
Search and Rescue Mission Using
Multicopters

Thor Audun Steen

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK
Co-supervisor: Kristian Klausen, ITK

Department of Engineering Cybernetics

Submission date: June 2014

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name:	 	 	 	 Thor	 Audun	 Steen	
Department: Engineering	 Cybernetics	
Thesis title (Norwegian): Søk-‐	 og	 redningsoperasjon	 med	 Multicopter
Thesis title (English): Search	 and	 Rescue	 Mission	 Using	 Multicopters	
	

Thesis Description: Design and investigate methods for search and rescue operations performed by
UAVs, particularly multicopters (quad/hex).

The following items should be considered:

1. Overall	 system	 and	 mission	 description	 with	 detailed	 module	 interaction	 schemes	 and	
protocols.	 	

2. Investigate	 the	 MAVLink	 protocol	 and	 how	 it	 can	 be	 used	 in	 this	 mission.	 Make	 the	 necessary	
changes	 to	 the	 ArduPilot	 code	 to	 enable	 low-‐level	 guidance	 control	 on	 the	 Pandaboard.	

3. Guidance	 (and	 control)	 with	 waypoint	 tracking	 for	 the	 multicopter.	 The	 proposed	 guidance	
algorithm	 should	 be	 viable	 in	 a	 global	 frame.	 Investigate	 how	 ArduPilot	 can	 be	 utilized	 for	
different	 motion	 control	 scenarios	 and	 evaluate	 the	 need	 for	 designing	 other	 guidance	
algorithms	 for	 the	 mission.	

4. Methods	 for	 performing	 autonomous	 operations.	 Design	 the	 methods	 modular	 such	 that	
they	 could	 easily	 be	 updated,	 maintained	 and	 extended	 for	 future	 development.	 	

5. Study	 object	 dynamic	 estimation	 based	 on	 input	 from	 an	 external	 camera	 module.	 I.E.,	 given	
an	 object	 location	 in	 the	 camera	 frame,	 how	 can	 this	 data	 be	 used	 to	 describe	 the	 motion	 of	
the	 object.	

6. The	 results	 should	 be	 verified	 by	 simulations	 and	 experiments.	 	
7. Conclude	 findings	 in	 a	 report.	 Include	 Matlab/C-‐code	 as	 digital	 appendices	 together	 with	 a	

user-‐guide.	 	

Start date: 2014-‐01-‐18	
Due date: 2014-‐06-‐14

Thesis performed at: Department	 of	 Engineering	 Cybernetics,	 NTNU
Supervisor: Professor	 Tor	 Arne	 Johansen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	 	
Co-supervisor: MSc	 Kristian	 Klausen,	 Dept.	 of	 Eng.	 Cybernetics,	 NTNU	 	

ii

iii

Abstract

Search and rescue operations can greatly benefit from the use of autonomous un-
manned aerial systems to survey the environment and collect evidence about the
positions of missing persons. This thesis considers the design of an autonomous
multicopter system for use in a search and rescue mission. The ArduPilot Mega
is used as the autopilot and is presented together with detailed information about
the utilized hardware and software. The design of a low-level control interface
is implemented as an extension to APM:Copter using the MAVLink protocol
allowing attitude or velocity control of the multicopter.

Furthermore, promising methods for autonomous behavior are discussed and
developed with the use of the low-level control interface. The integration of a
camera is characterized as a vital part of the fully autonomous search and rescue
muliticopter system and presented together with a method used to describe and
estimate motion of a target object. The estimator used for the state estimation
is the extended Kalman filter.

Finally, experiments of the system are conducted at a test field to demonstrate
how it can be utilized and to prove the viability of the complete system. The
experiments verify that the autonomous search and rescue multicoper can con-
tribute in a search operation using an observer to spot for objects.

iv

v

Sammendrag

(Norwegian translation of the abstract)

Søk- og redningsoperasjoner kan ha stor nytte av selvstyrte ubemannede luft-
fartøy til å undersøke områder for å lokalisere savnede personer. Denne avhan-
dlingen omfatter utformingen av et selvstyrt multikopter-system til bruk i søk-
og redningsaksjoner. Autopiloten brukt i systemet er ArduPilot Mega som er
presentert sammen med detaljert informasjon om den benyttede maskin- og pro-
gramvaren. Et grensesnitt for lavnivå styring er utformet og implementert som et
tillegg til APM:Copter og bruker MAVLink-protokollen til kontroll av flygestilling
eller hastighet av multikopteret.

Videre er lovende metoder for autonom oppførsel diskutert og utviklet ved bruk
av grensesnittet for lavnivå styring. Integreringen av et kamera er karakterisert
som en viktig del av et fullstendig autonomt multikopter-system for bruk i
søk og redning, og er presentert sammen med en metode som brukes for å
beskrive og beregne bevegelsen til et målobjekt. Estimatoren som benyttes for
tilstandsestimeringen er et utvidet Kalman-filter.

Til slutt er det utført forsøk på et testfelt for å vise bruksområdet til systemet
og for å bevise at det komplette systemet er levedyktig. Forsøkene bekrefter at
det autonome søk og redning-multikoperet kan bidra i en søkeoperasjon der en
observatør blir brukt for å oppdage savnede personer.

vi

vii

Preface

The present thesis is submitted in partial fulfillment of the requirements for the
degree MSc at the Norwegian University of Science and Technology in the field
of engineering cybernetics.

I would like to thank my supervisor Professor Tor Arne Johansen for guidance and
overall support for this project. I would also like to thank PhD student Kristian
Klausen for the great interest he has shown in this project. I am grateful for
all his support, guidance and excellent comments when I have discussed matters
with him.

Finally, I would like to thank my parents and Tina for their never-ending support.

Trondheim, 14. June, 2014.

Thor Audun Steen

viii

Table of Contents

MSc Thesis Description Sheet i

Abstract iii

Sammendrag v

Preface vii

Table of Contents ix

List of Tables xii

List of Listings xiii

List of Figures xiv

List of Abbreviations xvii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Previous Work and Related Literature 4
1.3 Contribution and Scope of this Thesis 6
1.4 Organization of this Thesis . 8

2 The Search and Rescue Multicopter System 11
2.1 Hardware . 11

2.1.1 Multicopter . 11
2.1.2 Radio Controller . 13
2.1.3 The ArduPilot Mega Autopilot 13
2.1.4 Single-board Computer . 14
2.1.5 Gimbal . 15
2.1.6 Video Streaming . 16

2.2 Software . 18
2.2.1 The DUNE Framework . 18

ix

x Table of Contents

2.2.2 The IMC Protocol . 19
2.2.3 The MAVLink Protocol . 19
2.2.4 Ground Control Stations . 20

2.3 Overall System Description . 21
2.4 Summary . 24

3 Introduction to APM:Copter and DUNE 25
3.1 The APM:Copter Software Project 25

3.1.1 Flight Modes and Features 25
3.2 The Software Architecture in DUNE 27

3.2.1 Control Layers . 28
3.2.2 DUNE Tasks . 28
3.2.3 Configurations . 29

4 Multicopter Motion Control 31
4.1 Guidance, Navigation and Control 31

4.1.1 Definitions . 32
4.2 APM:Copter Control Overview . 33

4.2.1 Attitude Control . 35
4.2.2 Mission Commands . 36

4.3 Motion Control Scenarios . 37
4.4 Guidance Strategies . 38

4.4.1 Using DUNE as a Guidance Framework 38
4.5 Navigation in APM:Copter . 39

4.5.1 Compass Challenges . 40
4.5.2 Extended Kalman Filter . 40

5 Extensions to APM:Copter 43
5.1 Low-Level Guidance Control . 43

5.1.1 The Interface for Low-level Control 44
5.2 Security . 46

6 Autonomous Behavior in Flight 49
6.1 Autonomous Guidance and Control of the Multicopter 49

6.1.1 Waypoint Guidance Scheme 50
6.1.2 The Fully Autonomous Guidance Scheme 51

6.2 Camera Integration . 55
6.2.1 Image to Global Frame . 56
6.2.2 Operational Altitude . 57

7 Motion of Target Object 59
7.1 Problem Statement . 59
7.2 Kalman Filter . 60

7.2.1 Discrete EKF . 60
7.2.2 Analysis and Functionality of the EKF 62

7.3 State Estimation . 63
7.3.1 Variable Definition . 63

Table of Contents xi

7.3.2 State Equation . 64
7.3.3 The Measurement Equation 67

7.4 Simulation . 67
7.4.1 Simulation Setup . 67
7.4.2 Implementation . 68
7.4.3 Simulation Results . 69

7.5 Summary . 71

8 Experiments 73
8.1 Test Strategy . 74

8.1.1 Software in Loop . 74
8.1.2 Target in Loop . 74

8.2 Preliminary Field Tests . 76
8.3 Experimental Setup in Field . 77
8.4 Experimental Results in Field . 78

9 Conclusion and Closing Discussion 83

A Hexacopter Checklist 87

Bibliography 91

List of Tables

2.1 Technical specifications of the hexacopter with payload. 12
2.2 Technical specifications of PandaBoard ES. 15
2.3 The technical specifications of the communication links in the SAR

multicopter system. Two-ways communication is illustrated by
a double arrow while one-way communication is illustrated by a
single arrow. A non-specialized wired communication link is called
cabled. 24

4.1 Tuned parameters for the 3DR ArduCopter Hexa. 35
4.2 Some of the available mission commands in APM:Copter. The

location commands should be self-explainable. 36

5.1 APM target masks used in the low-level control interface. A mask
set to none means that the correspondent target is unchanged and
will not be updated. 44

xii

List of Listings

3.1 Example of configuration file based on ntnu-hexa-001.ini. 30

5.1 Example of how to set new mode in ArduCopter. 44
5.2 Example of how to send low-level control commands. 45
5.3 Segment of GCS_Mavlink.pde where yaw control is managed. . . . 46

6.1 Example of how to send waypoint to APM. 50
6.2 Segment of SARGuidanceController for autonomous guidance. . . 53
6.3 Segment of ArduCopter for APM communication. 54

7.1 Tuning parameters in EKF. 69

xiii

List of Figures

1.1 The 3DR ArduCopter Hexa is a multicopter designed and manu-
factured at the 3D Robotics headquarters in San Diego, California.
The model is rendered by Kristian Klausen. 2

1.2 Persons reported missing on land in Norway over the last ten years
according to the Joint Rescue Coordination Centers [2012]. 3

1.3 The LSTS Neptus-IMC-Dune software toolchain. Neptus is a
distributed command, control, communications and intelligence
framework for operations with networked vehicles, systems, and
human operators. IMC is a communications protocol that defines
a common control message set understood by all types of LSTS
nodes. DUNE is the system for vehicle on-board software used for
e.g. control, navigation, or to access sensors and actuators. Based
on http://lsts.fe.up.pt . 6

2.1 The hexacopter 3DR ArduCopter Hexa mounted with the SAR
payload. The white box contains the computational unit and act
as a platform for the gimbal. The payload and gimbal are discussed
later in the section. 12

2.2 The 7-channels RC transmitter Spectrum DX7s with receiver.
Retrieved from http://hobbyfly.com. 13

2.3 ArduPilot Mega 2.5 with side entry case. Retrieved from http:
//store.3drobotics.com . 14

2.4 The range of the original wifi module at the PandaBoard was tested
in field. The airstrip at the picture is approximately 200 meters
from start to the end of the runway where the communication was
lost. The map data is retrieved from http://norgeibilder.no 15

2.5 The Tarot 2D brushless camera gimbal with a camera mounted.
Retrieved from http://www.droneshop.com 16

2.6 The cameras used in the experiments. The real-time outputs of
both cameras are analog. 17

2.7 5.8GHz 200mW FPV wireless AV Tx and Rx set. It has a
range at 500m with the supplied antenna. An optional directional
antenna can extend the range to over 1 km. Retrieved from http:
//www.uavobjects.com . 17

xiv

http://lsts.fe.up.pt
http://hobbyfly.com
http://store.3drobotics.com
http://store.3drobotics.com
http://norgeibilder.no
http://www.droneshop.com
http://www.uavobjects.com
http://www.uavobjects.com

List of Figures xv

2.8 Frame grabbers. 18
2.9 The user interface of Mission Planner. 21
2.10 The user interface of Neptus. 22
2.11 The search and rescue multicopter system. A solid line illustrates a

wired connection while a dash line illustrates a wireless connection.
The communication link from the camera to the PandaBoard
illustrate the fully autonomous system. 23

3.1 Autonomous flight modes in APM:Copter. Retrieved from http:
//ardupilot.com . 27

3.2 The different control layers in DUNE. Plan-level and maneuver-
level control can both be done from an external operator console,
while the vehicle is within communication reach, or it can be
done on-board the vehicle making it a fully autonomous operation.
Based on Pinto et al. [2013]. 28

4.1 The APM autopilot system consists of a trajectory generator (guid-
ance system), a gyrocompass/observer (navigation system) and a
motion control system. Based on Fossen [2011]. 32

4.2 The flow of command from user input to motor output for roll
control in APM:Copter. Based on http://ardupilot.com 34

4.3 Cascaded PID structure of stabilized control per axis. Acro/rate
control utilizes only the rate block where the pilot input the
desired rotational rate directly. Based on http://ghowen.me/
build-your-own-quadcopter-autopilot 35

4.4 Straight lines forming a barrier patrol search used for waypoint
guidance. Based on Andersen [2014]. 38

4.5 Illustration of two- and three-pointed guidance schemes. The
vector pointing directly at the target represents the pure pursuit
guidance principle while the line-of-sight guidance is represented
with the reference point and the LOS vector. Based on Fossen
[2011]. 39

5.1 The principle of dictator mode where all MAVLink messages are
rejected. 47

6.1 State diagram of how guidance control is conducted in a SAR
mission. 50

6.2 The creeping line search and the square search. Based on Andersen
[2014]. 51

6.3 The search and rescue panel in Neptus for manual detection of
objects. The panel to the left shows the button for sending the
manual detection while the panel to the right shows how the object
can be verified or rejected after a manual detection is sent. 52

6.4 FOV and triangulation of object. 56

http://ardupilot.com
http://ardupilot.com
http://ardupilot.com
http://ghowen.me/build-your-own-quadcopter-autopilot
http://ghowen.me/build-your-own-quadcopter-autopilot

xvi List of Figures

7.1 Reference and actual trajectories for an EKF. Based on Brown &
Hwang [2012]. 62

7.2 Motion model of object under observation. Based on Prevost et al.
[2007]. 63

7.3 True and estimated setpoints. 70
7.4 True and estimated model outputs. 70
7.5 True, estimated and measured positions. 71

8.1 The interaction and setup of modules in SIL testing. Based on
https://code.google.com/p/ardupilot-mega/wiki/SITL 75

8.2 The flight map in Neptus showing the airstrip at Agdenes with
the designated GoTo maneuver. The map data is retrieved from
http://norgeibilder.no . 77

8.3 The operator monitors the multicopter’s status, mission and
watches the video stream for objects, responsible for sending a
manual detection. 78

8.4 The flight path of the SAR operation. The autonomous guidance
operation is easily seen, as the multicopter starts moving left, then
to the right, before moving left again for some meters before the
mission plan is resumed. 79

8.5 The measured and desired velocity in u and v defined as forward
and sideways velocities in body, respectively. The desired sideways
velocity v clearly shows the repeatedly movement to the left and
right. 79

8.6 Roll, pitch, yaw and ground speed. 80
8.7 The altitude together with the monitored parameters current,

voltage and CPU usage. 81

https://code.google.com/p/ardupilot-mega/wiki/SITL
http://norgeibilder.no

List of Abbreviations

AHRS Attitude Heading Reference System

APM ArduPilot Mega

AUV Autonomous Underwater Vehicle

AV Audio/Video

CPU Central Processing Unit

DOF Degrees of Freedom

DUNE DUNE Unified Navigational Environment

EEPROM Electrically Erasable Programmable Read-Only Memory

EKF Extended Kalman Filter

FOV Field of View

FPV First-Person View

GCS Ground Control Station

GNC Guidance, Navigation and Control

GNSS Global Navigation Satellite System

GPS The NAVSTAR Global Positioning System

HIL Hardware In Loop

HTTP Hypertext Transfer Protocol

IMC Inter-Module Communication

IMU Inertial Measurement Unit

INS Inertial Navigation System

JRCC The Joint Rescue Coordination Centers

LiPo Lithium Polymer

LOS Line-of-Sight

xvii

xviii List of Figures

LSTS Laboratório de Sistemas e Tecnologias Subaquáticas, The Under-
water Systems and Technology Laboratory, located in Porto

LWIR Long-Wavelength Infrared

MAVLink Micro Air Vehicle Link

MEMS Micro-Electromechanical System

MoJ The Ministry of Justice and Public Security

PID Proportional, Integral and Derivative

PWM Pulse Width Modulation

RC Radio Controller

RTL Return-to-Launch

SAR Search and Rescue

SBC Single-Board Computer

SIL Software In Loop

TCP Transmission Control Protocol

TIL Target In Loop

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

Chapter 1

Introduction

Search and rescue (SAR) is a term used about the search for, and provision of
aid to persons or property in potential or actual distress. To assist in search
operations, an unmanned aerial vehicle (UAV) can provide critical support from
the air. This thesis presents a system using multicopters to support search and
rescue missions.

1.1 Background and Motivation

An unmanned aerial vehicle is an airborne vehicle without a human pilot aboard.
The multicopter is a UAV consisting of multiple fixed-pitch rotors attached to
a simple mechanical construction. The vehicle uses thrust force generated by
rapidly spinning rotors to push air downwards keeping the vehicle aloft. As a
side effect of the thrust, the propellers also generate torque making the multi-
copter free to move and rotate in three dimensions. The total generated thrust
and torque from each individual motor controls the motion of the multicopter.
However, since this is the only control input, the multicopter is highly unstable
and the control problem has proven to be difficult and impossible without internal
navigation to track the position and orientation.

Using measurements provided by accelerometers and gyroscopes an inertial nav-
igation system (INS) is a device that computes the real-time position, velocity,
and orientation of a moving vehicle using motion sensors. INSs are widely used
in military and commercial projects, and have been under constant development
and revision for several decades. Recent advances in the construction of micro-
electromechanical systems (MEMS) have made it possible to manufacture small
and light INSs and made the technology accessible to hobbyists. This has re-
sulted in an increasing popularity of the multicopter. Figure 1.1 shows a six
arms configuration of the multicopter.

1

2 1.1 Background and Motivation

Figure 1.1: The 3DR ArduCopter Hexa is a multicopter designed and manufactured
at the 3D Robotics headquarters in San Diego, California. The model is rendered by
Kristian Klausen.

Historically, the term and primary use of UAVs have been in the military sec-
tor. The civilian applications have gained momentum caused by the continuous
development and technology transfer, which has made the technology available
outside the military domain. Today, most of the civilian applications use hand-
held radio transmitters to remotely control their UAVs. In addition, some users
have equipped their UAVs with a camera allowing them to control their vehicles
using first-person view (FPV) for various tasks. FPV, also known as video pilot-
ing, is a method used to control a radio controlled vehicle from the pilot’s point
of view and is especially great for inspections. The next big technological aspect
is autonomous control.

