
M
oritz M

ünch
Three-dim

ensional G
eom

etric M
odels from

 P
ictures

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Moritz Münch

Three-dimensional Geometric Models
from Pictures

An extension for the program GeoMod

Master’s thesis in Engineering and ICT
Supervisor: Sven Fjeldaas

April 2019

Moritz Münch

Three-dimensional Geometric Models
from Pictures

An extension for the program GeoMod

Master’s thesis in Engineering and ICT
Supervisor: Sven Fjeldaas
April 2019

Norwegian University of Science and Technology

For Tormod, who was a dear friend. You will always be remembered

1 av 2

 Date

Faculty of Engineering

Department of Mechanical and Industrial Engineering

Address: Org.nr. 974 767 880

NO-7491 TRONDHEIM

Norway

Email:

mtp-info@mtp.ntnu.no

https://www.ntnu.edu/mtp

MASTER’S THESIS AUTUMN 2018

FOR

STUD.TECHN. Moritz Münch

Three-dimensional Geometric Models from Pictures

Tre-dimensjonale geometriske modeller fra bilder

There is an ongoing project at NTNU aiming at generating three-dimensional geometric models
from ordinary digital pictures automatically. Software is written in the C++ programming language.
The candidate is expected to contribute to the development needed in this project.

It is reasonable to start in ordinary digital picture processing. The commonly available software
library “Open CV” appears to be suitable. The task is to find operations that can identify and mark:

 Objects against their background.

 Planar and nearly planar parts of surfaces.

Initial experiments may well concentrate on pictures of planar polyhedra made of cardboard.

Objects and planar parts are marked as monochrome regions. Pictures containing selections of
regions will be reduced to binary pictures.

The project already has satisfactory contour tracking algorithms for binary pictures. Contours of
regions still need a simplification into chains of straight-line segments, but other candidates will
handle the corresponding development.

The contours will appear as flat polygons in the YZ-plane of a three-dimensional geometric
modeler. There are now interesting challenges in developing algorithms for:

 Joining a collection of polygons into flat networks having “nodes”, “lines”, and “regions”.

o Corners from different polygons, having nearly equal coordinates, are represented by
a single “node”.

o Parallel, and nearly parallel, sides in different polygons are combined into “lines”.

o Areas of different polygons end up as regions.

 Setting the third vertex coordinates, here X, to values matching the scene photographed.
Networks will then appear as open polyhedra, having “vertices”, “edges”, and “faces”

The third coordinate values are not directly available. In some cases shading in the original picture
hold information on the orientation in space of more or less planar surface parts. In other cases it is
known a priory that some surfaces are horizontal, others are vertical. In more general cases,
angles between surfaces are known. Computing intersection between these planes can give sets
of three-dimensional coordinates. Measurements of essential positions may occasionally be
available.

Several parts of the concept for building three-dimensional geometric models from pictures will call
for iterative approaches.

 2 av 2

Norges teknisk-naturvitenskapelige universitet

Dato

August 2017

Vedlegg: Kontraktsmal

Source code with underlying mathematics and principles is made available to the candidate. This
contains business secrets, and is to be handled accordingly. A further distribution is not permitted.
The source code and the corresponding computer program shall be used to solve the given task
only. The work of the candidate gives no basis for claims directed towards the owner of the code, in
particular not claims on limitations, or claims for compensations.

This description of concepts, tasks, and limitations given above is to appear among the first pages
of the work handed in by the candidate.

Contact:

At the department (supervisor, co-supervisor): Professor Sven Fjeldaas

From the industry:

Summary
The aim of this master thesis was to create a form detection in images. Several different
filters were used to help identify and mark these forms against their background, based on
colour and intensity. The filters enabled the program to identify more complex shapes with
an increasing amount of points along their contour. The shape detection was implemented
in a Python environment using the program OpenCV. The program OpenCV provides a
lot of useful functions for detecting shapes, creating a hierarchy and drawing a shapes
outline. In order to calculate a better approximation of a shape, a method that eliminates
points that are in near proximity was implemented. This method would improve the result
for further modification and preserve precious memory. Once a shape was detected, it
was ported over to a program called GeoMod. The program GeoMod is developed by
Professor Sven Fjeldaas at NTNU and has been the basis for several master theses. The
program allows shapes to be linked in dynamically. A method to port shapes detected
by the python part into the GeoMod program was implemented in the form of a simple
read-write functionality.

Once a shape was read into the GeoMod program, it could be modified. The goal
was to make the shapes have depth in the z-direction. Here, creating three-dimensional
models of cubes were the main focus. General shapes such as rectangles and hexagons
acquired their depth by using normal-vectors. This method could give even complex
shapes a general, calculated depth and make them appear three-dimensional in the Ge-
oMod View environment. Two methods were implemented to create a relatively accurate
three-dimensional model of a cube, based on a two-dimensional image of a set view of a
cube. One of the methods was dubbed “four-points” method, requiring only four points to
create such a three-dimensional model. This method was less error-prone than the other
standard method, but it could lead to inaccuracies for length between nodes in the model.
The results of the other, standard method were more accurate, but edges between nodes
could be drawn incorrectly for some models due to an error in the relation between nodes.

This thesis produces a way to identify shapes in a two-dimensional image, calcu-
late a good approximation of its contour and port it to the GeoMod program. A three-
dimensional model of that contour can then be calculated and shown in the camera-view
of the GeoMod program.

i

Sammendrag
Denne masteroppgaven implementerer form deteksjon på bilder ved hjelp av programmet
OpenCV og programmeringsspråket Python. OpenCV programmet har en god del hjelpe-
funksjoner, som gjør det enkelt gjenkjenne former på et bilde. Flere filter hjelper til med
å separere former fra sin bakgrunn. I starten var det kun mulig å gjenkjenne veldig enkle
omriss av former, som firkanter og femkanter. Per dags dato, ved hjelp av justering av de
implementerte filtrene, er det mulig å gjenkjenne relativ komplekse former. Nivå av detalj
kan selv velges av brukeren.

Dersom en form har blitt gjenkjent, kan den bli portet over til programmet GeoMod
som lever i et C++-miljø. Programmet GeoMod er et program laget av Profesor Sven
Fjeldaas. Dette programmet har eksistert i mange år, og mange masterstudenter har jobbet
med det tidligere. Programmet støtter tegning av figurer i en kameravisning. Former
som ble gjenkjent i Python-miljøet blir lest inn i GeoMod programmet ved hjelp av tekst-
filer. Når formen er lest fra fil, kan den modifiseres. En sentral del av masteroppgaven
var å implementere en støtte for å gjenkjenne kuber i bilder og å gjøre disse kubene tre-
dimensjonale i GeoMod kameravisningen. Dette ble gjort ved at ulike beregninger ble
utført på nodene som ble funnet av Python programmet. En relativt nøyaktig modell av
en kube kunne nå bli tegnet opp i tre dimensjoner og bli påvirket i kameravisningen. To
metoder for å finne denne tredimensjonale modellen ble implementert. Ved siden av en
generell metode, ble det implementert en metode som ble kalt for ”Four-points” metode.
Denne metoden tar kun utgangspunkt i fire noder som brukes til å beregne seg fram til
en full kube. Fordelen med denne metoden var å minske sannsynligheten for feil med
kanter, men en ulempe var at avstanden mellom enkelte noder kunne være litt lengre eller
kortere enn på det originale bilde. En metode for å gi generelle former en dybde ble også
implementert. Normalvektoren mellom tre punkter beregner retningen til dybden og gjør
formen tredimensjonal.

ii

Zusammenfassung
Diese Masterarbeit implementiert eine Formerkennung in Bildern. Das Programm OpenCV
und die Programmierungssprache Python ermöglichen mittels eingebauter Funktionen die
Detektion von Formen in Bilder. Anfangs wurden lediglich einfache Formen wie Vier-
oder Fünfecke relativ problemlos gefunden. Mit Hilfe von Filtern ist es nun möglich, auch
komplexere Formen zu entdecken, beispielsweise auch solche, die ihrem Hintergrund far-
blich ähneln. Diese Formen werden durch eine ”read & write” Methode an ein Programm
namens GeoMod gesendet.

Das Programm GeoMod wurde von Professor Sven Fjeldaas entwickelt. Jahrelang
stellte dieses Programm die Basis für mehrere Masterarbeiten dar. Nachdem die Formen
von einer Textdatei gelesen wurden, werden sie in das GeoMod Programm geladen. Mit
diesem Programm können die Knoten der Formen geändert werden. Im Rahmen dieser
Arbeit ist es das Ziel, zweidimensionale Bilder von Würfeln in dreidimensionale Modelle
zu verwandeln. Um dies zu ermöglichen wurden zwei Annäherungen implementiert. Zum
Einen eine Methode, die die Tiefe des Modells durch Vektoren berechnen kann. Zum
anderen eine Methode, die nur vier Punkte benötigt, um ein dreidimensionales Modell
von einem Würfel zu erstellen. Zusätzlich ermöglicht eine weitere Methode, die Tiefe für
generelle Formen zu berechnen. Diese Tiefe wird durch Normalenvektoren berechnet. Die
Kameraansicht des GeoMod Programm ermöglicht es, die berechneten Figuren in einem
dreidimensionalen Raum zu zeichnen.

iii

Preface

A program called GeoMod has been in existence for quite a few years now. It is a
geometric modelling program created by Professor Sven Fjeldaas. It has also been the
basis for multiple master thesis. Previously, creating models for testing and use in the
program’s environment has been a tedious task. Hundreds of lines of code had to be
duplicated and modified to create the basis for a single model, and the models complexity
increased rapidly when creating it in three-dimensions.

A new solution was sought, something that would automate this task. This is where
this thesis objective comes in. This thesis’ code had the ambition to detect shapes in im-
ages, which can be loaded directly into the GeoMod environment. Creating these shapes
to be three-dimensional, would be optimal for creating obstacles and a route for naviga-
tion. But creating a three-dimensional model from a two-dimensional image as source is
easier said then done. How would one go about extracting the depth from the picture?
What assumptions can be made that can help create something three-dimensional? This
project aims to make the assumptions necessary to create a good estimation for the depth
of various shapes.

I would like to say a big thank you to my supervisor Sven Fjeldaas, who has always
provided superb guidance and help throughout the time I have known him; first through
long discussions in his office and then later over e-mail. I have learned a lot from his
insight, patience and I am very grateful for his support.

iv

Table of Contents

Summary i

Sammendrag ii

Zusammenfassung iii

Preface iv

Table of Contents vii

List of Figures x

1 Introduction 1

2 Tools and program development-platforms 3
2.1 The programming language Python . 3
2.2 The programming language C++ . 3

2.2.1 Headers and sources . 4
2.2.2 Pointers . 4
2.2.3 Inheritance . 5
2.2.4 Function overloading . 5
2.2.5 Recursive function . 6

2.3 Development Tools . 6
2.3.1 Qt . 6
2.3.2 Jupyter . 6
2.3.3 OpenCV . 7
2.3.4 Numpy . 7

2.4 Dynamic Linking . 7

3 Image Manipulation 9
3.1 Source Images used for testing . 9
3.2 Image Manipulation . 11

v

3.2.1 Gaussian Blur . 11
3.2.2 Bilateral Filter . 11
3.2.3 Eroding and dilating . 12
3.2.4 The Canny Edge Detection algorithm 12

3.3 Colour correction . 13

4 Useful functions for shape detection 17
4.1 Creating a threshold . 17

4.1.1 The threshold function . 17
4.1.2 The findContours function . 18
4.1.3 The approxPolyDP function . 18
4.1.4 The drawContours function . 20

5 Detection of shapes 21
5.1 Communication between the two programs 21
5.2 Implementation of shape detection . 21
5.3 The inner contents of a shape . 24
5.4 Combining points . 26
5.5 Drawing the generated model . 29
5.6 Writing to file . 32
5.7 Difference between a single model and multiple models in an image . . . 34
5.8 The Four-Points Method . 35
5.9 Finding and identifying nodes in contours 36

5.9.1 Identifying the middle node . 38
5.10 Main method . 40
5.11 Trackbars and the control panel . 41
5.12 Runtime of the python program . 43

6 Creating three-dimensional models in the GeoMod program 45
6.1 Reading from file . 45
6.2 Creating a depth for models . 47

6.2.1 Finding the direction and distance of the depth point 48
6.2.2 Finding the coordinates of the new depth point 50

6.3 Creating a three dimensional cube . 52
6.3.1 Creating right angles between edges 54
6.3.2 Finding the missing points by calculation 55
6.3.3 Creating regions . 58

6.4 The four-points method . 59
6.5 Estimating the volume for a polygon . 61

7 Results 63
7.1 Results of creating generic models . 63
7.2 Three dimensional cubes . 66
7.3 Cubes created by the four-points method 69
7.4 More complex shapes . 69
7.5 Multiple models in one image . 71

vi

8 Application, challenges and future work 73
8.1 Potential applications in the real world 73
8.2 Challenges . 74
8.3 Future Work . 75

9 Conclusion 77

Bibliography 77

Appendix 1
1.1 Risk assessment . 1
1.2 Saving last read path to file . 1
1.3 Installation Guide for Qt Creator (5.9.1) and Visual Studio 2017 1

1.3.1 Part 1: Installing Qt Creator . 1
1.3.2 Part 2: Installing Windows Visual Studio and a QT plug-in 2
1.3.3 Part 3: Installing the Qt plug-in in Windows Visual Studio 3

1.4 More results . 5

vii

viii

List of Figures

3.1 Simple shapes that were used to lay some groundwork 9
3.2 These images were the basis for the construction of a 3D model 10
3.3 More advanced images in need of colour manipulation 10
3.4 Images with multiple shapes . 10
3.5 Images with multiple shapes . 11
3.6 Showing the effect of the Gaussian Blur 11
3.7 Effect of dilation and erosion . 12
3.8 Picture showcasing the drastic effect the Canny Edge Detection Algorithm

has on a picture. Left without-, right with Canny Edge Detection 13
3.9 The control panel for the sliders for colour correction 14
3.10 With and without colour correction . 14

4.1 Binary image with a low epsilon value 19
4.2 Binary image with a high epsilon value 19
4.3 The window displaying the threshold image where the contours have been

drawn by the drawContours function. This figures source is a simple rect-
angle, as shown in figure 3.1a . 20

5.1 Detection of a simple shape . 22
5.2 Hierarchy array example . 24
5.3 List Of hierarchy with duplicates as empty lists 25
5.4 Binary picture of a cube where a hexagon as external structure was de-

tected and three rectangles on the inside were detected 27
5.5 This image shows how nodes are added together. Each index in this array

is a contour with x amount of edges . 28
5.6 A list which keeps hold of which nodes connect to each other 30
5.7 This is how the blank black image looks like after lines and the node num-

ber have been drawn . 31
5.8 Difference between allowing multiple shapes and not allowing multiple

shapes . 34

ix

5.9 Output of final edges identified when multiple shapes are allowed 35
5.10 Output of final edges when forcing to detect only one model 35
5.11 The four points needed to use the four-points method 36
5.12 Visual representation of how many times a line crosses the shape of a

polygon [22] . 38
5.13 Alternative method to finding the middle node with a line changing its

value upon crossing an edge [21] . 40
5.14 The output of both methods. The Ray Casting algorithm has two results,

the alternative method only one . 40
5.15 Main control panel used to change values for image recognition 42
5.16 Sliders used to manipulate the colours in the image 43
5.17 Blank, white image giving an overview over shapes identified in a picture 43

6.1 Asking the user if a three-dimensional model should be created 47
6.2 Generic three-dimensional models of 2D pictures 52
6.3 This image of a 2D cube is the basis for the 7 nodes, from 0 to 6 53
6.4 Two vectors created from the points AC and AB. The coordinates of point

D are unknown . 56
6.5 A 2D image has become three-dimensional 59
6.6 Using the four-points method . 61
6.7 This is what the output looks like. These values were found for the simple

rectangle in figure 3.1a . 62

7.1 A normal rectangular shape . 64
7.2 Multiple shapes in a single image . 65
7.3 Process of creating a three-dimensional cube-shaped model out of a simple

cube . 66
7.4 A red cube is transformed into a three-dimensional mode 67
7.5 Colour modification used to find the edges of the cube 68
7.6 Pictures showing the result of the four-points method 69
7.7 The fish image with different slider values 70
7.8 The image on the right is preferred over the one on the left 70
7.9 Multiple models loaded into the camera view 71

8.1 Generic three-dimensional models of 2D pictures 74
8.2 An example run in TensorFlow that tries to differentiate between a cat and

a dog in a picture. Not every picture was recognised perfectly. The basis
were 10000 pictures of cats and dogs to train the model 75

1.1 Qt version . 2
1.2 Run error . 2
1.3 SDK selection . 3
1.4 A more complex shape of a heart . 5

x

Chapter 1
Introduction

Today in the age of technology, object recognition is getting more and more influential
and essential. Trends to equip cell phones with multiple cameras in order to be able to
recognize objects and depth have started to take over the mobile phone industry. Unlocking
your phone with your face has become a reality and is used by people all over the world.
AI cameras can recognize objects in the real world and help with useful tasks based upon
what is recognized. Not even mentioning the role it plays within the surveillance sector.
For most people, object recognition has become a part of everyday life without them even
realising it.

This project implements the foundations of object recognition. Recognizing simple
shapes and drawing them up in a separate view are the basis for most object recognition
used today, and that is also how this project started. Once the groundwork has been laid,
more complicated operations can be implemented, and it can be scaled until it could even-
tually be compared to something similar that is used by the big technology companies
today.

Creating a three-dimensional model from a two-dimensional image is a challenging
task. All approaches used today to create three-dimensional objects, use multiple images,
sonar or images that contain a distance in each pixel. Even humans have two eyes to easier
estimate depth. But even when using only eye, humans can still estimate depth to a certain
extend. This is due to prior knowledge about an object or its surrounding. The shadow
created by a light source, the objects shape, the objects size or its proximity to other objects
of a known size can give an estimation of depth in a single image. This information is
often called “a priori” information, knowledge which exists about an unknown object due
to previous experiences. By using this “a priori” information, estimations of an objects
shape, size and depth can be made, and three-dimensional model can be created. This
approach is used in this thesis to create cubes from images.

In this thesis this approach is used to create cubes from images. The GeoMod pro-
gram is used as a geometric modelling tool. This program can display a shape in a three-
dimensional space, and it can modify and interact with the model. A potential calculated
approximation for a three-dimensional model can be viewed and modified with the help of

1

Chapter 1. Introduction

the GeoMod program. The program already has a way to create and load two- and three-
dimensional models. This method was quite inconvenient and resulted in lots of code
being copied. Recognising the shape in an image and creating it directly in the GeoMod
program could help automate this process.

The aim of this thesis therefore is to automate the creation of shapes and three-dimensional
models in the environment of the GeoMod program through the detection of shapes in an
image.

2

Chapter 2
Tools and program
development-platforms

In this chapter, the tools to develop the code for this thesis are introduced. In this thesis
two programming languages were used, Python and C++. A brief introduction of the two
languages are given below, as well as some relevant functionality that was used.

2.1 The programming language Python

Like C++, Python is a high-level programming language. It is relatively young compared
to some other programming languages, as it was released in 1991. In a few words, Python
is an object-oriented, functional, imperative and procedural language and it comes with a
large library. The main philosophy behind its design is code readability, for which it has
become famous for. Line indents and white-space make this language very easy to read
and it is therefore often used as an entry language for beginners in programming. A few
of its aphorisms are therefore:

”Beautiful is better than ugly”
”Simple is better than complex”

”Readability counts”
”Complex is better than complicated”

”...” [2]

2.2 The programming language C++

C++ is a much older programming language than Python. It was originally designed by
Bjarne Stroustrup in 1984 and is also an object-oriented language. Since C++ builds upon
the programming language C, it uses many components from C. When it was first released,

3

Chapter 2. Tools and program development-platforms

it introduced new features that differentiated it to its C language origin such as classes,
member functions and much more.

Pointers are a central part of the C++ language. Pointers let you access addresses
in memory and manipulate the content of these addresses. Using pointers effectively will
result in powerful programs with high efficiency and effectiveness. Drawbacks of not using
them correctly may be memory leaks or unattainable code. Pointer are used frequently in
the GeoMod program.

2.2.1 Headers and sources
Information that is re-used multiple places in a code, and which has to be exactly the same
for each use scenario is placed in the header file. This saves both time re-copying already
implemented information and it eliminates the chance for errors during duplication.

The header file tells the compiler about the function names, return types and parame-
ters. The C++ header file is usually included in the source file with an include statement
at the top. For the compiler, the include statement is substituted by the content of the file
that is included in the include statement.

The source file contains the code functionality of the program. Using header and
source files gives a clearer and more easily readable code. Source files can include multiple
header files and therefore extend its functionality. GeoMod showcases this method of
implementation really well. This short code snippet shows how a file in the GeoMod
usually imports necessary functions.

1 / / GeoMod h e a d e r f i l e s , o t h e r d i r e c t o r i e s :
2 # i n c l u d e ” . . / . . / . . / . . / MaxLib / math / vec . h ” / / To have a c c e s s t o t h e

s u b r o u t i n e s s e t and g e t f o r IDMthVec g r a v i t y C e n t e r .
3 # i n c l u d e ” . . / . . / . . / . . / MaxLib / ne t G / geomnode . h ” / / Geomet r i c nodes .
4 # i n c l u d e ” . . / . . / . . / . . / MaxLib / math / e x t b a s . h ” / / Ex tended b a s i s .
5 # i n c l u d e ” . . / . . / . . / . . / MaxLib / n e t T / t g r o u p . h ” / / T r a n s f o r m a t i o n group .
6 # i n c l u d e ” . . / . . / . . / . . / MaxLib / a l l v i e w s / a l l v i e w s . h ”
7 # i n c l u d e ” . . / . . / . . / . . / MaxLib / d i s p l a y s / p a l e t t e . h ”
8 # i n c l u d e ” . . / . . / GeoMod / p a t h d e s / g e o m p a t h d e s / p a t h . h ”

Listing 2.1: Header example

2.2.2 Pointers
Pointers are a central part of the GeoMod program and the programming language C++.
Pointers allow the access of addresses and they can manipulate the content at these ad-
dresses directly. Pointers contain an address pointing to a location in the memory where
the data is stored, they do not contain the representation of data themselves. To declare a
new pointer, in C++ the symbol is used. This line creates a pointer to a double and a char.

1 double *pointer1;
2 char *pointer2;

Listing 2.2: Pointer example

To create a pointer which points to a value in the memory, it can be done like this.

1 double temp = 3.14; //variable declaration
2 double *pointer3; // create pointer
3

4

2.2 The programming language C++

4 pointer3 = &temp; // stores the address of temp at the address of the pointer

Listing 2.3: Pointer example with value

This pointer now points to an address in the memory which contains the value 3.14.
This value can be accessed by using *pointer3. If the value of the pointer would be
changed such as here in listing 2.4

1 *pointer3 = 2;

Listing 2.4: Changing the value

the content of the address would be changed to 2, and the variable temp would also now
have the value 2.

