out at the
Department of Mechanical engineering at the Norwegian University of Science
and Technology during the spring of 2019. The thesis serves as a comparison

between practical differences in the results obtained from four unique topology
optimization algorithms. The results may in the future contribute in the research

towards a Ph.D by Evangelos Tyflopoulos.

The work has given us a good general knowledge about TO, and a better
understanding of the practical differences between the most used algorithms used
in a static load bearing structure problems. We have worked with a wide variety

of software and operating systems, including windows, macOS, and a linux based
supercomputer provided by NTNU. The knowledge gained from our work this

spring, has given us a comprehensive knowledge in the ever more popular field of
TO and additive manufacturing.

We would like to thank our supervisor Evangelos Tyflopoulos for guiding us
along the way and constructing the thesis task. We would also like to tank John
Floan, chef engineer in the IT-development section, and Freddy Barstad, senior

adviser in the IT- strategy and -steering section at NTNU, for their
companionship, useful expertise and help with acquiring the necessary licenses,

and installing the needed software on NTNU‘s supercomputer.

Preface

This thesis is written as a product of the bachelor’s thesis work carried out
at the Department of Mechanical Engineering and Production at the Norwegian
University of Science and Technology during the spring of 2019. This thesis serves
as a contribution to Ph.D dissertation of Evangelos Tyflopoulos, as well as aiming
at increasing knowledge of topology optimization in general.

The work has been rewarding, and it has given us the opportunity to study the
complex field of optimizing structures using numerical algorithms. Working with
a variety of computer systems and software has given us a greater understanding
of the mentioned technology, and its possibilities.

We will also thank Prof. Evangelos Tyflopoulos, John Floan and Freddy Barstad
for their contribution to the thesis. We would not be able to do it without their ex-
pertise and good will.

Summary

This thesis is written as an introduction to topology optimization with its the-
ory and methods, as well as a comparison between four programs, two open source
(TopOpt and OpenLSTO) and two commercially available ones (Abaqus and An-
sys). The programs are chosen to represent the three mainly used algorithms there
are: SIMP, Optimality Criteria and Level Set Method, all of which will be ex-
plained in more detail.

The way the programs capabilities will be tested is by setting up a simple box of
4x4x1 proportions with varying fixtures and loads. The methods and the approach
taken will be discussed, and the results analyzed in the light of our findings.

The technology discussed is an early glimpse into what the manufacturing pro-
cess may look like for nearly all crucial, load bearing parts in the near future. With
the recent advances in computer science, topology optimization, and additive man-
ufacturing, this future feels very real, and will require engineers in the mentioned
field to adapt.

i

Sammendrag

Denne oppgaven er skrevet som en introduksjon til topologioptimalisering,
dets teori og metoder, og en sammenligning av fire programmer, to Open Source
(TopOpt and OpenLSTO) og to kommersielt tilgjengelige (Abaqus and Ansys).
Programmene er valg slik at de representerer de tre hovedtypene algoritmer brukt:
SIMP, Optimality Criteria og Level Set Method. Alle disse vil være omtalt i mer
detalj.

Måten programmene blir testet på, er ved å sette opp en enkel boks med 4x4x1
proporsjoner, med varierende fastsetninger og belastninger. Metodene og tilnær-
mingen som tas vil bli diskutert, og resultatene vil bli analysert i forhold til våre
funn.

Teknologien som omtales her, er et tidlig innblikk i hvordan produksjonspros-
essen til nesten alle viktige, bærende deler kan se ut i nær fremtid. Med tanke på
nyeste fremskritt innen datavitenskap, topologioptimalisering og additivproduk-
sjon, føles denne fremtiden veldig ekte, og vil kreve at ingeniører i det nevnte
feltet tilpasser seg.

ii

Table of Contents

Preface 3

Summary i

Sammendrag ii

Table of Contents vi

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background . 1
1.2 Target audience . 1
1.3 Task . 2
1.4 Changes . 3

2 Literature Review 5
2.1 Current state of TO . 6
2.2 What is TO (general) . 6

2.2.1 Applications . 7

iii

3 Basic Theory 9
3.1 Topology definition . 10

3.2 Categories of optimization . 12

3.3 Methods/ solvers/ algorithms . 13

3.3.1 SIMP . 13

3.3.2 Optimality Criteria . 15

3.3.3 Level set . 17

3.3.4 Other methods . 20

4 Method 21
4.1 Input variables . 22

4.2 Materials and limitations . 24

4.3 Experiment . 24

4.4 Process description of Abaqus setup 26

4.4.1 Software . 26

4.4.2 Model, meshing and static analysis 26

4.4.3 Topology optimization setup 27

4.4.4 Post process visualisation 28

4.5 Process description of Ansys setup 30

4.5.1 Model, meshing and static analysis 30

4.5.2 Topology optimization setup 34

4.5.3 Post process visualisation 35

4.6 Process description of TopOpt setup 36

4.6.1 Software: Large scale topology optimization code using
PETSc . 36

4.6.2 Optimization problem, mesh, and general settings: TopOpt.cc 36

4.7 Process description of OpenLSTO setup 40

4.7.1 Software: Open Source Level Set Topology Optimization . 40

4.7.2 Model, meshing and static analysis 40

4.7.3 Topology optimization setup 44

4.8 Post process visualisation in ParaView 46

5 Assessment One 47
5.1 Results for cases C1.1-1.6 . 48

iv

5.1.1 Compliance . 48

5.1.2 Topology . 49

5.1.3 Computation time . 55

5.2 Discussion . 56

6 Assessment Two 59
6.1 Results Cases C2.1-2.5 . 60

6.1.1 Main findings . 60

6.1.2 Explanation of categorization of dependency 61

6.1.3 Presentation of results 61

6.1.4 The special case of OpenLSTO 66

7 Assessment Three 67
7.1 Results C3.1-3.5 . 68

7.1.1 Presentation of results 68

8 Conclusion 73
8.1 A subjective evaluation of the programs 74

8.2 Further work . 75

Bibliography 77

Appendix 81
8.3 Appendix B1: Abaqus results . 82

8.3.1 Listing of convergence plots for Abaqus 82

8.3.2 Listing of strain, mesh and model plots for Abaqus 83

8.4 Appendix B2: Ansys results . 86

8.4.1 Listing of convergence plots for Ansys 86

8.4.2 Listing of model plots for Ansys 88

8.5 Appendix B3: TopOpt results . 93

8.5.1 Listing of convergence plots for TopOpt 93

8.5.2 Listing of model plots for TopOpt 96

8.6 Appendix B4: OpenLSTO results 101

8.6.1 Listing of convergence plots for OpenLSTO 101

8.7 Appendix C: . 107

v

8.7.1 Ansys, APDL input file 107

vi

List of Tables

4.1 Default parameteres . 23
4.2 Assessment one . 25
4.3 Ansys material properties . 32

5.1 Variances between the programs for cases C1.1-1.4 50
5.2 Load case variation C1.1-1.4 Results 52
5.3 Average time used per iteration in seconds 55

6.1 Mesh discretization dependency results 62
6.2 Average time used per iteration in seconds. 64
6.3 Convergence status, and the iteration at which convergence occurs 65

vii

viii

List of Figures

3.1 Open set visualisation . 10
3.2 Two figures of the same topological class 11
3.3 Different types of optimization 12

4.1 Load case variation model setup 29
4.2 Element SOLID95 . 31

5.1 Compliance results for all cases across all programs 49
5.2 Load case variation: case 1.5 . 53
5.3 Load case variation: case 1.5 front view 53
5.4 Load case variation: case 1.6 . 54
5.5 Load case variation: case 1.6 Hollow 54
5.6 Total time usage in seconds . 55

6.1 Compliance cases C2.1-2.5 . 63
6.2 Total time usage in seconds . 64
6.3 TopOpt result from the special case 2.5 65
6.4 Delauney smoothing through ParaView of Case 2.1 Ansys model . 66
6.5 OpenLSTO: new feature developing in case 1.1 66

7.1 Compliance assessment three . 69
7.2 Total time usage benchmarked against case C2.3 69
7.3 Assessment three: C3.1 . 70

ix

7.4 Assessment three: C3.2 . 70
7.5 Assessment three: C3.3 . 71
7.6 Assessment three: C3.4 . 71
7.7 Assessment three: C3.5 . 72

x

Abbreviations

TO = Topology Optimization
FE = Finite Element
FEM = Finite Element Method
ISE = Isotropic Solid/ Empty
ASE = Anisotropic Solid/ Empty
SIMP = Solid Isotropic Material with Penalization
OC = Optimality Criteria
BC = Boundary Condition
DoF = Degree of Freedom

xi

xii

Chapter 1
Introduction

1.1 Background

”Anyone can build a bridge that stands, but it takes an engineer to build a bridge
that barely stands”

-Unknown

Our counselor Evangelos Tyflopoulos presented the subject in the fall of 2018.
Our bachelor thesis group found each other through our shared enthusiasm for
the field of study. The powerful applications of TO appealed to all of us, and we
were certain that it’s popularity would increase with the advancements in additive
manufacturing and the ever increasing computer power.

1.2 Target audience

The thesis is suited for anyone with novice to advanced knowledge about TO, who
wants to better understands the practical similarities and differences between the
four algorithms chosen in the thesis.

1

Chapter 1. Introduction

1.3 Task

2

1.4 Changes

1.4 Changes

From the time we got the task from our supervisor, some minor changes has hap-
pened. We originally set out to choose 3 commercial available programs. This was
later changed to 4 programs. Two open source, and two commercially available

3

Chapter 1. Introduction

programs. We conducted a literature research, and have done a comprehensive
study that consisted of reviewing a great number of scientific articles. We will
briefly mention the most relevant articles, however we will not explain in detail all
the knowledge that we acquired through the work with the thesis.

4

Chapter 2
Literature Review

Chapter Introduction
A literature review was conducted, to further elevate our knowledge about

Topology Optimization to an adequate level needed for carrying out the thesis.
The review consists primarily of publications, online articles and the knowledge
acquired through discussions with other academicians. The sources that proved to
be most beneficial, were the following:

Topology Optimization: Theory, Methods, and Applications, a book by
Martin P. Bendsøe and Ole Sigmund. Very helpful title for beginners in the field,
that does a great job of explaining the theory, terminology and methods in TO. [8]

Structural Topology Optimization: Basic Theory, Methods and Applica-
tions, a master of science thesis written by Steffen Johnsen. It showed to be ex-
tremely helpful in the process of introducing us to the advanced field that is Topol-
ogy Optimization. [12]

Aims, scope, methods, history and unified terminology of computer-aided
topology optimization in structural mechanics, a great article by G.I.N. Roz-
vany, outlining the theory behind the earliest methods of TO as well as the much
needed introduction to the core concepts of the field. [17]

5

Chapter 2. Literature Review

On the trajectories of penalization methods for topology optimization, an
article by M. Stolpe and K. Svanberg that takes into its scope the the comparison
of two ISE topologies. [20]

Evangelos Tyflopoulos, our guide and advisor who supported this group through-
out our project, supplying us with the guidance and resources we needed to com-
plete our bachelor’s thesis.

2.1 Current state of TO

Topology optimization is a well researched topic. In the past two decades, this field
of study has produced an extensive amount of academic articles. The knowledge
acquired enables both the designers and the manufacturers, to be able to achieve
weight savings never seen before in the optimized structures. Today’s optimizing
software enables increased strength, while maintaining the weight, or maintain-
ing the strength while reducing the weight. There are several robust commercially
available products available that are capable of calculating accurate results, but
the programs may require enormous amounts of computational power. The ever
increasing amount of power that newer CPU’s provide, constantly reduce the com-
putation time needed to perform an optimization cycle. The recent development in
additive manufacturing also enables a quicker and cheaper production of intricate
parts generated by TO, which makes the entire process even more feasible from a
manufacturing standpoint.

2.2 What is TO (general)

TO is a family of algorithms with the goal of producing the most optimal material
layout from a predefined set of parameters. The algorithms are given the design
space the product has to be created within, loads applied, and physical constraints.
In comparison to the standard CAD (Computer Aided Design) programs, TO al-
gorithms do not rely on reuse of known shapes, as the program finds the most

6

2.2 What is TO (general)

effective shape strictly by considering a set of parameters. The list of programs ca-
pable of TO is long, and many of those utilize different mathematical approaches
for their own optimization process.

2.2.1 Applications

TO has shown to beneficial in several industries, and its use frequently discovers
new applications. The algorithms have no human constraints, and all the freedom
within the design space. This produces complex shapes that would be impossible
for an engineer to imagine, and take an unfeasible amount of time to achieve by
trial and error. Typical industries where mass is critical can benefit immensely
from the potential weight savings this offers. One great example of this is the
aerospace industry, as it can improve the fuel economy by replacing a wide variety
of its components with lighter TO parts, that meet the same standards as conven-
tionally designed parts. Tomlin and Meyer (2013) [22]

The first results obtained from TO software are a merely a visualisation, and
need to be revised, as the optimal solution proposed might still not meet the set
criteria. Manufacturing of topology optimized parts also require a refinement, as
the introduced shapes can be quite intricate, lack the needed smoothness, and be
nearly impossible to mass produce with conventional production equipment if left
unaltered.

We strongly believe that, as stated above, the ever faster development of Addi-
tive Manufacturing (AM) is the way to truly show the possibilities of TO. The big
benefit of AM is the added degree of freedom in designing a shape, given infinitely
better accessibility of enclosed areas, and the challenges involving finding an intri-
cate tool path no longer appearing as a problem. On the other hand, the technology
is currently more costly compared to any conventional mass production methods.
It is mainly applicable for cases where the benefits of weight reduction hugely out
weight the manufacturing costs. The increased cost of manufacturing is however
steadily on the decline as the technological advancements continue to lower the
costs.

7

Chapter 2. Literature Review

8

Chapter 3
Basic Theory

Chapter Introduction
Topology optimization is aimed at finding the best material distribution within

a given design space. TO software takes advantage of various mathematical meth-
ods to calculate the stresses in the individual finite elements of a three-dimensional
model. All of the model’s volume is considered in weight to strength/ stiffness
contribution ratio, which given an input of a desirable volume retention, makes it
possible to remove material in areas of little to no stress concentrations.

9

Chapter 3. Basic Theory

3.1 Topology definition

Defining topology for the sake of engineering purposes is somewhat elusive. The
term is adherently abstract, yet it in topology optimization we often reference it
as a physical measurement or property of a geometric representation. Now, there
is two mathematical definitions of topology. The following definition of topology
is taken from Non-Hausdorff Topology and Domain Theory by Goubault-Larrecq
(2013) [9].

Figure 3.1: Flow visualisa-

tion that illustrates open sets

(Courtesy of Mix (2019) [2])

Let X be a set. A topology on X is a col-
lection of subsets of X , called the opens of
the topology, such that:
· every union of opens is open;
· every finite intersection of opens is open.

Where a set is a collection of objects and open means
that it geometrically has no boundary. An object is in
this regard a placeholder which can contain any geo-
metric definition. As for the set having no boundary, it
does not constitute to it being infinitely large. It sim-
ply states that we can not specify exactly where it ends.

