
Control system for the DNV GL Fuel 
Fighter Prototype and the DNV GL Fuel 
Fighter UrbanConcept

Håkon Trømborg

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology



 



Control system for the DNV GL Fuel Fighter

Prototype and the DNV GL Fuel Fighter

UrbanConcept

H̊akon Trømborg

Supervisor: Tor Arne Johansen

June 13, 2014



Abstract

In this report I present my work developing the main control unit in the

two DNV GL Fuel Fighter cars that raced in Shell Eco-marathon 2014. The

objective of the Shell Eco-marathon is to race a set distance using as little

energy as possible, and my focus has been on giving the driver the tools and

information to run the car in an energy efficient manner. I explored different

existing driving strategies, and because of the high power consumption of

the motor controller circuit I decided to use the ”Pulse and Glide” strategy.

This meant the car would accelerate rapidly to maximum speed and then

coast with motor and its controller switched off.

2



Sammendrag

I denne rapporten presenterer jeg mitt arbeid med å utvikle hovedkontrollen

i de to DNV GL Fuel fighter-bilene som deltok i Shell Eco-marathon 2014.

Målet i Shell Eco-marathon er å kjøre en satt distanse med s̊a lite drivstof-

forbruk som mulig, og mitt fokus har vært p̊a å gi sj̊aføren de nødvendige

verktøyene og informasjonen til å kjøre bilen p̊a en energieffektiv måte. Jeg

vurderte forskjellige kjørestrategier, og p̊a grunn av det høye strømforbruket

valgte jeg å bruke en s̊akalt ”Pulse and Glide”-strategi. Denne innebærer å

la bilen aksellerere raskt til toppfart, og s̊a rulle fritt med motoren og mo-

torkontrolleren avsl̊att.

3



Acknowledgements

I would like to thank my supervisor Tor Arne Johansen for letting me work on

this project. I also thank the DNV GL Fuel Fighter team 2014 for their hard

work and great companionship. Thanks to Audun Lønmo Knudsrød, Lars

Lyse Moen, Vegar Østhus and Simen Andresen for believing in me all this

time. Finally, a big thanks to my brother Jørgen Trømborg for proofreading

and good advice.

4



Project description

5



6



Abbreviations

ECU Engine Control Unit

MCU Main Control Unit

DNV FF DNV Fuel Fighter

DNV GL FF DNV GL Fuel Fighter

FPGA Field Programmable Gate Array

DIO Digital Input/Output

AIO Analog Input/Output

RMC Rio Mezzanine Card

VI Virtual Instrument

i



ii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The competition . . . . . . . . . . . . . . . . . . . . . 1

1.2 The track . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Prototype . . . . . . . . . . . . . . . . . . . . . . 2

1.4 The UrbanConcept . . . . . . . . . . . . . . . . . . . . 4

1.5 The team . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 The cars . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Thesis objective . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Fuel efficient driving strategies . . . . . . . . . . . . . . 12

2.2 Earlier work . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The car system . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Motor controller . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Electrical system . . . . . . . . . . . . . . . . . . . . . 25

3.5 CAN bus . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Steering wheel . . . . . . . . . . . . . . . . . . . . . . . 30

4 Hardware and software choices . . . . . . . . . . . . . . . . . . 31

4.1 The National Instruments sbRIO-9626 . . . . . . . . . 32

4.2 LabVIEW . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



5 Control system . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Driving Strategy . . . . . . . . . . . . . . . . . . . . . 36

5.2 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Can handler . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Motor control . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 User interface . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.8 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.9 Display . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Time and position . . . . . . . . . . . . . . . . . . . . 49

6 Competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Ahoy! Arena in Rotterdam . . . . . . . . . . . . . . . . 51

6.2 Testing UrbanConcept . . . . . . . . . . . . . . . . . . 51

6.3 Testing Prototype . . . . . . . . . . . . . . . . . . . . . 54

6.4 Racing Prototype . . . . . . . . . . . . . . . . . . . . . 55

6.5 Racing UrbanConcept . . . . . . . . . . . . . . . . . . 59

7 Recommendations and conclusion . . . . . . . . . . . . . . . . 62

7.1 Plan versus reality . . . . . . . . . . . . . . . . . . . . 62

7.2 Recommendations for the next year’s DNV GL Fuel

Fighter team . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 65

iv



List of Figures

1 The Ahoy! Race Track . . . . . . . . . . . . . . . . . . . . . . 3

2 Example of the most common shape for prototype cars, the

TIMO5 from Toulouse, France. All Rights Reserved Shell Eco-

marathon 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Example of UrbanConcept cars. All Rights Reserved Shell

Eco-marathon 2014. . . . . . . . . . . . . . . . . . . . . . . . . 5

4 The DNV GL Fuel Fighter 2014 team. . . . . . . . . . . . . . 7

5 The DNV GL Fuel Fighter UrbanConcept. . . . . . . . . . . . 8

6 The DNV GL Fuel Fighter Prototype. . . . . . . . . . . . . . 9

7 The initial plan for phases of the project work. . . . . . . . . . 10

8 Simulated solutions for the fuel optimal train journey problem.

Switching between coasting and accelerating on flat parts,

while accelerating and then coasting uphill, or decelerating

then coasting downhill. . . . . . . . . . . . . . . . . . . . . . . 14

9 The dashed line shows the speed of a Toyota Corolla from start

to stop over a 300 m distance. It accelerates quite rapidly to

exploit the the motors most effective torques, and coasts until

it brakes as hard as possible before the stop sign. . . . . . . . 16

10 Sketch of the car system. Rectangular blocks represent com-

puters and microcontrollers communicating on the CAN bus

while the round edged shapes are simpler circuits. . . . . . . . 18

v



11 Testing done this year in lab showed a trend of better efficien-

cies at higher rotational speeds, while torque did not seem to

matter as much. Nm on the x axis, RPM on the y-axis and

efficiency on the z-axis. All credits for this plot go to Eirik

Heien Mo[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

12 The in-wheel motor for the UrbanConcept, photo by Eirik

Heien Mo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 Torque-Speed characteristics of the AXI motor used in the

Prototype car, from [7]. The efficiency is notably higher at

200-240W axelpower, which accelerates our car quite rapidly,

in comparison to the axelpower needed to maintain cruising

speed of km
h

, which is less than 80W. . . . . . . . . . . . . . . 25

14 Block diagram of the solar cells connected to the two MPPT’s,

providing enough voltage to charge the 48V battery . . . . . . 26

15 The steering wheel in the Prototype car. Buttons at the upper

left, joystick at the upper right. . . . . . . . . . . . . . . . . . 31

16 The NI sbRIO-9626 with Rio Mezzanine Card mounted (for

DIO with the FPGA). . . . . . . . . . . . . . . . . . . . . . . 33

17 Example of LabVIEW block programming, here represented

by the data sent to the display module. . . . . . . . . . . . . . 35

18 The main LabVIEW block diagram. After the block of code

to the left has initialized the sysytem, a message queue and

eight real-time loops are invoked. . . . . . . . . . . . . . . . . 40

19 The CAN handler timed loop. . . . . . . . . . . . . . . . . . . 41

20 A state-machine representation of the driving modes. The

ECU is switched on in Manual and Auto-drive, and off in

Auto-stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

21 The User Interface subVI. . . . . . . . . . . . . . . . . . . . . 44

22 The FPGA subVI, and the loop running on the FPGA. . . . . 45

vi



23 The six GPS checkpoints on the Ahoy! track. A marks the

start line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

24 The Display VI. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

25 The Timing and position VI. . . . . . . . . . . . . . . . . . . . 50

26 Most of the participants in the Shell Eco-marathon. All Rights

Reserved Shell Eco-marathon 2014. . . . . . . . . . . . . . . . 51

27 The paddock area. All Rights Reserved Shell Eco-marathon

2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

28 The encoder fastened to the wheel. . . . . . . . . . . . . . . . 53

29 Speed log from run with motor controller problems. Motor

controller shutting of mid acceleration, and unwanted long de-

celeration phase. . . . . . . . . . . . . . . . . . . . . . . . . . 57

30 Speed logging from the UrbanConcept’s first race. . . . . . . . 60

31 The door handle suddenly broke for unknown reasons, and it

was not possible to close the door again. All Rights Reserved

Shell Eco-marathon 2014. . . . . . . . . . . . . . . . . . . . . 61

32 The overall wiring diagram of the Prototype, credits Jostein

Furseth [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

33 The overall wiring diagram of the UrbanConcept, credits Jostein

Furseth [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



viii



1 Introduction

1.1 The competition

The Shell Eco-marathon is an annual competition for engineering students

hosted by Royal Dutch Shell plc. As of 2014, the competition is arranged in

Asia, the Americas and in Europe. This year’s (2014) European competition

was held in Rotterdam.

The objective in the Shell Eco-marathon is to build a car that can carry a

driver as far as possible using as little energy as possible. Several different

sources of energy are allowed as propulsion, but each car only competes

against other cars using the same energy source. The energy sources allowed

are

� Gasoline

� Diesel

� Alternative fuel (Ethanol, GTL1)

� Hydrogen

� Battery electric and solar power

The competition is also split into two classes, the Prototype class and the

UrbanConcept class, as explained in chapters 1.3 and 1.4.

