
A
daptive C

ontrol of U
nderw

ater Snake R
obot

Jonas H
opsdal

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f M
ar

in
e 

Te
ch

no
lo

gy

M
as

te
r’

s 
th

es
is

Jonas Hopsdal

Adaptive Control of Underwater
Snake Robot

Master’s thesis in Marine Technology
Supervisor: Dong Trong Nguyen, Henrik Schmidt-Didlaukies

February 2019





Jonas Hopsdal

Adaptive Control of Underwater Snake
Robot

Master’s thesis in Marine Technology
Supervisor: Dong Trong Nguyen, Henrik Schmidt-Didlaukies
February 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology







NTNU Trondheim 

Norwegian University of Science and Technology 

Department of Marine Technology  

 

MSC THESIS DESCRIPTION SHEET 
 

 

Name of the candidate: Jonas Hopsdal 

 

Field of study: Marine control engineering 

 

Thesis title (Norwegian): Adaptiv kontroll for slangerobot under vann 

 

Thesis title (English): Adaptive Control of Underwater Snake Robot 

 

Background 

Snake robots have been identified to work ideal for some subsea operations because of their ability to 

perform a wide range of operations such as inspections, maintenance and repair. As the snake robots 

will work under a range of scenarios and surroundings, the control system must be able to detect 

changes in surroundings and change the control law or control parameters accordingly. If achieved 

properly, the robot will be able to operate autonomously. To achieve this, an adaptive controller can be 

used. The adaptive controller must be stable and robust and at the same time adapt to the identified 

changes. 

 

 

Work description 

1. Perform a background and literature review to provide information and relevant references on: 

• Adaptive Control 

• Snake Robotics 

• Inverse Kinematics 

Write a list with abbreviations and definitions of terms, explaining relevant concepts related to the 

literature study and project assignment. 

 

2. Study a mathematical model of the snake robot 

3. Study a simulator for the snake robot 

4. Implement a robust and stable adaptive control algorithm for a snake robot simulator 

5. Test and validate the proposed adaptive controller by simulations of the snake robot in several 

scenarios.  

6. Discuss the approach and results of simulation and conclude whether adaptive control could be 

useful for controlling a snake robot. 

 

 

Specifications 

The scope of work may prove to be larger than initially anticipated. By the approval from the supervisor, 

described topics may be deleted or reduced in extent without consequences with regard to grading. 

 

The candidate shall present personal contribution to the resolution of problems within the scope of work. 

Theories and conclusions should be based on mathematical derivations and logic reasoning identifying the 

various steps in the deduction. 

 

The report shall be organized in a logical structure to give a clear exposition of background, results, 

assessments, and conclusions. The text should be brief and to the point, with a clear language. Rigorous 

mathematical deductions and illustrating figures are preferred over lengthy textual descriptions. The report 

shall have font size 11 pts., and it is not expected to be longer than 60-80 A4 pages, from introduction to 

conclusion, unless otherwise agreed upon. It shall be written in English (preferably US) and contain the 

following elements: Title page, abstract, acknowledgements, thesis specification, list of symbols and 

acronyms, table of contents, introduction with objective, background, and scope and delimitations, main body 

with problem formulations, derivations/developments and results, conclusions with recommendations for 



NTNU Faculty of Engineering Science and Technology 

Norwegian University of Science and Technology Department of Marine Technology 

 

 

 

 

2 

further work, references, and optional appendices. All figures, tables, and equations shall be numerated. The 

original contribution of the candidate and material taken from other sources shall be clearly identified. Work 

from other sources shall be properly acknowledged using quotations and a Harvard citation style (e.g. natbib 

Latex package). The work is expected to be conducted in an honest and ethical manner, without any sort of 

plagiarism and misconduct. Such practice is taken very seriously by the university and will have 

consequences. NTNU can use the results freely in research and teaching by proper referencing, unless 

otherwise agreed upon. 

 

The thesis shall be submitted with a printed and electronic copy to the main supervisor, with the printed copy 

signed by the candidate, and otherwise according to NTNU procedures. The final revised version of this thesis 

description must be included. Computer code, pictures, videos, data series, and a PDF version of the report 

shall be enclosed electronically with all submitted versions. 

 

 

Start date:   27 August 2018     Due date:  21 January 2019 

 

Supervisor:   Dong Trong Nguyen 

Co-advisor(s):   Henrik Schmidt-Didlaukies  

 

 

 

 

 

Trondheim, __________________ 

 

 

 

_______________________________ 

Dong Trong Nguyen 

Supervisor 



Abstract

The idea of using underwater snake robots for subsea operations comes from their ability
to perform a wide range of missions, due to the slender and flexible body. Because of
these advantages, they are expected to perform more complicated tasks than the more
conventional remotely operated vehicles.

The main focus of this thesis is the implementation of an adaptive control algorithm
together with an inverse kinematics algorithm to control an underwater snake robot sim-
ulator in MATLAB. The need for an adaptive controller is identified as the snake robot
might take a range of configurations and interfere with objects subsea. This means that the
drag forces, among others, can vary a lot and change rapidly. Such changes are difficult to
model and the idea is to have a controller which adapts to these changes. The underwater
snake robot should also perform several tasks. By defining the relationship between the
snake robot’s controllable states and the actual task, the inverse kinematics should be able
to calculate the desired motion for the snake robot to achieve the task.

Relevant background on these topics have been presented through a literature review.
An adaptive control law has been implemented for the snake robot simulator in this the-
sis, along with an inverse kinematics algorithm. The theory behind these algorithms is
presented, and the process of implementing them is described. To implement these algo-
rithms correctly, theory on kinematics for the snake robot have also been presented.

At last, the system has been simulated for four different cases. Each case defined one
or several tasks that should be achieved. The results showed that the adaptive controller
worked very well for most cases but had a small issue when the weight of the snake robot
was changed to simulate changed dynamics. The inverse kinematics also performed well
for the simplest cases but could not always find a feasible solution to achieve several tasks.
The conclusion is that the implemented adaptive controller and inverse kinematics could
work well for the snake robot, but they need to be further investigated and modified.
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Sammendrag

Ideen om bruk av slangeroboter til undervannsoperasjoner handler om dens fleksibilitet
og fordelaktige evne til å bevege seg rundt og inne i installasjoner under vann. Slanger-
oboter er antatt mer egnet for komplekse operasjoner enn mer konvensjonelle undervanns-
farkoster.

Hovedfokuset i denne oppgaven er implementasjon av algoritmer for både adaptiv reg-
ulering og invers kinematikk for en slangerobot-simulator i MATLAB. Grunnen for at man
vil bruke adaptiv regulering for slangeroboten er at den kan ha en veldig varierende dy-
namikk, da den kan innta flere ulike konfigurasjoner. Det er vanskelig å modellere kreftene
på en kompleks robot som har en stadig varierende konfigurasjon. Derfor er det ønskelig å
ha en regulator som kan tilpasse seg den stadig varierende dynamikken. Slangeroboter skal
kunne utføre ulike oppgaver under vann. Invers kinematikk er viktig for å kunne generere
referansene for hvordan slangen faktisk skal bevege seg for å gjennomføre oppgavene den
blir satt til å løse.

Et kort litteraturstudie har blitt skrevet om både slangerobotikk, adaptiv regulering og
invers kinematikk. Teorien som er nødvendig for implementasjon av algoritmene for invers
kinematikk og adaptiv regulering er presentert, etterfulgt av en metodisk gjennomgåelse
av hvordan systemet er definert.

Det implementerte systemet har blitt simulert og testet for fire ulike scenarioer. Utfra
disse simuleringene kan det konkluderes med at den adaptive reguleringen fungerer svært
bra for de aller fleste oppgavene, men har en liten svakhet. Den implementerte invers
kinematikken fungerer best for de enkleste scenarioene, men har problemer med å løse
flere oppgaver samtidig.
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Preface
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Chapter 1
Introduction

1.1 Background
Underwater robots have been around for a long time to perform tasks underwater, where
ROVs and AUVs are the most commonly used. As the underwater tasks have increased in
depth and complexity, the traditional underwater robots have some drawbacks. Especially
the common ROV have been deemed unfit for deep operations and close to structures
because of the tether. The AUV also might have problems performing tasks close to and
inside underwater structures because of its relatively large rigid body.

Snake robots have been identified to work ideal for some subsea operations because of
their ability to perform a wide range of operations such as inspections, maintenance and
repair. The robots could also be able to navigate close to structures and inside and around
pipelines because of their slender body. As the snake robots will work under a range of
scenarios and surroundings, the control system must be able to detect changes in surround-
ings and change the control law or control parameters accordingly. If achieved properly,
the robot will be able to operate autonomously. To achieve this, an adaptive controller can
be used. The adaptive controller must be stable and robust and at the same time adapt to
the identified changes. The underwater snake robot will also need to be able to sort out
how it should move in order to perform specific tasks, using inverse kinematics. There has
already been done a lot of work on the subjects of inverse kinematics and adaptive control
for underwater vehicle-manipulator systems. These systems are similar to snake robots in
the sense that they are redundant in terms of the tasks they perform.

1.2 Problem Description
• Perform a background and literature review to provide information and relevant ref-

erences on:

– Adaptive Control

1



Chapter 1. Introduction

– Snake Robotics

– Inverse Kinematics

• Write a list with abbreviations and definitions of terms, explaining relevant concepts
related to the literature study and project assignment.

• Study a mathematical model of the snake robot

• Study a simulator for the snake robot

• Implement a robust and stable adaptive control algorithm for a snake robot simulator

• Test and validate the proposed adaptive controller by simulations of the snake robot
in several scenarios.

• Discuss the approach and results of simulation and conclude whether adaptive con-
trol could be useful for controlling a snake robot.

1.3 Outline
This thesis is organized with seven chapters. Chapter 1 is an introduction to the thesis
and contains a brief background of the use of underwater snake robots as well as the
problem description. Chapter 2 presents a literature review of snake robotics, adaptive
control and inverse kinematics. The necessary theory and mathematical background for
the implemented adaptive control law and inverse kinematics is presented in Chapter 3.
Chapter 4 focuses on how the theory is implemented for the specific system developed
as a part of this thesis. This chapter also includes a section on how the implemented
controller and inverse kinematics algorithm have been tuned. Chapter 5 presents the four
cases which have been set up to test the system, and the results from the simulations are
presented. Chapter 6 contains a discussion around the results of the simulations. Chapter
7 is dedicated to the conclusion of this thesis. The MATLAB scripts developed will be
listed in the appendix.

2



Chapter 2
Literature Review

2.1 Snake Robots

The development and research of snake robots is a field that has grown in recent decades.
Inspired by the mobility of a real snake and its ability to effectively move through var-
ious terrain on land as well as in water, the research aims to mimic the snake motion
(Pettersen 2017). Achieving this can be rewarding in terms of meeting unknown environ-
ments. However, the snake-like robots are often designed as a series of rigid body parts
or "links", which are connected by joints, able to bend in one or several degrees of free-
dom. This set-up introduces several challenges with regards to modelling the robot and
controlling its movements efficiently. Although, if achieved, the robot could be able to
reach through tight spaces and create propulsion using its own movements. The first snake
robot was developed in 1972 (Liljebäck et al. 2012), and was equipped with wheels at each
link, enabling it to move over flat grounds. Since then, much research has been done on
the topic.

Most of the early research is related to snake robots on land, not in water. To induce
movement on the ground, the research often considers modelling the snake robots with
higher tangential friction than normal friction (Shugen Ma et al. 2001). By doing so, the
snake robot can create forwards or backwards propulsion by only moving its joints. This
property can be achieved by applying passive wheels on the snake robot (Wiriyacharoen-
sunthorn & Laowattana 2002)(Ye et al. 2004). A snake robot without passive wheels has
also been developed, (Worst & Linnemann 1996). That specific robot is able to move, as
it consists of several sections which all consists of two joints. The joints are composed
of aluminum plates which can be bent horizontally or vertically to create movement. By
using its own body instead of passive wheels, it is able to creep forward.

(Tanaka & Tanaka 2017) developed a snake robot with passive wheels that can be
lifted. The snake utilizes yaw and pitch motion in joints to change the shape of the robot.
A method is described to achieve shape control while holding the position and orientation
of the snake head, in addition to avoiding self-collision, joint limits and singular configu-
rations.

3



Chapter 2. Literature Review

Studies have also been done for the underwater snake robot (Zuo et al. 2009). For that
specific study, a snake robot was developed, where four passive wheels were attached to
each link to enable contact with the environment. The robot was simulated to follow ser-
pentine locomotion with different frequencies and amplitudes to find the optimal param-
eters for giving the most forward speed. The swimming motion of an underwater robot
using an eel as inspiration is also discussed by (McIsaac & Ostrowski 2003). The study
researches how to define motions that enables swimming forwards, turning and sideways
motion.

Some interesting studies have also been done concerning fish robots. One paper uti-
lizes a nonlinear control design for forward propulsion and turning abilities (Morgansen
et al. 2001). Another study looks into actuation from fins, with a moving tail section
(Morgansen et al. 2007).

The paper, (Tanaka et al. 2015), focuses on collision avoidance for the snake robot
body. The system is set up such that the head link velocity is controlled by a joystick while
the rest of the snake is controlled such that the head gets its velocity through propulsion
from the movement and the robot avoids collision at the same time. This is achieved using
sensors that measure the distance from the snake body to some obstacle. This information
is fed to a controller which sets the yaw joint velocities by minimizing a cost function.

2.2 Adaptive Control
Technological advances in the field of control theory has allowed more advanced and com-
plex systems to be regulated and controlled. This possibility has created a need for control
systems to handle changing and uncertain model dynamics. Adaptive control was first
researched in the 1950s, in order to design aircraft autopilots which would function well
for different altitudes and speeds (Sastry & Bodson 1989). In other words, adapting to
changes. The need for an adaptive controller was identified as a control algorithm with
fixed gains could only perform satisfying given a certain environment, but not for changes
in the system dynamics. To identify such changes and counteract them was the main objec-
tive for developing adaptive controllers at the time. Since then, numerous adaptive control
approaches has been proposed to solve the issue for air crafts and other vessels.

A very intuitive approach to regulate systems with changing dynamics is the method
of gain scheduling (Sastry & Bodson 1989). This method relies on defining a specifically
tuned controller to different possible surroundings. By measuring some auxiliary vari-
ables, the controller gains are changed so that they are fit to control the system for the
actual dynamics. The drawback of this approach is that the controller relies on good es-
timations of the surroundings to estimate the dynamics well. The other drawback is that
the different gains for the controller must be tuned beforehand. If the system meets an
unknown environment, the controller cannot guarantee good performance.

Another approach to adaptive control is called Model Reference Adaptive Control
(MRAC) (Sastry & Bodson 1989). This method uses measurements of the actual out-
put of the system and compares it with the desired output. For errors, the control law is
updated so that it gives better tracking of the reference.

The adaptive control laws can often be separated as direct or indirect adaptive control
laws. Direct adaptive control refers to control laws that uses measurements to directly

4



2.3 Inverse Kinematics

change the controller gains or setup, based on the error between the output of the system
and the model reference. On the other hand, indirect adaptive control laws uses mea-
surements to first estimate plant parameters, which in turn updates the controller. Such
controllers are also called self-tuning regulators. For a LTI system, one approach might be
to adjust the system matrices and then calculate controller gains through pole placement
(Minamide et al. 1984). For a more complex system, the indirect adaptive control laws
might be harder to implement as there is much uncertainty in the dynamics.

For vehicles on sea and below the surface of the sea, the dynamics are non-linear,
which means techniques like pole placement are not possible. Several controllers have
been proposed to work for such non-linear systems. Variations of the well known PID
controller, are usually included for most implemented motion control systems. More ad-
vanced control techniques also exists, like linear quadratic optimal control, state feedback
linearization, integrator backstepping, adaptive control and sliding mode control (Fossen
2011). Within these techniques there are some different approaches as well, as have al-
ready been noted for adaptive control.

There are a few studies which focuses on implementing adaptive control techniques
for snake-like robots. An L1 adaptive control algorithm has been simulated and tested
for a simulation model of a snake robot (Zhang et al. 2016) to overcome the changing
dynamics. Another interesting study is done by (Rollinson & Choset 2013). Here, the
snake robot is not controlled by an adaptive controller in that sense, but the behaviour of
the snake robot adapts to the environment when performing different maneuvers. This has
been demonstrated by making the snake robot climb a pipe with different diameters.

A rather similar area, where a lot of research has been done as well, is for underwater
vehicle-manipulator systems. (Antonelli 2013) provides an overview of numerous meth-
ods for controlling such systems. Several of them are adaptive control methods. One of
the methods proposed (Antonelli et al. 2001), makes use of a system regressor matrix. The
control law uses the regressor matrix and the tracking errors to estimate which kind of
unknown forces that acts on the system. Hence, this method requires knowledge about the
system configuration. Another adaptive control law mentioned, is the non-regressor-based
adaptive control law, developed by (Yuh 1996) for UVMSs. As understood by the name,
this method does not require much knowledge about the system as it does not require a
regressor matrix. The method instead estimates a set of combinations for the bounds of
the system matrices. Application of the control law has been discussed in (Lee & Yuh
1999).

