
Path Planning for Search and Rescue
Mission using Multicopters

Håvard Lægreid Andersen

Master of Science in Engineering Cybernetics (2 year))

Supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name:	
 	
 	
 	
 Håvard	
 Lægreid	
 Andersen	

Department: Engineering	
 Cybernetics	

Thesis title (Norwegian): Baneplanlegging	
 for	
 søk-­‐	
 og	
 redningsoppdrag	
 med	
 multicopter
Thesis title (English): Path	
 Planning	
 for	
 Search	
 and	
 Rescue	
 mission	
 using	

multicopters	

	

Thesis Description: Design and investigate methods for search and rescue operations performed by
UAVs, particularly multicopters (quad/hex).

The following items should be considered:

1. Overall	
 system	
 and	
 mission	
 description	
 with	
 detailed	
 module	
 interaction	
 schemes	
 and	

protocols.	

2. Field	
 of	
 view.	
 Find/suggest	
 algorithm	
 to	
 calculate	
 which	
 area	
 that	
 is	
 covered	
 by	
 the	
 on	
 board	

camera	
 when	
 given	
 the	
 multicopter’s	
 position	
 and	
 attitude	
 (with	
 and	
 without	
 gimbal?).	
 The	

algorithm	
 should	
 be	
 implemented	
 in	
 the	
 ground-­‐station	
 software,	
 giving	
 the	
 operator	
 a	

graphical	
 presentation	
 of	
 which	
 area	
 the	
 multicopter	
 has	
 covered.	

3. Path	
 planning	
 for	
 a	
 Search	
 &	
 Rescue	
 mission.	
 Incorporate	
 map-­‐data	
 and	
 topography,	
 and	

study	
 optimal	
 trajectories	
 (or	
 paths)	
 for	
 different	
 scenarios.	
 	
 Discuss	
 how	
 the	
 onboard	

camera	
 should	
 be	
 guaranteed	
 to	
 observe	
 the	
 entire	
 area	
 of	
 interest.	

4. Optimal	
 altitude.	
 Discuss	
 which	
 altitude	
 the	
 search	
 should	
 be	
 conducted	
 at,	
 considering	
 the	

field	
 of	
 view,	
 size	
 of	
 the	
 subject	
 in	
 the	
 camera	
 frame	
 and	
 physical/technical	
 limitations.	

5. Implementation	
 of	
 the	
 path-­‐planning	
 scheme	
 in	
 the	
 ground	
 station	
 and	
 on	
 the	
 UAV	
 payload	

computer.	
 	

6. Verify	
 the	
 proposed	
 path-­‐planning	
 scheme	
 by	
 simulations	
 and	
 experiments.	
 Conduct	

missions	
 for	
 different	
 stationary	
 and	
 moving	
 subjects,	
 and	
 discuss	
 the	
 performance	
 of	

different	
 trajectories/pattern	
 in	
 different	
 scenarios.	

7. Conclude	
 findings	
 in	
 a	
 report.	
 Include	
 Matlab/C-­‐code	
 as	
 digital	
 appendices	
 together	
 with	
 a	

user-­‐guide.	
 	

Start date: 2014-­‐01-­‐20	

Due date: 2014-­‐06-­‐16

Thesis performed at: Department	
 of	
 Engineering	
 Cybernetics,	
 NTNU
Supervisor: Professor	
 Tor	
 Arne	
 Johansen,	
 Dept.	
 of	
 Eng.	
 Cybernetics,	
 NTNU	
 	

Co-supervisor: MSc	
 Kristian	
 Klausen,	
 Dept.	
 of	
 Eng.	
 Cybernetics,	
 NTNU	
 	

ii

Abstract

This thesis considers path planning for a low-cost multicopter used in the search
part of a search and rescue mission. Search patterns or trajectories are considered
and evaluated through simulations in MATLAB. How to place the onboard camera
in order to cover as much area as possible and which altitude that gives the most
area coverage without making the subjects too small to detect is discussed.

The proposed search patterns are implemented in the existing software structure
used in this project. The implementation is tested using a ArduPilot software in
the loop simulator, and by flight tests using a hexacopter.

iii

iv

Sammendrag

Norwegian translation of the abstract

Denne masteroppgaven tar for seg baneplanlegging for et lavkost multicopter som
kan brukes til å hjelpe til i søket under et søk- og redningsoppdrag. Forskjellige
søkemønstre, eller baner, vurderes og evalueres gjennom simuleringer utført i MAT-
LAB. Hvordan kameraet ombord skal plasseres for a dekke s̊a mye av søkeomr̊adet
som mulig, og hvor høyt multicopteret skal fly for å dekke mest mulig med et bilde,
uten at m̊alene blir for sm̊a til at det kan gjennkjennes, drøftes.

De forsl̊atte søkemønstrene implementeres i den eksisterende software-strukturen
som brukes i dette prosjektet. Implementasjonen blir testet gjennom en ”ArduPilot
software in the loop”-simulator, og gjennom flytester med et hexacopter.

v

vi

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
MSc. at The Norwegian University of Science and Technology.

I would like to thank my supervisor Professor Tor Arne Johansen for giving me an
interesting and challenging project to work on. I would also like to thank Ph.D.
student Kristian Klausen for valuable help and feedback during the project, and
Lars Semb for help with the flight tests.

Lastly, I want to thank my family for their support throughout my studies.

Trondheim, June 15, 2014

H̊avard Lægreid Andersen

vii

viii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Previous Work . 2
1.3 Contribution and Scope of this Thesis 3
1.4 Organization of this Thesis . 3

2 Theory 5
2.1 Reference Frames . 5

2.1.1 Vector Notation . 6
2.1.2 Rotation Matrices . 6

2.2 Guidance, Navigation and Control 7
2.2.1 Guidance Systems . 8

3 System Description 11
3.1 The Multicopter . 11

3.1.1 Autopilot . 13
3.1.2 Radio Controller . 13

3.2 Payload . 14
3.2.1 Single Board Computer . 15
3.2.2 Infrared Camera . 16
3.2.3 Gimbal . 17
3.2.4 Frame Grabber . 17
3.2.5 Video Camera . 17

3.3 Software . 18
3.3.1 Ubuntu . 18
3.3.2 Computer Vision . 18
3.3.3 DUNE . 18
3.3.4 Neptus . 19

3.4 Communication Protocols . 19
3.4.1 IMC . 19

ix

x CONTENTS

3.4.2 MAVLink . 19

4 The Onboard Camera’s Field of View 21
4.1 Camera Placement . 21
4.2 Projected Camera Image . 21
4.3 Implementation . 25

5 Path Planning 27
5.1 Search and Rescue . 27
5.2 Search Patterns . 27

5.2.1 Parallel and Creeping Line Search Patterns 28
5.2.2 Square and Sector Search Patterns 28
5.2.3 Barrier Patrol Search Pattern 30

5.3 Cover Area . 33
5.3.1 Reduce Search Distance . 37

5.4 Camera Placement . 39

6 Finding the Optimal Search Height 45
6.1 Area Covered . 45
6.2 Human in a Frame . 47
6.3 Usable Area . 47
6.4 Discussion . 49

7 MATLAB Simulations 51
7.1 The Setup . 51

7.1.1 The Multicopter . 51
7.1.2 Camera . 52

7.2 Searching for a Stationary Subject 53
7.2.1 The Subjects . 53
7.2.2 Simulations . 54
7.2.3 Results . 54

7.3 Estimated Area Coverage . 57
7.4 Searching for a Moving Subject . 60

7.4.1 The Moving Subjects . 60
7.4.2 Simulations and Results . 60

7.5 Discussion . 64

8 Implementation and Simulations 67
8.1 IMC . 68
8.2 Neptus . 69
8.3 Dune . 72

CONTENTS xi

8.3.1 Maneuver.SectorMan . 73
8.3.2 Control.UAV.ArduCopter 74

8.4 Running Dune on a Vehicle . 74
8.5 Simulations . 76

8.5.1 Results and Discussion . 76

9 Flight Tests 81
9.1 Test of existing Goto-maneuver . 81
9.2 Parallel Search . 83
9.3 Square Search . 85
9.4 Sector Search . 87
9.5 Barrier Patrol Search . 88
9.6 Mission Review . 91
9.7 Discussion . 94

10 Conclusion 97
10.1 Future Work . 99

10.1.1 Waypoint-switching in Dune 99
10.1.2 Implementation of Cover Area 100

A Coordinate Transformations 101
A.1 Navigational to Ellipsoidal Coordinates 101
A.2 Ellipsoidal to Navigational Coordinates 102

B Cover Area Examples 105

C IMC-Messages 107

Bibliography 113

xii CONTENTS

List of Figures

2.1 GNC signal flow . 8

3.1 ArduCopter 3DR Hexa B . 12
3.2 Hexacopter configurations . 12
3.3 ArduPilot Mega 2.6 . 13
3.4 Spektrum DX7S Radio Controller 14
3.5 System drawing . 15
3.6 FLIR Tau 2 336 Infrared Camera 16
3.7 GoPro Hero3 . 16
3.8 Pandaboard ES . 17
3.9 Photograph of the hexacopter . 20

4.1 Methods for placing the camera on the multicopter. 22
4.2 The area covered by the camera . 23
4.3 A screenshot from Neptus when simulating with the Picture outline

on map plugin active. 25

5.1 The parallel search pattern . 28
5.2 The creeping line search pattern . 28
5.3 The square search pattern . 30
5.4 The sector search pattern . 30
5.5 The barrier patrol search pattern 31
5.6 The area to be searched . 34
5.7 The area to be searched, with the bounded box and a lawnmower

pattern. 35
5.8 The path after the first step of processing. The virtual lines are

shown in red. 36
5.9 The path after the second step of processing. 36
5.10 The path after the second step of processing with circles around the

shape’s corners. 37

xiii

xiv LIST OF FIGURES

5.11 The path after the third and final step of processing. This path
should cover the entire shape. 38

5.12 The path after each line is reduced with Hcamera. 39
5.13 The best found path after rotations. 40
5.14 The worst found path after rotations. 40
5.15 Plot showing search distance as a function of θ. 41
5.16 The area covered by the camera with both methods for placing the

camera . 42
5.17 Area covered by each search pattern 44

6.1 A picture shaped as a trapezoid . 46
6.2 The area covered by a picture frame from different altitudes 46
6.3 Four subjects in the camera frame 48
6.4 The pixels occupied by the subjects 49
6.5 The usable area of the frame . 50

7.1 Estimate of a picture frame . 52
7.2 The stationary subjects . 53
7.3 Simulation of the parallel search pattern 54
7.4 Simulation of the creeping line search pattern 55
7.5 Simulation of the square search pattern 55
7.6 Simulation of the sector search pattern 56
7.7 Simulation of the barrier patrol search pattern 56
7.8 Area covered by each search pattern 59
7.9 The stationary subjects . 61
7.10 Simulation of the parallel search pattern 61
7.11 Simulation of the creeping line search pattern 62
7.12 Simulation of the square search pattern 62
7.13 Simulation of the sector search pattern 63
7.14 Simulation of the barrier patrol search pattern 63
7.15 How the subject avoids the search 65

8.1 GNC signal flow with color markings. 68
8.2 Neptus after the Plan Edition is opened 70
8.3 Neptus after a maneuver is selected 71
8.4 The Dune and Neptus signal flow for the Sector Search maneuver. . 72
8.5 A Stage . 74
8.6 Neptus during the flight simulation of the sector search pattern . . 77
8.7 Simulation of the parallel search . 78
8.8 Simulation of the creeping line search 79
8.9 Simulation of the square search . 79

LIST OF FIGURES xv

8.10 Simulation of the sector search . 80
8.11 Simulation of the barrier patrol search 80

9.1 The Goto-plan from Neptus on a map of Agdenes. 82
9.2 The result from the test of the Goto-maneuver. 82
9.3 The parallel search pattern tested at Agdenes. 83
9.4 The result from flying a parallel search pattern. 84
9.5 The square search pattern tested at Agdenes. 85
9.6 The result from flying the first square search pattern. 86
9.7 The second square search pattern tested at Agdenes. 86
9.8 The result from flying the second square search pattern. 87
9.9 The sector search pattern tested at Agdenes. 88
9.10 The result from flying the sector search pattern. 89
9.11 The cross-track error when flying the sector search pattern. 89
9.12 Desired roll versus measured roll. 90
9.13 Measured pitch. 90
9.14 Desired heading versus measured heading. 90
9.15 The barrier patrol search pattern tested at Agdenes. 91
9.16 The result from flying the barrier patrol search pattern. 92
9.17 Neptus’ Mission Review and Analysis-tool 92

B.1 A quadratic search area . 105
B.2 A triangular search area . 106
B.3 A strangely-shaped search area . 106

xvi LIST OF FIGURES

List of Tables

3.1 Properties PandaBoard ES . 16

5.1 Waypoints for the barrier patrol search pattern 33

6.1 Area covered by camera from different altitudes. 46
6.2 Human size in the center of a frame. 47

7.1 Results of search for stationary subject simulation 57
7.2 Search length for the patterns on a 400m × 400m area. 57
7.3 Estimated area coverage . 58
7.4 Results of search for moving subject simulation 64

xvii

xviii LIST OF TABLES

List of Algorithms

5.1 The parallel search pattern . 29
5.2 The creeping line search pattern . 29
5.3 The square search pattern . 31
5.4 The sector search pattern . 32
5.5 Cover area rotation . 39

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

Search and rescue operations can greatly benefit from the use of autonomous UAVs
to survey the environment and collect evidence about the position of a missing per-
son [29]. When searching for a missing person, factors such as time and manpower
to search large areas, may often be limited. An autonomous UAV that has the
ability to scan large areas and recognize persons could be of great assistance in
such a scenario, and can thereby increase the possibility of a successful outcome.

The Norwegian Joint Rescue Coordination Centres (JRCC) handle more than 1500
maritime incidents each year in the Norwegian Sea and surrounding waters. Of
these incidents, a substantial part involves both search and rescue [4].

1.1 Background and Motivation

This thesis is a part of a project where the possibility helping a search and rescue
mission with a low cost UAV is considered. The work in this project is motivated
by increasing the possibility for a successful outcome of a search and rescue mission.

In [12], a search and rescue scenario where a severely autistic young man is lost in
the Monongalia National Forest when hiking with his parents is described. This
search required a large number of searchers. At the height of the operation, more
than 400 searchers were involved. It took four days of searching before the subject
was found 350 meters East of the point last seen.

This shows the need, and potential for optimization of the search phase of a search
and rescue mission, as this frequently is the element of the search and rescue
mission that has proven to be most difficult [12].

1

2 CHAPTER 1. INTRODUCTION

In a typical search and rescue scenario, UAVs can be deployed in the area of
interest, perform sensory operations to collect evidence of the presence of a victim,
and report their collected information to a remote ground station or rescue team
[29]. A complete mission scenario, of a UAV search and rescue scenario can be
found in [10]. The mission is here divided into two separate legs. The first leg
is the search part of the scenario when the UAVs should cooperately scan large
regions in attempt to identify injured persons. During this leg, a saliency map is
created that can be given to emergency services, or used as a basis for the second
leg. In the second leg several UAVs are used to deliver food, water and medical
supplies to the injured persons discovered in the first leg, that are awaiting help.

In this project, the focus is on the search phase of a search and rescue mission,
i.e leg 1 from [10]. It was chosen to use a multicopter for searching as this costs
less than a fixed-wing UAV, it is easier to operate and requires less space for take-
off and landing. It also has the advantage of a better maneuverability; it can
quickly change directions and thus it is more capable of tracking or following a
detected subject.The multicopter will be equipped with an infrared camera, and
use the computer vision algorithm developed by [17] for detection and tracking of
subjects.

This thesis deals with path planning or mission planning for the search phase of
a search and rescue mission. Different search patterns are found and their ability
to cover the entire area of interest with the onboard camera, as well as their per-
formances in different simulated scenarios, have been tested. These patterns have
been implemented and integrated into the existing software and control structure
used in this project. Finally, test-flights have been conducted using a hexacopter
to test the implementation.

1.2 Previous Work

Research on searching and search planning was first introduced during World War
II to assist with detection of enemy submarines with B.O Koopman as the leading
expert on the field [16], [15]. Path planning for UAVs continues to be an important
field of study for military purposes, such as minimizing the chance of the UAV
being detected by an enemy radar [3], [8]. In [3], a Voroni graph with weighted
edges is used to represent the possible routes, and the optimal path is found
using dynamic programming. Other algorithms that have been used for UAV path
planning includes A∗ [24], MILP [2], [9] and probability roadmaps [21].

The research of supporting search and rescue operations with UAVs is a growing

1.3. CONTRIBUTION AND SCOPE OF THIS THESIS 3

field, and path planning or search planning is an important part of this field.
A search and rescue scenario with UAVs is found in [10], where two unmanned
helicopters are used to cover a search area of 290m× 185m, and locate eleven
subjects.

In [25], a mode-switching path planner for an UAV is developed to let a fixed-wing
UAV fly side by side with a helicopter, and thereby increase the area coverage
significantly. For Wilderness Search and Rescue (WiSAR), [18] proposes a path
planner modelled as a discretized combinatorial optimization problem .

In [30], it is discussed how the use of heuristic search patterns can benefit a search
and rescue mission, and how the use of these may improve the effectiveness of the
search. Performance of different search patterns are tested in [7], by a simulation
of German submarines in the Bay of Biscay 1942-1943.

1.3 Contribution and Scope of this Thesis

This thesis considers path planning for the UAV for the search part of a search
and rescue mission. Different trajectories or search patterns are studied and how
the on-board camera should be placed on the UAV to ensure the best possible
area coverage is discussed. The search patterns’ strong and weak sides are found
through MATLAB-simulations.

The proposed patterns are implemented in the ground station and onboard soft-
ware used in this project. The implemented scheme is tested by simulations using
an ArduPilot software in the loop simulator, and finally a flight test is conducted.