Upon satisfying necessary safety criteria and successfully completing a thor-

ough technical inspection, each car is allowed to partake in the race. The cars

start one at a time, race for 10 laps which corresponds to 16117 meters, using

a maximum of 39 minutes to complete. This time limit is set to ensure that

1From wikipedia: GTL - Gas to liquids is a refinery process to convert natural gas or
other gaseous hydrocarbons into longer-chain hydrocarbons such as gasoline or diesel fuel.

1



the average speed of the vehicles is at least 25km
h

. Once the car crosses the

finish line, the energy used is inspected by an official. Several methods for

measuring energy consumption are used. In the Battery Electric category

where DNV GL Fuel Fighter competed, two Joulemeters measure electric

power going into the motor controller circuit, and electric power coming in

from the solar cells. To limit solar cell dependency, no more than 20% of the

energy used for propulsion may be covered by the solar cells.

The result in Joules used to power motor and motor controller minus Joules

produced by solar cell panels (up to a maximum of 20%), is then expressed

in km
kWh

. The winner is the one who was able to use least energy, this year

Team TERA TU Graz from Austria, reaching the equivalent of 1091.6 km
kWh

,

or around 23W.

1.2 The track

This year, like last, the European competition took place at the Ahoy! Arena

in Rotterdam (figure 1) , a large convention centre. The track runs around

the convention centre, and takes up parts of the main road next to it. Each

round is 1626m, except for the slightly shorter last round, making the total

distance 16,117m. The race is run clockwise, and there are five 90° turns. It

is close to flat all over, with the far right corner being the lowest point of

the track. It is mostly wide enough for two cars to be driving alongside each

other, but usually not wide enough for three.

1.3 The Prototype

The Shell Eco-marathon is divided into two classes. The most competitive

one is called the Prototype class. Here, there are few requirements to what

cars must be able to do, except travelling as energy efficiently as possible

2



finish lane

Track length: 1626 m
10 laps: 16117 m in 39 minutes max 

CORReCT WaY 
On TRaCK: 
ClOCKWise

sTOP POinT fOR  
URBanCOnCePT  

sTaRT lane

ROTTeRdam TRaCK 2014

Figure 1: The Ahoy! Race Track

while keeping a certain level of safety for the driver and other participants.

Over time the cars have started to move towards similar shapes. Most cars

now have two wheels in the front, one wheel in the back, and are in many

ways shaped like a drop (figure 2. Most are also as small and light as possible,

and the driver is usually lying down while driving.

The main design criterion for the shape is to reduce air friction, but even so

this is the biggest loss for most Prototype cars even at relatively low speeds

such as 25km
h

.

3



Figure 2: Example of the most common shape for prototype cars, the TIMO5
from Toulouse, France. All Rights Reserved Shell Eco-marathon 2014.

1.4 The UrbanConcept

In 2003 Shell introduced a new class in the competition. The competition

had been driven towards the more extreme Prototype cars, and Shell wanted

to put some focus back on making solutions that could realistically be imple-

mented in real vehicles. In the UrbanConcept class, cars must meet several

roadworthiness criteria found in modern passenger vehicles. Restrictions are

placed on car dimensions, number of wheels, door size and several electrical

components are now compulsory. The car must have front lights, turning

indicators, brake lights, braking pedal, wind-shield vipers and is required to

come to a complete stop between each round. As a result, the UrbanConcept

cars are not able to travel as fuel efficient as the Prototype cars, and many

of the teams focus more on visual appearance and innovative design. The

variations in design are much bigger in the UrbanConcept, and it’s more of

a fun-class than Prototype. This year, for the first time, one of the vehicles

4



in the competition was accepted for normal roads in the Netherlands.

Figure 3: Example of UrbanConcept cars. All Rights Reserved Shell Eco-
marathon 2014.

5



1.5 The team

NTNU has been sending a car to the Shell Eco-marathon every year since

2008. It is mainly a project for students at NTNU, but some students from

other schools in Trondheim also take part in the team. For the last years the

main sponsor has been DNV GL, covering about 70% of the teams budget.

This year’s DNV GL Fuel Fighter team consisted of

� A project manager

� A risk manager

� Five mechanical engineers

� Three cybernetics students (my role)

� A power electronics student

� A graphical designer

� Two drivers

� A photographer

� A PR representative

1.6 The cars

For the first time ever NTNU decided to send two cars to the Shell Eco-

marathon. The UrbanConcept from 2013 had done well, but due to motor

problems hadn’t really realised its potential. Little had to be done to design

and mechanical system, and it was decided to try again this year. However,

the main focus this year was to make a Prototype car from scratch.

6



Figure 4: The DNV GL Fuel Fighter 2014 team.

1.6.1 The UrbanConcept

The UrbanConcept had a third place from last year’s competition. It also

won the award for best design and was still working well when we overtook it,

except from some wheel problems. The motor was replaced, and alterations

were made to the electrical system to make it similar to the Prototype’s

electrical system.

1.6.2 The Prototype

The new DNV GL Fuel Fighter Prototype was where the mechanical engi-

neers put most of their work. Design started in September, and building

in January. The chassis was made from carbon fibre, steering wheel 3D-

printed, and mostly everything was designed by NTNU students. The motor

used was a small three phase brushless motor designed for RC planes. The

final weight was 42 kg, and the air resistance calculated to 6% of a what a

7



Figure 5: The DNV GL Fuel Fighter UrbanConcept.

bicyclist experiences at 30km
h

.

1.7 Plan

1.7.1 Project status Januray 2014

When the work on this thesis begun in January 2014, I had recently com-

pleted my project report on creating an MPC controller for the DNV GL

Fuel Fighter cars. The UrbanConcept car was mostly ready for use, except

for the motor controller circuit that had to be changed. Nobody had yet been

found to work on the electrical system, but we hoped we would be able to

recruit someone. A sponsorship with National Instruments had been agreed

8



Figure 6: The DNV GL Fuel Fighter Prototype.

upon, but no hardware had yet been received. The mechanical team was

done with their technical design and were ready to start building the car.

We agreed to be ready for testing after Easter, on May 21.

1.7.2 Plan for the project

The plan was to recruit one or several students to work on the electrical

system. If nobody were found, I would have to make the electrical systems

in the two cars myself. I would work on the main control unit, and create

the user interface for the driver. Once the hardware arrived, I planned to

start learning the software and start prototyping. I would start running the

motor in the laboratory as soon as possible, and on-track testing of the cars

would begin May 21.

9



Figure 7: The initial plan for phases of the project work.

1.8 Thesis objective

The objective of this thesis is to describe in detail my role in the project and

to document the considerations underlying the design choices I contributed

to. My task in the project was first of all to decide on a driving strategy for

the driver, and to create the necessary user interface for her to control the car

in an energy efficient way. This included design decisions such as hardware

and software selection, designing the input method, i.e buttons and joystick

on the steering wheel and output in form of an LCD display, controlling the

motor controller and gathering information from different sensors and instru-

ments to present on the screen.

It also included some managing of the electrical team, modelling and testing

the engine’s and the motor controller’s efficiency and reliability, logging driv-

ing data, designing a CAN bus protocol, guiding the drivers by cell phone

during testing and racing, and finally analysing the results to give tips to the

next year’s DNV GL Fuel Fighter team.

In my project report from fall 2013, I explored the possibility of optimizing

the driving strategy using and automatic MPC control algorithm. A number

10



of assumptions were made in this project that turned out to not hold, mainly

that the standby power consumption of the motor controller was negligible,

but also the simple model of engine Torque-Speed characteristics, assump-

tion of negligible traffic and other track specific factors. As time building

the car drew out, the lack of testing possibilities called for a simpler scheme

than MPC. The deadline we had set for finishing the car, 21st of April, was

pushed forward again and again, until we finally managed one hour of test

driving the night before departure. Needless to say we opted for robustness

rather than optimization of the driving strategy, and the result was what is

known as a ”Pulse and Glide” method[2] which will be explained in detail in

chapter 2.1.1 .

11



2 Literature review

2.1 Fuel efficient driving strategies

2.1.1 Pulse and Glide

The Pulse and Glide strategy is widely used in competitions where fuel ef-

ficiency is key.[2] Once fuel consumption is pushed to the lower limit, the

engine brake thermal efficiency becomes an increasingly important factor.

The Pulse and Glide strategy consists of accelerating relatively fast to a cer-

tain speed, and from there rolling with the engine switched off. The car is

then restarted after a while, and starts driving again. This method is shown

to have excellent results on vehicles where thermal loss or electrical loss in

the engine is a notable percentage of the cars energy consumption.