The degree of autonomy in a UAV varies greatly, ranging from manual control to
fully autonomous operation. Remotely operated vehicles, such as radio controlled
hobby airplanes or helicopters, belong to a category where the degree of autonomy
is minimal because continuous input from an operator is required. The main
reason for introducing autonomous control is to avoid using pilots for manual
control and with that simplify the process seen from the perspective of the
operator. Although the system itself will be more technologically complex, less
training is required for the operators and human error factors are reduced. Fully
autonomous UAVs are characterized by the ability to maintain flight and operate
based on self-governed decisions in real-time. The autonomous UAV is able to
carry out sequences of actions prepared by an operator to achieve high-level goals.
The natural high-level goal in a search and rescue mission is to find objects and
report their positions.

Now, with UAVs becoming cheaper and more available to the public, search and
rescue is an area that can benefit greatly from this technological development.
According to statistics from the Joint Rescue Coordination Centers (JRCC),

Chapter 1. Introduction 3

Hovedredningssentralene, the number of persons reported missing on land in
Norway is increasing. In 2008, the numbers exceeded for the first time thousand
persons annually, and the numbers are trending upwards (see Figure 1.2).

2002 2004 2006 2008 2010 2012 2014

600

800

1000

1200

1400
77

0

94
0

96
1

94
3 97
5

11
05

12
21

11
59 12

32 12
84

12
51

Year

Pe
rs
on

s

Figure 1.2: Persons reported missing on land in Norway over the last ten years
according to the Joint Rescue Coordination Centers [2012].

The JRCC have the overall operational responsibility during SAR operations in
Norway. They are carried out by cooperation between government agencies, vol-
untary organizations and private companies who have resources appropriate for
rescue services. The Rescue and Emergency Planning Department in the Ministry
of Justice and Public Security (MoJ) coordinates the administration of the Res-
cue Service in Norway. They stated in 2002 that one of the central elements in the
Norwegian SAR Service is the large number of voluntary organizations that take
part in the operations [MoJ, 2002]. Further, these organizations are particularly
characterized as a valuable asset in search operations in forested and mountain-
ous areas, with the ability to field, on short notice, large numbers of personnel
who are both trained for the situation and familiar with the terrain.

The considered major lifesaving resource of the SAR services is the 12 Westland
Sea King helicopters of the 330 Squadron. The Sea King is specially designed
for SAR operations at sea, though it also performs quite well over land. One of
the powerful tools that the helicopters have, beside the natural aerial overview,
are the thermal imaging camera. This sensor is controlled by an operator and
can spot heat signatures on ground. Although helicopters are extremely valuable
assets, they are expensive and may not always be available as they operate and
cover large areas.

Imagine that every local SAR unit has multicopters equipped with thermal
imaging cameras. They can then provide their own valuable air support as early
as possible in a search operation, before a Sea King or other helicopters arrive at
the scene. To assist in a typical SAR scenario, one or several multicopters can
be deployed in an area of interest, perform sensor operations to collect evidence

4 1.2 Previous Work and Related Literature

of the presence of a missing person, and report their collected information to a
remote ground station or rescue team. As time often is an important factor for
success in SAR missions, multicopters can be of vital importance to minimize the
time it takes to find persons of interest. A final important aspect of using UAVs
in search missions is that they can minimize the risks rescue teams are exposed
to in dangerous areas.

1.2 Previous Work and Related Literature

The challenges with autonomous control have been recognized for a long time
[Pachter & Chandler, 1998]. Practical aspects of visual-based aerial search
through field tests of wilderness search and rescue are presented by Goodrich
et al. [2008] in a field report. The report characterizes small (human-packable)
unmanned aerial vehicles as the ideal application to provide aerial imagery of the
search region that can be large and have potentially limited mobility for ground
searchers. The field tests give good insight in some of the practical challenges
related to how video information should be presented to a search unit. They
specifically describes how UAVs should be integrated into a search team and best
can support the search and rescue process.

Further, there are done research that are slightly more specific into a given
part related to the use of multicopters in search and rescue missions. An
introduction to the basics of control structure for a quadcopter for search and
rescue applications is done by Naidoo et al. [2011]. It provides an overview of
the dynamics of the multicopter. Waharte & Trigoni [2010] present different
search algorithms with the objective of minimizing the time finding the target
object. In particular, the benefit of sharing data between UAVs with different
search techniques are compared. A survey of autonomous control for UAVs is
presented by Hai et al. [2009]. Fossen [2011] has written a handbook on motion
control where guidance, navigation and control is extensively presented. Breivik
and Fossen have published several papers presenting different guidance laws for
marine crafts. One of them is presenting guidance laws for target tracking and
path scenarios [Breivik & Fossen, 2008]. The guidance laws in the perspective
of UAVs include motion in three dimension, but marine guidance laws (in two
dimensions) are still highly relevant since altitude can be decoupled from the
three dimensional guidance law to a separate control objective. Waharte et al.
[2010] have done observations proving that altitude is important for optimizing
the search process due to speed and detection.

There are done a lot of research on how different computer algorithms can be
used to track humans in different scenarios. Rudol & Doherty [2008] have done
experiments detecting humans using thermal and color imagery specialized for the
search and rescue missions. Their technique presented two video cameras. One
thermal imaging camera to detect human-temperature silhouettes and further
a standard color camera to classify human bodies. The system has a high

Chapter 1. Introduction 5

processing rate of 25Hz. The experimental results of this system showed that
both human bodies and dummies were detected despite the lower temperature of
the latter.

Motion estimation from the UAV perspective is done by Prevost et al. [2007]
where an extended Kalman filter is used to estimate the states of a moving object.
Further in the same work is motion prediction done, which is closely connected to
state estimation. In a different approach by Zhiyuan et al. [2010], an adaptive law
is designed to estimate the target position with the focus on designing a simple
but effective guidance law. Wu et al. [2009] is also addressing the moving target
matching tracking, locating calculation and motion estimation. The benefits of
the proposed model have been proven in traffic monitoring site experiments and
engineer applications.

Open source projects have pushed the field of UAV projects forward. ArduPilot
Mega (APM) is an open source multiplatform autopilot, which is able to control
autonomous multicopters. It was created in 2007 by the DIY Drones community
and has now evolved to the ArduCopter, ArduPlane and ArduRover software
projects. The free software approach of Ardupilot is important to keep costs low
and availability for the public community. The ArduCopter project is designed
to be easily approachable for the novice, while remaining open-ended for custom
applications, education, and research use. Although it is one of the most popular
autopilot on the market, the source code is not written in a way that is particular
easy-to-understand, making it somewhat hard to customize.

Laboratório de Sistemas e Tecnologias Subaquáticas (LSTS), the Underwater
Systems and Technology Laboratory in Porto, is specialized on the design,
construction and operation of unmanned underwater, surface and air vehicles.
Their focus is to develop tools and technologies for the deployment of networked
vehicle systems. One of their strength is that all vehicle systems utilize the
LSTS control architecture with the help of the LSTS Neptus-IMC-Dune software
toolchain (see Figure 1.3) [Pinto et al., 2013]. The toolchain is designed to be
modular and can be customized to different operations and mission setups. The
MAVLink communication protocol can be used to extend the LSTS toolchain to
include Ardupilot and enable low-level control of UAVs. The LSTS has decided
to make their research open source stating that international cooperation is the
key to success. This makes their software attractive and makes them ideal as a
collaborating partner.

The design of a payload that can perform real-time object detection and tracking
by UAVs using thermal imaging camera is presented by Leira [2013]. Due to
the limited payload capacity of UAVs, the payload system was designed to be
small, lightweight and power efficient. Leira implemented two different detection
algorithms where both turned out to have their strengths and weaknesses. The
success of object detection is determined by the feature representation and the
learning algorithm. The feature representation is responsible for how an object is
represented, while the learning algorithm decides whether the object is found or
not. The learning algorithm is referred to as a classifier and needs to be trained for

6 1.3 Contribution and Scope of this Thesis

eptuseptus
DUNE

LSTS Toolchain for Autonomous Vehicles

Figure 1.3: The LSTS Neptus-IMC-Dune software toolchain. Neptus is a distributed
command, control, communications and intelligence framework for operations with
networked vehicles, systems, and human operators. IMC is a communications protocol
that defines a common control message set understood by all types of LSTS nodes.
DUNE is the system for vehicle on-board software used for e.g. control, navigation, or
to access sensors and actuators. Based on http://lsts.fe.up.pt

a specific object shape. For example, humans have different shapes when they are
observed from various angles. Thus, the camera angle that the classifier is trained
for is of great importance for the performance of the recognition. Leira trained
the classifiers for a horizontal pointing infrared camera. The tracking algorithm
implemented was based on a linear motion model making it sensitive for fast,
abrupt and relative large displacement rates in the image position. These findings
concluded that slow motion in the image frame was important to achieve good
results. To produce good estimates of the real world coordinates of the object
Leira proposes to extend the object tracking algorithm, having one estimator
for the position in the image plane, and a second estimator for the real world
coordinate.

The APM, the LSTS software toolchain and the work done by Leira [2013] are
directly related to some of the work in this thesis.

1.3 Contribution and Scope of this Thesis

The goal of this thesis is to design a system using multicopters to give air support
for a search and rescue mission. The main focus is to develop a payload for
the multicopter that can autonomously perform real-time search for objects.
Although the multicopter should be able to communicate and receive updated
commands from a ground station, it should primarily be able to conduct a search
mission based on some predefined parameters. These parameters can differ for
each mission regarding for example search area, search pattern, flight time, speed,
altitude and the autonomous reaction upon detection of an object.

The objectives of this thesis can be divided into the following parts:

Hardware and software As the manual controlled multicopter using FPV
already have potential to be used in search operations, this thesis strives
to take the system one step further and add autonomous functionality.
One challenge is to combine and exploit the potential of hardware and

http://lsts.fe.up.pt

Chapter 1. Introduction 7

software that already exist. Although the system should be designed and
optimized for the SAR mission, it should be made modular so it easily could
be adjusted to other applications where autonomous control is needed.

Low-level control To enable autonomous control of the multicopter an on-
board payload should be designed. The payload will consist primarily of a
computational unit that communicates with the on-board autopilot. The
computer should be able to control the multicopter attitude and altitude,
in addition to give velocity or waypoint-based commands.

Visual feedback The utilization of a camera module should be investigated.
The infrared camera setup discussed by Leira [2013] should be considered
in addition to a regular color camera. Methods for stabilization of the
camera module should be tested with the purpose of increasing the camera
performance.

Communication The ground control station should be able to monitor status
data and track motion of the multicopter. The data should include vital
information about the multicopter together with a video stream from the
camera. The ground control station should have the possibility to change
predefined parameters for the mission, abort the mission or make other
necessary interactions.

Autonoumous behavior Promising methods for performing autonomous oper-
ations based on real-time object detection from a thermal imaging camera
should be implemented and evaluated. The methods should be made mod-
ular such that they could easily be updated, maintained and extended for
future development.

For the implementation of the system to be considered successful, it should be
tested and verified to be able to accomplish a real search for objects. The following
points are a set of partial goals that together define the complete search and rescue
mission.

• Define hardware and software that are suitable for the search operations.

• Be able to control roll, pitch, yaw or the velocity together with the altitude
of the multicopter externally from ground and on-board the vehicle.

• Be able to control the multicopter by giving waypoints that include speed,
heading and altitude control.

• Be able to show status data and track motion of the multicopter on a ground
control station.

• Send video from the multicopter to a control station located on the ground.

• Implement a module that from ground can give input to the autonomous
unit on-board the multicopter due to mission planning and manual detec-
tion of possible targets.

8 1.4 Organization of this Thesis

• Autonomously execute a set of maneuvers based on camera detection using
low-level control.

• Autonomously resume to the primary search after the object is inspected.

• Estimate the motion of a target object from noisy measurements.

The ultimate goal is to be able to conduct a field test showing the concept of
the search and rescue multicopter. The multicopter should be able to perform
a search given by waypoints, and given that a detection of an object occur it
should be able to do strategic maneuvers addressed to give optimal information
to a ground control station.

1.4 Organization of this Thesis

The hardware and software utilized in the SAR multicopter system is described
in Chapter 2. The presented system is designed to achieve low-level control of the
multicopter. The overall system description is provided at the end to summarize
and give an understanding of how the different hardware and software components
communicate and cooperate.

In Chapter 3, an introduction to APM:Copter and DUNE is given. The intro-
duction gives an overview of the structure and existing features of the two most
important software modules in this thesis. Further, Chapter 4 gives an introduc-
tion to the principles of guidance, navigation and control. The definitions are
given and followed by a correspondingly presentation of the realization of each
subsystem in APM:Copter.

The implementation of a low-level control interface using the MAVLink protocol is
presented in Chapter 5 as an extension to APM:Copter. In addition, a customized
flight mode is implemented to deal with possible security threats due to the use
of the MAVLink protocol.

The autonomous behavior of the multicopter is discussed in Chapter 6. The
utilization of a pre-programmed waypoint guidance scheme is presented before
the fully autonomous search and rescue multicopter is introduced. A framework
for fully autonomous guidance control is designed and a draft to a search and
rescue guidance controller is implemented. Further, the integration of a camera
module in the the fully autonomous search and rescue multicopter is discussed
and related to Chapter 7 where an approach to estimate the position of a detected
object is presented using the extended Kalman filter. The estimation algorithm
is simulated in MATLAB.

In Chapter 8, the development process is presented through different simulators
and concluded with final experiments in the field. The experimental setup of
a search operation is given and the results of the field test are presented. The
complete checklist preparing for a flight is given in Appendix A.

Chapter 1. Introduction 9

Chapter 9 briefly summarizes the results and generally concludes the thesis,
proving the viability of the search and rescue multicopter system that has been
presented.

The digital appendix included with this thesis contains the MATLAB file for the
extended Kalman filter implementation used in the simulation in Chapter 7. It
also includes a video of the experiments edited by Kristian Klausen. The source-
code of the extensions to APM:Copter and the presented tasks in DUNE are
found in the digital appendix but also on the uavlab git repositories:

git@uavlab.itk.ntnu.no:uavlab/ardupilot.git
Under the branch feature/ArduCopter-ctrl

git@uavlab.itk.ntnu.no:uavlab/dune.git
Under the branch feature/stable-object-detect

git@uavlab.itk.ntnu.no:uavlab/ardupilot.git
git@uavlab.itk.ntnu.no:uavlab/dune.git

10 1.4 Organization of this Thesis

Chapter 2

The Search and Rescue
Multicopter System

Weight and functionality are two of the most important aspect when the search
and rescue (SAR) multicopter system is designed. The combined weight of the
multicopter and payload is limited due to influence of the maneuverability, but
until the total weight threshold is approached it mainly affect the flight time.
In this thesis, designing a mulitcopter with possibility for low-level control, the
functionality has been the major focus at the expense of weight. To make the
realization of a lighter system possible to be conducted at any time, hardware and
software independence has been important. In this chapter, the chosen hardware
and software modules that form the SAR multicopter system is presented together
with an overall system description.

2.1 Hardware

2.1.1 Multicopter

There are a wide variety of multicopter shapes, sizes and configurations on the
market. The multicopter or multirotor is a simple mechanical construction
consisting of multiple arms attached to the center with a motor at each end.
The number of arms and motors varies and affects the desired lift capacity. As a
rule of thumb, the lift capacity of all motors must be twice as much as the total
weight of the multicopter with payload. This gives the multicopter enough thrust
to maintain its maneuverability and specifies the hexacopter lift capacity.

The maximum lift capacity of the hexacopter is directly determining the maxi-
mum weight of the payload. Indirectly it also determines the flight time. There
is usually an objective to maximize flight time in every system. The logical way

11

12 2.1 Hardware

to do this is to increase the battery capacity. However, since extra batteries
correlate to an increase in weight, this may not be a possible due to the weight
threshold. As a general rule, a doubling of battery capacity only give 50% of in-
creased flight time. Thus, the optimized multicopter setup regarding flight time
will differ depending on individual configuration.

The hexacopter, a multicopter with six arms and rotors, is considered to be
a good compromise between production costs, size and weight, for search and
rescue missions. The experiments in this thesis is conducted with the hexacopter
shown in Figure 2.1. The specification of 3DR ArduCopter Hexa is summarized
in Table 2.1.

Figure 2.1: The hexacopter 3DR ArduCopter Hexa mounted with the SAR payload.
The white box contains the computational unit and act as a platform for the gimbal.
The payload and gimbal are discussed later in the section.

Table 2.1: Technical specifications of the hexacopter with payload.

Number of motors and propellers 6
Propeller length and pitch 11× 4.7
Hexacopter weight 1550 g
Battery capacity 4000mAh
Battery type 3 cell lithium polymer (LiPo)
Hexacopter lift capacity 1.0 kg
Gimbal and GoPro 3+ 265 g
Box with PandaBoard 210 g
Batteries (2 cell and 3 cell) 430 g
Total payload weight 0.9 kg
Approximately flight time 5min

Chapter 2. The Search and Rescue Multicopter System 13

2.1.2 Radio Controller

A radio controller (RC) is an essential tool in almost every UAV system (see
Figure 2.2). Although the fully autonomous multicopter is able to perform take-
off, flights and landing on its own, it must be possible to reclaim manual control
if unexpected behaviors happen. This is especially important during testing of
new features and in the development process. A RC is the typically tool used
for manual control. The RC is sending a PWM (pulse width modulation) signal,
which consists of series of repeating pulses of variable width. A 7-channels RC
transmitter can send 3 auxiliary PWM signals in addition to roll, pitch, yaw and
throttle.

Figure 2.2: The 7-channels RC transmitter Spectrum DX7s with receiver. Retrieved
from http://hobbyfly.com.

In the context of multicopters, the expression manual control makes little sense
since it is impossible to do stabilizing of a muliticopter with manual control for
each motor. A more correct expression is automatic control, where a change
at the RC is given as a meaningful input to the multicopter, e.g. lean angles
or thrust. Automatic control is typically achieved by electronic assistance from
an autopilot that translates the RC input to individual outputs to each motor
stabilizing the multicopter at a given attitude. Automatic control is referred to
as stabilize mode in some autopilots.

2.1.3 The ArduPilot Mega Autopilot

ArduPilot Mega is an open source multipurpose platform able to control au-
tonomous multicopters, fixed-wing aircrafts, traditional helicopters and ground
rovers [APM, 2014a]. The project was created by the DIY Drones commu-
nity and was based on the Arduino open-source electronics prototyping plat-
form, leading to the “Ardu” prefix. Today, the project support more than just
Arduino-compatible hardware and the software projects are renamed with the
prefix “APM” to APM:Copter, APM:Plane and APM:Rover. The hardware in
APM consists of the core autopilot board, various sensors and accessories to add
to its functionality. The APM is build as an inexpensive and “simple to use”

http://hobbyfly.com

14 2.1 Hardware

autopilot and the free software approach is to keep the focus on availability and
low costs. The APM 2.5 is shown in Figure 2.3.

Figure 2.3: ArduPilot Mega 2.5 with side entry case. Retrieved from
http://store.3drobotics.com

The ArduPilot Mega 2.5 includes the following features [APM, 2014b]:

• 3-axis gyroscope.
• 3-axis accelerometer.
• 3-axis magnetometer.
• Barometric pressure sensor for altitude.
• 5Hz external NAVSTAR global positioning system (GPS).
• Voltage and current sensors for battery status.
• 4MB of onboard datalogging memory.
• Built-in hardware failsafe processor, can return-to-launch on radio loss.
• Two-way telemetry and in-flight command using the MAVLink protocol.

