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Abstract

Electricity and its availability is important in today’s society. There are many
reasons why components in the power system fail, with weather being one of them.
In this report we formulate two Bayesian hierarchical models for wind related failures
on overhead transmission lines. These models are based on an already existing model
in use by the Norwegian Transmission System Operator. The number of failures
along a line segment is assumed Poisson distributed, with an intensity parameter
that is a function of wind speed, segment length, a common parameter for all lines
and two line-specific parameters. The parameters are assigned prior distributions
and an expression for the corresponding posterior distribution is then obtained by
combining the likelihood and prior. Our two models differ only in terms of the
likelihood, where one model considers failures on segment-level, while the other
only includes the total number of failures along a line. Since we are not able to
work analytically with the posterior distributions MCMC methods are used.

An MCMC updating scheme consisting of Metropolis-Hastings and Gibbs up-
dates are run for both models on simulated failure data. The posterior 90% credi-
ble interval is for almost all parameters narrower for the line-wise model than the
segment-wise model. In both cases a positive correlation between the two line-
specific parameters are seen, which indicates that one in the future should consider
to include another type of prior for these parameters that allow for a correlation
parameter. The generated parameter values from the MCMC runs are then used to
predict the probability of at least one failure for future times and compared to the
true probabilities of failures. For the comparison the logarithm of the absolute error
of the predictions are calculated and plotted together for the line-wise and segment-
wise model. However, there seem to be no distinct difference between them. This
indicates that there might be nothing or little to gain for a Transmission System
Operator in terms of better predictions if they improve the reporting on the exact
location of failures.





Sammendrag

Elektrisitet er viktig i dagens samfunn og noe vi nærmest tar for gitt at alltid skal være
tilgjengelig. Det kan være mange grunner til at deler av kraftsystemet feiler, og vær er
en av dem. I denne masteroppgaven formulerer vi to bayesianske hierarkiske modeller
for forbig̊aende feil p̊a høyspentlinjer som er for̊arsaket av vind. Disse modellene er
basert p̊a en allerede eksisterende modell som brukes av systemansvarlig i det norske
kraftsystemet. Vi lar antall feil for et linjesegment for en gitt time være poissonfordelt.
Den tilhørende intensiteten er en funksjon av vindhastighet, linjesegmentlengde, en felles
parameter for alle linjer samt to linjespesifikke parametre. Disse parametrene gir vi en
apriorifordeling og ved å kombinere likelihood og apriorifordelingen finner vi et uttrykk
for den tilhørende aposteriorifordelingen. Modellene vi formulerer har ulik likelihood,
hvorav den ene belager seg p̊a feil p̊a segmentniv̊a, mens den andre kun inkluderer
totalt antall feil for en linje sett under ett. Fordi vi ikke klarer å jobbe analytisk med
aposteriorifordelingene velger vi å ta i bruk Markov chain Monte Carlo-metoder for å
simulere fra fordelingene.

Vi simulerer feildata og bruker dette som input til MCMC-kjøringer som best̊ar av pa-
rameteroppdateringer basert p̊a Metropolis-Hastings og Gibbs algoritme. Det viser seg
at linjemodellen har de smaleste aposteriori 90%-kredibilitetsintervallene for nesten alle
parametrene i modellen. I begge tilfeller observer vi at det er en klar positiv korrelasjon
mellom de to linjespesifikke parametrene. Dette indikerer at man i en eventuell fremtidig
modell burde vurdere en annen apriorifordeling for disse parametrene som tar høyde for
en korrelasjonsparameter. De simulerte parameterverdiene fra MCMC-kjøringene brukes
for å estimere sannsynligheten for minst en feil for fremtidige timer og evalueres mot
de sanne sannsynlighetene for feil. Vi sammenligner modellene ved å plotte logaritmen
av absolutt feil for alle prediksjoner. Ut ifra dette kan vi ikke se noen tydelig forskjell
mellom modellene. Dette er dermed en indikasjon p̊a at det i prediksjonsøyemed er lite
eller ingenting å hente for systemansvarlig i kraftsystemet ved å forbedre rapportering
av feildata til å gi eksakt lokasjon for feil.





1 Introduction

Electricity is a vital part of the modern life, it is among others needed in households to
charge our phones, light our homes, keep food and drinks cooled in the refrigerator, and
for public services and businesses to operate machines and keep servers and computer
systems running. However, the availability of electricity at all times is something we in
developed countries often take for granted. A prerequisite for this is a well-functioning
power system, and in particular a reliable electrical grid to transport the electricity from
where it is generated and all the way to the end users (Ward, 2013).

In Norway the state-owned company Statnett SF has the role as the nation’s Transmis-
sion System Operator (Norwegian water resources and energy directorate, 2016), mean-
ing that they have several responsibilities regarding the power system. One of the most
important ones is to continuously upheld the balance between consumption and gener-
ation of electricity. With this also the importance of a reliable system emerges. The
electrical grid is divided into the transmission grid, the regional grid and the distri-
bution grid, where the transmission grid is the one for long-distance transportation
carrying high-voltages, i.e. 132kV-420kV. The rest of the grid, which is often connected
to the central grid, is for power lines carrying lower voltages. These lines reach out
to smaller consumers and industries, such as normal households and service industries
(Norwegian Ministry of Petroleum and Energy, 2019a). It is not realistic to have no in-
terruptions in the supply of electricity, as this would require one to invest too much if one
considers the costs versus the benefits (Norwegian Ministry of Petroleum and Energy,
2019b). With a nation-wide grid of a total length of around 130 000 kilometres, where
approximately 11 000 of these are part of the transmission grid operated by Statnett, it
is only a question of when and where a component is going to fail next.

An electrical grid often consists of both overhead lines and underground cables, in ad-
dition to transformers, control centers and other equipment (Ward, 2013), and hence
several components that have a propensity to fail. In this report we look at failures due to
wind on overhead transmission lines, and only the ones classified as temporary failures.
In this particular setting a failure is roughly the same as something is not functioning
or it has a reduced ability to function as it is supposed to do, see Statnett’s own failure
statistics and definitions online for more details (Statnett SF, seksjon Feilanalyse, 2015).
The failures are divided into temporary and lasting ones, in addition to be categorized
based on the reason for failure such as weather, vegetation, birds and human errors.
A temporary failure is defined as a failure which does not require any specific repair,
maybe just some adjustments (Statnett SF, seksjon Feilanalyse, 2015). Even though
there might be a wide variety of possible reasons for why components fail, most of the
temporary failures on overhead transmission lines are known to happen due to or when
we experience severe weather (Solheim et al., 2016). In particular, wind, lightning and
ice are the three main weather factors. To be able to find a way to use the weather
report to predict the weather related failure probability for each line would be of great
help in the reliability work of system operators.

Until now, Statnett has indeed implemented models for predicting the probability of
temporary failure on overhead transmission lines due to wind and lightning, in two
separate models. These are presented in detail in one article each, see Solheim et al.
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(2016) regarding the wind model and Solheim and Trötscher (2018) for the lightning
model. Based on these articles we summarize the structure of the models, as it is the
starting point for developing our own models later:

By sectioning each power line into segments, defined by the part of the line between
two consecutively power towers, they treat a line as a series system. Assuming all
segments independent, and having available estimated weather data on an hourly basis
they connect one or more weather parameters to the probability of failure of a line
segment within an hour. This is based on the concept of fragility curves, and is in this
setting a function which maps the weather in terms of wind or lightning exposure to the
probability for a line to fail. The cumulative lognormal function is the one used. They
treat the parameters of this curve as constant for all times, and hence one ends up with
only one set of parameters for each power line. To be able to determine the values of
these parameters they have chosen to do this by calibrating the hourly probability of
failure for a line to suit actual observed failure rates.

For the calibration one formulates a simple Bayesian model for each transmission line,
assuming that the number of annual failures are independent and identically Poisson
distributed. The corresponding intensity parameter is given an exponential prior distri-
bution with an intensity calculated based on information of overall failures per year per
100 km, and adjusted to each line based on the length of the line, the type of failure
and type of weather. This results in a posterior gamma distribution. Based on observed
failure data the posterior mean is easily calculated, and this value is used for calibra-
tion. Optimization is done by finding the parameters of the fragility curves such that the
overall posterior yearly failure rate is ”close” to the expected number of annual failures
based on the hourly probability time series. In addition, a term for minimizing the Brier
score (Brier, 1950) can be added so that complete wrong predictions are penalized a lot.
Having found each lines parameters, prediction is done by using weather forecast on an
hourly basis as input to the fragility curve. One then gets the predicted probability of
failure for a line for the same amount of hours one has weather forecasts for.

The models which Statnett use today have some constraints. Among others they are
not capturing the uncertainty in the parameters, and hence also in the predictions, well.
This is due to the fact that they are only optimizing with respect to the posterior mean
annual failure rate, when in fact there is an uncertainty in this parameter, and hence one
then do not get a feeling of how much the estimates of the parameters in each fragility
curve could in fact vary.

In this report we propose another type of model, namely a Bayesian hierarchical model,
yielding instead of just estimates for the parameters in the cumulative lognormal rather
the posterior distribution of them. Naturally this also gives information about the
uncertainty in each parameter. We only consider temporary failures due to wind and
use Statnett’s wind model as a natural starting point. In addition we make some minor
changes to the definition of wind exposure used in their model to suit our model. Also,
while in their model the line specific parameters would just be estimates based on
information from that specific line, in our model we let all data influence these parameter
values. This can be a huge advantage if for instance one does not have that much data
for all lines.
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Overall the lines mostly do not fail. This is of course desirable with respect to reliability,
but this also creates a problem when creating a model. If we run the model on little
data, the total number of failures is small. However, to avoid running with true observed
failures for many years, which would have been computationally demanding for this
project, we rather look at six months and simulate data for this period. This is done
such that we get approximately the same total number of failures in this shorter time
period as for the whole true data set.

The main objective of this thesis is to construct Bayesian hierarchical models for the
probability of failure along power lines. We formulate two similar models, one for which
we only consider failures reported for each line and one where we assume more detailed
failure data, and hence failures on segment level. To be able to get any information
about the parameters in the models we use Markov chain Monte Carlo (MCMC) meth-
ods to sample from the corresponding posterior distributions. The uncertainty of the
parameters are assessed through credible intervals, and seen in light of the simulated
data used. In particular, we are interested in how our models can be used to predict the
probability of failure for future hours. We predict the probability of at least one failure
for some future times based on the MCMC runs. Lastly, we compare the predictions
made and comment on how one could score predictions in practice.

This report is structured as follows: In Section 2 we introduce the theory and concepts
used for our model. The focus is mainly on Bayesian hierarchical modeling and MCMC
methods. In section 3 we have a closer look at the data provided by Statnett, which
is wind data and failure data for several power lines in Norway, along with information
of the length of each line segment. Then we present our models in detail in Section 4,
which we end by introducing the simulated failure data actually used for the MCMC.
In Section 5 we state the algorithm and specific choices made for generating samples
from the corresponding posterior distributions. Following this, implementation notes
are found in Section 6. Some results from runs of the implemented code using simulated
failure data are shown and discussed in Section 7. We end this report with some closing
remarks and thoughts about how our models and algorithms can be of further use.

2 Theory

In this section we present the concepts and theory needed for understanding the idea be-
hind our Bayesian hierarchical models which we later formulate in Section 4, in addition
to methods used to be able to use such models in practice. Since these type of models are
based on the Bayesian statistical view, we start by giving a brief introduction to and mo-
tivation for Bayesian statistics, and thereby hierarchical models in particular. For such
models we tend to get complicated distributions which we need to sample from, and so
MCMC methods are often used. The basics of Markov chain Monte Carlo are presented
and the two most known algorithms, Metropolis-Hastings and Gibbs, are further given
in more detail. An overview of how one can use the output from an MCMC run to assess
whether the sample generated is indeed from the desired distribution and how to sample
efficiently is also given. In addition, we briefly introduce how predictions can be made
based on the generated parameter values from an MCMC run. We wrap up this section
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by presenting some probability distributions with parameterizations corresponding to
the ones we use in our model.

2.1 Bayesian hierarchical modeling

If we are interested in understanding and describing a phenomenon, an experiment or a
problem or making future predictions we are in need of a model. In statistics the model
is defined through probability distributions and assumptions, for instance regarding
independencies of random variables. Already in the choice of probability distribution
we have assumed that the data can be described by such a distribution. Note that most
models are simplifications of a (real-world) problem, and are in most cases wrong, since
the true underlying process is unknown. However, it still makes sense to create a model.
For instance, we might assume that a Poisson distribution fits the data if we are dealing
with counting data, or an exponential distribution for lifetimes. However, how we treat
the parameters in a statistical model is dependent upon which approach we use, the
frequentist or the Bayesian one.

In the frequentistic way, the parameters are treated as fixed, but unknown (Bolstad,
2007). We are then interested in obtaining estimates, for instance maximum likelihood
estimates, of the corresponding parameters. In addition we often associate a (1-α)%
confidence interval to each estimate. Recall that since the parameters are fixed, a
parameter either will be in the interval or not, and hence we can not talk about a for
instance 95% probability of the parameter being in the corresponding confidence interval.
However, if repeatedly obtaining samples from the same distribution and creating a (1-
α)% confidence interval each time, the interval is going to cover the true parameter value
(1-α)% of the times (Walpole et al., 2012). This summarizes the way one explains the
term ”probability” in the frequentist approach, namely as the long-run relative frequency
when performing the sampling infinitely many times.

Bayesian statisticians on the other hand treat the parameters in the model as random,
and hence unknown (Bolstad, 2007). This also requires us to state some sort of belief
about the parameters, known as the prior distribution. The knowledge one has about
these parameters might be influenced by how much experience one has with the domain,
if one has knowledge of any similar problems or if one just has a strong personal belief.
The prior distribution is also called subjective since it differs from person to person and
time to time, since the information available for different persons and at different times
naturally might differ. The prior distribution might be rather flat to indicate no or little
knowledge or rather specified if one has a stronger belief. We are then not only interested
in estimates, but also in the marginal posterior distributions of each parameter, hence
the distribution of the parameter conditioned on observed data (Gelman et al., 2014). To
assess uncertainty of a parameter we can look at credible intervals, which are intervals
where we in contrast to frequentistic confidence intervals can actually state that the
probability of a parameter to be within it is for instance 95%.

In many ways, Bayesian statistics is well incorporated in daily life, because we often like
to refer to events as having a certain probability of happening. In addition we often
have some knowledge of similar problems from before, which is easily incorporated in
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the Bayesian setting in terms of the prior distribution. Note however that even though
frequentists do not assume a prior distribution, we always makes some assumptions or
to some degree subjective choices when creating a model anyway, which among others
include decisions of what data to include and which type of probability distributions
we choose, as pointed out in (Gelman et al., 2014). The rest of the theory section is
devoted to the Bayesian approach, as this is the basis for the models we formulate later
on in this report.

In Bayesian theory the Bayes’ rule is of course central. Let x denote the data, which
we believe to be generated from a sampling distribution with parameter θ, denoted
f(x|θ). Our prior belief of this parameter is contained in the prior distribution, which
we denote f(θ). Having observed data, f(x|θ) can be interpreted as a function of the
parameter θ, and is then called the likelihood function. We let f(x, θ) denote the joint
distribution of the parameter and data. To update our belief about the parameter,
both the likelihood and prior is combined through what is known as Bayes’ rule in the
following way (Gelman et al., 2014)

f(θ|x) =
f(x, θ)

f(x)
=
f(x|θ)f(θ)

f(x)
, (2.1)

to obtain the posterior distribution f(θ|x). However, we often only need to consider
the unnormalized version of the posterior distribution. The right hand side of (2.1)
simplifies to

f(θ|x) ∝ f(x, θ) = f(x|θ)f(θ), (2.2)

which is proportional to f(θ|x) in terms of θ. Note that the term f(x) is only considered
a constant after the data x is observed. Keep in mind that both x and θ can denote a
vector of random variables, hence that they might be multivariate variables.

To fully specify a model one only needs to specify the joint distribution of all random
variables, since as seen before from (2.2) this joint distribution is proportional to the
posterior distribution. However, to specify the joint distribution in just one step is not
straightforward as this would require us to choose a multivariate distribution that cap-
tures how each of the variables are correlated. For the simplest Bayesian model we can
rather specify the model in terms of the likelihood f(x|θ) and the prior f(θ). If letting
x consist of N variables x1, ..., xN it is useful to assume conditional independence such
that the likelihood can be written as a product, hence as f(x1, ..., xN |θ) =

∏N
i=1 f(xi|θ).

To go from a standard Bayesian model to a hierarchical one, the parameters of the prior
distribution, which we denote by φ, is treated as unknown and are assigned a distribu-
tion (Ntzoufras, 2009). This distribution is referred to as the hyperprior and we denote
it f(φ). It is useful to continue the hierarchical structure on the joint prior distribution,
such that f(θ, φ) = f(θ|φ)f(φ). If assigning a prior on the parameter γ of the hyper-
prior distribution, we get another level of hierarchy, the so called hyper-hyperprior (Lee,
2012). Let this be denoted f(γ), and then with the conditional distribution f(φ|γ) on
the hyperprior level. See Figure 1 to see an overall illustration for the three types of
models mentioned above.