2.3 Inverse Kinematics
All systems that are regulated have either a constant reference or a reference trajectory
that the system state(s) shall follow. For some systems, with few degrees of freedom or
maybe few controllable system states, deciding the references might be easy. For complex
systems, there might be some issues regarding the references. If many states are controlled,
it might be difficult to visualize how they should move to do some overall task. This is
the case for manipulator arms, UVMS and snake robots. These kinds of systems are often
highly redundant in the sense that they have more degrees of freedom than necessary to
solve simple tasks. A very common task to set for such systems is positioning of the end
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effector. In most cases, these types of systems will have a lot of possible configurations
that places the end effector at the correct position. However, the end effector position
cannot be regulated directly, as its movement is decided by the movement of the joints
in the manipulator. The aim for the inverse kinematics is thus to decide the reference
trajectories for all the controllable states so that the overall task can be achieved.

Some literature on the topic is from studies of movement for a human-like animations.
An iterative method to solve the inverse kinematics was applied in (Erleben & Andrews
2019). The method is numerical and calculates the exact Hessian matrix. In (Moradi & Lee
2005), a closed form method is described for movement of a human-like robotic arm. The
movement of the elbow is minimized and joint limits are avoided. The paper concludes
that closed form solutions to the inverse kinematics problem should be chosen over itera-
tive methods due to the required time to calculate the references. A linear programming
approach is described by (Ho et al. 2005).

(Antonelli 2013), suggests for a UVMS to use a kinematic control approach. With this
approach, the velocities of the controllable states are mapped to the velocity of the desired
task. The mapping is done by calculating a task specific Jacobian matrix. By inverting the
Jacobian matrix, the reference velocities can be calculated for the states. This approach is
non-iterative and can thus be calculated quickly. The book also presents some variations
on how to invert the Jacobian matrix: the regular pseudoinverse, a weighted pseudoin-
verse, an augmented Jacobian inverse and finally a Jacobian transpose. It is however noted
that these methods does not handle singularities, which might give trouble for calcula-
tions. A method based on Lagrange multipliers is described by (Choi 2008). The method
describes a singularity-robust solution to the inverse kinematics problem by using the La-
grange multipliers as dampening factors, since they appear close to singular configurations
for a redundant manipulator.

A method called task priority redundancy resolution is also presented by (Antonelli
2013). This method allows the inverse kinematics to be solved to achieve several prior-
itized tasks. The method relies on utilizing the null space of the higher prioritized task
Jacobians to achieve the lower prioritized tasks.
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Chapter 3
Theory

3.1 Kinematics
As the snake robot consists of many links it is important to be able to express positions and
velocities at different places along the snake robot in different reference frames. Knowing
the configuration of the snake robot in terms of its links and joints this is possible. Several
of the subjects presented in this chapter will be further defined in terms of the actual snake
robot model used for this thesis, in chapter 4.

3.1.1 Reference Frames

When working with a system that is moving around in space, defining several reference
frames is a convenient way to describe positions and velocities. For a single body, the
reference frames used are usually one inertial frame, "attached" to the earth, and a BODY-
frame, attached to the some point at the moving object. Then, the translational and angular
velocity vectors of the moving object, can be defined in terms of either reference frame.
For marine vessels, it is common to use NED-frame (Fossen 2011) and assume it is inertial,
which means assuming flat earth. The three axes defining the NED-frame points north
(N), east (E) and down (D). The assumption that the earth surface is flat is of course not
valid if vessels move far, but is useful for calculating motion in smaller areas where the
assumption does not exclude important information. While the moving bodies position
is usually defined in the NED-frame, its velocity is usually defined along the axes of the
BODY-frame, which moves along with the object.

If however, a vessel move over larger portions of the earth, the Earth-centered Earth-
fixed (ECEF) frame or the Earth-centered inertial (ECI) frame is often used. ECEF frame
has its origin placed in the center of the earth, and rotates with the natural rotation of the
earth meaning that the axes points always points outwards through the earth surface at the
same place. The ECI frame is also located in the center of the earth, but it is fixed and
does not rotate along with the earths rotation. The constant rotation rate is the only thing
that separates the ECEF frame from the ECI frame. A good figure to show the different
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reference frames is retrieved from (Fossen 2011), and can be seen in figure 3.1. As seen,
the axes of the different frames are denoted with a specific subscript according to the frame
they belong to. Note that the subscripts representing each frame in the figure is slightly
different from the subscripts that will be used for the snake robot in this thesis.

Figure 3.1: An illustration of the different reference frames. The figure is retrieved from (Fossen
2011).

3.1.2 Variables

A marine vessels motion in six degrees of freedom (DOF) is defined by three translational
motions and three rotational motions (Fossen 2011). The three translational motions are
surge, sway and heave which are defined as the motion along the x-axis, y-axis and z-
axis, respectively. The same logic goes for the three rotational motions, which are roll,
pitch and yaw. These six degrees of freedom are defined along the axes of the body frame
attached to the moving vessel. The velocities for these degrees of freedom are put into the
vector ν, which consists of the translational velocity vector, ν1 (3.1), and the rotational
velocity vector, ν2 (3.2). The velocities in surge, sway and heave are noted u, v and w,
respectively. p is the roll rate, q is the pitch rate and r is the yaw rate. The position and
orientation of a marine vessel, η, is defined with respect to one of the inertial frames (3.3).
The positions are self explanatory, while φ is the roll angle, θ is the pitch angle and ψ is
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the yaw angle. This representation of the angles is called the Euler angle representation
(Fossen 2011).

ν1 = [u v w]
> (3.1)

ν2 = [p q r]
> (3.2)

η = [x y z φ θ ψ]
> (3.3)

The vectors defined above does not explicitly inform about the reference frames the
velocities or the positions are defined relative to. To inform about this the velocity vector
could be written as ν = νbb/i, which means that it is the velocity of frame b (body frame)
relative to i (inertial frame), defined in frame b. The position vector could be written η
= ηib/i, as it is defined in the inertial frame. For the theory presented and applied, this
notation will be used, although the shorter version such as in (3.1), (3.2) and (3.3) will be
used when the reference frames for the variable have already been defined properly.

3.1.3 Unit Quaternions
The Euler angle representation is the easiest way of understanding the attitude of a moving
body. However, it can give trouble with singularities. To overcome this drawback, unit
quaternions can be used (Fossen 2011). Unit quaternions uses one real number and three
imaginary parameters to represent the three angles in space. It is defined as in equation
(3.4). To represent the angles of a body using the unit quaternions, the previously used
vector, η2, would go from three to four entries and be written η2,q .

q =


η
ε1

ε2

ε3

 , qTq = 1 (3.4)

3.1.4 Rotation Matrix
When a body is moving around and different reference frames are used, it is important to
be able to transform the movements between frames. For example, integrating a moving
body’s velocity directly would not give it’s position in the space where it is moving around.
To get the body’s position, the velocities would have to be transformed to the inertial frame
prior to integration. To do so, the rotation matrix is very useful (Fossen 2011). A rotation
matrix can keep track of the angular offsets between any two frames. With the Euler angle
representation, the rotation matrix between body and inertial frame is given as in equation
(3.5). As the space is three dimensional, the matrix has the dimension 3× 3. Note that cθ
and sφ means cos(θ) and sin(φ). The rotation matrix has some interesting properties. It
is orthogonal, which means that R>R = 1, R−1 = R> and det(R) = 1. The translational
velocity of the moving body in body frame, ν1, can then be transformed to the inertial
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frame as in equation (3.6). The opposite transformation can be done simply by inverting
the rotation matrix (3.7).

Rib(Θib) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


=

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3.5)

η̇1 = Ribν1 (3.6)

ν1 = Ri>b η̇1 (3.7)

The rotation matrix can also be found using the unit quaternions (3.8) (Fossen 2011).
This rotation matrix is actually important for transformation between the Euler angle rep-
resentation and unit quaternion representation, because both the Euler angles and unit
quaternion can be derived from the rotation matrix. This is possible because the rotation
matrices made from either the Euler angles or the unit quaternion vector describes the
same rotation. How the Euler angles are retrieved from the rotation matrix is shown in
equation (3.9)

Rib(q) =

1− 2(ε2
2 + ε2

3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)
2(ε1ε2 + ε3η) 1− 2(ε2

1 + ε2
3) 2(ε2ε3 − ε1η)

2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2
1 + ε2

2)


=

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (3.8)

φ = tan−1

(
R32

R33

)
(3.9a)

θ = −sin−1 (R31) (3.9b)

ψ = tan−1

(
R21

R11

)
(3.9c)

3.1.5 Transforming Angular Velocities
The angular velocities of the moving body must also be transformed to the inertial frame
upon integration. This cannot be done through the previously defined rotation matrix,
so another transformation matrix is defined (Fossen 2011). The transformation matrix
could either be calculated to give the angular velocity of the body in inertial frame as
Euler angles (3.10) or unit quaternions (3.12). For Euler angles rates the calculation of
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the transformation matrix is presented in equation (3.11) and the transformation matrix for
unit quaternion rates is presented in equation (3.13).

Θ̇ib = TΘ(Θib)ν2 (3.10)

TΘ(Θib) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.11)

q̇ = Tq(q)ν2 (3.12)

Tq(q) =
1

2


−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

 (3.13)

3.1.6 Homogeneous Transformation Matrix
Transforming a position in one reference frame to be expressed in another reference frame
is a bit different from transforming the translational velocities, which was done only using
the rotation matrix between the two frames. The distance between the two frames must
also be accounted for. This transformation can be done through a matrix called the homo-
geneous transformation matrix (3.14) (From et al. 2014). To exemplify its usage, lets say
there are two frames, {1} and {2}, and the distance between then is given as the vector
p1

2/1. This vector symbolizes the position of frame {2} relative to frame {1}, expressed in
{1}. A point, a, is placed in the space. The vector p2

a/2 points to point a from the origin
of frame {2}. The vector pointing to a from the origin of frame {1} can then be found by
using the homogeneous transformation matrix (3.15).

Hi−1
i =

[
Ri−1
i pi−1

i,i−1

01×3 1

]
(3.14)

[
p1
a/1

1

]
=

[
R1

2 p1
2,1

01×3 1

] [
p2
a/2

1

]
(3.15)

3.1.7 Skew-Symmetric Matrix
When working with vectors, the cross product must often be calculated. These cross prod-
ucts can be calculated using the skew-symmetric matrix, S, which for a vector, λ, with
three entries is defined as in equation (3.16). It can be used to simplify the calculation
of the cross product shown in equation (3.17) and due to its skew-symmetry it holds the
property of equation (3.18)

S(λ) =

 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 (3.16)
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a× b = S(a)b (3.17)

S = −S> (3.18)

3.1.8 Jacobian Matrix

The theory behind transforming velocities between reference frames have been shown for
simple transformations in sections 3.1.4 and 3.1.5. This can be extended to transforming
velocities between a series of reference frames if the position and rotation between them is
known. This is done using Jacobian matrices. The Jacobian matrix between a moving body
and the inertial frame is just a combination of the rotation matrix and the transformation
matrix for angular velocities (3.19) (Fossen 2011).

η̇ = J(η)ν =

[
Rib(Θib) 03×3

03×3 TΘ(Θib)

] [
ν1

ν2

]
(3.19)

3.2 Kinetics

The kinetics of a system defines how external and internal forces are connected to the
movement of a system. The movement of the snake robot is, as noted earlier, defined in
terms of the system velocity vector, ζ. The vectorial equations of motion for the snake
robot is written in equation (3.20). Each of the different terms in the equation represent
the different forces acting on the system. The mass and added mass forces are described
by the term M (θ) ζ̇, while the terms D (θ, ζ) ζ, C (θ, ζ) ζ and g (θ,η) describes the drag
forces, centripetal- and coriolis forces and the hydrostatic forces (Fossen 2011). At last,
the term τ describes the forces applied to the system by a controller.

η̇ = J (η)ν (3.20a)

M (θ) ζ̇ + D (θ, ζ) ζ + C (θ, ζ) ζ + g (θ,η) = τ (3.20b)

3.3 Non-Regressor Based Adaptive Control

The non-regressor based control algorithm which will be presented here was first devel-
oped by (Yuh 1996). The method is also referred to as adaptive control with bound es-
timation (Yuh et al. 1999). The control algorithm aims to estimate combinations of the
unknown system parameter matrices, instead of the matrices themselves. The notation
used for the control algorithm varies a bit between the sources. In this chapter, the no-
tation is inspired by the notations used in (Yuh et al. 1999) and (Antonelli 2013). The
controller will be presented first for an underwater vehicle and secondly for the control of
joints.
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3.3.1 Vehicle control
First, the kinetic vectorial equation is written in earth-fixed coordinates (3.21). The term
ud is said to be a class of unmodeled effects which are bounded as in equation (3.22). d0,
d1 and d2 are positive constants. The system matrices are also assumed to be bounded
by the positive constants α1, β1, β2, β3 and α2 as shown in equation (3.23). Instead of
proving these bounds, the controller will try to estimate a set of combinations between
these bounds, as given in equation (3.24). β4 and β5 are defined as ε/α, where ε is a
positive constant. The two remaining terms d−2 and d−1 are equal to zero.

Mη̈ + C(ν,η)η̇ + D(ν,η)η̇ + g(η) + ud = τ (3.21)

‖ud‖ ≤ d0 + d1 ‖ė‖+ d2 ‖e‖ (3.22)

∥∥M−1
∥∥ ≤ α, ‖M‖ ≤ β1, ‖C + D‖ ≤ β2,

‖g‖ ≤ β3, λmin(M−1) > α2

(3.23)

γi =
α(βi + di−3)

α2
, i = 1, ..., 5 (3.24)

Now, lets define the error of the system as in equation (3.25), where ηd is the desired
position and orientation of the vehicle. The control law for the vehicle is then presented in
equation (3.26), where it can be seen that Φ1 = η̈d, Φ2 = η̇, Φ3 = k, Φ4 = ė, Φ5 = e. The
vector k is a psoitive constant vector.

e = ηd − η (3.25)

τ b = K1η̈d + K2η̇ + K3k + K4ė + K5e =

5∑
i=1

KiΦi (3.26)

To define the gain matrices Ki a new error variable is defined, s (3.27). This error is
combination of the velocity error, and the positional error through the positive constant σ.
The newly defined error variable will be used when estimating the combinations between
the bounds (3.24) (3.28). The constants fi are the entries of the positive constant adaptation
gain vector, f. Now, the estimation of these bounds are used to calculate the gain matrices
as shown in equation (3.29).

s = ė + σe (3.27)

˙̂γi = fi ‖s‖ ‖Φi‖ (3.28)

Ki =
γ̂isΦ>i
‖s‖ ‖Φi‖

(3.29)

The adaptive control algorithm presented above will be proven stable in section 3.3.2,
by analysis of a Lyapunov function candidate (Yuh et al. 1999).
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3.3.2 Stability Analysis

The Lyapunov function candidate that is evaluated in the stability proof is given in equation
(3.30)

V =
1

2
s>s +

1

2

5∑
i=1

f−1
i α2(γ − γ̂i)2 (3.30)

Remembering that fi, α2 and γi are all constants, an expression for the Lyapunov
function derivative can be found in (3.32), by defining the double derivative of the error
(3.31).

ë =η̈d − η̈
=η̈d −M−1(τ b − Cη̇ − Dη̇ − g− ud)

=η̈d −M−1(K1η̈d + K2η̇ + K3k + K4ė + K5e− Cη̇ − Dη̇ − g− ud)

=M−1(M−K1)η̈d + M−1(C + D−K2)η̇ + M−1(g−K3)

+ M−1ud −M−1K4ė−M−1K5e

=M−1
5∑
i=1

(Pi −Ki)Φi + M−1ud

(3.31)

V̇ =
1

2
ṡ>s +

1

2
s>ṡ−

5∑
i=1

f−1
i α2(γi − γ̂i) ˙̂γi

=s>(ë + σė)−
5∑
i=1

f−1
i α2(γi − γ̂i) ˙̂γi

=

[
s>(M−1

5∑
i=1

PiΦi + M−1ud) + σs>ė−
5∑
i=1

f−1
i α2γi ˙̂γi

]

+

[
−s>M−1

5∑
i=1

KiΦi +

5∑
i=1

f−1
i α2γ̂i ˙̂γi

]
(3.32)
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[
s>(M−1

5∑
i=1

PiΦi + M−1ud) + σs>ė−
5∑
i=1

f−1
i α2γi ˙̂γi

]

=s>
3∑
i=1

M−1PiΦi −
3∑
i=1

αβi ‖s‖ ‖Φi‖+ σs>ė− ε(‖s‖ ‖ė‖+ ‖s‖ ‖e‖)

+ s>M−1ud − α(d0 ‖s‖+ d1 ‖s‖ ‖ė‖+ d2 ‖s‖ ‖e‖)

≤
3∑
i=1

(
∥∥M−1

∥∥ ‖Pi‖ − αβi) ‖s‖ ‖Φi‖+ (σ − ε) ‖s‖ ‖ė‖ − ε ‖s‖ ‖e‖

+ (
∥∥M−1

∥∥− α)(d0 + d1 ‖ė‖+ d2 ‖e‖) ‖s‖
≤0

(3.33)

[
−s>M−1

5∑
i=1

KiΦi +

5∑
i=1

f−1
i α2γ̂i ˙̂γi

]

=

5∑
i=1

(− s>M−1s
s>s

+ α2) ‖s‖ ‖Φi‖ γ̂i

≤
5∑
i=1

(−λmin(M−1) + α2) ‖s‖ ‖Φi‖ γ̂i

≤0

(3.34)

The two brackets found in (3.32) are investigated further in equations (3.33) and (3.34).
From the three equations it can be seen that the derivative of the Lyapunov candidate
function will be negative for all s 6= 0. Thus, the system is stable and the error e will
converge to zero.