1.4 Organization of this Thesis

This thesis is structured in the following manner. In Chapter 2, some background
theory is explained. Chapter 3 details the various hardware components and soft-
ware used for the hexacopter used in this thesis. Chapter 4 details a method for
finding the area a multicopter covers with a single camera frame. This method is
described for placing the camera on the multicopter with or without using a gim-
bal for roll and pitch stabilization. This method was implemented in the ground
station software for live visualization of the area covered by the multicopter during
a flight.

Chapter 5 studies different trajectories or search patterns. Algorithms for these are

4 CHAPTER 1. INTRODUCTION

created and presented. In Chapter 6, the optimal height for conducting a search
is discussed. To find how large a human will appear in a picture, a model based
on the theory from Chapter 4 is used.

Chapter 7 tests the different patterns performance in different scenarios by a series
of simulations in MATLAB. For these simulations, a model of a multicopter with
unlimited acceleration and angular rate is used.

Chapter 8 details the implementation of the search patterns as maneuvers in the
onboard software Dune and the ground control station software Neptus. These
maneuvers were tested using an ArduPilot software in the loop simulator.

Results from flight tests done at Agdenes airport, are shown in Chapter 9. The
final conclusions, and some suggestions for future work are found in Chapter 10.

Chapter 2

Theory

2.1 Reference Frames

In this section, the coordinate frames used in this thesis and the implementation
are described. This thesis follows definitions used in [13].

Earth-Centered Reference Frames

ECI: The Earth-centred inertial (ECI) frame {i} = (xi, yi, zi) is an inertial frame
for terrestrial navigation, that is a non-accelerating reference frame in which New-
ton’s law of motion apply. The frame’s origin oi is located in the center of the
Earth.

ECEF: The Earth-centred Earth-fixed (ECEF) reference frame {e} = (xe, ye, ze)
has its origin oe in the center of the Earth. ECEF is rotating with respect to the
ECI with an angular rate of rotation of ωe = 7.2921× 10−5 rad/s.

Geodetic Frame

Geodetic frame: It is the reference system used by the GPS. A point in this
frame is described by latitude, logitude and height, i.e (µ, l, h)

5

6 CHAPTER 2. THEORY

Geographic Reference Frames

NED: The North East Down (NED) {n} = (xn, yn, zn) frame is a local tangent
plane used for local navigation. The x-axis is pointing to true North, the y-axis to
the East and the z-axis points downwards normal to the Earth’s surface.

NAV: The navigation frame (NAV), is in this thesis used for a rotated NED-frame.
That is, a frame where the z-axis points downwards normal to the Earth’s surface,
but the x-axis and y-axis does not necessarily point towards true North and East.
The angle between the x-axis and true North is called bearing, and denoted ψ.

Vehicle Coordinate Systems

BODY: The body-fixed frame {b} = (xb, yb, zb) with origin in the craft’s centre
of origin (CO) is a moving coordinate frame that is fixed to the craft. The x-axis
is pointing in the craft’s forward direction. The z-axis is pointing straight down
relative to the vehicle and thus the y-axis points to the right.

CAM: The camera frame {c} = (xc, yc, zc) is a moving coordinate frame fixed to
a camera. Using the ideal pinhole model, the origin of the frame is located inside
the camera, with the z-axis pointing in the direction of the camera, and hits the
center of the picture frame taken. The x-axis and y-axis points in the height and
width direction of the picture taken respectively.

2.1.1 Vector Notation

The position of {b} relative to the {n} given in the {n} is given by the vector pnb/n.

2.1.2 Rotation Matrices

To rotate from one frame of reference to another, rotation matrices are used. A
rotation matrix between a and b is denoted Ra

b, and it is an element in SO(3) or
the special orthogonal group of order 3. A definition of SO(3) is found in [11]:

SO(3) := {R|R ∈ R3×3,RTR = I and det R = 1} (2.1)

where R3×3 is the set of all 3× 3 matrices.

2.2. GUIDANCE, NAVIGATION AND CONTROL 7

A rotation of a vector from one reference frame to another is expressed as

vto = Rto
fromv

from (2.2)

A rotation around a fixed axis is called a simple rotation. The rotation matrices
around each axis are given by:

Rx(φ) =

1 0 0
0 cosφ sinφ
0 sinφ cosφ

 (2.3)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.4)

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.5)

Rotation between BODY and NED

When the vehicle’s attitude is given in Euler angels: roll (φ), pitch (θ) and yaw
(ψ), the rotation from BODY to NED is given by [11]:

Rn
b := Rz(ψ)Ry(θ)Rx(φ) (2.6)

When calculating this, Rn
b is found as:

Rn
b =

 s(θ)cψ −c(φ)s(ψ) + s(φ)s(θ)c(ψ) s(φ)s(ψ) + c(φ)s(θ)c(ψ)
c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) −s(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)
−s(θ) s(φ)c(θ) c(φ)cθ)

 (2.7)

where s· = sin(·) and c· = cos(·).

2.2 Guidance, Navigation and Control

A motion control system can be constructed as three independent blocks denoted
as the guidance, navigation and control (GNC) system. These systems interact
with each other through data and signal transmissions [13]. This is illustrated by
figure 2.1, where an autopilot for a multicopter is shown. Below, the tasks of each
subsystems are listed, based on the definitions given by [13]:

8 CHAPTER 2. THEORY

Guidance System Control System Multicopter Navigation System

Mission Planner

Waypoints

Estimated positions and velocities

Wind and weather conditions

Operator inputs

Figure 2.1: GNC signal flow. Based on figure 9.1 from [13]

Guidance is the action of the system that continuously computes the reference
(desired) position, velocity and acceleration of the multicopter to be used by the
motion control system.
Navigation is the science of directing a craft by determining its position/atti-
tude, course and distance travelled. In some cases, velocity and acceleration are
determined as well. This is usually done by using a global navigation satellite
system (GNSS) combined with motion sensors such as accelerometers and gyros.
An advanced navigation system is the inertial navigation system (INS).
Control is the action of determining the necessary control forces and moments
to be provided by the craft in order to satisfy a certain control objective. The
desired control objective is usually set by the guidance system, and examples of
control objectives for a multicopter used in a search and rescue mission can be
path-following, target tracking and setpoint regulation. The control laws can in-
clude both feedback, with outputs from the navigation system, and feedforward
with signals from the guidance system.

2.2.1 Guidance Systems

This section contains some of the equations used for simulations and implementa-
tion later in this thesis. This theory is found in [13].

2.2. GUIDANCE, NAVIGATION AND CONTROL 9

Lookahead-Based Stearing

For lookahead-based steering, the course angle assignment is separated into two
parts:

χd = χp + χr(e) (2.8)
where χp = αk and e is the cross-track error given by the following equations:

αk = arctan
(
yk+1 − yk
xk+1 − xk

)
(2.9)

e(t) = −{x(t)− xk} sin (αk) + {y(t)− yk} cos (αk) (2.10)
when the waypoints are denoted (xk, yk) and (xk+1, yk+1)

For calculating χr(e), [13] offers some variants. The one used in this thesis is:

χr = arctan (−Kpe) (2.11)

where Kp is a design variable given by

Kp(t) = 1
∆(t) > 0 (2.12)

and ∆(t) is found from:
∆(t) =

√
R2 − e(t)2 (2.13)

where R is chosen.

Head for next waypoint

When moving along a piece wise linear path made up of n straight-line segments
connected by n + 1 waypoints, the decision to select the next waypoint can be
made on the basis of whether or not the craft lies inside a circle of acceptance with
radius Rk+1 around the waypoint (xk+1, yk+1), i.e. if the following expression is
true:

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (2.14)

Another criteria for switching waypoints can be the along-track distance, given by
the following expression:

s(t) = [x(t)− xk] cos(αk) + [y(t)− yk] sin(αk) (2.15)

where αk is given by Equation 2.9.

10 CHAPTER 2. THEORY

The switch of waypoints should then occur if the multicopter has travelled the
whole (or close to the whole) distance between the two waypoints, i.e. if the
following expression is true:

s(t) + ds ≥
√

(xk − xk+1)2 + (yk − yk+1)2 (2.16)

where ds is a design variable indicating how close to the next waypoint the mul-
ticopter must be before a switch is requested.

When simulating, one of equations 2.14 and 2.16 can be used, or a combination
of both. If the sampling time of the position is high, and the value of Rk+1 low,
using only Equation 2.14 may lead to none of the measured positions being within
the circle of acceptance. This will not be experienced using Equation 2.16 as this
criteria does not have an upper limit for the waypoint switch.

Chapter 3

System Description

This chapter presents an overview of the different parts of the system used in this
thesis. This includes the multicopter, the payload, the software and the necessary
communication protocols. A photograph of the multicopter used in this project is
shown at the end of this chapter, in Figure 3.9.

3.1 The Multicopter

For this thesis, a hexacopter was chosen. The hexacopter is a ArduCopter 3DR
Hexa B from 3DRobotics. It is delivered as a ready-to-fly kit featuring an ArduPi-
lot Mega autopilot, fixed-pith propellers, 850kv brush-less motors, SimonK Elec-
tronic Speed Controllers (ESC), aluminium arms, fiberglass mounting boards, a
power distribution board, GPS and a 3DR radio telemetry kit. The hexacopter
is powered by a Hyperion 3s 4000mAh 25C battery. The hexacopter is shown in
Figure 3.1.

In this project, the hexacopter is chosen to fly in X-configuration. The other al-
ternative is +-configuration. These configurations are shown in Figure 3.2, where
the blue and green arrows indicate rotor configuration. In X- configuration, the
hexacopter flies with two arms first, and the heading of the craft is in the middle
of those two arms, while in +-configuration, one arm flies first, and indicates the
heading of the hexacopter. The numbers on the motors in the drawing indicate
which output port on the autopilot the motor should be connected to. The config-
uration is normally shown by using a separate color on the arms flying first; thus
it can be seen that the hexacopter in Figure 3.1 is in X-configuration.

11

12 CHAPTER 3. SYSTEM DESCRIPTION

Figure 3.1: ArduCopter 3DR Hexa B. Image courtesy 3drobotics.com

Figure 3.2: The two possible hexacopter configurations, +-configuration to the left
and X-configuration to the right. Green arrows indicate clockwise direction of the
rotors, while blue arrows indicate counter-clockwise direction.

3.1. THE MULTICOPTER 13

3.1.1 Autopilot

The ArduPilot Mega 2.6 is a complete open source autopilot system capable of
controlling angular rotations and altitude and performing programmed GPS mis-
sions with waypoints. It has an Atmel ATMEGA2560 chip for processing, and an
Atmel ATMEGA32U-2 chip for USB-functions.

The ArduPilot includes an Inertial Measurement Unit (IMU) with the following
sensors:

• InvenSense MPU-6000, 3-axis Gyro / 3-axis Accelerometer

• Honeywell HMC5883L-TR 3-axis Digital Compass

• Measurement Specialities MS5611-01BA03 Barometric Pressure Sensor

Figure 3.3: ArduPilot Mega 2.6. Image courtesy 3drobotics.com

3.1.2 Radio Controller

For safety and other practical reasons a radio controller is used to manually arm
and disarm motors and to do the take-off and landing. The radio controller chosen
is a Spektrum DX7S Radio Controller,which is shown in Figure 3.4. It features 7
channels and a 2.4GHz DSm spread spectrum telemetry system.

When flying, mainly two flightmodes on the controller are used, Stabilize and
Loiter. When in Stabilize, the operator is in full control of the hexacopter, and
controls the hexacopter with the sticks. When in Loiter mode, the hexacopter

14 CHAPTER 3. SYSTEM DESCRIPTION

loiters; now Dune has control of the hexacopter, and waypoints and plans can be
sent. The operator can at any time switch between these modes using a switch on
the controller, and abort any plan running in Dune.

Figure 3.4: Spektrum DX7S Radio Controller. Image courtesy spektrumrc.com

3.2 Payload

This section describes the payload proposed for a search and rescue mission. The
payload is designed by [17]. A drawing of how the payload is connected with the
rest of the system is shown in Figure 3.5. For powering the payload, a LiPo 11.1V
2200mAh battery is used.

For a hexacopter low weight is one of the highest priorities of the payload, as
the weight limits the flight time. The following list contains the components in a
prioritized order, these should be added one by one until the maximum weight of
the payload for the hexacopter is reached.

• Battery

• Single Board Computer

3.2. PAYLOAD 15

Figure 3.5: System drawing

• Infrared Camera

• Frame Grabber

• Video Camera

3.2.1 Single Board Computer

The PandaBoard ES is a low-power, low-cost single-board computer development
platform. It is based on the Texas Instruments OMAP4430 SoC (System on Chip).
The PandaBoard ES is shown in Figure 3.8. Some of its most important properties
are listed in Table 3.1. [17]

16 CHAPTER 3. SYSTEM DESCRIPTION

Table 3.1: Properties PandaBoard ES

Overview PandaBoard ES
CPU 1.2GHz Dual Core
Processor Type ARM Cortext-A9
RAM 1GB - GPU
GPU 304 MHz Power VR SGX540
Physical Attributes
Size 11.4cm × 10.1cm × 3cm
Weight 82g
Interfacing
Display Port HDMI
Power DC Jack / USB OTG - 5V 1A
Storage SD Card - Ethernet WiFi
Ethernet RJ45 and WiFi
Environment
Operating Temperature -20◦ - 70◦

Humidity N/A

3.2.2 Infrared Camera

The infrared camera chosen for this project is a FLIR Tau 2 336 which can be seen
in Figure 3.6. A lens with focal length 9mm was chosen by [17], which gives a field
of view of 35◦ × 27◦ with a frame rate of 8.3 Hz. The camera’s weight is 72g.

Figure 3.6: FLIR Tau 2 336 Infrared
Camera. Image courtesy flir.com

Figure 3.7: GoPro Hero3. Image
courtesy allthingsd.com

3.2. PAYLOAD 17

Figure 3.8: Pandaboard ES. Image courtesy blog.digit-parts.com

3.2.3 Gimbal

For placing the camera, the gimbal chosen was a Tarot T-2D. It is used for roll
and pitch stabilization of the infrared camera such that the best possible quality
of the pictures is achieved.

3.2.4 Frame Grabber

A frame grabber is an electronic device used to capture individual, digital still
frames from an analog video signal, such as the output from the IR-camera. The
frame grabber chosen by [17], is an EasyCap DC60. The frame grabber connects
to the infrared camera by a RCA-connector, and to the Pandaboard by USB. It
has a weight of 57g.

3.2.5 Video Camera

For video camera, a GoPro Hero3 was chosen. It is a compact and solid camera
often used in similar applications. The weight of the camera is 74g. It is powered

18 CHAPTER 3. SYSTEM DESCRIPTION

by an internal battery, making it very easy to use. The GoPro Hero3 is shown in
Figure 3.7.

3.3 Software

3.3.1 Ubuntu

Ubuntu is an open source operating system based on the Linux kernel. It is one
of the most popular Linux distributions, and therefore it has the advantage of
being frequently updated and having support for many different USB-components
such as frame grabbers and different GPS devices. Ubuntu is also widely used
for platforms such as the PandaBoard, resulting in a variety of distributions that
are optimized with respect to the ARM architecture. All of these factors make
Ubuntu an ideal operation system for the PandaBoard [17].

3.3.2 Computer Vision

For detection and tracking of objects with the infrared camera, an algorithm de-
veloped by [17] will be used. The object detection algorithm utilizes two types
of pre-trained classifiers to perform detection. The object tracking algorithm is
based on an estimate-and-measure tracking approach. A standard Kalman filter
is used for estimation. This algorithm is implemented using OpenCV.

OpenCV

Intel Open Computer Vision Library, referred to as OpenCV, is a function library
mainly aimed at real-time computer vision. The library is open-source and cross-
platform, and receives frequent updates from its large user base.

3.3.3 DUNE

DUNE is short for Unified Navigational Environment. It is developed by the Un-
derwater Systems and Technology Laboratory (LSTS), located in Porto. DUNE is
the onboard software running on the vehicle which is responsible for interaction
with sensors, payload and actuators, and also for communications, navigation, con-
trol, maneuvering, plan execution and vehicle supervision. It is CPU architecture

3.4. COMMUNICATION PROTOCOLS 19

independent as well as operating system independent, and can be used in ASVs,
ROVs, AUVs and UAVs [22].

3.3.4 Neptus

Neptus is a ground station software developed by the creators of Dune. Neptus
can be used during all the stages of the mission. Before the mission, Neptus is used
to create a mission plan. The plan can then be validated through simulations, and
edited.

During a mission, Neptus can be used to receive and visualize information from
one or many unmanned vehicles. Commands such as waypoints and new mission
plans can also be send to the craft. After mission, Neptus can be used to review
and analyse the mission. Neptus includes a Mission Review and Analysis tool that
can be used to closer examine data collected during the mission [22].

3.4 Communication Protocols

3.4.1 IMC

Dune and Neptus use the Inter-Module Communication (IMC) protocol for com-
munication. IMC defines a common message set that is understood by all network
nodes, Dune tasks and Neptus plugins. IMC is fully defined and documented in
a single XML file, which using by XSLT can be translated into different language
bindings [22]. IMC is used for communication between Dune and Neptus, and
between different Dune-tasks.

3.4.2 MAVLink

MAVLink or Micro Air Vehicle is a communication protocol for communicat-
ing with small unmanned vehicles [23]. Normally, it is used for communication
between an ArduPilot Mega, and the Ground Control Station. In this project
however, MAVLink is used for communication between Dune-tasks, onboard the
multicopter, and the ArduPilot Mega.

20 CHAPTER 3. SYSTEM DESCRIPTION

Figure 3.9: Photograph of the hexacopter. Here, the gimbal is used to stabilize
the GoPro Hero3, as the infrared camera is not used. The Pandaboard is located
within the white box hanging under the hexacopter. Photo by Thor Audun Steen

Chapter 4

The Onboard Camera’s Field of
View

4.1 Camera Placement

In this thesis, two methods for placing the camera are considered. These are shown
in Figure 4.1. The first approach uses a gimbal for roll and pitch stabilization. The
gimbal is set to point in a predefined direction of α = 45◦ forward. The camera
will then cover an area in front of the multicopter.