For the case of a 2-stage hierarchical prior f(θ, φ) the posterior distribution is given as
(Kroese and Chan, 2014)

f(θ, φ|x) ∝ f(x|θ)f(θ|φ)f(φ).
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Figure 1: Simple illustration of three Bayesian models. From left to right we have a
standard Bayesian model, a 2-stage Bayesian hierarchical model and a 3-stage Bayesian
hierarchical model. The grey nodes indicates the data level of the model, hence the
observable variables. The rest of the nodes represent one or more parameters. One must
assign probability distributions to all random variables to fully specify the corresponding
model.
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In the same manner for the 3-stage prior we get

f(θ, φ, γ|x) ∝ f(x|θ)f(θ|φ)f(φ|γ)f(γ).

To find the marginal posterior distribution for a parameter, this is simply the same as
integrating out all other variables from the posterior. So for the 2-stage prior model

f(φ|x) =

∫
f(θ, φ|x)dθ.

would for instance be the marginal posterior distribution for the variable φ.

Even though we can make complex models, they are often easily represented through
directed acyclic graphs, so-called DAGs. A DAG consists of nodes with directed arrows
between them, in such a way that there is no cycle (Kroese and Chan, 2014). Here the
layers are commonly separated, such that all units or parameters for one level are located
on the same horizontal line. The nodes represent different stochastic variables, which
might be parameters or observable variables. An example of the standard Bayesian
model is depicted in Figure 2, in addition to one for the 2- and 3-stage hierarchical
models in Figures 2 and 3, respectively. The nodes for the data level is colored grey,
which are the ones we observe.

Often the data exhibits a natural hierarchical structure, as Hoff (2009) mentions is the
case if we for instance are looking at patients in several different hospitals or at persons
within counties which again lies within a region, and where the region again belongs to
a country. Hence, when having data at an individual level that are somewhat grouped
on a higher level. Let us look at an example to motivate the use of the different model
types. If one is formulating a model for a school test result, the simplest one would be to
only consider one school. This corresponds to Figure 2, with θ being a parameter specific
for this particular problem, hence this particular school. However if rather looking at J
schools in total, with Nj observations from school j, we have the scenario depicted in
Figure 3. Here θj denotes the school-specific parameter for school j, but there is also
a hyperprior-level since we assume that these school-specific parameters come from a
common population with parameter φ. In other words, we believe the school parameters
to be somehow ”alike”, maybe in the sense that they are all located in the same county.
If one had additional data with test results from schools from several counties, one
could extend the model as shown in Figure 4. Here we have I counties and J schools.
We let all school-specific parameters be dependent on a county-specific parameter φi.
Again we assume there is some connection between all counties, and hence all schools,
by having a hyper-hyperprior level, with γ as the overall parameter. This could for
instance have been the overall mean. Note that there is no need to add an extra layer
in the hierarchical structure if one has no extra information that makes this desirable.
For instance if only looking at test results from one school, one does not need both a
school-specific mean and overall mean. Then the overall mean would just end up being
equal to the school-specific one since only having data from one school.

The real strength of Bayesian hierarchical models is that we use all data to get infor-
mation about all unknown parameters. This stands in contrast to the classical way of
using data for only one group for estimating variables related to that group. The latter
approach is for instance very sensitive to small data sets, which then will give a large
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Figure 2: An example of a standard Bayesian model consisting of a data level and
prior level. The joint distribution of data and parameters then consists of the likelihood
corresponding to the distribution for the data level in addition to a prior distribution
for the parameters of the sampling distribution.

Figure 3: An example of a Bayesian model with a 2-stage hierarchical prior. It consists
of a data level, prior level and hyperprior level. Here there are J groups, and hence J
group-specific parameters θ1,...,θJ . In addition, φ is a common parameter for all groups.

8



Figure 4: An example of a Bayesian model with a 3-stage hierarchical prior. The model
consists of a data layer, prior level, hyperprior level and hyper-hyperprior level. Here
there are two levels of groups, first J groups with a group-specific parameter θj , and
then these parameters are again part of a larger group i with parameter φi. Let γ denote
the overall common parameter.
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uncertainty in group-specific estimates. In Bayesian models however, we incorporate
information about all groups at once, such that even though we might have little data
for one group, we use all the data to get values for the common parameters, and this
again affects the prior parameter. There is a tendency of group-specific parameters being
shrunk towards the corresponding population mean, how much is however dependent
on the variance between all group parameters in that population. In addition, the less
data we have for one group, the more the corresponding parameter is going to be shrunk
(Ntzoufras, 2009). What might been seen as an additional strength is the use of prior
distributions, which enable us to use all information available and to somewhat restrict
the plausible values of parameters based on this knowledge. If having informative priors,
this also reduce the posterior uncertainty about the parameters.

Prior information can be chosen as to reflect all information available or rather the lack of
knowledge. For informative priors it is common to choose a prior that makes calculations
and computations convenient, i.e. as a distribution within a well known parametric class.
As mentioned in one of the examples in Hoff (2009), the prior information we have about
a parameter might only be that we have some sort of interval we believe it to have a large
probability of being within, and maybe we have a feeling of its expected value. Based on
such info, we can however construct several priors that captures this information. One
then often chooses one that makes computations convenient, for instance by choosing
a conjugate prior. For this particular choice the prior and posterior end up having the
same parametric form, see Gelman et al. (2014) for a more precise definition of conjugate
priors.

Sometimes we rather want the data to dominate the analysis and therefore let the prior
distribution be as uninformative as possible. This might be the case if one has no
particular prior knowledge or if one is doing research and one wants to test a hypothesis
where one would like the result not to be much influenced of one’s own prior belief
(Gelman et al., 2014). Naturally, uninformative priors can be described as flat, which
is indeed the case for a common uninformative prior, namely the uniform distribution
on an infinitely wide interval. Note that this is what one classifies as an improper prior,
meaning that it is does not integrate to 1, and hence is not what we would describe
as a proper prior. For variance parameters however, a common uninformative prior is
f(v) ∝ 1

v , where we let v denote a variance parameter. It is important to be aware of
that using improper priors does not necessarily give proper posterior distributions. One
should therefore check that the corresponding posterior distribution is indeed proper,
ideally by assuring that the integral

∫
f(θ|y)dθ is finite. Inference based on the posterior

distribution only makes sense if it is indeed a proper probability distribution.

There are also many other choices for priors, among others Jeffrey’s prior and weakly
informative ones. Jeffrey’s prior is constructed in such a way that it is invariant to
different parameterizations, with the intention that the belief expressed through the prior
should be the same no matter how we choose to parameterize. A weakly informative
prior only contains some information, and hence less than what might actual be the
information available, and is therefore called ”weak” (Gelman et al., 2014). It is a
proper prior such that it in fact restricts the range of plausible values for a parameter.

After having observed data x we often aim to use these models to predict future, and
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yet unobserved, observations. For the Bayesian approach what we end up with is not
merely an estimate but rather the distribution of the future observation. This is called
the posterior predictive distribution. We let the this future observation be denoted x̃
and we assume that x̃ and the observed data x is independent given the parameter θ.
By integrating over all possible parameter values θ the posterior predictive distribution
is obtained as (Lesaffre and Lawson, 2012)

f(x̃|x) =

∫
f(x̃, θ|x)dθ

=

∫
f(x̃|θ, x)f(θ|x)dθ

=

∫
f(x̃|θ)f(θ|x)dθ.

(2.3)

It is clear that this distribution takes the uncertainty of θ into account, and to get some
measure of the uncertainty in the prediction of x̃ one often looks at posterior predictive
intervals. These are no more than credible intervals for x̃, with a (1− α)% probability
of the future observations to be within the interval. Naturally, the wider the interval,
the more uncertain we are about which value a new observation will have.

If one is observing data at different times, say for instance that one has collected one
set of data x1 and at a later time one collects one more x2, the model can be updated
in-between the collections as to account for all available information. This is done by
using the posterior distribution f(θ|x1) as a prior for θ before collecting the second
data set. To see that this is a natural choice consider the posterior distribution, with
conditioning on both data sets. This yields

f(θ|x1, x2) ∝ f(θ, x1, x2)

= f(x2|θ, x1)f(θ|x1)
= f(x2|θ)f(θ|x1)

where we again have used the assumption of conditional independence between observa-
tions, and hence also between data sets. Here f(x2|θ) can be seen as the likelihood-term
and f(θ|x1) as the prior term. The updated version of the posterior distribution is then
in general easily obtained by combining the newest posterior distribution together with
the likelihood for the last data set. For a total of D data sets this yields the following
updating scheme (Ntzoufras, 2009)

f(θ|x1, ..., xD) ∝ f(xD|θ)f(θ|x1, ..., xD−1) ∝ f(θ)
D∏
i=1

f(xi|θ). (2.4)

2.2 MCMC

As mentioned earlier when creating a Bayesian model we are interested in the posterior
distribution since we for instance can use this to predict values for future observations.
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However, even though we might choose standard or relative simple distributions for each
unit on all levels in the model, the product of conditional distributions that makes up
the posterior might yield a non-standard and complex distribution. An iterative sam-
pling method based on Markov chains, named Markov chain Monte Carlo (MCMC),
has become popular from the 1990s due to its flexibility and because of the increas-
ingly availability of computing power (Ntzoufras, 2009). The idea of this method is to
construct a Markov chain, which is both irreducible and aperiodic, and with a limiting
distribution f equal to the target distribution (Givens and Hoeting, 2013). By target
distribution we refer to the distribution we would like to obtain samples from. In the
Bayesian setting this is most often the posterior distribution. There are several MCMC
methods, but we focus on the first developed method known as the Metropolis-Hastings
(MH) algorithm and a special case of it, namely the Gibbs sampling algorithm (Chib
and Greenberg, 1996).

2.2.1 Metropolis-Hastings algorithm

Recall that a Markov process is a stochastic process which has the Markov property. We
denote the process by {θ(m),m ∈ I}, where I is called the index set, and where S is the
state space, hence a set containing all possible values of θ(m) (Rubinstein and Kroese,
2008). We consider only a discrete index set and the process is then named a Markov
chain. The Markov property states that

f(θ(m+1)|θ(m), θ(m−1), ..., θ(1), θ(0)) = f(θ(m+1)|θ(m))

which means that the distribution of θ(m+1) is independent of all past states, given
the current one θ(m). The random variables in this chain is in our setting typically
d-dimensional vectors consisting of all parameters of a Bayesian model. Hence, we have
θ(m) ∈ Rd. The index set is in terms of MCMC methods equal to the non-negative
integers such that I = {0, 1, 2, ...}. We let m denote the iteration number. The state
space can be either discrete or continuous, and we continue with the continuous state
space only. However, the discrete case is very similar.

Let p(θ∗|θ) denote the transition kernel of a Markov chain, which is in fact a mixed
distribution, and which is governing the probability of moving from the current state
θ and into certain regions of the state space. Note that in the continuous case we can
generally not speak of the probability of moving from one point to another, as is the case
if having a discrete state space. For f to be a stationary distribution of a Markov chain
with corresponding transition kernel p it must satisfy (Gamerman and Lopes, 2006)

f(θ̃) =

∫
f(θ)p(θ̃|θ)dθ. (2.5)

One can easily verify that if p satisfies what is known as the detailed balance conditions,
which is the same as the chain being reversible, then f also necessarily satisfies (2.5).
The detailed balance conditions are given by

f(θ)p(θ̃|θ) = f(θ̃)p(θ|θ̃), for all θ, θ̃ ∈ S. (2.6)

12



To see why this holds one can simply integrate (2.6) with respect to θ (Gamerman and
Lopes, 2006), and by noting that

∫
p(θ|θ̃)dθ = 1 this yields the same as equation (2.5)

for stationarity.

The Metropolis-Hastings algorithm is constructed in such a way that the corresponding
transition kernel of the Markov chain indeed satisfies the detailed balance conditions,
and hence has then automatically the required stationary distribution. The transition
kernel is in the Metropolis-Hastings setting given as

p(θ̃|θ) =

q(θ̃|θ)A(θ̃|θ) for θ̃ 6= θ,

1−
∫
q(θ̌|θ)A(θ̌|θ)dθ̌ for θ̃ = θ,

(2.7)

where q denotes a proposal density and A ∈ [0, 1] an acceptance probability. This cor-
responds to the procedure of generating a proposal for the next state from the proposal
distribution q, and to accept this proposal as the next state with a probability equal to
A. However, if not accepted, the next state is set equal to the current one, hence we get
θ̃ = θ. In the latter case we can actually speak of the probability of ending up in the
same state since this probability is clearly non-zero, and it is equal to

1− P (proposing another state and accepting the proposal) = 1−
∫
q(θ̌|θ)A(θ̌|θ)dθ̌.

By letting the transition kernel be on the form given by (2.7) we need an expression
for the acceptance probability. This is chosen such that the transition kernel fulfills the
detailed balance conditions. There are in fact several choices, but the one chosen for
Metropolis-Hastings due to optimality reasons (Gelman et al., 2014) is

A(θ̃|θ) = min

[
f(θ̃)q(θ|θ̃)
f(θ)q(θ̃|θ)

, 1

]
(2.8)

where we assume that the chain is in a valid state at all times, i.e. such that f(θ) > 0. See
Chib and Greenberg (1995) for more details. However, to ensure convergence towards
the stationary distribution f some conditions must be met, namely irreducibility and
aperiodicity (Chib and Greenberg, 1995). Since the requirements of irreducibility and
aperiodicity are most often met, we do not linger more on this. One should however
give it a thought when applying MCMC as to if one has the ability to explore the state
space.

For a target distribution f , which is most often the posterior distribution in a Bayesian
setting, we choose a proposal density q, and generate values of the chain as described
above with the corresponding acceptance probability given in (2.8). For the case when
our target distribution is the posterior distribution f(θ|x) the acceptance probability is
given as

A(θ̃|θ) = min

[
f(θ̃|x)q(θ|θ̃)
f(θ|x)q(θ̃|θ)

, 1

]
. (2.9)
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Note that in the construction of the Markov chain above, the target distribution is indeed
assumed to be a proper probability distribution. As mentioned before, if using improper
priors in the model, we are not guaranteed a proper posterior. If the posterior is indeed
improper the above is not applicable. We do not go any deeper into the theoretical
foundation of MCMC here as this would have been overkill with respect to the aim of this
thesis, which is MCMC in an applied setting. For the very interested reader, (Tierney,
1994) and (Chib and Greenberg, 1996) give at least a somewhat thorougher explanation,
see (Chib and Greenberg, 1995) for details on the MH algorithm in particular.

To summarize the Metropolis-Hastings algorithm we outline the algorithm in pseudo-
code below. We let here our target distribution be the posterior distribution.

1. Set an initial value θ(0) for the Markov chain.

2. For m=1,2,....

(a) Propose a potential new value for iteration number m by drawing a value θ∗

from the proposal density q(θ∗|θ(m−1)).

(b) Calculate the acceptance probability A(θ∗|θ(m−1)) given by (2.9).

(c) Generate a value u from the Unif[0, 1]. If u < A(θ∗|θ) accept the proposal
and set θ(m) = θ∗, else reject the proposal and set θ(m) = θ(m−1).

Note that in the expression for the acceptance probability A in (2.8) the target distribu-
tion only appears as part of a fraction, and hence any normalizing constants cancel out.
Thus it is only necessary to know the unnormalized form of the target distribution, which
is indeed the case for Bayesian models where the posterior often has a computational
intractable normalizing constant.

In the above discussion we described the algorithm for the case of updating θ in one
step, meaning that if θ is a d-dimensional parameter vector, we need a d-dimensional
proposal density. However, it is also possible to update one element of the vector at a
time, or several together in blocks. The target distribution is in all cases the posterior
f(θ|x). We come back to this possibility later in the discussion of hybrid algorithms.

2.2.2 Gibbs sampler

A special case of the Metropolis-Hastings algorithm is the Gibbs sampler. Let again
θ = (θ1, ..., θd) ∈ Rd, but now all elements of θ are updated sequentially at each iteration.
Each element is sampled from a univariate conditional distribution, given the rest of the
elements. When sampling from the posterior distribution each univariate distribution
is then equal to the full conditional f(θi|θ−i, x). Here θ−i denotes all parameters except
for element θi. The algorithm is then as follows (Givens and Hoeting, 2013):

1. Set initial value θ(0) = (θ
(0)
1 , ..., θ

(0)
d ) for the Markov chain.

2. For m=1,2,...

Let θ be the most updated value, hence to begin with we have θ = θ(m−1).

For i = 1, ..., d
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(a) Sample θ∗i from f(θ∗i |θ−i, x).

(b) Set θi = θ∗i , such that θ = (θ1, ..., θi−1, θ
∗
i , θi+1, ..., θd).

We then have updated all components and get θ(m) = θ.