This is further illustrated by figure 3.1. Think of all the contents within the frame
as a set and the red and blue color fields as two subsets. The subsets are clearly
located within two separate areas, yet we cannot precisely define the transition be-
tween them. Since the boundary is not exact the sets is considered open. This is
the basic principle behind open sets. Another common definition of topology:

The study of geometrical properties and spatial relations unaffected
by the continuous change of shape or size of figures [4].

Where the geometrical properties are all those properties than can be derived from
the geometry of a solid body or particle [1]. Spatial relations refer to how objects
are located in space in relation to a reference object [3].

When we reference topology in this study it does not follow these conventions.
That would mean that the two shapes in Figure 3.2 are the same topology. We use

10

3.1 Topology definition

Figure 3.2: Two figures of the same topological class. They are topologically equivalent
by homeomorphisms.

the term to describe a fixed set of geometrical properties that are not unaffected by
the continuous change of shape or size.

In this study there was a need to be able to reference a selection of subsets of
the topology. It could be done by calling it part of the topology, but term part is
in engineering used to describe a component of an assembly. The term given is a
topological feature. A topological feature is a selection of subsets that meets the
conditions:
a. All subsets within the selection must be connected.
b. The selection of subsets can not represent all subsets of the topology.

The topological complexity of a model can then be defined as: A topology has
a higher level of complexity when it contains higher degree of topological features.

Other distinctions of importance is the usage of shape, structure and body.
Shape is used to describe a layout. Structure is the representation of connection
between a set of points, i.e. a truss is purely structural. A body is a closed solid
with a given topology, and is not restricted by shape. Meaning that a body can be
both deformed and scaled.

11

Chapter 3. Basic Theory

3.2 Categories of optimization

Assuming we are working with an isotropic, linearly elastic material, there are
three ways of distributing the material in a structure in order to find the optimal
layout that satisfies the given criteria. The three types of problems are sizing, shape
and topology optimization problems.

The typical sizing problem would consider the optimal thickness distribution
of a linearly elastic plate, or the optimal member areas in a truss structure. Result-
ing thickness would satisfy the equilibrium of design constrains, loads, and other
parameters as deflection or weight. The difference between sizing and shape op-
timization is that in sizing optimization process the domain of the design model
and state variables are set prior to, and fixed throughout the process, as opposed to
the shape optimization problems, where the goal is to find the optimum shape of
the domain, making it the design variable in stead. Topology optimization on the
other hand involves the determination of features such as the number of , location
and shape of the holes, and the connectivity of the domain. Bendsøe and Sigmund
(2004) [8]

(a) Sizing optimization of a truss structure. The predefined shape of the structure can not
be altered, yet members can be disregarded and the thickness redistributed.

(b) Shape optimization where perfectly circular holes are predefined within the domain.
The optimization task is to alter the shape of these holes to find the optimum solution.

(c) A topology optimization.

Figure 3.3: Different types of optimization

12

3.3 Methods/ solvers/ algorithms

3.3 Methods/ solvers/ algorithms

Given the wide range of methods available for the execution of TO processes, we
have chosen a set of software that utilizes three general, most popular and effective
approaches of calculating the optimal solution to a given topology optimization
problem. The methods chosen are SIMP (Solid Isotropic Material with Penaliza-
tion), Optimality Criteria and Level Set Method. The methods chosen use different
algorithm’s for calculating which areas of the topology to keep, which to remove,
and different methods for solving the problem overall. The goal of all these re-
mains the same, and it is to maximise strength and stiffness, while only using a
specific percentage of the given volume.

The next section will consist of a theoretical explanation for the three TO meth-
ods chosen. The content of this section however is heavily inspired by other,
greatly written articles, describing the theory in even more detail. By no means
did we calculate any of the equations provided, nor did we invent the theory be-
hind the algorithms. The relevant articles used will be quoted, and we strongly
recommend to read the mentioned work for all those interested in theory, as we
merely scratched the surface of the topic.

3.3.1 SIMP

The SIMP method is one of the better described approaches to topology optimiza-
tion problems. The basic idea of this method is the use of a fictitious isotropic
material, whose elasticity tensor is assumed to be a function of penalized density
of the material. It is showing to be advantageous in a lot of ways that will be
discussed in this section. As mentioned above, the term SIMP stands for Solid
Isotropic Material with Penalization, and as the name implies, it considers the fi-
nite elements in a given model to be either solid or empty, and the material to be
isotropic (homogeneous). This method only relies on one penalization criteria,
which requires less computational power to solve. Biggest advantages (Rozvany
(2001) [17]) of SIMP method for optimizing Isotropic Solid (IS)/ Isotropic Solid/
Empty (ISE) topologies are the following:

13

Chapter 3. Basic Theory

(a) Computational efficiency in terms of storage usage and CPU solving time,
since there is only one free variable per element.

(b) Robustness in the sense that SIMP can be readily used for any combination
of design constraints.

(c) Free adjustment of the penalization criteria

(d) Conceptual simplicity, since the algorithm does not require derivations in-
volving higher mathematics.

(e) Since the p-value is increased progressively, we can start SIMP with a so-
lution for p = 1 for which some problems (e.g. compliance) are convex and the
solution a global optimum. The subsequent gradual incrementation of the p-value
is not likely to move the solution too far from the global optimum, but this is only
an “experimental” finding at this stage.

(f) SIMP does not require homogenization of the micro-structure

A disadvantage of SIMP is that the solution depends on the degree of penal-
ization (p-value) and it does not necessarily converge to the optimal solution. This
problem is however also relevant to all the other ISE topologies. Stolpe and Svan-
berg (2001) [20]

Programs using the SIMP method are written with code, but the at the funda-
mental level, they still consist of mathematical equations. This is the simplest way
the calculations behind the SIMP method can be described:

Eijkl(x) = ρ(x)pE0
ijkl, p > 1∫

Ω
ρ(x)dΩ ≤ V ; 0 ≤ ρ(x) ≤ 1, x ∈ Ω

The calculation process is further explained:

a(u, v) =

∫
Eijkl (x)εij (u)εkl (v) dΩ

14

3.3 Methods/ solvers/ algorithms

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
l(u) =

∫
Ω
f u dΩ +

∫
ΓT

t u ds

min
(
u ∈ U,E

)
= l(u)

aE(u, v) = l(v)

aE(u, v) = l(v), for (v ∈ U) and E ∈ Ead

U Kinematically admissible displacement fields
f Body forces
t Boundary tractions
Ead Admissable stiffness tensors for design problems

The various possible definitions of Ead is the subject of different optimization
algorithms. When working with a FE (Finite Element)-analysis, the problem must
be stated in a discrete manner. Assuming a constant E for each element, the
discrete form of can be expressed as:

min
(
u,Ee

)
fTu , so that

K(Ee)u = f

Ee ∈ Ead
K =

∑
Ke(Ee) , summing i = 1..N

u Displacement vector
f Load vector
K Global element stiffness matrix
Ke Stiffness matrix for element e, dep. on the stiffness Ee in the element

1Johnsen (2013) [12]

3.3.2 Optimality Criteria

Optimality criteria methods are based on a different way of thinking from those ap-
plied in the methods of mathematical programming (MP). Most of the MP methods

15

Chapter 3. Basic Theory

focus on getting information from conditions around the current design point in de-
sign space in order to find the answer those two questions: in what direction, and
how far to go, to reduce the value of the objective function directly in a best way
possible. This process is repeated until we arrive at a convergence value, within
a given tolerance. Optimality criteria methods on the other hand, derive or state
conditions which describe the optimum design, then find or alter the design to sat-
isfy those conditions, while indirectly optimizing the structure itself. This way, the
optimality criteria approach finds a result close to the optimal design very quickly.
The procedure can be divided into four steps:

Step 1. derives the optimality criteria equations

Step 2. is the iteration procedure for the design variables.

Step 3. is the iteration procedure for the Lagrange multipliers.

Step 4. is the computer program implementation.

The optimality criteria methods are indirect methods of optimization and un-
like mathematical programming methods which directly optimize the objective
function, optimality criteria methods attempt to satisfy a set of criteria related
to the behaviour of the structure. These criteria are derived either intuitively or
rigorously. ”Fully stressed design” and ”simultaneous failure mode design” are
examples of the optimality criteria methods.

The problem of topology optimization under multiple constraints can be stated
as follows:

min

(
φ =

∫
Ω
ρ(µ) dΩ

)
,

such that ∫
Ω
u∇ : E(µ) : v∇ dΩ =

∫
Γt

t · v dΓ,∫
Γt

hα(u) dΓ− h̄α 6 0, α = 1, ...,m,

µmin 6 µ 6 µmax,

where µ denotes a design variable with the lower bound µmin and the upper

16

3.3 Methods/ solvers/ algorithms

bound µmax, ρ(µ) the local density of the material, E(µ) the material stiffness,
Ω the design domain, Γt the traction boundary, t the traction acting on the struc-
ture, u and v the actual and the kinematically admissible displacements of the
structure, hα a pointwise function and h̄α the imposed value for the αth con-
strain, and m the total number of the displacement constraints. Yin and Yang
(2019) [23]

3.3.3 Level set

With this method, the optimized structure is implicitly represented by a mov-
ing boundary, embedded in a higher dimensionality scalar function (the level set
function). While the shape and topology of the structure may experience major
changes, the level set function remains simple in its topology. This way, by a
direct and efficient computation in the embedding space, the movement of the de-
sign boundaries under a relevant speed function can be tracked to capture changes
in the shape and topology of the structure. The level set models may also be re-
ferred to as implicit moving boundary (IMB) models and they can easily represent
complex boundaries that can form holes, split into multiple pieces, or merge with
others to form a single one. Based on the concept of propagation of the level set
surface, the design changes are carried out as a mathematical programming for the
optimization problem.

In level set-based structural optimization methods, complex shape and topo-
logical changes can be handled and the obtained optimal structures are free from
gray scales, since the structural boundaries are represented as the iso-surface of the
level set function. Although these relatively new structural optimization methods
overcome the problems of checkerboard patterns and gray scales, mesh dependen-
cies have yet to be eliminated. Such methods implicitly represent target structural
configurations using the iso-surface of the level set function, which is a scalar
function, and the outlines of target structures are changed by updating the level set
function during the optimization process.

The velocities required for the level set update are obtained by solving an op-

17

Chapter 3. Basic Theory

timization problem. A generic optimization problem can be formulated using the
position of the structural boundary as the design variable:

minimize
Ω

f(Ω)

subject to gi(Ω) ≤ 0

where f(Ω) is the objective function and gi is the ith inequality constraint
function. The objective and constraint functions are linearized about the design
variables at each kth iteration using first-order Taylor expansion:

minimize
∆Ωk

∂f
∂Ωk ·∆Ωk

subject to ∂f
∂Ωk ·∆Ωk − g−ki

where ∆Ωk is the update for the design domain Ω and g−ki is the change in
the ith constraint at iteration k. In the level-set description of the boundary, shape
derivatives provide information about how a function changes over time with re-
spect to a movement of the boundary point. They usually take the form of boundary
integrals. In this case,

∂f

∂Ω
·∆Ω = ∆t

∫
Γ
sfVn dΓ,

∂gi
∂Ω
·∆Ω = ∆t

∫
Γ
sgiVn dΓ,

where sf and sgi are the shape sensitivity functions for the objective and the
ith constraints. Discretizing the boundary at nb points, one can rewrite:

∂f

∂Ω
·∆Ω ≈

nb∑
j=1

∆t Vnj sf,j lj = Cj · V n∆t,

∂gi
∂Ω
·∆Ω ≈

nb∑
j=1

∆t Vnj sgi,j lj = Cgi · V n∆t,

where lj is the discrete length of the boundary around the boundary point j,

18

3.3 Methods/ solvers/ algorithms

Cj and Cgi are vectors containing integral coefficients and V n is the vector of
normal velocities. For a constrained problem, one can write:

V n∆t = αd,

where d is the search direction for the boundary update and α > 0 is the actual
distance of the boundary movement. Then, the optimization formulation to obtain
the optimal boundary velocities can be written as:

minimize
αk ,̆ k

∆tCk
f · V k

n

(
αk,λk

)
subject to ∆tCk

i · V k
n

(
αk,λk ≤ −g−ki

)
V k
n,min ≤ V k

n ≤ V̄ k
n,max

where λ are Lagrange multipliers for each constraint function. This optimization
problem is solved at every iteration k.

The conjugate gradient method (StationaryStudy::Solve_With_CG)
is used to solve the system of linear equations defined as

[
K
]
{u} = {f}, where[

K
]

is the reduced global stiffness matrix, {u} is the reduced global displacement
vector and {f} is the reduced global load vector. The algorithm is described as
follows:

• set initial displacement: {u0} = 0

• set the initial residual: {r0} = {f} −
[
K
]
{u0}

• set the conjugate gradient: {p0} = {r0}

• set the iteration counter k = 0

• while ‖rk‖ > tol , do

αk =
rTk rk

pTkKpk

uk+1 = uk + αkpk

19

Chapter 3. Basic Theory

rk+1 = rk + αkKpk

βk =
rTk+1rk+1

rTk rk

pk+1 = rk+1 + βkpk

k = k + 1

The most time-consuming part of the conjugate gradient algorithm is the matrix
vector multiplication.

2M2D (2018) [14]

3.3.4 Other methods

As concise as the list of TO algorithms we chose may sound like, there is actually
a plethora of other methods, that either use a new approach at calculating the op-
timum design, or aim at slightly improving the existing process by approaching it
from a new angle. The list of methods include, but is not limited to: RAMP, OMP,
NOM, etc.

20

Chapter 4
Method

Chapter Introduction
This chapter describes the steps taken to conduct a sensitivity analysis on

a topology optimization problem with the objective of minimizing compliance.
Starting out with determining which input parameters to consider for analysis, and
subsequently choosing which to disregard. The intent of section 4.4-4.7 is to pro-
vide an in depth description on how the model implementation, simulation setup
and analysis is carried out in each program. Variations and necessary modifications
of the input parameters between the programs is explained, as well as the reason-
ing behind it. These sections can also be treated as supplementary user guides
on how to set up a topology optimization task in the given software environment.
Section 4.3 describes in detail the specifications of the experiment, presenting the
exact values used when solving the minimum compliance problem for the different
parameter sets.

21

Chapter 4. Method

4.1 Input variables

Sensitivity analysis (SA) is the study of how to apportion the variation
in the model output, qualitatively or quantitatively to variations in the
model inputs.

– Saltelli, Tarantola, and Campolongo (2000) [18]

As stated above the premise of a sensitivity analysis is to survey the output varia-
tions instigated by input variations. Or rather, to ascertain the correlation between
input and output. In this study the different input variables are referred to as in-
put parameters or, simply, parameters, as to not confuse it with the term design
variables.

A topology optimization task includes a multitude of input parameters by de-
fault and in correspondence to the specific optimization problem, which in this
case was that of finding minimum compliance with a static structural load case
under a volume constraint. The input parameters are sorted according to which
step of the setup they belong to. Be it part of; the static structural analysis, the
topology optimization or the designation of computational resources. As the focus
of this study is evaluating sensitivity in the pre-processing phase of topology opti-
mization, the investigated parameters conform to the static structural setup. Table
4.1 show the default values.