In order to fully exploit the possibilities in the Pulse and Glide strategy, it

is necessary to choose a speed interval in which the car is driven. Choosing

the correct positive and negative deviation from the desired average speed is

essential, as well as the acceleration rate in the acceleration phase. The op-

timal values are decided by the car’s aerodynamic characteristics, its propul-

sion system and mechanical frictions, as well as environmental properties

such as slope. In [2] it is shown that the Pulse and Glide method is superior

to keeping a constant speed when used on a Ford Focus 2007, at best more

than twice the distance per unit of gasoline. The results vary however, and

at speeds above 40 mph the results aren’t as significant. This is explained

by the quadratic nature of air friction, as running at speeds higher than nec-

essary is increasingly energy expensive at higher speeds.

12



2.1.2 Optimal driving strategies for trains

Many studies have been concerned with optimizing fuel economy for a train

journey. Many of these look at how to best handle driving up and down hills.

In [12] a simple longitudinal train model is developed to optimize the control

problem

J =
n∑

k=0

fj(k + 1)τk+1 (1)

where J is total fuel consumption, fj(k + 1)τk+1 is fuel consumption rate

multiplied by time interval, and k ∈ [0, n] represents the intervals needed to

finish the trip.

The train’s propulsion system is modelled as having three different phases:

power, coasting and brake phase. The slope of the trip is assumed to be

known, and there is also imposed a speed limit on the train. The remaining

problem is then to find optimal switching points between the three phases.

Solving the system of equations , it is shown that it is fuel optimal for a train

to accelerate before an uphill, and to decelerate before a downhill as seen in

figure 8.

13



Figure 8: Simulated solutions for the fuel optimal train journey problem.
Switching between coasting and accelerating on flat parts, while accelerating
and then coasting uphill, or decelerating then coasting downhill.

14



2.1.3 Fuel economy when starting and stopping

In the paper Optimal Driving for Single-vehicle Fuel Economy[14] from 1998,

J.N Hooker presents an analysis of 15 then late-model cars’ fuel consumption.

Focusing on statistical data from testing rather than mathematical models,

he investigates optimal speeds on constant and varying slopes, acceleration

rates and driving between stop signs. The idea is to be able to give general

advice for fuel efficient driving for cars, and not only particular models.

The optimization problem is formulated as

min
v,T

∫ T

0

f(v(t), a(t))dt (2)

subject to

ṡ(t) = v(t)

a(t) = v̇(t) + gsinθ(s(t))

a(t) ≤ amax(v(t))

v(0) = v0, s(0) = 0

v(T ) = vs, s(T ) = s1(optional)

T = Ts(optional)

(3)

Here, f(v, a) is the fuel consumption at speed v and acceleration a. ṡ(t) =

v(t) is the system equation, θ(s) is the slope at position s, v0 initial speed,

v1 terminal speed and T is the duration. The objective is to find the optimal

trajectory v(t) that minimizes the fuel consumption.

While the case for accelerating and maintaining cruising speed and slope

handling is very dependent on gear changes and motor efficiency at different

RPM’s for gasoline vehicles, the result for driving between blocks is quite

15



interesting also in the case of DNV GL Fuel Fighter. Hooker argues that

it is optimal to drive up to the stopping point and then brake as hard as

possible, making the deceleration phase short as possible. Since all kinetic

energy must be lost when stopping, doing so instantly instead of over time

does not alter the fact that it is lost. What does however change, is that

when decelerating softly one needs a higher peak speed in order to reach the

stop at the same time as when braking hard at the end. Additionally it is

pointed out that when time is not a hard constraint, braking hard at the end

will reduce total time and so also the time where the car is idly coasting is

reduced. An example can be seen in figure 9.

Figure 9: The dashed line shows the speed of a Toyota Corolla from start
to stop over a 300 m distance. It accelerates quite rapidly to exploit the the
motors most effective torques, and coasts until it brakes as hard as possible
before the stop sign.

16



2.2 Earlier work

Many teams from NTNU before us have competed in Shell Eco-marathon.

Some of them competed in different categories, and several were more con-

cerned with having at least one complete run than optimizing driving strat-

egy. In his thesis from the 2011 competition, Jardar Sølna Øverby recom-

mends exploring a torque controlled motor over a speed controlled motor.

In 2012, Benjamin Gutjahr developed an algorithm he chose to call Auto-

mated Section Controlled Drive[8]. Partitioning the Ahoy! track into 4 sec-

tions, he derives a mathematically optimal torque profile. He mainly weighs

a complicated track and car model, as well as a motor efficiency analysis

that is not presented in the text. The motor broke this year, and the track

is now run in the opposite direction. It is therefore difficult to make use of

his analysis.

In last year’s report[10], ambitions were to make an MPC controller for speed.

Ambitions were, however, too high and much simpler strategies were adopted.

All but the last attempt failed, and their final strategy was drive as fast as

possible at all times.

Earlier work doesn’t help much with deciding a driving strategy. If one impor-

tant thing can be learned it is that testing is very important, as complicated

systems such as a car are likely to fail in unanticipated ways.

17



3 The car system

The two cars had mostly identical electrical systems. Figure 10 is a simplified

sketch of the system, but everything that was relevant for the main control

unit is shown.

Figure 10: Sketch of the car system. Rectangular blocks represent computers
and microcontrollers communicating on the CAN bus while the round edged
shapes are simpler circuits.

The MCU links the driver to the actuator (motor). The driver gives input

through the joystick and its buttons, the front module translates this and

sends it to the MCU. Based on this input the MCU sends commands to the

motor controller which creates torque from the motor. The motor controller

also sends status messages back. Information sent to the MCU that is con-

sidered relevant to the driver is sent to the display module which presents

this on the display. The relay shown enables the MCU to open and close the

circuit leading from the battery to the motor controller circuit. This makes

it possible to turn the entire motor controller circuit on and off automatically

18



while driving, which saved us a lot of energy.

When the DNV GL Fuel Fighter team of 2014 took over the project from

last year’s team, we had one more or less working car. The UrbanConcept

had a lot of custom made electronics and modules, but some alterations had

to be made. I decided to switch out the main module, because I wanted

to use different software and hardware. Everything that would be reused

also had to be made twice, as we had two cars this year. I was in charge

of programming the main control unit, and the work concerning electrical

system and smaller modules was done by Ole Bauck and Vebjørn Myklebust

from fourth year Cybernetics. The motor and motor controller part was done

by Eirik Heien Mo from Power Electronics, but I present the entire system

in this chapter because it is relevant to understanding my decisions.

3.1 Electronics

The two cars had slight differences in their electronics, as the UrbanConcept

class required some accessories that the Prototype did not. This consisted of

lights, turn signals wind-shield vipers, while the modules that were interfaced

from the main control were identical in the UrbanConcept and the Prototype.

Because of this the MCU was almost identical in the two cars, except for some

constants based on car properties such as wheel radius and gear ratio.

3.1.1 Display module

The display module communicated with the main control via the CAN bus.

It parsed the CAN bus frames and retransmitted them to an LCD screen

using UART and displayed the data on a 20x4 characters LCD screen from

Sparkfun Electronics. The update rate of the LCD was programmed to 5Hz.

19



The display was used to show the driver

� estimated speed

� torque

� the latest status sent from the ECU

� the travelled distance from the start line

� time since start in minutes and seconds

� estimated average speed needed to finish on time

� the current driving mode

� a bar indicating centripetal acceleration, as an anti roll-over feature

The speed was estimated either by multiplying the ECU’s rpm value by wheel

circumference and dividing by gear ratio, or by readings from the GPS. The

ECU had a vast amount of possible status messages however, and while the

list was too long for the driver to memorize, it provided valuable insights to

me and the rest of the electrical team when test driving or racing. How the

values presented on the screen were calculated will be explained in detail in

chapter 5.

3.1.2 GPS module

The GPS module contained a GPS antenna, a microcontroller and 9-axis

IMU module. It had an accuracy of 10 m, and even though the start-up time

was documented as 42 seconds, it was normally 10-20 seconds. The GPS

module provided GPS coordinates as well as travelling direction and speed.

20



3.1.3 Front module

The front module’s task was to handle button presses and joystick inputs

from the steering wheel. Some of the functionality, such as the lights, fans

and horn, was handled by the front module on its own. The button presses

that were meant to reach the main control were sent via CAN bus, with a

frequency of 50 Hz.

3.2 Motor controller

New for this year’s Shell Eco-Marathon was that ”All Battery-electric vehi-

cles must have a self-built Motor Controller”. Earlier the motor controller

had been bought from commercial actors, and even then earlier teams had

problems with making it work. The custom made motor controller was built,

consisting of an FPGA-based Engine Control Unit (ECU) developed at SIN-

TEF and a custom made inverter designed by Eirik Heien Mo.

3.2.1 Power Consumption

The ECU had originally been designed to operate larger engines in SIN-

TEF labs, but could also control smaller motors. Many security mechanisms

were implemented on it, making it almost impossible to destroy by accident,

and accurate status messages made it easy to debug when it failed. The

trade-off, however, was a relatively high standby power consumption. Origi-

nally designed for larger systems where the power consumption of the motor

controller is insignificant, the ECU would draw around 15W . This was un-

fortunate, because the competition rules stated that the motor controllers

power consumption would count towards the final result (this was not the

case for the rest of the electronics in the car).