Each update is in fact a Metropolis-Hastings update, hence we have in total d such
updates per iteration. To see that this is the case let qi be the proposal density for the
update of element i. Right before updating the corresponding parameter θi the most

updated parameter vector is then θ = (θ
(m)
1 , ..., θ

(m)
i−1 , θ

(m−1)
i , θ

(m−1)
i+1 , ..., θ

(m−1)
d ). Let θ−i

denote the vector of all the most recent updates of all elements expect number i. The
proposal densities are in case of Gibbs equal to (Givens and Hoeting, 2013)

qi(θ
∗|θ) =

{
f(θ∗i |θ−i, x) for θ∗−i = θ−i,

0 otherwise,
(2.10)

where the only element updated when proposing from qi is the element θi. Note that
the proposal is conditioned on all the most updated values of the other elements. The
acceptance probability with this type of proposal yields A = 1, and hence all proposed
values are accepted. This is verified by inserting the expression for proposal density
(2.10) in the the expression for the acceptance probability (2.9), and by noting that
θ∗−i = θ−i. This type of proposal distribution only makes sense if it is easy to sample
from the full conditionals.

Note that the updates do not necessarily need to be for one parameter at a time. One can
organize the elements in blocks, where each block can be either univariate or combining
two or more parameters at an update stage. If only updating one parameter at a time
we get moves only along the axes, while if having multivariate proposals we can move
in other directions as well. This can be an advantage if several components are highly
correlated (Gamerman and Lopes, 2006).

2.2.3 Hybrid algorithms

As already mentioned, in the MH algorithm one does not need to treat all parameters in
one block, and thus having a multivariate proposal density. Analogously one does not
need to update only one component at a time in the Gibbs sampler. Let J ≤ d be the
number of blocks and θj the parameters in block j, where j = 1, ..., J . Each block has
its own proposal density qj , and hence different transition kernels. There are many ways
in which order one can perform the updates. Either one can update one block at each
iteration, or one can update all in a predefined order or one can update all in a random
order. We only look at the one where we update in a predefined order. If updating all
blocks once for each iteration, the corresponding algorithm is

1. Set an initial value θ(0) for the Markov chain.

2. For m=1,2,....

For j=1,2...,J

Let θ be the most updated parameter vector at all times.
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(a) Propose a potential new value for block j by drawing θ∗j from the proposal
density qj(θ

∗
j |θj).

(b) Calculate the acceptance probability A(θ∗j |θj) given by (2.9).

(c) Generate a value u from Unif[0, 1]. If u < A(θ∗j |θj) accept the proposal
and set θj = θ∗, else reject the proposal and let θj stay unchanged.

All the updated components now makes up θ(m).

For a parameter that we can find a way to sample from its full conditional, a Gibbs step
is a natural choice. With the algorithm outlined above one can combine Gibbs updates
of one or several parameters with general MH updates of the rest of the parameters.
Even with a cycle of different update types as above, the theory of MCMC can be
extended to cover these cases. See Gamerman and Lopes (2006) for more details in the
case of univariate component-wise updates. Then the overall transition kernel is now
the one required to be irreducible and aperiodic.

2.3 Proposal distributions

A major part of the Metropolis-Hastings algorithm is the proposal distribution. There
are several different choices for these distributions. If we let the proposal distribution for
an update be equal the corresponding full conditional distribution, we get a Gibbs update
as discussed above. However, it might not be easy to sample from such a conditional
distribution, and one must then find other types of proposal distributions. We present
here two possible choices for the proposal of a univariate variable.

2.3.1 Random walk

For a random walk the proposal is given as θ + ε, where θ denotes the current state
and where ε is generated from some distribution h(ε) (Givens and Hoeting, 2013). The
distribution h is often a normal, student-t or uniform distribution. The proposal density
then satisfies q(θ∗|θ) = h(θ∗ − θ). If h is symmetric about zero, such that for instance
ε ∼ N(0, s2), then we have symmetry, meaning that (Gamerman and Lopes, 2006)

q(θ∗|θ) = q(θ|θ∗).

Note that in this case, and any case where the proposal distribution is symmetric, the
acceptance probability is equal to

A(θ∗|θ) = min

[
f(θ∗|x)

f(θ|x)
, 1

]
(2.11)

as the proposal distribution factors in (2.9) cancel out.

We refer to a normal random walk as the case when h is a normal distribution with
mean zero. This corresponds to proposing values from a normal distribution centered
around the current value, and with a predefined standard deviation s. Such a parameter
is called a tuning parameter (Ntzoufras, 2009). We can tune the proposal distribution
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by altering the value of s to make the algorithm more efficient. If having a large value
for the standard deviation we allow for proposals possible far away from the current
value. This might lead to many rejections of proposed values because of corresponding
low posterior probabilities. However, if the standard deviation is very small we always
propose values near the current value, and it will therefore take longer time to explore
the whole parameter space. This results often in bad mixing. For a multivariate proposal
yielding a random walk, the multivariate normal is an alternative (Ntzoufras, 2009).

2.3.2 Uniform proposal

The normal distribution has the whole real line as support and might be a good choice
for parameters with the same support. However, let us now consider an alternative
proposal distribution for positive-valued parameters. Instead of adding randomness to
the current value we rather find a multiplicative approach. Let r > 1 be a fixed value and
the proposal distribution a continuous uniform distribution on the interval [θ/r, r · θ].
This is equivalent to letting a proposal be θ∗ = θ · ur, where ur ∼ Unif[1/r, r]. The
corresponding proposal density is then given as

q(θ∗|θ) =
1(

r · θ − θ
r

) for
θ

r
≤ θ∗ ≤ r · θ. (2.12)

The value of r is typically set close to one. If r = 1.1 then it is approximate equal
probability to propose a value that is smaller or larger than the current one. The
corresponding acceptance probability is then found by inserting the proposal distribution
(2.12) in the expression for acceptance probability in (2.9). This yields

A(θ∗|θ) = min

[
f(θ∗|x)

f(θ|x)
· θ
θ∗
, 1

]
. (2.13)

An advantage of this specific type of proposal distribution is that if p(θ∗|θ) > 0 then we
also have p(θ|θ∗) > 0, meaning that we can always come back to the current value in
one move after having moved to a new value. One can easily think of cases when this
is not the case, for instance for a proposal θ∗ ∼ Unif[(1 − c)θ, (1 + c)θ] for 0 < c < 1.
For this version one might get a proposal θ∗ such that q(θ|θ∗) = 0, which means that
the current value could not have been proposed from the state θ∗. As seen from the
expression of the acceptance probability (2.9) this yields A = 0, which means that one
rejects the proposal. Hence, this type of proposal can then potentially contribute to
many unnecessary generations of proposed values. With the uniform proposal in (2.12)
we ensure that there are no such excessive proposals made.

2.4 MCMC diagnostics and output analysis

Even if we are guaranteed convergence to the target distribution by the construction
of the Metropolis-Hastings algorithm, given that some conditions are satisfied, this is
only the case when m → ∞. In practice we run the chain for a relatively long time,
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and treat the generated values as having approximately the target distribution (Chib
and Greenberg, 1995). The convergence is not dependent on the chosen initial values,
however the starting point might affect the first part of the iterations in such a way that
they are unrepresentative (Kruschke, 2015). This is the case if starting at initial values
far away from the mode of the posterior, as it takes time for the chain to move into a
region of higher posterior densities. This period is called the burn-in period, and we
usually discard the iterations that belong to this period.

As stated in Kruschke (2015) there are some goals when doing MCMC, and mainly that
the samples we obtain are representative. For this to be the case the distribution of
the chain must indeed be close to the target distribution, and such that all parts of
the distribution have been explored. Another important aspect is that we need enough
samples to obtain good estimates, i.e. estimates that do not vary much whether or not
we had chosen other initial values. Last, but not least, we are in practice also concerned
about the run time, which means that we want to get a sample in reasonable time
and often using a reasonable amount of computational power. Hence, we would like to
obtain a representative sample efficiently. To check representativeness both visual and
numerical checks can be used. We look at some of them below.

2.4.1 Trace plot

Trace plot is a useful tool to visually check for convergence and to assess how many
generated parameter values belong to the so-called burn-in period. A trace plot is a
plot of iteration number along the x-axis with the corresponding generated values for
a certain parameter along the y-axis (Ntzoufras, 2009). If the chain has converged we
expect all values to lie within the same zone, and at least that there are no strong
tendencies or periodicities. If for instance the graph is just moving in one direction
it has at least not converged yet. However, one should be aware of that even though
the trace plot might show sign of convergence, there is no guarantee that convergence
is reached, as the chain might only have explored some part of the parameter space
(Kruschke, 2015). We could for instance have a case with several modes, where one only
explores one part of the parameter space corresponding to one of the modes if not run
long enough.

To make it easier to determine if a chain has converged one can run several independent
MCMC runs, starting from different starting points, and compare them. If the trace
plots from all chains overlap each other after a certain number of iterations we have
an indication of convergence (Kruschke, 2015). From this the burn-in period can be
determined, and set such that all chains have converged after this period.

In the plots mentioned above we look at one parameter at a time. For the burn-in of the
whole chain we are interested in an overall iteration number B for which all parameters
seem to have converged. After all we are interested in the convergence towards the
posterior distribution, which is the full joint distribution of all parameters given the
data. One then has to choose this period based on all parameter trace plots to assure
that they indicate convergence for all parameters after the burn-in period. We discard
the samples from the burn-in phase, and use only the remaining values for inference.
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From the trace plots we also can get a feeling of the mixing properties of our chain
(Lesaffre and Lawson, 2012). If for instance there are long periods for which the chain
hardly moves, it might have got stuck in one part of the parameter space. This can for
instance happen if we always propose values very near the current one. Then it might
take a lot of time to explore the rest of the parameter space. To improve mixing one
should monitor the acceptance rates for the parameter updates.

2.4.2 Running mean plot

The running mean is the mean of the values generated for a parameter up to and
including the current iteration (Lesaffre and Lawson, 2012). By plotting the iteration
number versus the running mean corresponding to each iteration we see if the value
stabilizes. If the chain has converged the running mean should eventually stabilize,
and hence the running mean plot can be used in addition to trace plots to check if
convergence seems reasonable. However, one then needs to generate values for far more
iterations than is needed to reach convergence, as the mean otherwise will be greatly
influenced by the unrepresentative values from the burn-in period.

2.4.3 Acceptance rate

To ensure good mixing using the MH algorithm one can keep track of the different
parameter’s acceptance rate, hence the proportion of all the proposed values that are
accepted. Clearly, a low acceptance rate means that proposals often are rejected, and
hence the chain stays at the same value for many iterations. Naturally the parame-
ter space is then explored slowly, which also yields high autocorrelations (Ntzoufras,
2009). This is the case if choosing the tuning parameter in the proposal distribution
to be too large. However, if the acceptance rate is very high then we accept almost all
proposals and again this might yield slow mixing and highly correlated samples. In the
normal random walk the tuning parameter is equal to the standard deviation s, and in
the uniform proposal described earlier the corresponding tuning parameter is r. These
parameters are often chosen arbitrarily at first, but by running the MCMC while mon-
itoring the acceptance rates we can change the value of the tuning parameters before
we start another MCMC run as to shift the acceptance rates in the desired direction.
If one observes that the acceptance ratio is too high one increases the value of r or s,
if too low one decreases the same tuning parameter values. Often acceptance rates in
the region 20% − 40% (Ntzoufras, 2009) or 20% − 50% (Gamerman and Lopes, 2006)
are recommended. These are however just guiding principles and not strictly necessary
to obtain. For parameters updated using a Gibbs step the acceptance rate is necessary
equal to 1 as all proposals are accepted, and we have no notion of tuning in that case.

2.4.4 Autocorrelation plot

An autocorrelation plot displays the correlation between different lags in the chain. The
autocorrelation for lag k is then the correlation between generated parameter values
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that are k iterations apart, hence the correlation between θ(m) and θ(m+k) (Givens and
Hoeting, 2013). If the chain is not mixing well this can be seen as a slow decay in the
autocorrelations as the lag increases. If one is interested in using the generated values to
obtain an estimate, then the variance of this estimate will be smaller the less correlated
the generated values are. Thinning is the procedure when we only choose to store every
k’th iteration, for k ≥ 2. This can be done to get less correlated variables, but one then
also discards a lot of values which again also contain information. Hence, this is not
necessarily recommended. However, if we have restricted computer memory, thinning
might be beneficial (Lesaffre and Lawson, 2012).

2.4.5 Cross-correlation plot

We can plot the chain values of one parameter against the values of another in a scat-
terplot to assess whether there seems to be correlation between the parameters. Thus,

we plot θ
(m)
i against θ

(m)
j for all iterations. This is as mentioned in Lesaffre and Lawson

(2012) a way to check for correlations among parameters if one for instance experiences
convergence problems.

2.4.6 Histograms of marginal posterior distributions

The generated parameter values of the parameter θi from an MCMC run are besides from
being generated from the posterior distribution also necessarily coming from its marginal
posterior distribution (Chib and Greenberg, 1996). A natural part when analyzing the
posterior distribution is to plot the histogram of these generated values (Ntzoufras,
2009). Recall that the posterior often includes many parameters, and hence it is much
easier to look at one parameter at a time than at all at once.

2.5 Predictions based on MCMC output

After having run MCMC and discarded the burn-in period we get a series of samples
from the posterior distribution. Let B iterations denote the burn-in period, and M
the total number of iterations run. Let the generated values that we keep and use for
prediction be denoted θ(B+1), ...., θM . If we are interested in predicting the value of
a future observation x̃, we are interested in the poster predictive distribution given in
(2.3). Draw x̃(B+1), ..., x̃(M) one at a time from the sampling distribution f(x|θ) by using
the corresponding parameter generated from the posterior distribution, hence θ(B+1) for
the generation of x̃(B+1) and so on (Chib and Greenberg, 1996). Plot the predicted
values as a histogram, and construct credible intervals to quantify the uncertainty in
the predictions. For instance the 5%- and 95%-quantiles give an approximate 90%
credible interval for the predicted value. The smaller the interval, the more sure are we
about the corresponding predictions.

If one is rather interested in one value representing our best guess of the new value one
can rather consider the posterior predictive mean. The estimated mean based on the
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predicted values is

Ê[x̃|x] =
1

M − (B + 1)

M∑
m=B+1

x̃(m).

2.6 Probability distributions

To specify a model we need to specify the distribution of all variables on all levels in our
model. There are infinitely many distributions to choose from, but it is often convenient
to choose some standard distributions, whose parametric form and areas of application
are well known. We present here briefly the distributions used in our model and MCMC
algorithm, mainly so that there is no doubt about which parameterizations were used.

2.6.1 Poisson distribution

The Poisson distribution is a probability distribution for discrete random variables, and
is used for counting data when one counts the number of events within a time interval or
spatial region (Walpole et al., 2012). This can for instance be the number of telephone
calls received by a help desk per hour, the number of machine failures per day or the
number of typing errors per book page. Let Y be the number of occurrences within an
interval or region. Let the intensity at which these events occur be denoted by λ > 0.
If Y is Poisson distributed, which we denote Y ∼ Poisson(λ), then the corresponding
probability mass function is given as

f(y|λ) =
λy

y!
e−λ, for y = 0, 1, 2, ... (2.14)

The mean is E[Y ] = λ and is actually equal to the variance Var[Y ] = λ. The full
calculation of the mean is given in for instance Casella and Berger (2002). Note that
this means that the intensity or rate λ is in fact the average rate of occurrence of events
per unit time or space.

This distribution can in fact be derived from the following three basic assumptions
(Walpole et al., 2012). i) The number of outcomes in one interval is independent of the
number of outcomes in another disjoint interval. ii) For a short interval, the probability
that exactly one outcome occurs is proportional to the length of the interval. iii) For
a short interval, the probability of more than one outcome is so small it is neglected.
These properties are also a guideline when considering the applicability of a Poisson
distribution for the problem at hand.

One might also be interested in the distribution of the sum of occurrences due to different
Poisson processes, which for instance can be the total amount of machines failures per
hour when considering several machines. Let Y1, ..., YN denote independent random vari-
ables which are all Poisson distributed with corresponding intensities λ1, ..., λN . Then
the sum of these variables, hence

∑N
i=1 Yi, is also Poisson distributed with intensity

equal to the sum of the intensities
∑N

i=1 λi. The derivation of this result can be found
in Larsen and Marx (2018).
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2.6.2 Gamma distribution

Let a > 0 be a shape parameter and b > 0 an inverse scale or rate parameter in a gamma
distribution. If the continuous variable Y is gamma distributed, hence Y ∼ G(a, b), then
its corresponding probability density function is given as

f(y|a, b) =
ba

Γ(a)
ya−1e−by, for y > 0 (2.15)

where Γ(a) is the gamma function (Walpole et al., 2012). This function is defined as

Γ(a) =

∫ ∞
0

uα−1e−udu, for a > 0.

Note that for a positive integer n the gamma function can rather be expressed as

Γ(n) = (n− 1)!

where n = 1, 2, ....

The mean of the gamma distribution is E[Y ] = a
b and the variance is Var[Y ] = a

b2
.

2.6.3 Inverse-gamma distribution

Let a > 0 denote a shape parameter and b > 0 a scale parameter of an inverse-gamma
distribution. If Y ∼ IG(a, b) then the probability density function as listed in (Gelman
et al., 2014) is

f(y|a, b) =
ba

Γ(a)y(a+1)
e
− b
y , y > 0 (2.16)

with corresponding mean E[Y ] = b
a−1 if a > 1 and variance Var[Y ] = b2

(a−1)2(a−2) if a >
2.