The gyro, accelerometer and magnetometer is used to determine the rotation,
acceleration and direction of the copter. The APM 2.6 has replaced the on-board
magnetometer with an external GPS and compass module to solve addressed
problems due to magnetic interference from electronic components. The advan-
tage with an external module is to give freedom due to the placement of the
magnetometer. The ideal position of gyroscope and accelerometer is in the cen-
ter of the vehicle where magnetic interference typically is highest. The external
module makes it possible to move the magnetometer away from the problematic
area keeping gyroscope and accelerometer at their optimal position.

2.1.4 Single-board Computer

The PandaBoard is the on-board processing unit in the multicopter system.
In the research to find the most optimal low-power and low-cost single-board
computer (SBC) to be used in UAVs, Leira [2013] concluded that the PandaBoard
is most optimal. A SBC is a complete computer integrated on a single circuit
board. As the SBC has high level of integration of all components it allows the
system to be compact, lightweight and power efficient which makes them ideal
for the use in UAVs. The PandaBoard is found as the most optimal SBC due to

http://store.3drobotics.com

Chapter 2. The Search and Rescue Multicopter System 15

the criteria of CPU speed, amount of RAM, weight, size, power consumption and
compatibility with GNU/Linux software. The specification of the PandaBoard
ES is given in Table 2.2.

Table 2.2: Technical specifications of PandaBoard ES.

CPU 1.2GHz Dual Core
Processor ARM Cortext-A9
Weight 82 g
Size 11.4 cm×10.1 cm×3 cm
Power DC Jack / USB On-The-Go - 5V ∼ 1A
Connectivity 10/100 Ethernet and 802.11 b/g/n
Memory 1GB RAM and full size SD/MMC card cage
Expansion USB 2.0 High-Speed host port

The range of the original on-board wifi module at the PandaBoard is tested to
be approximately 150meters. This was tested with the DLINK DIR-615 wireless
N300 router. Figure 2.4 illustrate the results of the test.

START

63%

34%

Lost

Figure 2.4: The range of the original wifi module at the PandaBoard was tested in
field. The airstrip at the picture is approximately 200 meters from start to the end
of the runway where the communication was lost. The map data is retrieved from
http://norgeibilder.no

2.1.5 Gimbal

Horizontal motion of a multicopter is accomplished by an increase of thrust on
one side and a reduce of thrust on the other side causing the copter to tilt in the
desired direction of motion. Consequently, the frame will almost be in constant
motion in order to move and further stabilize the copter. In turbulent areas,

http://norgeibilder.no

16 2.1 Hardware

the motion will increase as the copter automatically tilts against the direction
of the disturbance. As a result, a camera mounted directly on the multicopter
frame will obtain a lot of unwanted movement. This can be solved by the use of
a gimbal (see Figure 2.5).

Figure 2.5: The Tarot 2D brushless camera gimbal with a camera mounted. Retrieved
from http://www.droneshop.com

A gimbal is a platform that can pivot, meaning that instead of being fixed to
a base, the platform can rotate along at least one axis. It is adequate to have
a 2-axis gimbal on a multicopter neutralizing the motion in roll and pitch. The
yaw axis of the camera can be kept fixed with the multicopter frame allowing the
pilot to control the camera direction by rotating the copter in yaw.

The Tarot 2D camera gimbal is specially designed for the GoPro 3 and is tested
with great success. It has a separate control board with an IMU (inertial
measurement unit) mounted on the back of the mounting block for the GoPro.
The platform is turned with brushless motors giving smooth and steady results.
Although the Tarot 2D is designed for the GoPro, it can be used for other cameras
at the same size and weight. The infrared camera is about the same as the GoPro
in weight but is slightly thicker. The motors can handle the unbalanced weight
but would use less power with a perfectly balanced mounting block for the infrared
camera.

2.1.6 Video Streaming

To support the search and rescue operations with multicopters, the camera is
a vital part of the system. To utilize the video stream for automatically ob-
ject recognition, computer vision algorithm can be used to process, analyze and
understand the images. The techniques for extracting information that can be
used at the single-board computer are limited as they often are computational de-
manding. To produce robust and adequate results in a color-varying environment
which search location typical are, thermal imaging hold an advantage over color
cameras showing heat signatures and therefore neglecting color variations. It is

http://www.droneshop.com

Chapter 2. The Search and Rescue Multicopter System 17

possible to buy infrared cameras in a size that can be mounted on a multicopter
to the price range of 3000 EUR.

The Flir Tau 2 long-wavelength infrared (LWIR) thermal imaging camera and
GoPro 3+ color camera was tested in this thesis (see Figure 2.6).

(a) The Flir Tau 2 LWIR thermal imag-
ing camera. Retrieved from
http://www.flir.com

(b) The GoPro 3+ Black Edition. Re-
trieved from http://gopro.com

Figure 2.6: The cameras used in the experiments. The real-time outputs of both
cameras are analog.

In a fully autonomous SAR multicopter system the camera is used as a sensor
to detect objects. A digital camera stream is necessary to process images and do
computer vision analysis on-board the multicopter at the single-board computer
or at a ground station. The video stream can be transmitted by wireless
communication at 5.8GHz with a module specialized for FPV (see Figure 2.7).
This transmission is analog outputting audio/video (AV) signals.

Figure 2.7: 5.8GHz 200mW FPV wireless AV Tx and Rx set. It has a range at 500m
with the supplied antenna. An optional directional antenna can extend the range to
over 1 km. Retrieved from http://www.uavobjects.com

http://www.flir.com
http://gopro.com
http://www.uavobjects.com

18 2.2 Software

When a analog video stream is used, either from the GoPro or IR-Camera, it
must be converted before a digital unit can utilize the stream. Frame grabbers
are devices that inhibit this feature. There are several types on the market, which
has different outputs.

EasyCap DC60 is a USB audio and video grabber that can capture high-quality
video (see Figure 2.8a). External power is unnecessary and it is a simple solution
that works directly on most (linux-based) computers.

The AXIS M7001 video encoder can deliver two simultaneous video streams at
full frame rate, one in H.264 and another in Motion JPEG (see Figure 2.8b).
This video encoder is powered over ethernet using the same cable as for data
transmission and is specified to need minimum 44V. A DC DC boost can be
used to step-up the voltage to the required level from a 3 cell LiPo battery which
is same that is used to power the hexacopter.

(a) Easycap DC60. Retrieved from
http://www.mercadolivre.com.br

(b) AXIS M7001 video encoder. Col-
lected from http://www.axis.com

Figure 2.8: Frame grabbers.

2.2 Software

2.2.1 The DUNE Framework

DUNE or DUNE Unified Navigational Environment is a runtime environment
written in C++ for unmanned systems developed by LSTS [Pinto et al., 2013].
It provides an operating system and architecture independent platform, which
makes it work with different payloads and solutions. Together with its portability,
DUNE is designed to be both modular and versatile to make it easy to adapt
functionality to many types of operations and applications.

To provide the modular environment in DUNE, related logical operations are iso-
lated from each other in different tasks. The tasks can easily be added or removed
to customize for individual mission setups. All running instances of DUNE share
the same code base but run under different configurations. A single initialization

http://www.mercadolivre.com.br
http://www.axis.com

Chapter 2. The Search and Rescue Multicopter System 19

file specifies the configurations for each setup. The modular architecture is based
on a set of divided tasks that has separate responsibilities. Some tasks are re-
sponsible for the interaction with sensors and actuators related to navigation and
control of unmanned systems, and other interact with the control architecture
that comprises DUNE’s navigation filter, autopilot, maneuvering controllers and
supervisors.

2.2.2 The IMC Protocol

The inter-module communication (IMC) protocol is a message-oriented protocol
designed and implemented at LSTS for communication between vehicles, sensors
and human operators [Martins et al., 2009]. The IMC protocol comprises different
logical message groups for networked vehicle and sensor operations. It defines an
infrastructure that provides different layers for control and sensing. The IMC
protocol serializes a shared set of messages and adds a header enabling it to
keep track of the messages. It also checks if the messages arrive at their given
destination where the IMCmessage is reconstructed to the original set of messages
through deserialization. The protocol allows different tasks, from sensor drivers to
guidance controllers, that run independently from each other on separate threads
or processes, to exchange data using a message bus mechanism.

The entire IMC protocol definition is given in a single XML with detailed
documentation. This creates a flexible solution in creating new types of messages.
All IMC messages contain a header with information like its type, version, time
stamp, origin and destination.

2.2.3 The MAVLink Protocol

MAVLink or Micro Air Vehicle Link is a protocol specialized for communicating
with small UAVs. The protocol is a light-weight, header-only message marshalling
library which can pack C-structs over serial channels with high effiency. The
protocol can serve as the communication backbone for the IMU and ground link
communication as well as for inter-process communication in Linux exchanging
data among multiple threads [QGroundControl, 2014].

MAVLink is used as the communication protocol between the APM autopilot and
a ground control station. It is also used in the inter-communication between the
subsystems of the autopilot. The MAVLink mission interface is a data format for
storing missions to be carried out by UAVs. The items of the mission data format
can be transmitted using the waypoint protocol or as individual actions using the
MAVLink command message. The waypoint protocol describes how waypoints
are sent to, and read from a UAV. The intention is to ensure a consistent state
between sender and receiver.

A transaction between two communication parties can only be initiated when no
other transaction is active. This means that both communication parties have

20 2.2 Software

to be in state idle before a transaction can be initiated. The waypoint protocol
supports the following functionality:

• Read, write and clear the waypoint list to the UAV.
• Set a new current waypoint to the UAV.
• A status message is broadcasted from the UAV if it reaches a waypoint or

a new waypoint is selected.

Furthermore, the mission interface has a parameter protocol and an image
transmission protocol. The on-board parameter interface allows to read and
write parameters into the current memory and permanent storage. This can be
used to write e.g. PID gains. The image transmission protocol consists of a
module for both image and video streaming.

2.2.4 Ground Control Stations

Mission Planner and APM Planner

Mission Planner and APM Planner are ground control stations (GCSs) designed
for APM:Plane, APM:Copter and APM:Rover. They are more and less the
same tool written in two different languages. Mission Planner Ground Control
Station is a .NET framework that primarily runs on Windows while APM Planner
Ground Control Station is written in C++ using Qt. Since it is practical to do
development in Ubuntu, Mission Planner is unsuited with its lack of compatibility
to other operating system than Windows. Qt however, is a cross-platform
application for developers using C++, meaning that it has support for many
operation systems including Ubuntu. APM Planner is superior due to speed
but Mission Planner works better for logging and flight analysis. As both GCSs
basically do the same, a dual boot laptop running both Windows and Ubuntu
has shown to be excellent in field, as one GCS sometimes is preferred. Figure 2.9
shows a screenshot of Mission Planner.

Mission Planner and APM Planner have the same features as a configuration
utility. They can load firmware into the APM and further setup, configure, and
tune the vehicle for optimum performance. As control stations they can plan,
save and load autonomous missions into the APM with a simple point-and-click
waypoint entry on data maps. Furthermore, they can download and analyze
mission logs created by the APM. As control supplements for the UAV, they can
monitor the APM’s status in operations and record more extended telemetry logs
than the on-board datalogging memory.

The support for autonomous control has its limitation when it comes to Mission
Planner and APM Planner. They are not designed for more advanced, specialized
or larger operations involving networked or multiple vehicles. Mission Planner
and APM Planner can only execute predefined flight plans based on basic ma-
neuvers. Features for fully autonomous operations with self-governed decisions
on-board the multicopter is not supported by these GCSs. Although it may be

Chapter 2. The Search and Rescue Multicopter System 21

Figure 2.9: The user interface of Mission Planner.

possible to extend these GCSs supporting such features, it does not appear to
be the right direction when other tools are made suitable for such modifications.
However, Mission Planner and APM Planner can still be used as supplement to
another preferred control station as an external APM configuration tool.

Neptus

Neptus is a command and control software developed by LSTS that allows
operators to interact with a dynamic set of available assets in real-time by
commanding plans and receiving data from the network. It is written in Java and
it run in Ubuntu and Windows. The main communication interface in Neptus
is IMC, making it interoperable with DUNE and any other IMC-based peer.
Neptus is designed to have adaptability and flexibility to comprise needs from
diverse vehicles, scenarios and different operator experiences. As a result, Neptus
could be customized according to the search and rescue mission and provide the
tools needed for operators and UAVs. Figure 2.10 shows a screenshot of Neptus.

2.3 Overall System Description

Various hardware components and software solutions have now been presented
with the objective of together composing the search and rescue multicopter
system. A overview is given in Figure 2.11 to present how these together form
the complete system.

22 2.3 Overall System Description

Figure 2.10: The user interface of Neptus.

The search and rescue system can be divided into two main parts, the multicopter
with payload and the ground control station with laptop and RC transmitter. In
the presented configuration of the system an FPV module is used to stream
video to the ground station. This makes an observer needed to manually look for
possible targets on ground. A gimbal is used to increase the stability and quality
of the video stream.

DUNE is utilized as the runtime environment running at the PandaBoard and
can performs autonomous tasks in flight. It receives commands from Neptus and
monitors the state of the multicopter transmitting the information to ground.
If Neptus is used DUNE is responsible for sending waypoints to APM by the
MAVLink protocol. If the two-way telemetry link is used together with Misson
Planner or APM Planner, DUNE and Neptus is redundant.

The control station on ground provides the operational overview of the search
and rescue operation. A RC transmitter is essential for manually controlling the
multicopter while a laptop is used for monitoring and as a control supplement.
The video stream is integrated and shown at the laptop, but could also be
streamed on an external screen.

Table 2.3 summarizes the overall system of hardware and software components
with protocols. The computer vision algorithms are missing from completing
the fully autonomous SAR multicopter system. The system is therefore relying
on an observer watching the video stream to spot targets on ground. The fully
autonomous system can be illustrated in Figure 2.11 with a supplemented com-
munication link between the camera and the PandaBoard running the computer
vision algorithms in DUNE.

Chapter 2. The Search and Rescue Multicopter System 23

GCS with Neptus GCS with Mission Planner

Wireless Router

FPV

Receiver

RC Transmitter

EasyCap DC60

ArduPilot Mega
RC Receiver

GPS Module

FPV

Transmitter

Telemetry

Radio

PandaBoard

with DUNE

Gimbal

Telemetry

Radio

Hexacopter

Figure 2.11: The search and rescue multicopter system. A solid line illustrates a wired
connection while a dash line illustrates a wireless connection. The communication link
from the camera to the PandaBoard illustrate the fully autonomous system.

24 2.4 Summary

Table 2.3: The technical specifications of the communication links in the SAR
multicopter system. Two-ways communication is illustrated by a double arrow while
one-way communication is illustrated by a single arrow. A non-specialized wired
communication link is called cabled.

Module Link Protocol

RC link 2.4GHz PWM
RC receiver → APM Cabled PWM
uBlox GPS → APM Cabled UBX/NMEA
DUNE ↔ APM Micro USB MAVLink
PandaBoard with DUNE ↔ Neptus 2.4GHz IMC
GoPro → FPV transmitter Cabled AV
FPV link 5.8GHz AV
Telemetry radio ↔ APM Cabled MAVLink
Telemetry link 433MHz MAVLink
Telemetry radio → Mission Planner USB MAVLink

2.4 Summary

The hexacopter mounted as illustrated in Figure 2.11 is approaching the limit
of weight threshold. The gimbal with the GoPro has itself a total weight of
about 265 gram. This emphasize that the optimized system setup needs carefully
planning when it comes to maximizing flight time without scarifying required
tools for performing the search operation.

During the setup of the SAR system, the PandaBoard have been questioned
several times whether it is the right choice of single-board computer. Problems
with the wifi module, drivers and package dependencies are some of the time
consuming issues that have been experienced. An alternative single-board com-
puter, the BeagleBoard, has been tested briefly with promising results and can
be considered for future use.

Chapter 3

Introduction to
APM:Copter and DUNE

In this chapter, an introduction to the structure in APM:Copter and DUNE
is presented together with some of the features they provide. These software
projects are the most important modules for realizing low-level control of the
multicopter.

3.1 The APM:Copter Software Project

APM:Copter combines personal multicopters with advanced autopilot technol-
ogy providing an autonomous aircraft for both new and experienced pilots.
APM:Copter is developed as a complete UAV solution with specialized hardware
and software that provides configuration, mission-planning, mission-operation,
and post-mission analysis. It is constantly maintained, improved and updated
by a dedicated group of volunteers from the open source community. The entire
package is designed to be easily approachable for the novice, while remaining
open-ended for custom applications, education, and research use.

3.1.1 Flight Modes and Features

The first official public release of “ArduCopter Alpha 1.0” in October 2010
featured the flight modes stable and acro. From this limited set of functions
APM:Copter has now become a powerful platform with support for GPS, various
sensors and many different features. The DIY Drones community is one of the
leading communities for personal UAVs, and is one of the groups that have seen
the potential for new features and participated in the development of the source
code. This is one of the benefits with open source code, that teams of developers

25

26 3.1 The APM:Copter Software Project

from around the globe together can improve and refine the performance and
capabilities of APM:Copter at the same time.

APM:Copter states to be a powerful platform and easy to use. One of the
features, simple mode, supports this statement allowing the pilot not to worry
about the orientation of the multicopter when flying. The autopilot automatically
decomposes the movement of the copter from the pilot’s point of view regardless
of which way the copter is facing. This is useful for new pilots that have not
mastered adjusting their roll and pitch inputs depending upon which way the
vehicle is facing. It is also convenient in cases where the copter is too far away to
see the yaw orientation since a stick movement towards the pilot will bring the
copter back.

Simple mode can be used in combination with some of the flight modes available
in APM:Copter. In “ArduCopter V3.1.1” there are 14 flight modes where about
10 are regularly used. A short explanation of the most important flight modes
due to the SAR mission is given in the description that follows. Note that pilot
input refers to a stick position at the RC.

Stabilize
Since multicopters always are in need of automatic control, stabilize is the
closest flight mode that may be referred to as “manual control”. The lean
angle of the copter is controlled to the desired angles from the pilot input
in roll and pitch. This means that if roll and pitch sticks are centered the
copter will automatically levels itself. The pilot input in yaw controls the
rate of change in angular orientation meaning that the copter will maintain
its current orientation with a centered stick position. The pilot input
in throttle controls the average speed of all motors. However, since the
vertically lift is dependent of the tilt angle of the copter, the throttle in
stabilize mode is tilt compensated making it easier for the pilot to maintain
the same altitude regardless of roll and pitch angles.

AltHold
AltHold, which refers to altitude hold, automatically controls the throttle to
maintain the current altitude. However, the current altitude is determined
from barometer measurements and is therefore sensitive to changes in air
pressure and location. Automatic altitude hold is also utilized as throttle
mode by other flight modes and can be combined together with different
roll-pitch and yaw control algorithms. In the specific flight mode AltHold
roll, pitch and yaw is operated as in stabilize mode.

Loiter
In loiter the copter maintains a consistent location, orientation, and alti-
tude. The flight controller uses GPS coordinates and compass angle to keep
fixed at a specified location. However, the pilot can move this specified lo-
cation using the RC and are able to control the copter both horizontally
and vertically.

Chapter 3. Introduction to APM:Copter and DUNE 27

Auto
The autonomous multicopter can be pre-programmed and execute missions
in auto mode. The copter will follow predefined flight routes based on a
set of waypoints and be programmed to trigger camera shutters or do other
various actions during flight (see Figure 3.1a).