21



3.2.2 Operating the motor controller

The motor controller was controlled by connecting the ECU to the CAN

bus, see chapter 3.5.6. A reference for desired torque could be set by sending

messages over the CAN bus. Since the ECU was designed to be able to run

many different motors, one could request torque on a scale from -1000 to

1000. -1000 meant maximum torque in the negative direction, 0 meant no

torque and 1000 meant maximum torque in the positive direction. Between

these points, the scale was approximately linear [11].

As we had decided on switching the motor controller on and off, which it

wasn’t necessarily designed for, we experienced its behaviour in this situa-

tion. Switching off the circuit would cause the capacitors from the inverter

to output a declining voltage. That made the system shut down over the

course of one or two seconds, and in this phase it would output different

error messages. The cause of this was security mechanisms in the ECU, it

would notice too low values in some of its reading and issue warnings. In

normal operation, it would take around 5 seconds to restart.

3.3 Motors

The motor is perhaps the most important component in a car when it comes

to energy efficiency. It has to be chosen to fit the operating points of the car,

if the efficiency is to be high. With two very different cars, the choices fell

on two very different engines. One was an in-wheel axial flux machine, made

and run by the DNV FF team of 2010. Another was a much smaller axial

flux motor from AXI, designed originally for remote controlled air planes.

22



3.3.1 The in-wheel axial flux motor

The motor used in UrbanConcept was an in-wheel permanen magnet syn-

chronous machine[11], see figure 12. It was built for the DNV Fuel Fighter in

2010, and improved upon in 2011. Test results from 2010 claims the motor

had an efficiency of 90% under optimal conditions[?].

Figure 11: Testing done this year in lab showed a trend of better efficiencies
at higher rotational speeds, while torque did not seem to matter as much.
Nm on the x axis, RPM on the y-axis and efficiency on the z-axis. All credits
for this plot go to Eirik Heien Mo[11].

23



Figure 12: The in-wheel motor for the UrbanConcept, photo by Eirik Heien
Mo.

3.3.2 The AXi motor

The AXi 5360/20 Gold Line motor is a brushless three-phase motor designed

for flying remote controller planes of up to 15 kg. The manufacturer claims

the motor has an efficiency of up to 94%, and a high efficiency throughout

all of its operation range. The motor was connected to the wheel with a 1:10

gear ratio, to match its most efficient ranges with the cars running speed.

Testing had shown its optimal efficiency was foun around 2000-2500 RPM,

while we would normally be running between 20 and 30 km
h

.

24



Figure 13: Torque-Speed characteristics of the AXI motor used in the Proto-
type car, from [7]. The efficiency is notably higher at 200-240W axelpower,
which accelerates our car quite rapidly, in comparison to the axelpower
needed to maintain cruising speed of km

h
, which is less than 80W.

3.4 Electrical system

A very detailed explanation of the entire electrical system in both cars is

outside the scope of this text, but several points were of notable importance

to the main control unit.

3.4.1 The solar cell panels

The Shell Eco-Marathon rules state that in the battery electric vehicle class,

up to 20% of the total energy consumed by the propulsion system may be

subtracted upon finish, given that a sufficient amount of energy was produced

by solar panels. Thus, solar panels are a must if one wants to succeed. A

25



total of 48 solar cells were installed on the prototype car, in parallel rows of

12, connected to a Maximum Power Point Tracker (MPPT2) as seen in figure

14. A similar system was already installed in the UrbanConcept.

+ +

+ +

- -

- -MPPT

MPPT
+

+

+

+

-

-

-

-

+

-

24 V

24 V

48 V

Figure 14: Block diagram of the solar cells connected to the two MPPT’s,
providing enough voltage to charge the 48V battery

The tuning of the MPPT’s was left to Ole and Vebjørn. In order to keep

the output voltage sufficiently close to the desired voltage, the MPPT’s had

to be tuned for each day’s weather conditions, and even the sun’s strength

at given times of day. A voltage that was too high, would trigger security

mechanisms in the BMS or the ECU, which was likely the problem in our

first run.

2An MPPT’s task is to control the load connected to the solar cell panels that gives
the maximum possible power output.

26



3.4.2 Battery and BMS

3.5 CAN bus

3.5.1 CAN basics

The Controller Area Network is a message-based network protocol designed

for automotive systems. Each node connected to the bus is allowed to send

and receive messages if the bus is idle, i.e nobody is sending. If two nodes

try to send at the same time, the one with the lowest ID number is allowed

to send first. This gives a CAN network a hierarchy, messages with a high

priority won’t have to wait for less important messages. The format supports

bitrates up to 1Mbit/s, in our case we used a baud rate of 500,000.

Each message contains an identifier and up to eight bytes. The sender does

not define who receives the message or what it means, only its identity. Be-

cause of this, any number of nodes may choose to read messages of any

identity. It also makes it easy to add and remove nodes from the network.

This also ensures that a message is either accepted by all nodes in the CAN

network, or no nodes in the CAN network.

Because safety often is important in automotive vehicles, the CAN bus pro-

tocol implements many safety features. Error detection is performed by the

CAN bus system by performing a cyclic redundancy check, and CAN frame

acknowledgement. This ensures data consistency: either all nodes accept a

message, or no nodes accept the message.

27



3.5.2 The CAN bus in the DNV GL Fuel Fighter

The Controller Area Network bus worked both as power source for the elec-

tronics, and as a message system. Each component on the CAN bus was

connected to the network via an RJ11 cable, and each end was terminated

with a 120W resistor. Table 1 contains the different CAN frame protocols for

messages sent to the main control unit. Note that the bytes are numbered

from most significant to least significant, i.e the latitude should be read as

Lat1 Lat2 Lat3 Lat4 .

Sender ID Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8
GPS position 40 Lat4 Lat3 Lat2 Lat1 Lon4 Lon3 Lon2 Lon1
GPS velocity 41 Spd2 Spd1 Dir2 Dir2
Front module 30 But1 But2 JoyX1 JoyX2 JoyY1 JoyY2
ECU1 11 Chk ID Sig1 Sig2 Trq2 Trq1 RPM2 RPM1
ECU2 11 Chk ID Sig1 Sta2 Sta1
Hand brake 26 Brake
Accelerometer 45 AcX4 AcX3 AcX2 AcX1 AcY4 AcY3 AcY2 AcY1

Table 1: CAN bus protocol

3.5.3 GPS Position

The GPS position was sent in latitude and longitude, as two IEEE-754 floats3.

The GPS would transmit frames at 1Hz, but would often send positions that

were obviously wrong. These had to be discarded, and would usually appear

two or three in a row. The reliability of the GPS position was therefore

questionable, but it was still usable with limited accuracy as explained in

chapter 5.7.1.

3The IEEE-754 is a 32 Bit format for representing floating point numbers. It is used
by all modern CPUs

28



3.5.4 GPS Velocity

The speed (Spd, in knots) and direction (Dir, in degrees) read by the GPS

were coded as unsigned words4, and faced the same problems as the GPS po-

sitions they were based upon. As they were calculated from a simple distance

algorithm between last and current GPS position, they were highly unreliable

at low speeds because of inaccuracies in the GPS. The result between 20 and

30km
h

where the GPS speed was used, was somewhat better. The deacceler-

ation was slow, and so three or four seconds of delay was acceptable when

presented in real-time to the driver. This combined with noise did however

make the GPS speed measurement unsuitable for automatic decision making.

Many times, the accuracy was also too bad to be used whatsoever.

3.5.5 Front module

The front module transmitted the current joystick position (JoyX and JoyY),

and all button presses (But1 and But2). Note that each button byte con-

tained binary coded buttons, however only But2 contained information rele-

vant to the main control. But1 contained fans, lights and so on. The protocol

for But1 was

Reset Unused button Joystick button - - - - -

3.5.6 ECU1 and ECU2

The status messages sent from the ECU were always replies to a message

sent to the ECU by the main control unit. The checksum (Chk) was a

built-in security measure that was not utilized, that simply added all bytes

in the rest of the frame, as validation that the contents were correct. The

ID was the ECU’s ID, always 24. Sig1 and Sig2 were confirmations on the

416 Bits numbers coded in two’s complement

29



message ID’s that were requested by the MCU, in the case of ECU1 the

torque (Trq) and the engine RPM, while ECU2 requested to read an internal

status message (Sta). These, and a more thorough explanation of the ECU

CAN bus protocol can be found in [4].

3.5.7 Hand brake

The hand brake CAN frame simply implied whether or not the hand brake

was currently being used. As the hand brake was an emergency option, it

was safer to automatically stop the motor from providing torque if it were

to be used.

3.5.8 Accelerometer

IMU measurements from an IMU located on the GPS module were also

transmitted on the CAN bus, as two floats. These were meant to provide the

MCU with centripetal and longitudinal accelerations, but turned out to be

too noisy. Apparently this was a known problem with that particular IMU

model, and another solution was used for measuring acceleration.