2.2.3 Inheritance
Like other programming languages inheritance plays a big part in C++. Inheritance re-
moves the need to duplicate code and enables the ability to reuse functions shared by
different objects and classes. In programming the class that inherits lines of code is called
the child class or subclass. The source class which provides the code that is inherited, is
called the parent class or superclass. After inheriting, the child class has the same func-
tionality as its parent class, and it can extend its functionality even further by defining its
own functions. C++ allows inheritance from abstract classes or interface classes. Each
child class that inherits from an abstract parent class has to contain the function of the
abstract class and implement their functionality as well. An example of that is this code
snippet taken from the GeoMod program:

1 p u b l i c :
2 v i r t u a l P l u g i n I n t e r f a c e * n e w I n s t a n c e () = 0 ; / / Implemented i n ' cube1 . h / . cpp ' e t c .
3 / / C a l l e d from ' p l u g i n f a c t o r y . h − i n s t a n t i a t e P l u g i n (. .)
4 v i r t u a l vo id d e l e t e I n s t a n c e () = 0 ; / / Not t e s t e d y e t .
5 / / C a l l e d from ' p l u g i n f a c t o r y . h − d e l e t e P l u g i n S t r u c t (. .)
6 / / v i r t u a l Q S t r i n g Name () = 0 ;
7 v i r t u a l Q S t r i n g getName () = 0 ; / / Implemented i n ' c u b e 0 1 i f . h / . cpp ' e t c .
8 v i r t u a l vo id f o r w a r d C e n t r a l P (C e n t r a l * c e n t P) = 0 ; / / Implemented i n ' c u b e 0 1 i f .

h / . cpp ' e t c .
9 v i r t u a l vo id f o r w a r d G l o b a l P o i n t e r (vo id (* f u n c t i o n P t r) (vo id)) = 0 ; / /

Implemented i n ' c u b e 0 1 i f . h / . cpp ' e t c .
10 v i r t u a l vo id forwardDatBsManP (DataBsManagerWidget * dbsP) = 0 ; / / Implemented i n '

c u b e 0 1 i f . h / . cpp ' e t c .

Listing 2.5: Virtual functions from the pluginInterface class

2.2.4 Function overloading
Function overloading is another feature that C++ supports. Function overloading means
that multiple functions in a class can have the same name. They are uniquely identified by
what parameters they take as an input. The input decides which function implementation
is used if the function has multiple implementations. The example below shows two func-
tions with the same name. The first takes an int as input, the other takes a double as input.
Calling the print function with a double as an argument, would invoke the function at line
6.

5

Chapter 2. Tools and program development-platforms

1 c l a s s p r i n t D a t a {
2 p u b l i c :
3 vo id p r i n t (i n t i) {
4 c o u t << ” P r i n t i n g i n t : ” << i << e n d l ;
5 }
6 vo id p r i n t (do ub l e f) {
7 c o u t << ” P r i n t i n g do ub l e : ” << f << e n d l ;
8 }
9 } ;

Listing 2.6: Function overloading example

2.2.5 Recursive function
A recursive function is a function which calls upon itself during its execution [4]. These
functions are common in Computer Science because it allows for very efficient program-
ming with a minimum amount of code. Programming the Fibonacci sequence [5] with
recursion is a very good example.

1 i n t f i b (i n t n) {
2 i f (n <= 2) r e t u r n 1
3 e l s e r e t u r n f i b (n−1) + f i b (n−2)
4 }

Listing 2.7: Fibonacci sequence with recursion

Here the important line is line number 4, where the function calls itself again twice, to
calculate the next Fibonacci number.

2.3 Development Tools

2.3.1 Qt
In order to compile, edit and write code for the GeoMod program, the Integrated Develop-
ment Environment (IDE) Qt Creator [27] was used in combination with the programming
language C++. The main reason for using the IDE Qt, is that it offers cross-platform de-
velopment. This means that the program should be able to compile on macOS, Linux and
Windows if the application Qt Creator is installed on those operating systems. In addition
to cross-platform development, Qt offers a big library with useful tools for the developer.
Its UI elements are today widely used in application for almost every modern OS imagin-
able.

To get Qt to work with a Windows PC on a free license was not as straight forward as
one might think, so in the appendix an installation guide is included to help future readers.
The creators of Qt are releasing continuously updates for its software, which is not always
helpful as it has given a break in compatibility with the GeoMod program.

2.3.2 Jupyter
To compile and edit the Python part of the code, a program called Notebook was used.
Notebook is part of an open source project called Project Jupyter [28]. It is free to use with

6

2.4 Dynamic Linking

an easy layout and good support for many programming languages, especially Python.
Notebook is a web-based interactive computational environment which uses the JSON-
format to store its code. This also makes it quite easy to convert code into other formats.
Since it is web-based it can be run in your preferred web-browser (Chrome in this thesis’
case).

2.3.3 OpenCV
OpenCV (Open Source Computer Vision Library) [29] is an open source computer vision
and machine learning software library. Originally developed by Intel, it is cross-platform
and free to use. As with Qt it was important that the computer vision program used for this
thesis is free to use and cross-platform compatible. Since OpenCV has a lot of algorithms
for picture manipulation, in fact more than 2500, it is an effective tool for manipulating and
analysing images. Especially the contour algorithms, which OpenCV implements have
been instrumental in this thesis. OpenCV is being used by well-established companies
such as IBM, Toyota and Google, which attests to the high quality of the program. This
is very assuring that everything OpenCV provides is of the highest quality. The OpenCV
community is very large and answers to possible questions can be found on various support
websites. Since OpenCV is based on C and C++ it is very well optimised, which gives
acceptable run-times even with large data on an average laptop.

2.3.4 Numpy
Numpy is a package extension for Python. It is used in this project for the shape detection
part using built in functions from the OpenCV environment. Numpy arrays support n-
dimensional array objects, linear algebra, Fourier transformations and much more [12].

2.4 Dynamic Linking
The programming language C++ allows a program to extend itself during run-time by
using dynamic linking. Dynamic linking includes the name of the external libraries, but
they are first linked into the executable during run-time when both the libraries and the
executable file are placed into memory. Only a single copy of the shared library is kept in
memory, and that reduces the size of the executable file significantly.

The biggest difference between static and dynamic linking is that if something changes
in the code of the static linked library, the executable file has to be re-linked and recompiled
all over again, otherwise the changes wont be applied. This is not necessary in dynamic
linking. Individual external modules can be changed, recompiled and added during run-
time of the executable file.

Dynamic linking is mentioned here because it plays a big role in the GeoMod program.
Both the camera view and the generated model frequently mentioned in this thesis are
linked in dynamically. This gives the generated model class a huge advantage of being
able to change while the program is running.

7

Chapter 2. Tools and program development-platforms

8

Chapter 3
Image Manipulation

3.1 Source Images used for testing

In this section the test images that are used to build this program are introduced. The goal
from the beginning was to transform shapes from images and plot them inside the camera
view of the GeoMod program. Simple shapes such as rectangles, hexagons and triangles
were used to lay a groundwork (3.1).

(a) Simple rectangle used as test images

(b) Simple hexagon shape

Figure 3.1: Simple shapes that were used to lay some groundwork

After the groundwork was laid, shapes in three dimensions were built upon that foun-
dation. Cubes were the central focus of this thesis. Images of cubes with a special layout
were chosen such that three sides of the cube could be identified on the image. Figure 3.2
demonstrates two typical sample images that were used in the early stages of the thesis.
As seen on those images, each side has a different colour, making it easier to identify the
border between each rectangle plate.

Next cubes with one uniform colour, the sides differing only due to the effect of shad-
ows, are introduced. The figures 3.3 show these more challenging images. These images
were a lot harder to analyse and work with, and here the importance of colour manipulation
was central.

9

Chapter 3. Image Manipulation

(a) Simple picture of a cube (b) Simple picture of a cube with black back-
ground

Figure 3.2: These images were the basis for the construction of a 3D model

(a) Cube with black sides (b) Cube with red sides

Figure 3.3: More advanced images in need of colour manipulation

Supporting the recognition of multiple shapes in one single image has always been
very central throughout this project. This made the work a lot more complicated. Here are
two images used for testing multiple shapes in one image, figure 3.4.

(a) Simple shapes in one image

(b) More advanced shapes in one image

Figure 3.4: Images with multiple shapes

At the end more irregular shapes were tried to be modelled in the GeoMod environment
such as a fish (fig 3.5a), and a heart (fig 3.5b). The results will be shown later on (chapter
7).

10

3.2 Image Manipulation

(a) Picture of a fish
(b) Picture of a heart

Figure 3.5: Images with multiple shapes

3.2 Image Manipulation

Before shapes can be detected on an image, it is advised to perform various manipulations
on it first. This will make it a lot easier to detect shapes and objects. It will also save a lot
of memory space since the number of possible pixels for calculations is greatly reduced
after applying various filters.

3.2.1 Gaussian Blur
One of the filters applied to the image is called Gaussian Blur which is a very common
and effective filter method. Gaussian Blur is often applied in professional photo editing
software such as Photoshop. First a Gaussian distribution is created and the distribution is
then used to create a convolution Matrix [50]. Here, the distance between each point will
have an effect on the weight of the pixel. The further the distance, the less it weighs upon
its neighbours. Later on in this paper, the Canny Edge Detection algorithm is applied to
images, which also includes a form of Gaussian Blur. Here is a picture showcasing the
Gaussian Blur effect on one of the test picture.

(a) Without Gaussian Blur (b) With Gaussian Blur

Figure 3.6: Showing the effect of the Gaussian Blur

3.2.2 Bilateral Filter
Another filter that was applied was the Bilateral Filter, which reduces unwanted noise
while keeping edges sharp. Like Gaussian Blur this filter is quite slow, but since run-time

11

Chapter 3. Image Manipulation

was not a really relevant factor in this thesis, both filters are applied to the image. The
user can adjust the value of the sigma variable used in this function. The sigma variable
determines how pixel influence each other over distance. The increase in the sliders value
is proportional to the distance of pixel, a larger value means pixel over a greater distance
influence each other.

3.2.3 Eroding and dilating
Eroding and dilating the image turned out to have a great effect on the image. By eroding
the image, the borders of the shapes increase in size. This is due to the picture being
in binary format and the brighter areas of the image getting thinner while border of the
image is being pushed outward. Dilating does the opposite; it decreases the border size of
the shapes in a picture. Here the user also can choose the iteration count of dilation and
erosion. As default the image is eroded and dilated two times. This has proven to give
a good initial result on all the test images. Shapes with many points benefit greatly from
erosion and dilation to simplify their shape.

(a) Binary image with dilation of 2 (b) Binary image with erosion of 4

Figure 3.7: Effect of dilation and erosion

3.2.4 The Canny Edge Detection algorithm
The Canny Edge Detection algorithm is important for detecting shapes and their outline.
This algorithm has multiple stages, the first being noise reduction in form of Gaussian
Blur, which has been mentioned earlier.

After removing the noise, the edge gradient and direction for each pixel is found. This
is done by filtering the image with a Sobel kernel, to get the derivative in the horizontal
and the vertical direction. A gradient direction has to be perpendicular to the edges. A full
scan of the image will then reveal all pixels that are not considered to be part of an edge.
These pixels are then suppressed by setting the pixel value to zero.

For the last stage, the pictures threshold is determined for what values identify a pixel
as an edge. A maximum and minimum value will determine whether a pixel is to be
considered an edge or not. If it lies outside the threshold, but it is connected to a point that
is known to be part of an edge, it will be considered to be part of an edge. Otherwise its
value will be zero. Both the minimum and maximum of the threshold can be changed by
the user. This is done by using the sliders created by this thesis’ python code. Changing

12

3.3 Colour correction

the values of the maximum and minimum slider will have a drastic effect on the output of
the image. By default, the minimum limit is set to 50 and the maximum to 100. This has
proven to be a good scale for most images. The effect of the Canny Edge Algorithms is
shown in the image below (Figure 3.8).

Figure 3.8: Picture showcasing the drastic effect the Canny Edge Detection Algorithm has on a
picture. Left without-, right with Canny Edge Detection

3.3 Colour correction

Colours have a huge impact on how we humans can recognise and see objects and shapes
in nature. Something with a bright colour will instantly stick out of its environment. That
effect is widely seen in nature and applied by plants and animals alike. Humans have
throughout history also learned how to use colours to manipulate their surroundings. But
what meaning do colours have for a machine? Can it differentiate between a black and
white image and one with colours? And will colours have an impact on how a machine
can recognise objects and shapes in an image? This questions will be explored throughout
this thesis.

Colours in an image are most commonly represented by the RGB colour space. The
RGB colour space consists of all the colours which the triangle of the red, green and blue
colours can produce. These colours are the primary colours of light. Mixing more colours
together in the image will give a lighter image and in the end a white image.

Other format for representing colours in images are the HSL and HSV colour spaces.
The HSL stands for Hue, Saturation and Lightness, while HSV stands for Hue, Saturation
and Value. These colour spaces are just transformation of the RGB values, using simple
equations to convert them into the colour spaces. So why do these colours spaces exist and
why was the HSV colour space chosen for this project rather than the RGB colour space?

The answer is simple; the HSV and HSL colour spaces are much more user friendly
than the RGB spectre. It makes a lot more sense for us humans to change a value in the
saturation range and see the intensity of the colour change, instead of trying to figure out
a lighter shade of orange by adding and subtracting values for red, green and blue.

By using the python program, the user can easily change all values the HSV colour
space includes. Six sliders represent the minimum and maximum value of hue, saturation
and value. By adjusting these sliders, the OpenCV shape detection implementation can

13

Chapter 3. Image Manipulation

detect edges and shapes previously not possible. This is true especially for dark images
with shadows, or colours that are very similar.

Figure 3.9: The control panel for the sliders for colour correction

The Graphical User Interface of OpenCV does not allow for a lot of customisation, so
this panel of sliders (Figure 3.9) is the simplest version available.

For testing, an image of a dark cube was used. The sides of the cube are all variations
of black and grey. When not using the colour correction option created for this thesis, only
the hexagon outline of the cube can somewhat be determined. The background of the cube
is recognised to be part of the cube shape as well. When using the sliders and adjusting
the intensity of colours and their lightness, the program can find lines connected the sides
of the cube and in the end a good approximation of a cube can be created.

(a) Standard shape detection without colour cor-
rection (b) Shape detection with colour correction

Figure 3.10: With and without colour correction

A cyan coloured line highlights the edges found in the pictures shown in figure 3.10.
A close look at figure 3.10a will show that the contour of the rectangle that makes up the

14

3.3 Colour correction

picture is recognised as a shape. A cyan outline is drawn around that rectangle. In figure
3.10b, where colour correction is applied, the background of the cube is not recognised to
be part of the shape. The colour detection can also detect all lines correctly, such as the
bottom right line and the right line which are not recognised in the picture on the left. The
top right corner of the rectangle in the left picture is missing a few points to connect the
lines as well. This is not the case in the picture where colour correction is applied.

15

Chapter 3. Image Manipulation

16

Chapter 4
Useful functions for shape
detection

4.1 Creating a threshold
This chapter gives a short introduction to functions used in the OpenCV environment.
Most of these functions solve complex tasks on only a single line. The functions inputs
and outputs are explained to give a short overview of what these functions accomplish.
Before using these functions on an image, it is advised to apply the filters mentioned in
chapter 3 for a better result.

4.1.1 The threshold function
To find a fixed-level threshold for each array element in the picture, something that needs
to be done before applying a contour detecting algorithm, either a OpenCV function called
threshold() or the Canny Edge Detection algorithm can be used. Both were considered and
tested. Since the threshold function only considers the intensity for each pixel value, the
Canny Edge Detection algorithm is better suited for more complex images. Although test
images for this project were rather simple, it is good practice to lay a groundwork for
more complex tasks in the future. The run-time for both methods does not differ much,
especially not in this thesis’ scope.

1 , t h r e s h o l d = cv2 . t h r e s h o l d (t h r e s h o l d o n e , 240 , 255 , cv2 . THRESH BINARY) # c r e a t e s t h e
t h r e s h o l d o f t h e image

Listing 4.1: Threshold function

The implementation of the threshold function is shown in listing 4.1. Although this
function is not used, it still exists in the current code, but it is commented out. The func-
tions first input is the image we want to process. This image needs to be a grayscale image
and it will then be converted by the function into a bi-level binary picture. The objects
of interest in the image are white while the background is black. The other inputs are the

17

Chapter 4. Useful functions for shape detection

values for the threshold. Here the values 240 to 255 are used for binary pictures. The last
input is the style of threshold. There are different styles of threshold suited for different
kind of situations. Worth mentioning is the adaptive threshold function that OpenCV also
provides. This function is suited when the image has varying illumination. This function
could be considered for future extensions.

4.1.2 The findContours function
Next up is the findContours function [13]. As the name suggests, it finds contours on an
image, more precisely it finds white objects on a black background. It is important that
the image is in binary format before it is fed as input to this function. The findContour
function takes three arguments as input. The first being the source image, the second the
mode for contour retrieval and the third is the contour approximation method. It also has
three outputs; the first is a modified image, the second are the contours found in the image,
and the third is the hierarchy of contours found in the image. The last two outputs were
very central in finding shapes and their relation to each other. The functions modes and
outputs are explained in more detail later in section 5.3.

1 , c o n t o u r s , h i e r a r c h y = cv2 . f i n d C o n t o u r s (t h r e s h o l d , cv2 . RETR TREE , cv2 .
CHAIN APPROX SIMPLE) # f i n d s t h e c o n t o u r s and t h e h i e r a r c h y of t h e c o n t o u r s based
on t h e t e m p l a t e

Listing 4.2: Find contour function

4.1.3 The approxPolyDP function
To approximate a polygonal curve OpenCV has a function called approxPolyDP which
does most of the work [13].

1 approx = cv2 . approxPolyDP (cn t , e p s i l o n , True)

Listing 4.3: Approximation of a polygonal function

The first input for the approxPolyDP function is a single contour, a numpy array, of many
that were found by using the findContours function. Here, by definition, a contour is a
curve joining continuous points having around the same colour or intensity. From here on
out the word ”contour” and the word ”model” will be used interchangeable.

1 e p s i l o n = (cv2 . g e t T r a c k b a r P o s (' e p s i l o n ' , ' s l i d e r s ') / 1 0 0 0 0) * cv2 . a r c L e n g t h (cn t , True) #
e s t i m a t e s an e p s i l o n t o a p p r o x i m a t e a po lygon

Listing 4.4: The epsilon parameter

The next parameter is for specifying the maximum distance between the original curve
and the curves approximation. This parameter is often called Epsilon. The epsilon param-
eter gets its value by multiplying a constant with the arc length of the current contour. The
value of Epsilon usually ranges between 1-5% of the original contour perimeter, which was
found by using the arcLength function on the current contour. Upon running the program,
the user can adjust the value to a range between 0,002 and 0,03. This range was found
to give the most differences in results. Too low of a limit would on occasion exceed the

18

4.1 Creating a threshold

programs memory. Below are images showcasing the difference that the value of epsilon
makes. The original image is figure 3.4a. while the modified image is shown in figures 4.1
and 4.2. Usually a lower value for epsilon will increase the amount of points, making it
useful for complex, unusual structures. For simple shapes, a high epsilon is better suited.

Figure 4.1: Binary image with a low epsilon value

Figure 4.2: Binary image with a high epsilon value

The last variable in the approxPolyDP function is a Boolean. The Boolean specifies
that if the approximated curve is closed, the first and last vertices are connected with each
other.

19

Chapter 4. Useful functions for shape detection

4.1.4 The drawContours function
To draw the contours that were found, OpenCV provides a built-in function. It is called
drawContours, and it can be used to draw a shape if the shapes boundary points are pro-
vided [13]. Its first input is the source image. Next is the contour in the form a list, and the
third argument is the index of the contour. The last inputs are the colour and thickness of
the contour drawn.

1 cv2 . d rawContours (t h r e s h o l d , [approx] , 0 , (2 5 5) , 1)

Listing 4.5: The drawContour function

With the help of OpenCV, getting the initial coordinates for edges in a shape is rel-
atively easy. The built-in functions are very useful and this is not by mere coincidence.
Using Open CV is therefore a very efficient way of doing shape detection.

Figure 4.3: The window displaying the threshold image where the contours have been drawn by the
drawContours function. This figures source is a simple rectangle, as shown in figure 3.1a

20

Chapter 5
Detection of shapes

5.1 Communication between the two programs

This project already had a complicated start, since it was impossible to get OpenCV to
work with Qt. In theory it should work, and there are many tutorials showcasing how to
install them along side each other. But in the end, two separate programs had to be used.
Jupyter Notebook with OpenCV and Qt with the GeoMod program.

To be able to let both programs communicate with each other, a write and read from file
system was created for both programs. The OpenCV side would detect shapes, manipulate
and modify the shapes coordinates and write them to file. The GeoMod side would read the
data from file and create models in its environment. This was a tedious way to connect the
programs, and in retrospect, more time should have been spent to somehow get OpenCV to
work with the Qt application. But after already losing 3 weeks to that fruitless endeavour,
a simple read and write from text files solution was implemented.

The read and write functionality is explained in more detail later on in section 5.6. The
communication system was not made extravagant on purpose, since future work should
consist of porting the python and OpenCV functionality over the Qt side. More on that on
the future work section 8.3.

5.2 Implementation of shape detection

Like all other projects that venture out into something untested, starting small and easy is
important to not get lost. Shape detection was therefore first applied on simple objects and
shapes. Easy to detect rectangles, triangles and hexagons were part of the first iteration of
test images.

The functions used to detect outlying shapes were mentioned in chapter 4. Using these
functions, it was a rather straight forward task to get the first outline of a shape.

After applying the Canny algorithm, the code started detecting duplicates for every
single outline. By summing the value of the outlines coordinates and comparing it to the

21

Chapter 5. Detection of shapes

previous shapes summation we could determine if the current shape is a duplicate of the
previous one. A threshold of two times the length of the approximation was used to filter
out the duplicates. This turned out be a good estimate for almost every model, so a slide
for manual user input was not implemented.

1 approx = cv2 . approxPolyDP (cn t , e p s i l o n , True)
2 # t o check of a l m o s t d u p l i c a t e s e x i s t s w i th j u s t a v a r i a t i o n o f a few p i x e l , we check

i f t h e sum i s a l m o s t t h e same as t h e n e x t o b j e c t (p o s s i b l e d u p l i c a t e)
3 i f (n o t (abs (np . sum (approx . r a v e l ()) − np . sum (l a s t A p p r o x)) < 2* l e n (approx))) :
4 i f (cv2 . c o n t o u r A r e a (c n t) > (cv2 . g e t T r a c k b a r P o s (' Area Of O b j e c t s ' , ' s l i d e r s '))) : #

on ly shows t h e s h a p e s wi th an a r e a b i g g e r t h a n what t h e u s e r c h o o s e s on t h e
s l i d e r

5 #

Listing 5.1: Main code for detection of shapes

The code snippet is taken from the part of the code that finds the contours. It can be
found inside the loop that edits each contour. Line 3 filters out the duplicates by summing
and and taking the absolute value of the current and last approximation of a polygon curve.
Using the methods described in the chapter 4 an outer contour has now been found.

At this point an outer shape like in figure 5.1b could be found from a simple test
picture.

(a) Original picture of a hexagon shape with a
cyan outline highlighting the shape found

(b) The contour detected of that hexagon picture

Figure 5.1: Detection of a simple shape

After successfully finding a outer shape, it was time to write the shapes coordinates to
a file, so it could be read it the GeoMod program. Here the keyword “end” was used to
determine the end of a model to write to file. Before each “end” keyword, the x and y
coordinates were written to file.

To give a small preview of how the GeoMod program could understand the Python
part of the projects, a small part of the read from file method is shown here. This code is
from the very early stages of reading from file, and it only considered the outer shape to be
read. It is from the GeoMod/Qt environment and it is written in C++. The code was later
modified to support a wider form of models. The decision to include it here is because it is
a very easy to understand function and hopefully it gives a clear picture of how the reading
from file part works.