3.3.3 Joint control
The adaptive control algorithm which was presented above can also be implemented for
controlling the joints. The joint control law is then given by equation (3.35). Note that
the error variables are calculated differently for this controller, as the joints positions and
velocities are the source of the errors (3.36) (3.38). The estimations for the combinations
of bounds are updated in equation (3.39) and used to define the gain matrices of the control
law (3.37).

τ θ = K1,θθ̈d + K2,θθ̇ + K3,θkθ + K4,θ
˙̃
θ + K5,θθ̃ =

5∑
i=1

Ki,θΦi,θ (3.35)

θ̃ = θd − θ (3.36)
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Ki,θ =
γ̂i,θsθΦ>i,θ
‖sθ‖ ‖Φi,θ‖

(3.37)

sθ =
˙̃
θ + σθθ̃ (3.38)

˙̂γi,θ = fi,θ ‖sθ‖ ‖Φi,θ‖ (3.39)

3.4 Inverse Kinematics
An underwater swimming manipulator is kinematically redundant in most cases, as it has
more degrees of freedom than needed to perform a maneuver or task. This means that it
can move where it is asked to move in different ways. The motivation behind a kinematic
control approach is to generate suitable trajectories for the states of the snake robot. The
objective of the inverse kinematics is thus to produce reference values for these states such
that the overall objective of the snake robot is achieved. These references are passed on to
the controller, which aims to make sure the snake robot actually follows these trajectories.
The input to the inverse kinematics block can be defined as tasks. Then, it is the objective
of the inverse kinematics to make the best use of the systems degrees of freedom to decide
how the movements should accomplish the tasks.

A variety of tasks can be defined for a snake robot. Because the idea is for the snake
robot to do subsea operations, some useful tasks might include reaching a given configu-
ration of the end effector or the base link, keep the joints in a certain way or to avoid joint
limits. These tasks are decided by the operator. Each task is defined by a generic variable
σ and a task jacobian matrix, Jx. They are defined such that the task Jacobian connects
the time derivative of the generic variable to the system velocity vector, ζ, see equation
(3.40).

σ̇x = Jx(η,θ)ζ (3.40)

When σ̇x is decided by the operator, the reference velocity for the system can be found
by inverting the task Jacobian (3.41). However, the task Jacobian might not be a square
matrix, hence the pseudoinverse must be calculated (3.42) (Antonelli 2013). This calcu-
lation of the pseudoinverse minimizes the square function of the velocity vector (3.43).
Another approach is to calculate the weighted pseudoinverse (3.44). This approach is a bit
different as it minimizes the function given in equation (3.45).

Some problems might arise when using the pseudoinverse. Singularities can be present
if the matrix JJ> is not full rank.

ζr = J+
x σ̇x (3.41)

J+ = J>
(
JJ>

)−1

(3.42)

E =
1

2
ζ>ζ (3.43)
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J+
W = W−1J>

(
JW−1J>

)−1

(3.44)

E =
1

2
ζ>Wζ (3.45)

The solution when finding the reference velocities in equation (3.41) or (3.44) is only
applicable to generate the reference to reach one task. However, for many cases it is
possible to do several tasks due to the many degrees of freedom. This can be done by
defining a priority of tasks. A simple example would be to define two tasks, a and b,
where task a holds top priority over task b. This means that the inverse kinematics should
always generate a velocity reference which reaches the first task. The second task is only
performed if it does not interfere with the first task. The approach to find such a solution
to the inverse kinematics is written in equation (3.46). This solution is the equivalent of
letting the second task define reference values in the null space of the first task. That means
that the second task might use the degrees of freedom that are not used by the first task.
Even more tasks can be put into the priority list. The way to do this is by stacking the top
priority task Jacobians when calculating their null space (Antonelli 2013). See equations
(3.47), (3.48) and (3.49). Note that all the pseudoinverse jacobians can be calculated using
the weighted pseudoinverse as well.

ζr = J+
a σ̇a +

(
I− J+

a Ja
)

J+
b σ̇b (3.46)

ζr = J+
a σ̇a +

(
I− J+

a Ja
)

J+
b σ̇b +

(
I− J+

abJab
)

J+
c σ̇c (3.47)

Na =
(
I− J+

a Ja
)
, Nab =

(
I− J+

abJab
)

(3.48)

Jab =
[

Ja
Jb

]
(3.49)
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Chapter 4
Method

4.1 Simulator
The non-regressor based adaptive control algorithm and the algorithm for inverse kinemat-
ics are added to the simulator in MATLAB. A qualitative overview of the systems block
diagram is presented in figure 4.1. The reference values that are passed from the inverse
kinematics block needs to include positional references for the joints and base, velocity
references for the joints and base, and finally acceleration references for the joints and
base. However, as was shown in section 3.4, the inverse kinematics only computes the
velocity references. The way this mismatch is solved is to integrate the velocity references
to get the positional references, and differentiate it numerically to get the acceleration ref-
erences. When doing so, the appropriate mapping between the body frame and inertial
frame is done by using the theory of section 3.1.8.

Figure 4.1: Overview of the adaptive controllers and inverse kinematics in closed loop.

4.1.1 Simplifications
There are several simplifications made to the system. In a normal closed loop control
system, the forces from the controller could not be applied directly. The normal approach
would be to send the desired firces to a thrust allocation block. Then, the thrust allocation
would calculate the required force for each of the thrusters mounted on the snake robot.
As the snake robot is intended to have thrusters at several links and because the desired
forces that the controller block asks for are given at the base link, this could become a
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rather complex process. For that reason the snake robot is assumed to have all the required
actuation exactly where the controller asks for forces to be applied. As the joints actually
would have actuation in the joints, the passing of the desired forces from the joint controller
directly on the joints is more realistic than for the base controller.

The other very important assumption that have been made about the system is related
to the state feedback to controller and inverse kinematics. In this system, the controllers
and inverse kinematics can read which ever state it needs, exactly as the state is. For a
more realistic system, this would never be the case. For all real systems, the different
states would have to be measured. The measurements are often noisy and would thus not
give the exact state of which it tries to measure. This problem would normally be solved by
applying a signal processing block, where the measurements would be smoothed out. This
process often involves some sort of a filter, which makes sure that the state measurements
that are passed on to the other blocks comes without noise and still being as correct as
possible. A very commonly used filter for such applications is the Kalman filter (Fossen
2011).

4.1.2 Application in MATLAB
The shell scripts for running a simulation for the snake robot, the script showing a movie
of the snake, and all the parts of the simulator calculating the kinetics of the snake robot
was provided by the co-advisor, Henrik Schmidt-Didlaukies.

As the whole system is implemented in MATLAB, several scripts have been defined
to simplify the coding. The most important scripts are show in figure 4.2, which also
shows some of the flow through the code. Some of the script blocks have been colored to
inform which scripts belongs to which of the blocks in figure 4.1. At the left side of the
figure, are the scripts that takes care of initializing the simulation, solving it at each time
step, and finally plotting the results and showing a movie of the snakes behaviour during
the simulation. The simulation is solved by looping through each time step until the end
of the simulation using the Runge-Kutta Fourth-Order method for integration (4.1) (4.2)
(Fossen 2011). On the right side of the figure, all the scripts that uses some of the theory
described throughout this these are located. These scripts are ran at each time step. The
most important scripts for the implementation in MATLAB can be seen in the appendix,
7.1
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Figure 4.2: Overview of the MATLAB scripts for this system.

k1 = hf(x(k),u(k), tk)
k2 = hf(x(k) + k1/2,u(k), tk + h/2)

k3 = hf(x(k) + k2/2,u(k), tk + h/2)

k4 = hf(x(k) + k3/2,u(k), tk + h)

(4.1)

x(k + 1) = x(k) +
1

6
(k1 + 2k2 + 2k3 + k4) (4.2)
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4.2 The Snake Robot

The snake robot used for simulations in this thesis has many degrees of freedom as it
consists of 6 connected links, so it is important to define the systems reference frames
and variables properly. The first link of the snake robot is called the base link, while the
last link is called the head link. For subsea operations, a grip arm may often be applied
to either end of the snake robot, so the tip of the head link will be referred to as the end
effector. See figure 4.3. All of the links are similar, and the joints can rotate with yaw
angle relative to each other. The link sizes are listen in table 4.1.

A local reference frame will be defined for each of the links, located at the back end of
each link. Thus, the rotation in the joints defines the rotation between the reference frames,
and the length of each link defines the distance between them. Figure 4.4 illustrates the
placement of the reference frames. The reference frame at the base link will be noted with
{b}, while the reference frames for the other links will be numerated 1 to 5, as the snake
consists of 6 links. The only reference frame not attached to the snake robot is the inertial
frame, which will be written as {i} in subscripts and superscripts.

Table 4.1: Dimension of the links.

Length Radius
0.75 [m] 0.1 [m]

Figure 4.3: Links and joints of the snake robot.

22



4.3 Forward Kinematics

Figure 4.4: Illustration of the snake robots reference frames for the first three links.

As described in section 3.1.2, the body fixed velocity of a moving body is defined as
the vector ν. For the snake robot, this vector will note the velocity of the base link in base
frame, while the base position is described by the vector η, which was defined in section
3.1.2. The angular velocities of the joints will be defined as the vector θ̇ (4.3). Thus, the
vector θ represents the angles of the joints. The velocity vector of the base link and the
joints velocity vector are combined to make the state velocity vector (4.4).

θ̇ =
[
θ̇1 θ̇2 θ̇3 θ̇4 θ̇5

]>
(4.3)

ζ =
[
ν> θ̇

>]>
(4.4)

4.3 Forward Kinematics
Calculating positions and orientations at certain places along the snake robot can be done
using the homogeneous transformation matrices, which are defined in section 3.1.6. As
the distance between each of the frames along the snake robot is the length of the link
between then, the positional part, pj−1

j/j−1, will only have one non-zero element, which is
the links length. Because the frames are attached to the links, the length goes along the
x-axis, which gives the link length in the first entry of pj−1

j/j−1.
To find the end effectors position and orientation in inertial frame, the position of the

end effector relative to the frame attached to the last link must first be defined. In fact,
it is similar to the distances between the other frames, as it is just the link length along
the x-axis of frame number 5 (4.5). The subscript "ee" means the end effector. Now, the
position can be transformed by calculating through all the homogeneous transformation
matrices of the system and then adding the position of the base link in inertial frame (4.6).
By using the same procedure, the inertial position of other places along the snake can also
be expressed from the inertial frame as well.

The orientation of the end effector can be found using a somewhat similar approach,
but using the rotation matrix. It is worth noticing that the end effector will have the same
orientation as the reference frame on the last link. The rotation matrices between all of
the frames can be found as the joint angles and base orientation are known. Then, these
rotation matrices are combined into one rotation matrix directly between the inertial frame

23



Chapter 4. Method

and reference frame number 5 (4.7). Now, the orientation of the end effector relative
to the inertial frame can be found using equation (3.9). At last, the vector ηiee/i is the
combination of the derived position and orientation.

p5
ee/5 = [0.75 0 0]

> (4.5)

[
piee/i
1

]
= η + Hb

1H1
2H2

3H3
4H4

5

[
p5
ee/5

1

]
(4.6)

Riee = RibR
b
1R1

2R2
3R3

4R4
5 (4.7)

4.4 Jacobian Matrices
For this system, with the velocities of the systems defined in the vector ζ, the aim is to
define Jacobian matrices that relates the velocity vector of the system to the velocities of
the different locations on the snake robot in inertial frame. To do so, the velocities of the
reference frames at the beginning of each link must first be transformed so that they are
expressed in the base frame. This will be done by defining a Jacobian matrix for each
of the frames fixed to the snake. These Jacobian matrices will relate the velocity of each
frame, 1 ≤ j ≤ 5, relative to the base frame, expressed in the base frame, and the system
state vector, ζ (4.8).

The first Jacobian with that functionality is between the base and the base frame, thus
the Jacobian is really simple (4.9). For the other frames, it is a bit more complicated, but
can be done using the adjoint transformation matrix A(Hj) (4.10), where Hj equals Hj−1

j

of section 3.1.6 (From et al. 2014). The mapping can then be written as in equation (4.11),
which means that the Jacobian matrices can be defined as in equation (4.12).

η̇bj/b = Jjζ (4.8)

J0 = [I6×6 06×5] (4.9)

A(Hj) =

[
R>j −R>j S

(
pj−1
j/j−1

)
03×3 R>j

]
(4.10)

η̇bj/b = A(Hj−1)Jj−1ζ + [01×5 1]
>
θ̇j−1 (4.11)

Jj = A(Hj−1)Jj−1 +

[
05×11

01×(6+j−1) 1 01×(11−6−j)

]
(4.12)

The upper three rows of the Jacobian matrix maps the translational velocities, while
the lower three maps the rotational velocities. By using the mappings from sections 3.1.4
and 3.1.5, the velocities can be transformed out to inertial frame as well. But first, the
Jacobian is split into the two parts, Jj,translational and Jj,rotational (4.13). The velocities
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of the links reference frames in the inertial frame can then be described as in equation
(4.14)

Jj =
[

Jj,translational
Jj,rotational

]
(4.13)

η̇ij/i = Jijζ =

[
RibJj,translational
TΘJj,rotational

]
ζ (4.14)

4.5 Modifications to Adaptive Control Laws
The adaptive control algorithms presented in section 3.3 are defined from a very theoretical
point of view, so that the stability can be proved. However, there are some drawbacks when
implementing the controllers. The first obvious problem is that the adaptive update of the
estimate of the system matrices set of combinations, never decreases. The equation is
repeated here for simplicity (4.15). As seen, the norms of the vectors s and Φi will always
be positive. The adaptation gains, fi, are also all positive. Thus, the estimations γ̂i, will
only grow larger as the time goes. This is problematic as the gain matrices of the control
law might get very large. The solution to this problem is to let the adaptive update decrease
with some rate, εi, if the norms are smaller than some threshold, µi (Lee & Yuh 1999).
See equation (4.16).

˙̂γi = fi ‖s‖ ‖Φi‖ (4.15)

˙̂γi = fi ‖s‖ ‖Φi‖ , ‖s‖ ‖Φi‖ ≥ µi
˙̂γi = −εiγ̂i + fi ‖s‖ ‖Φi‖ , ‖s‖ ‖Φi‖ < µi

(4.16)

The second problematic aspect of implementing the adaptive control algorithm is that
the gain matrices might get very large as the error gets low. The calculation of the gain
matrices is repeated in equation (4.17). To solve this, another set of thresholds are intro-
duced, δi, which are used if the product of the norms of s and Φi is small enough. The
implementation of this modification is shown in equation (4.18) (Yuh et al. 1999).

Ki =
γ̂isΦ>i
‖s‖ ‖Φi‖

(4.17)

Ki =
γ̂isΦ>i
‖s‖ ‖Φi‖

, ‖s‖ ‖Φi‖ ≥ δi

Ki =
γ̂isΦ>i
δi

, ‖s‖ ‖Φi‖ < δi

(4.18)

The last problem that was experienced with the implementation of the controllers was
concerning the joint controller. Severe oscillations were experienced in increasing order
from joint 1 to 5. The solution to this problem was to lower the magnitude of the error
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variable, s. This was done in a way so that the second entry of s was lowered more than the
first entry. The third entry was lowered more than the second, and so on. To implement
this, a vector ε was introduced. s was then multiplied element-wise with ε. A similar
solution was applied to the base controller as well.

4.6 Tasks for Inverse Kinematics

For this system, four tasks have been defined. Each task is defined by its desired position
for some state of the snake robot along with the corresponding Jacobian, connecting the
task to the velocity vector. As each task has been defined as positions and not velocities,
changes have been made when calculating reference velocity. Instead of using the velocity
of the generic variable, σ̇x, a vector wx is used, which combines both σ̇x and σx (4.19)
(Antonelli 2013). From the equation it is seen that the positional error of the task is added
to the term. This way, the inverse kinematics will work when the system runs closed loop,
giving reference velocities that ensures that the error goes to zero.

wx = σ̇x + Ktaskσ̃x (4.19)

4.6.1 End Effector Configuration

The end effector is important to control when doing subsea operations. This task defines
configuration of the end effector in the inertial frame, meaning its position and orientation.
Thus, the task variable is given as in equation (4.20). The subscript d means that it is the
desired configuration and should be chosen by the operator.