Guided
Guided mode differs from auto mode by allowing the user to interactively
command the copter to travel to a new target location instead of following a
predefined set of waypoints. A ground control station can be used to define
the new target location by clicking on a point on the flight data map. Once
the location is reached, the copter will loiter at that location, waiting for
the next target (see Figure 3.1b).

WP5

WP1

WP2

WP3

WP4

(a) Auto mode.

HOME

MAP CLICK

(b) Guided mode.

Figure 3.1: Autonomous flight modes in APM:Copter. Retrieved from
http://ardupilot.com

APM:Copter is designed to be used together with a ground control station.
Mission Planner and APM Planner are two GCSs that have good support for
mission planning and operation. All communication can be done over a two-way
telemetry link where flight modes, waypoints and parameters can be controlled
while the copter is in the air.

3.2 The Software Architecture in DUNE

The open source LSTS software toolchain consisting of Neptus, the IMC protocol
and DUNE is designed for supporting networked vehicle systems. Although
the SAR system presented in this thesis focuses on how to utilize a single
multicopter, it is possible to imagine fleets of UAVs, both multicopters and planes,
performing a large scaled SAR mission. With such operations in mind, an ongoing
collaboration with LSTS and its support for UAVs, the DUNE framework was a
natural choice for the vehicle on-board software.

http://ardupilot.com

28 3.2 The Software Architecture in DUNE

3.2.1 Control Layers

The underlying architecture of DUNE needs to be flexible to encompass diverse
vehicle hardware, different communication methods and various mission scenar-
ios. This is achieved by allowing access to the different systems through different
control layers. The layers, as seen in Figure 3.2, gives the system interoperability
at different levels keeping the possibilities of both low-level and high-level control.

Plan-level control

Maneuver-level control

Guidance-level control

Sensor and Actuator data

On-board

software

Operator

consoles

Figure 3.2: The different control layers in DUNE. Plan-level and maneuver-level
control can both be done from an external operator console, while the vehicle is
within communication reach, or it can be done on-board the vehicle making it a fully
autonomous operation. Based on Pinto et al. [2013].

3.2.2 DUNE Tasks

In DUNE, the modularity and flexibility is accomplished by a well-organized
structure. All related operations are separated into individual tasks that fit into
one of the following categories [Pinto et al., 2013]:

Sensors are device driver tasks, associated with some hardware that measures
the environment.

Actuators are device driver tasks for hardware that allows the vehicle to move
and interact with the environment.

Estimators are tasks that based on information from sensors calculate state
estimates of the observed data. A typically example of an estimator is
the navigation task which determines the position, velocity and angular
orientation of a vehicle.

Controllers are tasks that handle high-level commands and transform them into
low-level commands based on the estimated vehicle state. For instance, a
given go-to-here, loiter or circle maneuver starts the corresponding maneu-
ver controller.

Monitors are tasks that constantly check vital parts of the system. They receive
information from other tasks and may change the vehicle state accordingly.

Chapter 3. Introduction to APM:Copter and DUNE 29

For instance, the multicopter’s battery voltage is an important parameter
that needs continuous monitoring. The monitor tasks are essential for
providing information to the supervisor tasks.

Supervisors are tasks that enable and disable other tasks according to the
current vehicle state. For example, if the battery voltage is critical low,
the vehicle supervisor can stop the current plan from executing, replacing
it by a landing maneuver.

Transports are tasks in charge of forwarding messages between tasks using the
message bus. Logging is a special transport task that listens to a set of
messages and records their serialized states to persistent storage. Transport
tasks are in charge of for example communication over different protocols,
such as UDP, TCP or HTTP.

Each task is based on a set of inherited methods which form the common structure
of the tasks. Although the structure is the same for each tasks, any of the
methods can be overridden and customized for specific purposes. A set of the
most important methods are given here:

• onResourceRelease() / onResourceInitialization()
• onUpdateParameters()
• onRequestActivation() / onRequestDeactivation()
• onActivation() / onDeactivation()
• onMain()
• consume(< M > message)
• dispatch(< M > message)

The methods are triggered at a specified time phase, periodically or whenever
a specific message receives. For example, onResourceInitialization and onRe-
sourceRelease are methods that follow timed phases in the life-cycle. The onMain
method is called periodically by the scheduler and executes something at timed
delays. The methods onActivation and onDeactivation can, as requested by other
tasks, turn on and off a payload module to save energy or start and stop a code
sequence that use a lot of computational effort.

Tasks can also implement onUpdateParameters that is triggered whenever their
configuration gets changed. Finally, all tasks can consume messages generated by
any other tasks by implementing consume methods that listen for specific types
of messages. Correspondingly can all tasks dipatch messages to any other tasks
that are listening for this type of message. The communication between each task
is done using the message bus, which is responsible for forwarding IMC messages
from the producer to all their registered receivers.

3.2.3 Configurations

All instances of DUNE run the same basis of code, but with different config-
urations. The different configurations are easily managed in configuration files

30 3.2 The Software Architecture in DUNE

where tasks are enabled together with their initial parameters. Using a referenc-
ing mechanism, a configuration file may include parts of other configuration files.
This allows the creation of vehicle specific configuration files and makes it easy
to add more functionality, just by adding a task. Further, each configuration
can run with different profiles such as Hardware and Simulation. These profiles
allow different tasks to be enabled whether real hardware should be connected or
simulated sensor and actuator data should be produced.

As seen in the example configuration file in Listing 3.1, the ArduCopter task
is defined with different TCP ports for different profiles. The basic UAV con-
figuration file is included to run the required tasks for a UAV, in this case the
ntnu-hexa-001. Tasks can also be defined to run for every configuration with the
profile Always or they can be disabled by the profile Never.

Listing 3.1: Example of configuration file based on ntnu-hexa-001.ini.

[Require uav/ basic .ini]

[General]
Vehicle = ntnu -hexa -001

[Control .UAV. SARGuidanceController]
Enabled = Always
Entity Label = Guidance Controller
Debug Level = Debug

[Control .UAV. ArduCopter / Hardware]
Enabled = Hardware
Entity Label = Autopilot
TCP - Address = 127.0.0.1
TCP - Port = 9999

[Control .UAV. ArduCopter / Simulation]
Enabled = Simulation
Entity Label = Autopilot
TCP - Address = 127.0.0.1
TCP - Port = 5760

Chapter 4

Multicopter Motion
Control

A vital part of every multicopter is the autopilot. The autopilot or automatic
pilot is a system that assists a human operator in controlling a vehicle and is used
in a broad aspect of applications. The first automatic pilots, in the early days of
aviation, was designed to reduce the pilot’s work load and relieved the pilot from
maintaining continuously attention of the aircraft. These autopilots could make
the aircraft fly straight at a given heading. Autopilots have evolved significantly
over time and today modern autopilots can execute complex maneuvers and
enable the control of highly unstable vehicles, such as multicopters. To get an
overview of how these autopilots work, they can be broken into three independent
blocks denoted as the guidance, navigation and control (GNC) systems.

4.1 Guidance, Navigation and Control

Guidance, navigation and control deals with the design of systems to control
the movement of devices or vehicles. The benefit from using GNC systems
might include sophisticated features such as automatic or remote control, fuel
optimization, minimum time navigation and collision avoidance and are essential
in all autonomous systems.

A GNC system is usually constructed as three independent blocks but can also
be represented by one block. Loose and tight coupling is a trade-off between
modularity and high performance. A loosely coupled system is attractive in
environments focused on development since this allows for software updates of
single blocks at a time. To boost the performance of a GNC system it can be
necessary to make it more tightly coupled with the possible effect of making
it hard to differ the three blocks from each other. The GNC systems interact

31

32 4.1 Guidance, Navigation and Control

with each other through data and signal transmission as illustrated in Figure 4.1,
where the APM autopilot is sketched. In the most basic form, an autopilot itself
is a GNC system [Fossen, 2011].

Path

Generator

Motion

Control

System

Multicopter

GNSS

Gyroscope

Magnetometer

Accelerometer

Estimator

WindWaypoints

Guidance System Control System
Navigation System

Estimated

position, attitude

and velocity

Figure 4.1: The APM autopilot system consists of a trajectory generator (guidance
system), a gyrocompass/observer (navigation system) and a motion control system.
Based on Fossen [2011].

4.1.1 Definitions

The definitions of guidance, navigation and control based on Fossen [2011] are as
follow:

Guidance
Guidance is the action or the system that continuously computes the desired
behavior of a vehicle, usually without direct or continuous human control.
Typically, it is responsible for the calculation of the desired trajectory from
the vehicle’s current position to a designated target in addition to the
determination of the needed changes in velocity, rotation and acceleration
for following that path.

The guidance system takes input from sensors (the navigation system)
and uses target information to form a desired control objective. External
data such as the speed and direction of the wind can also be used as
input in advanced guidance systems. A computer collects and processes
the information, and then feeds the results to the flight control system.
Advanced optimization techniques can be used to compute the optimal
trajectory to follow.

Navigation
Navigation is the science of determining the movement of a vehicle at a
given time. This includes continuously monitoring of the vehicle’s position,

Chapter 4. Multicopter Motion Control 33

velocity and acceleration as well as its attitude. A global navigation satellite
system (GNSS) combined with motion sensors such as accelerometers and
gyroscopes is a common navigational technique. GPS is a fully operational
GNSS.

Control
Flight control or motion control refers to the manipulation of the necessary
control forces and moments to be provided by the vehicle in order to satisfy
a certain control objective while maintaining its stability. The desired
control objective is usually seen in conjunction with the guidance system.
Examples of control objectives are minimum energy, setpoint regulation,
trajectory-tracking and path-following. The design of basic motion control
systems is typically based on proportional, integral and derivative (PID)
design methods while more advanced control systems is using optimal and
nonlinear control theory.

4.2 APM:Copter Control Overview

The various flight modes in APM:Copter are all made up of the same underlying
controllers. At the bottom of the controller stack there are four low-level con-
trollers called rate controllers that are always running. These are responsible for
providing a roll, pitch or yaw rate of change or, in the case of the throttle con-
troller, a vertical acceleration. The low-level body-frame rate targets are given
from a set of upper controllers for roll-pitch, yaw and throttle.

The upper controllers are responsible for passing a desired rate or acceleration to
the rate controllers based on higher-level objectives. There are implemented a set
of different controllers in APM:Copter for roll-pitch, yaw and throttle which can
be combined to form a flight mode. For example, the flight mode AltHold utilize
the automatic altitude hold controller to control throttle while the stabilization
controller is used for both roll-pitch and yaw. To illustrate the flow of command
to motor output, Figure 4.2 shows the command chain for roll control.

Given the background on how the controllers are structured in APM:Copter,
it explains why the first release of “ArduCopter” had a second flight mode in
addition to stabilize mode. The other mode, acrobatic or acro mode, is a rate
control mode and thus already implemented in the control stack. In acro mode
the pilot is directly controlling the rate of rotation in all axis meaning that the
copter will remain in its current attitude if the RC sticks are released. This mode
is the most difficult flight mode to master, but allows the pilot to perform flips
and other acrobatic maneuvers.

34 4.2 APM:Copter Control Overview

fast_loop()

Runs at 100 Hz.

get_acro_roll()

update_roll_pitch_mode()

get_rate_roll()

set_servos()

get_stabilize_roll()

Runs high-level roll controllers that
use pilot input or guidance input, or
a mix of both to fulfill the desired

control objective. Simple mode
transforms are applied if necessary.

Takes pilot input as desired
angle to hold. The error

between actual roll angle and
the desired angle is converted
to a desired rate of rotation.

Takes pilot input and
converts it to a desired

rate of rotation.

The desired rotation is
mixed to all motors and
output as PWM.

The actual rate of rotation is
compared to the desired rate. The
error is fed to the motors.

Control input

Desired rate

Servo output

Figure 4.2: The flow of command from user input to motor output for roll control in
APM:Copter. Based on http://ardupilot.com

http://ardupilot.com

Chapter 4. Multicopter Motion Control 35

4.2.1 Attitude Control

The attitude of the copter is controlled in cascade by a nested PI and PID
loop. In cascade control there are two control loops where the outer loop
controls the setpoints to the inner loop. In the case of attitude control the outer
and inner loops are the upper and low-level controllers, respectively, where the
upper controllers set desired rates of angular rotation to the rate controllers
(see Figure 4.3). The advantage with cascade control is due to the general
response time in the system. It gives better control of the desired angle input, is
less affected by disturbances and improves the dynamics. A disadvantage with
cascade control is that the complexity of tuning increases.

Stabilize

PI

Rate

PID Motor output

Rotational rate

from gyroscop

Actual angle

from sensor

Desired angle

from pilot

Desired

rotational rate

Figure 4.3: Cascaded PID structure of stabilized control per axis. Acro/rate control
utilizes only the rate block where the pilot input the desired rotational rate directly.
Based on http://ghowen.me/build-your-own-quadcopter-autopilot

Although there are many gains that can be tuned in APM:Copter to get optimal
performance, the most critical is the proportional gain for roll and pitch rate.
A well tuned rate controller should give good result for the other flight modes.
Especially, stabilize mode should at least have good performance [APM, 2014b].
The tuned parameters in Table 4.1 showed good results for the 3DR ArduCopter
Hexa.

Table 4.1: Tuned parameters for the 3DR ArduCopter Hexa.

Stabilize Roll Stabilize Pitch Stabilize Yaw Loiter

P 4.0 P 4.0 P 3.0 P 1.0
I 0.0 I 0.0 I 0.0

Rate Roll Rate Pitch Rate Yaw Rate Loiter

P 0.138 P 0.138 P 0.20 P 1.0
I 0.099 I 0.099 I 0.02 I 0.4
D 0.020 D 0.020 D 0.00 D 0.0

http://ghowen.me/build-your-own-quadcopter-autopilot

36 4.2 APM:Copter Control Overview

4.2.2 Mission Commands

The APM:Copter has two different types of commands that can be executed in a
mission. The first group affects the location of the vehicle while the second can be
referred to as “do” commands which enable auxiliary functions. Return-to-launch
(RTL) is one of the location commands that brings back the copter to a specified
location while set-cam-trigg-dist is an example of a do command that trigger the
camera shutter at regular distance intervals. All these mission commands can be
run as part of a mission plan in auto flight mode. A list of some available mission
commands are given in Table 4.2.

Table 4.2: Some of the available mission commands in APM:Copter. The location
commands should be self-explainable.

Location command Do command Do command explanation

Takeoff Condition-Delay Delays the start of the next “do”
command a number of seconds.

Waypoint Condition-Dist Delays the start of the next “do”
command a given distance.

Loiter Condition-Yaw Point the nose of the vehicle at a
given yaw angle.

RTL Set-ROI Points the nose of the vehicle and
gimbal at the “region of interest”.

Land Change-Speed Change the target horizontal
speed.

Circle Set-Home Change the home position used by
RTL.

Set-Servo Move a servo to a particular PWM
value.

Set-Relay Set the relay pin’s voltage high or
low.

Set-Cam-Trigg-Dist Trigger the camera shutter at reg-
ular distance intervals.

Digicam-Control Trigger the camera shutter once.

Some of the mission commands are available through a designated flight mode,
such as loiter and guided mode with the point-and-click waypoint guidance.
Flight modes can be customized to yield specific guidance laws by changing the
desired controllers in for example roll-pitch and yaw.

All mission commands must be pre-programmed into a mission script and se-
quentially executed. This means that the fully autonomous multicopter is best
designed with an external on-board unit sending new mission commands based
on sensor input from for example a camera module.

Chapter 4. Multicopter Motion Control 37

4.3 Motion Control Scenarios

The motion control system works in close interaction with the guidance system
in order to achieve a given control objective. The outline of the control objectives
varies from different scenarios and requirements. Fossen [2011] distinguishes
between setpoint regulation, path-following and trajectory tracking scenarios.
The latter uses methods to compute a desired trajectory to the target where
a control system that forces the system output to track the desired output solves
a trajectory tracking problem. The advantage of using trajectory tracking is to
incorporate constraints due to for example obstacle avoidance or minimum and
maximum time problems by generating feasible trajectories. Such optimization
is not considered in the setpoint regulation and path following scenarios, which
makes them simpler to work with. Trajectory tracking is therefore not considered
further in this thesis keeping the focus on the two other scenarios, setpoint
regulation and path following, that are now presented:

Setpoint regulation
The most basic guidance system is a special case where the desired position
and attitude are chosen to be constant. Examples of setpoint regulation
are constant altitude, attitude and speed control.

Path following
Path following is the task where the objective is to follow a predefined
path independent of time. No restrictions are placed on the temporal
propagation along the path. The path following problem can be divided
into straight-line paths and curved paths. For the straight-line path problem
line-of-sight (LOS) guidance is a popular method for heading control. LOS
guidance uses a method for tracking a path between to waypoints (see
Section 4.4). The path-following controller for curved paths is a kinematic
controller that generates the desired states for the motion control system
using the parameterization of the path. The drawback is that the path must
be parameterized and known in advance. In many cases this is not practical
and a simpler path consisting of waypoints and straight lines is preferred.
A search pattern based on waypoints are illustrated in Figure 4.4.

For a multicopter and other aircraft, the guidance and control system usually
consists of an attitude control system and a path-following control system.
The main function of the attitude feedback control system is to maintain the
multicopter in a desired attitude by controlling roll, pitch and yaw. The task of
the path-following controller is to keep the multicopter on the pre-described path
with some predefined dynamics, for instance a speed control system generating
orders to the attitude control system. Supplementing the guidance and control
system with an altitude controller makes it complete.

38 4.4 Guidance Strategies

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

Position X [m]

P
o

si
ti

o
n

 Y
 [

m
]

Flight Path

Waypoints

Figure 4.4: Straight lines forming a barrier patrol search used for waypoint guidance.
Based on Andersen [2014].

4.4 Guidance Strategies

There are different guidance strategies for achieving a given control objective. A
guidance strategy is a set of rules that make the control objectives be fulfilled in a
certain way. LOS guidance belongs to a three-point guidance scheme and can be
explained with a typically stationary reference point in addition to the location
of the UAV and the target (see figure Figure 4.5). Suppose there is a straight line
between the reference point and the target, the LOS guidance principle is based
on the fact that the UAV is supposed to achieve an intercept of this straight line
by constraining its motion along the line. LOS guidance can be applied to both
track targets and paths.

A more straightforward guidance strategy is the pure pursuit guidance, which
belongs to a two-point guidance scheme. It involves the UAV aligning its velocity
pointing directly at the target. This strategy is equivalent to a predator chasing
a prey in the animal world, and results very often in a tail chase when a moving
object is targeted. The pure pursuit guidance is illustrated in Figure 4.5. The
APM:Copter uses pure pursuit for the waypoint guidance.

4.4.1 Using DUNE as a Guidance Framework

Since DUNE has been adapted and already is utilized for autonomous control
in Chapter 6, it is naturally to also use DUNE as a guidance framework if the
waypoint scheme in APM:Copter should be discarded for an optimized guidance
scheme. This will give the possibility for customizing a guidance scheme specially
designed for the search and rescue operations. There are developed several
guidance strategies in DUNE for use in autonomous underwater vehicles (AUV),
which can be used as a good starting point for UAVs. Integral LOS and pure
pursuit are both implemented and although they are not tested, it should be fair

Chapter 4. Multicopter Motion Control 39

UAV

heading

Pure pursuit

Target

heading

Reference

point

LOS vector

Target

heading

UAV

heading

Figure 4.5: Illustration of two- and three-pointed guidance schemes. The vector
pointing directly at the target represents the pure pursuit guidance principle while the
line-of-sight guidance is represented with the reference point and the LOS vector. Based
on Fossen [2011].

to assume that they would be working straightforward also with UAVs.