The other approach is a strapdown solution without a gimbal. The camera will
then point straight down when the multicopter has no roll or pitch. When moving,
the roll and pitch will affect which area is covered.

4.2 Projected Camera Image

To see which area that is covered by the camera, the corner coordinates of the
projected camera image frame relative earth must be found. Assuming approxi-
mately flat ground, a method for this is found in [27]. This method, with some
minor adjustments and simplifications, is detailed in this section.

For the following calculations, what is known as the ideal pinhole camera model
is used. The model is ideal as it is completely undisturbed, and without any dis-
tortions. A projected image plane is created between the ground and the camera.

21

22 CHAPTER 4. THE ONBOARD CAMERA’S FIELD OF VIEW

(a) With gimbal (b) Without gimbal

Figure 4.1: Methods for placing the camera on the multicopter.

The center of this image is given by:

Cc
proj = [0, 0,−1

2z]T (4.1)

which is half of the UAV’s altitude. The projected image plane is shown in Figure
4.2 as the blue plane.

The coordinates of the projected image’s corners can then be calculated using the
angles for field of view from the camera’s datasheet; αh and αw. These angles
represent the whole field of view, and must therefore be halved when calculating
the coordinates of the corners; H = αh/2, W = αw/2. The coordinates are denoted
by the body-fixed names Front/Rear and Starboard/Port.

FScproj =
(
|Cc

proj| tan(H), |Cc
proj| tan(W),−|Cc

proj|
)

(4.2)

FP c
proj =

(
|Cc

proj| tan(H),−|Cc
proj| tan(W),−|Cc

proj|
)

(4.3)

RScproj =
(
−|Cc

proj| tan(H), |Cc
proj| tan(W),−|Cc

proj|
)

(4.4)

RP c
proj =

(
−|Cc

proj| tan(H),−|Cc
proj| tan(W),−|Cc

proj|
)

(4.5)

The transformation from BODY-frame (and CAM-frame) to NED-frame is given
by a series of rotations, and the transformation matrix M is given by:

M := Rx(φ)Ry(θ)Rz(ψ)Ry(α) (4.6)

where the angles [φ, θ, ψ]T are the UAVs attitude. When using the gimbal with
roll and pitch stabilization, M is reduced to:

M = Rz(ψ)Ry(α) (4.7)

4.2. PROJECTED CAMERA IMAGE 23

−20
−10

0
10

20

−30−25−20−15−10−50

−40

−30

−20

−10

0

East [meters]
North [meters]

D
ow

n
[m

et
er

s]

Figure 4.2: The area covered by the camera. The multicopter is placed in
[0, 0,−40]T , and has a pitch angle of 20◦.

Without the gimbal, M equals the the rotation matrix from NED to BODY.

M = Rn
b = Rx(φ)Ry(θ)Rz(ψ) (4.8)

The simple rotations Rx, Ry and Rz are found in Equations 2.3 to 2.5, and Rn
b is

found in Equation 2.7.

Then, the corners, and center, of the projected image in NED-coordinates are given
by the following equations:

Cn
proj = M

(
Cc
proj

)
+ rnc/n (4.9)

FSnproj = M
(
FScproj

)
+ rnc/n (4.10)

FP n
proj = M

(
FP c

proj

)
+ rnc/n (4.11)

RSnproj = M
(
RScproj

)
+ rnc/n (4.12)

RP n
proj = M

(
RP c

proj

)
+ rnc/n (4.13)

with rnc/n as the position of the camera’s center of orientation in NED-coordinates.
This is found from:

rnc/n = rnb/n + Rn
b r

b
c/b (4.14)

24 CHAPTER 4. THE ONBOARD CAMERA’S FIELD OF VIEW

where rnb/n is the UAV’s position in NED. For the setups described in this chapter,
the camera is placed at the bottom of the multicopter as seen in Figure 4.1. Then
the camera’s position in the BODY-frame is given by:

rbc/b = [0, 0, d]T (4.15)

where d is the measured distance from the multicopter’s center of orientation (CO)
to the center of the camera’s frame.

With this, the projected images can be found in the NED-frame, as shown in Figure
4.2, and the next task is to calculate the lines through the projected pyramid and
down to the ground. Since two points on this line is known, a parametric equation
can be made. This is done by first finding the slopes in each axis;

∆(Cn
proj)x = (Cn

proj)x − (rnc/n)x (4.16)
∆(Cn

proj)y = (Cn
proj)y − (rnc/n)y (4.17)

∆(Cn
proj)z = (Cn

proj)z − (rnc/n)z (4.18)

Then, the parametric equation for the line through the center of the projected
pyramid starting in the camera’s center is given by:

C(t) =

(rnc/n)x + ∆(Cn
proj)x · t

(rnc/n)y + ∆(Cn
proj)y · t

(rnc/n)z + ∆(Cn
proj)z · t

 (4.19)

On ground, the z-component of C(t) equals zero, and thus, t can be found from:

t =
−(rnc/n)z

∆(Cn
proj)z

(4.20)

Then, the center coordinates on ground is given by:

C =


(rnc/n)x + −(rn

c/n
)z∆(Cn

proj)x

(Cn
proj)z

(rnc/n)y + −(rn
c/n

)z∆(Cn
proj)y

(Cn
proj)z

0

 (4.21)

Then, the same steps are used to find the four corners (FS,FP,RS and RP). All of
the corners will then be available in the NED-plane, and can be seen forming the
green shape in Figure 4.2. These can then be converted to ellipsoidal coordinates
using the method described in Appendix A.2.

4.3. IMPLEMENTATION 25

4.3 Implementation

A Neptus plugin called Picture outline on map using the algorithm for finding the
picture corner points was developed. This plugin listens for new IMC::EstimatedState-
messages, from which it gets the multicopter’s position and attitude.

Using the algorithm explained in the previous section, the corner points of a pic-
ture are found in the NED-frame relative to the position of the multicopter, and
transformed to ellipsoidal coordinates using the method in Appendix A.2. Us-
ing an existing Neptus-function, these points, in ellipsoidal coordinates, can be
translated into screen positions and drawn on the screen map.

Figure 4.3: A screenshot from Neptus when simulating with the Picture outline
on map plugin active.

26 CHAPTER 4. THE ONBOARD CAMERA’S FIELD OF VIEW

Chapter 5

Path Planning

5.1 Search and Rescue

A definition of Search and Rescue (SAR) is given by [30]: Search and Rescue is the
act of searching for, rescuing, or recovering by means of ground, marine, or air
activity any person who becomes lost, injured, or is killed while outdoors or as a
result of a natural or man-made disaster. The US Coast Guard defines search and
rescue as the use of available resources to assist persons and property in potential
or actual distress [14].

Search and rescue can be broken down into two defining disciplines: search and
rescue. Locating a missing subject or object is the first element of any SAR mission
and must take place before a rescue can occur. The second phase, rescue, takes
place once the subject of the search is located. This consists of first accessing the
subject, providing initial care to prevent further distress and finally returning the
subject to a more stable environment [12].

5.2 Search Patterns

In this section, five search patterns from the US National Search and Rescue
Manual [26] are described. Detailed descriptions can also be found in [7]. The
starting point of each pattern is denoted CSP (commence search pattern), and the
probable location of the subject is called datum.

27

28 CHAPTER 5. PATH PLANNING

5.2.1 Parallel and Creeping Line Search Patterns

When the datum is not known with a high degree of certainty and the search area
is large, either the parallel (Figure 5.1) or the creeping line search pattern (Figure
5.2) is preferable. When the missing subject is equally likely to occupy any part of
the search area, the parallel pattern is desirable, while the creeping line is the best
choice if the subject is more likely to be in one end of the search than the other.
The dimensions of the search area can also be the tipping point for deciding which
of these patterns to use.

When the search area is quadratic, the search patterns will be equal, but rotated
90◦. When the search area in NED is longer in East than in North, the parallel
search pattern will have a slightly longer total distance than the creeping line,
but it will have fewer and longer lines, and thus better navigational properties.
Similar, an increase in North will give the same advantages for the creeping line
search pattern.

These patterns have the best navigational properties as they have long straight
lines to follow, and few turns. Long straight lines also means it is possible for
the multicopter to travel with higher speed between each turn, and thus the flight
time can be lowered. The parallel search pattern can be created using Algorithm
5.1 and the creeping line search pattern using Algorithm 5.2.

Figure 5.1: The parallel search pat-
tern. Picture source [7]

Figure 5.2: The creeping line search
pattern. Picture source [7]

5.2.2 Square and Sector Search Patterns

When the datum is well known or established within close limits, the square (Figure
5.3) and sector (Figure 5.4) search patterns are preferable. Then, the datum and

5.2. SEARCH PATTERNS 29

Algorithm 5.1 The parallel search pattern
i=1, px = CSP(1), py=CSP(2), h=height
while px - S + S+1

2 < CSP(1) + distanceNorth do
Waypoints(i) = [px,py,h]
if mod(i,2) == 0 then

px = px + S
else if mod(i-1,4) == 0 then

py = CSP(2) + distanceEast - S/2
else

py = CSP(2)
end if
i = i +1

end while

Algorithm 5.2 The creeping line search pattern
i=1, px = CSP(1), py=CSP(2), h=height
while py - S + S+1

2 < CSP(2) + distanceEast do
Waypoints(i) = [px,py,h]
if mod(i,2) == 0 then

py = py + S
else if mod(i-1,4) == 0 then

px = CSP(1) + distanceNorth - S/2
else

px = CSP(1)
end if
i = i +1

end while

30 CHAPTER 5. PATH PLANNING

the CSP is the same point. The square pattern is used when uniform coverage of
the search area is desired, while the sector search is used in scenarios where the
target is difficult to detect having the advantage that it crosses the CSP several
times from different directions.

The square search pattern consists of straight lines and turns. Every other search
line is increased by one track space S. All turns are 90 degrees to the right. A
possible algorithm for the square search is found in Algorithm 5.3.

The sector search pattern is created within a circle. When the path hits the circle,
a turn 120 degrees to the right is made. After three sectors have been created, the
path returns to the CSP point in the center. Then, the same pattern is created one
more time with a 30 degrees offset relative to the previous pattern. In Algorithm
5.4, a possible algorithm for the sector search pattern is proposed. This algorithm
creates a path that loops through the three sectors kmax times, where kmax is
defined by the operator.

Figure 5.3: The square search pat-
tern. Picture source [7]

Figure 5.4: The sector search pat-
tern. Picture source [7]

5.2.3 Barrier Patrol Search Pattern

The barrier patrol search pattern is preferable when the subject is fast moving, or
for instance in sea with a strong water current. The barrier patrol search pattern
consists of 12 waypoints with a fixed distance from the CSP. These waypoints can
be created from Table 5.1.

5.2. SEARCH PATTERNS 31

Algorithm 5.3 The square search pattern
i = a = 1, px = CSP(1), py=CSP(2), h=height
while a · S < distance + S do

Waypoints(i) = [px,py,h]
if mod(i-1,4) == 0 then

px = px + a · S
else if mod(i-2,4) == 0 then

py = py + a · S
else if mod(i-3,4) == 0 then

px = px - a · S
else

py = py - a · S
end if
if mod(i,2) == 0 then

a = a+1
end if
i = i +1

end while

Figure 5.5: The barrier patrol search pattern. Picture source [7]

32 CHAPTER 5. PATH PLANNING

Algorithm 5.4 The sector search pattern
i=1, j=0, px = CSP(1), py=CSP(2), h=height
Waypoints(i) = [px,py,h]
d = length/2
while j < kmax do

if i == 1 then
px = CSP(1) + d cos(30 + j · 30)
py = CSP(2) + d sin(30 + j · 30)

else if i == 2 then
px = CSP(1) + d cos(90 + j · 30)
py = CSP(2) + d sin(90 + j · 30)

else if i == 3 then
px = CSP(1) + d cos(270 + j · 30)
py = CSP(2) + d sin(270 + j · 30)

else if i == 4 then
px = CSP(1) + d cos(330 + j · 30)
py = CSP(2) + d sin(330 + j · 30)

else if i == 5 then
px = CSP(1) + d cos(150 + j · 30)
py = CSP(2) + d sin(150 + j · 30)

else if i == 6 then
px = CSP(1) + d cos(210 + j · 30)
py = CSP(2) + d sin(210 + j · 30)

else if i == 7 then
px = CSP(1)
py = CSP(2)
j = j+1
i = 0

end if
i = i +1
Waypoints(i) = [px,py,h]

end while

5.3. COVER AREA 33

Table 5.1: Waypoints for the barrier patrol search pattern

Waypoint x-coordinate y-coordinate
1 CSP(1) + d/2 CSP(2) + d/6
2 CSP(1) + d/6 CSP(2) + d/2
3 CSP(1) - d/2 CSP(2) + d/2
4 CSP(1) + d/2 CSP(2) - d/2
5 CSP(1) - d/6 CSP(2) - d/2
6 CSP(1) - d/2 CSP(2) - d/6
7 CSP(1) - d/2 CSP(2) + d/6
8 CSP(1) - d/6 CSP(2) + d/2
9 CSP(1) + d/2 CSP(2) + d/2
10 CSP(1) - d/2 CSP(2) - d/2
11 CSP(1) + d/6 CSP(2) - d/2
12 CSP(1) + d/2 CSP(2) + d/6

5.3 Cover Area

This section outlines a method for finding the optimal lawnmower pattern that
covers a non-rectangular area, as the area shown in Figure 5.6. As the multicopter
has limited flight range, the optimal path will be the shortest path that covers the
area. This approach is based on the work presented in [20], with some simplifi-
cations and adjustments. The method outputs waypoints in the NED-frame, and
these can be translated into GPS-positions using the method outlined in Appendix
A.1. Additional examples of paths created by this method is found in Appendix
B.

First, a bounding box is created around the shape, by getting the minimum and
maximum height and width. The bounding box is shown in red in Figure 5.7. It
is assumed that the multicopter starting position is in [0, 0]T , and that the first
waypoint is the closest one to this point.

The number of rounds required to cover the shape is given by

n = Wshape

2 ·Wcamera

(5.1)

where Wshape is the width of the shape, and Wcamera is the area covered on the
side of the craft from a given altitude, given by Equation 5.2, where αw is the
sideways field of view of the camera, found in the camera’s data sheet. n must

34 CHAPTER 5. PATH PLANNING

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.6: The area to be searched

then be rounded up to the nearest integer.

Wcamera = altitude · tan
(
αw
2

)
(5.2)

The distance between each line is given by

Wround = Wshape

n
(5.3)

Since n is rounded up; Wround < 2·Wcamera, and some overlap between each camera
frame is achieved.

The first two waypoints are then placed on a line 1
2 ·Wround from the West edge of

the bounding box, and the rest are placed evenly spaced Wround from each other.
This creates the search pattern shown in green in Figure 5.7. This pattern provides
full coverage of the shape. The distance however is much longer than necessary,
and as can be seen in the figure, large areas outside the shape are covered.

To reduce the search distance, post processing can be made. The first task is to
cut the waypoint lines down to the shape. This is shown in Figure 5.8. Then, a
much shorter path is found, but this does not cover the entire area.

To increase the coverage, more processing is made. Between each waypoint-line, a
virtual line is placed inside the area. These lines are shown in Figure 5.8. If the

5.3. COVER AREA 35

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.7: The area to be searched, with the bounded box and a lawnmower
pattern.

path given by the waypoints does not cover the entire virtual line, the waypoints
are adjusted. The changes are shown in Figure 5.9. Here, it can easily be seen
that a larger part of the shape is covered, but is the whole shape covered?

This can be tested by drawing a circle with radius Wcamera around each corner of
the shape. This is done in Figure 5.10. If the path intersects with this circle, the
area is covered by the search. Otherwise the area is not covered, and the path
must then be further processed to complete the coverage.

For such uncovered areas, [20] proposes an algorithm that computes the distance
from each waypoint line to the vertex, and inserts a new waypoint between the
waypoints that makes up the waypoint line with the shortest distance to the vertex.

Implementation of this proved to be a bad solution, with new waypoints making
straight lines crooked, and thus losing area coverage. Therefore, another approach
had to be found.

The solution was to simply prolong the closest waypoint line (or lines) to the
vertex not covered, similarly to what was done in the previous post-processing.
This approach also has the advantage that it does not increase the number of
turns, and it keeps the form of the search with long straight lines North-South
intact. Figure 5.11 shows the path after the final step of post-processing. Here, it

36 CHAPTER 5. PATH PLANNING

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.8: The path after the first step of processing. The virtual lines are shown
in red.

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.9: The path after the second step of processing.

5.3. COVER AREA 37

can be seen that the waypoint previously located in [−62.5, 100]T is now moved to
[−100, 100]T , and thus the path will cover the entire shape.

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.10: The path after the second step of processing. The circles around the
corners of the shape show that a part of the shape, located at the bottom of the
plot, is not covered. Note that the circles look ellipsoidal due to different scale on
the axes of the plot.

5.3.1 Reduce Search Distance

When searching with a multicopter, or other crafts with limited flight time, it is
always desirable to reduce the distance needed to complete the search. When using
other crafts such as air-planes, it might also be desirable to reduce the number of
turns. With a hexacopter, this is however of less importance, and therefore it is
chosen to focus only on reducing the distance needed to complete the search. In
[20], two possibilities are mentioned which are described in the following sections.

Picture height

The height of a picture is given by Equation 5.4.

Hcamera = altitude · tan
(
αh
2

)
(5.4)

38 CHAPTER 5. PATH PLANNING

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.11: The path after the third and final step of processing. This path
should cover the entire shape.

where αh is the field of view in height direction found in the camera’s data sheet.

Depending on the camera’s position, the route can be reduced by shortening all
the waypoint lines by Hcamera. A reduced route is shown in Figure 5.12. The path
shown here is 200 meters shorter than the path shown in Figure 5.11.