3.6 Steering wheel

The 3D-printed steering wheel (figure 15) contained all inputs necessary for

the driver to control the vehicle, while also enabling the driver to turn the

front wheels. Three buttons gave the possibility to switch fans on and off,

sound the horn, and reset values such as time, position and driving mode.

The joystick decided on torque (up and down) and driving mode (left and

right).

30



Figure 15: The steering wheel in the Prototype car. Buttons at the upper
left, joystick at the upper right.

4 Hardware and software choices

It was a recommendation from the DNV FF Team of 2013 that we changed

main control unit this year. Jostein, who was last year’s electrical and cy-

bernetics team all on his own, recommended I used one of the boards from

National Instruments’ sbRIO (Single Board Reconfigurable Input Output)

series. A sponsorship deal was quickly agreed upon with one of their repre-

sentatives: we received two sbRIO’s and all required LabVIEW software in

exchange for logos on the car.

31



4.1 The National Instruments sbRIO-9626

The choice fell upon the sbRIO-9626, the newest and most powerful of the

NI sbRIO’s. It is a multi-purpose embedded control and acquisition device,

custom made for real-time processes. It features a real-time processor, a

user-reconfiguarable FPGA with 96 digital I/O-ports, USB, Ethernet, CAN

bus, RS-232, FTP, analog IO, 512MB of storage and more. All of this made

the sbRIO-9626 a good choice for a project that required a lot of prototyping,

and provided flexibility when solutions were to be made on the fly.

There are two options for operating the sbRIO-9626. One can connect it to a

computer running LabVIEW, through an Ethernet connection. This makes

it possible to examine data flow in the program in real-time, while the actual

program is running on the card and not the computer. This is particularly

convenient when prototyping and testing new functionality, and is how most

of my work was carried out. It’s also possible to upload the code to the card

as a standalone real-time application which is what was done when the car

was racing.

4.1.1 FPGA

The sbRIO-9626 provides a powerful FPGA from Xilinx, that can be pro-

grammed easily through a LabVIEW interface. It enables the sbRIO to per-

form heavy calculations without fear of overloading the real-time processor,

and to read DIO at a very high rate. It also reduces the power consumption

of the system, as much of the cost is paid ”up front”, when the FPGA is

programmed.

On the downside, however, all the DIO were required to be read by the

FPGA. This meant that any changes to DIO ports and functionality would

require a reprogramming of the entire FPGA, a process that took around 5

32



Figure 16: The NI sbRIO-9626 with Rio Mezzanine Card mounted (for DIO
with the FPGA).

minutes the first times it was done, but as the FPGA had been compiled

more and more times, as long as 20 minutes. 20 minutes is a long time for a

minor change, when time is an issue.

4.1.2 Analog input/output

The sbRIO-9626 also provides 16 ±10V tolerant 16 Bit AIO ports, connected

directly to the real-time processor. According to the manual[3] this results

in a resolution of 302µV , more than enough for simple tasks the analog

accelerometer would be used for.

33



4.1.3 CAN bus

The CAN port uses an NXP-PCA82C251T embedded CAN transceiver, sup-

porting baud rates up to 1Mbps. It provides ground, CAN High and CAN

Low pins, as well as an optional shield pin to allow connecting to shielded

CAN networks. The CAN frames are transmitted directly to the real-time

processor.

4.1.4 Drawbacks of the sbRIO-9626

While the sbRIO-9626 provides a lot of flexibility, it comes at a cost. The

start-up time of the system depends on the software it is loaded with, but

it is 50 seconds at the lowest. This eliminates restarting as a valid bug-fix

during a race, as even 50 seconds is way too long a wait to be allowed to

continue racing.

It is also a quite big thing, the sbRIO-9626. When we compared our elec-

trical compartment to the ones of other high-performing Prototype cars in

Rotterdam, ours stood out as big. Space and weight could definitely be saved

by reducing its size.. This can be attributed mostly to the ECU and inverter,

but the sbRIO is still bigger than it needs to be, considering what its tasks

are. It has a lot more functionality than what is used, and 96 DIO ports are

a bit of an overkill.

4.2 LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a de-

velopment environment for the visual programming language known as G.

The programming language G represents is known as a dataflow program-

ming language[5]. The structure of the program is represented by block,

connected by wires that transport data from one block to another. A block

34



may execute once all its data are available, and since this may be the case

for several blocks at a time, parallel execution is easily achieved in G.

Figure 17: Example of LabVIEW block programming, here represented by
the data sent to the display module.

Along with parallelism, LabVIEW also provides the user with a user inter-

face for the program by default, as a front panel is programmed alongside

the block diagrams that decide the functionality of the program. LabVIEW

also has a very large library of built-in functions, which makes some tasks

that usually require a lot of programming to be easily implementable with a

single block. Many add-on packages also exist that implement for example

real-time programming functionalities or more theoretically advanced control

engineering blocks.

35



5 Control system

Most of my time on this project was spent on developing the main control

unit. The goal was to provide the necessary functionality for the driver to

operate the car, and to simplify running the vehicle in an energy optimal

sense. As a side objective came the roll-over sensor implemented by the ac-

celerometer, intended to be a safety functionality. This was made to be used

as an argument in our application for the safety award, which we required to

apply fro by our main sponsor DNV GL.

In this chapter I will describe how the MCU worked, why certain choices

were made, and i will explain the system in such a way that it may be reused

by the next team, should they wish to do so.

5.1 Driving Strategy

The most important objective was to ensure that the car would actually finish

the race within given constraints, without putting the driver at increased risk.

On top of this, as explained in 1.8, it was desirable to make a system that

enabled the driver to drive close to optimally in terms of energy efficiency.

5.1.1 The MPC approach from the project report

In [6] I examined using an MPC based control algorithm that took into ac-

count air drag, mechanical friction and start/stop objectives, as well as a

simple motor efficiency model. An MPC minimization problem was formu-

lated as

min
û(k),...,û(k+Np−1)

Np−1∑
i=0

ûT (k + j)û(k + j), (4)

36



s.t.x̂(k + i) = Ax̂(k) + Bû(k), ∀i = 0, .., Np,

x̂(k + i) ∈ X(x̂(k), t, i), ∀i = 0, .., Np,

û(k + i),∈ U(k) ∀i = 0, .., Np,

where the objective of minimizing energy consumption has been simplified

to minimizing the square sum of the torques û(k). Ensuring a finish within

time is handled by the set of dynamic admissible states X(x̂(k), t, i), and

the linearised model is represented by A and B. Assuming that states are

reasonably accurately acquired, that roads were empty and that the motor

model was a good approximation, this would probably have been a good ap-

proach. However this was not the case.

The motor controller circuit was the only circuit required by rules to be pow-

ered by the main battery. In other words, energy consumed by this circuit

could be viewed as a pure loss in terms of competition result. The standby

power consumption of this particular circuit was assumed to be negligible in

the project report, but in real life turned out to be around 15W . For a car

aiming to run at below 30W this must be considered a very important factor

when deciding on driving strategy.

The simple motor model also turned out to be too simple. It assumed that

by minimizing the square sum of the torques as in equation 4, the motor

would operate in its most effective area. The truth was more complicated, as

seen in figure 13. In fact, the lowest efficiency was found at low torque, while

the highest was found at torques that would result in a relatively high accel-

eration for our vehicle. Both this, and the motor controller’s high standby

power consumption indicated that staying close to the required average speed

of 25km
h

was a bad idea. The traffic situation on the track also made planning

37



speed more difficult, as the position of other cars relative to our car had to

be taken into consideration to avoid having to brake.

5.1.2 Pulse and Glide control

While the MPC approach was optimal under its assumptions, the different

reality made it far from optimal in our case. It was necessary to drastically

reduce the time spent the with motor controller circuit turned on. It was

also desirable to avoid running the motor at its lower efficiency, in the low

torque area. The obvious solution was to accelerate fast to a certain speed,

and then switch the motor controller circuit off while rolling for as long as

possible. The driver would then switch the system on again, through the

MCU, and start accelerating when the speed was low enough. It was also

convenient to give the driver more control over her speed and acceleration, as

the track turned out to be more crowded than we previously thought. The

resulting driving strategy can be summarized as follows

� Switch motor controller on

� Request constant torque until speed is sufficiently high

� Switch motor controller off

� Roll until speed is sufficiently low

� Switch motor controller on

� Request constant torque until speed is sufficiently high

� Repeat until finish.

While this can easily be done automatically, it was left to be done manually

by the driver. This had several reasons, most importantly it gave the driver

some flexibility in when to accelerate. Where to accelerate was a decision

38



best done by the driver, as it had to take into consideration cars nearby,

turns nearby, remaining time and distance, and slight variations in slope of

the track. The GPS that would measure speed while the ECU was switched

off was also unreliable, and the ECU itself was not designed to be switched on

and off frequently. This led to a lot of random error messages, and the ECU

would sometimes have to be reset by the driver to work properly. Because of

this, a simpler approach was used where the driver was the one who would

switch the system on and off, based on data from the display and information

from the team via cell phone.