22

5.2 Implementation of shape detection

1 w h i l e (! i n . a tEnd ()) {
2 Q S t r i n g temp = i n . r e a d L i n e () ;
3 i f (47 < temp . a t (0) . u n i c o d e () && temp . a t (0) . u n i c o d e () < 58) {
4 l i s t . append (temp . toDoub le ()) ;
5 i ++;
6 } e l s e {
7 i f (l i s t . i sEmpty ()) {
8 s t d : : c o u t << ”No c o o r d i n a t e s were r e a d from f i l e , t h e l i s t i s empty

” << s t d : : e n d l ;
9 }

10 e l s e {
11 l i s t = r e s i z e L i s t (l i s t , 10) ;
12 i f (l i s t . l e n g t h () == 6) {
13 qDebug() << ”A T r i a n g l e was r e a d from f i l e ” ;
14 model = new gene ra t eH exago n (l i s t , ” T r i a n g l e ”) ;
15 } e l s e i f (l i s t . l e n g t h () == 8) {
16 qDebug() << ”A R e c t a n g l e was r e a d from f i l e ” ;
17 model = new gene ra t eH exago n (l i s t , ” R e c t a n g l e ”) ;
18 } e l s e i f (l i s t . l e n g t h () == 10) {
19 qDebug() << ”A Pen tagon was r e a d from f i l e ” ;
20 model = new gene ra t eH exago n (l i s t , ” Pen tagon ”) ;
21 } e l s e i f (l i s t . l e n g t h () == 12) {
22 qDebug() << ”A Hexagon was r e a d from f i l e ” ;
23 model = new gene ra t eH exago n (l i s t , ” Hexagon ”) ;
24 } e l s e i f (l i s t . l e n g t h () < 30 && l i s t . l e n g t h () > 12){
25 qDebug() << ”An E l l i p s e was r e a d from f i l e ” ;
26 model = new gene ra t eH exago n (l i s t , ” E l l i p s e ”) ;
27 } e l s e {
28 qDebug() << ”No s u p p o r t e d o b j e c t was found ” ;
29 }
30 }
31 i = 0 ;
32 l i s t . c l e a r () ;
33
34 }
35
36 }

Listing 5.2: Old version of a read from file method

Line 2 loads each line of the text file into a QString. A QString is very similar to a
normal C++ string, but when used in the Qt Environment, it has some benefits, such as
more build-in operations on strings.

After the current line in the text file was read into a QString the ASCII value of the
first character of the QString is compared in an if-sentence. It checks if the ASCII value is
between 47 and 58, which means that the the lines first character that was read is a number.
If it is a number, the whole number is added to a list. This whole number could consist of
multiple characters. Numbers are added into the list until something else than a number is
being read from file, like the key word ”end”. If the list is not empty, the list would be send
to the class called genereateHexagon. This was in the early stages of the projects, so only
support for creation of a hexagon was sought initially. This was changed in the later part
of the code, which can be seen in the section 6.1 about reading from file. Line 11 performs
a re-size of the numbers read from file, making them smaller, so they could more easily be
viewed in the GeoMods camera view. This function is also explained in more detail later.
The qDebug() lines in the code above are simply to let the user know which shapes have
been read from file.

23

Chapter 5. Detection of shapes

5.3 The inner contents of a shape

Now that the outer edge had proven to be detected correctly, it was time to focus inwards.
What lies inside a contour? The next step in creating a three dimensional cube from a
picture is to take a peek inside the outline of the shape.

From the test images of a cube, it could be assumed that an image of such a cube would
have a hexagon outline and that three rectangles make out its interior, like figure 5.4. The
algorithm used to find the outermost shape could not account for any holes or shapes inside
of the outer shape. The first attempt was to cut out a mask based on the coordinates of the
outer most shape. On this mask, usually hexagon shaped, another algorithm for internal
search of nodes would be performed. After many tries, this turned out to be an overly
complicated endeavour and it was soon abandoned. Mostly because of the difficulty of
linking the existing shape, its cut-out and its interior together afterwards.

The search continued for something that could connect the parent shape to its children.
Here a function that was introduced earlier comes into play. The findContours function
takes a mode as its second last argument as input. Four modes are available for use;
”CV RETR EXTERNAL”, ”CV RETR LIST”, ”CV RETR CCOMP” and
”CV RETR TREE”. The first is used for finding extreme outer contours, such as finding
the triangle, rectangle and hexagon shapes in the beginning. The ”CV RETR LIST” was
the one applied to the mask, it searches for all the inner contours, without establishing a
hierarchy of some sort. The last of the modes is the most interesting one, and the one
that was ended up being used. It retrieves all the contours in the image and creates a
complete hierarchy of the contours that are nested. Each contour found gets its own array
of information about its hierarchy. The array can look like this:

Figure 5.2: Hierarchy array example

The first number stands for the next contour in the same hierarchy as the current con-
tour [1]. A -1 here represents that no such contour exists. The next number says if there are
any previous contours under the same parenthood as the current contour, in other words a
sibling. If this number is a -1, no such contour exists. The third number displays the next
child of the current contour. Again, a -1 shows that the current contour does not have a
child. The last digit stands for the current contours parent. The last two digits are quite
important to create a parent and child relationship.

Implementing this algorithm together with a way to keep hold of all the hierarchy
turned out to be very complicated. After a few unsuccessful tries, something had to be
wrong. It turned out that the duplicates created by the Canny Algorithm, which were
filtered out later, messed up the whole hierarchy. Which meant that the whole hierarchical
structure was basically useless.

A solution was to convert the hierarchy list into something usable. There were two
lists that needed to be kept track off. One containing the coordinates for the contours and
one containing the hierarchical data for each contour. This means that both lists should be
of the same length. By previously deleting the duplicates, the lists would no longer be of

24

5.3 The inner contents of a shape

the same length. Instead of deleting that array of coordinates, an empty array was added.
This way an empty array would symbolise a duplicates appearance at that index.

Now a list of contours could look like this:

Figure 5.3: List Of hierarchy with duplicates as empty lists

Next thing was to convert the hierarchy list. This was done by checking if the length of
the current contour is zero. Length of zero means that there would have been a duplicate
at that index. This means that the index of an occurrence of a duplicate in the hierarchical
array of the other contours would have to be replaced by the current contours index, which
was the other one of the two duplicates. At the end the pieces were pasted together again,
and a correct hierarchical list which can relate correctly to the contours detected in the
picture was created.

1 d e f c o n v e r t L i s t O f E d g e s (l i s t O f M o d e l s , l i s t O f H i e r a r c h y O f M o d e l s) :
2 mode l sWi thPa ren tAndChi ldRe l = []
3 h i e r a r c h y W i t h o u t E m p t y L i s t s = []
4 f o r i i n r a n g e (l e n (l i s t O f H i e r a r c h y O f M o d e l s)−1) :
5 # c he ck s i f n e x t l i s t i s d u p l i c a t e o f c u r r e n t l i s t , removes d u p l i c a t e s and empty

l i s t s , c o n v e r t s t h e models number i n c a s e t h e d u p l i c a t e i s d e l e t e d
6 i f (l e n (l i s t O f H i e r a r c h y O f M o d e l s [i]) != 0 and l e n (l i s t O f H i e r a r c h y O f M o d e l s [i + 1]) ==

0) :
7 f o r j i n r a n g e (l e n (l i s t O f H i e r a r c h y O f M o d e l s)) :
8 i f (l e n (l i s t O f H i e r a r c h y O f M o d e l s) != 0) :
9 f o r k i n r a n g e (l e n (l i s t O f H i e r a r c h y O f M o d e l s [j])) :

10 i f (l i s t O f H i e r a r c h y O f M o d e l s [j] [k] == (i +1)) :
11 l i s t O f H i e r a r c h y O f M o d e l s [j] [k] = i
12 i f (l i s t O f H i e r a r c h y O f M o d e l s [j] != [] and l i s t O f H i e r a r c h y O f M o d e l s [j] n o t i n

h i e r a r c h y W i t h o u t E m p t y L i s t s) :
13 h i e r a r c h y W i t h o u t E m p t y L i s t s . append (l i s t O f H i e r a r c h y O f M o d e l s [j])
14 i f (h i e r a r c h y W i t h o u t E m p t y L i s t s == []) :
15 f o r i i n r a n g e (l e n (l i s t O f H i e r a r c h y O f M o d e l s)) :
16 h i e r a r c h y W i t h o u t E m p t y L i s t s . append (l i s t O f H i e r a r c h y O f M o d e l s [i])

Listing 5.3: Code to fix index in hierarchical list

Here line 6 is important. It checks if the current contour i has a duplicate i+ 1. If this
is the case, all occurrences of the index i+1 are replaced by the index i. This replacement
happens in line 11. Since a hierarchy exists for every single external contour there is quite
a nested hierarchical list to work with.

Since the hierarchical list is now correct, it can be used to construct parent and child
relationships in the form of lists. This code showcases how that was done.

1 t e m p L i s t = []
2 mode l sWi thPa ren tAndChi ldRe l = []
3 k=0
4 # c r e a t e a l i s t o f p a r e n t s and t h e i r c h i l d r e n
5 l i s t s A l r e a d y A d d e d = []
6 i f (l e n (h i e r a r c h y W i t h o u t E m p t y L i s t s) != 0) :
7 f o r i i n r a n g e (l e n (l i s t O f M o d e l s)) :
8 curren tModelNumber = i
9 c u r r e n t M o d e l = l i s t O f M o d e l s [i] #we check i f t h i s model has any c h i l d r e n

10 l i s t O f C o m p l e t e F a m i l y = [] # p o t e n t i a l c h i l d r e n w i l l be added t o t h i s l i s t
11 f o r j i n r a n g e (l e n (l i s t O f M o d e l s)) :
12 p o s s i b l e C h i l d M o d e l = l i s t O f M o d e l s [j] # p o s s i b l e C h i l d o f c u r r e n t model
13 c h i l d s P a r e n t = h i e r a r c h y W i t h o u t E m p t y L i s t s [j] [3] # number o f t h e c u r r e n t

model

25

Chapter 5. Detection of shapes

14 i f (c h i l d s P a r e n t == currentModelNumber) : # i f c h i l d s p a r e n t e x i s t and i s
t h e same as t h e c u r r e n t model , t h i s w i l l be invoked

15 i f (c u r r e n t M o d e l n o t i n l i s t O f C o m p l e t e F a m i l y) : # add t h e p a r e n t t o t h e
l i s t o f t h e whole f a m i l y

16 l i s t O f C o m p l e t e F a m i l y . append (c u r r e n t M o d e l)
17 l i s t s A l r e a d y A d d e d . append (c u r r e n t M o d e l) # add p a r e n t t o l i s t s t h a t

have been checked
18 l i s t O f C o m p l e t e F a m i l y . append (p o s s i b l e C h i l d M o d e l)
19 l i s t s A l r e a d y A d d e d . append (p o s s i b l e C h i l d M o d e l)
20 i f (l e n (l i s t O f C o m p l e t e F a m i l y) == 0) : # i f t h e model d o e s n t have any c h i l d r e n
21 i f (c u r r e n t M o d e l n o t i n l i s t s A l r e a d y A d d e d) : # and i f t h e c u r r e n t M o d e l has

n o t been added
22 l i s t O f C o m p l e t e F a m i l y . append (c u r r e n t M o d e l) # c u r r e n t model w i t h o u t

c h i l d r e n g e t s added t o i t s own l i s t
23 i f (l e n (l i s t O f C o m p l e t e F a m i l y) != 0) : # making s u r e we don t add an empty l i s t
24 mode l sWi thPa ren tAndChi ldRe l . append (l i s t O f C o m p l e t e F a m i l y) #we f i n a l l y add

t h e l i s t o f t h e f a m i l y t o t h e f i n a l l i s t

Listing 5.4: Code to fix index in hierarchical list

The logic behind this code is simply selecting a model and checking if this model has
any children by looping through the rest of the current models hierarchy. This is done for
each list of the hierarchy of every model. The tricky part is keeping a memory of models
already added as children or checked to be a parent. If a model does not have any contour
detected as its children, and it is not a child itself, then the model is added directly to the
final list, which here is called modelsWithParentAndChildRel. This is checked on lines 20
and 21.

Handling more than one model, with or without children made the code rather com-
plicated. One extra depth could have been avoided if multiple models in one image would
not have to be taken into account.

After successfully establishing a hierarchy and parent–child relations, the next step
was to determine which points lie close together and combining them into a single point.

5.4 Combining points

The goal of this thesis was to create a three-dimensional model of a cube. Combining two
nodes that are close to each other is a vital part of that process. The theory behind it is as
follows:

After a hexagon for the external contour was found, the search continued inside its
contour. Here hopefully three rectangles will be found. The image 5.4 shows the ideal
situation.

Looking closely at the image, multiple nodes are close to other nodes. The top right of
the image, where it says rectangle, has a corner where three nodes meet. One node is from
the outer contour, two from the rectangles inside. Another point like that is in the middle
of the total contour. Here three rectangles meet, and three nodes are close to each other.
The goal is to combine those three nodes into a single node, representing all three with a
single node. A short summary of the thought behind a function that completes this goal
follows below.

At this state of the code we have an array of nodes for each model in the image. Each
node has two values determining its position. For convenience these two values are called
the x and y values, like they would if they were on a two-dimensional x-y plane. What is

26

5.4 Combining points

Figure 5.4: Binary picture of a cube where a hexagon as external structure was detected and three
rectangles on the inside were detected

needed now is a function that takes a node and compares it to every single other node. In
programming terms this means a double loop. One loop to select a node and the second
one to go through the whole list of nodes and see if it is close to the node selected. Since
multiple models can be detected in an image, every single model needs to go through that
process. This means there are suddenly three loops to consider. Three for-loops are not
optimal for models that could contain many points. Although run-time was not of great
importance for this project, a great deal of time was spent finding the most efficient way
to solve tasks. Of course, sometimes only so much optimisation could be done to solve a
task.

To check if two points are close together, the x-value of the current node that is selected
is subtracted by the x-value of the next node found. Taking the absolute of the value will
give a positive value. The same is done for the y-values of the two nodes. If both absolute
values are lower than a limiting value chosen by the user, the two nodes will be merged
together. The new value will have the average of the x and y value between the two nodes.
If the absolute values are not below the limiting value, the next node in the same model is
chosen for a comparison. This is then done until the end of the array of nodes has been
reached. A new node from the same model is selected and we repeat the whole process. If
a model has n number of nodes, n∗(n−1) comparisons are done. In the end if nodes were
merged into a single node, a new list of fewer nodes that represent a model is available.
Here is where the most important part of the code comes into play; the recursive part. A
small part about recursive functions was written before in section 2.2.5.

The list of the new nodes after the three loops is compared to how the list of the nodes
was before the loops. Here is an example of how this looks like:

Here each number represents the number of nodes in a model. Each number is a model,
so that in total there are 7 models in this list. In the beginning, before pasting points
together, the first model has 12 nodes, the second model has 6 nodes and so on. After the

27

Chapter 5. Detection of shapes

Figure 5.5: This image shows how nodes are added together. Each index in this array is a contour
with x amount of edges

first recursive iteration, after running the three for-loops for the first time, the first model
now has 8 nodes and the second model has 3 nodes. This means a few nodes have been
pasted together to form a single node. This function is continuously run recursively until
the list of length before and the list of length after each recursive call is the same. If they
are the same length before and after an iteration that means that no more nodes can be
found that are close together. If this happens the function ends and the list of the final
nodes for each model is exported to the next function.

Here is the whole code for the recursive function, a more detailed explanation of each
line follows below the function.

1 d e f r e c u r s i v e C h e c k F o r P o i n t s C l o s e T o g e t h e r (l i s tOfNewEdges , l i s t O f R e l a t i o n s) :
2 # r e c u r s i v e l y f i n d s nodes which a r e c l o s e t o e a c h o t h e r and exchanges them by t h e

a v e r a g e d i s t a n c e , used f o r m u l t i p l e s h a p e s i n a p i c t u r e
3 l e n g t h B e f o r e = []
4 f i n a l E d g e s = []
5 f o r k i n r a n g e (l e n (l i s tOfNewEdges)) :
6 s u b L i s t = []
7 a l r e a dy C h ec k ed E d ge s = []
8 u p d a t e d l i s t O f R e l a t i o n s = []
9 l e n g t h B e f o r e . append (l e n (l i s tOfNewEdges [k]))

10 f o r i i n r a n g e (l e n (l i s tOfNewEdges [k])) :
11 c o u n t = 0
12 f o r j i n r a n g e (l e n (l i s tOfNewEdges [k])) :
13 i f (i != j) :
14 i f (i n o t i n a l r ea d yC h e ck e dE d g es and j n o t i n a l r e ad y C he c ke d Ed g e s)

:
15 c u r r e n t X = l i s tOfNewEdges [k] [i] [0]
16 c u r r e n t Y = l i s tOfNewEdges [k] [i] [1]
17 nextX = l i s tOfNewEdges [k] [j] [0]
18 nextY = l i s tOfNewEdges [k] [j] [1]
19 p i x e l T o l e r a n c e = cv2 . g e t T r a c k b a r P o s (' s i z e T o l e r a n c e ' , ' s l i d e r s ')
20 i f (abs (c u r r e n t X − nextX) < p i x e l T o l e r a n c e and abs (c u r r e n t Y −

nextY) < p i x e l T o l e r a n c e) :
21 d e l t a X = i n t (np . c e i l ((c u r r e n t X + nextX) / 2))
22 d e l t a Y = i n t (np . c e i l ((c u r r e n t Y + nextY) / 2))
23 s u b L i s t . append ([de l t aX , d e l t a Y])
24 l i s t O f R e l a t i o n s = u p d a t e R e l a t i o n B e t w e e n N o d e s (

l i s t O f R e l a t i o n s , [cu r r en tX , c u r r e n t Y] , [nextX , nextY] , [de l t aX , d e l t a Y])
25 a l r ea d yC h e ck e dE d g es . append (i)
26 a l r ea d yC h e ck e dE d g es . append (j)
27 c o u n t +=1
28 i f (c o u n t == 0 and i n o t i n a l r ea d y Ch e ck e d Ed g es) :
29 s u b L i s t . append ([l i s tOfNewEdges [k] [i] [0] , l i s tOfNewEdges [k] [i] [1]])
30 f i n a l E d g e s . append (s u b L i s t)

28

5.5 Drawing the generated model

31
32 l e n g t h A f t e r = []
33 f o r i i n r a n g e (l e n (f i n a l E d g e s)) :
34 l e n g t h A f t e r . append (l e n (f i n a l E d g e s [i]))
35 i f (l e n g t h A f t e r != l e n g t h B e f o r e) :
36 r e c u r s i v e C h e c k F o r P o i n t s C l o s e T o g e t h e r (f i n a l E d g e s , l i s t O f R e l a t i o n s)
37 e l s e :
38 main (f i n a l E d g e s , l i s t O f R e l a t i o n s)
39 p r i n t (”DONE”)
40
41
42 r e t u r n f i n a l E d g e s

Listing 5.5: Code to add nodes together

This function has three for-loops, one at line 5, 10 and 12. The first for-loop selects a
single model in a list of models. Once inside the selected model, a node is selected. This
node is then compared to the next node and all the other nodes in the list. The if-sentence
at line 13 makes sure that nodes with the same index, the same node, are not compared to
each other. The next if-sentence at line 14 filters out the nodes that have been compared
with each other before. Inside this if sentence, a value for the pixel tolerance is specified
by the user through a slider. Then the nodes are checked if they are close to each other. If
both x- and y-values are closer than the pixel tolerance, a new point is created by taking the
average of both points. This is done on line 21 and 22. On line 24 a subroutine is called.
This subroutine is called updateRelationBetweenNode and takes the relation list of nodes,
both the two old nodes and the new node which was calculated ([deltaX, deltaY]) as input.
This subroutine then replaces all the occurrences of the two old nodes in the relation list
of nodes with the new node.

At line 35 the check for the need of recursion is done. An if sentence checks if each
model in the list that was taken as input, listOfNewEdges, has the same length as each of
the models in the list after the for-loops, finalEdges. Both of the lists are the visualized in
figure 5.5. If both lists are not identical, the function is called again recursively on line 36.
Its input are the newly calculated list of edges called finalEdges and the updated version
of the list of relations between nodes called listOfRelations. If both lists of length are
identical, the else case will be provoked and the main function on line 38 will be called.
In the end, the print command printing the word ”Done” will let the user know that the
function has done its calculation.

5.5 Drawing the generated model
After applying the recursive algorithm some lines in the relation list for the nodes may be
represented twice. These are deleted by a function with a simple double for-loop check.
The code is as follows:

1 d e f d e l e t e D u p l i c a t e s (i n p u t L i s t) :
2 # d e l e t e s l i n e s which a r e r e p r e s e n t e d t w i c e
3 o u t p u t L i s t = []
4 f o r k i n r a n g e (l e n (i n p u t L i s t)) :
5 s u b L i s t = []
6 f o r i i n r a n g e (l e n (i n p u t L i s t [k])) :
7 i f ([i n p u t L i s t [k] [i] [1] , i n p u t L i s t [k] [i] [0]] n o t i n s u b L i s t and i n p u t L i s t [k

] [i] n o t i n s u b L i s t) :
8 s u b L i s t . append (i n p u t L i s t [k] [i])

29

Chapter 5. Detection of shapes

9 o u t p u t L i s t . append (s u b L i s t)
10 r e t u r n o u t p u t L i s t

Listing 5.6: Deleting duplicated lines

The next step is to draw up the lines that were found. The list of relations remembers
which nodes are connected to which. This means that an edge can be drawn from one
point to the next. The list of relations is of the form such as figure 5.6. A simple picture of
a rectangle, the figure 3.1a is the source for this list of relation.

Figure 5.6: A list which keeps hold of which nodes connect to each other

1 d e f drawLinesOnImage (l i s t O f L i n e s , nameOfImage) :
2 # draws t h e l i n e s c a l c u l a t e d on a blank , b l a c k image
3 l i n e T h i c k n e s s = 1
4 # c a l c u l a t e s t h e s i z e o f t h e b l a c k image
5 h e i g h t , w id th = get ImageHeightAndWidth ()
6 b lackImg = np . z e r o s ((h e i g h t , width , 3) , np . u i n t 8) # c r e a t e s a new blank , b l a c k image
7 h a s T e x t = []
8 f o r k i n r a n g e (l e n (l i s t O f L i n e s)) :
9 j = 0

10 f o r i i n r a n g e (l e n (l i s t O f L i n e s [k])) :
11 x1 = l i s t O f L i n e s [k] [i] [0] [0]
12 y1 = l i s t O f L i n e s [k] [i] [0] [1]
13 x2 = l i s t O f L i n e s [k] [i] [1] [0]
14 y2 = l i s t O f L i n e s [k] [i] [1] [1]
15 cv2 . l i n e (blackImg , (x1 , y1) , (x2 , y2) , (2 5 5 , 2 5 5 , 2 5 5) , l i n e T h i c k n e s s) #

c r e a t e s w h i t e l i n e s on a b l a c k background
16 i f ([x1 , y1] n o t i n h a s T e x t) : # adds t h e node number t o t h e edges o f t h e

f i n a l p i c t u r e
17 cv2 . p u t T e x t (blackImg , s t r (j) , (x1 , y1) , f o n t , 0 . 5 , (2 5 5 , 2 5 5 , 2 5 5) , 1 , cv2 .