Rotation

The path can be shortened by trying different rotations. For this, Algorithm 5.5
can be used. This was applied to the path shown in Figure 5.12. The path with
the shortest distance, 1794 meters, was found with a rotation of θ = 175◦, and is
shown in Figure 5.13 The path with the longest search distance, 2324 meters, was
found with a rotation of θ = 153◦, and can be seen in Figure 5.14. One might also
note that the path with the longest distance has 12 waypoints while the shortest
path has only 10, i.e the path with the shortest search distance has less turns than
the path with the longest search distance. Few turns is also a desirable property.

How the search length varies with different rotations is shown in Figure 5.15. This
shows that the search distance varies substantially for small changes in θ, and for
this shape, there is no apparent trend for where the search distance is shortest. The

5.4. CAMERA PLACEMENT 39

0 50 100 150 200
−100

−50

0

50

100

150

200

250

300

350

400

Figure 5.12: The path after each line is reduced with Hcamera.

red curve shows the length of a lawnmower pattern that covers the entire shape
with its surrounding area, as shown in Figure 5.7. This plot illustrates clearly
how large the difference between the initial and the post-processed path is. For
some rotations, the search distance can be more than halved by post-processing
the path.

Algorithm 5.5 Cover area rotation
Do for different values of θ
1. Rotate shape by -θ
2. Apply cover area algorithm and compute waypoints.
3. Compute search distance, and check if better than previous best distance.
4. If better: Rotate shape and waypoints back again by rotating by θ.

5.4 Camera Placement

To get the maximum area coverage with the different search patterns, it is impor-
tant to place the camera correctly. From an altitude of 50 meters, the two camera
placing methods shown in Figure 4.1 covers the areas shown in Figure 5.16. The
multicopter is placed in [0, 0]T . The method with gimbal covers a large area in

40 CHAPTER 5. PATH PLANNING

−50 0 50 100 150 200 250
−100

0

100

200

300

400

500
The path with the shortest search distance

Distance East [meters]

Di
st

an
ce

 N
or

th
 [m

et
er

s]

Figure 5.13: The best found path after rotations.

−50 0 50 100 150 200 250
−100

0

100

200

300

400

500
The path with the longest search distance

Distance East [meters]

Di
st

an
ce

 N
or

th
 [m

et
er

s]

Figure 5.14: The worst found path after rotations.

5.4. CAMERA PLACEMENT 41

0 20 40 60 80 100 120 140 160 180
1500

2000

2500

3000

3500

4000

4500

rotation [degrees]

Se
ar

ch
 d

ist
an

ce
 [m

et
er

s]

Search distance with different rotations

Adjusted pattern
Lawnmower pattern

Figure 5.15: Plot showing search distance as a function of θ. The blue curve shows
the distance of the post-processed search pattern (Figure 5.13), and the red curve
shows the distance of the initial pattern, as in Figure 5.7

front of the multicopter, while the method without gimbal covers a smaller area
below and behind the multicopter.

Both methods have advantages and disadvantages. A gimbal is heavy and uses
power, but it gives better pictures, and it is easier to compute the area covered.
The other method does not require extra weight, and no extra power consumption,
but as the multicopter experiences roll and pitch, the pictures become blurry and
it is harder to compute the area covered.

Another important factor is the angle of which a picture is taken. With the
gimbal, the camera frame will always hit a human with an angle of 45◦, assuming
flat ground and a standing human. The other approach will have a different angle
from time to time, but it will be considerably smaller, meaning the human will
occupy less pixels in the picture.

Based on the reasons mentioned above, it was decided to use a gimbal for placing
the camera. This was also the method that fits best with the design of the object
detection and tracking algorithm from [17].

42 CHAPTER 5. PATH PLANNING

−20 −10 0 10 20
−25

−20

−15

−10

−5

0

5

East [meters]

N
or

th
[m

et
er

s]

(a) Without gimbal

−20 0 200

20

40

60

80

East [meters]

(b) With gimbal

Figure 5.16: The area covered by the camera with both methods for placing the
camera

Sideways Coverage

It is also important to place the camera such that the coverage sideways is largest,
i.e the largest angel sideways and the smallest angle a long track. This is important
for getting the longest possible distance between the search lines when using one
of the parallel and creeping line search patterns, or the square search pattern, and
thereby getting the shortest overall search length to cover the requested search
area.

An example of this is shown in Figure 5.17a and 5.17b where a square search
pattern is used to cover a 400m × 400m area. Here the pattern is twice created
using the angles for the IR-camera described in Section 3.2.2, αw = 35◦ and αh =
27◦. The distance between each search line S is given by Equation 5.5. With a
height of 50 meters and no overlap, S is 31.5 meters and 24 meters for for α = αw
and α = αh respectively. As shown in the figures, the pattern with wrong camera
placement (marked with blue) has less distance between each search line, and thus
needs more line to cover the area. Its total length is 6938 meters, while the shorter
one has a length of 5329 meters, that is roughly 1600 meters shorter. Therefore,
it is important to place the camera such that the sideways coverage is as large as

5.4. CAMERA PLACEMENT 43

possible.

S = 2 · altitude · tan
(
α

2

)
− overlap (5.5)

44 CHAPTER 5. PATH PLANNING

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

250

(a) The pattern with correct camera placement

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

250

(b) The pattern with wrong camera placement

Figure 5.17: Area covered by each search pattern

Chapter 6

Finding the Optimal Search
Height

This chapter deals with finding the optimal height for the multicopter to perform
a search.

In Chapter 4, an algorithm for deciding the area covered by the camera was out-
lined. This chapter tries to find the height that gives the largest area covered but
is still so small that a human will occupy enough pixels to be recognized by the
detection and tracking algorithm. It is assumed a gimbal is used for roll and pitch
stabilization, and that the gimbal is set to have an angle α = 45◦ with the y-axis.

6.1 Area Covered

The algorithm from Chapter 4, outputs the area covered in the form of four points.
With the gimbal, these points will make a trapezoid, as can be seen in Figure 6.1.
The area of a trapezoid is given by Equation 6.1.

A = 1
2 · h · (w1 + w2) (6.1)

Figure 6.2 shows the area covered by a picture frame from different altitudes.
Here, it can be seen that the area increases rapidly as the altitude increases. For
instance, the area increases by roughly 1200m2 between 20 and 40m, while between
80 and 100m, the area is increasing by almost 2500m2.

45

46 CHAPTER 6. FINDING THE OPTIMAL SEARCH HEIGHT

Figure 6.1: A picture shaped as a trapezoid

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Area within trapezoid

Altitude [m]

A
re

a
co

ve
re

d
[m

2]

Figure 6.2: The area covered by a picture frame from different altitudes

Table 6.1: Area covered by camera from different altitudes.

Altitude [m] Area covered [m2]
10 96
20 386
30 868
40 1543
50 2411
60 3472
70 4725
80 6172
90 7811
100 9644

6.2. HUMAN IN A FRAME 47

Table 6.2: Human size in the center of a frame.

Altitude [m] Height [pixels] Width [pixels]
10 105 39
20 50 19
30 32 13
40 24 9
50 19 7
60 16 7
70 13 5
80 12 5
90 10 5
100 9 3

6.2 Human in a Frame

To see how a human will appear in each picture, the model from Chapter 4 was
expanded. In stead of finding only the corner points of the picture, a line is
computed for each pixel in the frame. Then, it must be checked whether or not
this line intersects with the human. The human is modelled as a plane 1.80 meters
high and 0.50 meters wide facing the camera.

According to [17], to achieve good detection and tracking, the subject should
occupy a piece of the photo that is minimum 16 pixels high and 8 pixels wide.

Table 6.2, shows how many pixels a human placed in the center of the frame
occupies, when the frame is taken from different altitudes. From these results,
altitudes above 60 meters can quickly be excluded, as the human in these pictures
occupies too few pixels to achieve good detection and tracking. On the other end
of the scale, altitudes such as 10, 20 and 30 meters are also excluded as these give
a too small area covered in square meters,as seen in Table 6.1. Low altitudes are
physically not practical due to obstacles such as trees.

6.3 Usable Area

In the previous section, the optimal height was found to be somewhere between 30
and 60 meters, when looking at how large a human in the center of the frame will
appear. This section tries to find how much of the covered area that is suitable
for object detection and tracking, i.e where a human occupies enough cells to be

48 CHAPTER 6. FINDING THE OPTIMAL SEARCH HEIGHT

0
20

40
60

80

−30
−20

−10
010

20
30

−40

−30

−20

−10

0

North [meters]
East [meters]

D
ow

n
[m

et
er

s]

Figure 6.3: Four subjects in the camera frame. The multicopter is placed in
[0, 0,−40]T .

detected.

This is done by placing three new subjects in the model. Each subject is the same
size. The subjects will then be moved one meter in each direction from the center,
forming a circle as seen in Figure 6.3. This is done as long as the subject still are
large enough to be covered by the camera. The optimal height will be the one
where this circle has the largest radius.

Simulations of the model show that for moving the subjects sideways, the number
of pixels it occupies remains constant, although the lines become more oblique as
it approaches the side of the frame. As each camera frame will overlap each other
when the multicopter moves forward, it is most important to have good coverage
sideways.

Figure 6.4 shows how many pixels the subjects from Figure 6.3 occupy. The vertical
number of pixels is constant when moving towards the camera, and a small increase
in the sideways number of pixels is observed. Moving away from the camera has
naturally the opposite effect, the sideways number of pixels decreases slowly, and
the vertical number of pixels remains constant, until one barrier value of distance
from the center is reached. After this, a more rapid decrease in both vertical and
sideways pixels is observe.

This barrier value was found to be roughly the same as the distance from the center
to the rear line of the trapezoid. That means the whole trapezoid, except from
the part furthest from the camera can be used for object detection and tracking.
This is shown in Figure 6.5 where the usable area is marked as green, while the

6.4. DISCUSSION 49

0 50 100 150 200 250 300 350 400 450 500 550 6000

100

200

300

400

500

Width [pixels]

H
ei

gh
t

[p
ix

el
s]

Figure 6.4: The pixels occupied by the subjects

uncertain area is marked as red.

6.4 Discussion

As the subjects get the same size when moving sideways inside the area covered
(trapezoid), the optimal height will be the one that gives the maximum sideways
coverage and still get enough pixels for object detection and tracking.

From Table 6.2, it can be found that the size of a human from both 50 and 60
meters are both on the border of the minimum given by [17] for what will achieve
good tracking and detection. The optimal height is therefore thought to be between
40 and 60 meters. This will be also be strictly dependent on how large the subject
to be searched for is, and as the subject used in these simulations is modelled as
a relatively large human, a height between 40 and 50 meters would be a more
appropriate decision.

In order to test this more thoroughly, pictures of a person should be taken from
different altitudes with the infrared camera and tested with the object detection
algorithm.

50 CHAPTER 6. FINDING THE OPTIMAL SEARCH HEIGHT

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 3030

40

50

60

70

80

90

East [meters]

N
or

th
[m

et
er

s]

Figure 6.5: The usable area of the frame

Chapter 7

MATLAB Simulations

To test the various search patterns performance in different scenarios, a series of
simulations were done in MATLAB. These simulations assume a multicopter that
is capable of perfectly following the path. Section 7.1 details the mathematical
model for the multicopter with camera. In Section 7.2, a scenario with search
for 20 stationary subjects is simulated. An estimate of the area covered with the
camera by each search pattern is found in Section 7.3, and in Section 7.4, a search
for moving subjects is simulated.

7.1 The Setup

7.1.1 The Multicopter

In this simulations, a multicopter with unlimited acceleration and angular rate
was used, which gives the following equations for the multicopter’s position in the
NED-frame:

xk+1 = xk + u · cosψd (7.1)
yk+1 = yk + u · sinψd (7.2)
zk+1 = zd (7.3)

The desired heading ψd where calculated by lookahead-based stearing. A height
of z = 50m, was chosen, as found in Chapter 6.

51

52 CHAPTER 7. MATLAB SIMULATIONS

7.1.2 Camera

The height of z = 50m, gave the camera footprint shown in Figure 7.1. To ease
computations, this was estimated as a circle with radius r = 20m and its origin
in the center of the frame, i.e [x + 50 cosψ, y + 50 sinψ]T , where (x, y) is the
multicopter’s position in the NED-frame. The whole circle is placed within the
covered area while the rest of the covered area is assumed to be covered by the
next circle as pictures are taken continuously. A point [x∗, y∗] on the map will
then be within a frame if: √

(xc − x∗)2 + (yc − y∗)2 ≤ r (7.4)

where [xc, yc] is the origin of the circle.

−50 0 50
0

10

20

30

40

50

60

70

80

Distance East [m]

D
is

ta
nc

e
N

or
th

 [m
]

Figure 7.1: The picture frame from an height of z = 50m and position [0, 0]T when
the gimbal sets the camera to point 45◦ ahead. The green circle is the estimation
of the frame used in calculations in this chapter.

7.2. SEARCHING FOR A STATIONARY SUBJECT 53

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

120

140

160

180
Subject

Figure 7.2: The stationary subjects

7.2 Searching for a Stationary Subject

When searching for a stationary subject, the goal is to cover as much area as
possible, as fast as possible.

7.2.1 The Subjects

For this simulation, 20 stationary subjects were placed within the area. The search
was conducted on a 400m×400m area, and the CSP was set to [0, 0]T . The parallel
and creeping line search patterns search the area to the North and East of the CSP
(0 to 400m in each direction), and the square, sector and barrier patrol search the
area around the CSP (-200 to 200 m in each direction). Therefore, the subjects
were placed in the mutual part, between 0 and 200 m in North and East direction.

The subjects were generated using the rand() function in MATLAB, where MAT-
LAB draws a pseudorandom value from the open interval (0, 1) and their positions
are shown in Figure 7.2.

54 CHAPTER 7. MATLAB SIMULATIONS

−50 0 50 100 150 200 250 300 350 4000

50

100

150

200

250

300

350

400

Figure 7.3: Simulation of the parallel search pattern

7.2.2 Simulations

Using the algorithms described in Chapter 5, a waypoint representation of each
search pattern was made, and used for simulations with the multicopter model.
Simulations were done in Simulink. The speed of the multicopter was set to 5m/s,
and one camera frame per second was used for object detection.

Plots of the simulations are shown in figures 7.3 to 7.7. The waypoints are marked
by red circles, defining a desired path in red lines between them.

7.2.3 Results

The results of these simulations are shown in Table 7.1. By the three first search
patterns, 19 of the 20 subjects were found. Sector search found 17 of the subjects.
The worst performance in this simulation was the barrier patrol search pattern,
that only found 5 of the subjects. As seen in Figure 7.7, there are too wide
space between the lines for the camera to cover the entire area of interest. The
barrier patrol search pattern is however designed for finding moving subjects, and
therefore a poor result in this simulation was expected.

7.2. SEARCHING FOR A STATIONARY SUBJECT 55

0 50 100 150 200 250 300 350 400

0

100

200

300

400

Figure 7.4: Simulation of the creeping line search pattern

−200 −150 −100 −50 0 50 100 150 200 250
−200

−100

0

100

200

Figure 7.5: Simulation of the square search pattern

56 CHAPTER 7. MATLAB SIMULATIONS

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

Figure 7.6: Simulation of the sector search pattern

−200 −150 −100 −50 0 50 100 150 200
−200

−100

0

100

200

Figure 7.7: Simulation of the barrier patrol search pattern

7.3. ESTIMATED AREA COVERAGE 57

Table 7.1: Results of search for stationary subject simulation

Search pattern Parallel Creeping Square Sector Barrier patrol
Subjects found 19 19 19 17 5

Search length

The length of the path for each search pattern on this area is given by Table 7.2.
When these are considered, it can be seen that the parallel and creeping line search
patterns have the shortest distance of the three that finds the most targets. The
sector search pattern has the longest search distance which is about 800 meters
longer than the parallel and creeping line, and combined with not finding the same
number of subjects, there are few good reasons for choosing this pattern for this
scenario.

The barrier patrol search pattern has by far the shortest distance of the search; it
does however not find many subjects.

Table 7.2: Search length for the patterns on a 400m × 400m area.

Search pattern Parallel Creeping Square Sector Barrier patrol
Search length 4576 4576 4719 5400 3086

7.3 Estimated Area Coverage

The same simulation-setup can be used to estimate the area coverage of each
search pattern. The search area can be considered as a matrix, where each element
represents a point in the area. When the distance in each direction is equal and the
resolution in each direction is the same, i.e the matrix is quadratic; the distance
between each point is equal in x- and y-direction and is given by:

d = distance

resolution
(7.5)

Equation 7.4 is then used to check whether each point is covered. The matrix
stores a 1 if the element is covered by a frame, and 0 otherwise. As the resolution
has to be a large number, i.e. 100, this matrix becomes large (100 × 100) and
therefore, this method is not suited for other implementations than simulation in
MATLAB. The area coverage in percent is found by:

areacoverage = sum(matrix)
resolution2 · 100% (7.6)

58 CHAPTER 7. MATLAB SIMULATIONS

The results for each search pattern are shown in Table 7.3. The barrier patrol and
sector search patterns performed worst in this simulation, as they do not provide
full area coverage. However, they have other interesting properties.

The areas covered by the search patterns, with this camera setup, are shown in
Figure 7.8. The parallel and creeping line search patterns lose some area coverage
when turning. This is because the center of the camera frame is 50 meter ahead of
the multicopter, and the multicopter turns fast as it has unlimited angular rate.
This will improve a bit when using a physical multicopter. Another solution could
be making the lines longer, and do the turning outside the search area.

The square search has an uncovered part in the middle of the area, around its
starting point and the CSP. This is because the lines here are much shorter than
the 50 meters which the camera frame is ahead of the craft. However, in a real life
scenario the multicopter has to get to the start of the search somehow. If it flies
towards the starting point it will cover this area on the way. If the search starts
in this point, the searchers responsible for the multicopter will have to put it in
that position, and therefore this area will be covered regardless.

The sector search will not cover the whole area. As can be seen in Figure 7.8d, it
offers very good coverage of the CSP and its surrounding area. Outside this, there
are large portions of the area that ends between the search lines, which will not
be covered. These areas grow when the length of the search area increases.