The advantage of introducing DUNE as a guidance framework is that all guidance
can be done by the same unit giving more freedom for customizing with respect
to the SAR operation. However, along with more responsibility it increases the
importance of a well functional platform. The demand with respect to latency
between DUNE and APM:Copter will increase, since more low-level control are
to be done in DUNE. The low-level control interface presented in Chapter 5
can be utilized as the bridge between DUNE and APM:Copter. Although the
performance of customized guidance control not has been tested in a search and
rescue operation, the interface is utilized by Høglund [2014] and Voldsund [2014]
in other applications showing good results.

4.5 Navigation in APM:Copter

The navigation system in APM:Copter is responsible for determining the position,
velocity and angular orientation of the multicopter. The APM is equipped
with gyroscope, accelerometer, magnetometer and barometer to estimate the
movements. The important libraries for navigation in APM are AP_AHRS
and AP_InertialNav. The AHRS or attitude heading reference system library is
responsible for estimating the attitude and angular orientation. The InertialNav
or INS library blends accelerometer data with GPS and barometer data to
improve altitude and position hold. Since accelerometer values are integrated
over time to approximate velocity and position, inaccuracy of these estimates
grow due to sensor noise. The barometer and GPS readings are used to improve
this accuracy by calculating an error value between the last position estimation

40 4.5 Navigation in APM:Copter

and the measurement from the sensors. This value is then weighted with a gain
factor and incorporated into the new estimation.

4.5.1 Compass Challenges

Loiter, RTL, auto and other flight modes based on waypoint commands are
dependent on good navigation performance. However, magnetic interference,
vibrations and bad GPS positions are well known factors that will influence the
performance.

My experiments (see Chapter 9) faced some of these factors in the start-up phase
of the experiments in field. They encountered in loiter mode and made the copter
starting to spin in circles with a fixed yaw. The problem is typically due to the
compass. A way to solve this problem is to run compassmot, a setup that helps
compensate for magnetic interference from the power-distribution-board, wires,
electronic speed controllers, motors and batteries. It calculates a compass offset
based on the fact that the interference is linear with current drawn. This makes
it possible to compensate for the interference during flight, regarded that it is not
to high. Another solution is to move the compass away from the affected area
using a external compass module. This can be done on both APM 2.5 and APM
2.6, but as APM 2.5 is equipped with an on-board compass the circuit board
needs to be modified in the installation of the stand-alone compass. The APM
2.6 can use the combined GPS and compass module directly. This is known
to normally resolve the compass problem. Other possibilities that can cause
compass problems include bad compass offsets due to the live calibration process
or incorrect compass orientation.

However, after all normal ways of solving the problem was tested, it still oc-
curred. The final solving factor was most likely a reset of static memory of the
APM:Copter called the EEPROM or electrically erasable programmable read-only
memory in addition to a recalibration of the complete system. Without knowing
the exactly reason behind the problem, a conclusion can not be stated, but a reset
of the EEPROM together with a calibration of the entire system can definitely
be regarded as two important factors.

4.5.2 Extended Kalman Filter

The next generation of autopilot systems, such as the PX4 and Pixhawk, feature
faster processors, multithreading and a Unix/Linux-like programming environ-
ment. This has enabled for developing more advanced estimation algorithms to
estimate the angular orientation, velocity and position of the multicopter. Based
on the initial work by Riseborough [2014], an extended Kalman filter (EKF) al-
gorithm that uses rate gyroscopes, accelerometer, magnetometer, GPS, airspeed
and barometric pressure measurements has been developed. This algorithm is
implemented in the AP_NavEKF library.

Chapter 4. Multicopter Motion Control 41

Compared to the simpler complementary filter algorithms as the AHRS and INS
library, the EKF algorithm can fuse all available measurements and is therefore
better able to reject measurements with significant errors APM [2014b]. This can
make the vehicle less susceptible to faults that affect a single sensor. The EKF
algorithm is also able to estimate offsets in the vehicles magnetometer readings
and estimate the earth’s magnetic field. This makes it less sensitive to compass
calibration errors which may have been the source to the unknown problems
in the field tests conducted. In addition, the EKF provides greater support for
adding more sensors to provide further improvements in accuracy and robustness.
Optional sensors such as optical flow and laser range finders are examples of
sensors that could be utilized to give better performance.

42 4.5 Navigation in APM:Copter

Chapter 5

Extensions to
APM:Copter

The existing features in APM:Copter widely cover the usage for most pilots with
the support for both RC control and waypoint mission planning. However, in
systems where a higher level of autonomy are wanted utilizing input from external
systems or sensors, a feature allowing low-level guidance control of the copter is
needed.

In this work, it has been clear that several applications can benefit from the
development of low-level guidance control. Attitude control where roll, pitch and
yaw can be controlled individually in addition to velocity control in body or earth
frame has been found attractive as control objectives. Seen in the perspective of
the search and rescue mission, velocity control is most likely the easiest way to
do motion control of the multicopter in a fully autonomous task based on camera
input. This makes it easy to command the copter to whether move forward
or sideways regarded to the body frame. The velocity control combined with
the existing waypoint guidance in APM:Copter makes a good platform for doing
guidance control in SAR operations. However, if a separate velocity controller
is desirable or the APM:Copter waypoint guidance scheme is not found suitable,
attitude control is valuable.

This chapter presents contributions to APM:Copter and how the interface can be
utilized using the MAVLink protocol which is intended and adapted for enabling
low-level control from DUNE.

5.1 Low-Level Guidance Control

To make the extensions as modular as possible in order to simplify the fur-
ther process with additional updates and make the work transferable to new

43

44 5.1 Low-Level Guidance Control

APM:Copter releases, a new flight mode is created for the low-level control. This
is in line with the structure in APM:Copter where flight modes are defined with
specialized roll-pitch, yaw and throttle controllers. As DUNE is utilized as the
runtime environment in the SAR multicopter system and will be used to send
MAVLink commands to APM:Copter, the flight mode for low-level control is
called DUNE mode. The following code in Listing 5.1 is given as an example of
how the mode can be selected autonomously using the MAVLink protocol.

Listing 5.1: Example of how to set new mode in ArduCopter.

uint8_t buf [512];
mavlink_message_t * msg = new mavlink_message_t ;
mavlink_msg_set_mode_pack (255 , 0, msg ,

m_sysid ,
1,
CP_MODE_DUNE);

uint16_t n = mavlink_msg_to_send_buffer (buf , msg);
sendData (buf , n);

Note that CP_MODE_DUNE is an integer enumerator with the APM:Copter modes,
meaning that every flight modes can be selected in this manner. This is the
equivalent message that is sent to the APM when a mode is selected in Mission
Planner or APM Planner.

5.1.1 The Interface for Low-level Control

The interface for enabling low-level control of APM:Copter is based on a single
MAVLink message for all kind of commands. To generalize and make the interface
applicable for every system that want to utilize some kind of low-level control, the
interface is designed to make it possible to target different controllers based on
individual needs. To be able to use the same message for each individual needs,
a target mask is used to distinguish the control objective of the message from
each other. The different controllers that can be combined is given in Table 5.1.

Table 5.1: APM target masks used in the low-level control interface. A mask set to
none means that the correspondent target is unchanged and will not be updated.

Velocity in X-Y Throttle Roll-pitch Yaw

None None None None
Velocity in BODY Altitude Roll and pitch angle Yaw angle
Velocity in NED Thrust RC

RC

The MAVLink protocol is build with all kind of scenarios in mind and holds a
large library with different message types. However, there do not exist a specific

Chapter 5. Extensions to APM:Copter 45

message that fits the description for sending velocity, throttle, roll-pitch and yaw
control commands in the same task. This can be solved in two ways, either there
is a new message type made in order to get the description right or an existing
message is chosen that will work flawlessly but will fail describing the message
sent. Although it is a straightforward process to add new message definition in
MAVLink, this introduce changes to the APM:Copter that strictly speaking is
unnecessary. In line with the idea of keeping the contributions to APM:Copter
as simple and portable as possible, the existing 6DOF setpoint message type is
chosen for sending desired low-level control commands. It is originally designed
for sending setpoints to a system with 6 degrees of freedom (DOF).

The 6DOF setpoint message is structured with six float variables and a single
uint8 variable. When a message is sent to the APM, the floats store the desired
control variables while the uint8 is used to hold the target mask. An example of
how the 6DOF setpoint message can be sent is given in Listing 5.2.

Listing 5.2: Example of how to send low-level control commands.

uint8_t buf [512];
mavlink_message_t * msg = new mavlink_message_t ;
mavlink_msg_setpoint_6dof_pack (255 , 0, msg ,

target_mask ,
trans_x , // Translation in x
trans_y , // Translation in y
trans_z , // Translation in z
roll , // Roll angle
pitch , // Pitch angle
yaw); // Yaw angle

uint16_t n = mavlink_msg_to_send_buffer (buf , msg);
sendData (buf , n);

The modular design of the interface becomes convenient in a development phase
where it is practical to have the possibility of testing different parts individually,
doing debugging easier. For example, lets assume that a system is developed
with autonomous controllers designed for thrust, roll-pitch and yaw. In the test
phase, if a problem occur, it can be hard to determine which control system that
causes the problem. Each controller can easily be tested individually by changing
the target mask. To test the roll-pitch controller individually, the target mask
for throttle and yaw can be set to RC making the pilot in control of these.

All external communication to the APM through the MAVLink protocol is han-
dled in the source file GCS_Mavlink.pde in APM:Copter. The file is structured
with several switch-cases where one of them handles MAVLink communication.
The segment of GCS_Mavlink.pde in Listing 5.3 shows the principle of how the
the target mask is used to distinguish the different controllers, in this case the yaw
target. Note how the different yaw controllers are set with the set_yaw_mode()
function.

46 5.2 Security

Listing 5.3: Segment of GCS_Mavlink.pde where yaw control is managed.

void GCS_MAVLINK :: handleMessage (mavlink_message_t * msg) {
switch (msg -> msgid) {
case MAVLINK_MSG_ID_SETPOINT_6DOF :

switch (packet . target_system & TARGET_MASK_YAW) {
case TARGET_YAW_NONE :

break ;
case TARGET_YAW_SET :

if (mode_yaw != TARGET_YAW_SET){
mode_yaw = TARGET_YAW_SET ;
set_yaw_mode (DUNE_YAW_SET);

}
yaw_cd = (int32_t)(ToDeg (packet . rot_z * 100.0));
break ;

case TARGET_YAW_RC :
if (mode_yaw != TARGET_YAW_RC){

mode_yaw = TARGET_YAW_RC ;
set_yaw_mode (DUNE_YAW_RC);

}
break ;

5.2 Security

The possibility of controlling all multicopter parameters using the MAVLink
protocol creates a security breach that can bring along chances for unwanted
control by strangers. Potentially, other system can transmit packets with the
purpose of gaining control of the aircraft. The APM:Copter is not only vulnerable
for hackers, but also for unintentionally commands sent from your own GCS that
can make the aircraft fly away or crash. This can accidentally happen when for
instance the operator is exploring the functionality in Mission Planner and by
mistake sends a flight command to the vehicle, which is probably more likely to
be a bigger problem than hackers. All in all, it is essential to have a system that
can deal with these security threats.

Based on a episode from early testing where unintentionally flight commands
was given to an aircraft, it became clear that a security guard should be made
making the system unreachable in a specific flight mode. This is the origin to an
designated secure flight mode named dictator mode. This flight mode is basically
the original stabilize mode without the interface against MAVLink messages, and
any communication attempts will be denied as illustrated in Figure 5.1. Using
this, the pilot at any time switch to dictator mode, regaining manual control over
the UAV even though Mission Planner or DUNE are spamming the system with
MAVLink messages.

Chapter 5. Extensions to APM:Copter 47

Ground Control StationRC Transmitter

PandaBoard with DUNE

Figure 5.1: The principle of dictator mode where all MAVLink messages are rejected.

Although the dictator mode was developed to cut off all communication to and
from a ground station for security reasons, it introduced a new situation regarding
problems with reading parameters. Since all MAVLink messages were disabled,
it made the pilot unable to receive any vital flight information from the copter.
It may therefore be more practical adjust the flight mode to allow reading of
parameters, but deny writing.

48 5.2 Security

Chapter 6

Autonomous Behavior in
Flight

The fully autonomous search and rescue multicopter is a system that, on its
own, can scan areas for objects, and identify and report findings in addition to
perform actions as takeoff, obstacle avoidance and landing. The cornerstone in
such a system is an on-board unit that can perform autonomous guidance and
control.

Autonomous means having the power for self-government. The role of the
autonomous guidance and control system is to act as an extension of the human
operators to assure reliable and continuous operations of the UAV over an
extended period of time. This means that the UAV should be able to perform
well under significant uncertainties in the system and environment.

The serious challenge in fully autonomous UAVs is the real-time optimization in
uncertain environment without human intervention. The perfect system should
be able to deal with unexpected situations, new control tasks, and failures within
limits. Since search and rescue missions introduce unstructured environments,
uncertainties, complex situations and never have two identical missions, the
robust system is a big challenge.

6.1 Autonomous Guidance and Control of the
Multicopter

In this thesis, autonomous guidance control is distinguished in two different
scenarios. The first one relies only on input from the navigation system during the
flight of a pre-programmed route, and can perform predefined actions triggered
by time or distance. The second is based on real-time input from a camera. This

49

50 6.1 Autonomous Guidance and Control of the Multicopter

requires an on-board unit to process the video stream and further calculate a
desired behavior to be executed, referred to as a fully autonomous system. The
structure on how a fully autonomous search and rescue mission is conducted from
the perspective of guidance and control is illustrated in Figure 6.1.

Recieve flight plan

from operator

Start

plan Start SAR

guidance control

Waypoint

reached

Send position to

rescue unit

Inspect for object

and proceed

towards waypoint

Start waypoint

guidance control

Search complete

Object

detected

Waypoint list

complete

Waypoint list

not completed

Object

confirmed Object

rejected

Start next waypoint

Figure 6.1: State diagram of how guidance control is conducted in a SAR mission.

6.1.1 Waypoint Guidance Scheme

The functionality for a pre-programmed flight has good support in APM, where
a waypoint scheme can be used for a given search pattern. A waypoint can be
sent using the MAVLink protocol as shown in Listing 6.1.

Listing 6.1: Example of how to send waypoint to APM.

uint8_t buf [512];
mavlink_message_t * msg = new mavlink_message_t ;
mavlink_msg_mission_item_pack (255 , 0, msg ,

sysid , // System ID
0, // Component ID
1, // Sequence
MAV_FRAME_GLOBAL , // Coordinate system
MAV_CMD_NAV_LOITER_UNLIM , // Scheduled action
2, // Current
0, // Autocontinue next WP
0, // Not used
0, // Not used
-1, // CCW loiter
0, // Not used
lat , // Latitude
long , // Longitude
alt); // Altitude

n = mavlink_msg_to_send_buffer (buf , msg);
sendData (buf , n);

Chapter 6. Autonomous Behavior in Flight 51

To summarize the MAVLink message mission item, which is used for sending
waypoints, the interesting parameters sent with every action are identification,
four parameters and the 3D position of the copter given by latitude, longitude
and relative altitude to home location. The four parameters can be some sort of
custom action as for camera setting, camera trigger, loiter time, etc.

The example in Listing 6.1 illustrates how DUNE sends a waypoint packet to the
APM. When a “GoTo” manuever or other waypoint-based maneuvers are selected
in Neptus, it follows the specified command chain illustrated in Figure 3.2 where
DUNE at the end sends the next waypoint to the APM. Andersen [2014] has
done research on how different flight paths can be utilized in the search and
rescue mission. Two of these search patterns are illustrated in Figure 6.2.

0 20 40 60 80 100

0

20

40

60

80

100

Position X [m]

P
o

si
ti

o
n

 Y
 [

m
]

−50 0 50

−40

−20

0

20

40

60

Position X [m]

P
o

si
ti

o
n

 Y
 [

m
]

Search Path

Waypoints

Figure 6.2: The creeping line search and the square search. Based on Andersen [2014].

6.1.2 The Fully Autonomous Guidance Scheme

The purpose of the fully autonomous guidance system is to be able to perform
actions based on input regarding the object location. The control objective
when a target is detected is important for identifying the object and for further
search. A logical operation to do when a object is detected is to verify that
the detection is correct. This can be done by closing in at the object taking
close-up pictures, if possible, from different angles. A guidance system where
the multicopter starts loitering whenever a object is found and further let an
operator using manual control to inspect the detected object can itself be found
interesting. However, the fully autonomous guidance system that automatically
executes this operation, making human intervention redundant, completes the
SAR multicopter system.

The motivation behind all development in this thesis is to provide support for
the fully autonomous multicopter. Although computer vision algorithms has not
been merged into this work, the framework is made so that this functionality
easily can be included in the future. To substitute for the lack of a computer
vision algorithm providing automatically object detection, a SAR panel is made

52 6.1 Autonomous Guidance and Control of the Multicopter

in Neptus making manual object detection possible (see figure Figure 6.3). The
panel sends the IMC message detected object with a flag indicating whether a
object is detected, input is needed, a detection is confirmed or a detection is
rejected.

Figure 6.3: The search and rescue panel in Neptus for manual detection of objects.
The panel to the left shows the button for sending the manual detection while the panel
to the right shows how the object can be verified or rejected after a manual detection
is sent.

When a detected object message with the “object is detected” flag is received at
the message bus in DUNE it activates the SAR guidance controller task. The
current flight mode in APM is set to DUNE mode and the vehicle is controlled
by the task sending desired control messages using the interface for low-level
control. The SAR guidance controller is in charge of control until a object is
either confirmed or rejected. The SAR guidance controller is then deactivated
and control is returned to the waypoint guidance scheme that continues the
search. The structure of the SAR guidance controller is given in Listing 6.2
where the most important segments of the task are shown. The different control
loops activate specific modules and function as a security barrier together as they
activate the correspondingly control commands to be sent to the APM. In the
example provided in Listing 6.2, fixed yaw and altitude control is conducted by
sending (dispatching) the correspondingly desired IMC messages. This message
is received (consumed) by a second important task for autonomous control, the
ArduCopter task responsible for the two-ways communication between DUNE
and APM. A small segment of ArduCopter shows how the yaw and altitude is
handled in Listing 6.3

The SAR guidance controller is a draft to an autonomous guidance controller
that can consume information from a computer vision task, calculate desired
control commands and further send these to the multicopter. The ArduCopter
task is based on the Ardupilot task from LSTS but customized and adapted to
APM:Copter as the original is developed for APM:Plane.

Chapter 6. Autonomous Behavior in Flight 53

Listing 6.2: Segment of SARGuidanceController for autonomous guidance.

namespace Control {
namespace UAV {

namespace SARGuidanceController {
using DUNE_NAMESPACES ;

//! Controllable loops : Which loop makes this task starts
static const uint32_t c_controllable = IMC :: CL_GUIDANCE ;
//! Required loops : This task starts the task dependent on:
static const uint32_t c_required = CL_YAW | CL_ALTITUDE ;

struct Task: public DUNE :: Control :: BasicGuidanceController
{

//!! Here goes a lot of methods and initialization .