LINE AA)
18 j +=1
19 h a s T e x t . append ([x1 , y1])
20 cv2 . imshow (nameOfImage , b lackImg)
21 r e t u r n b lackImg

Listing 5.7: Draw lines onto blank, black image

Each innermost array contains two nodes, each node with a single x- and y-coordinate.
First, on line 15, a black image is created of the same size as the original image. This
is done by calling the getImageHeightAndWidth() function created early on in the code
which gives the images height and width. In a for loop a new line is created from one node
to the next. After the line is created, a number identification for the origin node is created
on the image. This will give an image that looks like figure 5.7.

Before writing the final list of relations to file, another image shape detection is per-
formed. This function is simply called identifyFinalModel(). This time a simple shape
detection is performed on the image created by the individual lines between the nodes, an
image such as figure 5.7. As seen on that figure, it is a simple black and white image.
The findContour() algorithm is used again, but with the mode “RETR EXTERNAL” as
seen in line 6 for listing 5.9 . As mentioned before, this mode only finds the extreme outer
contour of the image. This means, in the image above of the drawn cube, a hexagon shape
should be identified. If multiple models are found, each identified model will be written to
an array of strings. If a model with an unknown amount of edges is found, this could for

30

5.5 Drawing the generated model

Figure 5.7: This is how the blank black image looks like after lines and the node number have been
drawn

example be a star with 15 nodes, the model gets the name “unknown”. This can be seen
in line 25. This information will be sent back to the main function and will in the end be
written to file. Later in the GeoMod part this will be used to filter out which function to
use to construct a model.

1 d e f i d e n t i f y F i n a l M o d e l (imageOfCa lcu l a t edMode l) :
2 n a m e O f M o d e l I d e n t i f i e d = []
3 imageOfCa lcu l a t edMode l = cv2 . c v t C o l o r (imageOfCalcu la tedMode l , cv2 . COLOR BGR2GRAY)
4 imageOfCa lcu l a t edMode l = cv2 . c o n v e r t S c a l e A b s (imageOfCa lcu l a t edMode l)
5 , t h r e s h o l d = cv2 . t h r e s h o l d (imageOfCa lcu la tedMode l , 240 , 255 , cv2 . THRESH BINARY)

c r e a t e s t h e t h r e s h o l d o f t h e image
6 , c o n t o u r s , h i e r a r c h y = cv2 . f i n d C o n t o u r s (t h r e s h o l d , cv2 . RETR EXTERNAL, cv2 .

CHAIN APPROX SIMPLE) # f i n d s t h e c o n t o u r s and t h e h i e r a c h y of t h e c o n t o u r s based
on t h e t e m p l a t e

7 f o r c n t i n c o n t o u r s :
8 e p s i l o n = (cv2 . g e t T r a c k b a r P o s (' e p s i l o n ' , ' s l i d e r s ') / 1 0 0 0 0) * cv2 . a r c L e n g t h (cn t ,

True) # e s t i m a t e s an e p s i l o n t o a p p r o x i m a t e a po lygon
9 approx = cv2 . approxPolyDP (cn t , e p s i l o n , True)

10 cv2 . d rawContours (t h r e s h o l d , [approx] , 0 , (2 5 5) , 1)
11 x = approx . r a v e l () [0] # t h e c u r r e n t x v a l u e o f t h e f i r s t p a r t o f t h e c o n t o u r
12 y = approx . r a v e l () [1] # t h e c u r r e n t y v a l u e o f t h e f i r s t p a r t o f t h e c o n t o u r
13 i f (cv2 . c o n t o u r A r e a (c n t) > (cv2 . g e t T r a c k b a r P o s (' Area Of O b j e c t s ' , ' s l i d e r s '))) :

on ly shows t h e s h a p e s wi th an a r e a b i g g e r t h a n what t h e u s e r c h o o s e s on t h e
s l i d e r

14 i f l e n (approx) == 3 :
15 n a m e O f M o d e l I d e n t i f i e d . append (” t r i a n g l e ”)
16 e l i f l e n (approx) == 4 :
17 n a m e O f M o d e l I d e n t i f i e d . append (” r e c t a n g l e ”)
18 e l i f l e n (approx) == 5 :
19 n a m e O f M o d e l I d e n t i f i e d . append (” p e n t a g o n ”)
20 e l i f l e n (approx) == 6 :
21 n a m e O f M o d e l I d e n t i f i e d . append (” hexagon ”)
22 e l i f 7 < l e n (approx) < 1 5 :
23 n a m e O f M o d e l I d e n t i f i e d . append (” e l l i p s e ”)
24 e l s e :
25 n a m e O f M o d e l I d e n t i f i e d . append (” unknown ”)
26 r e t u r n n a m e O f M o d e l I d e n t i f i e d

Listing 5.8: Draw lines onto blank, black image

31

Chapter 5. Detection of shapes

5.6 Writing to file

A vital part in this thesis was how the Python side could communicate with the C++/GeoMod
side. This has already been mentioned briefly in section 5.1. The function demonstrated
in that section is an outdated version. As per the projects end, there are three main write
to file functions and one read from file function.

The first is simply called writeToFile. It takes in two arguments, the first being the
list of relations between the nodes in each model, the second one an array which contains
strings represented which model was detected by the second shape detection functions
called identifyFinalModel(). Since the OpenCV GUI does not support simple file selec-
tion explorers, the destination file is always chosen manually by pasting in a string of its
location into the file.open function. Here the “a” mode is chosen, which is the appending
mode. It is used to add new data to the end of the file. After the file is open, the f.truncate()
function is used to delete all of its content. Three for-loops go to the inner most level of the
list of relations array. An if-else clause checks if the array on the inner most level either
has a length of two or three. If it has a length of three, it means it is in three dimensions.
A length of two requires the addition of an extra zero to be added.

Models are created and displayed in the y-z-plane in GeoMod, which means that the
x-coordinate in the python codes corresponds to the y-coordinate in the GeoMod program
and the y-coordinate corresponds to the z-coordinate in the GeoMod program. If the length
is just two, a zero is added for the x-coordinate. After each model, the simple word “end”
is written to file. This lets the GeoMod program know that this is the end of a model and it
can start constructing this model. When writing the y-coordinate of the python part to file,
the images height is subtracted by the nodes y-value. This is due to x-y coordinate system
of the image in the Python part having its origin (0,0) in the top left edge of the image.
The GeoMod program has its origin in the bottom left like a normal coordinate system. If
the y-coordinate would not have been modified, the model would have been upside down
in the GeoMod program.

1 d e f w r i t e T o F i l e (l i s t O f L i n e s , n a m e O f M o d e l I d e n t i f i e d) :
2 # w r i t e s a l l l i n e s i n t o t h e f i l e , o t w i l l t h e n c r e a t e on ly one model i n GeoMod
3 h e i g h t , w id th = get ImageHeightAndWidth ()
4 f = open ('C : / z7mB GeoMod / Models / c o o r d i n a t e s O f M o d e l s . t x t ' , ” a ”)
5 f . t r u n c a t e (0)
6 f o r k i n r a n g e (l e n (l i s t O f L i n e s)) :
7 i f (l e n (l i s t O f L i n e s) == l e n (n a m e O f M o d e l I d e n t i f i e d)) :
8 f . w r i t e (n a m e O f M o d e l I d e n t i f i e d [k]+ ”\n ”)
9 f o r i i n r a n g e (l e n (l i s t O f L i n e s [k])) :

10 f o r j i n r a n g e (l e n (l i s t O f L i n e s [k] [i])) :
11 i f (l e n (l i s t O f L i n e s [k] [i] [j]) == 3) :
12 #z−c o o r d i n a t e
13 f . w r i t e (s t r (l i s t O f L i n e s [k] [i] [j] [2]) + ”\n ”)
14 #x−c o o r d i n a t e
15 f . w r i t e (s t r (l i s t O f L i n e s [k] [i] [j] [0]) + ”\n ”)
16 # f l i p t h e y a x i s
17 f . w r i t e (s t r (h e i g h t − l i s t O f L i n e s [k] [i] [j] [1]) + ”\n ”)
18
19 e l s e :
20 #z−c o o r d i n a t e
21 f . w r i t e (” 0 ” + ”\n ”)
22 #x−c o o r d i n a t e
23 f . w r i t e (s t r (l i s t O f L i n e s [k] [i] [j] [0]) + ”\n ”)
24 # f l i p t h e y a x i s
25 f . w r i t e (s t r (h e i g h t −l i s t O f L i n e s [k] [i] [j] [1]) + ”\n ”)

32

5.6 Writing to file

26
27 f . w r i t e (” end\n ”)
28 f . c l o s e ()

Listing 5.9: First write to file function

The next write method is used to write the four points to file which were found by the
four-points method. This is a simple modification of the write to file method above. The
only real difference is that the final list written to file has only one dimension.

The last write to file method is called writeSingleModelToFile, and as the name sug-
gests, it writes a single model to file. If the user has determined manually that only one
model exists in the image, a decision overwritten by the user, this function will be used
to write that single model to file. The reason to have this standalone write function is to
absolutely force only the writing of one model to file. To make sure that what is written
to file is only one model, we use the flatten function, and the flattenOnce function. The
flatten function is shown below, it simply removes the depth of its source list. Here a
three-dimensional list will be converted to a one-dimensional array.

1 d e f f l a t t e n (l i s) :
2 #Used t o f l a t t e n an a r r a y i n t o a one d i m e n s i o n a l a r r a y
3 f l a t t e n e d L i s t = []
4 f o r i i n r a n g e (l e n (l i s)) :
5 f o r j i n r a n g e (l e n (l i s [i])) :
6 f o r k i n r a n g e (l e n (l i s [i] [j])) :
7 f l a t t e n e d L i s t . append (l i s [i] [j] [k])
8 r e t u r n f l a t t e n e d L i s t
9

10 d e f f l a t t e n O n c e (l i s) :
11 #Used t o f l a t t e n an a r r a y once
12 f l a t t e n e d L i s t = []
13 f o r i i n r a n g e (l e n (l i s)) :
14 f o r j i n r a n g e (l e n (l i s [i])) :
15 f l a t t e n e d L i s t . append (l i s [i] [j])
16 r e t u r n f l a t t e n e d L i s t

Listing 5.10: The flattening functions

The flattenOnce function is used to make sure that the list written to file does not have
any sort of depth higher than one. It is a simple modification of the flatten function. The
one-dimensional list can now be written to file.

1 d e f w r i t e S i n g l e M o d e l T o F i l e (l i s t O f L i n e s , n a m e O f M o d e l I d e n t i f i e d) :
2 l i s t O f L i n e s f l a t t e n e d = f l a t t e n (l i s t O f L i n e s)
3 l i s t O f L i n e s o n e d i m e n s i o n a l = f l a t t e n O n c e (l i s t O f L i n e s f l a t t e n e d)
4 # w r i t e s a l l l i n e s i n t o t h e f i l e , i t w i l l t h e n c r e a t e on ly one model i n GeoMod
5 h e i g h t , w id th = get ImageHeightAndWidth ()
6 f = open ('C : / z7mB GeoMod / Models / c o o r d i n a t e s O f M o d e l s . t x t ' , ” a ”)
7 f . t r u n c a t e (0)
8 f . w r i t e (n a m e O f M o d e l I d e n t i f i e d [0] +”\n ”)
9 f o r k i n r a n g e (0 , l e n (l i s t O f L i n e s o n e d i m e n s i o n a l) , 2) :

10 #z−c o o r d i n a t e
11 f . w r i t e (” 0 ” + ”\n ”)
12 #x−c o o r d i n a t e
13 f . w r i t e (s t r (l i s t O f L i n e s o n e d i m e n s i o n a l [k]) + ”\n ”)
14 # f l i p t h e y a x i s
15 f . w r i t e (s t r (h e i g h t −l i s t O f L i n e s o n e d i m e n s i o n a l [k + 1]) + ”\n ”)
16 f . w r i t e (” end\n ”)
17 f . c l o s e ()

Listing 5.11: Writing a single model to file

33

Chapter 5. Detection of shapes

Another benefit of forcing the writing of a single model, is that small contours that
have been created by an error in the contour algorithm are becoming a part of the whole,
single model. These small contours are usually on the edge of the single models contours,
where the probability for error is the highest.

5.7 Difference between a single model and multiple mod-
els in an image

Being able to support the detection and processing of multiple models was deemed to be a
vital part of this project. But towards the end of the project, it became clear that to assume
that only one model is present in the picture could also have its benefits. This is especially
true for the run-time and the accuracy of the result. A slider in the control panel lets the
user select if only one model is present in the whole picture. By doing so, the accuracy of
having unknown, unwanted small shapes is greatly reduced. By adjusting the slider that
decides the limit for combining points and increasing or decreasing its value, a lot of holes
or unwanted pixels can be suppressed. This holds true for more complicated shapes which
require a lot of points to map its contour. Images showing the difference between using
the forced single method and letting the program assume the picture can contain multiple
models are shown in figure 5.8.

(a) Standard image generated when multiple
shapes in one picture are allowed (b) Forcing the detection of just one model

Figure 5.8: Difference between allowing multiple shapes and not allowing multiple shapes

The recursive method of finding points that are close to each other has been mentioned
before. When being able to assume that only one model is presented, using a modified
version of that function is possible. This means that shapes that previously were thought to
be an independent shape, but that were actually part of the outer edge of a bigger contour,
can now be fused together with points from the original contour that are in close proximity.

1 d e f e l i m i n a t e P o i n t s W h i c h A r e C l o s e (l i s tOfNewEdges , l i s t O f R e l a t i o n s) :
2 # e l i m i n a t e s P o i n t s which a r e c l o s e t o e a c h o t h e r f o r s i n g l e models
3 f i n a l E d g e s = []
4 a l r e a dy C h ec k ed E d ge s = []
5 f o r i i n r a n g e (l e n (l i s tOfNewEdges)) :
6 c o u n t = 0
7 f o r j i n r a n g e (l e n (l i s tOfNewEdges)) :
8 c u r r e n t X = l i s tOfNewEdges [i] [0]
9 c u r r e n t Y = l i s tOfNewEdges [i] [1]

10 nextX = l i s tOfNewEdges [j] [0]
11 nextY = l i s tOfNewEdges [j] [1]

34

5.8 The Four-Points Method

12 i f (i != j) :
13 p i x e l T o l e r a n c e = cv2 . g e t T r a c k b a r P o s (' s i z e T o l e r a n c e ' , ' s l i d e r s ')
14 i f (abs (c u r r e n t X − l i s tOfNewEdges [j] [0]) < p i x e l T o l e r a n c e and abs (

c u r r e n t Y − l i s tOfNewEdges [j] [1]) < p i x e l T o l e r a n c e) :
15 i f (c u r r e n t X n o t i n a l r ea d y Ch e ck e d Ed g es) :
16 d e l t a X = i n t (np . c e i l ((c u r r e n t X + l i s tOfNewEdges [j] [0]) / 2))
17 d e l t a Y = i n t (np . c e i l ((c u r r e n t Y + l i s tOfNewEdges [j] [1]) / 2))
18 i f ([de l t aX , d e l t a Y] n o t i n f i n a l E d g e s) :
19 f i n a l E d g e s . append ([de l t aX , d e l t a Y])
20 a l r ea d yC h e ck e dE d ge s . append (c u r r e n t X)
21 a l r ea d yC h e ck e dE d ge s . append (l i s tOfNewEdges [j] [0])
22 l i s t O f R e l a t i o n s = u p d a t e R e l a t i o n B e t w e e n N o d e s (l i s t O f R e l a t i o n s , [

cu r r en tX , c u r r e n t Y] , [nextX , nextY] , [de l t aX , d e l t a Y])
23 c o u n t +=1
24 i f (c o u n t == 0) :
25 f i n a l E d g e s . append ([l i s tOfNewEdges [i] [0] , l i s tOfNewEdges [i] [1]])
26 i f (l e n (f i n a l E d g e s) != l e n (l i s tOfNewEdges)) :
27 e l i m i n a t e P o i n t s W h i c h A r e C l o s e (f i n a l E d g e s , l i s t O f R e l a t i o n s)
28 e l s e :
29 p r i n t (”DONE”)
30 r e t u r n f i n a l E d g e s , l i s t O f R e l a t i o n s

Listing 5.12: Function to fuse together points in close proximity

Figure 5.9: Output of final edges identified when multiple shapes are allowed

Figure 5.10: Output of final edges when forcing to detect only one model

The shape detection algorithm is run on the image shown in figure 3.5b, which is a
picture of a heart. The figure 5.9 shows what the output looks like when multiple shapes
can be detected. The output is taken directly from the figures seen generated in figure 5.8a.
Figure 5.10 has a much smaller list with a lot fewer points, the points correspond to the
image generated in image 5.8b. This is the result of forcing the program to only consider
one model in the picture. Since the program now assumes that only one model is present,
it can fuse together points that were thought to be of different models first. The heart shape
image is a good example, since the outer shape of the heart is a thick, black line that can
confuse the program to detect two independent shapes.

5.8 The Four-Points Method
The four-points method is a simple method that can create a three-dimensional model a of
cube based on only 4 edges that were identified from an image of a cube. The four points
need to consist of the three points that are connected to the middle node and the middle
node. The identification of the middle node is central for this approach to work. Multiple
method have been implemented to identify the middle node quite reliable for all the test-
images. More on that in section 5.9. Finding the other three nodes should be quite easy.

35

Chapter 5. Detection of shapes

The list of relation created in this programs stores all the relation nodes have to each other.
By plucking out nodes that have a connection to the middle node it should result in finding
the last three nodes. This is done in listing 5.13. A write method has been implemented to
write the special case of only four nodes to file. A slider in the control panel for the python
program gives the user the option to either select the four-points method or not.

Figure 5.11: The four points needed to use the four-points method

The reason behind creating this method is to avoid the error prone implementation of
identifying multiple nodes. Later on when a model of a cube is created, multiple nodes
have to be identified. With this method only the middle node needs to be found. Another
benefit originally was that the length between all the nodes could be quite error prone, and
this method would circumvent that. As of today, the length between nodes does not have
a big impact on the creation of models, so that benefit is not as important anymore. The
drawing of edges that are not connected in the original shape is another factor that can
produce errors in a three dimensional model. These wrongly identified edges can be due
to an error in the list of relation node or due to the findShapes function.

1 d e f c r e a t e F o u r P o i n t s (l i s t O f R e l a t i o n s , f i n a l E d g e s , middleNode) :
2 # f i n d s t h e t h r e e p o i n t s c o n n e c t e d t o t h e midd le node
3 l i s t O f R e l a t i o n s = f l a t t e n O n c e (l i s t O f R e l a t i o n s)
4 f i n a l E d g e s = f l a t t e n O n c e (f i n a l E d g e s)
5 f i n a l F o u r P o i n t s = []
6 f o r k i n r a n g e (l e n (f i n a l E d g e s)) :
7 i f ([f i n a l E d g e s [k] , middleNode] i n l i s t O f R e l a t i o n s o r [middleNode , f i n a l E d g e s [

k]] i n l i s t O f R e l a t i o n s) :
8 i f (f i n a l E d g e s [k] n o t i n f i n a l F o u r P o i n t s) :
9 f i n a l F o u r P o i n t s . append (f i n a l E d g e s [k])

10 f i n a l F o u r P o i n t s . append (middleNode)
11 r e t u r n f i n a l F o u r P o i n t s

Listing 5.13: Four-Points method

5.9 Finding and identifying nodes in contours
This section is about identifying the nodes in a picture of a cube, such as the one in figure
5.7. For modifying a picture of a cube into something three dimensional, locating the
middle point was important. If found, the middle point would be able to locate the three

36

5.9 Finding and identifying nodes in contours

points connected to the middle point. If those point were found, the four-points method
could be used and vectors could be applied to calculate an estimate for depth of the cube.
Early in this project, being able to locate the middle node consistently was difficult. The
first approach was to find every node besides the middle node. That way the only node of
the 7 nodes not identified would be the middle node. To make sure it was the middle node
was found, it was checked if it was in between the minimum and maximum points of the
x- and the y-direction.

This small code snippet shows how minimum and maximum points could be found in
the picture of the cube.

1 d e f f i ndNodes (f i n a l E d g e s) :
2 topNode = bottomNode = f i n a l E d g e s [0] [0]
3 nodesOnTheLef t = []
4 nodesOnTheRight = []
5 nodesOnTheLef t . e x t e n d ([f i n a l E d g e s [0] [0] , f i n a l E d g e s [0] [1]]) # f i l l s i t
6 nodesOnTheRight . e x t e n d ([f i n a l E d g e s [0] [0] , f i n a l E d g e s [0] [1]]) # f i l l s i t
7 i f (l e n (f i n a l E d g e s [0]) == 7) :
8 f o r i i n r a n g e (1 , l e n (f i n a l E d g e s [0])) :
9 i f (f i n a l E d g e s [0] [i] [1] > topNode [1]) :

10 topNode = f i n a l E d g e s [0] [i]
11 i f (f i n a l E d g e s [0] [i] [1] < bottomNode [1]) :
12 bottomNode = f i n a l E d g e s [0] [i]
13 i f (f i n a l E d g e s [0] [i] n o t i n nodesOnTheLef t) :
14 i f (f i n a l E d g e s [0] [i] [0] < nodesOnTheLef t [0] [0] and nodesOnTheLef t

[0] [0] > nodesOnTheLef t [1] [0]) :
15 nodesOnTheLef t [0] = f i n a l E d g e s [0] [i]
16 e l i f (f i n a l E d g e s [0] [i] [0] < nodesOnTheLef t [1] [0] and f i n a l E d g e s [0] [i]

n o t i n nodesOnTheLef t) :
17 nodesOnTheLef t [1] = f i n a l E d g e s [0] [i]
18 i f (f i n a l E d g e s [0] [i] n o t i n nodesOnTheRight) :
19 i f (f i n a l E d g e s [0] [i] [0] > nodesOnTheRight [0] [0] and nodesOnTheRight

[0] [0] < nodesOnTheRight [1] [0]) :
20 nodesOnTheRight [0] = f i n a l E d g e s [0] [i]
21 e l i f (f i n a l E d g e s [0] [i] [0] > nodesOnTheRight [1] [0] and f i n a l E d g e s [0] [i

] n o t i n nodesOnTheRight) :
22 nodesOnTheRight [1] = f i n a l E d g e s [0] [i]
23
24 i f (max (nodesOnTheLef t [0] [1] , nodesOnTheLef t [1] [1]) == nodesOnTheLef t [0] [1]) :
25 topLe f tNode = nodesOnTheLef t [0]
26 bot tomLef tNode = nodesOnTheLef t [1]
27 e l s e :
28 topLe f tNode = nodesOnTheLef t [1]
29 bot tomLef tNode = nodesOnTheLef t [0]
30
31 i f (max (nodesOnTheRight [0] [1] , nodesOnTheRight [1] [1]) == nodesOnTheRight [0] [1]) :
32 topRigh tNode = nodesOnTheRight [0]
33 bot tomRightNode = nodesOnTheRight [1]
34 e l s e :
35 topRigh tNode = nodesOnTheRight [1]
36 bot tomRightNode = nodesOnTheRight [0]
37
38 r e t u r n topNode , bottomNode , topRightNode , topLef tNode , bot tomRightNode ,

bo t tomLef tNode

Listing 5.14: Identifying maximum and minimum values

First the two maximum points both for the left side of the cube , low x-value, and
the right side, high x-value were found. This was done from lines 13 to 22. The total
maximum value of the cube, the top node is identified in lines 9 to 10, and the bottom on
lines 11 to 12.