Note that if Y is Gamma distributed, hence Y ∼ G(a, b) with the parameterization as in
(2.15), then 1

Y is inverse-gamma distributed with shape parameter a and scale b. This
is easily seen using the standard transformation formula.

2.6.4 Exponential distribution

Let Y be a continuous random variable, which can only take on non-negative values. If
it is exponentially distributed we denote it as Y ∼ Exp(λ), where λ > 0 is the intensity
parameter. The corresponding probability density function is

f(y|λ) = λe−λy, for y > 0.

Here the corresponding mean and variance are E[Y ] = 1
λ and Var[Y ] = 1

λ2
, respectively.

The exponential distribution is in fact a special case of the aforementioned gamma
distribution, where the scale parameter of the gamma distribution is set equal to one
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(Walpole et al., 2012). If rather parameterized by its mean m = E[Y ] we get the
following expression for the probability density function

f(y|m) =
1

m
e−

1
m
y, for y > 0,m > 0. (2.17)

Then we naturally have E[Y ] = m and Var[Y ] = m2.

2.6.5 Normal distribution

Let Y be normally distributed with mean µ ∈ (−∞,∞) and variance σ2 > 0. Then the
density of Y is (Walpole et al., 2012)

f(y|µ, σ2) =
1√
2πσ

e−
(y−µ)2

2σ2 . (2.18)

The corresponding cumulative distribution function is then

F (y) = P (Y ≤ y) =

∫ y

−∞
f(u|µ, σ2)du

=

∫ y

−∞

1√
2πσ

e−
(u−µ)2

2σ2 du.

In the case when µ = 0 and σ = 1 we have the standard normal distribution and we
typically denote its probability density function and cumulative distribution function by
φ and Φ, respectively. Recall how the cumulative distribution function for Y ∼ N(µ, σ2)
can be expressed by the use of the cumulative distribution of the standard normal as
follows

F (y) = Φ

(
y − µ
σ

)
.

If rather parameterized with the variance v = σ2 we get the following probability density
function

f(y|µ, v) =
1√
2πv

e−
(y−µ)2

2v . (2.19)

2.6.6 Lognormal distribution

If Y is lognormally distributed, and hence Y ∼ lognormal(µ, σ2), it means that lnY
is normally distributed with mean µ and standard deviation σ (Walpole et al., 2012).
Naturally Y must be positive-valued since the logarithm is only defined for positive
values. The corresponding probability density function for Y is then

f(y|µ, σ) =
1√

2πσ · y
e−

(ln y−µ)2

2σ2 , where µ ∈ R, σ > 0, y > 0.
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The corresponding mean is E[Y ] = eµ+
1
2
σ2

and the variance is given by Var[Y ] =
e2µ+σ

2
(eσ

2 − 1).

The cumulative distribution function for Y is

F (y) = P (Y ≤ y) =

∫ y

0

1√
2πσ · u

e−
(lnu−µ)2

2σ2 du. (2.20)

Since lnY ∼ N(µ, σ2) we can rather express (2.20) as

Φ

(
ln y − µ

σ

)
.

If interested in the quantity ln (1− F (y)) this can be computed as

ln (1− F (y)) = ln

(
Φ

(
−(ln y − µ)

σ

))
(2.21)

by noting that in general we have

Φ(−y) = 1− Φ(y)

for the cumulative distribution of the standard normal.

2.6.7 Continuous uniform distribution

Let Y be a continuous random variable which has equal probability of being at either
point in the fixed interval [a,b], where a, b ∈ R and a < b. Then its corresponding
density function is given as

f(Y |a, b) =
1

b− a
, for a ≤ y ≤ b.

Note that the interval does not necessarily need to be closed, as the same distribution
applies for the open interval (a, b) (Walpole et al., 2012).

3 Data

We incorporate wind speed in our model through what we denote wind exposure, which
is a function of wind speed and segment length. The segment length and wind speed
for each segment are treated as known and given, and these are what one often refers
to as explanatory variables. When we consider the number of failures in one hour for a
segment it is then conditioned on the segment length and wind speed along that segment
for the same hour. The number of failures on the other hand is treated as unknown and
random. To be able to use our model for inference we therefore need to know the length
of all power line segments and have a data set of wind speeds in addition to observed
failures for the same hours. This data is provided by Statnett, for nine power lines in
total, all located in Northern Norway. We let the power lines be anonymous and denote
them by the numbers 1 to 9. In this section we present summaries of the data sets to
give some insight in typical values and their range.
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3.1 Wind data

The only information about wind that we include in our model, and which Statnett
is already using for their own model, is the wind speed measured in [m/s]. Kjeller
Vindteknikk has provided a reanalysis data set for internal use at Statnett, consisting
of historical hourly time series for several weather parameters in Norway, including
wind speed at different heights. We consider only what corresponds to the wind speed
at a height of 18 metres above ground level. These time series are based on several
simulations from a numerical weather prediction model called WRF (Weather Research
and Forecasting model). For wind speed the corresponding grid size is 1km× 1km. We
have available reanalysis data for nine different overhead transmission lines on an hourly
basis in a period from January 1, 1998, 00:00 up to and including February 28, 2015,
23:00. Note that these times are according to UTC (Coordinated Universal Time). To
map weather data from the weather grid to the power lines, the geographical position of
the power towers are used. One then treats the wind at the location in the grid nearest
a power tower as the wind speed representative for a whole segment, namely for the
upcoming segment. Note that since the segment of power lines often are far shorter
than the grid size, one might get the same wind speed for several segments as they all
are associated with the same grid point in the reanalysis data set. The wind speeds
are available for each whole hour, and are to be interpreted as the mean wind speed
for the previous hour. Hence, the wind at 12:00 is then to be interpreted as the wind
representative for the hour 11:00-12:00.

In the model presented in Solheim et al. (2016) one has set a threshold value of 15 m/s
such that there is a non-zero probability of failure only when the wind is above this
threshold. It is therefore of interest to know approximately how often this threshold is
exceeded. For each segment we let the number of hours for which the wind speed for
this segment is above the wind threshold divided by the total amount of hours of data
available be an estimate of the probability of exceeding the wind threshold. We get one
such estimate for each segment and grouped line by line these are displayed through the
histograms in Figure 5. The same plots based on only six months of weather data from
January-June, 2014, are shown in Figure 6.

As seen from the histograms in Figure 5 the typical values are below 0.020, which
indicates that most of the time the wind along a segment is below 15 m/s. In addition,
for most lines there are fewer and fewer segments the larger the estimate value as seen
by the decrease in bar heights along the horizontal axis.

3.2 Segment lengths

We need the length of each line segment for the calculation of wind exposure used in
the model. These lengths are given in metres. Preferable a segment length should also
be positive and non-zero, as it makes little sense to talk of a line of zero length. Since
the data set of segment lengths had some inconsistencies in the naming of the power
towers within a line, between lines and compared to the wind data, we needed to do
some pre-processing of it. First of all we needed to order the lengths such that the first
length corresponded to the actual first segment of a line relative to its starting point,
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Figure 5: Histograms of each segment’s estimated probability of having a corresponding
wind speed above the threshold value of 15 m/s based on all available wind data. These
estimates are grouped by line.

26



Figure 6: Histograms of each segment’s estimated probability of having a corresponding
wind speed above the threshold value of 15 m/s based on wind data from January-June,
2014. The estimates are grouped by line.
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Figure 7: Histograms of the segment lengths in metres for each overhead transmission
line consider in this report.

the second segment to its actual second line segment and so forth. For eight out of the
nine lines there was also a segment length of zero or NaN (not a number). We changed
these values to be equal to 1. This was a somewhat arbitrary choice, but since these
were typically the last segment length of the power line, and hence for the segment going
into a station for instance, they are usually not that long. As we are unsure of their
actual value we want to avoid that they influence the results too much, hence we let
they have such a short length. For the lines we consider in this report they consist of on
average 431 segments each. The segment lengths are displayed in the histograms seen
in Figure 7, one for each line. From the histograms we see that the segment lengths are
usually no longer than a few hundred metres. However the lengths of segments within
a line can vary some.

28



Line # failures, max utn,l > uthreshold # failures, max utn,l ≤ uthreshold
1 3 0
2 0 0
3 1 2
4 17 0
5 0 0
6 0 0
7 0 1
8 0 0
9 0 0

Table 1: Table of temporary wind failures for all lines in the time period January 1,
1998, 00:00 (UTC) up to and including February 28, 2015, 23:00 (UTC). The failures
are divided into tow groups based on whether the corresponding maximum wind speed
along that line at the time of failure, denoted max utn,l was above or below the wind
threshold uthreshold = 15 m/s.

3.3 Failure data

In this report we only consider temporary failures on overhead transmission lines due
to wind, and hence only a part of the total amount of failures reported. These type
of failures are most common in Norway during the winter months. The failures are
reported line-wise, and not segment-wise. Hence, we have neither information of exactly
where nor approximately where along the line a failure occurred. The exact time is
given for each failure, which is reported in local time, i.e. UTC+1 for winter time and
UTC+2 for summer time. We have available failure data for the same time period as
for the wind data. There have been 24 failures in total for the given time period. The
number of failures for each line, grouped by whether the failure occurred in an hour
where the maximum wind speed along the corresponding line was above the threshold
or not, is displayed in Table 1. Note that if the maximum wind speed along a line is
above the threshold, this means that at least one segment has a wind speed of more
than 15 m/s. As is evident from Table 1 the majority of lines have no temporary wind
failures in the given time period, however this does not mean that these lines in general
have zero probability of failure.

4 Formulate models and simulate failure data

Having established the theory of Bayesian hierarchical models and introduced the data
available we now turn to the actual formulation of our models. The model for failures
is depicted as a directed acyclic graph (DAG) and explained in a bottom-up fashion
starting with the data level and proceeding with the parameters, first at a prior level
and then at a hyperprior level. Since we have so to say no knowledge of in which range
the parameters should lie, and since the parameters are hard to give any interpretation,
we use uninformative priors on the top level. We then introduce how we simulated our
own data set, which was used for MCMC. One could have, and ideally would want to, use
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the actual observed failure data. However, since having limited time and computational
power available we decided it was better to simulate our own failure data for the MCMC
runs.

4.1 Our two Bayesian hierarchical models

We formulate two Bayesian hierarchical models for which the only difference is in terms
of the likelihood. This means that the parameters included, in addition to the corre-
sponding prior and hyperprior distributions, are the same. The failure data available to
us only contains failures reported line-wise, and hence we have no information of which
segment or segments that failed. This is also the type of data used in Solheim et al.
(2016) and we therefore find it natural to start by formulating a model based on the
same type of data. However, since the wind data is given per segment and since the
line-wise model is based on independence between segments we introduce a segment-wise
model as well. This model is analogue to the line-level one, only that we here require
failure data to be reported segment-wise. Such data is not available to us at the moment
so we simulate our own data set. However, one might imagine that this type of failure
data is possible to obtain in the future if one requires the reporting of failures to be
somewhat more detailed. We base the following models on concepts and assumptions
from the model presented in Solheim et al. (2016).

4.1.1 Line-wise model

The overall hierarchical structure of our model is illustrated by the DAG in Figure 8.
Note that we have used Greek letters for the middle layer, hence the prior level, and
Roman letters for the data layer and for the hyperprior level of our model. This is to
clearly distinct the different parts of the model. We start by introducing the data level,
which corresponds to the grey nodes in the DAG. Note that these are the only nodes
colored grey, which means that these are the only observable variables.

Let l = 1, ..., L denote overhead transmission lines. In our case we look at only a few of
the power lines operated by Statnett, nine in total, hence L = 9. We let a specific hour
be denoted by t, and such that t = 1, ..., T are all the hours for which we have wind
data. Further we let the number of failures along line l within hour t be denoted by xtl .
We assume the failures to follow a Poisson process with corresponding intensity λtl . As
mentioned in Section 2 this implies that we assume failures on a line within an hour to
occur independent of each other, and that only one failure can occur at a time.

So we have
xtl ∼ Poisson(λtl),

but need a way to connect wind, or more precisely wind exposure, to the failure rate.
Since having wind data on segment-level we decide to look at a line as a series system
consisting of Nl segments, and where the number of failures per hour for each segment
is Poisson distributed. Let a segment-wise Poisson process have intensity λtn,l, with n
being the index for a particular segment. These processes are assumed independent,
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Figure 8: Visualization of the line-wise Bayesian hierarchical model as a DAG. The
grey nodes represent the data level, the mid level is the prior level and the top level is
the hyperprior level. The nodes all represents random variables, where the bottom level
contains the only observable ones. Therefore these are colored grey. The arrows pointing
towards a node show which parameters that are part of the corresponding probability
density or probability mass function of the node they are pointing towards.

which implies that we assume the amount of failures for one segment to be unaffected
by the number of failures for other segments. The total number of failures for a line per
hour is the sum of the failures along each segment within the same time frame, and we
therefore have

xtl =

Nl∑
n=1

xtn,l,

where n = 1, ..., Nl denotes the different segments for line l. Recall from the theory
for the Poisson distribution that the sum of independent Poisson distributed random
variables is again Poisson distributed with intensity given as the sum of each one’s
intensity. The distribution of total failures is then also Poisson with intensity

λtl =

Nl∑
n=1

λtn,l. (4.1)

The corresponding probability mass function f(xtl |λtl) is given as in (2.14).

Since we are looking at failures due to wind, we assume wind speed to be the main
explanatory variable. We want to connect the probability of failure to the wind speed.
For this we us wind exposure, which is a function of wind speed cubed and segment
length. The concept of wind exposure is described in the article Solheim et al. (2016),
but we have chosen to make some changes to the original definition. Recall that l denotes
a specific transmission line, consisting of Nl line segments. The length of segment n for
line l is dn,l > 0. Further we let utn,l be the wind speed in [m/s] along segment n
for line l in hour t. Most wind failures naturally do happen when the wind is strong
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and one has therefore decided to set a threshold of uthreshold = 15 m/s in the original
definition of wind exposure. Then only wind speeds above this threshold contribute to
the probability of failure. We keep the same threshold value, however we avoid any
probabilities to be strictly zero.

The expression for wind exposure used in this report, which we denote wtn,l for the wind
exposure for segment n, is given as

wtn,l(β) =

dn,l
(
α
(
utn,l − uthres

)3
+ β

)
for utn,l > uthres,

dn,lβ for utn,l ≤ uthres,

where α > 0 is a known scaling parameter and β > 0 an unknown constant. To make
wind exposure unitless α must necessarily be given in [ s3

m4 ] and β in [ 1m ] . Since we have
no further knowledge of the value of α we assign it a fixed value of 1 and omit it in the
rest of the expressions to not confuse it with a random variable. The segment length
dn,l and wind speed un,l are both assumed known. The wind exposure is then

wtn,l(β) = dn,l

((
utn,l − uthres

)3
+

+ β
)
, (4.2)

where we let (
utn,l − uthres

)
+

=

{
(utn,l − uthres) for utn,l > uthres,

0 for utn,l ≤ uthres.

By introducing a constant β > 0 in this way we avoid the possibility that wind exposure
can be strictly equal to zero. As we soon explain, this would have given a probability
of zero for failure along a segment, which is not desired in our case. Even though we
altered the expression for wind exposure slightly we kept the linear relationship with
respect to segment length. By this we mean that if one plots wind exposure against
segment length, while keeping everything else fixed, it yields a linear graph. This is
the case for the model described in Solheim et al. (2016) when the wind is above the
threshold, otherwise their definition yields wind exposure equal to zero for all lengths.
With our definition the wind exposure is higher the longer the segment length is, both
when the wind speed is above and below the wind threshold.

Let ptn,l be the probability of at least one temporary failure due to wind on segment n for
line l in hour t. In addition, let µl and σl be the parameters of a lognormal distribution
with corresponding cumulative probability distribution F given by (2.20). As in the
article Solheim et al. (2016) we are going to relate the probability of any failures to
wind exposure as follows

ptn,l = ptn,l(w
t
n,l(β), µl, σl) = F (wtn,l(β)|µl, σl) (4.3)

where the notation ptn,l(w
t
n,l(β), µl, σl) stresses the fact that this probability is a function

of both wind exposure and line-specific parameters µl and σl. However, we refer to this
only as ptn,l from now on. The cumulative function in (4.3) is only strictly equal to zero
for a wind exposure equal to zero, however as our definition of wind exposure from (4.2)
ensures non-zero and positive values for the wind exposure, the probability of failure is
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also ensured non-zero. Note that the parameters µl and σl in the lognormal distribution
are not time-dependent. Recall that we assumed a Poisson distribution for the number
of failures along a line segment, hence we have that

ptn,l = P (at least one failure on line l, segment n, in hour t)

= 1− P (no failure on line l, segment n, hour t)

= 1− f(xtn,l = 0|λtn,l)

= 1− e−λ
t
n,l

(4.4)

by using the probability mass function given by (2.14). When solved for the intensity
as a function of ptn,l we obtain

λtn,l = − ln(1− ptn,l). (4.5)

We then easily find the intensity parameter corresponding to the Poisson distribution
for the total amount of failures xtl along a line per hour. Inserting the expression for the
segment-wise intensity (4.5) in the expression for the line-wise intensity given by (4.1)
yields

λtl =

Nl∑
n=1

− ln(1− ptn,l) =

Nl∑
n=1

− ln(1− F (wtn,l(β)|µl, σl)). (4.6)

Note that we inserted (4.3) for the probability of any segment failure, hence it is seen
that the line-wise intensity is indeed a function of the unknown parameters β, µl and
σl. One could then rather use a notation of the form λtl(β, µl, σl). However, we choose
to continue with the simplest notation. The probability for at least one failure along a
line, which we denote ptl , is found in the same manner as in (4.4) to be

ptl = 1− f(xtl = 0|λtl)

= 1− e−λtl

= 1− e−
∑Nl
n=1 λ

t
n,l .