Nor the barrier patrol search pattern will cover the entire area. This search pattern
focuses on the borders of the search area, with the exception of the two diagonal
crossings.

Table 7.3: Estimated area coverage in percent for the search patterns

resolution
Search Pattern 50 100 200
Parallel 92.72 92.96 93.12
Creeping line 92.72 92.94 93.10
Square 96.12 96.61 96.53
Sector 73.92 73.39 73.54
Barrier Patrol 45.20 45.21 45.06

7.3. ESTIMATED AREA COVERAGE 59

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

(a) Parallel

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

(b) Creeping line

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

(c) Square

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

(d) Sector

−200 −150 −100 −50 0 50 100 150 200
−200

−150

−100

−50

0

50

100

150

200

(e) Barrier

Figure 7.8: Area covered by each search pattern

60 CHAPTER 7. MATLAB SIMULATIONS

7.4 Searching for a Moving Subject

When the subject is stationary, the goal is to cover as much area as possible. When
the subject is moving, the goal is to cover the right area at the right time, to be
able to detect the subject.

7.4.1 The Moving Subjects

For this simulation, four moving subjects were modelled in Simulink. The subjects
had different starting positions, heading and walking speed. White noise was
added to the speed and heading, to simulate terrain differences.

The path of each moving subject is shown in Figure 7.9. The CSP is still [0, 0]T ,
and the subjects were given starting points close to this.

The red subject starts in [50, 30]T and moves with a speed of 1.0m/s in a random
direction before it ends in the North-East corner of the area. The pink subject
starts in [40, 40]T . It moves slowly with a speed of 0.5m/s North-East. The blue
subject starts far from the CSP, in [150, 150]T , and moves westward with a speed
of 1.1m/s. The yellow subject starts South in the area in [0, 150]. From there it
walks North with a speed of 0.4m/s.

7.4.2 Simulations and Results

The same simulations as in Section 7.2 were executed to find these subjects. The
area’s dimensions were the same, and thus, some of the patterns will experience
the subjects quickly leaving the search area. Plots of the simulations are shown in
figures 7.10 to 7.14.

The results of these simulations are summarized in Table 7.4. The square search
pattern did best, as it managed to detect all four subjects. The parallel and sector
search patterns came second by detecting three of four subjects. Neither managed
to find the blue subject. Parallel did not find the blue because it started too far
from the CSP, and quickly disappeared from the search area. The sector search
pattern crosses the blue subject’s path six times, as can be seen in Figure 7.13,
but it is always at the wrong time and thus it did not find the subject.

The worst performers in this test were the creeping line search pattern, and again
the barrier patrol search pattern, which both only found one of the subjects. Creep-
ing line discovered the red subject, which path crosses its lines several times. It

7.4. SEARCHING FOR A MOVING SUBJECT 61

−600 −500 −400 −300 −200 −100 0 100 200 300 4000

50

100

150

200

250

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.9: The stationary subjects

−600 −500 −400 −300 −200 −100 0 100 200 300 4000

50

100

150

200

250

300

350

400

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.10: Simulation of the parallel search pattern

62 CHAPTER 7. MATLAB SIMULATIONS

−600 −500 −400 −300 −200 −100 0 100 200 300 400

0

100

200

300

400

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.11: Simulation of the creeping line search pattern

−600 −500 −400 −300 −200 −100 0 100 200 300 400
−200

−100

0

100

200

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.12: Simulation of the square search pattern

7.4. SEARCHING FOR A MOVING SUBJECT 63

−600 −500 −400 −300 −200 −100 0 100 200 300 400
−200

−100

0

100

200

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.13: Simulation of the sector search pattern

−600 −500 −400 −300 −200 −100 0 100 200 300 400
−200

−100

0

100

200

Distance East [m]

D
ist

an
ce

N
or

th
[m

]

Figure 7.14: Simulation of the barrier patrol search pattern

64 CHAPTER 7. MATLAB SIMULATIONS

Table 7.4: Results of search for moving subject simulation

Search pattern Red Pink Blue Yellow
Parallel found found not found found
Creeping found not found not found not found
Square found found found found
Sector found found not found found
Barrier not found not found found not found

did not find the pink or yellow subject, despite the fact that they stay inside the
area covered by the pattern the entire time. The blue subject moving towards the
start of the search was not found, even though it crosses four search lines.

The barrier patrol search pattern only finds the blue subject, even though the
three other subjects all cross the barrier and leave the search area.

7.5 Discussion

In this chapter, the various search patterns performances were tested in two differ-
ent scenarios. In these simulations, the best results came with the square search
pattern, which found 19 of 20 of the stationary subjects in the first simulation,
and 3 of the 4 moving subjects in the other simulation. When estimating the area
coverage, the square search covered 96% of the area with the remaining 4% being
around the start area in the middle. As noted, this is because the simulation starts
with the multicopter in the first waypoint. The remaining area will probably be
covered either by a ground team setting up the multicopter, or by the multicopter
flying towards the first waypoint of the pattern. The square search pattern was
also found to have the best performance in the simulations in [7].

The parallel and creeping line search patterns both found 19 of the 20 stationary
subjects. From Figure 7.8, it can be seen that both do not provide full area
coverage. The area coverage was estimated to 93 % for both patterns. The patterns
lose some area coverage when turning, due to how the camera was chosen to be
placed, with the camera pointing 45◦ forward. With a different camera placing,
these two patterns would provide 100% area coverage. A way to get 100 % area
coverage with this camera placing is to extend the search lines such that the turning
is done outside the search area, this will however increase the total search length.

When using these two patterns for finding the moving subjects, the parallel search
pattern found 3 of the 4 subjects, while creeping line only discovered 1 subject.

7.5. DISCUSSION 65

These patterns are weak for finding moving subjects if the subjects start to far
from the start of the search and move fast, or if the search lines are too long,
which is illustrated by Figure 7.15. Here a moving subject, drawn as a blue circle,
is moving across the search lines of a creeping line search pattern. The multicopter
is illustrated by a red rectangle, and the area covered by the multicopter’s camera
is illustrated by a yellow circle. If the subject can move from point A to point
B, using shorter time than the multicopter uses on the corresponding distance,
it will never be discovered by the multicopter. Said in another way, if the time
used by the subject to complete two short lines are shorter than the time used by
the multicopter to complete two short and two long lines, the multicopter will not
find the subject, if the subject starts inside the search area and moves in the same
direction as the search pattern.

Figure 7.15: How the subject avoids the search. If the subject illustrated by the
blue square moves faster from A to B than the multicopter illustrated by the red
rectangle with a yellow circle indicating its camera coverage, the multicopter will
not catch up with the subject, and will not detect it.

To avoid such a problem the three following factors can be considered; the multi-
copter’s speed can be increased, the search lines decreased or the sideways coverage
(and thus the short lines) increased.

The sector search pattern performed well on the stationary subjects, finding 17
of 20, even though it does not provide full area coverage. The area coverage was
estimated to 73%. On search length, it scored worst, having a total length that
was almost 900 meters longer than parallel and creeping line search patterns. In

66 CHAPTER 7. MATLAB SIMULATIONS

the moving subject simulation, it found 3 of the 4 subjects, and then performed
as good as the parallel search pattern, only beaten by square search that found
all the subjects. When searching for moving subjects, the sector search has the
advantage that it quickly moves from one part of the area to another, and is thus
able to intersect with the path of the different moving subjects faster. However, it
pays the price for this by not gaining complete area coverage.

As seen in Figure 7.8d, the sector search provides good coverage in the area in
the middle, around the CSP. This is the main advantage of the sector search. In
a real scenario, this area may be covered, for instance by dense vegetation, and
thus getting good pictures could prove difficult. It would then be advantageous
to cover this area multiple times from different directions to get the best camera
pictures.

The barrier patrol search pattern performed worst in all the tests. It only managed
to find 1 of the 20 stationary subjects and 1 of the 4 moving subjects. A poor
performance for finding the stationary subjects was expected as it is designed to
find moving subjects, which is also seen by its estimated area coverage of only
45%.

When searching for moving subjects however, a better performance was expected.
Figure 7.14 shows that all of the subjects’ paths cross one of the search lines a
couple of times. Still, only one of them is discovered.

Several reasons can be behind this poor result such as bad implementation of the
pattern, too large area and/or too low flying speed of the multicopter.

Chapter 8

Implementation and Simulations

In Neptus, a mission plan is specified as a set of maneuvers (each with a specific
type and parameters) and transitions between those maneuvers, forming a graph.
A maneuver is thus a unit of work that can be accomplished by a specific vehicle or
a class of vehicles by instantiating a controller that potentially changes the physical
state of the vehicle. A transition condition is a boolean expression that can be
evaluated against the vehicle state or triggered by asynchronous events [22]. A
typical transition is switching between waypoints, where the transition condition
may be the circle of acceptance or the along-track distance found in Section 2.2.1.
Existing maneuvers in Neptus include among others Goto, Loiter, Rows and Hover.
To use the current mission planning scheme in Neptus, each search pattern was
implemented as a maneuver.

Neptus and Dune are large complex systems, and takes lots of time and effort to
learn. This chapter details the implementation of the search patterns from Section
5.2.The sector search pattern is used as an example of an implemented maneuver.

In the GNC-system explained in Section 2.2, Neptus where the mission planning is
done, is in the Mission Planner-block. The Dune-tasks, Maneuver.SectorMan and
Control.UAV.ArduCopter, will be in the Guidance System-block. Different from
the figure, Neptus sends the waypoints indirectly in the form of an IMC-maneuver-
message, IMC::SectorMan, that specifies the parameters of the maneuver, and tells
the Guidance System to compute the waypoints.

67

68 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

Guidance System Control System Multicopter Navigation System

Mission Planner

Waypoints

Estimated positions and velocities

Wind and weather conditions

Operator inputs

Figure 8.1: The GNC signal flow. Neptus is in the Mission Planner-block, coloured
with yellow, and the implemented Dune-tasks are in the Guidance System-block,
coloured with green.

8.1 IMC

The first step of the implementation is to find whether or not an existing IMC-
message can be used for the communication between Neptus and Dune. For the
parallel and creeping line search pattern, the existing IMC-message for the Rows
maneuver was used, while for sector search, square search and barrier patrol, new
IMC-messages were created.

The IMC-messages are defined in an XML-file, and can be translated into different
language bindings using XSLT. This is an important property as a Java-version
for Neptus is needed, as well as a C++ version for Dune. Parts of the XML-file
containing the created IMC-messages are shown in Appendix C. The list of IMC-
Maneuver-messages is shown in Listing 8.1, where the created maneuvers area
added in the maneuver message-group.

Listing 8.1: The IMC-Maneuver-Messages
1 <message−groups>
2 <message−group name=”Maneuver” abbrev=”Maneuver”>
3 <message−type abbrev=”Goto”/>
4 <message−type abbrev=”PopUp”/>
5 <message−type abbrev=” Te leoperat i on ”/>
6 <message−type abbrev=” Lo i t e r ”/>
7 <message−type abbrev=” IdleManeuver ”/>
8 <message−type abbrev=” LowLevelControl ”/>
9 <message−type abbrev=”Rows”/>

8.2. NEPTUS 69

10 <message−type abbrev=”SquareMan”/>
11 <message−type abbrev=”SectorMan”/>
12 <message−type abbrev=” BarrierMan ”/>
13 <message−type abbrev=” FollowPath ”/>
14 <message−type abbrev=”YoYo”/>
15 <message−type abbrev=” Stat ionKeeping ”/>
16 <message−type abbrev=” Elevator ”/>
17 <message−type abbrev=” Fol lowTrajectory ”/>
18 <message−type abbrev=”CustomManeuver”/>
19 <message−type abbrev=” VehicleFormation ”/>
20 <message−type abbrev=” CompassCal ibration ”/>
21 <message−type abbrev=”CoverArea”/>
22 <message−type abbrev=” Fol lowReference ”/>
23 <message−type abbrev=”CommsRelay”/>
24 <message−type abbrev=” FormationParameters ”/>
25 <message−type abbrev=” FormationPlanExecution ”/>
26 </message−group>
27 </message−groups>

In an IMC-message, each variable is defined by a field. The field must contain a
variable name, used mostly for displaying, an abbreviation, which is the variable’s
name in the code and a data type, i.e signed or unsigned integer, floating point,
text etc. and size 8, 16, 32 or 64 bit. It is also possible to add minimum, maximum
and initial values of each field and the unit. Listing 8.2 shows an example of a field
in an IMC-message. This field is the pattern bearing angle, which is the pattern’s
rotation around the z-axis.

Listing 8.2: An example of a field from a XML-file
1 < f i e l d name=” Bearing ” abbrev=” bear ing ” type=” f p 6 4 t ” un i t=” rad ”

min=”0” max=” 6.283185307179586 ”>
2 <d e s c r i p t i o n>
3 Pattern bear ing ang le .
4 </ d e s c r i p t i o n>
5 </ f i e l d>

8.2 Neptus

Neptus is where the operator creates the mission plan, and chooses the properties
of each maneuver. The mission planner in Neptus is called Plan Edition, and is
found to the left on the screen shown in Figure 8.2, marked as a red P.

When accessing the mission planner, the operator is asked to specify the vehicle for
which he or she will create a plan. Each vehicle is defined by a vehicle definitions-

70 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

Figure 8.2: Neptus after the Plan Edition is opened

file in Neptus, where each applicable maneuver for this vehicle is defined. An
example of this is shown in Listing 8.3. In this file, the different properties can
also be initialized. A right click on the map in the screen lets the operator add
one of these maneuvers; the applicable maneuvers for the vehicle ntnu-hexa-001
are shown in the popup window in Figure 8.2

Listing 8.3: An example of a maneuver defined in a vehicle definitions-file
1 <f ea s ib l eManeuver s>
2 < !−− Other f e a s i b l e maneuvers −−>
3 <maneuver>
4 <SectorSearch kind=” automatic ”>
5 <basePoint type=” pointType ”>
6 <po int>
7 <id />
8 <coord inate>
9 < l a t i t u d e>0N</ l a t i t u d e>

10 <l ong i tude>0E</ l ong i tude>
11 <depth>0 .0</depth>
12 </ coord inate>
13 </ po int>
14 <rad iusTo l e rance>0 .0</ rad iusTo l e rance>
15 </ basePoint>

8.2. NEPTUS 71

16 <l ength>200 .0</ l ength>
17 <he ight>0 .0</ he ight>
18 <bear ing>0 .0</ bear ing>
19 <speed un i t=”METERS PS”>10 .0</ speed>
20 <annotat ion>
21 <documentation>No documentation a v a i l a b l e</

documentation>
22 <implementation−c l a s s>pt . l s t s . neptus .mp. maneuvers .

SectorSearch</ implementation−c l a s s>
23 </ annotat ion>
24 </ SectorSearch>
25 </maneuver>
26 < !−− Other f e a s i b l e maneuvers −−>
27 </ feas ib l eManeuver s>

Each maneuver is defined in its own Java-class. When a maneuver is chosen,
the waypoints are calculated and presented to the operator using functions from
the Java-class. A properties-window is then created, which can be seen on the
right side of the screen in Figure 8.3. From there, the operator can change the
parameters of the maneuver, such as size of the search area, bearing angle etc.
The waypoints are then recalculated and shown on the screen.

Figure 8.3: Neptus after a maneuver is selected

72 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

After the operator has made a satisfactory mission plan, it must be sent as IMC-
messages, and thus the Java-class must include functions for writing the properties
to the correct IMC-message.

8.3 Dune

Figure 8.4: The Dune and Neptus signal flow for the Sector Search maneuver.

The signal flow for the sector search maneuver is shown in Figure 8.4, similarly

8.3. DUNE 73

dune tasks for the square search pattern and the barrier patrol search pattern were
made. The figure shows that two Dune-tasks are used when sending a waypoint
from the mission created in Neptus to the autopilot (ArduPilot). These are the ma-
neuvers specific task (SectorMan in the drawing) and Control.UAV.ArduCopter.
Their function is described in the following sections.

8.3.1 Maneuver.SectorMan

Each maneuver defined in an IMC-message has a corresponding Dune-task that
is responsible for handling or consuming that message. For the sector search
maneuver, this Dune task is called SectorMan.

This task has two consume-functions; one for the maneuver-message (IMC::SectorMan)
and one for the IMC::PathControlState-message.

IMC::SectorMan

When receiving the IMC::SectorMan-message, the Dune-task creates the search
pattern in the NED-frame based on that message. The pattern is stored as a set
of Stages, rather than as a set of points. A Stage is defined as the distance between
two waypoints, Figure 8.5a.

A simple approach to finding these Stages is to think of the Stage as a vector.
Then the Stage is given by

Stage = −OWP1 +OWP2 (8.1)

where ~OWPi is the vector from the origin to the ith waypoint.

After computation is done, the first waypoint is rotated by the bearing angle, and
computed in WGS-84 latitude and longitude. Then an IMC::DesiredPath-message
is filled and sent.

IMC::PathControlState

The PathControlState-message tells between which waypoints the craft currently
is and its along- and cross-track positions. A flag is set when the craft is close
to the targeted waypoint. If this flag is active when the message arrives, the
Dune-task finds the next Stage, rotates it by the bearing angle, and fills a new
DesiredPath-message with the next waypoint in WGS-84 latitude and longitude
coordinates.

74 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

(a) A Stage

(b) The Stage as a vector

Figure 8.5: A Stage

8.3.2 Control.UAV.ArduCopter

This Dune-task is a modified version of the existing Control.UAV.ArduPlane-task,
created by [28]. In this context, it is responsible for consuming the IMC::DesiredPath-
message sent by the Maneuver.SectorMan task and to send the waypoint set here
via MAVLink to the ArduPilot Mega.

It also gets the multicopter’s position and attitude from the ArduPilot and checks
if the multicopter is close enough to a waypoint so that a waypoint switch can
occur. If close enough, a flag FL NEAR is set in the IMC::DesiredPath-message
that is consumed by the Maneuver.SectorMan-task.