As can be seen from the logic in this code, this approach was quite error prone. A

37

Chapter 5. Detection of shapes

single node of the other six could be misidentified and the whole process would be wrong.
Errors could be frequent, such as identifying the top-left node both as the top node and the
top-left node. Therefore another, better solution was sought. Such solutions would be the
four-points method and the Ray Casting algorithm which both are used to identify a node
inside a polygon. T

5.9.1 Identifying the middle node
The Four-Points method was implemented to find a way to create a cube which was less
dependent of identifying which nodes lie where in the contour. Only one node would be
needed to be identified correctly for this method to work. This node would for cubes be
the ”middle node”, the node in the middle of the contour. On figure 5.11 it would be
node 6. By identifying this node a whole cube could be created. To consistently identify
this middle node, two methods were implemented. First the Ray Casting Algorithm which
uses a ray to check if a node is inside a polygon. As lack for a name for the second method,
it was dubbed ”The alternative method”. It could be called the ”Inside/Outside” method,
since it alternates a variable when it changes from the inside to the outside of the polygon.

The Ray Casting Algorithm

The Ray Casting Algorithm [7] is a relatively simple algorithm to test if a point in an
unknown polygon is inside or outside of the structure. A ray intersects a point that is either
inside or outside the polygon. This ray could go in any direction. If the ray intersects the
polygons edge an odd number of times it means the point is inside the polygon. If is an
even number, the point is outside the polygon. It is a simple but effective method. This

Figure 5.12: Visual representation of how many times a line crosses the shape of a polygon [22]

algorithm was implemented in the Python part of this project. It is based upon the code
found on the web page rosettacode [8] available under the GNU license and it is modified
to work in this thesis’ environment.

1 i f (n o t (f i n a l E d g e s i s None)) :
2 middleNodesCandFromRay = []
3 f o r k i n r a n g e (l e n (f i n a l E d g e s)) : # f o r each node do t h e check
4 po ly = Polygon ()
5 f o r i i n r a n g e (l e n (f i n a l E d g e s)) :
6 i f (n o t (f i n a l E d g e s [i] == f i n a l E d g e s [k])) :
7 po ly . AddPoint (P o i n t (f i n a l E d g e s [i] [0] , f i n a l E d g e s [i] [1]))
8 i f (P o i n t I n P o l y g o n (poly , P o i n t (f i n a l E d g e s [k] [0] , f i n a l E d g e s [k] [1]))) :
9 middleNodesCandFromRay . append (f i n a l E d g e s [k])

10 po ly = Polygon ()

Listing 5.15: Ray Casting implementation in the project

38

5.9 Finding and identifying nodes in contours

This is only a part of the Ray Casting code, the rest is for the creation of polygons and
not that relevant. This part of the code was completely modified to fit the structure of the
nodes in the input list. A polygon is created as many times as there are points in the list.
Each time, a single point is excluded from the creation of the polygon. This point is then
tested against the current polygon to see if it lays outside or inside the polygon. For how
the list of relation and the position of nodes inside the input list are placed, the only node
inside the polygon should be the middle node. The sequence of nodes in the input list can
be wrong, so the wrong nodes can be identified to be the middle node. This didn’t happen
very often, but to reduce the chance of error another method was implemented as well.

Alternative Method for identifying the middle node

First more out of curiosity another method to find the middle node was implemented. Since
the Ray Casting method turned out to be not always 100% reliable, this method served as a
second check to identify the middle node. The documentation of the idea behind this code
is scarce. The codes origin is by W. Randolph Franklin. He describes the theory behind
his code like this:

“I run a semi-infinite ray horizontally (increasing x, fixed y) out from the test
point, and count how many edges it crosses. At each crossing, the ray switches
between inside and outside. This is called the Jordan curve theorem.” [9]

Another person called Adam Majewski [10] [11] implemented his own version of this
code. The code that was implemented in the python part is a modification of that code to
fit this projects variables and structure. The benefit with this code was that it is doing the
same as the Ray Tracing algorithm, but applying a different logic behind it then using a
ray. It also does this with just a few lines, and with a run-time that is significantly lower. Its
results were quite reliable, and sometimes even more so than the Ray Casting algorithm.
Using them together minimised the chance for an error as well.

1 middleNodesCandFromPath = []
2 f o r i i n r a n g e (l e n (f i n a l E d g e s)) :
3 t e m p F i n a l E d g e s = []
4 f o r j i n r a n g e (l e n (f i n a l E d g e s)) :
5 i f (n o t (f i n a l E d g e s [i] == f i n a l E d g e s [j])) :
6 t e m p F i n a l E d g e s . append (f i n a l E d g e s [j])
7 bbPa th = mplPath . Pa th (np . a r r a y (t e m p F i n a l E d g e s))
8 i f (bbPa th . c o n t a i n s p o i n t ((f i n a l E d g e s [i] [0] , f i n a l E d g e s [i] [1]))) :
9 middleNodesCandFromPath . append (f i n a l E d g e s [i])

Listing 5.16: Alternative method to finding the middle node

This image can give a small understanding of this code. The image is not the basis
for the code, but for a modification of the Ray Casting Algorithm, but it is a very similar
implementation where the line changes its value from true to false upon crossing an edge.

Running both the Ray Casting algorithm and the alternative method on the same data
gave a middle node that was consistently correctly identified. In general both methods
would output a single middle node as a result, but in some edge cases more than one could
be found by the methods. If that was the case, both results were compared, and if a node
was part of the result of both methods, and no other node, this node is to be presumed

39

Chapter 5. Detection of shapes

Figure 5.13: Alternative method to finding the middle node with a line changing its value upon
crossing an edge [21]

to be the middle node. The figure 5.14 shows an example of how the output could look
like. Here the Ray Casting Algorithm had two possible nodes as candidates, and the other
method, path, had only one. This single node was also present in the result for the Ray
Casting algorithm, so this node is presumed to be the middle node. With this middle-node
that was now found, it could be used with the ”Four-Points” method to create a three-
dimensional cube.

Figure 5.14: The output of both methods. The Ray Casting algorithm has two results, the alternative
method only one

5.10 Main method

The main method for this program might be a bit misleading. Generally speaking the main
method contains most of the code which should be executed by calling upon functions that
implement all the functionality [18]. The first thing that happens upon running the program
is that the shape detection is performed when the default value for a trackbar value is set.
Each time a trackbar changes its value, the function ”onTrackbarChange” is executed.
This function contains the code to perform the shape detection. This has the benefit that
when the user changes a value on the trackbar, the shape detection is performed with this
new value. But this also means that the main function of the program is only used after
most of the shape detection already is performed. The main function in this program is
used to decide which write function is to be used and it performs all the necessary tasks to
ensure that the correct data is written to file. This is based on the selection the user makes
when using the program.

1 d e f main (f i n a l E d g e s , l i s t O f R e l a t i o n s) :

40

5.11 Trackbars and the control panel

2 u p d a t e d l i s t O f R e l a t i o n s = d e l e t e D u p l i c a t e s (l i s t O f R e l a t i o n s)
3 g e n e r a t e d I m a g e = drawLinesOnImage (l i s t O f R e l a t i o n s , ” P l a i n 2D image ”)
4 n a m e O f M o d e l I d e n t i f i e d = i d e n t i f y F i n a l M o d e l (g e n e r a t e d I m a g e)
5 i f (cv2 . g e t T r a c k b a r P o s (' S i n g l e Model : No / Yes ' , ' s l i d e r s ') == 1 and cv2 .

g e t T r a c k b a r P o s (' Use 4 p o i n t method ? No / Yes ' , ' s l i d e r s ') == 1) :
6 middleNode , l i s t O f R e l a t i o n s , f i n a l E d g e s M o d i f i e d = middlePoin tFromRay (

f i n a l E d g e s , l i s t O f R e l a t i o n s)
7 f i n a l F o u r P o i n t s = c r e a t e F o u r P o i n t s (l i s t O f R e l a t i o n s , f i n a l E d g e s , middleNode)
8 w r i t e F o u r P o i n t s T o F i l e (f i n a l F o u r P o i n t s , n a m e O f M o d e l I d e n t i f i e d)
9 e l i f (cv2 . g e t T r a c k b a r P o s (' S i n g l e Model : No / Yes ' , ' s l i d e r s ') == 1) :

10 , l i s t O f R e l a t i o n s , f i n a l E d g e s M o d i f i e d = middlePoin tFromRay (f i n a l E d g e s ,
l i s t O f R e l a t i o n s)

11 w r i t e S i n g l e M o d e l T o F i l e (l i s t O f R e l a t i o n s , n a m e O f M o d e l I d e n t i f i e d)
12 e l s e :
13 cv2 . destroyWindow (” P l a i n 2D s i n g l e shape image ”)
14 w r i t e T o F i l e (u p d a t e d l i s t O f R e l a t i o n s , n a m e O f M o d e l I d e n t i f i e d)

Listing 5.17: The main method

Line 2 deals with lines that are duplicated in the list of relation, this is to avoid drawing
a line twice. The next line in the code uses the drawLinesOnImage function, see 5.7, to
create a picture of a cube after edges fuse together. Then the name of the final model based
on this drawing is generated.

The values of two trackbars are deciding which method for writing to file should be
used. If the trackbar ”Single model from file” has the value 1, true, and the trackbar ”Use
Four point method” is also 1 the first if-sentence is entered. This first identifies the middle
node with the help of the Ray Tracing algorithm and the alternative algorithm that was
implemented. Line 7 then finds the last four points and returns them to a list. Finally, line
8 writes the points to file.

If the else-if is entered on line 9 this means that only one model is pictured on the
image, and this is specified by the user. The list of relation is updated and then written to
file.

The last part of the main function is the general write to file function and the function
used unless specified otherwise by the user. It directly writes the list of relation to file.

5.11 Trackbars and the control panel

When it comes to the GUI, Graphical User Interface, part of OpenCV, this quote from a
user on stackoverflow explains it quite well:

”OpenCV High(GUI) module is intended for debugging purposes only. If you
need some good looking GUI, you should use a GUI library (e.g. Qt). It’s
pointless to make High(GUI) stuff looking good” - Miki [19]

The user interface that OpenCV provides leaves a lot to be desired, and is only suitable
for the most basic tasks. Since the program relies on some user feedback for an optimal
result, sliders, called trackbars in the OpenCV environment, are implemented. Two main
types of sliders have been implemented. The first being a slider with a high range of values
changing the input for various filters and functions used in the detection of shapes. The
other type of slides is a simple Yes/No option, where the 0 value stands for No and the 1
value stands for Yes. An example is when the four-points method should be used instead of

41

Chapter 5. Detection of shapes

the normal method. If the user chooses to use this method, the slider with the label ”Use
Four point method” needs to have the value 1, for yes.

1 i f (cv2 . g e t T r a c k b a r P o s (' S i n g l e Model : No / Yes ' , ' s l i d e r s ') == 1 and cv2 . g e t T r a c k b a r P o s ('
Use Four p o i n t method ? No / Yes ' , ' s l i d e r s ') == 1) :

Listing 5.18: The selection of the user is mirrored by the value of the trackbar that was changed

In total 12 sliders haven been used in the main control panel, with six more in the
colour panel changing the value of the HSV format, these six sliders were inspired by an
example from [40]. This makes for a not very pretty, but very function oriented first layout
of the program.

Figure 5.15: Main control panel used to change values for image recognition

The most important sliders, that give the most drastic changes to the result are the
epsilon- and the ”sizeTo..” sliders. The ”sizeTo..” stands for sizeTolerance. This slider
determines the range that points can be fused together to form a single point. By increasing
the value of this slider, a simpler shape is found. Decreasing the value of this slider will
allow for more points and a more detailed shape. The epsilon value changes the value of
the constant epsilon that is used to approximate a polygonal curve. The difference when
changing this value is also quite drastic. For an image with small shapes, or multiple
shapes, the slider displayed here as ”Area O..”, which stands for ”Area Of Objects”, is
important. It specifies a minimal area that objects have to be considered an independent
contour. If a small shape is not found in an image, this sliders value has to be lowered to
allow for this small models detection.

Below the control panel an image with text shows which models have been identified
in the input image. This white image with text is updated each time a value of the control
panel changes. If an image contains multiple shapes this is quite useful as it can give the
user an overview if some shapes have been misidentified. This picture with text is created

42

5.12 Runtime of the python program

Figure 5.16: Sliders used to manipulate the colours in the image

by printing the value of the shape identified to a blank picture together with a string of the
shapes name, such as triangle. It might not look very elegant, but it helps the user a bit
with helping to select the correct values for some sliders.

Figure 5.17: Blank, white image giving an overview over shapes identified in a picture

5.12 Runtime of the python program
Run-time has been mentioned multiple times in this project. It was made clear from the be-
ginning that run-time was not a priority, but unnecessary slow functions should be avoided.
A picture can be complex to analyse and the built in function to detect a contour can out-
put a lot of points. A lot of points means a lot of calculation. This is definitely true for
when nodes are checked to be added together. Using recursion helps a bit with making this
function more effective, but in the end still a lot of calculations have to be done. Adding
filters to an image greatly reduces the amount of possible contours and points detected,
which means it also greatly improves run-time.

Each time the standard value for a slider is set in OpenCV, the trackbarChange function
is performed, and the picture shape detection together with the combining points function

43

Chapter 5. Detection of shapes

is run. Since 10 sliders have to get their initial value, the shape detection is run 10 times
while the program starts up. At the beginning the value for the filters are not set, and
each iteration of setting the initial value for a filter through a slider makes the program
runs its shape detection process. Since the filters values are not set, the image detection
is run in the first iteration without a single filter, which means it is performed on an raw
image, resulting in a lot of contours and calculation. This is very costly, especially for
complex models such as the fish shown in figure 3.5a. A solution by adding another
slider was implemented. This slider is called ”Start Calculations Yes/No”. By default no
calculations are sure to be run as long as this slider has the value of 0, which is also its
default value. After all the initial values for the other sliders have been set, the initial value
of 1, yes, is set for the start-calculation slider. This means that the process of detecting the
shape and combining points is only run once, when the final slider gets its value set to one.
At that point all other sliders, which means all the filters as well, have their values and
shape detection should be rapid. This also starts the program with a good first estimation
of detecting the right shapes.

44

Chapter 6
Creating three-dimensional models
in the GeoMod program

6.1 Reading from file

Before it is possible to create models from the shapes found in the previous chapter, these
shapes first need to be read from a file into the GeoMod environment.

To read coordinates from a file, a read functionality had to be created. This function-
ality is implemented in the new class generateModelsFromFile. Its implementation and
logic has been changed a few times throughout the project. Like the shape recognition
part, it was important to start small. A simple rectangle with four edges was the basis for
the first version of this read method. After more and more functionality was added the
program, the read function had to take account of that. Reading three dimensional coor-
dinates, strings and multiple models from file were the main cause for alternations in the
code.

The theory behind the code is simple, but its implementation may not be so straight
forward. The programs reads first the name of a model from file, then its coordinates. Next
step it collects the users choice if a three-dimensional model should be created. These
arguments are then passed on to the generateModel class. If multiple models are in a
single file, all of them are created during the while loop.

The code to implement that functionality is given below.

1 QFi l e f i l e (p a t h T o P l u g i n) ;
2 i f (! f i l e . open (QFi l e : : ReadOnly | QFi le : : Text)) {
3 s t d : : c o u t << ” F i l e n o t open l o a d ” << s t d : : e n d l ;
4 }
5 qDebug() << p a t h T o P l u g i n ;
6 QTextStream i n (& f i l e) ;
7 i n t i = 0 ;
8 Q S t r i n g name = ” unknown ” ;
9 w h i l e (! i n . a tEnd ()) {

10 Q S t r i n g temp = i n . r e a d L i n e () ;
11 i f (! (4 7 < temp . a t (0) . u n i c o d e () && temp . a t (0) . u n i c o d e () < 58) && temp != ” end ”) {
12 name = temp ;

45

Chapter 6. Creating three-dimensional models in the GeoMod program

13 }
14 e l s e i f ((4 7 < temp . a t (0) . u n i c o d e () && temp . a t (0) . u n i c o d e () < 58) | | (temp . a t (0) .

u n i c o d e () == 45)) {
15 l i s t . append (temp . toDoub le ()) ;
16 i ++;
17 } e l s e {
18 i f (l i s t . i sEmpty ()) {
19 s t d : : c o u t << ”No c o o r d i n a t e s were r e a d from f i l e , t h e l i s t i s empty ” <<

s t d : : e n d l ;
20 }
21 e l s e {
22 l i s t = r e s i z e L i s t (l i s t , 10) ; / / makes t h e r e a d i n model 10 t i m e s

s m a l l e r
23 model = new g e n e r a t e M o d e l (l i s t , name , c r e a t e M u l t i d i m e n s i o n a l M o d e l) ;
24 }
25 i = 0 ;
26 l i s t . c l e a r () ;
27 name = ” unknown ” ;
28 }
29 }
30 qDebug() << ” end of f i l e ” ;
31 f i l e . c l o s e () ;

Listing 6.1: Reading from file

Line 1 opens the file. The variable pathToPlugin is the path to the file chosen through
the file browser. After the file is successfully opened, a while loop is initiated. It loops
through each line of the text file until it reaches the files end.

First the lines value is added to a temporary variable temp. Line 11 checks if the first
character of the temp variable is a not a number. If it is not a number and it is not a string
with the value ”end”, then it should be the name of the model and the name variable is set
to the value of temp.

The next else if at line 14 also checks if the current line is a string or number. If it
is a string, this means that the models coordinates have been read and the end has been
reached. It collects the numbers that were read into the temp variable and appends them
to a QList called list.

The else statement at line 17 now checks first if the list is empty and prints out a
statement to the console if this is the case. If it is not empty, it is almost ready to initialise
the constructor of the generateModel class. Before initialising the constructor with the list,
it has to be re-sized. This is done on line 22, by a method called resizeList.

1 QLis t<double> Genera teMode l sWidge t : : r e s i z e L i s t (QLis t<double> l i s t , i n t s c a l i n g I n t) {
2 f o r (i n t v a r = 0 ; v a r < l i s t . l e n g t h () ; ++ v a r) {
3 l i s t [v a r] = l i s t [v a r] / s c a l i n g I n t ;
4 }
5 r e t u r n l i s t ;
6 }

Listing 6.2: Re-sizing the list

This method takes a list as input and an int variable. The int variable specifies the
factor for re-sizing. A value of 10 will make the coordinates 10 times smaller. It then
returns the re-sized list. The re-sizing of the list is purely to make the model not too big
for the camera view of the GeoMod program.

The modified list is ready to be send into the generateModel constructor. One thing
still missing to initialise the constructor is that the Boolean createMultidimensionalModel
has to get its value. This is done after having chosen a text file from the file browser. A

46

6.2 Creating a depth for models

dialog box will pop up, prompting the user to choose if a 3D model of the coordinates that
were read from file is to be created. If the answer is “Yes” it will be saved as true in a the
Boolean, which will then be send to the generateModel class.

Figure 6.1: Asking the user if a three-dimensional model should be created

All variables for the initialisation of the generateModel class have now gotten their
proper value and the classes constructor is initiated. This process is done for all the models
that are read from the single text file chosen by the user.

6.2 Creating a depth for models
Creating a three-dimensional model from a single picture is no easy task. Extracting a
depth from a picture is very difficult. There are many factors that can make this task im-
possible. Having ”a priori” knowledge about what the picture depicts is a huge help. This
way a depth can be calculated or added to something that appears two-dimensional on a
picture. This section takes such a two-dimensional shape and creates an estimation for
depth by calculating it through the help of vectors.

If a three-dimensional model is to be created, and the source of shape is not a hexagon,
the createGenericModelDepth function is called. It takes the list of nodes that were created
in the beginning of the constructor as an argument.

1 QLis t<QLis t<GeomNode*>> g e n e r a t e M o d e l : : c r e a t e G e n e r i c M o d e l D e p t h (QLis t<GeomNode*>
l i s t O f P t r N o d e s) {

Listing 6.3: The createGenericModelDepth function

The function tries to create a depth for models. If a simple rectangle would be its input,
its output should be a cube.

After declaring some variables and lists for later use, the function starts to declare
points from which vectors can be created. This is done in a for-loop. After selecting the
nodes, the cross product between the nodes is calculated. Note, the vectors that are created
from the nodes always have one node in common. In this codes case it would always be
the node called node2.

1 f o r (i n t i = 0 ; i < l i s t O f N o d e s W i t h o u t D u p l i c a t e s . l e n g t h () ; i ++) {
2 QLis t<double> newPoin t ;
3 i f (i == l i s t O f N o d e s W i t h o u t D u p l i c a t e s . l e n g t h ()−2) {
4 node1 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i] ;
5 node2 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i + 1] ;
6 node3 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [0] ;

47

Chapter 6. Creating three-dimensional models in the GeoMod program

7 } e l s e i f (i == l i s t O f N o d e s W i t h o u t D u p l i c a t e s . l e n g t h ()−1) {
8 node1 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i] ;
9 node2 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [0] ;

10 node3 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [1] ;
11 } e l s e {
12 node1 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i] ;
13 node2 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i + 1] ;
14 node3 = l i s t O f N o d e s W i t h o u t D u p l i c a t e s [i + 2] ;
15 }

Listing 6.4: Main code for detection of shapes

Since the list of nodes has the nodes in consecutive order, they will always connect to the
next node in the list. The last node in the list also connects to the first node in the list.

6.2.1 Finding the direction and distance of the depth point
Next the direction of the depth needs to be calculated. For a two-dimensional shape that is
placed in a known coordinate system consistent of two dimensions, the depth of a model
can in theory be set directly. This is done by giving each point a value in the third dimen-
sion that is not set. If this is not the case, when a contour is translated or modified, the
method with finding the normal vector of two vectors which have one node in common
can always be used to find the general depth and direction. To find the normal vector the
cross product between the two vectors we create from the three nodes node1, node2 and
node3 is calculated [14].

vector1 = (node2i − node1i)i+ (node2j − node1j)j + (node2k − node1k)k
vector2 = (node2i − node3i)i+ (node2j − node3j)j + (node2k − node3k)k

(6.1)

With the two vectors
~a = vector1,~b = vector2

that were created from the three points, the formula to find the cross product is applied.

~a = aii+ ajj + akk

~b = bii+ bjj + bkk
(6.2)

In matrix notation

~a×~b =

∣∣∣∣∣∣
i i i
ai aj ak
bi bj bk

∣∣∣∣∣∣ (6.3)

More simply this can be written as

~a×~b = i(ajbk − akbj)− j(aibk − akbi) + k(aibj − ajbi) (6.4)

The implementation of the cross products is done in this function.

1 QLis t<double> g e n e r a t e M o d e l : : g e t C r o s s P r o d u c t (GeomNode * commonNode , GeomNode* node1 ,
GeomNode* node2) {

2 QLis t<double> n o r m a l V e c t o r ;
3 do ub l e vec to rAx = commonNode−>getModablXyzP ()−>g e t x () − node1−>getModablXyzP ()−>

g e t x () ;
4 do ub l e vec to rAy = commonNode−>getModablXyzP ()−>g e t y () − node1−>getModablXyzP ()−>

g e t y () ;

48

6.2 Creating a depth for models

5 do ub l e v e c t o r A z = commonNode−>getModablXyzP ()−>g e t z () − node1−>getModablXyzP ()−>
g e t z () ;

6 do ub l e v e c t o r B x = commonNode−>getModablXyzP ()−>g e t x () − node2−>getModablXyzP ()−>
g e t x () ;

7 do ub l e v e c t o r B y = commonNode−>getModablXyzP ()−>g e t y () − node2−>getModablXyzP ()−>
g e t y () ;

8 do ub l e v e c t o r B z = commonNode−>getModablXyzP ()−>g e t z () − node2−>getModablXyzP ()−>
g e t z () ;

9 n o r m a l V e c t o r . append (vec to rAy * v e c t o r B z − v e c t o r A z * v e c t o r B y) ;
10 n o r m a l V e c t o r . append (v e c t o r A z * v e c t o r B x − vec to rAx * v e c t o r B z) ;
11 n o r m a l V e c t o r . append (vec to rAx * v e c t o r B y − vec to rAy * v e c t o r B x) ;
12 r e t u r n n o r m a l V e c t o r ;
13 }

Listing 6.5: Calculating the normal vector from three points

It takes three nodes as input, commonNode, which is the node2 created earlier, and the
nodes node1 and node2, they correspond to node1 and node3 in the createGenericMod-
elDepth function. From line 3 to line 8 the vectors vector1 and vector2 are created. Line 9
to 11 then calculate the normalvectors x-, y- and z-value. Each directional value is added
to a QList. This QList is then returned on line 12.