5.2 Main

The structure of the LabVIEW program is perhaps best demonstrated by

figure 18. After the block on the left has made some basic initializations,

a message queue is initialized. The message queue is a feature that ensures

certain events happen only once, by providing atomic execution. Then, eight

different real-time loops are invoked, each seen as a colourful box connected to

the purple message bus. These run in a parallel, mostly exchanging necessary

data with each other through a library of shared variables. All continuously

updated variables are handled locally in each loop, while events that need

special handling are sent on the message queue to be handled by the main

function. The main window is known as a VI, or virtual instrument, while

the real-time loops are called subVI’s.

5.3 Can handler

Several different modules sent messages over the CAN-bus that were directed

to the MCU. While outgoing CAN frames from the MCU were handled by

39



Figure 18: The main LabVIEW block diagram. After the block of code to
the left has initialized the sysytem, a message queue and eight real-time loops
are invoked.

different loops, all reading of CAN frames were gathered in the CAN message

handler. The senders included

� ECU

� GPS

� Accelerometer (not used)

� Front module

� Hand brake

40



While none of these had particularly high sending rates, 100Hz at the most,

their total rate of messages sent was closer to 200 per second. The timed loop

that received these messages was therefore set to read the CAN bus every

third millisecond, to avoid overflow in the transmit or receive queue of any

of the units connected to the CAN bus.

Figure 19: The CAN handler timed loop.

Each frame received by the CAN message handler would be split up into

different data types. Information such as speed, GPS latitude or status

messages would typically be stored in a shared variable, while button presses

would be sent as a message over the message queue.

5.4 Motor control

The motor control loop handled the creation of CAN frames directed to the

ECU. Each time the ECU was started anew, it was necessary to initialize

some of its internal variables. The loop would therefore send these messages

continuously until the ECU answered back. Upon successful initialization, it

would switch from initializing to operation.

The motor controller loop sent CAN frames at 50Hz to the ECU. It would

41



switch between requesting a set-point for torque and requesting RPM and

torque reference, or setting the engine in drive and requesting a status mes-

sage.

The motor controller loop, while in operation, had three different modes.

While in manual mode the driver could control the torque set-point with

her joystick. In auto-drive mode, she would immediately receive maximum

torque if she pushed the joystick upwards. As seen in figure 13 the engine was

more effective in the higher torques, and this allowed her to avoid having to

move through lower torques to get to maximum. It also allowed fast moving

into auto-stop mode. Moving to auto-stop mode would switch of the entire

motor controller circuit using a relay, in order to save energy while rolling.

Figure 20: A state-machine representation of the driving modes. The ECU
is switched on in Manual and Auto-drive, and off in Auto-stop.

42



5.5 User interface

The user interface block was in charge of reading the handling readings from

the joystick. It would loop at 20Hz, fast enough to appear instant to the

driver, slow enough to not impose an unnecessarily large load on the system.

When in manual mode, it would simply add up the vertical joystick value

from the front module. The joystick sent a value in the range ±512, and the

user interface loop would read these every 50 ms, and add them together.

This number was scaled by a constant, to give the driver some sensitivity

in how fast or slow she wanted to move the set-point of the torque. If the

joystick was untouched or very close to middle, the set-point would slowly

drift towards 0. This was a requirement imposed by the Shell Eco-marathon

employees during technical inspection.

When in auto-stop or -drive, the functionality of the joystick was switched

to being simply up, down, left or right.

5.6 FPGA

Given the LabVIEW framework for connecting real-time applications and

FPGA applications, a dedicated subVI for communicating between the two

layers was necessary. This subVI, through an underlying FPGA-VI, read

values from an accelerometer and enabled the real-time application to switch

the motor controller circuit on and off through a relay.

The accelerometer was used to measure centripetal acceleration. The me-

chanical engineers calculated that the car should not exceed a centripetal

acceleration of 1
2
g, or approximately 4.9m

s2
, in order to be safe from rolling

over. The centripetal acceleration was read and low-pass filtered by the

FPGA-VI, and scaled to fit the interval ±128. This was sent to the display

module, which would interpret the value as an acceleration to either side,

43



Figure 21: The User Interface subVI.

depending on the sign of the value. This was then represented on the screen

as a bar, where a centripetal acceleration of 1
2
g would make a full bar, indi-

cating that the car was turning too fast.

The relay was controlled by a 3.3V DIO on the RMC, that was only accessi-

ble through the FPGA. The relay worked as an electric switch, which allowed

power to pass through if the DIO was high, and opened the circuit when the

DIO was low.

44



Figure 22: The FPGA subVI, and the loop running on the FPGA.

5.7 GPS

The GPS module provided two different messages, one for position and one

for velocity. A checkpoint system was implemented to use the position for

something meaningful, while the speed was simply stored in a shared variable.

5.7.1 The checkpoint system

In order to know the remaining distance to travel, it is necessary to keep

track of the distance already travelled. Combining this with a timer, it is

simple to know which average speed is required to finish the race on time.

However, integrating speed to measure distance has a tendency of drifting,

and combining this with the unreliability GPS measured speed, it is neces-

45



sary to implement a more robust speed system. As the track the car would

use was known, a simple checkpoint system could be implemented. This was

used to update the distance travelled six times each round, as well as keeping

track of lap number. As the driver did not rely on very accurate distance

measurement, this provided sufficient accuracy.

After having decided six checkpoints, and recorded these with the GPS, these

positions were hard coded into the GPS subVI. The GPS would then trig-

ger a message when the car came close to that point, and if this was a

different checkpoint than last, the position would update after the formula

Cpos+NrDr, simply the position of the checkpoint plus the lap distance times

number of laps.

Figure 23: The six GPS checkpoints on the Ahoy! track. A marks the start
line.

In table 5.7.1 the GPS coorindates are presented in degrees north and degrees

46



Checkpoint A B C D E F
Latitude 51,8836° 51,8835° 51,8813° 51,8814° 51,8832° 51,8844°
Longitude 4,48917° 4,49154° 4,49148° 4,48688° 4,48306° 4,48905°

Table 2: GPS checkpoints

east. The GPS VI would continuously check the distance between its current

position and each of these six checkpoints, and trigger messages when within

50 meters of a point. For calculating distance, a simplified formula was used,

that has sufficient precision over small distances (in a GPS perspective). The

formula makes use of what is known as the equirectangular projection and

Pythagoras’ theorem.

∆Position = Rearth

√
(∆λcos

φ1 + φ2

2
)2 + (∆φ)2 (5)

where Rearth is the Earth’s radius, ∆λ is the difference in latitude in radians

between the two points, and φ1 and φ2 are the two longitudes. It ignores

the curvature of the Earth’s surface, but includes a small correction for the

Earth’s elliptical shape.

5.7.2 The GPS speed

The GPS speed was, as discussed earlier, not very reliable. Due to its nature

of simply calculating distance between points and dividing by time, it was not

very useful when travelling at low speeds. Several of the speed measurements

would simply be outliers, and had to be discarded. However, as the motor

controller was turned off most of the time, the GPS speed was used in its

place. The back wheel, which was where the motor was applying force, had a

flywheel installed. That meant that the motor could only be assumed to be

turning at the same rate as the wheel when the motor was applying torque,

47



or else the wheel could be moving faster. As a result, the GPS speed was

presented on the screen not only whenever the motor controller was off, but

whenever no torque was requested from the engine. This worked to some

degree, but I recommend next year’s team find a different solution.

5.8 Logging

A simple logging function logged all data that could be relevant, at a fre-

quency of 1Hz. The data was stored as a text file in the sbRIO’s memory.

5.9 Display

The Display VI sent relevant data to the display module over the CAN bus.

Since the frame rate of the display was only set to 5 fps, the display module

was set to send at 5Hz. 10 different pieces of data were sent to the display:

� Time

� Position

� Average speed required to finish on time

� Lap number

� Control mode

� Last checkpoint

� Speed (GPS or RPM-based)

� Torque requested

� Centripetal acceleration

� The ECU status message

48



Figure 24: The Display VI.

5.10 Time and position

The Time and position VI provided a simple timing function, and calculated

distance to be presented on the display. It also calculated the average speed

required to finish the race on time, by dividing estimated remaining distance

by remaining time.

49



Figure 25: The Timing and position VI.

6 Competition

This year’s Shell Eco-marathon in Europe hosted more than 3,000 competi-

tors bringing over 200 self-made cars. Most of the teams competing are from

Europe, but quite a few are also African. Education levels range from high

school to university, and the youngest teams usually have professors partic-

ipating in the work.` On May 12 most of the DNV GL Fuel Fighter team

left for Rotterdam. The two cars were already on their way down, carried

in two vans by the mechanical team. The Shell Eco-Marathon 2014 lasted

for one week, 12th of May until 19th of May. We unpacked our things on

Tuesday and started doing the final adjustments of our cars. On Wednesday,

we completed the technical inspection. On Thursday we had our first test

runs, and some testing was also done on Friday, while all races were run on

Friday, Saturday and Sunday.

50



Figure 26: Most of the participants in the Shell Eco-marathon. All Rights
Reserved Shell Eco-marathon 2014.