8.4 Running Dune on a Vehicle

Each vehicle running Dune has their own configurations file (vehicle.ini). This file
specifies which Dune-tasks that will be running for that vehicle, and initializes
some fields which values, during operations, can be changed from Neptus. For
instance, a multicopter must run the Control.UAV.ArduCopter-task, while other
vehicles like an AUV does not run that task.

A part of the configurations file for the hexacopter described in Chapter 3 is found
in Listing 8.4. This part shows the part where the Control.UAV.ArduCopter task
is initialized. As seen in the listing, the task is defined for three profiles; Hardware
SimulationRC and Simulation, and the task is initialized differently for different
profiles. Simulation or SimulationRC is used when simulating with or without an
external radio controller. Hardware is used for tests flights.

8.4. RUNNING DUNE ON A VEHICLE 75

Listing 8.4: A part of the hexacopter’s configurations file
1 [Control .UAV. ArduCopter/Hardware]
2 Enabled = Hardware
3 Entity Label = Autop i lot
4 Ardupi lot Tracker = True
5 TCP − Address = 1 2 7 . 0 . 0 . 1
6 TCP − Port = 9999
7 uBlox GPS = False
8 Telemetry Rate = 10
9 Defau l t a l t i t u d e = 30

10 Defau l t speed = 20
11 Ardupi lot Ve loc i ty BODY = True
12

13 [Control .UAV. ArduCopter/Simulation]
14 Enabled = Simulation ,

SimulationRC
15 Entity Label = Autop i lot
16 Ardupi lot Tracker = True
17 TCP − Address = 1 2 7 . 0 . 0 . 1
18 TCP − Port = 5760
19 Debug Level = Debug
20 Defau l t a l t i t u d e = 30
21 Defau l t speed = 20
22 Auto Custom Maneuver = True
23 Auto Custom Maneuver − Name = My custom maneuver
24 Auto Custom Maneuver − Plan Name = Quick plan
25 Auto Custom Maneuver − Parameter = Some=parameter
26 Ardupi lot Ve loc i ty BODY = True

For space saving, the vehicle.ini-file can include other .ini-files, such as the maneuvers.ini-
file which enables all the maneuvers. The part of the maneuvers.ini file enabling
the five search patterns implemented in this chapter is shown in Listing 8.5.

Listing 8.5: A part of maneuvers.ini
1 [Maneuver . Rows]
2 Enabled = Always
3 Entity Label = Rows Maneuver
4

5 [Maneuver . SquareMan]
6 Enabled = Always
7 Entity Label = Square Search
8

9 [Maneuver . SectorMan]
10 Enabled = Always
11 Entity Label = Sector Search
12

13 [Maneuver . BarrierMan]
14 Enabled = Always

76 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

15 Entity Label = Bar r i e r Patro l Search

8.5 Simulations

The implementation was verified by simulations, using an Arduino SITL (software
in the loop) simulator. This simulator is based on a build of the autopilot code
using an ordinary C++ compiler, that gives a native executable so that the be-
haviour of the code without hardware can be tested. A step by step guide for
setting up a SITL simulator on Linux is found in [1].

This simulator can be set to interact with Dune and Neptus, so that Neptus can
be used to send commands and mission plans to the simulated craft. Figure 8.6
shows Neptus during a simulation of a square search. To the bottom right, a list
of the available mission plans can be seen. The plan is marked in either white,
green, red or purple, where green indicates in synch in both the vehicle and Neptus.
The plan is sent from Neptus to Dune by pressing the blue arrow above the list.
The green circle is pressed for executing the plan and the red circle is pressed for
aborting a plan in progress. To the top right, the vehicle’s attitude and altitude
are presented. The craft’s position is shown on the map by a green shape. The
position of the simulated craft is sent by the IMC::EstimatedState-message from
Dune.

8.5.1 Results and Discussion

The results of the simulations are shown in figures 8.7 to 8.11. These plots
are shown in the NED-frame, as this frame will make more sense than GPS-
measurements when reading the plots. When simulating, the waypoint switch
criteria used was: switch waypoint if the distance to target reported from the
autopilot is less than 10 meters.

The plots from the simulations of parallel search, Figure 8.7, and creeping line
search, Figure 8.8, show that the simulated craft follows the path well. Some cross-
track error is experienced along the short lines when turning, and some constant
cross-track error along some of the long lines. Even though Dune is set to signal
a waypoints switch 10 meters before reaching the waypoints, it can be seen that
the simulated craft travels nearly all the way to the waypoint before switching for
the next. This might be because the desired speed of the simulated craft is set
relatively high (ud = 10 m/s), and the estimated speed u varies from 2 to 5 m/s,

8.5. SIMULATIONS 77

Figure 8.6: Neptus during the flight simulation of the sector search pattern

which makes the craft move some meters before the next waypoint has reached
the autopilot.

The simulation of the square search is shown in Figure 8.9. The simulated craft
experiences some cross-track error in the beginning of the simulation, due to short
distance between waypoints and thus faster waypoint switching. After this, it
sticks closer to the path, with the exception of a the small sections after each turn.

Figure 8.10, shows the results of the simulation of the sector search, which is also
the pattern being simulated in the screenshot in Figure 8.6. This simulation looks
a bit worse than the others, as there are some minor cross-track error during the
whole simulation. It also experiences two bad turns, one at the top of the pattern
and one down to the right. The scale of the axes in this plot are smaller than the
others, and thus the cross-track error might not be as large, relative to the others,
as it appears to be.

The simulation of the barrier patrol search is shown in Figure 8.11. Here, the path
following is very good, and little cross track error is experienced along the path.

These simulations proved the functionality of the scheme illustrated in Figure 8.4,
with the implemented maneuvers and their Dune-tasks. Both the communication

78 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

between Neptus and Dune by IMC-messages, and the communication between
Dune and the autopilot by MAVLink was found to be working successfully.

−20 −10 0 10 20 30 40 50 60 70 80 90 100 110 120
−180

−160

−140

−120

−100

−80

−60

−40

−20
0

20

Distance East (meters)

D
ist

an
ce

N
or

th
(m

et
er

s)

Desired path
Simulated path

Figure 8.7: Simulation of the parallel search

8.5. SIMULATIONS 79

−20 0 20 40 60 80 100 120 140 160 180
−20

0

20

40

60

80

100

120

Distance East (meters)

D
ist

an
ce

N
or

th
(m

et
er

s)

Desired path
Simulated path

Figure 8.8: Simulation of the creeping line search

−100 −80 −60 −40 −20 0 20 40 60 80 100
−100

−50

0

50

100

150

Distance East (meters)

D
ist

an
ce

N
or

th
(m

et
er

s)

Desired path
Simulated path

Figure 8.9: Simulation of the square search

80 CHAPTER 8. IMPLEMENTATION AND SIMULATIONS

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

Distance East (meters)

D
ist

an
ce

N
or

th
(m

et
er

s)
Desired path
Simulated path

Figure 8.10: Simulation of the sector search

−140 −120 −100 −80 −60 −40 −20 0 20 40 60 80 100
−250

−200

−150

−100

−50

0

50

Distance East (meters)

D
ist

an
ce

N
or

th
(m

et
er

s)

Desired path
Simulated path

Figure 8.11: Simulation of the barrier patrol search

Chapter 9

Flight Tests

This chapter describes the flight tests conducted in this thesis, and the results
gotten. The tests were conducted at Agdenes airport in Breivika May 20th 2014.
Tests conducted earlier gave no results due to hardware problems.

To increase flight time, these tests were conducted using only a single-board com-
puter as payload. The onboard computer used during the flights was a BeagleBone,
due to previous problems with the PandaBoard.

To be easier to understand for a reader, the plots in this chapter have been trans-
lated from GPS-measurements to NED-coordinates using the method described
in Apppendix A.2. The first waypoint is chosen as the reference point, and it
therefore becomes the origin of the NED-frame.

9.1 Test of existing Goto-maneuver

In the first experiment, the existing Goto-maneuver was tested. The Goto-maneuver
is simply setting a simple waypoint that the multicopter should move to. The mis-
sion consisted of three Goto’s forming an L. The mission in Neptus is shown in
Figure 9.1.

The results from this test is shown in Figure 9.2. Here, the hexacopter’s path
is shown in blue, and the path defined by the three waypoints is shown in red.
The hexacopter stears towards the waypoint, when approaching the condition set
in the Control.UAV.ArduCopter-task kicks in and the FL NEAR flag is set, and
sent in an IMC::PathControlState-message. Then a new waypoint is received in
an IMC::DesiredPath-message, and sent to the ArduPilot Mega by MAVLink.

81

82 CHAPTER 9. FLIGHT TESTS

Figure 9.1: The Goto-plan from Neptus on a map of Agdenes.

−26 −24 −22 −20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0 2
−10

−5

0

5

10

15

20

25

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Desired path
Measured path

Figure 9.2: The result from the test of the Goto-maneuver.

9.2. PARALLEL SEARCH 83

This test proved the functionality of the mission planning scheme, the Goto-
maneuver and the waypoint switching. However Figure 9.2, shows that the condi-
tion for waypoint switching can be tightened, so that the hexacopter flies nearer
the waypoint before making a switch, which will give a path closer to the red lines.

9.2 Parallel Search

The first maneuver tested was the parallel search pattern. As the parallel search
pattern and the creeping line search pattern use the same IMC-message and Dune-
task, only one of them were tested. The mission plan for this test is shown in Figure
9.3. The flying altitude was set to 10m, and the dimensions of the search area were
30 m × 30 m. The criteria for switching waypoints was that the reported distance
to target from the ArduPilot Mega was less than 5 meters.

Figure 9.3: The parallel search pattern tested at Agdenes.

Figure 9.4, shows the results from this test. Here, the hexacopter follows the
desired path for some time, and everything appears to work fine. However, when
approaching the 5th waypoint, it stops in the waypoint, and enters Loiter mode.

84 CHAPTER 9. FLIGHT TESTS

−15 −10 −5 0 5 10 15 20 25 30 35
−20

−15

−10

−5

0

5

10

15

20

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Desired path
Measured path

Figure 9.4: The result from flying a parallel search pattern.

9.3. SQUARE SEARCH 85

9.3 Square Search

Test 1

The next maneuver tested was the square search pattern. The pattern was set to
cover a 20m × 20m area, which resulted in 6 waypoints. The pattern is shown in
Figure 9.5.

Figure 9.5: The square search pattern tested at Agdenes.

How the hexacopter follwed the path can be seen in Figure 9.6. The hexacopter
starts to the right of the pattern; from there it travels the shortest route to the
middle of the expanding square, where the first waypoint is. After this, it sticks
close to the red line, for the rest of the pattern. It is also worth noting that for
this test, the waypoint switch criteria was tightened, so that the hexacopter flew
closer to the waypoints before heading for the next waypoint.

Test 2

As the first test was successful, a new test was executed with a larger square search
maneuver. This time, the pattern was set to cover a 30m × 30m area. This pattern
now gave 10 waypoints, as can be seen from Figure 9.7.

The hexacopter’s path is shown in Figure 9.8. The hexacopter follows the path
relatively well, with some exceptions like the final line (to the left in the plot).

86 CHAPTER 9. FLIGHT TESTS

−10 −5 0 5 10 15 20 25
−10

−5

0

5

10

15

20

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]
Desired path
Measured path

Figure 9.6: The result from flying the first square search pattern.

Figure 9.7: The second square search pattern tested at Agdenes.

9.4. SECTOR SEARCH 87

This might be due to some wind during this test. The first line in the middle is
also not good, because of the hexacopter’s starting position. The starting position
was almost in waypoint 2, causing the hexacopter to be ordered a 180◦ turn when
reaching waypoint 1.

−20 −15 −10 −5 0 5 10 15 20
−20

−10

0

10

20

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Desired path
Measured path

Figure 9.8: The result from flying the second square search pattern.

9.4 Sector Search

The plan for the test of the sector search is shown in Figure 9.9. The circle the
sector search pattern was set to search within, had a radius of 20m. How the
hexacopter followed this path is seen in Figure 9.10. The plot shows that the
hexacopter follows the path well, however some cross-track error is experienced.
A plot of the cross-track error, computed by Equation 2.10, is found in Figure
9.11, where the red circles indicate a waypoint switch. Here, it is shown that the
hexacopter get some crosstrack error all over, and the cross track error is smallest
around the time when a waypoint switch occurs. If the hexacopter followed the
path perfectly, the cross-track error would have been zero along the lines, and
showed an increase when the waypoint switch took place.

88 CHAPTER 9. FLIGHT TESTS

Figure 9.9: The sector search pattern tested at Agdenes.

A plot of the hexacopter’s heading versus desired heading is shown in Figure
9.14. Here, it can be seen that the hexacopter’s heading controller works fine.
There are some minor deviations when trying to keep a constant heading, and a
small overshoot. On the plot, two large overshoots appear to be present when
moving from a large angle like 270◦ to a small angle of 30◦. These are however
not overshoots, but rather a sign that the hexacopter has turned left in stead of
right. Due to low battery on the hexacopter, the search had to be aborted after
returning to middle when it had completed 8 waypoints, or 3 triangles.

9.5 Barrier Patrol Search

The last search pattern tested was the barrier patrol search pattern, as can be seen
in Figure 9.15. This search pattern is mainly used to detect when a subject within
an area leaves the area, and therefore it sticks to the sides of the area. Due to
space limitations on Agdenes, the area had to be small, and the dimensions used
for this test were 35m × 35m.

When flying the barrier patrol search pattern, the same problem as described
in Section 9.2 occurred. The best result from many tries is shown in Figure 9.16.
This time, the hexacopter flew 7 waypoints, before it stopped and went into Loiter-
mode.

In this test, the Dune-task was set to give a new waypoint, when the reported
distance to target (from the autopilot) were less than 3 meters. Since the path is

9.5. BARRIER PATROL SEARCH 89

−20 −15 −10 −5 0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Desired path
Measured path

Figure 9.10: The result from flying the sector search pattern.

−20 0 20 40 60 80 100 120 140
−4

−3

−2

−1

0

1

2

3

time [s]

er
ro

r
[m

]

Cross track error
Waypoint switch

Figure 9.11: The cross-track error when flying the sector search pattern.

90 CHAPTER 9. FLIGHT TESTS

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
−20

−10

0

10

20

time [s]

ro
ll

[d
eg

re
es

]
Measured roll
Desired roll

Figure 9.12: Desired roll versus measured roll.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

−10

0

10

time [s]

pi
tc

h
[d

eg
re

es
]

Pitch

Figure 9.13: Measured pitch.

−20 0 20 40 60 80 100 120 1400

100

200

300

time [s]

he
ad

in
g

[d
eg

re
es

] Desired heading
Measured heading

Figure 9.14: Desired heading versus measured heading.

9.6. MISSION REVIEW 91

Figure 9.15: The barrier patrol search pattern tested at Agdenes.

plotted in the NED-frame, a circle with radius of 3 meters can be drawn around
each waypoint, Figure 9.16. Here, it is clear that the hexacopter is well within this
limit on the last waypoint it encounters, and then a new waypoint should have
been sent to the autopilot.

9.6 Mission Review

After the flights, Neptus’ Mission Review and Analysis-tool can be used to review
and analyse the flights. A screenshot from the review of the parallel search in
Section 9.2 is shown in Figure 9.17. This screenshot shows the planned path
consisting of waypoints and lines between them. The performed path is shown in
white dots. In this screen, the performed flight can be replayed by pressing the
play-button in the top of the screen.

When Dune is running during a mission, IMC-messages such as EstimatedState,
DesiredPath and PathControlState are logged and stored for later use. Choosing
the Messages-tab to the left in Figure 9.17 lets the operator access these messages.

During the tests, a problem that frequently occurred was the hexacopter stopping
in one of the waypoints in the middle of the plan, and entering Loiter-mode.
Examples of tests where this took place are found in sections 9.2 and 9.5.

When flying, the movement of the hexacopter is controlled by the autopilot which

92 CHAPTER 9. FLIGHT TESTS

−30 −25 −20 −15 −10 −5 0 5 10 15
−40

−30

−20

−10

0

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]
Desired path
Measured path

Figure 9.16: The result from flying the barrier patrol search pattern.

Figure 9.17: Neptus’ Mission Review and Analysis-tool

9.6. MISSION REVIEW 93

receives the waypoints from the Dune-tasks running, as shown in Figure 8.4. If the
autopilot get position measurements close enough to its current targeted waypoint,
it enters Loiter-mode.

Outside the autopilot, the Dune-task Control.UAV.ArduCopter is responsible for
detecting that the hexacopter is close to a waypoint and set the FL NEAR flag
in the IMC::PathControlState-message. When this flag is set, the maneuver
task of the current maneuver will send the next waypoint in return with an
IMC::DesiredPath-message.

As both these IMC-messages are logged by Dune, their logs could be examined.
Examining the PathControlState-log from these plans shows that when these stops
occurred, the FL NEAR flag in the PathControlState-message was not set by the
Control.UAV.ArduCopter-task. Then, no new waypoint is sent by the maneuver-
task, and thus the autopilot stays in Loter-mode until some other command is
received.

As this flag was not set, the problem appears to be the condition in the Control.
UAV.ArduCopter-task detecting closeness to a waypoint, and setting this flag.
This was considered an uncertainty before the testing, due to previous flights done
by [28]. Therefore, two different conditions were implemented and tested during
the flights. These are shown in Listing 9.1. The value of the boolean variable
m args.wptmethod, deciding which condition to use, can be set from Neptus and
sent by IMC during flight. The same goes for the variables m args.wptolerance
and m args.secs.