22

4.1
Inputvariables

Program values

Parameters Abaqus Ansys TopOpt OpenLSTO
Static structural
Model Hyperrectangle 4 x 1 x 4 domain, from origin: [X, Y, Z]=[200, 50, 200]
Element type Hexahedral 8-node Hexahedral 20-node Hexahedral 8-node Hexahedral 8-node
Mesh discretization Discretized by 100× 25× 100 = 25000 elements, where XElement = YElement = ZElement

Young’s modulus E 200e3 200e3 200e3
Poisson’s ratio, ν 0.3 0.3 0.3 0.3
Boundary constraint As specified per case
Load case(s) As specified per case
Topological optimization
Optimization domain Hyperrectangle 4 x 1 x 4 domain (Same as model domain).

Convergence criteria
*Relative compliance and
density [

xn−1

xn
] < 0.0005

**Design change
||xk − xk−1||∞ < 0.001

***Compliance
∆Ck < 0.001

Volume constraint (%) 15 15 15 15
Max # of iterations 30 40 80 80
Move limit 0.25 N/A 0.25 0.25
Penalty factor 3 N/A 3 N/A
Designated computational resources
of Nodes N/A 1 1 1
of Cores ****6 20 (Two 10-core Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz)
Memory requirement 16GB 90GB 35GB 60GB

*See the Ansys theory reference [7].

**Design change calculated from xk at iteration k. Calculations of the xk vector can be found in the MMA class (Method of Moving Asymptotes,

MMA.cc) within the TopOpt module [5].

***The convergence criterion for OpenLSTO derives from ∆Ck = max(|Ck −Cm|/Ck), m ∈ [k − 5, k − 1] where Ck is the compliance

at iteration k, and is calculated when the volume constraint is satisfied [15].

****Intel Core i9 @ 2.90GHz 5 cores, 10 threads

Table 4.1: Overview of the chosen default parameter values.

23

Chapter 4. Method

4.2 Materials and limitations

The HPC cluster IDUN was used for conducting this study. Due to Abaqus being
remarkably harder to use non-interactively, it was concluded it will be in our best
interest to run the simulations with the user interface on a Macbook Pro instead.
Because of this Abaqus is not used for all the cases.

4.3 Experiment

Part of the sensitivity analysis was done by dividing it into three assessments.
Where each assessment has a chosen input parameter or set of parameters desig-
nated as variables that change between the cases, and the remaining input param-
eters are set as constants.

For further reference in this paper the cases under each of the three assess-
ments are given the label: Case or abbreviated to C < Assessment number > . <

Case number >.

In the description of how the different programs are set up (sections 4.4, 4.5,
4.6, 4.7) the first case is used as the basis. When variations of the setup are men-
tioned the pointer � is used together with the case label(s) to indicate that it was
done this way for the referenced case(s).

Assessment one: Load case variation
In this assessment the variables are the load setup and boundary condition def-

initions. Six cases are evaluated, where the first four are run across all programs,
and use of Abaqus is omitted from the last two. The first four cases differentiate
between having one or two loads and one or two boundary conditions at four fixed
surfaces. The force value is set to Fz = −6000 (meaning in the Z-direction) when
one load is applied, and halved (two −3000 loads) when two loads are present, ef-
fectively giving a sum total force value of F = |6000| for all cases. As for the fifth
case the force value setup is changed. The load vector is now composed of forces
in two directions, i.e Fz = −6000 and Fy = 1000. In case six the surface area for

24

4.3 Experiment

the load and BC was increased, and the force value was altered as well. The load
is made up of a force Fx = 6000 and Fz = −6000. The setup of the surface areas
for all cases are shown in figure 4.1 on page 29. Table 4.2 below shows us how we
can do a comparative evaluation of the different cases with regards to one another.

Evaluation Matrix
One load case Two load cases

Two BC Case1.1 Case1.4
One BC Case1.2 Case1.3
*The load size and BC area are different for the cases below

Two BC Case1.5
One BC Case1.6

Table 4.2: As we can see

Assessment two: Mesh discretization dependency
Using the same setup case C1.1 we changed the level of discretization. Four

new cases are introduced with a mesh discretization of:
Case 2.1: 202 × 5 = 2000 Elements

Case 2.2: 402 × 10 = 16000 Elements

Case 2.3: 642 × 16 = 65536 Elements

Case 2.4: 802 × 20 = 128000 Elements

These can be all be evaluated against each other and against case C1.1 which has
a discretization level of 1002 × 25 = 250000 Elements. The use of Abaqus
was omitted from case C2.2 and C2.4. A special case C2.5 with a discretization
of 1282 × 32 = 524288 Elements was conducted solely in TopOpt. It was also
started in OpenLSTO, but the time required per iteration to solve the problem made
it unfeasible to see it through with our setup.

Assessment three: Domain change
This assessment was conducted with the intent of evaluating if a global opti-

mum was obtained in the previous cases and look at how symmetry reduction can
be applied to TO problems. Five cases are set up with the domain size doubled in
the Y -direction, equivalent to a 4 x 2 x 4 domain. The use of Abaqus was omit-
ted form all cases. Seeing the result from assessment two, the mesh discretization

25

Chapter 4. Method

is lowered to 642 × 16. This gives faster computation time while still producing
viable results, and as .

4.4 Process description of Abaqus setup

Abaqus is one of two commercial programs we use, we did all the setup through the
graphical user interface of the software. It uses the SIMP method for performing
topology optimization.

4.4.1 Software

The software used is the 2017 version of Abaqus with Tosca, developed by Das-
sault System. Often referred to as ATOM (Abaqus Topology Optimization Mod-
ule). The Abaqus setup is not a detailed guide of every step. It serves as a brief
explanation of the steps taken to perform the TO.

4.4.2 Model, meshing and static analysis

Since running TO jobs can take a lot of computer resources, it is a good idea to
check the analysis with a static study before running the TO. In Abaqus the steps
for setting up a static study consist of creating a model geometry, assigning mate-
rial properties, creating a static analysis step, defining BC and loads, generating a
mesh, and finally, solving the problem.

Model implementation
There are several ways of creating the model in Abaqus. We chose to draw a

square, scale it to 200x200, then extrude it to 50. It is also easy to import model
files from other programs as long as the format is supported.

26

4.4 Process description of Abaqus setup

Loads and constraints
Loads and constraints are added through the same module. The loads are

evenly distributed on one or two 50x50 squares. The full load of 6000N is ei-
ther all on one square, or split on two squares made up of 2x3000N loads. The
constraints are also one or two 50x50 squares. Graphic plots will further explain
the loads and constraints later in the chapter

Material properties
For Abaqus the only needed material properties for conducting the TO is the

Young‘s modulus and Poisson‘s ratio. These are added through the material prop-
erties manager, and submitted to the wanted geometry. We chose to assign the
same material for the whole model, but there is also the option to create a compos-
ite material layup. The value used for the Young‘s modulus is 200 000. The value
used for the Poisson‘s ratio is 0.3.

Meshing
Operations for meshing is conducted by selecting the model and creating a

mesh grid of squares with an element size XElement = YElement = 2. We left
the rest of the parameters to default settings. The mesh type used is hex elements.
The mesh is then swept through the volume. We chose to use the automatic mesh
generator.

Static analysis
As mentioned briefly it is sound engineering practice to conduct a quick static

study to check if the analysis is set up correctly. This is the normally the last step
before setting up the TO. In Abaqus this is done by submitting a job through the
job module. This normally takes a fraction of the time a TO would take. The loads,
mesh and material properties is the same in both the TO and the static study, so
there is no need for a separate setup later for the TO.

4.4.3 Topology optimization setup

To set up the TO, at least four steps have to be taken. Step one is creating the task
in the Optimization Task Manager. Step two is to create the design responses. In

27

Chapter 4. Method

our TO the design response is to minimize the strain energy, and limit the volume.
Step three is to choose the objective function. In this case it is the strain energy.
We will choose to minimize it. Step four is to set the constraint to 15 percent of
the original volume. Now the TO is ready for submission through the job module.

4.4.4 Post process visualisation

To view the TO results, the job needs to be processed with the combine function
in the job manager. When it is combined the results can be viewed with the visu-
alization module.

28

4.4 Process description of Abaqus setup

Load case variation
Configuration figures for Assessment One

Case 1.1

(a) Case 1.1: One load [150 < X <
200][Z = 0.0] and two BC [X =
0.0][25 < Z < 75]&[125 < Z < 175]
present.

Case 1.2

(b) Case 1.2: One load [150 < X <
200][Z = 0.0] and one BC [X =
0.0][125 < Z < 175] present.

Case 1.3

(c) Case 1.3: Two loads [150 < X <
200]&[50 < X < 100][Z = 0.0] and
one BC [X = 0.0][125 < Z < 175]
present.

Case 1.4

(d) Case 1.4: Two loads [150 < X <
200]&[50 < X < 100][Z = 0.0]
and two BC [X = 0.0][25 < Z <
75]&[125 < Z < 175] present.

Case 1.5

(e) Case 1.5: One load [150 < X <
200][Z = 0.0] and two BC [X =
0.0][25 < Z < 75]&[125 < Z < 175]
present.

Case 1.6

(f) Case 1.6: One load [40 < X <
200][Z = 0.0] and one BC [X =
0.0][40 < Z < 200] present.

Figure 4.1:
[0.0 < Y < 50] for all cases. See Appendix A for further details.

29

Chapter 4. Method

4.5 Process description of Ansys setup

Setting up Ansys for a topological optimization run using the Mechanical APDL
module is done by first creating a static analysis and then initiating an optimization
process which uses the static structural input.

The full APDL input file, along with a selection of useful sites and guides for
understanding the Ansys Parametric Design Language, can be found in Appendix
C: under section 8.7.1.

Ansys Mechanical APDL version 19.3 is used for this study. The Optimality
Criteria is chosen to solve the TO problem.

4.5.1 Model, meshing and static analysis

In Ansys Mechanical APDL the steps for setting up a static study consist of cre-
ating a model geometry, generating a mesh, defining BC and loads, and finally,
solving the problem. Besides this, specifying material properties and units as well
as issuing an equation solver solver is necessary for obtaining viable results.

Model implementation
The model is created through a series of steps. First, four keypoints are initi-

ated in the XY -plane at the following coordinates:
K1(0.0 , 0.0) K2(200 , 0.0) K3(200 , 200) K4(200 , 0.0)

Second, lines are created between the keypoints making a 200 × 200 square:
K1 −→ K2 K2 −→ K3 K3 −→ K4 K4 −→ K1

The third step is making a surface within the space confined by the lines, and the
last step is extruding a volume from the surface.

1 ASEL , r , a r ea , , 1 , 1 ,
2 VEXT, 1 , 1 , , 0 , 0 , z v a l

The Area Select command ASEL is used to select the desired surface, which
in this case is the only surface available; surface number one. V EXT is then
issued. This Volume extrusion command selects surface number one from the all-

30

4.5 Process description of Ansys setup

ready selected surfaces and extrudes this surface in the Z-direction by an amount
given by the custom APDL parameter, zval. Since the domain of our model is
supposed to be Depth × 1/4 = Length = Height the parameter zval is given the
value 50(= 200 ÷ 4). We now have a volume of the hyperrectangle class by a
200× 200× 50 domain.

Note: Due to limitations by the V EXT command the orientation of the Ansys do-

main is not 4 × 1 × 4, but 4 × 4 × 1. All BC and loads are still equal to the rest of the

programs relative to domain orientation.

Meshing
Operations for meshing is conducted by choosing the surface and creating a

mesh grid of squares with an element size XElement = YElement = 2. The mesh
is then swept through the volume.

Figure 4.2: The 20-node

SOLID95 element has nodes lo-

cated at every external corner

and at the midpoint of each line

connecting the box. (Courtesy of

ANS (2009) [6])

1 ET , 1 , 9 5 ,
2 VSWEEP, 1 , 1 ,

First, all volumes are selected. Then the element
class and type is determined by the ET command.
The V SWEEP command then creates elements
throughout the volume from the surface mesh. The
only hexahedral element type supported by the topo-
logical optimization in Ansys Mechanical APDL is
the SOLID95, which is given as a 3-D 20-node
structural solid [6].

Material properties
Material properties are added by the MP command and a Label, which repre-

sent the exact type of property. The following code snippet shows how the values
are implemented and table 4.3 lists the connection between the Lables, properties
and assigned values.

1 MP, DENS, 1 , 7 . 8 5 e−09, ! t o n n e mmˆ−3
2 MP, ALPX, 1 , 1 . 2 e−05, ! Cˆ−1
3 MP, C, 1 , 4 3 4 0 0 0 0 0 0 , ! mmˆ2 s ˆ−2 Cˆ−1
4 MP,KXX, 1 , 6 0 . 5 , ! t o n n e mm s ˆ−3 Cˆ−1
5 MP, RSVX, 1 , 0 . 0 0 0 1 7 , ! ohm mm
6 MP, EX, 1 , 2 0 0 0 0 0 , ! t o n n e s ˆ−2 mmˆ−1 , E l a s t i c modul i

31

Chapter 4. Method

7 MP,NUXY, 1 , 0 . 3 , ! Minor Po i s son ’ s r a t i o
8 MP,MURX, 1 , 1 0 0 0 0 ,

Material properties for Ansys Mechanical APDL
Property Label Value Unit
Density ρ DENS 7.85 Kg/Litre

Coefficient for thermal expansion ALPX 1.2e− 5 C−1

Specific heat C 434 J/Kg◦C

Thermal conductivity KXX 60.5 W ·m−1 ·K−1

specific electrical resistance RSV X 1.7e− 7 Ω ·m
Young’s modulus E EX 200000 MPA

Poisson’s ratio ν NUXY 0.3

Magnetic relative peremability MURX 10000 H/m

Table 4.3: In topology optimization material properties of particular interest is the Young’s
modulus E and Poisson’s ratio ν.

Boundary condition
BC are added by selecting the nodes and then issuing the D command which

assigns zero DoF for the selected dimension.

1 ALLSEL
2 NSEL , r , loc , x , 1 2 5 , 1 7 5 ,
3 NSEL , r , loc , y , −0 . 0 1 , 0 . 0 1
4 NSEL , r , loc , z , 0 , z v a l
5 D, a l l , a l l

Making sure to not select within a previous selection, we use the ALLSEL com-
mand for selecting all entities of all types. We then specify the nodes to be selected
using the Node select command NSEL. First the range in the X-direction is se-
lected, then Y -direction, and at last the Z-direction thus, creating a volume, V ,in
which the selected nodes has to lay within:
V = X ∈ [125, 175], Y ∈ [−0.01, 0.01], Z ∈ [0.0, zval] zval = 50

This selection, NSEL,r, is actually a re-selection of the previous selection. Dis-
tinction between selecting and re-selecting is an important consideration in the
APDL-environment, and must be consistent and deliberate. If the Node select

32

4.5 Process description of Ansys setup

command does not select within the previous selection, the currently selected
nodes after the execution of line 4 would have been laying within a volume where
Z ∈ [0.0, 50] and X = Y ∈ [|∞|]. This is however, not the case, and the D
command can select all entities of all current selections, and assign no degrees
of freedom for all dimensions. Effectively creating a surface area of nodes to be
clamped. When there are several BC applied to the model the commands can
simply be copied and re-instated with changed coordinate values (Cases: C1.1,
C1.3-1.5, C2.1-2.4, C3.1-3.5).