Still inside the for-loop, the distance between the common vector and the two other
vectors is calculated.

1 l e n g t h O f V e c t o r 2 = getDis tanceBetweenTwoNodes (node2 , node3) ;
2 l e n g t h O f V e c t o r 1 = getDis tanceBetweenTwoNodes (node1 , node2) ;

Listing 6.6: The distance between nodes is calculated

The distance is calculated by using the function getDistanceBetweenNodes. This func-
tion takes two nodes as input and returns a double which is the distance between them.

1 do ub l e g e n e r a t e M o d e l : : ge tDis tanceBetweenTwoNodes (GeomNode* node1 , GeomNode* node2) {
2 do ub l e xSquared = pow ((node2−>getModablXyzP ()−>g e t x () − node1−>getModablXyzP ()−>

g e t x ()) , 2) ;
3 do ub l e ySquared = pow ((node2−>getModablXyzP ()−>g e t y () − node1−>getModablXyzP ()−>

g e t y ()) , 2) ;
4 do ub l e zSquared = pow ((node2−>getModablXyzP ()−>g e t z () − node1−>getModablXyzP ()−>

g e t z ()) , 2) ;
5 r e t u r n s q r t (xSquared + ySquared + zSquared) ;
6 }

Listing 6.7: Function for calculating the distance between two nodes

This is a simple implementation of the function for distance between two points.

Distance =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (6.5)

The ”node2->getModablXyzP()->get x()” part might be a bit confusing. To get the
x-value of a GeomNode in the GeoMod program form a pointer, this has to be done to get
the value stored in the pointer address. As seen in the code for the listing 6.7.

After finding the two distances, we find the lowest value of those two values.

1 do ub l e d i s t a n c e B e t w e e n P o i n t s = s t d : : min (l e n g t h O f V e c t o r 1 , l e n g t h O f V e c t o r 2) ;

Listing 6.8: Minimum of two values

The distanceBetweenPoints is the distance that the new point in space is located from
the node2.

49

Chapter 6. Creating three-dimensional models in the GeoMod program

6.2.2 Finding the coordinates of the new depth point
Now that the direction of the point and the distance to the node2 have been calculated, it
is possible to find the coordinates of a new point which gives the model its depth.

The math behind finding the exact position of the new point is simple now that we have
the direction and length of the depth. If d is the length of the depth and N is the normal
vector. The coordinates for each direction of the new point, Point, are calculated.

Pointx =
d ∗ ~Nx

|N |
, Pointy =

d ∗ ~Ny

|N |
, Pointz =

d ∗ ~Nz

|N |
(6.6)

Equivalently this is done in the C++ code.

1 i f (l e n g t h O f C r o s s V e c t o r != 0 . 0) {
2 i f (c r o s s P r o d u c t V e c t o r [0] > 0) {
3 newPoin t . append ((d i s t a n c e B e t w e e n P o i n t s / l e n g t h O f C r o s s V e c t o r) *(−1)*

c r o s s P r o d u c t V e c t o r [0] + node2−>getModablXyzP ()−>g e t x ()) ; / / we on ly want t h e
n e g a t i v e n−v e c t o r h e r e

4 } e l s e {
5 newPoin t . append ((d i s t a n c e B e t w e e n P o i n t s / l e n g t h O f C r o s s V e c t o r) *

c r o s s P r o d u c t V e c t o r [0] + node2−>getModablXyzP ()−>g e t x ()) ;
6 }
7 newPoin t . append ((d i s t a n c e B e t w e e n P o i n t s / l e n g t h O f C r o s s V e c t o r) *

c r o s s P r o d u c t V e c t o r [1] + node2−>getModablXyzP ()−>g e t y ()) ;
8 newPoin t . append ((d i s t a n c e B e t w e e n P o i n t s / l e n g t h O f C r o s s V e c t o r) *

c r o s s P r o d u c t V e c t o r [2] + node2−>getModablXyzP ()−>g e t z ()) ;
9 }

Listing 6.9: Finding the coordinate for the new point

Line 2 is necessary, since it was decided that the depth should always have its direction
towards the negative side in the x direction in the GeoMods camera view.

After finding the coordinates for the new point, the node is then added to the models
group pointer in line 1 for listing 6.10. In addition it is added to a list of all the new nodes
created. The closest node to the new point, which is node2, is also added to a list. This
way, both the new point and the closest point will have the same index.

1 pt rNode = modelGrpP−>addNode (newPoin t [0] , newPoin t [1] , newPoin t [2]) ;
2 c l o s e s t P o i n t . append (node2) ;
3 n e w P o i n t s L i s t . append (p t rNode) ;

Listing 6.10: Adding the new point to the model group pointer

This is all still done in the for-loop, so a new depth point is created for every single
node in the model. If a rectangular model was given as an input, four new points should
have been created.

The final task of the function is to create a region for each side of the new model. If
the original shape is a rectangle, in addition to the already existing front region, 5 more
regions have to be created, which means 6 regions in total. Here the list with the closest
point is very useful. Each region should consist of 4 points, the first being a single node
from the closest point list, lets call it first node. It is then connected to the node from
the new point list with the same index, this will be the second node. Now a new node,
third node from the new point list is connected to the second node. The last node creating
a closed region is the node from the closest point list with the same index as the third node.
This completes the region.

50

6.2 Creating a depth for models

This code might make the explanation a bit clearer.

1 QLis t<QLis t<GeomNode*>> l i s t O f R e g i o n s ;
2 f o r (i n t v a r = 0 ; v a r < n e w P o i n t s L i s t . l e n g t h () ; ++ v a r) {
3 QLis t<GeomNode*> r e g i o n L i s t ;
4 QLis t<GeomNode*> f r o n t ;
5 QLis t<GeomNode*> back ;
6 f o r (i n t j = 0 ; j < c l o s e s t P o i n t . l e n g t h () ; ++ j) {
7 f r o n t . p r epend (c l o s e s t P o i n t [j]) ;
8 back . append (n e w P o i n t s L i s t [j]) ;
9 }

10 i f (v a r == n e w P o i n t s L i s t . l e n g t h ()−1) {
11 r e g i o n L i s t . append (c l o s e s t P o i n t [0]) ;
12 r e g i o n L i s t . append (n e w P o i n t s L i s t [0]) ;
13 r e g i o n L i s t . append (n e w P o i n t s L i s t [v a r]) ;
14 r e g i o n L i s t . append (c l o s e s t P o i n t [v a r]) ;
15 } e l s e {
16 r e g i o n L i s t . append (c l o s e s t P o i n t [v a r + 1]) ;
17 r e g i o n L i s t . append (n e w P o i n t s L i s t [v a r + 1]) ;
18 r e g i o n L i s t . append (n e w P o i n t s L i s t [v a r]) ;
19 r e g i o n L i s t . append (c l o s e s t P o i n t [v a r]) ;
20 }
21 l i s t O f R e g i o n s . append (f r o n t) ;
22 l i s t O f R e g i o n s . append (r e g i o n L i s t) ;
23 l i s t O f R e g i o n s . append (back) ;
24 }

Listing 6.11: Creating a region

The first if-sentence at line 10 takes care of the edge case when the last node in the
list needs to be connected to the first in the list. Line 21 adds the front region to the total
region list. The front region consist of the original shape read from file. For a rectangle it
is the square that can be seen in the y-z plane of the camera view. The for-loop on line 2
makes sure that every two nodes from the original nodes list create a region with its two
depth nodes. The amount of regions created can vary from a simple 6 sides to create a
cube shape to a more complex and abstract figure with 20 regions, like a heart shape.

A list full of all the regions created is returned to the constructor. With this list the final
model that is seen by the user is created.

This portion of code inside the classes constructor creates the edges that make up a
region, and creates this region for the model by adding it to the final model group pointer.

1 i f (l i s t O f R e g i o n s . l e n g t h () != 0) {
2 f o r (i n t j = 0 ; j < l i s t O f R e g i o n s . l e n g t h () ; j ++) {
3 QLis t<GeomEdge*> l i s t O f P t r E d g e s F o r R e g i o n ;
4 f o r (i n t i = 0 ; i < l i s t O f R e g i o n s [j] . l e n g t h () ; i ++) {
5 i f (i == l i s t O f R e g i o n s [j] . l e n g t h ()−1) {
6 p t r E d g e = modelGrpP−>addEdge (l i s t O f R e g i o n s [j] [i] , l i s t O f R e g i o n s [j

] [0] , s t d : : t o s t r i n g (i)) ;
7 } e l s e {
8 p t r E d g e = modelGrpP−>addEdge (l i s t O f R e g i o n s [j] [i] , l i s t O f R e g i o n s [j] [i

+1] , s t d : : t o s t r i n g (i)) ;
9 }

10 l i s t O f P t r E d g e s F o r R e g i o n . i n s e r t (i , p t r E d g e) ;
11 }
12 GeomRegion* r e g i o n P = modelGrpP−>addRegion (& l i s t O f P t r E d g e s F o r R e g i o n [0] ,

l i s t O f P t r E d g e s F o r R e g i o n . l e n g t h () , f i r s t a g a i n s t , ” r e g i o n ”) ;
13 reg ionP−>setOutColorRGB byName (” g rey ”) ;
14 }
15 }

Listing 6.12: Creating a region

51

Chapter 6. Creating three-dimensional models in the GeoMod program

First, line 1 checks if regions have been created by checking if the list of regions has
any content. Next, a for-loop loops through all the regions in the list. Then, another for-
loop goes inside each region. Edges are created from the nodes inside the region. Line 5
takes care of the edge case when the last node in the regions list has to be connected to the
first node in the regions list. After all the edges that make up a region have been created,
a GeomRegion is created from the list of edges that were just created. This is done on line
12, using the built in GeoMod function addRegion to create the region for the model. The
first against variable is a boolean which tells the addRegion method wether the first edge
is along or against the cycle. In this case it is against the cycle. Line 13 adds a colour to
the cubes outer side, here the colour grey was chosen.

Running this function on the image of a simple rectangle and a simple triangle gives
these results. More images can be seen in the result chapter, chapter 7.

(a) Rectangle created to be three-dimensional (b) Triangle created to be three-dimensional

Figure 6.2: Generic three-dimensional models of 2D pictures

6.3 Creating a three dimensional cube

This chapter explains the method createACubeWithDepth that tries to create a three dimen-
sional model of a cube based on a two-dimensional shape. This is only possible because
of the ”a priori” knowledge behind the shape that is detected by the Python algorithms
that are implemented. Knowing an image contains the shape of a cube in a set position
makes the extraction of depth possible. Also having the knowledge of how exactly a cube
looks like provides the basis for most of the operations performed here to estimate a depth.

This methods design and functionality is very similar to the method called create-
GenericModelDepth that was explained in 6.2. The similarity is due to the method cre-
ateACubeWithDepth being the first generation of the more generalised class createGener-
icModelDepth.

The method starts off with creating a second list of nodes. This list of nodes does not
contain any duplicates of any node, a function called deleteDuplicates makes sure of that.
This means that the list should contain 7 elements, all unique.

This list without duplicates is then used to identify which nodes are placed where.
Since the shape is known, this should be rather simple . We divide the nodes into topLeft-
Node, bottomLeftNode, topRightNode, bottomRightNode, bottomNode, topNode and mid-
dleNode.

52

6.3 Creating a three dimensional cube

1 GeomNode* topLe f tNode = f indTopLef tNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
2 GeomNode* bot tomLef tNode = f indBo t tomLef tNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
3 GeomNode* topRigh tNode = f indTopRigh tNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
4 GeomNode* bot tomRightNode = f indBot tomRigh tNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
5 GeomNode* bottomNode = f indBot tomNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
6 GeomNode* topNode = findTopNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s) ;
7 GeomNode * middleNode = f indMidd leNode (l i s t O f N o d e s W i t h o u t D u p l i c a t e s , topNode ,

bottomNode , topLef tNode , topRigh tNode , bot tomLef tNode , bot tomRightNode) ;

Listing 6.13: Identifying nodes

Figure 6.3: This image of a 2D cube is the basis for the 7 nodes, from 0 to 6

Once all of the nodes are identified, the nodes can be manipulated. First, an estimation
of depth is done by taking the distance between the bottom-left node and the top-left node
and dividing it by two. This depth is of course only an estimation and a start point to find
a better, final depth value. The direction of the depth is in the x-direction of the GeoMod
program, this is done because it is easier to visualise a model in the y-z plane of the camera
view.

Re-positioning the middle node and the top node so they are on the same height as the
top-left and top-right nodes is the next step. The bottom node is also placed on the same
height as the bottom-left and bottom-right node. Now all nodes should be on the same two
levels. This is all done in the following code snippet.

1 do ub l e xLength = getDis tanceBetweenTwoNodes (bot tomLef tNode , t opLe f tNode) / 2 ;
2 do ub l e z a v e r a g e T o p = (topLef tNode−>getModablXyzP ()−>g e t z () + topRightNode−>

getModablXyzP ()−>g e t z ()) / 2 ;
3 do ub l e z a v e r a g e B o t t o m = (bot tomLef tNode−>getModablXyzP ()−>g e t z () + bot tomRightNode−>

getModablXyzP ()−>g e t z ()) / 2 ;
4 u p d a t e N o d e s I n L i s t (middleNode , xLength , middleNode−>getModablXyzP ()−>g e t y () , z a v e r a g e T o p

) ;
5 u p d a t e N o d e s I n L i s t (topNode ,−xLength , topNode−>getModablXyzP ()−>g e t y () , z a v e r a g e T o p) ;
6 u p d a t e N o d e s I n L i s t (bottomNode , xLength , bottomNode−>getModablXyzP ()−>g e t y () ,

z a v e r a g e B o t t o m) ;

Listing 6.14: Updating the values of some nodes

53

Chapter 6. Creating three-dimensional models in the GeoMod program

Line 4 to 6 update the nodes values by using an implemented function called updateN-
odesInList. It takes the node that is going to be updated as first argument, then the new x-,
y- and z-values of that node.

6.3.1 Creating right angles between edges

The next step to make the model cube shaped is to create a right angle for the top region
of the cube. This region is made up of the middle node, the top-left node and the top-right
node. First the angle between the two vectors created from the three nodes is calculated.
This is done by using the function findAngleBetweenThreeCoordinates. This function
takes three nodes as input, one of the nodes has to be connected to both the other nodes.
Two vectors are then created, and the angle between the two vectors is calculated by using
the dot-product function for vectors.

a · b = |a||b|cosα (6.7)

The C++ implementation of this equation in this projects code looks like this.

1 do ub l e g e n e r a t e M o d e l : : f i n d A n g l e B e t w e e n T h r e e C o o r d i n a t e s (GeomNode * commonNode , GeomNode
* node1 , GeomNode * node2) {

2 do ub l e vec to rAx = commonNode−>getModablXyzP ()−>g e t x () − node1−>getModablXyzP ()−>g e t x
() ;

3 do ub l e vec to rAy = commonNode−>getModablXyzP ()−>g e t y () − node1−>getModablXyzP ()−>g e t y
() ;

4 do ub l e v e c t o r A z = commonNode−>getModablXyzP ()−>g e t z () − node1−>getModablXyzP ()−>g e t z
() ;

5 do ub l e v e c t o r B x = commonNode−>getModablXyzP ()−>g e t x () − node2−>getModablXyzP ()−>g e t x
() ;

6 do ub l e v e c t o r B y = commonNode−>getModablXyzP ()−>g e t y () − node2−>getModablXyzP ()−>g e t y
() ;

7 do ub l e v e c t o r B z = commonNode−>getModablXyzP ()−>g e t z () − node2−>getModablXyzP ()−>g e t z
() ;

8 do ub l e d o t = vec to rAx * v e c t o r B x + vec to rAy * v e c t o r B y + v e c t o r A z * v e c t o r B z ;
9 do ub l e l eng thA = s q r t (vec to rAx * vec to rAx + vec to rAy * vec to rAy + v e c t o r A z * v e c t o r A z) ;

10 do ub l e l e n g t h B = s q r t (v e c t o r B x * v e c t o r B x + v e c t o r B y * v e c t o r B y + v e c t o r B z * v e c t o r B z) ;
11 do ub l e a n g l e I n R a d i a n s = acos (d o t / (l eng thA * l e n g t h B)) ;
12 do ub l e a n g l e = (1 8 0 / (a t a n (1) *4)) * a n g l e I n R a d i a n s ;
13 r e t u r n a n g l e ;
14 }

Listing 6.15: Finding the angle between three nodes

The function returns the angle in degrees, because visually this was easier to work
with. Line 2 to 7 create two vectors called A and B the same way like the theory in 6.1.
The implementation is straight forward from the lines 8 to 11. Line 12 converts radians to
degrees by using

π =
180

(arctan(1) ∗ 4)
(6.8)

To create a right angle, an iterative approach was chosen. By increasing or decreasing
the x-value of the middle node with a small value deltaX the angle between the top-left
node, the middle node and the top-right node will approach a value of 90 degrees. This is
done inside a while loop.

54

6.3 Creating a three dimensional cube

1 boo l s t o p = t r u e ;
2 w h i l e (s t o p) {
3 i f (abs (f i n d A n g l e B e t w e e n T h r e e C o o r d i n a t e s (middleNode , topLef tNode , topRigh tNode) −

90) > 0 . 5) {
4 i f (f i n d A n g l e B e t w e e n T h r e e C o o r d i n a t e s (middleNode , topLef tNode , topRigh tNode) >

90) {
5 do ub l e tempX = middleNode−>getModablXyzP ()−>g e t x () ;
6 u p d a t e N o d e s I n L i s t (middleNode , tempX + 0 . 1 , middleNode−>getModablXyzP ()−>g e t y

() , middleNode−>getModablXyzP ()−>g e t z ()) ;
7 } e l s e i f (f i n d A n g l e B e t w e e n T h r e e C o o r d i n a t e s (middleNode , topLef tNode ,

topRigh tNode) < 90) {
8 do ub l e tempX = middleNode−>getModablXyzP ()−>g e t x () ;
9 u p d a t e N o d e s I n L i s t (middleNode , tempX−0.1 , middleNode−>getModablXyzP ()−>g e t y

() , middleNode−>getModablXyzP ()−>g e t z ()) ;
10 }
11 } e l s e {
12 s t o p = f a l s e ;
13 }
14 }

Listing 6.16: Creating a right angle

Line 3 checks if the angle is in the range of 89.5 and 90.5. If this is the case, the while
loop stops and an angle of around 90 degrees is found. If the angle is not in range, the
else statement at line 4 checks if the angle is higher than 90 degrees. If it is higher, the
x-value of the middle node is increased by a small deltaX, 0.1, as seen in line 6. This
should decrease the angle. The contrary is done if the angle is below 90 degrees. After a
few iterations the value of the angle should reach close to 90 degrees and the while loop
stops.

The next step is to find the vector that stands orthogonal on the plane created by the
three nodes: middle, top-left and top-right. By taking the cross product between the two
vectors created by the three nodes the orthogonal vector is found. The function to find the
normal vector with three points has been explained earlier in section 6.2.1.

The distance to the new point below the plane should be the distance between the
middle node and the bottom node. The bottom node should be moved only a very short
distance to place it directly below the plane along the direction of the planes normal vector.

Doing this gives us three planes that are connected with a right angle. Four nodes are
now in the right position to form the final model: the middle node, the top-right node, the
top-left node and the bottom node.

Using those 4 nodes, it is now possible to calculate the remaining 4 nodes that can
create a full model.

6.3.2 Finding the missing points by calculation
Three of the missing points are points that will complete the three planes that have a right
angle. These points have a x-, y- and z-coordinate, all of which are unknown. This means
that three equations are needed to solve them. Since it is known that the final shape is a
cube, some estimations to set up three equations to solve the problem can be made.

Lets say there a three points, or nodes; A, B and C. The three points create two vectors
like shown in the picture below.

The angle BAC is known to be 90 degrees, because of the work that was done in the
previous section. The distance from A to the new point, D, is also known. It has to be the

55

Chapter 6. Creating three-dimensional models in the GeoMod program

Figure 6.4: Two vectors created from the points AC and AB. The coordinates of point D are un-
known

same as the distance from point B to point C. The angle DAC can be calculated by using
the dot product. The second angle BAD can also be calculated by the dot product, or by
taking 90 degrees minus the first angle that was found. The last equation that is needed is
the equation for a plane created by the the two vectors.

Three equations can now be set up to find the x-, y- and z-coordinates of point D.

~AC · ~AD = | ~AC|| ~AD|cosα (1)

~AB · ~AD = | ~AB|| ~AD|cosβ (2)

a(x− x0) + b(y − y0) + c(z − z0) = 0 (3)

where we know that

| ~AD|= | ~BC| (4)

and that in equation 3
~n =

〈
a, b, c

〉
(5)

The angle α can be found using simple geometry. With this angle, the second angle β
can be found. The N vector can easily be computed by taking the cross product between
the two vectors AC and AB. Using 4, the length of vector AD can be substituted with the
length of vector BC, which is known. This means that the three unknown variables x,
y and z are the only unknown variables present in each of the three equations. Solving
these equations by hand is a lengthy process, but not a very difficult one. To solve these
linear equations inside of the GeoMod code, the Cramer’s rule [16] is implemented. This
method uses matrices and determinant to solve the equations. The implementation is ex-
plained briefly below.

56

6.3 Creating a three dimensional cube

Given that there is this set of linear equations
a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

a3x+ b3y + c3z = d3

(6.9)

In matrix format this is a1 b1 c1a2 b2 c2
a3 b3 c3

xy
z

 =

d1d2
d3

 (6.10)

The three unknown values for the new point with the coordinates (x,y,z) can now be
found like this

x =

∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
, y =

∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
, z =

∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
(6.11)

The Cramer’s rule and the three equations needed to solve the three unknowns are
implemented like this in the C++ code section.