From equation (4.14), the relation between the velocity of the different reference
frames on the snake robot given in inertial was related to the velocity vector, ζ. By choos-
ing the last Jacobian from that equation, the Jacobian for this task is then given as in
equation (4.21).

σee = η
i
ee/i,d (4.20)

Jee = Ji5 (4.21)

4.6.2 Base Link Configuration

This task has many similarities with the end effector task. By the same reasoning, the task
variable and Jacobian matrix are shown in equations (4.22) and (4.23).

σbase = η
i
b/i,d (4.22)

Jbase = Jib (4.23)
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4.6.3 Nominal Configuration

This task is a bit different from the first two tasks, as it does not set the position for any
of the snake robots parts relative to the inertial frame. The nominal configuration task
aims only to keep the joints at some predetermined angle. Thus, the task variable is given
in equation (4.24) and the task Jacobian is given in equation (4.25). As seen, the task
Jacobian becomes very simple for this case as it only sets parameters that are already in
the velocity vector, ζ. It is worth noticing that this task Jacobian have different dimensions
compared to the previous task Jacobians.

σnominal = θd (4.24)

Jnominal =
[
05×6 I5×5

]
(4.25)

4.6.4 Joint Limit Task

The aim of this task is quite different from all the other tasks. Where the other tasks are
active the whole time, this task only activates if the joint angles goes outside the accepted
range of angles, which is set by this task. The way this is implemented is by first setting
a limit for the joint angles (both positive and negative) (4.26). If all the joints are within
the accepted range, the task variable is a vector with only zeros in all entries. The task
Jacobian is also just a zero matrix. However, if joint number j exceeds the limit, the j’th
entry of the task variable vector is set to the joint limit that was exceeded. This means
that if the joint angle is currently π/2 and the joint limits are ±π/3, the j’th entry of the
task variable would be set to π/3. At the same time, the entry at column number 6+j, and
row number j, is set to 1. This way the task activates and seeks to drive the angle back to
the limit. Once the angle is back within the accepted range, the specific entries of the task
variable and task Jacobian are set to zero again. In many ways, when the task is activated,
it has the same behaviour of the nominal configuration, except that it has two possible
desired angles. If all joints have exceeded either limit, the task variable and task Jacobian
would look like in equations (4.27) and (4.28).

θlimit = ±
π

3
(4.26)

σjointlimit =


θlimit
θlimit
θlimit
θlimit
θlimit

 (4.27)

Jjointlimit =
[
05×6 I5×5

]
(4.28)
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4.7 Tuning of system parameters
The full system, including tasks, inverse kinematics and controllers, contains numerous
constants which are to be set by the designer of the system. To tune the parameters of
the control laws, a simple reference trajectory is generated. The reason the controllers are
tuned without the inverse kinematics block in the loop is to avoid the chance of bad inter-
action between the inverse kinematics and the control laws when none of the parameters
in the system have been tuned properly. It should be easier to tune the two blocks indepen-
dently at first, then see how well the full system functions when both blocks are included
in the loop.

4.7.1 Tuning of adaptive controllers
The reference for the control system is split in two parts. Notice that the snake robot here
consists of 6 links connected by 5 joints, which means the reference will have dimension
11 × 1. At the start of the simulation the reference velocity for the base link is set as in
equation (4.29), meaning the reference has an acceleration of 0.1 along the x-axis and 0.05
along the y-axis of the base frame. All the other motions should be zero. Five seconds into
the simulation the reference changes to equation (4.30). From a practical point of view,
this means the snake robot should move forwards and a bit sideways to start with, then
keep the base link still while the joints move back and forth. Notice that t is the time.

ζref = [0.1t 0.05t O1×9]
> (4.29)

ζref =


O6×1

0.05 · sin(0.4t)
0.05 · sin(0.4t+ 0.2)
0.05 · sin(0.4t+ 0.4)
0.05 · sin(0.4t+ 0.6)
0.05 · sin(0.4t+ 0.8)

 (4.30)

The parameters for the base and joint controllers that should be tuned, are f, k, δ, σ,
µ and ε. Scaling of the variable s, by ε, is also performed during the tuning process. As a
starting point for tuning the parameters, (Lee & Yuh 1999), gave some insight to how the
relative sizes of the parameters could be chosen.

During the process of deciding the values for all the parameters in the control laws,
the controllers showed an interesting behaviour. Some of the parameters could easily give
destabilizing oscillations to the system if they were set too high or too low. This was the
case for δ, ε and k. If δ was set to low values, the controllers would start oscillating.
This happens because the controller gains, Ki, becomes very large when the tracking error
becomes small. On the other hand, if it was set too high the controller would not be able to
achieve good tracking of the reference. The same was experienced for the choice of k. The
tracking was bad for low values, while large values resulted in oscillations. The system
was also experiencing severe oscillations if s was not scaled down through the vector ε.

The final values of the parameters were chosen to be as in tables 4.2 and 4.3. Figures
4.5, 4.6 and 4.7 shows the tracking the controllers were able to achieve with this choice
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of parameters. As can be seen in the figures, the base controller is able to follow the
reference trajectory for the position almost perfectly. Considering the orientation of the
base link, some very small undesired motions can be noticed. These small motions might
be a result of the coupled drag motions the snake robot is experiencing when it starts to
move. Even though the base frame is aligned with the inertial frame initially, these figures
allows for one important observation. As the base link experiences small motion in pitch
angle, the reference for position in heave starts to decrease. This is only natural as the base
link will keep tracking the reference velocity which was given in its BODY-frame. Thus,
when transforming the desired BODY-fixed velocity to the inertial frame, it gives a small
velocity downwards in the inertial frame. The same argument goes for the connection
between a small roll angle and the desired speed in sway.

The tracking for the adaptive controller of the snake robot joints is also satisfactory in
this case. The tracking is a bit less accurate than for the base link position. This might be
explained from the fact that all the joints start moving and follow their trajectories at the
same time. Their movements induce forces on each other. This also results in offsets for
the base link, where the controller only aims to hold the base link still after the first five
seconds of the simulation. This can be seen for the yaw angle of the base link, figure 4.6.
It struggles with some small motions, due to all the movements in the joints.

Table 4.2: Tuned parameters for the adaptive controller of the base link.

Parameter Value
σ 10
f [3 3 3 1 1]>

k [1 1 1 1 1 1]>

ε [1 1 1 0.2 0.2 0.2]>

µ [0.5 0.5 2 0.1 0.1]>

ε [0.05 0.05 0.05 0.02 0.02]>

δ 10

Table 4.3: Tuned parameters for the adaptive controller of the joint angles.

Parameter Value
σ 10
f [10 10 10 3 3]>

k [3 3 3 3 3]>

ε [0.5 0.25 0.125 0.0625 0.03125]>

µ [0.4 0.4 2 0.2 0.2]>

ε [0.05 0.05 0.05 0.02 0.02]>

δ
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Figure 4.5: Base link position in inertial frame for final simulation of parameter tuning.
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Figure 4.6: Base link orientation for final simulation of parameter tuning.
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Figure 4.7: Joint angles for final simulation of parameter tuning.

4.7.2 Choice of parameters for inverse kinematics

For the inverse kinematics, the only parameters that can be tuned are the Ktask matrices
related to each task. As this parameter decides something about the aggressiveness of how
fast the reference will reach the tasks, it is very important that it is not chosen too large. It
is important that the controllers can track the reference faster than the reference changes.
If that is not the case and the reference changes faster than the controller is able to follow,
the system might quickly destabilize as the controller output would grow larger and larger
as it never reaches the reference. This was tested and the chosen gains, Ktask, for the
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different tasks are shown in table 4.4.
The other possibility to change the dynamics of the inverse kinematics is related to

the choice of tasks and their priority. No general choice is made here as the tasks will be
prioritized and used differently for achieving the objectives of the different simulated cases
in the next chapter. The last option to change the inverse kinematics, concerns the pseudo
inverses of the task Jacobians. The system allows for either weighted pseudo inverse 3.42
or just the regular pseudo inverse 3.44.

Table 4.4: Matrix gains for the different tasks.

Task Associated matrix gain, Ktask

End effector configuration diag([0.2 , 0.2 , 0.2 , 0.2 , 0.2 , 0.2])
Base link configuration diag([0.2 , 0.2 , 0.2 , 0.2 , 0.2 , 0.2])
Nominal configuration diag([0.2 , 0.2 , 0.2 , 0.2 , 0.2 , 0.2])
Joint limit diag([0.2 , 0.2 , 0.2 , 0.2 , 0.2 , 0.2])
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Chapter 5
Results

This chapter contains results for four different cases that have been simulated to show how
the implemented system works. All the simulations were initialized with the base link
located at the origin of the inertial frame and with zero angle for all joints, see figure 5.1.
Each simulation lasted for 30 seconds. The parameters for the adaptive controllers used in
the simulations are the tuned parameters from tables 4.2 and 4.3, while the parameters for
the tasks are chosen as in table 4.4. For the first case, the regular pseudo inverse is used in
the inverse kinematics block. The three last cases use the weighted pseudo inverse (3.44)
with the mass matrix as weighting.

Tasks and any special differences made to the system for the different simulations is
noted in the section for each case. Relevant plots are included as well as a picture of the
snake robot’s configuration at the end of each simulation. The results will be discussed in
chapter 6.
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Figure 5.1: Initial position of the snake robot for all simulations.
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5.1 Case A
The first simulation done to show how the full system works, aims to achieve a simple base
link configuration task. The regular pseudo inverse is used to solve the inverse kinematics
and calculate the reference. The system aims to place the base link such that its position
and orientation gets to the point set by the task, see equation (5.1). The achieved config-
uration of the snake robot from the end of the simulation is visualized in figure 5.2, while
figures 5.3, 5.4 and 5.5 shows plots for the base links position and orientation as well as
the joint angles throughout the simulation.

ηbase,task = [0 2 0 0 0 − π/2]> (5.1)

Figure 5.2: Case A: Snake position at end of simulation.
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Figure 5.3: Case A: Base link position in inertial frame.
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Figure 5.4: Case A: Base link orientation with reference to inertial frame.

39



Chapter 5. Results

0 5 10 15 20 25 30

t [s]

-0.05

0

0.05

[r
a
d
]

Angle of joint 1

1

1,d

0 5 10 15 20 25 30

t [s]

-0.1

0

0.1

[r
a
d
]

Angle of joint 2

2

2,d

0 5 10 15 20 25 30

t [s]

-0.1

0

0.1

[r
a
d
]

Angle of joint 3

3

3,d

0 5 10 15 20 25 30

t [s]

-0.2

0

0.2

[r
a
d
]

Angle of joint 4

4

4,d

0 5 10 15 20 25 30

t [s]

-0.05

0

0.05

[r
a
d
]

Angle of joint 5

5

5,d

Figure 5.5: Case A: Joint angles.
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5.2 Case B
Similar to case A of section 5.1, this case also has the task of achieving a given position and
orientation for the base link. The only difference is that the weighted pseudoinverse is used
within the inverse kinematics 3.44. The final position of the snake robot after simulation
can be seen in figure 5.6. Figure 5.7 shows the base links position, figure 5.8 shows the
base link orientation and figure 5.9 shows the joint angles throughout the simulation.

Figure 5.6: Case B: Snake position at end of simulation.
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Figure 5.7: Case B: Base link position in inertial frame.
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Figure 5.8: Case B: Base link orientation with reference to inertial frame.
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Figure 5.9: Case B: Joint angles.
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5.3 Case C

The third case to be simulated for the implemented adaptive controller and inverse kine-
matics, shall perform three prioritized tasks. Two of the tasks sets the position and ori-
entation of the end effector and the base link. The last task is the joint-limit task, which
holds top priority. This means the snake robot shall achieve the specified end effector and
base link configuration, but the joint limit task will control the reference if any of the joints
are outside the accepted range. The desired position of the end effector and base link are
listed in equations (5.2) and (5.3) while the limit of the joint limit task is set to ±π/3.
The target position is visualized in figure 5.10. Results from the simulation can be seen in
figures 5.12, 5.13, 5.14, 5.15, 5.16 and 5.17. Figure 5.14 shows the end effector position,
figure 5.15 shows the end effector orientation, figure 5.16 shows the base link position,
figure 5.17 shows the base link orientation, figure 5.12 shows the joint angles and figure
5.13 shows the joint angular velocities. The final achieved position of the snake robot is
visualized in figure 5.11.

ηee,task = [1 0 0 0 0 π/2]
> (5.2)

ηbase,task = [−2 0 0 0 0 − π/2]> (5.3)

Figure 5.10: Case C: The desired task position of the end effector and base link shown from above.
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Figure 5.11: Case C: Snake position at end of simulation.
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Figure 5.12: Case C: Joint angles.
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Figure 5.13: Case C: Joint angular velocities.
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Figure 5.14: Case C: End effector position.
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Figure 5.15: Case C: End effector orientation.
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Figure 5.16: Case C: Base link position.
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Figure 5.17: Case C: Base link orientation.

52



5.4 Case D

5.4 Case D
Case D simulates the scenario that the snake robot will pick up an object. As the snake
might have grip arms at each end of its body, the object could be picked up with either end.
For this simulated case, the object is assumed to be picked up by the base link grip arm.
Although the simulator does not include any grip arms or objects other than the snake robot
itself, the case will be simulated by adding weight to the base link once it is within reach
of the point where the object is supposed to be. The only task that needs to be interpreted
for this simulation is the base link configuration task. Once the base link is within 0.2
meters of the desired point, a theoretical weight of 60 [N] is put on it. The base link task
position is chosen as in equation (5.4). Figures 5.19, 5.20, 5.21 and 5.22 shows the plotted
values for the base position and orientation, and the base thrust and torque given by the
controller.

ηbase,task = [−2 3 0 0 0 0]
> (5.4)

Figure 5.18: Case D: Snake position at end of simulation.
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Figure 5.19: Case D: Base link position.
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Figure 5.20: Case D: Base link orientation.
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Figure 5.21: Case D: Thrust on base link from controller.
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Figure 5.22: Case D: Torque on base link from controller.
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Chapter 6
Discussion

All the different cases that have been simulated, tested various aspects of the implemented
adaptive controllers and inverse kinematics. The first interesting results comes from case
A and case B. In the two cases the system was set to do the same task, except case B used
the weighted pseudo inverse. This would seem like a small difference, but the two cases
displays different results on how the task was solved. Nevertheless, both of the simulated
systems were able to achieve the desired task of placing the base link at a certain point,
with a certain orientation. The inverse kinematics of case A chose to keep zero angle in the
joints, even though this requires much more movement from the snake robot. Therefore,
the whole snake turned to the side. For case B, the inverse kinematics algorithm tried to
move the snake as little as possible. This is seen from the plots of the joint angles from
the two cases, figure 5.5 and figure 5.9. The reference signal for the joint angles of case
A does not move away from zero at all, while the reference signal for case B allows the
joints to move away from zero. The difference can be explained from the two functions
that the different pseudo inverses aims to minimize (3.43) (3.45). Where case A tries to
minimize the movement of the snake robot’s degrees of freedom, case B tries to minimize
the kinetic energy of the snake robot.

The third case that was simulated was Case C, section 5.3. For this case the inverse
kinematics and controllers were not able to achieve the desired position or orientation of
either the end effector- or the base link task. That is because of the top priority task for
this case, which was the joint limit task. As seen in figure 5.12, the joint angles are not
exceeding ±π/3, which is the limit set by the top prioritized task. The limit ensures that
the joint angles are put back within the limits if they are outside the accepted range. In
figure 5.13 the joint velocities and joint reference velocities are shown. It can clearly be
seen that the reference signals has spikes early in the simulation. These spikes happen
when the joint limit task takes control of the reference. Multiple spikes in a row are a
result of the joint angles jumping back and forth over the joint angle limit. However, it is
interesting that the reference keeps pushing the joints towards the limit when the second
joint still has not reached its limit. The explanation might come from the fact that the
states of the snake robot influences each other. Maybe if the second joint is pushed further,
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it makes another joint go over the limit and therefore is being pushed back.

On the other hand, the simulation of case C was successful in one aspect. The joint
limit task was in fact able to keep the joint within the accepted range. As the joint limit task
held top priority, less successful completion of lower prioritized tasks must be accepted.
It might be argued that the system should in fact be able to complete all three tasks. From
figures 5.11 and 5.12 it is seen that if joint number 4 would have turned to a positive angle
instead of negative, the other joints would not have reached their limit and all tasks could
have been achieved. However, the tasks for the end effector and base link configuration
does not consider the joint limit task at all. These two lower prioritized tasks will simply
make the inverse kinematics give a reference as if there was no other task to consider. The
fourth joint will get a negative angle reference, as this command would help the snake
robot reach the desired end effector configuration if there was no other task preventing it
from moving as far as it wants. To avoid such drawbacks, the inverse kinematics would
have to be implemented in some way that allows for finding a solution, given specific
limitations to the system.