(4.7)

Let xt = (xt1, ..., x
t
L) be the vector containing all random variables representing the

number of failurs in hour t along each of the L lines. The corresponding rates of failures
are denoted λt = (λt1, ..., λ

t
L). We assume all xtl conditional independent given λtl , hence

the distribution of xtl is not dependent on the number of failures on any other lines, and
not even on the number of failures for any other hours. The likelihood, which represents
the distribution for the data-level in our model, is then equal to

f(x1, ...,xT |λ1, ...,λT )

=
T∏
t=1

L∏
l=1

f(xtl |λtl)

=
T∏
t=1

L∏
l=1

(
∑Nl

n=1− ln(1− F (wtn,l(β)|µl, σl)))x
t
l · e−

(∑Nl
n=1− ln(1−F (wtn,l(β)|µl,σl))

)
(xtl)!
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where the intensity λtl has the expression as in (4.6).

We proceed with the prior level, hence the mid-level in Figure 8. As mentioned in
the explanation of wind exposure we let the unknown constant β be a positive random
variable. Since we have no further knowledge of this we assign it an uninformative prior,
chosen as the improper uniform distribution on the whole positive real line. Hence

f(β) ∝ 1 · Iβ>0(β)

where we let the general expression for the inidicator function IA(y) be as follows

IA(y) =

{
1 for y ∈ A,
0 otherwise.

Note that we treat β as a common parameter for all lines. We believe this to be suitable
as the probablity of failure has the opportunity to vary from line to line due to the
line-specific parameters instead.

For the parameter µl that appears in the cumulative function of the lognormal we assign
it a normal prior distribution. Recall that this parameter can be seen as the mean in a
normal distribution, and hence µl ∈ R. The normal distribution has the same support
and is therefore a possible and appropriate choice as prior. Let mµ ∈ R denote the mean
in its prior distribution and vµ > 0 the variance. Thus

µl|mµ, vµ ∼ N(mµ, vµ) for l = 1, ..., L

where the corresponding probability density function is given by (2.19).

The other parameter σl in the cumulative lognormal can be viewed as the corresponding
standard deviation in a normal distribution. We assign it an exponential prior distri-
bution since this distribution has a positive support, which is the same support needed
as necessarily σl > 0. Due to this choice we also avoid a heavy tail as the exponential
function decays fast. Let the mean of the prior distribution be denoted by mσ and we
then have

σl|mσ ∼ Exp(mσ) for l = 1, ..., L.

The corresponding density is given in (2.17). In addition we assume the µl’s to be
conditional independent, i.e. that µl|mµ, vµ is independent of µj |mµ, vµ for l 6= j.
Corresponding assumptions are made for σ1, ..., σL, such that σl|mσ, vσ and σj |mσ, vσ
are independent for l 6= j.

Next we present the hyperprior distributions, and hence the top level of our model.
The random variables on this level are the parameters in the prior distributions, i.e.
the mean and variance of the normal prior distribution for µl and the mean of the
exponential prior of σl. We assign improper and uninformative distributions to all these
parameters. This choice is based on the fact that we per now have no information on
what typical values might be and that these parameters are hard to interpret directly
as they influence parameters that are part of intensity parameters that again affect the
probability of failure. Besides, by letting they have uninformative distributions we also
ensure that the posterior distribution is mostly influenced by the likelihood.
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We let mµ ∈ R have an improper uniform distribution on the whole real line, such that

f(mµ) ∝ 1. (4.8)

For the variance parameter we also assume an improper prior distribution. Since vµ > 0
we choose an uninformative distribution on the whole positive part of the real line, and
as mentioned in the theory part one option is

f(vµ) ∝ 1

vµ
· Ivµ>0(vµ). (4.9)

In the same manner we assign an improper prior distribution for the mean mσ of the
exponential distribution, namely the improper uniform distribution restricted on the
positive part of the real line. We then have

f(mσ) ∝ 1 · Imσ>0(mσ). (4.10)

In addition we assume mµ, vµ and mσ to be independent.

Lastly, we summarize our model. The parameters which we treat as unknown are
β, µ1, ..., µL, σ1, ..., σL,mµ, vµ and mσ. In our case this corresponds to 22 parameters
in total when considering L = 9 power lines. As mentioned in the theory section the
distribution we are interested in is the posterior distribution. Recall from (2.2) that
the posterior distribution is proportional to the full joint distribution. Let x denote all
variables representing number of line-wise failures along all lines for all hours available
and µ as all µl’s such that µ = (µ1, .., µL). Analogously we let σ = (σ1, ..., σL). We
summarize the model by writing out the joint distribution as follows

f(β,µ,σ,mµ, vµ,mσ|x) ∝ f(x, β,µ,σ,mµ, vµ,mσ)

∝ f(x|β,µ,σ)f(µ|mµ, vµ)f(σ|mσ)f(mµ)f(vµ)f(mσ)f(β)

∝

[
T∏
t=1

L∏
l=1

f(xtl |λtl(β, µl, σl))

]
·

[
L∏
l=1

f(µl|mµ, vµ)

]

·

[
L∏
l=1

f(σl|mσ, vσ)

]
· f(β)f(mµ)f(vµ)f(mσ) (4.11)

where we have used rules for conditioning and the assumption that all variables are
conditional independent of all other variables given their parent nodes in the DAG from
Figure 8. So for instance µ is independent of β,σ,mσ given mµ and vµ. Recall that
the parameters on the hyperprior level are assumed independent, in addition we assume
them independent from β.
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4.1.2 Segment-wise model

We adjust the aforementioned model to suit segment-wise observed failures. Recall that
we have no observed data for segment-wise failures, but one can imagine that one could
improve the collection of failure data in the future as to report more specific about
where along a line a failure occurred. We let our segment-wise model have the same
parameters and distributions for these as presented earlier in this section. The only
adjustment required is a change of the expression for the likelihood. Let xtn,l denote
the number of failures along segment n at line l for hour t with corresponding intensity
λtn,l given by (4.5). Let xtl = (xt1,l, ..., x

t
Nl,l

) denote all the segment-wise failures along

line l in hour t with corresponding intensities λtl = (λt1,l, ..., λ
t
Nl,l

). Again assuming all
segments, lines and hours independent, the likelihood in our segment-wise model is

f(x1
1, ...,x

1
L, ......,x

T
1 , ...,x

T
L|λ1

1, ...,λ
1
L, ......,λ

T
1 , ...,λ

T
L)

=
T∏
t=1

L∏
l=1

Nl∏
n=1

f(xtn,l|λtn,l)

=
T∏
t=1

L∏
l=1

Nl∏
n=1

e−(− ln(1−F (wtn,l(β)|µl,σl)))(− ln(1− F (wtn,l(β)|µl, σl)))x
t
n,l

(xtn,l)!

=
T∏
t=1

L∏
l=1

e
−
(∑Nl

n=1− ln(1−F (wtn,l(β)|µl,σl))
)∏Nl

n=1

[
(− ln(1− F (wtn,l(β)|µl, σl)))x

t
n,l

]
(xt1,l)! · · · (xtNl,l)!

(4.12)
where the last line is obtained by incorporating all segment-wise factors for a line.

The expression for posterior distribution is obtained by inserting the segment-wise like-
lihood (4.12) instead of the line-wise in (4.11). This yields

f(β,µ,σ,mµ, vµ,mσ|x) ∝

[
T∏
t=1

L∏
l=1

Nl∏
n=1

f(xtn,l|λtl(β, µl, σl))

]
·

[
L∏
l=1

f(µl|mµ, vµ)

]

·

[
L∏
l=1

f(σl|mσ, vσ)

]
· f(β)f(mµ)f(vµ)f(mσ) (4.13)

where x now denotes all segment-wise number of failures for all lines and all hours.

4.2 Simulated data

Ideally we would like to use all or major parts of the failure data available, but as we
have limited computational resources available we decide to limit ourselves to six months
of data. Because of this we are able to produce some results in a reasonable amount
of time. To account for the difference in weather between winter and summer months,
and thereby also in the amount of failures reported in different seasons, we decided to
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look at the period January-June, 2014. The year 2014 was chosen somewhat arbitrarily,
however we know there has been reported failures during this year. For the rest of the
report we only consider the hours of wind data for January 1, 2014, 00:00 (UTC) - June
30, 2014, 23:00 (UTC).

Since there are few failures observed in general, which is also the case in our chosen
time period, we choose to rather simulate failure data. This choice also enables us to
later compare results with some true parameter values, and hence gives a natural way
to evaluate the models. Recall that we have failure data from a period of about 17
years, or more precisely from January 1, 1998, to February 28, 2015. For this period
there are 24 failures in total considering all lines. We simulate data such that the total
amount of failures within our chosen six months is approximately the same number as
the number of failures as we have for the whole time period that we have failure data
for. In addition we want to be sure that the simulated data somehow mimics the true,
and hence so that we do get some failures at times where the wind is also below the
threshold value. This is indeed the case in the observed data set, as seen from Table 1.

To be able to simulate failure data we need to set values for the parameters that are in
general treated as unknown. We started simply by setting β = 1. Combining wind data
and this value of β the wind exposure for each segment for each hour were calculated. By
finding the max value for the wind exposure for line l in the period January-June, 2014,
which we denote max wtn,l, we plot the intensity (4.6) as a function of wind exposure

for the range [0,max wtn,l], see Figure 9. The wind exposure is a function of wind cubed
so we also plot the intensity against wind speed in Figure 10 since we are more familiar
with values of wind speed than values of wind speed cubed. This is done for several
different parameter values for µl and σl. We believe that the intensity should either
increase for increased wind speeds, and that the increase should be larger for higher
than lower values, or increase steadily, hence show a linear trend. At least we try to
avoid a shape that increases rapidly for small values, since this would give a probability
of failure that hardly changes for an increase in higher wind speeds. By visual inspection
we chose values for the parameters µl and σl so that the shape of the aforementioned
intensity plots looked as we wanted them to look, and so that the simulated failures
were spread across several lines. In addition, we maintained a decent number of total
failures and a similar proportion of failures with corresponding wind above or below the
threshold as for the actual failure data.

For the simulated data we used the following parameter values

β = 1

µ = {16.5, 20.0, 23.5, 18.0, 24.1, 19.2, 28.5, 15.5, 22.0}
σ = {2.0, 3.2, 3.8, 2.0, 3.0, 2.8, 3.5, 1.9, 1.1}

(4.14)

which gave a simulated data set consisting of 26 failures in total. These are spread
across four of the lines, see Table 2 where we have separated failures that occur based
on whether the corresponding wind speed for the segment that failed was above or below
the threshold of 15 m/s. We use the same failure data for the line-wise and segment-
wise model, i.e. the only difference being that for line-wise failures we aggregate the
simulated data to only consist of the total number of failures along a line within a given
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Figure 9: For each line the intensity is plotted as a function of wind exposure. The
parameter value of β and the line-specific parameters µl and σl used to generate these
plots are the ones used for the simulated data. Note that the x-axis for a line is only
showed for typical values, hence on the interval [0,max wtn,l], where the max wind ex-
posure is the max value obtained in the period January-June, 2014. Note also that the
range of the y-axes differ.
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Figure 10: For each line the intensity is plotted as a function of wind speed, here for
a given segment length of dn,l = 150 m. The parameter value of β and the line-specific
parameters µl and σl used to generate these plots are the ones used for the simulated
data. Note that the range of the y-axes differ.
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Line # failures, utn,l > uthreshold # failures, utn,l ≤ uthreshold
1 5 0
2 4 3
3 3 1
4 0 0
5 0 0
6 0 0
7 0 0
8 10 0
9 0 0

Table 2: The table gives an overview of the simulated failure data used for the MCMC
runs. The failures are here divided into two groups based on wether the corresponding
wind speed utn,l along the segment that failed for the time of failure was above the wind
threshold uthreshold = 15 m/s or not.

hour, while for the segment-wise model we need the failures on segment level as input
to the likelihood.

5 Algorithm

Having outlined our Bayesian hierarchical models we have obtained expressions for the
resulting posterior distributions. These are the distributions of interest as we need them
for predictions later on. However, as seen from (4.11) and (4.13) these are a product
of many conditional distributions, and by inserting each of the conditional distributions
we end up with a non-standard multivariate distribution in each case. To be able to
sample from the posteriors we use MCMC as this is a very general approach allowing for
sampling from complex distributions. As mentioned in Section 2 there are many choices
to be made when implementing an MCMC algorithm. First of all one must decide for the
type of updates, in our case chosen as either Gibbs or more general Metropolis-Hastings
updates, and then for the type of proposal distributions. In case of Gibbs the proposal
distribution is the full conditional distribution and for the MH case we choose a proposal
that is either a normal random walk or the type of uniform distribution discussed earlier.

We introduce how we update each parameter type in a top-down approach, starting at
the hyperprior level. For all parameters we first found the unnormalized full conditional
distribution, and if it turned out to be a standard distribution and simple to sample
from, a Gibbs step was chosen accordingly. However this is only the case for two out of
the 22 parameters.

5.1 Gibbs updates

Consider the parameter mµ. Its full conditional is found by noting that it is proportional
to the full joint distribution. We only keep the factors in (4.11) where mµ is included
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since all other factors are given, and hence only treated as constants in this case. Recall
that f(mµ) is given by (4.8) and f(µl|mµ, vµ) as in (2.19). This yields

f(mµ|x, β, µ1, ..., µL, σ1, ..., σL, vµ,mσ) ∝ f(x, β, µ1, ..., µL, σ1, ..., σL,mµ, vµ,mσ)

∝ f(µ|mµ, vµ) · f(mµ)

∝
L∏
l=1

f(µl|mµ, vµ)

=
L∏
l=1

1√
2πvµ

e
− (µl−mµ)2

2vµ

∝ e−
∑L
l=1

(µl−mµ)2

2vµ

= e
− 1

2vµ
(
∑L
l=1 µ

2
l−
∑L
l=1 2mµµl+

∑L
l=1m

2
µ)

∝ e−
1

2vµ
(−2mµ

∑L
l=1 µl+

∑L
l=1m

2
µ)

= e
− 1

2vµ
(Lm2

µ−2mµ
∑L
l=1 µl)

= e
− 1

2(
vµ
L

)
(m2

µ− 2
L
mµ

∑L
l=1 µl)

∝ e
− 1

2(
vµ
L

)
(m2

µ− 2
L
mµ

∑L
l=1 µl) · e

− 1

2(
vµ
L

)
( 1
L

∑L
l=1 µl)

2

= e
− 1

2(
vµ
L

)
(mµ− 1

L

∑L
l=1 µl)

2

where we have explicitly multiplied with an exponential factor on the second to last line
above to clearly show that what we end up with must be a normal distribution. We are
allowed to do this since this factor is a constant. Hence

mµ|... ∼ N(
1

L

L∑
l=1

µl,
vµ
L

)

where 1
L

∑L
l=1 µl is the mean and

vµ
L the variance.

The full conditional is also easily found for vµ. We have that f(vµ) is given by (4.9) and
obtain the following full conditional

f(vµ|x, β, µ1, ..., µL, σ1, ..., σL,mµ,mσ) ∝ f(x, β, µ1, ..., µL, σ1, ..., σL,mµ, vµ,mσ)

∝ f(µ|mµ, vµ) · f(vµ)

∝ 1

vµ

L∏
l=1

f(µl|mµ, vµ)

=
1

vµ

L∏
l=1

1√
2πvµ

e
− (µl−mµ)2

2vµ
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∝ 1

v
L
2
+1

µ

e
−

∑L
l=1(µl−mµ)2

2vµ

which when compared to the probability density function (2.16) is seen to be an inverse-
gamma distribution. The corresponding shape parameter is L/2 and scale parameter(∑L

l=1(µl −mµ)2
)
/2, hence

vµ|... ∼ IG(
L

2
,

∑L
l=1(µl −mµ)2

2
).

5.2 Metropolis-Hastings updates

For the rest of the parameters we use Metropolis-Hastings updates as the full conditionals
are found to be non-standard. As the parameter mσ must be positive we use the uniform
proposal distribution given in (2.12) with corresponding tuning parameter denoted by
rmσ . Note that in the expression for the corresponding acceptance probability (2.13)
all factors of the posterior that do not contain mσ cancel out, and we are left with the
factors that matter, hence

f(mσ|x, β, µ1, ..., µL, σ1, ..., σL,mµ, vµ) ∝ f(x, α, β, µ1, ..., µL, σ1, ..., σL,mµ, vµ,mσ)

∝ f(σ|mσ) · f(mσ)

∝
L∏
l=1

f(σl|mσ)

where f(mσ) is given by (4.10) and f(σl|mσ) by (2.17).