Note: Our model only requires the surface to be clamped, yet the Y -value for node

selection is set from −0.01 to 0.01. This small tolerance is because the NSEL command

needs a selection range > 0.

Load case
A load is applied the by the F command in similar way as assigning BC. The

previous selection is selected and the nodes are given a force value in a specified
dimension.

1 FORCE= −6000
2 F , a l l , fx , FORCE,

Here we have chosen fx and the custom APDL parameter FORCE as the dimen-
sion and force value, respectively. As fx means the X-direction and FORCE=

−6000, the nodes are assigned a force of 6000 in the negative X-direction. Ap-
plying a second load (Cases: C1.3-1.4) is done by re-instating the command with
another node selection – much the same as for BC . For a force value not aligned
with the global dimensions the F command can be issued again with the same
node selection and a different dimension Label thereby creating the amount of
force vectors needed to represent the total force direction and size (Cases: C1.5,
C3.5).

Static analysis
In this study the force(s) are collected and saved under one Load case given

by LSWRITE. The loads are then deleted so we avoid getting a duplicated load
state. We then enter the solution processor and issue the desired equation solver.
Preconditioned conjugate gradient solver, pcg, is chosen here.

33

Chapter 4. Method

1 LSWRITE, 1
2 FDEL , a l l
3 / s o l u
4 EQSLV, pcg

This is the end of the static analysis setup as the solution of the structural problem
is done within the topological optimization loop.

4.5.2 Topology optimization setup

First the objective and constraint for the topological optimization is defined for the
given load case. Compliance is set as the objective and volume as the constraint,
with an upper limit of 85% removal (92.5% for Cases: C3.1, C3.3, C3.5). The
TO solver is set as eitherOC, Optimality Critria, or SCP , Sequential Convex Pro-
gramming approach. Here we see that TOTY PE lists the solver as OC, meaning
that Optimality Critria is chosen. The accuracy needed for obtaining convergence
is set by the TODEF command as 0.0005.

1 TOCOMP, comp , s i n g l e , 1 ! D e f i n e s c o m p l i a n c e f u n c t i o n f o r 1 l o a d c a s e
2 !TOCOMP, Refname , Type , NUMLC , LCARR − D e f i n e s s i n g l e o r m u l t i p l e

c o m p l i a n c e as t h e TO f u n c t i o n .
3 TOVAR, comp , o b j ! S e t s c o m p l i a n c e as t h e o b j e c t i v e wi th a
4 TOVAR,VOLUME, con , , 8 5 ! volume c o n s t r a i n t w i th an upper l i m i t 15% of max

volume
5 !TOVAR, Refname , Type , LOWER , UPPER , Boundtype − S p e c i f i e s t h e

o b j e c t i v e and c o n s t r a i n t s f o r TO problem .
6 TOTYPE, oc
7 ! t o t y p e , t y p e − s e t TO method as e i t h e r OC or SCP
8 TODEF, 0 .0005 ! s e t s c o n v e r g e n c e a c c u r a c y

The optimization loop is executed by the TOLOOP command, and the two suc-
cessive values determine the numbers of iterations to be performed and if plots
should be created on every iteration, 1, or only at the last, 0. The option for only
writing plots for the last iteration is chosen and the max number of iterations is set
to 40.

1 TOLOOP, 4 0 , 0

34

4.5 Process description of Ansys setup

4.5.3 Post process visualisation

Ansys Mechanical APDL has the capabilities to produce a wide variety of plots.
Convergence graphs for volume and compliance, as well as sectional nodal result
and element density plots is produced for each case. Still, these plots do not show a
concurrent view of the resulting model, or rather, it is hard to see the whole picture.
The nodal results only show the model as the domain box and the element density
results are bulky and does not give any indication to internal structure. A macro
for exporting the element results to ParaView where therefore written:

1 ∗CFOPEN, modeldens , csv , , append
2 ∗GET, num elem , elem , 0 ,COUNT ! Get t h e number o f E lemen t s
3 ∗GET, elem , elem , 0 ,NUM, MIN ! Get l a b e l o f t h e f i r s t Element
4 e t a b l e , edens , t opo
5 e t a b l e , e s t r e s s , s , eqv
6

7 ∗DO, i , 1 , num elem , 1
8 ! D e f in e some p a r a m e t e r s ∗GET, Par , E n t i t y , ENTNUM, Item1 , IT1NUM , Item2

, IT2NUM
9 ∗GET, nx , elem , elem , cen t ,X

10 ∗GET, ny , elem , elem , cen t ,Y
11 ∗GET, nz , elem , elem , cen t , Z
12 ∗GET, dens , elem , elem , e t ab , edens
13 ∗GET, s t r e s s , elem , elem , e t ab , e s t r e s s
14

15 ∗VWRITE, elmm , nx , ny , nz , dens , s t r e s s
16 (E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3)
17 ! s e l e c t t h e n e x t e l e m e n t
18 ∗GET, elem , elem , elem ,NXTH
19

20 ∗ENDDO
21 ∗CFCLOSE

This macro takes the element density, eqvivalent stress values and coordinates and
writes it to a .csv file that can be read by ParaView.

35

Chapter 4. Method

4.6 Process description of TopOpt setup

4.6.1 Software: Large scale topology optimization code using PETSc

TopOpt is a open source software available from: http://www.topopt.mek.
dtu.dk/

It uses the PETSc: Portable, Extensible Toolkit for Scientific Computation.
The Mod-SIMP approach is used to solve the topology optimization as well as the
Method of Moving Asymptote [21].

4.6.2 Optimization problem, mesh, and general settings: TopOpt.cc

The first step we do withing the TopOpt.cc code is set up the number of grid-
points in the each dimension. We then define the domain size and Poisson’s ratio,
as well as decide the number of multigrid solvers.

1 P e t s c E r r o r C o d e TopOpt : : SetUp () {
2 P e t s c E r r o r C o d e i e r r ;
3

4 / / SET DEFAULTS f o r FE mesh and l e v e l s f o r MG s o l v e r
5 nxyz [0] = 101 ;
6 nxyz [1] = 2 6 ;
7 nxyz [2] = 101 ;
8 xc [0] = 0 . 0 ;
9 xc [1] = 4 . 0 ;

10 xc [2] = 0 . 0 ;
11 xc [3] = 1 . 0 ;
12 xc [4] = 0 . 0 ;
13 xc [5] = 4 . 0 ;
14 nu = 0 . 3 ;
15 n l v l s = 1 ;

The values of nxyz[0, 1, 2], determine the number of grid-points in the X-, Y -
and Z-direction, respectively. The number of grid-points must always be set to one
more than the desired amount of elements, since hexahedral elements are created
between the points. We see from the code above, at lines 5-7, that the values of
101, 26, 101 are assigned. In turn this gives us the desired mesh discretization

36

http://www.topopt.mek.dtu.dk/
http://www.topopt.mek.dtu.dk/

4.6 Process description of TopOpt setup

of 100 × 25 × 100 = 250000 Elements. When we need to change the level of
discretization (Cases: C21-2.4, C3.1-3.5) it can easily be done by altering these
values. The domain size is initiated by setting up the Max/Min values for each
dimension where:

Xmin = xc[0], Xmax = xc[1], Ymin = xc[2], Ymax = xc[3], Zmin = xc[4], Zmax = xc[5]

Effectively creating a 4×1×4 domain (� Ymax = xc[3] = 2 for Cases: C3.1-3.5).
Poisson’s ratio ν is set to 0.3 and the number of multigrid levels is set to one. It
is desirable to set the highest applicable level of multigrid levels active, and this is
therefore not a constant throughout this study, but changes depending on the mesh
discretization (� Cases: C2.2-2.4, C3.1-3.5)

Note: There is no need to specify any other material properties then Poisson’s ratio as

TopOpt calculates the element stiffness matrix without implementing Young’s modulus.

We then issue the parameters for the topological optimization. Starting with
determining the volume constraint, given as a percentage of the retained volume.
Here it has a given value of volfrac = 0.15 = 15% (� 0.075 for Cases: C3.1,
C3.3, C3.5). The maximum number of iterations is set to 80 by assigning a value to
maxItr = 80 (� 140 itr. Cases: C3.1-3.5). The SIMP penalty factor is appointed
the value penal = 3.

1 / / SET DEFAULTS f o r o p t i m i z a t i o n prob lems
2 v o l f r a c = 0 . 1 5 ;
3 m a x I t r = 8 0 ;
4 rmin = 0 . 0 8 ;
5 p e n a l = 3 . 0 ;
6 Emin = 1 . 0 e−9;
7 Emax = 1 . 0 ;
8 f i l t e r = 0 ; / / 0= sens ,1= dens ,2=PDE − o t h e r v a l == no f i l t e r i n g
9 m = 1 ; / / volume c o n s t r a i n t

10 Xmin = 0 . 0 ;
11 Xmax = 1 . 0 ;
12 movlim = 0 . 2 5 ;
13 r e s t a r t = PETSC TRUE ;
14

15 i e r r = SetUpMESH () ; CHKERRQ(i e r r) ;
16

17 i e r r = SetUpOPT () ; CHKERRQ(i e r r) ;
18

19 r e t u r n (i e r r) ;

37

Chapter 4. Method

20 }

Note: TopOpt has the ability to chose different radius filtering, rmin, and gives direct

control of the assigned max/min element density values. The move limit can also be

changed easily and diffrent filters can be used. They are all set as a constants in this study

and the values above are used for all cases.

Physics class: LinearElasticity.cc
This where we define the physics problem for our optimization. InLinearElasticity.cc

there are two vectors of interest, i.e. N for BC and RHS for loads. To assign val-
ues and specify the region where these two vectors apply the if statement is used.
It follows this syntax: if (Condition one = TRUE && Condition two = TRUE &&
...){The following code is applied}. It checks whether the first condition is TRUE,
and terminates the sequence if it is FALSE. Then it checks the second condition,
and so on. Where all conditions are TRUE the code within the brackets {} can be
applied.

1 f o r (P e t s c I n t i =0 ; i<nn ; i ++){
2 / / Make a BC a t x=0 and 125<z<175 wi th a l l d o f s clamped
3 i f (i % 3 == 0 && l c o o r p [i +2] < 4∗0 .875 && l c o o r p [i +2] > 4∗0 .625
4 && P e t s c A b s S c a l a r (l c o o r p [i]−opt−>xc [0]) < e p s i) {
5 VecSe tVa lueLoca l (N, i , 0 . 0 , INSERT VALUES) ;
6 VecSe tVa lueLoca l (N,++ i , 0 . 0 , INSERT VALUES) ;
7 VecSe tVa lueLoca l (N,++ i , 0 . 0 , INSERT VALUES) ;
8 }
9

10 / / Make a BC a t x=0 and 25<z<75 wi th a l l d o f s clamped
11 i f (i % 3 == 0 && l c o o r p [i +2] < 4∗0 .375 && l c o o r p [i +2] > 4∗0 .125
12 && P e t s c A b s S c a l a r (l c o o r p [i]−opt−>xc [0]) < e p s i) {
13 VecSe tVa lueLoca l (N, i , 0 . 0 , INSERT VALUES) ;
14 VecSe tVa lueLoca l (N,++ i , 0 . 0 , INSERT VALUES) ;
15 VecSe tVa lueLoca l (N,++ i , 0 . 0 , INSERT VALUES) ;
16 }
17 / / Load s u r f a c e 1
18 i f (i % 3 == 0 && l c o o r p [i] < 4 && l c o o r p [i] > 4∗0 .75 &&
19 P e t s c A b s S c a l a r (l c o o r p [i +2]−opt−>xc [4]) < e p s i) {
20 VecSe tVa lueLoca l (RHS, i +2 ,−6000.0 ,INSERT VALUES) ;
21 }
22 }

The first condition is a modulo operation which states that i must be dividable by

38

4.6 Process description of TopOpt setup

three. We then issue a number of lcoorp[i+n] is bigger or smaller than statements.
This is a PETSc scalar and states that the location of coordinate points in the given
[i+n] dimension are bigger/smaller than the designated value. We have set up two
BC at Z ∈ [4 × 0.625, 4 × 0.875] and Z ∈ [4 × 0.125, 4 × 0.375] for X ≈ 0.0

and Y = |∞|. PetscAbsScalar defines the tolerance for the dimension normal
to the surface plane as the absolute value of epsi, which is variable dependent
of domain size defined by PETSc utilities. The vector N for this areas is then
assigned the values of 0.0 in each dimension by the V ecSetV alueLocal function,
creating two clamped surfaces with no degrees of freedom. Changing the BC is
simply done by altering the lcoorp statement or commenting out code (� Cases:
C1.2-1.3, C1.6, C3.3-3.4). The load, vector RHS, is issued the same way, but this
time V ecSetV alueLocal is set to the desired load size instead of being clamped.
From line 20 we see that a force of -6000 is applied in the i+2 = Z-direction.
Adding a second load (� Cases: C1.3-1.4) is done easily by re-inserting the code
and changing the values.

39

Chapter 4. Method

4.7 Process description of OpenLSTO setup

4.7.1 Software: Open Source Level Set Topology Optimization

The Open Source Level Set Topology Optimization software suite is, as the name
suggest, a free to use open source level set TO software, and uses two C++ based
modules for performing level set topology optimization tasks [14]. For this study
the latest currently available version, V1.0 as of 2019, was used. This version is re-
stricted to only solving tasks with minimum compliance objectives set by a volume
constraint. The software was created by M2DO Multiscale Multiphysics Design
Optimization Laboratory and can be downloaded from their website, M2DO web-
site: http://m2do.ucsd.edu/, or from OpenLSTO’s GitHub repository:
git clone https://github.com/M2DOLab/OpenLSTO.git

The level set optimization used is adapted from Hedges (2017) [10] LibSLSM
library. As such, the level set module of OpenLSTO can be viewed as extension of
the Stochastic level-set method presented by Hedges, Kim, and Jack (2017) [11].
OpenLSTO updates the level set for each run in the optimization loop using the
fast marching method (FMM) introduced by Sethian (1996) [19]. Beyond this,
a conjugate gradient solver is used to solve the linear equations, and the March-
ing Cubes method first presented by Lorensen and Cline (1987) [13] is used for
boundary discretization [16].

4.7.2 Model, meshing and static analysis

Model and mesh grid
The first step is defining the dimensionality of the problem. Which is initialised

by setting up a space dimension value.

1 c o n s t i n t spaced im = 3 ;

The next step is then setting up the domain. For a 3D problem this is done by
choosing the desired number of elements in the X, Y and Z-direction, initiated by

40

http://m2do.ucsd.edu/

4.7 Process description of OpenLSTO setup

nelx, nely, nelz, respectively.

1 c o n s t u n s i g n e d i n t n e l x = 100 , n e l y = 25 , n e l z = 100 ;

Now that the values for the mesh discretization are set up, the volume and sub-
sequent mesh grid must be determined. OpenLSTO does this by first making a
hyperrectangle given by fea box, then initiating the vector nel which contains the
values for discretization in each space dimension, and last, choosing an element
type in int element order. The mesh, fea mesh, is then generated from the
function MeshSolidHyperRectangle.

Note: fea box is a matrix defined by to steps. First, MatrixXd fea box (8, 3) sets

up an eight by three matrix environment for fea box, which defines a box with 8 external

corner points by 3 space dimensions. Second, the fea box is then given the coordinate

values for the eight corners of the hyperrectangle.