The last case, case D, aimed to reach a given position and orientation for the base link.
When the position was reached, a weight was put on it to simulate a more applicable case
where the snake robot picks up an object. From the plots of the simulation it is seen that
the weight was put on right before 15 seconds of the simulation. At the beginning of the
simulation the inverse kinematics and the adaptive controllers are able to bring the base
link to the desired position, as seen in figures 5.19 and 5.20. Once it is within reach of
the object, the weight is put on, which clearly shows for the Z position of the base link,
figure 5.19. When the weight is applied, the base link naturally starts to move downwards
a bit before the controller is able to bring it back up to the desired position again. Also,
the pitch and roll angles of the base link, figure 5.20, experiences some deviance from the
desired angle because of the weight. The roll angle and the pitch angle are brought back
to the position they were before the weight was put on, but there are some oscillations in
the two states before getting there. Although the height of the oscillations are very small,
they could arguably have been avoided if the controller had been tuned less aggressive. At
the same time, the states of all the simulations had some deviance from the references at
the beginning. That is only normal, as the controllers have to adapt and "get used" to the
system they are controlling. As the systems dynamics changes when the weight is applied,
it seems reasonable that the controllers need a bit of time to adjust to this. However, the
oscillations in the roll and pitch angles lasts for a much longer time than the oscillations
at the start of the simulation, which is not preferable. The base controller output of figures
5.21 and 5.22 fits the behaviour of the base link that have been discussed. Although the
oscillations are not particularly fast, such oscillations are not desirable for å long period.

Another interesting aspect from the results of case D can also be seen in figure 5.19.
The reference signal for the Z position of the base link starts to grow as the weight is put
on. That would be normal as the inverse kinematics tries to pull the base link up again.
However, as the Z position of the base link comes back to the desired position at zero,
the reference signal stays positive and does not decrease back to zero. This is unlike all
the other results where the controller has been tracking the reference without offset. The
big difference is of course the weight. For none of the simulated cases has there been a
constant force pushing the snake robot out of position. The fact that the base controller is
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not able to follow the reference signal and stops with a constant offset means that it has
some struggles for constant external forces. The implemented controller has no typical
integral term, although the third term in the control law (3.26) should be able to remove
large offsets. The Ki matrices are calculated with the update parameter which integrates
the norm of the error. But as mentioned, the results form case D shows that the controller
implemented for this case is not able to remove the small steady state error. This exact
drawback of the controller was actually pointed to in (Lee & Yuh 1999), where a small
integral term was added to the adaptive controller.

Although most of the results shows that the implemented kinematic control approach
works, there are some issues that have not been pointed to. The control problem was split
into two parts, the base controller and the joint controller. Where the joint controller seems
like a very reasonable way to actually control the joints, the implementation of the base
controller might have some possible improvements. The choice of only controlling the
movement of the snake through its base link is obviously not the best approach for all
scenarios. It works very well if the snake should move backwards with zero angle in all
joints, but if it were to move forwards, the drag effects would press the joints to get some
angular offset and give the whole snake unwanted rotation. Of course, the joint controller
would try to get rid of this offset, but it would be easier in such a case to move the snake in
terms of its center of gravity, or even further to the front of the snake robot. Including some
sort of thrust allocation, where the thrusters work at different links could also improve on
the performance in such a case.
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Chapter 7
Conclusion

The overall aim for the thesis was to implement and test an adaptive control algorithm
together with an inverse kinematics algorithm. To do so, a literature review on the relevant
topics was first provided. Relevant theory needed to work with the simulation model
was then presented. The process of implementing the theory for a snake robot was then
described, before the results from simulating the system for four different case studies
were presented. The results were discussed in detail.

Most of the results showed good performances from the system, where it was able
reach the defined tasks, and the controllers were able to track the references satisfactory.
There were also a couple of things that could have been better. The references generated by
the inverse kinematics in case C were not able to achieve the second and third prioritized
tasks. This failure was due to the joint limit tasks which had top priority for the case. From
the joint limit perspective, the inverse kinematics was successful as the other tasks did not
interfere with the top priority task. However, there was a possible solution to achieve all
three tasks. Ideally, the inverse kinematics should have been able to find this solution.

The other unsatisfactory observation from the results was that the controller for case
D had a small offset compared to the reference when extra weight was added to the snake
robot. The adaptive controller should be able to work good under such changes and still
follow the reference. As noted in the discussion, a small integral term could help avoid
such small stationary offsets.

With the results in mind, it is concluded that the adaptive controller and inverse kine-
matics works well for simplest cases. The controller follows the reference satisfactory
for almost all cases, but the inverse kinematics might not always find the best solution to
achieve several prioritized tasks.
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7.1 Further Work
The kinematic control implemented had some drawbacks which was shown in the results.
For further work of this approach to control snake robots, defining the base controller
differently could be useful. The next obvious step to take would be to also implement thrust
allocation to see whether the presented system could do well for an actual snake robot, not
only on the simulator. Other approaches on implementing the inverse kinematics could
also be useful. Maybe an iterative method of some sort, that would be able to find several
solutions and at the same time take care of joint constraints or any other constraints that
might be present. This could also be extended to external things, for example avoiding
objects. For the part concerning tasks, it could also be investigated if a block able to
switch between tasks and prioritize them differently for different scenarios, could benefit
the performance.
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Appendix: MATLAB code

USRsim2.m

1 %This i s a s i m p l e s m i u l a t o r f o r an u n d e r w a t e r snake− l i k e
r o b o t . The code i s

2 %n o t o p t i m i z e d f o r speed and t h e r e may s t i l l be bugs .
P l e a s e r e p o r t back t o

3 %me i f you f i n d a n y t h i n g f i s h y : )
4 %
5 %Henr ik
6

7 %c l c ;
8 c l e a r
9 %c l o s e a l l

10

11 %% D ef in e P h y s i c a l P a r a m e t e r s
12 pp . denw = 1000 ; %d e n s i t y o f w a t e r
13 pp . g rav = 9 . 8 1 ; %g r a v i t a t i o n a l a c c e l e r a t i o n
14 pp . v e l c = [0 0 0 ] ’ ; %c o n s t a n t i r r o t a t i o n a l c u r r e n t v e l o c i t y

, i n e r t i a l f rame
15 pp . g d i r = [0 0 −1] ’;%d i r e c t i o n o f g r a v i t y i n i n e r t i a l f rame
16

17 %% Adding s w i t c h t o p u t on w e ig h t when base l i n k r e a c h e s
t a r g e t .

18 pp . s w i t c h _ w e i g h t = 0 ;
19

20 %% D ef in e Snake P a r a m e t e r s
21 snake . l i n k _ v e c = [8 8 8 8 8 8 ] ; %The t y p e o f l i n k s o f t h e

snake
22 snake . j o i n t _ v e c = [3 3 3 3 3 ] ; %The t y p e o f j o i n t s o f t h e

snake
23 snake . n = l e n g t h ( snake . l i n k _ v e c ) ;
24

25 C_a_C = 1 ; % Added mass c o e f f i c i e n t f o r t h e c r o s s
s e c t i o n ,

26 % 1 i s t h e t h e o r e t i c a l i n v i s c i d r e s u l t
27 C_d_1 = . 1 ; % n o n l i n e a r d r ag c o e f f i c i e n t i n s u r g e
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28 C_d_4 = . 1 ; % n o n l i n e a r d r ag c o e f f i c i e n t i n t h e r o l l
d i r e c t i o n f o r

29 % t h e c r o s s−s e c t i o n
30 C_d_C = . 8 ; % n o n l i n e a r c r o s s f l o w drag c o e f f i c i e n t
31 C_d_L = . 1 ; % L i n e a r c r o s s−s e c t i o n a l d r ag c o e f f i c i e n t
32 a l p h a = . 1 ; % Added mass r a t i o i n s u r g e / heave f o r a l i n k
33 b e t a = . 1 ; % L i n e a r d rag p a r a m e t e r i n s u r g e
34 gamma = . 1 ; % L i n e a r d rag p a r a m e t e r i n r o l l
35

36 m a s s c o e f f = [ C_a_C , a l p h a ] ;
37 d r a g c o e f f = [ C_d_1 , C_d_4 , C_d_C , C_d_L , be t a , gamma ] ;
38 c l e a r C_a_C C_d_C C_d_1 C_d_4 C_d_L a l p h a b e t a gamma
39

40 %% D ef in e Link P r o p e r t i e s
41 l i n k = d e f i n e _ l i n k _ p r o p e r t i e s _ e e l y ( pp , masscoe f f , d r a g c o e f f

) ;
42

43 %% D ef in e J o i n t P r o p e r t i e s
44 j o i n t = d e f i n e _ j o i n t _ p r o p e r t i e s ( ) ;
45

46 %% D ef in e S i m u l a t i o n P a r a m e t e r s
47 Tmax = 1 ;
48 h = 0 . 0 0 1 ; %RK4 s t e p s i z e
49 d e l t a T _ i n t e r p = 0 . 1 ; %Time s t e p s i z e f o r t h e

i n t e r p o l a t e d s o l u t i o n
50 d e l t a T _ p l o t = 0 . 1 ; %Time s t e p s i z e f o r t h e

p l o t t e d s o l u t i o n
51

52 x_0 = z e r o s (26+3∗ snake . n , 1 ) ; %I n i t i a l c o n d i t i o n s
53 x_0 ( 4 ) = 1 ; %" z e r o " q u a t e r n i o n
54 x_0 ( 8 : 6 + snake . n ) = 0 ; %I n i t i a l a n g l e o f j o i n t s
55

56 %% B u i l d Snake
57 snake = b u i l d _ s n a k e ( snake , l i n k , j o i n t , pp ) ;
58

59 %% S i m u l a t e
60 o u t p u t = RK4solver ( h , Tmax , x_0 , snake , pp ) ;
61 T_log = o u t p u t . T_log ;
62 x_ log = o u t p u t . x_ log ;
63

64 %% P l o t r e s u l t s
65 % run p l o t R e s u l t s .m;
66 %% Show Movie
67 % run showMovie .m;
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RK4solver.m

1 f u n c t i o n o u t p u t = RK4solver ( h , Tmax , x_0 , snake , pp )
2 % RK4 F u n c t i o n t o go t h r o u g h t h e s i m u l a t i o n s t e p f o r s t e p

wi th Runge K u t t a
3 % 4 t h o r d e r method .
4

5

6 %% Number o f s t e p s
7 n _ s t e p s = Tmax / h ;
8 T_log = l i n s p a c e ( 0 , Tmax , n _ s t e p s +1) ;
9

10 %% P r e p a r i n g o u t p u t
11 x_ log = z e r o s (26+3∗ snake . n , n _ s t e p s +1) ;
12 t a u _ d _ l o g = z e r o s ( 6 , n _ s t e p s +1) ;
13 j o i n t _ t o r q u e _ l o g = z e r o s ( snake . n−1, n _ s t e p s +1) ;
14 x _ r e f _ l o g = z e r o s (20+4∗ snake . n , n _ s t e p s +1) ;
15 o r i e n t a t i o n _ l o g = z e r o s ( 3 , n _ s t e p s +1) ;
16 e t a _ e e _ l o g = z e r o s ( 6 , n _ s t e p s +1) ;
17 % e t a _ e e _ r e f _ l o g = z e r o s ( 6 , n _ s t e p s +1) ;
18 t h e t a _ d o t d _ l o g = z e r o s ( snake . n−1, n _ s t e p s +1) ;
19 e t a _ e e _ t a s k _ l o g = z e r o s ( 6 , n _ s t e p s +1) ;
20 e t a _ b a s e _ t a s k _ l o g = z e r o s ( 6 , n _ s t e p s +1) ;
21 n o m i n a l _ t a s k _ l o g = z e r o s ( snake . n−1, n _ s t e p s +1) ;
22

23 j o i n t _ c o n t r o l l e r _ l o g . ph i_1 = z e r o s ( snake . n−1, n _ s t e p s +1) ;
24 j o i n t _ c o n t r o l l e r _ l o g . ph i_2 = z e r o s ( snake . n−1, n _ s t e p s +1) ;
25 j o i n t _ c o n t r o l l e r _ l o g . ph i_3 = z e r o s ( snake . n−1, n _ s t e p s +1) ;
26 j o i n t _ c o n t r o l l e r _ l o g . ph i_4 = z e r o s ( snake . n−1, n _ s t e p s +1) ;
27 j o i n t _ c o n t r o l l e r _ l o g . ph i_5 = z e r o s ( snake . n−1, n _ s t e p s +1) ;
28

29

30 %% I n i t i a l s t a t e
31 x_ log ( : , 1 ) = x_0 ;
32

33 %% S i m u l a t i o n
34 f o r i = 1 : n _ s t e p s
35 x = x_ log ( : , i ) ;
36

37 %% Get s t a t e s
38 pos = x ( 1 : 3 ) ;
39 q u a t = x ( 4 : 7 ) ;
40 t h e t a = x (8 : 6+ snake . n ) ;
41 z e t a = x (7+ snake . n : 11+2∗ snake . n ) ;
42 nu = z e t a ( 1 : 6 ) ;
43
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44 %P a r a m e t e r s from u p d a t i n g f a c t o r , gamma , i n t h e
a d a p t i v e

45 %c o n t r o l law f o r t h e whole body and f o r j o i n t s .
46 gamma_hat = x (11+2∗ snake . n+1 : 11+2∗ snake . n +5) ;
47 gamma_hat_ l ink = x (11+2∗ snake . n+6 : 11+2∗ snake . n +10) ;
48

49 %D e s i r e d p o s i t i o n s f o r ba se l i n k and j o i n t s
50 e t a _ d = x (12+2∗ snake . n+10 : 17+2∗ snake . n + 10) ;
51 t h e t a _ d = x (18+2∗ snake . n+10 : 16+3∗ snake . n + 10) ;
52

53 %% Compute r o t a t i o n m a t r i c e s and j a c o b i a n s
54 [R , J ] = c o m p _ r o t _ j a c ( qua t , t h e t a , snake ) ;
55

56 %% T e s t p a t h
57 % time = i ∗h ;
58 %[ z e t a _ r e f , e t a _ e e ] = g e n e r a t e T e s t P a t h ( snake , x , R , t ime ) ;
59

60 %% Find t r a n s f o r m a t i o n m a t r i x
61 e u l e r A n g l e s = g e t E u l e r A n g l e s (R ( : , : , 1 ) ) ;
62 T = g e t T r a n s f o r m a t i o n M a t r i x ( e u l e r A n g l e s ) ;
63 %% Solve i n v e r s e k i n e m a t i c s
64 [ z e t a _ r e f , e t a _ e e , logTasks , pp . s w i t c h _ w e i g h t ] . . .
65 = i n v e r s e K i n e m a t i c s ( snake , x , R , J , pp . s w i t c h _ w e i g h t ) ;
66

67 z e t a _ r e f _ i n e = z e t a _ r e f ;
68 z e t a _ r e f _ i n e ( 1 : 3 ) = R ( : , : , 1 ) ∗ z e t a _ r e f ( 1 : 3 ) ;
69 z e t a _ r e f _ i n e ( 4 : 6 ) = T∗ z e t a _ r e f ( 4 : 6 ) ;
70 z e t a _ r e f _ i n e _ p r e v = x _ r e f _ l o g (16+3∗ snake . n :20+4∗ snake . n

, i ) ;
71

72 a c c _ r e f = c a l c A c c e l e r a t i o n ( z e t a _ r e f _ i n e _ p r e v ,
z e t a _ r e f _ i n e , h ) ;

73 %a c c _ r e f = z e r o s ( l e n g t h ( z e t a _ r e f ) , 1 ) ;
74 e t a _ d o t d o t d = z e r o s ( 6 , 1 ) ;%a c c _ r e f ( 1 : 6 ) ;
75 t h e t a _ d o t d o t d = a c c _ r e f ( 7 : 5 + snake . n ) ;
76

77 %% T r a n s f o r m i n g t o i n e r t i a l frame , e n a b l i n g i n t e g r a t i o n
78 e t a = [ pos ; e u l e r A n g l e s ] ;
79 e t a _ d o t = z e r o s ( 6 , 1 ) ;
80 e t a _ d o t ( 1 : 3 ) = R ( : , : , 1 ) ∗nu ( 1 : 3 ) ;
81 e t a _ d o t ( 4 : 6 ) = T∗nu ( 4 : 6 ) ;
82 v e l o c i t y _ i n e _ d = R ( : , : , 1 ) ∗ z e t a _ r e f ( 1 : 3 ) ;
83 a n g v e l o c i t y _ i n e _ d = T∗ z e t a _ r e f ( 4 : 6 ) ;
84 t h e t a _ d o t d = z e t a _ r e f ( 7 : 5 + snake . n ) ;
85
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86 %% Non−r e g r e s s o r based a d a p t i v e c o n t r o l
87

88 [ tau_d , gamma_hat_dot , l o g _ b a s e _ c o n ] =
A d a p t i v e C o n t r o l B a s e ( e t a , . . .