The same type of proposal distribution is chosen for β, and we now denote the tuning
parameter by rβ. The corresponding full conditional is proportional to

f(β|x, µ1, ..., µL, σ1, ..., σL,mµ, vµ,mσ) ∝ f(x|β,µ,σ) · f(β)

∝


∏T
t=1

∏L
l=1 f(xtl |β, µl, σl) for line-wise model,∏T

t=1

∏L
l=1

∏Nl
n=1 f(xtn,l|β, µl, σl) for segment-wise model.

The parameter µl can be either positive or negative, and we therefore assign it a normal
random walk as proposal distribution. Let sµ be the corresponding standard deviation
in the normal random walk, and hence the proposal distribution is given as (2.18) with
the mean being the current value of µl. Note that the tuning parameter is the same for
all µl’s. The corresponding full conditional is proportional to

f(µl|x, β, µ1, ..., µl−1, µl+1, ..., µL, σ1, ..., σL,mµ, vµ,mσ) ∝ f(x|β,µ,σ) · f(µl|mµ, vµ)

∝


[∏T

t=1 f(xtl |β, µl, σl)
]
· f(µl|mµ, vµ) for line-wise model,[∏T

t=1

∏Nl
n=1 f(xtn,l|β, µl, σl)

]
· f(µl|mµ, vµ) for segment-wise model

(5.1)
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where we only include the factors of the likelihood which are dependent on the line-
specific parameter µl, hence the data for only this line. The acceptance probability is
given by (2.11) in this case.

As σl is a standard deviation it must necessarily be positive, and hence we choose
the uniform proposal distribution (2.12) with corresponding tuning parameter rσ and
acceptance probability (2.13). Note that the tuning parameter is the same for all σl’s. In
the same manner as before we obtain only the factors which remain in its full conditional
distribution when omitting all factors that otherwise cancel out. This yields

f(σl|x, α, β, µ1, ..., µL, σ1, ..., σl−1, σl+1, ..., σL,mµ, vµ,mσ) ∝ f(x|β,µ,σ) · f(σl|mσ)

∝


[∏T

t=1 f(xtl |β, µl, σl)
]
· f(σl|mσ) for line-wise model,[∏T

t=1

∏Nl
n=1 f(xtn,l|β, µl, σl)

]
· f(σl|mσ) for segment-wise model.

(5.2)

6 Implementation

After one has formulated a model and decided for a type of update for each parameter
or block of parameters the next step is implementing the algorithm. We did our im-
plementation of the MCMC algorithm in C++ since the use of objects suits this kind of
implementation and as we are interested in speed. MCMC is in general computational
intensive. In addition, the simulated data set of failures was also obtained from code
written and run in C++. However, R is used for most of the plots and visualizations in
the result section, in addition for making predictions. For the latter we read text files
generated from the MCMC runs in C++ into R and base the predictions on these samples.
The initial and necessary preparation of data sets, including wind data, segment lengths
and true observed failure data, was done using Python. Thereafter the data required for
the MCMC runs was written to files on a desired format, which were then again read
into C++. In this section we start by giving the exact updating scheme used, hence the
order and number of updates per iteration for the MCMC runs. Following this we give
an overview of the overall structure of our implementation, along with some comments
on implementation-specific choices made. Lastly we shortly comment on one way to
speed up computations, namely by utilizing the possibility of parallel computation.

6.1 Updating scheme for MCMC

As mentioned earlier there are many possible combinations regarding the order of up-
dates in addition to how one defines which updates and how many of each that are part
of what we refer to as one iteration. When we first implemented the MCMC routine
we did so in a component-wise manner, updating each parameter once per iteration
using the proposal distributions and acceptance probabilities described in the previous
section. However, it soon turned out that the updates which require the calculation
of the likelihood or some factors of it were computationally hard and time-consuming
compared to the rest. This is the case for β, µl and σl. However, for the parameters
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at the hyperprior level the updates are much more efficient. It is therefore of interest
to avoid getting in a situation where the convergence to the posterior distribution takes
a lot of time due to slow exploration of the parameter space of one or several of the
hyperparameters. Hence we decide to update these parameters more frequently than
the rest, and set to 1000 times more. One iteration is then initially 1000 updates of
each hyperparameter and one update of each of the remaining parameters. However,
since we plan to run through a huge number of iterations we also want to avoid that
too much time is spent on writing parameter values to file and we want to try to keep
the corresponding file size on a decent level, because huge files requires more time to
be read into R. We therefore perform thinning before running the code, such that only
every 10th iteration is written to file. From now on, when we mention iteration we refer
to the already thinned chained and hence the generated parameter values that were
actually written to file. As a result, the total number of times the parameters have been
updated is then way more than what it first seems from trace plots displayed in the
result section.

Recall that for the Metropolis-Hastings updates in our algorithm we have a tuning
parameter for each type of update. The values for these are chosen to be

rmσ = 1.05

rβ = 1.05

sµ = 0.1

rσ = 1.05

(6.1)

based on the experience of slow exploration along each parameter axes if choosing larger
ones. However, their exact values are somewhat arbitrarily chosen, and on purpose
rather set smaller than larger to avoid a chain that stays in the same state for many
subsequent iterations. Since we have simulated data we know the true values of all
parameters at the prior level in our model. Some shorter runs were run with arbitrary
initial values, which did not cause any problems. However, for the long run we choose
to start at their true values. At least we then expect these initial values to be a good
starting point, and the time until convergence should not be slowed down by this choice.
Recall that the starting point does not affect convergence itself, however the time until
convergence is reached will be different if starting far away from the parameter regions
with high posterior densities. However, the hyperparametres are given somewhat arbi-
trary initial values. Summarized this gives the following scheme, where we let m denote
the iterations for the already thinned chain.

1. Set the initial values for all parameters. In our case we let β, µl and σl start as
their true value, hence the ones in (4.14). Otherwise we somewhat arbitrarily set
mµ = 3.1
vσ = 15.1
mσ = 3.1

2. For m=1,2,....

For i=1,...,10
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(a) For k=1,...,1000

i. Update mµ

ii. Update vµ

iii. Update mσ

(b) Update β

For l=1,...,L

i. Update µl

ii. Update σl

6.2 A possible way to code the MCMC scheme

The aforementioned updating scheme can be implemented in many ways, and we present
here our approach. We implemented the aforementioned updating scheme in C++. Each
of the parameters are represented by an object, with the most recent parameter value
stored as a member variable of the object. When updating a parameter it is then the
member variable of the corresponding object that is potentially changed. The value of
this member variable is written to file for every iteration m, and hence we only need the
most current one to be stored in the object itself. Note that µ1, ..., µl are all instances
of the same class, and the same goes for σ1, ..., σL. Instances of the same class have the
same properties in the sense that they share the same member functions. We let among
others the calculation of the prior or hyperprior distribution be a member function, but
only the factors of it that are needed, see the previous section. Note that this in practice
is implemented as the logarithm of the corresponding function. In addition we create
all the constructors such that one sets the initial value when creating an instance from
that class. Other member functions that we need are get and set functions such that
it is indeed possible to get, and hence use the value currently stored in the object in
calculations, and to be able to update the member variable through the set function.

For each update we need to propose a potential new value, to calculate the associated
acceptance probability and last but not least update the corresponding parameter object
if the proposal is accepted. To organize these updates we again use objects from different
classes. Let a proposal class consist of its tuning parameter as a member variable and
with member functions propose, accept and update. In addition the calculation of the
proposal density is needed for the accept-function. The constructor is created such that
one needs to assign the corresponding tuning parameter a fixed value when creating an
instance. Note that µ1, ..., µl are all updated using the same proposal instance, the same
goes for σ1, ..., σL. For a Gibbs update the corresponding proposal class does necessarily
not have a tuning parameter as member variable. For each update done in the updating
scheme the update-function of the corresponding proposal object is called with the
parameter object as input for which we want an update. Inside the update-function
a new value is first proposed by calling the propose-function, then the probability of
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accepting this proposal is calculated by the accept function, and lastly the member
variable of the parameter object is updated if the proposal was accepted. Note that all
other objects needed for calculating the acceptance probability must be given as input
parameters to update.

Since the failure data, along with the wind data and segment length data for calculating
wind exposure, only appears in the likelihood, it is natural also to create a class for
the likelihood. We let the data be stored as member variables, which are initialized
when constructing an instance of it at the very beginning, and these are naturally kept
unchanged. The likelihood object is used as input wherever needed. The calculation of
the likelihood is naturally one of its member functions. Since the update of µl and σl
only requires some factors of the likelihood as seen in (5.1) and (5.2), we also include
the calculation of these factors as an own member function. This is time-saving, as
calculating the full likelihood would be unnecessary for these updates.

We let the update-function in all proposal classes return either 1 or 0 depending on
whether the proposed new value is accepted or not. In this way we keep track of the
acceptance rate for each parameter within each iteration m. Hence, for each parameter
we sum the total number of proposals accepted within iteration m and divide this sum
by the total number of updates for this parameter within the same iteration. We also
write the log-posterior probability density for the set of parameters generated for each
iteration to file together with the log-likelihood and log-joint prior. This is done to give
an overview of whether the chain is moving in the right direction, i.e. towards regions of
higher posterior densities. This is at least what one wants to see at the beginning of the
chain if starting at values far from the most probable ones. For all draws needed from
the uniform and normal distribution we use built-in functions in C++. To draw from
an inverse-gamma distribution we use the built-in gamma distribution and transform
the resulting sample as explained in the theory section to obtain a sample from an
inverse-gamma distribution.

For the readers not experienced with implementation of MCMC methods one should note
that all densities are in practice computed as the logarithm of the density. This is done
to avoid over- and underflow (Gelman et al., 2014). The acceptance probability in the
Metropolis-Hastings algorithm is in practice computed as the logarithm of (2.9), hence
as ln f(θ̃|x)− ln f(θ|x)+ln q(θ|θ̃)− ln q(θ̃|θ). Recall that the segment-wise intensities are

of the form − ln
(

1− F (wtn,l(β)|µl, σl)
)

, as seen from the terms in (4.6). From (2.21)

we see that these can be expressed as

− ln

(
Φ

(
−(lnwtn,l(β)− µl)

σl

))
.

However, if one first calculates the cumulative distribution Φ(·) and then take the log-
arithm ln Φ(·) we still loose precision when having potential small or large values for
the argument of the cumulative distribution (Linhart, 2008). Hence, we need an ap-
proximation for the logarithm of the standard normal distribution, and we choose to
use one of the three different implementations described in Linhart (2008), all written
in C. This algorithm is named lnnorm and uses different approximations to the loga-
rithm on different intervals of the real line. Since this is the one out of the proposed
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functions that works the best for the tails of the normal distribution and since it was
relatively straightforward to incorporate in our set-up, we chose this. The code for the
corresponding algorithm is available as source material to the aforementioned article.

6.3 Parallel computing

The calculation of the likelihood is computationally heavy, in the sense that it requires
iterations over all segments for all lines for all hours. One can compute this sequentially
using a standard triple for loop. However, to avoid an unnecessary slow program we
choose to parallelize the code. Recall that we assume the number of failures within
different hours independent, and thus each hour’s contribution to the likelihood can be
calculated independently of other hours. Given a line, its contribution to the likelihood
is on log-form a sum of hour-wise contributions. The order in which each hour’s con-
tribution is calculated has no impact on the sum, and hence we let these be computed
in parallel. For this we use OpenMP, which is an application programming interface
that enables parallel computations for programs written in C++, C and Fortran (Bar-
bara Chapman and van der Pas, 2008). It assigns different operations to be done on
separate processors or cores of processors. Most importantly; it is easy to use and only
required little change to our initially sequential-written code.

In our case we let each hour’s contribution to the likelihood be stored as an element of
a vector. After all parallel computations are done we obtain the likelihood by summing
all elements of the vector. Even when the likelihood is computed through parallel
computations, the program takes time to run. The running time is of course dependent
upon how many CPUs one has available. We ran our code using a calculation server
available for math students, and since the resources must be shared and vary with the
use of it by others the number of CPUs available was not constant at all times.

7 Results

We run one long MCMC run for both the line-wise and segment-wise model. Recall that
the same prior and hyperprior distributions are used for both models, see Section 4. In
addition, the corresponding types of proposal distributions are chosen to be the same
and as given in Section 5, with exact same values for the tuning parameters, see (6.1).
The order of updates follows the updating scheme outlined in the previous section. The
output is in each case a chain of parameter values that is converging in distribution
towards the target distribution, hence the posterior. One should run for several initial
values as discussed before to be more confident when assessing convergence. Due to
limited time and computational resources we do so for some shorter runs. These runs
indicate that convergence is obtained after an acceptable number of iterations. Then we
run one longer run for each model. We base all the following results and discussions on
these long runs.

In this section we analyze the results from the MCMC runs for both models. First we
assess convergence and discuss our choice of burn-in period based on MCMC diagnostic
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plots. In addition we comment on the chain’s mixing properties. To summarize the
posterior distribution the marginal posterior distribution for each parameter is visualized
as a histogram of the generated values and the corresponding 90% credible interval is
given. Following this, we proceed with predictions based on the output from the MCMC
runs. The probability of at least one failure within a future hour is naturally one of the
desired quantities to predict. We evaluate the predictions in terms of the logarithm of the
absolute error and compare both models. Lastly we discuss how the whole procedure of
MCMC runs and predictions could be done in practice. This includes using the newest
information available and finding a way to evaluate predictions that works when not
having any true reference values, as is the case when having simulated data.

7.1 Posterior distribution

The MCMC updating scheme was on purpose set to run for a very large number of
iterations such that we could terminate the computation when desired. Let the total
number of iterations be denoted M when not counting the initial value. After our
run this is equal to MLINE = 193199 for the line-wise model and MSEGMENT = 52229
for our segment-wise model. These numbers differ substantially mainly because their
corresponding computations have had a somewhat different amount of CPUs available.

7.1.1 MCMC diagnostics and mixing properties

To determine a reasonable burn-in period we look at trace plots. As stressed in the
theory section, this must be done by evaluating all parameters, and hence we investigate
the trace plot for each parameter of a model. These plots are found in the Appendix as
there are 22 parameters in total for each model. We start by looking at the trace plots
for the MCMC run based on the segment-wise model, displayed in Figures 19 to 40.
To easier assess the burn-in period we plot the trace plot for the first 5000, 10000 and
20000 iterations in addition to for the full simulation. Several of these plots indicate
that the burn-in must be at least 4000-5000 iterations long, see for instance the plots
for µ1, σ1, µ8 and σ8 in Figures 23, 24, 37, and 38, respectively. However, from the full
trace plots of mµ and vµ in Figures 19 and 20 a larger burn-in period seems appropriate
as the first 10 000 iterations or so appear to be distinguishable in their look from the
remaining iterations.

All in all this suggests a burn-in period of about 10 000 iterations. Since 10 000 is
already almost a fifth of all iterations we find this large enough. Note that even though
some of the trace plots at first glance seem to have a ”periodic” trend in the way they
are fluctuating, this is not the case as these fluctuations happen at random and not as
a multiple of some integer. In addition we have no strong trends. Some of the marginal
posterior distributions show sign of having a somewhat heavy tail as some peaks in the
trace plot are seen getting higher and higher as the number of iterations increases, see
the plots for parameter vµ and β in Figures 20 and 22.

The running mean plots show that at least for some parameters, see for instance vµ,
µ4 and µ6 in Figures 20, 29 and 31, the running mean has not yet stabilized. Recall
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from the definition of the running mean that we take the mean of all values up to and
including an iteration. Thus, it is naturally sensitive to the burn-in period and any
major fluctuations early on as the total number of values at those times is relatively
small. However, if one had run the chain for much longer we expect that these means
would stabilize as then the burn-in would influence the mean less. There is no evident
indication of non-convergence from the trace plots, and hence we treat the chain has
having obtained convergence from after the burn-in period.

In the same manner we investigate the trace plots corresponding to the parameters of
the line-wise model. These are plotted for the first 5000, 10000 and 50000 iterations in
addition to for the full simulation and are found in Figures 41 to 62. There is in this
case no clear indication of exactly where to set the end of the burn-in period. From most
of the trace plots the parameter values generated seem to quickly reach a zone within
they vary, however for parameter σ3 and σ5 in Figures 50 and 54 it seems reasonable to
maybe discard the first 10 000 iterations. For the line-wise model we have many more
iterations than for the segment-wise one and do have many generated values left even if
discarding several thousands. Unlike the segment-wise model, the running mean plots
for the line-wise model do seem to stabilize. This is not surprising, as the total number
of iterations in this case is almost four times as large. Hence, we conclude that the
running mean plots do indeed support the overall indication of convergence.