1 MatrixXd f e a b o x (8 , 3) ;
2

3 f e a b o x << 0 . 0 , 0 . 0 , 0 . 0 ,
4 ne lx , 0 . 0 , 0 . 0 ,
5 ne lx , n e l y , 0 . 0 ,
6 0 . 0 , ne ly , 0 . 0 ,
7 0 . 0 , 0 . 0 , ne l z ,
8 ne lx , 0 . 0 , ne l z ,
9 ne lx , n e l y , ne l z ,

10 0 . 0 , ne ly , n e l z ;
11

12 v e c t o r<i n t> n e l = {ne lx , n e l y , n e l z } ;
13

14 i n t e l e m e n t o r d e r = 3 ;
15 f ea mesh . MeshSo l idHype rRec t ang l e (ne l , f e a box , e l e m e n t o r d e r , f a l s e)

;
16 f ea mesh . i s s t r u c t u r e d = t r u e ;
17 f ea mesh . Ass ignDof () ;

The object fea mesh is given degrees of freedom from the funtion AssignDof .
With the chosen element type of 3, the following DoF are assigned:

”For 3D meshes, the solid element implemented has 8 nodes, each
having x-, y- and z-direction displacements as degrees of freedom.”
[14, Programmer Manual for OpenLSTO, pages 8-9.]

41

Chapter 4. Method

Material Properties
Material properties are added to the fea mesh vector by using a push back

function with the vaules obtained from solid materials. In this case:
Young’s modulus E = 2e5 Poisson’s ratio ν = 0.3 Density ρ = 1.0

1 / / S o l i d M a t e r i a l (<geomet ry d imens ion of s t r u c t u r e >, <Young ’ s modulus>, <
P o i s s o n ’ s r a t i o >, <d e n s i t y >)

2 f ea mesh . s o l i d m a t e r i a l s . p u s h b a c k (FEA : : S o l i d M a t e r i a l (spacedim ,
200000 , 0 . 3 , 1 . 0)) ;

Now fea mesh holds all the information needed. And so, before adding BC and
loads, the object fea study is defined, with the fea mesh as the starting value.

1 FEA : : S t a t i o n a r y S t u d y f e a s t u d y (f ea mesh) ;

Boundary condition
Adding a boundary condition in OpenLSTO is done by; first, initiating vectors

which hold the coordinates of a given set of nodes, and second, assigning new DoF
to these nodes. The functionGetNodesByCoordinates is used to retrieve a set of
nodes from fea mesh. It does so by setting up a point in space and the tolerance in
each direction. The following format is used; ({X coordinate, Y coordinate , Z

coordinate}, {Xdirection absolute tolerance, Y direction abs tol , Y
direction abs tol}). Looking at our setup, we see that on line five in the code
below the retrieved nodes are contained within the volume V :
V = X ∈ [−1e− 12, 1e− 12], Y ∈ [−1e9, 1e9], Z ∈ [0.125× nelz, 0.375× nelz]

1 /∗
2 Add a homogeneous D i r i c h l e t boundary c o n d i t i o n (f i x some nodes) .
3 ∗ /
4

5 v e c t o r<i n t> f i x e d n o d e s = fea mesh . Ge tNodesByCoord ina tes ({ 0 . 0 , 0 . 0 ,
0 .25∗ n e l z } , {1e−12, 1 . 0 e9 , 0 .125∗ n e l z }) ;

Note: Even though our study only specifies BC areas the X-tolerance is not set to zero,

but given an infinitesimal small value of tol = 1e − 12. This is because the function will

not retrieve any nodes when it is given an infinitely thin plane. For all practical purposes

the nodes within the volume can be viewed as a surface area.

For our case we needed to add a second set of fixed nodes. The method we

42

4.7 Process description of OpenLSTO setup

chose was to initiate a new vector and, as prior, retrieve nodes from the mesh. We
then inserted the second vector fixed 2 at the end of the first vector fixed nodes
using the insert function. For cases with only one BC the second vector and
insert function can easily be commented out (Cases: C1.2-1.3, C1.6).

1 v e c t o r<i n t> f i x e d 2 = fea mesh . Ge tNodesByCoord ina tes ({ 0 . 0 , 0 . 0 , 0 .75∗
n e l z } , {1e−12, 1 . 0 e9 , 0 .125∗ n e l z }) ;

2 f i x e d n o d e s . i n s e r t (f i x e d n o d e s . end () , f i x e d 2 . b e g i n () , f i x e d 2 . end ()) ;
3 v e c t o r<i n t> f i x e d d o f = fea mesh . dof (f i x e d n o d e s) ;
4

5 v e c t o r<double> a m p l i t u d e (f i x e d d o f . s i z e () , 0 . 0) ; / / Va lues e q u a l t o
z e r o .

6

7 f e a s t u d y . AddBoundaryCondi t ions (FEA : : D i r i c h l e t B o u n d a r y C o n d i t i o n s (
f i x e d d o f , a m p l i t u d e , f ea mesh . n d o f)) ;

The nodes are finally chosen and the desired DoF can be assigned. Vector fixed nodes
is used as the input for the function fea mesh.dof . The result is set as the initial
values of a new vector, called fixed dof . Then the vector amplitude is defined
by taking fixed dof and using the function size to set the values to zero – mean-
ing no degrees of freedom, the nodes are clamped at their location. The two set of
nodes and their DoF are ultimately added to fea study object using the function
AddBoundaryConditions.

Load case
Applying loads is done under the same principle as adding BC. Get the coor-

dinates from the mesh and assign DoF. Adding a second load (Cases: C1.3-1.4) is
also done using the insert function. For our default setup we only have one load
surface active. The second vector load node2 is therefore commented out, as well
as the insert function (Cases: C1.1, C1.4-1.5, C2.1-2.4, C3.1-3.5).

1 /∗
2 Apply l o a d .
3 ∗ /
4

5 / / v e c t o r<i n t> l o a d n o d e 2 = fea mesh . Ge tNodesByCoord ina tes ({0 . 3 7 5∗ ne lx ,
0 .0∗ ne ly , 0 . 0 ∗ n e l z } , {0.125∗ ne lx , 1 . 0 e9 , 1 . e−12}) ;

6 v e c t o r<i n t> l o a d n o d e = fea mesh . Ge tNodesByCoord ina tes ({0 . 8 7 5∗ ne lx , 0 .0∗
ne ly , 0 . 0 ∗ n e l z } , {0.125∗ ne lx , 1 . 0 e9 , 1 . e−12}) ;

7 / / l o a d n o d e . i n s e r t (l o a d n o d e . end () , l o a d n o d e 2 . b e g i n () , l o a d n o d e 2 . end ())
;

8 v e c t o r<i n t> l o a d d o f = fea mesh . dof (l o a d n o d e) ;

43

Chapter 4. Method

The force at the location is added by specifying the the size of the load node
vector in each space dimension, and the values are stored in the load val vector.
The default value for this study equals−6.0 in spacedim∗ i+ 2 (which means the
Z-direction).

1 v e c t o r<double> l o a d v a l (l o a d n o d e . s i z e () ∗ spaced im) ;
2

3 f o r (i n t i = 0 ; i < l o a d n o d e . s i z e () ; ++ i) {
4

5 l o a d v a l [spaced im∗ i] = 0 . 0 ;
6 l o a d v a l [spaced im∗ i +1] = 0 . 0 ;
7 l o a d v a l [spaced im∗ i +2] = −6.0 ;
8

9 }

The values for location, size and DoF are then added to the fea study using the
AssembleF function.

1 FEA : : P o i n t V a l u e s p o i n t l o a d (l o a d d o f , l o a d v a l) ;
2 f e a s t u d y . AssembleF (p o i n t l o a d , f a l s e) ;

4.7.3 Topology optimization setup

The first step of the topological optimization setup is defining an object of the
level set class. The object, which is named level set 3d, is then given the values
for setting up dimensions. As seen in the code below, the level set dimensions are
the same as the nel dimensions.

1 / / C r e a t e an o b j e c t o f t h e l e v e l s e t c l a s s
2 LevelSe t3D l e v e l s e t 3 d ;
3

4 / / D e c l a r e box d i m e n s i o n s and i n i t i a l i z e t h e box
5 s t d : : v e c t o r<double> LS2FEmap (3 , 1) ;
6

7 u i n t box x = n e l x ∗LS2FEmap [0] ;
8 u i n t box y = n e l y ∗LS2FEmap [1] ;
9 u i n t box z = n e l z ∗LS2FEmap [2] ;

10

11 l e v e l s e t 3 d . Se tBoxDimens ions (box x , box y , box z) ; / / S e t up d i m e n s i o n s

Now the function MakeBox is used on the level set 3d object. This creates the

44

4.7 Process description of OpenLSTO setup

actual model that will be optimized for the level set class, and is a hyperrectangle
with the same size as the dimension values.

1 l e v e l s e t 3 d . MakeBox () ;

Note: An alternative function is the MakeLBeam (makes an L-beam) where the

following uint nxl =< value >; and uint nzl =< value >; for X-thickness and

Z-thickness, needs to be specified.

The volume constraint is set up asMaxV ol and then passed on to the SensData
object. The value equals the retained volume in percentage. It is set to 15% as our
default value (� 7.5 for Cases: C3.1, C3.3, C3.5).

1 do ub l e MaxVol = 1 5 . 0 ; / / i n p e r c e n t a g e
2 SensData . MaxVol = MaxVol ;

Specifing the move limit is done by assigning a value to move limit. The move
limit information is also passed on to the SensData object. The move limit a
constant and the value of 0.25 is used throughout the study.

1 do ub l e m o v e l i m i t = 0 . 2 5 ;
2 SensData . m o v e l i m i t = m o v e l i m i t ;

Setting the limit for the number of iterations is done by changing the value of
max iterations to the desired maximum value. Here given as a maximum of 80
iterations to be performed (� 140 for Cases: C3.1-3.5).

1 i n t n i t e r a t i o n s = 0 ;
2 i n t m a x i t e r a t i o n s = 8 0 ;
3

4 w h i l e (n i t e r a t i o n s < m a x i t e r a t i o n s) {
5

6 ++ n i t e r a t i o n s ;
7

8 / / The r e s t o f t h e o p t i m i z a t i o n loop i s n o t i n c l u d e d h e r e . See comp min . cc
9

10 }
11

12 / / w r i t e t o s t l
13 i n t box smooth = 0 ;
14 l e v e l s e t 3 d . WriteSTL (box smooth) ;

45

Chapter 4. Method

The loop while counts the number iterations and terminates when the criteria is no
longer fulfilled. The results are written to an STL file. In our case the smoothing
option is turned off, this means box smooth = 0. With smoothing turned on the
results often contain unsupported geometry as the smoothing refines the texture
too much in the process of obtaining an even surface-model.

4.8 Post process visualisation in ParaView

The post-processing visualisation is done through ParaView. For OpenLSTO a
change in the WriteSTL function gives us file we can use directly:

1 t x t f i l e << ” end loop ” << e n d l ;

Changing end loop to endloop

1 t x t f i l e << ” end loop ” << e n d l ;

The Ansys results are given as weighted element plots, where each element is
represented by a dot. This is due to the models containing internal structures that
are otherwise hard to visualize.

The TopOpt results are viewed directly without any modification.

46

Chapter 5
Assessment One:
Load case variation

Chapter introduction
Results of particular interest:

Does the topology of a specific case conform to a similar shape or do we see
considerable differences between the programs? Are there topological features
that are present between all programs, i.e. global key features? How does the
complexity of the load and boundary setup effect solution time and convergence?
Do we see any trends in the programs with regards to the structural shape? In
cases where the topology is similar do we also see the same compliance values?
Does one program perform better than the others with regards to compliance and
solution time?

47

Chapter 5. Assessment One

5.1 Results for cases C1.1-1.6

Main findings
The assessment show that the different programs default to a preferred topo-

logical orientation. Abaqus and TopOpt generally create a model with a truss like
structure. The difference being that Abaqus prefers thicker truss members, while
TopOpt usually produces a slimmer design with more topological features. Ansys
typically utilize more of the domain width than the others, and create a model with
thin walls containing internal truss structures. OpenLSTO generally produces a
single solid body without holes (with the exception of Case C1.3). The investiga-
tion also show, rather surprisingly, that topological similarity does not equal the
same compliance. Furthermore, the compliance levels for Ansys generally con-
form to a similar relative increase from the other programs. A proposed reason for
this behavior is the higher node order element used. The result show that TopOpt
has the fastest solution time per iteration, with Abaqus coming at a close second.
The complexity of the load configuration show no global trends with regards to
solution time.

5.1.1 Compliance

Figure 5.1 shows the compliance results for all cases across all programs. With the
objective of minimizing compliance, the Abaqus results are the most satisfactory.
Following this, the general trend is that OpenLSTO performs second best, then
TopOpt, and Ansys show the highest compliance for most cases. The deviation
from this trend is the case C1.3 where the compliance of TopOpt is 83.9% that
of OpenLSTO, and case C1.6 where the compliance of OpenLSTO is 186% and
335% of Ansys and TopOpt respectively. Table 5.1 lists the variances between the
programs for cases C1.1-1.4, with the largest discrepancy being between Abaqus
and Ansys, where the compliance of the Ansys solution is a whole 2343.4% of
Abaqus. The smallest variation in result is found between TopOpt and OpenL-
STO in the previous mentioned case C1.3, i.e. TopOpt compliance is 83.9% of
OpenLSTO.

48

5.1 Results for cases C1.1-1.6

Figure 5.1: Compliance results for all cases across all programs

5.1.2 Topology

Table 5.2 shows the results for the topology of cases C1.1-1.4, and describes
shortly the similarity or discrepancy between the solutions, as well as it lists the
topological key features. The abbreviations Abaqus = Aba, Ansys = Ans, TopOpt
= Top and OpenLSTO = LSTO is used in the table to differentiate between the
programs.

In the case C1.1, the model has two fixtures and one load. The key feature be-
tween all four models is the reinforcements from the top fixture continuing down
to the load surface, and a reinforcement from the bottom fixture to the load sur-
face. Effectively creating a simple truss structure consisting of two members. The
topology of Abaqus and TopOpt closely resemble one another, yet from Table 5.1
the difference in compliance is listed as TopOpt being 396.2% of Abaqus, i.e. al-
most four times as big. This does not correlate with the assumption that models

49

Chapter 5. Assessment One

Abaqus Ansys TopOpt OpenLSTO
case 1.1 Abaqus 637.2 396.2 203.4

Ansys 15.6 62.19 31.9
TopOpt 25.2 160.8 51.3

OpenLSTO 49.1 313.1 194.7

case 1.2 Abaqus 612.5 396.0 193.1
Ansys 16.3 64.7 31.5

TopOpt 25.3 154.6 48.7
OpenLSTO 51.8 317.1 205.1

case 1.3 Abaqus 628.9 375.0 894.2
Ansys 15.9 59.6 71.1

TopOpt 26.7 167.7 119.2
OpenLSTO 22.4 140.7 83.9

case 1.4 Abaqus 2343.4 908.3 277.4
Ansys 4.3 38.8 11.5

TopOpt 11.0 258.0 30.5
OpenLSTO 36.0 844.8 327.5

Table 5.1: Variances between the programs for cases C1.1-1.4

with seemingly equal topology obtain roughly the same compliance. The Ansys
model have the same main features as Abaqus and TopOpt, as well as a thinner
and more intricate set of supporting sub-beams. Again, the difference in compli-
ance is substantially higher then the difference in model topology would indicate,
Ansys is over six times more compliant than Abaqus. With OpenLSTO the topol-
ogy does not resemble the other models to a high degree. The distinction between
topological features is not easy to make, as the model is one solid body without
holes present. The compliance here is roughly twice as high as that of Abaqus.