//! Control is computed when a EstimatedState messages is
received

void onEstimatedState (const double timestep , const IMC ::
EstimatedState * msg)

{
// Do SAR guidance control

IMC :: DesiredYaw yaw;
yaw. value = Angles :: radians (90);
dispatch (vel);

IMC :: DesiredZ alt;
alt. z_units = Z_ALTITUDE ;
alt. value = 30;
dispatch (alt);

}

54 6.1 Autonomous Guidance and Control of the Multicopter

Listing 6.3: Segment of ArduCopter for APM communication.

namespace Control {
namespace UAV {

namespace ArduCopter {
using DUNE_NAMESPACES ;

//!! Here goes initalization of enumerators e.g:
//!! APM_c_loops , APM_copterModes , APM_target_masks

struct Task: public DUNE :: Tasks :: Task {

//!! Here goes a lot of methods and initialization .

void consume (const IMC :: DesiredZ * alt) {
if (!(m_cloops & IMC :: CL_ALTITUDE)) {

debug (" altitude control of APM is NOT active ");
return ;}

// Update internal variable for alt control
if(alt -> z_units == Z_ALTITUDE) {

// m_extCtrl .z = alt -> value ;
// m_extCtrl . z_units = alt -> z_units ;
m_d_z = *alt;
update (ACL_ALTITUDE);

}
}
void consume (const IMC :: DesiredYaw * yaw) {

if (!(m_cloops & IMC :: CL_YAW)) {
debug (" yaw control of APM is NOT active ");
return ;}

// Update internal variable for yaw control
m_d_yaw = *yaw;
update (ACL_YAW);

}
bool update (APM_c_loops cloop) {

if(m_updated_desired [ACL_YAW]) {
target |= TARGET_YAW_SET ;
yaw = m_d_yaw . value ;
//! Mark as sent and ready
send = true;
m_updated_desired [ACL_YAW] = false ;

}
if(m_updated_desired [ACL_ALTITUDE]) {

target &= ~ TARGET_MASK_Z ;
target |= TARGET_Z_ALT ;
trans_z = m_d_z . value ;
// Mark as sent and ready
send = true;
m_updated_desired [ACL_ALTITUDE] = false ;

}

Chapter 6. Autonomous Behavior in Flight 55

The high-level control objective of the fully autonomous guidance control task
is to identify and report the position of objects. However, the task can be
extended to encompass more advanced analysis. Imagine a search and rescue
operation where several persons are missing in the same area and assumed to
be moving. This increases the complexity for the search mission. The high-level
control objective can now be extended to determine the position of all objects and
preferably keep them as updated as possible. The SAR operation has developed
to a complicated situation where object first should be detected and then kept
under surveillance simultaneously as the ongoing search for more objects should
continue.

To realize such an autonomous control task, several different parts are needed to
fulfill the complete system. First of all, it is important to estimate the motion of
the objects. An approach is presented in Chapter 7 where the motion of a target
object is described and calculated. Furthermore, it is vital to integrate a sensor
for determining the object’s position. In the following section, the integration of
a camera is discussed where the object is located in the image frame and real
world coordinates are calculated.

One of the key advantages of estimating the real world coordinates of the tracked
objects, is that if the tracking of the object is lost, the estimate of the last known
real world position is still known. This makes the process of regaining tracking
of the object easier as the UAV is more aware of where it should search for the
lost target.

6.2 Camera Integration

The functionality of the camera in a SAR system is dual; it functions as a sensor
device for recognition of objects, but also as a sensor for determining the location
of the object. The payload designed by Leira [2013] performs real-time object
detection and object tracking based on an infrared camera. The implemented
object detection algorithm utilizes pre-trained classifiers to perform detection,
which implies that the algorithm will be more robust for a specific camera
angle. The implemented object tracking algorithm is based on an estimator
that tracks objects in the camera frame. The results showed that the algorithm
occasionally failed to keep track of the object during fast, abrupt and relatively
large displacement rates in the position of the tracked targets. As the tracking
algorithm was developed with a linear motion model, this is reasonable since
abrupt change in velocity is not possible.

Since the natural movement of a human violate against large movement, the linear
motion model is a fair assumption. However, as the tracking algorithm is working
in the image frame, it will be sensitive to abrupt changes from the camera, even
though the object is standing still. The limited computational power of the single-
board computer implies that non-linear estimators are difficult to utilize. With
this in mind, it is important to make the best working condition for the tracking

56 6.2 Camera Integration

algorithm by using a gimbal to stabilize the camera. The use of the gimbal will
also simplify and increase the performance of the algorithm that determines the
object’s real world coordinates.

6.2.1 Image to Global Frame

Suppose that the object detection and object tracking work best with a camera
angle at −45°, pointing forward to get a better visual view of the ground and
downward to make it possible to determine an object position. This is easily
conducted with the use of a gimbal. The part of the world that is visible through
the camera is called field of view. Since the use of gimbal gives a fixed camera
angle that is known it simplifies the calculation of how a pixel in the image frame
is transferred to global coordinates. Assume that the tracked target is positioned
at the ground. Furthermore, if the elevation on the ground is neglected, all
tracked object can be estimated at the same altitude. Now, with the estimate of
the object in the image frame together with an estimated altitude of the UAV,
the process of estimating the real world coordinates of the object is a simple
problem of triangulation (see figure Figure 6.4).

Target

Global frame

Camera

frame

Figure 6.4: FOV and triangulation of object.

The less forward and more downward a camera is pointed at the ground, the
less will elevation on ground affect the accuracy of the triangulation. This can
be illustrated with a simple example. Lets assume that the camera is pointing
straight downward at the ground where an object is localized in the center of the
image frame. The position of the object and the UAV will then be exactly the
same, only at different altitude. The disadvantage with the downward pointing

Chapter 6. Autonomous Behavior in Flight 57

camera is that it gives a small field of view compared to a horizontal camera
position. However, a camera pointing straight forward looses depth vision, which
means that a small error in the image frame can result in a large miscalculation
of the position. As a result, there needs to be a compromise between field of view
and the quality of the calculated object position.

With measurements of real world coordinates it should be noted that to keep
good tracking performance in the image plane, it might be necessary to keep two
separate estimates. That is, having one estimator for the position in the image
plane, and another estimator for the real world coordinates.

6.2.2 Operational Altitude

The angle of view, or field of view (FOV) in a case of a camera, is expressed as
the angular size of the view cone and is relative to the focal length of the camera.
This means that objects outside the FOV when the picture is taken are not
recorded in the photograph. The FOV of the camera and the search altitude of
the multicopter are two important parameter in a search. These two parameters
will together determine the size of the observation area. However, the FOV of
the camera is a fixed parameter while the altitude can be changed in flight. This
gives the opportunity to dynamically change the size of the observation area,
which introduces a new control objective. High altitude gives a large observation
area with low level of details while low altitude provides a small observation area
with high level of details. The search speed can also affect the detection result
at different altitudes, assuming that the frame rate of the computer algorithm is
limited, since low altitude will give larger changes in the image frame than high
altitude. These observations illustrate that altitude is important for optimizing
the quality of the search process, and emphasize that the guidance problem is a
three dimensional problem.

The guidance problem can also include temporal constraints by looking into
search strategies that minimize the time to find targets. Environmental factors
as wind and terrain can also affect the optimal guidance problem.

58 6.2 Camera Integration

Chapter 7

Motion of Target Object

This chapter presents a method that describes the motion of a target object.
The measure-and-estimate approach is a method that is able to run in real-time
with limited computational power on-board the UAV hardware. This method
estimates the states of an object into the future using measurements available at
the present, and is referred to as the prediction step. Further is the estimated
states corrected by the measured position of the object position recorded by
the UAV which is referred to as the correction step. The extended Kalman filter
(EKF) is introduced as a measure-and-estimate approach to estimate the position
of an object detected by a UAV.

7.1 Problem Statement

A UAV detects a moving object and records its position based on sensor data.
To be able to estimate the position of the object, the general dynamics of the
object need to be modeled as a system of known dynamics. Knowing that the
model used only is an estimation of the true object dynamics means that model
error is introduced. Noise from the UAV sensor and the following algorithm
used to determine the position of the object introduces measurement error to
the problem. The problem describing the object motion is stated on a non-linear
state space representation

X(k + 1) = f [X(k)] + ω(k)
Y(k) = h[X(k)] + ν(k)

(7.1)

where X is the state vector and Y is the output vector. The vectors ω and ν are
white-noise processes with zero cross correlation and represent the uncertainty of
the model and measurements respectively. To estimate the states of the object
detected by the UAV an extended Kalman filter (EKF) is proposed as a measure-
and-estimate approach.

59

60 7.2 Kalman Filter

7.2 Kalman Filter

The Kalman filter is a recursive process introduced in 1960 by R. E. Kalman and
was early recognized as new and important contribution to least square filtering.
The linear as well as the extended Kalman filter are recursive processes divided
into a prediction and a correction part. In the case of linear system dynamics, a
Kalman filter will produce optimal estimates with respect to minimum variance.
The EKF is an extension of this optimal state estimator, designed to account for
the fact that most real systems inhabit nonlinear characteristics. This is more
in line with the estimate-and-measure approach needed to describe the motion
of the object. The discrete EKF is defined to further explain the theory behind
the Kalman filter, which is based on the theory outlined by Brown & Hwang
[2012].

7.2.1 Discrete EKF

In the extended Kalman filter, the state transition and observation (measure-
ment) of the process are defined as the non-linear state-space representation in
(7.1). The process and measurement noise ω(k) and ν(k) are defined as in-
dependent random variables, Gaussian distributed and described through the
covariance matrices Q(k) and R(k):

E
[
ω(k)ω(k)T

]
=
{

Q(k) if i = k

0 if i 6= k
(7.2)

E
[
ν(k)ν(k)T

]
=
{

R(k) if i = k

0 if i 6= k
(7.3)

E
[
ω(k)ν(k)T

]
= 0 for all k and i (7.4)

These diagonal covariance matrices are suspect to tuning when the Kalman
filter is implemented. The matrices represent assumptions made regarded to
the system, and may be corrected if found necessary. They are therefore often
referred to as the design matrices of a Kalman filter.

Assume now that at some point in time t(k), the initial estimate of the process
is given, and that this estimate is based on all our knowledge about the process
prior to t(k). This prior (or a priori) estimate will be denoted as X̂−(k) where
the “hat” denotes estimate, and the “super minus” denotes that this is our best
estimate prior to assimilating the measurement at t(k). Further, lets assume
that the error covariance matrix associated with X̂−(k) is known. By defining
the estimation error as

e−(k) = X(k)− X̂−(k) (7.5)
the associated error covariance matrix is defined

P−(k) = E[e−(k)e−(k)T] = E[(X(k)− X̂−(k))(X(k)− X̂−(k))T] (7.6)

Chapter 7. Motion of Target Object 61

As the prior estimate X̂−(k) is now defined, the measurement Y(k) is used
to improve the prior estimate by a linear blending factor K(k). The updated
estimate X̂(k) is then derived by the update equation

X̂(k) = X̂−(k) + K(k)
(
Y(k)− Ŷ−(k)

)
(7.7)

where the optimized linear blending factor is called the Kalman gain. A high
blending factor makes the estimates follow the measurements closely. While a low
blending factor emphasizes the modeled behavior, and thus makes the estimates
become less responsive to new inputs.

Note that Equation (7.7) is written in terms of total rather than incremental
quantities as in Equation (7.13), which is the more familiar linear estimate update
equation. The equations says that the a priori estimate is corrected by adding the
measurement residual appropriately weighted by the Kalman gain K(k).

The linear blending factor K(k) must now be derived in a way that makes the
updated estimate optimal. The Kalman filter is optimal in most cases that makes
sense, but is mostly known as optimal with respect to minimum variance [Vik,
2012]. Toward this optimization problem, the error covariance matrix associated
with the updated (a posteriori) estimate is now defined

P(k) = E[(X(k)− X̂(k))(X(k)− X̂(k))T] (7.8)

The Kalman filter solves the optimization problem that gives the particular
K(k) that minimizes the mean-square estimation error. The estimation error
variances for the elements of the state vector being estimated is the individual
terms along the major diagonal of P(k). The optimization using a differential
calculus approach leads further to an optimal Kalman gain K(k). The reader is
referred to Brown & Hwang [2012] for more detailed derivation of the Kalman
gain. To summarize the extended Kalman filter, the equations for the prediction
and correction part are now listed.

Extended Kalman Filter Equations

Design matrices:

Q(k) = QT (k) > 0, R(k) = RT (k) > 0 (7.9)

Initial conditions:

X(0) = X0 (7.10)
P−(0) = E[(X(0)− X̂−(0))(X(0)− X̂−(0))T] = P0 (7.11)

62 7.2 Kalman Filter

Corrector equations:

H(k) = ∂h
∂X

∣∣
X=X̂−(k) (7.12)

X̂(k) = X̂−(k) + K(k)
[
Y(k)− h

(
X̂−(k)

)]
(7.13)

K(k) = P−(k)HT (k)
[
H(k)P−(k)HT (k) + R(k)

]−1 (7.14)
P(k) = [I−K(k)H(k)] P−(k) [I−K(k)H(k)]T + K(k)R(k)KT (k) (7.15)

Predictor equations:

Φ(k) = ∂f
∂X

∣∣
X=X̂(k) (7.16)

X̂−(k + 1) = f [X̂(k)] (7.17)
P−(k + 1) = Φ(k)P(k)ΦT (k) + Q(k) (7.18)

Note that the symmetric form of the P-update is used in Equation (7.15). In some
cases this form is sufficient to ward off divergence [Brown & Hwang, 2012].

7.2.2 Analysis and Functionality of the EKF

The EKF is mentioned as the nonlinear version of the Kalman filter, but it is
important to remember that the EKF is working in the world of linear dynamics.
The EKF linearizes about the trajectory that is continually updated with the
state estimate resulting from the measurement, as shown in Figure 7.1. The
filter gain sequence will depend on the sample measurement sequence realized on
a particular run of the experiment. Thus, the gain sequence is not predetermined
by the process model assumptions as in the usual Kalman filter.

Time

S
y
s
te

m
 s

ta
te

Update points

Estimated trajectory

Actual trajectory

Figure 7.1: Reference and actual trajectories for an EKF. Based on Brown & Hwang
[2012].

As discussed by Brown & Hwang [2012] the general analysis of the EKF is
difficult because of the feedback of the measurement sequence into the process
model. However, it is possible to discuss how the update of the state estimate

Chapter 7. Motion of Target Object 63

is done. The estimated trajectory, which the EKF uses, is only statistical the
best trajectory. There is a chance (and maybe a good one) that the updated
trajectory will be a poor estimate of the true states. This could eventual lead
to divergence of the filter. Especially in situations where the initial uncertainty
and measurement errors are large this could be a problem. In general do not the
extended Kalman filter have the optimal properties of the linear Kalman filter,
but is still used extensively in practice with good results.

7.3 State Estimation

The extended Kalman filter is now presented as an approach to estimate the
states of a moving object. For such Kalman filtering, a non-linear state-space
representation as presented in (7.1) is required to describe the object motion.
This section presents the model used for the state estimation based on Prevost
et al. [2007].

7.3.1 Variable Definition

Let the motion of the object be modeled as a series of setpoints Xr where the
dynamics are modeled as a transfer function G(z) and a set of motion equations
further provide the positions. The variables are shown in Figure 7.2, which
illustrates the model.

Xr = [rρ rψ rz]T Xy = [yρ yψ z]T Xp = [x y]T

Y = [x y z]T

rρ
rψ
rz

yρ
yψ

x
y

z
G(z)

G(z)

Figure 7.2: Motion model of object under observation. Based on Prevost et al. [2007].

The states of the model is provided by the

Object setpoints:
Speed in the xy-plane rρ, heading in the xy-plane rψ, altitude rz

Outputs of model G(z):
Speed in the xy-plane yψ, heading in the xy-plane yψ, altitude z

Corresponding position:
x-axis x, y-axis y

64 7.3 State Estimation

The transfer function G(z) models the response of the object dynamics. If the
UAV can identify the detected object, known responses can be used to better
approximate the true underlying object dynamics. Since the transfer function
needs to be known, general dynamics must be chosen if the UAV is unable to
identify the detected object. The estimated internal states Xm of G(z) must be
included in the state vector for Kalman filtering.

The object setpoints, the outputs of model G(z) and the corresponding position
are respectively given as the vectors

Xr = [rρ rψ rz]T (7.19)
Xy = [yρ yψ z]T (7.20)
Xp = [x y]T (7.21)

The state vector in order to completely characterize the behavior of the detected
object is thus given as

X =
[
XT
r XT

m XT
y XT

p

]T (7.22)

The position of the object is given by the spatial coordinates (x, y, z) which form
the measurement vector Y:

Y = [x y z]T (7.23)

Finally, let the random vector ω be defined

ω =
[
ωTr ωTm νTm ωTp

]T (7.24)

where ωr, ωm, νm and ωp are random vectors composed by independent, zero-
mean, white noise, Gaussian random variables specified as follows:

ωr = [ωρ ωψ ωz]T model variations in the setpoints between time samples.

ωm model uncertainties on the internal states.

νm model uncertainties on the outputs of model G(z).

ωp = [ωx νy]T model errors due to approximating the non-linear motion
equations by their linear counterparts.

7.3.2 State Equation

The state equation describes the evolution of all states in the system. As shown
in (7.22), the evolution of four distinct sets of states must be defined. These sets
are the setpoints Xr, the internal states and outputs of model G(z) ,respectively
Xm and Xy, and the position of the object in space Xp. The evolution can be
obtained by the following steps [Prevost et al., 2007]:

Chapter 7. Motion of Target Object 65

Setpoint Evolution

The object setpoints are completely unknown and are modeled as independent
random walks

Xr(k + 1) = Xr(k) + ωr(k) (7.25)
Setting ωr = 0 assumes that the object setpoints remain constant throughout
time.

Object Dynamics

The object dynamics are given as the output of the modeled dynamics given by
the setpoints

Xy(k) = Z {G(s)}Xr(k) (7.26)
where Z{·} denotes the z-transform of the continuous-time transfer function and
where

G(s) =

G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)
G31(s) G32(s) G33(s)

 (7.27)

Secondary order low pass filters represent the dynamics in the direct branches:

Gii(s) = 1
(1 + Tiis)2 (7.28)

where i ∈ 1, 2, 3. The dynamics in the indirect (coupling) branches are modeled
as secondary order band pass filters:

Gij(s) = s

(1 + Tijs)2 (7.29)

where i, j ∈ 1, 2, 3 and i 6= j.

The use of second order low pass filter is assumed to be sufficient to model
the dynamics in the system. Although higher-order filters can encompass more
dynamics, they will most likely not increase the performance in this application
since there are to many uncertainties in the system, as the only measurement is
the object position.

The continuous-time transfer function matrix G(s) needs to be discretized to
a state-space representation (Am,Bm,Cm). Using this discrete state-space
representation with the setpoints Xr as an input vector the evolution of the
internal states is computed:

Xm(k + 1) = AmXm(k) + BmXr(k) + ωm(k) (7.30)
Xy(k) = CmXm(k) + νm(k) (7.31)

where the state vector Xm is composed of the internal states in G(z), and where
Xy is the output vector.