6.1 Ahoy! Arena in Rotterdam

The Ahoy! Arena is a convention center located in Rotterdam of more than

30, 000m2. Upon arrival each team is assigned a paddock in the main hall

where they can work on their cars and prepare for the technical inspection.

6.2 Testing UrbanConcept

We had very minor testing beforehand with the UrbanConcept car, but the

car had raced before and the mechanical parts of the vehicle seemed fairly

reliable. We were however aware that there was some trouble concerning the

encoder.

51



Figure 27: The paddock area. All Rights Reserved Shell Eco-marathon 2014.

6.2.1 Encoder problems

The encoder’s task is to keep track of the angle and rotational speed of the

in-wheel motor. If the ECU assumes the wrong angle between stator and

rotor, it will set up a misplaced magnetic field. This leads to a weaker, less

efficient engine, and may even start turning the car backwards. In our case,

loss of position mostly meant no movement whatsoever.

Many things had been tried, but since the car had been designed for another

motor, the encoder solution was never really very reliable. It would slowly

drift away from the ideal angle measurement, because of slipping between

the shaft and the motor. It had to be tuned each time the car was moved,

because of the way the dampening in the wheel changed the angle of the

encoder relative to the wheel. Additionally, the wheel had to be spun around

half a round upon each start-up to find position, making it necessary to keep

the system running when stopping the car if one wished to start again.

52



Figure 28: The encoder fastened to the wheel.

6.2.2 Test racing

Finally being able to test the car in the real world, on the actual track

with the actual drivers sitting inside revealed several important points of

improvement:

Driver training

The drivers needed a better understanding of the car system in order to oper-

ate it reliably. The long start-up time of the motor controller system hadn’t

been explained well enough, and the encoder’s functionality hadn’t really

been understood. Also, the user interface state-machine, shown in figure 21,

wasn’t as intuitive as I had assumed while designing it. More off-track driver

training and explanation had to be done, perhaps most importantly for them

to be able to explain to me what they experienced over the phone, so that I

53



could provide meaningful assistance.

GPS speed

The GPS speed measurement had been finished late, and as the cars had

never been run with it functioning, the reliability when driving was ques-

tionable. The speed, according to driver, seemed to be working reasonably

well, but would often not update for three or four seconds.

Encoder

While the encoder problems were known beforehand, their actual race impact

had yet to be tested. The driver sometimes forgot to turn on the motor con-

troller early enough before a stop, meaning the encoder wouldn’t be turned

on for the final turnings of the wheel. In these occasions the car wouldn’t

be able to start again, which would have cost us the race if it happened on

a real attempt. The slipping of the encoder shaft also seemed to be worse

when asking for maximum torque, and it was decided to get a complete run

with the UrbanConcept with motor controller turned on at all times, using

only manual mode. While this would be suboptimal, the test runs we had

did not seem promising enough when switching motor controller circuit on

and off.

6.3 Testing Prototype

The Prototype had a more reliable system electrically. The main reasons for

this was the different encoder solution, which was working as it should with-

out need for tuning. While it also needed turning of the wheel to initialize

54



position after start-up, the Prototype wasn’t required to stop once between

each round. That meant the car would always be rolling whenever the en-

coder was restarted, and so this was not an issue with the Prototype.

The car was initially tested without solar cell panels running, as the person

responsible for these would not arrive until the last day of testing. While

the driver problems were more or less the same as in UrbanConcept, the mo-

tor controller and encoder seemed reliable. The start-up time of the motor

controller circuit was stable at around 5 seconds.

Display

During testing it was revealed that the latest update to the display had sent

the update rate down to about 1Hz. There was also problems with the timer

disturbing other values once time passed 1000 seconds, and so the display

module had to be reprogrammed.

Joystick

The joystick suddenly started behaving a bit differently from what we were

used to in the lab, with more noise and some small offset. This was handled

by Ole and Vebjørn by some filtering algorithms in the front module, but

I also added a simple filter in the User Interface VI. The sensitivity of the

joystick was reduced as well, on request by the drivers.

6.4 Racing Prototype

6.4.1 Race 1

After having walked in the opening ceremony, we were the first car to start

the Shell Eco-marathon 2014. Unfortunately we failed the braking test that

55



was held at the start line. The hydraulic front brakes needed pumping in

order to work, and this was not allowed. This was unexpected, as the car had

been allowed to start test racing with the same brakes, and even passed the

braking test on the technical inspection. This problem needed quite some

work done to be fixed, and so we did not manage to get another attempt

that day.

6.4.2 Race 2

After fixing the braking problem, the Prototype was ready for its first at-

tempt. Very limited testing with the solar cell panels had been done, and we

had needed to remove them from the circuit in one of our test runs to make

the car run reliably. The sun was at its strongest during this race.

The test runs without solar panels had been going well, and this race also

started out well. The driver accelerated to around 32km
h

, switched the system

off and coasted, and restarted and accelerated again. She needed slightly less

than 3 accelerations per round: she would still have quite a bit of speed in

the beginning of each lap from previous acceleration.

The first few rounds were fine, but then the trouble started. The motor con-

troller circuit normally used around 5 seconds to start, but this started to

take more time. The motor controller began sending error messages, mostly

the message 0x75, see [4]. We later learned from Kjell Ljøkelsøy that this

was likely caused by some too high input voltage. As the rounds passed,

the motor controller became less and less reliable. Simply waiting a longer

period on start-up of the motor controller no longer worked, and it would

require additional resets to start working. It would also shut off on its own

accord, often just a few seconds after a successful restart.

56



This seemed to get worse and worse, and the last rounds the driver mul-

tiple times waited more than 30 seconds for the controller to respond, and

almost coming to a complete halt. Fortunately, we had increased the average

speed upon noticing problems, and we had a big enough safety margin for the

last lap times to be higher. The resulting driving, as seen in figure 29, was

however suboptimal. The maximum speed would be held for an increasing

amount of time, and the car would also come to almost complete halts at

times. The race was finished within time limit, and the result was 512km
h

.

This placed us at a current 7th place.

Figure 29: Speed log from run with motor controller problems. Motor con-
troller shutting of mid acceleration, and unwanted long deceleration phase.

57



6.4.3 Race 3

Some safety margins on the motor controller were increased in an attempt

to avoid the ECU shutting itself off due to error 0x75. The solar cell panels

were tuned anew as well. I suspected solar cells to be the problem, since

everything had been going well during testing, and the only new element in

the system was the solar cell panels being connected.

This run was much better in terms of motor controller, but our cell phone

communication failed in round 3. The driver no longer had my input on time

and speed, but we moved to a different part of the track and held up signs to

guide her to go faster or slower. This worked, and she finished the race with

around 10 seconds left. The race was better than the first in terms of energy

consumption, she reduced total consumption from 141,000 Joules to 131,000

Joules. This was, however, much earlier in the morning than last race and

the solar panels didn’t produce enough energy to cover the 20%. The new

result was 520 km
kWh

.

6.4.4 Race 4

The car system seemed to be working as expected in Race 3, and once the cell

phones were fixed we started another race. Having spoken with the driver,

we agreed she would change driving style a bit. Earlier races, she had ac-

celerated to 32km
h

and then held that speed for a few seconds. She would

now switch the system of immediately at 32km
h

in order to reduce the motor

controller circuit’s time spent running. She would also try to keep a higher

speed in an area with a slight downhill, and instead go slower in areas with

more turns and uphills.

The result this time surprised us all. Even though the system was working

58



as expected in both the third and this try, energy consumption was reduced

from 131,000 Joules to 118,000 Joles just by minor adjustmens to driving

strategy. This yielded 10% improvement of the result on its own, but as the

solar cell panels now produced enough power, the final result was 612.8 km
kWh

.

This was an improvement of 17.6% from race 3, and ended up placing us 7th

out of the 49 teams participating in the Prototype class.

6.5 Racing UrbanConcept

6.5.1 Race 1

Based on the results from testing we decided to run the UrbanConcept car

in manual mode and keep the motor controller on at all times. There had

been to many problems with not being able to start after stopping because

of the encoder, and the team needed a morale boost after being stopped at

the start line with the Prototype.

The race started out well, but it was clear that the encoder wasn’t perfectly

tunes. The acceleration was slower than it had been when testing with a

perfectly tuned encoder, but it was acceptable. Everything seemed to be

working well, until the very last part of the last round when the steering

wheel broke and our driver was unable to make turns. Fortunately, she was

headed straight for the finish line at this point, and we got our first successful

attempt. The result was 198.7 km
kWh

.

Figure 30 shows one round, from a complete stop to another complete stop

at around 450 seconds. As shown, the driver accelerates up to 32 − 34km
h

and then starts rolling. Once she starts rolling, speed measurement switches

59



from ECU-based to GPS-based. In this case, the GPS speed was stable at

around 16km
h

, which was incorrect and not providing the driver with valuable

information. The speed at which to start accelerating again therefore had

to be decided by driver intuition and cell phone communication rather than

speed measurement.

Figure 30: Speed logging from the UrbanConcept’s first race.