1 QLis t<double> g e n e r a t e M o d e l : : c r a m e r s R u l e (GeomNode* A, GeomNode* B , GeomNode* C) {
2 / / s o l v e s t h r e e l i n e a r e q u a t i o n s t o f i n d t h e c o o r d i n a t e s o f a new p o i n t
3 QLis t<double> NVector = g e t C r o s s P r o d u c t (A, B , C) ; / / f i r s t f i n d i n g t h e normal v e c t o r
4 do ub l e lengthAB = getDis tanceBetweenTwoNodes (A, B) ;
5 do ub l e lengthAC = getDis tanceBetweenTwoNodes (A, C) ;
6 do ub l e lengthBC = getDis tanceBetweenTwoNodes (B , C) ;
7 do ub l e a n g l e 1 = acos (lengthAC / lengthBC) * (1 8 0 / (a t a n (1) *4)) ; / / f i n d i n g t h e a n g l e by

s i m p l e c o s i n u s math
8 do ub l e a n g l e 2 = 90−a n g l e 1 ;
9 do ub l e a1 = C−>getModablXyzP ()−>g e t x ()−A−>getModablXyzP ()−>g e t x () ; / / ACx

10 do ub le b1 = C−>getModablXyzP ()−>g e t y ()−A−>getModablXyzP ()−>g e t y () ; / / ACy
11 do ub le c1 = C−>getModablXyzP ()−>g e t z ()−A−>getModablXyzP ()−>g e t z () ; / / ACz
12 do ub l e a2 = B−>getModablXyzP ()−>g e t x ()−A−>getModablXyzP ()−>g e t x () ; / / ABx
13 do ub le b2 = B−>getModablXyzP ()−>g e t y ()−A−>getModablXyzP ()−>g e t y () ; / / ABy
14 do ub le c2 = B−>getModablXyzP ()−>g e t z ()−A−>getModablXyzP ()−>g e t z () ; / / ABz
15 do ub l e a3 = NVector [0] ;
16 do ub l e b3 = NVector [1] ;
17 do ub l e c3 = NVector [2] ;
18 do ub l e d1 = −cos (a n g l e 1 * ((a t a n (1) *4) / 1 8 0)) * lengthAC * lengthBC −
19 A−>getModablXyzP ()−>g e t x () * a1 − A−>getModablXyzP ()−>g e t y () *b1 − A−>

getModablXyzP ()−>g e t z () * c1 ;
20 do ub l e d2 = −cos (a n g l e 2 * ((a t a n (1) *4) / 1 8 0)) * lengthAB * lengthBC −
21 A−>getModablXyzP ()−>g e t x () * a2 − A−>getModablXyzP ()−>g e t y () *b2 − A−>

getModablXyzP ()−>g e t z () * c2 ;
22 do ub l e d3 = − NVector [0] *A−>getModablXyzP ()−>g e t x () − NVector [1] *A−>getModablXyzP

()−>g e t y () −
23 NVector [2] *A−>getModablXyzP ()−>g e t z () ;
24
25 do ub l e D = (a1 *b2* c3+b1* a3 * c2+c1 * a2 *b3)−(a1 * c2 *b3+b1* a2 * c3+c1 *b2* a3) ;
26 do ub l e x = ((b1* c3 *d2+c1 *b2*d3+d1* c2 *b3)−(b1* c2 *d3+c1 *b3*d2+d1*b2* c3)) /D;
27 do ub l e y = ((a1 * c2 *d3+c1 * a3 *d2+d1* a2 * c3)−(a1 * c3 *d2+c1 * a2 *d3+d1* c2 * a3)) /D;
28 do ub l e z = ((a1 *b3*d2+b1* a2 *d3+d1*b2* a3)−(a1 *b2*d3+b1* a3 *d2+d1* a2 *b3)) /D;
29

57

Chapter 6. Creating three-dimensional models in the GeoMod program

30 QLis t<double> newPointCoord ;
31 newPointCoord . append (x) ; newPointCoord . append (y) ; newPointCoord . append (z) ;
32 r e t u r n newPointCoord ;
33 }

Listing 6.17: The implementation of solving three linear equations

Line 3 calculates the N vector between the vectors AD and AB. Line 2 to 8 calculates
the angle between the two vectors by simple cosines geometry. Then each direction of the
vector AD and AB get their value. Line 18 defines the value of the constant d1 by using
equation 1. The same for line 20, where d2 gets its value by equation 2. Line 23 is a bit
more tricky, this constant d3 uses the equation for a plane 3 to find its value.

After initialising all values used in the Cramer’s rule, it is implemented in lines 25 to
28. Line 25 first determines the determinant of the matrix with all the known constants.
The other three lines can then compute the values for x, y and z. The function then appends
the values for the new point to a list at line 31 and returns this list on line 32.

A new point has now be found. This method is then repeated three more times.

1 QLis t<double> newPo in tBo t tomLef t = c r a m e r s R u l e (middleNode , topLef tNode , bottomNode) ;
2 u p d a t e N o d e s I n L i s t (bot tomLef tNode , newPo in tBo t tomLef t [0] , newPo in tBo t tomLef t [1] ,

newPo in tBo t tomLef t [2]) ;
3
4 QLis t<double> newPointTop = c r a m e r s R u l e (middleNode , topRightNode , t opLe f tNode) ;
5 u p d a t e N o d e s I n L i s t (topNode , newPointTop [0] , newPointTop [1] , newPointTop [2]) ;
6
7 QLis t<double> newPoin tBo t tomRigh t = c r a m e r s R u l e (middleNode , bottomNode , topRigh tNode) ;
8 u p d a t e N o d e s I n L i s t (bot tomRightNode , newPoin tBo t tomRigh t [0] , newPoin tBo t tomRigh t [1] ,

newPoin tBo t tomRigh t [2]) ;
9

10 QLis t<double> f i n a l P o i n t L i s t = c r a m e r s R u l e (topLef tNode , bot tomLef tNode , topNode) ;
11 GeomNode* f i n a l P o i n t = modelGrpP−>addNode (f i n a l P o i n t L i s t [0] , f i n a l P o i n t L i s t [1] ,

f i n a l P o i n t L i s t [2]) ;

Listing 6.18: Finding new points by cramers rule

6.3.3 Creating regions

From the original four points, four additional points were calculated. This means that all
points to create a complete cube have been found. Since all points needed are present, it is
time to create regions. A cube needs six regions. To create for example the top region of
the cube, the code looks like this.

1 QLis t<GeomNode*> r e g i o n 3 ;
2 r e g i o n 3 . append (middleNode) ;
3 r e g i o n 3 . append (topLe f tNode) ;
4 r e g i o n 3 . append (topNode) ;
5 r e g i o n 3 . append (topRigh tNode) ;

Listing 6.19: Creating a region

This is then done for the other 5 regions. Finally, the regions are collected into a
list, and the list of regions is then returned to the constructor. Inside the constructor, the
function at 6.12 creates the model and a cube shaped model should now appear in the
camera view.

58

6.4 The four-points method

1 QLis t<QLis t<GeomNode*>> l i s t O f R e g i o n s ;
2 l i s t O f R e g i o n s . append (r e g i o n 1) ;
3 l i s t O f R e g i o n s . append (r e g i o n 2) ;
4 l i s t O f R e g i o n s . append (r e g i o n 3) ;
5 l i s t O f R e g i o n s . append (r e g i o n 4) ;
6 l i s t O f R e g i o n s . append (r e g i o n 5) ;
7 l i s t O f R e g i o n s . append (r e g i o n 6) ;

Listing 6.20: Collecting all the regions to a list

Below the result of running this function is shown. More images are shown in chapter
7.

(a) Source image of the cube created (b) The cube created from a single 2D picture

Figure 6.5: A 2D image has become three-dimensional

6.4 The four-points method

The four-points method has been mentioned earlier in section 5.8. This is the C++ imple-
mentation that deals with the four nodes that were found in the python part.

This method was implemented to experiment if it was possible to create a cube from
just 4 points, no matter what the orientation the cube has. The four points the method
needs are read from the text file and originate from the calculations from the python code.
Here, the first three nodes read from the file are the nodes that are connected to the middle
node. The last node in the file has to be the middle node. This middle node is found in the
python part of the code, using both the ray-tracing algorithm and the theory behind W. R.
Franklins method. Using the combination of those two implementations, the middle node
could be identified quite reliably, and the four points should be correct. A benefit of using
this technique is that only one node needs to be identified, instead of the seven nodes like
the implementation in section 6.3. This should should make the four-points method less
error prone, and that is the reason it originated in the first place.

The four-points methods implementation is quite similar to the implementation in sec-
tion 6.3. But the first difference can already be spotted in the beginning of the code. To
align the middle node to the same height as two of the other nodes, vector calculation is
used again. The four nodes are node1, node2, node3 and middleNode. A vector is created
using the nodes node1 and node2. To elevate the middle node to the same height as node1

59

Chapter 6. Creating three-dimensional models in the GeoMod program

and node2 we place it on to the vector that the nodes create. Since the middleNode does
not have any depth yet, the first value of depth is to be estimated to be half the distance
between node1 and node2.

1 GeomNode* node1 = l i s t O f P t r N o d e s [0] ;
2 GeomNode* node2 = l i s t O f P t r N o d e s [1] ;
3 GeomNode* node3 = l i s t O f P t r N o d e s [2] ;
4 GeomNode* middleNode = l i s t O f P t r N o d e s [3] ;
5 do ub l e d = getDis tanceBetweenTwoNodes (middleNode , node3) ;
6 do ub l e d2 = getDis tanceBetweenTwoNodes (node1 , node2) ;
7 do ub l e vec to rAy = node2−>getModablXyzP ()−>g e t y () − node1−>getModablXyzP ()−>g e t y () ;
8 do ub l e v e c t o r A z = node2−>getModablXyzP ()−>g e t z () − node1−>getModablXyzP ()−>g e t z () ;
9

10 u p d a t e N o d e s I n L i s t (middleNode , d2 / 2 , node1−>getModablXyzP ()−>g e t y () + vec to rAy / 2 , node1
−>getModablXyzP ()−>g e t z () + v e c t o r A z / 2) ;

Listing 6.21: Aligning the middleNode with the other nodes

To maintain the distance, d, from the middleNode to node3, the original distance was
first saved to a variable, line 5. After that a vector from the middleNode to the node3 is
created. To preserve the direction of middleNode and node3, node3 is moved along the
vector between the two nodes until its distance to the middleNode is as far as the original
distance d.

Next, a modification of the function to iteratively determine a right angle between two
nodes is used. This modification is due to determining which direction should be increased
by a small value delta to create a right angle. In the previous section it was always clear
that the small delta had to be added to the value in the x-direction. This time that was
also very likely, but just to keep the created cube more like its original shape, a function
called checkWhichOrientationNeedsToBeChanged was created to determine which direc-
tion needed to be increased to create a right angle. This function returns an int telling an
if sentence which direction needs to be changed. As per the test-images for this projects,
the answer would always be the x-direction, but the function was tested for edge-cases and
should hold up for more complicated tasks in the future.

After determining a depth value for the middleNode, this depth value was taken to
update the value of node3. At this point there are still 4 points missing, and these are
calculated the same way as in section 6.3.2, using Cramer’s rule. Regions are also created
the same way as in section 6.3.3. The results of using this function to create a cube are
very similar to the results in the last section. The length of the sides of the cube may differ
in length, but both functions are very reliable to create a cube. The big difference is that in
this section only 4 points are needed to create a cube, and it can more reliably create cubes
without edge errors.

60

6.5 Estimating the volume for a polygon

(a) The original image
(b) Model created by the four-points method

Figure 6.6: Using the four-points method

6.5 Estimating the volume for a polygon

An estimation of the volume for a polygon was implemented to give an approximation
of the volume of the model shown in GeoMod. The reason behind implementing this is
showcasing a potential use in the real world. More on that in section 8.1 about potential
application in the real world. The function to approximate the area for a simple, non-
intersecting polygon [20] is given by :

A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi), where xn = x0 and yn = y0 (6.12)

Its implementation looks as follows:

1 do ub l e g e n e r a t e M o d e l : : c a l c u l a t e A r e a O f S u r f a c e (QLis t<GeomNode*> l i s t O f N o d e s) {
2 f o r (i n t i = 0 ; i < l i s t O f N o d e s . l e n g t h () ; i ++) {
3 i f (i == l i s t O f N o d e s . l e n g t h ()−1) {
4 a r e a += 0 . 5 * (l i s t O f N o d e s [i]−>getModablXyzP ()−>g e t y () * l i s t O f N o d e s [0]−>

getModablXyzP ()−>g e t z ()
5 − l i s t O f N o d e s [0]−>getModablXyzP ()−>g e t y () * l i s t O f N o d e s [i]−>

getModablXyzP ()−>g e t z ()) ;
6 } e l s e {
7 a r e a += 0 . 5 * (l i s t O f N o d e s [i]−>getModablXyzP ()−>g e t y () * l i s t O f N o d e s [i +1]−>

getModablXyzP ()−>g e t z ()
8 − l i s t O f N o d e s [i +1]−>getModablXyzP ()−>g e t y () * l i s t O f N o d e s [i]−>

getModablXyzP ()−>g e t z ()) ;
9 }

10 }
11 r e t u r n a r e a ;
12 }

Listing 6.22: Calculating the area of a polygon

Here, only the area in the y-z coordinate orientation is calculated. Once a model gets
its depth, the average depth is calculated for the complete model. The volume is then
found by taking the models area and multiplying it by the average depth. This gives a
good estimation of the volume, which of course is more correct for simpler models and

61

Chapter 6. Creating three-dimensional models in the GeoMod program

less correct the more advanced the polygon is. The area and volume is printed to the
console after the creation of the model.

Figure 6.7: This is what the output looks like. These values were found for the simple rectangle in
figure 3.1a

62

Chapter 7
Results

This chapter presents the results found during this thesis. For each method a few pictures
show the process from a normal two-dimensional picture to its three-dimensional model.
More results are shown in the appendix, section 1.4.

7.1 Results of creating generic models

Here the results of the createGenericModelDepth function are presented. This function
takes a general shape as input and creates a depth using the normal vector of two vectors on
the same plane as the shape. The models depth is decided by the length of the neighbouring
edge. This usually gives a good estimate for simple forms such as rectangles, pentagons
and ellipses. The depth of an advanced form such as a fish is less realistic. The presentation
is in chronological order. The first image is the original image, the second one shows the
threshold created from that image with all filters applied. The third image is the calculated
image where duplicated nodes and lines have been eliminated. The last images are the
three-dimensional approximations of the two-dimensional shape.

63

Chapter 7. Results

(a) Original Picture (b) Threshold

(c) Calculated Image
(d) Two Dimensional

(e) Three dimensional front (f) Three dimensional top

Figure 7.1: A normal rectangular shape

64

7.1 Results of creating generic models

(a) Original Picture (b) Threshold

(c) Calculated Image
(d) Two Dimensional

(e) Three dimensional front (f) Three dimensional top

Figure 7.2: Multiple shapes in a single image

65

Chapter 7. Results

7.2 Three dimensional cubes

Here the function createACubeWithDepth is used to create three-dimensional cubes. The
order of the images is chronological and the same as section 7.1. The first image is of
a simple cube with three differently coloured sides. The last is of a cube that has one
uniform colour, red.

(a) Original Picture (b) Threshold

(c) Calculated Image
(d) Two Dimensional

(e) Three dimensional front (f) Three dimensional top

Figure 7.3: Process of creating a three-dimensional cube-shaped model out of a simple cube

66

7.2 Three dimensional cubes

(a) Original Picture (b) Threshold

(c) Calculated Image
(d) Two-dimensional

(e) Three-dimensional front (f) Three-dimensional top

Figure 7.4: A red cube is transformed into a three-dimensional mode

For this image of a red cube, colour modification had to be used to find all the edges
of the cube correctly. This also helps mark an object against its background. The values
for the sliders used to modify the pictures colours is shown in figure 7.5b.

67

Chapter 7. Results

(a) Cube with colours changed to help identify
edges

(b) Values used to create the colour modified ver-
sion

Figure 7.5: Colour modification used to find the edges of the cube

As seen in figure 7.4d two lines were not drawn correctly in the GeoMod view. This is
due to the list of relations from the python program having an error and writing the nodes
in the wrong sequence to file. This means that the for-loop drawing the edges makes
errors. The faulty edges have no effect on the final model and the cube will still be created
correctly.

68

7.3 Cubes created by the four-points method

7.3 Cubes created by the four-points method

Another few results using the four-points method are shown in this section. Figure 7.6
shows the same cube as in figure 7.3, using the same threshold and calculation basis.

(a) Two dimensional model of the four points
(b) Calculated three-dimensional model using the
four-point method

(c) Top view of the model

Figure 7.6: Pictures showing the result of the four-points method

The figure 7.6b shows the front side of the cube. The distortion is due to the camera
view, not the model. The white sides are because those sides are being created inside out
during the for-loop, which means they go in the opposite direction of the drawing direction
defined in the program. The more rectangular shaped sides of the model are due to varying
distance between the nodes. A distortion free angle is shown of the top view in figure 7.6c.

7.4 More complex shapes

After the method to create general models in the GeoMod environment was completed it
was exciting to see what it was capable of. More complex images where chosen to create
two-dimensional shapes with great results. Here the values of the filters are important.

69

Chapter 7. Results

Using the sliders to adjust these values can give very different results. Choosing a low
value for epsilon resulted in a lot of points along the outline of the model. Choosing a too
low value for epsilon could crash the program. Therefore the lower limit for epsilon was
increased to prevent future crashes. These pictures of a fish shows a outline with low ep-
silon and low ”Area of Objects” value, giving a great magnitude of points. Increasing the
”Area of Objects” value will eliminate small shapes often found inside the outer contour.
This model is also very costly to produce in the GeoMod environment.

After the createGenericModelDepths method was developed, it was applied to these
images as well. The results were not true to real life, but they were still quite exciting. The
result of a depth image of the fish can be seen in figure 8.1b.

(a) Calculated image of the fish with low epsilon
and low ”Area of Objects”

(b) Calculated image of the fish with higher ep-
silon and high erosion (5)

Figure 7.7: The fish image with different slider values

(a) Many points inside the outer contour give mul-
tiple errors when creating edges

(b) Fewer points and less points inside the outer
contour create a more correct outline of the fish

Figure 7.8: The image on the right is preferred over the one on the left

70

7.5 Multiple models in one image

7.5 Multiple models in one image
One of the benefits of dynamic linking is to be able to link in multiple models with the
same class during run-time. This means that multiple images can be used to detect shapes
and the results of that detection can be linked into the camera view. Here is a figure
depicting how the view looks like when multiple models originating from different images
have been linked into the view. Here two cubes and a heart shape have been linked during
the same run-time.

Figure 7.9: Multiple models loaded into the camera view

This is also extremely useful for navigation. The camera view can keep hold of models
it passes during navigation, and un-link and link them when needed. Once a model has
been linked, it can be tracked and moved relatively to the movement of the vehicle.

71

Chapter 7. Results

72

Chapter 8
Application, challenges and future
work

8.1 Potential applications in the real world

As with most projects and thesis’, using the thesis’ product and result to improve some-
thing that exists in the real word is very exciting. What could model estimates of shapes
possibly be used for? Since this thesis is written for the Norwegian University of Science
and Technology and has strong Norwegian influences, the fish farming industry was an
immediate thought. It’s not more than a thought, but some concrete application for this
kind of software are given below.

An idea would be to use cameras in combination with a 3D model construction to
evaluate the weight, size and area of fish in fishing farms. Submerging the camera below
the surface of the water and taking pictures or translating a video feed directly into 3D
models which can then estimate the weight and size of the fish. This will give direct
information of the health of the fish, when it can be processed, and if there are edge case
fish that must be monitored. This will require good knowledge of the fish’s shape and
layout, and an automated method to find important points in the fish’s shape. Just out of
curiosity a fish was modelled in the GeoMod program and an approximation of its volume
was taken. This was done by calculating its area and multiplying it by its depth, as shown
in section 6.5. For such a complex model the result is of course not completely accurate,
but it is a good estimation. For simpler model such as a cube or a simpler polygon the
numbers are quite accurate. Since it was shown that an approximation for cubes in three
dimensions could be made in this program, recreating a fish in three-dimensions should be
possible.

73

Chapter 8. Application, challenges and future work

(a) Original picture of a fish

(b) Estimated and plotted model of a fish

Figure 8.1: Generic three-dimensional models of 2D pictures

The thought of fish modelling was directly related to this thesis environment, the sub-
sea. In addition to hindrances and fish, also other objects floating under the water surface
could be modelled and logged in real time. Even plastic pollution in oceans can in theory
be documented and mapped with a modification of this program.

Another real-life application for a thesis such as this, is in mass productions. Products
transported down a product line can be detected by a single camera. This camera can
then rapidly decide where to sort this product by changing its lane. This way also faulty
products can be detected.

8.2 Challenges

As one can imagine with a pure programming project, everything did not go as smooth as
it should. A lot of trial and error have resulted in evolving the code to be what it is now.

The first challenge was already met in the beginning of the project, when OpenCV
was supposed to be implemented in Qt. The program Qt has support for the OpenCV
environment, and there are guides explaining how to install them alongside each other
[38]. Although most of these guides were outdated, the optimism was high to be able to get
OpenCV to work with the GeoMod program and the Qt environment. For some reason this
turned out to be impossible, both on the main computer used for this thesis and a backup
computer, both running Windows. The OS was important to be Windows, since that is
the operating system which NTNU seems to have adopted. After many frustrating weeks,
it was decided that OpenCV should be installed on an IDE running python. This was
simple and took around 10 minutes. So, in the end, two programs had to do the tasks that
the thesis was supposed to implement. This resulted in a bit sub-optimal communication
system. The benefit of that was that they could run independently. This means that images
could be recognised and transported to the other program while GeoMod was running in
the background.

Using a python environment for coding allowed the use of the TensorFlow API [3].
Since machine learning, and everything that seems to be using the key word AI, is very
popular right now, an approach using something of that order was tried to be implemented.
After running a few examples, such as the ”cat and dogs’” example in figure 8.2, it was

74

8.3 Future Work

found that although potentially useful, it would be too much work to implement it to work
with GeoMod and use it to recognise simple shapes. It would also be too dependable on
the TensorFlow API, and since updates to that program were very frequent, the thesis’
code would soon be outdated and would need constant updates.

Figure 8.2: An example run in TensorFlow that tries to differentiate between a cat and a dog in a
picture. Not every picture was recognised perfectly. The basis were 10000 pictures of cats and dogs
to train the model

The next challenge was the unfamiliarity of the languages used for this thesis. Both
Python and C++ were unfamiliar programming languages and much of the languages syn-
tax and general rules had to be learned from scratch. Being familiar with a lot of other
programming languages helped a lot. Some work had previously been done with the Geo-
Mod program. It is quite a complicated project and a lot of time was used to get to know
the program. For example, at least a week could have been saved if the implementation of
regions would not have been thought to be different than it turned out to be.

8.3 Future Work

After the completion of this thesis, some future work can be done to improve and extend
the functionality of the program, these are listed in no particular order below.

A great basis for a future semester thesis would be to port the OpenCV functionality
to the Qt environment. Since the functions available in the OpenCV environment for C++
are very much alike to those implemented in the python code, the porting should not be
too challenging. Porting the function for finding the middle node would be top priority,
making the GeoMod less dependant on the result of the python part.

Qt offers a huge advantage over the python part in that it supports much better imple-
mentation of a Graphical User Interface. This should make the implementation of chang-
ing the value for the filters much nicer and simpler to work with. A file browser should

75

Chapter 8. Application, challenges and future work

also be implemented for the selection of source images used for the detection of shapes.
The most important difference an implementation in Qt would make is the communica-

tion between the shape detection and the shape modelling. Shapes detected could be send
directly into the camera view of the GeoMod program and a three-dimensional estimation
could also be created directly after identifying a shape.

An implementation that would have been really fun to do for this project, but that was
unfortunately outside of this projects scope, is the implementation of recognising shapes
from a video feed. A video feed could be linked directly into OpenCV environment by us-
ing for example a web-cam. Supporting video streams is really exciting when it comes to
movement of objects. Imagine a camera mounted on a drone, the camera feeding the pro-
gram with pictures and information. The program creates a real time, three-dimensional
model of what is around it. This is still very far off, but this project could be a step in the
right direction.