Case 1.2 removes the bottom fixture from the previous case and leaves the
model with one fixture and one load. Abaqus, Ansys and TopOpt show the same
key features, while the OpenLSTO model conforms to as single solid body with
virtually no holes. Table 5.1 shows that the variation in compliance is roughly the
same as in case C1.1.

Case 1.3 features one fixture and two loads. The key features between all
four models is the two legs dropping down to support the loads. Beyond this, all
models contain some members between the legs, with the exact topology of the

50

5.1 Results for cases C1.1-1.6

strengthening varying. Abaqus and Ansys share the most features, but Abaqus
has the lowest compliance, while Ansys has the highest. TopOpt and OpenLSTO
which share very few features, yet have almost the same compliance, with 554.3%
and 660.9% respectively.

Case 1.4 features two fixtures and two loads. A distinctive main support beam
running from the top fixture to the furthest load is recognisable. All programs ex-
cept OpenLSTO make use of the entire domain width. OpenLSTO keeps all ma-
terial centralised in the middle of the width of the model. The three first methods
result in a truss-like structure seen from the side, with varying degree of attachment
to the fixture wall. Here the two most unlike models have similar low compliance,
while TopOpt and Ansys reach 478.7 and 1235.0 respectively.

51

C
hapter5.A

ssessm
entO

ne

Table 5.2 : Load case V ariation C1.1− 1.4 Results
Configuration Abaqus Ansys TopOpt OpenLSTO

case1.1
Aba and Top produces a near identical model.
They inherit all the same topological features.
The Ans result is similar, yet it represents a more
complex topology. LSTO appears alien in rela-
tion to the others. Still, there are global key fea-
tures; an upper and lower reinforcement.

case1.2
The discrepancy between Aba, Ans and Top is
here small. Global features would be the up-
per reinforcement and the dual connectivity at the
boundary location. LSTO is an outlier again. In-
stead of two truss structures at the width of the
domain a single body is produced.

case1.3
Global features; an upper body with dual connec-
tivity at the boundary, two supporting legs and
a connecting bridge in between. Interestingly
Aba and Ans share similar features, and Top
and LSTO also closely resemble another (not ac-
counting for the dual versus single body issue).

case1.4
Again we see that Aba and Ans share a set of
key features. The key features of LSTO are also
present within the more complex Top. The global
features are the same as in C1.1, an upper and
lower reinforcement. This due to the middle sec-
tion, though similar, containing different features
across the programs.

Table 5.2: Load case variation C1.1-1.4 Results

52

5.1 Results for cases C1.1-1.6

Figure 5.2 shows the model results for case C1.5. This case is identical to C1.1,
except a new load vector is added with an orientation parallel to the y-direction and
with a value of Fy = 1000. OpenLSTO produces a big thick arch, while the rest
of the body remains thin walled. Ansys is almost identical to OpenLSTO, while
TopOpt is the one which stands out as different, having a more complex topology.
While Ansys and OpenLSTO produce practically the same model, it is interesting
to see that the compliance of Ansys is three times higher.

case 1.5
Load configuration

(a) Ansys (b) TopOpt (c) OpenLSTO

Figure 5.2: Description of load configuration and the resulting models in case 1.5

(a) Ansys (b) TopOpt
(c) OpenLSTO

Figure 5.3: Continuance of model views from case 1.5

53

Chapter 5. Assessment One

The cross section of the case 1.6 results are shown in Figure 5.5. Here we
can observe that TopOpt uniformly disperses the material onto seven thin beams,
across the entire section, while Ansys joins five of the seven beams into one hol-
low feature, roughly remaining the same material distribution. Compliance for
OpenLSTO very high, not surprising as the load vector is 45 degrees and creates a
pure tensile stress situation. The ”arch” created by OpenLSTO does not help the
structure significantly.

case 1.6
Load Configuration

(a) Ansys (b) TopOpt (c) OpenLSTO

Figure 5.4: Description of load configuration and the resulting models in case 1.6

(a) Ansys (b) TopOpt

Figure 5.5: Case 1.6, cross section looking down the y-axis

54

5.1 Results for cases C1.1-1.6

5.1.3 Computation time

Figure 5.6 and Table 5.3 show the results for the total time usage and average
time per iteration. Abaqus uses less time in total, but stops at max 30 iterations
while Ansys goes to 40, and TopOpt and OpenLSTO solves 80 iterations. From
the results in Table 5.3 it can be observed that TopOpt has the fastest average
solver time per iteration at 146.0 seconds. The question as to which program
solves the problem most rapidly depends on at which iteration the solver reaches a
satisfactory solution.

Figure 5.6: Total time usage in seconds

case 1.1 case 1.1 case 1.1 case 1.1 case 1.1 case 1.1 Total Average
Abaqus 171.1 167.5 171.6 166 169.1
Ansys 615.3 465.42 560.9 709.3 711.3 1619.0 780.2

TopOpt 102.0 199.3 197.3 113.4 152.0 111.8 146.0
OpenLSTO 312.9 305.8 322.8 331.1 318.6 336.4 321.3

Table 5.3: Average time used per iteration in seconds

55

Chapter 5. Assessment One

5.2 Discussion

The assessment show that the different programs default to a preferred topolog-
ical orientation. Abaqus and TopOpt generally create a model with a truss like
structure. The difference being that Abaqus prefers thicker truss members, while
TopOpt usually produces a slimmer design with more topological features. An-
other noticeable difference is how smooth the TopOpt models are. There are no
sharp edges present throughout the study. This most likely comes from the radius
filtering ability TopOpt possesses. Back to the preferred topological orientation
we see that Ansys typically utilize more of the domain width. It creates a model
with thin walls containing internal truss structures. OpenLSTO generally produces
a single solid body without holes. From a manufacturing perspective these default
orientations would indicate that Abaqus, Ansys and TopOpt models would require
substantial post-processing. This bridges the connection between additive man-
ufacturing and TO, as we understand that the complexity of the topology makes
traditional processes unsuitable. The models from OpenLSTO on the other hand,
can with minimal changes be manufactured in for example a molding process.

Perhaps the most curios observation from this assessment; models with the
same topology do not obtain the same compliance. Also: the relative difference
in compliance between programs is mostly the same throughout the study. In case
C1.1 Abaqus and TopOpt are practically the same, and in case C1.5 Ansys and
OpenLSTO are near identical. The same on the other hand, can not be said about
the compliance values. The results from Table 5.1 show that for C1.1 the difference
in compliance is the second largest between the programs. For the case C1.5 the
difference in compliance between Ansys and OpenLSTO (33.2%) is practically the
same as it is for cases C1.1 (31.9%) and C1.2 (31.5%), yet the topology in these
cases do not share a resemblance. Why do we see this behavior?

One reason could be that different constitutive matrices are used to calculate
the stiffness. TopOpt does for example not implement the elastic modulus in its
calculations, while we know this is a necessary input for Abaqus and Ansys. Of
course it could be that one model is in fact much stiffer, yet with the same material
and topology the difference should be limited. Continuing this train of thought,

56

5.2 Discussion

could it be that the topology is in fact not similar? Meaning the visual inspection
is not satisfactory. This does not seem likely. The answer probably lies within how
the sensitivities are handled internally between different classes in the programs.

As for the case with Ansys, a 20-node element instead of 8-node element is
used, this may be why the compliance values are scaled up. Each element contains
2.5 times more nodes. This scaling magnitude is seen between Ansys and either
TopOpt or OpenLSTO in most cases.

TopOpt and Abaqus both show a quick solution time, with TopOpt being slightly
faster. A consideration to be made is that TopOpt is not utilized to its full poten-
tial. The number of multi grid solvers used is set to one, since the discretization
of 1002 × 25 is not dividable by two, 25÷ 2 = 12.5 and elements cannot be split.
The evaluation that Abaqus and TopOpt performs equally well may therefore be
erroneous. This relationship is further investigated in the following assessment.
As stated a prior, Ansys also uses a higher order element, which most likely affect
the solution time considerably.

57

Chapter 5. Assessment One

58

Chapter 6
Assessment Two:
Mesh discretization dependency

Chapter introduction
Results of particular interest:

At what level of discretization do the individual programs obtain viable results?
Does the level of discretization affect the similarity or discrepancy between pro-
grams? Do we only see a refinement or do we actually see a different topology as
the mesh size increases? How does the discretization affect the solution time and
the convergence? How is the compliance affected by the mesh size? And do we
see the same trends here as in Assessment One?

59

Chapter 6. Assessment Two

6.1 Results Cases C2.1-2.5

6.1.1 Main findings

A mesh size of 642 × 16 = 65536 elements gave viable results for all programs.
OpenLSTO also show the most satisfactory solutions at coarser mesh sizes, and
is the only model where new topological features are introduced at every mesh
size. Furthermore, the mesh discretization dependency investigation show that for
Ansys, TopOpt and OpenLSTO the compliance increases with mesh size. This
establishes the proposition that higher level of mesh discretization increases the
accuracy of the results.

Building on the results from the previous assessment the results here show that
the relative difference between Ansys and the other programs, especially TopOpt,
is still the same, reinforcing the proposition that the higher node order element is
the cause of the increased compliance. The investigation also shed light on the
effect of smoothing of non-viable model results, proposing that post-processing of
undesirable models can easily be done to attain viable results. The computation
time increases as the mesh discretization increases, and TopOpt has the fastest
solution time. Abaqus performs noticeably slower than the other programs on
coarser mesh grids.

60

6.1 Results Cases C2.1-2.5

6.1.2 Explanation of categorization of dependency

A categorization of dependency is introduced for this assessment. This provides
exact criteria needed to evaluate whether or not the topology of a model has
reached a satisfactory state. The following labels are used:
Unsupported – The model contains unsupported geometry. Checkerboard
patterns and/ or high concentration of low density elements exist in vital locations.
The results are not satisfactory.
Non-conflicting – There are no conflicting elements present, yet the model
has not reached a desired topology. It is coarse and it can be hard to separate it into
key features.
Preferable – We have a desired topology. It is relatively smooth and there are
no conflicting elements appearing. It is easy to asses the key features of the part.
Refined – Still being preferable, the model has reached a state where the
topology is now the same as in the previous case, now even more refined. No new
features or changes are present.
New feature – The same as refined, yet there is also the introduction of one
or more new features.

6.1.3 Presentation of results

The results for topology and assessment of dependency is given in Table 6.1. The
abbreviations Abaqus = Aba, Ansys = Ans, TopOpt = Top and OpenLSTO =
LSTO is also used in this table to differentiate between the programs. Figure 6.1
show the compliance results and explains the trends in this assessment. Table 6.2
show the result for solver time per iteration and Figure 6.2 show the total time
used. Information regarding convergence is found in Table 6.3. The special case
C2.5 is presented in Figure 6.3. Figure 6.4 show how an initially conflicting model
can obtain a viable result by post-processing.

61

C
hapter6.A

ssessm
entTw

o

Table 6.1 : Mesh Discretization Dependency Results
Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 1.1
20× 20× 5 40× 40× 10 64× 64× 16 80× 80× 20 100× 100× 25

Abaqus Non-conflicting Preferable Refined

A preferable model is obtained in C2.3.
Interestingly the coarse solution does
not feature any conflicting elements,
and the surface is smooth compered to
Ans and Top. Case C1.1 is only a refin-
ment of C2.3.

N/A N/A

Ansys Unsupported Unsupported Preferable Refined Refined

A preferable model is obtained in C2.3.
The cases C2.1-2.2 both contain unsup-
ported geometry and a high degree of
elements with low density. The model
is refined at higher levels of mesh dis-
cretization.

TopOpt Unsupported Unsupported Preferable Refined Refined
The cases C2.1-2.2 both contain
checkerboard patterns. A preferable
model is obtained in C2.3. The model
is refined when higher level of mesh
discretization is implemented. The key
featurer are present even at the coarsest
mesh.

OpenLSTO Non-conflicting Non-conflicting Preferable New feature New feature
Non-conflicting results are present in
cases C2.1-2.2. The results seen here
are the most satisfactory for these
coarse mesh sizes. A preferable result
is obtained in case C2.3, but new topo-
logical features are introduced at each
successive step of the mesh refinment.

Table 6.1: Mesh discretization dependency results

62

6.1 Results Cases C2.1-2.5

Figure 6.1: Compliance for cases C2.1-2.5 benchmarked against case C1.1. The cases
are sorted in order of mesh discretization level. Ansys, TopOpt and OpenLSTO follow the
same trend, the mesh discretization increases along with compliance. Abaqus shows the
exact opposite pattern, i.e. the compliance decreases. The overall variation in compliance
is lower than previously observed for case C2.3, with a 642 × 16 mesh. Ansys shows a
compliance 2.2 times that of OpenLSTO. The previous case with the lowest maximum
variation was case C1.2, where the difference was a magnitude of 6.12 between Ansys and
Abaqus.
*C2.5 is a TopOpt exclusive result, the problem size proved to be too big for the other
programs with the current setup.

63

Chapter 6. Assessment Two

Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 1.1 Case 2.5
Mesh 202 × 5 402 × 10 642 × 16 802 × 20 1002 × 25 1282 × 32

Abaqus 24.2 59.7 171.1

Ansys 1.4 13.2 79.1 222.1 615.3

TopOpt 0.2 1.2 7.5 12.5 102.0 68.3
*Multigrid lvl. 1 2 4 3 1 5

OpenLSTO 0.7 4.3 24.0 81.4 312.9 **1300

Table 6.2: Average time used per iteration in seconds. Abaqus performs poorly in case
C2.1, solving each iteration 121 times slower than TopOpt.
*TopOpt utilizes the capabilities of the multigrid levels where applicable and performs
exceedingly well.
**The time for Case C2.5 for OpenLSTO was calculated from the time it took to run the
three first iterations and was then terminated. Lower level of accuracy is to be expected in
this result.

Figure 6.2: Total time usage in seconds.
TopOpt performs exceedingly well when lookin at the total time as well.

64

6.1 Results Cases C2.1-2.5

Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 1.1 Case 2.5

Abaqus Convergence No Yes No
Last itr. 30 29 30

Ansys Convergence Yes Yes No No No
Last itr. 25 39 40 40 40

TopOpt Convergence Yes Yes No No No No
Last itr. 29 61 80 80 80 80

OpenLSTO Convergence No No No No No No
Last itr. 80 80 80 80 80 3

Table 6.3: Convergence status, and the iteration at which convergence occurs, for cases
C2.1-2.5, also benchmarked against case C1.1

Figure 6.3: TopOpt result from the special case 2.5, with a mesh discretization of 1282 ×
32 = 524288 elements. It is very smooth, yet shows no new features, and is therefore
only a refinement of the model we see in cases C2.3-2.4, C1.1.