66 7.3 State Estimation

Motion equations

The object position in the xy-plane is governed by the motion equations

x(k + 1) = x(k) + Tsyρ(k) cos yψ(k) (7.32)
y(k + 1) = y(k) + Tsyρ(k) sin yψ(k) (7.33)

where Ts is the sampling period, and x and y are the positions of the object along
the x-axis and y-axis respectively. However, the object speed and heading in the
xy-plane yρ and yψ respectively are not known, only estimated. Since equations
(7.32) and (7.33) are non-linear, described by

Xp(k + 1) = fp [Xp(k),Xy(k)] (7.34)

a linearization of these equations are done at each iteration using a first-order
Taylor series expansion about the operating point (X∗

y,X∗
p):

Xp(k + 1) ≈ fp [Xp(k)∗,Xy(k)∗] +∂fp [Xp(k)∗,Xy(k)∗]
∂Xp(k) δXp(k)

+ ∂fp [Xp(k)∗,Xy(k)∗]
∂Xy(k) δXy(k)

(7.35)

where δXy(k) and δXp(k) are the perturbation about the operating point. As a
result, the following equation is obtained:

Xp(k + 1) = Xp(k) + BpXy(k) + ωp(k) (7.36)

where

Bp =
[
Ts cos y∗

ψ(k) −Tsy∗
ρ(k) sin y∗

ψ(k) 0
Ts sin y∗

ψ(k) Tsy
∗
ρ(k) cos y∗

ψ(k) 0

]
(7.37)

and where the operating points y∗
ψ and y∗

ρ are used to linearize the motion
equations correspond to the states predicted/estimated by the extended Kalman
filter at the previous sample time.

Note that the evolution of the object position along the z-axis has already been
described by the evolution of the altitude output z.

Complete State Equation

The evolution of the four distinct sets of states are now defined, and by combining
(7.25), (7.30), (7.31) and (7.36), yields the linear state equation governing the
evolution of all states in the system

X(k + 1) = AX(k) + ω(k) (7.38)

Chapter 7. Motion of Target Object 67

where X is the complete state vector given in (7.22), and where

A =

I 0 0 0

Bm Am 0 0
CmBm CmAm 0 0

0 0 Bp I

 (7.39)

and ω(k) with covariance matrix Q models the uncertainty on all system states.
Note that the linearization of (7.34) made it possible to obtain a linear state equa-
tion to be used in the extended Kalman filter. However, if the nonlinear equation
(7.34) is combined with (7.25), (7.30) and (7.31), a non-linear state equation
describing the object motion is obtained, written on compact form:

X(k + 1) = F[X(k)] + ω(k) (7.40)

7.3.3 The Measurement Equation

The measurement equation expresses the position of the object measured by the
UAV in terms of the state vector defined in (7.22). It is defined

[
Xm
p (k)

zm(k)

]
=
[

0 0 0 0 0 I
0 0 0 0 1 0

]

Xr(k)
Xm(k)
yρ(k)
yψ(k)
z(k)

Xp(k)

+ ν(k) (7.41)

where the vector
[
Xm
p zm

]T are the position measurements of the object. To
model the uncertainty caused by sensor noise the random vector ν with covariance
matrix R is added to the measurement equation. Equation (7.41) can be written
in a more compact form

Y(k) = CX(k) + ν(k) (7.42)

7.4 Simulation

To demonstrate the performance of the extended Kalman filter presented in Sec-
tion 7.2, a simulated test case, given in the next sections, is made in MAT-
LAB.

7.4.1 Simulation Setup

The true dynamics of the moving object detected by the UAV are given:

X∗
y(k) = Z {G∗(s)}X∗

r(k) (7.43)

68 7.4 Simulation

where

G∗(s) =

G∗
11(s) 0 G∗

13(s)
0 G∗

22(s) 0
G∗

31(s) 0 G∗
33(s)

 (7.44)

where

G∗
ii(s) = 1

(1 + 12s)2 (7.45)

G∗
ij(s) = 2s

(1 + 18s)2 (7.46)

where i ∈ 1, 2, 3, j ∈ 1, 3 and i 6= j. This gives smooth object dynamics.

Suppose that the EKF incorrectly uses the following dynamics in the motion
calculation of the observed object:

X∗
y(k) = Z {G∗(s)}X∗

r(k) (7.47)

where

G(s) =

G11(s) 0 G13(s)
0 G22(s) 0

G31(s) 0 G33(s)

 (7.48)

where

Gii(s) = 1
(1 + 10s)2 (7.49)

Gij(s) = 4s
(1 + 24s)2 (7.50)

where i ∈ 1, 2, 3, j ∈ 1, 3 and i 6= j. The sampling period for both process and
model is Ts = 1 seconds. Finally, suppose that the sensor measuring the position
of the object is noisy.

7.4.2 Implementation

The extended Kalman filter is used to estimate the true object setpoints, internal
states of model G(s), outputs of model G(s) and object position. The filter
is implemented assuming that setpoints are varying like random walks and the
model of the object dynamics are uncertain. The measurements uncertainty are
given by the randn() function in MATLAB, which gives pseudorandom values
drawn from the standard normal distribution.

The discrete-time quantities Φ(k), f [X̂(k)] and h
(
X̂−(k)

)
in the extended

Chapter 7. Motion of Target Object 69

Kalman filter are given:

Φ(k) = A (7.51)
f [X̂(k)] = AX̂(k) (7.52)

h
(
X̂−(k)

)
= CX̂−(k) (7.53)

where A is given in (7.39) and C is defined in Equation (7.42).

The true initial states, the initial aposteriori state estimate and the covariance
matrices are given in Listing 7.1. These are the tuning factors in the extended
Kalman filter. The measurement noise is tuned high to simulate the difficulties
obtaining the object position from a camera module.

Listing 7.1: Tuning parameters in EKF.

% True initial state
x(: ,1) = [1; pi /180*100; 30; zeros (15 ,1)];

% Initial aposteriori state estimate
x_aposteriori (: ,1) = [0.5; pi /180*50; 20; zeros (15 ,1)];

% State - error Jacobian
W = diag ([1.6 0.4 2 ones (1 ,15)]);

% Measurement - error Jacobian
V = diag ([1.6 0.8 1]);

% Process noise covariance
Q = W*diag ([0.0025 0.0025 0.25 , 0.005* ones (1 ,15)])*W ’;

% Measurement noise covariance
R = V*diag ([100 100 100]) *V ’;

% Initial aposteriori error covariance estimate
P_aposteriori (: ,: ,1) = diag ([1 0.1 1, 0.1* ones (1 ,15)]);

7.4.3 Simulation Results

Test results of the simulation are illustrated in Figure 7.3, 7.4 and 7.5, estimating
object setpoints, outputs of model G(s) and object positions, respectively. The
results show that the EKF succeeds in estimating the object positions in spite of
measurement and model uncertainty. However, the estimation of the setpoints
and model outputs are not adequate, but can be tuned to increase the perfor-
mance. The estimation error of the model outputs is lower than for the setpoints
following the trends more closely. The best setpoint estimate is in altitude.

70 7.4 Simulation

0 50 100 150 200 250 300 350 400

−5

0

5

10

S
p

ee
d

 [
k

m
/

h
]

True

Estimated

0 50 100 150 200 250 300 350 400

0

50

100

H
ea

d
in

g
 [

d
eg

]

0 50 100 150 200 250 300 350 400
0

50

Time [s]

A
lt

it
u

d
e

[m
]

Figure 7.3: True and estimated setpoints.

0 50 100 150 200 250 300 350 400
−10

0

10

20

S
p

ee
d

 [
k

m
/

h
]

True

Estimated

0 50 100 150 200 250 300 350 400
−50

0

50

100

H
ea

d
in

g
 [

d
eg

]

0 50 100 150 200 250 300 350 400
0

50

Time [s]

A
lt

it
u

d
e

[m
]

Figure 7.4: True and estimated model outputs.

Chapter 7. Motion of Target Object 71

0 50 100 150 200 250 300 350 400

0

200

400

X
−

A
x

is
 P

o
s

[m
]

True

Estimated

Measured

0 50 100 150 200 250 300 350 400

0

100

200

Y
−

A
x

is
 P

o
s

[m
]

0 50 100 150 200 250 300 350 400
0

50

100

Time [s]

Z
−

A
x

is
 P

o
s

[m
]

Figure 7.5: True, estimated and measured positions.

7.5 Summary

In the tuning process, the estimation of the position is generally producing good
results. However, the estimation of the model outputs and especially the setpoints
are not as robust as the position estimates. The tuning of design matrices and
uncertainties are important for the final simulation result. However, the purpose
of the simulation was to confirm that the EKF could be used to estimate the
motion of a target object using the system represented by (7.38) and (7.42). As
this was accomplished, the method can be used to support the autonomous SAR
multicopter system.

A module that can support the autonomous guidance controller with information
about the real world coordinates of a target can be of great advantage. Especially
in a process of regaining tracking of a missing target, but also further in the
search operation. Information about the motion of a target object can be used
to optimize the search pattern, predict future position and better be able to
keep hold of the object position while the search is resumed looking for other
objects.

The extended Kalman filter should be implemented as a separate task based
on the navigation package in DUNE, which already can handle Kalman filters,
provided that the state matrix is updated accordingly. Although the Kalman
filter class in DUNE is not valid for non-linear systems, the limited predict method
in DUNE can be used in this case since the measurement equation (7.42) expresses

72 7.5 Summary

the position of the object linearly.

Since there are limited computational power on the single-board computer and it
turns out that the extended Kalman filter is to computational demanding, there
are done other approaches to estimate motion of a target object. The extended
Kalman filter itself should not be of any concern alone, but since the frame rate
of the computer vision algorithms often wants to be maximized, it will limit all
other systems. Another algorithm that should require less computational power
is an approach by Zhiyuan et al. [2010] where the estimation is based on an
adaptive law and low-pass filtering to estimate the target’s velocity and heading
angle.

Chapter 8

Experiments

In the development process, the motivation has been to make a system that au-
tonomously can be used in a real search and rescue operation. Although that the
fully autonomous system is not realized in this thesis, the focus has all along been
to develop subsystems that will benefit this system. The subsystems are therefore
designed to be modular and flexible to easily allow further development.

The modular design also made testing possible since the missing module from
the fully autonomous system easily could be replaced by simple logic to prove
the concept. The module that is missing from completing the fully autonomous
system is the integration of a computer vision algorithm for automatically object
detection. A simple panel in Neptus, where a manual detection instead can be
given, solves this. The parts that have been extensively tested and examined in
simulators and real flights are summarized by the following points:

• The features in APM:Copter.

• The extensions to APM:Copter.

• The low-level control interface.

• The interaction between APM:Copter, DUNE and Neptus.

These parts constitute the framework needed in order to test the principle of the
fully autonomous search and rescue multicopter system.

Regardless of the missing computer vision algorithm, the experiments presented
verify how the search operation can be executed using waypoint guidance and
an observer spotting for objects on the ground. This system can definitely be a
resource in search operations providing air support.

73

74 8.1 Test Strategy

8.1 Test Strategy

In the development process, continuously and rapidly testing has been of great
value. Especially, the possibility of testing parts of the system at an early stage
speed up the process. Usually it is not practical or doable to perform field tests
for each parts alone. For this reason, testing of the system has been conducted
in three different stages:

Software In Loop
In the first stage of testing, software in loop or SIL simulation is conducted.
The purpose behind software in loop simulation is to test the software,
verifying that algorithms, communication and coding are working properly.
Most of the testing in the development process is done in a software in loop
simulator as it requires little effort and is quickly performed.

Target In Loop
After software in loop testing is conducted and the system appears to be
well functional in the simulator, the next stage is the target in loop (TIL)
test. In a target in loop simulation the software modules are installed at
the designated hardware if possible. Normally a hardware in loop (HIL)
simulation is conducted as the final stage before a field test is carried out.
However, TIL has become the substitute due to problems and limitations
running the APM code in HIL.

Field test
The final and ultimate test of the system is a complete field test. In real
flight, all possible factors play into account, whether it is problems with the
multicopter, software or as simple as bad weather.

The full description of the setup and how software in loop and target in loop
simulations can be conducted is given in the following subsections.

8.1.1 Software in Loop

The software in loop simulator for the SAR multicopter system is running a
simulated APM in software. In addition, several tasks added in DUNE are
responsible for reading RC signals, running the simulated multicopter model and
transporting messages between modules. It is in this phase that coding failures
start to become evident. The modules in the software in loop simulator are
illustrated in Figure 8.1.

8.1.2 Target in Loop

In the final test stage the software modules should preferably be fully installed
into the designated hardware and only interact with the environment through the
proper input and output of the system. The environment needs to be simulated

Chapter 8. Experiments 75

APM:Copter Desktop
Executable (.elf)

UserInterfaces.RCViaArdupilot

Transports.FlightGear

Simulators.Multicopter

DUNE tasks subject to testing, e.g.:
TCP
5760

TCP
5763

Transports.ArdupilotSITL

APM Planner

UDP
5501

UDP
5502

IMC

Control.UAV.ArduCopter

Control.UAV.SARGuidanceController

Control.UAV.SAR.GenerateDetection

Control.UAV.SAR.ReceiveDetection

DUNE tasks for physics simulation:

Flightgear

APM

UDP
49000

Serial
ttyACM0

Mission Planner

or

MAVProxy

UDP
14550

Neptus

Simulated states

Simulated servos

MAVLink

MAVLink

Figure 8.1: The interaction and setup of modules in SIL testing. Based on
https://code.google.com/p/ardupilot-mega/wiki/SITL

with input and output simulation to fool the system into believing it is running
a multicopter in the real world. In the ideal hardware in loop simulation, the
difference to a real field test should be at a minimum. However, since it does not
exist a good solution to fool the APM:Copter by input and output simulations,
a HIL test is for the time being not achievable.

In the target in loop test, compared to the software in loop, DUNE is not running
on the local computer, but at the PandaBoard itself. Since the APM:Copter needs
to be simulated in software, it must be executed as in the software in loop test,
at a desktop. This is the reason why it is a target in loop test and not a complete
hardware in loop test. However, it is the test closest to a real field test and can
expose problems with software interactions and particularly any problems with
running DUNE at the PandaBoard. The setup of the TIL simulator is similar
to the SIL test illustrated in Figure 8.1 but where the DUNE tasks subject to
testing is run on the PandaBoard. Target in loop simulation can also be used as
the final preparation before the field test, going through all points in the checklist
(see Appendix A).

There have been conducted a great deal of research on how the APM could be
included in the hardware in loop simulator setup [Steen, 2013]. At the moment,
a well-tuned target in loop test is the best substitute. However, there will always
occur more problems in the field that could have been discovered in a proper HIL
test. Especially the failures regarded to the APM autopilot hardware are hard

https://code.google.com/p/ardupilot-mega/wiki/SITL

76 8.2 Preliminary Field Tests

to discover without flying. With that said, since multicopters are relatively easy
to deploy and only require a small designated test area, the test solutions with
target in loop simulation might be good enough making the priority of solving
the HIL problems low. The problems that can not be discovered in a target in
loop simulation are mostly related to hardware in a start-up phase, and might in
fact be easier to fix directly in the field.

8.2 Preliminary Field Tests

Already in February 2014 a test flight was performed with the objective to get
out in the field and test some of the existing features. The importance of having
the first test flight was to clarify what a successful mission required, regarding to
equipment and personnel in addition to see if some unexpected factors needed to
be taken into consideration. The features that were tested can be summarized in
the following points:

• Basic flight maneuvers in APM:Copter.
• The USB communication link between DUNE and APM.
• The communication between DUNE and Neptus over wifi.
• That executed flight commands in Neptus was transmitted and executed

on APM.

The test flight was defined a success based on good feedback on the test objectives.
However, it should be mentioned that the GoTo command in Neptus had a
set point at 200 meters, which made the command impossible to finish. The
conclusion of a successfully executed command was therefore based on that the
hexacopter started to gain altitude, not that it successfully reached the target,
but that the command was transmitted as planned. The outcome of the first
test flight regarding to the objective to clarify the mission needs turned out with
few unexpected factors, with the exception on how altitude in a GoTo maneuver
should be set.

The objective of the second test flight was to test the first outline of the low-
level control interface. The test was conducted at Agdenes in moderate wind
conditions. The interface setting roll, pitch and yaw angles was successfully
conducted, although the results could not be proved due to absence of logging.
However, the primary objective was to conclude whether it was possible to send
attitude angles with a MAVLink message, or not. The results were therefore
most easily verified with a change in yaw. The visual results were concluded
promising.

Now, with promising results for the low-level control interface, the motivation
for redefining the interface more in line with the structure in DUNE was high.
Especially, since a well functional interface would not only benefit the SAR
mission but also other and future applications. The structure of the interface was
therefore reviewed and restructured using the different control layers in DUNE

Chapter 8. Experiments 77

(see Figure 3.2). The autonomous task was also designed in this manner.

Finally, the test of the complete system was conducted after a series of navigation
problems discussed in Section 4.5. The detailed setup and results are presented
in the following sections.

8.3 Experimental Setup in Field

The test site for the final experiments of the complete system was at the airfield
at Agdenes. The presented flights took place in moderate wind conditions over
the airstrip (see Figure 8.2).

GoTo

START

Figure 8.2: The flight map in Neptus showing the airstrip at Agdenes with the
designated GoTo maneuver. The map data is retrieved from http://norgeibilder.no

The mission’s general plan was to search the airstrip by moving towards a
waypoint given by a GoTo maneuver in Neptus. The flight operator was in charge
of observing objects by watching the video stream at the laptop (see Figure 8.3).
To simulate camera detection, the operator clicked the manual detection button
in Neptus starting the SARGuidanceController in DUNE. The first flight test was
performed with a guidance objective to start loiter when the detection occurred.
To be able to show it more illustratively on a map, the objective of the second
test was designed to move the multicopter left for 15 seconds and then back
moving right for 15 seconds, repeatedly. After an visual inspection of the object
was conducted by the operator, a confirmed or reject button was pressed and
the multicopter resumed the mission plan proceeding towards the designated
waypoint.

http://norgeibilder.no

78 8.4 Experimental Results in Field

Figure 8.3: The operator monitors the multicopter’s status, mission and watches the
video stream for objects, responsible for sending a manual detection.

8.4 Experimental Results in Field

The motivation and high-level objective for the final experiment was to confirm
that all modules worked together forming the SAR multicopter system. This
means that the following points should be achieved:

• Execute a mission plan based on waypoint (GoTo) maneuvers from Neptus.
• View the video feed from the multicopter on the laptop and monitor status.
• Send manual object detection from Neptus to DUNE over wifi.
• Start an autonomous guidance control task in DUNE triggered by the

received object detection.
• Use the low-level control interface to perform an autonomous operation.
• Abort the autonomous operation by sending a confirmed object message

from Neptus to DUNE.
• Autonomously resume the mission plan after the object is inspected.

The mission start and final waypoint is given in Figure 8.2. To execute the plan,
the pilot manually flew the multicopter into the start position with an altitude
at approximately 9 meters before switching the flight mode to loiter. The flight
path of the executed mission is shown in Figure 8.4.

Given the direction of the multicopter after the autonomous operation where the
mission plan is resumed, it can be seen that a pure pursuit algorithm is used for
the waypoint guidance. If the LOS guidance algorithm had been used with the
start point as reference point, the multicopter should have merged more towards
the original course towards the waypoint.