As computation time is often of interest we would like to obtain a representative sam-
ple from the posterior distribution in an efficient way. Hence it is not enough that the
distribution of the chain has reached convergence, one also wants to run long enough
to explore the whole support of the posterior distribution. If this is done in an effi-
cient manner, then we say that the chain mixes well. Recall that we keep track of the
acceptance rate for each parameter within each outer loop m., i.e. the proportion of
accepted proposals among the total proposals within that iteration. To find the overall
acceptance rate we simply discard the samples belonging to the burn-in period and take
the mean of all the remaining iteration’s acceptance rates to find the overall acceptance
rate. Recall also that mµ and vµ have acceptance rates equal to 1 due to Gibbs updates.
For the rest of the parameters the overall acceptance rates lie in the range of 0.64-0.98
for the parameters in the line-wise model and 0.63-0.98 for the segment-wise model.
Most rates are definitively above the recommended values and twelve of the parameters
have in both cases corresponding acceptance rates above 90%. For each parameter the
corresponding acceptance rate is similar for both models which might be due to the
fact that the models are very similarly formulated and since we also have chosen the
exact same tuning parameter values for both runs. That the acceptance rates tend to
be relatively large indicate that the majority of the proposals are accepted. Hence, the
chain explores the parameter space in a relatively slow manner compared to what it
could have done. We did not perform any extensive tuning of the tuning parameters of
the Metropolis-Hastings proposal distributions since this would require many additional
shorter runs.

If a chain is mixing well one should see that the autocorrelations go towards zero as the
lag increases (Johnson and Albert, 1999). Since the acceptance rates are relatively high
in our case we would expect the autocorrelations to go faster towards zero if choosing
a somewhat larger value for the tuning parameter in the proposal distributions. From

49



most of the autocorrelation plots, see for instance Figures 22, 39, 44 and 61, it appears
as if there is some underlying periodicity, but we know by construction of the Markov
chain that this is not a property of the chain. Hence, this must be due to a random
effect.

7.2 Marginal posterior distributions and cross-correlations

We let as mentioned the burn-in period be B = 10000 for both models such that the
iterations θ(0), θ(1), ..., θ(B) are discarded. The remaining parameters are then treated as
coming from the posterior distribution. This is in our case a multivariate distribution
of 22 parameters. However, to be able to summarize it we first look at the marginal
posterior distributions. This is the distribution of one parameter given the data, hence
a univariate distribution. Recall that for a given parameter θi the generated values

θ
(B+1)
i , ..., θ

(M)
i do necessarily come from the marginal posterior, hence from f(θi|x).

In the Appendix in Figure 63-68 the histograms from the chain of each parameter are
displayed. The histograms based on the segment-wise model are plotted directly beneath
the ones for the line-wise one to make it easier to compare them. We see that the shape
of the histograms are similar for most parameters, the ones for the segment-wise model
appear to be in general a bit wider, and often somewhat shifted towards slightly larger
values. Note particularly that for β the histogram corresponding to the line-wise model
in Figure 63 has a much heavier tail than for the segment-wise one.

To better summarize the marginal posterior distributions we give their corresponding
90% equal-tail credible intervals in Table 3. The built-in quantile-function in R is
used for this as the 90% credible interval consists of the 5%- and 95%-quantiles. These
intervals confirm what we have already seen from the histograms of the marginal pos-
terior samples in Figure 63-68. For 19 out of the 22 parameters the intervals for the
segment-wise model are shifted towards higher values in addition to being wider. The
β-parameter stands out as having very different intervals for the two models, the cor-
responding 90% credible interval for the line-wise model is 4.7 times as wide as the
interval for the segment-wise model. For the latter it is in contrast to most of the other
intervals shifted towards smaller values. All in all the segment-wise model manages to
restrict the range of β the most, while in general the line-wise model is the one with
least uncertainty about the rest of the parameters, except for σ8. Note that since the
prior distributions chosen are the exact same for both models, in addition to the simu-
lated data, what makes these credible intervals differ from model to model is only due
to the difference in likelihood. Recall that the lines which fail in our six months period
of simulated data are lines 1, 2, 3 and 8, see Table 2. Keeping this in mind when having
another look at Table 3 we also clearly see that when only considering the line-specific
parameters µl and σl the intervals corresponding to the parameters for the lines that do
fail is narrower than for the rest. This is the case for both models.

From the credible intervals one sees within which range a parameter value typically lie.
How they are spread is seen better from the histogram of the generated values which
resembles the corresponding marginal posterior density. Another aspect to look at is
correlations. In Figures 11 and 12 the cross-correlation plot for each pair (µl, σl) is shown
for the line-wise and segment-wise model, respectively. These are the parameters in the
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Posterior quantiles
5% 95% CI width

mµ 14.83 20.42 5.58
vµ 0.51 29.81 29.30
mσ 0.69 2.73 2.04
β 3.45 47.30 43.85
µ1 13.48 16.63 3.15
σ1 0.64 1.91 1.27
µ2 15.02 19.18 4.16
σ2 1.34 2.74 1.40
µ3 15.93 19.79 3.86
σ3 1.37 2.68 1.31
µ4 14.63 23.27 8.64
σ4 0.09 1.82 1.72
µ5 14.00 23.56 9.56
σ5 0.09 1.76 1.67
µ6 14.28 25.50 11.21
σ6 0.12 1.63 1.50
µ7 14.27 24.27 9.99
σ7 0.23 2.26 2.03
µ8 13.26 15.59 2.33
σ8 0.60 1.72 1.12
µ9 14.02 25.46 11.44
σ9 0.05 1.88 1.83

(a) Line-wise model

Posterior quantiles
5% 95% CI width

mµ 16.07 22.97 6.90
vµ 0.04 41.19 41.15
mσ 0.99 3.69 2.70
β 0.75 10.08 9.34
µ1 14.18 17.96 3.77
σ1 1.01 2.42 1.41
µ2 16.47 21.90 5.42
σ2 2.01 3.63 1.63
µ3 17.03 22.12 5.10
σ3 1.89 3.47 1.58
µ4 15.40 26.45 11.05
σ4 0.14 2.24 2.10
µ5 15.09 26.59 11.50
σ5 0.12 2.36 2.23
µ6 15.07 29.06 14.00
σ6 0.17 2.15 1.98
µ7 15.42 26.52 11.10
σ7 0.31 2.88 2.57
µ8 14.59 17.40 2.81
σ8 1.38 2.44 1.06
µ9 15.06 28.42 13.36
σ9 0.07 2.48 2.41

(b) Segment-wise model

Table 3: 90% equal-tail credible intervals for all parameters in a) the line-wise model
and b) the segment-wise model. These intervals are found based on quantiles of the
generated values from the MCMC runs for both models.
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Figure 11: Cross-correlation plots of the pair (µl, σl) for all lines based on the MCMC
run for the line-wise model. To avoid too many points in the plot we have only extracted
every 100th iteration from the MCMC run after first having discarded the burn-in period.
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Figure 12: Cross-correlation plots of the pair (µl, σl) for all lines based on the MCMC
run for the segment-wise model. To avoid too many points in the plot we have only
extracted every 100th iteration from the MCMC run after first having discarded the
burn-in period.
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cumulative lognormal function, which again are connected to the probability of failure
in our models. For the cross-correlation plots only every 100th iteration for the line-wise
model and every 10th iteration for the segment-wise model were plotted. Otherwise it
would have been difficult to distinguish areas with many versus few generated values.
In the posterior histograms in Figure 63-68 one can observe the tails of the marginal
distributions. However, what is not observable here is the tails of the joint distribution
of µl and σl. These can be seen from Figures 11 and 12 as the areas in which there are
the fewest points.

It is clear that for the lines for which we have failures, i.e. lines 1, 2, 3 and 8, there is
a positive correlation between the line-specific parameters. In those cases for a given
value of µl the corresponding σl only varies within a seemingly small interval, and vice
versa. The correlation is present in the plots for the other lines as well, but not as
strong. We observe that for all lines there are no points in the upper left area, i.e. σl
is never relatively large for the smaller values of µl. For the lines without failures there
are however still many points in the lower right part of the plots. Recall that in the
formulation of our model the parameters are assumed conditionally independent given
their parent nodes. Hence for µl and σl the corresponding joint prior is

f(µl, σl|mµ, vµ,mσ) = f(µl|mµ, vµ)f(σl|mµ, vµ)

which is a product of each of their prior distributions. Since we have assumed inde-
pendence between these parameters given the hyperparameters we have not incorpo-
rated any correlation between them in our model. Despite this assumption the cross-
correlation plots based on the generated values from the posterior joint distribution
clearly indicate that these parameters are correlated. Hence, it is the data through the
likelihood that must be the reason for this outcome. As this correlation seem to be a
common feature for all lines, and particularly the lines that fail, one should take this
into account if ever formulating a new model.

In a potential new model one could have modified the prior distributions for µl and σl to
rather be a prior for the pair of (µl, σl). Then correlation can be incorporated between
the parameters within a pair while still letting each pair be conditionally independent of
all other pairs. In that case the prior had been a bivariate distribution in contrast to the
univariate priors defined in our case. The correlation parameter would then be common
for all pairs. Introducing correlation into our already constructed framework would
increase the overall amount of parameters in our model. However, the clear trends from
the cross-correlation plots indicate that this might still be a reasonable choice. Note also
that independence between the parameters within a pair is a special case and would be
included in the potential new model, so we would then not discard the possibility of
independence.

Recall that we plotted the wind exposure against intensity in Figure 9 for the parameter
values chosen for the simulated data set. In the same manner we plot the wind exposure
against intensity for typical values of β, µl and σl based on the MCMC run for the
line-wise model. These plots are seen in Figure 13 when the mean is chosen to represent
a typical value. Here the range for which we plot is again [0,max wn,l], but with the
maximum wind exposure for a line found by using the mean value of β from the MCMC
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Figure 13: Intensity as a function of wind exposure for all lines based on the line-wise
model. The curves are based on the mean values of β, µl and σl from the corresponding
MCMC run. The range of wind exposure is here slightly extended compared to for the
case when β = 1, as is the case for the simulated data.
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run. This value of β is then used for calculating all wind exposures for the six months
period based on segment lengths and wind data available, and by letting max wn,l be
the maximum of those values. The corresponding plot for the segment-wise model is
found in the Appendix in Figure 69. What is evident from these plots is that the shape
of a line’s curve is clearly different for the lines that failed compared to the curves for
the lines that did not fail. For lines 1, 2, 3 and 8 there is a steady increase in the
intensity, while for the rest of the lines the intensity stays rather small and constant
before it increases for the largest wind exposures. However, by noting that the y-axes
differ the increase is then not even close to the general increase for the lines that fail.
Most interesting is it rather to compare each line’s intensity curve to the ones in Figure
9. In that figure all curves, expect for line 9, have a similar shape. Note how the range
of the y-axis for a plot for a given line differ in Figure 9 versus the corresponding plot in
Figure 13, such that for the lines that fail we have an increase in the max intensity in the
latter case. This increase corresponds to for instance a factor 1.4 for line 1 and 1.9 for
line 2. For the lines that do not fail we observe that except for line 9 the max intensity
is rather lowered, and by a factor of for instance 1.9 · 10−9 for line 6 and 2.6 · 10−6 for
line 7.

To just look at the mean values from the MCMC runs only give one plausible intensity
curve per line. To gain more insight in how much the shape of the intensity curves can
in fact vary due to the spread in the generated values from the posterior distribution we
also plot several intensity curves in the same plot. As the wind exposure is dependent
on β we rather plot these curves as a function of wind speed, and for the line-wise model
the corresponding plots are seen in Figure 14. Here the segment length is again set to
dn,l = 150 m, as in Figure 10. Only the intensity curves corresponding to β, µl and σl
for every 400th iteration of the MCMC run are included. The same type of plots based
on the MCMC run for the segment-wise model are found in Figure 70. Note that the
y-axes in these plots differ, so one can not directly compare the plots for different lines.
The thicker black curve is the same as in Figure 10, hence the one corresponding to the
parameter values of the simulated data set. We see that these curves indeed lie inside
the range of the possible curves that the parameters from the posterior distribution can
take. However, for some lines, see lines 2 and 3, the black curve does not lie in the most
probable area, hence not where there are the most curves. From Figure 14 one clearly
sees a difference in when the intensities really start to increase. For lines 1, 2, 3 and 8
all lines seem to increase for a wind speed about 20-25 m/s, while for the other lines this
range is much wider. Overall, the range of different shapes of the curves is relatively
wide. If one had run MCMC for the same models with more data one would believe this
range to be less wide.

To be able to compare lines to each other we also plot the same plots for common axes,
see Figure 15. From these plots we see that the possible intensity curves for the different
lines somewhat overlap each other. This means that even for a line without failures, the
same intensity curve as for a line that does fail is probable. However, only for the lines
that do not fail can the intensity be very low even for high wind speeds. Keep in mind
that when no failures are observed, the contribution to the likelihood for both models
for each hour is
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Figure 14: The intensity curve corresponding to every 400th iteration of the MCMC run
for the line-wise model. The thicker black line corresponds to the curve the parameters
for the simulated data would give. Note that the y-axis differ from plot to plot.
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Figure 15: The intensity curve corresponding to every 400th iteration of the MCMC run
for the line-wise model. The thicker black line corresponds to the curve the parameters
for the simulated data would give. Here the y-axes are set equal for all plots to make it
easier to compare different lines.
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e−λ
t
l = e−

∑Nl
n=1 λ

t
n,l ,

which of course is large when all segment-wise intensities λtn,l are small.

7.3 Predictions

We proceed by using the parameter values generated from the aforementioned MCMC
runs for predictions. As mentioned earlier we are interested in a way to predict the
probability of failure for future times. First we present how this is done and how
one can quantify the uncertainty in the prediction for a given hour. Recall that since
we have simulated data we know the true parameters, and hence use this to find the
error between the prediction made and the true probability of at least one failure. To
summarize all predictions and to be able to compare the predictions based on our two
models we compute the logarithm of the absolute error for each prediction. We initially
believe there to be more information in the segment-wise model as one in the line-wise
one ”overlook” the information of exactly where the failures occurred.

Note that we predict mostly for illustrative reasons in this report as we have used
simulated failure data and a given wind data set. In practice one would run the MCMC
algorithm based on true observed failure data. In addition the wind data needed would
then rather be weather forecasts, hence there would be some uncertainty in these weather
predictions as well. Recall however that we treat wind speed as given in our models and
do not incorporate any extra uncertainties due to the weather forecast themselves.

7.3.1 Predict the probability of failure for future hours

We predict the probability of failure on an hourly basis. Recall that for a given hour t
the probability of at least one failure along that line is given by (4.7). Based on the pa-
rameters generated from the MCMC runs, i.e. (β(B+1), µ1

(B+1), ..., µ9
(B+1), σ1

(B+1), ...,
σ9

(B+1)), ..., (β(M), µ1
(M), ..., µ9

(M), σ1
(M), ..., σ9

(M)) we get one corresponding probabil-

ity of failure for each set of parameters. We denote these by ptl
(B+1)

, ..., ptl
(M)

for a given
line l. The corresponding 90% equal-tail credible interval for ptl is then again found from
the 5%- and 95%-quantiles. This interval reflects the uncertainty of ptl .

Based on the given wind data set we predict the probability of at least one failure on an
hourly basis for three periods of three consecutive days. These days are July 1-3, 2014,
December 1-3, 2014, and February 10-12, 2015. In Figures 16 and 17 we display the
histograms of these values for the first eight hours of February 10, 2015, for line 1. Both
the histogram corresponding to the line-wise and segment-wise model are plotted for
each hour. The corresponding 90% equal-tail credible intervals are given in Table 4. We
see that the magnitude of the predictions can vary from hour to hour, see for instance
the predictions for the first two hours, p11 and p21. The shape of the histograms differ
from the line-wise model to the segment-wise model in the sense that in the latter case
the the most probable predictions are not necessarily as close to zero as for the line-wise
model. From the credible intervals all intervals except for the first hour are the widest
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Posterior quantiles
Hour 5% 95% CI width

1 6.00E-15 3.06E-04 3.06E-04
2 4.69E-07 1.32E-02 1.32E-02
3 2.84E-04 9.04E-02 9.01E-02
4 6.85E-05 3.72E-02 3.72E-02
5 6.16E-04 5.90E-02 5.84E-02
6 1.43E-04 3.53E-02 3.51E-02
7 4.27E-07 9.06E-03 9.06E-03
8 1.86E-07 7.97E-03 7.97E-03

(a) Line-wise model

Posterior quantiles
Hour 5% 95% CI width

1 6.77E-13 2.64E-04 2.64E-04
2 1.42E-04 3.09E-02 3.08E-02
3 5.90E-03 1.54E-01 1.48E-01
4 1.73E-03 7.08E-02 6.91E-02
5 6.28E-03 9.37E-02 8.74E-02
6 2.75E-03 5.99E-02 5.72E-02
7 1.08E-04 2.12E-02 2.11E-02
8 6.14E-05 1.95E-02 1.95E-02

(b) Segment-wise model

Table 4: 90% equal-tail credible intervals for the predictions made based on a) the line-
wise model and b) the segment-wise model for the probability of at least one failures for
the first eight hours of February 10, 2015.

for the segment-wise model. However, here we only looked at eight hours for one line,
and hence this is nothing to draw any general conclusions from. For predictions for 72
hours we could plot 72 such histograms per model, and find their corresponding 90%
equal-tail credible intervals. However, as we have nine lines in total we do not include
all of this. See the Appendix for the eight first hours of July 1, 2014, and December 1,
2014, in Figure 71. Their corresponding credible intervals are shown in Table 6.