65

Chapter 6. Assessment Two

−→

Figure 6.4: Delauney smoothing through ParaView of Case 2.1 Ansys model. After a
smoothing of the coarse 20 × 20 × 5 mesh discretization we obtain a solution with no
apparent conflicts. Still, we see that the initial density distribution is not satisfactory,
low weighted elements are represented in key locations and there are regions where fully
weighted elements do not share a connection.

6.1.4 The special case of OpenLSTO

Figure 6.5 show how we can interpret the different elevation in the OpenLSTO
structure as different topological features. The model is introduced to new features
as the level of mesh discretization increases. It creates an interesting question as
to why?

(a)

−→

(b)

Figure 6.5: The magneta colored spot seen in (b) can be interpreted as a new topological
feature.

66

Chapter 7
Assessment Three:
Domain size dependency

Chapter introduction
Results of particular interest:

Compared to the previous results, can we obtain a better optimum, i.e. was the
domain a restricting factor? Is there a need for an increased domain size or can we
rely on symmetry?

67

Chapter 7. Assessment Three

7.1 Results C3.1-3.5

Main findings
Benchmarked against the previous case C2.3 the results for C3.1 show that for

Ansys and TopOpt a model with lower compliance is obtained when the domain
size is increased. The opposite is true for OpenLSTO. Contrary to the trend found
in assessment one, where models with equal topology have different compliance,
they now share the same compliance. The relative difference between Ansys and
the other programs is almost exactly twice as big throughout the cases. There is
also a trend where bigger loads and boundary surfaces increase the solution time.
Ansys and TopOpt both produce symmetric results for cases C3.3-3.4.

7.1.1 Presentation of results

Figure 7.1 show the result for compliance benchmarked against case C2.3 and
Figure 7.2 show the total time usage for the cases. Figure 7.3, 7.4, 7.5, 7.6 and 7.7
show the topology result and load configuration. From Figure 7.1 it is observed
that for case C3.1 valued against C2.3 Ansys and TopOpt have lower compliance,
i.e. a more desirable solution is reached.

68

7.1 Results C3.1-3.5

Figure 7.1: Compliance across the three programs, Ansys, TopOpt and OpenLSTO. The
relative difference between Ansys and the other programs is almost exactly twice as big
throughout the cases.

Figure 7.2: Total time usage benchmarked against case C2.3. The trend is that bigger
loads and boundary surfaces increase the solution time, as seen by C3.3-3.4.

69

Chapter 7. Assessment Three

Configuration
Ansys

(a)

TopOpt

(b)

OpenLSTO

(c)

Figure 7.3: C3.1: Volume constraint: 7.5%. The topolgy is similar between all programs,
with Ansys and Topopt having one more feature, represented by a hole.

Configuration Ansys

(a)

TopOpt

(b)

OpenLSTO

(c)

Figure 7.4: C3.2: Volume constraint: 15%. TopOpt and OpenLSTO produces the same
result, Ansys being very similar.

70

7.1 Results C3.1-3.5

Configuration
Ansys

(a)

TopOpt

(b)

OpenLSTO

(c)

Figure 7.5: Case 3.3: Volume constraint: 7.5%. Ansys and TopOpt show a symmetric
representation, while OpenLSTO produces a singel solid body, as per usual.

Configuration
Ansys

(a)

TopOpt

(b)

OpenLSTO

(c)

Figure 7.6: Case 3.4: Volume constraint: 15%. Slightly different from the case before
Ansys and TopOpt show a symmetric representation, while OpenLSTO produces a single
solid body again.

71

Chapter 7. Assessment Three

Configuration
Ansys

(a)

TopOpt

(b)

OpenLSTO

(c)

Figure 7.7: Case 3.5: Volume constraint: 7.5%.

72

Chapter 8
Conclusion

Our study shows that the different programs default to a preferred topological ori-
entation, which we could imagine. For engineering purposes this is an interesting
trend and allows the user to asses certain criteria before choosing the topology
optimization tool. Surprisingly, the investigation also shows that topological sim-
ilarity does not equal the same compliance in a few instances.Two reasons for
this behavior is proposed. Different constitutive matrices are used to calculate the
stiffness and/or sensitivities are handled different internally between classes in the
programs.

Ansys generally tends to show higher compliance values whilst still showing a
similar model shape. A proposed reason for this behavior is the higher node order
element used, 20-node versus 8-node.

With higher level of mesh discretization, we saw an improvement of the model,
as well as a refinement. The lower limit for obtaining viable results seemed to be
the mesh size of 642×16 = 65536 elements for all programs. As an open source
program, TopOpt surprised us all by how exceedingly well it performed, having
the fastest solution time and showing smooth models repeatedly.

The thorough evaluation between cases C2.3 and C3.1 reveals that for both

73

Chapter 8. Conclusion

Ansys and TopOpt, a model with lower compliance is obtained when the domain
size is increased. This correlation may be useful for anyone that want to further
explore the programs limits, as well as anyone that want to learn the programs
well, and take the advantage of all its possibilities.

8.1 A subjective evaluation of the programs

This is a purely subjective evaluation of the user experience of the different pro-
gram suites based on our experience from this project. Presented in order of which
one we consider to be the most user friendly to which one is the least user friendly.

OpenLSTO – This proved to be the easiest program to get into. The manuals
are thorough and the code is presented clearly. It does not rely on other extended
libraries to work, only the requirements for compiling (GCC) is needed. Also, the
example projects can quickly be modified and they are presented in such a way that
previous experience with C++ it not a necessity. However, once the complexity of
the problem increases the need for initiating new code arises, as was the case for
our study. The options presented in the manuals conform to the relatively simple
example projects, meaning that finding the limitations of what can be done was
accomplished by a bit of trial and error. In version 1.0 there is also restricted opti-
mization options, only compliance objective under a volume constraint is possible
when solving in three dimensions.

TopOpt – The Large scale TopOpt based on PETSc can initially seem a bit
daunting. Compered to OpenLSTO it requires a deeper understanding of C++ to
use, and the PETSc functions does not make it easier either. That being said, the
way the code is presented is so clear that it is practically self explanatory, given
some proficiency with C++. The framework has a lot of capabilities, though they
are not necessarily easy to utilize. It also relays on having PETSc installed and
needs several Intel libraries to compile and run.

Ansys – We need to make short digression from the main point. Had we used
the Workbench environment instead, this would with out a doubt been the most user

74

8.2 Further work

friendly program on our list. Nevertheless, we chose to use Mechanical APDL,
were we made an input file due to the extended control of parameters and easy
of use non-interactively. The abundance of manuals and guides available, both
official and from users, is plentiful. The primary reason why this method is listed
third is because of the workload needed to create an input file. For new users
this will probably seem unattainable at first glance. There is no template to start
from, such as with OpenLSTO and TopOpt, and the APDL environment provides
a command library that can be set up to reach the same solution with different
command configurations. It can create the impression that it is too complicated
a task, and that finding a suitable approach is unfeasible. This is of course not
true, choosing a fitting approach is straight forward once the environment becomes
familiar, yet the initial encounter decreases the user friendliness substantially.

Abaqus – Ranked as the least user friendly Abaqus proved extensively trou-
blesome to use non-interactively. We deemed that the workload required to learn
how to use Abaqus specific python scripts, needed for setting up and running opti-
mization tasks without the interface, would claim to much our designated time.

8.2 Further work

An investigation of the trend that topological similarity does not equal the same
compliance, could further unveil the inner working of topology optimization meth-
ods. This seems counter intuitive as the goal to this thesis was partially to figure
if the four programs would converge to a global optimum solution. A solution
like that would most definitely firmly decide the topological features of the model,
practically making all the solutions identical. The question we can ask ourselves is:
is this the case with other programs and TO methods, and if so, can we realistically
talk about a global optimum?

Further research could also include the relation of new features introduced
as the level of mesh discretization increases for OpenLSTO, an evaluation of the
effect of higher order node elements, and perhaps level set methods in general.

75

Chapter 8. Conclusion

76

Bibliography

[1] Geometric Properties: Size and Shape, 2007. [Online; accessed 1. May 2019].

[2] Mixing and Reacting Flows, Apr 2019. URL https://people.umass.edu/debk/

Mixing.html. [Online; accessed 14. May 2019].

[3] Spatial relations | Nuffield Foundation, May 2019. URL https://www.

nuffieldfoundation.org/key-ideas-teaching-mathematics/

spatial-relations. [Online; accessed 1. May 2019].

[4] topology |Definition of topology in English by Oxford Dictionaries, May 2019. URL https:

//en.oxforddictionaries.com/definition/topology. [Online; accessed 5.
May 2019].

[5] Niels Aage, Erik Andreassen, and Boyan Stefanov Lazarov. Topology optimization using
PETSc: An easy-to-use, fully parallel, open source topology optimization framework. Struct.
Multidiscip. Optim., 51(3):565–572, Mar 2015. ISSN 1615-147X. doi:10.1007/s00158-014-
1157-0.

[6] ANSYS Elements Reference. ANSYS Inc., release 12.0 edition, Apr 2009.

[7] Theory Reference for the Mechanical APDL and Mechanical Applications. ANSYS Inc., 12.0
edition, Apr 2009.

[8] Martin P. Bendsøe and Ole Sigmund. Topology Optimization | SpringerLink. Springer, Berlin,
Heidelberg, 2004. ISBN 978-3-642-07698-5. doi:10.1007/978-3-662-05086-6.

[9] Jean Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory by Jean Goubault-
Larrecq. Cambridge Core, Mar 2013. doi:10.1017/CBO9781139524438.

[10] Lester O. Hedges. LibSLSM, May 2017. URL https://github.com/lohedges/

slsm. [Online; accessed 7. Apr 2019].

77

https://people.umass.edu/debk/Mixing.html
https://people.umass.edu/debk/Mixing.html
https://www.nuffieldfoundation.org/key-ideas-teaching-mathematics/spatial-relations
https://www.nuffieldfoundation.org/key-ideas-teaching-mathematics/spatial-relations
https://www.nuffieldfoundation.org/key-ideas-teaching-mathematics/spatial-relations
https://en.oxforddictionaries.com/definition/topology
https://en.oxforddictionaries.com/definition/topology
http://dx.doi.org/10.1007/s00158-014-1157-0
http://dx.doi.org/10.1007/s00158-014-1157-0
http://dx.doi.org/10.1007/978-3-662-05086-6
http://dx.doi.org/10.1017/CBO9781139524438
https://github.com/lohedges/slsm
https://github.com/lohedges/slsm

[11] Lester O. Hedges, H. Alicia Kim, and Robert L. Jack. Stochastic level-set method
for shape optimisation. J. Comput. Phys., 348:82–107, Nov 2017. ISSN 0021-9991.
doi:10.1016/j.jcp.2017.07.010.

[12] Steffen Johnsen. Structural Topology Optimization: Basic Theory, Methods and Applica-
tions. PhD thesis, NTNU, Institutt for produktutvikling og materialer, 2013. URL https:

//ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/241794.

[13] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D sur-
face construction algorithm, volume 21. ACM, Aug 1987. ISBN 978-0-89791-227-3.
doi:10.1145/37401.37422.

[14] Programmer Manual for OpenLSTO v1.0. M2DO Multiscale Multiphysics Design Optimiza-
tion Laboratory, Aug 2018. URL http://m2do.ucsd.edu/software/.

[15] Theoretical Background for OpenLSTO v1.0. M2DO Multiscale Multiphysics Design Opti-
mization Laboratory, Aug 2018. URL http://m2do.ucsd.edu/software/.

[16] Tutorial for OpenLSTO v1.0. M2DO Multiscale Multiphysics Design Optimization Labora-
tory, Aug 2018. URL http://m2do.ucsd.edu/software/.

[17] G. I. N. Rozvany. Aims, scope, methods, history and unified terminology of computer-aided
topology optimization in structural mechanics. Struct. Multidiscip. Optim., 21(2):90–108, Apr
2001. ISSN 1615-147X. doi:10.1007/s001580050174.

[18] A. Saltelli, S. Tarantola, and F. Campolongo. Sensitivity Analysis as an Ingredi-
ent of Modeling. Statistical Science, 15(4):377–395, Nov 2000. ISSN 0883-4237.
doi:10.1214/ss/1009213004.

[19] J. A. Sethian. A Fast Marching Level Set Method for Monotonically Advancing Fronts. PNAS,
93(4):1591–1595, Feb 1996. ISSN 0027-8424. doi:10.2307/38628.

[20] M. Stolpe and K. Svanberg. On the trajectories of penalization methods for topology
optimization. Struct. Multidiscip. Optim., 21(2):128–139, Apr 2001. ISSN 1615-147X.
doi:10.1007/s001580050177.

[21] Krister Svanberg. The method of moving asymptotes - A new method for structural op-
timization. Int. J. Numer. Methods Eng., 24(2):359–373, Feb 1987. ISSN 1097-0207.
doi:10.1002/nme.1620240207.

[22] Matthew Tomlin and Jonathan Meyer, Apr 2013. URL
https://www.mmsonline.com/cdn/cms/uploadedFiles/

Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.

pdf. [Online; accessed 15. May 2019].

78

http://dx.doi.org/10.1016/j.jcp.2017.07.010
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/241794
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/241794
http://dx.doi.org/10.1145/37401.37422
http://m2do.ucsd.edu/software/
http://m2do.ucsd.edu/software/
http://m2do.ucsd.edu/software/
http://dx.doi.org/10.1007/s001580050174
http://dx.doi.org/10.1214/ss/1009213004
http://dx.doi.org/10.2307/38628
http://dx.doi.org/10.1007/s001580050177
http://dx.doi.org/10.1002/nme.1620240207
https://www.mmsonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf
https://www.mmsonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf
https://www.mmsonline.com/cdn/cms/uploadedFiles/Topology-Optimization-of-an-Additive-Layer-Manufactured-Aerospace-Part.pdf

[23] Luzhong Yin and Wei Yang. Optimality criteria method for topology optimiza-
tion under multiple constraints, May 2019. ISSN 0045-7949. URL https:

//www.academia.edu/4332031/Optimality_criteria_method_for_

topology_optimization_under_multiple_constraints. [Online; accessed
13. May 2019].