Implementing the adaptive threshold function could improve future results and make
automation of shape detection easier. It is after all automation that is sought to be reached
in this program.

To not implement a form of gravity that affects the linked in models in the program
was done on purpose. Using the control panel of the GeoMod program, models can be
moved around in the camera view. This was deemed sufficient, and the models were left
floating in space when being loaded in dynamically.

Automation can further be implemented by eliminating the need for the sliders that
change the filters and the functions input. This can be done by trying out multiple scenarios
of images and see what filters work best for them. This knowledge is then saved. If
a scenario is recognised, the settings from previous tests can be applied and the shape
detection can now be performed on the image. An example is if a dark shape or scene is
present on the image this can be recognised by looking at the RGB values of the pixels. If
a predetermined setting is available for dark objects, like when the dark cube was used in
figure 3.10, it can then be applied and improve the shape detection.

Allowing a custom depth for general models is a feature that could be implemented.
This would also make estimation of volume more correct. The possibility to re-size a
model is already implemented, but a slider in the GUI to adjust this value would be a
recommended implementation.

76

Chapter 9
Conclusion

This project was about shape detection. It showed how to detect shapes and port them
over to a different program. The project started with detecting very simple shapes and
forms. By using read and write functions, these simple shapes could be identified in a
python environment and then they could be drawn in the view environment of the GeoMod
program. More complex shapes were supported by adding more points to a model. The
detection of multiple shapes in an image was also added to the program.

The main focus was on making cubes three-dimensional based on a set view of a cube
in two dimensions. A four-points method was implemented that could draw cubes based
on four points. This method could make the program less error prone than the alternative
method that was implemented, but distances between edges could be less like the length
in the original two-dimensional image. A way to make normal two-dimensional shapes
three dimensional was implemented. The depths for general shapes such as rectangles and
pentagons were found by using normal vectors. This gives the models a three-dimensional
shape in space. The results presented in chapter 7 show that the code is working well for
the test-images chosen. Cubes are created quite accurately, with both methods that are
implemented. Other shapes, such as triangles and pentagons can be drawn in two dimen-
sions or a general depth can be given to the contour to make the model three-dimensional.
This works very well with such simple shapes. More complex shapes like a heart or a
fish can be drawn in two dimensions quite accurately. When creating a three-dimensional
estimation, complex shapes can have a various degree of depth for different points, which
makes the three-dimensional approximation not very life-like.

77

78

Bibliography

[1] Opencv: Contours hierarchy. https://docs.opencv.org/3.4/d9/d8b/
tutorial_py_contours_hierarchy.html.

[2] Pep 20 – the zen of python — python.org. https://www.python.org/dev/
peps/pep-0020/.

[3] Tensorflow. https://www.tensorflow.org/.

[4] Recursive function definition. https://techterms.com/definition/
recursivefunction.

[5] Fibonacci numbers. https://www.ics.uci.edu/˜eppstein/161/
960109.html.

[6] Point in polygon - wikipedia. https://en.wikipedia.org/wiki/Point_
in_polygon#Ray_casting_algorithm.

[7] What is the ray-casting algorithm? - quora. https://www.quora.com/
What-is-the-ray-casting-algorithm.

[8] Ray-casting algorithm - rosetta code. https://rosettacode.org/wiki/
Ray-casting_algorithm#Python.

[9] Pnpoly - point inclusion in polygon test - wr franklin (wrf). https://wrf.ecse.
rpi.edu//Research/Short_Notes/pnpoly.html.

[10] File:point in polygon problem.svg - wikimedia commons. https://commons.
wikimedia.org/wiki/File:Point_in_polygon_problem.svg.

[11] performance - how can i determine whether a 2d point is within a polygon? -
stack overflow. https://stackoverflow.com/questions/217578/
how-can-i-determine-whether-a-2d-point-is-within-a-polygon.

[12] Numpy — numpy. http://www.numpy.org/.

79

https://docs.opencv.org/3.4/d9/d8b/tutorial_py_contours_hierarchy.html
https://docs.opencv.org/3.4/d9/d8b/tutorial_py_contours_hierarchy.html
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.tensorflow.org/
https://techterms.com/definition/recursivefunction
https://techterms.com/definition/recursivefunction
https://www.ics.uci.edu/~eppstein/161/960109.html
https://www.ics.uci.edu/~eppstein/161/960109.html
https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm
https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm
https://www.quora.com/What-is-the-ray-casting-algorithm
https://www.quora.com/What-is-the-ray-casting-algorithm
https://rosettacode.org/wiki/Ray-casting_algorithm#Python
https://rosettacode.org/wiki/Ray-casting_algorithm#Python
https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html
https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html
https://commons.wikimedia.org/wiki/File:Point_in_polygon_problem.svg
https://commons.wikimedia.org/wiki/File:Point_in_polygon_problem.svg
https://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon
https://stackoverflow.com/questions/217578/how-can-i-determine-whether-a-2d-point-is-within-a-polygon
http://www.numpy.org/

[13] Opencv: Contours : Getting started. https://docs.opencv.org/3.4.2/
d4/d73/tutorial_py_contours_begin.html.

[14] Advanced engineering mathematics - dennis g. zill, michael r. cullen - google
books. https://books.google.de/books?id=x7uWk8lxVNYC&pg=
PA324&redir_esc=y&hl=en#v=onepage&q&f=false.

[15] Dot product. https://www.mathsisfun.com/algebra/
vectors-dot-product.html.

[16] Cramer’s rule – from wolfram mathworld. http://mathworld.wolfram.
com/CramersRule.html.

[17] Cramer’s rule - wikipedia. https://en.wikipedia.org/wiki/Cramer%
27s_rule.

[18] Understanding the main method of python - stack overflow.
https://stackoverflow.com/questions/22492162/
understanding-the-main-method-of-python.

[19] c++ - size/length of a trackbar name in opencv - stack over-
flow. https://stackoverflow.com/questions/39845274/
size-length-of-a-trackbar-name-in-opencv.

[20] Polygon area and centroid - polygon area and centroid.pdf. chrome-extension:
//oemmndcbldboiebfnladdacbdfmadadm/https://www.seas.
upenn.edu/˜sys502/extra_materials/Polygon%20Area%20and%
20Centroid.pdf.

[21] Picture: Inclusion of a point in a polygon. http://geomalgorithms.com/
a03-_inclusion.html.

[22] https://upload.wikimedia.org/wikipedia/commons/c/c9/recursiveevenpolygon.svg.
https://upload.wikimedia.org/wikipedia/commons/c/c9/
RecursiveEvenPolygon.svg.

[23] Normal cube. http://imagine.inrialpes.fr/people/Francois.
Faure/htmlCourses/WebGL/cube36.png.

[24] Red cube. https://www.freeiconspng.com/uploads/
red-box-png-3d-cube-picture-24.png.

[25] Black cube. https://www.freeiconspng.com/uploads/
black-cube-box-png-5.png.

[26] Xhensila Poda and University of Tirana Olti Qirici. Shape detection and
classification using opencvand arduino uno. chrome-extension:
//oemmndcbldboiebfnladdacbdfmadadm/http://ceur-ws.org/
Vol-2280/paper-19.pdf.

80

https://docs.opencv.org/3.4.2/d4/d73/tutorial_py_contours_begin.html
https://docs.opencv.org/3.4.2/d4/d73/tutorial_py_contours_begin.html
https://books.google.de/books?id=x7uWk8lxVNYC&pg=PA324&redir_esc=y&hl=en#v=onepage&q&f=false
https://books.google.de/books?id=x7uWk8lxVNYC&pg=PA324&redir_esc=y&hl=en#v=onepage&q&f=false
https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://www.mathsisfun.com/algebra/vectors-dot-product.html
http://mathworld.wolfram.com/CramersRule.html
http://mathworld.wolfram.com/CramersRule.html
https://en.wikipedia.org/wiki/Cramer%27s_rule
https://en.wikipedia.org/wiki/Cramer%27s_rule
https://stackoverflow.com/questions/22492162/understanding-the-main-method-of-python
https://stackoverflow.com/questions/22492162/understanding-the-main-method-of-python
https://stackoverflow.com/questions/39845274/size-length-of-a-trackbar-name-in-opencv
https://stackoverflow.com/questions/39845274/size-length-of-a-trackbar-name-in-opencv
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf
http://geomalgorithms.com/a03-_inclusion.html
http://geomalgorithms.com/a03-_inclusion.html
https://upload.wikimedia.org/wikipedia/commons/c/c9/RecursiveEvenPolygon.svg
https://upload.wikimedia.org/wikipedia/commons/c/c9/RecursiveEvenPolygon.svg
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/WebGL/cube36.png
http://imagine.inrialpes.fr/people/Francois.Faure/htmlCourses/WebGL/cube36.png
https://www.freeiconspng.com/uploads/red-box-png-3d-cube-picture-24.png
https://www.freeiconspng.com/uploads/red-box-png-3d-cube-picture-24.png
https://www.freeiconspng.com/uploads/black-cube-box-png-5.png
https://www.freeiconspng.com/uploads/black-cube-box-png-5.png
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://ceur-ws.org/Vol-2280/paper-19.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://ceur-ws.org/Vol-2280/paper-19.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://ceur-ws.org/Vol-2280/paper-19.pdf

[27] Libraries & apis, tools and ide — qt. https://www.qt.io/
qt-features-libraries-apis-tools-and-ide/.

[28] Project jupyter — home. https://jupyter.org/.

[29] Opencv library. https://opencv.org/.

[30] Marc Pollefeys and Luc Van Gool. From images to 3d models. Communications of
the ACM July 2002/Vol. 45, No.

[31] Deva Ramanan Mohsen Hejrati. Analyzing 3d objects in cluttered images.

[32] http://www.cplusplus.com/doc/tutorial/pointers/. C++ point-
ers.

[33] https://www.tutorialspoint.com/cplusplus/cpp_
overloading.html. C++ inheritance.

[34] Is there any method to extract 3d shapes/volumes from single 2d grayscale im-
age? thread. https://www.researchgate.net/post/Is_there_
any_method_to_extract_3d_shapes_volumes_from_single_2d_
grayscale_image.

[35] c++ - opencv edge/border detection based on color - stack over-
flow. https://stackoverflow.com/questions/29156091/
opencv-edge-border-detection-based-on-color.

[36] Canny edge detection — opencv-python tutorials 1 documentation. https:
//opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_imgproc/py_canny/py_canny.html#canny.

[37] How to create an image classifier using qt, opencv and tensor-
flow - amin. http://amin-ahmadi.com/2018/03/15/
how-to-create-an-image-classifier-using-qt-opencv-and-tensorflow/.

[38] Qt and opencv. http://qtandopencv.blogspot.com/.

[39] Choosing the correct upper and lower hsv boundaries
for color detection inrange (opencv) - stack overflow.
https://stackoverflow.com/questions/10948589/
choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv.

[40] opencv hsv mask/filter with trackbar · github. https://gist.github.com/
yingminc/68bf81a79b3bd87070b364d1764e6c70.

[41] Picture of blue fish. https://kascomarine.com/wp-content/
uploads/2017/06/blue-fish-png-image-18.png.

[42] Picture of heart. https://dumielauxepices.net/sites/default/
files/drawn-shapes-heart-571379-6515246.png.

81

https://www.qt.io/qt-features-libraries-apis-tools-and-ide/
https://www.qt.io/qt-features-libraries-apis-tools-and-ide/
https://jupyter.org/
https://opencv.org/
http://www.cplusplus.com/doc/tutorial/pointers/
https://www.tutorialspoint.com/cplusplus/cpp_overloading.html
https://www.tutorialspoint.com/cplusplus/cpp_overloading.html
https://www.researchgate.net/post/Is_there_any_method_to_extract_3d_shapes_volumes_from_single_2d_grayscale_image
https://www.researchgate.net/post/Is_there_any_method_to_extract_3d_shapes_volumes_from_single_2d_grayscale_image
https://www.researchgate.net/post/Is_there_any_method_to_extract_3d_shapes_volumes_from_single_2d_grayscale_image
https://stackoverflow.com/questions/29156091/opencv-edge-border-detection-based-on-color
https://stackoverflow.com/questions/29156091/opencv-edge-border-detection-based-on-color
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html#canny
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html#canny
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html#canny
http://amin-ahmadi.com/2018/03/15/how-to-create-an-image-classifier-using-qt-opencv-and-tensorflow/
http://amin-ahmadi.com/2018/03/15/how-to-create-an-image-classifier-using-qt-opencv-and-tensorflow/
http://qtandopencv.blogspot.com/
https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv
https://stackoverflow.com/questions/10948589/choosing-the-correct-upper-and-lower-hsv-boundaries-for-color-detection-withcv
https://gist.github.com/yingminc/68bf81a79b3bd87070b364d1764e6c70
https://gist.github.com/yingminc/68bf81a79b3bd87070b364d1764e6c70
https://kascomarine.com/wp-content/uploads/2017/06/blue-fish-png-image-18.png
https://kascomarine.com/wp-content/uploads/2017/06/blue-fish-png-image-18.png
https://dumielauxepices.net/sites/default/files/drawn-shapes-heart-571379-6515246.png
https://dumielauxepices.net/sites/default/files/drawn-shapes-heart-571379-6515246.png

[43] Picture of many simple shapes. http://diysolarpanelsv.com/images/
preschool-shape-monster-clipart-23.jpg.

[44] Picture of many, more complex shapes. https://www.
amvplaygrounds.co.uk/pub/media/catalog/product/a/m/amv_
f4-pm-020-shapes-circle-square-rectangle-star-triangle-500mm-2-sq-3d.
jpg.

[45] Picture of simple rectangle. https://upload.wikimedia.org/
wikipedia/commons/c/cc/Rectangle_.png.

[46] Welcome to python.org. https://www.python.org/.

[47] History of c++ - c++ information. http://www.cplusplus.com/info/
history/.

[48] A control system for autonomous vehicles, three-dimensional geometric models from
pictures. Tony Gjendahl, June 2017.

[49] Image processing - how is gaussian blur implemented? https:
//computergraphics.stackexchange.com/questions/39/
how-is-gaussian-blur-implemented.

[50] Smoothing images — opencv 2.4.13.7 documentation. https://docs.
opencv.org/2.4.13.7/doc/tutorials/imgproc/gausian_
median_blur_bilateral_filter/gausian_median_blur_
bilateral_filter.html.

[51] Eroding and dilating — opencv 2.4.13.7 documentation. https:
//docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_
dilatation/erosion_dilatation.html.

82

http://diysolarpanelsv.com/images/preschool-shape-monster-clipart-23.jpg
http://diysolarpanelsv.com/images/preschool-shape-monster-clipart-23.jpg
https://www.amvplaygrounds.co.uk/pub/media/catalog/product/a/m/amv_f4-pm-020-shapes-circle-square-rectangle-star-triangle-500mm-2-sq-3d.jpg
https://www.amvplaygrounds.co.uk/pub/media/catalog/product/a/m/amv_f4-pm-020-shapes-circle-square-rectangle-star-triangle-500mm-2-sq-3d.jpg
https://www.amvplaygrounds.co.uk/pub/media/catalog/product/a/m/amv_f4-pm-020-shapes-circle-square-rectangle-star-triangle-500mm-2-sq-3d.jpg
https://www.amvplaygrounds.co.uk/pub/media/catalog/product/a/m/amv_f4-pm-020-shapes-circle-square-rectangle-star-triangle-500mm-2-sq-3d.jpg
https://upload.wikimedia.org/wikipedia/commons/c/cc/Rectangle_.png
https://upload.wikimedia.org/wikipedia/commons/c/cc/Rectangle_.png
https://www.python.org/
http://www.cplusplus.com/info/history/
http://www.cplusplus.com/info/history/
https://computergraphics.stackexchange.com/questions/39/how-is-gaussian-blur-implemented
https://computergraphics.stackexchange.com/questions/39/how-is-gaussian-blur-implemented
https://computergraphics.stackexchange.com/questions/39/how-is-gaussian-blur-implemented
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
https://docs.opencv.org/2.4/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html

Appendix

1.1 Risk assessment

Generally a risk assessment is required when handing in a master thesis, but for theo-
retical thesis’ a risk assessment is not required. Since this thesis only involves software
development it was not deemed necessary to include a risk assessment.

1.2 Saving last read path to file

A save to file system was implemented to remember the path of the previously selected
file. This made navigating when using a file-browser easier. Previously, upon opening
a file-browser, the user would have to navigate through multiple levels to find a file to
for example link into the GeoMod program dynamically. With the save-to-file system, it
opens the file-browser on the level that the last file was loaded from. This saves a lot of
time, since this is done very frequently.

1.3 Installation Guide for Qt Creator (5.9.1) and Visual
Studio 2017

Note: In this installation guide Qt Version 5.9.1 and Windows Visual Studio 2017 were
used.

This Guide is divided into three parts. The first part goes through installing the correct
version of Qt Creator to be able to run this project. The second part helps you install
Windows Visual studio. The third part is the installation of a QT plug-in for Visual Studio,
so that a Qt project can be run in the Windows Visual Studio environment.

Running the project can be done in both Qt Creator and Visual Studio, so the preferred
editor can be chosen freely.

1.3.1 Part 1: Installing Qt Creator
First we will need to download Qt Creator. This can be done by either googling ”Qt
creator Community Edition” or following this link:

• https://www.qt.io/download-open-source/?hsCtaTracking=f977210e-de67-475f-a32b-65cec207fd03%
7Cd62710cd-e1db-46aa-8d4d-2f1c1ffdacea

1

https://www.qt.io/download-open-source/?hsCtaTracking=f977210e-de67-475f-a32b-65cec207fd03%7Cd62710cd-e1db-46aa-8d4d-2f1c1ffdacea
https://www.qt.io/download-open-source/?hsCtaTracking=f977210e-de67-475f-a32b-65cec207fd03%7Cd62710cd-e1db-46aa-8d4d-2f1c1ffdacea

This version of the Qt Creator is the Community version, which means it is free to use.
The installation of the Qt Creator edition is quite simple. When asked to log in or to

create an account, you can simply use the skip button to skip this step.

Figure 1.1: Qt version

When selecting what components of Qt you want to install, choose the newest version
which supports Visual Studio 2017. This can be seen by going on the different versions
of Qt, such as 5.9.1, 5.9.0 and 5.8. This is important if you later on want to install Visual
Studio and import the Qt libraries.

Follow the hierarchy downwards and you will need to find a box with the name msvc2017
64 bit. This box has to be checked, and then you can press Next on the installer.

When you come to the License Agreement window, simply choose the Qt License
Agreement, accept the license agreement, and you are done.

Running the project now without a windows SDK installed will result in the following
error:

Figure 1.2: Run error

1.3.2 Part 2: Installing Windows Visual Studio and a QT plug-in
Next up we will need to install Windows Visual Studio Community Edition from the
Visual Studio web page. This is done by either navigating to the official web page of the
software or following this link:

• https://www.visualstudio.com/downloads/

The file you downloaded will be your ”Command Center” to edit, install and modify
your Visual Studio Software. This program is a standalone installer which will let you

2

https://www.visualstudio.com/downloads/

install and modify missing components later on. On the first time install, you will have
to select what components to install. If you navigate to the Individual Components tab at
the top, you will have to select the the Windows 8.1 SDK under the SDK menu to get it to
work with Qt.

Figure 1.3: SDK selection

When it comes to the license part you will need to enter your student email, this will
redirect you to the log in page of your University. After log in is completed, your license
should have been registered and you can continue with the installation.

1.3.3 Part 3: Installing the Qt plug-in in Windows Visual Studio
You will need a plugin to make Qt work together with the Visual Studio platform. This
plug-in is called QtvsTools and can either be downloaded by googling said name, or by
navigating to this link:

• http://download.qt.io/development_releases/vsaddin/

After downloading it, execute the program, and wait for it to be done.
Last up you will need to open up your Visual Studio 2017 version. After installing the

plug-in, there should now be a Qt VS Tools drop down menu at the top of the window.
Open the menu, go to Qt Options. Here we will need to add a new path to the Qt library.
Press Add and navigate to your Qt installation folder. In this folder, select the version
you’ve installed (5.9.1). Select this version folder as you path. The version name field

3

http://download.qt.io/development_releases/vsaddin/

should be named the same as the version of your Qt program (5.9.1). Once the path has
been added, your program should be fully functional with Qt Creator.

(Note: Some work PC’s from NTNU might not be able to use the Qt framework through
Visual Studio, as those programs communicate through their registers. In the windows
register one can find all the necessary information, settings, options, and other values for
programs and hardware installed on all versions of Microsoft Windows operating systems.
These settings usually not accessible on work computers.)

After following this guide, you should be able to use either Qt or Visual Studio for
your work. You additionally will need to install OpenCV and OpenGL for this program to
work.

4

1.4 More results

(a) Original Picture (b) Threshold

(c) Calculated Image

(d) Two Dimensional

(e) Three dimensional front (f) Three dimensional top

Figure 1.4: A more complex shape of a heart

The figure 1.4 depicts a heart which goes from being a normal picture of a heart to being
a model loaded into the GeoMod program. The estimation of depth for the heart is based
upon the lowest value of the distance between two nodes that are next to each other. This
means that the depth for the lowest point of the heart is really deep. Its deepness is exactly
the length of one of the long lines on that go down to the bottom. This can very easily
been seen in image 1.4f.

5

M
oritz M

ünch
Three-dim

ensional G
eom

etric M
odels from

 P
ictures

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

M
as

te
r’

s
th

es
is

Moritz Münch

Three-dimensional Geometric Models
from Pictures

An extension for the program GeoMod

Master’s thesis in Engineering and ICT
Supervisor: Sven Fjeldaas

April 2019

	Summary
	Sammendrag
	Zusammenfassung
	Preface
	Table of Contents
	List of Figures
	Introduction
	Tools and program development-platforms
	The programming language Python
	The programming language C++
	Headers and sources
	Pointers
	Inheritance
	Function overloading
	Recursive function

	Development Tools
	Qt
	Jupyter
	OpenCV
	Numpy

	Dynamic Linking

	Image Manipulation
	Source Images used for testing
	Image Manipulation
	Gaussian Blur
	Bilateral Filter
	Eroding and dilating
	The Canny Edge Detection algorithm

	Colour correction

	Useful functions for shape detection
	Creating a threshold
	The threshold function
	The findContours function
	The approxPolyDP function
	The drawContours function

	Detection of shapes
	Communication between the two programs
	Implementation of shape detection
	The inner contents of a shape
	Combining points
	Drawing the generated model
	Writing to file
	Difference between a single model and multiple models in an image
	The Four-Points Method
	Finding and identifying nodes in contours
	Identifying the middle node

	Main method
	Trackbars and the control panel
	Runtime of the python program

	Creating three-dimensional models in the GeoMod program
	Reading from file
	Creating a depth for models
	Finding the direction and distance of the depth point
	Finding the coordinates of the new depth point

	Creating a three dimensional cube
	Creating right angles between edges
	Finding the missing points by calculation
	Creating regions

	The four-points method
	Estimating the volume for a polygon

	Results
	Results of creating generic models
	Three dimensional cubes
	Cubes created by the four-points method
	More complex shapes
	Multiple models in one image

	Application, challenges and future work
	Potential applications in the real world
	Challenges
	Future Work

	Conclusion
	Bibliography
	Appendix
	Risk assessment
	Saving last read path to file
	Installation Guide for Qt Creator (5.9.1) and Visual Studio 2017
	Part 1: Installing Qt Creator
	Part 2: Installing Windows Visual Studio and a QT plug-in
	Part 3: Installing the Qt plug-in in Windows Visual Studio

	More results