Considering the disturbance caused by the wind, the performance of both way-
point guidance and autonomous operations is satisfying. The multicopter keeps
straight at the target both before and after the autonomous operation. The au-
tonomous operation, although it differs a few meters from a straight course, is

Chapter 8. Experiments 79

5 10 15 20 25 30

−10

−5

0

5

10

Mission Start

Proceeds to WP

Position X [m]

P
o

si
ti

o
n

 Y
 [

m
]

Hexacopter Path

Figure 8.4: The flight path of the SAR operation. The autonomous guidance operation
is easily seen, as the multicopter starts moving left, then to the right, before moving
left again for some meters before the mission plan is resumed.

well executed. The performance can better be seen in Figure 8.5 where it is
shown from the velocity perspective.

0 10 20 30 40 50 60
−1

0

1

2

3

Time [s]

V
el

o
ci

ty
 i

n
 u

 [
m

/
s]

Desired

Measured

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

V
el

o
ci

ty
 i

n
 v

 [
m

/
s]

Figure 8.5: The measured and desired velocity in u and v defined as forward and
sideways velocities in body, respectively. The desired sideways velocity v clearly shows
the repeatedly movement to the left and right.

The maximum velocity during waypoint guidance is 2m/s. The yaw angle is
controlled to point the nose directly towards the waypoint. This means that the
desired velocity during waypoint guidance should be the maximized forward in
the body frame. In other words, ideally should u = 2m/s and v = 0m/s. This
is how the velocity is handled in the theory and correspond almost to the actual
movement. However, as seen in Figure 8.5, the measured velocity differ from this
theory for the first four seconds. The reason for this is that the multicopter was

80 8.4 Experimental Results in Field

not facing the waypoint, which means that a velocity in v was towards the target.
The change in yaw can be seen in Figure 8.6 making u the forward velocity.

The error between desired and measured velocity differ more at some point,
typically before the multicopter has reach a steady state. The term steady
state is here referring to the state where the multicopter has stabilized after
attitude setpoints are changed, which is given when the multicopter changes
direction. This flight test was not specially made with the purpose of testing the
performance of the waypoint guidance, as the copter almost never achieves steady
state. In addition, disturbances in the wind will influence the performance.

To give an impression of how the multicopter actually behaved during the flight,
the attitude is shown together with ground speed in Figure 8.6. The fluctuations
in both roll and pitch states that there have been some disturbances due to wind.

0 20 40 60
−10

0

10

20

R
o

ll
 A

n
g

le
 [

d
eg

]

0 20 40 60
−5

0

5

10

P
it

ch
 A

n
g

le
 [

d
eg

]

0 20 40 60
50

100

150

200

Time [s]

Y
aw

 A
n

g
le

 [
d

eg
]

0 20 40 60
0

1

2

3

Time [s]

G
ro

u
n

d
 S

p
ee

d
 [

m
]

Figure 8.6: Roll, pitch, yaw and ground speed.

The altitude was set to altitude hold for the entire mission and is shown in
Figure 8.7 together with measured current and voltage of the APM and the
reported software CPU (central processing unit) usage of the PandaBoard. A
small drop in altitude happens when the autonomous operation starts due to
the change in attitude causing the hexacopter to tilt and correspondingly losing
some lift. This is quickly compensated, but it can be argued for that the tilt
compensation is too low based on the altitude dip. Or it can be interpreted quite
opposite, that the tilt compensation during waypoint guidance is to aggressive
making the multicopter to elevate. However, the barometer sensitivity at the
APM can give larger fluctuations than one meter. A separate altitude sensor is

Chapter 8. Experiments 81

needed to measure the accuracy of the barometer, for instance a sonar or a laser
rangefinder.

0 20 40 60
25

30

35

40

C
u

rr
en

t
[A

]

0 20 40 60
8.5

9

9.5

A
lt

it
u

d
e

[m
]

0 20 40 60
9.9

10

10.1

10.2

10.3

Time [s]

V
o

lt
ag

e
[V

]

0 20 40 60
0

5

10

15

Time [s]

C
P

U
 U

sa
g

e
[%

]

Figure 8.7: The altitude together with the monitored parameters current, voltage and
CPU usage.

Analyses of current and voltage of the APM make logical sense in Figure 8.7. It is
possible to see a falling trend of the voltage. Furthermore, if current is compared
with voltage it can be seen that if the current level drops, for instance after
22 seconds, a correspondingly raise can be seen in the voltage level. Although the
voltage level is continuously falling the same raise can be seen at the end of the
flight, when the current level drops. The CPU usage of the PandaBoard shows
that DUNE has more than enough power during the flight.

82 8.4 Experimental Results in Field

Chapter 9

Conclusion and Closing
Discussion

Autonomous control, whose goal is to realize the autonomous flight of an un-
manned aerial vehicle, is a great challenge. The fully autonomous multicopter is
a vision that can contribute, not only to the search and rescue mission, but also
to other applications. However, in the design that can perform self-governing
flight without human intervention there are challenges due to both hardware and
software. The goal of this thesis was to design and implement methods for the
autonomous multicopter as a contribution to the search and rescue operation.
The final system was verified by simulations and experiments to illustrate how
the system can be utilized in practice.

First, the hardware and software modules that form the search and rescue
multicopter was presented. The PandaBoard, as the single-board computer, was
chosen to operate the runtime environment on-board the multicopter together
with the ArduPilot Mega autopilot. Other hardware components were introduced
for integration of a camera in addition to the necessary radio controller for manual
control. On the software side, DUNE was briefly introduced as the on-board
runtime environment due to the modular and versatile design. Furthermore, the
protocols for communication between DUNE, APM and ground control stations
were described. The two ground control stations in the APM autopilot suite were
characterized as good configuration tools but hard to customize and with lack
of support for more advanced operations. Neptus was therefore presented as the
last piece in the LSTS Neptus-IMC-DUNE software toolchain. To summarize
the search and rescue multicopter system a detailed figure was made illustrating
communication links and the system in its entirety.

Followed by the overall system description of the SARmulticopter an introduction
to APM:Copter and DUNE were given. To begin with, some of the flight modes
was described in addition to the available features in APM:Copter. It was

83

84

shown that mission planning was limited to pure pursuit waypoint guidance and
predefined “do” commands. Next, a structural presentation of the functionality
in DUNE was given to emphasize the advantages of a modular and flexible
design.

For the purpose of autonomous control, an introduction to the design of three
subsystems to control the movement of the multicoper was provided. The study
of the guidance, navigation and control gave an overview of each subsystem
from the APM:Copter’s perspective. The integration of DUNE as a guidance
framework was discussed to highlight possibilities for further optimization of the
guidance system. Furthermore, challenges due to navigation was discussed and
presented.

With the existing features in APM:Copter presented, a low-level control interface
was found necessary to extend the possibilities of autonomous behavior in flight.
The result was an extension to APM:Copter using the MAVLink protocol for
allowing both attitude and velocity control of the multicoper. The purpose of this
interface was to enable low-level control from the on-board single-board computer
at the multicopter. The interface was implemented with a modular approach
allowing different controllers in roll-pitch, yaw and throttle to be combined and
triggered by a single target mask. This benefits particularly the development
phase since individual controllers can be tested separately. In addition, the
general application with the need off low-level control can utilize this interface
due to its generality.

The high-level goal of this thesis was to design and implement promising methods
for the autonomous multicopter. It was emphasized that a camera module was
one of the vital parts to achieve fully autonomous guidance and control. Since the
integration of the computer vision module was not covered in this thesis, simple
logic replaced the automatically object detection algorithm allowing manual
detection possible from Neptus. However, with the objective of preparing for
the fully autonomous multicopter, camera integration was discussed with the
purpose of describing how a camera module could be utilized. The outcome of
this was the transformation from the image frame to the global frame using the
camera module as a sensor retrieving the real world coordinates of an object.
The advantage of estimating the real world coordinates was concluded to make
the process of regaining tracking of a lost object in the image frame easier, as the
last known position would provide a good starting point.

To describe the motion of a target object, the object dynamics was represented
by a state equation governing the evolution of all states in the system. The
motion equations were linearized by Taylor approximation giving a linear state
equation. The extended Kalman filter was thoroughly presented and introduced
as a measure-and-estimate approach for the motion estimation. The results of
the simulation demonstrated that the object position could be estimated in spite
of uncertainties and noisy measurements.

Finally, the test results of the experiments concluded the potential for the fully

Chapter 9. Conclusion and Closing Discussion 85

autonomous multicopter system. The general mission was conducted with the
high-level objective to confirm that all modules worked together. The experi-
ments verified that the autonomous search and rescue multicoper could contribute
in a search operation using an observer to spot for objects. Furthermore, the test
results showed good performance of both waypoint guidance and the autonomous
behavior in flight.

The importance of a complete field test was one of the cornerstones in this thesis,
proving that the concept of the autonomous multicopter for use in search and
rescue or other applications was viable. Furthermore, with the design of the
autonomous multicopter with possibility for low-level operations, future work can
be concentrated more towards the actual autonomous mission since the different
parts now are united.

86

Appendix A

Hexacopter Checklist

Home
• Start the laptop with the ground control station (Neptus/Mission Planner).
• Pull all repositories (DUNE, Neptus, IMC, IMCjava and APM:Copter):

– Same procedure for all repositories. Example of DUNE:
∗ cd /dune/dune
∗ git fetch all
∗ git checkout YOUR-BRANCH

• Check to build DUNE and APM:Copter.
– Update APM tools if necessary with:

∗ ardupilot/Tools/scripts/install-prereqs-ubuntu.sh
– Install MAVProxy if necessary with:

∗ sudo apt-get install python-pip
∗ sudo pip install MAVProxy

• Create missions in Neptus.
• Load maps.

Pre-flight

ArduPilot Mega
• Copy old parameters away from target:

– With MAVProxy:
∗ sudo mavproxy.py –master=/dev/ttyACM0, 115200
∗ param save ArduCopter.TodaysDate.parm

– With Mission Planner or APM Planner:
∗ Full-parameter list → save tofile: hexa-00x.TodaysDate.parm

• Check frame configuration for hexacopter in ArduCopter/APM_config.h:

87

88

– It should contain the line: #define FRAME_CONFIG HEXA_FRAME
• Compile new version APM:Copter:

– make configure
– make –j4
– make upload

• Open APM Planner or Mission Planner, upload old parameters back (or
check for equality).

• Check frame type to be 1 for X configuration.
• Check flight-modes:

– Example:
∗ Mode 1-2: AltHold/Loiter
∗ Mode 3-4: Dune
∗ Mode 5-6: Stabilize/Dictator

• Check the parameter ARMING_CHECK to be 1.
• (Calibrate accelerometer and magnetometer if needed.)
• Calibrate Radio.

Target/PandaBoard
• Router: Connect, and verify that the wifi symbol is green.
• Power on Pandaboard. Verify two lights by SD-card.
• Neptus: Verify connected pandaboard with valid IP-address.

– Troubleshoot:
∗ Check IP of Neptus.
∗ Connect serial port to target (or use SSH) to check IP.
∗ Check dune service with:

· status dune
∗ Check logs in:

· /home/share/dune/dune_upstart.log
· /var/log/upstart/dune.conf

∗ Start manually for test:
· /home/share/dune/bin/dune-launcher

• Double-check Auto Custom Maneuver in
[Control.UAV.ArduCopter/Hardware]

• Upload your DUNE:
– cd armbuild
– cmake –DCROSS=arm-linux-gnueabihf- ../dune
– make package
– rsync –avz dune-2.*.tar.bz2 root@192.168.0.xxx:

• The dune-service should update dune.
• Re-check Neptus status. If no IP, repeat steps above summarized by:

– stop/start/status dune
• If you are using Configure System in Neptus, update configuration files:

– cd build
– ./dune –c ntnu-hexa-00x -p Hardware -X ../neptus/conf/params

• Connect APM. Check for status, check pitch/roll, check state of APM.

Chapter A. Hexacopter Checklist 89

In flight
• Monitor voltage. Minimum voltage is 9.9V for 3 cell LiPo.
• If compass problems occur:

– Perform factory reset and initialization of EEPROM values:
∗ Run command line (CLI) in Mission Planner and type:

· erase
· reset

– Recalibrate the APM (see above in Pre-flight).

After flight
• Fetch logs with something like:

– scp root@192.168.0.xxx:/home/share/dune/log .
– sudo chown –R uavlab:uavlab log/

90

Bibliography

Andersen, H. (2014). Path Planning for Search and Rescue mission using
multicopters. Master thesis, Department of Engineering Cybernetics, NTNU.

APM (2014a). The ArduPilot Mega Development Site. [Online] Available:
http://dev.ardupilot.com/.

APM (2014b). The ArduPilot Mega Multiplatform Autopilot. [Online] Available:
http://ardupilot.com/.

Breivik, M. & Fossen, T. I. (2008). Guidance laws for planar motion control.
In 47th IEEE Conference on Decision and Control - Cancun, Mexico, (pp.
570–577).

Brown, R. G. & Hwang, P. Y. C. (2012). Introduction to random signals and
applied Kalman filtering: with MATLAB exercises (4th ed.). Wiley.

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control
(1st ed.). Wiley.

Goodrich, M. A., Morse, B. S., Gerhardt, D., Cooper, J. L., Quigley, M., Adams,
J. A., & Humphrey, C. (2008). Supporting wilderness search and rescue using
a camera-equipped mini UAV. Journal of Field Robotics, 25 (1-2), 89–110.

Hai, C., Xin-Min, W., & Yan, L. (2009). A Survey of Autonomous Control for
UAV. In International Conference on Artificial Intelligence and Computational
Intelligence - Shanghai, China, volume 2, (pp. 267–271).

Høglund, S. (2014). Autonomous inspection of wind turbines and buildings using
an UAV. Master thesis, Department of Engineering Cybernetics, NTNU.

Joint Rescue Coordination Centers (2012). Detailed Statistics of the Joint Rescue
Coordination Centers. [Online] Available:
http://www.hovedredningssentralen.no/.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME - Journal of Basic Engineering, 82 (Series
D), 35–45.

Leira, F. S. (2013). Infrared Object Detection & Tracking in UAVs. Master thesis,
Department of Engineering Cybernetics, NTNU.

91

http://dev.ardupilot.com/
http://ardupilot.com/
http://www.hovedredningssentralen.no/

92 Bibliography

Martins, R., Dias, P. S., Marques, E., Pinto, J., Sousa, J. B., & Pereira, F. L.
(2009). IMC: A communication protocol for networked vehicles and sensors.
In OCEANS - Aberdeen, Scotland, (pp. 1–6).

MoJ (2002). The Norwegian Search and Rescue Service. Department of Civil
Emergency and Rescue Planning, the Ministry of Justice and Police (MoJ).
[Online] Available:
http://www.redningsnett.no/Litteratur/Den-norske-redningstjenesten.

Naidoo, Y., Stopforth, R., & Bright, G. (2011). Development of an UAV for
search & rescue applications. In IEEE AFRICON - Livingstone, Zambia, (pp.
1–6).

Pachter, M. & Chandler, P. R. (1998). Challenges of autonomous control. IEEE
Control Systems, 18 (4), 92–97.

Pinto, J., Dias, P. S., Martins, R., Fortuna, J., Marques, E., & Sousa, J. (2013).
The LSTS toolchain for networked vehicle systems. In MTS/IEEE OCEANS
- Bergen, Norway, (pp. 1–9).

Prevost, C. G., Desbiens, A., & Gagnon, E. (2007). Extended Kalman Filter
for State Estimation and Trajectory Prediction of a Moving Object Detected
by an Unmanned Aerial Vehicle. In American Control Conference - New York
City, USA, (pp. 1805–1810).

QGroundControl (2014). The MAVLink Protocol. [Online] Available:
http://qgroundcontrol.org/mavlink/start.

Riseborough, P. (2014). Inertial Navigation Filter. [Online] Available:
https://github.com/priseborough/InertialNav.

Rudol, P. & Doherty, P. (2008). Human Body Detection and Geolocalization for
UAV Search and Rescue Missions Using Color and Thermal Imagery. In IEEE
Aerospace Conference - Big Sky, Montana, USA, (pp. 1–8).

Steen, T. A. (2013). Search and Rescue Mission Using Multicopters. Project
report, Department of Engineering Cybernetics, NTNU.

Vik, B. (2012). Integrated Satellite and Inertial Navigation Systems. Department
of Engineering Cybernetics, NTNU.

Voldsund, V. (2014). Drop and recovery of sensor nodes using UAVs. Master
thesis, Department of Engineering Cybernetics, NTNU.

Waharte, S., Symington, A., & Trigoni, N. (2010). Probabilistic search with
agile UAVs. In IEEE International Conference on Robotics and Automation -
Anchorage, Alaska, USA, (pp. 2840–2845).

Waharte, S. & Trigoni, N. (2010). Supporting Search and Rescue Operations
with UAVs. In International Conference on Emerging Security Technologies -
Canterbury, UK, (pp. 142–147).

http://www.redningsnett.no/Litteratur/Den-norske-redningstjenesten
http://qgroundcontrol.org/mavlink/start
https://github.com/priseborough/InertialNav

Bibliography 93

Wu, Z., Ding, X., & Qin, X. (2009). Research on Video Imagery Moving
Target Intelligent Tracking and Locating Based-on Combined Model. In Third
International Symposium on Intelligent Information Technology Application -
Nanchang, China, volume 3, (pp. 666–669).

Zhiyuan, L., Hovakimyan, N., Dobrokhodov, V., & Kaminer, I. (2010). Vision-
based target tracking and motion estimation using a small UAV. In 49th IEEE
Conference on Decision and Control - Atlanta, Georgia, USA, (pp. 2505–2510).

	MSc Thesis Description Sheet
	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Listings
	List of Figures
	List of Abbreviations
	Introduction
	Background and Motivation
	Previous Work and Related Literature
	Contribution and Scope of this Thesis
	Organization of this Thesis

	The Search and Rescue Multicopter System
	Hardware
	Multicopter
	Radio Controller
	The ArduPilot Mega Autopilot
	Single-board Computer
	Gimbal
	Video Streaming

	Software
	The DUNE Framework
	The IMC Protocol
	The MAVLink Protocol
	Ground Control Stations

	Overall System Description
	Summary

	Introduction to APM:Copter and DUNE
	The APM:Copter Software Project
	Flight Modes and Features

	The Software Architecture in DUNE
	Control Layers
	DUNE Tasks
	Configurations

	Multicopter Motion Control
	Guidance, Navigation and Control
	Definitions

	APM:Copter Control Overview
	Attitude Control
	Mission Commands

	Motion Control Scenarios
	Guidance Strategies
	Using DUNE as a Guidance Framework

	Navigation in APM:Copter
	Compass Challenges
	Extended Kalman Filter

	Extensions to APM:Copter
	Low-Level Guidance Control
	The Interface for Low-level Control

	Security

	Autonomous Behavior in Flight
	Autonomous Guidance and Control of the Multicopter
	Waypoint Guidance Scheme
	The Fully Autonomous Guidance Scheme

	Camera Integration
	Image to Global Frame
	Operational Altitude

	Motion of Target Object
	Problem Statement
	Kalman Filter
	Discrete EKF
	Analysis and Functionality of the EKF

	State Estimation
	Variable Definition
	State Equation
	The Measurement Equation

	Simulation
	Simulation Setup
	Implementation
	Simulation Results

	Summary

	Experiments
	Test Strategy
	Software in Loop
	Target in Loop

	Preliminary Field Tests
	Experimental Setup in Field
	Experimental Results in Field

	Conclusion and Closing Discussion
	Hexacopter Checklist
	Bibliography