89 e t a _ d o t , e t a_d , z e t a _ r e f , e t a _ d o t d o t d , gamma_hat , R , T ) ;
90 [ j o i n t _ t o r q u e , gamma_ha t_do t_ jo in t , l o g _ j o i n t _ c o n ] =

. . .
91 A d a p t i v e C o n t r o l J o i n t ( x , snake , t h e t a _ d , t h e t a _ d o t d

, . . .
92 t h e t a _ d o t d o t d , gamma_hat_ l ink ) ;
93

94 upda te_param . gamma_hat_dot = gamma_hat_dot ;
95 upda te_param . gamma_ha t_do t_ l ink = g a m m a _ h a t _ d o t _ j o i n t ;
96 upda te_param . v e l o c i t y _ i n e _ d = v e l o c i t y _ i n e _ d ;
97 upda te_param . a n g v e l o c i t y _ i n e _ d = a n g v e l o c i t y _ i n e _ d ;
98 upda te_param . t h e t a _ d o t d = t h e t a _ d o t d ;
99

100 %% S e t t i n g t h r u s t e r s t o z e r o
101 t h r u s t = z e r o s ( snake . n _ t h r u s t e r _ t o t , 1 ) ;
102

103 %% Logging v a l u e s
104 x _ r e f _ l o g ( : , i +1) = [ e t a _ d ; t h e t a _ d ; z e t a _ r e f ;

a c c _ r e f ; . . .
105 z e t a _ r e f _ i n e ] ;
106 t a u _ d _ l o g ( : , i +1) = t a u _ d ;
107 j o i n t _ t o r q u e _ l o g ( : , i +1) = j o i n t _ t o r q u e ;
108 o r i e n t a t i o n _ l o g ( : , i +1) = e u l e r A n g l e s ;
109 e t a _ e e _ l o g ( : , i +1) = e t a _ e e ;
110 e t a _ e e _ t a s k _ l o g ( : , i +1) = l o g T a s k s . ee ;
111 e t a _ b a s e _ t a s k _ l o g ( : , i +1) = l o g T a s k s . ba se ;
112 n o m i n a l _ t a s k _ l o g ( : , i +1) = l o g T a s k s . nomina l ;
113 t h e t a _ d o t d _ l o g ( : , i +1) = t h e t a _ d o t d ;
114

115 j o i n t _ c o n t r o l l e r _ l o g . ph i_1 ( : , i +1) = l o g _ j o i n t _ c o n .
p h i _ 1 _ j o i n t ;

116 j o i n t _ c o n t r o l l e r _ l o g . ph i_2 ( : , i +1) = l o g _ j o i n t _ c o n .
p h i _ 2 _ j o i n t ;

117 j o i n t _ c o n t r o l l e r _ l o g . ph i_3 ( : , i +1) = l o g _ j o i n t _ c o n .
p h i _ 3 _ j o i n t ;

118 j o i n t _ c o n t r o l l e r _ l o g . ph i_4 ( : , i +1) = l o g _ j o i n t _ c o n .
p h i _ 4 _ j o i n t ;

119 j o i n t _ c o n t r o l l e r _ l o g . ph i_5 ( : , i +1) = l o g _ j o i n t _ c o n .
p h i _ 5 _ j o i n t ;

120

121
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122 %% Runge−K u t t a 4
123 k1 = f_dyn ( x , t h r u s t , t au_d , j o i n t _ t o r q u e , snake , pp ,

upda te_param ) ;
124

125 x2 = ( x+h∗k1 / 2 ) ;
126 x2 ( 4 : 7 ) = normQ ( x2 ( 4 : 7 ) ) ; %N o r m a l i z i n g t h e q u a t e r n i o n

v e c t o r
127 k2 = f_dyn ( x2 , t h r u s t , t au_d , j o i n t _ t o r q u e , snake , pp ,

upda te_param ) ;
128

129 x3 = ( x+h∗k2 / 2 ) ;
130 x3 ( 4 : 7 ) = normQ ( x3 ( 4 : 7 ) ) ; %N o r m a l i z i n g t h e q u a t e r n i o n

v e c t o r
131 k3 = f_dyn ( x3 , t h r u s t , t au_d , j o i n t _ t o r q u e , snake , pp ,

upda te_param ) ;
132

133 x4 = ( x+h∗k3 ) ;
134 x4 ( 4 : 7 ) = normQ ( x4 ( 4 : 7 ) ) ; %N o r m a l i z i n g t h e q u a t e r n i o n

v e c t o r
135 k4 = f_dyn ( x4 , t h r u s t , t au_d , j o i n t _ t o r q u e , snake , pp ,

upda te_param ) ;
136

137 x _ f i n a l = x + h ∗ ( k1 + 2∗k2 + 2∗k3 + k4 ) / 6 ;
138 x _ f i n a l ( 4 : 7 ) = normQ ( x _ f i n a l ( 4 : 7 ) ) ; %N o r m a l i z i n g t h e

q u a t e r n i o n v e c t o r
139

140 %% S a t u r a t i n g a d a p t i v e i n t e g r a t o r s and a n g l e s
141 x _ f i n a l = s a t u r a t e S t a t e s ( x _ f i n a l , snake ) ;
142

143 x_ log ( : , i +1) = x _ f i n a l ;
144 d i s p ( [ ’ Time e l a p s e d ’ , num2s t r ( i ∗h ) ] )
145

146 end
147 %% O r g a n i z i n g a l l o u t p u t v a l u e s i n one s t r u c t t o s i m p l i f y
148 o u t p u t . x_ log = x_ log ;
149 o u t p u t . t a u _ d _ l o g = t a u _ d _ l o g ;
150 o u t p u t . j o i n t _ t o r q u e _ l o g = j o i n t _ t o r q u e _ l o g ;
151 o u t p u t . x _ r e f _ l o g = x _ r e f _ l o g ;
152 o u t p u t . o r i e n t a t i o n _ l o g = o r i e n t a t i o n _ l o g ;
153 o u t p u t . T_log = T_log ;
154 o u t p u t . e t a _ e e _ l o g = e t a _ e e _ l o g ;
155 o u t p u t . e t a _ e e _ r e f _ l o g = e t a _ e e _ t a s k _ l o g ;
156 o u t p u t . e t a _ b a s e _ t a s k _ l o g = e t a _ b a s e _ t a s k _ l o g ;
157 o u t p u t . n o m i n a l _ t a s k _ l o g = n o m i n a l _ t a s k _ l o g ;
158 o u t p u t . t h e t a _ d o t d _ l o g = t h e t a _ d o t d _ l o g ;
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159 o u t p u t . j o i n t _ c o n t r o l l e r _ l o g = j o i n t _ c o n t r o l l e r _ l o g ;
160

161 end
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inverseKinematics.m

1 f u n c t i o n [ z e t a _ r e f , e t a _ e e , log , s w i t c h _ w e i g h t ] = . . .
2 i n v e r s e K i n e m a t i c s ( snake , x , R , J , s w i t c h _ w e i g h t )
3 % Uses t h e t a s k p r i o r i t y and method f o r i n v e r t i n g j a c o b i a n

m a t r i c e s
4 % t o o u t p u t t h e r e f e r e n c e v e l o c i t y f o r t h e snake r o b o t
5

6 pos = x ( 1 : 3 ) ;
7 t h e t a = x ( 8 : 6 + snake . n ) ; %J o i n t a n g l e s
8

9 %Get end e f f e c t o r p o s i t i o n and t r a n s f o r m a t i o n m a t r i x f o r
end e f f e c t o r

10 [ e t a _ e e , e t a _ n _ b _ e e ] = getEEpos ( snake , pos , t h e t a , R) ;
11 T = g e t T r a n s f o r m a t i o n M a t r i x ( e t a _ e e ( 4 : 6 ) ) ;
12

13 %Get p o s i t i o n o f snake base ( t a i l )
14 e u l e r A n g l e s = g e t E u l e r A n g l e s (R ( : , : , 1 ) ) ;
15 e t a = [ pos ; e u l e r A n g l e s ] ;
16

17 %% Tasks
18 %% P o s i t i o n and o r i e n t a t i o n o f end e f f e c t o r
19 e t a _ e e _ d = [1 0 0 0 0 p i / 2 ] ’ ;
20 e t a _ e e _ d _ d o t = [0 0 0 0 0 0 ] ’ ;
21 K_ee = d i a g ( [ 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2 ] , 0 ) ;
22 w_ee = e t a _ e e _ d _ d o t + K_ee ∗ ( e t a _ e e _ d − e t a _ e e ) ;
23

24 J_ee = [R ( : , : , snake . n ) ∗ J ( 1 : 3 , : , snake . n ) ;
25 T∗ J ( 4 : 6 , : , snake . n ) ] ;
26

27 % S a t u r a t i n g e r r o r te rm
28 w_ee1 = w_ee ( 1 : 3 ) ;
29 s a t e e 1 = abs ( w_ee1 ) > 1 ;
30 w_ee1 ( s a t e e 1 ) = 1∗ s i g n ( w_ee1 ( s a t e e 1 ) ) ;
31

32 w_ee2 = w_ee ( 4 : 6 ) ;
33 s a t e e 2 = abs ( w_ee2 ) > 0 . 5 ;
34 w_ee2 ( s a t e e 2 ) = 0 . 5∗ s i g n ( w_ee2 ( s a t e e 2 ) ) ;
35

36 w_ee ( 1 : 3 ) = w_ee1 ;
37 w_ee ( 4 : 6 ) = w_ee2 ;
38

39 %% P o s i t i o n and o r i e n t a t i o n o f base l i n k
40 e t a _ b a s e _ d = [−2 3 0 0 0 0 ] ’ ;
41 e t a _ b a s e _ d _ d o t = [0 0 0 0 0 0 ] ’ ;
42 K_base = d i a g ( [ . 2 . 2 . 2 . 2 . 2 . 2 ] , 0 ) ;
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43 w_base = e t a _ b a s e _ d _ d o t + K_base ∗ ( e t a _ b a s e _ d − e t a ) ;
44

45 J _ b a s e = [R ( : , : , 1 ) z e r o s (3 ,2+ snake . n ) ;
46 z e r o s ( 3 , 3 ) TransAngEul ( e u l e r A n g l e s ) z e r o s ( 3 , snake

. n−1) ] ;
47

48 J _ b a s e _ i n v = p inv ( J _ b a s e ) ;
49

50 % A c t i v a t e s w i t c h when base l i n k i s c l o s e enough t o t a r g e t
p o s i t i o n

51 i f ( norm ( e t a _ b a s e _ d ( 1 : 3 ) − e t a ( 1 : 3 ) ) < 0 . 2 )
52 s w i t c h _ w e i g h t = 1 ;
53 end
54

55 % S a t u r a t i n g e r r o r te rm
56 w_base1 = w_base ( 1 : 3 ) ;
57 s a t b a s e 1 = abs ( w_base1 ) > 1 ;
58 w_base1 ( s a t b a s e 1 ) = 1∗ s i g n ( w_base1 ( s a t b a s e 1 ) ) ;
59

60 w_base2 = w_base ( 4 : 6 ) ;
61 s a t b a s e 2 = abs ( w_base2 ) > 0 . 2 ;
62 w_base2 ( s a t b a s e 2 ) = 0 . 2∗ s i g n ( w_base2 ( s a t b a s e 2 ) ) ;
63

64 w_base ( 1 : 3 ) = w_base1 ;
65 w_base ( 4 : 6 ) = w_base2 ;
66

67 %% Nominal c o n f i g u r a t i o n
68 j o i n t _ d = z e r o s ( snake . n−1 ,1) ;
69 j o i n t _ d _ d o t = z e r o s ( snake . n−1 ,1) ;
70 K_nconf = 0 . 2 ;
71 w_nconf = j o i n t _ d _ d o t + K_nconf ∗ ( j o i n t _ d− t h e t a ) ;
72

73 J _ n c o n f = [ z e r o s ( snake . n−1 ,6) , eye ( snake . n−1) ] ;
74

75 s a t _ n c o n f = abs ( w_nconf ) > 0 . 1 ;
76 w_nconf ( s a t _ n c o n f ) = 0 . 1∗ s i g n ( w_nconf ( s a t _ n c o n f ) ) ;
77

78 %% J o i n t l i m i t t a s k
79 l i m i t = p i / 3 ;
80 J _ j o i n t _ l i m i t = z e r o s ( snake . n−1 ,5+ snake . n ) ;
81 w _ j o i n t _ l i m i t = z e r o s ( snake . n−1 ,1) ;
82

83 f o r i = 1 : ( snake . n−1)
84 i f ( t h e t a ( i ) > l i m i t )
85 J _ j o i n t _ l i m i t ( i , 6+ i ) = 1 ;
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86 w _ j o i n t _ l i m i t ( i ) = 0 . 2 ∗ ( l i m i t − t h e t a ( i ) ) ;
87 e l s e i f ( t h e t a ( i ) < − l i m i t )
88 J _ j o i n t _ l i m i t ( i , 6+ i ) = 1 ;
89 w _ j o i n t _ l i m i t ( i ) = 0.2∗(− l i m i t − t h e t a ( i ) ) ;
90 end
91 end
92

93 %% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
94 %% I n v e r s e K i n e m a t i c s
95

96 %% Weighted p s e u d o i n v e r s e
97 %Mass m a t r i x as we ig h t
98 W = comp_mass ( J , snake ) ;
99 Wi = p inv (W, . 0 0 1 ) ;

100

101 % J_ee_winv = Wi∗ J_ee ’∗ p inv ( J_ee ∗Wi∗ J_ee ’ , . 0 0 1 ) ;
102 J_base_winv = Wi∗ J_base ’∗ p inv ( J _ b a s e ∗Wi∗ J_base ’ , . 0 0 1 ) ;
103 % J _ j o i n t _ l i m i t _ w i n v = Wi∗ J _ j o i n t _ l i m i t ’∗ p inv ( J _ j o i n t _ l i m i t

∗ . . .
104 % Wi∗ J _ j o i n t _ l i m i t ’ , . 0 0 1 ) ;
105

106 %% 1 t a s k
107 w_1 = w_base ;
108

109 J _ 1 _ i n v = J_base_winv ;
110

111 z e t a _ r e f = J _ 1 _ i n v ∗w_1 ;
112

113

114 %% 2 t a s k s
115 % w_1 = w_ee ;
116 % w_2 = w_base ;
117 %
118 % J_1 = J_ee ;
119 % J_2 = J _ b a s e ;
120 %
121 % J _ 1 _ i n v = J_ee_winv ;
122 % J _ 2 _ i n v = J_base_winv ;
123 %
124 % N_1 = eye (5+ snake . n ) − J _ 1 _ i n v ∗ J_1 ;
125 %
126 % z e t a _ r e f = J _ 1 _ i n v ∗w_1 + N_1∗ J _ 2 _ i n v ∗w_2 ;
127

128 %% 3 t a s k s
129 % w_1 = w _ j o i n t _ l i m i t ;
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130 % w_2 = w_ee ;
131 % w_3 = w_base ;
132 %
133 % J_1 = J _ j o i n t _ l i m i t ;
134 % J_2 = J_ee ;
135 % J_3 = J _ b a s e ;
136 %
137 % J _ 1 _ i n v = J _ j o i n t _ l i m i t _ w i n v ;
138 % J _ 2 _ i n v = J_ee_winv ;
139 % J _ 3 _ i n v = J_base_winv ;
140 %
141 % N_1 = eye (5+ snake . n ) − J _ 1 _ i n v ∗ J_1 ;
142 %
143 % J_1_2 = [ J_1 ; J_2 ] ;
144 % J_1_2_ inv = p inv ( J_1_2 ) ;
145 % N_1_2 = eye (5+ snake . n ) − J_1_2_ inv ∗ J_1_2 ;
146 %
147 % z e t a _ r e f = J _ 1 _ i n v ∗w_1 + N_1∗ J _ 2 _ i n v ∗w_2 + N_1_2∗ J _ 3 _ i n v ∗

w_3 ;
148

149 %% Logging t a s k s
150 l o g . ba se = e t a _ b a s e _ d ;
151 l o g . ee = e t a _ e e _ d ;
152 l o g . nomina l = j o i n t _ d ;
153

154

155 end

79



AdaptiveControlBase.m

1 f u n c t i o n [ tau_d , gamma_hat_dot , l o g ] = A d a p t i v e C o n t r o l B a s e (
e t a , nu , . . .