We have predicted the probability of at least one failure, but one could predict other
quantities if that is of interest. For instance the probability of three or more failures
within an hour or maybe just the failure intensities. The procedure is similar, one make
use of the generated parameter values from the MCMC run and compute the quantity
of interest for each set of parameters.

7.3.2 Evaluate predictions

In practice one is probable most interested in one value to represent the probability of
failure. This also makes it easier to summarize predictions and quantify how well the
models do. As an estimate of the probability of at least one failure for line l in hour t,
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Figure 16: Histograms of the predictions for the probability of at least one failure for
line 1 for the first four hours of February 10, 2015. Both the predictions based on the
line-wise and segment-wise model are displayed.
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Figure 17: Histograms of the predictions for the probability of at least one failure for
line 1 for the fifth to eight first hours of February 10, 2015. Both the predictions based
on the line-wise and segment-wise model are displayed.
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denoted p̂tl , we use the mean. Thus, we have that

p̂tl =
1

M − (B + 1)

M∑
m=B+1

ptl
(m)

(7.1)

which is based on M − (B + 1) values computed from the set of parameters from the
generated Markov chain. Note that one can use other estimates as well, for instance the
median or mode.

We have so far formulated two models and outlined how one based on the MCMC output
predicts probability of failures. The next step is to compare the models in terms of how
accurate predictions they give. Recall that when we simulated the failure data used for
the MCMC runs we let the parameters have the values as shown in (4.14). Based on
these we calculate the corresponding probability of failure from (4.7), denoted ptl , for
each hour we predict for. We treat these as the true probabilities of failure. Hence, it
is natural to evaluate how far off the estimated probabilities of failure given in (7.1) are
compared to the true ones.

It turns out that the order of magnitude of the true probability and the estimated one
for a given hour can differ substantially. This can be seen from Table 5 where we have
displayed the values corresponding to the probability of at least one failure within the
eight first hours of February 10, 2015. The same is the case for probabilities between
different hours as already seen from the histograms in Figures 16 and 17. We therefore
choose to look at the logarithm of the absolute error to evaluate the predictions made
to avoid that only the larger probabilities dominate. Hence we calculate

ln |p̂tl − ptl | (7.2)

for each hour we predict for. We did so for the 216 hours we predicted for in total, for
all lines and for both the line-wise model and the segment-wise model. The logarithm
of the absolute errors are summarized in a plot, see Figure 18. Here all 216 · 9 = 1944
predictions are included. The order of the predictions along the x-axis is so that the
predictions for line 1 come first, then line 2 and so on, always with July, December,
February as the order of the periods we predict for. We see that there are clearly many
hours for which the logarithm of the corresponding absolute error is the same, seen as
the horizontal lines in the plot. This happens for all nine lines and is a consequence of
the fact that when the wind is below the wind threshold for all line segments, the wind
exposure is not a function of wind speed for any of the segments. And hence, since the
estimates of the probability of failure are based on the same set of parameters from the
MCMC runs for different times, these are going to be equal for a line for all times when
the wind is below threshold along the whole line. It is no clear difference between the
predictions made from the different models based on the look of this scatter plot as they
both have very similar spread in values. Thus, our initial belief that the segment-wise
model should yield better predictions is not supported by Figure 18.

One could have thought of different score functions as an alternative way of evaluating
the predictions. One then could get one number to summarize the predictions made.
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t ptl p̂tl ln |p̂t1 − ptl |
1 6.05E-06 6.21E-05 -9.79
2 1.69E-02 3.39E-03 -4.30
3 1.01E-01 2.98E-02 -2.64
4 4.37E-02 1.14E-02 -3.43
5 6.15E-02 2.15E-02 -3.22
6 3.83E-02 1.20E-02 -3.63
7 1.13E-02 2.35E-03 -4.71
8 1.01E-02 2.01E-03 -4.81

(a) Line-wise model

t ptl p̂tl ln |p̂t1 − ptl |
1 6.05E-06 5.20E-05 -9.99
2 1.69E-02 9.79E-03 -4.94
3 1.01E-01 6.18E-02 -3.23
4 4.37E-02 2.61E-02 -4.04
5 6.15E-02 3.98E-02 -3.83
6 3.83E-02 2.41E-02 -4.25
7 1.13E-02 6.68E-03 -5.37
8 1.01E-02 5.95E-03 -5.48

(b) Segment-wise model

Table 5: The true and estimated probability of at least one failure for the first eight
hours of February 10, 2015. Also the logarithm of the absolute error for each prediction
is given in the rightmost column.
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Figure 18: Plot of the logarithm of the absolute error of the predictions made based on
the line-wise model in black and the segment-wise model in red. From left to right first
all predictions for line 1, then for line 2 and so in is plotted, hence the longer intervals
with same value for the logarithm of the absolute error is for the same line. This happens
when the wind is below the wind threshold along the whole line for several consecutive
hours.
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However, if doing so one must keep in mind that the choice of score function affect
how one weights different errors. For instance for the square of the error, (p̂tl − ptl)2,
the contributions from the largest probabilities are going to affect the score the most
when summing over all predictions made, even though the relative error might be larger
for some smaller predictions. Since we do not want to take a stand on which type of
predictions should be punished the most, we avoid such score functions at this point.

7.3.3 Update model and score predictions in practice

In practice failures are observed continuously and this makes it possible to update the
model at certain intervals to incorporate new information. An update of the model is
done according to the model updating scheme in (2.4). One then needs to rerun the
MCMC algorithm with an updated likelihood and with the new and previously collected
failure data as input. In addition this requires the corresponding wind data, hence one
also needs to store weather data for the periods one have observed failures in. Note
that even if one had wanted to update the model at a very high frequency, say every
three days or every week, there is always a certain delay due to the computation time
of the MCMC run. Hence, if this takes several weeks to run then there are naturally
observations for that period of time that is not going to be included in the results of the
MCMC run. However, if already running the model for many years of data, some weeks
or months of data not included is probably not going to make too much difference in the
results anyway. How often one should update the model is then a cost-benefit question,
and also a question how often failure data is corrected and finally set.

The evaluation of predictions based on our two models in terms of the absolute error
(7.2) is only possible in this particular setting, hence when having simulated failure
data. In practice we have no true parameters of β, µl and σl and then this type of
evaluation metric makes no sense. However, what does make sense is to compare the
predictions made with what one later observes to occurre. An often used score function
for predictions is the Brier score (Bradley et al., 2008). If interested in the probability
of at least one failure this yields a binary forecast, hence we predict the probability of at
least one failure as p̂tl and the probability of no failures is then 1− p̂tl . The corresponding
Brier score is then given as

Brier score =
1

N

N∑
n=1

(p̂tl − Ixtl>0(x
t
l))

2

where the indicator function here assures that the last term evaluates to one if there has
been observed more than one failure, hence when xtl > 0, and to zero otherwise. The
lower the Brier score, the better.

8 Closing remarks

In this thesis we have formulated two Bayesian hierarchical models for the number of
temporary failures due to wind on overhead transmission lines. They are based on
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and are an alternative approach to the model in Solheim et al. (2016), which is the
one used today by the Norwegian Transmission System Operator. Our models are
hierarchical in the sense that they consist of random variables on three different layers
and Bayesian since we consider the parameters of the models to be random variables.
Wind speed is assumed to be the main explanatory variable and we condition on it,
hence we treat it is as known and given. A data set of wind speed is provided by
Statnett for nine overhead transmission lines, in addition to the length of each line
segment. The number of failures for a line segment within an hour is assumed to follow
a Poisson distribution. The corresponding failure rate is connected to wind speed in
the way that one sets the probability of at least one failure equal to a function of some
parameters and wind exposure. As in Solheim et al. (2016) we let wind exposure be a
function of wind speed and segment length. The wind exposure is used as input to the
cumulative lognormal function to connect the parameters to the probability of failure.
Failures along a segment are assumed independent of failures along other segments and
independent of failures within other hours. For the hyperparameters, i.e. the top level
of our hierarchy of variables, we assign noninformative and improper priors, and assume
all to be independent of each other. The only difference in our two models is that for
the segment-wise model the data is on segment-level, hence it requires knowledge of
where along a line a failure occurred. The other is a line-wise model where the number
of failures is aggregated up to only give the total number of failures for a line within
an hour. The latter suits the type of failure data collected by Statnett so far, while the
former is an alternative if obtaining more detailed reports on failures in the future.

We combine the likelihood, which represents the distribution of the observable variables,
with the prior distribution, i.e. the distribution of the parameters, to find the expression
of the corresponding posterior distribution. The posterior distribution we obtain is
non-standard and complex, and we find the corresponding integrals needed for finding
credible intervals or mean of functions of the parameters analytically intractable. Instead
we choose to generate samples from it. For this we choose a Markov chain Monte Carlo
approach. By construction, the Metropolis-Hastings algorithm and its special case the
Gibbs sampler creates a Markov chain with limiting distribution equal to the posterior
distribution. The idea is that initially all parameters are set to an arbitrary value, but
by constantly updating them in accordance with an MCMC updating scheme the chain
converges in distribution to the posterior. We discard the first iterations, known as the
burn-in period, and use the rest as a sample from the posterior.

We run the MCMC method for simulated failure data for a period of six months. The
marginal posterior distributions show that there is more certainty about the parameters
in the line-wise model than the segment-wise one. For both models we see that the
parameters for the lines that did fail in our simulated data set have shorter credible
intervals. In addition, there is seen to be a clear positive correlation for each pair of the
line-specific parameters that decide the shape of the cumulative lognormal distribution.
This is especially the case for the lines that did fail. Further, we predicted the probability
of at least one failure for three days in three different months, for all lines. Since we
have a set of true parameter values from the simulated data we use these to calculate
the corresponding true probabilities of failure. The logarithm of the absolute error for
all predictions were displayed in a plot, but there seem to be no clear difference between
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our two models.

For future work a natural next step is first to investigate the possibility of incorporating a
correlation parameter for the pair of the line-specific parameters based on the revelations
from the cross-correlation plots in this report. This would require a new prior, a bivariate
prior distribution on the prior level in our models. Then the MCMC update scheme
could be run on true observed failure data, and preferable for a long period of time. As
the failure data is in practice reported on line-level, and since our comparison indicated
that there seem to be little difference between our models when it comes to predictions,
it is natural to continue with the line-wise model. Since we used simulated data for our
MCMC runs, and where the number of failures was similar to the total number of failures
for the observed failure data available from Statnett, we do not know how the results
would turn out based on true data. It is easy to include more lines than the nine we have
been looking at by introducing a new set of line-specific parameters for each line and
including all lines in the likelihood. However, MCMC is computational intensive and
requires computing power. As one includes more lines and more data, the computations
naturally are more time-consuming. In that case one must pay attention to potential
ways to optimize the code, and the use of parallel computations. In addition one should
compare the model proposed here to the one already in use to see if the predictions
made are any better.
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Appendix

Posterior quantiles
Hour 5% 95% CI width

1 6.00E-15 2.95E-04 2.95E-04
2 6.00E-15 2.95E-04 2.95E-04
3 6.00E-15 2.95E-04 2.95E-04
4 6.00E-15 2.95E-04 2.95E-04
5 6.00E-15 2.95E-04 2.95E-04
6 6.00E-15 2.95E-04 2.95E-04
7 6.00E-15 2.95E-04 2.95E-04
8 6.00E-15 2.95E-04 2.95E-04

(a) Line-wise model

Posterior quantiles
Hour 5% 95% CI width

1 1.27E-13 2.28E-04 2.28E-04
2 1.27E-13 2.28E-04 2.28E-04
3 1.27E-13 2.28E-04 2.28E-04
4 1.27E-13 2.28E-04 2.28E-04
5 1.27E-13 2.28E-04 2.28E-04
6 1.27E-13 2.28E-04 2.28E-04
7 1.27E-13 2.28E-04 2.28E-04
8 1.27E-13 2.28E-04 2.28E-04

(b) Segment-wise model

Table 6: 90% equal-tail credible intervals for the predictions made based on a) the line-
wise model and b) the segment-wise model for the probability of at least one failures
for the first eight hours of July 1, 2014. The table is the exact same for the first eight
hours of December 1, 2014.

71



Segment-wise model

Figure 19: Plots for the parameter mµ based on the MCMC run for the segment-
wise model. The two upper rows show trace plots for the first 5000, 10000 and 20000
iterations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 20: Plots for the parameter vµ based on the MCMC run for the segment-
wise model. The two upper rows show trace plots for the first 5000, 10000 and 20000
iterations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 21: Plots for the parameter mσ based on the MCMC run for the segment-
wise model. The two upper rows show trace plots for the first 5000, 10000 and 20000
iterations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 22: Plots for the parameter β based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 23: Plots for the parameter µ1 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 24: Plots for the parameter σ1 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 25: Plots for the parameter µ2 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 26: Plots for the parameter σ2 based on the MCMC run for the segment-
wise model. The two upper rows show trace plots for the first 5000, 10000 and 20000
iterations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 27: Plots for the parameter µ3 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 28: Plots for the parameter σ3 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 29: Plots for the parameter µ4 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 30: Plots for the parameter σ4 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 31: Plots for the parameter µ5 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 32: Plots for the parameter σ5 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 33: Plots for the parameter µ6 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 34: Plots for the parameter σ6 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 35: Plots for the parameter µ7 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 36: Plots for the parameter σ7 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 37: Plots for the parameter µ8 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 38: Plots for the parameter σ8 based on the MCMC run for the segment-
wise model. The two upper rows show trace plots for the first 5000, 10000 and 20000
iterations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 39: Plots for the parameter µ9 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Figure 40: Plots for the parameter σ9 based on the MCMC run for the segment-wise
model. The two upper rows show trace plots for the first 5000, 10000 and 20000 it-
erations, in addition to the trace plot for the full simulation. To the lower left the
corresponding running mean plot, and to its right the autocorrelation plot.
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Line-wise model

Figure 41: Plots for the parameter mµ based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 42: Plots for the parameter vµ based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 43: Plots for the parameter mσ based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 44: Plots for the parameter β based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 45: Plots for the parameter µ1 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 46: Plots for the parameter σ1 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 47: Plots for the parameter µ2 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.

100



Figure 48: Plots for the parameter σ2 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 49: Plots for the parameter µ3 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 50: Plots for the parameter σ3 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 51: Plots for the parameter µ4 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 52: Plots for the parameter σ4 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 53: Plots for the parameter µ5 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 54: Plots for the parameter σ5 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 55: Plots for the parameter µ6 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 56: Plots for the parameter σ6 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 57: Plots for the parameter µ7 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 58: Plots for the parameter σ7 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 59: Plots for the parameter µ8 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 60: Plots for the parameter σ8 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.

113



Figure 61: Plots for the parameter µ9 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 62: Plots for the parameter σ9 based on the MCMC run for the line-wise model.
The two upper rows show trace plots for the first 5000, 10000 and 50000 iterations, in
addition to the trace plot for the full simulation. To the lower left the corresponding
running mean plot, and to its right the autocorrelation plot.
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Figure 63: Histograms of the generated values for mµ, vµ, mσ and β from both the
MCMC run based on the line-wise model and the segment-wise model. These val-
ues correspond to samples from the marginal posterior distributions f(mµ|x), f(vµ|x),
f(mσ|x) and f(β|x).
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Figure 64: Histograms of the generated values for µ1, σ1, µ2 and σ2 from both the
MCMC run based on the line-wise model and the segment-wise model. These val-
ues correspond to samples from the marginal posterior distributions f(µ1|x), f(σ1|x),
f(µ2|x) and f(σ2|x).
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Figure 65: Histograms of the generated values for µ3, σ3, µ4 and σ4 from both the
MCMC run based on the line-wise model and the segment-wise model. These val-
ues correspond to samples from the marginal posterior distributions f(µ3|x), f(σ3|x),
f(µ4|x) and f(σ4|x).
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Figure 66: Histograms of the generated values for µ5, σ5, µ6 and σ6 from both the
MCMC run based on the line-wise model and the segment-wise model. These val-
ues correspond to samples from the marginal posterior distributions f(µ5|x), f(σ5|x),
f(µ6|x) and f(σ6|x).
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Figure 67: Histograms of the generated values for µ7, σ7, µ8 and σ8 from both the
MCMC run based on the line-wise model and the segment-wise model. These val-
ues correspond to samples from the marginal posterior distributions f(µ7|x), f(σ7|x),
f(µ8|x) and f(σ8|x).
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Figure 68: Histograms of the generated values for µ9 and σ9 from both the MCMC run
based on the line-wise model and the segment-wise model. These values correspond to
samples from the marginal posterior distributions f(µ9|x) and f(σ9|x).
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Figure 69: Intensity as a function of wind exposure for all lines based on the segment-
wise model. The curves are based on the mean values of β, µl and σl from the corre-
sponding MCMC run. The range of wind exposure is here slightly extended compared
to for the case when β = 1, as is the case for the simulated data.
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Figure 70: The intensity curve corresponding to every 100th iteration of the MCMC
run for the segment-wise model. The thicker black line corresponds to the curve the
paramters for the simulated data would give. Note that the y-axis differ from plot to
plot.
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Figure 71: Predictions for the four first hours of July 1, 2014. The four next hours have
the exact same predictions, and we therefore omit plotting them. Also the eight first
hours of December 1, 2014, have the exact same plots.
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