79

https://www.academia.edu/4332031/Optimality_criteria_method_for_topology_optimization_under_multiple_constraints
https://www.academia.edu/4332031/Optimality_criteria_method_for_topology_optimization_under_multiple_constraints
https://www.academia.edu/4332031/Optimality_criteria_method_for_topology_optimization_under_multiple_constraints

80

Appendix

81

8.3 Appendix B1: Abaqus results

8.3.1 Listing of convergence plots for Abaqus

Figure 8.1: Case 1.1

Figure 8.2: Case 1.2

Figure 8.3: Case 1.3

Figure 8.4: Case 1.4

Figure 8.5: Case 2.1

Figure 8.6: Case 2.3

82

8.3.2 Listing of strain, mesh and model plots for Abaqus

Figure 8.7: Case 1.1

Figure 8.8: Case 1.1

Figure 8.9: Case 1.1

Figure 8.10: Case 1.2

Figure 8.11: Case 1.2

Figure 8.12: Case 1.2

83

Figure 8.13: Case 1.3

Figure 8.14: Case 1.3

Figure 8.15: Case 1.3

Figure 8.16: Case 1.4

Figure 8.17: Case 1.4

Figure 8.18: Case 1.4

84

Figure 8.19: Case 2.1

Figure 8.20: Case 2.1

Figure 8.21: Case 2.1

Figure 8.22: Case 2.3

Figure 8.23: Case 2.3

Figure 8.24: Case 2.3

85

8.4 Appendix B2: Ansys results

8.4.1 Listing of convergence plots for Ansys

Figure 8.25: Case 1.1 Compliance

Figure 8.26: Case 1.2 Compliance

Figure 8.27: Case 1.1 Volume

Figure 8.28: Case 1.2 Volume

86

Figure 8.29: Case 1.3 Compliance

Figure 8.30: Case 1.4 Compliance

Figure 8.31: Case 1.5 Compliance

Figure 8.32: Case 1.3 Volume

Figure 8.33: Case 1.4 Volume

Figure 8.34: Case 1.5 Volume

87

8.4.2 Listing of model plots for Ansys

Case 1.1

Figure 8.35: Case 1.1 p=0.1

Figure 8.36: Case 1.1 p=0.5

Figure 8.37: Case 1.1 p=0.7

Figure 8.38: Case 1.1 p=0.9

88

Case 1.2

Figure 8.39: Case 1.2 p=0.1

Figure 8.40: Case 1.2 p=0.5

Figure 8.41: Case 1.2 p=0.7

Figure 8.42: Case 1.2 p=0.9

89

Case 1.3

Figure 8.43: Case 1.3 p=0.1

Figure 8.44: Case 1.3 p=0.5

Figure 8.45: Case 1.3 p=0.7

Figure 8.46: Case 1.3 p=0.9

90

Case 1.4

Figure 8.47: Case 1.4 p=0.1

Figure 8.48: Case 1.4 p=0.5

Figure 8.49: Case 1.4 p=0.7

Figure 8.50: Case 1.4 p=0.9

91

Case 1.5

Figure 8.51: Case 1.5 p=0.1

Figure 8.52: Case 1.5 p=0.5

Figure 8.53: Case 1.5 p=0.7

Figure 8.54: Case 1.5 p=0.9

92

8.5 Appendix B3: TopOpt results

8.5.1 Listing of convergence plots for TopOpt

Figure 8.55: Case 1.1

Figure 8.56: Case 1.2

Figure 8.57: Case 1.3

Figure 8.58: Case 1.4

Figure 8.59: Case 1.5

Figure 8.60: Case 1.6

93

Figure 8.61: Case 2.1

Figure 8.62: Case 2.2

Figure 8.63: Case 2.3

Figure 8.64: Case 2.4

Figure 8.65: Case 2.5

Figure 8.66: Case 3.1

Figure 8.67: Case 3.2

Figure 8.68: Case 3.3

94

Figure 8.69: Case 3.4 Figure 8.70: Case 3.5

95

8.5.2 Listing of model plots for TopOpt

Figure 8.71: Case 1.1 Figure 8.72: Case 1.2

96

Figure 8.73: Case 1.3

Figure 8.74: Case 1.4

Figure 8.75: Case 1.5

Figure 8.76: Case 1.6

97

Figure 8.77: Case 2.1

Figure 8.78: Case 2.2

Figure 8.79: Case 2.3

Figure 8.80: Case 2.4

98

Figure 8.81: Case 2.5

Figure 8.82: Case 3.1

Figure 8.83: Case 3.2

Figure 8.84: Case 3.3

99

Figure 8.85: Case 3.4 Figure 8.86: Case 3.5

100

8.6 Appendix B4: OpenLSTO results

8.6.1 Listing of convergence plots for OpenLSTO

Figure 8.87: Case 1.1

Figure 8.88: Case 1.2

Figure 8.89: Case 1.3

Figure 8.90: Case 1.4

Figure 8.91: Case 1.5

Figure 8.92: Case 1.6

101

Figure 8.93: Case 3.1

Figure 8.94: Case 3.2

Figure 8.95: Case 3.3

Figure 8.96: Case 3.4

Figure 8.97: Case 3.5

102

Figure 8.98: Mesh size 20

Figure 8.99: Mesh size 40

Figure 8.100: Mesh size 64

Figure 8.101: Mesh size 80

103

Figure 8.102: Case 1.1

Figure 8.103: Case 1.2

Figure 8.104: Case 1.3

Figure 8.105: Case 1.4

104

Figure 8.106: Case 1.5

Figure 8.107: Case 1.5

Figure 8.108: Case 1.5

Figure 8.109: Case 1.5

105

Figure 8.110: Case 1.6

Figure 8.111: Case 1.6

106

8.7 Appendix C:

8.7.1 Ansys, APDL input file

For more information see the ANSYS Mechanical APDL Command Reference
and Chapter 2: Topological Optimization from Mechanika2.

1 / b a t c h
2 ! t e l l a n s y s t h i s i s a b a t c h f i l e
3 / f i l e n a m e , Box
4 / T i t l e , 3d Topology O p t i m i z a t i o n 4 x 4 x 1 domain
5 ! Give t h e f i l e t h e name Box
6 / u n i t s ,MPA
7 ! p a r a m e t e r s L−beam g e o m e t r i
8 x v a l =200 ! l e n g h t i n x d i r e c t i o n
9 y v a l =200 ! l e n g h t i n y d i r e c t i o n

10 z v a l =50 ! l e n g h t i n z d i r e c t i o n
11 ! p a r a m e t e r s l o a d s / b o u n d r i e s
12 xboundry =175
13 yboundry =0
14 x l o a d =0
15 y l o a d =150
16

17 / p r ep7
18 ! k e y p o i n t s f o r s q u a r e i n xy−p l a n e
19 k , 1 , 0 , 0 ,
20 k , 2 , xva l , 0 ,
21 k , 3 , xva l , yva l ,
22 k , 4 , 0 , yva l ,
23

24 l , 1 , 2 ! # l i n e 1
25 l , 2 , 3 ! # l i n e 2
26 l , 3 , 4 ! # l i n e 3
27 l , 4 , 1 ! # l i n e 4
28

29 a l l s e l , a l l , l i n e
30 a l , a l l , ! Area #1
31

32 a l l s e l , a l l , a r e a
33 a s e l , r , a r ea , , 1 , 1 ,
34 e t , 2 , 1 8 3
35 e s i z e , 2 ,
36 amesh , 1 , 1 ,
37 a s e l , a l l
38 CM, remove , a r e a

107

https://www.sharcnet.ca/Software/Ansys/16.2.3/en-us/help/ans_cmd/Hlp_C_CmdTOC.html
http://mechanika2.fs.cvut.cz/old/pme/examples/ansys55/html/guide_55/g-adv/GADV2.htm

39

40 a l l s e l , a l l , a r e a
41 a s e l , r , a r ea , , 1 , 1 ,
42 vext , 1 , 1 , , 0 , 0 , z v a l
43 a l l s e l , a l l , vo lu
44 e t , 1 , 9 5 ,
45 vsweep , 1 , 1 ,
46 a c l e a r , remove ,
47

48 MP, DENS, 1 , 7 . 8 5 e−09, ! t o n n e mmˆ−3
49 MP, ALPX, 1 , 1 . 2 e−05, ! Cˆ−1
50 MP, C, 1 , 4 3 4 0 0 0 0 0 0 , ! mmˆ2 s ˆ−2 Cˆ−1
51 MP,KXX, 1 , 6 0 . 5 , ! t o n n e mm s ˆ−3 Cˆ−1
52 MP, RSVX, 1 , 0 . 0 0 0 1 7 , ! ohm mm
53 MP, EX, 1 , 2 0 0 0 0 0 , ! t o n n e s ˆ−2 mmˆ−1 , E l a s t i c modul i
54 MP,NUXY, 1 , 0 . 3 , ! Minor Po i s son ’ s r a t i o
55 MP,MURX, 1 , 1 0 0 0 0 ,
56

57 a l l s e l
58 n s e l , r , loc , x , 1 2 5 , 1 7 5 ,
59 n s e l , r , loc , y , −0 . 0 1 , 0 . 0 1
60 n s e l , r , loc , z , 0 , z v a l
61 d , a l l , a l l
62

63 a l l s e l
64 n s e l , r , loc , x , 2 5 , 7 5 ,
65 n s e l , r , loc , y , −0 . 0 1 , 0 . 0 1
66 n s e l , r , loc , z , 0 , z v a l
67 d , a l l , a l l
68

69 FORCE=(−6000)
70 a l l s e l
71 n s e l , r , loc , x , −0 . 0 1 , 0 . 0 1
72 n s e l , r , loc , y , y load , yva l ,
73 n s e l , r , loc , z , 0 , zva l ,
74 f , a l l , fx , FORCE,
75 a l l s e l
76

77 a l l s e l
78 n s e l , r , loc , x , −0 . 0 1 , 0 . 0 1
79 n s e l , r , loc , y , 5 0 , 1 0 0 ,
80 n s e l , r , loc , z , 0 , zva l ,
81 ! f , a l l , fx , FORCE,
82 a l l s e l
83

84 l s w r i t e , 1
85 f d e l , a l l
86 / s o l u

108

87 e q s l v , pcg
88 tocomp , comp , s i n g l e , 1 ! D e f i n e s c o m p l i a n c e f u n c t i o n f o r 1 l o a d c a s e
89 !TOCOMP, Refname , Type , NUMLC , LCARR − D e f i n e s s i n g l e o r m u l t i p l e

c o m p l i a n c e as t h e TO f u n c t i o n .
90 TOVAR, comp , o b j ! S e t s c o m p l i a n c e as t h e o b j e c t i v e wi th a
91 TOVAR,VOLUME, con , , 8 5 ! volume c o n s t r a i n t w i th an upper l i m i t 15% of max

volume
92 !TOVAR, Refname , Type , LOWER , UPPER , Boundtype − S p e c i f i e s t h e

o b j e c t i v e and c o n s t r a i n t s f o r TO problem .
93 TOTYPE, oc
94 ! t o t y p e , t y p e − s e t TO method as e i t h e r OC or SCP
95 t o d e f , 0 .0005 ! s e t s c o n v e r g e n c e a c c u r a c y
96

97 / ang le , a l l , 1 3 0 ,ym, 1
98 / ang le , a l l , 0 , xm, 1
99 / ang le , a l l , 9 5 , zm , 1

100 /SHOW, png ! Pu t g r a p h i c s i n a f i l e (remove i f i n t e r a c t i v e)
101 / d s c a l e , , o f f
102 TOLOOP, 4 0 , 0 ! O p t i m i z a t i o n loop t o l o o p , Max # i t r , d i s p l a y s o l u t i o n p l o t

f o r each i t r (yes) / (no) a s 1 / 0
103

104 TOGRAPH, o b j
105 TOGRAPH, con
106 TOSTAT
107 / p o s t 1
108 t o p l o t , 0
109 / edge , , 0
110

111 ! s e c t i o n view
112 a l l s e l
113 WPOFFS, 0 , 0 , 1 0 ! O f f s e t t h e working p l a n e f o r c r o s s−s e c t i o n view
114 WPROTA, 0 , 0 , 1 8 0 ! R o t a t e t h e working p l a n e
115 /CPLANE, 1 ! C u t t i n g p l a n e d e f i n e d t o use t h e WP
116 / TYPE, 1 , 5
117 t o p l o t , 0
118

119 WPOFFS,0 ,0 ,−10 ! O f f s e t t h e working p l a n e f o r c r o s s−s e c t i o n view
120 /CPLANE, 1 ! C u t t i n g p l a n e d e f i n e d t o use t h e WP
121 / TYPE, 1 , 5
122 t o p l o t , 0
123

124 WPOFFS,0 ,0 ,−10 ! O f f s e t t h e working p l a n e f o r c r o s s−s e c t i o n view
125 /CPLANE, 1 ! C u t t i n g p l a n e d e f i n e d t o use t h e WP
126 / TYPE, 1 , 5
127 t o p l o t , 0
128

129 WPOFFS,0 ,0 ,−10 ! O f f s e t t h e working p l a n e f o r c r o s s−s e c t i o n view
130 /CPLANE, 1 ! C u t t i n g p l a n e d e f i n e d t o use t h e WP

109

131 / TYPE, 1 , 5
132 PLNSOL , topo
133 WPOFFS, 0 , 0 , 5 0
134 ! run 1 wi th 0 . 1 dens
135 ETABLE, EDENS, topo
136 ESEL , S , ETAB, EDENS, 0 . 1 , 1 . 0
137 NSLE , r , a l l
138 t o p l o t , 0
139

140 ! run 2 wi th 0 . 5 dens
141 ETABLE, EDENS, topo
142 ESEL , S , ETAB, EDENS, 0 . 5 , 1 . 0
143 NSLE , r , a l l
144 PLNSOL , topo
145 ! run wi th 0 . 7 dens
146 ETABLE, EDENS, topo
147 ESEL , S , ETAB, EDENS, 0 . 7 , 1 . 0
148 NSLE , r , a l l
149 t o p l o t , 0
150 ! run 4 wi th 0 . 9 dens
151 ETABLE, EDENS, topo
152 ESEL , S , ETAB, EDENS, 0 . 9 , 1 . 0
153 NSLE , r , a l l
154 t o p l o t , 0
155 / r e s e t
156 / d s c a l e , , o f f
157 a l l s e l
158 / ang le , a l l , 9 0 , zm , 1
159 / ang le , a l l , 1 8 0 ,xm, 1
160 / ang le , a l l ,−90 ,ym, 1
161 t o p l o t , 0
162 / ang le , a l l , 9 0 , ym, 1
163 / ang le , a l l , 9 0 , xm, 1
164 t o p l o t , 0
165

166 a l l s e l
167

168 ∗CFOPEN, modeldens , csv , , append
169 ∗GET, num elem , elem , 0 ,COUNT ! Get t h e number o f E lemen t s
170 ∗GET, elem , elem , 0 ,NUM, MIN ! Get l a b e l o f t h e f i r s t Element
171 e t a b l e , edens , t opo
172 e t a b l e , e s t r e s s , s , eqv
173

174 ∗DO, i , 1 , num elem , 1
175 ! D e f in e some p a r a m e t e r s ∗GET, Par , E n t i t y , ENTNUM, Item1 , IT1NUM , Item2

, IT2NUM
176 ∗GET, nx , elem , elem , cen t ,X
177 ∗GET, ny , elem , elem , cen t ,Y

110

178 ∗GET, nz , elem , elem , cen t , Z
179 ∗GET, dens , elem , elem , e t ab , edens
180 ∗GET, s t r e s s , elem , elem , e t ab , e s t r e s s
181

182 ∗VWRITE, elmm , nx , ny , nz , dens , s t r e s s
183 (E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3 , ’ , ’ , E10 . 3)
184 ! s e l e c t t h e n e x t e l e m e n t
185 ∗GET, elem , elem , elem ,NXTH
186

187 ∗ENDDO
188 ∗CFCLOSE
189

190 ∗GET, TOPCV, TOPO, ,CONV ! I f TOPCV = 1 (conve rged)
191 ∗GET,ECOMP, TOPO, ,COMP ! ECOMP = Compl iance Energy
192 STAT
193 save , Box , db ! Topology o p t i m i z a t i o n d a t a b a s e
194 / e o f

111