Listing 9.1: Conditions for waypoint switch
1 i f (m args . wptmethod)
2 {
3 i f (! m changing wp
4 && (nav out . wp dist <= m args . wpto lerance)
5 && (m mode == CP MODE GUIDED))
6 {
7 i f (! (m cloops & IMC : : CL GUIDANCE)) {
8 m pcs . f l a g s |= PathControlState : : FL NEAR;
9 t r a c e (”FL NEAR”) ;

10 }
11 }
12 }
13 else
14 {
15 i f (! m changing wp
16 && (nav out . wp dist <= m des i r ed rad iu s + m args . s e c s ∗

m gnd speed)
17 && (nav out . wp dist >= m des i r ed rad iu s − m args . s e c s ∗

m gnd speed)

94 CHAPTER 9. FLIGHT TESTS

18 && (m mode == CP MODE GUIDED))
19 {
20 i f (! (m cloops & IMC : : CL GUIDANCE)) {
21 m pcs . f l a g s |= PathControlState : : FL NEAR;
22 t r a c e (”FL NEAR”) ;
23 }
24 }
25 }
26

27 d i spatch (m pcs) ;

As seen in Listing 9.1, both conditions depend on the field nav out.wp dist which
is the autopilot’s reported distance to the target waypoint. Its value is not logged
by Dune, and therefore it is not possible to verify that it gives the correct values.

When using the Arduino software in the loop simulator in Chapter 8, using the
same criteria for waypoint switching, this problem did not exist. Therefore, a
theory could be that when running on less powerful hardware, as the ArduPilot
Mega is less powerful than the computer used for simulations, the autopilot must
prioritize its efforts, and this field is not updated as frequently as it should.

To fix this problem, an implementation independent of this field should be tested.
This is further described in Section 10.1.1.

9.7 Discussion

The six flight tests described in this chapter show that the implemented mission
planning scheme from Figure 8.4 works, and that Neptus and Dune can be used
to control the movement of a real flying hexacopter. With the exception of the
problem with switching waypoints discussed in the previous section, the flight tests
were considered a success.

The first test conducted was a test of the existing Goto-maneuver. The hexacopter
was commanded to visit three waypoints placed from Neptus. This test proved the
functionality of the existing mission planning in Neptus, and its communication
with the Dune-tasks.

In Figure 9.2, the path of the hexacopter when following the Goto-plan is shown.
It can be seen that it does not follow the path closely; in fact its path does not
intersect with the desired path at all. This is because the distances between the
waypoints are short, and it therefore does not have the time to reach the line before
a waypoint switch is commanded.

9.7. DISCUSSION 95

The tests of the parallel search pattern did not provide any noteworthy results;
the best result is found in Figure 9.4. In this test, the hexacopter followed the
path well for the first four waypoints, before it stopped in the fifth waypoint, and
never received the next waypoint. From the plot, it can be seen that there was, in
this test too, some difference between the path of the hexacopter and the desired
path.

The square search pattern was the subject for two tests, as the first test became a
success. The first test is shown in Figure 9.6. In this plot, the hexacopter follows
the desired path closer than in the two previous mentioned tests for the first lines,
and then the course becomes more unstable on the last two lines.

The second test, a square search pattern with more waypoints was subject to some
windy conditions and therefore some cross-track error is experienced. The result
from this test is seen in Figure 9.8. This is especially clear on the last line, to the
left on the plot. The choice of starting point was also not optimal, as this resulted
in a sudden 180◦-turn in the beginning of the flight.

The test of the sector search pattern gave the plot shown in Figure 9.10. Due to low
battery time left on the hexacopter, this test had to be aborted after completing
one third of the path. The cross-track error appears to be large in the plot.
However, when this is plotted in Figure 9.11 it can be seen that it varies between
-3 and 3 meters, which are acceptable values.

The attitude, roll pitch and yaw, of the hexacopter is shown in figures 9.12, 9.13
and 9.14. The first plot shows that the roll of the hexacopter changes frequently,
and varies from around −15◦ to 15◦. The pitch angle from the second plot shows
that the pitch angle varies from −10◦ to 10◦. Ideally, the value of the roll angle
should be zero when the hexacopter is following the straight lines, and the pitch
angle should have a small value less than zero, to keep a constant speed along the
straight lines. However, as the tests were done in an outdoor environment subject
to wind and disturbances, some variations in these values are expected.

The plot of the desired versus measured heading shows that the heading controller
works fine. There are some minor variations in heading when the desired heading
is constant, and the measured heading is sometimes a bit behind the desired. This
is expected as the controller can not produce unlimited angular rate.

Figure 9.16 shows the measured path when the barrier patrol search pattern was
tested. This test was also subject to the waypoint-switching problem, and therefore
it stopped before completing the pattern. Before stopping, the path looks good,
and it sticks close to the desired path, especially along the long diagonal line.

This plot includes circles with radius of 3 meters around the waypoints, as the

96 CHAPTER 9. FLIGHT TESTS

criteria used for this test was switch waypoint when the distance to the target
waypoint is less than 3 meters. The plot shows that position measurements well
inside this circle are received, also for the last waypoint where the test stopped.

Chapter 10

Conclusion

In the present thesis, the main objective was to study different paths or trajectories
that can be used when executing a Search and Rescue mission with a multicopter
and discuss how the onboard camera should be placed to ensure the entire area of
interest is covered.

Two different methods for placing the onboard camera were considered. The first
method was using a gimbal for roll and pitch stabilization. This gimbal would be
set so that the camera was pointing forward with an angle downwards. The other
method was attaching the camera on the bottom of the multicopter without a
gimbal, thus making the camera point straight down and sideways and backwards
as the multicopter experienced roll and pitch. The method using the gimbal was
ultimately chosen, as this method was the one that would give the best images and
with its angle it would give images that were more suitable for the object detection
and tracking algorithm.

In Chapter 4, a method for computing which area of the map the onboard camera
covers with a single frame is outlined. This method uses the ideal pinhole camera
model and creates a projected image plane between the ground and the camera.
The corner points of the image plane are then found in the camera frame, and
transformed into NED-coordinates. Using the origin of the camera frame, and each
corner point, a parametric equation is created. Each corner point’s coordinate on
ground level is then found by setting the z-component of the parametric equation
to zero. This method supports both the methods for placing the camera, as the
only change will be the transformation matrix between the camera-frame and the
NED-frame.

The method was implemented into the ground-station software Netups, to give the
operator a live graphical overview of which parts of the search area the multciopter

97

98 CHAPTER 10. CONCLUSION

has covered.

Five different search patterns were chosen, and algorithms for creating waypoints
for these were developed, in Chapter 5. The properties of the search patterns were
tested through simulations in Chapter 7 where the search patterns were tested in
scenarios with search for stationary subjects and moving subjects. An estimate
of the search patterns’ area coverage with the decided camera placement was also
found through these simulations.

The best performer in the simulations was the square search pattern. It scored
the highest on both the search for stationary and moving subjects, and its area
coverage was estimated to 96% of the search area. Some coverage were lost in the
middle of the search area, mainly due to short lines with rapid turns and that the
multicopter started in the first waypoint with the simulation not saying anything
about how the multicopter reached that point.

The parallel and creeping line search patterns also scored good on finding station-
ary subjects. Both had an estimated area coverage of 93%, loosing some coverage
when turning, due to the camera pointing so far ahead of the craft. When search-
ing for the moving subjects, parallel scored better than creeping line with parallel
finding 3 of 4 and creeping line finding only 1 of 4. This difference is because the
paths of the subjects intersects more frequently with the parallel search at an early
stage of the search. If the search area had smaller dimensions, the patterns would
have shorter search lines and then performed better when searching for moving
subjects.

In the stationary subjects-simulation, the sector search finished slightly worse than
the three mentioned search patterns finding 17 of 20 subjects. In the moving
subjects-simulation however, it scored among the best with finding 3 of the 4
subjects. When searching for moving subjects, the sector search pattern has the
advantage that it moves quickly from one side of the search area to the other, as
opposed to the parallel and creeping line search patterns that use long time time
covering the search area thoroughly. This leads to the sector search pattern having
larger possibility of intersecting with the path of a moving subject, but reduces
area coverage. The area coverage was estimated to around 73%.

The barrier patrol search pattern had the worst performance in all of the simu-
lations. It only detected 5 of the 20 stationary subjects, and the area coverage
was estimated to 45%. A bad performance in this simulation was expected from
that pattern, as it is designed to find moving subjects that leaves an area, like the
moving subjects-simulation. However, the performance in this simulation was not
good, and it only detected 1 of the 4 subjects.

10.1. FUTURE WORK 99

The search patterns were implemented as maneuvers in Neptus and Dune, so that
the existing mission planning scheme could be used, and plans including both the
new maneuvers and existing maneuvers such as the Goto-maneuver could be make.
The parallel and creeping line search patterns are variants of an existing maneuver,
Rows Maneuver, and could then use this maneuver’s Dune-task and IMC-message.
The other search patterns needed their own IMC-message and Dune-task. The
implementation was verified by simulations using an Arduino software in the loop-
simulator where Neptus and the Dune-tasks were used to command the simulated
craft to move.

Using the hexacopter described in Chapter 3, flight tests were conducted on Ag-
denes airport. The results from these tests are shown in Chapter 9. During the
tests, a problem with Dune not detecting that the craft was close to the waypoint,
and therefore not sending the next waypoint, occurred frequently.

Except from the waypoint switching problem, the flight tests were successful and
proved that the mission planning scheme with Dune and Neptus could be used to
control a hexacopter, and that the implemented maneuvers worked.

The tests were conducted without most of the payload like the infrared camera.
Then, the effective flight time was around five minutes, and thus a limited search
area could be covered. For this to be used in a real-life Search and Rescue mission,
a multicopter with longer flight time and capability of transporting heavier payload
is needed.

10.1 Future Work

10.1.1 Waypoint-switching in Dune

An important task that must be dealt with is to find a better way to detect a
waypoint-switch in Dune, as the existing ones gave problems during the flight
tests. From Listing 9.1, it can be seen that both waypoint-switching methods
tested used were dependent on the variable nav out.wp dist that is sent from the
autopilot. This variable is not logged anywhere by Dune, and it is therefore some
uncertainty regarding the value of this variable.

The implemented methods for detecting a waypoint-switch worked without prob-
lems on the simulator. A theory is that when running on less powerful hardware, as
the autopilot is less powerful than a computer, the autopilot struggles to complete
all its tasks. Updating the nav out.wp dist-field might be down-prioritized, and

100 CHAPTER 10. CONCLUSION

thus not happening as frequently as required. A new implementation independent
of this field should therefore be tested.

In Figure 9.16, where the position measurements from flight tests of the barrier
patrol search pattern is plotted, it can be seen that position measurements from
well within a circle with radius 3 meters around the last waypoint, is received from
the autopilot.

Therefore, a waypoint-switching criteria based on the circle of acceptance from
Equation 2.14 could prove to be a better implemented condition. Another possible
criteria is the along-track distance from Equation 2.16. Both of these are found in
Section 2.2.1 and [13].

10.1.2 Implementation of Cover Area

In Section 5.3, a method for covering a search area that is not rectangular is shown.
This method has not yet been implemented. There exists an IMC-message that
can be used to send the vertexes from Neptus to Dune. A Neptus maneuver called
CoverArea also exists. This is however work in progress by the developers at LSTS,
and is therefore not working at this moment.

If this is finished in a future release, one could write a separate Dune-task to
read the IMC-message, and use the existing mission planner to send a CoverArea-
maneuver as a part of a mission plan.

Another project [19] has implemented the cover area maneuver by creating a sep-
arate Neptus plugin to send the IMC::CoverArea-message from Neptus to Dune
without the use of the mission planner. If a separate Dune-task is created this
implementation can also be used for this implementation. The disadvantage with
using that implementation is that the maneuver can not be combined with other
maneuvers such as Goto, or the ones implemented by this thesis, in a mission plan.

Appendix A

Coordinate Transformations

In the path planning schemes developed in this project, the following methods
are used for transformation from ellipsoidal coordinates (latitude, longitude and
altitude) to coordinates in the navigation frame (px,py,pz) and vice versa. These
algorithms correspond to the MATLAB function blocks Flat Earth to LLA and
LLA to Flat Earth, found in the Aerospace Blockset [5], [6].

The navigation frame is rotated an angle ψ around the z-axis of a NED-frame
with its origin in a reference point, given in ellipsoidal coordinates by pref =[
µ0 l0 href

]T
.

The transformation from navigational to ellipsoidal coordinates are described in
Section A.1, and in Section A.2; the transformation from ellipsoidal to naviga-
tional coordinates can be found. Both transformations require two constants: the
equatorial radius, Req = 6378137, and the flattening, f = 1/298.257223563, of the
Earth.

A.1 Navigational to Ellipsoidal Coordinates

As inputs, this algorithm needs the point to be transformed p =
[
px py pz

]T
,

the reference point pref , and the angle ψ which is the angle in degrees clockwise
between the x-axis and North. Note that the reference point is also the origin of
the navigation frame.

101

102 APPENDIX A. COORDINATE TRANSFORMATIONS

First, the North-East coordinates are calculated from the navigational coordinates.[
N
E

]
=
[

cosψ − sinψ
sin psi cosψ

] [
px
py

]
(A.1)

Then, the radius curvature in the prime vertical RN and the radius of curvature
in the meridian RM are calculated.

RN = Req√
1− (2f − f 2) sin2 µ0

(A.2)

RM = RN
1− (2f − f 2)

1− (2f − f 2) sinµ0
(A.3)

The small changes in latitude and longitude are then approximated from small
changes in North and East positions:

dµ = arctan
(1
RM

)
dN (A.4)

dl = arctan
(

1
RN cosµ

)
dE (A.5)

Since the reference point has coordinates
[
0 0 0

]T
in flat Earth coordinates,

N = dN and E = dE.
The output latitude and longitude is then given by

µ = µ0 + dµ (A.6)
l = l0 + dl (A.7)

and the output altitude is given by:

h = −pz + href (A.8)

A.2 Ellipsoidal to Navigational Coordinates

This algorithm takes as inputs the point to be transformed in ellipsoidal coordi-
nates p =

[
µ l h

]T
, and as above, the reference point pref , and the angle ψ.

After the calculation of RN and RM , the next step is to find the small changes in
latitude and longitude:

dµ = µ− µ0 (A.9)
dl = l − l0 (A.10)

A.2. ELLIPSOIDAL TO NAVIGATIONAL COORDINATES 103

The small changes in the North and East positions are then approximated by:

dN = dµ

arctan
(

1
RM

) (A.11)

dE = dl

arctan
(

1
RN cosµ0

) (A.12)

The output point is then transformed from North East coordinates by:[
px
py

]
=
[

cosψ sinψ
− sinψ cosψ

] [
N
E

]
(A.13)

and the return height:
pz = −h+ href (A.14)

104 APPENDIX A. COORDINATE TRANSFORMATIONS

Appendix B

Cover Area Examples

This Appendix shows some examples of the shortest lawnmower pattern created
by the cover area method outlined in Section 5.3, on different areas.

0 20 40 60 80 100 120 140 160 180 2000

20

40

60

80

100

120

140

160

180

200

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Figure B.1: A quadratic search area

105

106 APPENDIX B. COVER AREA EXAMPLES

0 50 100 150 200 250 300 350 4000

100

200

300

400

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Figure B.2: A triangular search area

0 20 40 60 80 100 120 140 160 180 200 220 240

0

50

100

150

Distance East [meters]

D
ist

an
ce

N
or

th
[m

et
er

s]

Figure B.3: A strangely-shaped search area

Appendix C

IMC-Messages

This chapter shows the IMC-messages created in this project.

Listing C.1: IMC-message for the Square Search Maneuver
1 <message id=” 1100 ” name=” Square Search Manuever” abbrev=”SquareMan

” source=” ccu ”>
2 <d e s c r i p t i o n>Square Search Pattern</ d e s c r i p t i o n>
3 < f i e l d name=”Timeout” abbrev=” timeout ” type=” u i n t 1 6 t ” un i t=” s

”>
4 <d e s c r i p t i o n>
5 The amount o f time the maneuver i s a l lowed to run .
6 </ d e s c r i p t i o n>
7 </ f i e l d>
8 < f i e l d name=” Lat i tude WGS−84” abbrev=” l a t ” type=” f p 6 4 t ” un i t=

” rad ” min=” −1.5707963267948966 ” max=” 1.5707963267948966 ”>
9 <d e s c r i p t i o n>

10 WGS−84 Lat i tude o f t a r g e t waypoint .
11 </ d e s c r i p t i o n>
12 </ f i e l d>
13 < f i e l d name=” Longitude WGS−84” abbrev=” lon ” type=” f p 6 4 t ” un i t

=” rad ” min=” −3.141592653589793 ” max=” 3.141592653589793 ”>
14 <d e s c r i p t i o n>
15 WGS−84 Longitude o f t a r g e t waypoint .
16 </ d e s c r i p t i o n>
17 </ f i e l d>
18 < f i e l d name=”Z Reference ” abbrev=” z ” type=” f p 3 2 t ” un i t=”m”>
19 <d e s c r i p t i o n>
20 Maneuver r e f e r e n c e in the z ax i s . Use z u n i t s to s p e c i f y
21 whether z r e p r e s e n t s depth , a l t i t u d e or other .
22 </ d e s c r i p t i o n>
23 </ f i e l d>
24 < f i e l d name=”Z Units ” abbrev=” z u n i t s ” type=” u i n t 8 t ” va lue=”0

” un i t=”Enumerated” enum−de f=” ZUnits ”>

107

108 APPENDIX C. IMC-MESSAGES

25 <d e s c r i p t i o n>
26 Units o f the z r e f e r e n c e .
27 </ d e s c r i p t i o n>
28 </ f i e l d>
29 < f i e l d name=”Speed” abbrev=” speed ” type=” f p 3 2 t ”>
30 <d e s c r i p t i o n>
31 Maneuver speed r e f e r e n c e .
32 </ d e s c r i p t i o n>
33 </ f i e l d>
34 < f i e l d name=”Speed Units ” abbrev=” spe ed un i t s ” type=” u i n t 8 t ”

value=”0” un i t=”Enumerated” enum−de f=” SpeedUnits ”>
35 <d e s c r i p t i o n>
36 Speed un i t s .
37 </ d e s c r i p t i o n>
38 </ f i e l d>
39 < f i e l d name=” Bearing ” abbrev=” bear ing ” type=” f p 6 4 t ” un i t=” rad