2 e ta_d , z e t a _ r e f , e t a _ d o t d o t d , gamma_hat , R , T )
3

4 % Uses non−r e g r e s s o r based a d a p t i v e c o n t r o l a l g o r i t h m t o
c a l c u l a t e t h e

5 % t h r u s t and t o r q u e t o p u t on t h e base l i n k .
6

7 %% C o n t r o l c o n s t a n t s and v a r i a b l e s
8 s igma = 1 0 ;
9 f = [3 3 3 1 1 ] ’ ;

10 k = 3∗ ones ( 6 , 1 ) ;
11

12 z e t a _ r e f _ i n e = z e r o s ( 6 , 1 ) ;
13 z e t a _ r e f _ i n e ( 1 : 3 ) = R ( : , : , 1 ) ∗ z e t a _ r e f ( 1 : 3 ) ;
14 z e t a _ r e f _ i n e ( 4 : 6 ) = T∗ z e t a _ r e f ( 4 : 6 ) ;
15 e t a _ d o t _ 1 = R ( : , : , 1 ) ∗nu ( 1 : 3 ) ;
16 e t a _ d o t _ 2 = T∗nu ( 4 : 6 ) ;
17 e t a _ d o t = [ e t a _ d o t _ 1 ; e t a _ d o t _ 2 ] ;
18 e t a _ t i l d e = e t a _ d − e t a ;
19 e t a _ t i l d e _ d o t = z e t a _ r e f _ i n e ( 1 : 6 ) − e t a _ d o t ;
20 s = e t a _ t i l d e _ d o t + sigma ∗ e t a _ t i l d e ;
21

22 e p s i l o n = [1 1 1 0 . 2 0 . 2 0 . 2 ] ’ ;
23

24 s = e p s i l o n .∗ s ;
25

26 mu = [ 0 . 5 0 . 5 2 . 0 0 . 1 0 . 1 ] ’ ;
27 v a r e p s i l o n = [ 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 2 0 . 0 2 ] ’ ;
28

29 d e l t a = 1 0 ;
30

31 ph i_1 = e t a _ d o t d o t d ; %z e r o s ( 6 , 1 ) ;
32 ph i_2 = e t a _ d o t ;
33 ph i_3 = k ;
34 ph i_4 = e t a _ t i l d e _ d o t ;
35 ph i_5 = e t a _ t i l d e ;
36 K_1 = gamma_hat ( 1 ) ∗ s ∗ phi_1 ’ / max ( ( norm ( s ) ∗norm ( ph i_1 ) ) , d e l t a

) ;
37 K_2 = gamma_hat ( 2 ) ∗ s ∗ phi_2 ’ / max ( ( norm ( s ) ∗norm ( ph i_2 ) ) , d e l t a

) ;
38 K_3 = gamma_hat ( 3 ) ∗ s ∗ phi_3 ’ / max ( ( norm ( s ) ∗norm ( ph i_3 ) ) , d e l t a

) ;
39 K_4 = gamma_hat ( 4 ) ∗ s ∗ phi_4 ’ / max ( ( norm ( s ) ∗norm ( ph i_4 ) ) , d e l t a
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) ;
40 K_5 = gamma_hat ( 5 ) ∗ s ∗ phi_5 ’ / max ( ( norm ( s ) ∗norm ( ph i_5 ) ) , d e l t a

) ;
41

42 t a u _ d = K_1∗ ph i_1 + K_2∗ ph i_2 + K_3∗ ph i_3 + K_4∗ ph i_4 + K_5
∗ ph i_5 ;

43

44 %T r a n s f o r m i n g t a u _ d t o bodyframe
45 t a u _ d ( 1 : 3 ) = R ( : , : , 1 ) ’∗ t a u _ d ( 1 : 3 ) ;
46 t a u _ d ( 4 : 6 ) = p inv ( T ) ∗ t a u _ d ( 4 : 6 ) ;
47

48 s a t = abs ( t a u _ d ) > 100 ;
49 t a u _ d ( s a t ) = 100∗ s i g n ( t a u _ d ( s a t ) ) ;
50

51 %% Logging v a l u e s t o be p l o t t e d
52 %Sending v a l u e s o u t t o be p l o t t e d .
53 l o g . ph i_1 = ph i_1 ;
54 l o g . ph i_2 = ph i_2 ;
55 l o g . ph i_3 = ph i_3 ;
56 l o g . ph i_4 = ph i_4 ;
57 l o g . ph i_5 = ph i_5 ;
58

59 l o g . K_1 = K_1 ;
60 l o g . K_2 = K_2 ;
61 l o g . K_3 = K_3 ;
62 l o g . K_4 = K_4 ;
63 l o g . K_5 = K_5 ;
64

65 %% A d a p t i v e u p d a t e
66 gamma_hat_dot = z e r o s ( 5 , 1 ) ;
67

68 i f ( norm ( s ) ∗norm ( ph i_1 ) < mu ( 1 ) )
69 gamma_hat_dot ( 1 )=−v a r e p s i l o n ( 1 ) ∗gamma_hat ( 1 ) + f ( 1 ) ∗norm (

s ) ∗norm ( ph i_1 ) ;
70 e l s e
71 gamma_hat_dot ( 1 ) = f ( 1 ) ∗norm ( s ) ∗norm ( ph i_1 ) ;
72 end
73

74 i f ( norm ( s ) ∗norm ( ph i_2 ) < mu ( 2 ) )
75 gamma_hat_dot ( 2 )=−v a r e p s i l o n ( 2 ) ∗gamma_hat ( 2 ) + f ( 2 ) ∗norm (

s ) ∗norm ( ph i_2 ) ;
76 e l s e
77 gamma_hat_dot ( 2 ) = f ( 2 ) ∗norm ( s ) ∗norm ( ph i_2 ) ;
78 end
79
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80 i f ( norm ( s ) ∗norm ( ph i_3 ) < mu ( 3 ) )
81 gamma_hat_dot ( 3 )=−v a r e p s i l o n ( 3 ) ∗gamma_hat ( 3 ) + f ( 3 ) ∗norm (

s ) ∗norm ( ph i_3 ) ;
82 e l s e
83 gamma_hat_dot ( 3 ) = f ( 3 ) ∗norm ( s ) ∗norm ( ph i_3 ) ;
84 end
85

86 i f ( norm ( s ) ∗norm ( ph i_4 ) < mu ( 4 ) )
87 gamma_hat_dot ( 4 )=−v a r e p s i l o n ( 4 ) ∗gamma_hat ( 4 ) + f ( 4 ) ∗norm (

s ) ∗norm ( ph i_4 ) ;
88 e l s e
89 gamma_hat_dot ( 4 ) = f ( 4 ) ∗norm ( s ) ∗norm ( ph i_4 ) ;
90 end
91

92 i f ( norm ( s ) ∗norm ( ph i_5 ) < mu ( 5 ) )
93 gamma_hat_dot ( 5 )=−v a r e p s i l o n ( 5 ) ∗gamma_hat ( 5 ) + f ( 5 ) ∗norm (

s ) ∗norm ( ph i_5 ) ;
94 e l s e
95 gamma_hat_dot ( 5 ) = f ( 5 ) ∗norm ( s ) ∗norm ( ph i_5 ) ;
96 end
97

98 end
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AdaptiveControlJoint.m

1 f u n c t i o n [ j o i n t _ t o r q u e , gamma_ha t_do t_ jo in t , l o g ] = . . .
2 A d a p t i v e C o n t r o l J o i n t ( x , snake , t h e t a _ d , t h e t a _ d o t d ,

t h e t a _ d o t d o t d , . . .
3 gamma_ha t_ jo in t )
4

5 % Uses non−r e g r e s s o r based a d a p t i v e c o n t r o l a l g o r i t h m t o
c a l c u l a t e t h e

6 % t o r q u e t o p u t on t h e j o i n t a n g l e s .
7

8 t h e t a = x (8 : 6+ snake . n ) ;
9 z e t a = x (7+ snake . n : 11+2∗ snake . n ) ;

10

11

12 %% C o n t r o l c o n s t a n t s and v a r i a b l e s
13 s i g m a _ j o i n t = 1 0 ;
14 f = [10 10 10 3 3 ] ’ ;
15 k = 3∗ ones ( l e n g t h ( snake . j o i n t _ v e c ) , 1 ) ;
16

17 t h e t a _ t i l d e = t h e t a _ d − t h e t a ;
18 t h e t a _ t i l d e _ d o t = t h e t a _ d o t d − z e t a ( 7 : snake . n +5) ;
19 s = t h e t a _ t i l d e _ d o t + s i g m a _ j o i n t ∗ t h e t a _ t i l d e ;
20

21 e p s i l o n = [ . 5 . 2 5 . 1 2 5 .0625 . 0 3 1 2 5 ] ’ ;
22 s = e p s i l o n .∗ s ;
23

24 mu = [ 0 . 4 0 . 4 2 0 . 2 0 . 2 ] ’ ;
25 v a r e p s i l o n = [ 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 2 0 . 0 2 ] ’ ;
26 d e l t a = 1 0 ;
27

28 ph i_1 = t h e t a _ d o t d o t d ;
29 ph i_2 = z e t a ( 7 : snake . n +5) ;
30 ph i_3 = k ;
31 ph i_4 = t h e t a _ t i l d e _ d o t ;
32 ph i_5 = t h e t a _ t i l d e ;
33

34 K _ 1 _ j o i n t = gamma_ha t_ jo in t ( 1 ) ∗ s ∗ phi_1 ’ / max ( ( norm ( s ) ∗norm (
ph i_1 ) ) , d e l t a ) ;

35 K _ 2 _ j o i n t = gamma_ha t_ jo in t ( 2 ) ∗ s ∗ phi_2 ’ / max ( ( norm ( s ) ∗norm (
ph i_2 ) ) , d e l t a ) ;

36 K _ 3 _ j o i n t = gamma_ha t_ jo in t ( 3 ) ∗ s ∗ phi_3 ’ / max ( ( norm ( s ) ∗norm (
ph i_3 ) ) , d e l t a ) ;

37 K _ 4 _ j o i n t = gamma_ha t_ jo in t ( 4 ) ∗ s ∗ phi_4 ’ / max ( ( norm ( s ) ∗norm (
ph i_4 ) ) , d e l t a ) ;

38 K _ 5 _ j o i n t = gamma_ha t_ jo in t ( 5 ) ∗ s ∗ phi_5 ’ / max ( ( norm ( s ) ∗norm (
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ph i_5 ) ) , d e l t a ) ;
39

40 j o i n t _ t o r q u e = K _ 1 _ j o i n t ∗ ph i_1 + K _ 2 _ j o i n t ∗ ph i_2 +
K _ 3 _ j o i n t ∗ ph i_3 . . .

41 + K _ 4 _ j o i n t ∗ ph i_4 + K _ 5 _ j o i n t ∗ ph i_5 ;
42

43 %Sending v a l u e s o u t t o be p l o t t e d .
44 l o g . p h i _ 1 _ j o i n t = ph i_1 ;
45 l o g . p h i _ 2 _ j o i n t = ph i_2 ;
46 l o g . p h i _ 3 _ j o i n t = ph i_3 ;
47 l o g . p h i _ 4 _ j o i n t = ph i_4 ;
48 l o g . p h i _ 5 _ j o i n t = ph i_5 ;
49

50 l o g . K _ 1 _ j o i n t = K _ 1 _ j o i n t ;
51 l o g . K _ 2 _ j o i n t = K _ 2 _ j o i n t ;
52 l o g . K _ 3 _ j o i n t = K _ 3 _ j o i n t ;
53 l o g . K _ 4 _ j o i n t = K _ 4 _ j o i n t ;
54 l o g . K _ 5 _ j o i n t = K _ 5 _ j o i n t ;
55

56 % S a t u r a t i n g
57 s a t = abs ( j o i n t _ t o r q u e ) > 5 0 ;
58 j o i n t _ t o r q u e ( s a t ) = 50∗ s i g n ( j o i n t _ t o r q u e ( s a t ) ) ;
59

60 %A d a p t i v e u p d a t e
61 g a m m a _ h a t _ d o t _ j o i n t = z e r o s ( 5 , 1 ) ;
62

63 i f ( norm ( s ) ∗norm ( ph i_1 ) < mu ( 1 ) )
64 g a m m a _ h a t _ d o t _ j o i n t ( 1 ) = −v a r e p s i l o n ( 1 ) ∗ gamma_ha t_ jo in t

( 1 ) + . . .
65 f ( 1 ) ∗norm ( s ) ∗norm ( ph i_1 ) ;
66 e l s e
67 g a m m a _ h a t _ d o t _ j o i n t ( 1 ) = f ( 1 ) ∗norm ( s ) ∗norm ( ph i_1 ) ;
68 end
69

70 i f ( norm ( s ) ∗norm ( ph i_2 ) < mu ( 2 ) )
71 g a m m a _ h a t _ d o t _ j o i n t ( 2 ) = −v a r e p s i l o n ( 2 ) ∗ gamma_ha t_ jo in t

( 2 ) + . . .
72 f ( 2 ) ∗norm ( s ) ∗norm ( ph i_2 ) ;
73 e l s e
74 g a m m a _ h a t _ d o t _ j o i n t ( 2 ) = f ( 2 ) ∗norm ( s ) ∗norm ( ph i_2 ) ;
75 end
76

77 i f ( norm ( s ) ∗norm ( ph i_3 ) < mu ( 3 ) )
78 g a m m a _ h a t _ d o t _ j o i n t ( 3 ) = −v a r e p s i l o n ( 3 ) ∗ gamma_ha t_ jo in t

( 3 ) + . . .
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79 f ( 3 ) ∗norm ( s ) ∗norm ( ph i_3 ) ;
80 e l s e
81 g a m m a _ h a t _ d o t _ j o i n t ( 3 ) = f ( 3 ) ∗norm ( s ) ∗norm ( ph i_3 ) ;
82 end
83

84 i f ( norm ( s ) ∗norm ( ph i_4 ) < mu ( 4 ) )
85 g a m m a _ h a t _ d o t _ j o i n t ( 4 ) = −v a r e p s i l o n ( 4 ) ∗ gamma_ha t_ jo in t

( 4 ) + . . .
86 f ( 4 ) ∗norm ( s ) ∗norm ( ph i_4 ) ;
87 e l s e
88 g a m m a _ h a t _ d o t _ j o i n t ( 4 ) = f ( 4 ) ∗norm ( s ) ∗norm ( ph i_4 ) ;
89 end
90

91 i f ( norm ( s ) ∗norm ( ph i_5 ) < mu ( 5 ) )
92 g a m m a _ h a t _ d o t _ j o i n t ( 5 ) = −v a r e p s i l o n ( 5 ) ∗ gamma_ha t_ jo in t

( 5 ) + . . .
93 f ( 5 ) ∗norm ( s ) ∗norm ( ph i_5 ) ;
94 e l s e
95 g a m m a _ h a t _ d o t _ j o i n t ( 5 ) = f ( 5 ) ∗norm ( s ) ∗norm ( ph i_5 ) ;
96 end
97

98 end
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getEulerAngles.m

1 f u n c t i o n e u l e r A n g l e s = g e t E u l e r A n g l e s (R)
2 p h i = a t a n 2 (R( 3 , 2 , 1 ) , R( 3 , 3 , 1 ) ) ;
3 t h e t a = −a s i n (R( 3 , 1 , 1 ) ) ;
4 p s i = a t a n 2 (R( 2 , 1 , 1 ) , R( 1 , 1 , 1 ) ) ;
5

6 e u l e r A n g l e s = [ p h i ; t h e t a ; p s i ] ;
7 end
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getTransformationMatrix.m

1 f u n c t i o n T = g e t T r a n s f o r m a t i o n M a t r i x ( e u l e r A n g l e s )
2

3 p h i = e u l e r A n g l e s ( 1 ) ;
4 t h e t a = e u l e r A n g l e s ( 2 ) ;
5 p s i = e u l e r A n g l e s ( 3 ) ;
6

7 T = [1 s i n ( p h i ) ∗ t a n ( t h e t a ) cos ( p h i ) ∗ t a n ( t h e t a ) ; . . .
8 0 cos ( p h i ) −s i n ( p h i ) ; . . .
9 0 s i n ( p h i ) / cos ( t h e t a ) cos ( p h i ) / cos ( t h e t a ) ] ;

10 end
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getEEpos.m

1 f u n c t i o n [ e e _ s t a t e , ee_pos_b_ee ] = getEEpos ( snake , pos , t h e t a ,
R)

2

3 ee_pos = [ 0 ; 0 ; 0 ; 1 ] ;
4 ee_pos ( 1 ) = snake . l i n k ( snake . n ) . l e n g t h ;
5 %R_0ee = R ( : , : , 1 ) ;
6 f o r i =( snake . n−1) :−1:1
7 ee_pos = snake . j o i n t ( i ) .A( t h e t a ( i ) ) ∗ ee_pos ;
8 %R_0ee = R_0ee∗R ( : , : , i +1) ;
9 end

10 ee_pos = ee_pos ( 1 : 3 ) ;
11

12 %P o s i t i o n o f end e f f e c t o r r e l a t i v e t o body frame e x p r e s s e d
i n NED−f rame

13 ee_pos_b_ee = R ( : , : , 1 ) ∗ ee_pos ;
14

15 %P o s i t i o n o f end e f f e c t o r r e l a t i v e t o i n e r t i a l f rame
e x p r e s s e d i n i n e r t i a l

16 % frame
17 ee_pos = pos + R ( : , : , 1 ) ∗ ee_pos ;
18

19 R = R ( : , : , snake . n ) ;
20 %R = R_0ee ;
21 p h i _ s t a t e = a t a n 2 (R( 3 , 2 ) , R( 3 , 3 ) ) ;
22 t h e t a _ s t a t e = −a s i n (R( 3 , 1 ) ) ;
23 p s i _ s t a t e = a t a n 2 (R( 2 , 1 ) , R( 1 , 1 ) ) ;
24

25 e e _ s t a t e = [ ee_pos ; p h i _ s t a t e ; t h e t a _ s t a t e ; p s i _ s t a t e ] ;
26