6.5.2 Race 2

Having a successful attempt at both cars, we decided to try switching the

motor controller on and off. More time was also spent tuning the encoder

with the driver inside, and the race seemed to be going very well. In the

fourth round however, the door flew open and the race had to be cancelled.

60



Figure 31: The door handle suddenly broke for unknown reasons, and it was
not possible to close the door again. All Rights Reserved Shell Eco-marathon
2014.

6.5.3 Race 3

In our third attempt, there were problems with the encoder and the car never

managed to build up more speed than 4− 5 km
kWh

. It was taken off track after

around 50m, to be tuned again.

6.5.4 Race 4

Race attempt 4 saw the encoder problems from attempt 3 repeated, and the

UrbanConcept had to cancel the race once again. The maximum number of

attempts was 4, and so that marked the finish for the DNV GL Fuel Fighter

UrbanConcept 2014.

61



7 Recommendations and conclusion

7.1 Plan versus reality

In chapter 1.7.2, I presented my initial plan for how this project would be

executed. In chapter 1.8 I presented the overall goal of my project contribu-

tion. The plan was followed initially, and in the beginning of the semester I

spent a lot of time recruiting the electrical team. I was fortunately successful

in finding Ole Bauck and Vebjørn Myklebust for the job, I was able to focus

on developing the MCU.

As seen in figure 7 I planned to start prototyping in LabVIEW early, move

on to running the motor in the laboratory and then start testing the car. The

prototyping and testing in the laboratory went as planned, but the testing of

the car started much later than anticipated. The components needed to run

the motors in the laboratory were already in place, but the printed circuit

boards and custom made inverter arrived after Easter. It wasn’t possible

to test run the UrbanConcept outside before these parts arrived, and the

Prototype was not ready to be test driven until less than 24 hours before

departure for Rotterdam. Actual outside test driving before departure was

therefore, unfortunately, reduced to next to nothing, and I had to test the

cars standing on rigs inside.

I had also planned to implement the MPC algorithm from my project report

in both the cars. As I explain in chapter 1.8 this was not implemented for a

number of reasons, mainly lack of testing possibilities and that the assump-

tions about motor efficiency made were incorrect. This, as well as a better

understanding of the traffic situation on the Ahoy!, changed my mind about

the MPC controller. Not only would it be less realistic to implement because

62



of the more difficult optimisation problem, but it wouldn’t be as optimal as

my theory had shown.

Instead of implementing the MPC controller, I made a user interface that

made Pulse and Glide [2] driving possible. The driver was able to switch

between acceleration and coasting without much input needed, and this gave

her more control over the race than an MPC would have done. This much

simpler scheme also made the resulting system more reliable in contact with

an unstable motor controller system, and in chapter 5.1 I argue that this

approach was way more efficient than the MPC would have been.

7.2 Recommendations for the next year’s DNV GL

Fuel Fighter team

7.2.1 Driving strategy

From a higher level perspective, my main responsibility was that the car was

driven as close to energy optimal as the physical and electrical system would

allow. The decisions I made were mainly based on two factors I couldn’t

change: The motors’ efficiencies at different torques and RPM’s, as well as

the high standby power consumption of the motor controller circuits. This

led to a driving strategy that is suboptimal in a physical perspective. In a

system where air friction is one of the main losses, it is desirable to avoid

high speeds because of air friction’s quadratic nature. Keeping speed con-

stant would also reduce the amount of takeovers of or from other cars.

Obviously looking into reducing the motor controller standby power con-

sumption is one of the most important factors, it is a pure loss. If this can

63



be reduced sufficiently, such as down to 1-2 W, I also recommend going for

constant speed instead of Pulse and Glide.

7.2.2 Motors

If the motor controller circuit can be made to be run with a sufficiently low

power consumption, a new motor should be considered for both cars. It is

very important to find a motor with the right characteristics. Finding one

that has its peak efficiency at the required average speed of 25km
h

and the

torque needed to keep this speed would definitely improve the result. It

should also be considered to have an additional motor for the acceleration

phase, with peak efficiency at higher torques.

7.2.3 Speed measurement

The speed measurement provided by the GPS had an inaccurate and unreli-

able speed measurement. It is however very easy to measure speed in other

and much more accurate ways, such as installing a bike speedometer. I rec-

ommend finding another solution than using GPS.

7.2.4 Testing

One of the deciding factors for what was possible to implement this year was

lack of testing. As I show in 2.2, earlier teams also report major problems

that could have been avoided with more testing. If testing had started ear-

lier, the problems with the GPS speed would have been discovered in time to

find another solution. Perhaps we would also have found and fixed the solar

64



cell panel related motor controller problems, or the faulty door.

It is important to find time for testing, even when one has to wait for others

to finish their work. I strongly recommend finding a way to test most of

the system even before the rest of the team has finished their work, and to

document the testing well.

7.2.5 LabVIEW and sbRIO-9626

Based on my experiences with the sbRIO-9626 and LabVIEW, I don’t recom-

mend that next year’s team reuse the LabVIEW solution unless they know

LabVIEW beforehand. The sbRIO-9626 is needlessly large, and the start-up

time is too long (50 seconds). Most of the functionality of the card is never

used, and the extra time spent developing LabVIEW programs instead of a

simpler solution simply isn’t worth it unless you’re making a system with

advanced real-time related constraints.

7.3 Conclusion

In this report I document my work on and experiences with the DNV GL

Fuel Fighter team of 2014. Main control units for both DNV GL Fuel Fighter

cars were developed and implemented in LabVIEW, communicating with the

rest of the system on a CAN bus. The system was tested on the Ahoy! track,

improved upon and successfully run in the competition.

New information about the system to be controlled made me change my

approach on driving strategy. Looking at the 10% increase in distance per

energy from the Prototype’s third to fourth attempt, it is evident that driving

strategy is a factor that can make a big impact. Based on my analysis and

65



experiences, I also made recommendations for next year’s team concerning

driving strategy, motors and speed measurement.

The Pulse and Glide approach was simple to implement, and it proved to be

effective in our case. I find it to be a promising

66



—————————————————————————–

67



68



Bibliography

[1] J. M. Harstad Bakken, Styresystem for fremdrift av Shell-Ecomarathon-

kjøretøy. Norwegian University of Science and Technology, 2009.

[2] J. Lee, Vehicle Inertia Impact on Fuel Consumption of Conventional and

Hybrid Electric Vehicles Using Acceleration and Coast Driving Strategy.

Virginia Polytech Institute and State University, 2009.

[3] National Instruments, OEM Operating Instructions and Specifications

NI sbRIO-9605/9606 and NI sbRIO-9623/9626/9633/9636. National In-

struments, 2014.

[4] K. Ljøkelsøy, Control system for a three-phase grid connected converter.

SINTEF Energy Research, 2014.

[5] Wikipedia, ”LabVIEW”, Wikipedia, The Free Ency-

clopedia. Wikimedia foundation, Inc. 16 June 2014.

(http://en.wikipedia.org/wiki/LabVIEW)

[6] H. Trømborg, Model Predictive Control For the DNV Fuel Fighter. Nor-

wegian University of Science and Technology, 2013

[7] B. O. Wiik, Elektrisk Fremdriftsystem for Shell Eco-marathon Pure-

Choice Kjrety. Norwegian University of Science and Technology, 2008

69



[8] B. Gutjahr, Energy Optimized Driving Strategy for a Shell Eco-Marathon

Race Car. Institut für Systemtheorie und Regelungstechnik Universität

Stuttgart, 2012.

[9] J. S. Øverby, Regulering og optimalisering av Shell Eco-marathon

kjøretøy. Norwegian University of Science and Technology, 2011.

[10] DNV Fuel Fighter team 2013, Eco-marathon 2013. SEM Final Project

Report. Norwegian University of Science and Technology, 2013.

[11] E. H. Mo, High Efficiency Electric Propulsion Systems for Shell Eco-

Marathon 2014. Norwegian University of Science and Technology, 2014.

[12] J. Cheng, Y. Davydova, P. Howlett, and P. Pudney, Optimal driving

strategies for a train journey with non-zero track gradient and speed

limits. IMA Journal of Mathematics Applied in Business & Industry,

1998.

[13] B. Asadi and A. Vahidi, Predictive Cruise Control: Utilizing Upcoming

Traffic Signal Information for Improving Fuel Economy and Reducing

Trip Time. IEEE Transactions On Control Systems Technology, 2011.

[14] J. N. Hooker, Optimal Driving for Single-vehicle fuel economy. Graduate

School of Industrial Administration, Carnegie-Mellon University, 1998.

70



Appendix A

71



F
igu

re
32:

T
h
e

overall
w

irin
g

d
iagram

of
th

e
P

rototy
p

e,
cred

its
J
ostein

F
u
rseth

[10].

72



F
ig

u
re

33
:

T
h
e

ov
er

al
l

w
ir

in
g

d
ia

gr
am

of
th

e
U

rb
an

C
on

ce
p
t,

cr
ed

it
s

J
os

te
in

F
u
rs

et
h

[1
0]

.

73