” min=”0” max=” 6.283185307179586 ”>
40 <d e s c r i p t i o n>
41 Pattern bear ing ang le .
42 </ d e s c r i p t i o n>
43 </ f i e l d>
44 < f i e l d name=” Cross Angle ” abbrev=” c r o s s a n g l e ” type=” f p 6 4 t ”

un i t=” rad ” min=” −1.047197551197 ” max=” 1.047197551197 ”>
45 <d e s c r i p t i o n>
46 Rows c r o s s ang le r e f e r e n c e .
47 </ d e s c r i p t i o n>
48 </ f i e l d>
49 < f i e l d name=”Length” abbrev=” length ” min=”0” type=” f p 3 2 t ”

un i t=”m”>
50 <d e s c r i p t i o n>
51 Length o f the maneuver .
52 </ d e s c r i p t i o n>
53 </ f i e l d>
54 < f i e l d name=” Step ” abbrev=” step ” type=” f p 3 2 t ” un i t=”m” min=”0

” value=”30”>
55 <d e s c r i p t i o n>
56 The step between each l i n e .
57 </ d e s c r i p t i o n>
58 </ f i e l d>
59 < f i e l d name=”Custom s e t t i n g s f o r maneuver” abbrev=”custom”

uni t=” TupleList ” type=” p l a i n t e x t ”>
60 <d e s c r i p t i o n>
61 Custom s e t t i n g s f o r maneuver .
62 </ d e s c r i p t i o n>
63 </ f i e l d>
64 </message>

109

Listing C.2: IMC-message for the Sector Search Maneuver
1 <message id=” 1101 ” name=” Sector Search Manuever” abbrev=”SectorMan

” source=” ccu ”>
2 <d e s c r i p t i o n>Sector Search Pattern</ d e s c r i p t i o n>
3 < f i e l d name=”Timeout” abbrev=” timeout ” type=” u i n t 1 6 t ” un i t=” s

”>
4 <d e s c r i p t i o n>
5 The amount o f time the maneuver i s a l lowed to run .
6 </ d e s c r i p t i o n>
7 </ f i e l d>
8 < f i e l d name=” Lat i tude WGS−84” abbrev=” l a t ” type=” f p 6 4 t ” un i t=

” rad ” min=” −1.5707963267948966 ” max=” 1.5707963267948966 ”>
9 <d e s c r i p t i o n>

10 WGS−84 Lat i tude o f t a r g e t waypoint .
11 </ d e s c r i p t i o n>
12 </ f i e l d>
13 < f i e l d name=” Longitude WGS−84” abbrev=” lon ” type=” f p 6 4 t ” un i t

=” rad ” min=” −3.141592653589793 ” max=” 3.141592653589793 ”>
14 <d e s c r i p t i o n>
15 WGS−84 Longitude o f t a r g e t waypoint .
16 </ d e s c r i p t i o n>
17 </ f i e l d>
18 < f i e l d name=”Z Reference ” abbrev=” z ” type=” f p 3 2 t ” un i t=”m”>
19 <d e s c r i p t i o n>
20 Maneuver r e f e r e n c e in the z ax i s . Use z u n i t s to s p e c i f y
21 whether z r e p r e s e n t s depth , a l t i t u d e or other .
22 </ d e s c r i p t i o n>
23 </ f i e l d>
24 < f i e l d name=”Z Units ” abbrev=” z u n i t s ” type=” u i n t 8 t ” va lue=”0

” un i t=”Enumerated” enum−de f=” ZUnits ”>
25 <d e s c r i p t i o n>
26 Units o f the z r e f e r e n c e .
27 </ d e s c r i p t i o n>
28 </ f i e l d>
29 < f i e l d name=”Speed” abbrev=” speed ” type=” f p 3 2 t ”>
30 <d e s c r i p t i o n>
31 Maneuver speed r e f e r e n c e .
32 </ d e s c r i p t i o n>
33 </ f i e l d>
34 < f i e l d name=”Speed Units ” abbrev=” spe ed un i t s ” type=” u i n t 8 t ”

value=”0” un i t=”Enumerated” enum−de f=” SpeedUnits ”>
35 <d e s c r i p t i o n>
36 Speed un i t s .
37 </ d e s c r i p t i o n>
38 </ f i e l d>
39 < f i e l d name=” Bearing ” abbrev=” bear ing ” type=” f p 6 4 t ” un i t=” rad

” min=”0” max=” 6.283185307179586 ”>
40 <d e s c r i p t i o n>

110 APPENDIX C. IMC-MESSAGES

41 Pattern bear ing ang le .
42 </ d e s c r i p t i o n>
43 </ f i e l d>
44 < f i e l d name=” Cross Angle ” abbrev=” c r o s s a n g l e ” type=” f p 6 4 t ”

un i t=” rad ” min=” −1.047197551197 ” max=” 1.047197551197 ”>
45 <d e s c r i p t i o n>
46 Rows c r o s s ang le r e f e r e n c e .
47 </ d e s c r i p t i o n>
48 </ f i e l d>
49 < f i e l d name=”Length” abbrev=” length ” min=”0” type=” f p 3 2 t ”

un i t=”m”>
50 <d e s c r i p t i o n>
51 Length o f the maneuver .
52 </ d e s c r i p t i o n>
53 </ f i e l d>
54 < f i e l d name=”Custom s e t t i n g s f o r maneuver” abbrev=”custom”

uni t=” TupleList ” type=” p l a i n t e x t ”>
55 <d e s c r i p t i o n>
56 Custom s e t t i n g s f o r maneuver .
57 </ d e s c r i p t i o n>
58 </ f i e l d>
59 </message>

Listing C.3: IMC-message for the Barrier Patrol Search Maneuver
1 <message id=” 1102 ” name=” Bar r i e r Patro l Manuever” abbrev=”

BarrierMan ” source=” ccu ”>
2 <d e s c r i p t i o n>Bar r i e r Patro l Search pattern</ d e s c r i p t i o n>
3 < f i e l d name=”Timeout” abbrev=” timeout ” type=” u i n t 1 6 t ” un i t=” s

”>
4 <d e s c r i p t i o n>
5 The amount o f time the maneuver i s a l lowed to run .
6 </ d e s c r i p t i o n>
7 </ f i e l d>
8 < f i e l d name=” Lat i tude WGS−84” abbrev=” l a t ” type=” f p 6 4 t ” un i t=

” rad ” min=” −1.5707963267948966 ” max=” 1.5707963267948966 ”>
9 <d e s c r i p t i o n>

10 WGS−84 Lat i tude o f t a r g e t waypoint .
11 </ d e s c r i p t i o n>
12 </ f i e l d>
13 < f i e l d name=” Longitude WGS−84” abbrev=” lon ” type=” f p 6 4 t ” un i t

=” rad ” min=” −3.141592653589793 ” max=” 3.141592653589793 ”>
14 <d e s c r i p t i o n>
15 WGS−84 Longitude o f t a r g e t waypoint .
16 </ d e s c r i p t i o n>
17 </ f i e l d>
18 < f i e l d name=”Z Reference ” abbrev=” z ” type=” f p 3 2 t ” un i t=”m”>
19 <d e s c r i p t i o n>
20 Maneuver r e f e r e n c e in the z ax i s . Use z u n i t s to s p e c i f y

111

21 whether z r e p r e s e n t s depth , a l t i t u d e or other .
22 </ d e s c r i p t i o n>
23 </ f i e l d>
24 < f i e l d name=”Z Units ” abbrev=” z u n i t s ” type=” u i n t 8 t ” va lue=”0

” un i t=”Enumerated” enum−de f=” ZUnits ”>
25 <d e s c r i p t i o n>
26 Units o f the z r e f e r e n c e .
27 </ d e s c r i p t i o n>
28 </ f i e l d>
29 < f i e l d name=”Speed” abbrev=” speed ” type=” f p 3 2 t ”>
30 <d e s c r i p t i o n>
31 Maneuver speed r e f e r e n c e .
32 </ d e s c r i p t i o n>
33 </ f i e l d>
34 < f i e l d name=”Speed Units ” abbrev=” spe ed un i t s ” type=” u i n t 8 t ”

value=”0” un i t=”Enumerated” enum−de f=” SpeedUnits ”>
35 <d e s c r i p t i o n>
36 Speed un i t s .
37 </ d e s c r i p t i o n>
38 </ f i e l d>
39 < f i e l d name=” Bearing ” abbrev=” bear ing ” type=” f p 6 4 t ” un i t=” rad

” min=”0” max=” 6.283185307179586 ”>
40 <d e s c r i p t i o n>
41 Pattern bear ing ang le .
42 </ d e s c r i p t i o n>
43 </ f i e l d>
44 < f i e l d name=” Cross Angle ” abbrev=” c r o s s a n g l e ” type=” f p 6 4 t ”

un i t=” rad ” min=” −1.047197551197 ” max=” 1.047197551197 ”>
45 <d e s c r i p t i o n>
46 Rows c r o s s ang le r e f e r e n c e .
47 </ d e s c r i p t i o n>
48 </ f i e l d>
49 < f i e l d name=”Length” abbrev=” length ” min=”0” type=” f p 3 2 t ”

un i t=”m”>
50 <d e s c r i p t i o n>
51 Side o f the box to be p a t r o l l e d .
52 </ d e s c r i p t i o n>
53 </ f i e l d>
54 < f i e l d name=”Number o f Rounds” abbrev=”numRounds” type=” i n t 8 t

” min=”1”>
55 <d e s c r i p t i o n>
56 Number o f rounds the p a t r o l should make .
57 </ d e s c r i p t i o n>
58 </ f i e l d>
59 < f i e l d name=”Custom s e t t i n g s f o r maneuver” abbrev=”custom”

uni t=” TupleList ” type=” p l a i n t e x t ”>
60 <d e s c r i p t i o n>
61 Custom s e t t i n g s f o r maneuver .
62 </ d e s c r i p t i o n>

112 APPENDIX C. IMC-MESSAGES

63 </ f i e l d>
64 </message>

Bibliography

[1] APM. Setting up sitl on linux. http://www.dev.ardupilot.com/wiki/
setting-up-sitl-on-linux/. Accessed: 2014-06-06.

[2] Jean Berger, Nassirou Lo, and Martin Noel. Exact solution for search-and-
rescue path planning. International Journal of Computer and Communication
Engineering, 2(3), 2013.

[3] Scott A Bortoff. Path planning for uavs. In American Control Conference,
2000. Proceedings of the 2000, volume 1(6), pages 364–368. IEEE, 2000.

[4] Øyvind Breivik and Arthur A Allen. An operational search and rescue model
for the norwegian sea and the north sea. Journal of Marine Systems, 69(1):99–
113, 2008.

[5] Mathworks Documentation Center. Flat earth to lla. http://www.
mathworks.se/help/aeroblks/flatearthtolla.html. Accessed: 2013-12-
09.

[6] Mathworks Documentation Center. Lla to flat earth. http://www.
mathworks.se/help/aeroblks/llatoflatearth.html. Accessed: 2013-12-
09.

[7] Lance Champagne, R Greg Carl, and Raymond Hill. Agent models ii: search
theory, agent-based simulation, and u-boats in the bay of biscay. In Proceed-
ings of the 35th conference on Winter simulation: driving innovation, pages
991–998. Winter Simulation Conference, 2003.

[8] Phillip R Chandler, Meir Pachter, and Steven Rasmussen. Uav cooperative
control. In American Control Conference, 2001. Proceedings of the 2001,
volume 1, pages 50–55. IEEE, 2001.

[9] Atif Chaudhry, Kathy Misovec, and Raffaello D’Andrea. Low observability
path planning for an unmanned air vehicle using mixed integer linear pro-

113

http://www.dev.ardupilot.com/wiki/setting-up-sitl-on-linux/
http://www.dev.ardupilot.com/wiki/setting-up-sitl-on-linux/
http://www.mathworks.se/help/aeroblks/flatearthtolla.html
http://www.mathworks.se/help/aeroblks/flatearthtolla.html
http://www.mathworks.se/help/aeroblks/llatoflatearth.html
http://www.mathworks.se/help/aeroblks/llatoflatearth.html

114 BIBLIOGRAPHY

gramming. In Decision and Control, 2004. CDC. 43rd IEEE Conference on,
volume 4, pages 3823–3829. IEEE, 2004.

[10] Patrick Doherty and Piotr Rudol. A uav search and rescue scenario with
human body detection and geolocalization. In AI 2007: Advances in Artificial
Intelligence, pages 1–13. Springer, 2007.

[11] Olav Egeland and Jan Tommy Gravdahl. Modeling and simulation for auto-
matic control. Marine Cybernetics Trondheim, Norway, 2002.

[12] Don Ferguson. Gis for wilderness search and rescue. In ESRI federal user
conference, 2008.

[13] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Con-
trol. John Wiley and Sons Ltd, 2011.

[14] US Coast Guard. Search and rescue. http://www.uscg.mil/
international/affairs/publications/mmscode/english/Chap9.htm.
Accessed: 2013-12-09.

[15] Bernard O Koopman. Search and its optimization. The American Mathemat-
ical Monthly, 86(7):527–540, 1979.

[16] BO Koopman. Search and screening. oeg report, no. 56. Center for Naval
Analysis, Rosslyn, Va., USA, 1946.

[17] Frederik Stendahl Leira. Infrared object detection & tracking in uavs. Nor-
wegian University of Science and Technology, 2013.

[18] Lanny Lin and Michael A Goodrich. Uav intelligent path planning for wilder-
ness search and rescue. In Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, pages 709–714. IEEE, 2009.

[19] Carl Magnus Mathisen. Search and rescue opertaions using a fixed-wing uav
equipped with an automatically controlled gimbal. Norwegian University of
Science and Technology, 2014.

[20] Gustav Öst. Search path generation with uav applications using approximate
convex decomposition. Linköping University, 2012.

[21] Per Olof Pettersson and Patrick Doherty. Probabilistic roadmap based path
planning for an autonomous unmanned aerial vehicle. Sensors, 200:66Hz,
2004.

[22] José Pinto, Pedro Calado, José Braga, Paulo Dias, Ricardo Martins, Eduardo
Marques, and JB Sousa. Implementation of a control architecture for net-

http://www.uscg.mil/international/affairs/publications/mmscode/english/Chap9.htm
http://www.uscg.mil/international/affairs/publications/mmscode/english/Chap9.htm

BIBLIOGRAPHY 115

worked vehicle systems. In Navigation, Guidance and Control of Underwater
Vehicles, volume 3(1), pages 100–105, 2012.

[23] QGroundControl. Mavlink. http://www.qgroundcontrol.org/mavlink/
start. Accessed: 2013-05-19.

[24] Morgan Quigley, Blake Barber, Steve Griffiths, and Michael A Goodrich.
Towards real-world searching with fixed-wing mini-uavs. In Intelligent Robots
and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference
on, pages 3028–3033. IEEE, 2005.

[25] Allison Ryan and J Karl Hedrick. A mode-switching path planner for uav-
assisted search and rescue. In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 1471–
1476. IEEE, 2005.

[26] National Search and Rescue Committee (NSRC). United states national
search and rescue supplement to the international aeronautical and maritime
search and rescue manual. http://www.uscg.mil/hq/g-o/g-opr/manuals.
htm. Accessed: 2014-06-09.

[27] Espen Skjong and Stian Aas Nundal. Tracking objects with fixed-wing uav
using model predictive control and machine vision. Norwegian University of
Science and Technology, 2013.

[28] Thor Audun Steen. Search and rescue using multicopters. Norwegian Uni-
versity of Science and Technology, 2014.

[29] Sonia Waharte and Niki Trigoni. Supporting search and rescue operations
with uavs. In Emerging Security Technologies (EST), 2010 International Con-
ference on, pages 142–147. IEEE, 2010.

[30] Helen Wollan. Incorporating heuristically generated search patterns in search
and rescue. University of Edinburgh, 2004.

http://www.qgroundcontrol.org/mavlink/start
http://www.qgroundcontrol.org/mavlink/start
http://www.uscg.mil/hq/g-o/g-opr/manuals.htm
http://www.uscg.mil/hq/g-o/g-opr/manuals.htm

	Introduction
	Background and Motivation
	Previous Work
	Contribution and Scope of this Thesis
	Organization of this Thesis

	Theory
	Reference Frames
	Vector Notation
	Rotation Matrices

	Guidance, Navigation and Control
	Guidance Systems

	System Description
	The Multicopter
	Autopilot
	Radio Controller

	Payload
	Single Board Computer
	Infrared Camera
	Gimbal
	Frame Grabber
	Video Camera

	Software
	Ubuntu
	Computer Vision
	DUNE
	Neptus

	Communication Protocols
	IMC
	MAVLink

	The Onboard Camera's Field of View
	Camera Placement
	Projected Camera Image
	Implementation

	Path Planning
	Search and Rescue
	Search Patterns
	Parallel and Creeping Line Search Patterns
	Square and Sector Search Patterns
	Barrier Patrol Search Pattern

	Cover Area
	Reduce Search Distance

	Camera Placement

	Finding the Optimal Search Height
	Area Covered
	Human in a Frame
	Usable Area
	Discussion

	MATLAB Simulations
	The Setup
	The Multicopter
	Camera

	Searching for a Stationary Subject
	The Subjects
	Simulations
	Results

	Estimated Area Coverage
	Searching for a Moving Subject
	The Moving Subjects
	Simulations and Results

	Discussion

	Implementation and Simulations
	IMC
	Neptus
	Dune
	Maneuver.SectorMan
	Control.UAV.ArduCopter

	Running Dune on a Vehicle
	Simulations
	Results and Discussion

	Flight Tests
	Test of existing Goto-maneuver
	Parallel Search
	Square Search
	Sector Search
	Barrier Patrol Search
	Mission Review
	Discussion

	Conclusion
	Future Work
	Waypoint-switching in Dune
	Implementation of Cover Area

	Coordinate Transformations
	Navigational to Ellipsoidal Coordinates
	Ellipsoidal to Navigational Coordinates

	Cover Area Examples
	IMC-Messages
	Bibliography