27 end
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plotResults.m

1 % This s c r i p t u s e s t h e o u t p u t from s i m u l a t i o n t o p l o t t h e
i n t e r e s t i n g

2 % s t a t e s , r e f e r e n c e s , c o n t r o l o u t p u t e t c .
3

4 %% Taking t h e d a t a o u t o f s t r u c t f o r m a t t o s i m p l i f y
p l o t t i n g

5 x_ log = o u t p u t . x_ log ;
6 t a u _ d _ l o g = o u t p u t . t a u _ d _ l o g ;
7 j o i n t _ t o r q u e _ l o g = o u t p u t . j o i n t _ t o r q u e _ l o g ;
8 x _ r e f _ l o g = o u t p u t . x _ r e f _ l o g ;
9 o r i e n t a t i o n _ l o g = o u t p u t . o r i e n t a t i o n _ l o g ;

10 T_log = o u t p u t . T_log ;
11 e t a _ e e _ l o g = o u t p u t . e t a _ e e _ l o g ;
12 e t a _ e e _ r e f _ l o g = o u t p u t . e t a _ e e _ r e f _ l o g ;
13 b a s e _ t a s k = o u t p u t . e t a _ b a s e _ t a s k _ l o g ;
14 n o m i n a l _ t a s k = o u t p u t . n o m i n a l _ t a s k _ l o g ;
15 t h e t a _ d o t d _ l o g = o u t p u t . t h e t a _ d o t d _ l o g ;
16 j o i n t _ c o n t r o l l e r _ l o g = o u t p u t . j o i n t _ c o n t r o l l e r _ l o g ;
17 p h i _ 1 _ j o i n t = j o i n t _ c o n t r o l l e r _ l o g . ph i_1 ;
18 p h i _ 2 _ j o i n t = j o i n t _ c o n t r o l l e r _ l o g . ph i_2 ;
19 p h i _ 3 _ j o i n t = j o i n t _ c o n t r o l l e r _ l o g . ph i_3 ;
20 p h i _ 4 _ j o i n t = j o i n t _ c o n t r o l l e r _ l o g . ph i_4 ;
21 p h i _ 5 _ j o i n t = j o i n t _ c o n t r o l l e r _ l o g . ph i_5 ;
22

23

24 %% P l o t p o s i t i o n o f base l i n k
25 f i g u r e ( 1 0 )
26 s u b p l o t ( 3 , 1 , 1 ) ;
27 p l o t ( T_log , x_ log ( 1 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
28 ho ld on
29 p l o t ( T_log , x _ r e f _ l o g ( 1 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
30 ho ld on
31 p l o t ( T_log , b a s e _ t a s k ( 1 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
32 g r i d on
33 l e g e n d ( ’ \ e t a _ 1 ( 1 ) ’ , ’ \ e t a _ {1 , d} ( 1 ) ’ , ’ Task d e s i r e d ’ ) ;
34 x l a b e l ( ’ t [ s ] ’ ) ;
35 y l a b e l ( ’ [m] ’ ) ;
36 t i t l e ( ’X p o s i t i o n o f base l i n k ’ ) ;
37

38 s u b p l o t ( 3 , 1 , 2 ) ;
39 p l o t ( T_log , x_ log ( 2 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
40 ho ld on
41 p l o t ( T_log , x _ r e f _ l o g ( 2 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
42 ho ld on
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43 p l o t ( T_log , b a s e _ t a s k ( 2 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
44 g r i d on
45 l e g e n d ( ’ \ e t a _ 1 ( 2 ) ’ , ’ \ e t a _ {1 , d} ( 2 ) ’ , ’ Task d e s i r e d ’ ) ;
46 x l a b e l ( ’ t [ s ] ’ ) ;
47 y l a b e l ( ’ [m] ’ ) ;
48 t i t l e ( ’Y p o s i t i o n o f base l i n k ’ ) ;
49

50 s u b p l o t ( 3 , 1 , 3 ) ;
51 p l o t ( T_log , x_ log ( 3 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
52 ho ld on
53 p l o t ( T_log , x _ r e f _ l o g ( 3 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
54 ho ld on
55 p l o t ( T_log , b a s e _ t a s k ( 3 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
56 g r i d on
57 l e g e n d ( ’ \ e t a _ 1 ( 3 ) ’ , ’ \ e t a _ {1 , d} ( 3 ) ’ , ’ Task d e s i r e d ’ ) ;
58 x l a b e l ( ’ t [ s ] ’ ) ;
59 y l a b e l ( ’ [m] ’ ) ;
60 t i t l e ( ’Z p o s i t i o n o f base l i n k ’ ) ;
61

62 %% P l o t o r i e n t a t i o n o f base l i n k
63 f i g u r e ( 2 0 )
64 s u b p l o t ( 3 , 1 , 1 ) ;
65 p l o t ( T_log , o r i e n t a t i o n _ l o g ( 1 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
66 ho ld on
67 p l o t ( T_log , x _ r e f _ l o g ( 4 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
68 ho ld on
69 p l o t ( T_log , b a s e _ t a s k ( 4 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
70 g r i d on
71 l e g e n d ( ’ \ p h i ’ , ’ \ ph i_d ’ , ’ \ ph i_ {d , t a s k } ’ ) ;
72 x l a b e l ( ’ t [ s ] ’ ) ;
73 y l a b e l ( ’ [ r a d ] ’ ) ;
74 t i t l e ( ’ R o l l a n g l e o f base l i n k ’ ) ;
75

76 s u b p l o t ( 3 , 1 , 2 ) ;
77 p l o t ( T_log , o r i e n t a t i o n _ l o g ( 2 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
78 ho ld on
79 p l o t ( T_log , x _ r e f _ l o g ( 5 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
80 ho ld on
81 p l o t ( T_log , b a s e _ t a s k ( 5 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
82 g r i d on
83 l e g e n d ( ’ \ t h e t a ’ , ’ \ t h e t a _ d ’ , ’ \ t h e t a _ {d , t a s k } ’ ) ;
84 x l a b e l ( ’ t [ s ] ’ ) ;
85 y l a b e l ( ’ [ r a d ] ’ ) ;
86 t i t l e ( ’ P i t c h a n g l e o f base l i n k ’ ) ;
87
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88 s u b p l o t ( 3 , 1 , 3 ) ;
89 p l o t ( T_log , o r i e n t a t i o n _ l o g ( 3 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
90 ho ld on
91 p l o t ( T_log , x _ r e f _ l o g ( 6 , : ) , ’ c o l o r ’ , ’ r ’ ) ;
92 ho ld on
93 p l o t ( T_log , b a s e _ t a s k ( 6 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
94 g r i d on
95 l e g e n d ( ’ \ p s i ’ , ’ \ p s i _ d ’ , ’ \ p s i _ {d , t a s k } ’ ) ;
96 x l a b e l ( ’ t [ s ] ’ ) ;
97 y l a b e l ( ’ [ r a d ] ’ ) ;
98 t i t l e ( ’Yaw a n g l e o f base l i n k ’ ) ;
99

100 %% P l o t p o s i t i o n o f end e f f e c t o r
101 f i g u r e ( 5 0 )
102 s u b p l o t ( 3 , 1 , 1 ) ;
103 p l o t ( T_log , e t a _ e e _ l o g ( 1 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
104 ho ld on
105 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 1 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
106 g r i d on
107 l e g e n d ( ’ x_ { ee } ’ , ’ x_ { ee , d , t a s k } ’ ) ;
108 x l a b e l ( ’ t [ s ] ’ ) ;
109 y l a b e l ( ’ [m] ’ ) ;
110 t i t l e ( ’X p o s i t i o n o f end e f f e c t o r ’ ) ;
111

112 s u b p l o t ( 3 , 1 , 2 ) ;
113 p l o t ( T_log , e t a _ e e _ l o g ( 2 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
114 ho ld on
115 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 2 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
116 g r i d on
117 l e g e n d ( ’ y_ { ee } ’ , ’ y_ { ee , d , t a s k } ’ ) ;
118 x l a b e l ( ’ t [ s ] ’ ) ;
119 y l a b e l ( ’ [m] ’ ) ;
120 t i t l e ( ’Y p o s i t i o n o f end e f f e c t o r ’ ) ;
121

122 s u b p l o t ( 3 , 1 , 3 ) ;
123 p l o t ( T_log , e t a _ e e _ l o g ( 3 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
124 ho ld on
125 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 3 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
126 g r i d on
127 l e g e n d ( ’ z_ { ee } ’ , ’ z_ { ee , d , t a s k } ’ ) ;
128 x l a b e l ( ’ t [ s ] ’ ) ;
129 y l a b e l ( ’ [m] ’ ) ;
130 t i t l e ( ’Z p o s i t i o n o f end e f f e c t o r ’ ) ;
131

132 %% P l o t o r i e n t a t i o n o f end e f f e c t o r
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133 f i g u r e ( 6 0 )
134 s u b p l o t ( 3 , 1 , 1 ) ;
135 p l o t ( T_log , e t a _ e e _ l o g ( 4 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
136 ho ld on
137 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 4 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
138 g r i d on
139 l e g e n d ( ’ \ ph i_ { ee } ’ , ’ \ ph i_ { ee , d , t a s k } ’ ) ;
140 x l a b e l ( ’ t [ s ] ’ ) ;
141 y l a b e l ( ’ [ r a d ] ’ ) ;
142 t i t l e ( ’ R o l l a n g l e o f end e f f e c t o r ’ ) ;
143

144 s u b p l o t ( 3 , 1 , 2 ) ;
145 p l o t ( T_log , e t a _ e e _ l o g ( 5 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
146 ho ld on
147 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 5 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
148 g r i d on
149 l e g e n d ( ’ \ t h e t a _ { ee } ’ , ’ \ t h e t a _ { ee , d , t a s k } ’ ) ;
150 x l a b e l ( ’ t [ s ] ’ ) ;
151 y l a b e l ( ’ [ r a d ] ’ ) ;
152 t i t l e ( ’ P i t c h a n g l e o f end e f f e c t o r ’ ) ;
153

154 s u b p l o t ( 3 , 1 , 3 ) ;
155 p l o t ( T_log , e t a _ e e _ l o g ( 6 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
156 ho ld on
157 p l o t ( T_log , e t a _ e e _ r e f _ l o g ( 6 , : ) , ’ c o l o r ’ , ’ c ’ ) ;
158 g r i d on
159 l e g e n d ( ’ \ p s i _ { ee } ’ , ’ \ p s i _ { ee , d , t a s k } ’ ) ;
160 x l a b e l ( ’ t [ s ] ’ ) ;
161 y l a b e l ( ’ [ r a d ] ’ ) ;
162 t i t l e ( ’Yaw a n g l e o f end e f f e c t o r ’ ) ;
163

164 %% P l o t j o i n t a n g l e s
165 %P l o t j o i n t a n g l e s
166

167 f i g u r e ( 1 0 0 )
168 n _ j o i n t = snake . n−1;
169 f o r i =1 : n _ j o i n t
170 %f i g u r e (100+ i )
171 s u b p l o t ( n _ j o i n t , 1 , i ) ;
172 p l o t ( T_log , x_ log (7+ i , : ) , ’ c o l o r ’ , ’ b ’ ) ;
173 ho ld on
174 p l o t ( T_log , x _ r e f _ l o g (6+ i , : ) , ’ c o l o r ’ , ’ r ’ ) ;
175 % hold on
176 % p l o t ( T_log , n o m i n a l _ t a s k ( i , : ) , ’ c o l o r ’ , ’ c ’ ) ;
177 g r i d on
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178 l e g e n d ( [ ’ \ t h e t a _ { ’ num2s t r ( i ) ’ } ’ ] , [ ’ \ t h e t a _ { ’ num2s t r (
i ) . . .

179 ’ , d} ’ ] ) ;%, [ ’ \ t h e t a _ { ’ num2s t r ( i ) ’ , t a s k } ’ ] ) ;
180 x l a b e l ( ’ t [ s ] ’ ) ;
181 y l a b e l ( ’ [ r a d ] ’ ) ;
182 t i t l e ( [ ’ Angle o f j o i n t ’ num2s t r ( i ) ] ) ;
183 end
184

185 %% P l o t t r a n s l a t i o n a l f o r c e s on base l i n k from c o n t r o l law
186 f i g u r e ( 2 1 0 )
187 s u b p l o t ( 3 , 1 , 1 ) ;
188 p l o t ( T_log , t a u _ d _ l o g ( 1 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
189 g r i d on
190 l e g e n d ( ’ \ t a u ( 1 ) ’ ) ;
191 x l a b e l ( ’ t [ s ] ’ ) ;
192 y l a b e l ( ’ [N] ’ ) ;
193 t i t l e ( ’ T h r u s t i n s u r g e from base l i n k c o n t r o l l e r ’ ) ;
194

195 s u b p l o t ( 3 , 1 , 2 ) ;
196 p l o t ( T_log , t a u _ d _ l o g ( 2 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
197 g r i d on
198 l e g e n d ( ’ \ t a u ( 2 ) ’ ) ;
199 x l a b e l ( ’ t [ s ] ’ ) ;
200 y l a b e l ( ’ [N] ’ ) ;
201 t i t l e ( ’ T h r u s t i n sway from base l i n k c o n t r o l l e r ’ ) ;
202

203 s u b p l o t ( 3 , 1 , 3 ) ;
204 p l o t ( T_log , t a u _ d _ l o g ( 3 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
205 g r i d on
206 l e g e n d ( ’ \ t a u ( 3 ) ’ ) ;
207 x l a b e l ( ’ t [ s ] ’ ) ;
208 y l a b e l ( ’ [N] ’ ) ;
209 t i t l e ( ’ T h r u s t i n heave from base l i n k c o n t r o l l e r ’ ) ;
210

211 %% P l o t moments a p p l i e d by t h e c o n t r o l law
212 f i g u r e ( 2 1 1 )
213 s u b p l o t ( 3 , 1 , 1 ) ;
214 p l o t ( T_log , t a u _ d _ l o g ( 4 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
215 g r i d on
216 l e g e n d ( ’ \ t a u ( 4 ) ’ ) ;
217 x l a b e l ( ’ t [ s ] ’ ) ;
218 y l a b e l ( ’ [Nm] ’ ) ;
219 t i t l e ( ’Moment i n r o l l from base l i n k c o n t r o l l e r ’ ) ;
220

221 s u b p l o t ( 3 , 1 , 2 ) ;
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222 p l o t ( T_log , t a u _ d _ l o g ( 5 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
223 g r i d on
224 l e g e n d ( ’ \ t a u ( 5 ) ’ ) ;
225 x l a b e l ( ’ t [ s ] ’ ) ;
226 y l a b e l ( ’ [Nm] ’ ) ;
227 t i t l e ( ’Moment i n p i t c h from base l i n k c o n t r o l l e r ’ ) ;
228

229 s u b p l o t ( 3 , 1 , 3 ) ;
230 p l o t ( T_log , t a u _ d _ l o g ( 6 , : ) , ’ c o l o r ’ , ’ b ’ ) ;
231 g r i d on
232 l e g e n d ( ’ \ t a u ( 6 ) ’ ) ;
233 x l a b e l ( ’ t [ s ] ’ ) ;
234 y l a b e l ( ’ [Nm] ’ ) ;
235 t i t l e ( ’Moment i n yaw from base l i n k c o n t r o l l e r ’ ) ;
236

237 %% P l o t t a u f o r f o r c e s on j o i n t s
238 %F o r c e s on j o i n t s
239 f i g u r e ( 4 0 0 )
240 f o r i =1 : snake . n−1
241 s u b p l o t ( snake . n−1 ,1 , i ) ;
242 p l o t ( T_log , j o i n t _ t o r q u e _ l o g ( i , : ) , ’ c o l o r ’ , ’ b ’ ) ;
243 g r i d on
244 l e g e n d ( [ ’ \ t a u _ { j o i n t } ( ’ num2s t r ( i ) ’ ) ’ ] ) ;
245 x l a b e l ( ’ t [ s ] ’ ) ;
246 y l a b e l ( ’ [Nm] ’ ) ;
247 t i t l e ( [ ’ Torque on j o i n t ’ num2s t r ( i ) ] ) ;
248 end
249

250

251 %% P l o t j o i n t v e l o c i t i e s
252 f i g u r e ( 6 0 0 )
253 f o r i = 1 : snake . n−1
254 s u b p l o t ( snake . n−1 ,1 , i ) ;
255 p l o t ( T_log , x_ log (12+ snake . n+ i , : ) , ’ c o l o r ’ , ’ b ’ ) ;
256 ho ld on
257 p l o t ( T_log , x _ r e f _ l o g (11+ snake . n+ i , : ) , ’ c o l o r ’ , ’m’ ) ;
258 g r i d on
259 l e g e n d ( [ ’ V e l o c i t i y o f j o i n t ’ num2s t r ( i ) ] , ’ D e s i r e d

v e l o c i t y ’ ) ;
260 x l a b e l ( ’ t [ s ] ’ ) ;
261 y l a b e l ( ’ [ r a d / s ] ’ ) ;
262 t i t l e ( [ ’ V e l o c i t y o f j o i n t ’ num2s t r ( i ) ] ) ;
263 end
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